Molten Boron Phase-Change Thermal Energy Storage to Augment Solar Thermal Propulsion Systems
2011-07-13
Thermodynamic Properties of Transition Metal Borides . I. The Molybdenum-boron system and Elemental Boron," Journal of Physical Chemistry, Vol. 81...February 1977, pp. 318-324. 38Itoh, H., Matsudaira, T., and Naka, S., "Formation Process of Tungsten Borides by Solid State Reaction Between Tungsten...Molybdenum-Boron and Some Properties of The Molybdenum- Borides ," Journal of Metals, September 1952, pp. 983-988. 40Stout, N. D., Mar, R. W., and Boo, W. O
Friction and wear of radiofrequency-sputtered borides, silicides, and carbides
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1978-01-01
The friction and wear properties of several refractory compound coatings were examined. These compounds were applied to 440 C bearing steel surfaces by radiofrequency (RF) sputtering. The refractory compounds were the titanium and molybdenum borides, the titanium and molybdenum silicides, and the titanium, molybdenum, and boron carbides. Friction testing was done with a pin-on-disk wear apparatus at loads from 0.1 to 5.0 newtons. Generally, the best wear properties were obtained when the coatings were bias sputtered onto 440 C disks that had been preoxidized. Adherence was improved because of the better bonding of the coatings to the iron oxide formed during preoxidation. As a class the carbides provided wear protection to the highest loads. Titanium boride coatings provided low friction and good wear properties to moderate loads.
High Energy Advanced Thermal Storage for Spacecraft Solar Thermal Power and Propulsion Systems
2011-10-12
Vol. 108, No. 6, June 1961, pp. 568-572. 38. Storms, E. and Mueller, B., "Phase Relations and Thermodynamic Properties of Transition Metal Borides ...T., and Naka, S., "Formation Process of Tungsten Borides by Solid State Reaction Between Tungsten and Amorphous Boron," Journal of Materials...Molybdenum- Borides ," Journal of Metals, September 1952, pp. 983-988. 41. Ellis, R.C., “Various Preparations of Elemental Boron,” Proceedings of the 1st
Methods of repairing a substrate
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2011-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium boride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
Scanlon, Micheál D; Bian, Xiaojun; Vrubel, Heron; Amstutz, Véronique; Schenk, Kurt; Hu, Xile; Liu, BaoHong; Girault, Hubert H
2013-02-28
Rarely reported low-cost molybdenum boride and carbide microparticles, both of which are available in abundant quantities due to their widespread use in industry, adsorb at aqueous acid-1,2-dichloroethane interfaces and efficiently catalyse the hydrogen evolution reaction in the presence of the organic electron donor - decamethylferrocene. Kinetic studies monitoring biphasic reactions by UV/vis spectroscopy, and further evidence provided by gas chromatography, highlight (a) their superior rates of catalysis relative to other industrially significant transition metal carbides and silicides, as well as a main group refractory compound, and (b) their highly comparable rates of catalysis to Pt microparticles of similar dimensions. Insight into the catalytic processes occurring for each adsorbed microparticle was obtained by voltammetry at the liquid-liquid interface.
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1977-01-01
Radiofrequency sputtered coatings of titanium carbide, molybdenum carbide and titanium boride were tested as wear resistant coatings on stainless steel in a pin on disk apparatus. X-ray photoelectron spectroscopy (XPS) was used to analyze the sputtered films with regard to both bulk and interface composition in order to obtain maximum film performance. Significant improvements in friction behavior were obtained when properly biased films were deposited on deliberately preoxidized substrates. XPS depth profile data showed thick graded interfaces for bias deposited films even when adherence was poor. The addition of 10 percent hydrogen to the sputtering gas produced coatings with thin poorly adherent interfaces. Results suggest that some of the common practices in the field of sputtering may be detrimental to achieving maximum adherence and optimum composition for these refractory compounds.
NASA Technical Reports Server (NTRS)
Riedell, James A. (Inventor); Easler, Timothy E. (Inventor)
2009-01-01
A precursor of a ceramic adhesive suitable for use in a vacuum, thermal, and microgravity environment. The precursor of the ceramic adhesive includes a silicon-based, preceramic polymer and at least one ceramic powder selected from the group consisting of aluminum oxide, aluminum nitride, boron carbide, boron oxide, boron nitride, hafnium boride, hafnium carbide, hafnium oxide, lithium aluminate, molybdenum silicide, niobium carbide, niobium nitride, silicon boride, silicon carbide, silicon oxide, silicon nitride, tin oxide, tantalum boride, tantalum carbide, tantalum oxide, tantalum nitride, titanium boride, titanium carbide, titanium oxide, titanium nitride, yttrium oxide, zirconium diboride, zirconium carbide, zirconium oxide, and zirconium silicate. Methods of forming the ceramic adhesive and of repairing a substrate in a vacuum and microgravity environment are also disclosed, as is a substrate repaired with the ceramic adhesive.
NASA Technical Reports Server (NTRS)
Bolgar, A. S.; Verkhoglyadova, T. S.; Samsonov, G. V.
1985-01-01
The vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome; and of strontium and carbides of titanium, zirconium, and chrome, molybdenum silicide; and nitrides of titanium, niobium, and tantalum in a vacuum were studied. It is concluded that all subject compounds evaporate by molecular structures except AlB sub 12' which dissociates, losing the aluminum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogli, Evelina; Sherman, Andrew J.; Glasgow, Curtis P.
The invention describes a method for producing ternary and binary ceramic powders and their thermal spraying capable of manufacturing thermal sprayed coatings with superior properties. Powder contain at least 30% by weight ternary ceramic, at least 20% by weight binary molybdenum borides, at least one of the binary borides of Cr, Fe, Ni, W and Co and a maximum of 10% by weight of nano and submicro-sized boron nitride. The primary crystal phase of the manufactured thermal sprayed coatings from these powders is a ternary ceramic, while the secondary phases are binary ceramics. The coatings have extremely high resistance againstmore » corrosion of molten metal, extremely thermal shock resistance and superior tribological properties at low and at high temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinovskis, Paulius, E-mail: paulius.malinovskis@kemi.uu.se; Lewin, Erik; Jansson, Ulf
2016-05-15
DC magnetron sputtering was used to deposit molybdenum boride thin films for potential low-friction applications. The films exhibit a nanocomposite structure with ∼10 nm large MoB{sub 2−x} (x > 0.4) grains surrounded by a boron-rich tissue phase. The preferred formation of the metastable and substoichiometric hP3-MoB{sub 2} structure (AlB{sub 2}-type) is explained with kinetic constraints to form the thermodynamically stable hR18-MoB{sub 2} phase with a very complex crystal structure. Nanoindentation revealed a relatively high hardness of (29 ± 2) GPa, which is higher than bulk samples. The high hardness can be explained by a hardening effect associated with the nanocomposite microstructure where the surrounding tissuemore » phase restricts dislocation movement. A tribological study confirmed a significant formation of a tribofilm consisting of molybdenum oxide and boron oxide, however, without any lubricating effects at room temperature.« less
The fracture toughness of borides formed on boronized cold work tool steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Ugur; Sen, Saduman
2003-06-15
In this study, the fracture toughness of boride layers of two borided cold work tool steels have been investigated. Boriding was carried out in a salt bath consisting of borax, boric acid, ferro-silicon and aluminum. Boriding was performed at 850 and 950 deg. C for 2 to 7 h. The presence of boride phases were determined by X-ray diffraction (XRD) analysis. Hardness and fracture toughness of borides were measured via Vickers indenter. Increasing of boriding time and temperature leads to reduction of fracture toughness of borides. Metallographic examination showed that boride layer formed on cold work tool steels was compactmore » and smooth.« less
Kinetics of electrochemical boriding of low carbon steel
NASA Astrophysics Data System (ADS)
Kartal, G.; Eryilmaz, O. L.; Krumdick, G.; Erdemir, A.; Timur, S.
2011-05-01
In this study, the growth kinetics of the boride layers forming on low carbon steel substrates was investigated during electrochemical boriding which was performed at a constant current density of 200 mA/cm 2 in a borax based electrolyte at temperatures ranging from 1123 K to 1273 K for periods of 5-120 min. After boriding, the presence of both FeB and Fe 2B phases were confirmed by the X-ray diffraction method. Cross-sectional microscopy revealed a very dense and thick morphology for both boride phases. Micro hardness testing of the borided steel samples showed a significant increase in the hardness of the borided surfaces (i.e., up to (1700 ± 200) HV), while the hardness of un-borided steel samples was approximately (200 ± 20) HV. Systematic studies over a wide range of boriding time and temperature confirmed that the rate of the boride layer formation is strongly dependent on boriding duration and has a parabolic character. The activation energy of boride layer growth for electrochemical boriding was determined as (172.75 ± 8.6) kJ/mol.
Method for ultra-fast boriding
Erdemir, Ali; Sista, Vivekanand; Kahvecioglu, Ozgenur; Eryilmaz, Osman Levent
2017-01-31
An article of manufacture and method of forming a borided material. An electrochemical cell is used to process a substrate to deposit a plurality of borided layers on the substrate. The plurality of layers are co-deposited such that a refractory metal boride layer is disposed on a substrate and a rare earth metal boride conforming layer is disposed on the refractory metal boride layer.
Gradient boride layers formed by diffusion carburizing and laser boriding
NASA Astrophysics Data System (ADS)
Kulka, M.; Makuch, N.; Dziarski, P.; Mikołajczak, D.; Przestacki, D.
2015-04-01
Laser boriding, instead of diffusion boriding, was proposed to formation of gradient borocarburized layers. The microstructure and properties of these layers were compared to those-obtained after typical diffusion borocarburizing. First method of treatment consists in diffusion carburizing and laser boriding only. In microstructure three zones are present: laser borided zone, hardened carburized zone and carburized layer without heat treatment. However, the violent decrease in the microhardness was observed below the laser borided zone. Additionally, these layers were characterized by a changeable value of mass wear intensity factor thus by a changeable abrasive wear resistance. Although at the beginning of friction the very low values of mass wear intensity factor Imw were obtained, these values increased during the next stages of friction. It can be caused by the fluctuations in the microhardness of the hardened carburized zone (HAZ). The use of through hardening after carburizing and laser boriding eliminated these fluctuations. Two zones characterized the microstructure of this layer: laser borided zone and hardened carburized zone. Mass wear intensity factor obtained a constant value for this layer and was comparable to that-obtained in case of diffusion borocarburizing and through hardening. Therefore, the diffusion boriding could be replaced by the laser boriding, when the high abrasive wear resistance is required. However, the possibilities of application of laser boriding instead of diffusion process were limited. In case of elements, which needed high fatigue strength, the substitution of diffusion boriding by laser boriding was not advisable. The surface cracks formed during laser re-melting were the reason for relatively quickly first fatigue crack. The preheating of the laser treated surface before laser beam action would prevent the surface cracks and cause the improved fatigue strength. Although the cohesion of laser borided carburized layer was sufficient, the diffusion borocarburized layer showed a better cohesion.
Investigation of the fracture mechanics of boride composites
NASA Technical Reports Server (NTRS)
Kaufman, L.; Clougherty, E. V.; Nesor, H.
1971-01-01
Fracture energies of WC-6Co, Boride 5 (ZrB2+SiC), Boride 8(ZrB2+SiC+C) and Boride 8-M2(ZrB2+SiC+C) were measured by slow bend and impact tests of notched charpy bars. Cobalt bonded tungsten carbide exhibited impact energies of 0.76 ft-lb or 73.9 in-lb/square inch. Boride 5 and the Boride 8 exhibit impact energies one third and one quarter of that observed for WC-6Co comparing favorably with measurements for SiC and Si3N4. Slow bend-notched bar-fracture energies for WC-6Co were near 2.6 in-lb/square inch or 1/20 the impact energies. Slow bend energies for Boride 8-M2, Boride 8 and Boride 5 were 58%, 42% and 25% of the value observed for WC-6Co. Fractograph showed differences for WC-6Co where slow bend testing resulted in smooth transgranular cleavage while samples broken by impact exhibited intergranular failures. By contrast the boride fractures showed no distinction based on testing method. Fabrication studies were conducted to effect alteration of the boride composites by alloying and introduction of graphite cloth.
Yao, Quantong; Sun, Jian; Fu, Yuzhu; Tong, Weiping; Zhang, Hui
2016-01-01
In this paper, a nanocrystalline surface layer without impurities was fabricated on Ti-6Al-4V alloy by means of surface mechanical attrition treatment (SMAT). The grain size in the nanocrystalline layer is about 10 nm and grain morphology displays a random crystallographic orientation distribution. Subsequently, the low-temperature boriding behaviors (at 600 °C) of the SMAT sample, including the phase composition, microstructure, micro-hardness, and brittleness, were investigated in comparison with those of coarse-grained sample borided at 1100 °C. The results showed that the boriding kinetics could be significantly enhanced by SMAT, resulting in the formation of a nano-structured boride layers on Ti-6Al-4V alloy at lower temperature. Compared to the coarse-grained boriding sample, the SMAT boriding sample exhibits a similar hardness value, but improved surface toughness. The satisfactory surface toughness may be attributed to the boriding treatment that was carried out at lower temperature. PMID:28774115
Morphology and structure of borides in as-cast titanium and gamma-titanium aluminide-based alloys
NASA Astrophysics Data System (ADS)
Kitkamthorn, Usanee
In this study, the morphology and structure of the borides in boron-modified Ti- and gamma-TiAl-based alloys have been investigated using SEM, TEM, and HRTEM. A variety of different boride morphologies was observed including plates, needles, and ribbons. For the plate and needle borides, the major boride phase is B27 TiB. The needle borides have their major axis parallel to [010], and are bounded by (100) and {101} type-facets. The plate borides develop the same types of facets as the needles and have habit planes parallel to the (100). There are high densities of intrinsic stacking faults on (100) in these borides and these correspond to thin embedded layers of the Bf structure. The plate borides do not exhibit well-defined ORs with respect to the surrounding phases, suggesting that they develop in the liquid melt and were then trapped by the growing solid. Needle borides are observed mostly at boundaries between lamellar colonies: these needles tend to occur in groups lying nearly parallel to one another and, in some cases, to adopt well-defined ORs with respect to the surrounding phases. Cored borides with metallic phases such as beta, alpha, o and alpha 2+gamma in the center are frequently observed, especially in the Ti-based alloy. These core phases usually adopt well-defined ORs with respect to the surrounding boride which enable low-energy coherent interfaces to form between the phases. The ribbon borides are comprised of thin boride flakes interspersed with thin metallic layers. The major boride phase in these flakes is Bf TiB. The habit plane of the flakes is (010) and there are high densities of faults on this plane corresponding to intergrowths of the Ti3B 4 and TiB2 phases, together with thin layers or occluded pockets of metallic B2 phase. Occasional faults are observed on {110} corresponding to embedded slabs of B27 TiB. There is a well-defined OR between the boride flakes and the B2 phase within the ribbons, but not with the surrounding matrix. The characteristics of these various borides are consistent with them forming as eutectic reaction products, with the exception of the finest needles and plates observed in Ti-based alloy.
Ultra-fast boriding of metal surfaces for improved properties
Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali
2015-02-10
A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.
NASA Astrophysics Data System (ADS)
Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.
2018-02-01
Structural, electronic, optical and thermal properties of molybdenum aluminum boride (MoAlB) have been analyzed systematically using the full potential linearized augmented plane wave method based on density functional theory at ambient condition as well as high pressure and high temperature. Density of states and band structure calculation reflect the metallic character of MoAlB. In addition to this, the electron charge density calculation reveals the strong covalent bonding, in between ‘B’ atoms as well as ‘Mo’ and ‘B’ atoms. Optical parameters exhibit anisotropic nature and MoAlB become transparent in ultraviolet region for the radiation of energy above 25 eV. The thermal properties were investigated by using the quasi-harmonic Debye model at high temperature and high pressure.
Boriding of high carbon high chromium cold work tool steel
NASA Astrophysics Data System (ADS)
Muhammad, W.
2014-06-01
High-carbon high-chromium cold work tool steels are widely used for blanking and cold forming of punches and dies. It is always advantageous to obtain an increased wear resistant surface to improve life and performance of these steels. In this connection boriding of a high-carbon high-chromium cold work die steel, D3, was conducted in a mixture of 30% B4C, 70% borax at 950 °C for two, four and six hours. Case depth of the borided layer obtained was between 40 to 80 μm. After boriding, the surface hardness achieved was between 1430 to 1544 HV depending upon the process time. X-ray diffraction studies confirmed the formation of a duplex compound layer consisting of FeB and Fe2B. It is generally considered that FeB is undesirable because of its inherent brittleness. Post boriding treatment (homogenization) transformed the compound layer into single-phase layer of Fe2B, while surface hardness decreased to 1345-1430 HV. Pin-on-disc wer test showed that wear resistance of the borided samples was superior as compared to non-borided material and increased with boriding time.
2015-02-19
boride composites *Volodymyr Borysovych Filipov SCIENCE AND TECHNOLOGY CENTER IN UKRAINE METALISTIV 7A, KYIV, UKRAINE *FRANTSEVICH...microstructure and interface boundary formation in directionally solidified ceramic boride composites 5a. CONTRACT NUMBER STCU P-512 5b. GRANT NUMBER...BOUNDARY FORMATION IN DIRECTIONALLY SOLIDIFIED CERAMIC BORIDE COMPOSITES Project manager: Filipov Volodymyr Borysovych Phone: (+380.44) 424-13-67
Novel Routes for Sintering of Ultra-high Temperature Ceramics and their Properties
2014-10-31
UHTCs charge (zirconium and hafnium borides , SiC) with additives (chromium carbide, nickel, chromium, etc.), which activate sintering process, is...temperature phases in a form of carboborides of zirconium and bi borides of zirconium or chromium. Elevation of densification rate of sintered borides is...superplasticity under the slip mechanism of zirconium boride and silica carbide grains on grain boundary interlayers with nanocrystalline grains of carbon
Designing superhard metals: The case of low borides
NASA Astrophysics Data System (ADS)
Liang, Yongcheng; Qin, Ping; Jiang, Haitao; Zhang, Lizhen; Zhang, Jing; Tang, Chun
2018-04-01
The search for new superhard materials has usually focused on strong covalent solids. It is, however, a huge challenge to design superhard metals because of the low resistance of metallic bonds against the formation and movement of dislocations. Here, we report a microscopic mechanism of enhancing hardness by identifying highly stable thermodynamic phases and strengthening weak slip planes. Using the well-known transition-metal borides as prototypes, we demonstrate that several low borides possess unexpectedly high hardness whereas high borides exhibit an anomalous hardness reduction. Such an unusual phenomenon originates from the peculiar bonding mechanisms in these compounds. Furthermore, the low borides have close compositions, similar structures, and degenerate formation energies. This enables facile synthesis of a multiphase material that includes a large number of interfaces among different borides, and these interfaces form nanoscale interlocks that strongly suppress the glide dislocations within the metal bilayers, thereby drastically enhancing extrinsic hardness and achieving true superhard metals. Therefore, this study not only elucidates the unique mechanism responsible for the anomalous hardening in this class of borides but also offers a valid alchemy to design novel superhard metals with multiple functionalities.
Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selva Kumar, M., E-mail: sel_mcet@yahoo.co.in; Chandrasekar, P.; Chandramohan, P.
2012-11-15
In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal themore » presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.« less
NASA Astrophysics Data System (ADS)
Johnston, Jamin M.; Catledge, Shane A.
2016-02-01
Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.
Characterization of AISI 4140 borided steels
NASA Astrophysics Data System (ADS)
Campos-Silva, I.; Ortiz-Domínguez, M.; López-Perrusquia, N.; Meneses-Amador, A.; Escobar-Galindo, R.; Martínez-Trinidad, J.
2010-02-01
The present study characterizes the surface of AISI 4140 steels exposed to the paste-boriding process. The formation of Fe 2B hard coatings was obtained in the temperature range 1123-1273 K with different exposure times, using a 4 mm thick layer of boron carbide paste over the material surface. First, the growth kinetics of boride layers at the surface of AISI 4140 steels was evaluated. Second, the presence and distribution of alloying elements on the Fe 2B phase was measured using the Glow Discharge Optical Emission Spectrometry (GDOES) technique. Further, thermal residual stresses produced on the borided phase were evaluated by X-ray diffraction (XRD) analysis. The fracture toughness of the iron boride layer of the AISI 4140 borided steels was estimated using a Vickers microindentation induced-fracture testing at a constant distance of 25 μm from the surface. The force criterion of fracture toughness was determined from the extent of brittle cracks, both parallel and perpendicular to the surface, originating at the tips of an indenter impression. The fracture toughness values obtained by the Palmqvist crack model are expressed in the form KC( π/2) > KC > KC(0) for the different applied loads and experimental parameters of the boriding process.
2015-09-16
AFRL-AFOSR-VA-TR-2015-0314 Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C...Computational -Experimental Processing of Boride /Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C 5a. CONTRACT NUMBER 5b. GRANT...with a packed bed of B4C to form boride - carbide precipitates. Although the ultimate goal of the research endeavor is to enhance significantly the
Field free, directly heated lanthanum boride cathode
Leung, Ka-Ngo; Moussa, D.; Wilde, S.B.
1987-02-02
A directly heated cylindrical lanthanum boride cathode assembly is disclosed which minimizes generation of magnetic field which would interfere with electron emission from the cathode. The cathode assembly comprises a lanthanum boride cylinder in electrical contact at one end with a central support shaft which functions as one electrode to carry current to the lanthanum boride cylinder and in electrical contact, at its opposite end with a second electrode which is coaxially position around the central support shaft so that magnetic fields generated by heater current flowing in one direction through the central support shaft are cancelled by an opposite magnetic field generated by current flowing through the lanthanum boride cylinder and the coaxial electrode in a direction opposite to the current flow in the central shaft.
NASA Astrophysics Data System (ADS)
Keddam, Mourad; Taktak, Sukru
2017-03-01
The present study is focused on the estimation of activation energy of boron in the plasma paste borided Ti6Al4V alloy, which is extensively used in technological applications, using an analytical diffusion model. Titanium boride layers were successfully produced by plasma paste boriding method on the Ti6Al4V alloy in the temperature range of 973-1073 K for a treatment time ranging from 3 to 7 h. The presence of both TiB2 top-layer and TiB whiskers sub-layer was confirmed by the XRD analysis and SEM observations. The surface hardness of the borided alloy was evaluated using Micro-Knoop indenter. The formation rates of the TiB2 and TiB layers were found to have a parabolic character at all applied process temperatures. A diffusion model was suggested to estimate the boron diffusivities in TiB2 and TiB layers under certain assumptions, by considering the effect of boride incubation times. Basing on own experimental data on boriding kinetics, the activation energies of boron in TiB2 and TiB phases were estimated as 136.24 ± 0.5 and 63.76 ± 0.5 kJ mol-1, respectively. Finally, the obtained values of boron activation energies for Ti6Al4V alloy were compared with the data available in the literature.
Properties of boride-added powder metallurgy magnesium alloys
NASA Astrophysics Data System (ADS)
Tanaka, Atsushi; Yoshimura, Syota; Fujima, Takuya; Takagi, Ken-ichi
2009-06-01
Magnesium alloys with metallic borides, magnesium diboride (MgB2) or aluminum diboride (AlB2), were investigated regarding their mechanical properties, transverse rupture strength (TRS) and micro Vickers hardness (HV). The alloys were made from pure Mg, Al and B powders by mechanical alloying and hot pressing to have boride content of between 2.0 and 20 vol%. The alloy with AlB2 exhibited an obvious improvement of HV around a boride content of 6 vol% though the other alloy, with MgB2, did not. TRS showed moderate maxima around the same boride content region for the both alloys. X-ray diffraction measurements indicated an intermetallic compound, Mg17Al12, formed in the alloy with AlB2, which was consistent with its higher hardness.
NASA Astrophysics Data System (ADS)
Makuch, N.; Piasecki, A.; Dziarski, P.; Kulka, M.
2015-12-01
Ni-base superalloys were widely used in aeronautics, chemical and petrochemical industries due to their high corrosion resistance, high creep and rupture strength at high temperature. However, these alloys were not considered for applications in which conditions of appreciable mechanical wear were predominant. The diffusion boriding provided suitable protection against wear. Unfortunately, this process required long duration and high temperature. In this study, instead of the diffusion process, the laser alloying with boron and niobium was used in order to produce the hard and wear resistant layer on Nimonic 80A-alloy. The laser-alloying was carried out as a two-step process. First, the external cylindrical surface of specimens was pre-placed with a paste containing boron and niobium. Then, the pre-placed coating and the thin surface layer of the substrate were re-melted by a laser beam. The high laser beam power (P=1.56 kW) and high averaging irradiance (E=49.66 kW/cm2) provided the thick laser re-melted zone. The laser-borided layers were significantly thicker (470 μm) in comparison with the layers obtained as a consequence of the diffusion boriding. Simultaneously, the high overlapping of multiple laser tracks (86%) caused that the laser-alloyed layer was uniform in respect of the thickness. The produced layer consisted of nickel borides (Ni3B, Ni2B, Ni4B3, NiB), chromium borides (CrB, Cr2B), niobium borides (NbB2, NbB) and Ni-phase. The presence of hard borides caused the increase in microhardness up to 1000 HV in the re-melted zone. However, the measured values were lower than those-characteristic of niobium borides, chromium borides and nickel borides. The presence of the soft Ni-phase in re-melted zone was the reason for such a situation. After laser alloying, the significant increase in abrasive wear resistance was also observed. The mass wear intensity factor, as well as the relative mass loss of the laser-alloyed specimens, was over 10 times smaller in comparison with untreated Nimonic 80A-alloy.
In Situ Solid-Gas Reactivity of Nanoscaled Metal Borides from Molten Salt Synthesis.
Gouget, Guillaume; Debecker, Damien P; Kim, Ara; Olivieri, Giorgia; Gallet, Jean-Jacques; Bournel, Fabrice; Thomas, Cyril; Ersen, Ovidiu; Moldovan, Simona; Sanchez, Clément; Carenco, Sophie; Portehault, David
2017-08-07
Metal borides have mostly been studied as bulk materials. The nanoscale provides new opportunities to investigate the properties of these materials, e.g., nanoscale hardening and surface reactivity. Metal borides are often considered stable solids because of their covalent character, but little is known on their behavior under a reactive atmosphere, especially reductive gases. We use molten salt synthesis at 750 °C to provide cobalt monoboride (CoB) nanocrystals embedded in an amorphous layer of cobalt(II) and partially oxidized boron as a model platform to study morphological, chemical, and structural evolutions of the boride and the superficial layer exposed to argon, dihydrogen (H 2 ), and a mixture of H 2 and carbon dioxide (CO 2 ) through a multiscale in situ approach: environmental transmission electron microscopy, synchrotron-based near-ambient-pressure X-ray photoelectron spectroscopy, and near-edge X-ray absorption spectroscopy. Although the material is stable under argon, H 2 triggers at 400 °C decomposition of CoB, leading to cobalt(0) nanoparticles. We then show that H 2 activates CoB for the catalysis of CO 2 methanation. A similar decomposition process is also observed on NiB nanocrystals under oxidizing conditions at 300 °C. Our work highlights the instability under reactive atmospheres of nanocrystalline cobalt and nickel borides obtained from molten salt synthesis. Therefore, we question the general stability of metal borides with distinct compositions under such conditions. These results shed light on the actual species in metal boride catalysis and provide the framework for future applications of metal borides in their stability domains.
Conventional magnetic superconductors
Wolowiec, C. T.; White, B. D.; Maple, M. B.
2015-07-01
We discuss several classes of conventional magnetic superconductors including the ternary rhodium borides and molybdenum chalcogenides (or Chevrel phases), and the quaternary nickel-borocarbides. These materials exhibit some exotic phenomena related to the interplay between superconductivity and long-range magnetic order including: the coexistence of superconductivity and antiferromagnetic order; reentrant and double reentrant superconductivity, magnetic field induced superconductivity, and the formation of a sinusoidally-modulated magnetic state that coexists with superconductivity. We introduce the article with a discussion of the binary and pseudobinary superconducting materials containing magnetic impurities which at best exhibit short-range “glassy” magnetic order. Early experiments on these materials led tomore » the idea of a magnetic exchange interaction between the localized spins of magnetic impurity ions and the spins of the conduction electrons which plays an important role in understanding conventional magnetic superconductors. Furthermore, these advances provide a natural foundation for investigating unconventional superconductivity in heavy-fermion compounds, cuprates, and other classes of materials in which superconductivity coexists with, or is in proximity to, a magnetically-ordered phase.« less
NASA Astrophysics Data System (ADS)
Ballinger, Jared
Diamond thin films have promising applications in numerous fields due to the extreme properties of diamonds in conjunction with the surface enhancement of thin films. Biomedical applications are numerous including temporary implants and various dental and surgical instruments. The unique combination of properties offered by nanostructured diamond films that make it such an attractive surface coating include extreme hardness, low obtainable surface roughness, excellent thermal conductivity, and chemical inertness. Regrettably, numerous problems exist when attempting to coat stainless steel with diamond generating a readily delaminated film: outward diffusion of iron to the surface, inward diffusion of carbon limiting necessary surface carbon precursor, and the mismatch between the coefficients of thermal expansion yielding substantial residual stress. While some exotic methods have been attempted to overcome these hindrances, the most common approach is the use of an intermediate layer between the stainless steel substrate and the diamond thin film. In this research, both 316 stainless steel disks and 440C stainless steel ball bearings were tested with interlayers including discrete coatings and graded, diffusion-based surface enhancements. Titanium nitride and thermochemical diffusion boride interlayers were both examined for their effectiveness at allowing for the growth of continuous and adherent diamond films. Titanium nitride interlayers were deposited by cathodic arc vacuum deposition on 440C bearings. Lower temperature diamond processing resulted in improved surface coverage after cooling, but ultimately, both continuity and adhesion of the nanostructured diamond films were unacceptable. The ability to grow quality diamond films on TiN interlayers is in agreement with previous work on iron and low alloy steel substrates, and the similarly seen inadequate adhesion strength is partially a consequence of the lacking establishment of an interfacial carbide phase. Surface boriding was implemented using the novel method of microwave plasma CVD with a mixture of hydrogen and diborane gases. On 440C bearings, dual phase boride layers of Fe2B and FeB were formed which supported adhered nanostructured diamond films. Continuity of the films was not seamless with limited regions remaining uncoated potentially corresponding to delamination of the film as evidenced by the presence of tubular structures presumably composed of sp2 bonded carbon. Surface boriding of 316 stainless steel discs was conducted at various powers and pressures to achieve temperatures ranging from 550-800 °C. The substrate boriding temperature was found to substantially influence the resultant interlayer by altering the metal boride(s) present. The lowest temperatures produced an interlayer where CrB was the single detected phase, higher temperatures yielded the presence of only Fe2B, and a combination of the two phases resulted from an intermediate boriding temperature. Compared with the more common, commercialized boriding methods, this a profound result given the problems posed by the FeB phase in addition to other advantages offered by CVD processes and microwave generated plasmas in general. Indentation testing of the boride layers revealed excellent adhesion strength for all borided interlayers, and above all, no evidence of cracking was observed for a sole Fe2B phase. As with boriding of 440C bearings, subsequent diamond deposition was achieved on these interlayers with substantially improved adhesion strength relative to diamond coated TiN interlayers. Both XRD and Raman spectroscopy confirmed a nanostructured diamond film with interfacial chromium carbides responsible for enhanced adhesion strength. Interlayers consisting solely of Fe2B have displayed an ability to support fully continuous nanostructured diamond films, yet additional study is required for consistent reproduction. This is in good agreement with initial work on pack borided high alloy steels to promote diamond film surface modification. The future direction for continued research of nanostructured diamond coatings on microwave plasma CVD borided stainless steel should further investigate the adhesion of both borided interlayers and subsequent NSD films in addition to short, interrupted diamond depositions to study the interlayer/diamond film interface.
Plasma boriding of a cobalt-chromium alloy as an interlayer for nanostructured diamond growth
NASA Astrophysics Data System (ADS)
Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A.
2015-02-01
Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt-chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B2H6) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal-boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.
2012-08-01
interior, and carbides and borides at the grain boundaries. Blocky carbide particles can also be seen in the grain interior (Figure 1b). The borides ...can be seen distributed (b) higher magnification image of a typical grain boundary decorated with carbide and boride particles. Bi-modal distribution
Future Directions for Selected Topics in Physics and Materials Science
2012-07-12
referred to as lightides (e.g. borides , nitrides, phosphides) • Materials for energy conversion, energy storage, energy transport and energy production...Distributed nanosystems and sensors • Strategy for multilayered combinatorics • lightides ( borides , nitrides, phosphides, • New applications for...Strategy for multilayered combinatorics Lightides ( borides , nitrides, phosphides) • Energy conversion, .storage and production • Precision control
Plasma metallurgical production of nanocrystalline borides and carbides
NASA Astrophysics Data System (ADS)
Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.
2016-09-01
he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.
The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium
NASA Astrophysics Data System (ADS)
Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie
2016-07-01
In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.
Kinetic Investigation and Wear Properties of Fe2B Layers on AISI 12L14 Steel
NASA Astrophysics Data System (ADS)
Keddam, M.; Ortiz-Dominguez, M.; Elias-Espinosa, M.; Arenas-Flores, A.; Zuno-Silva, J.; Zamarripa-Zepeda, D.; Gomez-Vargas, O. A.
2018-03-01
In the current study, the powder-pack boriding was applied to the AISI 12L14 steel in the temperature range 1123 K to 1273 K for an exposure time between 2 and 8 hours. The produced boride layer was composed of Fe2B with a sawtooth morphology. A diffusion model based on the integral method was applied to investigate the growth kinetics of Fe2B layers. As a main result, the boron diffusion coefficients in Fe2B were estimated by considering the principle of mass balance at the (Fe2B/substrate) interface with an inclusion of boride incubation times. The value of activation energy for boron diffusion in AISI 12L14 steel was estimated as 165 kJ mol-1 and compared with other values of activation energy found in the literature. An experimental validation of the present model was made by using four different boriding conditions. Furthermore, the Rockwell-C adhesion test was employed to assess the cohesion of boride layers to the base metal. The scratch and pin-on-disc tests were also carried out to analyze the effect of boriding on wear behavior of AISI 12L14 steel.
NASA Astrophysics Data System (ADS)
Steuer, Susanne; Singer, Robert F.
2014-07-01
Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).
2012-02-01
the presence of somewhat randomly-distributed carbides and borides (white particles in BSE images), this grain size was comparable to that observed...pinned by carbide/ boride particles (imaging white in Figure 8c). The very fine gamma-prime precipitates likely produced during magnetron sputtering...sputtered material. First, the carbide/ boride particles were nucleated and hence located preferentially at the grain boundaries in the sputtered
Novel Routes to Tune Thermal Conductivities and Thermoelectric Properties of Materials
2012-11-15
expand the possibilities of borides as functional compou nds. A series of indium-free novel TCO compounds with novel crystal structures, has...powerful methods for modification were demonstrated in the borides , silicides and oxides. Introduction: The goal of this project is to...the possibility to modify the crystal structures can expand the possibilities of borides as functional compounds. A series of indium-free novel TCO
Alloying-Element Loss during High-Temperature Processing of a Nickel-Base Superalloy (Preprint)
2013-01-01
precipitates, and the fine white/gray particles are carbides and borides . ............................................. 23 Figure 2. Aluminum...comparable size, and submicron carbides and borides . A fifteen-minute heat treatment at the subsolvus temperature used in the present work (i.e...precipitates, and ~0.3 volume pct. of carbides and borides with an average diameter of ~0.3 m (Figure 1) [5, 6]. B. Procedures To establish the
Amorphous Iron Borides: Preparation, Structure and Magnetic Properties.
1982-09-28
temperature. External magnetic field experiments were performed in a superconducting solenoid with both source and absor- ber at 4.2 K. The observed...D-Ai20 919 AMORPHOUS IRON BORIDES: PREPARATION STRUCTURE AND i/i MAGNETIC PROPERTIES(U) JOHNS HOPKINS UNIV LAUREL NO APPLIED PHYSICS LRB K MOORJRNI...NATIONAL BUREAU OF STANOANOS-93-A 10 AMORPHOUS IRON BORIDES: PREPARATION, STRUCTURE ~AND MAGNETIC PROPERTIES FINAL REPORT Kishin Moorjani September 1982 U
NASA Astrophysics Data System (ADS)
Zhang, H.; Tang, H.; He, Y. Z.; Zhang, J. L.; Li, W. H.; Guo, S.
2017-11-01
Effects of heat treatment on borides precipitation and mechanical properties of arc-melted and laser-cladded CoCrNiFeAl1.8Cu0.7B0.3Si0.1 high-entropy alloys were comparatively studied. The arc-melted alloy contains lots of long strip borides distributed in the body-centered cubic phase, with a hardness about 643 HV0.5. Laser-cladding can effectively inhibit the boride precipitation and the laser-cladded alloy is mainly composed of a simple bcc solid solution, with a high hardness about 769 HV0.5, indicating the strengthening effect by interstitial boron atoms is greater than the strengthening by borides precipitation. Heat treatments between 800°C and 1200°C can simultaneously improve the hardness and fracture toughness of arc-melted alloys, owing to the boride spheroidization, dissolution, re-precipitation, and hence the increased boron solubility and nano-precipitation in the bcc solid solution. By contrast, the hardness of laser-cladded alloys reduce after heat treatments in the same temperature range, due to the decreased boron solubility in the matrix.
Certain physical properties of cobalt and nickel borides
NASA Technical Reports Server (NTRS)
Kostetskiy, I. I.; Lvov, S. N.
1981-01-01
The temperature dependence of the electrical resistivity, the thermal conductivity, and the thermal emf of cobalt and nickel borides were studied. In the case of the nickel borides the magnetic susceptibility and the Hall coefficient were determined at room temperature. The results are discussed with allowance for the current carrier concentration, the effect of various mechanisms of current-carrier scattering and the location of the Fermi level in relation to the 3d band.
A study on the formation of solid state nanoscale materials using polyhedral borane compounds
NASA Astrophysics Data System (ADS)
Romero, Jennifer V.
The formation of boron containing materials using a variety of methods was explored. The pyrolysis of a metal boride precursor solution can be accomplished using a one-source method by combining TiCl4, B10H 14 and CH3CN in one reaction vessel and pyrolyzing it at temperatures above 900 °C. Amorphous dark blue colored films were obtained after the pyrolysis reactions. Well-defined spherical shaped grains or particles were observed by SEM. The amorphous films generated contained titanium, however, the determination of the boron content of the films was inconclusive. This one pot method making metal boride thin films has the advantage of being able to dictate the stoichiometry of the reactants. Another part of this work represents the first report of both the use of metal boride materials and the use of a titanium-based compound for the formation of nanotubes. This method provides a facile method for generating well-formed boron-containing carbon nanotubes in a "one-pot" process through an efficient aerosol process. The formation of metal boride corrosion resistant layers was also explored. It was shown that metallic substrates can be effectively boronized using paste mixtures containing boron carbide and borax. The formation of a Fe4B 2 iron boride phase was achieved, however, this iron boride phase does not give enough corrosion protection. The formation of a corrosion resistant metal boride coating with strong adhesion was accomplished by boronization of a thermal sprayed nickel layer on the surface of steel. Surfactants were explored as possible nanoreactors in which metal boride nanoparticles could be formed to use as nanotube growth catalyst via room temperature reaction. Different surfactants were used, but none of them successfully generated very well dispersed metal boride nanoparticles. Nanoparticles with varying shapes and sizes were generated which were highly amorphous. The carboxylic acid derivative of closo-C2B 10 cages was explored as a ligand in the hydrothermal preparation of coordination polymers with zinc salts. It was found that the stability of the cage is apparently insufficient under these conditions and cage degradation was observed. Consequently, a preliminary investigation of the preparation of dipyridyl derivatives of both the closo-C2B 10 and the closo-B12 cages was performed.
Synthesis and Characterization of YB4 Ceramics
2011-06-24
capa bility at temperatures above 2000°C1 with adequate mechani cal properties and oxidation resistance. Refractory metal borides based on HfB2 and ZrB2...increase in the oxidation resistance was accomplished by the addition of the Group IV VI transition metal borides , which was the result of phase...metal borides for use as materials for ultra high temper ature (UHT) applications. However, for instance, yttrium tet raboride, YB4, appears promising as
Finding the Stable Structures of WxN1-x with an ab-initio High-Throughput Approach
2014-03-13
cubic boron nitride[4], carbonitrides,[5] and transition metal borides .[6, 7] Over the past several years there has been considerable theoretical...include ionic and covalent structures which seem chemically similar to W-N. These include borides , carbides, oxides, and other nitrides. In this paper we...metallic alloys, [23–27] we extended it to include over fifty new structures. These include nitrides, oxides, borides , and carbides. The important
Magnesium Aluminum Borides as Explosive Materials
2011-12-20
Metal Silicides , and Metal Borides by Chemical Vapour Deposition Using Single Organometallic Precursors,” Trans. Inst. Met. Finishing, 72, 127-129...391 (2003). 62. X. Xiaojing, D. Bohua, Q. Zuanhui, and L. Yuanhui, “ Preparation and Synthesis Mechanism of Li-B Alloy,” Rare Metal Materials and...SUPPLEMENTARY NOTES 14. ABSTRACT Metal boride.; and boroo carbide Witted l’"irh Al ’I\\· ere compared co B. Mg. Al Mg:-AJ and Si a.s poteotia! fuel ad.diti
Development of high temperature stable Ohmic and Schottky contacts on n-gallium nitride
NASA Astrophysics Data System (ADS)
Khanna, Rohit
In this work the effort was made to towards develop and investigate high temperature stable Ohmic and Schottky contacts for n type GaN. Various borides and refractory materials were incorporated in metallization scheme to best attain the desired effect of minimal degradation of contacts when placed at high temperatures. This work focuses on achieving a contact scheme using different borides which include two Tungsten Borides (namely W2B, W2B 5), Titanium Boride (TiB2), Chromium Boride (CrB2) and Zirconium Boride (ZrB2). Further a high temperature metal namely Iridium (Ir) was evaluated as a potential contact to n-GaN, as part of continuing improved device technology development. The main goal of this project was to investigate the most promising boride-based contact metallurgies on GaN, and finally to fabricate a High Electron Mobility Transistor (HEMT) and compare its reliability to a HEMT using present technology contact. Ohmic contacts were fabricated on n GaN using borides in the metallization scheme of Ti/Al/boride/Ti/Au. The characterization of the contacts was done using current-voltage measurements, scanning electron microscopy (SEM) and Auger Electron Spectroscopy (AES) measurements. The contacts formed gave specific contact resistance of the order of 10-5 to 10-6 Ohm-cm2. A minimum contact resistance of 1.5x10-6 O.cm 2 was achieved for the TiB2 based scheme at an annealing temperature of 850-900°C, which was comparable to a regular ohmic contact of Ti/Al/Ni/Au on n GaN. When some of borides contacts were placed on a hot plate or in hot oven for temperature ranging from 200°C to 350°C, the regular metallization contacts degraded before than borides ones. Even with a certain amount of intermixing of the metallization scheme the boride contacts showed minimal roughening and smoother morphology, which, in terms of edge acuity, is crucial for very small gate devices. Schottky contacts were also fabricated and characterized using all the five boride compounds. The barrier height obtained on n GaN was ˜0-5-0.6 eV which was low compared to those obtained by Pt or Ni. This barrier height is too low for use as a gate contact and they can only have limited use, perhaps, in gas sensors where large leakage current can be tolerated in exchange for better thermal reliability. AlGaN/GaN High Electron Mobility Transistors (HEMTs) were fabricated with Ti/Al/TiB2/Ti/Au source/drain ohmic contacts and a variety of gate metal schemes (Pt/Au, Ni/Au, Pt/TiB2/Au or Ni/TiB 2/Au) and were subjected to long-term annealing at 350°C. By comparison with companion devices with conventional Ti/Al/Pt/Au ohmic contacts and Pt/Au gate contacts, the HEMTs with boride-based ohmic metal and either Pt/Au, Ni/Au or Ni/TiB2/Au gate metal showed superior stability of both source-drain current and transconductance after 25 days aging at 350°C. The need for sputter deposition of the borides causes' problem in achieving significantly lower specific contact resistance than with conventional schemes deposited using e-beam evaporation. The borides also seem to be, in general, good getters for oxygen leading to sheet resistivity issues. Ir/Au Schottky contacts and Ti/Al/Ir/Au ohmic contacts on n-type GaN were investigated as a function of annealing temperature and compared to their more common Ni-based counterparts. The Ir/Au ohmic contacts on n-type GaN with n˜1017 cm-3 exhibited barrier heights of 0.55 eV after annealing at 700°C and displayed less intermixing of the contact metals compared to Ni/Au. A minimum specific contact resistance of 1.6 x 10-6 O.cm2 was obtained for the ohmic contacts on n-type GaN with n˜1018 cm-3 after annealing at 900°C. The measurement temperature dependence of contact resistance was similar for both Ti/Al/Ir/Au and Ti/Al/Ni/Au, suggesting the same transport mechanism was present in both types of contacts. The Ir-based ohmic contacts displayed superior thermal aging characteristics at 350°C. Auger Electron Spectroscopy showed that Ir is a superior diffusion barrier at these moderate temperatures than Ni.
NASA Astrophysics Data System (ADS)
Wang, Bin; Wu, Jie; Jin, Xiaoyue; Wu, Xiaoling; Wu, Zhenglong; Xue, Wenbin
The influence of applied voltage on the plasma electrolytic borocarburizing (PEB/C) layer of Q235 low-carbon steel in high-concentration borax solution was investigated. XRD and XPS spectra of PEB/C layer confirmed that the modified boride layer mainly consisted of Fe2B phase, and the FeB phase only exists in the loose top layer. The applied voltage on Q235 steel played a key role in determining the properties of hardened layers. The thickness and microhardness of boride layers increased with the increase of the applied voltage, which led to superior corrosion and wear resistances of Q235 low-carbon steel. The diffusion coefficient (D) of boride layer at 280, 300 and 330V increased with borocarburizing temperature and ranged from 0.062×10-12m2/s to 0.462×10-12m2/s. The activation energy (Q) of boride layer growth during PEB/C treatment was only 52.83kJṡmol-1, which was much lower than that of the conventional boriding process.
Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kon, O., E-mail: okon42@htotmail.com; Pazarlioglu, S.; Sen, S.
2015-03-30
In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000{sup o}C for 2h and then pre-boronized samples niobized at 850°C, 900°C and 950°C using thermo-reactive deposition method for 1–4 h. The presence of the niobium boride layers such as NbB, NbB{sub 2} and Nb{sub 3}B{sub 4} and also iron boride phases such as FeB, Fe{sub 2}B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurementsmore » were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 µm to 2.43 µm, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620±180 HV{sub 0.005}.« less
Crystal structure and phase stability of tungsten borides
NASA Astrophysics Data System (ADS)
Li, Quan; Zhou, Dan; Ma, Yanming; Chen, Changfeng
2013-03-01
We address the longstanding and controversial issue of ground-state structures of technically important tungsten borides using a first-principles structural search method via a particle-swarm optimization (PSO) algorithm. We have explored a large set of stable chemical compositions (convex hull) and clarified the ground-state structures for a wide range of boron concentrations, including W2B, W3B2,WB,W2B3, WB2,W2B5, WB3, and WB4. We further assessed relative stability of various tungsten borides and compared the calculated results with previously reported experimental data. The phase diagram predicted by the presented calculations may serve as a useful guide for synthesis of a variety of tungsten borides. This work was supported by DOE Grant No. DE-FC52-06NA26274.
Finding the Stable Structures of N1-xWx with an Ab Initio High-Throughput Approach
2015-05-26
W. These include borides , carbides, oxides, and other nitrides. We also invented many structures to mimic the random pattern of vacancies on both the...structures. These include nitrides, oxides, borides , and carbides, as well as supercells of standard structures with atoms removed to mimic the random patter...1930). [15] R. Kiessling and Y. H. Liu, Thermal stability of the chromium, iron, and tungsten borides in streaming ammonia and the existence of a new
Xu, Shaomao; Chen, Yanan; Li, Yiju; Lu, Aijiang; Yao, Yonggang; Dai, Jiaqi; Wang, Yanbin; Liu, Boyang; Lacey, Steven D; Pastel, Glenn R; Kuang, Yudi; Danner, Valencia A; Jiang, Feng; Fu, Kun Kelvin; Hu, Liangbing
2017-09-13
The synthesis of nanoscale metal compound catalysts has attracted much research attention in the past decade. The challenges of preparation of the metal compound include the complexity of the synthesis process and difficulty of precise control of the reaction conditions. Herein, we report an in situ synthesis of nanoparticles via a high-temperature pulse method where the bulk material acts as the precursor. During the process of rapid heating and cooling, swift melting, anchoring, and recrystallization occur, resulting in the generation of high-purity nanoparticles. In our work, the cobalt boride (Co 2 B) nanoparticles with a diameter of 10-20 nm uniformly anchored on the reduced graphene oxide (rGO) nanosheets were successfully prepared using the high temperature pulse method. The as-prepared Co 2 B/rGO composite displayed remarkable electrocatalytic performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). We also prepared molybdenum disulfide (MoS 2 ) and cobalt oxide (Co 3 O 4 ) nanoparticles, thereby demonstrating that the high-temperature pulse is a universal method to synthesize ultrafine metal compound nanoparticles.
Liu, Xin; Wang, Mengmeng; Yin, Fucheng; Ouyang, Xuemei; Li, Zhi
2017-01-01
The effects of tungsten addition on the microstructure and corrosion resistance of Fe-3.5B alloys in a liquid zinc bath at 520 °C were investigated by means of scanning electron microscopy, X-ray diffraction and electron probe micro-analysis. The microstructure evolution in different alloys is analyzed and discussed using an extrapolated Fe-B-W ternary phase diagram. Experimental results show that there are three kinds of borides, the reticular (Fe, W)2B, the rod-like (Fe, W)3B and flower-like FeWB. The addition of tungsten can refine the microstructure and improve the stability of the reticular borides. Besides, it is beneficial to the formation of the metastable (Fe, W)3B phase. The resultant Fe-3.5B-11W (wt %) alloy possesses excellent corrosion resistance to liquid zinc. When tungsten content exceeds 11 wt %, the formed flower-like FeWB phase destroys the integrity of the reticular borides and results in the deterioration of the corrosion resistance. Also, the corrosion failure resulting from the spalling of borides due to the initiation of micro-cracks in the grain boundary of borides is discussed in this paper. PMID:28772759
Non-Contact Tabletop Mechanical Testing of Ultra-High Temperature Ceramics
2012-05-01
class of refractory materials including transition metal borides , carbides and nitrides e.g. ZrB2l HfB2) ZrC, HfC, TaC, HfN and ZrN. They recently...ike oxidizing atmospheres, at very high temperatures Refractory borides like ZrB2 and HfB2 have extremely high melting temperatures (over 3000°C...But borides are very poor in oxidation resistance, due to the nature of thär oxides Non-protective ZrCfe or Hf02 and volatile liquid B203. Addition
2011-11-01
Deformation is highly localized around stress concentrators such as carbides, borides and serrated grain boundaries, which act as sources of a/2h110i...highly localized around stress concentrators such as carbides, borides and serrated grain boundaries, which act as sources of a/2h110i matrix-type...phase at different thicknesses. 7328 R.R. Unocic et al. / Acta Materialia 59 (2011) 7325–7339 the image. A number of carbide and/or boride phases are
Beta cell device using icosahedral boride compounds
Aselage, Terrence L.; Emin, David
2002-01-01
A beta cell for converting beta-particle energies into electrical energy having a semiconductor junction that incorporates an icosahedral boride compound selected from B.sub.12 As.sub.2, B.sub.12 P.sub.2, elemental boron having an .alpha.-rhombohedral structure, elemental boron having a .beta.-rhombohedral structure, and boron carbides of the chemical formula B.sub.12-x C.sub.3-x, where 0.15
NASA Astrophysics Data System (ADS)
Galevskii, G. V.; Rudneva, V. V.; Galevskii, S. G.; Tomas, K. I.; Zubkov, M. S.
2016-04-01
The experience of production and study on properties of nano-disperse chromium and titanium borides and carbides, and silicon carbide has been generalized. The structure and special service aspects of utilized plasma-metallurgical complex equipped with a three-jet direct-flow reactor with a capacity of 150 kW have been outlined. Processing, heat engineering and service life characteristics of the reactor are specified. The synthesis parameters of borides and carbides, as well as their basic characteristics in nano-disperse condition and their production flow diagram are outlined. Engineering and economic performance of synthesizing borides in laboratory and industrial conditions is assessed, and the respective segment of the international market as well. The work is performed at State Siberian Industrial University as a project part of the State Order of Ministry of Science and Education of the Russian Federation No. 11.1531/2014/K.
The effect of boriding on wear resistance of cold work tool steel
NASA Astrophysics Data System (ADS)
Anzawa, Y.; Koyama, S.; Shohji, I.
2017-05-01
Recently, boriding has attracted extensive attention as surface stiffening processing of plain steel. In this research, the influence of processing time on the formation layer of cold work tool steel (KD11MAX) by Al added fused salt bath was examined. In addition, in order to improve the abrasion resistance of KD11MAX, the effect of the treatment of boronization on the formation layer has been investigated. Boriding were performed in molten borax which contained about 10 mass% Al at processing time of 1.8 ~ 7.2 ks (processing temperature of 1303 K). As a result of the examination, the hardness of the boriding layer becomes about 1900 HV when the processing time of 3.6 ks. Also the abrasion resistance has improved remarkably. Furthermore, it was revealed that the formation layer was boronized iron from the Vickers hardness and analysis of the X-ray diffraction measurement.
Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.
Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M
2017-08-01
Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kinetics and Tribological Characterization of Pack-Borided AISI 1025 Steel
NASA Astrophysics Data System (ADS)
Gómez-Vargas, O. A.; Keddam, M.; Ortiz-Domínguez, M.
2017-03-01
In this present study, the AISI 1025 steel was pack-borided in the temperature range of 1,123-1,273 K for different treatment times ranging from 2 to 8 h. A diffusion model was suggested to estimate the boron diffusion coefficients in the Fe2B layers. As a result, the boron activation energy for the AISI 1025 steel was estimated as 174.36 kJ/mol. This value of energy was compared with the literature data. To extend the validity of the present model, other additional boriding conditions were considered. The boride layers formed on the AISI 1025 steel were characterized by the following experimental techniques: scanning electron microscopy, X-ray diffraction analysis and the Daimler-Benz Rockwell-C indentation technique. Finally, the scratch and pin-on-disc tests for wear resistance were achieved using an LG Motion Ltd and a CSM tribometer, respectively, under dry sliding conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xuan
To investigate borides effect on the hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel, hot compression tests at the temperatures of 950– 1150 °C and the strain rates of 0.01– 10 s{sup −1} were performed. Flow stress curves indicated that borides increased the material's stress level at low temperature but the strength was sacrificed at temperatures above 1100 °C. A hyperbolic-sine equation was used to characterize the dependence of the flow stress on the deformation temperature and strain rate. The hot deformation activation energy and stress exponent were determined to be 355 kJ/mol and 3.2,more » respectively. The main factors leading to activation energy and stress exponent of studied steel lower than those of commercial 304 stainless steel were discussed. Processing maps at the strains of 0.1, 0.3, 0.5, and 0.7 showed that flow instability mainly concentrated at 950– 1150 °C and strain rate higher than 0.6 s{sup −1}. Results of microstructure illustrated that dynamic recrystallization was fully completed at both high temperature-low strain rate and low temperature-high strain rate. In the instability region cracks were generated in addition to cavities. Interestingly, borides maintained a preferential orientation resulting from particle rotation during compression. - Highlights: •The decrement of activation energy was affected by boride and boron solution. •The decrease of stress exponent was influenced by composition and Cottrell atmosphere. •Boride represented a preferential orientation caused by particle rotation.« less
2012-01-01
submitted to Metallurgical Transactions. This document contains color. 14. ABSTRACT While the role of borides on the microstructure of titanium...Ohio, U.S.A. Abstract While the role of borides on the microstructure of titanium alloys has been discussed in many previous reports, this paper...morphology of precipitates nucleating from boride precipitates present in the matrix of a titanium alloy; and (b) to investigate the role of presence or
NASA Astrophysics Data System (ADS)
Smirnyagina, N. N.; Khaltanova, V. M.; Lapina, A. E.; Dasheev, D. E.
2017-01-01
Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VT-1 are generated at diffused saturation in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.
Effect of mechanical activation on jell boronizing treatment of the AISI 4140
NASA Astrophysics Data System (ADS)
Yılmaz, S. O.; Karataş, S.
2013-06-01
The article presents the effect of mechanical activation on the growth kinetics of boride layer of boronized AISI 4140 steel. The samples were boronized by ferroboron + (SiO2-Na2O) powders for 873-1173 K temperature and 2, 4, 6 and 8 h times, respectively. The morphology and types of borides formed on the surface of AISI 4140 steel substrate were analyzed. Layer growth kinetics were analyzed by measuring the extent of penetration of FeB and Fe2B sublayers as function of treatment time and temperature in the range of 873-1173 K. High diffusivity was obtained by creating a large number of defects through mechanical activation in the form of nanometer sized crystalline particles through the repeated fracturing and cold-welding of the powder particles, and a depth of 100 μm was found in the specimen borided by the 2 h MA powders, for 4 h and 1073 K, where 2000-2350 HV were measured. Consequently, the application conditions of boronizing were improved by usage of mechanical activation. The preferred Fe2B boride without FeB could be formed in the boride layer under 973 K boronizing temperature by mechanically activated by ferroboron + sodium silicate powder mixture due to the decrease of the activation energy.
Yttria Nanoparticle Reinforced Commercially Pure (CP) Titanium
2011-09-01
nanoparticles as well as titanium boride (TiB) reinforcements were produced through gas atomization. After consolidation and extrusion, room temperature...pure FE iron O oxygen Ti titanium TiB titanium boride TYS tensile yield strength UTS ultimate tensile strength wt% weight percent Y2O3
Growth kinetics of borided layers: Artificial neural network and least square approaches
NASA Astrophysics Data System (ADS)
Campos, I.; Islas, M.; Ramírez, G.; VillaVelázquez, C.; Mota, C.
2007-05-01
The present study evaluates the growth kinetics of the boride layer Fe 2B in AISI 1045 steel, by means of neural networks and the least square techniques. The Fe 2B phase was formed at the material surface using the paste boriding process. The surface boron potential was modified considering different boron paste thicknesses, with exposure times of 2, 4 and 6 h, and treatment temperatures of 1193, 1223 and 1273 K. The neural network and the least square models were set by the layer thickness of Fe 2B phase, and assuming that the growth of the boride layer follows a parabolic law. The reliability of the techniques used is compared with a set of experiments at a temperature of 1223 K with 5 h of treatment time and boron potentials of 2, 3, 4 and 5 mm. The results of the Fe 2B layer thicknesses show a mean error of 5.31% for the neural network and 3.42% for the least square method.
Selection of peptides binding to metallic borides by screening M13 phage display libraries.
Ploss, Martin; Facey, Sandra J; Bruhn, Carina; Zemel, Limor; Hofmann, Kathrin; Stark, Robert W; Albert, Barbara; Hauer, Bernhard
2014-02-10
Metal borides are a class of inorganic solids that is much less known and investigated than for example metal oxides or intermetallics. At the same time it is a highly versatile and interesting class of compounds in terms of physical and chemical properties, like semiconductivity, ferromagnetism, or catalytic activity. This makes these substances attractive for the generation of new materials. Very little is known about the interaction between organic materials and borides. To generate nanostructured and composite materials which consist of metal borides and organic modifiers it is necessary to develop new synthetic strategies. Phage peptide display libraries are commonly used to select peptides that bind specifically to metals, metal oxides, and semiconductors. Further, these binding peptides can serve as templates to control the nucleation and growth of inorganic nanoparticles. Additionally, the combination of two different binding motifs into a single bifunctional phage could be useful for the generation of new composite materials. In this study, we have identified a unique set of sequences that bind to amorphous and crystalline nickel boride (Ni3B) nanoparticles, from a random peptide library using the phage display technique. Using this technique, strong binders were identified that are selective for nickel boride. Sequence analysis of the peptides revealed that the sequences exhibit similar, yet subtle different patterns of amino acid usage. Although a predominant binding motif was not observed, certain charged amino acids emerged as essential in specific binding to both substrates. The 7-mer peptide sequence LGFREKE, isolated on amorphous Ni3B emerged as the best binder for both substrates. Fluorescence microscopy and atomic force microscopy confirmed the specific binding affinity of LGFREKE expressing phage to amorphous and crystalline Ni3B nanoparticles. This study is, to our knowledge, the first to identify peptides that bind specifically to amorphous and to crystalline Ni3B nanoparticles. We think that the identified strong binding sequences described here could potentially serve for the utilisation of M13 phage as a viable alternative to other methods to create tailor-made boride composite materials or new catalytic surfaces by a biologically driven nano-assembly synthesis and structuring.
Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren
2011-01-01
Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101
Directionally Solidified Eutectic Ceramics for Multifunctional Aerospace Applications
2013-01-01
eutectic materials development through a new initiative entitled Boride Eutectic Project. These results first time organize and populate materials...property databases, and utilize an iterative feedback routine to constantly improve the design process of the boride eutectics LaB6-MeB2 (Me = Zr, Hf, Ti
Superabrasive boride and a method of preparing the same by mechanical alloying and hot pressing
Cook, Bruce A.; Harringa, Joel L.; Russell, Alan M.
2002-08-13
A ceramic material which is an orthorhombic boride of the general formula: AlMgB.sub.14 :X, with X being a doping agent. The ceramic is a superabrasive, and in most instances provides a hardness of 40 GPa or greater.
2012-08-01
Properties. Abyss Books, Washington, D.C., 2002. 2. G. Montel, A. Lebugle and H. Pastor. "Manufacture of Materials Containing Refractory Borides ...and ZrO2," International Journal of Refractory Metals and Hard Materials, 17, 235-43 (1999). 10. A.W. Weimer, Carbide, nitride and boride
Adhesive and Cohesive Strength in FeB/Fe2B Systems
NASA Astrophysics Data System (ADS)
Meneses-Amador, A.; Blancas-Pérez, D.; Corpus-Mejía, R.; Rodríguez-Castro, G. A.; Martínez-Trinidad, J.; Jiménez-Tinoco, L. F.
2018-05-01
In this work, FeB/Fe2B systems were evaluated by the scratch test. The powder-pack boriding process was performed on the surface of AISI M2 steel. The mechanical parameters, such as yield stress and Young's modulus of the boride layer, were obtained by the instrumented indentation technique. Residual stresses produced on the boride layer were estimated by using the x-ray diffraction (XRD) technique. The scratch test was performed in order to evaluate the cohesive/adhesive strength of the FeB/Fe2B coating. In addition, a numerical evaluation of the scratch test on boride layers was performed by the finite element method. Maximum principal stresses were related to the failure mechanisms observed by the experimental scratch test. Shear stresses at the interfaces of the FeB/Fe2B/substrate system were also evaluated. Finally, the results obtained provide essential information about the effect of the layer thickness, the residual stresses, and the resilience modulus on the cohesive/adhesive strength in FeB/Fe2B systems.
The Effects of Borides on the Mechanical Properties of TLPB Repaired Inconel 738 Superalloy
NASA Astrophysics Data System (ADS)
Wei, J.; Ye, Y.; Sun, Z.; Zou, G.; Bai, H.; Wu, A.; Liu, L.
2017-10-01
The transient liquid phase diffusion bonding (TLPB) method was used to repair an artificial crack in Inconel 738, which was notched by a femtosecond laser. Mixed ratios of BNi-1a:DF-4B were investigated at the bonding temperature of 1373 K (1100 °C) for 2 to 36 hours. The effect of borides on the mechanical properties of TLPB repaired joints was studied through analysis of the microstructure, fracture path, and morphology observations. The borides formation, morphology, distribution, and joints strength were studied in detail. The results showed that the diffusion of B can either increase or decrease the joint strength, depending on its distribution and morphology. The amount of large blocky Ni-B compounds in the precipitate zone were reduced with increasing holding time, which resulted in an increase in joint strength. Nevertheless, further increasing the holding time led to a decrease in joint strength because of the formation of continuous acicular borides in the diffusion-affected zone. The fracture modes of TLPB joints were also discussed on the basis of the microstructure and fractography.
Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel
NASA Astrophysics Data System (ADS)
Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.
2017-11-01
The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menaka,; Kumar, Bharat; Kumar, Sandeep
The present study describes a novel low temperature route at ambient pressure for the synthesis of nanocrystalline chromium borides (CrB and CrB{sub 2}) without using any flux or additives. The favorable and intimate mixing of nanoparticles of chromium acetate (Cr source) and boron forms an active chromium–boron precursor which decomposes at much lower temperature (400 °C) to form CrB (which is ∼1000 °C less than the known ambient pressure synthesis). The chromium acetate nanoparticles (∼5 nm) decorate the larger boron particles (150–200 nm) due to electrostatic interactions resulting from opposing surface charges of boron (zeta potential:+48.101 mV) and chromium acetatemore » (zeta potential:−4.021 mV) in ethanolic medium and is evident in the TEM micrographs. The above method leads to the formation of pure CrB film like structure at 400 °C and nanospheres (40–60 nm) at 600 °C. Also, chromium diboride (CrB{sub 2}) nanoparticles (25 nm) could be obtained at 1000 °C. - Graphical abstract: Variation of surface charge of reactants, precursor and the products, chromium borides (CrB and CrB{sub 2}). Highlights: ► Novel borothermal reduction process for synthesis of chromium boride. ► Significant lowering of reaction temperature to obtain nanocrystalline chromium boride. ► Enhanced reactivity due to appropriate surface interactions.« less
NASA Astrophysics Data System (ADS)
Rai, Arun Kumar; Vijayashanthi, N.; Tripathy, H.; Hajra, R. N.; Raju, S.; Murugesan, S.; Saroja, S.
2017-11-01
In the present study, the feasibility of employing the indigenously developed ferroboron alloy (Fe-15 wt.%B) as an alternate neutron shield material in combination with 9Cr-based ferritic steel (P91) clad in future Indian fast breeder reactors (FBR), has been investigated from a metallurgical perspective. Towards this goal, a series of diffusion couple experiments have been conducted at three different temperatures namely, 600, 700 and 800 °C for time durations up to 5000 h. The thickness of interaction layer has been monitored using standard metallographic procedures. The experiments revealed that ferroboron/P91 combination exhibited a tendency to form complex intermetallic borides at the interface. The structural and microstructural characterization of the interface confirmed that the reaction layer consists predominantly of borides of Fe and Cr of type FeB, Fe2B, (Fe,Cr)2B and (Fe,Cr)B. The measured variation of interaction layer thickness as a function of time and temperature have been modelled in terms of diffusion mediated interaction. The growth kinetics of borided layer has followed the parabolic law at each temperature, and the apparent activation energy for boride layer formation is found to be of the order of 115 kJ mol-1. This indicates that the kinetics of boriding could be governed by diffusion of B into the P91 matrix. Based on the findings of present study, an extrapolative estimate of the clad attack thickness at 550 °C for 60 years of operating time has been made and it turns out to be 210 ± 15 μm, which is less than the clad thickness of FBR shielding subassembly (4 mm) [1]. Thus, this study confirms that at testing temperatures from 550 to 600 °C, the ferroboron/P91 steel combination can be safely employed for shielding subassembly applications in fast reactors.
NASA Astrophysics Data System (ADS)
Chernov, Ya. B.; Filatov, E. S.
2017-08-01
The kinetics of thermal diffusion boriding in a melt based on calcium chloride with a boron oxide additive is studied using reversed current. The main temperature, concentration, and current parameters of the process are determined. The phase composition of the coating is determined by a metallographic method.
Search for New Superconductors for Energy and Power Applications
2014-10-21
superconductors, borides , carbides, silicides, and chalcogenides. In addition, a number of thin film systems have been explored: A15s, superlattices, arrays of...YBa2Cu3O7 Bi2Se3 Eu-Si-C ErRh4B4 Bi2Sr2CaCu2O8 (UD, OD) Sb2Se3 V-Si-C (Ga,Mn)As CuO ZrSe2 Sm-Si-C Hf(FeCo)P Y1-xCaxCrO3 Fe-Te-Se BORIDES Hf-Fe-C-P...Physics, Warsaw, Poland Table III New superconductors, discovered by UCSD MURI team. BORIDES Tc (K) Nb0.9Zr0.1B 11.2 ZrNbxB 9.0 ZrVxB 9.0
NASA Technical Reports Server (NTRS)
Tanaka, Hidehiko
1987-01-01
A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.
Method of boronizing transition metal surfaces
Koyama, Koichiro; Shimotake, Hiroshi
1983-01-01
A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.
Subminiature eddy current transducers for studying boride coatings
NASA Astrophysics Data System (ADS)
Dmitriev, S. F.; Ishkov, A. V.; Malikov, V. N.; Sagalakov, A. M.
2016-07-01
Strengthening of parts and units of machines, increased reliability and longer service life is an important task of modern mechanical engineering. The main objects of study in the work were selected steel 65G and 50HGA, wear-resistant boride coatings ternary system Fe-B-Fe n B which were investigated by scanning electron microscopy and eddy-current nondestructive methods.
2012-09-01
of a di-tungsten boride (W2B) phase was not detected in the nW-B sample, but the low concentration of boron may have made this phase undetectable by...Split Hopkinson Bar UFG ultrafine grained W2B di-tungsten boride XRD x-ray diffraction NO. OF NO. OF COPIES ORGANIZATION COPIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burghaus, Jens; Dronskowski, Richard, E-mail: drons@HAL9000.ac.rwth-aachen.d; Miller, Gordon J.
2009-10-15
First-principles, density-functional studies of several intermetallic borides of the general type M{sub 2}M'Ru{sub 5-n}Rh{sub n}B{sub 2} (n=0-5; M=Sc, Ti, Nb; M'=Fe, Co) show that the variation in saturation magnetic moment with valence-electron count follows a Slater-Pauling curve, with a maximum moment occurring typically at 66 valence electrons. The magnetic moments in these compounds occur primarily from the 3d electrons of the magnetically active M' sites, with some contribution from the Ru/Rh sites via magnetic polarization. Electronic DOS curves reveal that a rigid-band approach is a reasonable approximation for the estimation of saturation moments and the analysis of orbital interactions inmore » this family of complex borides. COHP analyses of the M'-M' orbital interactions indicate optimized interactions in the minority spin states for Co-containing phases, but strong bonding interactions remaining in Fe-containing phases. - Graphical abstract: Theoretically determined (spin-polarized LMTO-GGA) local magnetic moments as a function of the chemical valence Z for various intermetallic borides.« less
Superplastic behavior of two ultrahigh boron steels
NASA Astrophysics Data System (ADS)
Jiménez, J. A.; González-Doncel, G.; Acosta, P.; Ruano, O. A.
1994-06-01
The high-temperature deformation behavior of two ultrahigh boron steels containing 2.2 pct and 4.9 pct B was investigated. Both alloys were processed via powder metallurgy involving gas atomization and hot isostatic pressing (hipping) at various temperatures. After hipping at 700 °C, the Fe-2.2 pct B alloy showed a fine microstructure consisting of l- µm grains and small elongated borides (less than 1 µm) . At 1100 °C, a coarser microstructure with rounded borides was formed. This alloy was superplastic at 850 °C with stress exponents of about two and tensile elongations as high as 435 pct. The microstructure of the Fe-4.9 pct B alloy was similar to that of the Fe-2.2 pct B alloy showing, in addition, coarse borides. This alloy also showed low stress exponent values but lacked high tensile elongation (less than 65 pct), which was attributed to the presence of stress accumulation at the interface between the matrix and the large borides. A change in the activation energy value at the α-γ transformation temperature was seen in the Fe-2.2 pct B alloy. The plastic flow data were in agreement with grain boundary sliding and slip creep models.
Low temperature InP /Si wafer bonding using boride treated surface
NASA Astrophysics Data System (ADS)
Huang, Hui; Ren, Xiaomin; Wang, Wenjuan; Song, Hailan; Wang, Qi; Cai, Shiwei; Huang, Yongqing
2007-04-01
An approach for InP /Si wafer bonding based on boride-solution treatment was presented. The bonding energy is higher than the InP fracture energy by annealing at 280°C. An In0.53Ga0.47As/InP multiple-quantum-well (MQW) structure grown on InP was transferred onto Si substrate via the bonding process. X-ray diffraction and photoluminescence reveal that crystal quality of the bonded MQW was preserved. A thin B2O3-POx-SiO2 oxide layer of about 28nm thick at the bonding interface was detected. X-ray photoelectron spectroscopy and Raman analyses indicate that the formation of oxygen bridging bonds by boride treatment is responsible for the strong fusion obtained at such low temperature.
Method of boronizing transition metal surfaces
Koyama, Koichiro; Shimotake, Hiroshi.
1983-08-16
A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.
2011-11-01
30 kN pressure and heating rate of 100 K/min. Introduction Boride , carbides and nitrides of the group IVB and VB transition metals are considered...10. Sciti D., Silvestroni L., Nygren M. Spark plasma sintering of Zr- and Hf- borides with decreasing amounts of MoSi2 as sintering aid Journal of
Phase identification in boron-containing powder metallurgy steel using EBSD in combination with EPMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ming-Wei, E-mail: mwwu@ntut.edu.tw; Cai, Wen-Zhang
2016-03-15
Boron (B) is extensively used to induce liquid phase sintering (LPS) in powder metallurgy (PM) steels and thereby increase the densification. The alloying elements in B-containing PM steels affect the boride phase, stability of the boride, the temperature of liquid formation, and the progress of LPS. However, the boride phase has not been systematically identified yet. The main objective of this study was to clarify the influences of alloying elements, including C, Cr, and Ni, on the boride phases using electron backscatter diffraction (EBSD) in combination with electron probe microanalysis (EPMA). Network structures consisting of ferrite, Fe{sub 2}B boride, andmore » Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. The portions of Fe{sub 2}B were sufficiently larger than those of Fe{sub 3}C, and Fe{sub 3}C was mostly distributed at the interfaces between ferrite and Fe{sub 2}B. Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely changes the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase, where M represents the metallic elements, including Fe, Cr, Mo, and Ni. Furthermore, Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not. - Highlights: • Network structures consisting of ferrite, Fe{sub 2}B boride, and Fe{sub 3}C carbide were extensively observed in the Fe–0.4B–0.5C steel. • Adding 1.5 wt.% Cr or 1.8 wt.% Ni to Fe–0.4B–0.5C steel completely transforms the Fe{sub 2}B and Fe{sub 3}C phases to a M{sub 3}(B,C) phase. • Cr, Mo, B, and C atoms tend to concentrate on the M{sub 3}(B,C) phase, but Ni atoms do not.« less
Multifunctional Ceramic Nanostructured Coatings
2010-12-01
silicon carbide composites // J. Europ. Cer. Soc. − 2004. − Vol. 24. − P. 2169−2179. 22. Yu. P. Udalov, E. E. Valova, S. S. Ordanian. Fabrication and...by the titanium and tungsten borides and carbides . The analysis was done using the X-ray and electron-optical methods. This information expands our...coating compositions should be based on limited solubility materials. Such systems include carbides , nitrides, borides and silicides based on
Structure of superhard tungsten tetraboride: A missing link between MB2 and MB12 higher borides
Lech, Andrew T.; Turner, Christopher L.; Mohammadi, Reza; Tolbert, Sarah H.; Kaner, Richard B.
2015-01-01
Superhard metals are of interest as possible replacements with enhanced properties over the metal carbides commonly used in cutting, drilling, and wear-resistant tooling. Of the superhard metals, the highest boride of tungsten—often referred to as WB4 and sometimes as W1–xB3—is one of the most promising candidates. The structure of this boride, however, has never been fully resolved, despite the fact that it was discovered in 1961—a fact that severely limits our understanding of its structure–property relationships and has generated increasing controversy in the literature. Here, we present a new crystallographic model of this compound based on refinement against time-of-flight neutron diffraction data. Contrary to previous X-ray–only structural refinements, there is strong evidence for the presence of interstitial arrangements of boron atoms and polyhedral bonding. The formation of these polyhedra—slightly distorted boron cuboctahedra—appears to be dependent upon the defective nature of the tungsten-deficient metal sublattice. This previously unidentified structure type has an intermediary relationship between MB2 and MB12 type boride polymorphs. Manipulation of the fractionally occupied metal and boron sites may provide insight for the rational design of new superhard metals. PMID:25733870
Analysis of boron carbides' electronic structure
NASA Technical Reports Server (NTRS)
Howard, Iris A.; Beckel, Charles L.
1986-01-01
The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.
Electrochemical Corrosion Behavior of Spray-Formed Boron-Modified Supermartensitic Stainless Steel
NASA Astrophysics Data System (ADS)
Zepon, Guilherme; Nogueira, Ricardo P.; Kiminami, Claudio S.; Botta, Walter J.; Bolfarini, Claudemiro
2017-04-01
Spray-formed boron-modified supermartensitic stainless steel (SMSS) grades are alloys developed to withstand severe wear conditions. The addition of boron to the conventional chemical composition of SMSS, combined with the solidification features promoted by the spray forming process, leads to a microstructure composed of low carbon martensitic matrix reinforced by an eutectic network of M2B-type borides, which considerably increases the wear resistance of the stainless steel. Although the presence of borides in the microstructure has a very beneficial effect on the wear properties of the alloy, their effect on the corrosion resistance of the stainless steel was not comprehensively evaluated. The present work presents a study of the effect of boron addition on the corrosion resistance of the spray-formed boron-modified SMSS grades by means of electrochemical techniques. The borides fraction seems to have some influence on the repassivation kinetics of the spray-formed boron-modified SMSS. It was shown that the Cr content of the martensitic matrix is the microstructural feature deciding the corrosion resistance of this sort of alloys. Therefore, if the Cr content in the alloy is increased to around 14 wt pct to compensate for the boron consumed by the borides formation, the corrosion resistance of the alloy is kept at the same level of the alloy without boron addition.
A Crossover from High Stiffness to High Hardness: The Case of Osmium and Its Borides
NASA Astrophysics Data System (ADS)
Bian, Yongming; Liu, Xiaomei; Li, Anhu; Liang, Yongcheng
2016-09-01
Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os2B3 and OsB2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru
2015-10-27
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to anmore » enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.« less
Thermodynamical and thermoelectric properties of boron doped YPd{sub 3} and YRh{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dwivedi, Shalini; Sharma, Yamini, E-mail: sharma.yamini62@gmail.com; Sharma, Ramesh
2016-05-23
The structural, electronic, thermal, and optical properties of borides of cubic non-magnetic YX{sub 3} (X=Rh, Pd) compounds and their borides which crystallize in the AuCu{sub 3} structure have been studied using the density functional theory (DFT). The flat bands in the vicinity of E{sub F} which are associated with superconductivity appear in YPd{sub 3} and YRh{sub 3} band structures. However, the B s-states enhance the flat band only in YRh{sub 3}B. The optical properties clearly show that boron insertion modifies the absorption and transmittance. The YX{sub 3} alloys and their borides exhibit valuable changes in the thermopower and ZT. Itmore » is observed that the properties of the Y-X intermetallics change significantly for the Y-Rh and Y-Pd alloys and the presence of single boron atom modifies the properties to a great extent.« less
Magnetization Analysis of Magnesium Boride Wires
NASA Astrophysics Data System (ADS)
Cave, J. R.; Zhu, W.
2006-03-01
Cycled applied field magnetization curves contain a wealth of information on critical current density and flux pinning that is not commonly exploited. Detailed magnetization data for magnesium boride wire cores have been analyzed for critical state model consistency. The iron-sheathed silicon nitride doped magnesium boride wires were prepared from pure magnesium and boron powders with nano-scale silicon nitride additions (MgB2-x(Si3N4)x/7 with x = 0 - 0.4). A subsequent short annealing heat treatment, 800 degrees C and of 1 hour duration in Argon, was applied to create the desired phase. Magnetization critical current densities were up to ˜340 kA/cm2 at 5K and 1T. Major and minor loop analysis will be described, for field sweeps up to 3 tesla at fixed temperatures and for temperature sweeps from 5K to 45K in fixed fields, with respect to parameters describing the critical state model.
NASA Astrophysics Data System (ADS)
Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.
2015-10-01
An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bykova, E., E-mail: elena.bykova@uni-bayreuth.de; Laboratory of Crystallography, University of Bayreuth, D-95440 Bayreuth; Gou, H.
2015-10-15
We present here a detailed description of the crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} with various iron content (x=1.01(1), 1.04(1), 1.32(1)), synthesized at high pressures and high temperatures. As revealed by high-pressure single-crystal X-ray diffraction, the structure of Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds, which make it as stiff as diamond in one crystallographic direction. The volume compressibility of Fe{sub 2}B{sub 7} (the bulk modulus K{sub 0}= 259(1.8) GPa, K{sub 0}′= 4 (fixed)) is even lower than that of FeB{sub 4} and comparable with that of MnB{sub 4}, known for highmore » bulk moduli among 3d metal borides. Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B, in which Fe atoms occupy an interstitial position. Fe{sub x}B{sub 50} does not show considerable anisotropy in the elastic behavior. - Graphical abstract: Crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} (x=1.01(1), 1.04(1), 1.32(1)). - Highlights: • Novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50}, were synthesized under HPHT conditions. • Fe{sub 2}B{sub 7} has a unique orthorhombic structure (space group Pbam). • Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds that results in high bulk modulus. • Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B composed of B{sub 12} icosahedra. • In Fe{sub x}B{sub 50} intraicosahedral bonds are stiffer than intericosahedral ones.« less
The effect of melt refining upon inclusions in aluminum
NASA Astrophysics Data System (ADS)
Simensen, C. J.
1982-03-01
A series of aluminum melts has been refined with respect to inclusions by use of ALCOA 469, FILD, or SNIF. The content and size distribution of inclusions in the original-and the refined melts-have been measured by use of neutron activation (oxygen content), gas chromatography (carbide content), sedimentation analysis, and dissolution of metal in hydrochloric acid and subsequent analysis of oxides by means of a Coulter Counter. All the units tested have a beneficial effect and decrease the inclusion content, but the number of analyses are too few to make general conclusions. However, for melts cleaned by use of SNIF, it was found that oxides larger than 50 μm in cross section and borides larger than 20 μm in diameter were removed, while the smaller borides were agglomerated only. The effect of FILD and ALCOA 469 upon the melt tested was removal of borides larger than 5-10 μ m and oxides larger than 15μm in diameter, respectively.
Interfacial reactions in borsic/Ti-3Al-2-1/2V composite
NASA Technical Reports Server (NTRS)
Rao, V. B.; Houska, C. R.; Unnam, J.; Brewer, W. D.; Tenney, D. R.
1979-01-01
The paper provides a detailed X-ray characterization of a borsic/Ti-3Al-2-1/2V composite, and to correlate the relative intensities of the reaction products with the mechanical properties. Based on X-ray integrated intensity data two stages of interface reactions were identified: during the first stage there is a simultaneous interdiffusion of Si, C, and Ti atoms at the filament/matrix interface resulting in the formation of Ti5Si3, TiSi and small amounts of TiSi2 and TiC. The second stage is associated with considerable TiSi2 and boride formation. It appears that the alpha-phase of Ti is more reactive in forming silicides and borides than the beta-phase. The silicide intensities and the reaction zone thicknesses are shown to be directly related to the reduction of the ultimate tensile strength by thermal degradation, and the results indicate that silicide reaction products are as detrimental to strength as the borides.
NASA Astrophysics Data System (ADS)
Flores-Rentería, M. A.; Ortiz-Domínguez, M.; Keddam, M.; Damián-Mejía, O.; Elias-Espinosa, M.; Flores-González, M. A.; Medina-Moreno, S. A.; Cruz-Avilés, A.; Villanueva-Ibañez, M.
2015-02-01
This work focused on the determination of boron diffusion coefficient through the Fe2B layers on AISI 1026 steel using a mathematical model. The suggested model solves the mass balance equation at the (Fe2B/substrate) interface. This thermochemical treatment was carried out in the temperature range of 1123-1273 K for a treatment time ranging from 2 to 8 h. The generated boride layers were characterized by different experimental techniques such as light optical microscopy, scanning electron microscopy, XRD analysis and the Daimler-Benz Rockwell-C indentation technique. As a result, the boron activation energy for AISI 1026 steel was estimated as 178.4 kJ/mol. Furthermore, this kinetic model was validated by comparing the experimental Fe2B layer thickness with the predicted one at a temperature of 1253 K for 5 h of treatment. A contour diagram relating the layer thickness to the boriding parameters was proposed to be used in practical applications.
He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong
2016-08-09
The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterle, W.; Krause, S.; Moelders, T.
2008-11-15
Turbine components from conventionally cast nickel-base alloy Rene 80 show different hot cracking susceptibilities depending on their heat treatment conditions leading to slightly different microstructures. Electron probe micro-analysis, focused ion beam technique and analytical transmission electron microscopy were applied to reveal and identify grain boundary precipitates and the {gamma}-{gamma}'-microstructure. The distribution of borides along grain boundaries was evaluated statistically by quantitative metallography. The following features could be correlated with an increase of cracking susceptibility: i) Increasing grain size, ii) increasing fraction of grain boundaries with densely spaced borides, iii) lack of secondary {gamma}'-particles in matrix channels between the coarse cuboidalmore » {gamma}'-precipitates. The latter feature seems to be responsible for linking-up of cracked grain boundary precipitates which occurred as an additional cracking mechanism after one heat treatment, whereas decohesion at the boride-matrix-interface in the heat affected zone of laser-drilled holes was observed for both heat treatments.« less
Method of making an icosahedral boride structure
Hersee, Stephen D.; Wang, Ronghua; Zubia, David; Aselage, Terrance L.; Emin, David
2005-01-11
A method for fabricating thin films of an icosahedral boride on a silicon carbide (SiC) substrate is provided. Preferably the icosahedral boride layer is comprised of either boron phosphide (B.sub.12 P.sub.2) or boron arsenide (B.sub.12 As.sub.2). The provided method achieves improved film crystallinity and lowered impurity concentrations. In one aspect, an epitaxially grown layer of B.sub.12 P.sub.2 with a base layer or substrate of SiC is provided. In another aspect, an epitaxially grown layer of B.sub.12 As.sub.2 with a base layer or substrate of SiC is provided. In yet another aspect, thin films of B.sub.12 P.sub.2 or B.sub.12 As.sub.2 are formed on SiC using CVD or other vapor deposition means. If CVD techniques are employed, preferably the deposition temperature is above 1050.degree. C., more preferably in the range of 1100.degree. C. to 1400.degree. C., and still more preferably approximately 1150.degree. C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wade, C.S.; Park, H.G.; Hoagland, R.G.
This paper considers the relation between microstructure and mechanical properties of two Ni-base and two Fe-base Boride-Dispersion-Strengthened Microcrystalline (BDSM) alloys. In these very fine grained materials the borides were primarily Cr, Mo, and MoFe in a fcc matrix in three of the alloys, and a bcc in one of the Fe-base alloys. Strength data and resistance to stress corrosion cracking are reported and, in the latter case, extraordinary resistance to SCC in NaCl, Na{sub 2}S{sub 2}O{sub 3} and boiling MgCl{sub 2} environments was observed in every case. The fcc BDSM alloys also demonstrated excellent thermal stability in terms of strengthmore » and fracture roughness up to 1000 C. The bcc alloy suffered severe loss of toughness. The fracture mode involved ductile rupture in all alloys and they display a reasonably linear correlation between K{sub Ic} and the square root of particle spacing.« less
Magnetic properties and magnetic hardening mechansim of Pt-Co-B alloys
NASA Technical Reports Server (NTRS)
Qiu, Ning; Flanagan, F.; Wittig, James E.
1994-01-01
The intrinsic coercivity is found to be maximized in the Pt42Co45B13 ternary alloy which is undercooled and rapidly solidified (quenched using a 70 m/s wheel speed after undercooling), and then annealed (800 C for 2400 min). The same alloy, processed at slower cooling rates and annealed in the same way, has a much larger scale microstructure and a much lower resulting magnetic coercivity. The microstructure which would optimize the coercitvity of this coercivity of this ternary alloy is a completely ordered L1(sub zero) Pt-Co matrix with a submicron magnetic single-domion Co-boride precipitate. The L1(sub zero) phase is highly anistropic magnetically while the Co-boride precipate is somewhat less so. Annealing treatments designed to produced single-domain Co-boride precipitates enhance the coercivity. This suggests that the refined microstructures is responsible for the high coercivities found in the rapidly solidified and annealed alloy. The magnetic domain wall thickness for a Co-boride precipitate is determined from both experimental observation and theoretical calculation in order to evaluate its influence on the coercivity of the alloy. The effects of the pinning of domain walls and the barrier to the nucleation of reverse domains on the coercivity are discussed. Both microstrucutral analysis and theoretical calculation indicate that the high coercivities in the Pt42Co45B13 alloy are due to the difficult nucleation of reverse magnetic domains.
Electroplating of the superconductive boride MgB2 from molten salts
NASA Astrophysics Data System (ADS)
Abe, Hideki; Yoshii, Kenji; Nishida, Kenji; Imai, Motoharu; Kitazawa, Hideaki
2005-02-01
An electroplating technique of the superconductive boride MgB2 onto graphite substrates is reported. Films of MgB2 with a thickness of tens micrometer were fabricated on the planar and curved surfaces of graphite substrates by means of electrolysis on a mixture of magnesium chloride, potassium chloride, sodium chloride, and magnesium borate fused at 600 °C under an Ar atmosphere. The electrical resistivity and magnetization measurements revealed that the electroplated MgB2 films undergo a superconducting transition with the critical temperature (Tc) of 36 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainshtein, �. E.; Zhurakovskii, E. A.
1959-08-01
X-ray spectral analyses confirmed the hypothesis on the metal-like state of hydrogen in tithnium hydrides. Experiments with titunium borides and silicides indicate the special character and degree of the 3d--level participation in the metallic'' bond between the atoms of various complexes. The structure of metalloid elements becomes more complicated with an increase in the specific number of boron and silicon atoms and the bond between the atoms tends to become covalent. (R.V.J.)
NASA Astrophysics Data System (ADS)
Maiden, Colin; Siegel, Edward
History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)
Synthesis and Characterization of Low-Cost Superhard Transition-Metal Borides
NASA Astrophysics Data System (ADS)
Kaner, Richard
2013-06-01
The increasing demand for high-performance cutting and forming tools, along with the shortcomings of traditional tool materials such as diamond (unable to cut ferrous materials), cubic boron nitride (expensive) and tungsten carbide (relatively-low hardness), has motivated the search for new superhard materials for these applications. This has led us to a new class of superhard materials, dense refractory transition-metal borides, which promise to address some of the existing problems of conventional superhard materials. For example, we have synthesized rhenium diboride (ReB2) using arc melting at ambient pressure. This superhard material has demonstrated an excellent electrical conductivity and superior mechanical properties, including a Vickers hardness of 48.0 GPa (under an applied load of 0.49 N). To further increase the hardness and lower the materials costs, we have begun exploring high boron content metal borides including tungsten tetraboride (WB4) . We have synthesized WB4 by arc melting and studied its hardness and high-pressure behavior. With a similar Vickers hardness (43.3 GPa under a load of 0.49 N) and bulk modulus (326-339 GPa) to ReB2, WB4 offers a lower cost alternative and has the potential to be used in cutting tools. To further enhance the hardness of this superhard metal, we have created the binary and ternary solid solutions of WB4 with Cr, Mn and Ta, the results of which show a hardness increase of up to 20 percent. As with other metals, these metallic borides can be readily cut and shaped using electric discharge machining (EDM).
NASA Astrophysics Data System (ADS)
Ma, Qunshuang; Li, Yajiang; Wu, Na; Wang, Juan
2013-06-01
Vacuum brazing of super-Ni/NiCr laminated composite and Cr18-Ni8 stainless steel was carried out using Ni-Cr-Si-B amorphous filler metal at 1060, 1080, and 1100 °C, respectively. Microstructure and phase constitution were investigated by means of optical and scanning electron microscopy, energy-dispersive spectroscopy, x-ray diffraction, and micro-hardness tester. When brazed at 1060-1080 °C, the brazed region can be divided into two distinct zones: isothermally solidified zone (ISZ) consisting of γ-Ni solid solution and athermally solidified zone (ASZ) consisting of Cr-rich borides. Micro-hardness of the Cr-rich borides formed in the ASZ was as high as 809 HV50 g. ASZ decreased with increase of the brazing temperature. Isothermal solidification occurred sufficiently at 1100 °C and an excellent joint composed of γ-Ni solid solution formed. The segregation of boron from ISZ to residual liquid phase is the reason of Cr-rich borides formed in ASZ. The formation of secondary precipitates in diffusion-affected zone is mainly controlled by diffusion of B.
NASA Astrophysics Data System (ADS)
Lee, Kee-Ahn; Gwon, Jin-Han; Yoon, Tae-Sik
2018-03-01
This study investigated the microstructure and the room and high temperature mechanical properties of Fe-Cr-B alloy manufactured by metal injection molding. In addition, hot isostatic pressing was performed to increase the density of the material, and a comparison of properties was made. Microstructural observation confirmed a bi-continuous structure composed of a three-dimensional network of α-Fe phase and (Cr,Fe)2B phase. The HIPed specimen featured a well-formed adhesion between the α-Fe phase and boride, and the number of fine pores was significantly reduced. The tensile results confirmed that the HIPed specimen (RT to 900 °C) had higher strengths compared to the as-sintered specimen, and the change of elongation starting from 700 °C was significantly greater in the HIPed specimen. Fractography suggested that cracks propagated mostly along the interface between the α-Fe matrix and boride in the as-sintered specimen, while direct fracture of boride was observed in addition to interface separation in the HIPed specimen.
Electrically conductive containment vessel for molten aluminum
Holcombe, C.E.; Scott, D.G.
1984-06-25
The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal 10 borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.
Electrically conductive containment vessel for molten aluminum
Holcombe, Cressie E.; Scott, Donald G.
1985-01-01
The present invention is directed to a containment vessel which is particularly useful in melting aluminum. The vessel of the present invention is a multilayered vessel characterized by being electrically conductive, essentially nonwettable by and nonreactive with molten aluminum. The vessel is formed by coating a tantalum substrate of a suitable configuration with a mixture of yttria and particulate metal borides. The yttria in the coating inhibits the wetting of the coating while the boride particulate material provides the electrical conductivity through the vessel. The vessel of the present invention is particularly suitable for use in melting aluminum by ion bombardment.
NASA Astrophysics Data System (ADS)
Smirnyagina, N. N.; Khaltanova, V. M.; Dasheev, D. E.; Lapina, A. E.
2017-05-01
Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VТ-1 are generated at diffused saturation by electron beam treatment in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.
Brazing Inconel 625 Using Two Ni/(Fe)-Based Amorphous Filler Foils
NASA Astrophysics Data System (ADS)
Chen, Wen-Shiang; Shiue, Ren-Kae
2012-07-01
For MBF-51 filler, the brazed joint consists of interfacial grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr-rich matrix. In contrast, the VZ-2106 brazed joint is composed of interfacial Nb6Ni16Si7 precipitates as well as grain boundary borides, coarse Nb6Ni16Si7, and Ni/Cr/Fe-rich matrix. The maximum tensile strength of 443 MPa is obtained from the MBF-51 brazed specimen. The tensile strengths of VZ-2106 brazed joints are approximately 300 MPa. Both amorphous filler foils demonstrate potential in brazing IN-625 substrate.
Synthesis, Structure, and Properties of Refractory Hard-Metal Borides
NASA Astrophysics Data System (ADS)
Lech, Andrew Thomas
As the limits of what can be achieved with conventional hard compounds, such as tungsten carbide, are nearing reach, super-hard materials are an area of increasing industrial interest. The refractory hard metal borides, such as ReB2 and WB4, offer an increasingly attractive alternative to diamond and cubic boron nitride as a next-generation tool material. In this Thesis, a thorough discussion is made of the progress achieved by our laboratory towards understanding the synthesis, structure, and properties of these extremely hard compounds. Particular emphasis is placed on structural manipulation, solid solution formation, and the unique crystallographic manifestations of what might also be called "super-hard metals".
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivan, M.; Veira, D.M.
1985-01-01
Each of four groups of six wethers were fed one of a low molybdenum, high molybdenum, high molybdenum plus copper sulfate, or high molybdenum plus copper sulfate corn silage-based diet for ad libitum intake for 221 days. Average daily gains and ratios of feed/gain were depressed for the high molybdenum diet as compared with the low molybdenum diet suggesting molybdenum toxicity in sheep fed the high molybdenum diet. This was alleviated partly by the copper sulfate supplement. The supplement also decreased solubility of both copper and molybdenum in the rumen but had no effect on copper concentration in blood plasma.more » Concentration of molybdenum was higher in both liver and kidney in sheep fed high-molybdenum diets as compared with low-molybdenum diets. Copper concentration was higher in kidneys of sheep fed high-molybdenum diets, but no difference was significant in liver copper between sheep fed diets high or low in molybdenum.« less
Structural, electronic and thermal properties of super hard ternary boride, WAlB
NASA Astrophysics Data System (ADS)
Rajpoot, Priyanka; Rastogi, Anugya; Verma, U. P.
2018-04-01
A first principle study of the structural, electronic and thermal properties of Tungsten Aluminum Boride (WAlB) using full-potential linearized augmented plane wave (FP-LAPW) in the frame work of density function theory (DFT) have been calculated. The calculated equilibrium structural parameters are in excellent agreement with available experimental results. The calculated electronic band structure reveals that WAlB is metallic in nature. The quasi-harmonic Debye model is applied to study of the temperature and pressure effect on volume, Debye temperature, thermal expansion coefficient and specific heat at constant volume and constant pressure. To the best of our knowledge theoretical investigation of these properties of WAlB is reported for the first time.
Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets
Halverson, Danny C.; Landingham, Richard L.
1988-01-01
A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.
Oxide strengthened molybdenum-rhenium alloy
Bianco, Robert; Buckman, Jr., R. William
2000-01-01
Provided is a method of making an ODS molybdenum-rhenium alloy which includes the steps of: (a) forming a slurry containing molybdenum oxide and a metal salt dispersed in an aqueous medium, the metal salt being selected from nitrates or acetates of lanthanum, cerium or thorium; (b) heating the slurry in the presence of hydrogen to form a molybdenum powder comprising molybdenum and an oxide of the metal salt; (c) mixing rhenium powder with the molybdenum powder to form a molybdenum-rhenium powder; (d) pressing the molybdenum-rhenium powder to form a molybdenum-rhenium compact; (e) sintering the molybdenum-rhenium compact in hydrogen or under a vacuum to form a molybdenum-rhenium ingot; and (f) compacting the molybdenum-rhenium ingot to reduce the cross-sectional area of the molybdenum-rhenium ingot and form a molybdenum-rhenium alloy containing said metal oxide. The present invention also provides an ODS molybdenum-rhenium alloy made by the method. A preferred Mo--Re-ODS alloy contains 7-14 weight % rhenium and 2-4 volume % lanthanum oxide.
The Quantitative Significance of Nondestructive Evaluation of Graphite and Ceramic Materials.
NONDESTRUCTIVE TESTING), (* GRAPHITE , (*BORIDES, NONDESTRUCTIVE TESTING), (*REFRACTORY MATERIALS, NONDESTRUCTIVE TESTING), DEFECTS(MATERIALS), TENSILE PROPERTIES, RADIOGRAPHY, ULTRASONIC PROPERTIES, DENSITY.
High-Temperature Syntheses of New, Thermally-Stable Chemical Compounds.
SYNTHESIS(CHEMISTRY), HEAT RESISTANT PLASTICS, NITRILES, FLUORINE COMPOUNDS, COMPLEX COMPOUNDS, NITROGEN, SULFIDES, ORGANOMETALLIC COMPOUNDS, ORGANOBORANES, BORIDES, SPINEL, CARBIDES, NITRIDES, SILICIDES .
B Layers and Adhesion on Armco Iron Substrate
NASA Astrophysics Data System (ADS)
Elias-Espinosa, M.; Ortiz-Domínguez, M.; Keddam, M.; Flores-Rentería, M. A.; Damián-Mejía, O.; Zuno-Silva, J.; Hernández-Ávila, J.; Cardoso-Legorreta, E.; Arenas-Flores, A.
2014-08-01
In this work, a kinetic model was suggested to evaluate the boron diffusion coefficient in the Fe2B layers grown on the Armco iron substrate by the powder-pack boriding. This thermochemical treatment was carried out in the temperature range of 1123-1273 K for treatment times ranging from 2 to 8 h. The boron diffusion coefficient in the Fe2B layers was estimated by solving the mass balance equation at the (Fe2B/substrate) interface with an inclusion of boride incubation time. To validate the present model, the simulated value of Fe2B layer thickness was compared with the experimental value obtained at 1253 K for a treatment time of 5 h. The morphology of Fe2B layers was observed by SEM and optical microscopy. Metallographic studies showed that the boride layer has a saw-tooth morphology in all the samples. The layer thickness measurements were done with the help of MSQ PLUS software. The Fe2B phase was identified by x-ray diffraction method. Finally, the adherence of Fe2B layers on the Armco iron substrate was qualitatively evaluated by using the Daimler-Benz Rockwell-C indentation technique. In addition, the estimated value of boron activation energy was compared to the literature data.
A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides.
Jothi, Palani R; Yubuta, Kunio; Fokwa, Boniface P T
2018-04-01
Most nanomaterials, such as transition metal carbides, phosphides, nitrides, chalcogenides, etc., have been extensively studied for their various properties in recent years. The similarly attractive transition metal borides, on the contrary, have seen little interest from the materials science community, mainly because nanomaterials are notoriously difficult to synthesize. Herein, a simple, general synthetic method toward crystalline transition metal boride nanomaterials is proposed. This new method takes advantage of the redox chemistry of Sn/SnCl 2 , the volatility and recrystallization of SnCl 2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies (nanorods, nanosheets, nanoprisms, nanoplates, nanoparticles, etc.). Importantly, this method allows flexibility in the choice of the transition metal, as well as the ability to target several compositions within the same binary phase diagram (e.g., Mo 2 B, α-MoB, MoB 2 , Mo 2 B 4 ). The simplicity and wide applicability of the method should enable the fulfillment of the great potential of this understudied class of materials, which show a variety of excellent chemical, electrochemical, and physical properties at the microscale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Corrosion and wear behaviors of boronized AISI 316L stainless steel
NASA Astrophysics Data System (ADS)
Kayali, Yusuf; Büyüksaǧiş, Aysel; Yalçin, Yılmaz
2013-09-01
In this study, the effects of a boronizing treatment on the corrosion and wear behaviors of AISI 316L austenitic stainless steel (AISI 316L) were examined. The corrosion behavior of the boronized samples was studied via electrochemical methods in a simulation body fluid (SBF) and the wear behavior was examined using the ball-on-disk wear method. It was observed that the boride layer that formed on the AISI 316L surface had a flat and smooth morphology. Furthermore, X-ray diffraction analyses show that the boride layer contained FeB, Fe2B, CrB, Cr2B, NiB, and Ni2B phases. Boride layer thickness increased with an increasing boronizing temperature and time. The boronizing treatment also increased the surface hardness of the AISI 316L. Although there was no positive effect of the coating on the corrosion resistance in the SBF medium. Furthermore, a decrease in the friction coefficient was recorded for the boronized AISI 316L. As the boronizing temperature increased, the wear rate decreased in both dry and wet mediums. As a result, the boronizing treatment contributed positively to the wear resistance by increasing the surface hardness and by decreasing the friction coefficient of the AISI 316L.
Design of cemented tungsten carbide and boride-containing shields for a fusion power plant
NASA Astrophysics Data System (ADS)
Windsor, C. G.; Marshall, J. M.; Morgan, J. G.; Fair, J.; Smith, G. D. W.; Rajczyk-Wryk, A.; Tarragó, J. M.
2018-07-01
Results are reported on cemented tungsten carbide (cWC) and boride-containing composite materials for the task of shielding the centre column of a superconducting tokamak power plant. The shield is based on five concentric annular shells consisting of cWC and water layers of which the innermost cWC shield can be replaced with boride composites. Sample materials have been fabricated changing the parameters of porosity P, binder alloy fraction f binder and boron weight fraction f boron. For the fabricated materials, and other hypothetical samples with chosen parameters, Monte Carlo studies are made of: (i) the power deposition into the superconducting core, (ii) the fast neutron and gamma fluxes and (iii) the attenuation coefficients through the shield for the deposited power and neutron and gamma fluxes. It is shown that conventional Co-based cWC binder alloy can be replaced with a Fe–Cr alloy (92 wt.% Fe, 8 wt.% Cr), which has lower activation than cobalt with minor changes in shield performance. Boride-based composite materials have been prepared and shown to give a significant reduction in power deposition and flux, when placed close to the superconducting core. A typical shield of cemented tungsten carbide with 10 wt.% of Fe–8Cr binder and 0.1% porosity has a power reduction half-length of 0.06 m. It is shown that the power deposition increases by 4.3% for every 1% additional porosity, and 1.7% for every 1 wt.% additional binder. Power deposition decreased by 26% for an initial 1 wt.% boron addition, but further increases in f boron showed only a marginal decrease. The dependences of power deposited in the core, the maximum neutron and gamma fluxes on the core surface, and the half attenuation distances through the shield have been fitted to within a fractional percentage error by analytic functions of the porosity, metallic binder alloy and boron weight fractions.
NASA Astrophysics Data System (ADS)
Ruiz-Vargas, Jose
This thesis reports theoretical and experimental investigations carried out to understand the mechanisms of microstructure formation during isothermal brazing, produced by brazing Inconel 625 and MC2 nickel-based superalloys with filler metal BNi-2. Firstly, studies were made on pure Ni to interpret microstructure's formation with simplified alloy chemistry. Microstructure formation have been studied when varying time at constant temperature (isothermal kinetics), but also when varying temperature for constant hold time (isochronal kinetics). The chemical composition and crystallography of the present phases have been identified, with the following results : (i) the fraction of dissolved base metal has been found proportional to the initial thickness of the brazing alloy, so that the composition of the liquid remains homogeneous with a precise initial equilibrium composition during the whole brazing process, (ii) the melting of the joint occurs in two steps : at lower temperature, it involves only partially melting, and boron diffusion in pure Ni leads to the precipitation of fine Ni3B borides at the interface ; in a second stage, at higher temperature, melting is complete and thermodynamic equilibrium requires significant dissolution of nickel, which also involves the dissolution of part of borides already formed. Secondly, nickel plating technique was used on Inconel 625 nickel-based superalloy. A thin layer of Ni with varying thickness, has been electrodeposited to observe the gradual dissolution of Inconel and microstructural features formation due to the presence of superalloy alloying elements. It has been observed that the nickel coating does not prevent precipitation in the base metal as boron diffuse rapidly through the coating width. In the intermediate nickel plating width, fragile precipitates of nickel borides have been observed, because the contribution of Inconel alloying elements to the melt was very limited. In absence of nickel plating on the superalloy, the formation of Nb and Cr-Mo borides phase has been observed. Efforts have been made to evaluate the accuracy of Boron measurement by energy dispersion X-ray spectroscopy (EDS) in the MC2 superalloy and BNi-2 filler metal. The most accurate method to quantify Boron using EDS is by composition difference. A precision of 5 at.% has been reached when using optimized data acquisition and post processing schemes. Ultimately, Electron Backscatter Diffraction (EBSD) combined with localized EDS analysis has been proven invaluable in conclusively identifying micrometer sized boride precipitates ; thus further improving the characterization of brazed Ni-based superalloys.
NASA Astrophysics Data System (ADS)
Johnston, Jamin M.
This work is a compilation of theory, finite element modeling and experimental research related to the use of microwave plasma enhanced chemical vapor deposition (MPECVD) of diborane to create metal-boride surface coatings on CoCrMo and WC-Co, including the subsequent growth of nanostructured diamond (NSD). Motivation for this research stems from the need for wear resistant coatings on industrial materials, which require improved wear resistance and product lifetime to remain competitive and satisfy growing demand. Nanostructured diamond coatings are a promising solution to material wear but cannot be directly applied to cobalt containing substrates due to graphite nucleation. Unfortunately, conventional pre-treatment methods, such as acid etching, render the substrate too brittle. Thus, the use of boron in a MPECVD process is explored to create robust interlayers which inhibit carbon-cobalt interaction. Furthermore, modeling of the MPECVD process, through the COMSOL MultiphysicsRTM platform, is performed to provide insight into plasma-surface interactions using the simulation of a real-world apparatus. Experimental investigation of MPECVD boriding and NSD deposition was conducted at surface temperatures from 700 to 1100 °C. Several well-adhered metal-boride surface layers were formed: consisting of CoB, CrB, WCoB, CoB and/or W2CoB2. Many of the interlayers were shown to be effective diffusion barriers against elemental cobalt for improving nucleation and adhesion of NSD coatings; diamond on W2CoB2 was well adhered. However, predominantly WCoB and CoB phase interlayers suffered from diamond film delamination. Metal-boride and NSD surfaces were evaluated using glancing-angle x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), cross-sectional scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), micro-Raman spectroscopy, nanoindentation, scratch testing and epoxy pull testing. COMSOL MultiphysicsRTM was used to construct a representation of the MPECVD chamber. Relevant material properties, boundary conditions and adjustable parameters were applied to match the actual experimental set-up. Despite approximations, simulations for the surface temperature and surface accumulation matched well with experimental data. The combination of data from CoCrMo, WC-Co and modeling of the MPECVD process confirms that the use of boron to create metal-boride interlayers is applicable for subsequent nanostructured diamond coatings and that the surface temperature and deposition thickness can be predicted using finite element modeling.
Deposition and characterization of aluminum magnesium boride thin film coatings
NASA Astrophysics Data System (ADS)
Tian, Yun
Boron-rich borides are a special group of materials possessing complex structures typically comprised of B12 icosahedra. All of the boron-rich borides sharing this common structural unit exhibit a variety of exceptional physical and electrical properties. In this work, a new ternary boride compound AlMgB14, which has been extensively studied in bulk form due to its novel mechanical properties, was fabricated into thin film coatings by pulsed laser deposition (PLD) technology. The effect of processing conditions (laser operating modes, vacuum level, substrate temperature, and postannealing, etc.) on the composition, microstructure evolution, chemical bonding, and surface morphology of AlMgB14 thin film coatings has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectrometry; the mechanical, electrical, and optical properties of AlMgB14 thin films have been characterized by nanoindentation, four-point probe, van der Pauw Hall measurement, activation energy measurement, and UV-VIS-NIR spectrophotometer. Experimental results show that AlMgB14 films deposited in the temperature range of 300 K - 873 K are amorphous. Depositions under a low vacuum level (5 x 10-5 Torr) can introduce a significant amount of C and O impurities into AlMgB14 films and lead to a complex oxide glass structure. Orthorhombic AlMgB14 phase cannot be obtained by subsequent high temperature annealing. By contrast, the orthorhombic AlMgB 14 crystal structure can be attained via high temperature-annealing of AlMgB14 films deposited under a high vacuum level (< 3 x 10-6 Torr), accompanied by strong texture formation. Low vacuum level-as deposited AlMgB14 films have low hardness (10 GPa), but high vacuum level-as deposited AlMgB14 films exhibit an extremely high hardness (45 GPa - 51 GPa), and the higher deposition temperature results in still higher hardness. Furthermore, a very low friction coefficient (0.04 - 0.05) has been observed for high vacuum level-as deposited AlMgB14 films, which could be ascribed to the in situ formation of a surface self-lubricating layer. Unlike most boron-rich boride films, high vacuum level-as deposited AlMgB14 films also possess a low n-type electrical resistivity, which is a consequence of high carrier concentration and moderate carrier mobility. The operative electrical transport mechanism and doping behavior for high vacuum level-as deposited AlMgB14 films are discussed in detail in this thesis.
Direct synthesis of magnesium borohydride
Ronnebro, Ewa Carin Ellinor [Kennewick, WA; Severa, Godwin [Honolulu, HI; Jensen, Craig M [Kailua, HI
2012-04-03
A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Mg(BH.sub.4).sub.2, from the alkaline earth metal boride MgB.sub.2 by hydrogenating the MgB.sub.2 at an elevated temperature and pressure. The boride may also be doped with small amounts of a metal chloride catalyst such as TiCl.sub.3 and/or NiCl.sub.2. The process provides for charging MgB.sub.2 with high pressure hydrogen above at least 70 MPa while simultaneously heating the material to about 350.degree. C. to about 400.degree. C. The method is relatively simple and inexpensive and provides a reversible hydride compound having a hydrogen capacity of at least 11 wt %.
The low-lying quartet electronic states of group 14 diatomic borides XB (X = C, Si, Ge, Sn, Pb)
NASA Astrophysics Data System (ADS)
Pontes, Marcelo A. P.; de Oliveira, Marcos H.; Fernandes, Gabriel F. S.; Da Motta Neto, Joaquim D.; Ferrão, Luiz F. A.; Machado, Francisco B. C.
2018-04-01
The present work focuses in the characterization of the low-lying quartet electronic and spin-orbit states of diatomic borides XB, in which X is an element of group 14 (C, Si, Ge, Sn, PB). The wavefunction was obtained at the CASSCF/MRCI level with a quintuple-ζ quality basis set. Scalar relativistic effects were also taken into account. A systematic and comparative analysis of the spectroscopic properties for the title molecular series was carried out, showing that the (1)4Π→X4Σ- transition band is expected to be measurable by emission spectroscopy to the GeB, SnB and PbB molecules, as already observed for the lighter CB and SiB species.
Mechanical properties of electron-beam-melted molybdenum and dilute molybdenum-rhenium alloys
NASA Technical Reports Server (NTRS)
Klopp, W. D.; Witzke, W. R.
1972-01-01
A study of molybdenum and three dilute molybdenum-rhenium alloys was undertaken to determine the effects of rhenium on the low temperature ductility and other mechanical properties of molybdenum. Alloys containing 3.9, 5.9, and 7.7 atomic percent rhenium exhibited lower ductile-brittle transition temperatures than did the unalloyed molybdenum. The maximum improvement in the annealed condition was observed for molybdenum - 7.7 rhenium, which had a ductile-brittle transition temperature approximately 200 C (360 F) lower than that for unalloyed molybdenum. Rhenium additions also increased the low and high temperature tensile strengths and the high temperature creep strength of molybdenum. The mechanical behavior of dilute molybdenum-rhenium alloys is similar to that observed for dilute tungsten-rhenium alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jawell, W.M.; Page, A.L.; Elseewi, A.A.
1980-01-01
While molybdenum is an essential element for both plants and animals, it becomes toxic above certain critical levels. Reviewed are the natural supply of molybdenum in the environment. The molybdenum cycle, the importance of molybdenum in industry and agriculture, and potential hazards that may occur when excessive levels of molybdenum occur in the environment. Although the potential of molybdenum toxicity to humans and non-ruminant animals appears to be low, the enrichment of the environment with molybdenum from modern mining, agricultural, and industrial activities has potentially hazardous implications for ruminant animal health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarrell, W.M.; Page, A.L.; Elseewi, A.A.
1980-01-01
While molybdenum is an essential element for both plants and animals, it becomes toxic above certain critical levels. Reviewed are the natural supply of molybdenum in the environment, the molybdenum cycle, the importance of molybdenum in industry and agriculture, and potential hazards that may occur when excessive levels of molybdenum occur in the environment. Although the potential of molybdenum toxicity to humans and non-ruminant animals appears to be low, the enrichment of the environment with molybdenum from modern mining, agricultural, and industrial activities has potentially hazardous implications for ruminant animal health. (3 graphs, numerous references, 16 tables)
NASA Astrophysics Data System (ADS)
Chun, Eun-Joon; Park, Changkyoo; Nishikawa, Hiroshi; Kim, Min-Su
2018-06-01
The microstructural characterization of thermal-sprayed Ni-based self-fluxing alloy (Metco-16C®) after laser-assisted homogenization treatment was performed. To this end, a high-power diode laser system was used. This supported the real-time control of the target homogenization temperature at the substrate surface. Non-homogeneities of the macrosegregation of certain elements (C and Cu) and the local concentration of Cr-based carbides and borides in certain regions in the as-sprayed state could be enhanced with the application of homogenization. After homogenization at 1423 K, the hardness of the thermal-sprayed layer was found to have increased by 1280 HV from the as-sprayed state (750 HV). At this homogenization temperature, the microstructure of the thermal-sprayed layer consisted of a lamellar structuring of the matrix phase (austenite and Ni3Si) with fine (<5 μm) carbides and borides (the rod-like phase of Cr5B3, the lumpy phase of M23C6, and the extra-fine phase of M7C3). Despite the formation of several kinds of carbides and borides during homogenization at 1473 K, the lowest hardness level was found to be less than that of the as-sprayed state, because of the liquid-state homogenization treatment without formation of lamellar structuring between austenite and Ni3Si.
Vapor deposition of molybdenum oxide using bis(ethylbenzene) molybdenum and water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, Tasha L.; Stair, Peter C., E-mail: pstair@u.northwestern.edu
2016-09-15
Three molybdenum precursors—bis(acetylacetonate) dioxomolybdenum, molybdenum isopropoxide, and bis(ethylbenzene) molybdenum—were tested for molybdenum oxide vapor deposition. Quartz crystal microbalance studies were performed to monitor growth. Molybdenum isopropoxide and bis(ethylbenzene) molybdenum achieved linear growth rates 0.01 and 0.08 Å/cycle, respectively, using atomic layer deposition techniques. Negligible MoO{sub x} growth was observed on alumina powder using molybdenum isopropoxide, as determined by inductively coupled plasma optical emission spectroscopy. Bis(ethylbenzene) molybdenum achieved loadings of 0.5, 1.1, and 1.9 Mo/nm{sup 2} on alumina powder after one, two, and five cycles, respectively, using atomic layer deposition techniques. The growth window for bis(ethylbenzene) molybdenum is 135–150 °C. An alternative pulsingmore » strategy was also developed for bis(ethylbenzene) molybdenum that results in higher growth rates in less time compared to atomic layer deposition techniques. The outlined process serves as a methodology for depositing molybdenum oxide for catalytic applications. All as-deposited materials undergo further calcination prior to characterization and testing.« less
Determination of small amounts of molybdenum in tungsten and molybdenum ores
Grimaldi, F.S.; Wells, R.C.
1943-01-01
A rapid method has been developed for the determination of small amounts of molybdenum in tungsten and molybdenum ores. After removing iron and other major constituents the molybdenum thiocyanate color is developed in water-acetone solutions, using ammonium citrate to eliminate the interference of tungsten. Comparison is made by titrating a blank with a standard molybdenum solution. Aliquots are adjusted to deal with amounts of molybdenum ranging from 0.01 to 1.30 mg.
NASA research on refractory compounds.
NASA Technical Reports Server (NTRS)
Gangler, J. J.
1971-01-01
The behavior and properties of the refractory carbides, nitrides, and borides are being investigated by NASA as part of its research aimed at developing superior heat resistant materials for aerospace applications. Studies of the zirconium-carbon-oxygen system show that zirconium oxycarbides of different compositions and lattice parameters can be formed between 1500 C and 1900 C and are stable below 1500 C. More applied studies show that hot working generally improves the microstructure and therefore the strength of TiC and NbC. Sintering studies on UN indicate that very high densities can be achieved. Hot pressing of cermets of HfN and HfC produces good mechanical properties for high temperature bearing applications. Attempts to improve the impact resistance of boride composites by the addition of a nickel or carbon yarn were not overly successful.
Ceramic fibers from Si-B-C polymer precursors
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Hsu, M. S.; Chen, T. S.
1993-01-01
Non-oxide ceramics such as silicon carbide (SiC), silicon nitride (Si3N4), and silicon borides (SiB4, SiB6) have thermal stability, oxidation resistance, hardness, and varied electrical properties. All these materials can be prepared in a fiber form from a suitable polymer precursor. The above mentioned fibers, when tested over a temperature range from 25 to 1400 C, experience degradation at elevated temperatures. Past work in ceramic materials has shown that the strength of ceramics containing both carbides and borides is sustained at elevated temperatures, with minimum oxidation. The work presented here describes the formation of ceramic fibers containing both elements, boron and silicon, prepared via the polymer precursor route previously reported by the authors, and discusses the fiber mechanical properties that are retained over the temperature range studied.
Design of Wear-Resistant Austenitic Steels for Selective Laser Melting
NASA Astrophysics Data System (ADS)
Lemke, J. N.; Casati, R.; Lecis, N.; Andrianopoli, C.; Varone, A.; Montanari, R.; Vedani, M.
2018-03-01
Type 316L stainless steel feedstock powder was modified by alloying with powders containing carbide/boride-forming elements to create improved wear-resistant austenitic alloys that can be readily processed by Selective Laser Melting. Fe-based alloys with high C, B, V, and Nb contents were thus produced, resulting in a microstructure that consisted of austenitic grains and a significant amount of hard carbides and borides. Heat treatments were performed to modify the carbide distribution and morphology. Optimal hard-phase spheroidization was achieved by annealing the proposed alloys at 1150 °C for 1 hour followed by water quenching. The total increase in hardness of samples containing 20 pct of C/B-rich alloy powder was of 82.7 pct while the wear resistance could be increased by a factor of 6.
Thermoinduced laser-assisted deposition of molybdenum from aqueous solutions
NASA Astrophysics Data System (ADS)
Kochemirovsky, Vladimir V.; Logunov, Lev S.; Zhigley, Elvira S.; Baranauskaite, Valeriia
2015-05-01
Local molybdenum deposit obtainment is promising for micro thermocouples creation on dielectric surfaces. This paper is dedicated to development of method of laser-induced molybdenum deposition from water-based solution of inorganic salt on Sitall st-50 and glass dielectric substrates, as well as research of solution composition, pH and substrate optical properties influence on result of laser-induced molybdenum deposition from solution. It was shown that depending on dielectric substrate type, as a result of laser-induced deposition metallic molybdenum or molybdenum dioxide deposit forms: molybdenum dioxide deposits in case of optically clear substrate and metallic molybdenum deposits in case of opaque glass-ceramics. While modelling interim case via using clouded glass, mixture of molybdenum and its oxide was successfully obtained.
Electronic Structure Properties and a Bonding Model of Thermoelectric Half-Heusler and Boride Phases
NASA Astrophysics Data System (ADS)
Simonson, Jack William
Half-Heusler alloys MNiSn and MCoSb (M = Ti, Zr, Hf) and layered boride intermetallics with structure types YCrB4 and Er 3CrB7 were designed, synthesized, and characterized. The thermoelectric properties of these two classes of alloys were measured from room temperature to 1100 K with the intent of indirectly studying their electronic structure properties and gauging not only their suitability but that of related alloys for high temperature thermoelectric power generation. In the case of the half-Heusler alloys, transition metals were substituted to both the M and Ni/Co sites to study the resultant modifications of the d-orbital-rich portion of the electronic structure near the Fermi energy. This modification and subsequent pinning of the Fermi energy within the gap is discussed herein in terms of first principles electronic structure calculations from the literature. In the half-Heusler alloys, it was found that substitution of transition metals invariably led to a decrease in the thermopower, while the resistivity typically maintained its semiconducting trend. On the other hand, Sn doping in MCoSb type alloys -- a dopant that has been known for some time to be efficient -- was shown to result in high ZT at temperatures in excess of 1000 K. Moreover, the band gaps of the transition metal-doped alloys measured in this work offer insight into the discrepancy between the predicted and measured band gaps in the undoped parent compositions. In the case of the layered boride alloys, on the other hand, few electronic calculations have been published, thus prompting the generalization of a well-known electron counting rule -- which is typically used to study molecular organometallics, boranes, and metallocenes -- to predict the trends in the densities of states of crystalline solids that possess the requisite deltahedral bonding geometry. In accordance with these generalized electronic counting rules, alloys of the form RMB4 (R = Y, Gd, Ho; M = Cr, Mo, W) were measured to be n-type semiconductors with band gaps ranging from 0.15 eV to 0.25 eV. These alloys exhibited thermoelectric power factors comparable with those of other potential boride thermoelectric materials reported in the literature. Furthermore, as a result of the procedure developed for precision synthesis of boron-rich intermetallics and the improved understanding of bonding trends, layered borides of several previously overlooked structure-types were synthesized and screened for superconductivity. Consequently, alloys of the MoB4 phase were discovered to be superconducting when doped with Nb or Ti. Electrical resistivity measurements of superconducting transitions between 6 and 8 K in these materials were confirmed via magnetic susceptibility measurements and x-ray diffraction. Structural measurements indicated opposite trends in lattice modification than those reported for the superconducting transition metal diborides.
Storage and Bioavailability of Molybdenum in Soils Increased by Organic Matter Complexation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichard, T.; Mishra, B; Myneni, S
2009-01-01
The micronutrient molybdenum is a necessary component of the nitrogen-fixing enzyme nitrogenase1, 2. Molybdenum is very rare in soils, and is usually present in a highly soluble form, making it susceptible to leaching3, 4. However, it is generally thought that molybdenum attaches to mineral surfaces in acidic soils; this would prevent its escape into the groundwater, but would also impede uptake by microbes3. Here we use X-ray spectroscopy to examine the chemical speciation of molybdenum in soil samples from forests in Arizona and New Jersey. We show that in the leaf litter layer, most of the molybdenum forms strong complexesmore » with plant-derived tannins and tannin-like compounds; molybdenum binds to these organic ligands across a wide pH range. In deeper soils, molybdenum binds to both iron oxides and natural organic matter. We suggest that the molybdenum bound to organic matter can be captured by small complexing agents that are released by nitrogen-fixing bacteria; the molybdenum can then be incorporated into nitrogenase. We conclude that the binding of molybdenum to natural organic matter helps prevent leaching of molybdenum, and is thus a critical step in securing new nitrogen in terrestrial ecosystems.« less
NEUTRONIC REACTOR FUEL COMPOSITION
Thurber, W.C.
1961-01-10
Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.
Molybdenum, molybdenum oxides, and their electrochemistry.
Saji, Viswanathan S; Lee, Chi-Woo
2012-07-01
The electrochemical behaviors of molybdenum and its oxides, both in bulk and thin film dimensions, are critical because of their widespread applications in steels, electrocatalysts, electrochromic materials, batteries, sensors, and solar cells. An important area of current interest is electrodeposited CIGS-based solar cells where a molybdenum/glass electrode forms the back contact. Surprisingly, the basic electrochemistry of molybdenum and its oxides has not been reviewed with due attention. In this Review, we assess the scattered information. The potential and pH dependent active, passive, and transpassive behaviors of molybdenum in aqueous media are explained. The major surface oxide species observed, reversible redox transitions of the surface oxides, pseudocapacitance and catalytic reduction are discussed along with carefully conducted experimental results on a typical molybdenum glass back contact employed in CIGS-based solar cells. The applications of molybdenum oxides and the electrodeposition of molybdenum are briefly reviewed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anomalous stress response of ultrahard WB n compounds
Li, Quan; Zhou, Dan; Zheng, Weitao; ...
2015-10-29
Boron-rich tungsten borides are premier prototypes of a new class of ultrahard compounds. Here, we show by first-principles calculations that their stress-strain relations display surprisingly diverse and anomalous behavior under a variety of loading conditions. Most remarkable is the dramatically changing bonding configurations and deformation modes with rising boron concentration in WB n (n=2, 3, 4), resulting in significantly different stress responses and unexpected indentation strength variations. This novel phenomenon stems from the peculiar structural arrangements in tungsten borides driven by boron’s ability to form unusually versatile bonding states. Our results elucidate the intriguing deformation mechanisms that define a distinctmore » type of ultrahard material. Here, these new insights underscore the need to explore unconventional structure-property relations in a broad range of transition-metal light-element compounds.« less
NASA Astrophysics Data System (ADS)
Touzani, Rachid St.; Fokwa, Boniface P. T.
2014-03-01
The Nb2FeB2 phase (U3Si2-type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb2OsB2 (space group P4/mnc, no. 128, a twofold superstructure of U3Si2-type) with distorted Nb-layers and Os2-dumbbells was recently achieved, "Nb2RuB2" is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb2FeB2 and Nb2OsB2, but also predict "Nb2RuB2" to crystalize with the Nb2OsB2 structure type. According to chemical bonding analysis, the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic M-B, B-Nb and M-Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb2FeB2, originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them.
Specific features of thermal and magnetic properties of Yb B50 at low temperatures
NASA Astrophysics Data System (ADS)
Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.; Mitroshenkov, N. V.; Popova, E. A.; Tolstosheev, A. K.; Malkin, B. Z.; Bud'ko, S. L.
2018-05-01
Heat capacity, thermal expansion, and magnetization of ytterbium boride Yb B50 were studied at temperatures 0.6-300 K, 5-300 K, and 2-300 K, respectively. We revealed two smooth peaks at about 4.0 and 60 K in the temperature dependence of the heat capacity. A comparison with the heat capacity of the diamagnetic isostructural boride Lu B50 shows that these anomalies can be attributed to excitations in the ytterbium sublattice (Schottky anomalies). A scheme for splitting of the ground
Fusion welding of a modern borated stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robino, C.V.; Cieslak, M.J.
1997-01-01
Experiments designed to assess the fabrication and service weldability of 304B4A borated stainless steel were conducted. Welding procedures and parameters for manual gas tungsten arc (GTA) welding, autogenous electron beam (EB) welding and filler-added EB welding were developed and found to be similar to those for austenitic stainless steels. Following the procedure development, four test welds were produced and evaluated by microstructural analysis and Charpy impact testing. Further samples were used for determination of the postweld heat treatment (PWHT) response of the welds. The fusion zone structure of welds in this alloy consists of primary austenite dendrites with an interdendriticmore » eutectic-like austenite/boride constituent. Welds also show an appreciable partially molten zone that consists of the austenite/boride eutectic surrounding unmelted austenite islands. The microstructure of the EB welds was substantially finer than that of the GTA welds, and boride coarsening was not observed in the solid state heat-affected zone (HAZ) of either weld type. The impact toughness of as-welded samples was found to be relatively poor, averaging less than 10 J for both GTA and EB welds. For fusion zone notched GTA and EB samples and centerline notched EB samples, fracture generally occurred along the boundary between the partially molten and solid-state regions of the HAZ. The results of the PWHT study were very encouraging, with typical values of the impact energy for HAZ notched samples approaching 40 J, or twice the minimum code-acceptable value.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongfen, E-mail: wanghongfen11@163.com; Wang, Zhiqi; Chen, Shougang
Molybdenum carbides with surfactants as carbon sources were prepared using the carbothermal reduction of the appropriate precursors (molybdenum oxides deposited on surfactant micelles) at 1023 K under hydrogen gas. The carburized products were characterized using scanning electron microscopy (SEM), X-ray diffraction and BET surface area measurements. From the SEM images, hollow microspherical and rod-like molybdenum carbides were observed. X-ray diffraction patterns showed that the annealing time of carburization had a large effect on the conversion of molybdenum oxides to molybdenum carbides. And BET surface area measurements indicated that the difference of carbon sources brought a big difference in specific surfacemore » areas of molybdenum carbides. - Graphical abstract: Molybdenum carbides having hollow microspherical and hollow rod-like morphologies that are different from the conventional monodipersed platelet-like morphologies. Highlights: Black-Right-Pointing-Pointer Molybdenum carbides were prepared using surfactants as carbon sources. Black-Right-Pointing-Pointer The kinds of surfactants affected the morphologies of molybdenum carbides. Black-Right-Pointing-Pointer The time of heat preservation at 1023 K affected the carburization process. Black-Right-Pointing-Pointer Molybdenum carbides with hollow structures had larger specific surface areas.« less
The Development of Molybdenum Speciation as a Paleoredox Tool
NASA Astrophysics Data System (ADS)
Rodley, J.; Peacock, C.; Mosselmans, J. F. W.; Poulton, S.
2017-12-01
The redox state of the oceans has changed throughout geological time and an understanding of these changes is essential to elucidate links between ocean chemistry, climate and life. Due to its abundance in seawater and redox-sensitive nature, molybdenum has enormous potential as a paleoredox proxy. Although a significant amount of research has been done on molybdenum in ancient and modern sediments in terms of its concentrations and isotopic ratios there remains a limited understanding of the drawdown mechanisms of molybdenum under different redox conditions restricting its use in identifying a range of redox states. In order to address these uncertainties, we have developed a novel sequential extraction technique to examine molybdenum concentrations in six sediment fractions from modern samples that represent oxic, nitrogenous, ferruginous and euxinic environments. In addition we use µ-XRF and µ-XANES synchrotron spectroscopy to examine the molybdenum speciation within these fractions and environments. To interpret our µ-XANES data we have developed an extensive library of molybdenum XANES standards that represent molybdenum sequestration by the sediment fractions identified from the sequential extraction. To further verify our synchrotron results we developed a series of µ-XANES micro-column experiments to examine preferential uptake pathways of molybdenum to different sediment phases under a euxinic water column. The initial data from both the sequential extraction and µ-XANES methods indicate that molybdenum is not limited to a single burial pathway in any of the redox environments. We find that each of the redox environments can be characterised by a limited set of molybdenum phase associations, with molybdenum adsorption to pyrite likely the dominant burial pathway. These findings agree with existing research for molybdenum speciation in euxinic environments suggesting that both pyrite and sulphidised organic matter act as important molybdenum sinks. Our new research shows that pyrite is also an important sink for molybdenum in other redox environments.
Molybdenum Trafficking for Nitrogen Fixation†
Hernandez, Jose A.; George, Simon J.; Rubio, Luis M.
2009-01-01
The molybdenum nitrogenase is responsible for most biological nitrogen fixation, a prokaryotic metabolic process that determines the global biogeochemical cycles of nitrogen and carbon. Here we describe the trafficking of molybdenum for nitrogen fixation in the model diazotrophic bacterium Azotobacter vinelandii. The genes and proteins involved in molybdenum uptake, homeostasis, storage, regulation, and nitrogenase cofactor biosynthesis are reviewed. Molybdenum biochemistry in A. vinelandii reveals unexpected mechanisms and a new role for iron-sulfur clusters in the sequestration and delivery of molybdenum. PMID:19772354
Mineral resource of the month: molybdenum
Polyak, Désire E.
2011-01-01
The article offers information about the mineral molybdenum. Sources includes byproduct or coproduct copper-molybdenum deposits in the Western Cordillera of North and South America. Among the uses of molybdenum are stainless steel applications, as an alloy material for manufacturing vessels and as lubricants, pigments or chemicals. Also noted is the role played by molybdenum in renewable energy technology.
Genetics Home Reference: molybdenum cofactor deficiency
... called molybdenum cofactor. Molybdenum cofactor, which contains the element molybdenum, is essential to the function of several ... Citation on PubMed or Free article on PubMed Central Reiss J, Gross-Hardt S, Christensen E, Schmidt P, ...
The physical and mechanical metallurgy of advanced O+BCC titanium alloys
NASA Astrophysics Data System (ADS)
Cowen, Christopher John
This thesis comprises a systematic study of the microstructural evolution, phase transformation behavior, elevated-temperature creep behavior, room-temperature and elevated-temperature tensile behavior, and room-temperature fatigue behavior of advanced titanium-aluminum-niobium (Ti-Al-Nb) alloys with and without boron additions. The specific alloys studied were: Ti-5A1-45Nb (at%), Ti-15Al-33Nb (at%), Ti-15Al-33Nb-0.5B (at%), Ti-15Al-33Nb-5B (at%), Ti-21Al-29Nb (at%), Ti-22Al-26Nb (at%), and Ti-22Al-26Nb-5B (at%). The only alloy composition that had been previously studied before this thesis work began was Ti-22Al-26Nb (at%). Publication in peer-reviewed material science journals of the work performed in this thesis has made data available in the scientific literature that was previously non-existent. The knowledge gap for Ti-Al-Nb phase equilibria over the compositional range of Ti-23Al-27Nb (at%) to Ti-12Al-38Nb (at%) that existed before this work began was successfully filled. The addition of 5 at% boron to the Ti-15Al-33Nb alloy produced 5-9 volume percent boride phase needles within the microstructure. The chemical composition of the boride phase measured by electron microprobe was determined to be approximately B 2TiNb. The lattice parameters of the boride phase were simulated through density functional theory calculations by collaborators at the Air Force Research Laboratory based on the measured composition. Using the simulated lattice parameters, electron backscatter diffraction kikuchi patterns and selected area electron diffraction patterns obtained from the boride phase were successfully indexed according to the space group and site occupancies of the B27 orthorhombic crystal structure. This suggests that half the Ti (c) Wyckoff positions are occupied by Ti atoms and the other half are occupied by Nb atoms in the boride phase lattice. Creep deformation behavior is the main focus of this thesis and in particular understanding the dominant creep deformation mechanisms as a function of stress, temperature, and strain rate. Microstructure-creep relationships for Ti-Al-Nb-xB alloys were developed with the understanding gained. A rule-of-mixtures empirical model based on constituent phase volume fractions and strain rates was developed to predict the minimum creep rates of two-phase O+BCC microstructures. The most innovative results of this thesis were produced through the development of an in-situ creep testing methodology. The creep deformation evolution was chronicled in-situ during high temperature creep experiments, while creep displacement versus time data was simultaneously obtained. The in-situ experiments revealed that prior-BCC grain boundaries were the locus of damage accumulation during creep deformation. A methodology that allows in-situ observation of surface creep deformation as a function of creep displacement has yet to be presented in the literature.
Rocha, Angela S; da Silva, Victor Teixeira; Eon, Jean G; de Menezes, Sônia M C; Faro, Arnaldo C; Rocha, Alexandre B
2006-08-17
Carburized molybdenum catalysts supported on a dealuminated NaH-Y zeolite were prepared by carburization under a 20% methane in hydrogen flow of two precursors obtained by adsorption of molybdenum hexacarbonyl, one containing 5 wt % and the other 10 wt % Mo, and a third one was prepared by impregnation with aqueous ammonium heptamolybdate, containing 5 wt % Mo. The three catalysts displayed very distinct behaviors in the benzene hydrogenation reaction at atmospheric pressure and 363 K. By using XANES spectroscopy at the molybdenum L edge, EXAFS and XANES spectroscopy at the molybdenum K edge, and 27Al solid-state NMR spectroscopy, it was shown that different carburized molybdenum species exist in each sample. In the catalyst containing 10 wt % Mo, formation of molybdenum carbide nanoparticles was observed, with an estimated diameter of 1.8 nm. In the catalyst containing 5 wt % Mo and prepared by carburization of adsorbed molybdenum hexacarbonyl, formation of molybdenum oxycarbide dimers is proposed. In the latter case, density functional theory calculations have led to a dimer structure which is compatible with EXAFS results. In the catalyst prepared by impregnation with ammonium heptamolybdate solution followed by carburization, the molybdenum seems to interact with extraframework alumina to produce highly disordered mixed molybdenum-aluminum oxycarbides.
Gel Fabrication of Molybdenum “Beads”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowden, Richard Andrew; Armstrong, Beth L.; Cooley, Kevin M.
2016-11-01
Spherical molybdenum particles or “beads” of various diameters are of interest as feedstock materials for the additive manufacture of targets and assemblies used in the production of 99Mo medical isotopes using accelerator technology. Small metallic beads or ball bearings are typically fabricated from wire; however, small molybdenum spheres cannot readily be produced in this manner. Sol-gel processes are often employed to produce small dense microspheres of metal oxides across a broad diameter range that in the case of molybdenum could be reduced and sintered to produce metallic spheres. These Sol-gel type processes were examined for forming molybdenum oxide beads; however,more » the molybdenum trioxide was chemically incompatible with commonly used gelation materials. As an alternative, an aqueous alginate process being assessed for the fabrication of oxide spheres for catalyst applications was employed to form molybdenum trioxide beads that were successfully reduced and sintered to produce small molybdenum spheres.« less
Magnetism and structural chemistry of ternary borides RE2MB 6 ( RE = rare earth, M = Ru, Os)
NASA Astrophysics Data System (ADS)
Hiebl, K.; Rogl, P.; Nowotny, H.
1984-10-01
The magnetic behavior of the ternary borides RE2RuB 6 and RE2OsB 6 ( RE = Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) was studied in the temperature range 1.5 K < T < 1100 K. All compounds crystallize with the Y 2ReB 6-type structure and are characterized by direct RE- RE contacts and the formation of planar infinite two-dimensional rigid boron nets. The magnetic properties reveal a typical Van Vleck paramagnetism of free RE3+-ions at temperatures higher than 200 K with ferromagnetic interaction in the low-temperature range T < 55 K. The ferromagnetic ordering temperatures vary with the De Gennes factor. There is no indication for a magnetic contribution from the Ru(Os)-sublattice. Above 1.8 K none of the samples were found to be superconducting.
NASA Astrophysics Data System (ADS)
Liang, Yongcheng; Zhao, Jianzhi; Zhang, Bin
2008-06-01
The stabilities, mechanical properties and electronic structures of osmium boride (OsB), carbide (OsC) and nitride (OsN), in the tungsten carbide (WC), rocksalt (NaCl), cesium chloride (CsCl) and zinc blende (ZnS) structures respectively, are systematically predicted by calculations from first-principles. Only four phases, namely, OsB(WC), OsB(CsCl), OsC(WC), and OsC(ZnS), are mechanically stable, and none is a superhard compound, contrary to previous speculation. Most importantly, we find that the changing trends of bulk modulus and shear modulus are completely different for OsB, OsC and OsN in same hexagonal WC structure, which indicates that the underlying sources of hardness and incompressibility are fundamentally different: the former is determined by bonding nature while the latter is closely associated with valence electron density.
NASA Astrophysics Data System (ADS)
Zhu, W.; Cave, J.
2006-03-01
The enhancement of flux line pinning in magnesium boride wires is a critical issue for their future applications in devices and machines. It is well known that small size dopants can significantly influence the current densities of these materials. Here, the influence of nanometric (<30nm) silicon nitride on physical properties and current density is presented. The iron-sheathed powder in tube wires were prepared using pure magnesium and boron powders with silicon nitride additions. The wires were rolled flat and treated at up to 900 degrees C in flowing argon. SEM and XRD were used to identify phases and microstructures. Magnetization critical currents, up to several 100 of thousands A/cm2, at various temperatures and fields (5K - 20K and up to 3 tesla) show that there are competing mechanisms from chemical and flux pinning effects.
Magnetic and magnetothermal studies of iron boride (FeB) nanoparticles
NASA Astrophysics Data System (ADS)
Hamayun, M. Asif; Abramchuk, Mykola; Alnasir, Hisham; Khan, Mohsin; Pak, Chongin; Lenhert, Steven; Ghazanfari, Lida; Shatruk, Michael; Manzoor, Sadia
2018-04-01
We report magnetic and magnetothermal properties of iron boride (FeB) nanoparticles prepared by surfactant-assisted ball milling of arc-melted bulk ingots of this binary alloy. Size-dependent magnetic properties were used to identify the transition to the single domain limit and calculate the anisotropy and exchange stiffness constants for this system. Extended milling is seen to produce coercivity enhancement and exchange bias of up to 270 Ôe at room temperature. The magnetothermal properties were investigated by measuring the response of single domain FeB nanoparticles to externally applied ac magnetic fields. All investigated particle sizes show a significant heating response, demonstrating their potential as candidates for magnetically induced hyperthermia. FeB nanoparticles were encapsulated into lipophilic domains of liposomes as evidenced by TEM. Exposure of HeLa cells to these liposomes did not affect cell viability, suggesting the biocompatibility of these new magnetic nanomaterials.
Identification of delamination failure of boride layer on common Cr-based steels
NASA Astrophysics Data System (ADS)
Taktak, Sukru; Tasgetiren, Suleyman
2006-10-01
Adhesion is an important aspect in the reliability of coated components. With low-adhesion of interfaces, different crack paths may develop depending on the local stress field at the interface and the fracture toughness of the coating, substrate, and interface. In the current study, an attempt has been made to identify the delamination failure of coated Cr-based steels by boronizing. For this reason, two commonly used steels (AISI H13, AISI 304) are considered. The steels contain 5.3 and 18.3 wt.% Cr, respectively. Boriding treatment is carried out in a slurry salt bath consisting of borax, boric acid, and ferrosilicon at a temperature range of 800 950 °C for 3, 5, and 7 h. The general properties of the boron coating are obtained by mechanical and metallographic characterization tests. For identification of coating layer failure, some fracture toughness tests and the Daimler-Benz Rockwell-C adhesion test are used.
Alloy hardening and softening in binary molybdenum alloys as related to electron concentration
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1972-01-01
An investigation was conducted to determine the effects of alloy additions of hafnium, tantalum, tungsten, rhenium, osmium, iridium, and platinum on hardness of molybdenum. Special emphasis was placed on alloy softening in these binary molybdenum alloys. Results showed that alloy softening was produced by those elements having an excess of s+d electrons compared to molybdenum, while those elements having an equal number or fewer s+d electrons that molybdenum failed to produce alloy softening. Alloy softening and alloy hardening can be correlated with the difference in number of s+d electrons of the solute element and molybdenum.
Effect of Discharge Time on Plasma Electrolytic Borocarbonitriding of Pure Iron
NASA Astrophysics Data System (ADS)
Jin, Xiaoyue; Wu, Jie; Wang, Bin; Yang, Xuan; Chen, Lin; Qu, Yao; Xue, Wenbin
The plasma electrolytic borocarbonitriding (PEB/C/N) process on pure iron was carried out in 25% borax solution with glycerine and carbamide additives under different discharge time at 360V. The morphology and structure of PEB/C/N hardened layers were analyzed by SEM and XRD. The hardness profiles of hardened layers were measured by microhardness test. Corrosion behavior of PEB/C/N layers was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Their wear performance was carried out using a pin-disc friction and wear tester under dry sliding test. The PEB/C/N samples mainly consisted of α-Fe, Fe2B, Fe3C, FeN, FeB, Fe2O3 and Fe4N phases, and the Fe2B phase was the dominant phase in the boride layer. It was found that the thickness of boride layer increased with the discharge time and reached 14μm after 60min treatment. The microhardness of the boride layer was up to 2100HV, which was much higher than that of the bare pure iron (about 150HV). After PEB/C/N treatment, the corrosion resistance of pure iron was slightly improved. The friction coefficient of PEB/C/N treated pure iron decreased to 0.129 from 0.556 of pure iron substrate. The wear rate of the PEB/C/N layer after 60min under dry sliding against ZrO2 ball was only 1/10 of that of the bare pure iron. The PEB/C/N treatment is an effective way to improve the wear behavior of pure iron.
Cai, Weitong; Yang, Yuanzheng; Tao, Pingjun; Ouyang, Liuzhang; Wang, Hui
2018-04-03
Nanosized metal borides MBx (M = Mg, Ti, Fe, Si) are found to play an important role in enhancing the hydrogen storage performance of LiBH4 in this work. The hydrogen storage behavior and mechanism of these modified systems are investigated through TPD-MS, XRD, FTIR and SEM characterization methods. By introducing these metal borides into LiBH4 through ball milling, the systems display three dehydrogenation stages disclosing their similarity and distinction. The 1st stage starts at 190 °C, the 2nd stage ranges from 280 °C to 400 °C and the 3rd stage ends at 550 °C with a peak at round 440 °C similar to that of pristine LiBH4. Distinguishing features exist at the 2nd stage revealing the effectiveness of MBx in an order of MgB2 < TiB2 < FeB < SiB4. Significantly, reversibility up to 9.7 wt% is achieved from LiBH4 with assistance of SiB4. The catalytic effect of MBx is influenced by the Pauling electronegativity of M in MBx and the interfacial contact characteristic between LiBH4 and MBx. The larger electronegativity leads to an enhanced catalytic effect and consequently lower temperature at the major stage. In contrast to the components in the solid state, the molten LiBH4 promotes a catalytic effect due to a superior interfacial contact. These results provide an insight into designing high-performance catalysts applied to LiBH4 as a hydrogen storage material.
Boron-Based Hydrogen Storage: Ternary Borides and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vajo, John J.
DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit
Solid solutions of HfB 2-ZrB 2 mixtures were prepared by high-energy ball milling of diboride and additive powders followed by spark plasma sintering (SPS). A mixture of stoichiometric 1:1 HfB 2-ZrB 2 borides was the base composition to which Hf, Zr, Ta, LaB 6 or Gd 2O 3 was added. Hf, Zr and Ta were added in order to bring the boron-to-metal ratio down to 1.86, rendering the boride as MeB 1.86. In the case of LaB 6 and Gd 2O 3, 1.8 mol% was added. Electroanalytical behavior of hydrogen evolution reactions was evaluated in 1 M H 2SO 4more » and 1 M NaOH solutions. The LaB 6 additive material showed Tafel slopes of 125 and 90 mV/decade in acidic and alkaline solutions respectively. The Hf and Zr rich samples showed Tafel slopes of about 120 mV/decade in both electrolytes. The over potentials of hydrogen evolution reactions (at 10 mA/cm 2) in the alkaline solution were about 100 mV lower than those in acidic solution. The metal-rich diborides and addition of LaB 6 showed better hydrogen evolution reaction (HER) activities than the base 1:1 HfB 2-ZrB 2 stoichiometric diboride solid solution. Furthermore, the higher activity of metal-rich borides could be attributed to the increased electron population at the d-orbitals of the metal shown by band structure modeling calculations using the Density Functional Theory approach.« less
Li, Jian; Levi, Dean; Contreras, Miguel; Glynn, Stephen
2015-09-15
A method of fabricating a photovoltaic device 100, includes the steps of providing a glass substrate 102, depositing a molybdenum layer 104 on a surface of the glass substrate, directing light through the glass substrate to the near-substrate region of the molybdenum layer 206, detecting an optical property of the near-substrate region of the molybdenum layer after interaction with the incident light 208 and determining a density of the near-substrate region of the molybdenum layer from the detected optical property 210. A molybdenum deposition parameter may be controlled based upon the determined density of the near-substrate region of the molybdenum layer 218. A non-contact method measures a density of the near-substrate region of a molybdenum layer and a deposition chamber 300.
Gordon, Roy G.; Kurtz, Sarah
1984-11-27
In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.
Molybdenum disilicide composites
Rodriguez, Robert P.; Petrovic, John J.
2001-01-01
Molybdenum disilicide/.beta.'-Si.sub.6-z Al.sub.z O.sub.z N.sub.8-z, wherein z=a number from greater than 0 to about 5, composites are made by use of in situ reactions among .alpha.-silicon nitride, molybdenum disilicide, and aluminum. Molybdenum disilicide within a molybdenum disilicide/.beta.'-Si.sub.6-z Al.sub.z O.sub.z N.sub.8-z eutectoid matrix is the resulting microstructure when the invention method is employed.
40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable to...
40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable to...
40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable to...
40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable to...
40 CFR 421.210 - Applicability: Description of the primary molybdenum and rhenium subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... primary molybdenum and rhenium subcategory. 421.210 Section 421.210 Protection of Environment... POINT SOURCE CATEGORY Primary Molybdenum and Rhenium Subcategory § 421.210 Applicability: Description of the primary molybdenum and rhenium subcategory. The provisions of this subpart are applicable to...
Performance Evaluation of Titanium Ion Optics for the NASA 30 cm Ion Thruster
NASA Technical Reports Server (NTRS)
Soulas, George C.
2001-01-01
The results of performance tests with titanium ion optics were presented and compared to those of molybdenum ion optics. Both titanium and molybdenum ion optics were initially operated until ion optics performance parameters achieved steady state values. Afterwards, performance characterizations were conducted. This permitted proper performance comparisons of titanium and molybdenum ion optics. Ion optics' performance A,as characterized over a broad thruster input power range of 0.5 to 3.0 kW. All performance parameters for titanium ion optics of achieved steady state values after processing 1200 gm of propellant. Molybdenum ion optics exhibited no burn-in. Impingement-limited total voltages for titanium ion optics where up to 55 V greater than those for molybdenum ion optics. Comparisons of electron backstreaming limits as a function of peak beam current density for molybdenum and titanium ion optics demonstrated that titanium ion optics operated with a higher electron backstreaming limit than molybdenum ion optics for a given peak beam current density. Screen grid ion transparencies for titanium ion optics were as much as 3.8 percent lower than those for molybdenum ion optics. Beam divergence half-angles that enclosed 95 percent of the total beam current for titanium ion optics were within 1 to 3 deg. of those for molybdenum ion optics. All beam divergence thrust correction factors for titanium ion optics were within 1 percent of those with molybdenum ion optics.
Spectrophotometric determination of molybdenum in rocks with thiocyanate
Lillie, E.G.; Greenland, L.P.
1974-01-01
A rapid procedure for the determination of microgram amounts of molybdenum in rocks is described. After acid decomposition, molybdenum is extracted from a hydrochloric acid solution into xylene with tributyl phosphate. After back-extraction with water, molybdenum is extracted as the ??-benzoinoximate into chloroform, stripped into hydrochloric acid extracted as the thiocyanate into amyl alcohol, and determined spectrophotometrically. The molybdenum thiocyanate color produced is stable, sensitive, and reproducible. Results of analyses of several of the U.S. Geological Survey standard rocks are given. ?? 1974.
Pre-treatment for molybdenum or molybdenum-rich alloy articles to be plated
Wright, Ralph R.
1980-01-01
This invention is a method for etching a molybdenum or molybdenum-rich alloy surface to promote the formation of an adherent bond with a subsequently deposited metallic plating. In a typical application, the method is used as a pre-treatment for surfaces to be electrolessly plated with nickel. The pre-treatment comprises exposing the crystal boundaries of the surface by (a) anodizing the surface in acidic solution to form a continuous film of gray molybdenum oxide thereon and (b) removing the film.
METHOD FOR FORMING A COATING OF MOLYBDENUM CARBIDE ON A CARBON BODY
Simnad, M.T.
1962-04-01
A method is described for coating a carbon bodywith molybdenum carbide in such a manner that the carbon body is rendered less permeable to the flow of gases and has increased resistance to corrosion and erosion. The method includes coating a carbon body with molybdenum trioxide by contacting it at a temperature below the condensation temperature with molybdenum trioxide vapors and thereafter carburizing the molybdenum trioxide in situ in an inert atmosphere on the carhon body. (AEC)
Blough, M M; Waggener, R G; Payne, W H; Terry, J A
1998-09-01
A model for calculating mammographic spectra independent of measured data and fitting parameters is presented. This model is based on first principles. Spectra were calculated using various target and filter combinations such as molybdenum/molybdenum, molybdenum/rhodium, rhodium/rhodium, and tungsten/aluminum. Once the spectra were calculated, attenuation curves were calculated and compared to measured attenuation curves. The attenuation curves were calculated and measured using aluminum alloy 1100 or high purity aluminum filtration. Percent differences were computed between the measured and calculated attenuation curves resulting in an average of 5.21% difference for tungsten/aluminum, 2.26% for molybdenum/molybdenum, 3.35% for rhodium/rhodium, and 3.18% for molybdenum/rhodium. Calculated spectra were also compared to measured spectra from the Food and Drug Administration [Fewell and Shuping, Handbook of Mammographic X-ray Spectra (U.S. Government Printing Office, Washington, D.C., 1979)] and a comparison will also be presented.
Hernandez, Jose A.; Curatti, Leonardo; Aznar, Constantino P.; Perova, Zinaida; Britt, R. David; Rubio, Luis M.
2008-01-01
The molybdenum nitrogenase, present in a diverse group of bacteria and archea, is the major contributor to biological nitrogen fixation. The nitrogenase active site contains an iron–molybdenum cofactor (FeMo-co) composed of 7Fe, 9S, 1Mo, one unidentified light atom, and homocitrate. The nifQ gene was known to be involved in the incorporation of molybdenum into nitrogenase. Here we show direct biochemical evidence for the role of NifQ in FeMo-co biosynthesis. As-isolated NifQ was found to carry a molybdenum–iron–sulfur cluster that serves as a specific molybdenum donor for FeMo-co biosynthesis. Purified NifQ supported in vitro FeMo-co synthesis in the absence of an additional molybdenum source. The mobilization of molybdenum from NifQ required the simultaneous participation of NifH and NifEN in the in vitro FeMo-co synthesis assay, suggesting that NifQ would be the physiological molybdenum donor to a hypothetical NifEN/NifH complex. PMID:18697927
Improvement of wear resistance of plasma-sprayed molybdenum blend coatings
NASA Astrophysics Data System (ADS)
Ahn, Jeehoon; Hwang, Byoungchul; Lee, Sunghak
2005-06-01
The wear resistance of plasma sprayed molybdenum blend coatings applicable to synchronizer rings or piston rings was investigated in this study. Four spray powders, one of which was pure molybdenum and the others blended powders of bronze and aluminum-silicon alloy powders mixed with molybdenum powders, were sprayed on a low-carbon steel substrate by atmospheric plasma spraying. Microstructural analysis of the coatings showed that the phases formed during spraying were relatively homogeneously distributed in the molybdenum matrix. The wear test results revealed that the wear rate of all the coatings increased with increasing wear load and that the blended coatings exhibited better wear resistance than the pure molybdenum coating, although the hardness was lower. In the pure molybdenum coatings, splats were readily fractured, or cracks were initiated between splats under high wear loads, thereby leading to the decrease in wear resistance. On the other hand, the molybdenum coating blended with bronze and aluminum-silicon alloy powders exhibited excellent wear resistance because hard phases such as CuAl2 and Cu9Al4 formed inside the coating.
Spheroidization of molybdenum powder by radio frequency thermal plasma
NASA Astrophysics Data System (ADS)
Liu, Xiao-ping; Wang, Kuai-she; Hu, Ping; Chen, Qiang; Volinsky, Alex A.
2015-11-01
To control the morphology and particle size of dense spherical molybdenum powder prepared by radio frequency (RF) plasma from irregular molybdenum powder as a precursor, plasma process parameters were optimized in this paper. The effects of the carrier gas flow rate and molybdenum powder feeding rate on the shape and size of the final products were studied. The molybdenum powder morphology was examined using high-resolution scanning electron microscopy. The powder phases were analyzed by X-ray diffraction. The tap density and apparent density of the molybdenum powder were investigated using a Hall flow meter and a Scott volumeter. The optimal process parameters for the spherical molybdenum powder preparation are 50 g/min powder feeding rate and 0.6 m3/h carrier gas rate. In addition, pure spherical molybdenum powder can be obtained from irregular powder, and the tap density is enhanced after plasma processing. The average size is reduced from 72 to 62 µm, and the tap density is increased from 2.7 to 6.2 g/cm3. Therefore, RF plasma is a promising method for the preparation of high-density and high-purity spherical powders.
Method of producing molybdenum-99
Pitcher, Eric John
2013-05-28
Method of producing molybdenum-99, comprising accelerating ions by means of an accelerator; directing the ions onto a metal target so as to generate neutrons having an energy of greater than 10 MeV; directing the neutrons through a converter material comprising techentium-99 to produce a mixture comprising molybdenum-99; and, chemically extracting the molybdenum-99 from the mixture.
Precipitation of molybdenum(V) as the hydroxide and its separation from rhenium.
Yatirajam, V; Ahuja, U; Kakkar, L R
1975-03-01
A study of the conditions for precipitation of molybdenum(V) hydroxide shows that for Mo concentration 1 mg ml about 97.5% of the Mo can be precipitated between pH 5 and 5.8. Lower concentrations of molybdenum(V) or molybdenum(VI) can be precipitated quantitatively by using 20 times the amount of zirconium as collector, at the same pH. On this basis, a simple method is given for quantitative separation of rhenium from large amounts of molybdenum and is attested by analysis of synthetic and molybdenite samples.
Survey of Portions of the Chromium-Cobalt-Nickel-Molybdenum Quaternary System at 1,200 Degrees C
NASA Technical Reports Server (NTRS)
Rideout, Sheldon Paul; Beck, Paul A
1953-01-01
A survey was made of portions of the chromium-cobalt-nickel-molybdenum quaternary system at 1,200 degrees c by means of microscopic and x-ray diffraction studies. Since the face-centered cubic (alpha) solid solutions form the matrix of almost all practically useful high-temperature alloys, the solid solubility limits of the quaternary alpha phase were determined up to 20 percent molybdenum. The component cobalt-nickel-molybdenum, chromium-cobalt-molybdenum, and chromium-nickel-molybdenum ternary systems were also studied. The survey of these systems was confined to the determination of the boundaries of the face-centered cubic (alpha) solid solutions and of the phases coexisting with alpha at 1,200 degrees c.
Molybdenum Oxides - From Fundamentals to Functionality.
de Castro, Isabela Alves; Datta, Robi Shankar; Ou, Jian Zhen; Castellanos-Gomez, Andres; Sriram, Sharath; Daeneke, Torben; Kalantar-Zadeh, Kourosh
2017-10-01
The properties and applications of molybdenum oxides are reviewed in depth. Molybdenum is found in various oxide stoichiometries, which have been employed for different high-value research and commercial applications. The great chemical and physical characteristics of molybdenum oxides make them versatile and highly tunable for incorporation in optical, electronic, catalytic, bio, and energy systems. Variations in the oxidation states allow manipulation of the crystal structure, morphology, oxygen vacancies, and dopants, to control and engineer electronic states. Despite this overwhelming functionality and potential, a definitive resource on molybdenum oxide is still unavailable. The aim here is to provide such a resource, while presenting an insightful outlook into future prospective applications for molybdenum oxides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jinlong, Lv; Zhuqing, Wang; Tongxiang, Liang; Ken, Suzuki; Hideo, Miura
Surface molybdenum enrichment on 2205 duplex stainless steel was obtained by the ball milling technique. The electrochemical results showed molybdenum enrichment on the surface of 2205 duplex stainless steel improved its corrosion resistance in a typical proton exchange membrane fuel cell environment. This was mainly attributed to higher molybdenum content in the passive film formed on 2205 duplex stainless steel after ball milling. The decreased donor and acceptor concentrations improved significantly the corrosion resistance of surface molybdenum-enriched 2205 duplex stainless steel bipolar plates in the simulated cathodic proton exchange membrane fuel cells environment. In addition, the interfacial contact resistance of the 2205 duplex stainless steel bipolar plates slightly decreased due to surface molybdenum enrichment.
DFT investigations of hydrogen storage materials
NASA Astrophysics Data System (ADS)
Wang, Gang
Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation. Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of around 100 °C with proper catalyst. Sodium hydride is a product of the decomposition of NaAlH4 that may affect the dynamics of NaAlH4. The two materials with oxygen contamination such as OH- may influence the kinetics of the dehydriding/rehydriding processes. Thus the solid solubility of OH - groups (NaOH) in NaAlH4 and NaH is studied theoretically by DFT calculations. Magnesium boride [Mg(BH4)2] is has higher hydrogen capacity about 14.9 wt. % and the decomposition temparture of around 250 °C. However one flaw restraining its application is that some polyboron compounds like MgB12H12 preventing from further release of hydrogen. Adding some transition metals that form magnesium transition metal ternary borohydride [MgaTMb(BH4)c] may simply the decomposition process to release hydrogen with ternary borides (MgaTMbBc). The search for the probable ternary borides and the corresponding pseudo phase diagrams as well as the decomposition thermodynamics are performed using DFT calculations and GCLP method to present some possible candidates.
Metallic Borides, La 2 Re 3 B 7 and La 3 Re 2 B 5 , Featuring Extensive Boron–Boron Bonding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bugaris, Daniel E.; Malliakas, Christos D.; Chung, Duck Young
We synthesized La 2Re 3B 7 and La 3Re 2B 5 in single-crystalline form from a molten La/Ni eutectic at 1000°C, in the first example of the flux crystal growth of ternary rare-earth rhenium borides. Both compounds crystallize in their own orthorhombic structure types, with La 2Re 3B 7 (space group Pcca) having lattice parameters a = 7.657(2) Å, b = 6.755(1) Å, and c = 11.617(2) Å, and La 3Re 2B 5 (space group Pmma) having lattice parameters a = 10.809(2) Å, b = 5.287(1) Å, and c = 5.747(1) Å. Furthermore, the compounds possess three-dimensional framework structures thatmore » are built up from rhenium boride polyhedra and boron-boron bonding. La 3Re 2B 5 features fairly common B 2 dumbbells, whereas La 2Re 3B 7 has unique one-dimensional subunits composed of alternating triangular B3 and trans-B4 zigzag chain fragments. Also observed in La 3Re 2B 5 is an unusual coordination of B by an octahedron of La atoms. Electronic band structure calculations predict that La 2Re 3B 7 is a semimetal, which is observed in the electrical resistivity data as measured on single crystals, with behavior obeying the Bloch-Grüneisen model and a room-temperature resistivity ρ300K of ~ 375 μΩ cm. The electronic band structure calculations also suggest that La 3Re 2B 5 is a regular metal.« less
Metallic Borides, La 2 Re 3 B 7 and La 3 Re 2 B 5 , Featuring Extensive Boron–Boron Bonding
Bugaris, Daniel E.; Malliakas, Christos D.; Chung, Duck Young; ...
2016-01-26
We synthesized La 2Re 3B 7 and La 3Re 2B 5 in single-crystalline form from a molten La/Ni eutectic at 1000°C, in the first example of the flux crystal growth of ternary rare-earth rhenium borides. Both compounds crystallize in their own orthorhombic structure types, with La 2Re 3B 7 (space group Pcca) having lattice parameters a = 7.657(2) Å, b = 6.755(1) Å, and c = 11.617(2) Å, and La 3Re 2B 5 (space group Pmma) having lattice parameters a = 10.809(2) Å, b = 5.287(1) Å, and c = 5.747(1) Å. Furthermore, the compounds possess three-dimensional framework structures thatmore » are built up from rhenium boride polyhedra and boron-boron bonding. La 3Re 2B 5 features fairly common B 2 dumbbells, whereas La 2Re 3B 7 has unique one-dimensional subunits composed of alternating triangular B3 and trans-B4 zigzag chain fragments. Also observed in La 3Re 2B 5 is an unusual coordination of B by an octahedron of La atoms. Electronic band structure calculations predict that La 2Re 3B 7 is a semimetal, which is observed in the electrical resistivity data as measured on single crystals, with behavior obeying the Bloch-Grüneisen model and a room-temperature resistivity ρ300K of ~ 375 μΩ cm. The electronic band structure calculations also suggest that La 3Re 2B 5 is a regular metal.« less
Sitler, Steven J.; Raja, Krishnan S.; Charit, Indrajit
2016-09-23
Solid solutions of HfB 2-ZrB 2 mixtures were prepared by high-energy ball milling of diboride and additive powders followed by spark plasma sintering (SPS). A mixture of stoichiometric 1:1 HfB 2-ZrB 2 borides was the base composition to which Hf, Zr, Ta, LaB 6 or Gd 2O 3 was added. Hf, Zr and Ta were added in order to bring the boron-to-metal ratio down to 1.86, rendering the boride as MeB 1.86. In the case of LaB 6 and Gd 2O 3, 1.8 mol% was added. Electroanalytical behavior of hydrogen evolution reactions was evaluated in 1 M H 2SO 4more » and 1 M NaOH solutions. The LaB 6 additive material showed Tafel slopes of 125 and 90 mV/decade in acidic and alkaline solutions respectively. The Hf and Zr rich samples showed Tafel slopes of about 120 mV/decade in both electrolytes. The over potentials of hydrogen evolution reactions (at 10 mA/cm 2) in the alkaline solution were about 100 mV lower than those in acidic solution. The metal-rich diborides and addition of LaB 6 showed better hydrogen evolution reaction (HER) activities than the base 1:1 HfB 2-ZrB 2 stoichiometric diboride solid solution. Furthermore, the higher activity of metal-rich borides could be attributed to the increased electron population at the d-orbitals of the metal shown by band structure modeling calculations using the Density Functional Theory approach.« less
Thermal properties of zirconium diboride -- transition metal boride solid solutions
NASA Astrophysics Data System (ADS)
McClane, Devon Lee
This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.
Environmental Benign Process for Production of Molybdenum Metal from Sulphide Based Minerals
NASA Astrophysics Data System (ADS)
Rajput, Priyanka; Janakiram, Vangada; Jayasankar, Kalidoss; Angadi, Shivakumar; Bhoi, Bhagyadhar; Mukherjee, Partha Sarathi
2017-10-01
Molybdenum is a strategic and high temperature refractory metal which is not found in nature in free state, it is predominantly found in earth's crust in the form of MoO3/MoS2. The main disadvantage of the industrial treatment of Mo concentrate is that the process contains many stages and requires very high temperature. Almost in every step many gaseous, liquid, solid chemical substances are formed which require further treatment. To overcome the above drawback, a new alternative one step novel process is developed for the treatment of sulphide and trioxide molybdenum concentrates. This paper presents the results of the investigations on molybdenite dissociation (MoS2) using microwave assisted plasma unit as well as transferred arc thermal plasma torch. It is a single step process for the preparation of pure molybdenum metal from MoS2 by hydrogen reduction in thermal plasma. Process variable such as H2 gas, Ar gas, input current, voltage and time have been examined to prepare molybdenum metal. Molybdenum recovery of the order of 95% was achieved. The XRD results confirm the phases of molybdenum metal and the chemical analysis of the end product indicate the formation of metallic molybdenum (Mo 98%).
Niks, Dimitri; Duvvuru, Jayant; Escalona, Miguel; Hille, Russ
2016-01-01
We have examined the rapid reaction kinetics and spectroscopic properties of the molybdenum-containing, NAD+-dependent FdsABG formate dehydrogenase from Ralstonia eutropha. We confirm previous steady-state studies of the enzyme and extend its characterization to a rapid kinetic study of the reductive half-reaction (the reaction of formate with oxidized enzyme). We have also characterized the electron paramagnetic resonance signal of the molybdenum center in its MoV state and demonstrated the direct transfer of the substrate Cα hydrogen to the molybdenum center in the course of the reaction. Varying temperature, microwave power, and level of enzyme reduction, we are able to clearly identify the electron paramagnetic resonance signals for four of the iron/sulfur clusters of the enzyme and find suggestive evidence for two others; we observe a magnetic interaction between the molybdenum center and one of the iron/sulfur centers, permitting assignment of this signal to a specific iron/sulfur cluster in the enzyme. In light of recent advances in our understanding of the structure of the molybdenum center, we propose a reaction mechanism involving direct hydride transfer from formate to a molybdenum-sulfur group of the molybdenum center. PMID:26553877
NASA Astrophysics Data System (ADS)
Papynov, E. K.; Palamarchuk, M. S.; Mayorov, V. Yu; Modin, E. B.; Portnyagin, A. S.; Sokol'nitskaya, T. A.; Belov, A. A.; Tananaev, I. G.; Avramenko, V. A.
2017-07-01
Molybdenum compounds are industrially demanding as heterogeneous catalysts for oxidation of various organic substances. Highly porous structure of molybdenum-containing catalysts avoids surface's colmatation and prevents blocking catalytic sites that makes these materials play a key role in processes of hydrothermal oxidation of radionuclide organic complexes. The study presents an original way of sol-gel synthesis of new macroporous molybdenum compounds using ;core-shell; colloid template (polymer latex) as poreforming agent. We have described three individual routs of template removal via thermal decomposition to obtain porous materials based on molybdenum compounds. Thermal treatment conditions (temperature, gaseous atmosphere) have been studied with respect to their influence on composition, structure and catalytic properties of synthesized molybdenum systems. The optimal way to synthesis of crystal molybdenum (VI) oxide with ordered porous structure (mean pore size 100-160 nm) has been suggested. Catalytic properties of macroporous molybdenum materials have been investigated in the process of liquid phase and hydrothermal oxidation of such organic substances thiazine and stable Co-EDTA complex. It was shown that macroporous molybdenum oxides could be applied as prospective catalysts for hydrothermal oxidation of organic radionuclide complexes during the processing of radioactive waste.
Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels
NASA Astrophysics Data System (ADS)
Park, Seung Hwan C.; Sato, Yutaka S.; Kokawa, Hiroyuki; Okamoto, Kazutaka; Hirano, Satoshi; Inagaki, Masahisa
2009-03-01
The wear of polycrystalline cubic boron nitride (pcBN) tool and its effect on second phase formation were investigated in stainless steel friction-stir (FS) welds. The nitrogen content and the flow stress were analyzed in these welds to examine pcBN tool wear. The nitrogen content in stir zone (SZ) was found to be higher in the austenitic stainless steel FS welds than in the ferritic and duplex stainless steel welds. The flow stress of austenitic stainless steels was almost 1.5 times larger than that of ferritic and duplex stainless steels. These results suggest that the higher flow stress causes the severe tool wear in austenitic stainless steels, which results in greater nitrogen pickup in austenitic stainless steel FS welds. From the microstructural observation, a possibility was suggested that Cr-rich borides with a crystallographic structure of Cr2B and Cr5B3 formed through the reaction between the increased boron and nitrogen and the matrix during FS welding (FSW).
Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory
2003-09-23
Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.
Ultra High Temperature Ceramics' Processing Routes and Microstructures Compared
NASA Technical Reports Server (NTRS)
Gusman, Michael; Stackpoole, Mairead; Johnson, Sylvia; Gasch, Matt; Lau, Kai-Hung; Sanjurjo, Angel
2009-01-01
Ultra High Temperature Ceramics (UHTCs), such as HfB2 and ZrB2 composites containing SiC, are known to have good thermal shock resistance and high thermal conductivity at elevated temperatures. These UHTCs have been proposed for a number of structural applications in hypersonic vehicles, nozzles, and sharp leading edges. NASA Ames is working on controlling UHTC properties (especially, mechanical properties, thermal conductivity, and oxidation resistance) through processing, composition, and microstructure. In addition to using traditional methods of combining additives to boride powders, we are preparing UHTCs using coat ing powders to produce both borides and additives. These coatings and additions to the powders are used to manipulate and control grain-boundary composition and second- and third-phase variations within the UHTCs. Controlling the composition of high temperature oxidation by-products is also an important consideration. The powders are consolidated by hot-pressing or field-assisted sintering (FAS). Comparisons of microstructures and hardness data will be presented.
A superconducting battery material: Lithium gold boride (LiAu3B)
NASA Astrophysics Data System (ADS)
Aydin, Sezgin; Şimşek, Mehmet
2018-04-01
The superconducting and potential cathode material properties of ternary boride of LiAu3B have been investigated by density functional first principles. The Li-concentration effects on the actual electronic and structural properties, namely the properties of LixAu9B3 (x = 0, 1, 2) sub-systems are studied. It is remarkably shown that the existence of Li-atoms has no considerable effect on the structural properties of Au-B skeleton in LiAu3B. Then, it can be offered as a potential cathode material for Li-ion batteries with the very small volume deviation of 0.42%, and the suitable average open circuit voltage of ∼1.30 V. Furthermore, the vibrational and superconducting properties such as electron-phonon coupling constant (λ) and critical temperature (Tc) of LiAu3B are studied. The calculated results suggest that LiAu3B should be a superconductor with Tc ∼5.8 K, also.
Acidic ammonothermal growth of gallium nitride in a liner-free molybdenum alloy autoclave
NASA Astrophysics Data System (ADS)
Malkowski, Thomas F.; Pimputkar, Siddha; Speck, James S.; DenBaars, Steven P.; Nakamura, Shuji
2016-12-01
This paper discusses promising materials for use as internal, non-load bearing components as well as molybdenum-based alloys for autoclave structural components for an ammonothermal autoclave. An autoclave was constructed from the commercial titanium-zirconium-molybdenum (TZM) alloy and was found to be chemically inert and mechanically stable under acidic ammonothermal conditions. Preliminary seeded growth of GaN was demonstrated with negligible incorporation of transition metals (including molybdenum) into the grown material (<1017 cm-3). Molybdenum and TZM were exposed to a basic ammonothermal environment, leading to slight degradation through formation of molybdenum nitride powders on their surface at elevated temperatures (T>560 °C). The possibility of a 'universal', inexpensive, liner-free ammonothermal autoclave capable of exposure to basic and acidic chemistry is demonstrated.
Peterson, George R.
1976-01-01
Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of virtually graphite.
Wibbles, H.L.; Miller, E.I.
1958-01-14
This patent deals with the separation of uranium from molybdenum compounds, and in particular with their separation from ether solutions containing the molybdenum in the form of acids, such as silicomolybdic and phosphomolybdic acids. After the nitric acid leach of pitchblende, the molybdenum values present in the ore are found in the leach solution in the form of complex acids. The uranium bearing solution may be purified of this molybdenum content by comtacting it with activated charcoal. The purification is improved when the acidity of the solution is low ad agitation is also beneficial. The molybdenum may subsequently be recovered from the charcosl ad the charcoal reused.
40 CFR 421.216 - Pretreatment standards for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... exceed the following values: (a) Molybdenum sulfide leachate. PSNS for the Primary Molybdenum and Rhenium...) Molybdic oxide leachate. PSNS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant...
40 CFR 421.216 - Pretreatment standards for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... exceed the following values: (a) Molybdenum sulfide leachate. PSNS for the Primary Molybdenum and Rhenium...) Molybdic oxide leachate. PSNS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant...
40 CFR 421.216 - Pretreatment standards for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... exceed the following values: (a) Molybdenum sulfide leachate. PSNS for the Primary Molybdenum and Rhenium...) Molybdic oxide leachate. PSNS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant...
40 CFR 421.216 - Pretreatment standards for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... exceed the following values: (a) Molybdenum sulfide leachate. PSNS for the Primary Molybdenum and Rhenium...) Molybdic oxide leachate. PSNS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant...
40 CFR 421.216 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... exceed the following values: (a) Molybdenum sulfide leachate. PSNS for the Primary Molybdenum and Rhenium...) Molybdic oxide leachate. PSNS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant...
40 CFR 421.220 - Applicability: Description of the secondary molybdenum and vanadium subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING... to discharges resulting from the production of molybdenum or vanadium by secondary molybdenum and...
Silicon nitride reinforced with molybdenum disilicide
Petrovic, John J.; Honnell, Richard E.
1991-01-01
Compositions of matter comprised of silicon nitride and molybdenum disilicide and methods of making the compositions, where the molybdenum disilicide is present in amounts ranging from about 5 to about 50 vol. %.
Biochemical abnormalities in workers exposed to molybdenum dust.
Walravens, P A; Moure-Eraso, R; Solomons, C C; Chappell, W R; Bentley, G
1979-01-01
Exposure to molybdenum in dust was measured in a molybdenite roasting plant. This exposure was accompanied by large elevations of serum ceruloplasmin and smaller increases in mean serum uric acid levels in the workers. Absorption of molybdenum from the dust was demonstrated by increases in plasma and urinary molybdenum levels. It remains necessary to demonstrate whether such exposure results in long-term health effects.
Annealed CVD molybdenum thin film surface
Carver, Gary E.; Seraphin, Bernhard O.
1984-01-01
Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.
As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition
NASA Astrophysics Data System (ADS)
Blackwood, Van Stephen
The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.
2011-05-01
failure resistance, which results from their different microplasticity (microbrittleness) and relaxation ability. In order to evaluate the... microplasticity (microbrittleness) in the series of isomorphic hexaborides produced by zone melting we have plotted a number of statistical curves that show
Ultracapacitor current collector
Jerabek, Elihu Calfin; Mikkor, Mati
2001-10-16
An ultracapacitor having two solid, nonporous current collectors, two porous electrodes separating the collectors, a porous separator between the electrodes and an electrolyte occupying the pores in the electrodes and separator. At least one of the current collectors comprises a conductive metal substrate coated with a metal nitride, carbide or boride coating.
Modification of molybdenum disulfide in methanol solvent for hydrogen evolution reaction
NASA Astrophysics Data System (ADS)
Niyitanga, Theophile; Jeong, Hae Kyung
2018-05-01
Molybdenum disulfide is a promising catalyst to replace the expensive platinum as an electrocatalyst but needs to be modified to present excellent electrocatalytic properties. Herein, we successfully modify molybdenum disulfide in methanol solvent for hydrogen evolution reaction by using a simple hydrothermal method. Overpotential reduced to -0.6 V from -1.5 V, and energy band gap decreased from 1.73 eV to 1.58 eV after the modification. The modified molybdenum disulfide also demonstrated lower resistance (42 Ω) at high frequency (1000 kHz) compared with that (240 Ω) of the precursor, showing that conductivity of the modified molybdenum disulfide has improved.
Molybdenum-UO2 cermet irradiation at 1145 K.
NASA Technical Reports Server (NTRS)
Mcdonald, G.
1971-01-01
Two molybdenum-uranium dioxide cermet fuel pins with molybdenum clad were fission-heated in a forced-convection helium coolant for sufficient time to achieve 5.3% burnup. The cermet core contained 20 wt % of 93.2% enriched uranium dioxide. The results were as follows: there was no visible change in the appearance of the molybdenum clad during irradiation; the maximum increase in diameter of the fuel pins was 0.8%; there was no migration of uranium dioxide along grain boundaries and no evident interaction between molybdenum and uranium dioxide; and, finally, approximately 12% of the fission gas formed was released from the cermet core into the gas plenum.
Electrochemical way of molybdenum extraction from the Bimetallic systems of Mo-W
NASA Astrophysics Data System (ADS)
Kudreeva, L. K.; Nauryzbaev, M. K.; Kurbatov, A. P.; Kamysbaev, D. H.; Adilbekova, A. O.; Mukataeva, Z. S.
2015-12-01
Electrochemical dissolution of molybdenum and tungsten was investigated in water- dimethylsulfoxide (DMSO) media at different concentrations of lithium chloride and magnesium perchlorate. The terms of efficient extraction of molybdenum from bimetallic systems of Mo-W have been determined. The polarization curves of the electrooxidation of molybdenum in the solution of 0.25 M LiCl in the DMSO at the different rates of rotations and the scan rate equal to 50 mV/s were obtained. In the presence of the addition of water at the potential of 0.1-0.75 V the small area of polarizability occurs, then with increasing potentials above 1.5 V there is a sharp increase of the oxidation current. Comparison of the current values of anodic dissolution of molybdenum and tungsten showed that the rate of anodic dissolution of molybdenum significantly exceeds the rate of anodic dissolution of tungsten. In the case of molybdenum, the dissolution process is limited by diffusion, in the case of tungsten - by the passive film formation on the electrode surface.
Tensile Properties of Molybdenum and Tungsten from 2500 to 3700 F
NASA Technical Reports Server (NTRS)
Hall, Robert W.; Sikora, Paul F.
1959-01-01
Specimens of commercially pure sintered tungsten, arc-cast unalloyed molybdenum, and two arc-cast molybdenum-base alloys (one with 0.5 percent titanium, the other with 0.46 percent titanium and 0.07 percent zirconium) were fabricated from 1/2-inch-diameter rolled or swaged bars. All specimens were evaluated in short-time tensile tests in the as-received condition, and all except the molybdenum-titanium-zirconium alloy were tested after a 30-minute recrystallization anneal at 3800 F in a vacuum of approximately 0.1 micron. Results showed that the tungsten was considerably stronger than either the arc-cast unalloyed molybdenum or the molybdenum-base alloys over the 2500 to 3700 F temperature range. Recrystallization of swaged tungsten at 3800 F considerably reduced its tensile strength at 2500 F. However, above 3100 F, the as-swaged tungsten specimens recrystallized during testing, and had about the same strength as when recrystallized at 3800 F before evaluation. The ductility of molybdenum-base materials was very high at all test temperatures; the ductility of tungsten decreased sharply above about 3120 F.
Mineral resource of the month: molybdenum
Magyar, Michael J.
2004-01-01
Molybdenum is a metallic element that is most frequently used in alloy and stainless steels, which together represent the single largest market for molybdenum. Molybdenum has also proven invaluable in carbon steel, cast iron and superalloys. Its alloying versatility is unmatched because its addition enhances material performance under high-stress conditions in expanded temperature ranges and in highly corrosive environments. The metal is also used in catalysts, other chemicals, lubricants and many other applications.
NASA Technical Reports Server (NTRS)
Chaney, William S.
1961-01-01
A theoretical study has been made of molybdenum dioxide and molybdenum trioxide in order to extend the knowledge of factors Involved in the oxidation of molybdenum. New methods were developed for calculating the lattice energies based on electrostatic valence theory, and the coulombic, polarization, Van der Waals, and repulsion energie's were calculated. The crystal structure was examined and structure details were correlated with lattice energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stine, Andrew Martin; Pierce, Stanley W.; Moniz, Paul F.
The welding equipment used for welding iridium containers (clads) at Los Alamos National Laboratory is twenty five years old and is undergoing an upgrade. With the upgrade, there is a requirement for requalification of the welding process, and the opportunity for process improvement. Testing of the new system and requalification will require several welds on iridium test parts and clads, and any efforts to improve the process will add to the need for iridium parts. The extreme high cost of iridium imposes a severe limitation on the extent of test welding that can be done. The 2 inch diameter, 0.027more » inch thick, iridium blank disc that the clad cup is formed from, is useful for initial weld trials, but it costs $5000. The development clad sets needed for final tests and requalification cost $15,000 per set. A solution to iridium cost issue would be to do the majority of the weld development on a less expensive surrogate metal with similar weld characteristics. One such metal is molybdenum. Since its melting index (melting temperature x thermal conductivity) is closest to iridium, welds on molybdenum should be similar in size for a given weld power level. Molybdenum is inexpensive; a single 2 inch molybdenum disc costs only $9. In order to evaluate molybdenum as a surrogate for iridium, GTA welds were first developed to provide full penetration on 0.030 inch thick molybdenum discs at speeds of 20, 25, and 30 inches per minute (ipm). These weld parameters were then repeated on the standard 0.027 inch thick iridium blanks. The top surface and bottom surface (root) width and grain structure of the molybdenum and iridium welds were compared, and similarities were evident between the two metals. Due to material and thickness differences, the iridium welds were approximately 35% wider than the molybdenum welds. A reduction in iridium weld current of 35% produce welds slightly smaller than the molybdenum welds yet showed that current could be scaled according to molybdenum/iridium weld width ratio to achieve similar welds. Further weld trials using various thicknesses of molybdenum determined that 0.024 inch thick molybdenum material would best match the 0.027 inch thick iridium in achieving comparable welds when using the same welding parameters. Across the range of welding speeds, the characteristic weld pool shape and solidification grain structure in the two materials was also similar. With the similarity of welding characteristics confirmed, and the appropriate thickness of molybdenum determined, it has been concluded that the use of molybdenum discs and tube sections will greatly expand the weld testing opportunities prior to iridium weld qualification« less
NASA Technical Reports Server (NTRS)
Wolski, W.
1985-01-01
Results of experimental studies of emission cathodes made from lanthanum, yttrium, and gadolinium hexaborides are presented. Maximum thermal emission was obtained from lanthanum hexaboride electrodes. The hexaboride cathodes operated stably under conditions of large current density power draw, at high voltages and poor vacuum. A microtron electron gun with a lanthanum hexaboride cathode is described.
1977-02-01
oxides and their mixtures, arsenides, borides, bromides , carbides , chlorides , fluoride s, nitride s, phosphides, silicides , sulfides , tellurides...ivity of alkali elements (lithium , sodium , potassium , rubi- dium , ces ium , and francium) and contains recomme nded reference values generated
Molecular Modeling of High-Temperature Oxidation of Refractory Borides
2008-02-01
generate the classical potential, we adopt the van Beest , Kramer and van Santen (BKS) parameterization for Si-O interactions, but fit B-O and Si-B...seminar at Department of Aerospace and Mechanical Engineering, University of Notre Dame, March 20, 2007. 6 Los Alamos National Lab Physics & Theoretical
Bourke, Christopher A
2018-01-01
Sporadic or idiopathic Parkinson's disease is a movement disorder with a worldwide distribution, a long pre-clinical latent period and a frequent association with dementia. The combination of molybdenum deficiency and purine ingestion could explain the movement disorder, the distribution, the latent period and the dementia association. Recent studies in sheep have shown that molybdenum deficiency enables some dietary purines to accumulate in the central nervous system. This causes astrocyte dysfunction, altered neuromodulation and eventually irreversible central nervous system disease. Humans and sheep share the ability to salvage purines and this ability places humans at risk when they ingest xanthosine, inosine, adenosine and guanosine. Adenosine ingestion in molybdenum-deficient humans will lead to adenosine loading and potentially a disturbance to the A2a adenosine receptors in the nigro-striatum. This could result in Parkinson's disease. Guanosine ingestion in molybdenum-deficient humans will lead to guanosine loading and potentially a disturbance to the guanosine receptors in the hippocampus, amygdala and ventral striatum. This could result in dementia. The molybdenum content of the average daily diet in the United States is 0.07 ppm and in the United Kingdom 0.04 ppm. Central nervous system disease occurs in sheep at <0.04 ppm. Consistent with the role proposed for molybdenum deficiency in Parkinson's disease is the observation that affected individuals have elevated sulfur amino acid levels, depressed sulfate levels, and depressed uric acid levels. Likewise the geographical distribution of Parkinson's dementia complex on Guam corresponds with the distribution of molybdenum-deficient soils hence molybdenum-deficient food gardens on that island.
Molybdenum-A Key Component of Metal Alloys
Kropschot, S.J.
2010-01-01
Molybdenum, whose chemical symbol is Mo, was first recognized as an element in 1778. Until that time, the mineral molybdenite-the most important source of molybdenum-was believed to be a lead mineral because of its metallic gray color, greasy feel, and softness. In the late 19th century, French metallurgists discovered that molybdenum, when alloyed (mixed) with steel in small quantities, creates a substance that is remarkably tougher than steel alone and is highly resistant to heat. The alloy was found to be ideal for making tools and armor plate. Today, the most common use of molybdenum is as an alloying agent in stainless steel, alloy steels, and superalloys to enhance hardness, strength, and resistance to corrosion.
Leimkühler, Silke; Wuebbens, Margot M.; Rajagopalan, K.V.
2010-01-01
Biosynthesis of the molybdenum cofactor in bacteria is described with a detailed analysis of each individual reaction leading to the formation of stable intermediates during the synthesis of molybdopterin from GTP. As a starting point, the discovery of molybdopterin and the elucidation of its structure through the study of stable degradation products are described. Subsequent to molybdopterin synthesis, the molybdenum atom is added to the molybdopterin dithiolene group to form the molybdenum cofactor. This cofactor is either inserted directly into specific molybdoenzymes or is further modified by the addition of nucleotides to the molybdopterin phosphate group or the replacement of ligands at the molybdenum center. PMID:21528011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rabin, S.A.; Lotts, A.L.; Hammond, J.P.
Uranium --molybdenum alloy rods containing from 10 to 15 wt% Mo and 1/16- in. in diameter were successfully fabricated by hot rotary swaging, followed by machining to remove the protective sheathing (Inconel with molybdenum barrier). Structurally strong rods with densities greater than 95% of theoretical were produced from both calciumreduced uranium mixed with hydrogen-reduced molybdenum and acid-cleaned, prealloyed shot when reduced in area about 55% at 1050 or 1100 deg C. Alloy homogeneity was good with prealloyed powders; however, traces of molybdenum -rich, gamma phase persisted in the elemental uranium -molybdenum material after swaging at 1100 deg C. Swagings embodyingmore » hydride uranium or oxide- contaminated prealloyed shot were unsatisfactory because of insufficient consolidation or poor interparticle bonding. (auth)« less
Halmi, M. I. E.; Zuhainis, S. W.; Yusof, M. T.; Shaharuddin, N. A.; Helmi, W.; Shukor, Y.; Syed, M. A.; Ahmad, S. A.
2013-01-01
Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant. PMID:24383052
Shukor, M Y; Halmi, M I E; Rahman, M F A; Shamaan, N A; Syed, M A
2014-01-01
The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a V max for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent K m for NADH was 0.79 mM. At 5 mM NADH, the apparent V max and apparent K m values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (k cat/K m ) of the Mo-reducing enzyme was 5.47 M(-1) s(-1). The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.
Shukor, M. Y.; Halmi, M. I. E.; Rahman, M. F. A.; Shamaan, N. A.; Syed, M. A.
2014-01-01
The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a V max for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent K m for NADH was 0.79 mM. At 5 mM NADH, the apparent V max and apparent K m values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (k cat/K m) of the Mo-reducing enzyme was 5.47 M−1 s−1. The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction. PMID:24724104
Kara, Derya; Karadaş, Cennet
2015-08-05
The present work describes a selective, rapid and economical spectrophotometric method for the determination of molybdenum using N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane. Molybdenum(VI) reacts with N,N'-bis(2-hydroxy-5-bromo-benzyl)1,2 diaminopropane to form a stable 1:1 yellow complex with an absorption maximum at 342 nm. The reaction is completed within 10 min and the absorbance of the molybdenum complex remains stable for at least 1 week at room temperature. The effective molar absorption coefficient at 342 nm was 9.6 × 10(3)L mol(-1)cm(-1). Under optimal conditions, the complex obeys Beer's law from 0 to 9.9 μg mL(-1). The relative standard deviation was 0.08% (for 11 samples, each containing 6 μg mL(-1) molybdenum). Under the optimum conditions, the detection limit (3σ) was 17.7 μg L(-1) for molybdenum without any preconcentration. The precision was determined from 30 results obtained for 4.80 μg mL(-1) Mo(VI); the mean value of a molybdenum(VI) was 4.83 μg ml(-1) with a standard derivation of 0.002 μg ml(-1) molybdenum(VI). Copyright © 2015 Elsevier B.V. All rights reserved.
Biosynthesis of the Iron-Molybdenum Cofactor of Nitrogenase*
Hu, Yilin; Ribbe, Markus W.
2013-01-01
The iron-molybdenum cofactor (the M-cluster) serves as the active site of molybdenum nitrogenase. Arguably one of the most complex metal cofactors in biological systems, the M-cluster is assembled through the formation of an 8Fe core prior to the insertion of molybdenum and homocitrate into this core. Here, we review the recent progress in the research area of M-cluster assembly, with an emphasis on our work that provides useful insights into the mechanistic details of this process. PMID:23539617
NASA Technical Reports Server (NTRS)
Fieno, D.; Fox, T.; Mueller, R.
1972-01-01
Clean criticality data were obtained from molybdenum-reflected cylindrical uranyl-fluoride-water solution reactors. Using ENDF/B molybdenum cross sections, a nine energy group two-dimensional transport calculation of a reflected reactor configuration predicted criticality to within 7 cents of the experimental value. For these reactors, it was necessary to compute the reflector resonance integral by a detailed transport calculation at the core-reflector interface volume in the energy region of the two dominant resonances of natural molybdenum.
Transfer of molybdenum disulfide to various metals
NASA Technical Reports Server (NTRS)
Barton, G. C.; Pepper, S. V.
1977-01-01
Sliding friction experiments were conducted with molybdenum disulfide single crystals in contact with sputter cleaned surfaces of copper, nickel, gold, and 304 stainless steel. Transfer of the molybdenum disulfide to the metals was monitored with Auger electron spectroscopy. Results of the investigation indicate molybdenum disulfide transfers to all clean metal surfaces after a single pass over the metal surface with film thickness observed to increase with repeated passes over the same surfaces. Large particle transfer occurs when the orientation of the crystallites is other than basal. This is frequently accompanied by abrasion of the metal. Adhesion of molybdenum disulfide films occurred readily to copper and nickel, less readily to 304 stainless steel, and even less effectively to the gold, which indicates a chemical effect.
High-strength, creep-resistant molybdenum alloy and process for producing the same
Bianco, R.; Buckman, R.W. Jr.; Geller, C.B.
1999-02-09
A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume (ca. 1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum. 10 figs.
High-strength, creep-resistant molybdenum alloy and process for producing the same
Bianco, Robert; Buckman, Jr., R. William; Geller, Clint B.
1999-01-01
A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.
Molybdenum In Cathodes Of Sodium/Metal Chloride Cells
NASA Technical Reports Server (NTRS)
Bugga, Ratnakumar V.; Attia, Alan I.; Halpert, Gerald
1992-01-01
Cyclic voltammetric curves of molybdenum wire in NaAlCl4 melt indicate molybdenum chloride useful as cathode material in rechargeable sodium/metal chloride electrochemical cells. Batteries used in electric vehicles, for electric-power load leveling, and other applications involving high energy and power densities.
NASA Astrophysics Data System (ADS)
Kushkhov, Kh. B.; Kardanov, A. L.; Adamokova, M. N.
2013-02-01
Nanopowders of binary tungsten-molybdenum carbide are fabricated by high-temperature electrochemical synthesis. The optimum concentration relations between electrolyte components, the current density, and the quantity of electricity are determined to synthesize binary tungsten-molybdenum carbides.
Molybdenum Enzymes, Cofactors, and Model Systems.
ERIC Educational Resources Information Center
Burgmayer, S. J. N; Stiefel, E. I.
1985-01-01
Discusses: (l) molybdoenzymes (examining their distribution and metabolic role, composition and redox strategy, cofactors, substrate reactions, and mechanistic possibilities); (2) structural information on molybdenum (Mo) centers; (3) modeling studies (Mo-co models, nitrogenase models, and the MO-S duo); and (4) the copper-molybdenum antagonism.…
Gao, Min -Rui; Chan, Maria K. Y.; Sun, Yugang
2015-07-03
In this study, layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of -103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10 -3more » mA cm -2, performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance.« less
Gao, Min-Rui; Chan, Maria K.Y.; Sun, Yugang
2015-01-01
Layered molybdenum disulfide has demonstrated great promise as a low-cost alternative to platinum-based catalysts for electrochemical hydrogen production from water. Research effort on this material has focused mainly on synthesizing highly nanostructured molybdenum disulfide that allows the exposure of a large fraction of active edge sites. Here we report a promising microwave-assisted strategy for the synthesis of narrow molybdenum disulfide nanosheets with edge-terminated structure and a significantly expanded interlayer spacing, which exhibit striking kinetic metrics with onset potential of −103 mV, Tafel slope of 49 mV per decade and exchange current density of 9.62 × 10−3 mA cm−2, performing among the best of current molybdenum disulfide catalysts. Besides benefits from the edge-terminated structure, the expanded interlayer distance with modified electronic structure is also responsible for the observed catalytic improvement, which suggests a potential way to design newly advanced molybdenum disulfide catalysts through modulating the interlayer distance. PMID:26138031
Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem.
Lim, H K; Syed, M A; Shukor, M Y
2012-06-01
A novel molybdate-reducing bacterium, tentatively identified as Klebsiella sp. strain hkeem and based on partial 16s rDNA gene sequencing and phylogenetic analysis, has been isolated. Strain hkeem produced 3 times more molybdenum blue than Serratia sp. strain Dr.Y8; the most potent Mo-reducing bacterium isolated to date. Molybdate was optimally reduced to molybdenum blue using 4.5 mM phosphate, 80 mM molybdate and using 1% (w/v) fructose as a carbon source. Molybdate reduction was optimum at 30 °C and at pH 7.3. The molybdenum blue produced from cellular reduction exhibited absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide, and potassium cyanide did not inhibit the molybdenum-reducing enzyme. Mercury, silver, and copper at 1 ppm inhibited molybdenum blue formation in whole cells of strain hkeem. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deuterium retention and release from molybdenum exposed to a Penning discharge
NASA Astrophysics Data System (ADS)
Causey, R. A.; Kunz, C. L.; Cowgill, D. F.
2005-03-01
Both molybdenum and tungsten are candidate materials for plasma-facing applications in fusion reactors. While tungsten has a higher melting point and a higher threshold for sputtering, it is a brittle material that is difficult to machine into shapes required for fusion applications. For this reason, molybdenum is now receiving serious consideration as an alternative for tungsten. If molybdenum is to be used as a plasma-facing material, the hydrogen retention and recycling characteristics must be known. In this report, we present experimental results on deuterium retention in molybdenum after exposure to a Penning discharge at temperatures from 573 to 773 K. D2+ ions with energies of 1.2 keV were implanted into the 50 mm diameter molybdenum samples at fluxes of 10 20 D/m 2 s. Thermal desorption spectroscopy was used to determine both the amount of retained deuterium and the release kinetics. Low retention values similar to those measured previously for tungsten were observed.
Molybdenum compounds in organic synthesis
NASA Astrophysics Data System (ADS)
Khusnutdinov, R. I.; Oshnyakova, T. M.; Dzhemilev, U. M.
2017-02-01
The review presents the first analysis and systematic discussion of data published in the last 35-40 years on the use of molybdenum compounds and complexes in organic synthesis and catalysis of various ion coordination and radical reactions. Detailed account is given of the key trends in the use of molybdenum complexes as catalysts of alkene epoxidation and oxyketonation, oxidation of sulfur, nitrogen and phosphorus compounds, hydrosilylation of 1,3-dienes, ketones and aldehydes, hydrostannylation of acetylenes and hydrogermylation of norbornadienes. Considerable attention is paid to the description of new reactions and in situ generation of highly reactive hypohalites, ROX and HOX, induced by molybdenum complexes and the use of hypohalites in oxidative transformations. Data on the application of molybdenum complexes in well-known reactions are discussed, including Kharasch and Pauson-Khand reactions, allylic alkylation of C-nucleophiles, aminocarbonylation of halo derivatives and oligomerization of cyclic dienes, trienes, alkynes and 1,3-dienes. The last Section of the review considers 'unusual' organic reactions involving molybdenum compounds and complexes. The bibliography includes 257 references.
NASA Astrophysics Data System (ADS)
Aleksandrov, P. V.; Medvedev, A. S.; Imideev, V. A.; Moskovskikh, D. O.
2017-04-01
Roasting of molybdenum concentrates with sodium chloride has high potential and can be an alternative to oxidizing roasting and autoclave leaching; however, the chemistry and mechanism are poorly known. The chemical mechanism of the roasting process between molybdenite concentrate and sodium chloride in the presence of atmospheric oxygen is proposed. It is demonstrated that the process occurs through molybdenite oxidation, up to molybdenum trioxide, with subsequent formation of sodium polymolybdates and molybdenum dioxydichloride from molybdenum trioxide. It is found that the formation of water-soluble sodium polymolybdates from molybdenum trioxide stops over time due to passivation of sodium chloride surface by polymolybdates. It is proved experimentally that preliminary grinding of the mixture in a furnace charge leads to an increase in the polymolybdate fraction of the roasting products, which constitutes approximately 65 pct of molybdenum initially in the roasted mixture against 20 to 22 pct in a nonground mixture (or 75 to 77 pct against 30 to 33 pct of molybdenum in calcine). For the first time, the presence of the Na2S2O7 phase in the calcine was confirmed experimentally. The suggested mechanism gives possible explanations for the sharp increase of MoO2Cl2 formation within the temperature range of 673 K to 723 K (400 °C to 450 °C) that is based on the catalytic reaction of molybdenum dioxydichloride from the Na2S2O7 liquid phase as it runs in a melt.
Lithium Borides - High Energy Materials
2000-02-28
1993. 99, 7983. (32) Pulay P.; Hamilton. T. P. J. Chem. Phys. 1988, 88. 4926 . (33) Frisch. M. J.: Trucks. G. W.; Schlegel. H. B.: Gill, P. M. W...25] P.V. Sudhakar, K. Lammertsma, J. Chem. Phys. 99 (1993) 7929. [26] M.J. van der Woerd, K. Lammertsma, B.J. Duke, H.F. Schaefer , III, J
Grain Refinement and Texture Mitigation in Low Boron Containing TiAl-Alloys
NASA Astrophysics Data System (ADS)
Hecht, Ulrike; Witusiewicz, Victor T.
2017-12-01
Controlling the grain size and texture of lamellar TiAl-alloys is essential for well-balanced creep and fatigue properties. Excellent refinement and texture mitigation are achieved in aluminum lean alloys by low boron additions of 0.2 at.%. This amount is sufficient to promote in situ formation of ultrafine borides during the last stages of body centered cubic (BCC) solidification. The borides subsequently serve as nucleation sites for hexagonal close packed (HCP) during the BCC-HCP phase transformation. Bridgman solidification experiments with alloy Ti-43Al-8Nb-0.2C-0.2B were performed under a different growth velocity, i.e., cooling rate, to evaluate the HCP grain size distribution and texture. For slow-to-moderate cooling rates, about 65% of HCP grains are randomly oriented, despite the pronounced texture of the parent BCC phase resulting from directional solidification. For high cooling rates, obtained by quenching, texture mitigation is less pronounced. Only 28% of the HCP grains are randomly oriented, the majority being crystallographic variants of the Burgers orientation relationship.
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Wheeler, D. R.
1978-01-01
Radio frequency sputtering was used to deposit refractory carbide, silicide, and boride coatings on 440-C steel substrates. Both sputter etched and pre-oxidized substrates were used and the films were deposited with and without a substrate bias. The composition of the coatings was determined as a function of depth by X-ray photoelectron spectroscopy combined with argon ion etching. Friction and wear tests were conducted to evaluate coating adherence. In the interfacial region there was evidence that bias may produce a graded interface for some compounds. Biasing, while generally improving bulk film stoichiometry, can adversely affect adherence by removing interfacial oxide layers. Oxides of all film constituents except carbon and iron were present in all cases but the iron oxide coverage was only complete on the preoxidized substrates. The film and iron oxides were mixed in the MoSi2 and Mo2C films but layered in the Mo2B5 films. In the case of mixed oxides, preoxidation enhanced film adherence. In the layered case it did not.
Boronization and Carburization of Superplastic Stainless Steel and Titanium-Based Alloys
Matsushita, Masafumi
2011-01-01
Bronization and carburization of fine-grain superplastic stainless steel is reviewed, and new experimental results for fine grain Ti88.5Al4.5V3Fe2Mo2 are reported. In superplastic duplex stainless steel, the diffusion of carbon and boron is faster than in non-superplastic duplex stainless steel. Further, diffusion is activated by uniaxial compressive stress. Moreover, non-superplastic duplex stainless steel shows typical grain boundary diffusion; however, inner grain diffusion is confirmed in superplastic stainless steel. The presence of Fe and Cr carbides or borides is confirmed by X-ray diffraction, which indicates that the diffused carbon and boron react with the Fe and Cr in superplastic stainless steel. The Vickers hardness of the carburized and boronized layers is similar to that achieved with other surface treatments such as electro-deposition. Diffusion of boron into the superplastic Ti88.5Al4.5V3Fe2Mo2 alloy was investigated. The hardness of the surface exposed to boron powder can be increased by annealing above the superplastic temperature. However, the Vickers hardness is lower than that of Ti boride. PMID:28824144
Molybdenum disilicide matrix composite
Petrovic, John J.; Carter, David H.; Gac, Frank D.
1991-01-01
A composition consisting of an intermetallic compound, molybdenum disilicide, which is reinforced with VS silicon carbide whiskers dispersed throughout it and a method of making the reinforced composition. Use of the reinforcing material increases fracture toughness at low temperatures and strength at high temperatures, as compared to pure molybdenum disilicide.
Molybdenum disilicide matrix composite
Petrovic, John J.; Carter, David H.; Gac, Frank D.
1990-01-01
A composition consisting of an intermetallic compound, molybdenum disilicide, which is reinforced with VS silicon carbide whiskers dispersed throughout it and a method of making the reinforced composition. Use of the reinforcing material increases fracture toughness at low temperatures and strength at high temperatures, as compared to pure molybdenum disilicide.
THE GRAVIMETRIC DETERMINATION OF MOLYBDENUM IN URANIUM-MOLYBDENUM ALLOYS
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1959-03-01
The sample is dissolved in nitric and hydrochloric acids. After heating the solution with sulfuric acid, molybodenum is precipitated as the benzoin-oxime complex which is ignited to molybdic oxide. This is dissolved in ammonia, and the molybdenum is precipitated and weighed as lead molybdate. (auth)
NASA Technical Reports Server (NTRS)
Khristova, R.; Vanmen, M.
1986-01-01
Based on considerations of principles and experimental data, the interference of sulfate ions in poteniometric titration of EDTA with FeCl3 was confirmed. The method of back complexometric titration of molybdenum of Nonova and Gasheva was improved by replacing hydrazine sulfate with hydrazine hydrochloride for reduction of Mo(VI) to Mo(V). The method can be used for one to tenths of mg of molybdenum with 0.04 mg standard deviation. The specific method of determination of molybdenum in molybdenite concentrates is presented.
Role of electron concentration in softening and hardening of ternary molybdenum alloys
NASA Technical Reports Server (NTRS)
Stephens, J. R.; Witzke, W. R.
1975-01-01
Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.
FY16 Status Report for the Uranium-Molybdenum Fuel Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Wendy D.; Doherty, Ann L.; Henager, Charles H.
2016-09-22
The Fuel Cycle Research and Development program of the Office of Nuclear Energy has implemented a program to develop a Uranium-Molybdenum metal fuel for light water reactors. Uranium-Molybdenum fuel has the potential to provide superior performance based on its thermo-physical properties. With sufficient development, it may be able to provide the Light Water Reactor industry with a melt-resistant, accident-tolerant fuel with improved safety response. The Pacific Northwest National Laboratory has been tasked with extrusion development and performing ex-reactor corrosion testing to characterize the performance of Uranium-Molybdenum fuel in both these areas. This report documents the results of the fiscal yearmore » 2016 effort to develop the Uranium-Molybdenum metal fuel concept for light water reactors.« less
Structural and morphological properties of mesoporous carbon coated molybdenum oxide films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dayal, Saurabh, E-mail: saurabhdayal153@gmail.com; Kumar, C. Sasi, E-mail: csasimv@gmail.com
2016-05-06
In the present study, we report the structural and morphological properties of mesoporous carbon coated molybdenum oxide films. The deposition of films was carried out in a two-step process, the first step involves deposition of molybdenum and carbon bilayer thin films using DC magnetron sputtering. In the second step the sample was ex-situ annealed in a muffle furnace at different temperatures (400°C to 600°C) and air cooled in the ambient atmosphere. The formation of the meso-porous carbon clusters on molybdenum oxide during the cooling step was investigated using FESEM and AFM techniques. The structural details were explored using XRD. Themore » meso-porous carbon were found growing over molybdenum oxide layer as a result of segregation phenomena.« less
Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert
2015-11-16
On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge-connected boron-filled [Pt6] trigonal prisms running infinitely along the z axis and embedding the icosahedrally coordinated Cu atom. Pt2B, (Pt1-yCuy)2B (y = 0.045), and Pt12CuB6-y (y = 3) behave metallically, as revealed by temperature-dependent electrical resistivity measurements.
Molybdenum sealing glass-ceramic composition
Eagan, Robert J.
1976-01-01
The invention relates to a glass-ceramic composition having low hydrogen and helium permeability properties, along with high fracture strength, a thermal coefficient of expansion similar to that of molybdenum, and adaptable for hermetically sealing to molybdenum at temperatures of between about 900.degree. and about 950.degree.C. to form a hermatically sealed insulator body.
Influence of Soil Solution Salinity on Molybdenum Adsorption by Soils
USDA-ARS?s Scientific Manuscript database
Molybdenum (Mo) adsorption on five arid-zone soils from California was investigated as a function of equilibrium solution Mo concentration (0-30 mg L-1), solution pH (4-8), and electrical conductivity (EC = 0.3 or 8 dS m-1). Molybdenum adsorption decreased with increasing pH. An adsorption maximum...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringleb, F.; Eylers, K.; Teubner, Th.
2016-03-14
A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Basedmore » on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.« less
NASA Astrophysics Data System (ADS)
Ogata, Yoichiro; Shimura, Tetsuo; Ryu, Minoru; Iwazaki, Yoshiki
2017-04-01
The effect of slight molybdenum doping of perovskite-type BaTiO3-based ceramics on the reliability of a multilayer ceramic capacitor (MLCC) and on the valence state of molybdenum in the BaTiO3-based ceramics has been investigated by highly accelerated lifetime tests and X-ray absorption fine structure analysis. The molybdenum added to the BaTiO3-based ceramics is located at Ti sites and improves the highly accelerated lifetime and lowers the initial dielectric resistivity in MLCCs. Through sintering in a reducing atmosphere, which is an important process in the fabrication of BaTiO3-based MLCCs, the oxidation state of the molybdenum added could be adjusted from +6 to a value close to +4.
Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi.
Othman, A R; Bakar, N A; Halmi, M I E; Johari, W L W; Ahmad, S A; Jirangon, H; Syed, M A; Shukor, M Y
2013-01-01
Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 °C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 μmole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.
Code of Federal Regulations, 2011 CFR
2011-07-01
... molybdenum plus vanadium plus pure grade molybdenum produced Arsenic 27.120 12.097 Chromium 7.219 2.927 Lead...) Vanadium decomposition wet air pollution control. BAT Limitations for the Secondary Molybdenum and Vanadium... per million pounds) of vanadium produced by decomposition Arsenic 0.000 0.000 Chromium 0.000 0.000...
Code of Federal Regulations, 2010 CFR
2010-07-01
... molybdenum plus vanadium plus pure grade molybdenum produced Arsenic 27.120 12.097 Chromium 7.219 2.927 Lead...) Vanadium decomposition wet air pollution control. BAT Limitations for the Secondary Molybdenum and Vanadium... per million pounds) of vanadium produced by decomposition Arsenic 0.000 0.000 Chromium 0.000 0.000...
40 CFR 421.226 - Pretreatment standards for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... molybdenum produced Arsenic 27.120 12.097 Chromium 7.219 2.927 Lead 5.463 2.536 Nickel 10.731 7.219 Iron 23... technical grade molybdenum plus vanadium plus pure grade molybdenum produced Arsenic 80.952 36.108 Chromium...] [Reserved] Ammonia (as N) 24114.000 10600.000 (c) Vanadium decomposition wet air pollution control. PSNS for...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technical grade molybdenum plus vanadium plus pure grade molybdenum produced Arsenic 40.778 18.145 Chromium... vanadium plus pure grade molybdenum produced Arsenic 121.720 54.162 Chromium 25.625 10.483 Lead 24.460 11... times. (c) Vanadium decomposition wet air pollution control. BPT Limitations for the Secondary...
40 CFR 421.226 - Pretreatment standards for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... molybdenum produced Arsenic 27.120 12.097 Chromium 7.219 2.927 Lead 5.463 2.536 Nickel 10.731 7.219 Iron 23... technical grade molybdenum plus vanadium plus pure grade molybdenum produced Arsenic 80.952 36.108 Chromium...] [Reserved] Ammonia (as N) 24114.000 10600.000 (c) Vanadium decomposition wet air pollution control. PSNS for...
Nickel-Catalyzed Molybdenum-Promoted Carbonylative Synthesis of Benzophenones.
Peng, Jin-Bao; Wu, Fu-Peng; Li, Da; Qi, Xinxin; Ying, Jun; Wu, Xiao-Feng
2018-06-01
A nickel-catalyzed molybdenum-promoted carbonylative coupling reaction for the synthesis of benzophenones from aryl iodides has been developed. Various substituted diaryl ketones were synthesized in moderate to excellent yields under CO-gas-free conditions. A synergetic effect of both nickel and molybdenum has been observed, which is also responsible for the success of this transformation.
Chen, Zhongxin; Leng, Kai; Zhao, Xiaoxu; Malkhandi, Souradip; Tang, Wei; Tian, Bingbing; Dong, Lei; Zheng, Lirong; Lin, Ming; Yeo, Boon Siang; Loh, Kian Ping
2017-01-01
Interface confined reactions, which can modulate the bonding of reactants with catalytic centres and influence the rate of the mass transport from bulk solution, have emerged as a viable strategy for achieving highly stable and selective catalysis. Here we demonstrate that 1T′-enriched lithiated molybdenum disulfide is a highly powerful reducing agent, which can be exploited for the in-situ reduction of metal ions within the inner planes of lithiated molybdenum disulfide to form a zero valent metal-intercalated molybdenum disulfide. The confinement of platinum nanoparticles within the molybdenum disulfide layered structure leads to enhanced hydrogen evolution reaction activity and stability compared to catalysts dispersed on carbon support. In particular, the inner platinum surface is accessible to charged species like proton and metal ions, while blocking poisoning by larger sized pollutants or neutral molecules. This points a way forward for using bulk intercalated compounds for energy related applications. PMID:28230105
Determination of molybenum in soils and rocks: A geochemical semimicro field method
Ward, F.N.
1951-01-01
Reconnaissance work in geochemical prospecting requires a simple, rapid, and moderately accurate method for the determination of small amounts of molybdenum in soils and rocks. The useful range of the suggested procedure is from 1 to 32 p.p.m. of molybdenum, but the upper limit can be extended. Duplicate determinations on eight soil samples containing less than 10 p.p.m. of molybdenum agree within 1 p.p.m., and a comparison of field results with those obtained by a conventional laboratory procedure shows that the method is sufficiently accurate for use in geochemical prospecting. The time required for analysis and the quantities of reagents needed have been decreased to provide essentially a "test tube" method for the determination of molybdenum in soils and rocks. With a minimum amount of skill, one analyst can make 30 molybdenum determinations in an 8-hour day.
Mapping the formation areas of giant molybdenum blue clusters: a spectroscopic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botar, Bogdan; Ellern, Arkady; Kogerler, Paul
2012-05-18
The self-assembly of soluble molybdenum blue species from simple molybdate solutions has primarily been associated with giant mixed-valent wheel-shaped cluster anions, derived from the {MoV/VI154/176} archetypes, and a {MoV/VI368} lemon-shaped cluster. The combined use of Raman spectroscopy and kinetic precipitation as self-assembly monitoring techniques and single-crystal X-ray diffraction is key to mapping the realm of molybdenum blue species by establishing spherical {MoV/VI102}-type Keplerates as an important giant molybdenum blue-type species. We additionally rationalize the empirical effect of reducing agent concentration on the formation of all three relevant skeletal types: wheel, lemon and spheres. Whereas both wheels and the lemon-shaped {MoV/VI368}more » cluster are obtained from weakly reduced molybdenum blue solutions, considerably higher reduced solutions lead to {MoV/VI102}-type Keplerates.« less
Two temperature approach to femtosecond laser oxidation of molybdenum and morphological study
NASA Astrophysics Data System (ADS)
Kotsedi, L.; Kaviyarasu, K.; Fuku, X. G.; Eaton, S. M.; Amara, E. H.; Bireche, F.; Ramponi, R.; Maaza, M.
2017-11-01
The two-temperature model was used to gain insight into the thermal evolution of the hot electrons and the crystal lattice of the molybdenum thin coating during femtosecond laser treatment. The heat from the laser raised the bulk temperature of the sample through heat transfer from the hot electron to the crystal lattice of the material, which then led to the melting of the top layer of the film. This process resulted in the hot melt reacting ambient oxygen, which in turn oxidized the surface of molybdenum coating. The topological study and morphology of the oxidized film was conducted using high-resolution scanning electron microscope, with micrographs taken in both the cross-sectional geometry and normal incidence to the electron beam. The molybdenum oxide nanorods were clearly observed and the x-ray diffraction patterns showed the diffraction peaks due to molybdenum oxide.
Cytotoxicity of titanium and titanium alloying elements.
Li, Y; Wong, C; Xiong, J; Hodgson, P; Wen, C
2010-05-01
It is commonly accepted that titanium and the titanium alloying elements of tantalum, niobium, zirconium, molybdenum, tin, and silicon are biocompatible. However, our research in the development of new titanium alloys for biomedical applications indicated that some titanium alloys containing molybdenum, niobium, and silicon produced by powder metallurgy show a certain degree of cytotoxicity. We hypothesized that the cytotoxicity is linked to the ion release from the metals. To prove this hypothesis, we assessed the cytotoxicity of titanium and titanium alloying elements in both forms of powder and bulk, using osteoblast-like SaOS(2) cells. Results indicated that the metal powders of titanium, niobium, molybdenum, and silicon are cytotoxic, and the bulk metals of silicon and molybdenum also showed cytotoxicity. Meanwhile, we established that the safe ion concentrations (below which the ion concentration is non-toxic) are 8.5, 15.5, 172.0, and 37,000.0 microg/L for molybdenum, titanium, niobium, and silicon, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuathilake, A.I.; Chatt, A.
1980-05-01
An analytical method has been developed for the determination of submicrogram quantities of molybdenum in sea and esturaine water. The method consists of preconcentration of molybdenum with BETA-naphthoin oxime followed by the determination of the element employing neutron activation analysis. Various factors that can influence yield and selectivity of the preconcentration process have been investigated in detail. A comparison study between ..cap alpha..-benzoin oxime and BETA-naphthoin oxime in preconcentrating molybdenum has been carried out using a standard steel sample. The method has been applied to determine molybdenum content of sea and estuarine water. A detection limit of 0.32 ..mu..g Momore » L/sup -1/ seawater has been acheived. The precision and accuracy of the method have been evaluated using an intercomparison fresh water and a biological standard reference material. 1 figure, 9 tables.« less
NASA Technical Reports Server (NTRS)
Ho, T. L.; Peterson, M. B.
1974-01-01
The requirements of brake materials were outlined and a survey made to select materials to meet the needs of high temperature brakes. A number of metals and ceramic materials were selected and evaluated in sliding tests which simulated aircraft braking. Nickel, molybdenum tungsten, Zr02, high temperature cements and carbons were tested. Additives were then incorporated into these materials to optimize their wear or strength behavior with particular emphasis on nickel and molybdenum base materials and a high temperature potassium silicate cement. Optimum materials were developed which improved wear behavior over conventional brake materials in the simulated test. The best materials are a nickel, aluminum oxide, lead tungstate composition containing graphite or molybdenum disulphite; a molybdenum base material containing LPA100 (an intermetallic compound of cobalt, molybdenum, and silicon); and a carbon material (P5).
Cathode material for lithium batteries
Park, Sang-Ho; Amine, Khalil
2013-07-23
A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.
Cathode material for lithium batteries
Park, Sang-Ho; Amine, Khalil
2015-01-13
A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.
Factors Influencing the Microstructural and Mechanical Properties of ULCB Steel Weldments
1991-12-01
18 3. Molybdenum.................................... 19 4. Chromium ...................................... 19 5...WELDING METHODS UTILIZED IN ANALYSIS 1. Tungsten Inert Gas (TIG) Tungsten inert gas welding, also known as gas tungsten arc welding ( GTAW ), produces a weld...Abson, Pargeter, 1986, p.166). The role of molybdenum and chromium is not fully understood but the formation of molybdenum or chromium carbides may
Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
Lowden, Richard A.
1994-01-01
A process for chemical vapor deposition of crystalline silicon nitride which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide.
RECOVERY OF URANIUM FROM PITCHBLENDE
Ruehle, A.E.
1958-06-24
The decontamination of uranium from molybdenum is described. When acid solutions containing uranyl nitrate are contacted with ether for the purpose of extracting the uranium values, complex molybdenum compounds are coextracted with the uranium and also again back-extracted from the ether with the uranium. This invention provides a process for extracting uranium in which coextraction of molybdenum is avoided. It has been found that polyhydric alcohols form complexes with molybdenum which are preferentially water-soluble are taken up by the ether extractant to only a very minor degree. The preferred embodiment of the process uses mannitol, sorbitol or a mixture of the two as the complexing agent.
Microstructures and Hardness/Wear Performance of High-Carbon Stellite Alloys Containing Molybdenum
NASA Astrophysics Data System (ADS)
Liu, Rong; Yao, J. H.; Zhang, Q. L.; Yao, M. X.; Collier, Rachel
2015-12-01
Conventional high-carbon Stellite alloys contain a certain amount of tungsten which mainly serves to provide strengthening to the solid solution matrix. These alloys are designed for combating severe wear. High-carbon molybdenum-containing Stellite alloys are newly developed 700 series of Stellite family, with molybdenum replacing tungsten, which are particularly employed in severe wear condition with corrosion also involved. Three high-carbon Stellite alloys, designated as Stellite 706, Stellite 712, and Stellite 720, with different carbon and molybdenum contents, are studied experimentally in this research, focusing on microstructure and phases, hardness, and wear resistance, using SEM/EDX/XRD techniques, a Rockwell hardness tester, and a pin-on-disk tribometer. It is found that both carbon and molybdenum contents influence the microstructures of these alloys significantly. The former determines the volume fraction of carbides in the alloys, and the latter governs the amount of molybdenum-rich carbides precipitated in the alloys. The hardness and wear resistance of these alloys are increased with the carbide volume fraction. However, with the same or similar carbon content, high-carbon CoCrMo Stellite alloys exhibit worse wear resistance than high-carbon CoCrW Stellite alloys.
NASA Astrophysics Data System (ADS)
Liu, Qing-Quan; Li, Bin; Shao, Yong-Jun; Lu, An-Huai; Lai, Jian-Qing; Li, Yong-Feng; Luo, Zheng-Zhuan
2017-06-01
The Dabie Orogen is a world-class case for large amounts of Mo mineralization in that it contains at least 10 porphyry Mo deposits with Mo metal reserves over 3 Mt from the time period of 156-110 Ma. However, the principal mechanism for the Mo mineralization remains controversial due to the lack of a precise definition of its source and shallow ore-forming process, which is essential to understand these rare large Mo deposits. Detailed geochronology, geochemistry, and isotopic data for ore-related granites and minerals were analyzed in order to place constraints on the massive Mo mineralization in the Dabie Orogen in eastern China. The Yaochong molybdenum orebodies were hosted in the transition belt and alteration zone between the granitic stocks and the Dabie Complex and were characterized as numerous veinlets with potassic, phyllic and propylitic alterations. The buried Yaochong granitic intrusions and associated molybdenum mineralization yield Early Cretaceous ages of magmatic activities at ca. 138 Ma and extremely similar Re-Os isotope ages for the corresponding Mo metallogenic event at ca. 137 Ma. The Yaochong monzogranite and granite porphyry belong to the highly fractionated I-type granites, which are believed to be derived from the dominantly Yangtze's lower crust mixed with the Northern Dabie Complex due to their geochemical and isotope features. The elemental diversity and isotopic homogeneity suggest that the formation of the Yaochong monzogranite involved the fractionation of biotite, garnet and minor feldspar and accessory minerals combined with a weak crustal assimilation process. In contrast, the granite porphyry was possibly generated by the partial melting of the same mixed lower continental crust via the differentiation process involving the fractionation of feldspar, apatite, and/or titanite. Fractional crystallization processes can significantly elevate the molybdenum concentration in the residual melts. The biotite fractional crystallization results in removal of molybdenum from the vestigial magma since molybdenum is compatible with it, which may account for the barren monzogranite with a low-grade molybdenum mineralization. The ore-bearing granite porphyry has more source materials from the Yangtze's lower crust, which may have contributed most of the molybdenum for the porphyry-related molybdenum deposits in the Dabie metallogenic zone. This porphyry molybdenum aggregation may have been deposited in a post-collision or intracontinental extensional setting.
Mukund, S; Adams, M W
1996-01-01
Three different types of tungsten-containing enzyme have been previously purified from Pyrococcus furiosus (optimum growth temperature, 100 degrees C): aldehyde ferredoxin oxidoreductase (AOR), formaldehyde ferredoxin oxidoreductase (FOR), and glyceraldehyde-3-phosphate oxidoreductase (GAPOR). In this study, the organism was grown in media containing added molybdenum (but not tungsten or vanadium) or added vanadium (but not molybdenum or tungsten). In both cell types, there were no dramatic changes compared with cells grown with tungsten, in the specific activities of hydrogenase, ferredoxin:NADP oxidoreductase, or the 2-keto acid ferredoxin oxidoreductases specific for pyruvate, indolepyruvate, 2-ketoglutarate, and 2-ketoisovalerate. Compared with tungsten-grown cells, the specific activities of AOR, FOR, and GAPOR were 40, 74, and 1%, respectively, in molybdenum-grown cells, and 7, 0, and 0%, respectively, in vanadium-grown cells. AOR purified from vanadium-grown cells lacked detectable vanadium, and its tungsten content and specific activity were both ca. 10% of the values for AOR purified from tungsten-grown cells. AOR and FOR purified from molybdenum-grown cells contained no detectable molybdenum, and their tungsten contents and specific activities were > 70% of the values for the enzymes purified from tungsten-grown cells. These results indicate that P. furiosus uses exclusively tungsten to synthesize the catalytically active forms of AOR, FOR, and GAPOR, and active molybdenum- or vanadium-containing isoenzymes are not expressed when the cells are grown in the presence of these other metals. PMID:8550411
Wang, Shuai; Tu, Jiguo; Yuan, Yan; Ma, Rui; Jiao, Shuqiang
2016-01-28
The paper reports a facile and cost effective method for fabricating sodium molybdenum sulfide nanoparticles through using MoS2 sheets as the precursor by sodium-modification. The electrochemical performances of sodium molybdenum sulfide nanoparticles are studied as anode materials for sodium-ion batteries. The galvanostatic charge-discharge measurements have been performed in a voltage range of 0.01-2.6 V vs. Na(+)/Na under different current densities, using the as-prepared sodium molybdenum sulfide nanoparticles as a working electrode. Typically, the initial discharge and charge capacities of sodium molybdenum sulfide nanoparticles are 475 and 380 mA h g(-1), respectively, at a current density of 20 mA g(-1). The sodium molybdenum sulfide nanoparticles exhibit high capacity with a reversible discharge capacity of about 190 mA h g(-1) after 100 cycles. It should be emphasized that the discharge reaction consists of two steps which correspond to voltage plateaus of 0.93 V and 0.85 V vs. Na(+)/Na in the first discharge curve of the Na/MoS2 battery, respectively. But there is only one apparent voltage plateau in the Na/Na-Mo-S battery, and it reduces to below 0.5 V vs. Na(+)/Na, which can enhance the power density. All of the findings demonstrate that sodium molybdenum sulfide nanoparticles have steady cycling performance and environmental and cost friendliness as next generation secondary batteries.
NASA Astrophysics Data System (ADS)
Liu, W. H.; Pan, J. Y.
2017-10-01
Huangshaping is one of the most important polymetallic deposits in the south of Hunan Province. Through field investigation, chemical analysis, observation under the optical microscope, energy spectrum analysis of the SEM and X-ray diffraction, the author made a technological mineralogical research of molybdenum on skarn-type ore, and the result shows that the ore containing molybdenum is mainly on the contact of the granite porphyry and the impure limestone in the lower carboniferous Shidengzi group. Besides molybdenum, the ore minerals contain scheelite, native bismuth, bismuthinite, magnetite and so on; and the gangue minerals are mainly andradite, fluorite and wollastonite. Part of the molybdenum exists in the scheelite in form of isomorphism, and there is an obvious negative correlation between MoO3 and WO3. The molybdenite granularity is mainly located in the 0.04~ 0.08mm area, which accounts for 29.5% of the total and is the finely disseminated ore. For samples of 70%, 90%, and 100% with the particle size of more than 200 meshes, the maximum recovery of the molybdenite are 75.15%, 86.45% and 91.25% respectively. So there will be a better use of molybdenum if we properly improve the grinded particle size of the comprehensive samples. As part of the molybdenum is distributed in the scheelite lattice, the actual recovery rate in this area may decline compared with the ideal value.
Removing Molybdenum with the Microalgae Extracted from the Wastewater in Semiconductor Plants
NASA Astrophysics Data System (ADS)
Chiu, Yi-Chuan
2017-04-01
It has been well recognized that algae biomass can treat highly contaminated water in an effective way. Algae can grows in the natural environment without any care and can be efficiently cultivated. Both of living algae and dry algae biomass have been tested to absorb many kinds of toxic pollutants, because there are multiple functional groups on the algae surface capable of binding molybdenum. Therefore, algae become a good choice for the treatment of molybdenum in contaminated waters. In addition, in Taiwan, semiconductor industry is highly developed in the recent three decades. Subsequently, it is believed that some pollutants, such as molybdenum in this study, have become a threat to the surface water, groundwater and even the whole environment. In the previous studies, molybdenum is a well-known essential nutrient for the algae; therefore, the potential to remove molybdenum with algae from the wastewater is worth to be evaluated. The algae species, Chloroidium saccharophilum, was extracted from the wastewater in semiconductor plants for the study of removing molybdenum. A few sorption experiments have been conducted for evaluating the efficiency of removing molybdenum under different values of pH and molybdenum concentration. The absorption of Chloroidium saccharophilum can reach equilibrium in short times, which are 60 and 120 mins for molybdenum concentrations of 600 and 1200 ppb, respectively. The sorption experiments would accept the duration of 120 mins as the contact time and were performed at pH values of 6, 4 and 2 with different concentrations of molybdenum diluted by deionized water. The experiment data confirms that the isotherm has an excellent agreement on Langmuir adsorption model with the correlation coefficients (r2) of > 0.97. It demonstrates that the adsorption capacity (qmax) has an inverse relationship with pH value, which are 826, 2564 and 4761 mgkg-1 for pH 6, 4 and 2, respectively, while those of net enthalpy of adsorption (KL) are 3.98, 2.98 and 1.5 × 10-5 mgkg-1. In addition, a similar experiment was also conducted with domestic sewage instead of deionized water under pH=6 and obtained a much higher value of qmax (1923 mgkg-1) than that with deionized water. It is believed that the cations in the domestic sewage, such as Ca2+, Mg2+, Na+ and K+, are capable of replacing H+ from the algae surface, which can decrease the pH value of water and subsequently promote the absorption of MoO42- as the aforementioned. FTIR was utilized for determining the functional groups on algae surface in this study. There are five major absorption bands, which are corresponding to -O-H, -COO- , C-O-C, Mo-O and Mo-N. However, the responsible functional group to absorb MoO42- is still uncertain and the comparison of absorption behaviour of molybdenum among different algae species should be also evaluated. More researches will be studied in the future.
PREFACE: The 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008)
NASA Astrophysics Data System (ADS)
Tanaka, Takaho
2009-07-01
This volume of Journal of Physics: Conference Series contains invited and contributed peer-reviewed papers that were presented at the 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008), which was held on 7-12 September 2008, at Kunibiki Messe, Matsue, Japan. This triennial symposium has a half-century long history starting from the 1st meeting in 1959 at Asbury Park, New Jersey. We were very pleased to organize ISBB 2008, which gathered chemists, physicists, materials scientists as well as diamond and high-pressure researchers. This meeting had a strong background in the boron-related Japanese research history, which includes the discovery of superconductivity in MgB2 and development of Nd-Fe-B hard magnets and of YB66 soft X-ray monochromator. The scope of ISBB 2008 spans both basic and applied interdisciplinary research that is centered on boron, borides and related materials, and the collection of articles defines the state of the art in research on these materials. The topics are centered on: 1. Preparation of new materials (single crystals, thin films, nanostructures, ceramics, etc) under normal or extreme conditions. 2. Crystal structure and chemical bonding (new crystal structures, nonstoichiometry, defects, clusters, quantum-chemical calculations). 3. Physical and chemical properties (band structure, phonon spectra, superconductivity; optical, electrical, magnetic, emissive, mechanical properties; phase diagrams, thermodynamics, catalytic activity, etc) in a wide range of temperatures and pressures. 4. Applications and prospects (thermoelectric converters, composites, ceramics, coatings, etc) There were a few discoveries of new materials, such as nanomaterials, and developments in applications. Many contributions were related to 4f heavy Fermion systems of rare-earth borides. Exotic mechanisms of magnetism and Kondo effects have been discussed, which may indicate another direction of development of boride. Two special sessions, 'Boron chemistry' and 'Superconductivity', were also held at the symposium. The session on Boron chemistry was planned to honor the scientific work in boron chemistry of Professor J Bauer on the occasion of his retirement. Many recent results were discussed in the session, and Professor Bauer himself introduced novel rare-earth-boron-carbon compounds RE10B7C10 (RE = Gd - Er) in his lecture. In the latter session, on the basis of recent discoveries of superconductivity in MgB2 and in β-boron under high pressure, the superconductivity of boron and related materials was discussed and the superconductivity of boron-doped diamond was also addressed. More than 120 participants from 16 countries attended the ISBB 2008, and active presentations (22 invited, 33 oral and 68 posters) and discussions suggest that research on boron and borides is entering a new phase of development. This volume contains 46 articles from 52 submitted manuscripts. The reviewers were invited not only from symposium participants but also from specialists worldwide, and they did a great job of evaluating and commenting on the submitted manuscripts to maintain the highest quality standard of this volume. Recent discoveries of superconductivity in boron under high pressure, synthesis of a new allotrope of boron and of various boron and boride nanostructures will lead this highly interdisciplinary field of science, which will further grow and gain attention in terms of both basic and applied research. In this context, we are very much looking forward to the next symposium, which will be held in Istanbul, Turkey, in 2011, organized by Professor Onuralp Yucel, Istanbul Technical University. Turkey currently has the world highest share of borate production and is expected to be involved more in boron-related research. Acknowledgements We gratefully acknowledge the style improvement by Dr K Iakoubovskii, and sincerely thank Shimane Prefecture and Matsue City for their financial support. The symposium was also supported by Tokyo University of Science, Suwa and foundations including, the Kajima Foundation, Foundation for Promotion of Material Science and Technology of Japan and Nippon Sheet Glass Foundation for Materials Science and Engineering, as well as companies including JFE Steel Corporation, Shincron Co, Ltd, Toyo Kohan Co, Ltd, Fukuda Metal Foil and Powder Co, Ltd, Japan New Metals Co, Ltd, H C Starck Ltd and Fritsch Japan Co, Ltd. Editors Chair Takaho Tanaka (National Institute for Materials Science, Japan) Vice chairs Koun Shirai (Osaka University, Japan) Kaoru Kimura (The University of Tokyo, Japan) Ken-ichi Takagi (Tokyo City University, Japan) Touetsu Shishido (Tohoku University, Japan) Shigeru Okada (Kokushikan University) Hideaki Itoh (Nagoya University,Japan) Katsumitsu Nakamura (Nihon University, Japan) Organizing committee of ISBB 2008 K Takagi Chairman (Tokyo City University) T Tanaka Program Committee Chairman (National Institute for Materials Science) K Kimura Secretary (The University of Tokyo) J Akimitsu (Aoyama University)K Shirai (Osaka University) H Itoh (Nagoya University)T Shishido (Tohoku University) K Nakamura (Nihon University)K Soga (Tokyo University of Science) K Nishiyama (Tokyo University of Science, Suwa)M Takeda (Nagaoka University of Technology) S Okada (Kokushikan University)Y Yamazaki (Toyo Kohan Co, Ltd) International Scientific Committee 0f ISBB (2008-2011) K Takagi Chairman (Japan) B Albert (Germany) J-F Halet (France) M Takeda (Japan) M Antadze (Georgia) H Hillebrecht (Germany) T Tanaka (Japan) J Bauer (France) W Jung (Germany) R Telle (Germany) I Boustani (Germany) K Kimura (Japan) M Trenary (USA) D Emin (USA) T Mori (Japan) O Tsagareishvili (Georgia) M Engler (Germany) P D Ownby (USA) H Werheit (Germany) N Frage (Israel) P Rogl (Austria) G Will (Germany) Yu Grin (Germany) S Shalamberidze (Georgia) O Yucel (Turkey) V N Gurin (Russia) N Shitsevalova (Ukraine) G Zhang (China)
Thermal emission property of solid solution Gd{sub 1-x}Nd{sub x}B{sub 6} (x=0, 0.6, 0.8)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xing Zhang, Jiu; Hong Bao, Li; Lin Zhou, Shen, E-mail: zjiuxing@bjut.edu.cn, E-mail: Baolihong_10@yahoo.com.cn, E-mail: zhoushenlin@emails.bjut.edu.cn
2011-07-01
In this paper, to further explore the excellent emission properties of rare earth boride cathode, herein we present the synthesis, characterization and properties of polycrystalline Nd{sub 1-x}Gd{sub x}B{sub 6} (x = 0, 0.6, 0.8) bulk via arc plasma and reactive SPS. (author)
NASA Astrophysics Data System (ADS)
Mukhametzyanova, G. F.; Kolesnikov, MS; Mukhametzyanov, I. R.; Astatshenko, V. I.
2017-09-01
The kinetics and reasons for metallic pipe wear of hot chamberzinc alloy die casting machines are established.Increasing metallic pipe wear components wear resistance is being achieved by means of die steelДИ - 22 with electroslag remelting modification and electron-beamremelting modification and after the processes of nitriding and boriding besides.
NASA Astrophysics Data System (ADS)
Mbarki, Mohammed; Touzani, Rachid St.; Fokwa, Boniface P. T.
2013-07-01
The new ternary metal-rich boride, Nb2OsB2, was synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The compound was characterized from single-crystal X-ray data and EDX measurements. It crystallizes as a new superstructure (space group P4/mnc, no. 128) of the tetragonal U3Si2-structure type with lattice parameters a=5.922(1) Å and c=6.879(2) Å. All of the B atoms are involved in B2 dumbbells with B-B distances of 1.89(4) Å. Structure relaxation using VASP (Vienna ab intio Simulation Package) has confirmed the space group and the lattice parameters. According to electronic structure calculations (TB-LMTO-ASA), the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic Os-B, Nb-B and Nb-Os bonds are also found: These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of this new phase. The density of state at the Fermi level predicts metallic behavior, as expected, from this metal-rich boride.
The use of surface layer with boron in friction pairs lubricated by engine oils
NASA Astrophysics Data System (ADS)
Szczypiński-Sala, W.; Lubas, J.
2016-09-01
The aim of the present work is to determine the influence of surface layers with boron and engine oil on the processes of friction and wear in friction pairs. The ring samples with borided surface layer cooperated under test conditions with counterparts made with CuPb30 and AlSn20 bearing alloys. During the tests, the friction pairs were lubricated with 15W/40 Lotos mineral oil and 5W/40 Lotos synthetic oil. The lubrication of friction area with Lotos mineral oil causes the reduction of the friction force, the temperature in the friction area and the wear of the bearing alloys under study, whereas the lubrication with Lotos synthetic oil reduces the changes in the geometrical structure of the cooperating friction pair elements. Lubrication of the friction area in the start-up phase of the friction pair by mineral oil causes faster stabilization of the friction conditions in the contact area than in the cause of lubrication of the friction pair by synthetic oil. The intensity of wear of the AlSn20 bearing alloy cooperating with the borided surface layer is three times smaller than the intensity of use of the CuPb30 alloy bearing.
NASA Astrophysics Data System (ADS)
Misse, Patrick R. N.; Mbarki, Mohammed; Fokwa, Boniface P. T.
2012-08-01
Powder samples and single crystals of the new complex boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region.
On the transferability of electron density in binary vanadium borides VB, V3B4 and VB2.
Terlan, Bürgehan; Akselrud, Lev; Baranov, Alexey I; Borrmann, Horst; Grin, Yuri
2015-12-01
Binary vanadium borides are suitable model systems for a systematic analysis of the transferability concept in intermetallic compounds due to chemical intergrowth in their crystal structures. In order to underline this structural relationship, topological properties of the electron density in VB, V3B4 and VB2 reconstructed from high-resolution single-crystal X-ray diffraction data as well as derived from quantum chemical calculations, are analysed in terms of Bader's Quantum Theory of Atoms in Molecules [Bader (1990). Atoms in Molecules: A Quantum Theory, 1st ed. Oxford: Clarendon Press]. The compounds VB, V3B4 and VB2 are characterized by a charge transfer from the metal to boron together with two predominant atomic interactions, the shared covalent B-B interactions and the polar covalent B-M interactions. The resembling features of the crystal structures are well reflected by the respective B-B interatomic distances as well as by ρ(r) values at the B-B bond critical points. The latter decrease with an increase in the corresponding interatomic distances. The B-B bonds show transferable electron density properties at bond critical points depending on the respective bond distances.
Molybdenum enhanced low-temperature deposition of crystalline silicon nitride
Lowden, R.A.
1994-04-05
A process for chemical vapor deposition of crystalline silicon nitride is described which comprises the steps of: introducing a mixture of a silicon source, a molybdenum source, a nitrogen source, and a hydrogen source into a vessel containing a suitable substrate; and thermally decomposing the mixture to deposit onto the substrate a coating comprising crystalline silicon nitride containing a dispersion of molybdenum silicide. 5 figures.
DFT study of the molybdenum-catalyzed deoxydehydration of vicinal diols.
Lupp, Daniel; Christensen, Niels Johan; Dethlefsen, Johannes R; Fristrup, Peter
2015-02-16
The mechanism of the molybdenum-catalyzed deoxydehydration (DODH) of vicinal diols has been investigated using density functional theory. The proposed catalytic cycle involves condensation of the diol with an Mo(VI) oxo complex, oxidative cleavage of the diol resulting in an Mo(IV) complex, and extrusion of the alkene. We have compared the proposed pathway with several alternatives, and the results have been corroborated by comparison with the molybdenum-catalyzed sulfoxide reduction recently published by Sanz et al. and with experimental observations for the DODH itself. Improved understanding of the mechanism should expedite future optimization of molybdenum-catalyzed biomass transformations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Garzón, A; Li, J; Flores, A; Casadesus, J; Stewart, V
1992-01-01
Selection for chlorate resistance yields mol (formerly chl) mutants with defects in molybdenum cofactor synthesis. Complementation and genetic mapping analyses indicated that the Klebsiella pneumoniae mol genes are functionally homologous to those of Escherichia coli and occupy analogous genetic map positions. Hypoxanthine utilization in other organisms requires molybdenum cofactor as a component of xanthine dehydrogenase, and thus most chlorate-resistant mutants cannot use hypoxanthine as a sole source of nitrogen. Surprisingly, the K. pneumoniae mol mutants and the mol+ parent grew equally well with hypoxanthine as the sole nitrogen source, suggesting that K. pneumoniae has a molybdenum cofactor-independent pathway for hypoxanthine utilization. PMID:1400180
A molybdenum disulfide/carbon nanotube heterogeneous complementary inverter.
Huang, Jun; Somu, Sivasubramanian; Busnaina, Ahmed
2012-08-24
We report a simple, bottom-up/top-down approach for integrating drastically different nanoscale building blocks to form a heterogeneous complementary inverter circuit based on layered molybdenum disulfide and carbon nanotube (CNT) bundles. The fabricated CNT/MoS(2) inverter is composed of n-type molybdenum disulfide (MOS(2)) and p-type CNT transistors, with a high voltage gain of 1.3. The CNT channels are fabricated using directed assembly while the layered molybdenum disulfide channels are fabricated by mechanical exfoliation. This bottom-up fabrication approach for integrating various nanoscale elements with unique characteristics provides an alternative cost-effective methodology to complementary metal-oxide-semiconductors, laying the foundation for the realization of high performance logic circuits.
Gao, Min-Rui; Liang, Jin-Xia; Zheng, Ya-Rong; Xu, Yun-Fei; Jiang, Jun; Gao, Qiang; Li, Jun; Yu, Shu-Hong
2015-01-01
The electroreduction of water for sustainable hydrogen production is a critical component of several developing clean-energy technologies, such as water splitting and fuel cells. However, finding a cheap and efficient alternative catalyst to replace currently used platinum-based catalysts is still a prerequisite for the commercialization of these technologies. Here we report a robust and highly active catalyst for hydrogen evolution reaction that is constructed by in situ growth of molybdenum disulfide on the surface of cobalt diselenide. In acidic media, the molybdenum disulfide/cobalt diselenide catalyst exhibits fast hydrogen evolution kinetics with onset potential of −11 mV and Tafel slope of 36 mV per decade, which is the best among the non-noble metal hydrogen evolution catalysts and even approaches to the commercial platinum/carbon catalyst. The high hydrogen evolution activity of molybdenum disulfide/cobalt diselenide hybrid is likely due to the electrocatalytic synergistic effects between hydrogen evolution-active molybdenum disulfide and cobalt diselenide materials and the much increased catalytic sites. PMID:25585911
Investigating the Influence of MoS2 Nanosheets on E. coli from Metabolomics Level.
Wu, Na; Yu, Yadong; Li, Tao; Ji, Xiaojun; Jiang, Ling; Zong, Jiajun; Huang, He
2016-01-01
Molybdenum disulfide, a type of two-dimensional layered material with unique properties, has been widely used in many fields. However, an exact understanding of its toxicity remains elusive, let alone its effects on the environmental microbial community. In this study, we utilized metabolomics technology to explore the effects of different concentrations of molybdenum disulfide nanosheets on Escherichia coli for the first time. The results showed that with increasing concentration of molybdenum disulfide nanosheets, the survival rate of Escherichia coli was decreased and the release of lactic dehydrogenase was increased. At the same time, intracellular concentrations of reactive oxygen species were dramatically increased. In addition, metabolomics analysis showed that high concentrations of molybdenum disulfide nanosheets (100, 1000 μg/mL) could significantly affect the metabolic profile of Escherichia coli, including glycine, serine and threonine metabolism, protein biosynthesis, urea cycle and pyruvate metabolism. These results will be beneficial for molybdenum disulfide toxicity assessment and further applications.
Erosion rate diagnostics in ion thrusters using laser-induced fluorescence
NASA Technical Reports Server (NTRS)
Gaeta, C. J.; Matossian, J. N.; Turley, R. S.; Beattie, J. R.; Williams, J. D.; Williamson, W. S.
1993-01-01
We have used laser-induced fluorescence (LIF) to monitor the charge-exchange ion erosion of the molybdenum accelerator electrode in ion thrusters. This real-time, nonintrusive method was implemented by operating a 30cm-diam ring-cusp thruster using xenon propellant. With the thruster operating at a total power of 5 kW, laser radiation at a wavelength of 390 nm (corresponding to a ground state atomic transition of molybdenum) was directed through the extracted ion beam adjacent to the downstream surface of the molybdenum accelerator electrode. Molybdenum atoms, sputtered from this surface as a result of charge-exchange ion erosion, were excited by the laser radiation. The intensity of the laser-induced fluorescence radiation, which is proportional to the sputter rate of the molybdenum atoms, was measured and correlated with variations in thruster operating conditions such as accelerator electrode voltage, accelerator electrode current, and test facility background pressure. We also demonstrated that the LIF technique has sufficient sensitivity and spatial resolution to evaluate accelerator electrode lifetime in ground-based test facilities.
Recovering and recycling uranium used for production of molybdenum-99
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, Sean Douglas; May, Iain; Copping, Roy
A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated targetmore » suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.« less
Recovery of Tungsten and Molybdenum from Low-Grade Scheelite
NASA Astrophysics Data System (ADS)
Li, Yongli; Yang, Jinhong; Zhao, Zhongwei
2017-10-01
With most high-quality tungsten ores being exhausted, the enhancement of low-grade scheelite concentrates processing has attracted a great deal of attention. The objective of this study is to develop a method to maximize the recovery tungsten and molybdenum from a low-grade scheelite via a new acid leaching process followed by solvent extraction. Under optimal conditions (350 g/L H2SO4, 95°C, and 2 h), approximately 99.8% of tungsten and 98% of molybdenum were leached out. In the subsequent solvent extraction process, more than 99% of the tungsten and molybdenum were extracted with a co-extraction system (50% TBP, 30% HDEHP, and 10% 2-octanol in kerosene) using a three-stage cross-flow extraction. The raffinate can be recycled for the next leaching process after replenishing the H2SO4 to the initial value (approximately 350 g/L). Based on these results, a conceptual flowsheet is presented to recover tungsten and molybdenum from the low-grade scheelite.
Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors.
Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini
2016-07-18
Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvakumar, S., E-mail: lathaselvam1963@gmail.com
Aluminum matrix composites (AMCs) reinforced with various ceramic particles suffer a loss in ductility. Hard metallic particles can be used as reinforcement to improve ductility. The present investigation focuses on using molybdenum (Mo) as potential reinforcement for Mo(0,6,12 and 18 vol.%)/6082Al AMCs produced using friction stir processing (FSP). Mo particles were successfully retained in the aluminum matrix in its elemental form without any interfacial reaction. A homogenous distribution of Mo particles in the composite was achieved. The distribution was independent upon the region within the stir zone. The grains in the composites were refined considerably due to dynamic recrystallization andmore » pinning effect. The tensile test results showed that Mo particles improved the strength of the composite without compromising on ductility. The fracture surfaces of the composites were characterized with deeply developed dimples confirming appreciable ductility. - Highlights: •Molybdenum particles used as reinforcement for aluminum composites to improve ductility. •Molybdenum particles were retained in elemental form without interfacial reaction. •Homogeneous dispersion of molybdenum particles were observed in the composite. •Molybdenum particles improved tensile strength without major loss in ductility. •Deeply developed dimples on the fracture surfaces confirmed improved ductility.« less
The role of oxygen in porous molybdenum electrodes for the alkali metal thermoelectric converter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R.M.; Nagasubramanian, G.; Khanna, S.K.
1986-08-01
The alkali metal thermoelectric converter is a direct energy conversion device, utilizing a high alkali metal activity gradient to generate electrical power. Its operation is based on the unique ion conductive properties of beta''-alumina solid electrolyte. The major barrier to application of this device is identification of an electrode which can maintain optimum power densities for operation times of >10,000h. Thin, porous molybdenum electrodes have shown the best performance characteristics, but show a variety of time dependent phenomena, including eventual degradation to power densities 3-5 times lower than initial values. Several Na-Mo-O compounds, including Na/sub 2/MoO/sub 4/ and Na/sub 2/Mo/submore » 3/O/sub 6/, are formed during AMTEC operation. These compounds may be responsible for enhanced Na transport through Mo electrodes via sodium ion conduction, and eventual performance degradation due to their volatilization and decomposition. No decomposition of beta''-alumina has been observed under simulated AMTEC operating conditions up to 1373 K. In this paper, we present a model for chemical reactions occurring in porous molybdenum electrodes. The model is based on thermochemical and kinetic data, known sodium-molybdenum-oxygen chemistry, x-ray diffraction analysis of molybdenum and molybdenum oxide electrodes, and the electrochemical behavior of the cell.« less
Cold cap subsidence for in situ vitrification and electrodes therefor
Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.
1992-01-01
An electrode for use in in situ vitrification of soil comprises a molybdenum rod received within a conductive sleeve or collar formed of graphite. Electrodes of this type are placed on either side of a region containing buried waste material and an electric current is passed therebetween for vitrifying the soil between the electrodes. The graphite collar enhances the thermal conductivity of the electrode, bringing heat to the surface, and preventing the formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is filled with a conductive ceramic powder of a type that sinters upon the molybdenum rod, protecting the same from oxidation as the graphite material is consumed, or a metal powder which liquifies at operating temperatures. The molybdenum rod in the former case may be coated with an oxidation protectant, e.g. of molybdenum disilicide. As insulative blanket is suitably placed on the surface of the soil during processing to promote subsidence by allowing off-gassing and reducing surface heat loss. In other embodiments, connection to vitrification electrodes is provided below ground level to avoid loss of connection due to electrodes deterioration, or a sacrificial electrode may be employed when operation is started. Outboard electrodes can be utilized to square up the vitrified area. Further, the center of the molybdenum rod can be made hollow and filled with a powdered metal, such as copper, which liquifies at operating temperatures. In one embodiment, the molybdenum rod and the graphite collar are physically joined at the bottom.
Molybdenum nitrides as oxygen reduction reaction catalysts: Structural and electrochemical studies
Cao, Bingfei; Neuefeind, Joerg C.; Adzic, Radoslav R.; ...
2015-02-09
Monometallic (δ-MoN, Mo 5N 6, and Mo 2N) and bimetallic molybdenum nitrides (Co 0.6Mo 1.4N 2) were investigated as electrocatalysts for the oxygen reduction reaction (ORR), which is a key half-reaction in hydrogen fuel cells. Monometallic hexagonal molybdenum nitrides are found to exhibit improved activities over rock salt type molybdenum nitride (γ-Mo 2N), suggesting that improvements are due to either the higher molybdenum valence or a more favorable coordination environment in the hexagonal structures. Further enhancements in activity were found for hexagonal bimetallic cobalt molybdenum nitride (Co 0.6Mo 1.4N 2), resulting in a modest onset potential of 0.713 V versusmore » reversible hydrogen electrode (RHE). Co 0.6Mo 1.4N 2 exhibits good stability in acidic environments, and in the potential range lower than 0.5 V versus RHE, the ORR appears to proceed via a four-electron mechanism based on the analysis of rotating disc electrode results. A redetermination of the structures of the binary molybdenum nitrides was carried out using neutron diffraction data, which is far more sensitive to nitrogen site positions than X-ray diffraction data. In conclusion, the revised monometallic hexagonal nitride structures all share many common features with the Co 0.6Mo 1.4N 2 structure, which has alternating layers of cations in octahedral and trigonal prismatic coordination, and are thus not limited to only trigonal prismatic Mo environments (as was originally postulated for δ-MoN).« less
Quantitative SIMS depth profiling of diffusion barrier gate-oxynitride structures in TFT-LCDs.
Dreer, Sabine; Wilhartitz, Peter; Piplits, Kurt; Mayerhofer, Karl; Foisner, Johann; Hutter, Herbert
2004-06-01
Gate oxynitride structures of TFT-LCDs were investigated by SIMS, and successful solutions are demonstrated to overcome difficulties arising due to the charging effects of the multilayer systems, the matrix effect of the method, and the small pattern sizes of the samples. Because of the excellent reproducibility achieved by applying exponential relative sensitivity functions for quantitative analysis, minor differences in the barrier gate-oxynitride composition deposited on molybdenum capped aluminium-neodymium metallisation electrodes were determined between the centre and the edge of the TFT-LCD substrates. No differences were found for molybdenum-tungsten metallisations. Furthermore, at the edge of the glass substrates, aluminium, neodymium, and molybdenum SIMS depth profiles show an exponential trend. With TEM micrographs an inhomogeneous thickness of the molybdenum capping is revealed as the source of this effect, which influences the electrical behaviour of the device. The production process was improved after these results and the aging behaviour of TFT-LCDs was investigated in order to explain the change in control voltage occurring during the lifetime of the displays. SIMS and TEM show an enrichment of neodymium at the interface to the molybdenum layer, confirming good diffusion protection of the molybdenum barrier during accelerated aging. The reason for the shift of the control voltage was finally located by semi-quantitative depth profiling of the sodium diffusion originating from the glass substrate. Molybdenum-tungsten was a much better buffer for the highly-mobile charge carriers than aluminium-neodymium. Best results were achieved with PVD silicon oxynitride as diffusion barrier and gate insulator deposited on aluminium-neodymium metallisation layers.
Miller, J B; Amy, N K
1983-01-01
We examined molybdenum cofactor activity in chlorate-resistant (chl) and nitrate reductase-deficient (nar) insertion mutants and wild-type strains of Escherichia coli K-12. The bacterial molybdenum cofactor was assayed by its ability to restore activity to the cofactor-deficient nitrate reductase found in the nit-1 strain of Neurospora crassa. In the wild-type E. coli strains, molybdenum cofactor was synthesized constitutively and found in both cytoplasmic and membrane fractions. Cofactor was found in two forms: the demolybdo form required additional molybdate in the assay mix for detection, whereas the molybdenum-containing form was active without additional molybdate. The chlA and chlE mutants had no detectable cofactor. The chlB and the narG, narI, narK, and narL (previously designated chlC) strains had cofactor levels similar to those of the wild-type strains, except the chlB strains had two to threefold more membrane-bound cofactor. Cofactor levels in the chlD and chlG strains were sensitive to molybdate. When grown in 1 microM molybdate, the chlD strains had only 15 to 20% of the wild-type levels of the demolybdo and molybdenum-containing forms of the cofactor. In contrast, the chlG strains had near wild-type levels of demolybdo cofactor when grown in 1 microM molybdate, but none of the molybdenum-containing form of the cofactor. Near wild-type levels of both forms of the cofactor were restored to the chlD and chlG strains by growth in 1 mM molybdate. PMID:6307982
Note: Laser-cut molybdenum grids for a retarding field energy analyzer
NASA Astrophysics Data System (ADS)
Landheer, K.; Kobelev, A. A.; Smirnov, A. S.; Bosman, J.; Deelen, S.; Rossewij, M.; de Waal, A. C.; Poulios, I.; Benschop, A. F.; Schropp, R. E. I.; Rath, J. K.
2017-06-01
A retarding field energy analyzer (RFEA) with grids created by laser-cutting a honeycomb mesh in a 50 μm thick molybdenum foil is presented. The flat grids span an area of 1 cm2 and have high transmission (20 μm wide walls between 150 μm wide meshes). The molybdenum grids were tested in a 3-grid RFEA configuration with an analyzer depth of 0.87 mm.
THE CHEMICAL ANALYSIS OF TERNARY ALLOYS OF PLUTONIUM WITH MOLYBDENUM AND URANIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, G.; Woodhead, J.; Jenkins, E.N.
1958-09-01
It is shown that the absorptiometric determination of molybdenum as thiocyanate may be used in the presence of plutonium. Molybdenum interferes with previously published methods for determining uranium and plutonium but conditlons have been established for its complete removal by solvent extraction of the compound with alpha -benzoin oxime. The previous methods for uranium and plutonium are satisfactory when applied to the residual aqueous phase following this solvent extraction. (auth)
Equilibrium of molybdenum in selected extraction systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkac, Peter; Paulenova, Alena
2007-07-01
The concentration of molybdenum(VI) in dissolved irradiated nuclear fuel is comparable with the concentrations of Tc, Am and Np. Therefore it is of big interest to understand its behavior under conditions related to the UREX/TRUEX process. The effect of the poly-speciation of molybdenum in aqueous solution on its extraction by neutral solvents TBP and CMPO/TBP was studied. Extraction yields of molybdenum decreased significantly when AHA was added to aqueous phase. Our investigation confirmed a strong ability of the aceto-hydroxamic acid to form complexes with Mo in high acidic solutions. Spectroscopic data (UV-Vis) confirmed that a fraction of the Mo(VI)-AHA complexmore » is present in the organic phase after extraction. (authors)« less
Impact resistance performance of diamond film on a curved molybdenum substrate
NASA Astrophysics Data System (ADS)
Chen, Yang; Gou, Li
2017-08-01
Diamond films with different thicknesses were deposited on flat and curved molybdenum substrate by the microwave plasma chemical vapour deposition (MPCVD) method. Scanning electronic microscopy, atomic force microscopy and Raman spectroscopy were employed to characterise the morphology, the surface roughness and the composition of the films, respectively. A NanoTest system was used for hardness, elastic modulus and nanoimpact tests. The curved surface and ductility of the molybdenum substrate allow large deformation for the thinner films. The substrate has less effect on impact for the thicker film, the deformation of which is mainly determined by the film composition. Under a load of 50 mN and 75 cycles, less deformation occurred for the 22 μm thick film on the curved molybdenum substrate.
Interpretation and modelling of fission product Ba and Mo releases from fuel
NASA Astrophysics Data System (ADS)
Brillant, G.
2010-02-01
The release mechanisms of two fission products (namely barium and molybdenum) in severe accident conditions are studied using the VERCORS experimental observations. Barium is observed to be mostly released under reducing conditions while molybdenum release is most observed under oxidizing conditions. As well, the volatility of some precipitates in fuel is evaluated by thermodynamic equilibrium calculations. The polymeric species (MoO 3) n are calculated to largely contribute to molybdenum partial pressure and barium volatility is greatly enhanced if the gas atmosphere is reducing. Analytical models of fission product release from fuel are proposed for barium and molybdenum. Finally, these models have been integrated in the ASTEC/ELSA code and validation calculations have been performed on several experimental tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa
A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.
LINER FOR EXTRUSION BILLET CONTAINERS
Shrink-fit assembly device for buildup of ceramic-coated liner and sleeve assemblies was tested and modified to develop desired temperatures and...preliminary evaluation of suitability for extrusion liner use. Procedures were developed for welding short, hollow ceramic cylinders of high-strength metal...carbides and borides to form a ceramic extrusion liner of suitable length. Disassembly tooling for rapid separation of shrink-fitted sleeves from a worn
NASA Astrophysics Data System (ADS)
Nakamori, Yuko; Miwa, Kazutoshi; Ninomiya, Akihito; Li, Haiwen; Ohba, Nobuko; Towata, Shin-Ichi; Züttel, Andreas; Orimo, Shin-Ichi
2006-07-01
The thermodynamical stabilities for the series of metal borohydrides M(BH4)n ( M=Li , Na, K, Cu, Mg, Zn, Sc, Zr, and Hf; n=1-4 ) have been systematically investigated by first-principles calculations. The results indicated that an ionic bonding between Mn+ cations and [BH4]- anions exists in M(BH4)n , and the charge transfer from Mn+ cations to [BH4]- anions is a key feature for the stability of M(BH4)n . A good correlation between the heat of formation ΔHboro of M(BH4)n and the Pauling electronegativity of the cation χP can be found, which is represented by the linear relation, ΔHboro=248.7χP-390.8 in the unit of kJ/mol BH4 . In order to confirm the predicted correlation experimentally, the hydrogen desorption reactions were studied for M(BH4)n ( M=Li , Na, K, Mg, Zn, Sc, Zr, and Hf), where the samples of the later five borohydrides were mechanochemically synthesized. The thermal desorption analyses indicate that LiBH4 , NaBH4 , and KBH4 desorb hydrogen to hydride phases. Mg(BH4)2 , Sc(BH4)3 , and Zr(BH4)4 show multistep desorption reactions through the intermediate phases of hydrides and/or borides. On the other hand, Zn(BH4)2 desorbs hydrogen and borane to elemental Zn due to instabilities of Zn hydride and boride. A correlation between the desorption temperature Td and the Pauling electronegativity χP is observed experimentally and so χP is an indicator to approximately estimate the stability of M(BH4)n . The enthalpy change for the desorption reaction, ΔHdes , is estimated using the predicted ΔHboro and the reported data for decomposed product, ΔHhyd/boride . The estimated ΔHdes show a good correlation with the observed Td , indicating that the predicted stability of borohydride is experimentally supported. These results are useful for exploring M(BH4)n with appropriate stability as hydrogen storage materials.
Fokwa, Boniface P T; Hermus, Martin
2011-04-18
Polycrystalline samples and single crystals of four members of the new complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The new silvery phases were structurally characterized by powder and single-crystal X-ray diffraction as well as energy- and wavelength-dispersive X-ray spectroscopy analyses. They crystallize with the tetragonal Ti(3)Co(5)B(2) structure type in space group P4/mbm (No. 127). Tetragonal prisms of Ru/Ir atoms are filled with titanium in the boron-poorest phase (Ti(3)Ru(2.9)Ir(2.1)B(2)). Gradual substitution of titanium by boron then results in the successive filling of this site by a Ti/B mixture en route to the complete boron occupation, leading to the boron-richest phase (Ti(2)Ru(2.8)Ir(2.2)B(3)). Furthermore, both ruthenium and iridium share two sites in these structures, but a clear Ru/Ir site preference is found. First-principles density functional theory calculations (Vienna ab initio simulation package) on appropriate structural models (using a supercell approach) have provided more evidence on the stability of the boron-richest and -poorest phases, and the calculated lattice parameters corroborate very well with the experimentally found ones. Linear muffin-tin orbital atomic sphere approximation calculations further supported these findings through crystal orbital Hamilton population bonding analyses, which also show that the Ru/Ir-B and Ru/Ir-Ti heteroatomic interactions are mainly responsible for the structural stability of these compounds. Furthermore, some stable and unstable phases of this complex series could be predicted using the rigid-band model. According to the density of states analyses, all phases should be metallic conductors, as was expected from these metal-rich borides.
A STUDY OF DISLOCATION STRUCTURE OF SUBBOUNDARIES IN MOLYBDENUM SINGLE CRYSTALS,
MOLYBDENUM, *DISLOCATIONS), GRAIN STRUCTURES(METALLURGY), SINGLE CRYSTALS, ZONE MELTING, ELECTRON BEAM MELTING, GRAIN BOUNDARIES, MATHEMATICAL ANALYSIS, ETCHED CRYSTALS, ETCHING, ELECTROEROSIVE MACHINING, CHINA
The role of FeS clusters for molybdenum cofactor biosynthesis and molybdoenzymes in bacteria
Yokoyama, Kenichi; Leimkühler, Silke
2016-01-01
Molybdenum is the only second row transition metal essential for biological systems, which is biologically available as molybdate ion. In eukarya, bacteria and archaea, molybdenum is bound to either to a tricyclic pyranopterin, thereby forming the molybdenum cofactor (Moco), or in some bacteria to the FeS cluster based iron-molybdenum cofactor (FeMoco), which forms the active site of nitrogenase. To date more than 50 Moco-containing enzymes have been purified and biochemically or structurally characterized. The physiological role of molybdenum in these enzymes is fundamental to organisms, since the reactions include the catalysis of key steps in carbon, nitrogen and sulfur metabolism. The catalyzed reactions are in most cases oxo-transfer reactions or the hydroxylation of carbon centers. The biosynthesis of Moco has been intensively studied, in addition to its insertion into molybdoenzymes. In particular, a link between the biosynthesis and maturation of molybdoenzymes and the biosynthesis and distribution of FeS clusters has been identified in the last years: 1) The synthesis of the first intermediate in Moco biosynthesis requires an FeS-cluster containing protein, 2) The sulfurtransferase for the dithiolene group in Moco is common also for the synthesis of FeS clusters, thiamin and thiolated tRNAs, 3) the modification of the active site with a sulfur atom additionally involves a sulfurtransferase, 4) most molybdoenzymes in bacteria require FeS clusters as additional redox active cofactors. In this review we will focus on the biosynthesis of the molybdenum cofactor in bacteria, its modification and insertion into molybdoenzymes, with an emphasis to its link to FeS cluster biosynthesis and sulfur transfer. PMID:25268953
Molybdenum-copper and tungsten-copper alloys and method of making
Schmidt, Frederick A.; Verhoeven, John D.; Gibson, Edwin D.
1989-05-23
Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquifying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper.
Development of a Database of Thermochemical Parameters for Use with the SOLGASMIX Computer Program
1988-07-01
TITANIUM CHLORIDE (TICL4) CL4Wl(CR) TUNGSTEN CHLORIDE (WCL4) CL4Wl(G) TUNGSTEN CHLORIDE (WCL4) CL4ZR1(CR) ZIRCONIUM CHLORIDE ( ZRCL4 ) CL4ZR1(G) ZIRCONIUM...CHLORIDE ( ZRCL4 ) % % % CL5MO1(CR) MOLYBDENUM CHLORIDE (MOCL5) CL5MO1(CR,L) MOLYBDENUM CHLORIDE (MOCL5) CL5MO1(G) MOLYBDENUM CHLORIDE (MOCL5) CL5MOI(L
Occurrence and distribution of molybdenum in the surface waters of Colorado geochemistry of water
Voegeli, Paul Thomas; King, Robert Ugstad
1969-01-01
Molybdenum was detected in 89 percent of the samples collected from all the principal Colorado streams and their chief tributaries and from a few reservoirs and lakes. Amounts detected ranged from 1 to 3,800 micrograms per liter. The greatest amounts of molybdenum detected were in samples from the Colorado River at and below Kremmling, the Dillon Reservoir, the Blue River below Dillon Dam, the Eagle River, and Tenmile Creek.
NASA Astrophysics Data System (ADS)
Nishida, Takamasa; Eda, Kazuo
2018-02-01
Hydrothermal syntheses of alkali-metal blue molybdenum bronze nanoribbons, which are expected to exhibit unique properties induced by a combined effect of extrinsic and intrinsic low-dimensionalities, from hydrated-alkali-metal molybdenum bronzes were investigated. Nanoribbons grown along the quasi-one-dimensional (1D) conductive direction of Cs0.3MoO3, which is difficult to prepare by the conventional methods, were first synthesized. The nanomorphology formation is achieved by a solid-state conversion (or crystallite splitting) and subsequent crystallite growth, and the structural changes of the starting material related to the conversion were first observed by powder X-ray diffraction and scanning transmission electron microscopy as a result of finely tuned reaction system and preparation conditions. The structural changes were analyzed by model simulations and were attributed to the structural modulations that were concerned with the intralayer packing disorder and with two-dimensional long-range ordered structure, formed in MoO3 sheets of the hydrated molybdenum bronze. Moreover, the modulations were related to displacement defects of the Mo-O framework units generated along the [100] direction in the hydrated molybdenum bronze. Then, it was suggested that the solid-state conversion into blue molybdenum bronze and the crystallite splitting to nanomorphology were initiated by the breaking of the Mo-O-Mo bonds at the defects. [Figure not available: see fulltext.
Mörsdorf, Alexander; Odnevall Wallinder, Inger; Hedberg, Yolanda
2015-08-01
The European chemical framework REACH requires that hazards and risks posed by chemicals, including alloys and metals, that are manufactured, imported or used in different products (substances or articles) are identified and proven safe for humans and the environment. Metals and alloys need hence to be investigated on their extent of released metals (bioaccessibility) in biologically relevant environments. Read-across from available studies may be used for similar materials. This study investigates the release of molybdenum and iron from powder particles of molybdenum metal (Mo), a ferromolybdenum alloy (FeMo), an iron metal powder (Fe), MoO2, and MoO3 in different synthetic body fluids of pH ranging from 1.5 to 7.4 and of different composition. Spectroscopic tools and cyclic voltammetry have been employed to characterize surface oxides, microscopy, light scattering and nitrogen absorption for particle characterization, and atomic absorption spectroscopy to quantify released amounts of metals. The release of molybdenum from the Mo powder generally increased with pH and was influenced by the fluid composition. The mixed iron and molybdenum surface oxide of the FeMo powder acted as a barrier both at acidic and weakly alkaline conditions. These findings underline the importance of the surface oxide characteristics for the bioaccessibility of metal alloys. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Hofman, G. L.; Hayes, S. L.; Clark, C. R.; Wiencek, T. C.; Snelgrove, J. L.; Strain, R. V.; Kim, K.-H.
2002-08-01
Irradiation tests have been conducted to evaluate the performance of a series of high-density uranium-molybdenum (U-Mo) alloy, aluminum matrix dispersion fuels. Fuel plates incorporating alloys with molybdenum content in the range of 4-10 wt% were tested. Two irradiation test vehicles were used to irradiate low-enrichment fuels to approximately 40 and 70 at.% 235U burnup in the advanced test reactor at fuel temperatures of approximately 65 °C. The fuel particles used to fabricate dispersion specimens for most of the test were produced by generating filings from a cast rod. In general, fuels with molybdenum contents of 6 wt% or more showed stable in-reactor fission gas behavior, exhibiting a distribution of small, stable gas bubbles. Fuel particle swelling was moderate and decreased with increasing alloy content. Fuel particles with a molybdenum content of 4 wt% performed poorly, exhibiting extensive fuel-matrix interaction and the growth of relatively large fission gas bubbles. Fuel particles with 4 or 6 wt% molybdenum reacted more rapidly with the aluminum matrix than those with higher-alloy content. Fuel particles produced by an atomization process were also included in the test to determine the effect of fuel particle morphology and microstructure on fuel performance for the U-10Mo composition. Both of the U-10Mo fuel particle types exhibited good irradiation performance, but showed visible differences in fission gas bubble nucleation and growth behavior.
Flexible Molybdenum Electrodes towards Designing Affinity Based Protein Biosensors
Kamakoti, Vikramshankar; Panneer Selvam, Anjan; Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Prasad, Shalini
2016-01-01
Molybdenum electrode based flexible biosensor on porous polyamide substrates has been fabricated and tested for its functionality as a protein affinity based biosensor. The biosensor performance was evaluated using a key cardiac biomarker; cardiac Troponin-I (cTnI). Molybdenum is a transition metal and demonstrates electrochemical behavior upon interaction with an electrolyte. We have leveraged this property of molybdenum for designing an affinity based biosensor using electrochemical impedance spectroscopy. We have evaluated the feasibility of detection of cTnI in phosphate-buffered saline (PBS) and human serum (HS) by measuring impedance changes over a frequency window from 100 mHz to 1 MHz. Increasing changes to the measured impedance was correlated to the increased dose of cTnI molecules binding to the cTnI antibody functionalized molybdenum surface. We achieved cTnI detection limit of 10 pg/mL in PBS and 1 ng/mL in HS medium. The use of flexible substrates for designing the biosensor demonstrates promise for integration with a large-scale batch manufacturing process. PMID:27438863
Electrode systems for in situ vitrification
Buelt, James L.; Carter, John G.; Eschbach, Eugene A.; FitzPatrick, Vincent F.; Koehmstedt, Paul L.; Morgan, William C.; Oma, Kenton H.; Timmerman, Craig L.
1990-01-01
An electrode comprising a molybdenum rod is received within a conductive collar formed of graphite. The molybdenum rod and the graphite collar may be physically joined at the bottom. A pair of such electrodes are placed in soil containing buried waste material and an electric current is passed therebetween for vitrifying the soil. The graphite collar enhances the thermal conductivity of the combination, bringing heat to the surface, and preventing formation of a cold cap of material above the ground surface. The annulus between the molybdenum rod electrode and the graphite collar is suitably filled with a conductive ceramic powder that sinters upon the molybdenum rod, protecting the same from oxidation as graphite material is consumed, or a metal powder which liquefies at operating temperatures. The center of the molybdenum rod, used with a collar of separately, can be hollow and filled with a powdered metal, such as copper, which liquefies at operating temperatures. Connection to electrodes can be provided below ground level to avoid open circuit due to electrode deterioration, or sacrificial electrodes may be employed when operation is started. Outboard electrodes cna be utilized to square up a vitrified area.
Tran, Phong D.; Tran, Thu V.; Orio, Maylis; Torelli, Stephane; Truong, Quang Duc; Nayuki, Keiichiro; Sasaki, Yoshikazu; Chiam, Sing Yang; Yi, Ren; Honma, Itaru; Barber, James; Artero, Vincent
2017-01-01
Molybdenum sulfides are very attractive noble-metal free electrocatalysts for the hydrogen evolution reaction (HER) from water. Atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx) which displays significantly higher HER activity compared to its crystalline counterpart. Here we show that HER–active a-MoSx, prepared either as nanoparticles or as films, is a molecular–based coordination polymer consisting of discrete [Mo3S13]2– building blocks. Of the three terminal disulfide (S22–) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimisation of this HER electrocatalyst as an alternative to platinum. PMID:26974410
Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide.
Chou, Stanley Shihyao; Sai, Na; Lu, Ping; ...
2015-10-07
Establishing processing–structure–property relationships for monolayer materials is crucial for a range of applications spanning optics, catalysis, electronics and energy. Presently, for molybdenum disulfide, a promising catalyst for artificial photosynthesis, considerable debate surrounds the structure/property relationships of its various allotropes. Here we unambiguously solve the structure of molybdenum disulfide monolayers using high-resolution transmission electron microscopy supported by density functional theory and show lithium intercalation to direct a preferential transformation of the basal plane from 2H (trigonal prismatic) to 1T' (clustered Mo). These changes alter the energetics of molybdenum disulfide interactions with hydrogen (ΔG H), and, with respect to catalysis, the 1T'more » transformation renders the normally inert basal plane amenable towards hydrogen adsorption and hydrogen evolution. Furthermore, we show basal plane activation of 1T' molybdenum disulfide and a lowering of ΔG H from +1.6 eV for 2H to +0.18 eV for 1T', comparable to 2H molybdenum disulfide edges on Au(111), one of the most active hydrogen evolution catalysts known.« less
Nuclear fuel alloys or mixtures and method of making thereof
Mariani, Robert Dominick; Porter, Douglas Lloyd
2016-04-05
Nuclear fuel alloys or mixtures and methods of making nuclear fuel mixtures are provided. Pseudo-binary actinide-M fuel mixtures form alloys and exhibit: body-centered cubic solid phases at low temperatures; high solidus temperatures; and/or minimal or no reaction or inter-diffusion with steel and other cladding materials. Methods described herein through metallurgical and thermodynamics advancements guide the selection of amounts of fuel mixture components by use of phase diagrams. Weight percentages for components of a metallic additive to an actinide fuel are selected in a solid phase region of an isothermal phase diagram taken at a temperature below an upper temperature limit for the resulting fuel mixture in reactor use. Fuel mixtures include uranium-molybdenum-tungsten, uranium-molybdenum-tantalum, molybdenum-titanium-zirconium, and uranium-molybdenum-titanium systems.
Rate limiting mechanisms in lithium-molybdenum disulfide batteries
NASA Astrophysics Data System (ADS)
Laman, F. C.; Stiles, J. A. R.; Brandt, K.; Shank, R. J.
1985-03-01
One limitation of secondary lithium batteries using intercalation cathodes is generally related to relatively low power densities. Significant advances towards overcoming this limitation have been made in cells based on a utilization of lithium-molybdenum disulfide technology. Rate limiting mechanisms in cells of the lithium-molybdenum disulfide system have been studied with the aid of a frequency response analysis. It was found that diffusion-related contributions to cell impedance, and interfacial and resistive contributions to cell impedance, can be readily segregated by virtue of the fact that the diffusion-controlled mechanisms dominate the low frequency end of the impedance spectra, while the other mechanisms dominate the high frequency end. The present investigation is concerned with rate limitations at the high end of the frequency spectrum in lithium-molybdenum disulfide cathodes.
Li, Zhao; Chen, Min; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio
2017-02-01
This work describes the mechanochemical transformations of molybdenum and vanadium sulfides into corresponding molybdate and vanadate, to serve as a new environment-friendly approach for processing hazardous spent hydrodesulphurization (HDS) catalysts solid waste to achieve an easy recovery of not only molybdenum and vanadium but also nickel and cobalt. Co-grinding the molybdenum and vanadium sulfides with oxidants and sodium carbonate stimulates solid-state reactions without any heating aid to form metal molybdates and vanadates. The reactions proceed with an increase in grinding time and were enhanced by using more sodium carbonate and stronger oxidant. The necessary conditions for the successful transformation can be explained on the basis of thermodynamic analyses, namely a negative change in Gibbs free energy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molybdenum sulfide/carbide catalysts
Alonso, Gabriel [Chihuahua, MX; Chianelli, Russell R [El Paso, TX; Fuentes, Sergio [Ensenada, MX; Torres, Brenda [El Paso, TX
2007-05-29
The present invention provides methods of synthesizing molybdenum disulfide (MoS.sub.2) and carbon-containing molybdenum disulfide (MoS.sub.2-xC.sub.x) catalysts that exhibit improved catalytic activity for hydrotreating reactions involving hydrodesulfurization, hydrodenitrogenation, and hydrogenation. The present invention also concerns the resulting catalysts. Furthermore, the invention concerns the promotion of these catalysts with Co, Ni, Fe, and/or Ru sulfides to create catalysts with greater activity, for hydrotreating reactions, than conventional catalysts such as cobalt molybdate on alumina support.
An Analysis of Changes in Threshold Limit Values Over Time
1993-01-01
Metribuzin 21087-64-91 1984 1984 Mevinphos 7786-34-7 1982: 1982 _ _ Mica 12001-26-2 1 I987 1987 1 Mineral wool fiber _ 1987 1 1987 _ i t Molybdenum as Mo...1 _ _ i alpha-Methyl styrene _ __ 1968 6 Metribuzin Mevinphos t Mica _ _ _ Mineral wool fiber _ Molybdenum as Mo _ _ Soluble compounds I_...Metribuzin 0 0 i _ __ Mevinphos 0 0 Mica 0 10 ,0___ Mineral wool fiber 0 0 P _ _ Molybdenum as Mo _ ___ Soluble compounds 0 0 Insoluble compounds 1 j 00 _ i
Development of a low-permeability glass--ceramic to seal to molybdenum. [For long-life vacuum tubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eagan, R. J.
1975-03-01
This report describes the development of low-permeability glass-ceramics which can be sealed directly to molybdenum for the purpose of producing long-life vacuum tubes. Low permeability to helium and thermal expansion match to molybdenum are the bases upon which particular glass-ceramic compositions were selected and developed. The fabrication of tube envelopes using glass-ceramics is simplified when compared to conventional ceramic/metal tubes and these melting and sealing techniques are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benavides, Pahola T.; Dai, Qiang; Sullivan, John L.
2015-09-01
In this work, we analyzed the material and energy consumption from mining to production of molybdenum, platinum, zinc, and nickel. We also analyzed the production of solar- and semiconductor-grade silicon. We described new additions to and expansions of the data in GREET 2. In some cases, we used operating permits and sustainability reports to estimate the material and energy flows for molybdenum, platinum, and nickel, while for zinc and silicon we relied on information provided in the literature.
ON THE SEPARATION OF VANADIUM, MOLYBDENUM AND TUNGSTEN BY MEANS OF PAPER CHROMATOGRAPHY. PART I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzou, S.; Liang, S.
1959-02-01
Molybdenum, tangsten, and vanadium are separated by chromatography as per-acids, and then detected with tannin solution. Of the seven solvents tested, n-butanolhydrogen peroxide-nitric acid mixtures offer the best separations. With the addition of dioxane, the R/sub F/ values of these elements increase, while vanadium and tungsten spots overlap. The formation of per-acids avoids the retainment of tungsten on the original spot and the tailings of vanadium and molybdenum spots. (B.O.G.)
Molybdenum-copper and tungsten-copper alloys and method of making
Schmidt, F.A.; Verhoeven, J.D.; Gibson, E.D.
1989-05-23
Molybdenum-copper and tungsten-copper alloys are prepared by a consumable electrode method in which the electrode consists of a copper matrix with embedded strips of refractory molybdenum or tungsten. The electrode is progressively melted at its lower end with a superatmospheric inert gas pressure maintained around the liquefying electrode. The inert gas pressure is sufficiently above the vapor pressure of copper at the liquidus temperature of the alloy being formed to suppress boiling of liquid copper. 6 figs.
SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY
Clark, H.M.; Duffey, D.
1958-06-17
A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.
Ternary boride product and process
NASA Technical Reports Server (NTRS)
Clougherty, Edward V. (Inventor)
1976-01-01
A hard, tough, strong ceramic body is formed by hot pressing a mixture of a powdered metal and a powdered metal diboride. The metal employed is zirconium, titanium or hafnium and the diboride is the diboride of a different member of the same group of zirconium, titanium or hafnium to form a ternary composition. During hot pressing at temperatures above about 2,000.degree.F., a substantial proportion of acicular ternary monoboride is formed.
Mechanical, Electronic and Optical Properties of Two Phases of NbB4: First-Principles Calculations
NASA Astrophysics Data System (ADS)
Yang, Ruike; Ma, Shaowei; Wei, Qun; Zhang, Dongyun
2018-05-01
As transition metal borides have been successfully synthesised, the study of the combination of transition metal and boron is another effective way to investigate the properties of boride. We have predicted the novel phase Amm2-NbB4. Using the Cambridge Serial Total Energy Package (CASTEP) code, we further researched on the mechanical, electronic and optical properties of C2/c- and Amm2-NbB4. It is found that both the phases of NbB4 are dynamically and mechanically stable at 0 and 100 GPa. Their Vickers hardness values are both 34 GPa, which indicate that they are hard materials. The band gap of C2/c-NbB4 is 0.145 eV, which indicates that it is a semiconductor (or metalloid) at 0 GPa. For the Amm2-NbB4, the band structure without band gap indicates it is a metal at 0 GPa. The optical properties of these two structures are similar. At 0 eV, the real part of dielectric function is 28.8 for C2/c-NbB4, and the real part value for Amm2-NbB4 is 43. We hope our work will provide some help to the experimental work about the technology of the material.
NASA Technical Reports Server (NTRS)
Speck, J. S.
1986-01-01
The microstructures of melt-spun superalloy ribbons with variable boron levels have been studied by transmission electron microscopy. The base alloy was of approximate composition Ni-11% Cr-5%Mo-5%Al-4%Ti with boron levels of 0.06, 0.12, and 0.60 percent (all by weight). Thirty micron thick ribbons display an equiaxed chill zone near the wheel contact side which develops into primary dendrite arms in the ribbon center. Secondary dendrite arms are observed near the ribbon free surface. In the higher boron bearing alloys, boride precipitates are observed along grain boundaries. A concerted effort has been made to elucidate true grain shapes by the use of bright field/dark field microscopy. In the low boron alloy, grain shapes are often convex, and grain faces are flat. Boundary faces frequently have large curvature, and grain shapes form concave polygons in the higher boron level alloys. It is proposed that just after solidification, in all of the alloys studied, grain shapes were initially concave and boundaries were wavy. Boundary straightening is presumed to occur on cooling in the low boron alloy. Boundary migration is precluded in the higher boron alloys by fast precipitation of borides at internal interfaces.
Electroplating and stripping copper on molybdenum and niobium
NASA Technical Reports Server (NTRS)
Power, J. L.
1978-01-01
Molybdenum and niobium are often electroplated and subsequently stripped of copper. Since general standard plating techniques produce poor quality coatings, general procedures have been optimized and specified to give good results.
Molybdenum and tungsten nanostructures and methods for making and using same
Kotaro, Sasaki; Chen, Wei-Fu; Muckerman, James T; Adzic, Radoslav R
2015-01-06
The present invention provides molybdenum and tungsten nanostructures, for example, nanosheets and nanoparticles, and methods of making and using same, including using such nanostructures as catlysts for hydrogen evolution reactions.
Pure s-Process Molybdenum Found in PreSolar Silicon Carbide Grains
NASA Astrophysics Data System (ADS)
Stephan, T.; Trappitsch, R.; Boehnke, P.; Davis, A. M.; Pellin, M. J.; Pardo, O. S.
2017-07-01
Molybdenum isotopes analyzed with high precision in 18 presolar SiC grains using CHILI (Chicago Instrument for Laser Ionization) reflect variability of conditions in stellar environments during s-process nucleosynthesis.
Bacterial molybdoenzymes: old enzymes for new purposes.
Leimkühler, Silke; Iobbi-Nivol, Chantal
2016-01-01
Molybdoenzymes are widespread in eukaryotic and prokaryotic organisms where they play crucial functions in detoxification reactions in the metabolism of humans and bacteria, in nitrate assimilation in plants and in anaerobic respiration in bacteria. To be fully active, these enzymes require complex molybdenum-containing cofactors, which are inserted into the apoenzymes after folding. For almost all the bacterial molybdoenzymes, molybdenum cofactor insertion requires the involvement of specific chaperones. In this review, an overview on the molybdenum cofactor biosynthetic pathway is given together with the role of specific chaperones dedicated for molybdenum cofactor insertion and maturation. Many bacteria are involved in geochemical cycles on earth and therefore have an environmental impact. The roles of molybdoenzymes in bioremediation and for environmental applications are presented. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Tribochemistry of contact interfaces of nanocrystalline molybdenum carbide films
NASA Astrophysics Data System (ADS)
Kumar, D. Dinesh; Kumar, N.; Panda, Kalpataru; Kamalan Kirubaharan, A. M.; Kuppusami, P.
2018-07-01
Transition metal carbides (TMC) are known for their improved tribological properties and are sensitive to the tribo-atmospheric environment. Nanocrystalline molybdenum carbide (MoC) thin films were deposited by DC magnetron sputtering technique using reactive CH4 gas. The friction and wear resistance properties of MoC thin films were significantly improved in humid-atmospheric condition as compared to high-vacuum tribo-condition. A comprehensive chemical analysis of deformed contact interfaces was carried out by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX) and Raman spectroscopy. XPS and Raman spectroscopy showed the formation of stable molybdenum-oxide (MoO), molybdenum carbide (MoC) and amorphous carbon (a-C) tribo-phases. Moreover, during the sliding in humid-atmospheric condition, these phases were extensively deposited on the sliding steel ball counter body which significantly protected against undesirable friction and wear.
Molybdenum electron impact width parameter measurement by laser-induced breakdown spectroscopy
NASA Astrophysics Data System (ADS)
Sternberg, E. M. A.; Rodrigues, N. A. S.; Amorim, J.
2016-01-01
In this work, we suggest a method for electron impact width parameter calculation based on Stark broadening of emission lines of a laser-ablated plasma plume. First, electron density and temperature must be evaluated by means of the Saha-Boltzmann plot method for neutral and ionized species of the plasma. The method was applied for laser-ablated molybdenum plasma plume. For molybdenum plasma electron temperature, which varies around 10,000 K, and electron density, which reaches values around 1018 cm-3, and considering that total measured line broadening was due experimental and Stark broadening mainly, electron impact width parameter of molybdenum emission lines was determined as (0.01 ± 0.02) nm. Intending to validate the presented method, it was analyzed the laser-ablated aluminum plasma plume and the obtained results were in agreement with the predicted on the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belotserkovskaya, N.G.; Dobychin, D.P.; Pak, V.N.
1992-05-10
The structure and physicochemical properties of molybdenum-containing silica gels obtained by molecular lamination have been studied quite extensively. Up to the present, however, no studies have been made of the influence of the pore structure of the original silica gel on the structure and properties of molybdenum-containing silica gels (MSG). The problem is quite important, since molybdenum silicas obtained by molecular lamination may find applications in catalysis and as sensors of UV radiation. In either case, the structure of the support is not a factor to be ignored. Here, the authors are reporting on an investigation of the structure ofmore » MSG materials with different pore structures and their susceptibility to reduction of the Mo(VI) oxide groupings when exposed to UV radiation. 16 refs., 2 figs., 2 tabs.« less
GEANT 4 simulation of (99)Mo photonuclear production in nanoparticles.
Dikiy, N P; Dovbnya, A N; Fedorchenko, D V; Khazhmuradov, M A
2016-08-01
GEANT 4 Monte-Carlo simulation toolkit is used to study the kinematic recoil method of (99)Mo photonuclear production. Simulation for bremsstrahlung photon spectrum with maximum photon energy 30MeV showed that for MoO3 nanoparticle escape fraction decreases from 0.24 to 0.08 when nanoparticle size increases from 20nm to 80nm. For the natural molybdenum and pure (100)Mo we obtained the lower values: from 0.17 to 0.05. The generation of accompanying molybdenum nuclei is significantly lower for pure (100)Mo and is about 3.6 nuclei per single (99)Mo nucleus, while natural molybdenum nanoparticle produce about 48 accompanying nuclei. Also, we have shown that for high-energy photons escape fraction of (99)Mo decreases, while production of unwanted molybdenum isotopes is significantly higher. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jung, Jinsang; Lee, JaeYong; Kim, ByungMoon; Oh, SangHyub
2017-09-01
This paper investigates the NO2 artifact associated with the chemiluminescence measurement technique that uses a molybdenum converter by applying the same technique but with a photolytic converter at a site downwind of the Asian continental outflow (Daejeon, Korea). The NO2 to NO conversion efficiencies of the molybdenum and photolytic converters were found to be 100% and 95%, respectively, at an ambient level of NO2 (<100 ppbv). Two NO2 monitors equipped with molybdenum and photolytic converters were deployed for ambient NO2 measurements in Daejeon, Korea between the fall of 2015 and the summer of 2016. It was found that the monitor equipped with the molybdenum converter overestimated NO2 levels by 20.4 ± 14.7% when compared with the actual NO2 level in the Daejeon atmosphere over the entire measurement period. This NO2 artifact (ΔNO2), defined as the difference between molybdenum NO2 and photolytic NO2 values, correlated well with the PM2.5 mass concentration during the fall and winter seasons. Based on these findings, this study develops a simple correction model for ΔNO2 using the PM2.5 mass concentration during the fall and winter seasons. The model-corrected NO2 concentration correlated well with the actual NO2 values with a slope of approximately 1.0 and R2 value of 0.98 during the fall and winter seasons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, K.S.; Chang, F.; Levy, M.
1993-07-01
Pitting corrosion of molybdenum-ion-implanted, depleted uranium -0 75 Ti (DU -0 75 Ti) has been studied electrochemically in acidic, neutral, and alkaline solutions containing sodium chloride, and the results have been compared to those of the unimplanted DU -0 75 Ti. The data show that Mo implantation shifts the pitting potential of DU -0 75 Ti in the noble direction in acidic and alkaline solutions. In neutral 50 ppm Cl- solution, however, there is no beneficial effect of Mo implantation. Auger analysis studies show that before exposure to the solutions, all the molybdenum is in the oxide, which is approximatelymore » l000 A thick. After electrochemical scans in the acidic and alkaline chloride solutions, most of the Mo disappears from the oxide. However, no decrease in Mo concentration is found after exposure in neutral chloride solution. It is proposed that the implanted molybdenum dissolves in the acidic and alkaline solutions and forms simple or complex molybdates that inhibit pitting corrosion. The implanted molybdenum does not dissolve in the neutral chloride solution and inhibition does not occur.« less
NASA Astrophysics Data System (ADS)
Wang, Jinshu; Liu, Wei; Liu, Yanqin; Zhou, Meiling
2005-09-01
As an alternative for thoriated tungsten thermionic cathodes, molybdenum doped with either a single rare earth oxide such as La 2O 3, Y 2O 3 and Sc 2O 3 or a mixture thereof has been produced by powder metallurgy. It is shown that carbonization can greatly improve the emission properties (i.e. emission capability and stability) of RE 2O 3 doped molybdenum due to the formation of a (metallic) rare earth atomic layer on the surface of the cathode by the reduction reaction of molybdenum carbide and rare earth oxide. Among all the carbonized samples, La 2O 3 and Y 2O 3 co-doped molybdenum cathode showed the best performance in emission. In addition, computer pattern recognition technique has been used to optimize the composition of the material and of the cathode preparation technique. We derive the equation of the emission efficiency as a function of cathode composition and carbonization degree. Based on the projecting coordinates obtained from the equation, the optimum projection region was identified, which can serve as guide for the composition and carbonization degree design.
Fleischmann, Ernst; Miller, Michael K.; Affeldt, Ernst; ...
2015-01-31
Here, the solid-solution hardening potential of the refractory elements rhenium, tungsten and molybdenum in the matrix of single-crystal nickel-based superalloys was experimentally quantified. Single-phase alloys with the composition of the nickel solid-solution matrix of superalloys were cast as single crystals, and tested in creep at 980 °C and 30–75 MPa. The use of single-phase single-crystalline material ensures very clean data because no grain boundary or particle strengthening effects interfere with the solid-solution hardening. This makes it possible to quantify the amount of rhenium, tungsten and molybdenum necessary to reduce the creep rate by a factor of 10. Rhenium is moremore » than two times more effective for matrix strengthening than either tungsten or molybdenum. The existence of rhenium clusters as a possible reason for the strong strengthening effect is excluded as a result of atom probe tomography measurements. If the partitioning coefficient of rhenium, tungsten and molybdenum between the γ matrix and the γ' precipitates is taken into account, the effectiveness of the alloying elements in two-phase superalloys can be calculated and the rhenium effect can be explained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamiguchi, Satoshi, E-mail: kamigu@riken.jp; Organometallic Chemistry Laboratory, RIKEN, 2-1 Hirosawa, Wako City, Saitama 351-0198; Okumura, Kazu
Graphical abstract: - Highlights: • Solid-state molybdenum sulfide clusters catalyzed the dehydrogenation of alcohol. • The dehydrogenation proceeded without the addition of any oxidants. • The catalytic activity developed when the cluster was activated at 300–500 °C in H{sub 2}. • The Lewis-acidic molybdenum atom and basic sulfur ligand were catalytically active. • The clusters function as bifunctional acid–base catalysts. - Abstract: Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. A copper salt of a nonstoichiometric sulfur-deficient cluster, Cu{sub x}Mo{sub 6}S{sub 8–δ} (x = 2.94 and δ ≈ 0.3), is storedmore » in air for more than 90 days. When the oxygenated cluster is thermally activated in a hydrogen stream above 300 °C, catalytic activity for the dehydrogenation of primary alcohols to aldehydes and secondary alcohols to ketones develops. The addition of pyridine or benzoic acid decreases the dehydrogenation activity, indicating that both a Lewis-acidic coordinatively unsaturated molybdenum atom and a basic sulfur ligand synergistically act as the catalytic active sites.« less
NASA Astrophysics Data System (ADS)
Jiang, Fan
2016-02-01
Smooth tungsten coatings were prepared at current density below 70 mA cm-2 by electrodeposition on molybdenum substrate from Na2WO4-WO3 -melt at 1173 K in air atmosphere. As the current density reached up to 90 mA cm-2, many significant nodules were observed on the surface of the coating. Surface characterization, microstructure and mechanical properties were performed on the tungsten coatings. As the increasing of current density, the preferred orientation of the coatings changed to (2 0 0). All coatings exhibited columnar-grained-crystalline. There was about a 2 μm thick diffusion layer between tungsten coating and molybdenum substrate. The bending test revealed the tungsten coating had -good bonding strength with the molybdenum substrate. There is a down trend of the grain size of the coating on molybdenum as the current density increased from 30 mA cm-2 to 50 mA cm-2. The coating obtained at 50 mA cm-2 had a minimum grain size of 4.57 μm, while the microhardness of this coating reached to a maximum value of 495 HV.
Development and Processing of Nickel Aluminide-Carbide Alloys
NASA Technical Reports Server (NTRS)
Newport, Timothy Scott
1996-01-01
With the upper temperature limit of the Ni-based superalloys attained, a new class of materials is required. Intermetallics appear as likely candidates because of their attractive physical properties. With a relatively low density, high thermal conductivity, excellent oxidation resistance, high melting point, and simple crystal structure, nickel aluminide (NiAl) appears to be a potential candidate. However, NiAl is limited in structural applications due to its low room temperature fracture toughness and poor elevated temperature strength. One approach to improving these properties has been through the application of eutectic composites. Researchers have shown that containerless directional solidification of NiAl-based eutectic alloys can provide improvement in both the creep strength and fracture toughness. Although these systems have shown improvements in the mechanical properties, the presence of refractory metals increases the density significantly in some alloys. Lower density systems, such as the carbides, nitrides, and borides, may provide NiAl-based eutectic structure. With little or no information available on these systems, experimental investigation is required. The objective of this research was to locate and develop NiAl-carbide eutectic alloys. Exploratory arc-melts were performed in NiAl-refractory metal-C systems. Refractory metal systems investigated included Co, Cr, Fe, Hf, Mo, Nb, Ta, Ti, W, and Zr. Systems containing carbides with excellent stability (i.e.,HfC, NbC, TaC, TiC, and ZrC) produced large blocky cubic carbides in an NiAl matrix. The carbides appeared to have formed in the liquid state and were randomly distributed throughout the polycrystalline NiAl. The Co, Cr, Fe, Mo, and W systems contained NiAl dendrites with a two-phase interdendritic microconstituent present. Of these systems, the NiAl-Mo-C system had the most promising microstructure for in-situ composites. Three processing techniques were used to evaluate the NiAl-Mo-C system: arc-melting, slow cooling, and containerless directional solidification. Arc-melting provided a wide range of compositions in an economical and simple fashion. The slow cooled ingots provided larger ingots and slower cooling rates than arc-melting. Directional solidification was used to produce in-situ composites consisting of NiAl reinforced with molybdenum carbides.
40 CFR 421.214 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... leachate. NSPS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant property Maximum....5 to 10.0 at all times. (c) Molybdic oxide leachate. NSPS for the Primary Molybdenum and Rhenium...
40 CFR 421.214 - Standards of performance for new sources.
Code of Federal Regulations, 2013 CFR
2013-07-01
... leachate. NSPS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant property Maximum....5 to 10.0 at all times. (c) Molybdic oxide leachate. NSPS for the Primary Molybdenum and Rhenium...
40 CFR 421.214 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... leachate. NSPS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant property Maximum....5 to 10.0 at all times. (c) Molybdic oxide leachate. NSPS for the Primary Molybdenum and Rhenium...
40 CFR 421.214 - Standards of performance for new sources.
Code of Federal Regulations, 2014 CFR
2014-07-01
... leachate. NSPS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant property Maximum....5 to 10.0 at all times. (c) Molybdic oxide leachate. NSPS for the Primary Molybdenum and Rhenium...
40 CFR 421.214 - Standards of performance for new sources.
Code of Federal Regulations, 2012 CFR
2012-07-01
... leachate. NSPS for the Primary Molybdenum and Rhenium Subcategory Pollutant or pollutant property Maximum....5 to 10.0 at all times. (c) Molybdic oxide leachate. NSPS for the Primary Molybdenum and Rhenium...
Pest resistant MoSi.sub.2 materials and method of making
NASA Technical Reports Server (NTRS)
Hebsur, Mohan G. (Inventor)
1995-01-01
A pest resistant molybdenum disilicide composition is provided for use in high temperature structural applications. The composition includes molybdenum disilicide and silicon nitride and can be used to prepare improved reinforced composites.
Molybdenum nitride fibers or tubes via ammonolysis of polysulfide precursor
NASA Astrophysics Data System (ADS)
Wang, Shutao; Zhang, Zude; Zhang, Yange; Qian, Yitai
2004-08-01
Millimeter-sized molybdenum nitride (MoN), in the forms of fiber-like prisms or hollow tubes, has been successfully synthesized via thermal ammonolysis of molybdenum polysulfide precursor. The initial morphology of the precursor is well preserved in the final product. This method could be expanded to preparation of other fiber-like nonmetal ceramics without addition of template. The polysulfide precursor (abbreviated to PS), hydrothermally prepared at 30°C (PS1) or 150°C (PS2), was characterized by various methods for better comprehension of the sulfide-nitride topotactic conversion model.
Magnetoresistance measurements of superconducting molybdenum nitride thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baskaran, R., E-mail: baskaran@igcar.gov.in; Arasu, A. V. Thanikai; Amaladass, E. P.
2016-05-23
Molybdenum nitride thin films have been deposited on aluminum nitride buffered glass substrates by reactive DC sputtering. GIXRD measurements indicate formation of nano-crystalline molybdenum nitride thin films. The transition temperature of MoN thin film is 7.52 K. The transition width is less than 0.1 K. The upper critical field Bc{sub 2}(0), calculated using GLAG theory is 12.52 T. The transition width for 400 µA current increased initially upto 3 T and then decreased, while that for 100 µA current transition width did not decrease.
NASA Astrophysics Data System (ADS)
Stepanova, E. N.; Grabovetskaya, G. P.; Teresov, A. D.; Mishin, I. P.
2018-05-01
Using the methods of electron backscatter diffraction, electron microscopy and X-ray diffraction analysis, it is demonstrated that irradiation of the surface of a submicrocrystalline molybdenum specimen with a pulsed electron beam in a non-melt regime results in the formation of a gradient structure in its bulk. The irradiation temperature is shown to affect the density of defects, the value of stress, and the distributions of grain-boundary misorientations in the surface and bulk of the submicrocrystalline molybdenum specimens.
Developing the Molybdenum Isotopic Proxy in Marine Barite
NASA Astrophysics Data System (ADS)
Erhardt, A. M.; Paytan, A.; Aggarwal, J.
2006-12-01
Molybdenum isotope ratios in seawater fluctuate in response to changing redox conditions and can provide clues into the degree of global ocean anoxia. The isotopic ratio of molybdenum has been shown to be sensitive to the relative proportion of oxic, suboxic, and euxinic environments. Deposition in oxic environments is isotopically light (~ -1.6‰ for δ^{97/95}Mo) relative to an average crustal source (0‰). Conversely, euxinic environments have been shown to be consistently heavier (~1.3‰) than the oxic sink through time, with suboxic sediments falling between these two signals. Shifts in the relative proportion of each sink, relative to a constant source, would alter the isotopic ratio of seawater over long time scales. Previously, this seawater value, and hence the degree of global anoxia, could only be inferred through mass balance calculations. We seek to quantify the isotopic signature of seawater though time using a phase that directly records this ratio. Marine barite precipitates inorganically in the water column directly from seawater, potentially providing a direct record of seawater characteristics. Molybdenum is a trace constituent of barite, with the molybdate ion substituting for sulfate at concentrations of about 1 ppm. To accurately determine the molybdenum isotopic ratio at these low concentrations (<15 ng per sample), modifications to existing measurement techniques are required. We will present the variations made to existing separation and mass-spectrometry techniques and the calibration of these new methods. The modifications were undertaken to reduce molybdenum blank to below 1 ng per analysis, to quantitatively remove interfering zirconium and to measure precise and reproducible isotope values. Preliminary data will be presented to illustrate potential applications for this new paleoredox proxy. This technique will allow for the measurement of molybdenum isotopic ratios at low concentrations, expanding the breath of compounds and signals that potentially record changes in planetary materials.
Structure of the molybdenum site in YedY, a sulfite oxidase homologue from Escherichia coli.
Havelius, Kajsa G V; Reschke, Stefan; Horn, Sebastian; Döring, Alexander; Niks, Dimitri; Hille, Russ; Schulzke, Carola; Leimkühler, Silke; Haumann, Michael
2011-02-07
YedY from Escherichia coli is a new member of the sulfite oxidase family of molybdenum cofactor (Moco)-containing oxidoreductases. We investigated the atomic structure of the molybdenum site in YedY by X-ray absorption spectroscopy, in comparison to human sulfite oxidase (hSO) and to a Mo(IV) model complex. The K-edge energy was indicative of Mo(V) in YedY, in agreement with X- and Q-band electron paramagnetic resonance results, whereas the hSO protein contained Mo(VI). In YedY and hSO, molybdenum is coordinated by two sulfur ligands from the molybdopterin ligand of the Moco, one thiolate sulfur of a cysteine (average Mo-S bond length of ∼2.4 Å), and one (axial) oxo ligand (Mo═O, ∼1.7 Å). hSO contained a second oxo group at Mo as expected, but in YedY, two species in about a 1:1 ratio were found at the active site, corresponding to an equatorial Mo-OH bond (∼2.1 Å) or possibly to a shorter Mo-O(-) bond. Yet another oxygen (or nitrogen) at a ∼2.6 Å distance to Mo in YedY was identified, which could originate from a water molecule in the substrate binding cavity or from an amino acid residue close to the molybdenum site, i.e., Glu104, that is replaced by a glycine in hSO, or Asn45. The addition of the poor substrate dimethyl sulfoxide to YedY left the molybdenum coordination unchanged at high pH. In contrast, we found indications that the better substrate trimethylamine N-oxide and the substrate analogue acetone were bound at a ∼2.6 Å distance to the molybdenum, presumably replacing the equatorial oxygen ligand. These findings were used to interpret the recent crystal structure of YedY and bear implications for its catalytic mechanism.
NASA Astrophysics Data System (ADS)
Loo, Adeline Huiling; Bonanni, Alessandra; Ambrosi, Adriano; Pumera, Martin
2014-09-01
The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors.The detection of specific DNA sequences plays a critical role in the areas of medical diagnostics, environmental monitoring, drug discovery and food safety. This has therefore become a strong driving force behind the ever-increasing demand for simple, cost-effective, highly sensitive and selective DNA biosensors. In this study, we report for the first time, a novel approach for the utilization of molybdenum disulfide nanoflakes, a member of the transition metal dichalcogenides family, in the detection of DNA hybridization. Herein, molybdenum disulfide nanoflakes serve as inherently electroactive labels, with the inherent oxidation peak exploited as the analytical signal. The principle of detection is based on the differential affinity of molybdenum disulfide nanoflakes towards single-stranded DNA and double-stranded DNA. The employment of transition metal dichalcogenide nanomaterials for sensing and biosensing purposes represents an upcoming research area which holds great promise. Hence, our findings are anticipated to have significant contributions towards the fabrication of future DNA biosensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03795b
NASA Astrophysics Data System (ADS)
Yahyazadeh, Arash; Khoshandam, Behnam
In this study, we documented the catalytic chemical vapor deposition synthesis of carbon nanotubes (CNTs) using ferrocene and molybdenum hexacarbonyl as catalyst nanoparticle precursors and methane as a nontoxic and economical carbon source for the first time. Field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, wavelength dispersive X-ray spectrometry and transmission electron microscopy of the thin layer catalyst as a simple and cost effective catalyst preparation after methane decomposition reaction, along with Fourier transform infrared spectroscopy and Raman spectroscopy confirmed the growth of CNTs, from bimetallic nanoparticles, which are converted into iron-molybdenum alloy nanoparticles at 700 °C for pretreatment by hydrogen after chemical vapor deposition of thin layers. An investigation of the weight percentages of the chemical elements present in the CNTs synthesized from iron-molybdenum catalyst using quartz sheet substrate at 750 °C, confirmed a significant carbon yield of 75.4% which represents high catalyst activity. Additionally, multi-walled carbon nanotubes (∼16-55 nm in diameter and 1.2 μm in length) were observed in the iron-molybdenum alloy sample after methane decomposition reaction at 750 °C for 35 min. To show the role of iron and molybdenum coated on silicon substrate as two thin layer catalysts, samples were considered for CNTs growth (diameter ∼47-69 nm) at 800 °C and 830 °C, respectively. Moreover, the effect of hydrogen pretreatment was evaluated in terms of active metal coating properly. The best graphitic structure due to Raman spectroscopy outcomes (ID/IG ratio) was obtained for iron coated on a quartz sheet, which was estimated at 0.8505. Thermogravimetric analysis proved the thermal stability of the synthesized CNTs using iron thin-layer catalyst up to 350 °C.
Integrated Risk Information System (IRIS)
Molybdenum ; CASRN 7439 - 98 - 7 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec
NASA Astrophysics Data System (ADS)
Jinlong, Lv; Tongxiang, Liang; Chen, Wang
2016-03-01
The nickel, nickel-molybdenum alloy, nickel-graphite and nickel-reduced graphene oxide composite coatings were obtained by the electrodeposition technique from a nickel sulfate bath. Nanocrystalline molybdenum, graphite and reduced graphene oxide in nickel coatings promoted hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. However, the nickel-reduced graphene oxide composite coating exhibited the highest electrocatalytic activity for the hydrogen evolution reaction in 0.5 M H2SO4 solution at room temperature. A large number of gaps between 'cauliflower' like grains could decrease effective area for hydrogen evolution reaction in slight amorphous nickel-molybdenum alloy. The synergistic effect between nickel and reduced graphene oxide promoted hydrogen evolution, moreover, refined grain in nickel-reduced graphene oxide composite coating and large specific surface of reduced graphene oxide also facilitated hydrogen evolution reaction.
Molybdenum chloride catalysts for Z-selective olefin metathesis reactions
NASA Astrophysics Data System (ADS)
Koh, Ming Joo; Nguyen, Thach T.; Lam, Jonathan K.; Torker, Sebastian; Hyvl, Jakub; Schrock, Richard R.; Hoveyda, Amir H.
2017-01-01
The development of catalyst-controlled stereoselective olefin metathesis processes has been a pivotal recent advance in chemistry. The incorporation of appropriate ligands within complexes based on molybdenum, tungsten and ruthenium has led to reactivity and selectivity levels that were previously inaccessible. Here we show that molybdenum monoaryloxide chloride complexes furnish higher-energy (Z) isomers of trifluoromethyl-substituted alkenes through cross-metathesis reactions with the commercially available, inexpensive and typically inert Z-1,1,1,4,4,4-hexafluoro-2-butene. Furthermore, otherwise inefficient and non-stereoselective transformations with Z-1,2-dichloroethene and 1,2-dibromoethene can be effected with substantially improved efficiency and Z selectivity. The use of such molybdenum monoaryloxide chloride complexes enables the synthesis of representative biologically active molecules and trifluoromethyl analogues of medicinally relevant compounds. The origins of the activity and selectivity levels observed, which contradict previously proposed principles, are elucidated with the aid of density functional theory calculations.
Comparison of Tungsten and Molybdenum Based Emitters for Advanced Thermionic Space Nuclear Reactors
NASA Astrophysics Data System (ADS)
Lee, Hsing H.; Dickinson, Jeffrey W.; Klein, Andrew C.; Lamp, Thomas R.
1994-07-01
Variations to the Advanced Thermionic Initiative thermionic fuel element are analyzed. Analysis included neutronic modeling with MCNP for criticality determination and thermal power distribution, and thermionic performance modeling with TFEHX. Changes to the original ATI configuration include the addition of W-HfC wire to the emitter for high temperature creep resistance improvement and substitution of molybdenum for the tungsten base material. Results from MCNP showed that all the tungsten used in the coating and base material must be 100% W-184 to obtain criticality. The presence of molybdenum in the emitter base affects the neutronic performance of the TFE by increasing the emitter neutron absorption cross section. Due to the reduced thermal conductivity for the molybdenum based emitter, a higher temperature is obtained resulting in a greater electrical power production. The thermal conductivity and resistivity of the composite emitter region were derived for the W-Mo composite and used in TFEHX.
Recent Developments in Homogeneous Dinitrogen Reduction by Molybdenum and Iron
MacLeod, K. Cory; Holland, Patrick L.
2013-01-01
The reduction of gaseous nitrogen (N2) is a challenge for industrial, biological and synthetic chemists, who want to understand the formation of ammonia (NH3) for agriculture and also want to form N-C and N-Si bonds for fine chemical synthesis. The iron-molybdenum active site of nitrogenase has inspired chemists to explore the ability of iron and molybdenum complexes to bring about transformations related to N2 reduction. This area of research has gained significant momentum, and the last two years have witnessed a number of significant advances in synthetic Fe-N2 and Mo-N2 chemistry. In addition, the identities of all atoms in the iron-molybdenum cofactor of nitrogenase have finally been elucidated, and the discovery of a carbide has generated new questions and targets for coordination chemists. This Perspective summarizes the recent work on iron and molydenum complexes, and highlights the opportunities for continued research. PMID:23787744
NASA Astrophysics Data System (ADS)
Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori
2004-03-01
We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.
Microstructures define melting of molybdenum at high pressures
NASA Astrophysics Data System (ADS)
Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin
2017-03-01
High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.
Molybdenum Valence in Basaltic Silicate Melts: Effects of Temperature and Pressure
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Choi, Y.; Pando, K.
2011-01-01
The metal-silicate partitioning behavior of molybdenum has been used as a test for equilibrium core formation hypotheses [for example, 1-6]. However, current models that apply experimental data to equilibrium core-mantle differentiation infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Molybdenum, a multi-valent element with a valence transition near the fO2 of interest for core formation (approx.IW-2) will be sensitive to changes in fO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo(6+) can be either octahedrally or tetrahedrally coordinated. Here we present X-ray absorption near edge structure (XANES) measurements of Mo valence in basaltic run products at a range of P, T, and fO2 and further quantify the valence transition of Mo.
Molybdenum Valence in Basaltic Silicate Melts
NASA Technical Reports Server (NTRS)
Danielson, L. R.; Righter, K.; Newville, M.; Sutton, S.; Pando, K.
2010-01-01
The moderately siderophile element molybdenum has been used as an indicator in planetary differentiation processes, and is particularly relevant to core formation [for example, 1-6]. However, models that apply experimental data to an equilibrium differentiation scenario infer the oxidation state of molybdenum from solubility data or from multivariable coefficients from metal-silicate partitioning data [1,3,7]. Partitioning behavior of molybdenum, a multivalent element with a transition near the J02 of interest for core formation (IW-2) will be sensitive to changes in JO2 of the system and silicate melt structure. In a silicate melt, Mo can occur in either 4+ or 6+ valence state, and Mo6+ can be either octahedrally or tetrahedrally coordinated. Here we present first XANES measurements of Mo valence in basaltic run products at a range of P, T, and JO2 and further quantify the valence transition of Mo.
Oven rack having integral lubricious, dry porcelain surface
Ambrose, Jeffrey A; Mackiewicz-Ludtka, Gail; Sikka, Vinod K; Qu, Jun
2014-06-03
A lubricious glass-coated metal cooking article capable of withstanding repeated heating and cooling between room temperature and at least 500.degree. F. without chipping or cracking the glass coating, wherein the glass coating includes about 0.1 to about 20% by weight of a homogeneously distributed dry refractory lubricant material having a particle size less than about 200 .mu.m. The lubricant material is selected from the group consisting of carbon; graphite; boron nitride; cubic boron nitride; molybdenum (FV) sulfide; molybdenum sulfide; molybdenum (IV) selenide; molybdenum selenide, tungsten (IV) sulfide; tungsten disulfide; tungsten sulfide; silicon nitride (Si.sub.3N.sub.4); TiN; TiC; TiCN; TiO.sub.2; TiAlN; CrN; SiC; diamond-like carbon; tungsten carbide (WC); zirconium oxide (ZrO.sub.2); zirconium oxide and 0.1 to 40 weight % aluminum oxide; alumina-zirconia; antimony; antimony oxide; antimony trioxide; and mixtures thereof.
Molybdenum oxide nanocolloids prepared by an external field-assisted laser ablation in water
NASA Astrophysics Data System (ADS)
Spadaro, Salvatore; Bonsignore, Martina; Fazio, Enza; Cimino, Francesco; Speciale, Antonio; Trombetta, Domenico; Barreca, Francesco; Saija, Antonina; Neri, Fortunato
2018-01-01
he synthesis of extremely stable molybdenum oxide nanocolloids by pulsed laser ablation was studied. This green technique ensures the formation of contaminant-free nanostructures and the absence of by-products. A focused picosecond pulsed laser beam was used to ablate a solid molybdenum target immersed in deionized water. Molybdenum oxide nearly spherical nanoparticles with dimensions within few nanometers (20-100 nm) are synthesized when the ablation processes were carried out, in water, at room temperature and 80°C. The application of an external electric field during the ablation process induces a nanostructures reorganization, as indicated by Scanning-Transmission Electron Microscopy images analysis. The ablation products were also characterized by some spectroscopic techniques: conventional UV-vis optical absorption, atomic absorption, dynamic light scattering, micro-Raman and X-ray photoelectron spectroscopies. Finally, NIH/3T3 mouse fibroblasts were used to evaluate cell viability by the sulforhodamine B assay
Microstructures define melting of molybdenum at high pressures
Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin
2017-01-01
High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature. PMID:28248309
Method to produce catalytically active nanocomposite coatings
Erdemir, Ali; Eryilmaz, Osman Levent; Urgen, Mustafa; Kazmanli, Kursat
2016-02-09
A nanocomposite coating and method of making and using the coating. The nanocomposite coating is disposed on a base material, such as a metal or ceramic; and the nanocomposite consists essentially of a matrix of an alloy selected from the group of Cu, Ni, Pd, Pt and Re which are catalytically active for cracking of carbon bonds in oils and greases and a grain structure selected from the group of borides, carbides and nitrides.
High-Temperature Ceramic Matrix Composite with High Corrosion Resistance
2010-06-02
ceramics with silicide additives may be explained in the following ways: 1) metal oxide, for example Ta2O5, formed at oxidation of TaSi2, in the...practically monophase ones, possibly, the additives of corresponding metals in silicide powders were present in insignificant amounts. For...boride with zirconium silicide we prepared the mixtures with 20 vol. % of silicide , the latter being hot pressed in the temperature range of 1600
Computer Modeling of Ceramic Boride Composites
2014-11-01
the reinforcer deform elastically, for the theoretical strength of the composite it can be written [46] BBBAAABBAAK EE δεδεσδσδσ +=+= (51) where...coefficients of thermal expansion. Approximately linear expansion coefficient of the composite is determined by the relation [52] EEE BBBAAAk...1 δαδαα ⋅+⋅= , (58) where AE and BE are Young moduli of components, and E – average modulus for composition BBAA EEE δδ
Ground State Structures of Boron-Rich Rhodium Boride: An Ab Initio Study
NASA Astrophysics Data System (ADS)
Chu, Bin-Hua; Zhao, Yuan; Yan, Jin-Liang; Li, Da
2018-01-01
Not Available Supported by the Natural Science Foundation of Shandong Province under Grant Nos ZR2016AP02, ZR2016FM38 and ZR2016EMP01, the Innovation Project of Ludong University under Grant No LB2016013, the Open Project of State Key Laboratory of Superhard Materials of Jilin University under Grant No 201605, and the National Natural Science Foundation of China under Grant Nos 11704170 and 61705097.
NASA Technical Reports Server (NTRS)
Bolgar, A. S.; Gordiyenko, S. P.; Guseva, Y. A.; Turchanin, A. G.; Fenochka, B. V.; Fesenko, V. V.
1984-01-01
The evaporation rate, vapor pressure, heats of evaporation reaction (sublimation, dissociation), enthalpy, electrical resistance, heat capacity, emissivity, and heat conductivity of various carbides, borides, sulfides, nitrides, selenides, and phosphides were investigated. A set of high temperature high vacuum devices, calorimeters (designed for operation at 400 to 1300 K and from 1200 K), and mass spectrometers, most of which were specially developed for these studies, is described.
Lee, G.K.; Antweiler, J.C.; Love, J.D.; Benedict, J.F.
1982-01-01
A brief geologic reconnaissance and geochemical survey of molybdenum mineralization near Schiestler Peak, Sublette County, Wyo., indicates that molybdenite occurs in this area as disseminations and blebs in granitic or quartz monzonitic rocks intruded by felsic dikes of similar composition. Samples of stream sediments, panned concentrates from stream sediments, soils, rocks, and water were collected in the geochemical survey. Analytical results show that in reconnaissance, panned concentrates are the best of the sample types used in this study to detect molybdenum mineralization. More detailed analysis of the distribution of the molybdenum is best achieved through the collection of rock samples. Hydrothermal alteration is generally not conspicuous in the study area; however, rock samples that contain molybdenite are usually slightly enriched in silver, copper, lead, and in several instances, gold. Conversely, there appear to be negative associations between molybdenum and zinc and between molybdenum and several of the rare-earth elements. Mo concentrations in the rock samples with no visible molybdenite range from undetectable at a sensitivity of 5 parts per million (ppm) to 700 ppm. Mo content in rock samples containing visible molybdenite ranges from 10 ppm to greater than 2,000 ppm. Stream-sediment values range from undetected to 15 ppm; panned concentrates from undetected to 15 ppm; soils from undetected to 20 ppm. Analyses of the water samples indicate Mo concentrations from 0.8 parts per billion (ppb) to 4.8 ppb. As currently understood, this deposit is not extensive or continuous, but drilling to provide information on the vertical extent of mineralization may alter this opinion.
1997-04-01
Molybdenum is an essential element for the function of nitrogenase in plants and as a cofactor for enzymes including xanthine oxidoreductase, aldehyde oxidase, and sulfide oxidase in animals. Molybdenum trioxide is used primarily as an additive to steel and corrosion-resistant alloys. It is also used as a chemical intermediate for molybdenum products; an industrial catalyst; a pigment; a crop nutrient; components of glass, ceramics, and enamels; a flame retardant for polyester and polyvinyl chloride resins; and a reagent in chemical analyses. Molybdenum trioxide was nominated by the NCI for toxicity and carcinogenicity studies as a representative inorganic molybdenum compound. The production of molybdenum trioxide is the largest of all the molybdenum compounds examined. Male and female F344/N rats and B6C3F1 mice were exposed to molybdenum trioxide (approximately 99% pure) by inhalation for 14 days, 13 weeks, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium and cultured Chinese hamster ovary cells. 14-DAY STUDY IN RATS: Groups of five male and five female F344/N rats were exposed to 0, 3, 10, 30, 100, or 300 mg molybdenum trioxide/m(3). Rats were exposed for 6 hours per day, 5 days per week, for a total of 10 exposure days during a 14-day period. All rats survived to the end of the study. The final mean body weights of male rats exposed to 100 mg/m(3) and male and female rats exposed to 300 mg/m(3) were significantly lower than those of the control groups. Male rats exposed to 300 mg/m(3) lost weight during the study. There were no clinical findings related to exposure to molybdenum trioxide. No chemical-related lesions were observed. 14-DAY STUDY IN MICE: Groups of five male and five female B6C3F1 mice were exposed to 0, 3, 10, 30, 100, or 300 mg molybdenum trioxide/m(3). Mice were exposed 6 hours per day, 5 days per week, for a total of 10 exposure days during a 14-day period. All mice survived to the end of the study. Final mean body weights of male and female mice exposed to 300 mg/m(3) were significantly lower than those of the control groups. Male mice exposed to 300 mg/m(3) lost weight during the study. There were no clinical findings related to exposure to molybdenum trioxide. No chemical-related lesions were observed. 13-WEEK STUDY IN RATS: Groups of 10 male and 10 female F344/N rats were exposed to molybdenum trioxide by inhalation at concentrations of 0, 1, 3, 10, 30, or 100 mg/m(3) for 6.5 hours per day, 5 days per week, for 13 weeks. All rats survived to the end of the study. The final mean body weights of exposed rats were similar to those of the control groups. No clinical findings related to molybdenum trioxide exposure were observed. There were no significant chemical-related differences in absolute or relative organ weights, hematology or clinical chemistry parameters, sperm counts or motility, or liver copper concentrations between control and exposed rats. No chemical-related lesions were observed. 13-WEEK STUDY IN MICE: Groups of 10 male and 10 female B6C3F1 mice were exposed to molybdenum trioxide by inhalation at concentrations of 0, 1, 3, 10, 30, or 100 mg/m(3) for 6.5 hours per day, 5 days per week, for 13 weeks. All mice survived to the end of the study. The final mean body weights of exposed mice were similar to those of the control groups. There were no chemical-related clinical findings. There were no significant differences in absolute or relative organ weights or sperm counts or motility between control and exposed mice. There were significant increases in liver copper concentrations in female mice exposed to 30 mg/m(3) and in male and female mice exposed to 100 mg/m(3) compared to those of the control groups. No chemical-related lesions were observed. 2-YEAR STUDIES IN RATS: Groups of 50 male and 50 female F344/N rats were exposed to molybdenum trioxide by inhalation at concentrations of 0, 10, 30, or 100 mg/m(3). Rats were exposed for 6 hours per day, 5 days per week, for 106 weeks. Survival, Body Weights, and Special Studies: Survival rates of exposed maleed male and female rats were similar to those of the control groups. Mean body weights of exposed groups of male and female rats were similar to those of the control groups throughout the study. There was a significant exposure-dependent increase in blood molybdenum concentration in exposed rats. Blood concentrations of molybdenum in exposed male rats were greater than those in exposed female rats. There were no toxicologically significant differences in bone density or curvature between control and exposed rats. Pathology Findings: The incidences of alveolar/bronchiolar adenoma or carcinoma (combined) were increased in male rats with a marginally significant positive trend. No increase in the incidences of lung neoplasms occurred in female rats. Incidences of chronic alveolar inflammation in male and female rats exposed to 30 or 100 mg/m(3) were significantly greater than those in the control groups. No nasal or laryngeal neoplasms were attributed to exposure to molybdenum trioxide. Incidences of hyaline degeneration in the nasal respiratory epithelium in 30 and 100 mg/m(3) males and in all exposed groups of females were significantly greater than those in the control groups. The incidences of hyaline degeneration in the nasal olfactory epithelium of all exposed groups of females were significantly greater than that in the control group. In the larynx, incidences of squamous metaplasia of the epithelium lining the base of the epiglottis in all exposed groups of male and female rats were significantly greater than those in the control groups and increased with increasing exposure concentration. 2-YEAR STUDY IN MICE: Groups of 50 male and 50 female B6C3F1 mice were exposed to molybdenum trioxide by inhalation at concentrations of 0, 10, 30, or 100 mg/m(3). Mice were exposed for 6 hours per day, 5 days per week, for 105 weeks. Survival, Body Weights, and Special Studies: The survival rate of male mice exposed to 30 mg/m(3) was marginally lower than that of the control group; survival rates of 10 and 100 mg/m(3) males and of all exposed groups of females were similar to those of the control groups. Mean body weights of exposed male mice were generally similar to those of the control group throughout the study. Mean body weights of exposed female mice were generally greater than those of the control group from week 11 until the end of the study. There was a significant exposure-dependent increase in blood molybdenum concentration in exposed mice. There were no toxicologically significant differences in bone density or curvature between control and exposed mice. Pathology Findings: The incidences of alveolar/bronchiolar carcinoma in all exposed groups of males were significantly greater than that in the control group. Incidences of alveolar/bronchiolar adenoma in females in the 30 and 100 mg/m(3) groups were significantly greater than that in the control group. Incidences of alveolar/bronchiolar adenoma or carcinoma (combined) in 10 and 30 mg/m(3) males and in 100 mg/m(3) females were significantly greater than those in the control groups and exceeded the historical control ranges for 2-year NTP inhalation studies. Incidences of metaplasia of the alveolar epithelium of minimal severity in the centriacinar region of the lung were significantly increased in all exposed groups of mice. The incidences of histiocyte cellular infiltration in all exposed groups of males were significantly greater than that in the control group. Incidences of hyaline degeneration of the respiratory epithelium of the nasal cavity in 100 mg/m(3) males and females and hyaline degeneration of the olfactory epithelium of the nasal cavity in 100 mg/m(3) females were significantly greater than those in the control groups. The incidences of squamous metaplasia of the epithelium lining the base of the epiglottis were significantly increased in all exposed groups of males and females. In both male and female mice, the incidences of hyperplasia of the laryngeal epithelium in level II of the larynx increased with increasing exposure concentration. The increase was statistically significant only in mice exposed to 100 mg/m(3) with 82% of male and 70% of female mice affected. GENETIC TOXICOLOGY: Molybdenum trioxide was not mutagenic in any of five strains of Salmonella typhimurium, and it did not induce sister chromatid exchanges or chromosomal aberrations in cultured Chinese hamster ovary cells in vitro. All tests were conducted with and without S9 metabolic activation enzymes. CONCLUSIONS: Under the conditions of these 2-year inhalation studies, there was equivocal evidence of carcinogenic activity of molybdenum trioxide in male F344/N rats based on a marginally significant positive trend of alveolar/bronchiolar adenoma or carcinoma (combined). There was no evidence of carcinogenic activity of molybdenum trioxide in female F344/N rats exposed to 10, 30, or 100 mg/m(3). There was some evidence of carcinogenic activity of molybdenum trioxide in male B6C3F1 mice based on increased incidences of alveolar/bronchiolar carcinoma and adenoma or carcinoma (combined). There was some evidence of carcinogenic activity of molybdenum trioxide in female B6C3F1 mice based on increased incidences of alveolar/bronchiolar adenoma and adenoma or carcinoma (combined). Exposure of male and female rats to molybdenum trioxide by inhalation resulted in increased incidences of chronic alveolar inflammation, hyaline degeneration of the respiratory epithelium, hyaline degeneration of the olfactory epithelium (females), and squamous metaplasia of the epiglottis. Exposure of male and female mice to molybdenum trioxide by inhalation resulted in increased incidences of metaplasia of the alveolar epithelium, histiocyte cellular infiltration (males), hyaline degeneration of the respiratory epithelium, hyaline degeneration of the olfactory epithelium (females), squamous metaplasia of the epiglottis, and hyperplasia of the larynx. Synonyms: Molybdic oxide; molybdic trioxide; molybdic anhydride; molybdenum (VI) oxide; molybdenum peroxide; molybdic acid anhydride; molybdenum anhydride; natural molybdite; molybdena
Cryogenically cooled detector pin mount
Hunt, Jr., William E; Chrisp, Michael P
2014-06-03
A focal plane assembly facilitates a molybdenum base plate being mounted to another plate made from aluminum. The molybdenum pin is an interference fit (press fit) in the aluminum base plate. An annular cut out area in the base plate forms two annular flexures.
21 CFR 888.3390 - Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis.
Code of Federal Regulations, 2014 CFR
2014-04-01
... includes prostheses that have a femoral component made of alloys, such as cobalt-chromium-molybdenum, and a snap-fit acetabular component made of an alloy, such as cobalt-chromium-molybdenum, and ultra-high...
21 CFR 888.3390 - Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis.
Code of Federal Regulations, 2013 CFR
2013-04-01
... includes prostheses that have a femoral component made of alloys, such as cobalt-chromium-molybdenum, and a snap-fit acetabular component made of an alloy, such as cobalt-chromium-molybdenum, and ultra-high...
SURFACE TREATMENT OF MOLYBDENUM METAL
Coffer, C.O.
1961-12-01
A process of descaling molybdenum articles comprises first immersing them in an aqueous sodium hydroxide-potassium permanganate solution of between 60 and 85 deg C, rinsing, and then immersing them in an aqueous solution containing a mixture of sulfuric, hydrochloric, and chromic acids.
USDA-ARS?s Scientific Manuscript database
Molybdenum-independent nitrogenases were first described in the nitrogen-fixing bacterium Azotobacter vinelandii and have since been described in other diazotrophic bacteria. Previously, we reported the isolation of seven diazotrophs with Molybdenum-independent nitrogenases from aquatic environments...
21 CFR 888.3390 - Hip joint femoral (hemi-hip) metal/polymer cemented or uncemented prosthesis.
Code of Federal Regulations, 2011 CFR
2011-04-01
... includes prostheses that have a femoral component made of alloys, such as cobalt-chromium-molybdenum, and a snap-fit acetabular component made of an alloy, such as cobalt-chromium-molybdenum, and ultra-high...
Breaking America’s Dependence on Foreign…Molybdenum
Einstein, Andrew J.
2009-01-01
Brief Unstructured Abstract Approximately 9 million nuclear cardiology studies performed each year in the United States employ technetium-99m, which is produced from the decay of molybdenum-99. The fragility of the worldwide technetium-99m supply chain has been underscored by current shortages caused by an unplanned shutdown of Europe’s largest reactor. The majority of the United States’ supply derives from a reactor in Canada nearing the end of its lifespan, whose planned replacements have been recently cancelled. In this article, the clinical importance of technetium-99m and our tenuous dependence on foreign supply of Molybdenum is addressed. PMID:19356583
A New Method of Metallization for Silicon Solar Cells
NASA Technical Reports Server (NTRS)
Macha, M.
1979-01-01
A low cost ohmic contact on silicon solar cells based on molybdenum-tin metal systems was developed. The approach is based on the formulation of a screenable ink composed from molybdenum oxide and tin mixture. The reduction of Mo03 into Mo and the establishment of Mo 03:Sn ratio is studied. Both tasks were done in an experimental station constructed for this purpose. The results show that molybdenum was formed from its oxide at 800 C. and improved in bonding to silicon at 900 C. A 20% Mo03-80%Sn mixture was converted into metallic coating within this temperature range.
Healing of voids in the aluminum metallization of integrated circuit chips
NASA Technical Reports Server (NTRS)
Cuddihy, Edward F.; Lawton, Russell A.; Gavin, Thomas R.
1990-01-01
The thermal stability of GaAs modulation-doped field effect transistors (MODFETs) is evaluated in order to identify failure mechanisms and validate the reliability of these devices. The transistors were exposed to thermal step-stress and characterized at ambient temperatures to indicate device reliability, especially that of the transistor ohmic contacts with and without molybdenum diffusion barriers. The devices without molybdenum exhibited important transconductance deterioration. MODFETs with molybdenum diffusion barriers were tolerant to temperatures above 300 C. This tolerance indicates that thermally activated failure mechanisms are slow at operational temperatures. Therefore, high-reliability MODFET-based circuits are possible.
NASA Technical Reports Server (NTRS)
Finkbeiner, Fred Michael; Adams, Joseph S.; Bandler, Simon R.; Betancour-Martinez, Gabriele L.; Brown, Ari David; Chang, Meng-Ping; Chervenak, James A.; Chiao, Meng P.; Datesman, Aaron; Eckart, Megan E.;
2016-01-01
We are exploring the properties of electron-beam evaporated molybdenum thin films on silicon nitride coated silicon wafers at substrate temperatures between room temperature and 650 C. The temperature dependence of film stress, transition temperature, and electrical properties are presented. X-ray diffraction measurements are performed to gain information on molybdenum crystallite size and growth. Results show the dominant influence of the crystallite size on the intrinsic properties of our films. Wafer-scale uniformity, wafer yield, and optimal thermal bias regime for TES fabrication are discussed.
Sorbent for use in hot gas desulfurization
Gasper-Galvin, Lee D.; Atimtay, Aysel T.
1993-01-01
A multiple metal oxide sorbent supported on a zeolite of substantially silicon oxide is used for the desulfurization of process gas streams, such as from a coal gasifier, at temperatures in the range of about 1200.degree. to about 1600.degree. F. The sorbent is provided by a mixture of copper oxide and manganese oxide and preferably such a mixture with molybdenum oxide. The manganese oxide and the molybdenum are believed to function as promoters for the reaction of hydrogen sulfide with copper oxide. Also, the manganese oxide inhibits the volatilization of the molybdenum oxide at the higher temperatures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Molybdenum 7.87 4.07 Oil and grease 23.8 14.3 TSS 48.8 23.2 pH (1) (1) 1 Within the range of 7.5 to 10.0 at... Fluoride 7,200 3,200 Molybdenum 800 414 Oil and grease 2,420 1,450 TSS 4,960 2,360 pH (1) (1) 1 Within the... Molybdenum 2.21 1.14 Oil and grease 6.68 4.01 TSS 13.7 6.51 pH (1) (1) 1 Within the range of 7.5 to 10.0 at...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Molybdenum 7.87 4.07 Oil and grease 23.8 14.3 TSS 48.8 23.2 pH (1) (1) 1 Within the range of 7.5 to 10.0 at... Fluoride 7,200 3,200 Molybdenum 800 414 Oil and grease 2,420 1,450 TSS 4,960 2,360 pH (1) (1) 1 Within the... Molybdenum 2.21 1.14 Oil and grease 6.68 4.01 TSS 13.7 6.51 pH (1) (1) 1 Within the range of 7.5 to 10.0 at...
Kataoka, M; Nishimura, K; Kambara, T
1983-12-01
A trace amount of molybdenum(VI) can be determined by using its catalytic effect on the oxidation of iodide to iodine by hydrogen peroxide in acidic medium. Addition of ascorbic acid added to the reaction mixture produces the Landolt effect, i.e., the iodine produced by the indicator reaction is reduced immediately by the ascorbic add. Hence the concentration of iodide begins to decrease once all the ascorbic acid has been consumed. The induction period is measured by monitoring the concentration of iodide ion with an iodide ion-selective electrode. The reciprocal of the induction period varies linearly with the concentration of molybdenum(VI). The most suitable pH and concentrations of hydrogen peroxide and potassium iodide are found to be 1.5, 5 and 10mM, respectively. An appropriate amount of ascorbic acid is added to the reaction mixture according to the concentration of molybdenum(VI) in the sample solution. A calibration graph with good proportionality is obtained for the molybdenum(VI) concentration range from 0.1 to 160 muM. Iron(III), vanadium(IV), zirconium(IV), tungsten(VI), copper(II) and chromium(VI) interfere, but iron(III) and copper(II) can be masked with EDTA.
A structure-based catalytic mechanism for the xanthine oxidase family of molybdenum enzymes.
Huber, R; Hof, P; Duarte, R O; Moura, J J; Moura, I; Liu, M Y; LeGall, J; Hille, R; Archer, M; Romão, M J
1996-01-01
The crystal structure of the xanthine oxidase-related molybdenum-iron protein aldehyde oxido-reductase from the sulfate reducing anaerobic Gram-negative bacterium Desulfovibrio gigas (Mop) was analyzed in its desulfo-, sulfo-, oxidized, reduced, and alcohol-bound forms at 1.8-A resolution. In the sulfo-form the molybdenum molybdopterin cytosine dinucleotide cofactor has a dithiolene-bound fac-[Mo, = O, = S, ---(OH2)] substructure. Bound inhibitory isopropanol in the inner compartment of the substrate binding tunnel is a model for the Michaelis complex of the reaction with aldehydes (H-C = O,-R). The reaction is proposed to proceed by transfer of the molybdenum-bound water molecule as OH- after proton transfer to Glu-869 to the carbonyl carbon of the substrate in concert with hydride transfer to the sulfido group to generate [MoIV, = O, -SH, ---(O-C = O, -R)). Dissociation of the carboxylic acid product may be facilitated by transient binding of Glu-869 to the molybdenum. The metal-bound water is replenished from a chain of internal water molecules. A second alcohol binding site in the spacious outer compartment may cause the strong substrate inhibition observed. This compartment is the putative binding site of large inhibitors of xanthine oxidase. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8799115
NASA Astrophysics Data System (ADS)
Ding, Jow; Alexander, C. Scott; Asay, James
2015-06-01
MAPS (Magnetically Applied Pressure Shear) is a new technique that has the potential to study material strength under mega-bar pressures. By applying a mixed-mode pressure-shear loading and measuring the resultant material responses, the technique provides explicit and direct information on material strength under high pressure. In order to apply sufficient shear traction to the test sample, the driver must have substantial strength. Molybdenum was selected for this reason along with its good electrical conductivity. In this work, the mechanical behavior of molybdenum under MAPS loading was studied. To understand the experimental data, a viscoplasticity model with tension-compression asymmetry was also developed. Through a combination of experimental characterization, model development, and numerical simulation, many unique insights were gained on the inelastic behavior of molybdenum such as the effects of strength on the interplay between longitudinal and shear stresses, potential interaction between the magnetic field and molybdenum strength, and the possible tension-compression asymmetry of the inelastic material response. Sandia National Labs is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the U.S. Dept. of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) Molybdenum sulfide leachate. BPT Limitations for the Primary Molybdenum Rhenium Subcategory Pollutant or...) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Molybdic oxide leachate. BPT Limitations for...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Molybdenum sulfide leachate. BPT Limitations for the Primary Molybdenum Rhenium Subcategory Pollutant or...) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Molybdic oxide leachate. BPT Limitations for...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Molybdenum sulfide leachate. BPT Limitations for the Primary Molybdenum Rhenium Subcategory Pollutant or...) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Molybdic oxide leachate. BPT Limitations for...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Molybdenum sulfide leachate. BPT Limitations for the Primary Molybdenum Rhenium Subcategory Pollutant or...) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Molybdic oxide leachate. BPT Limitations for...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Molybdenum sulfide leachate. BPT Limitations for the Primary Molybdenum Rhenium Subcategory Pollutant or...) (1) 1 Within the range of 7.5 to 10.0 at all times. (c) Molybdic oxide leachate. BPT Limitations for...
Inert Reassessment Document for Sodium Molybdate - CAS No. 7631-95-0
Sodium molybdate is a soluble sodium salt form of molybdenum, a naturallyoccurringelement that is present in the earth's crust and in soils at background concentrations of1-2 mgkg. Molybdenum is an essential trace element for virtually all life forms.
Molybdenum disilicide composites reinforced with zirconia and silicon carbide
Petrovic, John J.
1995-01-01
Compositions consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.
Molybdenum oxide electrodes for thermoelectric generators
Schmatz, Duane J.
1989-01-01
The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film comprising molybdenum oxide as an electrode deposited by physical deposition techniques onto solid electrolyte. The invention is also directed to the method of making same.
Feasibility study of the welding of SiC
NASA Technical Reports Server (NTRS)
Moore, T. J.
1985-01-01
In a brief study of the feasibility of welding sintered alpha-SiC, solid-state welding and brazing were investigated. Joint quality was determined solely by microstructural examination. Hot-pressure welding was shown to be feasible at 1950 C. Diffusion welding and brazing were also successful under hot isostatic pressure at 1950 C when boride, carbide, and silicide interlayers were used. Furnace brazing was accomplished at 1750 C when a TiSi2 interlayer was introduced.
Titanium Diboride Electrodeposited Coatings
1977-06-01
4 Ti02. This material was deposited in the form of a porous mass or loose particles which must be leached in water and acid to remove adherent...poudres metallique par electrolyse ignee. Revue de Metallurgie, v. 45, 1948, p. 49-59. 7. POWELL, C. F. Borides in High Temperature Materials and... water solution of thallium formate-thallium malonate 50-50 mole percent mixture with a density ranging from about 5 g/cm^ at the bottom to about 2 g/cm
METHOD OF PROTECTING TANTALUM CRUCIBLES AGAINST REACTION WITH MOLTEN URANIUM
Feder, H.M.; Chellew, N.R.
1960-08-16
Tantalum crucibles against reaction with molten uranium by contacting the surfaces to be protected with metallic boron (as powder, vapor, or suspension in a liquid-volatilenonreacting medium, such as acetone and petroleum oil) at about 1800 deg C in vacuum, discontinuing contact with the boron, and heating the crucibles to a temperature of between 1800 aad 2000 deg C, whereby the tantalum boride formed in the first heating step is converted to tantalum monoboride.
Alumina-based ceramic composite
Alexander, Kathleen B.; Tiegs, Terry N.; Becher, Paul F.; Waters, Shirley B.
1996-01-01
An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite.
Preliminary investigation of zirconium boride ceramals for gas-turbine blade applications
NASA Technical Reports Server (NTRS)
Hoffman, Charles A
1953-01-01
Zirconium boride ZrB2 ceramals were investigated for possible gas-turbine-blade application. Included in the study were thermal shock evaluations of disks, preliminary turbine-blade operation, and observations of oxidation resistance. Thermal shock disks of the following three compositions were studied: (a) 97.5 percent ZrB2 plus 2.5 percent B by weight; (b) 92.5 percent ZrB2 plus 7.5 percent B by weight; and (c) 100 percent ZrB2. Thermal shock disks were quenched from temperatures of 1800 degrees, 2000 degrees, 2200 degrees, and 2400 degrees F. The life of turbine blades containing 93 percent ZrB2 plus 7 percent B by weight was determined in gas-turbine tests. The blades were run at approximately 1600 degrees F and 15,000 to 26,000 rpm. The thermal shock resistance of the 97.5 percent ZrB2 plus 2.5 percent boron ceramals compares favorably with that of TiC plus Co and TiC plus Ni ceramals. Oxidation of the disks during the thermal shock evaluation was slight for the comparatively short time (8.3 hr) up through 2000 degrees F. Oxidation of a specimen was severe, however, after 100 hours at 2000 degrees F. The turbine blade performance evaluation of the 93 percent ZrB2 plus 7 percent B composition was preliminary in scope ; no conclusions can be drawn.
NASA Astrophysics Data System (ADS)
Barker, J. A. T.; Singh, R. P.; Hillier, A. D.; Paul, D. McK.
2018-03-01
The superconductivity in the rare-earth transition-metal ternary borides R RuB2 (where R =Lu and Y) has been investigated using muon-spin rotation and relaxation. Measurements made in zero field suggest that time-reversal symmetry is preserved upon entering the superconducting state in both materials; a small difference in depolarization is observed above and below the superconducting transition in both compounds, however, this has been attributed to quasistatic magnetic fluctuations. Transverse-field measurements of the flux-line lattice indicate that the superconductivity in both materials is fully gapped, with a conventional s -wave pairing symmetry and BCS-like magnitudes for the zero-temperature gap energies. The electronic properties of the charge carriers in the superconducting state have been calculated, with effective masses m*/me=9.8 ±0.1 and 15.0 ±0.1 in the Lu and Y compounds, respectively, with superconducting carrier densities ns=(2.73 ±0.04 ) ×1028m-3 and (2.17 ±0.02 ) ×1028m-3 . The materials have been classified according to the Uemura scheme for superconductivity, with values for Tc/TF of 1 /(414 ±6 ) and 1 /(304 ±3 ) , implying that the superconductivity may not be entirely conventional in nature.
Pennesi, Chiara; Totti, Cecilia; Beolchini, Francesca
2013-01-01
The use of dried and re-hydrated biomass of the seagrass Posidonia oceanica was investigated as an alternative and –low-cost biomaterial for removal of vanadium(III) and molybdenum(V) from wastewaters. Initial characterisation of this biomaterial identified carboxylic groups on the cuticle as potentially responsible for cation sorption, and confirmed the toxic-metal bioaccumulation. The combined effects on biosorption performance of equilibrium pH and metal concentrations were investigated in an ideal single-metal system and in more real-life multicomponent systems. There were either with one metal (vanadium or molybdenum) and sodium nitrate, as representative of high ionic strength systems, or with the two metals (vanadium and molybdenum). For the single-metal solutions, the optimum was at pH 3, where a significant proportion of vanadium was removed (ca. 70%) while there was ca. 40% adsorption of molybdenum. The data obtained from the more real-life multicomponent systems showed that biosorption of one metal was improved both by the presence of the other metal and by high ionic strength, suggesting a synergistic effect on biosorption rather than competition. There data ware used for the development of a simple multi-metal equilibrium model based on the non-competitive Langmuir approach, which was successfully fitted to experimental data and represents a useful support tool for the prediction of biosorption performance in such real-life systems. Overall, the results suggest that biomass of P. oceanica can be used as an efficient biosorbent for removal of vanadium(III) and molybdenum(V) from aqueous solutions. This process thus offers an eco-compatible solution for the reuse of the waste material of leaves that accumulate on the beach due to both human activities and to storms at sea. PMID:24204692
Ojeda, Armando Gómez; Wrobel, Kazimierz; Escobosa, Alma Rosa Corrales; Elguera, Julio César Torres; Garay-Sevilla, Ma Eugenia; Wrobel, Katarzyna
2015-02-01
Experimental evidence indicates that diabetic patients and individuals with impaired copper homeostasis could be at risk of molybdenum toxicity. A self-administered food frequency questionnaire revealed that in central Mexico, diabetic patients with severe complications tend to consume beans more often than individuals with less advanced disease. Four varieties of Phaseolus vulgaris were comparatively evaluated as the dietary sources of two elements; the results showed molybdenum concentration decreasing in the order peruvian > pinto > mayflower > black, whereas for copper, the order was peruvian > pinto ∼ black > mayflower. The two elements were determined in pre-soaking water, cooked legumes, and broth obtained in cooking procedure; an in vitro gut model was also applied to assess potentially bioavailable fraction of both elements in cooked beans. The results indicated that the black variety would be the healthiest bean choice for diabetic patients and individuals susceptible to Mo toxicity. Relatively low total molybdenum was found in this variety (2.9 ± 1.4 versus 4.3-10.9 μg g(-1) in other types), element availability was also low (15 % in supernatant from enzymolysis, 24.9 % in combined broth + supernatant fractions), and the molar ratio of Cu/Mo was the highest among four types (41, versus Cu/Mo <10 in peruvian, pinto, or mayflower). Considering peruvian and pinto beans, broth elimination would help to lower molybdenum intake with marginal effect on Cu/Mo molar ratio. This recommendation would be especially important for peruvian variety, which provided 1090, 803, and 197 μg day(-1) of molybdenum in raw grains, broth + supernatant, and supernatant, respectively (based on 100-g portion), exceeding the recommended daily allowance of 45 μg day(-1).
Xiong, Xiaohong; Jiang, Tao; Zhou, Runzhi; Wang, Shangxian; Zou, Wei; Zhu, Zhiqiang
2016-05-01
Microwave plasma torch (MPT) is a simple and low power-consumption ambient ion source. And the MPT Mass spectra of many metal elements usually exhibit some novel features different from their inductively coupled plasma (ICP) mass spectra, which may be helpful for metal element analysis. Here, we presented the results about the MPT mass spectra of copper and molybdenum elements by a linear ion trap mass spectrometer (LTQ). The generated copper or molybdenum contained ions in plasma were characterized further in collision-induced dissociated (CID) experiments. These researches built a novel, direct and sensitive method for the direct analysis of trace levels of copper and molybdenum in aqueous liquids. Quantitative results showed that the limit of detection (LOD) by using MS(2) procedure was estimated to be 0.265 µg/l (ppb) for copper and 0.497 µg/l for molybdenum. The linear dynamics ranges cover at least 2 orders of magnitude and the analysis of a single aqueous sample can be completed in 5-6 min with a reasonable semi-quantitative sense. Two practical aqueous samples, milk and urine, were also analyzed qualitatively with reasonable recovery rates and RSD. These experimental data demonstrated that the MPT MS is able to turn into a promising and hopeful tool in field analysis of copper and molybdenum ions in water and some aqueous media, and can be applied in many fields, such as environmental controlling, hydrogeology, and water quality inspection. Moreover, MPT MS could also be used as the supplement of ICP-MS for the rapid and in-situ analysis of metal ions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Molybdenum disilicide composites reinforced with zirconia and silicon carbide
Petrovic, J.J.
1995-01-17
Compositions are disclosed consisting essentially of molybdenum disilicide, silicon carbide, and a zirconium oxide component. The silicon carbide used in the compositions is in whisker or powder form. The zirconium oxide component is pure zirconia or partially stabilized zirconia or fully stabilized zirconia.
Sialons as high temperature insulators
NASA Technical Reports Server (NTRS)
Phillips, W. M.; Kuo, Y. S.
1978-01-01
Sialons were evaluated for application as high temperature electrical insulators in contact with molybdenum and tungsten components in hard vacuum applications. Both D.C. and variable frequency A.C. resistivity data indicate the sialons to have electrical resistivity similar to common oxide in the 1000 C or higher range. Metallographic evaluations indicate good bonding of the type 15R ALN polytype to molybdenum and tungsten. The beta prime or modified silicon nitride phase was unacceptable in terms of vacuum stability. Additives effect on electrical resistivity. Similar resistivity decreases were produced by additions of molybdenum or tungsten to form cermets. The use of hot pressing at 1800 C with ALN, Al2 O3 and Si3N4 starting powders produced a better product than did a combination of SiO2 and AIN staring powders. It was indicated that sialons will be suitable insulators in the 1600K range in contact with molybdenum or tungsten if they are produced as a pure ceramic and subsequently bonded to the metal components at temperatures in the 1600K range.
NASA Astrophysics Data System (ADS)
Qureshi, Nilam; Arbuj, Sudhir; Shinde, Manish; Rane, Sunit; Kulkarni, Milind; Amalnerkar, Dinesh; Lee, Haiwon
2017-09-01
Herein, we report the synthesis of metallic molybdenum microspheres and hierarchical MoS2 nanostructures by facile template-free solvothermal and hydrothermal approach, respectively. The morphological transition of the Mo microspheres to hierarchical MoS2 nanoflower architectures is observed to be accomplished with change in solvent from ethylenediamine to water. The resultant marigold flower-like MoS2 nanostructures are few layers thick with poor crystallinity while spherical ball-like molybdenum microspheres exhibit better crystalline nature. This is the first report pertaining to the synthesis of Mo microspheres and MoS2 nanoflowers without using any surfactant, template or substrate in hydro/solvothermal regime. It is opined that such nanoarchitectures of MoS2 are useful candidates for energy related applications such as hydrogen evolution reaction, Li ion battery and pseudocapacitors. Inquisitively, metallic Mo can potentially act as catalyst as well as fairly economical Surface Enhanced Raman Spectroscopy (SERS) substrate in biosensor applications.
Effect of thiomolybdate and ammonium molybdate in pregnant guinea pigs and their offspring.
Howell, J M; Shunxiang, Y; Gawthorne, J M
1993-09-01
Groups of eight guinea pigs and their offspring were given drinking water containing molybdenum as ammonium molybdate (AM) or thiomolybdate (TM) throughout and subsequent to pregnancy. All adult females had oestrous cycles and conception rates were unaffected. Fetal death was common in groups given the high dose of TM. The concentration of copper in liver was reduced in all groups at all ages except for pups killed at birth from animals given AM. The concentration of molybdenum was elevated in liver and kidney of all groups and was statistically significant in the majority. The concentration in plasma of copper, molybdenum and copper insoluble in trichloroacetic acid was elevated in all groups. Superoxide dismutase activity was significantly reduced in dams and six-week-old pups in which TM administration commenced before mating. Histological damage occurred in the pancreas of animals given AM or TM. The effects on the fetus and pancreas were considered to result from copper deficiency rather than molybdenum toxicity.
Subrahmanyam, Kota S; Malliakas, Christos D; Sarma, Debajit; Armatas, Gerasimos S; Wu, Jinsong; Kanatzidis, Mercouri G
2015-11-04
We report the synthesis of ion-exchangeable molybdenum sulfide chalcogel through an oxidative coupling process, using (NH4)2MoS4 and iodine. After supercritical drying, the MoS(x) amorphous aerogel shows a large surface area up to 370 m(2)/g with a broad range of pore sizes. X-ray photoelectron spectroscopic and pair distribution function analyses reveal that Mo(6+) species undergo reduction during network assembly to produce Mo(4+)-containing species where the chalcogel network consists of [Mo3S13] building blocks comprising triangular Mo metal clusters and S2(2-) units. The optical band gap of the brown-black chalcogel is ∼1.36 eV. The ammonium sites present in the molybdenum sulfide chalcogel network are ion-exchangeable with K(+) and Cs(+) ions. The molybdenum sulfide aerogel exhibits high adsorption selectivities for CO2 and C2H6 over H2 and CH4. The aerogel also possesses high affinity for iodine and mercury.
NASA Astrophysics Data System (ADS)
Hess, D. W.
1986-05-01
Radiofrequency (rf) discharges have been used to deposit films of tungsten, molybdenum and titanium silicide. As-deposited tungsten films, from tungsten hexafluoride and hydrogen source gases, were metastable (beta W), with significant (>1 atomic percent) fluorine incorporation. Film resistivities were 40-55 micro ohm - cm due to the beta W, but dropped to about 8 micro ohm cm after a short heat treatment at 700 C which resulted in a phase transition to alpha W (bcc form). The high resistivity (>10,000 micro ohm) associated with molybdenum films deposited from molybdenum hexafluoride and hydrogen appeared to be a result of the formation of molybdenum trifluoride in the deposited material. Titanium silicide films formed from a discharge of titanium tetrachloride, silane, and hydrogen, displayed resistivities of about 150 micro ohm cm, due to small amounts of oxygen and chlorine incorporated during deposition. Plasma etching studies of tungsten films with fluorine containing gases suggest that the etchant species for tungsten in these discharges are fluorine atoms.
Mitchell, P C; Pygall, C F
1979-08-01
Reactions of molybdenum-sulphur compounds with cyanide are reported which may be relevant to (1) the chemical evolution of molybdoenzymes and (2) deactivation of molybdoenzymes by cyanide. (1) With aqueous cyanide MoS2 gave thio-bridged complex anions [(Mo(CN)6)2(mu-S)]6- and [(Mo(CN)4(mu-S))2]6-. Under prebiotic conditions such complexes could have been formed similarly from molybdenite and may have been precursors of molybdoenzymes. (2) Only those compounds which contained terminal sulphur bound to molybdenum (i.e., Mo = S groups), viz. oxothiomolybdates and the complex [(Mo(mu-S)(S)(Et2NCS2))2], reacted with cyanide; thiocyanate was formed and the molybdenum underwent two-electron reduction. That the cyanolysable sulphur of xanthine oxidase reacts in the same way with cyanide suggests the presence of a Mo = S group which could be a structural feature of the enzyme or could have been formed by initial cyanolysis of a bound persulphide or cysteine residue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, Sean Douglas; May, Iain; Copping, Roy
A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted tomore » concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.« less
Molybdenum L-Edge XAS Spectra of MoFe Nitrogenase
Bjornsson, Ragnar; Delgado-Jaime, Mario U; Lima, Frederico A; Sippel, Daniel; Schlesier, Julia; Weyhermüller, Thomas; Einsle, Oliver; Neese, Frank; DeBeer, Serena
2015-01-01
A molybdenum L-edge X-ray absorption spectroscopy (XAS) study is presented for native and oxidized MoFe protein of nitrogenase as well as Mo-Fe model compounds. Recently collected data on MoFe protein (in oxidized and reduced forms) is compared to previously published Mo XAS data on the isolated FeMo cofactor in NMF solution and put in context of the recent Mo K-edge XAS study, which showed a MoIII assignment for the molybdenum atom in FeMoco. The L3-edge data are interpreted within a simple ligand-field model, from which a time-dependent density functional theory (TDDFT) approach is proposed as a way to provide further insights into the analysis of the molybdenum L3-edges. The calculated results reproduce well the relative spectral trends that are observed experimentally. Ultimately, these results give further support for the MoIII assignment in protein-bound FeMoco, as well as isolated FeMoco. PMID:26213424
NASA Astrophysics Data System (ADS)
Paufert, Pierre; Fonda, Emiliano; Li, Zheshen; Domenichini, Bruno; Bourgeois, Sylvie
2013-11-01
An in-depth study of the first steps of electron beam assisted growth of Mo from molybdenum hexacarbonyl on Cu(1 1 1) has been carried out exploiting the complementarity of X-ray photoemission and X-ray absorption spectroscopies. Frank van der Merwe (2D) growth mode has been observed for the completion of the two first monolayers of adsorbed molecules through a simple physisorption process. Irradiation of the Mo(CO)6 deposit by 1 keV electron beam induces a modification of molybdenum coordination, the average number of C-neighbors decreasing from 6 to 3. Decomposed molecules remain on the surface after annealing at 520 K and organize themselves, the molybdenum atoms moving in Cu(1 1 1) surface fcc hollow sites. After annealing at 670 K, metallic molybdenum growth begins, if the total amount of adsorbed Mo atoms exceeds 1.2 monolayers.
Noumsi, Christelle Jouogo; Pourhassan, Nina; Darnajoux, Romain; Deicke, Michael; Wichard, Thomas; Burrus, Vincent; Bellenger, Jean-Philippe
2016-02-01
Biological nitrogen fixation can be catalysed by three isozymes of nitrogenase: molybdenum (Mo)-nitrogenase, vanadium (V)-nitrogenase and iron-only (Fe)-nitrogenase. The activity of these isozymes strongly depends on their metal cofactors, molybdenum, vanadium and iron, and their bioavailability in ecosystems. Here, we show how metal bioavailability can be affected by the presence of tannic acid (organic matter), and the subsequent consequences on diazotrophic growth of the soil bacterium Azotobacter vinelandii. In the presence of tannic acids, A. vinelandii produces a higher amount of metallophores, which coincides with an active, regulated and concomitant acquisition of molybdenum and vanadium under cellular conditions that are usually considered not molybdenum limiting. The associated nitrogenase genes exhibit decreased nifD expression and increased vnfD expression. Thus, in limiting bioavailable metal conditions, A. vinelandii takes advantage of its nitrogenase diversity to ensure optimal diazotrophic growth. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Rybak, Justyna; Ruzik, Lena
2013-03-15
An analytical procedure was proposed to determine the manganese species and to study the fractionation of microelements such as copper, cobalt and molybdenum in Noni juice. Morinda citrifolia is known as a noni fruit, Indian mulberry, nunaakai, dog dumpling, mengkudu, beach mulberry, vomit fruit and cheese fruit. It is a tropical plant with a long tradition of medicinal use in Polynesia and tropical parts of eastern Asia and Australia. This article covers the determination of manganese species in Noni juice and established by fractionation by size exclusion chromatography inductively coupled plasma mass spectrometry (SEC ICP MS) and next characterization of species by electrospray ionization mass spectrometry (ESI MS). Also presented the fractionation analysis of copper, cobalt and molybdenum in Noni juice sample using SEC ICP MS - juice was treated with buffer and enzymatic extraction media and analyzed. For the evaluation of the amounts of the metal fractions distinguished, the ICP MS was used off-line prior to the determination of copper, cobalt, molybdenum and manganese concentrations in the juice. It was established that elements are present in the analyzed samples in different species and their concentration is μg mL(-1) and ng mL(-1) range in fruit. The accuracy of the entire fractionation scheme and sample preparation procedures involved was verified by the performance of the recovery test. For the information about the bioavailability of these elements, in vitro bioavailability investigation was used by SEC ICP MS technique. Two step digestion model simulating gastric (pepsin digestion) and intestinal (pancreatin digestion) juices. In Noni juice, manganese is complexed from flavonoids - rutin, from dye like anthraquinone (alizarin) and glycosides - asperulosidic acid (ESI MS - characterization). The study shows that copper and molybdenum contained in Noni juice are complexed by peptides, and cobalt by organic acids (which are 3.6% of juice). Molybdenum in the sample is also bound by the polysaccharides (SEC ICP MS). In addition, compounds complexing manganese, copper and molybdenum are hydrophobic proteins. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
May, M. J.; Finkenthal, M.; Regan, S. P.; Moos, H. W.; Terry, J. L.; Goetz, J. A.; Graf, M. A.; Rice, J. E.; Marmar, E. S.; Fournier, K. B.; Goldstein, W. H.
1997-06-01
The intrinsic impurity content of molybdenum and carbon was measured in the Alcator C-Mod tokamak using low resolution, multilayer mirror (MLM) spectroscopy ( Delta lambda ~1-10 AA). Molybdenum was the dominant high-Z impurity and originated from the molybdenum armour tiles covering all of the plasma facing surfaces (including the inner column, the poloidal divertor plates and the ion cyclotron resonant frequency (ICRF) limiter) at Alcator C-Mod. Despite the all metal first wall, a carbon concentration of 1 to 2% existed in the plasma and was the major low-Z impurity in Alcator C-Mod. Thus, the behaviour of intrinsic molybdenum and carbon penetrating into the main plasma and the effect on the plasma must be measured and characterized during various modes of Alcator C-Mod operation. To this end, soft X-ray extreme ultraviolet (XUV) emission lines of charge states, ranging from hydrogen-like to helium-like lines of carbon (radius/minor radius, r/a~1) at the plasma edge to potassium to chlorine-like (0.4
22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geissbühler, Jonas, E-mail: jonas.geissbuehler@epfl.ch; Werner, Jérémie; Martin de Nicolas, Silvia
2015-08-24
Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. We circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.
Onset of superconductivity in sodium and potassium intercalated molybdenum disulphide
NASA Technical Reports Server (NTRS)
Somoano, R. B.; Rembaum, A.
1971-01-01
Molybdenum disulfide in the form of natural crystals or powder has been intercalated at -65 to -70 C with sodium and potassium using the liquid ammonia technique. All intercalated samples were found to show a superconducting transition. A plot of the percent of diamagnetic throw versus temperature indicates the possible existence of two phases in the potassium intercalated molybdenum disulfide. The onset of superconductivity in potassium and sodium intercalated molybdenite powder was found to be approximately 6.2 and approximately 4.5 K, respectively. The observed superconductivity is believed to be due to an increase in electron density as a result of intercalation.
X-ray diffraction of molybdenum under shock compression to 450 GPa
Wang, Jue; Coppari, Federica; Smith, Raymond F.; ...
2015-11-20
Molybdenum (Mo) is a body-centered-cubic (bcc) transition metal that has widespread technological applications. Although the bcc transition elements are used as test cases for understanding the behavior of metals under extreme conditions, the melting curves and phase transitions of these elements have been the subject of stark disagreements in recent years. Here we use x-ray diffraction to examine the phase stability and melting behavior of Mo under shock loading to 450 GPa. The bcc phase of Mo remains stable along the Hugoniot until 380 GPa. Here, our results do not support previous claims of a shallow melting curve for molybdenum.
Investigation of welding and brazing of molybdenum and TZM alloy tubes
NASA Technical Reports Server (NTRS)
Lundblad, Wayne E.
1991-01-01
This effort involved investigating the welding and brazing techniques of molybdenum tubes to be used as cartridges in the crystal growth cartridge. Information is given in the form of charts and photomicrographs. It was found that the recrystallization temperature of molybdenum can be increased by alloying it with 0.5 percent titanium and 0.1 percent zirconium. Recrystallization temperatures for this alloy, known as TZM, become significant around 2500 F. A series of microhardness tests were run on samples of virgin and heat soaked TZM. The test results are given in tabular form. It was concluded that powder metallurgy TZM may be an acceptable cartridge material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Chenggong; Wang, Congcong; Kauppi, John
2015-08-28
Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.
22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector
Geissbühler, Jonas; Werner, Jérémie; Nicolas, Silvia Martin de; ...
2015-08-24
Substituting the doped amorphous silicon films at the front of silicon heterojunction solar cells with wide-bandgap transition metal oxides can mitigate parasitic light absorption losses. This was recently proven by replacing p-type amorphous silicon with molybdenum oxide films. In this article, we evidence that annealing above 130 °C—often needed for the curing of printed metal contacts—detrimentally impacts hole collection of such devices. Furthermore, we circumvent this issue by using electrodeposited copper front metallization and demonstrate a silicon heterojunction solar cell with molybdenum oxide hole collector, featuring a fill factor value higher than 80% and certified energy conversion efficiency of 22.5%.
Estimation of 99Mo production rates from natural molybdenum in research reactors.
Blaauw, M; Ridikas, D; Baytelesov, S; Salas, P S Bedregal; Chakrova, Y; Eun-Ha, Cho; Dahalan, R; Fortunato, A H; Jacimovic, R; Kling, A; Muñoz, L; Mohamed, N M A; Párkányi, D; Singh, T; Van Dong Duong
2017-01-01
Molybdenum-99 is one of the most important radionuclides for medical diagnostics. In 2015, the International Atomic Energy Agency organized a round-robin exercise where the participants measured and calculated specific saturation activities achievable for the 98 Mo(n,γ) 99 Mo reaction. This reaction is of interest as a means to locally, and on a small scale, produce 99 Mo from natural molybdenum. The current paper summarises a set of experimental results and reviews the methodology for calculating the corresponding saturation activities. Activation by epithermal neutrons and also epithermal neutron self-shielding are found to be of high importance in this case.
Selective emission multilayer coatings for a molybdenum thermophotovoltaic radiator
Cockeram, Brian Vern
2004-01-27
Multilayer coating designs have been developed to provide selective emission for a molybdenum thermophotovoltaic (TPV) radiator surface. These coatings increase the surface emissivity of a molybdenum TPV radiator substrate in the wavelength range that matches the bandgap of the TPV cells to increase the power density of the TPV system. Radiator emission at wavelengths greater than the bandgap energy of the TPV cells is greatly reduced through the use of these coatings, which significantly increases the efficiency of the TPV system. The use of this coating greatly improves the performance of a TPV system, and the coating can be tailored to match the bandgap of any practical TPV system.
Molybdenum Accumulation in Marine Sediments as an Indicator of Hypoxic Water Conditions (NACAETAC)
Direct monitoring of hypoxic water column conditions over large spatial and temporal extents is difficult due to the substantial logistical and financial investment required. Recent studies have indicated that concentrations of molybdenum (Mo) in marine sediments may serve as a u...
Field Validation of Molybdenum Accumulation as an Indicator of Hypoxic Water Conditions
Laboratory experiments have shown that the accumulation rate of authigenic molybdenum (Mo) in marine sediments may serve as a quantitative surrogate for direct measurement of hypoxic conditions in overlying waters: Mo accumulation in the top 1 cm of sediment is linearly related t...
NASA Technical Reports Server (NTRS)
Williams, R. M.; Ryan, M. A.; LeDuc, H.; Cortez, R. H.; Saipetch, C.; Shields, V.; Manatt, K.; Homer, M. L.
1998-01-01
This paper presents a model of the exchange current developed for porous molybdenum electrodes on sodium beta-alumina ceramics in low pressure sodium vapor, but which has general applicability to gas/porous metal electrodes on solid electrolytes.
Molybdenum-platinum-oxide electrodes for thermoelectric generators
Schmatz, Duane J.
1990-01-01
The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a solid electrolyte carrying a thin film comprising molybdenum-platinum-oxide as an electrode deposited by physical deposition techniques. The invention is also directed to the method of making same.
Laboratory Determination of Molybdenum Accumulation Rates as a Measure of Hypoxic Conditions
Redox sensitive metals, such as molybdenum (Mo), are enriched in reducing sediments due to authigenic fixation in anoxic interstitial waters of sediments. This study tested whether the process of fixation and accumulation of Mo in sediments could provide a geochemical indicator o...
Nakajima, Kenichi; Ohno, Hajime; Kondo, Yasushi; Matsubae, Kazuyo; Takeda, Osamu; Miki, Takahiro; Nakamura, Shinichiro; Nagasaka, Tetsuya
2013-05-07
Steel is not elemental iron but rather a group of iron-based alloys containing many elements, especially chromium, nickel, and molybdenum. Steel recycling is expected to promote efficient resource use. However, open-loop recycling of steel could result in quality loss of nickel and molybdenum and/or material loss of chromium. Knowledge about alloying element substance flow is needed to avoid such losses. Material flow analyses (MFAs) indicate the importance of steel recycling to recovery of alloying elements. Flows of nickel, chromium, and molybdenum are interconnected, but MFAs have paid little attention to the interconnected flow of materials/substances in supply chains. This study combined a waste input-output material flow model and physical unit input-output analysis to perform a simultaneous MFA for nickel, chromium, and molybdenum in the Japanese economy in 2000. Results indicated the importance of recovery of these elements in recycling policies for end-of-life (EoL) vehicles and constructions. Improvement in EoL sorting technologies and implementation of designs for recycling/disassembly at the manufacturing phase are needed. Possible solutions include development of sorting processes for steel scrap and introduction of easier methods for identifying the composition of secondary resources. Recovery of steel scrap with a high alloy content will reduce primary inputs of alloying elements and contribute to more efficient resource use.
Geochemical evidence for a brooks range mineral belt, Alaska
Marsh, S.P.; Cathrall, J.B.
1981-01-01
Geochemical studies in the central Brooks Range, Alaska, delineate a regional, structurally controlled mineral belt in east-west-trending metamorphic rocks and adjacent metasedimentary rocks. The mineral belt extends eastward from the Ambler River quadrangle to the Chandalar and Philip Smith quadrangles, Alaska, from 147?? to 156??W. longitude, a distance of more than 375 km, and spans a width from 67?? to 69??N. latitude, a distance of more than 222 km. Within this belt are several occurrences of copper and molybdenum mineralization associated with meta-igneous, metasedimentary, and metavolcanic rocks; the geochemical study delineates target areas for additional occurrences. A total of 4677 stream-sediment and 2286 panned-concentrate samples were collected in the central Brooks Range, Alaska, from 1975 to 1979. The -80 mesh ( 2.86) nonmagnetic fraction of the panned concentrates from stream sediment were analyzed by semiquantitative spectrographic methods. Two geochemical suites were recognized in this investigation; a base-metal suite of copper-lead-zinc and a molybdenum suite of molybdenum-tin-tungsten. These suites suggest several types of mineralization within the metamorphic belt. Anomalies in molybdenum with associated Cu and W suggest a potential porphyry molybdenum system associated with meta-igneous rocks. This regional study indicates that areas of metaigneous rocks in the central metamorphic belt are target areas for potential mineralized porphyry systems and that areas of metavolcanic rocks are target areas for potential massive sulfide mineralization. ?? 1981.
The Effect of Molybdenum Substrate Oxidation on Molybdenum Splat Formation
NASA Astrophysics Data System (ADS)
Wang, Jun; Li, Chang-Jiu
2018-01-01
Disk splats are usually observed when the deposition temperature exceeds the transition temperature, whereas thick oxide layer will reduce the adhesion resulting from high deposition temperature. In present study, single molybdenum splats were deposited onto polished molybdenum substrates with different preheating processes to clarify the effect of surface oxidation on the splat formation. Three substrate samples experienced three different preheating processes in an argon atmosphere. Two samples were preheated to 350 and 550 °C, and another sample was cooled to 350 °C after it was preheated to 550 °C. The chemistry and compositions of substrate surface were examined by XPS. The cross sections of splats were prepared by focus ion beam (FIB) and then characterized by SEM. Nearly disk-shaped splat with small fingers in the periphery was observed on the sample preheated to 350 °C. A perfect disk-shape splat was deposited at 550 °C. With the sample on the substrate preheated to 350 °C (cooling down from 550 °C), flower-shaped splat exhibited a central core and discrete periphery detached by some voids. The results of peeling off splats by carbon tape and the morphology of FIB sampled cross sections indicated that no effective bonding formed at the splat-substrate interface for the substrate ever heated to 550 °C, due to the increasing content of MoO3 on the preheated molybdenum surface.
Accumulation of authigenic molybdenum (Mo) in marine sediments has often been used as qualitative indicator of periods of hypoxic bottom water, but rarely, if ever, used quantitatively. Laboratory experiments have shown that the accumulation rate of Mo may serve as a quantitative...
Method for welding chromium molybdenum steels
Sikka, Vinod K.
1986-01-01
Chromium-molybdenum steels exhibit a weakening after welding in an area adjacent to the weld. This invention is an improved method for welding to eliminate the weakness by subjecting normalized steel to a partial temper prior to welding and subsequently fully tempering the welded article for optimum strength and ductility.
Process for producing molybdenum foil and collapsible tubing
NASA Technical Reports Server (NTRS)
Bretts, G. R.; Gavert, R. B.; Groschke, G. F.
1971-01-01
Manufacturing process produces molybdenum foil 0.002 cm thick and 305 m long, and forms foil into high-strength, thin-walled tubing which can be flattened for storage on a spool. Desirable metal properties include high thermal conductivity stiffness, yield and tensile stress, and low thermal expansion coeffecient.
Effect of growth regulators, boron and molybdenum on sugarcane grown in the greenhouse
USDA-ARS?s Scientific Manuscript database
Tillering is an important characteristic in determining sugarcane yields. An experiment was conducted in the greenhouse using LCP 85-384 to determine the influence of the growth regulator Moddus, alone and in all possible combinations with boron and molybdenum, on the growth and development of young...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osseo-Asare, K.; Boakye, E.; Vittal, M.
1995-04-01
This report described the synthesis of Molybdenum Sulfides in microemulsions by acidification of ammonium tetrathiomolybdate. Molybdenum Sulfides have been shown to be potential coal liquefaction catalysts. The importance of particle size, temperature effects, and coal surface chemistry to impregnation are discussed.
Method of making a light weight battery plaque
NASA Technical Reports Server (NTRS)
Reid, M. A.; Post, R. E.; Soltis, D. G. (Inventor)
1984-01-01
A nickel plaque which may be coated with a suitable metal or compound to make an electrode for a fuel cell or battery is fabricated by directing nickel sensitizer, catalyst and plating solutions through a porous plastic substrate in the order named and at prescribed temperatures and flow rates. A boride compound dissolved in the plating solution decreases the electrical resistance of the plaque. Certain substrates may require treatment in an alkali solution to dissolve filler materials thereby increasing porosity to a required 65%.
NASA Technical Reports Server (NTRS)
Divecha, A. P.
1974-01-01
Attempts made to develop processes capable of producing metal composites in structural shapes and sizes suitable for space applications are described. The processes must be continuous and promise to lower fabrication costs. Special attention was given to the aluminum boride (Al/b) composite system. Results show that despite adequate temperature control, the consolidation characteristics did not improve as expected. Inadequate binder removal was identified as the cause responsible. An Al/c (aluminum-graphite) composite was also examined.
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1990-01-01
Aluminide-base intermetallic matrix composites are currently being considered as potential high-temperature materials. One of the key factors in the selection of a reinforcement material is its chemical stability in the matrix. In this study, chemical interactions between iron aluminides and several potential reinforcement materials, which include carbides, oxides, borides, and nitrides, are analyzed from thermodynamic considerations. Several chemically compatible reinforcement materials are identified for the iron aluminides with Al concentrations ranging from 40 to 50 at. pct.
The Physics and Chemistry of carbides, Nitrides and Borides. Volume 185
1990-01-01
and C-B-C chains [15,17]. Clearly, the use of boron-rich solids as electronic materials will place new demands on the quality of materials. In this...first heated in a pyrolytic boron nitride (PBN) crucible ( Union Carbide Corp.) under high vacuum (< 50 mTorr) to 1900°C. This removed surface...contamination of the sample. The powders were loaded into a graphite die with a high-purity BN die liner ( Union Carbide Grade HBC) with inner diameter of 3/8
Alumina-based ceramic composite
Alexander, K.B.; Tiegs, T.N.; Becher, P.F.; Waters, S.B.
1996-07-23
An improved ceramic composite comprising oxide ceramic particulates, nonoxide ceramic particulates selected from the group consisting of carbides, borides, nitrides of silicon and transition metals and mixtures thereof, and a ductile binder selected from the group consisting of metallic, intermetallic alloys and mixtures thereof is described. The ceramic composite is made by blending powders of the ceramic particulates and the ductile to form a mixture and consolidating the mixture of under conditions of temperature and pressure sufficient to produce a densified ceramic composite. 5 figs.
Anti-scratch AlMgB14 Gorilla® Glass coating
NASA Astrophysics Data System (ADS)
Putrolaynen, V. V.; Grishin, A. M.; Rigoev, I. V.
2017-10-01
Hard aluminum-magnesium boride (BAM) films were fabricated onto Corning® Gorilla® Glass by radio-frequency magnetron sputtering of a single stoichiometric AlMgB14 target. BAM films exhibit a Vickers hardness from 10 to 30 GPa and a Young's modulus from 80 to 160 GPa depending on applied loading forces. Deposited hard coating increases the critical load at which glass substrate cracks. The adhesion energy of BAM films on Gorilla® Glass is 6.4 J/m2.
Synthesis and properties of nickel cobalt boron nanoparticles
NASA Astrophysics Data System (ADS)
Patel, J.; Pankhurst, Q. A.; Parkin, I. P.
2005-01-01
Amorphous cobalt nickel boride nanoparticles were synthesised by chemical reduction synthesis in aqueous solution. Careful control of synthesis conditions and post reaction oxidation enabled the nanoparticles to be converted into a core-shell structure comprising of an amorphous Co-Ni-B core and an outer metal oxide sheet. These particles had interesting magnetic properties including saturation magnetisations and coercivities of the order of 80 emu/g and 170 Oe respectively, making them suitable for a potential use as an exchange-pinned magnetic material.
Development of explosively bonded TZM wire reinforced Columbian sheet composites
NASA Technical Reports Server (NTRS)
Otto, H. E.; Carpenter, S. H.
1972-01-01
Methods of producing TZM molybdenum wire reinforced C129Y columbium alloy composites by explosive welding were studied. Layers of TZM molybdenum wire were wound on frames with alternate layers of C129Y columbium alloy foil between the wire layers. The frames held both the wire and foils in place for the explosive bonding process. A goal of 33 volume percent molybdenum wire was achieved for some of the composites. Variables included wire diameter, foil thickness, wire separation, standoff distance between foils and types and amounts of explosive. The program was divided into two phases: (1) development of basic welding parameters using 5 x 10-inch composites, and (2) scaleup to 10 x 20-inch composites.
Effect of nature of oxygen interactions on friction of titanium, aluminum, and molybdenum
NASA Technical Reports Server (NTRS)
Buckley, D. H.
1976-01-01
Friction studies were conducted with a gold pin contacting titanium, aluminum, and molybdenum surfaces after exposure to oxygen with various methods. Oxygen was adsorbed on the surface, it reacted with the surface, and the surface was ion bombarded with oxygen. The presence of oxygen was monitored with Auger spectroscopy. Titanium friction varied with the mode of the metal-oxygen interaction. It was highest with the adsorbed oxygen and least with ion bombardment using oxygen. Aluminum exhibited lower friction values for the reacted and the ion bombarded surfaces than for the surface having the adsorbed layer. With molybdenum the friction coefficients were generally the same despite the nature of the surface treatment with oxygen.
Effect of annealing on doping of graphene with molybdenum oxide
NASA Astrophysics Data System (ADS)
Ishikawa, Ryousuke; Watanabe, Sho; Nishida, Hiroki; Aoyama, Yuki; Oya, Tomoya; Nomoto, Takahiro; Tsuboi, Nozomu
2018-04-01
We investigated the effect of post-annealing on the doping of graphene with MoO3 in this study. The as-deposited molybdenum oxide thin film prepared using our method was not completely oxidized; in addition, it was in an amorphous state, due to which its doping effect was not significant. As the post-deposition annealing temperature was increased, the oxidation and crystallization of the molybdenum oxide progressed and the doping effect increased accordingly. After annealing at 350 °C, the holes were the most doped and the sheet resistance was the lowest. The doped graphene film obtained in this study shows higher doping effect and stability compared to other dopants.
Breaking America's dependence on imported molybdenum.
Einstein, Andrew J
2009-03-01
Approximately 9 million nuclear cardiology studies performed each year in the U.S. use technetium-99m, which is produced from the decay of molybdenum-99. The fragility of the worldwide technetium-99m supply chain has been underscored by current shortages caused by an unplanned shutdown of Europe's largest reactor. The majority of the U.S. supply derives from a reactor in Canada that is nearing the end of its lifespan and whose planned replacements have been cancelled recently. In this article, the clinical importance of technetium-99m and our tenuous dependence on the foreign supply of molybdenum are addressed, along with potential measures that may be taken to ensure that America's supply chain remains unbroken.
Process for degrading hypochlorite and sodium hypochlorite
Huxtable, William P.; Griffith, William L.; Compere, Alicia L.
1990-01-01
A process for degrading hypochlorite waste and lithium hypochlorite solutions uses a cobalt oxide/molybdenum oxide catalyst formed from about 1-10 w/w % cobalt oxide and 1-15 w/w % molybdenum oxide disposed on a suitable substrate. The major advantage of the catalyst lies in its high degree of effectiveness and its very low cost.
Preparation of isotopic molybdenum foils utilizing small quantities of material
NASA Astrophysics Data System (ADS)
Lipski, A. R.; Lee, L. L.; Liang, J. F.; Mahon, J. C.
1993-09-01
A simple method utilizing a small amount of isotopic material for production of molybdenum foils is discussed. An e-gun is used in the procedure. The Mo powder undergoes reduction-sintering and melting-solidifying steps leading to the creation of a metallic droplet suitable for further cold rolling or vacuum deposition.
Study of Wear-Preventive Properties of Macrocyclic Compounds for High Temperature Application
1990-01-01
and hence its lubricating properties adversely affected. Another molybdenum based lubricant is molybdenum silicide . This has good resistance to...Porphyrins 21 Contract No. N62269-88-R-0234 Report No. NADC-91049-60 N N N N N\\ -/ N N .. 05 NICKEL PHTH-ALOCYANINE TETRASULFONIC ACID TETRA SODIUM SALT
Mo-Si-B-Based Coatings for Ceramic Base Substrates
NASA Technical Reports Server (NTRS)
Perepezko, John Harry (Inventor); Sakidja, Ridwan (Inventor); Ritt, Patrick (Inventor)
2015-01-01
Alumina-containing coatings based on molybdenum (Mo), silicon (Si), and boron (B) ("MoSiB coatings") that form protective, oxidation-resistant scales on ceramic substrate at high temperatures are provided. The protective scales comprise an aluminoborosilicate glass, and may additionally contain molybdenum. Two-stage deposition methods for forming the coatings are also provided.
Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide
2014-07-14
Lou, Sina Najmaei, Matin Amani, Matthew L. Chin, Zheng Se. TASK NUMBER Liu Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8...Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide Sina Najmaei,t.§ Matin Ama ni,M Matthew L. Chin,* Zhe ng liu/ ·"·v: A. Gle n
Marine Exposure Tests on Stainless Steel Sheet
1947-02-01
contained 17 to 20 percent of chromium, 7 to 10 percent of nickel, and, in seme Instances, sma.11 amounts of molybdenum, tita - nium, or columbium...3.5 percent, of molybdenum, exhibited much loss rust on weathering than those of the ordinary 18:8 type with or without additions of tita - nium or
Pseudo-Capacitors: SPPS Deposition and Electrochemical Analysis of α-MoO3 and Mo2N Coatings
NASA Astrophysics Data System (ADS)
Golozar, Mehdi; Chien, Ken; Lian, Keryn; Coyle, Thomas W.
2013-06-01
Solution precursor plasma spraying (SPPS) is a novel thermal spray process in which a solution precursor is injected into the high-temperature zone of a DC-arc plasma jet to allow solvent evaporation from the precursor droplets, solute precipitation, and precipitate pyrolysis prior to substrate impact. This investigation explored the potential of SPPS to fabricate α-MoO3 coatings with fine grain sizes, high porosity levels, and high surface area: characteristics needed for application as pseudo-capacitor electrodes. Since molybdenum nitride has shown a larger electrochemical stability window and higher specific area capacitance, the α-MoO3 deposits were subsequently converted into molybdenum nitride. A multistep heat-treatment procedure resulted in a topotactic phase-transformation mechanism, which retained the high surface area lath-shaped features of the original α-MoO3. The electrochemical behaviors of molybdenum oxide and molybdenum nitride deposits formed under different deposition conditions were studied using cyclic voltammetry to assess the influence of the resulting microstructure on the charge storage behavior and potential for use in pseudo-capacitors.
Deformation-induced structural transition in body-centred cubic molybdenum
Wang, S. J.; Wang, H.; Du, K.; Zhang, W.; Sui, M. L.; Mao, S. X.
2014-01-01
Molybdenum is a refractory metal that is stable in a body-centred cubic structure at all temperatures before melting. Plastic deformation via structural transitions has never been reported for pure molybdenum, while transformation coupled with plasticity is well known for many alloys and ceramics. Here we demonstrate a structural transformation accompanied by shear deformation from an original <001>-oriented body-centred cubic structure to a <110>-oriented face-centred cubic lattice, captured at crack tips during the straining of molybdenum inside a transmission electron microscope at room temperature. The face-centred cubic domains then revert into <111>-oriented body-centred cubic domains, equivalent to a lattice rotation of 54.7°, and ~15.4% tensile strain is reached. The face-centred cubic structure appears to be a well-defined metastable state, as evidenced by scanning transmission electron microscopy and nanodiffraction, the Nishiyama–Wassermann and Kurdjumov–Sachs relationships between the face-centred cubic and body-centred cubic structures and molecular dynamics simulations. Our findings reveal a deformation mechanism for elemental metals under high-stress deformation conditions. PMID:24603655
Synthesis and Characterization of Molybdenum Based Colloidal Particles.
Moreno; Vidoni; Ovalles; Chaudret; Urbina; Krentzein
1998-11-15
The synthesis and characterization of molybdenum colloidal particles were evaluated using thermal and sonochemical methods and starting from different metal precursors, Mo(CO)6 and (NH4)2MoS4. The products were characterized by elemental analysis, spectroscopic (UV, FTIR), and surface analysis (XPS) techniques, as well as by transmission electron microscopy (TEM) for determining the particle sizes. Using Mo(CO)6 as metal source, particle sizes with an average diameter of 1.5 nm can be obtained using tert-amyl alcohol as solvent and tetrahydrothiophene as sulfurating ligand. The characterization of these particles showed that they are composed of molybdenum oxide MoO3. Using (NH4)2MoS4 as metal precursor, particles with average diameters of 4.7 and 2.5 nm were synthesized using thermal and sonochemical methods, respectively. The characterization of these particles showed them to be composed of molybdenum sulfide, MoS2. The sonochemical method proved to be the fastest and most convenient synthetic pathway of obtaining small colloidal particles at low temperatures and with control of the average size. Copyright 1998 Academic Press.
Performance and Vibration of 30 cm Pyrolytic Ion Thruster Optics
NASA Technical Reports Server (NTRS)
Haag, Thomas; Soulas, George C.
2004-01-01
Carbon has a sputter erosion rate about an order of magnitude less than that of molybdenum, over the voltages typically used in ion thruster applications. To explore its design potential, 30 cm pyrolytic carbon ion thruster optics have been fabricated geometrically similar to the molybdenum ion optics used on NSTAR. They were then installed on an NSTAR Engineering Model thruster, and experimentally evaluated over much of the original operating envelope. Ion beam currents ranged from 0.51 to 1.76 Angstroms, at total voltages up to 1280 V. The perveance, electron back-streaming limit, and screen-grid transparency were plotted for these operating points, and compared with previous data obtained with molybdenum. While thruster performance with pyrolytic carbon was quite similar to that with molybdenum, behavior variations can reasonably be explained by slight geometric differences. Following all performance measurements, the pyrolytic carbon ion optics assembly was subjected to an abbreviated vibration test. The thruster endured 9.2 g(sub rms) of random vibration along the thrust axis, similar to DS 1 acceptance levels. Despite significant grid clashing, there was no observable damage to the ion optics assembly.
Lucas, Brett T; Quinteros, Claudio; Burnett-Seidel, Charlene; Elphick, James R
2017-06-01
Limited data are available describing the aquatic toxicity of molybdenum in freshwater environments, making it difficult to assess the aquatic risk to freshwater organisms. In order to increase available information on the aquatic toxicity of molybdenum, a 96-h LC50 test with the oligochaete Tubifex tubifex and an 85-day development test using brown trout, Salmo trutta, were conducted. The T. tubifex test resulted in an LC50 value of 2782 mg/L. No adverse effects were observed on brown trout survival or length in the concentrations tested, however an IC10 value for growth (wet weight) was determined to be 202 mg/L. Whole body fish tissue concentrations for molybdenum increased in all treatment concentrations tested, although bioconcentration factors decreased at greater exposure concentrations, and ranged from 0.13 at an exposure concentration of 20 mg/L to 0.04 at an exposure of 1247 mg/L. A body burden of 26.0 mg/kg was associated with reduced wet weight.
NASA Astrophysics Data System (ADS)
Ziane, M.; Amitouche, F.; Bouarab, S.; Vega, A.
2017-12-01
Structural and electronic properties of pure molybdenum Mo n and molybdenum-sulfide Mo n S ( n = 1 - 10) clusters were investigated in the framework of the density functional theory within the generalized gradient approximation to exchange and correlation with the aim of addressing how doping with a single S atom affects the geometries, magnetic properties, and reactivity of pure molybdenum clusters. These clusters exhibit a less marked tendency to dimerization than their isoelectronic Cr counterparts despite sharing their half-filled valence shell configuration. Doping with a single S impurity is enough to change the structure of the host molybdenum cluster to a large extent, as well as to modify the bonding pattern, the magnetic state and the magnetic moment distribution in the Mo host. Vertical ionization potentials and electron affinities are calculated to determine global reactivity indicators like the electronegativity and the chemical hardness. The results are discussed in terms of the thermodynamical and relative stabilities, charge transfer effects, and spin-polarized densities of electronic states.
NASA Astrophysics Data System (ADS)
Sampath, S.; Wayne, S. F.
1994-09-01
Thermally sprayed molybdenum coatings are used in a variety of industrial applications, such as auto-motive piston rings, aeroturbine engines, and paper and plastics processing machinery. Molybdenum ex-hibits excellent scuffing resistance under sliding contact conditions. However, plasma-sprayed molybde-num coatings are relatively soft and require dispersion strengthening (e.g., Mo2C) or addition of a second phase (e.g., NiCrBSi) to improve hardness, wear resistance, and thus coating performance. In this study, Mo-Mo2C composite powders were plasma sprayed onto mild steel substrates. Considerable decarburi-zation was observed during air plasma spraying—a beneficial condition because carbon acts as a sacrifi-cial getter for the oxygen, thereby reducing the oxide content in the coating. Finer powders showed a greater degree of decarburization due to the increased surface area; however, the starting carbide con-tent in the powder exerted very little influence on the extent of decarburization. The friction properties of Mo-Mo2C coatings were significantly improved compared to those of pure molybdenum under con-tinuous sliding contact conditions. It also was found that the abrasion resistance of the coatings improved with increasing carbide addition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, R. Subba; Sreedhar, A.; Uthanna, S., E-mail: uthanna@rediffmail.com
Molybdenum doped zinc oxide (MZO) films were deposited on to glass substrates held at temperatures in the range from 303 to 673 K by reactive RF magnetron sputtering method. The chemical composition, crystallographic structure and surface morphology, electrical and optical properties of the films were determined. The films contained the molybdenum of 2.7 at. % in ZnO. The films deposited at 303 K were of X-ray amorphous. The films formed at 473 K were of nanocrystalline in nature with wurtzite structure. The crystallite size of the films was increased with the increase of substrate temperature. The optical transmittance of the films was inmore » the visible range was 80–85%. The molybdenum (2.7 at %) doped zinc oxide films deposited at substrate temperature of 573 K were of nanocrystalline with electrical resistivity of 7.2×10{sup −3} Ωcm, optical transmittance of 85 %, optical band gap of 3.35 eV and figure of merit 30.6 Ω{sup −1}cm{sup −1}.« less
NASA Astrophysics Data System (ADS)
Oh, Gye-Jeong; Lee, Kwangmin; Lee, Doh-Jae; Lim, Hyun-Pil; Yun, Kwi-Dug; Ban, Jae-Sam; Lee, Kyung-Ku; Fisher, John G.; Park, Sang-Won
2012-10-01
The effect of three kinds of transition metal dopants on the color and biaxial flexural strength of zirconia ceramics for dental applications was evaluated. Presintered zirconia discs were colored through immersion in aqueous chromium, molybdenum and vanadium chloride solutions and then sintered at 1450 °C. The color of the doped specimens was measured using a digital spectrophotometer. For biaxial flexural strength measurements, specimens infiltrated with 0.3 wt% of each aqueous chloride solution were used. Uncolored discs were used as a control. Zirconia specimens infiltrated with chromium, molybdenum and vanadium chloride solutions were dark brown, light yellow and dark yellow, respectively. CIE L*, a*, and b* values of all the chromium-doped specimens and the specimens infiltrated with 0.1 wt% molybdenum chloride solution were in the range of values for natural teeth. The biaxial flexural strengths of the three kinds of metal chloride groups were similar to the uncolored group. These results suggest that chromium and molybdenum dopants can be used as colorants to fabricate tooth colored zirconia ceramic restorations.
Molybdenum oxide and molybdenum oxide-nitride back contacts for CdTe solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drayton, Jennifer A., E-mail: drjadrayton@yahoo.com; Geisthardt, Russell M., E-mail: Russell.Geisthardt@gmail.com; Sites, James R., E-mail: james.sites@colostate.edu
2015-07-15
Molybdenum oxide (MoO{sub x}) and molybdenum oxynitride (MoON) thin film back contacts were formed by a unique ion-beam sputtering and ion-beam-assisted deposition process onto CdTe solar cells and compared to back contacts made using carbon–nickel (C/Ni) paint. Glancing-incidence x-ray diffraction and x-ray photoelectron spectroscopy measurements show that partially crystalline MoO{sub x} films are created with a mixture of Mo, MoO{sub 2}, and MoO{sub 3} components. Lower crystallinity content is observed in the MoON films, with an additional component of molybdenum nitride present. Three different film thicknesses of MoO{sub x} and MoON were investigated that were capped in situ in Ni.more » Small area devices were delineated and characterized using current–voltage (J-V), capacitance–frequency, capacitance–voltage, electroluminescence, and light beam-induced current techniques. In addition, J-V data measured as a function of temperature (JVT) were used to estimate back barrier heights for each thickness of MoO{sub x} and MoON and for the C/Ni paint. Characterization prior to stressing indicated the devices were similar in performance. Characterization after stress testing indicated little change to cells with 120 and 180-nm thick MoO{sub x} and MoON films. However, moderate-to-large cell degradation was observed for 60-nm thick MoO{sub x} and MoON films and for C/Ni painted back contacts.« less
GEMAS: Molybdenum Spatial Distribution Patterns in European Soil
NASA Astrophysics Data System (ADS)
Cicchella, Domenico; Zuzolo, Daniela; Demetriades, Alecos; De Vivo, Benedetto; Eklund, Mikael; Ladenberger, Anna; Negrel, Philippe; O'Connor, Patrick
2017-04-01
Molybdenum is an essential trace element for both plants and animals as well as for human being. It is one such trace element for which potential health concerns have been raised but for which few data exist and little investigation or interpretation of distributions in soils has been made. The main goal of this study was to fill this gap. Molybdenum (Mo) concentrations are reported for the <2 mm fraction of soil samples from agricultural (Ap horizon, 0-20 cm; N=2218) and grazing land (Gr, 0-10 cm; N=2127). The survey covers 33 European countries and 5.6 million km2 at a sample density of 1 site/2500 km2. All samples were analysed by ICP-MS following an aqua regia extraction. The European median Mo concentration is 0.416 mg/kg in agricultural soil and 0.424 mg/kg in grazing land soil. Molybdenum geochemical maps for both land use types (Ap and Gr) show overall similar spatial distribution patterns mainly governed by geology (parent material and mineralisation), as well as weathering, soil formation and climate since the last glaciations period. The dominant feature is represented by low Mo concentrations over the coarse-grained sandy deposits of the last glaciations in central northern Europe while the most extensive anomalies occur in Scandinavian soils. The highest Mo concentration value occurs to the North of Oslo close to one of the largest porphyry Mo deposit of the World. Some interesting anomalous patterns occur also in Italy in correspondence with alkaline volcanics, in Spain and Greece associated with sulfides mineralizations and in Slovenia and Croatia where are probably related to the long weathering history of karstic residual soils. Anomalous concentrations in some areas of Ireland represent a clear example of how an excess of molybdenum has produced potentially toxic pastures. In fact, these give rise to problems particularly in young cattle when excess molybdenum in the herbage acts as an antagonist, which militates against efficient copper absorption by the animal.
Alexander, C. Scott; Ding, Jow -Lian; Asay, James Russell
2016-03-09
Magnetically applied pressure-shear (MAPS) is a new experimental technique that provides a platform for direct measurement of material strength at extreme pressures. The technique employs an imposed quasi-static magnetic field and a pulsed power generator that produces an intense current on a planar driver panel, which in turn generates high amplitude magnetically induced longitudinal compression and transverse shear waves into a planar sample mounted on the drive panel. In order to apply sufficiently high shear traction to the test sample, a high strength material must be used for the drive panel. Molybdenum is a potential driver material for the MAPSmore » experiment because of its high yield strength and sufficient electrical conductivity. To properly interpret the results and gain useful information from the experiments, it is critical to have a good understanding and a predictive capability of the mechanical response of the driver. In this work, the inelastic behavior of molybdenum under uniaxial compression and biaxial compression-shear ramp loading conditions is experimentally characterized. It is observed that an imposed uniaxial magnetic field ramped to approximately 10 T through a period of approximately 2500 μs and held near the peak for about 250 μs before being tested appears to anneal the molybdenum panel. In order to provide a physical basis for model development, a general theoretical framework that incorporates electromagnetic loading and the coupling between the imposed field and the inelasticity of molybdenum was developed. Based on this framework, a multi-axial continuum model for molybdenum under electromagnetic loading is presented. The model reasonably captures all of the material characteristics displayed by the experimental data obtained from various experimental configurations. Additionally, data generated from shear loading provide invaluable information not only for validating but also for guiding the development of the material model for multiaxial loadings.« less
Atom probe study of grain boundary segregation in technically pure molybdenum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babinsky, K., E-mail: katharina.babinsky@stud.unileoben.ac.at; Weidow, J., E-mail: jonathan.weidow@chalmers.se; Knabl, W., E-mail: wolfram.knabl@plansee.com
2014-01-15
Molybdenum, a metal with excellent physical, chemical and high-temperature properties, is an interesting material for applications in lighting-technology, high performance electronics, high temperature furnace construction and coating technology. However, its applicability as a structural material is limited because of the poor oxidation resistance at high temperatures and a brittle-to-ductile transition around room temperature, which is influenced by the grain size and the content of interstitial impurities at the grain boundaries. Due to the progress of the powder metallurgical production during the last decades, the amount of impurities in the current quality of molybdenum has become so small that surface sensitivemore » techniques are not applicable anymore. Therefore, the atom probe, which allows the detection of small amounts of impurities as well as their location, seems to be a more suitable technique. However, a site-specific specimen preparation procedure for grain boundaries in refractory metals with a dual focused ion beam/scanning electron microscope is still required. The present investigation describes the development and successful application of such a site-specific preparation technique for grain boundaries in molybdenum, which is significantly improved by a combination with transmission electron microscopy. This complimentary technique helps to improve the visibility of grain boundaries during the last preparation steps and to evidence the presence of grain and subgrain boundaries without segregants in atom probe specimens. Furthermore, in industrially processed and recrystallized molybdenum sheets grain boundary segregation of oxygen, nitrogen and potassium is successfully detected close to segregated regions which are believed to be former sinter pores. - Highlights: • First study of grain boundary segregation in molybdenum by atom probe • Site-specific preparation technique by FIB and TEM successfully developed • Grain boundary segregation of oxygen, nitrogen and potassium found • Segregation in former sinter-pores detected • Presence of grain boundaries without segregation evidenced.« less
Features of surface phase formation during case-hardening of iron- and titanium-based alloys
NASA Astrophysics Data System (ADS)
Vintaikin, B. E.; Kamynin, A. V.; Kraposhin, V. S.; Smirnov, A. E.; Terezanova, K. V.; Cherenkova, S. A.; Sheykina, V. I.
2017-11-01
The article provides a detailed analysis of formation features for surface phases in technical iron and Cr20-Ni80 alloy samples that undergo case-hardening at a temperature of 850°C for 2, 4 and 6 hours of saturation in two different environments: acetylene, and molten salt consisting of sodium tetraborate and amorphous boron. We carried out an X-ray phase analysis to determine the phase structure of surface material layers that formed as a result of the case-hardening process. We discovered that after carburising it was possible to detect Fe3C and Fe-α phases on the surface of technical iron samples, and after boriding we found FeB, Fe2B and Fe3B phases; we noted a lack of characteristic Fe-α and Fe-γ peaks on the X-ray diffraction pattern. We detected many different phases in the Cr20-Ni80 alloy after the same type of case-hardening. Titanium oxides appeared after case-hardening of titanium in air at 800°C. We provide data on surface structure of samples subjected to vacuum carburising: over a 2 to 6 hour interval, the layer thickness is a parabolic function of time. When carrying out electrolysis-free liquid boriding, increasing exposure time from 2 to 6 hours alters the thickness of the strengthened layer only slightly, so, when carrying out case-hardening, it is less efficient to increase saturation time in molten salt containing sodium tetraborate and amorphous boron.
Role of atomic bonding for compound and glass formation in Ni-Si, Pd-Si, and Ni-B systems
NASA Astrophysics Data System (ADS)
Tanaka, K.; Saito, T.; Suzuki, K.; Hasegawa, R.
1985-11-01
Valence electronic structures of crystalline compounds and glassy alloys of Ni silicides, Pd silicides, and Ni borides are studied by soft-x-ray spectroscopy over wide ranges of Si and B concentrations. The samples prepared include bulk compounds, glassy ribbons, and amorphous sputtered films. Silicon Kβ emissions of Ni and Pd silicides generally consist of a prominent peak fixed at ~=4.5 and ~=5.8 eV below the Fermi level EF, respectively, with a shoulder near EF which grows and shifts toward lower energy with increasing Si concentration. The former is identified as due to Si p-like states forming Si 3p-Ni 3d or Si 3p-Pd 4d bonding states while the latter as due to the corresponding antibonding states. Ni L3 and Pd L3 emissions of these silicides indicate that Ni 3d and Pd 4d states lie between the above two states. These local electronic configurations are consistent with partial-density-of-states (PDOS) calculations performed by Bisi and Calandra. Similar electronic configurations are suggested for Ni borides from B Kα and Ni L3 emissions. Differences of emission spectra between compounds and glasses of similar compositions are rather small, but some enhancement of the contribution of antibonding states to the PDOS near EF is suggested for certain glasses over that of the corresponding compounds. These features are discussed in connection with the compound stability and glass formability.
Genesis and evolution of the Baid al Jimalah tungsten deposit, Kingdom of Saudi Arabia
Kamilli, Robert J.
1986-01-01
Baid al Jimalah is similar in character and origin to other tungsten-tin greisen deposits in the world, especially the Hemerdon deposit in Devon, England. It is also analogous to Climax-type molybdenum deposits, which contain virtually identical mineral assemblages, but with the relative intensities of the molybdenum and tungsten mineralization reversed.
1985-04-19
Specifics of Geology of Saryshagan Molybdenum- Copper - Porphyry Deposit (Northwestern Balkash Area) (Yu. K. Kudryavtsev, V. V. Izotov, et al...SPECIFICS’OF GEOLOGY OF SARYSHAGAN MOLYBDENUM- COPPER - PORPHYRY DEPOSIT (NORTHWESTERN BALKASH AREA) Moscow IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY... Copper , Lead and Cadmium in Ooze Water of Central Pacific (A. Ye. Kosov, T. P. Demidova; GEOKHIMIYA, No 10, Oct 84) 37 Nickel Minerals in
Development of the copper and molybdenum industries and the Armenian economy
Bond, A.R.; Levine, R.M.
1997-01-01
Production of copper and molybdenum in Armenia is examined, with special emphasis on the location of major deposits, former and proposed future centers of processing, and contribution of metals exports to the country's foreign trade revenues. Particular emphasis is placed on the impacts on these industries of the disruption of economic ties resulting from the dissolution of the USSR and an economic crisis precipitated by a major earthquake, Armenia's tension with Azerbaijan over armed conflict in Nagorno-Karabakh and surrounding areas in Azerbaijan, an economic blockade imposed by Turkey and Azerbaijan, and a consequent severe energy crisis. The paper highlights developments in the mid-1990s in copper and molybdenum and in the recent expansion of trade relations with Iran.