Computations of turbulent lean premixed combustion using conditional moment closure
NASA Astrophysics Data System (ADS)
Amzin, Shokri; Swaminathan, Nedunchezhian
2013-12-01
Conditional Moment Closure (CMC) is a suitable method for predicting scalars such as carbon monoxide with slow chemical time scales in turbulent combustion. Although this method has been successfully applied to non-premixed combustion, its application to lean premixed combustion is rare. In this study the CMC method is used to compute piloted lean premixed combustion in a distributed combustion regime. The conditional scalar dissipation rate of the conditioning scalar, the progress variable, is closed using an algebraic model and turbulence is modelled using the standard k-ɛ model. The conditional mean reaction rate is closed using a first order CMC closure with the GRI-3.0 chemical mechanism to represent the chemical kinetics of methane oxidation. The PDF of the progress variable is obtained using a presumed shape with the Beta function. The computed results are compared with the experimental measurements and earlier computations using the transported PDF approach. The results show reasonable agreement with the experimental measurements and are consistent with the transported PDF computations. When the compounded effects of shear-turbulence and flame are strong, second order closures may be required for the CMC.
Comparison of PDF and Moment Closure Methods in the Modeling of Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Norris, Andrew T.; Hsu, Andrew T.
1994-01-01
In modeling turbulent reactive flows, Probability Density Function (PDF) methods have an advantage over the more traditional moment closure schemes in that the PDF formulation treats the chemical reaction source terms exactly, while moment closure methods are required to model the mean reaction rate. The common model used is the laminar chemistry approximation, where the effects of turbulence on the reaction are assumed negligible. For flows with low turbulence levels and fast chemistry, the difference between the two methods can be expected to be small. However for flows with finite rate chemistry and high turbulence levels, significant errors can be expected in the moment closure method. In this paper, the ability of the PDF method and the moment closure scheme to accurately model a turbulent reacting flow is tested. To accomplish this, both schemes were used to model a CO/H2/N2- air piloted diffusion flame near extinction. Identical thermochemistry, turbulence models, initial conditions and boundary conditions are employed to ensure a consistent comparison can be made. The results of the two methods are compared to experimental data as well as to each other. The comparison reveals that the PDF method provides good agreement with the experimental data, while the moment closure scheme incorrectly shows a broad, laminar-like flame structure.
The conditional moment closure method for modeling lean premixed turbulent combustion
NASA Astrophysics Data System (ADS)
Martin, Scott Montgomery
Natural gas fired lean premixed gas turbines have become the method of choice for new power generation systems due to their high efficiency and low pollutant emissions. As emission regulations for these combustion systems become more stringent, the use of numerical modeling has become an important a priori tool in designing clean and efficient combustors. Here a new turbulent combustion model is developed in an attempt to improve the state of the art. The Conditional Moment Closure (CMC) method is a new theory that has been applied to non-premixed combustion with good success. The application of the CMC method to premixed systems has been proposed, but has not yet been done. The premixed CMC method replaces the species mass fractions as independent variables with the species mass fractions that are conditioned on a reaction progress variable (RPV). Conservation equations for these new variables are then derived and solved. The general idea behind the CMC method is that the behavior of the chemical species is closely coupled to the reaction progress variable. Thus, species conservation equations that are conditioned on the RPV will have terms involving the fluctuating quantities that are much more likely to be negligible. The CMC method accounts for the interaction between scalar dissipation (micromixing) and chemistry, while de-coupling the kinetics from the bulk flow (macromixing). Here the CMC method is combined with a commercial computational fluid dynamics program, which calculates the large-scale fluid motions. The CMC model is validated by comparison to 2-D reacting backward facing step data. Predicted species, temperature and velocity fields are compared to experimental data with good success. The CMC model is also validated against the University of Washington's 3-D jet stirred reactor (JSR) data, which is an idealized lean premixed combustor. The JSR results are encouraging, but not as good as the backward facing step. The largest source of error is from
Shima, N. . College of Engineering)
1993-03-01
The purpose of this two-part paper is to assess the performance of a second-moment closure applicable up to a wall. In the present part, the turbulence model is applied to the boundary layers with periodic pressure gradient, with wall transpiration and with free-stream turbulence. The predictions are shown to be in good agreement with experiments and a direct simulation. In particular, a tendency towards relaminarization and a subsequent retransition in the oscillating boundary layer are faithfully reproduced, and the effect of the length scale of free-stream turbulence is correctly captured.
NASA Technical Reports Server (NTRS)
Amano, R. S.; Goel, P.
1986-01-01
Four parts of the Reynolds-stress closure modeling are reported: (1) improvement of the k and epsilon equaitons; (2) development of the third-moment transport equation; (3) formulation of the diffusion coefficient of the momentum equation by using the algebraic-stress model of turbulence; and (4) the application of the Reynolds-stress model to a heat exchanger problem. It was demonstrated that the third-moment transport model improved the prediction of the triple-velocity products in the recirculating and reattaching flow regions in comparison with the existing algebraic models for the triple-velocity products. Optimum values for empirical coefficients are obtained for the prediction of the backward-facing step flows. A functional expression is derived for the coefficient of the momentum diffusion by employing the algebraic-stress model. The second-moment closure is applied to a heat transfer problem. The computations for the flow in a corrugated-wall channel show that the second-moment closure improves the prediction of the heat transfer rates by 30% over the k - epsilon model.
NASA Technical Reports Server (NTRS)
Amano, R. S.; Goel, P.
1986-01-01
A numerical study of computations in backward-facing steps with flow separation and reattachment, using the Reynolds stress closure is presented. The highlight of this study is the improvement of the Reynold-stress model (RSM) by modifying the diffusive transport of the Reynolds stresses through the formulation, solution and subsequent incorporation of the transport equations of the third moments, bar-u(i)u(j)u(k), into the turbulence model. The diffusive transport of the Reynolds stresses, represented by the gradients of the third moments, attains greater significance in recirculating flows. The third moments evaluated by the development and solution of the complete transport equations are superior to those obtained by existing algebraic correlations. A low-Reynolds number model for the transport equations of the third moments is developed and considerable improvement in the near-wall profiles of the third moments is observed. The values of the empirical constants utilized in the development of the model are recommended. The Reynolds-stress closure is consolidated by incorporating the equations of k and e, containing the modified diffusion coefficients, and the transport equations of the third moments into the Reynolds stress equations. Computational results obtained by the original k-e model, the original RSM and the consolidated and modified RSM are compared with experimental data. Overall improvement in the predictions is seen by consolidation of the RMS and a marked improvement in the profiles of bar-u(i)u(j)u(k) is obtained around the reattachment region.
NASA Astrophysics Data System (ADS)
Vie, Aymeric; Masi, Enrica; Simonin, Olivier; Massot, Marc; EM2C/Ecole Centrale Paris Team; IMFT Team
2012-11-01
To simulate particulate flows, a convenient formalism for HPC is to use Eulerian moment methods, which describe the evolution of velocity moments instead of tracking directly the number density function (NDF) of the droplets. By using a conditional PDF approach, the Mesoscopic Eulerian Formalism (MEF) of Février et al. 2005 offers a solution for the direct numerical simulation of turbulent particulate flows, even at relatively high Stokes number. Here, we propose to compare to existing approaches used to solved for this formalism: the Algebraic-Closure-Based Moment method (Kaufmann et al. 2008, Masi et al. 2011), and the Kinetic-Based Moment Method (Yuan et al. 2010, Chalons et al. 2010, Vié et al. 2012). Therefore, the goal of the current work is to evaluate both strategies in turbulent test cases. For the ACBMM, viscosity-type and non-linear closures are envisaged, whereas for the KBMM, isotropic and anisotropic closures are investigated. A main aspect of the current methodology for the comparison is that the same numerical methods are used for both approaches. Results show that the new non-linear closure and the Anisotropic Gaussian closures are both accurate in shear flows, whereas viscosity-type and isotropic closures lead to wrong results.
Milford, A.; Devaud, C.B.
2010-08-15
The present paper examines the case of autoignition of high pressure methane jets in a shock tube over a range of pre-heated air temperatures in engine-relevant conditions. The two objectives of the present paper are: (i) to examine the effect of the inhomogeneous mixing model on the autoignition predictions relative to the results obtained using homogeneous mixing models and (ii) to see if the magnitude of the change can explain the discrepancy between the predictions of ignition delay previously obtained with homogeneous mixing models and the experimental data. The governing equation of the scalar dissipation rate is solved for transient conditions and two different formulations of the same model are tested and compared: one using the linear model for the conditional velocity and one including the gradient diffusion model. The predicted ignition kernel location and time delay over a range of pre-combustion air temperatures are compared with results obtained using two homogeneous turbulent mixing models and available experimental data. The profiles of conditional velocity and the conditional scalar dissipation rate are examined. Issues related to the conditional velocity model are discussed. It is found that the differences in the predictions are due to the mixing model only. The inhomogeneous model using the gradient conditional velocity model produces much larger ignition delays compared to the other models, whereas the inhomogeneous form including the linear model does not produce any significant differences. The effect of the turbulent inhomogeneous model is larger at high air temperatures and decreases with decreasing air temperatures. In comparison with the measured ignition delays, the inhomogeneous-Gradient model brings a small improvement at high air temperatures over the results from the turbulent homogeneous models. At low air temperatures, other parameters need to be investigated in order to bring the predicted ignition delays and locations within the
Autonomic closure for turbulence simulations.
King, Ryan N; Hamlington, Peter E; Dahm, Werner J A
2016-03-01
A new approach to turbulence closure is presented that eliminates the need to specify a predefined turbulence model and instead provides for fully adaptive, self-optimizing, autonomic closures. The closure is autonomic in the sense that the simulation itself determines the optimal local, instantaneous relation between any unclosed term and resolved quantities through the solution of a nonlinear, nonparametric system identification problem. This nonparametric approach allows the autonomic closure to freely adapt to varying nonlinear, nonlocal, nonequilibrium, and other turbulence characteristics in the flow. Even a simple implementation of the autonomic closure for large eddy simulations provides remarkably more accurate results in a priori tests than do dynamic versions of traditional prescribed closures. PMID:27078285
A Quadratic Closure for Compressible Turbulence
Futterman, J A
2008-09-16
We have investigated a one-point closure model for compressible turbulence based on third- and higher order cumulant discard for systems undergoing rapid deformation, such as might occur downstream of a shock or other discontinuity. In so doing, we find the lowest order contributions of turbulence to the mean flow, which lead to criteria for Adaptive Mesh Refinement. Rapid distortion theory (RDT) as originally applied by Herring closes the turbulence hierarchy of moment equations by discarding third order and higher cumulants. This is similar to the fourth-order cumulant discard hypothesis of Millionshchikov, except that the Millionshchikov hypothesis was taken to apply to incompressible homogeneous isotropic turbulence generally, whereas RDT is applied only to fluids undergoing a distortion that is 'rapid' in the sense that the interaction of the mean flow with the turbulence overwhelms the interaction of the turbulence with itself. It is also similar to Gaussian closure, in which both second and fourth-order cumulants are retained. Motivated by RDT, we develop a quadratic one-point closure for rapidly distorting compressible turbulence, without regard to homogeneity or isotropy, and make contact with two equation turbulence models, especially the K-{var_epsilon} and K-L models, and with linear instability growth. In the end, we arrive at criteria for Adaptive Mesh Refinement in Finite Volume simulations.
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1990-01-01
A multigrid method is presented for calculating turbulent jets in crossflow. Fairly rapid convergence is obtained with the k-epsilon turbulence model, but computations with a full Reynolds stress turbulence model (RSM) are not yet very efficient. Grid dependency tests show that there are slight differences between results obtained on the two finest grid levels. Computations using the RSM are significantly different from those with k-epsilon model and compare better to experimental data. Some work is still required to improve the efficiency of the computations with the RSM.
Second Moment Closure Near the Two-component Limit
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Girimaji, Sharath S.
2006-01-01
The purpose of this paper is to explore some wider implications of the two-component limit for both single point turbulence models and spectral closure theories. Although the two-component limit arises most naturally in inhomogeneous problems like wall-bounded turbulence, the analysis will be restricted to homogeneous turbulence. But since homogeneous turbulence is the crucial case for realizability, the conclusions will nevertheless be applicable to modeling. Th essential point of our argument is that whereas the evolution of the stochastic velocity field is Markovian because it is governed by the Navier-Stokes equations, the exact stress evolution equation is not Markovian because it is unclosed. This property of moment evolution has been stressed by Kraichnan (1959). We will show that modeling stress evolution at the two-component limit with a closure that is Markovian in the stresses alone leads to basic inconsistencies in single-point modeling and, perhaps surprisingly, in spectral modes as well.
Novel bivariate moment-closure approximations.
Krishnarajah, Isthrinayagy; Marion, Glenn; Gibson, Gavin
2007-08-01
Nonlinear stochastic models are typically intractable to analytic solutions and hence, moment-closure schemes are used to provide approximations to these models. Existing closure approximations are often unable to describe transient aspects caused by extinction behaviour in a stochastic process. Recent work has tackled this problem in the univariate case. In this study, we address this problem by introducing novel bivariate moment-closure methods based on mixture distributions. Novel closure approximations are developed, based on the beta-binomial, zero-modified distributions and the log-Normal, designed to capture the behaviour of the stochastic SIS model with varying population size, around the threshold between persistence and extinction of disease. The idea of conditional dependence between variables of interest underlies these mixture approximations. In the first approximation, we assume that the distribution of infectives (I) conditional on population size (N) is governed by the beta-binomial and for the second form, we assume that I is governed by zero-modified beta-binomial distribution where in either case N follows a log-Normal distribution. We analyse the impact of coupling and inter-dependency between population variables on the behaviour of the approximations developed. Thus, the approximations are applied in two situations in the case of the SIS model where: (1) the death rate is independent of disease status; and (2) the death rate is disease-dependent. Comparison with simulation shows that these mixture approximations are able to predict disease extinction behaviour and describe transient aspects of the process.
Higher order turbulence closure models
NASA Technical Reports Server (NTRS)
Amano, Ryoichi S.; Chai, John C.; Chen, Jau-Der
1988-01-01
Theoretical models are developed and numerical studies conducted on various types of flows including both elliptic and parabolic. The purpose of this study is to find better higher order closure models for the computations of complex flows. This report summarizes three new achievements: (1) completion of the Reynolds-stress closure by developing a new pressure-strain correlation; (2) development of a parabolic code to compute jets and wakes; and, (3) application to a flow through a 180 deg turnaround duct by adopting a boundary fitted coordinate system. In the above mentioned models near-wall models are developed for pressure-strain correlation and third-moment, and incorporated into the transport equations. This addition improved the results considerably and is recommended for future computations. A new parabolic code to solve shear flows without coordinate tranformations is developed and incorporated in this study. This code uses the structure of the finite volume method to solve the governing equations implicitly. The code was validated with the experimental results available in the literature.
Closure models for turbulent reacting flows
Dutta, A.; Tarbell, J.M. . Dept. of Chemical Engineering)
1989-12-01
In this paper, a simple procedure based on fast and slow reaction asymptotics has been employed to drive first-order closure models for the nonlinear reaction terms in turbulent mass balances from mechanistic models of turbulent mixing and reaction. The coalescence-redispersion (CRD) model, the interaction by exchange with the mean (IEM) model, the three-environment (3E) model, and the four-environment (4E) model have been used to develop closure equations. The closure models have been tested extensively against experimental data for both single and multiple reactions. The closures based on slow asymptotics for the CRD, 3E and 4E models provide very good predictions of all of the experimental data, while other models available either in the literature or derived here are not adequate. The simple new closure equations developed in this paper may be useful in modeling systems involving turbulent mixing and complex chemical reactions.
Moment Closures on Two-Dimensional Cartesian Grids
Garrett, Charles K.
2015-07-31
Some moment methods for kinetic equations are complicated and take time to develop. Over the course of a couple years, this software was developed to test different closures on standard test problems in the literature. With this software, researchers in the field of moment closures will be able to rapidly test new methods.
Formulation and closure of compressible turbulence equations in the light of kinetic theory
NASA Technical Reports Server (NTRS)
Tsuge, S.; Sagara, K.
1976-01-01
Fluid-dynamic moment equations, based on a kinetic hierarchy system, are derived governing the interaction between turbulent and thermal fluctuations. The kinetic theory is shown to reduce the inherent complexity of the conventional formalism of compressible turbulence theory and to minimize arbitrariness in formulating the closure condition.
Yamada, Tetsuji; Bunker, S.; Niccum, E.
1987-01-01
Yamade and Bunker (1986) demonstrated that a three-dimensional hydrodynamic model, HOTMAC (Higher Order Turbulence Model for Atmospheric Circulations) reproduced nocturnal drainage flows, morning transition and convective upvalley and upslope flows observed during the 1982 ASCOT (Atmospheric Studies in COmplex Terrain) field campaign in Brush Creek, Colorado. We also showed that a Monte Carlo statistical diffusion model, RAPTAD (RAndom Particle Transport And Diffusion) driven by the outputs (mean and turbulence variables) from HOTMAC simulated well the structure of an SF6 tracer plume and obtained a vertical profile of concentration similar to the one observed. A ''Kernel'' density estimator is used in this study where each particle represents a center of a puff. In this study, the concentration was recomputed by applying the Gaussian kernel estimator. A total of only 900 particles were released. The vertical profile of the modeled SF6 concentration averaged over one hour between 6 and 7 a.m. at a site near the mouth of Brush Creek was compared with observation. The modeled and observed concentrations agreed well although the modeled values were slightly smaller than the observations for the first 250 m above the ground.
Magnetic moment nonconservation in magnetohydrodynamic turbulence models.
Dalena, S; Greco, A; Rappazzo, A F; Mace, R L; Matthaeus, W H
2012-07-01
The fundamental assumptions of the adiabatic theory do not apply in the presence of sharp field gradients or in the presence of well-developed magnetohydrodynamic turbulence. For this reason, in such conditions the magnetic moment μ is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width Δμ (defined as the half peak-to-peak difference in the particle magnetic moments) and the bounce frequency ω(b). We perform test-particle simulations to investigate magnetic moment behavior when resonance overlapping occurs and during the interaction of a ring-beam particle distribution with a broadband slab spectrum. We find that the changes of magnetic moment and changes of pitch angle are related when the level of magnetic fluctuations is low, δB/B(0) = (10(-3),10(-2)), where B(0) is the constant and uniform background magnetic field. Stochasticity arises for intermediate fluctuation values and its effect on pitch angle is the isotropization of the distribution function f(α). This is a transient regime during which magnetic moment distribution f(μ) exhibits a characteristic one-sided long tail and starts to be influenced by the onset of spatial parallel diffusion, i.e., the variance <(Δz)(2)> grows linearly in time as in normal diffusion. With strong fluctuations f(α) becomes completely isotropic, spatial diffusion sets in, and the f(μ) behavior is closely related to the sampling of the varying magnetic field associated with that spatial diffusion.
Multivariate moment closure techniques for stochastic kinetic models
Lakatos, Eszter Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.
2015-09-07
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.
Multivariate moment closure techniques for stochastic kinetic models
NASA Astrophysics Data System (ADS)
Lakatos, Eszter; Ale, Angelique; Kirk, Paul D. W.; Stumpf, Michael P. H.
2015-09-01
Stochastic effects dominate many chemical and biochemical processes. Their analysis, however, can be computationally prohibitively expensive and a range of approximation schemes have been proposed to lighten the computational burden. These, notably the increasingly popular linear noise approximation and the more general moment expansion methods, perform well for many dynamical regimes, especially linear systems. At higher levels of nonlinearity, it comes to an interplay between the nonlinearities and the stochastic dynamics, which is much harder to capture correctly by such approximations to the true stochastic processes. Moment-closure approaches promise to address this problem by capturing higher-order terms of the temporally evolving probability distribution. Here, we develop a set of multivariate moment-closures that allows us to describe the stochastic dynamics of nonlinear systems. Multivariate closure captures the way that correlations between different molecular species, induced by the reaction dynamics, interact with stochastic effects. We use multivariate Gaussian, gamma, and lognormal closure and illustrate their use in the context of two models that have proved challenging to the previous attempts at approximating stochastic dynamics: oscillations in p53 and Hes1. In addition, we consider a larger system, Erk-mediated mitogen-activated protein kinases signalling, where conventional stochastic simulation approaches incur unacceptably high computational costs.
Algebraic moment closure for population dynamics on discrete structures.
House, Thomas
2015-04-01
Moment closure on general discrete structures often requires one of the following: (i) an absence of short-closed loops (zero clustering); (ii) existence of a spatial scale; (iii) ad hoc assumptions. Algebraic methods are presented to avoid the use of such assumptions for populations based on clumps and are applied to both SIR and macroparasite disease dynamics. One approach involves a series of approximations that can be derived systematically, and another is exact and based on Lie algebraic methods.
Sreedhara, S.; Huh, Kang Y.
2005-12-01
The performance of second-order conditional moment closure (CMC) depends on models to evaluate conditional variances and covariances of temperature and species mass fractions. In this paper the closure schemes based on the steady laminar flamelet model (SLFM) are validated against direct numerical simulation (DNS) involving extinction and ignition. Scaling is performed to reproduce proper absolute magnitudes, irrespective of the origin of mismatch between local flamelet structures and scalar dissipation rates. DNS based on the pseudospectral method is carried out to study hydrogen-air combustion with a detailed kinetic mechanism, in homogeneous, isotropic, and decaying turbulent media. Lewis numbers are set equal to unity to avoid complication of differential diffusion. The SLFM-based closures for correlations among fluctuations of reaction rate, scalar dissipation rate, and species mass fractions show good comparison with DNS. The variance parameter in lognormal PDF and the constants in the dissipation term have been estimated from DNS results. Comparison is made for the resulting conditional profiles from DNS, first-order CMC, and second-order CMC with correction to the most critical reaction step according to sensitivity analysis. Overall good agreement ensures validity of the SLFM-based closures for modeling conditional variances and covariances in second-order CMC.
A PDF closure model for compressible turbulent chemically reacting flows
NASA Technical Reports Server (NTRS)
Kollmann, W.
1992-01-01
The objective of the proposed research project was the analysis of single point closures based on probability density function (pdf) and characteristic functions and the development of a prediction method for the joint velocity-scalar pdf in turbulent reacting flows. Turbulent flows of boundary layer type and stagnation point flows with and without chemical reactions were be calculated as principal applications. Pdf methods for compressible reacting flows were developed and tested in comparison with available experimental data. The research work carried in this project was concentrated on the closure of pdf equations for incompressible and compressible turbulent flows with and without chemical reactions.
Compressible turbulence transport equations for generalized second order closure
Cloutman, L D
1999-05-01
Progress on the theory of second order closure in turbulence models of various types requires knowledge of the transport equations for various turbulence correlations. This report documents a procedure that provides such equations for a wide variety of turbulence averages for compressible flows of a multicomponent fluid. Generalizing some work by Germano for incompressible flows, we introduce an appropriate extension of his generalized second order correlations and use a generalized mass-weighted averaging procedure to derive transport equations for the correlations. The averaging procedure includes all of the commonly used averages as special cases. The resulting equations provide an internally consistent starting point for future work in developing single-point statistical turbulence transport models for fluid flows. The form invariance of the in-compressible equations also holds for the compressible case, and we discuss some of the closure issues and frequently ignored complications of statistical turbulence models of compressible flows.
Validity conditions for moment closure approximations in stochastic chemical kinetics
Schnoerr, David; Sanguinetti, Guido; Grima, Ramon
2014-08-28
Approximations based on moment-closure (MA) are commonly used to obtain estimates of the mean molecule numbers and of the variance of fluctuations in the number of molecules of chemical systems. The advantage of this approach is that it can be far less computationally expensive than exact stochastic simulations of the chemical master equation. Here, we numerically study the conditions under which the MA equations yield results reflecting the true stochastic dynamics of the system. We show that for bistable and oscillatory chemical systems with deterministic initial conditions, the solution of the MA equations can be interpreted as a valid approximation to the true moments of the chemical master equation, only when the steady-state mean molecule numbers obtained from the chemical master equation fall within a certain finite range. The same validity criterion for monostable systems implies that the steady-state mean molecule numbers obtained from the chemical master equation must be above a certain threshold. For mean molecule numbers outside of this range of validity, the MA equations lead to either qualitatively wrong oscillatory dynamics or to unphysical predictions such as negative variances in the molecule numbers or multiple steady-state moments of the stationary distribution as the initial conditions are varied. Our results clarify the range of validity of the MA approach and show that pitfalls in the interpretation of the results can only be overcome through the systematic comparison of the solutions of the MA equations of a certain order with those of higher orders.
Modeling near wall effects in second moment closures by elliptic relaxation
NASA Technical Reports Server (NTRS)
Laurence, D.; Durbin, P.
1994-01-01
The elliptic relaxation model of Durbin (1993) for modeling near-wall turbulence using second moment closures (SMC) is compared to DNS data for a channel flow at Re(sub t) = 395. The agreement for second order statistics and even the terms in their balance equation is quite satisfactory, confirming that very little viscous effects (via Kolmogoroff scales) need to be added to the high Reynolds versions of SMC for near-wall-turbulence. The essential near-wall feature is thus the kinematic blocking effect that a solid wall exerts on the turbulence through the fluctuating pressure, which is best modeled by an elliptic operator. Above the transition layer, the effect of the original elliptic operator decays rapidly, and it is suggested that the log-layer is better reproduced by adding a non-homogeneous reduction of the return to isotropy, the gradient of the turbulent length scale being used as a measure of the inhomogeneity of the log-layer. The elliptic operator was quite easily applied to the non-linear Craft & Launder pressure-strain model yielding an improved distinction between the spanwise and wall normal stresses, although at higher Reynolds number (Re) and away from the wall, the streamwise component is severely underpredicted, as well as the transition in the mean velocity from the log to the wake profiles. In this area a significant change of behavior was observed in the DNS pressure-strain term, entirely ignored in the models.
Compressibility Corrections to Closure Approximations for Turbulent Flow Simulations
Cloutman, L D
2003-02-01
We summarize some modifications to the usual closure approximations for statistical models of turbulence that are necessary for use with compressible fluids at all Mach numbers. We concentrate here on the gradient-flu approximation for the turbulent heat flux, on the buoyancy production of turbulence kinetic energy, and on a modification of the Smagorinsky model to include buoyancy. In all cases, there are pressure gradient terms that do not appear in the incompressible models and are usually omitted in compressible-flow models. Omission of these terms allows unphysical rates of entropy change.
Turbulent fluid motion IV-averages, Reynolds decomposition, and the closure problem
NASA Technical Reports Server (NTRS)
Deissler, Robert G.
1992-01-01
Ensemble, time, and space averages as applied to turbulent quantities are discussed, and pertinent properties of the averages are obtained. Those properties, together with Reynolds decomposition, are used to derive the averaged equations of motion and the one- and two-point moment or correlation equations. The terms in the various equations are interpreted. The closure problem of the averaged equations is discussed, and possible closure schemes are considered. Those schemes usually require an input of supplemental information unless the averaged equations are closed by calculating their terms by a numerical solution of the original unaveraged equations. The law of the wall for velocities and temperatures, the velocity- and temperature-defect laws, and the logarithmic laws for velocities and temperatures are derived. Various notions of randomness and their relation to turbulence are considered in light of ergodic theory.
New results on the realizability of Reynolds stress turbulence closures
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Abid, Ridha; Durbin, Paul A.
1993-01-01
The realizability of Reynolds stress models in homogeneous turbulence is critically assessed from a theoretical standpoint. It is proven that a well known second-order closure formulated by Shih and Lumley using the strong realizability constraints of Schumann is, in fact, not a realizable model. The problem arises from the failure to properly satisfy the necessary positive second time derivative constraint when a principal Reynolds stress vanishes - a fatal flaw that becomes apparent when the non-analytic terms in their model are made single-valued as required on physical grounds. It is furthermore shown that the centrifugal acceleration generated by rotations of the principal axes of the Reynolds stress tensor can make the second derivative singular at the most extreme limits of realizable turbulence. This previously overlooked effect appears to make it impossible to identically satisfy the strong form of realizability in any version of the present generation of second-order closures. On the other hand, models properly formulated to satisfy the weak form of realizability - wherein states of one or two component turbulence are not accessible in finite time are found to be realizable. However, unlike the simpler and more commonly used second order closures, these models can be ill-behaved near the extreme limits of realizable turbulence due to the way that higher-degree nonlinearities are often unnecessarily introduced to satisfy realizability. Illustrative computations of homogeneous shear flows are presented to demonstrate these points which can have important implications for turbulence modeling.
Second order closure modeling of turbulent buoyant wall plumes
NASA Technical Reports Server (NTRS)
Zhu, Gang; Lai, Ming-Chia; Shih, Tsan-Hsing
1992-01-01
Non-intrusive measurements of scalar and momentum transport in turbulent wall plumes, using a combined technique of laser Doppler anemometry and laser-induced fluorescence, has shown some interesting features not present in the free jet or plumes. First, buoyancy-generation of turbulence is shown to be important throughout the flow field. Combined with low-Reynolds-number turbulence and near-wall effect, this may raise the anisotropic turbulence structure beyond the prediction of eddy-viscosity models. Second, the transverse scalar fluxes do not correspond only to the mean scalar gradients, as would be expected from gradient-diffusion modeling. Third, higher-order velocity-scalar correlations which describe turbulent transport phenomena could not be predicted using simple turbulence models. A second-order closure simulation of turbulent adiabatic wall plumes, taking into account the recent progress in scalar transport, near-wall effect and buoyancy, is reported in the current study to compare with the non-intrusive measurements. In spite of the small velocity scale of the wall plumes, the results showed that low-Reynolds-number correction is not critically important to predict the adiabatic cases tested and cannot be applied beyond the maximum velocity location. The mean and turbulent velocity profiles are very closely predicted by the second-order closure models. but the scalar field is less satisfactory, with the scalar fluctuation level underpredicted. Strong intermittency of the low-Reynolds-number flow field is suspected of these discrepancies. The trends in second- and third-order velocity-scalar correlations, which describe turbulent transport phenomena, are also predicted in general, with the cross-streamwise correlations better than the streamwise one. Buoyancy terms modeling the pressure-correlation are shown to improve the prediction slightly. The effects of equilibrium time-scale ratio and boundary condition are also discussed.
Second moment closure analysis of the backstep flow database
NASA Technical Reports Server (NTRS)
Parneix, S.; Laurence, D.; Durbin, P.
1996-01-01
A Second Moment Closure computation (SMC) is compared in detail with the Direct Numerical Simulation (DNS) data of Le and Moin for the backstep flow at Re = 5,000 in an attempt to understand why the intensity of the backflow and, consequently, the friction coefficient in the recirculation bubble are severely underestimated. The data show that this recirculation bubble is far from being laminar except in the very near wall layer. A novel 'differential a priori' procedure was used, in which the full transport equation for one isolated component of the Reynolds stress tensor was solved using DNS data as input. Conclusions are then different from what would have been deduced by comparing a full simulation to a DNS. One cause of discrepancy was traced back to insufficient transfer of energy to the normal stress by pressure strain, but was not cured. A significant finding, confirmed by the DNS data in the core region of a channel flow, is that the coefficient that controls destruction of dissipation, C epsilon(sub 2), should be decreased by a factor of 2 when production is vanishing. This is also the case in the recirculation bubble, and a new formulation has cured 25% of the backflow discrepancy.
Assessment of Higher-Order RANS Closures in a Decelerated Planar Wall-Bounded Turbulent Flow
NASA Technical Reports Server (NTRS)
Jeyapaul, Elbert; Coleman, Gary N.; Rumsey, Christopher L.
2014-01-01
A reference DNS database is presented, which includes third- and fourth-order moment budgets for unstrained and strained planar channel flow. Existing RANS closure models for third- and fourth-order terms are surveyed, and new model ideas are introduced. The various models are then compared with the DNS data term by term using a priori testing of the higher-order budgets of turbulence transport, velocity-pressure-gradient, and dissipation for both the unstrained and strained databases. Generally, the models for the velocity-pressure-gradient terms are most in need of improvement.
Derivation of the conditional moment closure equations for spray combustion
Mortensen, Mikael; Bilger, Robert W.
2009-01-15
In this work we derive the fundamental equations for conditional moment closure (CMC) modelling of individual phases set in a two-phase flow. The derivation is based on the instantaneous transport equations for the single phase that involve a level set/indicator function technique for accounting for interfaces. Special emphasis is put on spray combustion with the CMC equations formulated for the gas phase. The CMC equations are to be viewed as an adjunct to existing methods for the modelling of the dynamics of sprays: they provide a refinement of the modelling of chemical reactions in the gas phase. The resulting CMC equations differ significantly from those already in use in the literature. They contain, of course, unclosed terms that need to be modelled. Investigation of the unclosed terms associated with evaporation at the droplet surface is well beyond the capabilities of laboratory measurement or direct numerical simulation. It is proposed that modelling of these terms be based on the well-established 'laws' of similarity between heat and mass transfer: an example is detailed for one example of the general modelling of the spray dynamics. Other unclosed terms are important throughout the gas phase. Models used for these terms in single-phase flows are reviewed and it is proposed that any modifications needed for these models be investigated by DNS of suitable model problems having good resolution of the flow and mixing in the inter-droplet space. It is proposed that a spray analogue of the scalar mixing layer that has been widely studied in single-phase flows be used as the model problem for such DNS studies and also for LES and RANS modelling. (author)
Ocean Turbulence I: One-Point Closure Model Momentum and Heat Vertical Diffusivities
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.
1999-01-01
Since the early forties, one-point turbulence closure models have been the canonical tools used to describe turbulent flows in many fields. In geophysics, Mellor and Yamada applied such models using the 1980 state-of-the art. Since then, no improvements were introduced to alleviate two major difficulties: 1) closure of the pressure correlations, which affects the correct determination of the critical Richardson number Ri(sub cr) above which turbulent mixing is no longer possible and 2) the need to express the non-local third-order moments (TOM) in terms of lower order moments rather than via the down-gradient approximation as done thus far, since the latter seriously underestimates the TOMs. Since 1) and 2) are still being dealt with adjustable parameters which weaken the credibility of the models, alternative models, not based on turbulence modeling, have been suggested. The aim of this paper is to show that new information, partly derived from the newest 2-point closure model discussed, can be used to solve these shortcomings. The new one-point closure model, which in its simplest form is algebraic and thus simple to implement, is first shown to reproduce a variety of data. Then, it is used in a Ocean-General Circulation Model (O-GCM) where it reproduces well a large variety of ocean data. While phenomenological models are specifically tuned to ocean turbulence, the present model is not. It is first tested against laboratory data on stably stratified flows and then used in an O-GCM. It is more general, more predictive and more resilient, e.g., it can incorporate phenomena like wave-breaking at the surface, salinity diffusivity, non-locality, etc. One important feature that naturally comes out of the new model is that the predicted Richardson critical value Ri(sub cr) is Ri (sub cr approx. = 1) in agreement with both Large Eddy Simulations (LES) and empirical evidence while all previous models predicted Ri (sub cr approx. = 0.2) which led to a considerable
Moment closures based on minimizing the residual of the PN angular expansion in radiation transport
NASA Astrophysics Data System (ADS)
Zheng, Weixiong; McClarren, Ryan G.
2016-06-01
In this work we present two new closures for the spherical harmonics (PN) method in slab geometry transport problems. Our approach begins with an analysis of the squared-residual of the transport equation where we show that the standard truncation and diffusive closures do not minimize the residual of the PN expansion. Based on this analysis we derive two models, a moment-limited diffusive (ML DN) closure and a transient PN (TPN) closure that attempt to address shortcomings of common closures. The form of these closures is similar to flux-limiters for diffusion with the addition of a time-derivative in the definition of the closure. Numerical results on a pulsed plane source problem, the Gordian knot of slab-geometry transport problems, indicate that our new closure outperforms existing linear closures. Additionally, on a deep penetration problem we demonstrate that the TPN closure does not suffer from the artificial shocks that can arise in the MN entropy-based closure. Finally, results for Reed's problem demonstrate that the TPN solution is as accurate as the PN+3 solution. We further extend the TPN closure to 2D Cartesian geometry. The line source test problem demonstrates the model effectively damps oscillations and negative densities.
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1993-01-01
The turbulent mass flux, or equivalently the fluctuating Favre velocity mean, appears in the first and second moment equations of compressible kappa-epsilon and Reynolds stress closures. Mathematically it is the difference between the unweighted and density-weighted averages of the velocity field and is therefore a measure of the effects of compressibility through variations in density. It appears to be fundamental to an inhomogeneous compressible turbulence, in which it characterizes the effects of the mean density gradients, in the same way the anisotropy tensor characterizes the effects of the mean velocity gradients. An evolution equation for the turbulent mass flux is derived. A truncation of this equation produces an algebraic expression for the mass flux. The mass flux is found to be proportional to the mean density gradients with a tensor eddy-viscosity that depends on both the mean deformation and the Reynolds stresses. The model is tested in a wall bounded DNS at Mach 4.5 with notable results.
Towards Closures for Multi-Fluid Moment Simulations of Collisionless Plasmas
NASA Astrophysics Data System (ADS)
Hakim, A.
2015-12-01
Fluid simulation remain an efficient and valuable tool to understand the global behavior of plasmas. However, as it wellknown, fluid models require a closure approximation to yield a closed set of equations. Designing closures that capture correctkinetic behavior in asymptotic regimes, specially in the presence of weak guide fields, remains a challenge. We present anapproach to developing such closures in the context of multi-fluid moment models. In these, each fluid is treated independently, with higher-order moments (pressure tensor, heat-flux tensor) evolved self-consistently with time-dependent equations. Electromagnetic fields are evolved with Maxwell equations, retaining displacement currents. The validity of these closures is determined by comparison with PIC simulations. A brief overview of the numerical schemes, implemented in the open-source computational framework Gkeyll, will also be presented.
Exact and approximate moment closures for non-Markovian network epidemics.
Pellis, Lorenzo; House, Thomas; Keeling, Matt J
2015-10-01
Moment-closure techniques are commonly used to generate low-dimensional deterministic models to approximate the average dynamics of stochastic systems on networks. The quality of such closures is usually difficult to asses and furthermore the relationship between model assumptions and closure accuracy are often difficult, if not impossible, to quantify. Here we carefully examine some commonly used moment closures, in particular a new one based on the concept of maximum entropy, for approximating the spread of epidemics on networks by reconstructing the probability distributions over triplets based on those over pairs. We consider various models (SI, SIR, SEIR and Reed-Frost-type) under Markovian and non-Markovian assumption characterising the latent and infectious periods. We initially study with care two special networks, namely the open triplet and closed triangle, for which we can obtain analytical results. We then explore numerically the exactness of moment closures for a wide range of larger motifs, thus gaining understanding of the factors that introduce errors in the approximations, in particular the presence of a random duration of the infectious period and the presence of overlapping triangles in a network. We also derive a simpler and more intuitive proof than previously available concerning the known result that pair-based moment closure is exact for the Markovian SIR model on tree-like networks under pure initial conditions. We also extend such a result to all infectious models, Markovian and non-Markovian, in which susceptibles escape infection independently from each infected neighbour and for which infectives cannot regain susceptible status, provided the network is tree-like and initial conditions are pure. This works represent a valuable step in enriching intuition and deepening understanding of the assumptions behind moment closure approximations and for putting them on a more rigorous mathematical footing.
Friction factor for turbulent flow in rough pipes from Heisenberg's closure hypothesis.
Calzetta, Esteban
2009-05-01
We show that the main results of the analysis of the friction factor for turbulent pipe flow reported by Gioia and Chakraborty [Phys. Rev. Lett. 96, 044502 (2006)] can be recovered by assuming the Heisenberg closure hypothesis for the turbulent spectrum. This highlights the structural features of the turbulent spectrum underlying the analysis of Gioia and Chakraborty.
NASA Astrophysics Data System (ADS)
Wright, Y. M.; Bolla, M.; Boulouchos, K.; Borghesi, G.; Mastorakos, E.
2015-01-01
Energy conversion devices of practical interest such as engines or combustors operate in highly turbulent flow regimes. Due to the nature of the hydrocarbon fuels employed, the oxidation chemistry involves a broad range of time-scales some of which cannot be decoupled from the flow. Among the approaches utilised to tackle the modelling of turbulent combustion, Conditional Moment Closure (CMC), belonging to the computationally efficient class of presumed PDF methods, has shown great potential. For single-phase flows it has been demonstrated on non-premixed turbulent lifted and opposed jets, lifted flames and auto-igniting jets. Here we seek to review recent advances in both modelling and application of CMC for auto-ignition of fuel sprays. The experiments chosen for code validation and model improvement include generic spray test rigs with dimensions of passenger car as well as large two-stroke marine engines. Data for a broad range of operating conditions of a heavy-duty truck engine is additionally employed to assess the predictive capability of the model with respect to NOx emissions. An outlook on future enhancements including e.g. LES-CMC formulation also for two-phase flows as well as developments in the field of soot emissions are summarised briefly.
NASA Technical Reports Server (NTRS)
Cheng, A.; Xu, K.-M.; Golaz, J.-C.
2004-01-01
A hierarchy of third-order turbulence closure models are used to simulate boundary-layer cumuli in this study. An unrealistically strong liquid-water oscillation (LWO) is found in the fully prognostic model, which predicts all third moments. The LWO propagates from cloud base to cloud top with a speed of 1 m/s. The period of the oscillation is about 1000 s. Liquid-water buoyancy terms in the third-moment equations contribute to the LWO. The LWO mainly affects the vertical profiles of cloud fraction, mean liquid-water mixing ratio and the fluxes of liquid-water potential temperature and total water, but has less impact on the vertical profiles of other second-moments and third-moments. In order to minimize the LWO, a moderate large diffusion coefficient and a large turbulent dissipation at its originating level are needed. However, this approach distorts the vertical distributions of cloud fraction and liquid-water mixing ratio. A better approach is to parameterize liquid-water buoyancy more reasonably. A minimally prognostic model, which diagnoses all third moments except for vertical velocity, is shown to produce better results, compared to a fully prognostic model.
Comparison of different moment-closure approximations for stochastic chemical kinetics
Schnoerr, David; Sanguinetti, Guido; Grima, Ramon
2015-11-14
In recent years, moment-closure approximations (MAs) of the chemical master equation have become a popular method for the study of stochastic effects in chemical reaction systems. Several different MA methods have been proposed and applied in the literature, but it remains unclear how they perform with respect to each other. In this paper, we study the normal, Poisson, log-normal, and central-moment-neglect MAs by applying them to understand the stochastic properties of chemical systems whose deterministic rate equations show the properties of bistability, ultrasensitivity, and oscillatory behaviour. Our results suggest that the normal MA is favourable over the other studied MAs. In particular, we found that (i) the size of the region of parameter space where a closure gives physically meaningful results, e.g., positive mean and variance, is considerably larger for the normal closure than for the other three closures, (ii) the accuracy of the predictions of the four closures (relative to simulations using the stochastic simulation algorithm) is comparable in those regions of parameter space where all closures give physically meaningful results, and (iii) the Poisson and log-normal MAs are not uniquely defined for systems involving conservation laws in molecule numbers. We also describe the new software package MOCA which enables the automated numerical analysis of various MA methods in a graphical user interface and which was used to perform the comparative analysis presented in this paper. MOCA allows the user to develop novel closure methods and can treat polynomial, non-polynomial, as well as time-dependent propensity functions, thus being applicable to virtually any chemical reaction system.
Comparison of different moment-closure approximations for stochastic chemical kinetics
NASA Astrophysics Data System (ADS)
Schnoerr, David; Sanguinetti, Guido; Grima, Ramon
2015-11-01
In recent years, moment-closure approximations (MAs) of the chemical master equation have become a popular method for the study of stochastic effects in chemical reaction systems. Several different MA methods have been proposed and applied in the literature, but it remains unclear how they perform with respect to each other. In this paper, we study the normal, Poisson, log-normal, and central-moment-neglect MAs by applying them to understand the stochastic properties of chemical systems whose deterministic rate equations show the properties of bistability, ultrasensitivity, and oscillatory behaviour. Our results suggest that the normal MA is favourable over the other studied MAs. In particular, we found that (i) the size of the region of parameter space where a closure gives physically meaningful results, e.g., positive mean and variance, is considerably larger for the normal closure than for the other three closures, (ii) the accuracy of the predictions of the four closures (relative to simulations using the stochastic simulation algorithm) is comparable in those regions of parameter space where all closures give physically meaningful results, and (iii) the Poisson and log-normal MAs are not uniquely defined for systems involving conservation laws in molecule numbers. We also describe the new software package MOCA which enables the automated numerical analysis of various MA methods in a graphical user interface and which was used to perform the comparative analysis presented in this paper. MOCA allows the user to develop novel closure methods and can treat polynomial, non-polynomial, as well as time-dependent propensity functions, thus being applicable to virtually any chemical reaction system.
Comparison of different moment-closure approximations for stochastic chemical kinetics.
Schnoerr, David; Sanguinetti, Guido; Grima, Ramon
2015-11-14
In recent years, moment-closure approximations (MAs) of the chemical master equation have become a popular method for the study of stochastic effects in chemical reaction systems. Several different MA methods have been proposed and applied in the literature, but it remains unclear how they perform with respect to each other. In this paper, we study the normal, Poisson, log-normal, and central-moment-neglect MAs by applying them to understand the stochastic properties of chemical systems whose deterministic rate equations show the properties of bistability, ultrasensitivity, and oscillatory behaviour. Our results suggest that the normal MA is favourable over the other studied MAs. In particular, we found that (i) the size of the region of parameter space where a closure gives physically meaningful results, e.g., positive mean and variance, is considerably larger for the normal closure than for the other three closures, (ii) the accuracy of the predictions of the four closures (relative to simulations using the stochastic simulation algorithm) is comparable in those regions of parameter space where all closures give physically meaningful results, and (iii) the Poisson and log-normal MAs are not uniquely defined for systems involving conservation laws in molecule numbers. We also describe the new software package MOCA which enables the automated numerical analysis of various MA methods in a graphical user interface and which was used to perform the comparative analysis presented in this paper. MOCA allows the user to develop novel closure methods and can treat polynomial, non-polynomial, as well as time-dependent propensity functions, thus being applicable to virtually any chemical reaction system. PMID:26567686
An alternative assessment of second-order closure models in turbulent shear flows
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Gatski, Thomas B.
1994-01-01
The performance of three recently proposed second-order closure models is tested in benchmark turbulent shear flows. Both homogeneous shear flow and the log-layer of an equilibrium turbulent boundary layer are considered for this purpose. An objective analysis of the results leads to an assessment of these models that stands in contrast to that recently published by other authors. A variety of pitfalls in the formulation and testing of second-order closure models are uncovered by this analysis.
A k-{\\varepsilon} turbulence closure model of an isothermal dry granular dense matter
NASA Astrophysics Data System (ADS)
Fang, Chung
2016-07-01
The turbulent flow characteristics of an isothermal dry granular dense matter with incompressible grains are investigated by the proposed first-order k-{\\varepsilon} turbulence closure model. Reynolds-filter process is applied to obtain the balance equations of the mean fields with two kinematic equations describing the time evolutions of the turbulent kinetic energy and dissipation. The first and second laws of thermodynamics are used to derive the equilibrium closure relations satisfying turbulence realizability conditions, with the dynamic responses postulated by a quasi-linear theory. The established closure model is applied to analyses of a gravity-driven stationary flow down an inclined moving plane. While the mean velocity decreases monotonically from its value on the moving plane toward the free surface, the mean porosity increases exponentially; the turbulent kinetic energy and dissipation evolve, respectively, from their minimum and maximum values on the plane toward their maximum and minimum values on the free surface. The evaluated mean velocity and porosity correspond to the experimental outcomes, while the turbulent dissipation distribution demonstrates a similarity to that of Newtonian fluids in turbulent shear flows. When compared to the zero-order model, the turbulent eddy evolution tends to enhance the transfer of the turbulent kinetic energy and plane shearing across the flow layer, resulting in more intensive turbulent fluctuation in the upper part of the flow. Solid boundary as energy source and sink of the turbulent kinetic energy becomes more apparent in the established first-order model.
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Lumley, John L.
1991-01-01
Recently, several second order closure models have been proposed for closing the second moment equations, in which the velocity-pressure gradient (and scalar-pressure gradient) tensor and the dissipation rate tensor are two of the most important terms. In the literature, these correlation tensors are usually decomposed into a so called rapid term and a return-to-isotropy term. Models of these terms have been used in global flow calculations together with other modeled terms. However, their individual behavior in different flows have not been fully examined because they are un-measurable in the laboratory. Recently, the development of direct numerical simulation (DNS) of turbulence has given us the opportunity to do this kind of study. With the direct numerical simulation, we may use the solution to exactly calculate the values of these correlation terms and then directly compare them with the values from their modeled formulations (models). Here, we make direct comparisons of five representative rapid models and eight return-to-isotropy models using the DNS data of forty five homogeneous flows which were done by Rogers et al. (1986) and Lee et al. (1985). The purpose of these direct comparisons is to explore the performance of these models in different flows and identify the ones which give the best performance. The modeling procedure, model constraints, and the various evaluated models are described. The detailed results of the direct comparisons are discussed, and a few concluding remarks on turbulence models are given.
NASA Astrophysics Data System (ADS)
Kadantsev, Evgeny; Fortelius, Carl; Druzhinin, Oleg; Mortikov, Evgeny; Glazunov, Andrey; Zilitinkevich, Sergej
2016-04-01
We examine and validate the EFB turbulence closure model (Zilitinkevich et al., 2013), which is based on the budget equations for basic second moments, namely, two energies: turbulent kinetic energy EK and turbulent potential energy EP, and vertical turbulent fluxes of momentum and potential temperature, τi (i = 1, 2) and Fz. Instead of traditional postulation of down-gradient turbulent transport, the EFB closure determines the eddy viscosity and eddy conductivity from the steady-state version of the budget equations for τi and Fz. Furthermore, the EFB closure involves new prognostic equation for turbulent dissipation time scale tT, and extends the theory to non-steady turbulence regimes accounting for non-gradient and non-local turbulent transports (when the traditional concepts of eddy viscosity and eddy conductivity become generally inconsistent). Our special interest is in asymptotic behavior of the EFB closure in strongly stable stratification. For this purpose, we consider plane Couette flow, namely, the flow between two infinite parallel plates, one of which is moving relative to another. We use a set of Direct Numerical Simulation (DNS) experiments at the highest possible Reynolds numbers for different bulk Richardson numbers (Druzhinin et al., 2015). To demonstrate potential improvements in Numerical Weather Prediction models, we test the new closure model in various idealized cases, varying stratification from the neutral and conventionally neutral to stable (GABLS1) running a test RANS model and HARMONIE/AROME model in single-column mode. Results are compared with DNS and LES (Large Eddy Simulation) runs and different numerical weather prediction models.
Using field inversion to quantify functional errors in turbulence closures
NASA Astrophysics Data System (ADS)
Singh, Anand Pratap; Duraisamy, Karthik
2016-04-01
A data-informed approach is presented with the objective of quantifying errors and uncertainties in the functional forms of turbulence closure models. The approach creates modeling information from higher-fidelity simulations and experimental data. Specifically, a Bayesian formalism is adopted to infer discrepancies in the source terms of transport equations. A key enabling idea is the transformation of the functional inversion procedure (which is inherently infinite-dimensional) into a finite-dimensional problem in which the distribution of the unknown function is estimated at discrete mesh locations in the computational domain. This allows for the use of an efficient adjoint-driven inversion procedure. The output of the inversion is a full-field of discrepancy that provides hitherto inaccessible modeling information. The utility of the approach is demonstrated by applying it to a number of problems including channel flow, shock-boundary layer interactions, and flows with curvature and separation. In all these cases, the posterior model correlates well with the data. Furthermore, it is shown that even if limited data (such as surface pressures) are used, the accuracy of the inferred solution is improved over the entire computational domain. The results suggest that, by directly addressing the connection between physical data and model discrepancies, the field inversion approach materially enhances the value of computational and experimental data for model improvement. The resulting information can be used by the modeler as a guiding tool to design more accurate model forms, or serve as input to machine learning algorithms to directly replace deficient modeling terms.
Optimization and large scale computation of an entropy-based moment closure
Hauck, Cory D.; Hill, Judith C.; Garrett, C. Kristopher
2015-09-10
We present computational advances and results in the implementation of an entropy-based moment closure, M_{N}, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as P_{N}, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which are used as test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. Lastly, these results show, in particular, load balancing issues in scaling the M_{N} algorithm that do not appear for the P_{N} algorithm. We also observe that in weak scaling tests, the ratio in time to solution of M_{N} to P_{N} decreases.
Optimization and large scale computation of an entropy-based moment closure
Hauck, Cory D.; Hill, Judith C.; Garrett, C. Kristopher
2015-09-10
We present computational advances and results in the implementation of an entropy-based moment closure, MN, in the context of linear kinetic equations, with an emphasis on heterogeneous and large-scale computing platforms. Entropy-based closures are known in several cases to yield more accurate results than closures based on standard spectral approximations, such as PN, but the computational cost is generally much higher and often prohibitive. Several optimizations are introduced to improve the performance of entropy-based algorithms over previous implementations. These optimizations include the use of GPU acceleration and the exploitation of the mathematical properties of spherical harmonics, which are used asmore » test functions in the moment formulation. To test the emerging high-performance computing paradigm of communication bound simulations, we present timing results at the largest computational scales currently available. Lastly, these results show, in particular, load balancing issues in scaling the MN algorithm that do not appear for the PN algorithm. We also observe that in weak scaling tests, the ratio in time to solution of MN to PN decreases.« less
Uncertainty Quantification of Turbulence Model Closure Coefficients for Transonic Wall-Bounded Flows
NASA Technical Reports Server (NTRS)
Schaefer, John; West, Thomas; Hosder, Serhat; Rumsey, Christopher; Carlson, Jan-Renee; Kleb, William
2015-01-01
The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-w Model, and the Menter Shear-Stress Trans- port Model. The FUN3D code developed by NASA Langley Research Center was used as the flow solver. The uncertainty quantification analysis employed stochastic expansions based on non-intrusive polynomial chaos as an efficient means of uncertainty propagation. Several integrated and point-quantities are considered as uncertain outputs for both CFD problems. All closure coefficients were treated as epistemic uncertain variables represented with intervals. Sobol indices were used to rank the relative contributions of each closure coefficient to the total uncertainty in the output quantities of interest. This study identified a number of closure coefficients for each turbulence model for which more information will reduce the amount of uncertainty in the output significantly for transonic, wall-bounded flows.
Analytical methods for the development of Reynolds stress closures in turbulence
NASA Technical Reports Server (NTRS)
Speziale, Charles G.
1990-01-01
Analytical methods for the development of Reynolds stress models in turbulence are reviewed in detail. Zero, one and two equation models are discussed along with second-order closures. A strong case is made for the superior predictive capabilities of second-order closure models in comparison to the simpler models. The central points are illustrated by examples from both homogeneous and inhomogeneous turbulence. A discussion of the author's views concerning the progress made in Reynolds stress modeling is also provided along with a brief history of the subject.
A numerical study of a separating and reattaching flow by using Reynolds-stress turbulence closure
NASA Technical Reports Server (NTRS)
Amano, R. S.; Goel, P.
1984-01-01
The numerical study of the Reynolds-stress turbulence closure for separating, reattaching, recirculating and redeveloping flow is summarized. The calculations were made for two different closure models of pressure-strain correlation. The results were compared with the experimental data. Furthermore, these results were compared with the computations made by using the one layer and three layer treatment of k-epsilon turbulence model which were developed. Generally the computations by the Reynolds-stress model show better results than those by the k-epsilon model, in particular, some improvement was noticed in the redeveloping region of the separating and reattaching flow in a pipe with sudden expansion.
Fluid simulation of tokamak ion temperature gradient turbulence with zonal flow closure model
NASA Astrophysics Data System (ADS)
Yamagishi, Osamu; Sugama, Hideo
2016-03-01
Nonlinear fluid simulation of turbulence driven by ion temperature gradient modes in the tokamak fluxtube configuration is performed by combining two different closure models. One model is a gyrofluid model by Beer and Hammett [Phys. Plasmas 3, 4046 (1996)], and the other is a closure model to reproduce the kinetic zonal flow response [Sugama et al., Phys. Plasmas 14, 022502 (2007)]. By including the zonal flow closure, generation of zonal flows, significant reduction in energy transport, reproduction of the gyrokinetic transport level, and nonlinear upshift on the critical value of gradient scale length are observed.
Puleo, J.A.; Mouraenko, O.; Hanes, D.M.
2004-01-01
Six one-dimensional-vertical wave bottom boundary layer models are analyzed based on different methods for estimating the turbulent eddy viscosity: Laminar, linear, parabolic, k—one equation turbulence closure, k−ε—two equation turbulence closure, and k−ω—two equation turbulence closure. Resultant velocity profiles, bed shear stresses, and turbulent kinetic energy are compared to laboratory data of oscillatory flow over smooth and rough beds. Bed shear stress estimates for the smooth bed case were most closely predicted by the k−ω model. Normalized errors between model predictions and measurements of velocity profiles over the entire computational domain collected at 15° intervals for one-half a wave cycle show that overall the linear model was most accurate. The least accurate were the laminar and k−ε models. Normalized errors between model predictions and turbulence kinetic energy profiles showed that the k−ω model was most accurate. Based on these findings, when the smallest overall velocity profile prediction error is required, the processing requirements and error analysis suggest that the linear eddy viscosity model is adequate. However, if accurate estimates of bed shear stress and TKE are required then, of the models tested, the k−ω model should be used.
Hamiltonian fluid closures of the Vlasov-Ampère equations: From water-bags to N moment models
Perin, M.; Chandre, C.; Tassi, E.; Morrison, P. J.
2015-09-15
Moment closures of the Vlasov-Ampère system, whereby higher moments are represented as functions of lower moments with the constraint that the resulting fluid system remains Hamiltonian, are investigated by using water-bag theory. The link between the water-bag formalism and fluid models that involve density, fluid velocity, pressure and higher moments is established by introducing suitable thermodynamic variables. The cases of one, two, and three water-bags are treated and their Hamiltonian structures are provided. In each case, we give the associated fluid closures and we discuss their Casimir invariants. We show how the method can be extended to an arbitrary number of fields, i.e., an arbitrary number of water-bags and associated moments. The thermodynamic interpretation of the resulting models is discussed. Finally, a general procedure to derive Hamiltonian N-field fluid models is proposed.
Triantafyllidis, A.; Mastorakos, E.; Eggels, R.L.G.M.
2009-12-15
Large Eddy Simulations (LES) of forced ignition of a bluff-body stabilised non-premixed methane flame using the Conditional Moment Closure (CMC) turbulent combustion model have been performed. The aim is to investigate the feasibility of the use of CMC/LES for ignition problems and to examine which, if any, of the characteristics already observed in related experiments could be predicted. A three-dimensional formulation of the CMC equation was used with simple and detailed chemical mechanisms, and sparks with different parameters (location, size) were used. It was found that the correct pattern of flame expansion and overall flame appearance were predicted with reasonable accuracy with both mechanisms, but the detailed mechanism resulted in expansion rates closer to the experiment. Moreover, the distribution of OH was predicted qualitatively accurately, with patches of high and low concentration in the recirculation zone during the ignition transient, consistent with experimental data. The location of the spark relative to the recirculation zone was found to determine the pattern of the flame propagation and the total time for the flame stabilisation. The size was also an important parameter, since it was found that the flame extinguishes when the spark is very small, in agreement with expectations from experiment. The stabilisation mechanism of the flame was dominated by the convection and sub-grid scale diffusion of hot combustion products from the recirculation zone to the cold gases that enter the burner, as revealed by analysis of the CMC equation. (author)
Navier-Stokes computation of compressible turbulent flows with a second order closure, part 1
NASA Technical Reports Server (NTRS)
Haminh, Hieu; Kollmann, Wolfgang; Vandromme, Dany
1990-01-01
A second order closure turbulence model for compressible flows is developed and implemented in a 2D Reynolds-averaged Navier-Stokes solver. From the beginning where a kappa-epsilon turbulence model was implemented in the bidiagonal implicit method of MACCORMACK (referred to as the MAC3 code) to the final stage of implementing a full second order closure in the efficient line Gauss-Seidel algorithm, numerous work was done, individually and collectively. Besides the collaboration itself, the final product of this work is a second order closure derived from the Launder, Reece, and Rodi model to account for near wall effects, which has been called FRAME model, which stands for FRench-AMerican-Effort. During the reporting period, two different problems were worked out. The first was to provide Ames researchers with a reliable compressible boundary layer code including a wide collection of turbulence models for quick testing of new terms, both in two equations and in second order closure (LRR and FRAME). The second topic was to complete the implementation of the FRAME model in the MAC5 code. The work related to these two different contributions is reported. dilatation in presence of stron shocks. This work, which has been conducted during a work at the Center for Turbulence Research with Zeman aimed also to cros-check earlier assumptions by Rubesin and Vandromme.
Technology Transfer Automated Retrieval System (TEKTRAN)
The lack of energy closure has been a longstanding issue with Eddy Covariance (EC). Multiple mechanisms have been proposed to explain the discrepancies in energy balance including diurnal energy storage changes, advection of energy, and larger scale turbulent processes that cannot be resolved by fi...
About the coupling of turbulence closure models with averaged Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Vandromme, D.; Ha Minh, H.
1986-01-01
The MacCormack implicit predictor-corrector model (1981) for numerical solution of the coupled Navier-Stokes equations for turbulent flows is extended to nonconservative multiequation turbulence models, as well as the inclusion of second-order Reynolds stress turbulence closure. A scalar effective pressure turbulent contribution to the pressure field is defined to approximate the effects of the Reynolds stress in strongly sheared flows. The Jacobian matrices of the transport equations are diagonalized to reduce the required computer memory and run time. Techniques are defined for including turbulence in the diagonalization. Application of the method is demonstrated with solutions generated for transonic nozzle flow and for the interaction between a supersonic flat plate boundary layer and a 12 deg compression-expansion ramp.
LES-Modeling of a Partially Premixed Flame using a Deconvolution Turbulence Closure
NASA Astrophysics Data System (ADS)
Wang, Qing; Wu, Hao; Ihme, Matthias
2015-11-01
The modeling of the turbulence/chemistry interaction in partially premixed and multi-stream combustion remains an outstanding issue. By extending a recently developed constrained minimum mean-square error deconvolution (CMMSED) method, to objective of this work is to develop a source-term closure for turbulent multi-stream combustion. In this method, the chemical source term is obtained from a three-stream flamelet model, and CMMSED is used as closure model, thereby eliminating the need for presumed PDF-modeling. The model is applied to LES of a piloted turbulent jet flame with inhomogeneous inlets, and simulation results are compared with experiments. Comparisons with presumed PDF-methods are performed, and issues regarding resolution and conservation of the CMMSED method are examined. The author would like to acknowledge the support of funding from Stanford Graduate Fellowship.
Performance of four turbulence closure models implemented using a generic length scale method
Warner, J.C.; Sherwood, C.R.; Arango, H.G.; Signell, R.P.
2005-01-01
A two-equation turbulence model (one equation for turbulence kinetic energy and a second for a generic turbulence length-scale quantity) proposed by Umlauf and Burchard [J. Marine Research 61 (2003) 235] is implemented in a three-dimensional oceanographic model (Regional Oceanographic Modeling System; ROMS v2.0). These two equations, along with several stability functions, can represent many popular turbulence closures, including the k-kl (Mellor-Yamada Level 2.5), k-??, and k-?? schemes. The implementation adds flexibility to the model by providing an unprecedented range of turbulence closure selections in a single 3D oceanographic model and allows comparison and evaluation of turbulence models in an otherwise identical numerical environment. This also allows evaluation of the effect of turbulence models on other processes such as suspended-sediment distribution or ecological processes. Performance of the turbulence models and sediment-transport schemes is investigated with three test cases for (1) steady barotropic flow in a rectangular channel, (2) wind-induced surface mixed-layer deepening in a stratified fluid, and (3) oscillatory stratified pressure-gradient driven flow (estuarine circulation) in a rectangular channel. Results from k-??, k-??, and gen (a new closure proposed by Umlauf and Burchard [J. Marine Research 61 (2003) 235]) are very similar for these cases, but the k-kl closure results depend on a wall-proximity function that must be chosen to suit the flow. Greater variations appear in simulations of suspended-sediment concentrations than in salinity simulations because the transport of suspended-sediment amplifies minor variations in the methods. The amplification is caused by the added physics of a vertical settling rate, bottom stress dependent resuspension, and diffusive transport of sediment in regions of well mixed salt and temperature. Despite the amplified sensitivity of sediment to turbulence models in the estuary test case, the four
Modeling of turbulent chemical reaction
NASA Technical Reports Server (NTRS)
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
NASA Astrophysics Data System (ADS)
Anderson, R. G.; Wang, D.
2012-12-01
Eddy Covariance (EC) is widely used for direct, non-invasive observations of land-atmosphere energy and mass fluxes. However, EC observations of available energy fluxes are usually less than fluxes inferred from radiometer and soil heat flux observations; thus introducing additional uncertainty in using and interpreting EC flux measurements. We compare EC observations from two towers established over sugarcane (Saccharum officinarum L.) in Hawai'i, USA under similar cultivation, temperature, sunlight, and precipitation, but drastically different wind conditions due to orographic effects. At a daily scale, we find that energy closure for both towers occurs on days when the entire 24 hours has sufficient turbulence. At our windier site, this turbulence condition occurs over 60% of the time, which contributes to substantially better daily energy closure (~98%) than at the calmer site (~75%). At our windy site, we then invert the daily energy closure for continuously windy days to calculate canopy energy storage. At full canopy, peak daily canopy energy storage fluxes (200-400 Wm-2) are approximately an order of magnitude larger than soil heat flux (20-40 Wm-2). As a fraction of net radiation, canopy energy storage appears to vary seasonally and shows substantially greater variability than soil heat flux. The results illustrate the importance of sustained turbulence for accurate, direct measurement of land-atmosphere fluxes. As increasing number of EC towers are established in complex terrain, these results indicate the need for preliminary wind studies to optimize tower placement where orography enhances, rather than suppresses, turbulence.
Ly, Cheng; Tranchina, Daniel
2007-08-01
Computational techniques within the population density function (PDF) framework have provided time-saving alternatives to classical Monte Carlo simulations of neural network activity. Efficiency of the PDF method is lost as the underlying neuron model is made more realistic and the number of state variables increases. In a detailed theoretical and computational study, we elucidate strengths and weaknesses of dimension reduction by a particular moment closure method (Cai, Tao, Shelley, & McLaughlin, 2004; Cai, Tao, Rangan, & McLaughlin, 2006) as applied to integrate-and-fire neurons that receive excitatory synaptic input only. When the unitary postsynaptic conductance event has a single-exponential time course, the evolution equation for the PDF is a partial differential integral equation in two state variables, voltage and excitatory conductance. In the moment closure method, one approximates the conditional kth centered moment of excitatory conductance given voltage by the corresponding unconditioned moment. The result is a system of k coupled partial differential equations with one state variable, voltage, and k coupled ordinary differential equations. Moment closure at k = 2 works well, and at k = 3 works even better, in the regime of high dynamically varying synaptic input rates. Both closures break down at lower synaptic input rates. Phase-plane analysis of the k = 2 problem with typical parameters proves, and reveals why, no steady-state solutions exist below a synaptic input rate that gives a firing rate of 59 s(1) in the full 2D problem. Closure at k = 3 fails for similar reasons. Low firing-rate solutions can be obtained only with parameters for the amplitude or kinetics (or both) of the unitary postsynaptic conductance event that are on the edge of the physiological range. We conclude that this dimension-reduction method gives ill-posed problems for a wide range of physiological parameters, and we suggest future directions. PMID:17571938
Two-Point Turbulence Closure Applied to Variable Resolution Modeling
NASA Technical Reports Server (NTRS)
Girimaji, Sharath S.; Rubinstein, Robert
2011-01-01
Variable resolution methods have become frontline CFD tools, but in order to take full advantage of this promising new technology, more formal theoretical development is desirable. Two general classes of variable resolution methods can be identified: hybrid or zonal methods in which RANS and LES models are solved in different flow regions, and bridging or seamless models which interpolate smoothly between RANS and LES. This paper considers the formulation of bridging methods using methods of two-point closure theory. The fundamental problem is to derive a subgrid two-equation model. We compare and reconcile two different approaches to this goal: the Partially Integrated Transport Model, and the Partially Averaged Navier-Stokes method.
Quadrature Moments Method for the Simulation of Turbulent Reactive Flows
NASA Technical Reports Server (NTRS)
Raman, Venkatramanan; Pitsch, Heinz; Fox, Rodney O.
2003-01-01
A sub-filter model for reactive flows, namely the DQMOM model, was formulated for Large Eddy Simulation (LES) using the filtered mass density function. Transport equations required to determine the location and size of the delta-peaks were then formulated for a 2-peak decomposition of the FDF. The DQMOM scheme was implemented in an existing structured-grid LES solver. Simulations of scalar shear layer using an experimental configuration showed that the first and second moments of both reactive and inert scalars are in good agreement with a conventional Lagrangian scheme that evolves the same FDF. Comparisons with LES simulations performed using laminar chemistry assumption for the reactive scalar show that the new method provides vast improvements at minimal computational cost. Currently, the DQMOM model is being implemented for use with the progress variable/mixture fraction model of Pierce. Comparisons with experimental results and LES simulations using a single-environment for the progress-variable are planned. Future studies will aim at understanding the effect of increase in environments on predictions.
On the consistency of Reynolds stress turbulence closures with hydrodynamic stability theory
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Abid, Ridha; Blaisdell, Gregory A.
1995-01-01
The consistency of second-order closure models with results from hydrodynamic stability theory is analyzed for the simplified case of homogeneous turbulence. In a recent study, Speziale, Gatski, and MacGiolla Mhuiris showed that second-order closures are capable of yielding results that are consistent with hydrodynamic stability theory for the case of homogeneous shear flow in a rotating frame. It is demonstrated in this paper that this success is due to the fact that the stability boundaries for rotating homogeneous shear flow are not dependent on the details of the spatial structure of the disturbances. For those instances where they are -- such as in the case of elliptical flows where the instability mechanism is more subtle -- the results are not so favorable. The origins and extent of this modeling problem are examined in detail along with a possible resolution based on rapid distortion theory (RDT) and its implications for turbulence modeling.
NASA Astrophysics Data System (ADS)
Ochrymiuk, Tomasz
2016-06-01
Numerical simulations were performed to predict the film cooling effectiveness on the fiat plate with a three- dimensional discrete-hole film cooling arrangement. The effects of basic geometrical characteristics of the holes, i.e. diameter D, length L and pitch S/D were studied. Different turbulent heat transfer models based on constant and variable turbulent Prandtl number approaches were considered. The variability of the turbulent Prandtl number Pr t in the energy equation was assumed using an algebraic relation proposed by Kays and Crawford, or employing the Abe, Kondoh and Nagano eddy heat diffusivity closure with two differential transport equations for the temperature variance k θ and its destruction rate ɛ θ . The obtained numerical results were directly compared with the data that came from an experiment based on Transient Liquid Crystal methodology. All implemented models for turbulent heat transfer performed sufficiently well for the considered case. It was confirmed, however, that the two- equation closure can give a detailed look into film cooling problems without using any time-consuming and inherently unsteady models.
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1993-01-01
In compressible turbulence models, it is assumed that the Favre-mean velocities are suitable approximations to the Reynolds-mean velocities in order to close unknown terms. This neglects, in the mean momentum and energy equations, the contribution to the stress and work terms by the mean of the fluctuating Favre velocity, a quantity proportional to the turbulent mass flux. As the stress and work terms do not introduce any new unknown correlations requiring closure in either k-epsilon or Reynolds stress closures and because the exact form of the terms can, with little additional work, be carried there is no need to make any modeling assumptions. In the Reynolds stress equations the viscous terms appear naturally in Reynolds variables while the problem is posed in Favre variables. In the process of splitting the viscous terms into the viscous transport terms, carried in Favre variables, and the dissipation terms, carried in Reynolds variables, important contributions from the mass flux appear. The accurate accounting of these terms is important for any consistent near wall modeling and the retention of the mass flux terms is important in complex compressible turbulent flows.
Wang, Minghuai; Larson, Vincent E.; Ghan, Steven J.; Ovchinnikov, Mikhail; Schanen, D.; Xiao, Heng; Liu, Xiaohong; Rasch, Philip J.; Guo, Zhun
2015-06-01
In this study, a higher-order turbulence closure scheme, called Cloud Layers Unified by Binormals (CLUBB), is implemented into a Multi-scale Modeling Framework (MMF) model to improve low cloud simulations. The performance of CLUBB in MMF simulations with two different microphysics configurations (one-moment cloud microphysics without aerosol treatment and two-moment cloud microphysics coupled with aerosol treatment) is evaluated against observations and further compared with results from the Community Atmosphere Model, Version 5 (CAM5) with conventional cloud parameterizations. CLUBB is found to improve low cloud simulations in the MMF, and the improvement is particularly evident in the stratocumulus-to-cumulus transition regions. Compared to the single-moment cloud microphysics, CLUBB with two-moment microphysics produces clouds that are closer to the coast, and agrees better with observations. In the stratocumulus-to cumulus transition regions, CLUBB with two-moment cloud microphysics produces shortwave cloud forcing in better agreement with observations, while CLUBB with single moment cloud microphysics overestimates shortwave cloud forcing. CLUBB is further found to produce quantitatively similar improvements in the MMF and CAM5, with slightly better performance in the MMF simulations (e.g., MMF with CLUBB generally produces low clouds that are closer to the coast than CAM5 with CLUBB). Improved low cloud simulations in MMF make it an even more attractive tool for studying aerosol-cloud-precipitation interactions.
Power and nonpower laws of passive scalar moments convected by isotropic turbulence.
Gotoh, Toshiyuki; Watanabe, Takeshi
2015-09-11
The scaling behavior of the moments of two passive scalars that are excited by two different methods and simultaneously convected by the same isotropic steady turbulence at R_{λ}=805 and Sc=0.72 is studied by using direct numerical simulation with N=4096^{3} grid points. The passive scalar θ is excited by a random source that is Gaussian and white in time, and the passive scalar q is excited by the mean uniform scalar gradient. In the inertial convective range, the nth-order moments of the scalar increment δθ(r) do not obey a simple power law, but have the local scaling exponents ξ_{n}^{θ}+β_{n}log(r/r_{*}) with β_{n}>0. In contrast, the local scaling exponents of q have well-developed plateaus and saturate with increasing order. The power law of passive scalar moments is not trivial. The universality of passive scalars is found not in the moments, but in the normalized moments. PMID:26406833
A second-order closure analysis of turbulent diffusion flames. [combustion physics
NASA Technical Reports Server (NTRS)
Varma, A. K.; Fishburne, E. S.; Beddini, R. A.
1977-01-01
A complete second-order closure computer program for the investigation of compressible, turbulent, reacting shear layers was developed. The equations for the means and the second order correlations were derived from the time-averaged Navier-Stokes equations and contain third order and higher order correlations, which have to be modeled in terms of the lower-order correlations to close the system of equations. In addition to fluid mechanical turbulence models and parameters used in previous studies of a variety of incompressible and compressible shear flows, a number of additional scalar correlations were modeled for chemically reacting flows, and a typical eddy model developed for the joint probability density function for all the scalars. The program which is capable of handling multi-species, multistep chemical reactions, was used to calculate nonreacting and reacting flows in a hydrogen-air diffusion flame.
Magnetic moments around the Z =40 shell closure: sup 91 Y sup m , sup 95 Zr, and sup 97 Nb
Berkes, I.; De Jesus, M.; Hlimi, B.; Massaq, M.; Sayouty, E.H. ); Heyde, K. )
1991-07-01
Magnetic moments around the {ital Z}=40 shell closure have been established using nuclear magnetic resonance on oriented nuclei in iron. From the resonance frequencies we established {vert bar}{mu}({sup 91}Y;9/2{sup +}){vert bar}=6.01({sub {minus}15}{sup +31}){mu}{sub {ital N}}, {vert bar}{mu}({sup 95}Zr; 5/2{sup +}){vert bar}=1.103(23){mu}{sub {ital N}}, {vert bar}{mu}({sup 97}Nb;9/2{sup +}){vert bar}=6.153(5){mu}{sub {ital N}}. The results obtained are discussed in the framework of particle-core coupling and, in more detail, using the Nilsson deformed single-particle model. It is shown that for certain deformation regions the measurement of the magnetic moment can give information on the nuclear quadrupole deformation.
NASA Astrophysics Data System (ADS)
Tassi, Emanuele
2014-07-01
We address the problem of the existence of the Hamiltonian structure for an electrostatic drift-kinetic model and for the related fluid models describing the evolution of the first two moments of the distribution function with respect to the parallel velocity. The drift-kinetic model, which accounts for background density and temperature gradients as well as polarization effects, is shown to possess a noncanonical Hamiltonian structure. The corresponding Poisson bracket is expressed in terms of the fluid moments and it is found that the set of functionals of the zero order moment forms a sub-algebra, thus automatically leading to a class of one-moment Hamiltonian fluid models. In particular, in the limit of weak spatial variations of the background quantities, the Charney-Hasegawa-Mima equation, with its Hamiltonian structure, is recovered. For the set of functionals of the first two moments, which, unlike the case of the Vlasov equation, turns out not to form a sub-algebra, we look for closures that lead to a closed Poisson bracket restricted to this set of functionals. The constraint of the Jacobi identity turns out to select the adiabatic equation of state for an ideal gas with one-degree-of-freedom molecules, as the only admissible closure in this sense. When the so called δf ordering is applied to the model, on the other hand, a Poisson bracket is obtained if the second order moment is a linear combination of the first two moments of the total distribution function. By means of this procedure, three-dimensional Hamiltonian fluid models that couple a generalized Charney-Hasegawa-Mima equation with an evolution equation for the parallel velocity are derived. Among these, a model adopted by Meiss and Horton [Phys. Fluids 26, 990 (1983)] to describe drift waves coupled to ion-acoustic waves, is obtained and its Hamiltonian structure is provided explicitly. Contribution to the Topical Issue "Theory and Applications of the Vlasov Equation", edited by Francesco
Third-Moment Studies of Cascade Dynamics in Solar Wind Turbulence (Invited)
NASA Astrophysics Data System (ADS)
Smith, C. W.; Stawarz, J. E.; Vasquez, B. J.; Forman, M. A.; MacBride, B. T.
2010-12-01
Kolmogorov [1941] and Yaglom [1949] showed that the incompressible hydrodynamic equations governing fluid turbulence could be manipulated to yield a rigorous third-order structure function expression for the energy cascade at inertial range scales. In that derivation the structure function scales linearly with separation distance and the proportionality constant is a factor of the energy cascade rate. For decades it has been argued that the most commonly studied spatial scales for magnetic and velocity fluctuations in the solar wind form an inertial range in an MHD analogy to hydrodynamic turbulence. Politano and Pouquet [1998a,b] and Podesta [2008] derived third-moment expressions for the inertial range cascade in MHD in direct analogy with the earlier hydrodynamic results. We have been exploring the use of these expressions for both isotropic and anisotropic solar wind turbulence [MacBride 2005, 2008; Stawarz 2009, 2010; Smith 2009, 2010; Forman 2010a,b] and find (1) the measured third moments do scale linearly with separation and (2) the resulting estimate for the energy cascade rate accurately account for the energy cascade budget required for turbulence to heat the solar wind. In addition, the anisotropic formalism shows preferential cascade perpendicular to the mean magnetic field. Recent results show the unexpected backward transfer of energy associated with the dominant outward-propagating component when the cross-helicity < δ V \\cdot δ B > is large. The latter behavior is thought to exist over only a limited range of heliocentric distances forming a transient turbulent dynamic near 1 AU. We will include some important comments about the need to monitor convergence and error analyses when using solar wind data. Kolmogorov, 1941, Dokl. Akad. Nauk SSSR, 32, 16. Forman, et al., 2010a, Physical Review Letters, 104, 189001. Forman, et al., 2010b, Solar Wind 12, 176. MacBride, et al., 2005, Solar Wind 11, 613. MacBride, et al., 2008, The Astrophysical Journal
NASA Astrophysics Data System (ADS)
McDonald, James G.; Groth, Clinton P. T.
2013-09-01
The ability to predict continuum and transition-regime flows by hyperbolic moment methods offers the promise of several advantages over traditional techniques. These methods offer an extended range of physical validity as compared with the Navier-Stokes equations and can be used for the prediction of many non-equilibrium flows with a lower expense than particle-based methods. Also, the hyperbolic first-order nature of the resulting partial differential equations leads to mathematical and numerical advantages. Moment equations generated through an entropy-maximization principle are particularly attractive due to their apparent robustness; however, their application to practical situations involving viscous, heat-conducting gases has been hampered by several issues. Firstly, the lack of closed-form expressions for closing fluxes leads to numerical expense as many integrals of distribution functions must be computed numerically during the course of a flow computation. Secondly, it has been shown that there exist physically realizable moment states for which the entropy-maximizing problem on which the method is based cannot be solved. Following a review of the theory surrounding maximum-entropy moment closures, this paper shows that both of these problems can be addressed in practice, at least for a simplified one-dimensional gas, and that the resulting flow predictions can be surprisingly good. The numerical results described provide significant motivations for the extension of these ideas to the fully three-dimensional case.
Fast Maximum Entropy Moment Closure Approach to Solving the Boltzmann Equation
NASA Astrophysics Data System (ADS)
Summy, Dustin; Pullin, Dale
2015-11-01
We describe a method for a moment-based solution of the Boltzmann Equation (BE). This is applicable to an arbitrary set of velocity moments whose transport is governed by partial-differential equations (PDEs) derived from the BE. The equations are unclosed, containing both higher-order moments and molecular-collision terms. These are evaluated using a maximum-entropy reconstruction of the velocity distribution function f (c , x , t) , from the known moments, within a finite-box domain of single-particle velocity (c) space. Use of a finite-domain alleviates known problems (Junk and Unterreiter, Continuum Mech. Thermodyn., 2002) concerning existence and uniqueness of the reconstruction. Unclosed moments are evaluated with quadrature while collision terms are calculated using any desired method. This allows integration of the moment PDEs in time. The high computational cost of the general method is greatly reduced by careful choice of the velocity moments, allowing the necessary integrals to be reduced from three- to one-dimensional in the case of strictly 1D flows. A method to extend this enhancement to fully 3D flows is discussed. Comparison with relaxation and shock-wave problems using the DSMC method will be presented. Partially supported by NSF grant DMS-1418903.
Raghib, Michael; Hill, Nicholas A; Dieckmann, Ulf
2011-05-01
The prevalence of structure in biological populations challenges fundamental assumptions at the heart of continuum models of population dynamics based only on mean densities (local or global). Individual-based models (IBMs) were introduced during the last decade in an attempt to overcome this limitation by following explicitly each individual in the population. Although the IBM approach has been quite useful, the capability to follow each individual usually comes at the expense of analytical tract ability, which limits the generality of the statements that can be made. For the specific case of spatial structure in populations of sessile (and identical) organisms, space-time point processes with local regulation seem to cover the middle ground between analytical tract ability and a higher degree of biological realism. This approach has shown that simplified representations of fecundity, local dispersal and density-dependent mortality weighted by the local competitive environment are sufficient to generate spatial patterns that mimic field observations. Continuum approximations of these stochastic processes try to distill their fundamental properties, and they keep track of not only mean densities, but also higher order spatial correlations. However, due to the non-linearities involved they result in infinite hierarchies of moment equations. This leads to the problem of finding a 'moment closure'; that is, an appropriate order of (lower order) truncation, together with a method of expressing the highest order density not explicitly modelled in the truncated hierarchy in terms of the lower order densities. We use the principle of constrained maximum entropy to derive a closure relationship for truncation at second order using normalisation and the product densities of first and second orders as constraints, and apply it to one such hierarchy. The resulting 'maxent' closure is similar to the Kirkwood superposition approximation, or 'power-3' closure, but it is
NASA Astrophysics Data System (ADS)
Xu, Yonggen; Li, Yude; Dan, Youquan; Du, Quan; Wang, Shijian
2016-07-01
The Wigner distribution function (WDF) has been used to study the propagation properties of partially coherent Laguerre Gaussian (PCLG) beams through atmospheric turbulence. Based on the extended Huygens-Fresnel principle, an analytical formula of the propagation matrixes in terms of the second-order moments of the WDF for PCLG Beams in the receiving plane is derived. And then the analytical formulae for the curvature radii of PCLG Beams propagating in turbulence are given by the second-order moments of the WDF. The numerical results indicate that the curvature radius of PCLG Beams changes more rapidly in turbulence than that in the free space. The influence of the transverse coherence width and the beam waist width on the curvature radius of PCLG Beams is obvious, while the laser wavelength and the inner scale of turbulence have a slight effect. The study results may be useful for remote sensing and free space optical communications.
NASA Astrophysics Data System (ADS)
Xu, Yonggen; Li, Yude; Dan, Youquan; Du, Quan; Wang, Shijian
2016-07-01
The Wigner distribution function (WDF) has been used to study the propagation properties of partially coherent Laguerre Gaussian (PCLG) beams through atmospheric turbulence. Based on the extended Huygens-Fresnel principle, an analytical formula of the propagation matrixes in terms of the second-order moments of the WDF for PCLG Beams in the receiving plane is derived. And then the analytical formulae for the curvature radii of PCLG Beams propagating in turbulence are given by the second-order moments of the WDF. The numerical results indicate that the curvature radius of PCLG Beams changes more rapidly in turbulence than that in the free space. The influence of the transverse coherence width and the beam waist width on the curvature radius of PCLG Beams is obvious, while the laser wavelength and the inner scale of turbulence have a slight effect. The study results may be useful for remote sensing and free space optical communications.
Modelling complex draft-tube flows using near-wall turbulence closures
Ventikos, Y.; Sotiropoulos, F.; Patel, V.C.
1996-12-31
This paper presents a finite-volume method for simulating flows through complex hydroturbine draft-tube configurations using near-wall turbulence closures. The method employs the artificial-compressibility pressure-velocity coupling approach in conjunction with multigrid acceleration for fast convergence on very fine grids. Calculations are carried out for a draft tube with two downstream piers on a computational mesh consisting of 1.2x10{sup 6} nodes. Comparisons of the computed results with measurements demonstrate the ability of the method to capture most experimental trends with reasonable accuracy. Calculated three-dimensional particle traces reveal very complex flow features in the vicinity of the piers, including horse-shoe longitudinal vortices and and regions of flow reversal.
NASA Astrophysics Data System (ADS)
Grete, Philipp; Vlaykov, Dimitar G.; Schmidt, Wolfram; Schleicher, Dominik R. G.
2016-06-01
Even though compressible plasma turbulence is encountered in many astrophysical phenomena, its effect is often not well understood. Furthermore, direct numerical simulations are typically not able to reach the extreme parameters of these processes. For this reason, large-eddy simulations (LES), which only simulate large and intermediate scales directly, are employed. The smallest, unresolved scales and the interactions between small and large scales are introduced by means of a subgrid-scale (SGS) model. We propose and verify a new set of nonlinear SGS closures for future application as an SGS model in LES of compressible magnetohydrodynamics. We use 15 simulations (without explicit SGS model) of forced, isotropic, homogeneous turbulence with varying sonic Mach number Ms=0.2 -20 as reference data for the most extensive a priori tests performed so far in literature. In these tests, we explicitly filter the reference data and compare the performance of the new closures against the most widely tested closures. These include eddy-viscosity and scale-similarity type closures with different normalizations. Performance indicators are correlations with the turbulent energy and cross-helicity flux, the average SGS dissipation, the topological structure and the ability to reproduce the correct magnitude and the direction of the SGS vectors. We find that only the new nonlinear closures exhibit consistently high correlations (median value > 0.8) with the data over the entire parameter space and outperform the other closures in all tests. Moreover, we show that these results are independent of resolution and chosen filter scale. Additionally, the new closures are effectively coefficient-free with a deviation of less than 20%.
Applying an economical scale-aware PDF-based turbulence closure model in NOAA NCEP GCMs.
NASA Astrophysics Data System (ADS)
Krueger, S. K.; Belochitski, A.; Moorthi, S.; Bogenschutz, P.; Pincus, R.
2015-12-01
A novel unified representation of sub-grid scale (SGS) turbulence, cloudiness, and shallow convection is being implemented into the NOAA NCEP Global Forecasting System (GFS) general circulation model. The approach, known as Simplified High Order Closure (SHOC), is based on predicting a joint PDF of SGS thermodynamic variables and vertical velocity and using it to diagnose turbulent diffusion coefficients, SGS fluxes, condensation and cloudiness. Unlike other similar methods, only one new prognostic variable, turbulent kinetic energy (TKE), needs to be intoduced, making the technique computationally efficient.SHOC code was adopted for a global model environment from its origins in a cloud resolving model, and incorporated into NCEP GFS. SHOC was first tested in a non-interactive mode, a configuration where SHOC receives inputs from the host model, but its outputs are not returned to the GFS. In this configuration: a) SGS TKE values produced by GFS SHOC are consistent with those produced by SHOC in a CRM, b) SGS TKE in GFS SHOC exhibits a well defined diurnal cycle, c) there's enhanced boundary layer turbulence in the subtropical stratocumulus and tropical transition-to-cumulus areas d) buoyancy flux diagnosed from the assumed PDF is consistent with independently calculated Brunt-Vaisala frequency in identifying stable and unstable regions.Next, SHOC was coupled to GFS, namely turbulent diffusion coefficients computed by SHOC are now used in place of those currently produced by the GFS boundary layer and shallow convection schemes (Han and Pan, 2011), as well as condensation and cloud fraction diagnosed from the SGS PDF replace those calculated in the current large-scale cloudines scheme (Zhao and Carr, 1997). Ongoing activities consist of debugging the fully coupled GFS/SHOC.Future work will consist of evaluating model performance and tuning the physics if necessary, by performing medium-range NWP forecasts with prescribed initial conditions, and AMIP-type climate
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Dubovikov, M. S.; Howard, A.; Cheng, Y.
1999-01-01
In papers 1 and 2 we have presented the results of the most updated 1-point closure model for the turbulent vertical diffusivities of momentum, heat and salt, K(sub m,h,s). In this paper, we derive the analytic expressions for K(sub m,h,s) using a new 2-point closure model that has recently been developed and successfully tested against some approx. 80 turbulence statistics for different flows. The new model has no free parameters. The expressions for K(sub m, h. s) are analytical functions of two stability parameters: the Turner number R(sub rho) (salinity gradient/temperature gradient) and the Richardson number R(sub i) (temperature gradient/shear). The turbulent kinetic energy K and its rate of dissipation may be taken local or non-local (K-epsilon model). Contrary to all previous models that to describe turbulent mixing below the mixed layer (ML) have adopted three adjustable "background diffusivities" for momentum. heat and salt, we propose a model that avoids such adjustable diffusivities. We assume that below the ML, K(sub m,h,s) have the same functional dependence on R(sub i) and R(sub rho) derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking measured by Gargett et al. (1981). The procedure frees the model from adjustable background diffusivities and indeed we use the same model throughout the entire vertical extent of the ocean. Using the new K(sub m,h, s), we run an O-GCM and present a variety of results that we compare with Levitus and the KPP model. Since the traditional 1-point (used in papers 1 and 2) and the new 2-point closure models used here represent different modeling philosophies and procedures, testing them in an O-GCM is indispensable. The basic motivation is to show that the new 2-point closure model gives results that are overall superior to the 1-point closure in spite of the fact that the latter rely on several adjustable parameters while the new 2-point
Analysis of Highly-Resolved Simulations of 2-D Humps Toward Improvement of Second-Moment Closures
NASA Technical Reports Server (NTRS)
Jeyapaul, Elbert; Rumsey Christopher
2013-01-01
Fully resolved simulation data of flow separation over 2-D humps has been used to analyze the modeling terms in second-moment closures of the Reynolds-averaged Navier- Stokes equations. Existing models for the pressure-strain and dissipation terms have been analyzed using a priori calculations. All pressure-strain models are incorrect in the high-strain region near separation, although a better match is observed downstream, well into the separated-flow region. Near-wall inhomogeneity causes pressure-strain models to predict incorrect signs for the normal components close to the wall. In a posteriori computations, full Reynolds stress and explicit algebraic Reynolds stress models predict the separation point with varying degrees of success. However, as with one- and two-equation models, the separation bubble size is invariably over-predicted.
From Markovian to pairwise epidemic models and the performance of moment closure approximations.
Taylor, Michael; Simon, Péter L; Green, Darren M; House, Thomas; Kiss, Istvan Z
2012-05-01
Many if not all models of disease transmission on networks can be linked to the exact state-based Markovian formulation. However the large number of equations for any system of realistic size limits their applicability to small populations. As a result, most modelling work relies on simulation and pairwise models. In this paper, for a simple SIS dynamics on an arbitrary network, we formalise the link between a well known pairwise model and the exact Markovian formulation. This involves the rigorous derivation of the exact ODE model at the level of pairs in terms of the expected number of pairs and triples. The exact system is then closed using two different closures, one well established and one that has been recently proposed. A new interpretation of both closures is presented, which explains several of their previously observed properties. The closed dynamical systems are solved numerically and the results are compared to output from individual-based stochastic simulations. This is done for a range of networks with the same average degree and clustering coefficient but generated using different algorithms. It is shown that the ability of the pairwise system to accurately model an epidemic is fundamentally dependent on the underlying large-scale network structure. We show that the existing pairwise models are a good fit for certain types of network but have to be used with caution as higher-order network structures may compromise their effectiveness.
NASA Astrophysics Data System (ADS)
Icardi, Matteo; Asinari, Pietro; Marchisio, Daniele; Izquierdo, Salvador; Fox, Rodney
2011-11-01
Recently the Quadrature Method of Moments (QMOM) has been extended to solve several kinetic equations, in particular for gas-particle flows and rarefied gases. This method is usually coupled with simplified linear models for particle collisions. In this work QMOM is tested as a closure for the dynamics of high-order moments with a more realistic collision model namely the hard-spheres model in the Homogeneous Isotropic Boltzmann Equation. The behavior of QMOM far away and approaching the equilibrium is studied. Results are compared to other techniques such as the Lattice-Boltzmann (LBM) and the Grad's expansion (GM) methods. Comparison with a more accurate and computationally expensive model, based on the Discrete Velocity Method (DVM), is also carried out. Our results show that QMOM describes very well the evolution when it is far away from equilibrium, without the drawbacks of the GM and LBM or the computational costs of DVM but it is not able to accurately reproduce the equilibrium and the dynamics close to it. Corrections to cure this behavior are proposed and tested.
NASA Astrophysics Data System (ADS)
Icardi, M.; Asinari, P.; Marchisio, D. L.; Izquierdo, S.; Fox, R. O.
2012-08-01
Recently the Quadrature Method of Moments (QMOM) has been extended to solve several kinetic equations, in particular for gas-particle flows and rarefied gases in which the non-equilibrium effects can be important. In this work QMOM is tested as a closure for the dynamics of the Homogeneous Isotropic Boltzmann Equation (HIBE) with a realistic description for particle collisions, namely the hard-sphere model. The behaviour of QMOM far away and approaching the equilibrium is studied. Results are compared to other techniques such as the Grad's moment method (GM) and the off-Lattice Boltzmann Method (oLBM). Comparison with a more accurate and computationally expensive approach, based on the Discrete Velocity Method (DVM), is also carried out. Our results show that QMOM describes very well the evolution when it is far away from equilibrium, without the drawbacks of the GM and oLBM or the computational costs of DVM, but it is not able to accurately reproduce equilibrium and the dynamics close to it. Static and dynamic corrections to cure this behaviour are here proposed and tested.
NASA Technical Reports Server (NTRS)
Lichtenstein, J. H.
1978-01-01
An analytical method of computing the averaging effect of wing-span size on the loading of a wing induced by random turbulence was adapted for use on a digital electronic computer. The turbulence input was assumed to have a Dryden power spectral density. The computations were made for lift, rolling moment, and bending moment for two span load distributions, rectangular and elliptic. Data are presented to show the wing-span averaging effect for wing-span ratios encompassing current airplane sizes. The rectangular wing-span loading showed a slightly greater averaging effect than did the elliptic loading. In the frequency range most bothersome to airplane passengers, the wing-span averaging effect can reduce the normal lift load, and thus the acceleration, by about 7 percent for a typical medium-sized transport. Some calculations were made to evaluate the effect of using a Von Karman turbulence representation. These results showed that using the Von Karman representation generally resulted in a span averaging effect about 3 percent larger.
NASA Astrophysics Data System (ADS)
Hara, T.; Trini Castelli, S.; Ohba, R.; Tremback, C. J.
This work is a contribution to a large project, aimed at the development of an advanced environmental assessment modelling system to be used in Japan. The modelling system here considered consisted of the RAMS and HYPACT coupled models. The RAMS code was modified to properly simulate local scale phenomena using a fine mesh size of 250 m. In this direction, the main aim here was to investigate the effect of the choice of the turbulence closure scheme on the dispersion of pollutants. Our modified version of the RAMS/HYPACT model chain was validated using field experiments which were carried out by the Japan Atomic Energy Research Institute (JAERI) in the area of Mt. Tsukuba (Japan). The mean flow, turbulence and concentration fields obtained using two alternative turbulence closure schemes are compared. A discussion on the different performances of the turbulence closures is presented and the influence of the closure schemes over the plume dispersion is investigated.
NASA Technical Reports Server (NTRS)
Cheng, Anning; Xu, Kuan-Man
2006-01-01
The abilities of cloud-resolving models (CRMs) with the double-Gaussian based and the single-Gaussian based third-order closures (TOCs) to simulate the shallow cumuli and their transition to deep convective clouds are compared in this study. The single-Gaussian based TOC is fully prognostic (FP), while the double-Gaussian based TOC is partially prognostic (PP). The latter only predicts three important third-order moments while the former predicts all the thirdorder moments. A shallow cumulus case is simulated by single-column versions of the FP and PP TOC models. The PP TOC improves the simulation of shallow cumulus greatly over the FP TOC by producing more realistic cloud structures. Large differences between the FP and PP TOC simulations appear in the cloud layer of the second- and third-order moments, which are related mainly to the underestimate of the cloud height in the FP TOC simulation. Sensitivity experiments and analysis of probability density functions (PDFs) used in the TOCs show that both the turbulence-scale condensation and higher-order moments are important to realistic simulations of the boundary-layer shallow cumuli. A shallow to deep convective cloud transition case is also simulated by the 2-D versions of the FP and PP TOC models. Both CRMs can capture the transition from the shallow cumuli to deep convective clouds. The PP simulations produce more and deeper shallow cumuli than the FP simulations, but the FP simulations produce larger and wider convective clouds than the PP simulations. The temporal evolutions of cloud and precipitation are closely related to the turbulent transport, the cold pool and the cloud-scale circulation. The large amount of turbulent mixing associated with the shallow cumuli slows down the increase of the convective available potential energy and inhibits the early transition to deep convective clouds in the PP simulation. When the deep convective clouds fully develop and the precipitation is produced, the cold pools
NASA Astrophysics Data System (ADS)
Johnson, Perry L.; Meneveau, Charles
2016-10-01
The statistics of the velocity gradient tensor in turbulent flows are of both theoretical and practical importance. The Lagrangian view provides a privileged perspective for studying the dynamics of turbulence in general, and of the velocity gradient tensor in particular. Stochastic models for the Lagrangian evolution of velocity gradients in isotropic turbulence, with closure models for the pressure Hesssian and viscous Laplacian, have been shown to reproduce important features such as non-Gaussian probability distributions, skewness and vorticity strain-rate alignments. The Recent Fluid Deformation (RFD) closure introduced the idea of mapping an isotropic Lagrangian pressure Hessian as upstream initial condition using the fluid deformation tensor. Recent work on a Gaussian fields closure, however, has shown that even Gaussian isotropic velocity fields contain significant anisotropy for the conditional pressure Hessian tensor due to the inherent velocity-pressure couplings, and that assuming an isotropic pressure Hessian as upstream condition may not be realistic. In this paper, Gaussian isotropic field statistics are used to generate more physical upstream conditions for the recent fluid deformation mapping. In this new framework, known isotropy relations can be satisfied {\\it a priori} and no DNS-tuned coefficients are necessary. A detailed comparison of results from the new model, referred to as the recent deformation of Gaussian fields (RDGF) closure, with existing models and DNS shows the improvements gained, especially in various single-time statistics of the velocity gradient tensor at moderate Reynolds numbers. Application to arbitrarily high Reynolds numbers remains an open challenge for this type of model, however.
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man
2015-01-01
Low-level clouds cover nearly half of the Earth and play a critical role in regulating the energy and hydrological cycle. Despite the fact that a great effort has been put to advance the modeling and observational capability in recent years, low-level clouds remains one of the largest uncertainties in the projection of future climate change. Low-level cloud feedbacks dominate the uncertainty in the total cloud feedback in climate sensitivity and projection studies. These clouds are notoriously difficult to simulate in climate models due to its complicated interactions with aerosols, cloud microphysics, boundary-layer turbulence and cloud dynamics. The biases in both low cloud coverage/water content and cloud radiative effects (CREs) remain large. A simultaneous reduction in both cloud and CRE biases remains elusive. This presentation first reviews the effort of implementing the higher-order turbulence closure (HOC) approach to representing subgrid-scale turbulence and low-level cloud processes in climate models. There are two HOCs that have been implemented in climate models. They differ in how many three-order moments are used. The CLUBB are implemented in both CAM5 and GDFL models, which are compared with IPHOC that is implemented in CAM5 by our group. IPHOC uses three third-order moments while CLUBB only uses one third-order moment while both use a joint double-Gaussian distribution to represent the subgrid-scale variability. Despite that HOC is more physically consistent and produces more realistic low-cloud geographic distributions and transitions between cumulus and stratocumulus regimes, GCMs with traditional cloud parameterizations outperform in CREs because tuning of this type of models is more extensively performed than those with HOCs. We perform several tuning experiments with CAM5 implemented with IPHOC in an attempt to produce the nearly balanced global radiative budgets without deteriorating the low-cloud simulation. One of the issues in CAM5-IPHOC
NASA Astrophysics Data System (ADS)
Newell, Alan C.; Rumpf, Benno
2011-01-01
In this article, we state and review the premises on which a successful asymptotic closure of the moment equations of wave turbulence is based, describe how and why this closure obtains, and examine the nature of solutions of the kinetic equation. We discuss obstacles that limit the theory's validity and suggest how the theory might then be modified. We also compare the experimental evidence with the theory's predictions in a range of applications. Finally, and most importantly, we suggest open challenges and encourage the reader to apply and explore wave turbulence with confidence. The narrative is terse but, we hope, delivered at a speed more akin to the crisp pace of a Hemingway story than the wordjumblingtumbling rate of a Joycean novel.
NASA Technical Reports Server (NTRS)
Helfand, H. M.; Labraga, J. C.
1988-01-01
The suitability of applying the Mellor and Yamada (1974, 1982) Level 2.5 second-order turbulence closure model to general circulation models is investigated by examining not only the scheme's simulation of fully (or nearly fully) developed turbulence, but also its simulation of rapidly growing or strongly decaying turbulence. The behavior of the model is presented over its entire domain of definition, with special consideration given to the pathologies of the model. The model is then modified for the case of growing turbulence to rectify some of its physical shortcomings for that case, and to remove the pathologies that prohibit its use in a general circulation model. The performance of the modified Level 2.5 model is compared to the performance of various other modified versions through the numerical simulation for a growing convective PBL. The results show that the modified Level 2.5 model is a viable candidate for the prediction of turbulence and the simulation of the PBL in general circulation models.
NASA Technical Reports Server (NTRS)
Canuto, V. M.; Howard, A.; Cheng, Y.; Dubovikov, M. S.
1999-01-01
We develop and test a 1-point closure turbulence model with the following features: 1) we include the salinity field and derive the expression for the vertical turbulent diffusivities of momentum K(sub m) , heat K(sub h) and salt K(sub s) as a function of two stability parameters: the Richardson number R(sub i) (stratification vs. shear) and the Turner number R(sub rho) (salinity gradient vs. temperature gradient). 2) to describe turbulent mixing below the mixed layer (ML), all previous models have adopted three adjustable "background diffusivities" for momentum, heat and salt. We propose a model that avoids such adjustable diffusivities. We assume that below the ML, the three diffusivities have the same functional dependence on R( sub i) and R(sub rho) as derived from the turbulence model. However, in order to compute R(sub i) below the ML, we use data of vertical shear due to wave-breaking.measured by Gargett et al. The procedure frees the model from adjustable background diffusivities and indeed we employ the same model throughout the entire vertical extent of the ocean. 3) in the local model, the turbulent diffusivities K(sub m,h,s) are given as analytical functions of R(sub i) and R(sub rho). 5) the model is used in an O-GCM and several results are presented to exhibit the effect of double diffusion processes. 6) the code is available upon request.
NASA Astrophysics Data System (ADS)
Soria, Julio; Atkinson, Callum
2013-11-01
This work shows how the joint probability density function (JPDF) of the streamwise and wall normal velocity components of a zero-pressure gradient turbulent boundary layer (ZPG-TBL) can be directly measured using the methodology and theoretical framework proposed by Soria & Willert (2012) MST 23, 065301. Higher order moments including Reynolds stresses can be computed directly from two-component (2C) JPDFs of the streamwise and wall normal velocity components by taking moments of the 2C-JPDF. The base data for the direct measurement of the 2C-JPDF are single-exposed image pairs typically used to determine instantaneous 2C-2D particle image velocimetry (PIV) fields. However, in the new direct measurement method, the instantaneous velocity samples necessary to build up the JPDF never need to be determined, which avoids the problems in PIV due to large velocity gradients that are typically encountered in turbulent wall-bounded flows. This new method has been applied to single-exposed image pairs acquired over a range of Reynolds numbers ranging up to Reτ = 19500 in ZPG-TBL experiments. This paper presents directly measured 2C-JPDFs across the ZPG-TBL as well as higher moment distributions determined from these 2C-JPDFs. The financial support of the Australian Research Council to undertake this research is gratefully acknowledged.
Workshop on Engineering Turbulence Modeling
NASA Technical Reports Server (NTRS)
Povinelli, Louis A. (Editor); Liou, W. W. (Editor); Shabbir, A. (Editor); Shih, T.-H. (Editor)
1992-01-01
Discussed here is the future direction of various levels of engineering turbulence modeling related to computational fluid dynamics (CFD) computations for propulsion. For each level of computation, there are a few turbulence models which represent the state-of-the-art for that level. However, it is important to know their capabilities as well as their deficiencies in order to help engineers select and implement the appropriate models in their real world engineering calculations. This will also help turbulence modelers perceive the future directions for improving turbulence models. The focus is on one-point closure models (i.e., from algebraic models to higher order moment closure schemes and partial differential equation methods) which can be applied to CFD computations. However, other schemes helpful in developing one-point closure models, are also discussed.
Boschung, Jonas
2015-10-01
Following an approach by Siggia, we present coefficients C(n) relating the moments of the dissipation of kinetic energy 〈ɛ〉 and the longitudinal velocity gradient 〈∂u(1)/∂x(1)〉 under the assumption of isotropy and continuity. Particularly, we find that the moment 〈ɛ(n)〉 of order n is completely determined by 〈(∂u(1)/∂x(1))(2n)〉 and an order- (and viscosity-) dependent coefficient for all n under the assumption of (local) isotropy. This implies that all theories which specify 〈ɛ(n)〉 also implicitly determine 〈(∂u(1)/∂x(1))(2n)〉 and vice versa. As a corollary to the direct connection between the moments of the dissipation and the longitudinal velocity gradient, the even standardized moments of order 2n of ∂u(1)/∂x(1) (flatness, hyperflatness, and so on) are directly related to the ratio of the moments 〈ɛ(n)〉/〈ɛ〉(n). We compare the theoretical values of the coefficients C(n) up to n=6 with homogeneous isotropic DNS data ranging from Re(λ)=88 to Re(λ)=529. PMID:26565338
Modeling flows over gravel beds by a drag force method and a modified S-A turbulence closure
NASA Astrophysics Data System (ADS)
Zeng, C.; Li, C. W.
2012-09-01
A double-averaged Navier-Stokes equations (DANS) model has been developed for depth-limited open channel flows over gravels. Three test cases are used to validate the model: an open-channel flow over a densely packed gravel bed with small-scale uniform roughness (D/d50 ˜ 13, d50 = median diameter of roughness elements, D = water depth), open-channel flows over large-scale sparsely distributed roughness elements (D/Δ ˜ 2.3-8.7, Δ = roughness height) and steep slope gravel-bed river flows with D/d50 ˜ 7-25. Various methods of treatment of the gravel-induced resistance effect have been investigated. The results show that the wall function approach (WFA) is successful in simulating flows over small gravels but is not appropriate for large gravels since the vertical profile of the longitudinal velocity does not follow the logarithmic-linear relationship. The drag force method (DFM) performs better but the non-logarithmic velocity distribution generated by sparsely distributed gravels cannot be simulated accurately. Noting that the turbulence length scale within the gravel layer is governed by the gravel size, the DANS model incorporating the DFM and a modified Spalart-Allmaras (S-A) turbulence closure is proposed. The turbulence length scale parameter in the S-A model is modified to address the change in the turbulence structure within the gravel layer. The computed velocity profiles agree well with the corresponding measured profiles in all cases. Particularly, the model reproduces the S-shape velocity profile for sparsely distributed large size roughness elements. The modeling methodology is robust and can be easily integrated into the existing numerical models.
NASA Technical Reports Server (NTRS)
Cheng, Anning; Xu, Kuan-Man
2015-01-01
Five-year simulation experiments with a multi-scale modeling Framework (MMF) with a advanced intermediately prognostic higher-order turbulence closure (IPHOC) in its cloud resolving model (CRM) component, also known as SPCAM-IPHOC (super parameterized Community Atmospheric Model), are performed to understand the fast tropical (30S-30N) cloud response to an instantaneous doubling of CO2 concentration with SST held fixed at present-day values. SPCAM-IPHOC has substantially improved the low-level representation compared with SPCAM. It is expected that the cloud responses to greenhouse warming in SPCAM-IPHOC is more realistic. The change of rising motion, surface precipitation, cloud cover, and shortwave and longwave cloud radiative forcing in SPCAM-IPHOC from the greenhouse warming will be presented in the presentation.
A hybrid Reynolds averaged/PDF closure model for supersonic turbulent combustion
NASA Technical Reports Server (NTRS)
Frankel, Steven H.; Hassan, H. A.; Drummond, J. Philip
1990-01-01
A hybrid Reynolds averaged/assumed pdf approach has been developed and applied to the study of turbulent combustion in a supersonic mixing layer. This approach is used to address the 'laminar-like' treatment of the thermochemical terms that appear in the conservation equations. Calculations were carried out for two experiments involving H2-air supersonic turbulent mixing. Two different forms of the pdf were implemented. In general, the results show modest improvement from previous calculations. Moreover, the results appear to be somewhat independent of the form of the assumed pdf.
Third-moment descriptions of the interplanetary turbulent cascade, intermittency and back transfer
Coburn, Jesse T.; Forman, Miriam A.; Smith, Charles W.; Vasquez, Bernard J.; Stawarz, Julia E.
2015-01-01
We review some aspects of solar wind turbulence with an emphasis on the ability of the turbulence to account for the observed heating of the solar wind. Particular attention is paid to the use of structure functions in computing energy cascade rates and their general agreement with the measured thermal proton heating. We then examine the use of 1 h data samples that are comparable in length to the correlation length for the fluctuations to obtain insights into local inertial range dynamics and find evidence for intermittency in the computed energy cascade rates. When the magnetic energy dominates the kinetic energy, there is evidence of anti-correlation in the cascade of energy associated with the outward- and inward-propagating components that we can only partially explain. PMID:25848079
Third-moment descriptions of the interplanetary turbulent cascade, intermittency and back transfer.
Coburn, Jesse T; Forman, Miriam A; Smith, Charles W; Vasquez, Bernard J; Stawarz, Julia E
2015-05-13
We review some aspects of solar wind turbulence with an emphasis on the ability of the turbulence to account for the observed heating of the solar wind. Particular attention is paid to the use of structure functions in computing energy cascade rates and their general agreement with the measured thermal proton heating. We then examine the use of 1 h data samples that are comparable in length to the correlation length for the fluctuations to obtain insights into local inertial range dynamics and find evidence for intermittency in the computed energy cascade rates. When the magnetic energy dominates the kinetic energy, there is evidence of anti-correlation in the cascade of energy associated with the outward- and inward-propagating components that we can only partially explain. PMID:25848079
NASA Technical Reports Server (NTRS)
Amano, R. S.
1985-01-01
The hybrid model of the Reynolds-stress turbulence closure is tested for the computation of the flows over a step and disk. Here it is attempted to improve the redistributive action of the turbulence energy among the Reynolds stresses. By evaluating the existing models for the pressure-strain correlation, better coefficients are obtained for the prediction of separating shear flows. Furthermore, the diffusion rate of the Reynolds stresses is reevaluated adopting several algebraic correlations for the triple-velocity products. The models of Cormack et al., Daly-Harlow, Hanjalic-Launder, and Shir were tested for the reattaching shear flows. It was generally observed that all these algebraic models give considerably low values of the triple-velocity products. This is attributed to the fact that none of the algebraic models can take the convective effect of the triple-velocity products into account in the separating shear flows, thus resulting in much lower diffusion rate than Reynolds stresses. In order to improve the evaluation of these quantities correction factors are introduced based on the comparison with some experimental data.
NASA Astrophysics Data System (ADS)
Artemov, V. I.; Sinkevich, O. A.
1986-02-01
A semiempirical turbulence model describing the interaction between an electric arc and a turbulent gas flow is proposed which is based on the closure of the balance equations of second-order moments. The model accounts for the effect of gas density and electrodynamic parameter fluctuations. Based on the model proposed here, an algorithm is developed for calculating turbulent plasma flows in channels with complex boundary conditions, such as injection and suction. The efficiency of the model is verified experimentally.
NASA Technical Reports Server (NTRS)
Eisfeld, Bernhard; Rumsey, Chris; Togiti, Vamshi
2015-01-01
The implementation of the SSG/LRR-omega differential Reynolds stress model into the NASA flow solvers CFL3D and FUN3D and the DLR flow solver TAU is verified by studying the grid convergence of the solution of three different test cases from the Turbulence Modeling Resource Website. The model's predictive capabilities are assessed based on four basic and four extended validation cases also provided on this website, involving attached and separated boundary layer flows, effects of streamline curvature and secondary flow. Simulation results are compared against experimental data and predictions by the eddy-viscosity models of Spalart-Allmaras (SA) and Menter's Shear Stress Transport (SST).
Analysis of second order moments in the Surface Layer turbulence in an Alpine valley
NASA Astrophysics Data System (ADS)
Zardi, Dino; de Franceschi, Massimiliano; Tagliazucca, Mauro; Tampieri, Francesco
2010-05-01
Results from the analysis of field measurements in the atmospheric surface layer in the Adige Valley, south to the city of Bolzano/Bozen in the Alps, are presented. Turbulence measurements were performed in July 1999, under various weather conditions, with a sonic anemometer in the middle of the valley floor, in a locally plain and almost horizontal area (down-valley slope everywhere less than 0.2%), rather regularly surrounded by uniformly high apple tree orchards. Special care was devoted to the proper choice of design parameters of the digital recursive filter used to separate turbulent fluctuations from the mean flow, as well as to evaluation of the rotation angles required for streamwise alignment. The resulting values of various turbulence quantities, such as drag coefficient, displacement height and roughness length, appear similar to those reported in the literature about surface layer turbulence over plain uniform terrain, provided specific features, amenable to the complexity of the valley environment, are identified as such. As a main result, the analysis of the nondimensional standard deviations (?u, ?v and ?w) legitimates the adoption, for all the wind components, of the same Monin-Obukhov similarity relationship in the form ?i-u*=αi(1+βi|?|)1-3(i = u,v and w), which was originally proposed only for plain uniform terrain under steady state conditions. This allows to include also the case of winds over a valley floor under slowly varying situations, provided suitable coefficients αi and βi are adopted. It is also shown how the use of more appropriate values of the design parameters for the digital filter, with respect to other choices proposed in the literature, significantly reduce the scatter around the best fit curve. On the other hand the analysis of temperature fluctuations shows two distinct behaviours of ??/?* in the stable and unstable regimes respectively, which are properly reproduced by suitable expressions already proposed in the
Navier-Stokes turbine heat transfer predictions using two-equation turbulence closures
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Arnone, Andrea
1992-01-01
Navier-Stokes calculations were carried out in order to predict the heat-transfer rates on turbine blades. The calculations were performed using TRAF2D which is a k-epsilon, explicit, finite volume mass-averaged Navier-Stokes solver. Turbulence was modeled using Coakley's q-omega and Chien's k-epsilon two-equation models and the Baldwin-Lomax algebraic model. The model equations along with the flow equations were solved explicitly on a nonperiodic C grid. Implicit residual smoothing (IRS) or a combination of multigrid technique and IRS was applied to enhance convergence rates. Calculations were performed to predict the Stanton number distributions on the first stage vane and blade row as well as the second stage vane row of the SSME high-pressure fuel turbine. The comparison serves to highlight the weaknesses of the turbulence models for use in turbomachinery heat-transfer calculations.
Mean velocity and moments of turbulent velocity fluctuations in the wake of a model ship propulsor
NASA Astrophysics Data System (ADS)
Pêgo, J. P.; Lienhart, H.; Durst, F.
2007-08-01
; Schneekluth and Bertram in Ship design for efficiency and economy, 1998), the co-rotating propellers model showed a much stronger swirl in the wake of the propulsor. The anisotropy of turbulence was analyzed using the anisotropy tensor introduced by Lumley and Newman (J Fluid Mech 82(1):161-178, 1977). The invariants of the anisotropy tensor of the wake flow were computed and were plotted in the Lumley-Newman-diagram. These measurements revealed that the anisotropy tensor in the wake of ship propellers is located near to the borders of the invariant map, showing a large degree of anisotropy. They will be presented and will be discussed with respect to applications of turbulence models to predict swirling flows.
NASA Astrophysics Data System (ADS)
McDermott, Randy
2005-11-01
In this talk we illuminate the reasons behind curious characteristics of the one-dimensional (1d) spectra for coupled `one-dimensional turbulence' (ODT) and large-eddy simulations (LES) and propose a means of correcting the ``spectral dip'' in the ODT transverse 1d spectrum. When the ODT model of Kerstein et al. [JFM 2000] is used as a subgrid closure for LES the characteristics of the three-dimensional (3d) LES spectrum significantly impact the shape of the ODT 1d spectra in the wavenumber range close to the LES grid Nyquist limit. For isotropic fields the 1d spectra (e.g., E22(k1)) will contain contributions from the 3d spectrum, E(k), from wavenumbers k = k1 to k = infinity. If the LES field is filtered using a spectral cutoff, Gaussian, or box filter then the attenuation of the 3d spectrum at high wavenumbers produces a ``spectral dip'' in the ODT 1d spectrum near the LES Nyquist limit. This problem can be alleviated by using a different LES filter kernel. Fortuitously, the resulting shape (i.e., ``implied filter'') of the 3d spectra produced by the Harlow and Welch numerical method [Phys. Fluids 1965] (i.e., second-order staggered energy conserving scheme without explicit filtering) eliminates the dip problem.
NASA Astrophysics Data System (ADS)
Yang, X. I. A.; Meneveau, C.; Marusic, I.; Biferale, L.
2016-08-01
In wall-bounded turbulence, the moment generating functions (MGFs) of the streamwise velocity fluctuations
Yoshimatsu, Katsunori
2012-06-01
The four-fifths law for third-order longitudinal moments is examined, using direct numerical simulation (DNS) data on three-dimensional (3D) forced incompressible magnetohydrodynamic (MHD) turbulence without a uniformly imposed magnetic field in a periodic box. The magnetic Prandtl number is set to one, and the number of grid points is 512(3). A generalized Kármán-Howarth-Kolmogorov equation for second-order velocity moments in isotropic MHD turbulence is extended to anisotropic MHD turbulence by means of a spherical average over the direction of r. Here, r is a separation vector. The viscous, forcing, anisotropic and nonstationary terms in the generalized equation are quantified. It is found that the influence of the anisotropic terms on the four-fifths law is negligible at small scales, compared to that of the viscous term. However, the influence of the directional anisotropy, which is measured by the departure of the third-order moments in a particular direction of r from the spherically averaged ones, on the four-fifths law is suggested to be substantial, at least in the case studied here.
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: New approach to turbulence modeling; Second moment closure analysis of the backstep flow database; Prediction of the backflow and recovery regions in the backward facing step at various Reynolds numbers; Turbulent flame propagation in partially premixed flames; Ensemble averaged dynamic modeling. Also included a study of the turbulence structures of wall-bounded shear flows; Simulation and modeling of the elliptic streamline flow.
Multiple mapping conditioning of velocity in turbulent jet flames
Vaishnavi, P.; Kronenburg, A.
2010-10-15
Multiple mapping conditioning (MMC) has emerged as a new approach to model turbulent reacting flows. This study revises the standard MMC closure for velocity in turbulent jet flows from linearity in the reference space to linearity in the composition space. This modeling amendment ensures that the standard velocity model in conditional moment closure studies can now be used for MMC computation as well. A simplified model for the velocity-dependence of MMC drift coefficients is derived without loss of generality and is implemented for the revised velocity closure. Modeling results have been corroborated against the Direct Numerical Simulation database of a spatially evolving, planar turbulent jet flame. The revised model shows marked improvement over standard MMC closure in predicting velocity statistics close to the nozzle. (author)
NASA Technical Reports Server (NTRS)
Xu, Kuan-Man; Cheng, Anning
2010-01-01
This study presents preliminary results from a multiscale modeling framework (MMF) with an advanced third-order turbulence closure in its cloud-resolving model (CRM) component. In the original MMF, the Community Atmosphere Model (CAM3.5) is used as the host general circulation model (GCM), and the System for Atmospheric Modeling with a first-order turbulence closure is used as the CRM for representing cloud processes in each grid box of the GCM. The results of annual and seasonal means and diurnal variability are compared between the modified and original MMFs and the CAM3.5. The global distributions of low-level cloud amounts and precipitation and the amounts of low-level clouds in the subtropics and middle-level clouds in mid-latitude storm track regions in the modified MMF show substantial improvement relative to the original MMF when both are compared to observations. Some improvements can also be seen in the diurnal variability of precipitation.
NASA Technical Reports Server (NTRS)
Wang, Shouping; Wang, Qing
1994-01-01
This study focuses on the effects of drizzle in a one-dimensional third-order turbulence closure model of the nocturnal stratus-topped marine boundary layer. When the simulated drizzle rate is relatively small (maximum approximately equal to 0.6 mm/day), steady-state solutions are obtained. The boundary layer stabilizes essentially because drizzle causes evaporative cooling of the subcloud layer. This stabilization considerably reduces the buoyancy flux and turbulence kinetic energy below the stratus cloud. Thus, drizzle tends to decouple the cloud from the subcloud layer in the model, as suggested by many observational studies. In addition, the evaporation of drizzle in the subcloud layer creates small scattered clouds, which are likely to represent cumulus clouds, below the solid stratus cloud in the model. The sensitivity experiments show that these scattered clouds help maintain a coupled boundary layer. When the drizzle rate is relatively large (maximum approximately equal to 0.9 mm/day), the response of the model becomes transient with bursts in turbulent fluxes. This phenomenon is related to the formation of the scattered cloud layer below the solid stratus cloud. It appears that the model is inadequate to represent the heat and moisture transport by strong updrafts covering a small fractional area in cumulus convection.
Ihme, Matthias; Pitsch, Heinz
2008-10-15
Previously conducted studies of the flamelet/progress variable model for the prediction of nonpremixed turbulent combustion processes identified two areas for model improvements: the modeling of the presumed probability density function (PDF) for the reaction progress parameter and the consideration of unsteady effects [Ihme et al., Proc. Combust. Inst. 30 (2005) 793]. These effects are of particular importance during local flame extinction and subsequent reignition. Here, the models for the presumed PDFs for conserved and reactive scalars are re-examined and a statistically most likely distribution (SMLD) is employed and tested in a priori studies using direct numerical simulation (DNS) data and experimental results from the Sandia flame series. In the first part of the paper, the SMLD model is employed for a reactive scalar distribution. Modeling aspects of the a priori PDF, accounting for the bias in composition space, are discussed. The convergence of the SMLD with increasing number of enforced moments is demonstrated. It is concluded that information about more than two moments is beneficial to accurately represent the reactive scalar distribution in turbulent flames with strong extinction and reignition. In addition to the reactive scalar analysis, the potential of the SMLD for the representation of conserved scalar distributions is also analyzed. In the a priori study using DNS data it is found that the conventionally employed beta distribution provides a better representation for the scalar distribution. This is attributed to the fact that the beta-PDF implicitly enforces higher moment information that is in excellent agreement with the DNS data. However, the SMLD outperforms the beta distribution in free shear flow applications, which are typically characterized by strongly skewed scalar distributions, in the case where higher moment information can be enforced. (author)
NASA Astrophysics Data System (ADS)
Frisch, Uriel
1996-01-01
Written five centuries after the first studies of Leonardo da Vinci and half a century after A.N. Kolmogorov's first attempt to predict the properties of flow, this textbook presents a modern account of turbulence, one of the greatest challenges in physics. "Fully developed turbulence" is ubiquitous in both cosmic and natural environments, in engineering applications and in everyday life. Elementary presentations of dynamical systems ideas, probabilistic methods (including the theory of large deviations) and fractal geometry make this a self-contained textbook. This is the first book on turbulence to use modern ideas from chaos and symmetry breaking. The book will appeal to first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, as well as professional scientists and engineers.
Jenu, M.Z.M.; Bebbington, D.H.O.
1994-11-01
The split-step method was used to derive the full spatial dependence of the fourth moment of a plane-wave propagating in a two-dimensional turbulent atmosphere with a power-law spectrum for two values of the scattering parameter {gamma}{sub {ital k}} = 0 and 1 [J. Opt. Soc. Am. A {bold 2}, 2133 (1985)]. The changes in {gamma}{sub {ital k}} were obtained by the use of two different values of the inner scale of turbulence {ital l}{sub 0} while the operating wavelength and turbulent strength were kept constant. In this way the influence of {ital l}{sub 0} on the field statistics can be obtained. The results of intensity scintillation index {sigma}{sub {ital I}}{sup 2} and covariance function {ital b}{sub {ital I}} are also presented. The agreement of {sigma}{sub {ital I}}{sup 2} with the results of the reference cited above especially for {gamma}{sub {ital k}} = 0 is good. We also used the results of {ital b}{sub {ital I}} to study the asymptotic dependence of the characteristic correlation length on {zeta}, where {zeta} is the propagation-range scale.
Advancements in engineering turbulence modeling
NASA Technical Reports Server (NTRS)
Shih, T.-H.
1991-01-01
Some new developments in two-equation models and second order closure models are presented. Two-equation models (k-epsilon models) have been widely used in computational fluid dynamics (CFD) for engineering problems. Most of low-Reynolds number two-equation models contain some wall-distance damping functions to account for the effect of wall on turbulence. However, this often causes the confusion and difficulties in computing flows with complex geometry and also needs an ad hoc treatment near the separation and reattachment points. A set of modified two-equation models is proposed to remove the aforementioned shortcomings. The calculations using various two-equation models are compared with direct numerical simulations of channel flow and flat boundary layers. Development of a second order closure model is also discussed with emphasis on the modeling of pressure related correlation terms and dissipation rates in the second moment equations. All the existing models poorly predict the normal stresses near the wall and fail to predict the 3-D effect of mean flow on the turbulence (e.g. decrease in the shear stress caused by the cross flow in the boundary layer). The newly developed second order near-wall turbulence model is described and is capable of capturing the near-wall behavior of turbulence as well as the effect of 3-D mean flow on the turbulence.
Systematic study of Reynolds stress closure models in the computations of plane channel flows
NASA Technical Reports Server (NTRS)
Demuren, A. O.; Sarkar, S.
1992-01-01
The roles of pressure-strain and turbulent diffusion models in the numerical calculation of turbulent plane channel flows with second-moment closure models are investigated. Three turbulent diffusion and five pressure-strain models are utilized in the computations. The main characteristics of the mean flow and the turbulent fields are compared against experimental data. All the features of the mean flow are correctly predicted by all but one of the Reynolds stress closure models. The Reynolds stress anisotropies in the log layer are predicted to varying degrees of accuracy (good to fair) by the models. None of the models could predict correctly the extent of relaxation towards isotropy in the wake region near the center of the channel. Results from the directional numerical simulation are used to further clarify this behavior of the models.
NASA Astrophysics Data System (ADS)
Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.
2015-05-01
The rotational Raman lidar (RRL) of the University of Hohenheim (UHOH) measures atmospheric temperature profiles with high resolution (10 s, 109 m). The data contain low-noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, the first profiling of the second- to fourth-order moments of turbulent temperature fluctuations is presented. Furthermore, skewness profiles and kurtosis profiles in the convective planetary boundary layer (CBL) including the interfacial layer (IL) are discussed. The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E; 110 m a.s.l.) on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction) Observational Prototype Experiment (HOPE). We used the data between 11:00 and 12:00 UTC corresponding to 1 h around local noon (the highest position of the Sun was at 11:33 UTC). First, we investigated profiles of the total noise error of the temperature measurements and compared them with estimates of the temperature measurement uncertainty due to shot noise derived with Poisson statistics. The comparison confirms that the major contribution to the total statistical uncertainty of the temperature measurements originates from shot noise. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. (above ground level) at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1020 m a.g.l. Autocovariance and spectral analyses of the atmospheric temperature fluctuations confirm that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the integral scale of
Turbulence modeling for separated flow
NASA Technical Reports Server (NTRS)
Durbin, Paul A.
1994-01-01
Two projects are described in this report. The first involves assessing turbulence models in separated flow. The second addresses the anomalous behavior of certain turbulence models in stagnation point flow. The primary motivation for developing turbulent transport models is to provide tools for computing non-equilibrium, or complex, turbulent flows. Simple flows can be analyzed using data correlations or algebraic eddy viscosities, but in more complicated flows such as a massively separated boundary layer, a more elaborate level of modeling is required. It is widely believed that at least a two-equation transport model is required in such cases. The transport equations determine the evolution of suitable velocity and time-scales of the turbulence. The present study included assessment of second-moment closures in several separated flows, including sharp edge separation; smooth wall, pressure driven separation; and unsteady vortex shedding. Flows with mean swirl are of interest for their role in enhancing mixing both by turbulent and mean motion. The swirl can have a stabilizing effect on the turbulence. An axi-symmetric extension to the INS-2D computer program was written adding the capability of computing swirling flow. High swirl can produce vortex breakdown on the centerline of the jet and it occurs in various combustors.
Mechanics of Turbulence of Multicomponent Gases
NASA Astrophysics Data System (ADS)
Marov, Mikhail Ya.; Kolesnichenko, Aleksander V.
2002-02-01
Turbulence in multicomponent reacting gas mixtures is an important mechanism underlying numerous natural phenomena closely related to the study of our space environment. This book develops a new mathematical approach for modelling multicomponent gas turbulence that adequately describes the combined processes of dynamics and heat and mass transfer when chemical kinetics and turbulent mixing are equally important. The developed models include the evolutionary transfer equations for the single-point second correlation moments of turbulent fluctuations of thermohydrodynamical parameters. The phenomenological approach to the closure problem in hydrodynamic equations of mean motion at the level of the first order moments is based on the thermodynamics of irreversible processes and enables defining relationships in a more general form as compared to those conventionally deduced using the mixing path concept. Based on the developed approach, turbulent exchange factors for a planetary upper atmosphere are evaluated, and a turbulent model of a protoplanetary accretion gas-dust disk involving heat and mass transfer and coagulation is also considered. As compared to previously published books on the problem of turbulence, this book deals, for the first time, with the complicated models of reacting gas mixtures. It is intended for graduate and postgraduate students in the fields of fluid gas dynamics, astrophysics, space physics, planetary sciences, and aeronomy, and especially for those dealing with computer modelling of the processes in such natural media. The book may also be of interest to specialists in the relevant fields of ecology, engineering, and material processing.
NASA Astrophysics Data System (ADS)
Behrendt, A.; Wulfmeyer, V.; Hammann, E.; Muppa, S. K.; Pal, S.
2014-11-01
The rotational Raman lidar of the University of Hohenheim (UHOH) measures atmospheric temperature profiles during daytime with high resolution (10 s, 109 m). The data contain low noise errors even in daytime due to the use of strong UV laser light (355 nm, 10 W, 50 Hz) and a very efficient interference-filter-based polychromator. In this paper, we present the first profiling of the second- to forth-order moments of turbulent temperature fluctuations as well as of skewness and kurtosis in the convective boundary layer (CBL) including the interfacial layer (IL). The results demonstrate that the UHOH RRL resolves the vertical structure of these moments. The data set which is used for this case study was collected in western Germany (50°53'50.56'' N, 6°27'50.39'' E, 110 m a.s.l.) within one hour around local noon on 24 April 2013 during the Intensive Observations Period (IOP) 6 of the HD(CP)2 Observational Prototype Experiment (HOPE), which is embedded in the German project HD(CP)2 (High-Definition Clouds and Precipitation for advancing Climate Prediction). First, we investigated profiles of the noise variance and compared it with estimates of the statistical temperature measurement uncertainty Δ T based on Poisson statistics. The agreement confirms that photon count numbers obtained from extrapolated analog signal intensities provide a lower estimate of the statistical errors. The total statistical uncertainty of a 20 min temperature measurement is lower than 0.1 K up to 1050 m a.g.l. at noontime; even for single 10 s temperature profiles, it is smaller than 1 K up to 1000 m a.g.l.. Then we confirmed by autocovariance and spectral analyses of the atmospheric temperature fluctuations that a temporal resolution of 10 s was sufficient to resolve the turbulence down to the inertial subrange. This is also indicated by the profile of the integral scale of the temperature fluctuations, which was in the range of 40 to 120 s in the CBL. Analyzing then profiles of the second
Deriving statistical closure from dynamical optimization
NASA Astrophysics Data System (ADS)
Turkington, Bruce
2015-11-01
Turbulence theorists have traditionally deduced statistical models by generating a hierarchy of moment equations and invoking some closure rules to truncate the hierarchy. In this talk a conceptually different approach to model reduction and statistical closure will be presented, and its implications for coarse-graining fluid turbulence will be indicated. The author has developed this method in the context of nonequilibrium statistical descriptions of Hamiltonian systems with many degrees of freedom. With respect to a chosen parametric statistical model, the lack-of-fit of model paths to the full dynamics is minimized in a time-integrated, mean-squared sense. This optimal closure method is applied to coarse-grain spectrally-truncated inviscid dynamics, including the Burgers-Hopf equation and incompressible two-dimensional flow, using the means and/or variances of low modes as resolved variables. The derived reduced dynamics for these test cases contain (1) scale-dependent dissipation which is not a local eddy viscosity, (2) modified nonlinear interactions between resolved modes, and (3) coupling between the mean and variance of each resolved mode. These predictions are validated against direct numerical simulations of ensembles for the fully resolved dynamics.
Research activities at the Center for Modeling of Turbulence and Transition
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing
1993-01-01
The main research activities at the Center for Modeling of Turbulence and Transition (CMOTT) are described. The research objective of CMOTT is to improve and/or develop turbulence and transition models for propulsion systems. The flows of interest in propulsion systems can be both compressible and incompressible, three dimensional, bounded by complex wall geometries, chemically reacting, and involve 'bypass' transition. The most relevant turbulence and transition models for the above flows are one- and two-equation eddy viscosity models, Reynolds stress algebraic- and transport-equation models, pdf models, and multiple-scale models. All these models are classified as one-point closure schemes since only one-point (in time and space) turbulent correlations, such as second moments (Reynolds stresses and turbulent heat fluxes) and third moments, are involved. In computational fluid dynamics, all turbulent quantities are one-point correlations. Therefore, the study of one-point turbulent closure schemes is the focus of our turbulence research. However, other research, such as the renormalization group theory, the direct interaction approximation method, and numerical simulations are also pursued to support the development of turbulence modeling.
NASA Astrophysics Data System (ADS)
Kim, Dong-Hee; Gautam, Mridul; Gera, Dinesh
This work presents the computational fluid dynamic modeling of an exhaust plume dispersed from the exhaust pipe of a class-8 tractor truck powered by 330 hp Cummins M11 electronically controlled diesel engine. This effort utilizes an advanced CFD technique to accurately predict the variation of carbon dioxide concentration inside a turbulent plume using a k- ɛ eddy dissipation model. The simulation includes the "real-world" operation of a truck and its exhaust plume in a NASA, Langley aircraft testing wind tunnel, that had an effective volume of 226, 535 m 3 (8,000,000 ft 3). The predicted results show an excellent agreement with the experimentally measured values of CO 2 concentrations, dilution ratios, and the temperature variations inside the plume. A specific goal of this effort was to study the effect of recirculation region near the truck walls on dispersion of the plume. For this purpose, growth of the plume from the center of the exhaust pipe is also presented and discussed. This work also shows the benefits of CFD modeling in applications where dispersion correlations are not required a priori, instead the dispersion coefficients are calculated precisely by solving the turbulent kinetic energy and dissipation equations.
NASA Astrophysics Data System (ADS)
Leitch, A. S.; Nesic, Z.; Christen, A.; Black, T. A.
2010-12-01
opposing gradient in manual chamber-measured soil CO2 effluxes. The additional CO2 difference measurement period at the 2.6-m height (with IRGAs measuring at 2 Hz) also included 5 CSAT3 sonic anemometers measuring at the same locations at 10 Hz. The setup permits back-of-the-envelope calculation of horizontal turbulent CO2 flux divergence along the 73.5-m transect, a term in the scalar conservation equation which has received much interest but little quantification in the literature. The IRGAs also measured high frequency water vapour concentrations, permitting the calculation of (horizontal) turbulent and (horizontal and vertical) advective H2O fluxes. H2O fluxes other than the vertical turbulent flux are not routinely calculated, but may have the potential to shed light on the energy-balance closure problem in the same manner as advective CO2 fluxes comment on the friction velocity correction procedure. Horizontal turbulent carbon dioxide flux divergence and energy balance closure will be discussed, along with final conclusions for advective carbon dioxide fluxes at DF49.
Problems in simulating the stratocumulus-topped boundary layer with a third-order closure model
NASA Technical Reports Server (NTRS)
Moeng, C.-H.; Randall, D. A.
1984-01-01
The Andre et al. (1976, 1978) third-order closure model, in which the time rate of change terms, the relaxation and rapid effects for pressure-related terms, and the clipping approximation are used along with the quasi-normal closure, is invoked in the study of turbulence in a cloudy layer that is radiatively cooled from above. A spurious oscillation whose greatest amplitude lies near the inversion is shown by analysis to arise from the mean gradient and buoyancy terms of the triple-moment equations. An attempt is made to damp the oscillation through the introduction of diffusion terms into the triple-moment equations. The results obtained are noted to be sensitive to the ad hoc eddy coefficient applied in the third-moment equations.
Methods of separation of variables in turbulence theory
NASA Technical Reports Server (NTRS)
Tsuge, S.
1978-01-01
Two schemes of closing turbulent moment equations are proposed both of which make double correlation equations separated into single-point equations. The first is based on neglected triple correlation, leading to an equation differing from small perturbed gasdynamic equations where the separation constant appears as the frequency. Grid-produced turbulence is described in this light as time-independent, cylindrically-isotropic turbulence. Application to wall turbulence guided by a new asymptotic method for the Orr-Sommerfeld equation reveals a neutrally stable mode of essentially three dimensional nature. The second closure scheme is based on an assumption of identity of the separated variables through which triple and quadruple correlations are formed. The resulting equation adds, to its equivalent of the first scheme, an integral of nonlinear convolution in the frequency describing a role due to triple correlation of direct energy-cascading.
Application of a RG hybrid RANS/LES model to swirling confined turbulent jets
NASA Astrophysics Data System (ADS)
de Langhe, C.; Merci, B.; Dick, E.
A renormalization group (RG) based hybrid RANS/LES model is validated for turbulent swirling confined jets. The results are compared with the experimental data of Dellenback et al. (1988, Measurements in turbulent swirling flow through an abrupt axisymmetric expansion. AIAA Journal, 26(6), 669 681) and results for the same flows of an unsteady second-moment closure RANS simulation. A general quality/cost comparison is made between the hybrid RANS/LES and the second-moment closure simulations. In the final section, the hybrid RANS/LES result is further compared to a detached-eddy simulation, dynamic -equation LES and dynamic Smagorinsky LES for one of the flows, and the overall good quality of the RG hybrid RANS/LES model demonstrated.
On recontamination and directional-bias problems in Monte Carlo simulation of PDF turbulence models
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1991-01-01
Turbulent combustion can not be simulated adequately by conventional moment closure turbulence models. The difficulty lies in the fact that the reaction rate is in general an exponential function of the temperature, and the higher order correlations in the conventional moment closure models of the chemical source term can not be neglected, making the applications of such models impractical. The probability density function (pdf) method offers an attractive alternative: in a pdf model, the chemical source terms are closed and do not require additional models. A grid dependent Monte Carlo scheme was studied, since it is a logical alternative, wherein the number of computer operations increases only linearly with the increase of number of independent variables, as compared to the exponential increase in a conventional finite difference scheme. A new algorithm was devised that satisfies a restriction in the case of pure diffusion or uniform flow problems. Although for nonuniform flows absolute conservation seems impossible, the present scheme has reduced the error considerably.
Structural analysis of closure bolts for shipping casks
Mok, G.C.; Fischer, L.E.
1993-04-01
This paper identifies the active forces and moments in a closure bolt of a shipping cask. It examines the interactions of these forces/moments and suggest simplified methods for their analysis. The paper also evaluates the role that the forces and moments play in the structure integrity of the closure bolt and recommends stress limits and desirable practices to ensure its integrity.
NASA Technical Reports Server (NTRS)
Bingham, G. J.; Noonan, K. W.
1974-01-01
An investigation was conducted in a low-turbulence pressure tunnel to determine the two-dimensional lift and pitching-moment characteristics of an NACA 6716 and an NACA 4416 airfoil with 35-percent-chord single-slotted flaps. Both models were tested with flaps deflected from 0 deg to 45 deg, at angles of attack from minus 6 deg to several degrees past stall, at Reynolds numbers from 3.0 million to 13.8 million, and primarily at a Mach number of 0.23. Tests were also made to determine the effect of several slot entry shapes on performance.
Some Basic Laws of Isotropic Turbulent Flow
NASA Technical Reports Server (NTRS)
Loitsianskii, L. G.
1945-01-01
An Investigation is made of the diffusion of artificially produced turbulence behind screens or other turbulence producers. The method is based on the author's concept of disturbance moment as a certain theoretically well-founded measure of turbulent disturbances.
Systematization of a set of closure techniques.
Hausken, Kjell; Moxnes, John F
2011-11-01
Approximations in population dynamics are gaining popularity since stochastic models in large populations are time consuming even on a computer. Stochastic modeling causes an infinite set of ordinary differential equations for the moments. Closure models are useful since they recast this infinite set into a finite set of ordinary differential equations. This paper systematizes a set of closure approximations. We develop a system, which we call a power p closure of n moments, where 0≤p≤n. Keeling's (2000a,b) approximation with third order moments is shown to be an instantiation of this system which we call a power 3 closure of 3 moments. We present an epidemiological example and evaluate the system for third and fourth moments compared with Monte Carlo simulations.
Turbulent Convection: Old and New Models
NASA Astrophysics Data System (ADS)
Canuto, V. M.
1996-08-01
This paper contains (1) a physical argument to show that the one-eddy MLT model underestimates the convective flux Fc in the high-efficiency regime, while it overestimates Fc in the low-efficiency regime, and (2) a new derivation of the Fc(MLT) using a turbulence model in the one-eddy approximation. (3) We forsake the one-eddy approximation and adopt the Kolmogorov spectrum to represent the turbulent energy spectrum. The resulting Fc > Fc(MLT) in the high-efficiency regime, and Fc
Center for Modeling of Turbulence and Transition (CMOTT). Research briefs: 1990
NASA Technical Reports Server (NTRS)
Povinelli, Louis A. (Compiler); Liou, Meng-Sing (Compiler); Shih, Tsan-Hsing (Compiler)
1991-01-01
Brief progress reports of the Center for Modeling of Turbulence and Transition (CMOTT) research staff from May 1990 to May 1991 are given. The objectives of the CMOTT are to develop, validate, and implement the models for turbulence and boundary layer transition in the practical engineering flows. The flows of interest are three dimensional, incompressible, and compressible flows with chemistry. The schemes being studied include the two-equation and algebraic Reynolds stress models, the full Reynolds stress (or second moment closure) models, the probability density function models, the Renormalization Group Theory (RNG) and Interaction Approximation (DIA), the Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).
Center for Modeling of Turbulence and Transition (CMOTT): Research Briefs, 1992
NASA Technical Reports Server (NTRS)
Liou, William W. (Editor)
1992-01-01
The progress is reported of the Center for Modeling of Turbulence and Transition (CMOTT). The main objective of the CMOTT is to develop, validate and implement the turbulence and transition models for practical engineering flows. The flows of interest are three-dimensional, incompressible and compressible flows with chemical reaction. The research covers two-equation (e.g., k-e) and algebraic Reynolds-stress models, second moment closure models, probability density function (pdf) models, Renormalization Group Theory (RNG), Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS).
Statistical turbulence theory and turbulence phenomenology
NASA Technical Reports Server (NTRS)
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
PDF methods for turbulent reactive flows
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1995-01-01
Viewgraphs are presented on computation of turbulent combustion, governing equations, closure problem, PDF modeling of turbulent reactive flows, validation cases, current projects, and collaboration with industry and technology transfer.
Simulations of the stratocumulus-topped boundary layer with a third-order closure model
NASA Technical Reports Server (NTRS)
Moeng, C. H.; Randall, D. A.
1984-01-01
A third order closure model is proposed by Andre et al. (1982), in which the time rate of change terms, the relaxation and rapid effects for the pressure related terms, and the clipping approximation are included along with the quasi-normal closure, to study turbulence in a cloudy layer which is cooled radiatively from above. A spurious oscillation which is strongest near the inversion occurs. An analysis of the problem shows that the oscillation arises from the mean gradient and buoyancy terms of the triple moment equations; these terms are largest near the cloud top. The oscillation is physical, rather than computational. In nature the oscillation is effectively damped, by a mechanism which apparently is not included in our model. In the stably stratified layer just above the mixed layer top, turbulence can excite gravity waves, whose energy is radiated away. Because the closure assumption for the pressure terms does not take into account the transport of wave energy, the model generates spurious oscillations. Damping of the oscillations is possible by introducing diffusion terms into the triple moment equations. With a large enough choice for the diffusion coefficient, the oscillation is effectively eliminated. The results are quite sensitive to the ad hoc eddy coefficient.
Detailed modeling of soot formation and turbulence-radiation interactions in turbulent jet flames
NASA Astrophysics Data System (ADS)
Mehta, Ranjan S.
Detailed radiation modeling of turbulent sooting flames faces a number of challenges. Principal among these have been been a lack of good models for predicting soot formation and effective means to capture turbulence-chemistry interactions in soot subprocesses. Uncertainties in measurement and prediction of soot properties has also been a problem. Radiative heat transfer becomes important in combustion environments due to the very high temperatures encountered and has not yet been studied in sufficient detail in the case of luminous (i.e., sooting) flames. A comprehensive approach for modeling turbulent reacting flows, including detailed chemistry, radiation and soot models with detailed closures for turbulence-chemistry interactions (TCI) and turbulence-radiation interactions (TRI) is developed in this work. A review of up-to-date literature on turbulent combustion modeling, turbulence-radiation interactions and soot modeling is given. A transported probability density function (PDF) approach is used to model turbulence-chemistry interactions and extended to include soot formation. Nongray gas and soot radiation is modeled using a photon Monte Carlo (PMC) method coupled with the PDF method. Soot formation is modeled based on the method of moments (MOM) approach with interpolative closure. Optimal soot submodel parameters are identified based on comparison of model predictions with experimental data from various laminar premixed and (opposed) diffusion flames. These parameters (including gas-phase chemistry) are applied to turbulent flames without further "tuning." Six turbulent jet flames with Reynolds numbers varying from 6700 to 15000, varying fuel types---pure ethylene, 90% methane-10% ethylene blend and different oxygen concentrations in the oxidizer stream from 21%O2 (air) to 55%O 2, are simulated. The predicted soot volume fractions, temperature and radiative wall fluxes (when available) are compared with experiments. All the simulations are carried out with
ERIC Educational Resources Information Center
Williams, Kate
2012-01-01
The informatics moment is the moment when a person seeks help in using some digital technology that is new to him or her. This article examines the informatics moment in people's everyday lives as they sought help at a branch public library. Four types of literacy were involved: basic literacy (reading and writing), computer literacy (use of a…
Simulating a Cold-Air Outbreak with SHOC (Simplified Higher-Order Closure)
NASA Astrophysics Data System (ADS)
Krueger, S. K.; Bogenschutz, P.
2013-12-01
The Grey Zone Project aims to systematically explore convective transport and cloud processes in weather and climate models at various resolutions, ranging from high resolution turbulent resolving scales all the way to coarse resolutions that require full parameterized descriptions of these processes. The first Grey Zone intercomparison case is based on observations of a cold air outbreak during the CONSTRAIN field campaign. The purpose of the intercomparison is two-fold: First, through systematically varying the horizontal resolution, the intercomparison will aim to assess the relative contributions of the resolved and the subgrid-scale (SGS) cloud and convective processes in the Grey Zone for the present CONSTRAIN case. Second, the intercomparison is interesting in its own right as it is the first time that a comprehensive mid-latitude cold-air outbreak case has been organized. We will participate by using a version of a cloud-resolving model, SAM (System for Atmospheric Modeling), that includes SHOC (Simplified Higher-Order Closure, Bogenschutz and Krueger 2013) which combines several existing components: A prognostic SGS turbulence kinetic energy (TKE) equation, an assumed double-Gaussian PDF following Golaz et al. (2002), the diagnostic second-moment closure of Redelsperger and Sommeria (1986), the diagnostic closure for
Conditional statistics in a turbulent premixed flame derived from direct numerical simulation
NASA Technical Reports Server (NTRS)
Mantel, Thierry; Bilger, Robert W.
1994-01-01
The objective of this paper is to briefly introduce conditional moment closure (CMC) methods for premixed systems and to derive the transport equation for the conditional species mass fraction conditioned on the progress variable based on the enthalpy. Our statistical analysis will be based on the 3-D DNS database of Trouve and Poinsot available at the Center for Turbulence Research. The initial conditions and characteristics (turbulence, thermo-diffusive properties) as well as the numerical method utilized in the DNS of Trouve and Poinsot are presented, and some details concerning our statistical analysis are also given. From the analysis of DNS results, the effects of the position in the flame brush, of the Damkoehler and Lewis numbers on the conditional mean scalar dissipation, and conditional mean velocity are presented and discussed. Information concerning unconditional turbulent fluxes are also presented. The anomaly found in previous studies of counter-gradient diffusion for the turbulent flux of the progress variable is investigated.
Characteristics of 3D turbulent jets in crossflow
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1991-01-01
Three dimensional turbulent jets in crossflow at low to medium jet-to-crossflow velocity ratios are computed with a finite volume numerical procedure which utilizes a second-moment closure model to approximate the Reynolds stresses. A multigrid method is used to accelerate the convergence rate of the procedure. Comparison of the computations to measured data show good qualitative agreement. All trends are correctly predicted, though there is some uncertainty on the height of penetration of the jet. The evolution of the vorticity field is used to explore the jet-crossflow interaction.
Inhomogeneous turbulence in magnetic reconnection
NASA Astrophysics Data System (ADS)
Yokoi, Nobumitsu
2016-07-01
Turbulence is expected to play an essential role in enhancing magnetic reconnection. Turbulence associated with magnetic reconnection is highly inhomogeneous: it is generated by inhomogeneities of the field configuration such as the velocity shear, temperature gradient, density stratification, magnetic shear, etc. This self-generated turbulence affects the reconnection through the turbulent transport. In this reconnection--turbulence interaction, localization of turbulent transport due to dynamic balance between several turbulence effects plays an essential role. For investigating inhomogeneous turbulence in a strongly nonlinear regime, closure or turbulence modeling approaches provide a powerful tool. A turbulence modeling approach for the magnetic reconnection is introduced. In the model, the mean-field equations with turbulence effects incorporated are solved simultaneously with the equations of turbulent statistical quantities that represent spatiotemporal properties of turbulence under the effect of large-scale field inhomogeneities. Numerical simulations of this Reynolds-averaged turbulence model showed that self-generated turbulence enhances magnetic reconnection. It was pointed out that reconnection states may be divided into three category depending on the turbulence level: (i) laminar reconnection; (ii) turbulent reconnection, and (iii) turbulent diffusion. Recent developments in this direction are also briefly introduced, which includes the magnetic Prandtl number dependence, spectral evolution, and guide-field effects. Also relationship of this fully nonlinear turbulence approach with other important approaches such as plasmoid instability reconnection will be discussed.
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1995-01-01
The mathematical consequences of a few simple scaling assumptions about the effects of compressibility are explored using a simple singular perturbation idea and the methods of statistical fluid mechanics. Representations for the pressure-dilation and dilatational dissipation covariances appearing in single-point moment closures for compressible turbulence are obtained. While the results are expressed in the context of a second-order statistical closure they provide some interesting and very clear physical metaphors for the effects of compressibility that have not been seen using more traditional linear stability methods. In the limit of homogeneous turbulence with quasi-normal large-scales the expressions derived are - in the low turbulent Mach number limit - asymptotically exact. The expressions obtained are functions of the rate of change of the turbulence energy, its correlation length scale, and the relative time scale of the cascade rate. The expressions for the dilatational covariances contain constants which have a precise and definite physical significance; they are related to various integrals of the longitudinal velocity correlation. The pressure-dilation covariance is found to be a nonequilibrium phenomena related to the time rate of change of the internal energy and the kinetic energy of the turbulence. Also of interest is the fact that the representation for the dilatational dissipation in turbulence, with or without shear, features a dependence on the Reynolds number. This article is a documentation of an analytical investigation of the implications of a pseudo-sound theory for the effects of compressibility.
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1988-01-01
The paper presents a multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method. Consideration is given to a class of turbulent boundary layer flows and of separated and/or swirling elliptic turbulent flows. For the separated and/or swirling turbulent flows, the present turbulence model yielded significantly improved computational results over those obtained with the standard k-epsilon turbulence model.
The Higher Moments Dynamic on SIS Model
NASA Astrophysics Data System (ADS)
Pinto, Alberto; Martins, José; Stollenwerk, Nico
2009-09-01
The basic contact process or the SIS model is a well known epidemic process and have been studied for a wide class of people. In an epidemiological context, many authors worked on the SIS model considering only the dynamic of the first moments of infecteds, i.e., the mean value and the variance of the infected individuals. In this work, we study not only the dynamic of the first moments of infecteds but also on the dynamic of the higher moments. Recursively, we consider the dynamic equations for all the moments of infecteds and, applying the moment closure approximation, we obtain the stationary states of the state variables. We observe that the stationary states of the SIS model, in the moment closure approximation, can be used to obtain good approximations of the quasi-stationary states of the SIS model.
Group-kinetic theory of turbulence
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1986-01-01
The two phases are governed by two coupled systems of Navier-Stokes equations. The couplings are nonlinear. These equations describe the microdynamical state of turbulence, and are transformed into a master equation. By scaling, a kinetic hierarchy is generated in the form of groups, representing the spectral evolution, the diffusivity and the relaxation. The loss of memory in formulating the relaxation yields the closure. The network of sub-distributions that participates in the relaxation is simulated by a self-consistent porous medium, so that the average effect on the diffusivity is to make it approach equilibrium. The kinetic equation of turbulence is derived. The method of moments reverts it to the continuum. The equation of spectral evolution is obtained and the transport properties are calculated. In inertia turbulence, the Kolmogoroff law for weak coupling and the spectrum for the strong coupling are found. As the fluid analog, the nonlinear Schrodinger equation has a driving force in the form of emission of solitons by velocity fluctuations, and is used to describe the microdynamical state of turbulence. In order for the emission together with the modulation to participate in the transport processes, the non-homogeneous Schrodinger equation is transformed into a homogeneous master equation. By group-scaling, the master equation is decomposed into a system of transport equations, replacing the Bogoliubov system of equations of many-particle distributions. It is in the relaxation that the memory is lost when the ensemble of higher-order distributions is simulated by an effective porous medium. The closure is thus found. The kinetic equation is derived and transformed into the equation of spectral flow.
Tieszen, Sheldon Robert; Domino, Stefan Paul; Black, Amalia Rebecca
2005-06-01
A validation study has been conducted for a turbulence model used to close the temporally filtered Navier Stokes (TFNS) equations. A turbulence model was purposely built to support fire simulations under the Accelerated Strategic Computing (ASC) program. The model was developed so that fire transients could be simulated and it has been implemented in SIERRA/Fuego. The model is validated using helium plume data acquired for the Weapon System Certification Campaign (C6) program in the Fire Laboratory for Model Accreditation and Experiments (FLAME). The helium plume experiments were chosen as the first validation problem for SIERRA/Fuego because they embody the first pair-wise coupling of scalar and momentum fields found in fire plumes. The validation study includes solution verification through grid and time step refinement studies. A formal statistical comparison is used to assess the model uncertainty. The metric uses the centerline vertical velocity of the plume. The results indicate that the simple model is within the 95% confidence interval of the data for elevations greater than 0.4 meters and is never more than twice the confidence interval from the data. The model clearly captures the dominant puffing mode in the fire but under resolves the vorticity field. Grid dependency of the model is noted.
Randall, David A.; Cheng, Anning; Ghan, Steve; Khairoutdinov, Marat; Larson, Vince; Moeng, Chin-Hoh
2015-07-27
The intermediately-prognostic higher-order turbulence closure (IPHOC) introduces a joint double-Gaussian distribution of liquid water potential temperature (θ_{l} ), total water mixing ratio (q_{t }), and vertical velocity (w ) to represent any skewed turbulence circulations .The distribution is inferred from the first-, second-, and third-order moments of the variables given above, and is used to diagnose cloud fraction and grid-mean liquid water mixing ratio, as well as the buoyancy and fourth-order terms in the equations describing the evolution of the second- and third-order moments. Only three third-order moments (those of θ_{l} , q_{t }, and w ) are predicted in the IPHOC.
Computing aerodynamic sound using advanced statistical turbulence theories
NASA Technical Reports Server (NTRS)
Hecht, A. M.; Teske, M. E.; Bilanin, A. J.
1981-01-01
It is noted that the calculation of turbulence-generated aerodynamic sound requires knowledge of the spatial and temporal variation of Q sub ij (xi sub k, tau), the two-point, two-time turbulent velocity correlations. A technique is presented to obtain an approximate form of these correlations based on closure of the Reynolds stress equations by modeling of higher order terms. The governing equations for Q sub ij are first developed for a general flow. The case of homogeneous, stationary turbulence in a unidirectional constant shear mean flow is then assumed. The required closure form for Q sub ij is selected which is capable of qualitatively reproducing experimentally observed behavior. This form contains separation time dependent scale factors as parameters and depends explicitly on spatial separation. The approximate forms of Q sub ij are used in the differential equations and integral moments are taken over the spatial domain. The velocity correlations are used in the Lighthill theory of aerodynamic sound by assuming normal joint probability.
Dynamics and structure of turbulent premixed flames
NASA Technical Reports Server (NTRS)
Bilger, R. W.; Swaminathan, N.; Ruetsch, G. R.; Smith, N. S. A.
1995-01-01
In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the
ERIC Educational Resources Information Center
Groffman, Sidney
An experimental test of visual closure based on an information-theory concept of perception was devised to test the ability to discriminate visual stimuli with reduced cues. The test is to be administered in a timed individual situation in which the subject is presented with sets of incomplete drawings of simple objects that he is required to name…
Scaling laws for homogeneous turbulent shear flows in a rotating frame
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Mhuiris, Nessan Macgiolla
1989-01-01
The scaling properties of plane homogeneous turbulent shear flows in a rotating frame are examined mathematically by a direct analysis of the Navier-Stokes equations. It is proved that two such shear flows are dynamically similar if and only if their initial dimensionless energy spectrum E star (k star, 0), initial dimensionless shear rate SK sub 0/epsilon sub 0, initial Reynolds number K squared sub 0/nu epsilon sub 0, and the ration of the rotation rate to the shear rate omega/S are identical. Consequently, if universal equilibrium states exist, at high Reynolds numbers, they will only depend on the single parameter omega/S. The commonly assumed dependence of such equilibrium states on omega/S through the Richardson number Ri = -2(omega/S)(1-2 omega/S) is proven to be inconsistent with the full Navier-Stokes equations and to constitute no more than a weak approximation. To be more specific, Richardson number similarity is shown to only rigorously apply to certain low-order truncations of the Navier-Stokes equations (i.e., to certain second-order closure models) wherein closure is achieved at the second-moment level by assuming that the higher-order moments are a small perturbation of their isotropic states. The physical dependence of rotating turbulent shear flows on omega/S is discussed in detail along with the implications for turbulence modeling.
Scaling laws for homogeneous turbulent shear flows in a rotating frame
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Mhuiris, Nessan Macgiolla
1988-01-01
The scaling properties of plane homogeneous turbulent shear flows in a rotating frame are examined mathematically by a direct analysis of the Navier-Stokes equations. It is proved that two such shear flows are dynamically similar if and only if their initial dimensionless energy spectrum E star (k star, 0), initial dimensionless shear rate SK sub 0/epsilon sub 0, initial Reynolds number K squared sub 0/nu epsilon sub 0, and the ration of the rotation rate to the shear rate omega/S are identical. Consequently, if universal equilibrium states exist, at high Reynolds numbers, they will only depend on the single parameter omega/S. The commonly assumed dependence of such equilibrium states on omega/S through the Richardson number Ri=-2(omega/S)(1-2 omega/S) is proven to be inconsistent with the full Navier-Stokes equations and to constitute no more than a weak approximation. To be more specific, Richardson number similarity is shown to only rigorously apply to certain low-order truncations of the Navier-Stokes equations (i.e., to certain second-order closure models) wherein closure is achieved at the second-moment level by assuming that the higher-order moments are a small perturbation of their isotropic states. The physical dependence of rotating turbulent shear flows on omega/S is discussed in detail along with the implications for turbulence modeling.
Stochastic Closures for Finite Amplitude Internal Waves
NASA Astrophysics Data System (ADS)
Polzin, K. L.; Lvov, Y.
2012-12-01
The theoretical paradigm of a self-consistent theory for the interaction of finite amplitude oceanic internal waves and its evolution from the resonant, infinitesimal amplitude limit are considered. The two limits are investigated using ray tracing techniques, analytic approximations to kinetic equations, and solutions for moments of a diffusive approximation to the resonant kinetic equation. We focus here on high frequency internal waves interacting with larger vertical and horizontal scale waves having inertial frequency. Tracing high frequency waves in one and two inertial wave backgrounds demonstrates that the infinitesimal amplitude and finite amplitude limits are phenomenologically distinct: the finite amplitude state is characterized by the coalescing of the two small scale members of the triad and a transition to a bound wave phenomena. This coalescence marks the transition to a strongly nonlinear parameter regime. Tracing high frequency waves in a stochastic background of inertial oscillations provides estimates of the evolution of the time mean and variance of wavenumber and intrinsic frequency. These estimates are compared to the evolution of the first and second moments of a diffusive approximation of the kinetic equation. In the finite but weakly nonlinear regime we find a diffusive characterization. In the strongly nonlinear limit we find an advective characterization. We next turn to the Finescale Paramterization of Polzin (2004, J. Phys. Oceanogr.), which has been used to successfully predict observations of turbulent dissipation. The Finescale Parameterization is an advective closure, and we demonstrate how it can be derived from resonant formula, which is a diffusive characterization. We conclude by considering application to the atmospheric internal wavefield.
Vowell, Kennison L.
1987-01-01
A closure for an inclined duct having an open upper end and defining downwardly extending passageway. The closure includes a cap for sealing engagement with the open upper end of the duct. Associated with the cap are an array of vertically aligned plug members, each of which has a cross-sectional area substantially conforming to the cross-sectional area of the passageway at least adjacent the upper end of the passageway. The plug members are interconnected in a manner to provide for free movement only in the plane in which the duct is inclined. The uppermost plug member is attached to the cap means and the cap means is in turn connected to a hoist means which is located directly over the open end of the duct.
Finite element simulation of turbulent Couette-Poiseuille flows using a low Reynolds number k- model
NASA Astrophysics Data System (ADS)
Kazemzadeh Hannani, Siamak; Stanislas, Michel
1999-05-01
Developing Couette-Poiseuille flows at Re=5000 are studied using a low Reynolds number k- two-equation model and a finite element formulation. Mesh-independent solutions are obtained using a standard Galerkin formulation and a Galerkin/least-squares stabilized method. The predictions for the velocity and turbulent kinetic energy are compared with available experimental results and to the DNS data. Second moment closure's solutions are also compared with those of the k- model. The deficiency of eddy viscosity models to predict dissymmetric low Reynolds number channel flows has been demonstrated. Copyright
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.
1995-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.
BOOK REVIEW: Statistical Mechanics of Turbulent Flows
NASA Astrophysics Data System (ADS)
Cambon, C.
2004-10-01
This is a handbook for a computational approach to reacting flows, including background material on statistical mechanics. In this sense, the title is somewhat misleading with respect to other books dedicated to the statistical theory of turbulence (e.g. Monin and Yaglom). In the present book, emphasis is placed on modelling (engineering closures) for computational fluid dynamics. The probabilistic (pdf) approach is applied to the local scalar field, motivated first by the nonlinearity of chemical source terms which appear in the transport equations of reacting species. The probabilistic and stochastic approaches are also used for the velocity field and particle position; nevertheless they are essentially limited to Lagrangian models for a local vector, with only single-point statistics, as for the scalar. Accordingly, conventional techniques, such as single-point closures for RANS (Reynolds-averaged Navier-Stokes) and subgrid-scale models for LES (large-eddy simulations), are described and in some cases reformulated using underlying Langevin models and filtered pdfs. Even if the theoretical approach to turbulence is not discussed in general, the essentials of probabilistic and stochastic-processes methods are described, with a useful reminder concerning statistics at the molecular level. The book comprises 7 chapters. Chapter 1 briefly states the goals and contents, with a very clear synoptic scheme on page 2. Chapter 2 presents definitions and examples of pdfs and related statistical moments. Chapter 3 deals with stochastic processes, pdf transport equations, from Kramer-Moyal to Fokker-Planck (for Markov processes), and moments equations. Stochastic differential equations are introduced and their relationship to pdfs described. This chapter ends with a discussion of stochastic modelling. The equations of fluid mechanics and thermodynamics are addressed in chapter 4. Classical conservation equations (mass, velocity, internal energy) are derived from their
Electron parallel closures for arbitrary collisionality
Ji, Jeong-Young Held, Eric D.
2014-12-15
Electron parallel closures for heat flow, viscosity, and friction force are expressed as kernel-weighted integrals of thermodynamic drives, the temperature gradient, relative electron-ion flow velocity, and flow-velocity gradient. Simple, fitted kernel functions are obtained for arbitrary collisionality from the 6400 moment solution and the asymptotic behavior in the collisionless limit. The fitted kernels circumvent having to solve higher order moment equations in order to close the electron fluid equations. For this reason, the electron parallel closures provide a useful and general tool for theoretical and computational models of astrophysical and laboratory plasmas.
Experience with turbulence interaction and turbulence-chemistry models at Fluent Inc.
NASA Technical Reports Server (NTRS)
Choudhury, D.; Kim, S. E.; Tselepidakis, D. P.; Missaghi, M.
1995-01-01
This viewgraph presentation discusses (1) turbulence modeling: challenges in turbulence modeling, desirable attributes of turbulence models, turbulence models in FLUENT, and examples using FLUENT; and (2) combustion modeling: turbulence-chemistry interaction and FLUENT equilibrium model. As of now, three turbulence models are provided: the conventional k-epsilon model, the renormalization group model, and the Reynolds-stress model. The renormalization group k-epsilon model has broadened the range of applicability of two-equation turbulence models. The Reynolds-stress model has proved useful for strongly anisotropic flows such as those encountered in cyclones, swirlers, and combustors. Issues remain, such as near-wall closure, with all classes of models.
NASA Astrophysics Data System (ADS)
Yuan, Yeli
2013-04-01
In the frame of ocean dynamical system, considering the nonlinearity and isotropy of the sub-small scale turbulence the paper derived the second order moment closure equations and according to the statistical theory of breaking waves gave the boundary conditions for the kinetic energy input and the mixing length on the sea surface first, which are the physic-mathematical description of the turbulence generated by sea waves. Considering the observation effect that the dissipation rate of the turbulence kinetic energy has power vertical distribution of sea waves, we derived the balanced solution of the variation equations for the turbulence characteristics and gave the analytical expressions of the kinetic energy and the dissipation rate , and then the analytic expressions of the mixing coefficients in the upper ocean according to the closure technique with high determinacy.The theoretical coefficients were applied to the numerical modeling of ocean circulation and then the substantive progress in qualitative and quantitative modeling was gained on the premise of no any coefficient tune-up.
Conditional statistics for passive-scalar mixing in confined turbulent shear flows
NASA Astrophysics Data System (ADS)
Hill, James; Feng, Hua; Olsen, Michael; Fox, Rodney
2006-11-01
The conditional moment closure is one of the fundamental closure models used for turbulent flows. Although there is a large body of literature on turbulent shear flows, conditional statistics of experimental data are scarce, despite their necessity for understanding turbulent flows and validating numerical models. In the present work, a combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) system was employed to investigate turbulent mixing in a confined liquid-phase plane-wake flow and in a confined liquid-phase rectangular-jet flow. The Reynolds number based on bulk velocity and hydraulic diameter was 37,500 for the wake flow and 50,000 for the jet flow. The Schmidt number for the passive scalar was approximately 1,250. Velocity components conditioned on the scalar for both the wake and jet flows were evaluated. It was noticed that the β-PDF predicted the experimental data very well for all observed locations. Since the joint velocity-scalar PDF was not jointly Gaussian in these flows, the conditional mean velocity was found to agree with a linear model only when the mixture fraction is close to the local mean mixture fraction. The gradient PDF model was also tested against the experimental data. The model predicted the cross-stream conditional velocity very well, but gave poor predictions for the streamwise conditional velocity. Finally, the scalar fluctuations conditioned on velocity are analyzed using existing models.
Progress in the development of PDF turbulence models for combustion
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1991-01-01
A combined Monte Carlo-computational fluid dynamic (CFD) algorithm was developed recently at Lewis Research Center (LeRC) for turbulent reacting flows. In this algorithm, conventional CFD schemes are employed to obtain the velocity field and other velocity related turbulent quantities, and a Monte Carlo scheme is used to solve the evolution equation for the probability density function (pdf) of species mass fraction and temperature. In combustion computations, the predictions of chemical reaction rates (the source terms in the species conservation equation) are poor if conventional turbulence modles are used. The main difficulty lies in the fact that the reaction rate is highly nonlinear, and the use of averaged temperature produces excessively large errors. Moment closure models for the source terms have attained only limited success. The probability density function (pdf) method seems to be the only alternative at the present time that uses local instantaneous values of the temperature, density, etc., in predicting chemical reaction rates, and thus may be the only viable approach for more accurate turbulent combustion calculations. Assumed pdf's are useful in simple problems; however, for more general combustion problems, the solution of an evolution equation for the pdf is necessary.
Parallel Simulation of Unsteady Turbulent Flames
NASA Technical Reports Server (NTRS)
Menon, Suresh
1996-01-01
Time-accurate simulation of turbulent flames in high Reynolds number flows is a challenging task since both fluid dynamics and combustion must be modeled accurately. To numerically simulate this phenomenon, very large computer resources (both time and memory) are required. Although current vector supercomputers are capable of providing adequate resources for simulations of this nature, the high cost and their limited availability, makes practical use of such machines less than satisfactory. At the same time, the explicit time integration algorithms used in unsteady flow simulations often possess a very high degree of parallelism, making them very amenable to efficient implementation on large-scale parallel computers. Under these circumstances, distributed memory parallel computers offer an excellent near-term solution for greatly increased computational speed and memory, at a cost that may render the unsteady simulations of the type discussed above more feasible and affordable.This paper discusses the study of unsteady turbulent flames using a simulation algorithm that is capable of retaining high parallel efficiency on distributed memory parallel architectures. Numerical studies are carried out using large-eddy simulation (LES). In LES, the scales larger than the grid are computed using a time- and space-accurate scheme, while the unresolved small scales are modeled using eddy viscosity based subgrid models. This is acceptable for the moment/energy closure since the small scales primarily provide a dissipative mechanism for the energy transferred from the large scales. However, for combustion to occur, the species must first undergo mixing at the small scales and then come into molecular contact. Therefore, global models cannot be used. Recently, a new model for turbulent combustion was developed, in which the combustion is modeled, within the subgrid (small-scales) using a methodology that simulates the mixing and the molecular transport and the chemical kinetics
On the modelling of non-reactive and reactive turbulent combustor flows
NASA Technical Reports Server (NTRS)
Nikjooy, Mohammad; So, Ronald M. C.
1987-01-01
A study of non-reactive and reactive axisymmetric combustor flows with and without swirl is presented. Closure of the Reynolds equations is achieved by three models: kappa-epsilon, algebraic stress and Reynolds stress closure. Performance of two locally nonequilibrium and one equilibrium algebraic stress models is analyzed assuming four pressure strain models. A comparison is also made of the performance of a high and a low Reynolds number model for combustor flow calculations using Reynolds stress closures. Effects of diffusion and pressure-strain models on these closures are also investigated. Two models for the scalar transport are presented. One employs the second-moment closure which solves the transport equations for the scalar fluxes, while the other solves the algebraic equations for the scalar fluxes. In addition, two cases of non-premixed and one case of premixed combustion are considered. Fast- and finite-rate chemistry models are applied to non-premixed combustion. Both show promise for application in gas turbine combustors. However, finite rate chemistry models need to be examined to establish a suitable coupling of the heat release effects on turbulence field and rate constants.
Linzell, S.M.; Dorcy, D.J.
1958-08-26
A quick opening type of stuffing box employing two banks of rotatable shoes, each of which has a caraming action that forces a neoprene sealing surface against a pipe or rod where it passes through a wall is presented. A ring having a handle or wrench attached is placed eccentric to and between the two banks of shoes. Head bolts from the shoes fit into slots in this ring, which are so arranged that when the ring is rotated a quarter turn in one direction the shoes are thrust inwardly to cramp the neopnrene about the pipe, malting a tight seal. Moving the ring in the reverse direction moves the shoes outwardly and frees the pipe which then may be readily removed from the stuffing box. This device has particular application as a closure for the end of a coolant tube of a neutronic reactor.
Autonomic Closure for Large Eddy Simulation
NASA Astrophysics Data System (ADS)
King, Ryan; Hamlington, Peter; Dahm, Werner J. A.
2015-11-01
A new autonomic subgrid-scale closure has been developed for large eddy simulation (LES). The approach poses a supervised learning problem that captures nonlinear, nonlocal, and nonequilibrium turbulence effects without specifying a predefined turbulence model. By solving a regularized optimization problem on test filter scale quantities, the autonomic approach identifies a nonparametric function that represents the best local relation between subgrid stresses and resolved state variables. The optimized function is then applied at the grid scale to determine unknown LES subgrid stresses by invoking scale similarity in the inertial range. A priori tests of the autonomic approach on homogeneous isotropic turbulence show that the new approach is amenable to powerful optimization and machine learning methods and is successful for a wide range of filter scales in the inertial range. In these a priori tests, the autonomic closure substantially improves upon the dynamic Smagorinsky model in capturing the instantaneous, statistical, and energy transfer properties of the subgrid stress field.
Lattice Boltzmann LES for MHD Turbulence
NASA Astrophysics Data System (ADS)
Flint, Chris; Vahala, George; Vahala, Linda; Soe, Min
2015-11-01
Dellar's lattice Boltzmann (LB) model of 2D incompressible MHD introduced both a scalar velocity and vector magnetic distribution functions, which automatically enforces div B = 0 through the trace of an antisymmetric perturbed tensor. In the Smagorinsky LES model, the filtered Reynolds stresses are modeled by mean field gradient terms, with ad hoc closure eddy transport terms. Ansumali et. al. have developed an LES for Navier-Stokes turbulence by filtering the underlying mesoscopic LB. The filtered LB equations are then subjected to the Chapman-Enskog expansion. A Smagorinsky-like LES is recovered with no ad hoc assumptions other than the subgrid terms contribute only at the transport time scales. Here we extend these ideas to 2D MHD turbulence. The DNS data base is being generated from a multiple relaxation time (MRT) model with a quasi-entropic analytic scheme introduced recently by Karlin et. al. (2014) based on splitting the moment representation into various subgroups. Work supported by NSF, DoD.
NASA Astrophysics Data System (ADS)
Sundaram, Brruntha; Klimenko, Alexander Yuri; Cleary, Matthew John; Ge, Yipeng
2016-07-01
This work presents a direct and transparent interpretation of two concepts for modelling turbulent combustion: generalised Multiple Mapping Conditioning (MMC) and sparse-Lagrangian Large Eddy Simulation (LES). The MMC approach is presented as a hybrid between the Probability Density Function (PDF) method and approaches based on conditioning (e.g. Conditional Moment Closure, flamelet, etc.). The sparse-Lagrangian approach, which allows for a dramatic reduction of computational cost, is viewed as an alternative interpretation of the Filtered Density Function (FDF) methods. This work presents simulations of several turbulent diffusion flame cases and discusses the universality of the localness parameter between these cases and the universality of sparse-Lagrangian FDF methods with MMC.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman; Taulbee, Dale B.; Adumitroaie, Virgil; Sabini, George J.; Shieh, Geoffrey S.
1994-01-01
The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122.
Stirring turbulence with turbulence
NASA Astrophysics Data System (ADS)
van de Water, Willem; Ergun Cekli, Hakki; Joosten, Rene
2011-11-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the large eddies in the wind-tunnel turbulence. A large mismatch of these times creates a flow with interesting statistics, but it is not turbulence.
Kinetic Electron Closures for Electromagnetic Simulation of Drift and Shear-Alfven Waves (II)
Cohen, B I; Dimits, A M; Nevins, W M; Chen, Y; Parker, S
2001-10-11
An electromagnetic hybrid scheme (fluid electrons and gyrokinetic ions) is elaborated in example calculations and extended to toroidal geometry. The scheme includes a kinetic electron closure valid for {beta}{sub e} > m{sub e}/m{sub i} ({beta}{sub e} is the ratio of the plasma electron pressure to the magnetic field energy density). The new scheme incorporates partially linearized ({delta}f) drift-kinetic electrons whose pressure and number density moments are used to close the fluid momentum equation for the electron fluid (Ohm's law). The test cases used are small-amplitude kinetic shear-Alfven waves with electron Landau damping, the ion-temperature-gradient instability, and the collisionless drift instability (universal mode) in an unsheared slab as a function of the plasma {beta}{sub e}. Attention is given to resolution and convergence issues in simulations of turbulent steady states.
On the coalescence-dispersion modeling of turbulent molecular mixing
NASA Technical Reports Server (NTRS)
Givi, Peyman; Kosaly, George
1987-01-01
The general coalescence-dispersion (C/D) closure provides phenomenological modeling of turbulent molecular mixing. The models of Curl and Dopazo and O'Brien appear as two limiting C/D models that bracket the range of results one can obtain by various models. This finding is used to investigate the sensitivtiy of the results to the choice of the model. Inert scalar mixing is found to be less model-sensitive than mixing accompanied by chemical reaction. Infinitely fast chemistry approximation is used to relate the C/D approach to Toor's earlier results. Pure mixing and infinite rate chemistry calculations are compared to study further a recent result of Hsieh and O'Brien who found that higher concentration moments are not sensitive to chemistry.
Calculation methods for compressible turbulent boundary layers, 1976
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1977-01-01
Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.
Numerical Simulation of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.
1999-01-01
The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.
Calculation methods for compressible turbulent boundary layers
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1976-01-01
Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.
Multilevel turbulence simulations
Tziperman, E.
1994-12-31
The authors propose a novel method for the simulation of turbulent flows, that is motivated by and based on the Multigrid (MG) formalism. The method, called Multilevel Turbulence Simulations (MTS), is potentially more efficient and more accurate than LES. In many physical problems one is interested in the effects of the small scales on the larger ones, or in a typical realization of the flow, and not in the detailed time history of each small scale feature. MTS takes advantage of the fact that the detailed simulation of small scales is not needed at all times, in order to make the calculation significantly more efficient, while accurately accounting for the effects of the small scales on the larger scale of interest. In MTS, models of several resolutions are used to represent the turbulent flow. The model equations in each coarse level incorporate a closure term roughly corresponding to the tau correction in the MG formalism that accounts for the effects of the unresolvable scales on that grid. The finer resolution grids are used only a small portion of the simulation time in order to evaluate the closure terms for the coarser grids, while the coarse resolution grids are then used to accurately and efficiently calculate the evolution of the larger scales. The methods efficiency relative to direct simulations is of the order of the ratio of required integration time to the smallest eddies turnover time, potentially resulting in orders of magnitude improvement for a large class of turbulence problems.
Stirring turbulence with turbulence
NASA Astrophysics Data System (ADS)
Cekli, Hakki Ergun; Joosten, René; van de Water, Willem
2015-12-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the largest eddies of the wind-tunnel turbulence. A large mismatch of these times creates a highly intermittent random flow with interesting but quite anomalous statistics.
NASA Astrophysics Data System (ADS)
Meyer, Daniel W.; Jenny, Patrick
2013-08-01
Different simulation methods are applicable to study turbulent mixing. When applying probability density function (PDF) methods, turbulent transport, and chemical reactions appear in closed form, which is not the case in second moment closure methods (RANS). Moreover, PDF methods provide the entire joint velocity-scalar PDF instead of a limited set of moments. In PDF methods, however, a mixing model is required to account for molecular diffusion. In joint velocity-scalar PDF methods, mixing models should also account for the joint velocity-scalar statistics, which is often under appreciated in applications. The interaction by exchange with the conditional mean (IECM) model accounts for these joint statistics, but requires velocity-conditional scalar means that are expensive to compute in spatially three dimensional settings. In this work, two alternative mixing models are presented that provide more accurate PDF predictions at reduced computational cost compared to the IECM model, since no conditional moments have to be computed. All models are tested for different mixing benchmark cases and their computational efficiencies are inspected thoroughly. The benchmark cases involve statistically homogeneous and inhomogeneous settings dealing with three streams that are characterized by two passive scalars. The inhomogeneous case clearly illustrates the importance of accounting for joint velocity-scalar statistics in the mixing model. Failure to do so leads to significant errors in the resulting scalar means, variances and other statistics.
PDF modeling of turbulent flows on unstructured grids
NASA Astrophysics Data System (ADS)
Bakosi, Jozsef
In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. Because the technique solves a transport equation for the PDF of the velocity and scalars, a mathematically exact treatment of advection, viscous effects and arbitrarily complex chemical reactions is possible; these processes are treated without closure assumptions. A set of algorithms is proposed to provide an efficient solution of the PDF transport equation modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain and to track particles. All three aspects regarding the grid make use of the finite element method. Compared to hybrid methods, the current methodology is stand-alone, therefore it is consistent both numerically and at the level of turbulence closure without the use of consistency conditions. Since both the turbulent velocity and scalar concentration fields are represented in a stochastic way, the method allows for a direct and close interaction between these fields, which is beneficial in computing accurate scalar statistics. Boundary conditions implemented along solid bodies are of the free-slip and no-slip type without the need for ghost elements. Boundary layers at no-slip boundaries are either fully resolved down to the viscous sublayer, explicitly modeling the high anisotropy and inhomogeneity of the low-Reynolds-number wall region without damping or wall-functions or specified via logarithmic wall-functions. As in moment closures and large eddy simulation, these wall-treatments provide the usual trade-off between resolution and computational cost as required by the given application. Particular attention is focused on
ERIC Educational Resources Information Center
Craig, Steven E.; Bischof, Gary H.
Closure of the counseling relationship constitutes both an ending and a beginning. Although closure signifies the ending of the present counseling relationship, many family counselors conceptualize closure as the start of a working relationship between counselor and family that may be summoned in future times of crisis or during a difficult life…
NASA Astrophysics Data System (ADS)
Guo, X. F.; Cai, X. H.; Kang, L.; Zhu, T.; Zhang, H. S.
2009-05-01
Based on the micrometeorological measurements at a heterogeneous farmland in South China, this work detects the effects of vegetative heterogeneity and patch-scale harvest on the energy balance closure and turbulent fluxes. As a quality control, the integral turbulent characteristics are analyzed in the framework of Monin-Obukhov similarity theory. Spatial representativeness of the measurements is studied in terms of footprint and source area. Firstly, in two wind sectors, the nondimensional standard deviations of turbulent quantities generally agree with some foregoing studies. Discrepancies exist in the other sectors due to the instrument-induced flow distortion. Secondly, energy balance closure is examined with two types of linear regression, which confirms that mismatching source areas between the available energy and turbulent fluxes have no preference to either energy “deficit” or “surplus”. Thirdly, turbulent fluxes exhibit greater variability when they represent smaller source areas. The patch-scale harvest adjacent to the flux mast causes notable increase and decrease in the sensible heat and latent heat fluxes, respectively, while the CO2 exchange almost vanishes after the harvest. Interestingly, energy balance closure is less influenced despite the notable effects on the turbulent fluxes and Bowen ratio, implying that the energy balance closure check may mask some variability in the turbulent fluxes. Thus, to adjust the heat fluxes with a single “closure factor” for a perfect closure is dangerous at a patchy site.
Discussion of turbulence modelling: Past and future
NASA Technical Reports Server (NTRS)
Speziale, Charles G.
1989-01-01
The full text of a paper presented at the Whither Turbulence Workshop (Cornell University, March 22-24, 1989) on past and future trends in turbulence modeling is provided. It is argued that Reynolds stress models are likely to remain the preferred approach for technological applications for at least the next few decades. In general agreement with the Launder position paper, it is further argued that among the variety of Reynolds stress models in use, second-order closures constitute by far the most promising approach. However, some needed improvements in the specification of the turbulent length scale are emphasized. The central points of the paper are illustrated by examples from homogeneous turbulence.
Evolution equations for the joint probability of several compositions in turbulent combustion
Bakosi, Jozsef
2010-01-01
One-point statistical simulations of turbulent combustion require models to represent the molecular mixing of species mass fractions, which then determine the reaction rates. For multi-species mixing the Dirichlet distribution has been used to characterize the assumed joint probability density function (PDF) of several scalars, parametrized by solving modeled evolution equations for their means and the sum of their variances. The PDF is then used to represent the mixing state and to obtain the chemical reactions source terms in moment closures or large eddy simulation. We extend the Dirichlet PDF approach to transported PDF methods by developing its governing stochastic differential equation (SDE). The transport equation, as opposed to parametrizing the assumed PDF, enables (1) the direct numerical computation of the joint PDF (and therefore the mixing model to directly account for the flow dynamics (e.g. reaction) on the shape of the evolving PDF), and (2) the individual specification of the mixing timescales of each species. From the SDE, systems of equations are derived that govern the first two moments, based on which constraints are established that provide consistency conditions for material mixing. A SDE whose solution is the generalized Dirichlet PDF is also developed and some of its properties from the viewpoint of material mixing are investigated. The generalized Dirichlet distribution has the following advantages over the standard Dirichlet distribution due to its more general covariance structure: (1) its ability to represent differential diffusion (i.e. skewness) without affecting the scalar means, and (2) it can represent both negatively and positively correlated scalars. The resulting development is a useful representation of the joint PDF of inert or reactive scalars in turbulent flows: (1) In moment closures, the mixing physics can be consistently represented by one underlying modeling principle, the Dirichlet or the generalized Dirichlet PDF, and
Moment-to-Moment Emotions during Reading
ERIC Educational Resources Information Center
Graesser, Arthur C.; D'Mello, Sidney
2012-01-01
Moment-to-moment emotions are affective states that dynamically change during reading and potentially influence comprehension. Researchers have recently identified these emotions and the emotion trajectories in reading, tutoring, and problem solving. The primary learning-centered emotions are boredom, frustration, confusion, flow (engagement),…
Computation of turbulent channel flow using Large-Eddy Interaction Model
NASA Technical Reports Server (NTRS)
Hong, S. K.; Payne, F. R.
1987-01-01
The objective of the paper is to investigate the nature and values of closure parameters appearing in the proposed Large-Eddy Interaction Model for prediction of turbulent flow field. Effects of two closure parameters on predicted Reynolds stresses and other turbulence structural quantities are examined for channel flows at two Reynolds numbers.
Optimal thermalization in a shell model of homogeneous turbulence
NASA Astrophysics Data System (ADS)
Thalabard, Simon; Turkington, Bruce
2016-04-01
We investigate the turbulence-induced dissipation of the large scales in a statistically homogeneous flow using an ‘optimal closure,’ which one of us (BT) has recently exposed in the context of Hamiltonian dynamics. This statistical closure employs a Gaussian model for the turbulent scales, with corresponding vanishing third cumulant, and yet it captures an intrinsic damping. The key to this apparent paradox lies in a clear distinction between true ensemble averages and their proxies, most easily grasped when one works directly with the Liouville equation rather than the cumulant hierarchy. We focus on a simple problem for which the optimal closure can be fully and exactly worked out: the relaxation arbitrarily far-from-equilibrium of a single energy shell towards Gibbs equilibrium in an inviscid shell model of 3D turbulence. The predictions of the optimal closure are validated against DNS and contrasted with those derived from EDQNM closure.
Bumblebee Flight in Heavy Turbulence.
Engels, T; Kolomenskiy, D; Schneider, K; Lehmann, F-O; Sesterhenn, J
2016-01-15
High-resolution numerical simulations of a tethered model bumblebee in forward flight are performed superimposing homogeneous isotropic turbulent fluctuations to the uniform inflow. Despite tremendous variation in turbulence intensity, between 17% and 99% with respect to the mean flow, we do not find significant changes in cycle-averaged aerodynamic forces, moments, or flight power when averaged over realizations, compared to laminar inflow conditions. The variance of aerodynamic measures, however, significantly increases with increasing turbulence intensity, which may explain flight instabilities observed in freely flying bees.
Bumblebee Flight in Heavy Turbulence
NASA Astrophysics Data System (ADS)
Engels, T.; Kolomenskiy, D.; Schneider, K.; Lehmann, F.-O.; Sesterhenn, J.
2016-01-01
High-resolution numerical simulations of a tethered model bumblebee in forward flight are performed superimposing homogeneous isotropic turbulent fluctuations to the uniform inflow. Despite tremendous variation in turbulence intensity, between 17% and 99% with respect to the mean flow, we do not find significant changes in cycle-averaged aerodynamic forces, moments, or flight power when averaged over realizations, compared to laminar inflow conditions. The variance of aerodynamic measures, however, significantly increases with increasing turbulence intensity, which may explain flight instabilities observed in freely flying bees.
A closure scheme for chemical master equations.
Smadbeck, Patrick; Kaznessis, Yiannis N
2013-08-27
Probability reigns in biology, with random molecular events dictating the fate of individual organisms, and propelling populations of species through evolution. In principle, the master probability equation provides the most complete model of probabilistic behavior in biomolecular networks. In practice, master equations describing complex reaction networks have remained unsolved for over 70 years. This practical challenge is a reason why master equations, for all their potential, have not inspired biological discovery. Herein, we present a closure scheme that solves the master probability equation of networks of chemical or biochemical reactions. We cast the master equation in terms of ordinary differential equations that describe the time evolution of probability distribution moments. We postulate that a finite number of moments capture all of the necessary information, and compute the probability distribution and higher-order moments by maximizing the information entropy of the system. An accurate order closure is selected, and the dynamic evolution of molecular populations is simulated. Comparison with kinetic Monte Carlo simulations, which merely sample the probability distribution, demonstrates this closure scheme is accurate for several small reaction networks. The importance of this result notwithstanding, a most striking finding is that the steady state of stochastic reaction networks can now be readily computed in a single-step calculation, without the need to simulate the evolution of the probability distribution in time.
Partial moment entropy approximation to radiative heat transfer
Frank, Martin . E-mail: frank@mathematik.uni-kl.de; Dubroca, Bruno . E-mail: Bruno.Dubroca@math.u-bordeaux.fr; Klar, Axel . E-mail: klar@mathematik.uni-kl.de
2006-10-10
We extend the half moment entropy closure for the radiative heat transfer equations presented in Dubroca and Klar [B. Dubroca, A. Klar, Half moment closure for radiative transfer equations, J. Comput. Phys. 180 (2002) 584-596] and Turpault et al. [R. Turpault, M. Frank, B. Dubroca, A. Klar, Multigroup half space moment approximations to the radiative heat transfer equations, J. Comput. Phys. 198 (2004) 363-371] to multi-D. To that end, we consider a partial moment system with general partitions of the unit sphere closed by an entropy minimization principle. We give physical and mathematical reasons for this choice of model and study its properties. Several numerical examples in different physical regimes are presented.
Magnetohydrodynamic Turbulence and the Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2016-01-01
Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.
Energy transfer in compressible turbulence
NASA Technical Reports Server (NTRS)
Bataille, Francoise; Zhou, YE; Bertoglio, Jean-Pierre
1995-01-01
This letter investigates the compressible energy transfer process. We extend a methodology developed originally for incompressible turbulence and use databases from numerical simulations of a weak compressible turbulence based on Eddy-Damped-Quasi-Normal-Markovian (EDQNM) closure. In order to analyze the compressible mode directly, the well known Helmholtz decomposition is used. While the compressible component has very little influence on the solenoidal part, we found that almost all of the compressible turbulence energy is received from its solenoidal counterpart. We focus on the most fundamental building block of the energy transfer process, the triadic interactions. This analysis leads us to conclude that, at low turbulent Mach number, the compressible energy transfer process is dominated by a local radiative transfer (absorption) in both inertial and energy containing ranges.
Turbulence transport with nonlocal interactions
Linn, R.R.; Clark, T.T.; Harlow, F.H.; Turner, L.
1998-03-01
This preliminary report describes a variety of issues in turbulence transport analysis with particular emphasis on closure procedures that are nonlocal in wave-number and/or physical space. Anomalous behavior of the transport equations for large scale parts of the turbulence spectrum are resolved by including the physical space nonlocal interactions. Direct and reverse cascade processes in wave-number space are given a much richer potential for realistic description by the nonlocal formulations. The discussion also describes issues, many still not resolved, regarding new classes of self-similar form functions.
Theory of strong turbulence by renormalization
NASA Technical Reports Server (NTRS)
Tchen, C. M.
1981-01-01
The hydrodynamical equations of turbulent motions are inhomogeneous and nonlinear in their inertia and force terms and will generate a hierarchy. A kinetic method was developed to transform the hydrodynamic equations into a master equation governing the velocity distribution, as a function of the time, the position and the velocity as an independent variable. The master equation presents the advantage of being homogeneous and having fewer nonlinear terms and is therefore simpler for the investigation of closure. After the closure by means of a cascade scaling procedure, the kinetic equation is derived and possesses a memory which represents the nonMarkovian character of turbulence. The kinetic equation is transformed back to the hydrodynamical form to yield an energy balance in the cascade form. Normal and anomalous transports are analyzed. The theory is described for incompressible, compressible and plasma turbulence. Applications of the method to problems relating to sound generation and the propagation of light in a nonfrozen turbulence are considered.
a Study of Turbulent Wakes with and Without the Presence of Free Stream Turbulence
NASA Astrophysics Data System (ADS)
Ardebili, Mahmoud Khosro
1993-01-01
The objective was to investigate symmetric and asymmetric turbulent wakes subjected to free stream turbulence. The wake environment was generated experimentally by using a modified airfoil. Symmetric wake was simulated by merging of two similar boundary layers on two sides of the model into wake. Asymmetric wake was simulated by merging of dissimilar boundary layers on the two sides of the model. Free stream turbulence was generated by placing grids upstream of the model. The mean velocity was obtained with the aid of pressure measurement, and the turbulence quantities were obtained by using hot-wire anemometry. In order to assess the ability of K-varepsilon and Reynolds stress models to predict turbulent wake under varying free stream conditions, the wake governing equations for the closure models were numerically solved by a second order accurate, parabolic, forward marching finite difference method. The mean velocity and its flow properties of symmetric and asymmetric wakes were affected by the presence of free stream turbulence. The recovery rate increased while shape factor decreased with higher level and larger length scale of the free stream turbulence. The displacement thickness and half-wake width became larger under moderate free stream turbulence, and decreased with higher free stream turbulence. The free stream turbulence affected the turbulence structure of the wake. Increase in the level and length scale of the free stream turbulence increased the level of turbulence quantities in the wake. It affected outer layer of wake, while the inner core of the wake essentially remained unaffected. The K-varepsilon model and Reynolds stress model of turbulence closure resulted in acceptable prediction of mean velocity throughout the wake. However in far wake the turbulence quantities predicted with the K-varepsilon model are closer to the experimental data than predictions with Reynolds Stress model. The turbulence quantities of wake were predicted with maximum
Optimal prediction for moment models: crescendo diffusion and reordered equations
NASA Astrophysics Data System (ADS)
Seibold, Benjamin; Frank, Martin
2009-12-01
A direct numerical solution of the radiative transfer equation or any kinetic equation is typically expensive, since the radiative intensity depends on time, space and direction. An expansion in the direction variables yields an equivalent system of infinitely many moments. A fundamental problem is how to truncate the system. Various closures have been presented in the literature. We want to generally study the moment closure within the framework of optimal prediction, a strategy to approximate the mean solution of a large system by a smaller system, for radiation moment systems. We apply this strategy to radiative transfer and show that several closures can be re-derived within this framework, such as P N , diffusion, and diffusion correction closures. In addition, the formalism gives rise to new parabolic systems, the reordered P N equations, that are similar to the simplified P N equations. Furthermore, we propose a modification to existing closures. Although simple and with no extra cost, this newly derived crescendo diffusion yields better approximations in numerical tests.
Stochastic superparameterization in quasigeostrophic turbulence
Grooms, Ian; Majda, Andrew J.
2014-08-15
In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems. Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a ‘null hypothesis’ stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by an imposed background shear. The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and
Stochastic superparameterization in quasigeostrophic turbulence
NASA Astrophysics Data System (ADS)
Grooms, Ian; Majda, Andrew J.
2014-08-01
In this article we expand and develop the authors' recent proposed methodology for efficient stochastic superparameterization algorithms for geophysical turbulence. Geophysical turbulence is characterized by significant intermittent cascades of energy from the unresolved to the resolved scales resulting in complex patterns of waves, jets, and vortices. Conventional superparameterization simulates large scale dynamics on a coarse grid in a physical domain, and couples these dynamics to high-resolution simulations on periodic domains embedded in the coarse grid. Stochastic superparameterization replaces the nonlinear, deterministic eddy equations on periodic embedded domains by quasilinear stochastic approximations on formally infinite embedded domains. The result is a seamless algorithm which never uses a small scale grid and is far cheaper than conventional SP, but with significant success in difficult test problems. Various design choices in the algorithm are investigated in detail here, including decoupling the timescale of evolution on the embedded domains from the length of the time step used on the coarse grid, and sensitivity to certain assumed properties of the eddies (e.g. the shape of the assumed eddy energy spectrum). We present four closures based on stochastic superparameterization which elucidate the properties of the underlying framework: a ‘null hypothesis' stochastic closure that uncouples the eddies from the mean, a stochastic closure with nonlinearly coupled eddies and mean, a nonlinear deterministic closure, and a stochastic closure based on energy conservation. The different algorithms are compared and contrasted on a stringent test suite for quasigeostrophic turbulence involving two-layer dynamics on a β-plane forced by an imposed background shear. The success of the algorithms developed here suggests that they may be fruitfully applied to more realistic situations. They are expected to be particularly useful in providing accurate and
Joint PDF Modelling of Turbulent Flow and Dispersion in an Urban Street Canyon
NASA Astrophysics Data System (ADS)
Bakosi, J.; Franzese, P.; Boybeyi, Z.
2009-05-01
The joint probability density function (PDF) of turbulent velocity and concentration of a passive scalar in an urban street canyon is computed using a newly developed particle-in-cell Monte Carlo method. Compared to moment closures, the PDF methodology provides the full one-point one-time PDF of the underlying fields containing all higher moments and correlations. The small-scale mixing of the scalar released from a concentrated source at the street level is modelled by the interaction by exchange with the conditional mean (IECM) model, with a micro-mixing time scale designed for geometrically complex settings. The boundary layer along no-slip walls (building sides and tops) is fully resolved using an elliptic relaxation technique, which captures the high anisotropy and inhomogeneity of the Reynolds stress tensor in these regions. A less computationally intensive technique based on wall functions to represent the boundary layers and its effect on the solution are also explored. The calculated statistics are compared to experimental data and large-eddy simulation. The present work can be considered as the first example of computation of the full joint PDF of velocity and a transported passive scalar in an urban setting. The methodology proves successful in providing high level statistical information on the turbulence and pollutant concentration fields in complex urban scenarios.
PDF approach for turbulent scalar field: Some recent developments
NASA Technical Reports Server (NTRS)
Gao, Feng
1993-01-01
The probability density function (PDF) method has been proven a very useful approach in turbulence research. It has been particularly effective in simulating turbulent reacting flows and in studying some detailed statistical properties generated by a turbulent field There are, however, some important questions that have yet to be answered in PDF studies. Our efforts in the past year have been focused on two areas. First, a simple mixing model suitable for Monte Carlo simulations has been developed based on the mapping closure. Secondly, the mechanism of turbulent transport has been analyzed in order to understand the recently observed abnormal PDF's of turbulent temperature fields generated by linear heat sources.
Some Remarks on the Statistical Theory of Turbulence in Two Dimensions
NASA Astrophysics Data System (ADS)
Herring, Jackson R.
1996-11-01
Two dimensional flows are characterized by inviscid conservation of both energy and enstrophy. Numerical simulations have indicated that such flows develop strong vorticity intermittency, associated with the development of intense isolated vortices. Such highly non--Gaussian features are inhospitable to moment closures such as the Test Field Model (TFM). We shall compare modified TFM spectral results with the recent direct numerical simulations (DNS) of Chasnov and others. The principle modification attempts to systematically reduce the energy transfer with the passage of time (or the development of vorticity kurtosis), to account for the consolidation of energy transfer near isolated vortices, leaving regions of space free of turbulent activity. We compare the TFM and DNS energy profiles, E(k,t) at various Reynolds numbers, as well as the course of total energy, enstrophy, and microscale Reynolds number.
A B-B-G-K-Y framework for fluid turbulence
NASA Technical Reports Server (NTRS)
Montgomery, D.
1975-01-01
A kinetic theory for fluid turbulence is developed from the Liouville equation and the associated BBGKY hierarchy. Real and imaginary parts of Fourier coefficients of fluid variables play the roles of particles. Closure is achieved by the assumption of negligible five-coefficient correlation functions and probability distributions of Fourier coefficients are the basic variables of the theory. An additional approximation leads to a closed-moment description similar to the so-called eddy-damped Markovian approximation. A kinetic equation is derived for which conservation laws and an H-theorem can be rigorously established, the H-theorem implying relaxation of the absolute equilibrium of Kraichnan. The equation can be cast in the Fokker-Planck form, and relaxation times estimated from its friction and diffusion coefficients. An undetermined parameter in the theory is the free decay time for triplet correlations. Some attention is given to the inclusion of viscous damping and external driving forces.
NASA Astrophysics Data System (ADS)
Lecoustre, Vivien; Arias, Paul; Roy, Somesh; Wang, Wei; Luo, Zhaoyu; Haworth, Dan; Im, Hong; Lu, Tianfeng; Ma, Kwan-Liu; Sankaran, Ramanan; Trouve, Arnaud
2011-11-01
Direct numerical simulations of 2D temporally-evolving luminous turbulent ethylene-air jet diffusion flames are performed using a high-order compressible Navier-Stokes solver. The simulations use a reduced mechanism derived from a detailed ethylene-air chemical kinetic mechanism that includes the reaction pathways for the formation of polycyclic aromatic hydrocarbons. The gas-phase chemistry is coupled with a detailed soot particle model based on the method of moments with interpolative closure that accounts for soot nucleation, coagulation, surface growth through HACA mechanism, and oxidation. Radiative heat transfer of CO2, H2O, and soot is treated by solving the radiative transfer equation using the discrete transfer method. This work presents preliminary results of radiation effects on soot dynamics at the tip of a jet diffusion flame with a particular focus on soot formation/oxidation.
Studying Turbulence Using Numerical Simulation Databases. Proceedings of the 1987 Summer Program
NASA Technical Reports Server (NTRS)
Moin, Parviz (Editor); Reynolds, William C. (Editor); Kim, John (Editor)
1987-01-01
The focus was on the use of databases obtained from direct numerical simulations of turbulent flows, for study of turbulence physics and modeling. Topics addressed included: stochastic decomposition/chaos/bifurcation; two-point closure (or k-space) modeling; scalar transport/reacting flows; Reynolds stress modeling; and structure of turbulent boundary layers.
NASA Astrophysics Data System (ADS)
Clare, R. B.; Levinger, J. S.
1981-02-01
We use the formalism of hyperspherical harmonics to calculate several moments for the triton photoeffect, for a Volkov spin-independent potential. First, we improve the accuracy of Maleki's calculations of the moments σ2 and σ3 by including more terms in the hyperspherical expansion. We also calculate moments σ0 and σ1 for a Serber mixture. We find reasonable agreement between our moments found by sum rules and those found from the cross sections calculated by Fang et al. and Levinger-Fitzgibbon. We then develop a technique of inversion of a finite number of moments by making the assumption that the cross section can be written as a sum of several Laguerre polynomials multiplied by a decreasing exponential. We test our inversion technique successfully on several model potentials. We then modify it and apply it to the five moments (σ-1 to σ3) for a force without exchange, and find fair agreement with Fang's values of the cross section. Finally, we apply the inversion technique to our three moments (σ-1,σ0,and σ1) for a Serber mixture, and find reasonable agreement with Gorbunov's measurements of the 3He photoeffect. NUCLEAR REACTIONS Triton photoeffects, hyperspherical harmonics, moments of photoeffect, inversion of moments.
Numerical Simulation of High-Speed Turbulent Reacting Flows
NASA Technical Reports Server (NTRS)
Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.
1999-01-01
The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows. We have just completed the third year of Phase III of this research. This is the Final Report of our activities on this research sponsored by the NASA LaRC.
Michael Ramsey-Musolf; Wick Haxton; Ching-Pang Liu
2002-03-29
Nuclear anapole moments are parity-odd, time-reversal-even E1 moments of the electromagnetic current operator. Although the existence of this moment was recognized theoretically soon after the discovery of parity nonconservation (PNC), its experimental isolation was achieved only recently, when a new level of precision was reached in a measurement of the hyperfine dependence of atomic PNC in 133Cs. An important anapole moment bound in 205Tl also exists. In this paper, we present the details of the first calculation of these anapole moments in the framework commonly used in other studies of hadronic PNC, a meson exchange potential that includes long-range pion exchange and enough degrees of freedom to describe the five independent S-P amplitudes induced by short-range interactions. The resulting contributions of pi-, rho-, and omega-exchange to the single-nucleon anapole moment, to parity admixtures in the nuclear ground state, and to PNC exchange currents are evaluated, using configuration-mixed shell-model wave functions. The experimental anapole moment constraints on the PNC meson-nucleon coupling constants are derived and compared with those from other tests of the hadronic weak interaction. While the bounds obtained from the anapole moment results are consistent with the broad ''reasonable ranges'' defined by theory, they are not in good agreement with the constraints from the other experiments. We explore possible explanations for the discrepancy and comment on the potential importance of new experiments.
Single point modeling of rotating turbulent flows
NASA Technical Reports Server (NTRS)
Hadid, A. H.; Mansour, N. N.; Zeman, O.
1994-01-01
A model for the effects of rotation on turbulence is proposed and tested. These effects which influence mainly the rate of turbulence decay are modeled in a modified turbulent energy dissipation rate equation that has explicit dependence on the mean rotation rate. An appropriate definition of the rotation rate derived from critical point theory and based on the invariants of the deformation tensor is proposed. The modeled dissipation rate equation is numerically well behaved and can be used in conjunction with any level of turbulence closure. The model is applied to the two-equation kappa-epsilon turbulence model and is used to compute separated flows in a backward-facing step and an axisymmetric swirling coaxial jets into a sudden expansion. In general, the rotation modified dissipation rate model shows some improvements over the standard kappa-epsilon model.
NASA Technical Reports Server (NTRS)
White, III, Dorsey E. (Inventor); Updike, deceased, Benjamin T. (Inventor); Allred, Johnny W. (Inventor)
1989-01-01
A quick actuating closure for a pressure vessel 80 in which a wedge ring 30 with a conical outer surface 31 is moved forward to force shear blocks 40, with conical inner surfaces 41, radially outward to lock an end closure plug 70 within an opening 81 in the pressure vessel 80. A seal ring 60 and a preload ramp 50 sit between the shear blocks 40 and the end closure plug 70 to provide a backup sealing capability. Conical surfaces 44 and 55 of the preload ramp 50 and the shear blocks 40 interact to force the seal ring 60 into shoulders 73 and 85 in the end closure plug 70 and opening 81 to form a tight seal. The end closure plug 70 is unlocked by moving the wedge ring 30 rearward, which causes T-bars 32 of the wedge ring 30 riding within T -slots 42 of the shear blocks 40 to force them radially inward. The end closure plug 70 is then removed, allowing access to the interior of the pressure vessel 80.
Turbulence kinetic energy equation for dilute suspensions
NASA Technical Reports Server (NTRS)
Abou-Arab, T. W.; Roco, M. C.
1989-01-01
A multiphase turbulence closure model is presented which employs one transport equation, namely the turbulence kinetic energy equation. The proposed form of this equation is different from the earlier formulations in some aspects. The power spectrum of the carrier fluid is divided into two regions, which interact in different ways and at different rates with the suspended particles as a function of the particle-eddy size ratio and density ratio. The length scale is described algebraically. A mass/time averaging procedure for the momentum and kinetic energy equations is adopted. The resulting turbulence correlations are modeled under less retrictive assumptions comparative to previous work. The closures for the momentum and kinetic energy equations are given. Comparisons of the predictions with experimental results on liquid-solid jet and gas-solid pipe flow show satisfactory agreement.
Horton, W.; Hu, G.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates.
Moment inference from tomograms
Day-Lewis, F. D.; Chen, Y.; Singha, K.
2007-01-01
Time-lapse geophysical tomography can provide valuable qualitative insights into hydrologic transport phenomena associated with aquifer dynamics, tracer experiments, and engineered remediation. Increasingly, tomograms are used to infer the spatial and/or temporal moments of solute plumes; these moments provide quantitative information about transport processes (e.g., advection, dispersion, and rate-limited mass transfer) and controlling parameters (e.g., permeability, dispersivity, and rate coefficients). The reliability of moments calculated from tomograms is, however, poorly understood because classic approaches to image appraisal (e.g., the model resolution matrix) are not directly applicable to moment inference. Here, we present a semi-analytical approach to construct a moment resolution matrix based on (1) the classic model resolution matrix and (2) image reconstruction from orthogonal moments. Numerical results for radar and electrical-resistivity imaging of solute plumes demonstrate that moment values calculated from tomograms depend strongly on plume location within the tomogram, survey geometry, regularization criteria, and measurement error. Copyright 2007 by the American Geophysical Union.
Modeling of near wall turbulence and modeling of bypass transition
NASA Technical Reports Server (NTRS)
Yang, Z.
1992-01-01
The objectives for this project are as follows: (1) Modeling of the near wall turbulence: We aim to develop a second order closure for the near wall turbulence. As a first step of this project, we try to develop a kappa-epsilon model for near wall turbulence. We require the resulting model to be able to handle both near wall turbulence and turbulent flows away from the wall, computationally robust, and applicable for complex flow situations, flow with separation, for example, and (2) Modeling of the bypass transition: We aim to develop a bypass transition model which contains the effect of intermittency. Thus, the model can be used for both the transitional boundary layers and the turbulent boundary layers. We require the resulting model to give a good prediction of momentum and heat transfer within the transitional boundary and a good prediction of the effect of freestream turbulence on transitional boundary layers.
Reynolds stress closure modeling in wall-bounded flows
NASA Technical Reports Server (NTRS)
Durbin, Paul A.
1993-01-01
This report describes two projects. Firstly, a Reynolds stress closure for near-wall turbulence is described. It was motivated by the simpler k-epsilon-(v-bar(exp 2)) model described in last year's annual research brief. Direct Numerical Simulation of three-dimensional channel flow shows a curious decrease of the turbulent kinetic energy. The second topic of this report is a model which reproduces this effect. That model is described and used to discuss the relevance of the three dimensional channel flow simulation to swept wing boundary layers.
Bradburne, John; Patton, Tisha C.
2001-02-25
When Fluor Fernald took over the management of the Fernald Environmental Management Project in 1992, the estimated closure date of the site was more than 25 years into the future. Fluor Fernald, in conjunction with DOE-Fernald, introduced the Accelerated Cleanup Plan, which was designed to substantially shorten that schedule and save taxpayers more than $3 billion. The management of Fluor Fernald believes there are three fundamental concerns that must be addressed by any contractor hoping to achieve closure of a site within the DOE complex. They are relationship management, resource management and contract management. Relationship management refers to the interaction between the site and local residents, regulators, union leadership, the workforce at large, the media, and any other interested stakeholder groups. Resource management is of course related to the effective administration of the site knowledge base and the skills of the workforce, the attraction and retention of qualified a nd competent technical personnel, and the best recognition and use of appropriate new technologies. Perhaps most importantly, resource management must also include a plan for survival in a flat-funding environment. Lastly, creative and disciplined contract management will be essential to effecting the closure of any DOE site. Fluor Fernald, together with DOE-Fernald, is breaking new ground in the closure arena, and ''business as usual'' has become a thing of the past. How Fluor Fernald has managed its work at the site over the last eight years, and how it will manage the new site closure contract in the future, will be an integral part of achieving successful closure at Fernald.
ERIC Educational Resources Information Center
Hanratty, Thomas J.
1980-01-01
This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)
NASA Astrophysics Data System (ADS)
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
NASA Astrophysics Data System (ADS)
Schneider, Florian
2016-10-01
This paper provides a generalization of the realizability-preserving discontinuous-Galerkin scheme given in [3] to general full-moment models that can be closed analytically. It is applied to the class of Kershaw closures, which are able to provide a cheap closure of the moment problem. This results in an efficient algorithm for the underlying linear transport equation. The efficiency of high-order methods is demonstrated using numerical convergence tests and non-smooth benchmark problems.
Entropy production rate as a constraint for collisionless fluid closures
Fleurence, E.; Sarazin, Y.; Garbet, X.; Dif-Pradalier, G.; Ghendrih, Ph.; Grandgirard, V.; Ottaviani, M.
2006-11-30
A novel method is proposed to construct collisionless fluid closures accounting for some kinetic properties. The first dropped fluid moment is assumed to be a linear function of the lower order ones. Optimizing the agreement between the fluid and kinetic entropy production rates is used to constrain the coefficients of the linear development. This procedure is applied to a reduced version of the interchange instability. The closure, involving the absolute value of the wave vector, is non-local in real space. In this case, the linear instability thresholds are the same, and the linear growth rates exhibit similar characteristics. Such a method is applicable to other models and classes of instabilities.
Caldwell, T.B.
1997-04-18
A reducing grout has been developed for closing high level waste tanks at the Savannah River Site in Aiken, South Carolina. The grout has a low redox potential, which minimizes the mobility of Sr{sup 90}, the radionuclide with the highest dose potential after closure. The grout also has a high pH which reduces the solubility of the plutonium isotopes. The grout has a high compressive strength and low permeability, which enhances its ability to limit the migration of contaminants after closure. The grout was designed and tested by Construction Technology Laboratories, Inc. Placement methods were developed by the Savannah River Site personnel.
40 CFR 264.258 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 264.258... Waste Piles § 264.258 Closure and post-closure care. (a) At closure, the owner or operator must remove... facility and perform post-closure care in accordance with the closure and post-closure care...
Krommes, J.A.
2000-01-18
Recent results and future challenges in the systematic analytical description of plasma turbulence are described. First, the importance of statistical realizability is stressed, and the development and successes of the Realizable Markovian Closure are briefly reviewed. Next, submarginal turbulence (linearly stable but nonlinearly self-sustained fluctuations) is considered and the relevance of nonlinear instability in neutral-fluid shear flows to submarginal turbulence in magnetized plasmas is discussed. For the Hasegawa-Wakatani equations, a self-consistency loop that leads to steady-state vortex regeneration in the presence of dissipation is demonstrated and a partial unification of recent work of Drake (for plasmas) and of Waleffe (for neutral fluids) is given. Brief remarks are made on the difficulties facing a quantitatively accurate statistical description of submarginal turbulence. Finally, possible connections between intermittency, submarginal turbulence, and self-organized criticality (SOC) are considered and outstanding questions are identified.
Transport Coefficients in Rotating Weakly Compressible Turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, Robert; Zhou, Ye; Erlebacher, Gordon
1998-01-01
Analytical studies of compressible turbulence have found that compressible velocity fluctuations create both effective fluid transport properties and an effective equation of state. This paper investigates the effects of rotation on compressible turbulence. It is shown that rotation modifies the transport properties of compressible turbulence by replacing the turbulence time scale by a rotational time scale, much as rotation modifies the transport properties of incompressible turbulence. But thermal equilibrium properties are modified in a more complex manner. Two regimes are possible: one dominated by incompressible fluctuations, in which the sound speed is modified as it is in non-rotating turbulence, and a rotation dominated regime in which the sound speed enhancement is rotation dependent. The dimensionless parameter which discriminates between regimes is identified. In general, rotation is found to suppress the effects of compressibility. A novel feature of the present analysis is the use of a non-Kolmogorov steady state as the reference state of turbulence. introduction of such steady states expands the power and utility of analytical turbulence closures to a wider range of problems.
NASA Astrophysics Data System (ADS)
Coclite, A.; Pascazio, G.; De Palma, P.; Cutrone, L.
2016-07-01
Flamelet-Progress-Variable (FPV) combustion models allow the evaluation of all thermochemical quantities in a reacting flow by computing only the mixture fraction Z and a progress variable C. When using such a method to predict turbulent combustion in conjunction with a turbulence model, a probability density function (PDF) is required to evaluate statistical averages (e. g., Favre averages) of chemical quantities. The choice of the PDF is a compromise between computational costs and accuracy level. The aim of this paper is to investigate the influence of the PDF choice and its modeling aspects to predict turbulent combustion. Three different models are considered: the standard one, based on the choice of a β-distribution for Z and a Dirac-distribution for C; a model employing a β-distribution for both Z and C; and the third model obtained using a β-distribution for Z and the statistically most likely distribution (SMLD) for C. The standard model, although widely used, does not take into account the interaction between turbulence and chemical kinetics as well as the dependence of the progress variable not only on its mean but also on its variance. The SMLD approach establishes a systematic framework to incorporate informations from an arbitrary number of moments, thus providing an improvement over conventionally employed presumed PDF closure models. The rational behind the choice of the three PDFs is described in some details and the prediction capability of the corresponding models is tested vs. well-known test cases, namely, the Sandia flames, and H2-air supersonic combustion.
Mattingly, J.T.
1963-02-12
This invention provides a simple pressure-actuated closure whereby windowless observation ports are opened to the atmosphere at preselected altitudes. The closure comprises a disk which seals a windowless observation port in rocket hull. An evacuated instrument compartment is affixed to the rocket hull adjacent the inner surface of the disk, while the outer disk surface is exposed to the atmosphere through which the rocket is traveling. The pressure differential between the evacuated instrument compartment and the relatively high pressure external atmosphere forces the disk against the edge of the observation port, thereby effecting a tight seai. The instrument compartment is evacuated to a pressure equal to the atmospheric pressure existing at the altitude at which it is desiretl that the closure should open. When the rocket reaches this preselected altitude, the inwardly directed atmospheric force on the disk is just equaled by the residual air pressure force within the instrument compartment. Consequently, the closure disk falls away and uncovers the open observation port. The separation of the disk from the rocket hull actuates a switch which energizes the mechanism of a detecting instrument disposed within the instrument compartment. (AE C)
Geometric invariance of compressible turbulent boundary layers
NASA Astrophysics Data System (ADS)
Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle
2015-11-01
A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.
Large-Eddy Simulation of the Flat-plate Turbulent Boundary Layer at High Reynolds numbers
NASA Astrophysics Data System (ADS)
Inoue, Michio
The near-wall, subgrid-scale (SGS) model [Chung and Pullin, "Large-eddy simulation and wall-modeling of turbulent channel flow'', J. Fluid Mech. 631, 281--309 (2009)] is used to perform large-eddy simulations (LES) of the incompressible developing, smooth-wall, flat-plate turbulent boundary layer. In this model, the stretched-vortex, SGS closure is utilized in conjunction with a tailored, near-wall model designed to incorporate anisotropic vorticity scales in the presence of the wall. The composite SGS-wall model is presently incorporated into a computer code suitable for the LES of developing flat-plate boundary layers. This is then used to study several aspects of zero- and adverse-pressure gradient turbulent boundary layers. First, LES of the zero-pressure gradient turbulent boundary layer are performed at Reynolds numbers Retheta based on the free-stream velocity and the momentum thickness in the range Retheta = 103-1012. Results include the inverse skin friction coefficient, 2/Cf , velocity profiles, the shape factor H, the Karman "constant", and the Coles wake factor as functions of Re theta. Comparisons with some direct numerical simulation (DNS) and experiment are made, including turbulent intensity data from atmospheric-layer measurements at Retheta = O (106). At extremely large Retheta , the empirical Coles-Fernholz relation for skin-friction coefficient provides a reasonable representation of the LES predictions. While the present LES methodology cannot of itself probe the structure of the near-wall region, the present results show turbulence intensities that scale on the wall-friction velocity and on the Clauser length scale over almost all of the outer boundary layer. It is argued that the LES is suggestive of the asymptotic, infinite Reynolds-number limit for the smooth-wall turbulent boundary layer and different ways in which this limit can be approached are discussed. The maximum Retheta of the present simulations appears to be limited by machine
NASA Technical Reports Server (NTRS)
Ringnes, E. A.; Frost, W.
1986-01-01
The influence of spanwise turbulence on airplane dynamic behavior is determined. Calculations are based on data collected from test flights with the NASA B-57 research aircraft. The approach is to first compute aerodynamic forces and moments due to a spanwise distribution of angle of attack and airspeed. Secondly, these quantities are incorporated into the equations of motion. Simulation of flights done with the effects of spanwise turbulence included are compared to simulations without any spanwise turbulence. The findings of the study are that the moments developed by turbulence along the span are significant and that more realistic flight simulation can be achieved by including the spanwise turbulence terms.
Statistics of High Atwood Number Turbulent Mixing Layers
NASA Astrophysics Data System (ADS)
Baltzer, Jon; Livescu, Daniel
2015-11-01
The statistical properties of incompressible shear-driven planar mixing layers between two miscible streams of fluids with different densities are investigated by means of Direct Numerical Simulations. The simulations begin from a thin interface perturbed by a thin broadband random disturbance, and the mixing layers are allowed to develop to self-similar states. The temporal simulations are performed in unprecedented domain sizes, with grid sizes up to 6144 x 2048 x 1536, which allows turbulent structures to grow and merge naturally. This allows the flow to reach states far-removed from the initial disturbances, thereby enabling high-quality statistics to be obtained for higher moments, pdfs, and other quantities critical to developing closure models. A wide range of Atwood numbers are explored, ranging from nearly constant density to At=0.87. The consequences of increasing the density contrast are investigated for global quantities, such as growth rates, and asymmetries that form in statistical profiles. Additional simulations in smaller domains are performed to study the effects of domain size.
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1987-01-01
A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
Separated transonic airfoil flow calculations with a nonequilibrium turbulence model
NASA Technical Reports Server (NTRS)
King, L. S.; Johnson, D. A.
1985-01-01
Navier-Stokes transonic airfoil calculations based on a recently developed nonequilibrium, turbulence closure model are presented for a supercritical airfoil section at transonic cruise conditions and for a conventional airfoil section at shock-induced stall conditions. Comparisons with experimental data are presented which show that this nonequilibrium closure model performs significantly better than the popular Baldwin-Lomax and Cebeci-Smith equilibrium algebraic models when there is boundary-layer separation that results from the inviscid-viscous interactions.
Numerical experiments in homogeneous turbulence
NASA Technical Reports Server (NTRS)
Rogallo, R. S.
1981-01-01
The direct simulation methods developed by Orszag and Patternson (1972) for isotropic turbulence were extended to homogeneous turbulence in an incompressible fluid subjected to uniform deformation or rotation. The results of simulations for irrotational strain (plane and axisymmetric), shear, rotation, and relaxation toward isotropy following axisymmetric strain are compared with linear theory and experimental data. Emphasis is placed on the shear flow because of its importance and because of the availability of accurate and detailed experimental data. The computed results are used to assess the accuracy of two popular models used in the closure of the Reynolds-stress equations. Data from a variety of the computed fields and the details of the numerical methods used in the simulation are also presented.
Efficient Moment Matrix Generation for Arbitrary Chemical Networks.
Smadbeck, P; Kaznessis, Y N
2012-12-24
As stochastic simulations become increasingly common in biological research, tools for analysis of such systems are in demand. The deterministic analogue to stochastic models, a set of probability moment equations equivalent to the Chemical Master Equation (CME), offers the possibility of a priori analysis of systems without the need for computationally costly Monte Carlo simulations. Despite the drawbacks of the method, in particular non-linearity in even the simplest of cases, the use of moment equations combined with moment-closure techniques has been used effectively in many fields. The techniques currently available to generate moment equations rely upon analytical expressions that are not efficient upon scaling. Additionally, the resulting moment-dependent matrix is lower diagonal and demands massive memory allocation in extreme cases. Here it is demonstrated that by utilizing factorial moments and the probability generating function (the Z-transform of the probability distribution) a recursive algorithm is produced. The resulting method is scalable and particularly efficient when high-order moments are required. The matrix produced is banded and often demands substantially less memory resources.
Exploiting similarity in turbulent shear flows for turbulence modeling
NASA Technical Reports Server (NTRS)
Robinson, David F.; Harris, Julius E.; Hassan, H. A.
1992-01-01
It is well known that current k-epsilon models cannot predict the flow over a flat plate and its wake. In an effort to address this issue and other issues associated with turbulence closure, a new approach for turbulence modeling is proposed which exploits similarities in the flow field. Thus, if we consider the flow over a flat plate and its wake, then in addition to taking advantage of the log-law region, we can exploit the fact that the flow becomes self-similar in the far wake. This latter behavior makes it possible to cast the governing equations as a set of total differential equations. Solutions of this set and comparison with measured shear stress and velocity profiles yields the desired set of model constants. Such a set is, in general, different from other sets of model constants. The rational for such an approach is that if we can correctly model the flow over a flat plate and its far wake, then we can have a better chance of predicting the behavior in between. It is to be noted that the approach does not appeal, in any way, to the decay of homogeneous turbulence. This is because the asymptotic behavior of the flow under consideration is not representative of the decay of homogeneous turbulence.
ERIC Educational Resources Information Center
Goodrow, Mary Ellen
2000-01-01
Details how an unplanned activity involving spinning wool presented a teachable moment for children in a family child care setting. Notes how activities related to farming, spinning wool, and using wool cloth resulted from following the children's lead. Concludes that everyday activities provide opportunities to listen to children, learn about…
ERIC Educational Resources Information Center
Higgins, Chris
2014-01-01
In "The Humanist Moment," Chris Higgins sets out to recover a tenable, living humanism, rejecting both the version vilified by the anti-humanists and the one sentimentalized by the reactionary nostalgists. Rescuing humanism from such polemics is only the first step, as we find at least nine rival, contemporary definitions of humanism.…
ERIC Educational Resources Information Center
Child & Youth Services, 2004
2004-01-01
This chapter presents additional stories and interpretations by John Korsmo, Molly Weingrod, Joseph Stanley, Quinn Wilder, Amy Evans, Rick Flowers, Arcelia Martinez, and Pam Ramsey. The stories and interpretations are presented as teachable moments that are examples of how people are learning to understand youthwork and, as such, are open to…
Numerical study of a separating and reattaching flow by using Reynolds-stress tubulence closure
NASA Technical Reports Server (NTRS)
Amano, R. S.; Goel, P.
1983-01-01
The numerical study of the Reynolds-stress turbulence closure for separating, reattaching, recirculating and redeveloping flow is summarized. The calculations were made for two different closure models of pressure - strain correlation. The results were compared with the experimental data. Furthermore, these results were compared with the computations made by using the one layer and three layer treatment of k-epsilon turbulence model which were developed. Generally the computations by the Reynolds-stress model show better results than those by the k-epsilon model, in particular, some improvement was noticed in the redeveloping region of the separating and reattaching flow in a pipe with sudden expansion.
PDF turbulence modeling and DNS
NASA Technical Reports Server (NTRS)
Hsu, A. T.
1992-01-01
The problem of time discontinuity (or jump condition) in the coalescence/dispersion (C/D) mixing model is addressed in probability density function (pdf). A C/D mixing model continuous in time is introduced. With the continuous mixing model, the process of chemical reaction can be fully coupled with mixing. In the case of homogeneous turbulence decay, the new model predicts a pdf very close to a Gaussian distribution, with finite higher moments also close to that of a Gaussian distribution. Results from the continuous mixing model are compared with both experimental data and numerical results from conventional C/D models. The effect of Coriolis forces on compressible homogeneous turbulence is studied using direct numerical simulation (DNS). The numerical method used in this study is an eight order compact difference scheme. Contrary to the conclusions reached by previous DNS studies on incompressible isotropic turbulence, the present results show that the Coriolis force increases the dissipation rate of turbulent kinetic energy, and that anisotropy develops as the Coriolis force increases. The Taylor-Proudman theory does apply since the derivatives in the direction of the rotation axis vanishes rapidly. A closer analysis reveals that the dissipation rate of the incompressible component of the turbulent kinetic energy indeed decreases with a higher rotation rate, consistent with incompressible flow simulations (Bardina), while the dissipation rate of the compressible part increases; the net gain is positive. Inertial waves are observed in the simulation results.
Advection by polytropic compressible turbulence
NASA Astrophysics Data System (ADS)
Ladeinde, F.; O'Brien, E. E.; Cai, X.; Liu, W.
1995-11-01
Direct numerical simulation (DNS) is used to examine scalar correlation in low Mach number, polytropic, homogeneous, two-dimensional turbulence (Ms≤0.7) for which the initial conditions, Reynolds, and Mach numbers have been chosen to produce three types of flow suggested by theory: (a) nearly incompressible flow dominated by vorticity, (b) nearly pure acoustic turbulence dominated by compression, and (c) nearly statistical equipartition of vorticity and compressions. Turbulent flows typical of each of these cases have been generated and a passive scalar field imbedded in them. The results show that a finite-difference based computer program is capable of producing results that are in reasonable agreement with pseudospectral calculations. Scalar correlations have been calculated from the DNS results and the relative magnitudes of terms in low-order scalar moment equations determined. It is shown that the scalar equation terms with explicit compressibility are negligible on a long time-averaged basis. A physical-space EDQNM model has been adapted to provide another estimate of scalar correlation evolution in these same two-dimensional, compressible cases. The use of the solenoidal component of turbulence energy, rather than total turbulence energy, in the EDQNM model gives results closer to those from DNS in all cases.
Large eddy simulation and direct numerical simulation of high speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Adumitroaie, V.; Frankel, S. H.; Madnia, C. K.; Givi, P.
1993-01-01
The objective of this research is to make use of Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first phase of this research conducted within the past three years have been directed in several issues pertaining to intricate physics of turbulent reacting flows. In our previous 5 semi-annual reports submitted to NASA LaRC, as well as several technical papers in archival journals, the results of our investigations have been fully described. In this progress report which is different in format as compared to our previous documents, we focus only on the issue of LES. The reason for doing so is that LES is the primary issue of interest to our Technical Monitor and that our other findings were needed to support the activities conducted under this prime issue. The outcomes of our related investigations, nevertheless, are included in the appendices accompanying this report. The relevance of the materials in these appendices are, therefore, discussed only briefly within the body of the report. Here, results are presented of a priori and a posterior analyses for validity assessments of assumed Probability Density Function (PDF) methods as potential subgrid scale (SGS) closures for LES of turbulent reacting flows. Simple non-premixed reacting systems involving an isothermal reaction of the type A + B yields Products under both chemical equilibrium and non-equilibrium conditions are considered. A priori analyses are conducted of a homogeneous box flow, and a spatially developing planar mixing layer to investigate the performance of the Pearson Family of PDF's as SGS models. A posteriori analyses are conducted of the mixing layer using a hybrid one-equation Smagorinsky/PDF SGS closure. The Smagorinsky closure augmented by the solution of the subgrid turbulent kinetic energy (TKE) equation is employed to account for hydrodynamic fluctuations, and the PDF is employed for modeling the
Wind effect in turbulence parametrization
NASA Astrophysics Data System (ADS)
Colombini, M.; Stocchino, A.
2005-09-01
The action of wind blowing over a closed basin ultimately results in a steady shear-induced circulation pattern and in a leeward rising of the free surface—and a corresponding windward lowering—known as wind set-up. If the horizontal dimensions of the basin are large with respect to the average flow depth, the occurrence of local quasi-equilibrium conditions can be expected, i.e. the flow can be assumed to be locally driven only by the wind stress and by the opposing free surface gradient due to set-up. This wind-induced flow configuration shows a strong similarity with turbulent Couette-Poiseuille flow, the one dimensional flow between parallel plates generated by the simultaneous action of a constant pressure gradient and of the shear induced by the relative motion of the plates. A two-equation turbulence closure is then employed to perform a numerical study of turbulent Couette-Poiseuille flows for different values of the ratio of the shear stresses at the two walls. The resulting eddy viscosity vertical distributions are analyzed in order to devise analytical profiles of eddy viscosity that account for the effect of wind. The results of this study, beside allowing for a physical insight on the turbulence process of this class of flows, will allow for a more accurate description of the wind effect to be included in the formulation of quasi-3D and 3D models of lagoon hydrodynamics.
A transport equation for reaction rate in turbulent flows
NASA Astrophysics Data System (ADS)
Sabelnikov, V. A.; Lipatnikov, A. N.; Chakraborty, N.; Nishiki, S.; Hasegawa, T.
2016-08-01
New transport equations for chemical reaction rate and its mean value in turbulent flows have been derived and analyzed. Local perturbations of the reaction zone by turbulent eddies are shown to play a pivotal role even for weakly turbulent flows. The mean-reaction-rate transport equation is shown to involve two unclosed dominant terms and a joint closure relation for the sum of these two terms is developed. Obtained analytical results and, in particular, the closure relation are supported by processing two widely recognized sets of data obtained from earlier direct numerical simulations of statistically planar 1D premixed flames associated with both weak large-scale and intense small-scale turbulence.
Adams, Allan; Chesler, Paul M; Liu, Hong
2014-04-18
We construct turbulent black holes in asymptotically AdS4 spacetime by numerically solving Einstein's equations. Using the AdS/CFT correspondence we find that both the dual holographic fluid and bulk geometry display signatures of an inverse cascade with the bulk geometry being well approximated by the fluid-gravity gradient expansion. We argue that statistically steady-state black holes dual to d dimensional turbulent flows have horizons whose area growth has a fractal-like structure with fractal dimension D=d+4/3.
Turbulence in Compressible Flows
NASA Technical Reports Server (NTRS)
1997-01-01
Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.
Turbulence distance for laser beams propagating through non-Kolmogorov turbulence.
Huang, Yongping; Zhang, Bin
2013-11-01
Based on the second-order moments and the non-Kolmogorov turbulence spectrum, the general analytical expression for the turbulence distance of laser beams propagating through non-Kolmogorov turbulence is derived, which depends on the non-Kolmogorov turbulence parameters including the generalized exponent parameter α, inner scale l(0), and outer scale L(0) and the initial second-order moments of the beams at the plane of z=0. Taking the partially coherent Hermite-Gaussian linear array (PCHGLA) beam as an illustrative example, the effects of non-Kolmogorov turbulence and array parameters on the turbulence distance are discussed in detail. The results show that the turbulence distance z(Mx)(α) of PCHGLA beams through non-Kolmogorov turbulence first decreases to a dip and then increases with increasing α, and the value of z(Mx)(α) increases with increasing beam number and beam order and decreasing coherence parameter, meaning less influence of non-Kolmogorov turbulence on partially coherent array beams than that of fully coherent array beams and a single partially coherent beam. However, the value of z(Mx)(α) for PCHGLA beams first increases nonmonotonically with the increasing of the relative beam separation x0' for x0'≤1 and increases monotonically as x0' increases for x0'>1. Moreover, the variation behavior of the turbulence distance with the generalized exponent parameter, inner scale, and outer scale of the turbulence and the beam number is similar, but different with the relative beam separation for coherent and incoherent combination cases.
Turbulent transport modelling of separating and reattaching shear flows
NASA Technical Reports Server (NTRS)
Launder, B. E.
1982-01-01
The improvement of capabilities for computer simulation of turbulent recirculating flows was investigated. Attention has been limited to two dimensional flows and principally to statistically stationary motion. Improvement of turbulence modeling explored the treatment of the near wall sublayer and of the exterior fully turbulent region, working within the framework of turbulence closures requiring the solution of transport equations for the turbulence energy and its dissipation rate. The work on the numerical procedure, based on the Gosman-Pun program TEACH, addressed the problems of incorporating the turbulence model as well as the extension to time dependent flows, the incorporation of a third order approximation of convective transport, and the treatment of non-orthogonal boundaries.
Predictive modeling of particle-laden, turbulent flows
Sinclair, J.L.
1992-01-01
The successful prediction of particle-laden, turbulent flows relies heavily on the representation of turbulence in the gas phase. Several types of turbulence models for single-phase gas flow have been developed which compare reasonably well with experimental data. In the present work, a low-Reynolds'' k-[epsilon], closure model is chosen to describe the Reynolds stresses associated with gas-phase turbulence. This closure scheme, which involves transport equations for the turbulent kinetic energy and its dissipation rate, is valid in the turbulent core as well as the viscous sublayer. Several versions of the low-Reynolds k-[epsilon] closure are documented in the literature. However, even those models which are similar in theory often differ considerably in their quantitative and qualitative predictions, making the selection of such a model a difficult task. The purpose of this progress report is to document our findings on the performance of ten different versions of the low-Reynolds k-[epsilon] model on predicting fully developed pipe flow. The predictions are compared with the experimental data of Schildknecht, et al. (1979). With the exception of the model put forth by Hoffman (1975), the predictions of all the closures show reasonable agreement for the mean velocity profile. However, important quantitative differences exist for the turbulent kinetic energy profile. In addition, the predicted eddy viscosity profile and the wall-region profile of the turbulent kinetic energy dissipation rate exhibit both quantitative and qualitative differences. An effort to extend the present comparisons to include experimental measurements of other researchers is recommended in order to further evaluate the performance of the models.
NASA Astrophysics Data System (ADS)
Jaishree, J.; Haworth, D. C.
2012-06-01
Transported probability density function (PDF) methods have been applied widely and effectively for modelling turbulent reacting flows. In most applications of PDF methods to date, Lagrangian particle Monte Carlo algorithms have been used to solve a modelled PDF transport equation. However, Lagrangian particle PDF methods are computationally intensive and are not readily integrated into conventional Eulerian computational fluid dynamics (CFD) codes. Eulerian field PDF methods have been proposed as an alternative. Here a systematic comparison is performed among three methods for solving the same underlying modelled composition PDF transport equation: a consistent hybrid Lagrangian particle/Eulerian mesh (LPEM) method, a stochastic Eulerian field (SEF) method and a deterministic Eulerian field method with a direct-quadrature-method-of-moments closure (a multi-environment PDF-MEPDF method). The comparisons have been made in simulations of a series of three non-premixed, piloted methane-air turbulent jet flames that exhibit progressively increasing levels of local extinction and turbulence-chemistry interactions: Sandia/TUD flames D, E and F. The three PDF methods have been implemented using the same underlying CFD solver, and results obtained using the three methods have been compared using (to the extent possible) equivalent physical models and numerical parameters. Reasonably converged mean and rms scalar profiles are obtained using 40 particles per cell for the LPEM method or 40 Eulerian fields for the SEF method. Results from these stochastic methods are compared with results obtained using two- and three-environment MEPDF methods. The relative advantages and disadvantages of each method in terms of accuracy and computational requirements are explored and identified. In general, the results obtained from the two stochastic methods (LPEM and SEF) are very similar, and are in closer agreement with experimental measurements than those obtained using the MEPDF method
Talbot, L.; Cheng, R.K.
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
NASA Technical Reports Server (NTRS)
Bardina, Jorge E.
1995-01-01
The objective of this work is to develop, verify, and incorporate the baseline two-equation turbulence models which account for the effects of compressibility into the three-dimensional Reynolds averaged Navier-Stokes (RANS) code and to provide documented descriptions of the models and their numerical procedures so that they can be implemented into 3-D CFD codes for engineering applications.
Additional calculations of triton moments
NASA Astrophysics Data System (ADS)
Lally, D. F.; Levinger, J. S.
1982-02-01
The formalism of hyperspherical harmonics is used to calculate several moments of the triton photoeffect for a Volkov potential with Serber exchange. The accuracy of Clare's calculations of moments σ0 and σ1 is improved by including more terms in the hyperspherical harmonic expansion of the potential and of the ground state wave function. The moment σ2=8.9×104 MeV3 mb is calculated using one term in the hyperspherical harmonic expansions of the potential and wave function. We invert four moments and find reasonable agreement with Gorbunov's measurements of the 3He photoeffect. NUCLEAR REACTIONS Triton photoeffect, hyperspherical harmonics, moments of photoeffect, inversion of moments.
Analytical and phenomenological studies of rotating turbulence
NASA Technical Reports Server (NTRS)
Mahalov, Alex; Zhou, YE
1995-01-01
A framework, which combines mathematical analysis, closure theory, and phenomenological treatment, is developed to study the spectral transfer process and reduction of dimensionality in turbulent flows that are subject to rotation. First, we outline a mathematical procedure that is particularly appropriate for problems with two disparate time scales. The approach which is based on the Green's method leads to the Poincare velocity variables and the Poincare transformation when applied to rotating turbulence. The effects of the rotation are now reflected in the modifications to the convolution of a nonlinear term. The Poincare transformed equations are used to obtain a time-dependent analog of the Taylor-Proudman theorem valid in the asymptotic limit when the non-dimensional parameter mu is identical to Omega(t) approaches infinity (Omega is the rotation rate and t is the time). The 'split' of the energy transfer in both direct and inverse directions is established. Secondly, we apply the Eddy-Damped-Quasinormal-Markovian (EDQNM) closure to the Poincare transformed Euler/Navier-Stokes equations. This closure leads to expressions for the spectral energy transfer. In particular, an unique triple velocity decorrelation time is derived with an explicit dependence on the rotation rate. This provides an important input for applying the phenomenological treatment of Zhou. In order to characterize the relative strength of rotation, another non-dimensional number, a spectral Rossby number, which is defined as the ratio of rotation and turbulence time scales, is introduced. Finally, the energy spectrum and the spectral eddy viscosity are deduced.
Can we characterize turbulence in premixed flames?
Lipatnikov, A.N.
2009-06-15
Modeling of premixed turbulent combustion involves averaging reaction rates in turbulent flows. The focus of most approaches to resolving this problem has been placed on determining the dependence of the mean rate w of product creation on the laminar flame speed S{sub L}, the rms turbulence velocity u', etc. The goal of the present work is to draw attention to another issue: May the input quantity u{sup '} for a model of w= w(u'/S{sub L},..) be considered to be known? The point is that heat release substantially affects turbulence and, hence, turbulence characteristics in premixed flames should be modeled. However, standard moment methods for numerically simulating turbulent flows do not allow us to evaluate the true turbulence characteristics in a flame. For instance, the Reynolds stresses in premixed flames are affected not only by turbulence itself, but also by velocity jump across flamelets. A common way to resolving this problem consists of considering the Reynolds stresses conditioned on unburned (or burned) mixture to be the true turbulence characteristics. In the present paper, this widely accepted but never proved hypothesis is put into question, first, by considering simple model constant-density problems (flame motion in an oscillating one-dimensional laminar flow; flame stabilized in a periodic shear, one-dimensional, laminar flow; turbulent mixing). In all the cases, the magnitude of velocity fluctuations, calculated using the conditioned Reynolds stresses, is affected by the intermittency of reactants and products and, hence, is not the true rms velocity. Second, the above claim is further supported by comparing balance equations for the mean and conditioned Reynolds stresses. The conditioned Reynolds stresses do not characterize the true turbulence in flames, because conditional averaging cuts off flow regions characterized by either high or low velocities. (author)
Diagnostic Statistics for the Assessment and Characterization of Complex Turbulent Flows
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1995-01-01
A simple parameterization scheme for a complex turbulent flow using nondimensional parameters coming from the Reynolds stress equations is given. Definitions and brief descriptions of the physical significance of several nondimensional parameters that are used to characterize turbulence from the viewpoint of single-point turbulence closures are given. These nondimensional parameters reflect measures of (1) the spectral band width of the turbulence; (2) deviations from the ideal Kolmogorov behavior; (3) the relative magnitude, orientation, and temporal duration of the deformation to which the turbulence is subjected; (4) one and two-point measures of the large and small scale anisotropy of the turbulence; and (5) inhomogeneity. This is an attempt to create a more systematic methodology for the diagnosis and classification of turbulent flows as well as in the development, validation, and application of turbulence model strategies. The parameters serve also to indicate the adequacy of various assumptions made in single-point turbulence models and in suggesting the appropriate turbulence strategy for a particular complex flow. The compilation will be of interest to experimentalists and to those involved in either computing turbulent flows or whose interests lies in verifying the adequacy of the phenomenological beliefs used in turbulence closures.
Closure and ratio correlation analysis of lunar chemical and grain size data
NASA Technical Reports Server (NTRS)
Butler, J. C.
1976-01-01
Major element and major element plus trace element analyses were selected from the lunar data base for Apollo 11, 12 and 15 basalt and regolith samples. Summary statistics for each of the six data sets were compiled, and the effects of closure on the Pearson product moment correlation coefficient were investigated using the Chayes and Kruskal approximation procedure. In general, there are two types of closure effects evident in these data sets: negative correlations of intermediate size which are solely the result of closure, and correlations of small absolute value which depart significantly from their expected closure correlations which are of intermediate size. It is shown that a positive closure correlation will arise only when the product of the coefficients of variation is very small (less than 0.01 for most data sets) and, in general, trace elements in the lunar data sets exhibit relatively large coefficients of variation.
Turbulent reacting flow computations including turbulence-chemistry interactions
NASA Technical Reports Server (NTRS)
Narayan, J. R.; Girimaji, S. S.
1992-01-01
A two-equation (k-epsilon) turbulence model has been extended to be applicable for compressible reacting flows. A compressibility correction model based on modeling the dilatational terms in the Reynolds stress equations has been used. A turbulence-chemistry interaction model is outlined. In this model, the effects of temperature and species mass concentrations fluctuations on the species mass production rates are decoupled. The effect of temperature fluctuations is modeled via a moment model, and the effect of concentration fluctuations is included using an assumed beta-pdf model. Preliminary results obtained using this model are presented. A two-dimensional reacting mixing layer has been used as a test case. Computations are carried out using the Navier-Stokes solver SPARK using a finite rate chemistry model for hydrogen-air combustion.
Nevada Test Site closure program
Shenk, D.P.
1994-08-01
This report is a summary of the history, design and development, procurement, fabrication, installation and operation of the closures used as containment devices on underground nuclear tests at the Nevada Test Site. It also addresses the closure program mothball and start-up procedures. The Closure Program Document Index and equipment inventories, included as appendices, serve as location directories for future document reference and equipment use.
NASA Technical Reports Server (NTRS)
Acres, W. R.
1980-01-01
Safe reentry of the shuttle orbiter requires that the payload bay doors be closed and securely latched. Since a malfunction in the door drive or bulkhead latch systems could make safe reentry impossible, the requirement to provide tools to manually close and secure the doors was implemented. The tools would disconnect a disabled door or latch closure system and close and secure the doors if the normal system failed. The tools required to perform these tasks have evolved into a set that consists of a tubing cutter, a winch, a latching tool, and a bolt extractor. The design, fabrication, and performance tests of each tool are described.
NASA Technical Reports Server (NTRS)
Rubesin, Morris W.
1987-01-01
Recent developments at several levels of statistical turbulence modeling applicable to aerodynamics are briefly surveyed. Emphasis is on examples of model improvements for transonic, two-dimensional flows. Experience with the development of these improved models is cited to suggest methods of accelerating the modeling process necessary to keep abreast of the rapid movement of computational fluid dynamics into the computation of complex three-dimensional flows.
Moment tensors of ten witwatersrand mine tremors
McGarr, A.
1992-01-01
Ground motions, recorded both underground and on the surface in two of the South African Gold mining districts, were inverted to determine complete moment tensors for 10 mining-induced tremors in the magnitude range 1.9 to 3.3. The resulting moment tensors fall into two separate categories. Seven of the events involve substantial coseismic volumetric reduction-??V together with normal faulting entailing shear deformation ??AD, where the summation is over fault planes of area A and average slip D. For these events the ratio-??V/??AD ranges from 0.58 to 0.92, with an average value of 0.71. For the remaining three events ??V is not significantly different from zero; these events are largely double-couple sources involving normal faulting. Surprisingly, the two types of source mechanism appear to be very distinct in that there is not a continuous distribution of the source mix from ??V=0 to-??V?????AD. Presumably, the coseismic closure indicates substantial interaction between a mine stope and adjacent shear failure in the surrounding rock, under the influence of an ambient stress for which the maximum principal stress is oriented vertically. ?? 1992 Birkha??user Verlag.
System for closure of a physical anomaly
Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S
2014-11-11
Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.
Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames
Chakraborty, Nilanjan; Cant, R.S.
2009-07-15
The behaviour of the turbulent scalar flux in premixed flames has been studied using Direct Numerical Simulation (DNS) with emphasis on the effects of Lewis number in the context of Reynolds-averaged closure modelling. A database was obtained from DNS of three-dimensional freely propagating statistically planar turbulent premixed flames with simplified chemistry and a range of global Lewis numbers from 0.34 to 1.2. Under the same initial conditions of turbulence, flames with low Lewis numbers are found to exhibit counter-gradient transport, whereas flames with higher Lewis numbers tend to exhibit gradient transport. The Reynolds-averaged transport equation for the turbulent scalar flux is analysed in detail and the performance of existing models for the unclosed terms is assessed with respect to corresponding quantities extracted from DNS data. Based on this assessment, existing models which are able to address the effects of non-unity Lewis number on turbulent scalar flux transport are identified, and new or modified models are suggested wherever necessary. In this way, a complete set of closure models for the scalar flux transport equation is prescribed for use in Reynolds-Averaged Navier-Stokes simulations. (author)
THOR Turbulence Electron Analyser: TEA
NASA Astrophysics Data System (ADS)
Fazakerley, Andrew; Moore, Tom; Owen, Chris; Pollock, Craig; Wicks, Rob; Samara, Marilia; Rae, Jonny; Hancock, Barry; Kataria, Dhiren; Rust, Duncan
2016-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Turbulence Electron Analyser (TEA) will measure the plasma electron populations in the mission's Regions of Interest. It will collect a 3D electron velocity distribution with cadences as short as 5 ms. The instrument will be capable of measuring energies up to 30 keV. TEA consists of multiple electrostatic analyser heads arranged so as to measure electrons arriving from look directions covering the full sky, i.e. 4 pi solid angle. The baseline concept is similar to the successful FPI-DES instrument currently operating on the MMS mission. TEA is intended to have a similar angular resolution, but a larger geometric factor. In comparison to earlier missions, TEA improves on the measurement cadence. For example, MMS FPI-DES routinely operates at 30 ms cadence. The objective of measuring distributions at rates as fast as 5 ms is driven by the mission's scientific requirements to resolve electron gyroscale size structures, where plasma heating and fluctuation dissipation is predicted to occur. TEA will therefore be capable of making measurements of the evolution of distribution functions across thin (a few km) current sheets travelling past the spacecraft at up to 600 km/s, of the Power Spectral Density of fluctuations of electron moments and of distributions fast enough to match frequencies with waves expected to be dissipating turbulence (e.g. with 100 Hz whistler waves).
Wittmann, Marc
2011-01-01
It has been suggested that perception and action can be understood as evolving in temporal epochs or sequential processing units. Successive events are fused into units forming a unitary experience or “psychological present.” Studies have identified several temporal integration levels on different time scales which are fundamental for our understanding of behavior and subjective experience. In recent literature concerning the philosophy and neuroscience of consciousness these separate temporal processing levels are not always precisely distinguished. Therefore, empirical evidence from psychophysics and neuropsychology on these distinct temporal processing levels is presented and discussed within philosophical conceptualizations of time experience. On an elementary level, one can identify a functional moment, a basic temporal building block of perception in the range of milliseconds that defines simultaneity and succession. Below a certain threshold temporal order is not perceived, individual events are processed as co-temporal. On a second level, an experienced moment, which is based on temporal integration of up to a few seconds, has been reported in many qualitatively different experiments in perception and action. It has been suggested that this segmental processing mechanism creates temporal windows that provide a logistical basis for conscious representation and the experience of nowness. On a third level of integration, continuity of experience is enabled by working memory in the range of multiple seconds allowing the maintenance of cognitive operations and emotional feelings, leading to mental presence, a temporal window of an individual’s experienced presence. PMID:22022310
Mapping Closure for Hasegawa--Wakatani Dynamics.
NASA Astrophysics Data System (ADS)
Pratt, J.; Krommes, J. A.
2002-11-01
Statistical mapping closures(H.-D. Chen, S. Chen, and R. H. Kraichnan, Phys. Rev. Lett. 63), 2657 (1989). for non-Gaussian probability density functions (PDF's) are formulated and explored for the Hasegawa--Wakatani (HW) equations, a paradigm for strongly turbulent collisional drift waves. Prior published work has focused on scalar nonlinear equations and decaying turbulence. However, the HW equations are a two-field system (for vorticity ω and density n) and include density-gradient drive, so can achieve statistical steady states. Those are nontrivial to obtain in the modeling for two reasons: (i) A physically sensible approximation for the mean of the electrostatic potential conditional on fixed ω and n is required; that is not immediate for non-Gaussian statistics. (ii) Advective stretching must be adequately represented; that requires working with the complicated joint PDF for the fields and their gradients. Progress will be reported; if time permits, predictions of the models will be compared with direct numerical simulations.
FINAL CLOSURE PLAN SURFACE IMPOUNDMENTS CLOSURE, SITE 300
Lane, J E; Scott, J E; Mathews, S E
2004-09-29
Lawrence Livermore National Laboratory of the University of California (LLNL) operates two Class II surface impoundments that store wastewater that is discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater is the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years has significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners are nearing the end of their service life. The purpose of this project is to clean close the surface impoundments and provide new wastewater storage using portable, above ground storage tanks at six locations. The tanks will be installed prior to closure of the impoundments and will include heaters for allowing evaporation during relatively cool weather. Golder Associates (Golder) has prepared this Final Closure Plan (Closure Plan) on behalf of LLNL to address construction associated with the clean closure of the impoundments. This Closure Plan complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR {section}21400). As required by these regulations and guidance, this Plan provides the following information: (1) A site characterization, including the site location, history, current operations, and geology and hydrogeology; (2) The regulatory requirements relevant to clean closure of the impoundments; (3) The closure procedures; and, (4) The procedures for validation and documentation of clean closure.
Fracture mechanics analyses of partial crack closure in shell structures
NASA Astrophysics Data System (ADS)
Zhao, Jun
2007-12-01
This thesis presents the theoretical and finite element analyses of crack-face closure behavior in shells and its effect on the stress intensity factor under a bending load condition. Various shell geometries, such as spherical shell, cylindrical shell containing an axial crack, cylindrical shell containing a circumferential crack and shell with double curvatures, are all studied. In addition, the influence of material orthotropy on the crack closure effect in shells is also considered. The theoretical formulation is developed based on the shallow shell theory of Delale and Erdogan, incorporating the effect of crack-face closure at the compressive edges. The line-contact assumption, simulating the crack-face closure at the compressive edges, is employed so that the contact force at the closure edges is introduced, which can be translated to the mid-plane of the shell, accompanied by an additional distributed bending moment. The unknown contact force is computed by solving a mixed-boundary value problem iteratively, that is, along the crack length, either the normal displacement of the crack face at the compressive edges is equal to zero or the contact pressure is equal to zero. It is found that due to the curvature effects crack closure may not always occur on the entire length of the crack, depending on the direction of the bending load and the geometry of the shell. The crack-face closure influences significantly the magnitude of the stress intensity factors; it increases the membrane component but decreases the bending component. The maximum stress intensity factor is reduced by the crack-face closure. The significant influence of geometry and material orthotropy on rack closure behavior in shells is also predicted based on the analytical solutions. Three-dimensional FEA is performed to validate the theoretical solutions. It demonstrates that the crack face closure occurs actually over an area, not on a line, but the theoretical solutions of the stress intensity
Statistical theory of resistive drift-wave turbulence and transport
Hu, G.; Krommes, J.A.; Bowman, J.C.
1997-06-01
Resistive drift-wave turbulence in a slab geometry is studied by statistical closure methods and direct numerical simulations. The two-field Hasegawa{endash}Wakatani (HW) fluid model, which evolves the electrostatic potential and plasma density self-consistently, is a paradigm for understanding the generic nonlinear behavior of multiple-field plasma turbulence. A gyrokinetic derivation of the HW model is sketched. The recently developed Realizable Markovian Closure (RMC) is applied to the HW model; spectral properties, nonlinear energy transfers, and turbulent transport calculations are discussed. The closure results are also compared to direct numerical simulation results; excellent agreement is found. The transport scaling with the adiabaticity parameter, which measures the strength of the parallel electron resistivity, is analytically derived and understood through weak- and strong-turbulence analyses. No evidence is found to support previous suggestions that coherent structures cause a large depression of saturated transport from its quasilinear value in the hydrodynamic regime of the HW model. Instead, the depression of transport is well explained by the spectral balance equation of the (second-order) statistical closure when account is taken of incoherent noise. {copyright} {ital 1997 American Institute of Physics.}
Evaluation of a turbulent combustion model for internal combustion engine applications
Traci, R.M.; Su, F.Y.
1987-01-01
Multidimensional numerical models of internal combustion engine processes require closure approximations for the effective turbulent reaction rates for the reactive mixture. In this paper, an engineering level approach, called the ''Eddy-Burn-Rate'' model, is proposed which attempts to reconcile the multiscale effects of turbulence on flame propagation. Two rate limiting steps are considered: an entrainment or mixing step and a burn or microscale reaction step. The model treats mixing via a two-equation second order closure turbulence model and defines a time constant for the fuel oxidation reaction based on laminar flame consumption on the Taylor micro-scale. The Eddy-Burn Rate model is evaluated against alternative turbulent reaction rate closure methods as well as data from two different combustion bombs.
The pdf approach to turbulent flow
NASA Technical Reports Server (NTRS)
Kollmann, W.
1990-01-01
This paper provides a detailed discussion of the theory and application of probability density function (pdf) methods, which provide a complete statistical description of turbulent flow fields at a single point or a finite number of points. The basic laws governing the flow of Newtonian fluids are set up in the Eulerian and the Lagrangian frame, and the exact and linear equations for the characteristic functionals in those frames are discussed. Pdf equations in both frames are derived as Fourier transforms of the equations of the characteristic functions. Possible formulations for the nonclosed terms in the pdf equation are discussed, their properties are assessed, and closure modes for the molecular-transport and the fluctuating pressure-gradient terms are reviewed. The application of pdf methods to turbulent combustion flows, supersonic flows, and the interaction of turbulence with shock waves is discussed.
Structure of nonlocality of plasma turbulence
NASA Astrophysics Data System (ADS)
Gürcan, Ö. D.; Vermare, L.; Hennequin, P.; Berionni, V.; Diamond, P. H.; Dif-Pradalier, G.; Garbet, X.; Ghendrih, P.; Grandgirard, V.; McDevitt, C. J.; Morel, P.; Sarazin, Y.; Storelli, A.; Bourdelle, C.; the Tore Supra Team
2013-07-01
Various indications on the weakly nonlocal character of turbulent plasma transport both from experimental fluctuation measurements from Tore Supra and observations from the full-f, flux-driven gyrokinetic code GYSELA are reported. A simple Fisher equation model of this weakly nonlocal dynamics can be formulated in terms of an evolution equation for the turbulent entropy density, which contains the basic phenomenon of radial turbulence spreading in addition to avalanche-like dynamics via coupling to profile modulations. A derivation of this model, which contains the so-called beach effect, a diffusive and convective flux components for the flux of turbulence intensity, in addition to linear group propagation is given, starting from the drift-kinetic equation. The proposed model has the form of a transport equation for turbulence intensity, and may be considered as an addition to transport modelling. The kinetic fluxes given, can be computed using model closures, or local gyrokinetics. The model is also used in a particular setup that represents the near edge region as a relatively stable zone between the core and edge region where the energy injection is locally more substantial. It is observed that with constant, physical coefficients, the model gives a convincing qualitative profile of fluctuation intensity when the turbulence is coming from the core region with either a group velocity or a convective flux.
Spectral Analysis of Cluster Induced Turbulence
NASA Astrophysics Data System (ADS)
Patel, Ravi; Ireland, Peter; Capecelatro, Jesse; Fox, Rodney; Desjardins, Olivier
2015-11-01
Particle laden turbulent flows are an important feature of many industrial processes such as fluidized bed reactors. The study of cluster-induced turbulence (CIT), wherein particles falling under gravity generate turbulence in the carrier gas via fluctuations in particle concentration, may lead to better models for these processes. We present a spectral analysis of a database of statistically stationary CIT simulations. These simulations were previously performed using a two way coupled Eulerian-Lagrangian approach for various mass loadings and particle-scale Reynolds numbers. The Lagrangian particle data is carefully filtered to obtain Eulerian fields for particle phase volume fraction, velocity, and granular temperature. We perform a spectral decomposition of the particle and fluid turbulent kinetic energy budget. We investigate the contributions to the particle and fluid turbulent kinetic energy by pressure strain, viscous dissipation, drag exchange, viscous exchange, and pressure exchange over the range of wavenumbers. Results from this study may help develop closure models for large eddy simulation of particle laden turbulent flows.
Comparative Study of Advanced Turbulence Models for Turbomachinery
NASA Technical Reports Server (NTRS)
Hadid, Ali H.; Sindir, Munir M.
1996-01-01
A computational study has been undertaken to study the performance of advanced phenomenological turbulence models coded in a modular form to describe incompressible turbulent flow behavior in two dimensional/axisymmetric and three dimensional complex geometry. The models include a variety of two equation models (single and multi-scale k-epsilon models with different near wall treatments) and second moment algebraic and full Reynolds stress closure models. These models were systematically assessed to evaluate their performance in complex flows with rotation, curvature and separation. The models are coded as self contained modules that can be interfaced with a number of flow solvers. These modules are stand alone satellite programs that come with their own formulation, finite-volume discretization scheme, solver and boundary condition implementation. They will take as input (from any generic Navier-Stokes solver) the velocity field, grid (structured H-type grid) and computational domain specification (boundary conditions), and will deliver, depending on the model used, turbulent viscosity, or the components of the Reynolds stress tensor. There are separate 2D/axisymmetric and/or 3D decks for each module considered. The modules are tested using Rocketdyn's proprietary code REACT. The code utilizes an efficient solution procedure to solve Navier-Stokes equations in a non-orthogonal body-fitted coordinate system. The differential equations are discretized over a finite-volume grid using a non-staggered variable arrangement and an efficient solution procedure based on the SIMPLE algorithm for the velocity-pressure coupling is used. The modules developed have been interfaced and tested using finite-volume, pressure-correction CFD solvers which are widely used in the CFD community. Other solvers can also be used to test these modules since they are independently structured with their own discretization scheme and solver methodology. Many of these modules have been
Conservational PDF Equations of Turbulence
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liu, Nan-Suey
2010-01-01
Recently we have revisited the traditional probability density function (PDF) equations for the velocity and species in turbulent incompressible flows. They are all unclosed due to the appearance of various conditional means which are modeled empirically. However, we have observed that it is possible to establish a closed velocity PDF equation and a closed joint velocity and species PDF equation through conditions derived from the integral form of the Navier-Stokes equations. Although, in theory, the resulted PDF equations are neither general nor unique, they nevertheless lead to the exact transport equations for the first moment as well as all higher order moments. We refer these PDF equations as the conservational PDF equations. This observation is worth further exploration for its validity and CFD application
40 CFR 264.197 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 264.197... Tank Systems § 264.197 Closure and post-closure care. (a) At closure of a tank system, the owner or..., then the owner or operator must close the tank system and perform post-closure care in accordance...
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the closure and post-closure requirements that apply to landfills (40 CFR 264.310). ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 265... post-closure care. (a) At closure of a magazine or unit which stored hazardous waste under this...
40 CFR 265.258 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 265.258... DISPOSAL FACILITIES Waste Piles § 265.258 Closure and post-closure care. (a) At closure, the owner or... or decontaminated, he must close the facility and perform post-closure care in accordance with...
40 CFR 265.197 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 265.197... DISPOSAL FACILITIES Tank Systems § 265.197 Closure and post-closure care. (a) At closure of a tank system..., then the owner or operator must close the tank system and perform post-closure care in accordance...
Rapid Distortion Theory in astrophysical turbulence
NASA Astrophysics Data System (ADS)
Safonov, Sergey; Petrosyan, Arakel
2016-04-01
In this report, we study statistical properties of astrophysical turbulent plasma flows using Rapid Distortion Theory (RDT). The core assumption is that the turbulence responds to the external distortion so fast, that inertial and viscous forces result in a negligible change in velocity distribution. Thus it is assumed that the response to the external effect takes place in the time interval much smaller than turbulence decay time. This allows to linearize equations and to derive equations for second moments of turbulence. We apply RDT to incompressible turbulent MHD flows distorted with external magnetic field and linear velocity shear in cases of rotating and non-rotating plasma. It is shown that even with a strong nonlinearity many properties of turbulence can be qualitatively studied using a linear theory. A closed system of linear equations for velocity and magnetic field fluctuations is derived. Development of initially isotropic turbulence and transition to anisotropy are studied. Equations for fluid, current and cross helicity are derived. Differences in cases of rotating and non-rotating flows are discussed. Changes introduced by considering Hall effect are discussed.
Plasma sheet turbulence observed by Cluster II
NASA Technical Reports Server (NTRS)
Weygand, James M.; Kivelson, M. G.; Khurana, K. K.; Schwarzl, H. K.; Thompson, S. M.; McPherron, R. L.; Balogh, A.; Kistler, L. M.; Goldstein, M. L.; Borovsky, J.
2005-01-01
Cluster fluxgate magnetometer (FGM) and ion spectrometer (CIS) data are employed to analyze magnetic field fluctuations within the plasma sheet during passages through the magnetotail region in the summers of 2001 and 2002 and, in particular, to look for characteristics of magnetohydrodynamic (MHD) turbulence. Power spectral indices determined from power spectral density functions are on average larger than Kolmogorov's theoretical value for fluid turbulence as well as Kraichnan's theoretical value for MHD plasma turbulence. Probability distribution functions of the magnetic fluctuations show a scaling law over a large range of temporal scales with non-Gaussian distributions at small dissipative scales and inertial scales and more Gaussian distribution at large driving scales. Furthermore, a multifractal analysis of the magnetic field components shows scaling behavior in the inertial range of the fluctuations from about 20 s to 13 min for moments through the fifth order. Both the scaling behavior of the probability distribution functions and the multifractal structure function suggest that intermittent turbulence is present within the plasma sheet. The unique multispacecraft aspect and fortuitous spacecraft spacing allow us to examine the turbulent eddy scale sizes. Dynamic autocorrelation and cross correlation analysis of the magnetic field components allow us to determine that eddy scale sizes fit within the plasma sheet. These results suggest that magnetic field turbulence is occurring within the plasma sheet resulting in turbulent energy dissipation.
Forces and moments on a slender, cavitating body
Hailey, C.E.; Clark, E.L.; Buffington, R.J.
1988-01-01
Recently a numerical code has been developed at Sandia National Laboratories to predict the pitching moment, normal force, and axial force of a slender, supercavitating shape. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements. The cavity surface is assumed to be a constant pressure streamline, extending beyond the base of the model. Slender body approximation is used to model the crossflow for small angles of attack. A significant extension of previous work in cavitation flow is the inclusion of laminar and turbulent boundary layer solutions on the body. Predictions with this code, for axial force at zero angle of attack, show good agreement with experiments. There are virtually no published data availble with which to benchmark the pitching moment and normal force predictions. An experiment was designed to measure forces and moments on a supercavitation shape. The primary reason for the test was to obtain much needed data to benchmark the hydrodynamic force and moment predictions. Since the numerical prediction is for super cavitating shapes at very small cavitation numbers, the experiment was designed to be a ventilated cavity test. This paper describes the experimental procedure used to measure the pitching moment, axial and normal forces, and base pressure on a slender body with a ventilated cavity. Limited results are presented for pitching moment and normal force. 5 refs., 7 figs.
27 CFR 19.523 - Affixing closures.
Code of Federal Regulations, 2011 CFR
2011-04-01
... OF THE TREASURY LIQUORS DISTILLED SPIRITS PLANTS Liquor Bottle, Label, and Closure Requirements Closure Requirements § 19.523 Affixing closures. Each bottle or other container of spirits having...
40 CFR 258.60 - Closure criteria.
Code of Federal Regulations, 2010 CFR
2010-07-01
... MUNICIPAL SOLID WASTE LANDFILLS Closure and Post-Closure Care § 258.60 Closure criteria. (a) Owners or... (a)(2) of this section, and (2) An erosion layer that provides equivalent protection from wind...
Assessment of dynamic closure for premixed combustion large eddy simulation
NASA Astrophysics Data System (ADS)
Langella, Ivan; Swaminathan, Nedunchezhian; Gao, Yuan; Chakraborty, Nilanjan
2015-09-01
Turbulent piloted Bunsen flames of stoichiometric methane-air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour.
Numerical simulation of large hyperbolic moment systems with linear and relaxation production terms
NASA Astrophysics Data System (ADS)
Cai, Zhenning; Torrilhon, Manuel
2014-12-01
A numerical method solving moment equations with a large number of moments in the gas kinetic theory is presented. The distribution function is expanded in series with the product of Laguerre polynomials and spherical harmonics as basis functions, and a special moment closure is applied to achieve global hyperbolicity. The linear collision terms, including the BGK model, the Shakhov model and the linearized hard-sphere model are considered. Numerical results are validated by comparison with the DSMC results, and the differences between various collision models are exhibited.
Closedure - Mine Closure Technologies Resource
NASA Astrophysics Data System (ADS)
Kauppila, Päivi; Kauppila, Tommi; Pasanen, Antti; Backnäs, Soile; Liisa Räisänen, Marja; Turunen, Kaisa; Karlsson, Teemu; Solismaa, Lauri; Hentinen, Kimmo
2015-04-01
Closure of mining operations is an essential part of the development of eco-efficient mining and the Green Mining concept in Finland to reduce the environmental footprint of mining. Closedure is a 2-year joint research project between Geological Survey of Finland and Technical Research Centre of Finland that aims at developing accessible tools and resources for planning, executing and monitoring mine closure. The main outcome of the Closedure project is an updatable wiki technology-based internet platform (http://mineclosure.gtk.fi) in which comprehensive guidance on the mine closure is provided and main methods and technologies related to mine closure are evaluated. Closedure also provides new data on the key issues of mine closure, such as performance of passive water treatment in Finland, applicability of test methods for evaluating cover structures for mining wastes, prediction of water effluents from mine wastes, and isotopic and geophysical methods to recognize contaminant transport paths in crystalline bedrock.
NASA Astrophysics Data System (ADS)
Wilde, B. H.; Rosen, P. A.; Foster, J. M.; Perry, T. S.; Steinkamp, M. J.; Robey, H. F.; Khokhlov, A. M.; Gittings, M. L.; Coker, R. F.; Keiter, P. A.; Knauer, J. P.; Drake, R. P.; Remington, B. A.; Bennett, G. R.; Sinars, D. B.; Campbell, R. B.; Mehlhorn, T. A.
2003-10-01
Over the last few years we have fielded numerous supersonic jet experiments on the NOVA and OMEGA lasers and Sandia's pulsed-power Z-machine in a collaboration between Los Alamos National Laboratory, the Atomic Weapons Establishment, Lawrence Livermore National Laboratory, and Sandia National Laboratory. These experiments are being conducted to help validate our radiation-hydrodynamic codes, especially the newly developing ASC codes. One of the outstanding questions is whether these types of jets should turn turbulent given their high Reynolds number. Recently we have modified our experiments to have more Kelvin-Helmholtz shear, run much later in time and therefore have a better chance of going turbulent. In order to diagnose these large (several mm) jets at very late times ( 1000 ns) we are developing point-projection imaging on both the OMEGA laser, the Sandia Z-Machine, and ultimately at NIF. Since these jets have similar Euler numbers to jets theorized to be produced in supernovae explosions, we are also collaborating with the astrophysics community to help in the validation of their new codes. This poster will present a review of the laser and pulsed-power experiments and a comparison of the data to simulations by the codes from the various laboratories. We will show results of simulations wherein these jets turn highly 3-dimensional and show characteristics of turbulence. With the new data, we hope to be able to validate the sub-grid-scale turbulent mix models (e. g. BHR) that are being incorporated into our codes.*This work is performed under the auspices of the U. S. Department of Energy by the Los Alamos National Laboratory Laboratory under Contract No. W-7405-ENG-36, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48, the Laboratory for Laser Energetics under Contract No. DE-FC03-92SF19460, Sandia National Laboratories under Contract No. DE-AC04-94AL85000, the Office of Naval Research, and the NASA Astrophysical Theory Grant.
Particle-Generated Turbulence in Dispersed Homogeneous Flows
NASA Astrophysics Data System (ADS)
Chen, J.-H.; Faeth, G. M.; Wu, J.-S.
1998-11-01
Homogeneous turbulence generated by uniform fluxes of monodisperse spherical particles moving through a uniform flowing gas was studied, motivated by the importance of this turbulence production mechanism for dense sprays, bubbly flows, rainstorms and the like. Measurements of phase velocities, moments, probability density functions, temporal power spectra, spatial integral scales and particle fluxes were obtained using phase-discriminating laser velocimetry and particle sampling in a counterflowing particle/air wind tunnel. Instantaneous velocity records showed that particle wake disturbances were the same as the properties of laminar-like turbulent wakes that have been observed for particle wakes at intermediate Reynolds numbers in turbulent environments. Relative turbulence intensities are proportional to the square-root of particle kinetic energy dissipation rates, in accord with simple stochastic theory. Other properties, however, exhibit complex behavior due to contributions from both particle wakes and interwake turbulence.
Moment equations and dynamics of a household SIS epidemiological model.
Hiebeler, David
2006-08-01
An SIS epidemiological model of individuals partitioned into households is studied, where infections take place either within or between households, the latter generally happening much less frequently. The model is explored using stochastic spatial simulations, as well as mathematical models which consist of an infinite system of ordinary differential equations for the moments of the distribution describing the proportions of individuals who are infectious among households. Various moment-closure approximations are used to truncate the system of ODEs to finite systems of equations. These approximations can sometimes lead to a system of ill-behaved ODEs which predict moments which become negative or unbounded. A reparametrization of the ODEs is then developed, which forces all moments to satisfy necessary constraints. Changing the proportion of contacts within and between households does not change the endemic equilibrium, but does affect the amount of time it takes to approach the fixed point; increasing the proportion of contacts within households slows the spread of the infection toward endemic equilibrium. The system of moment equations does describe this phenomenon, although less accurately in the limit as the proportion of between-household contacts approaches zero. The results indicate that although controlling the movement of individuals does not affect the long-term frequency of an infection with SIS dynamics, it can have a large effect on the time-scale of the dynamics, which may provide an opportunity for other controls such as immunizations to be applied.
NASA Astrophysics Data System (ADS)
Wang, Liang; Hakim, Ammar H.; Bhattacharjee, A.; Germaschewski, K.
2015-01-01
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.
Wang, Liang Germaschewski, K.; Hakim, Ammar H.; Bhattacharjee, A.
2015-01-15
We introduce an extensible multi-fluid moment model in the context of collisionless magnetic reconnection. This model evolves full Maxwell equations and simultaneously moments of the Vlasov-Maxwell equation for each species in the plasma. Effects like electron inertia and pressure gradient are self-consistently embedded in the resulting multi-fluid moment equations, without the need to explicitly solving a generalized Ohm's law. Two limits of the multi-fluid moment model are discussed, namely, the five-moment limit that evolves a scalar pressures for each species and the ten-moment limit that evolves the full anisotropic, non-gyrotropic pressure tensor for each species. We first demonstrate analytically and numerically that the five-moment model reduces to the widely used Hall magnetohydrodynamics (Hall MHD) model under the assumptions of vanishing electron inertia, infinite speed of light, and quasi-neutrality. Then, we compare ten-moment and fully kinetic particle-in-cell (PIC) simulations of a large scale Harris sheet reconnection problem, where the ten-moment equations are closed with a local linear collisionless approximation for the heat flux. The ten-moment simulation gives reasonable agreement with the PIC results regarding the structures and magnitudes of the electron flows, the polarities and magnitudes of elements of the electron pressure tensor, and the decomposition of the generalized Ohm's law. Possible ways to improve the simple local closure towards a nonlocal fully three-dimensional closure are also discussed.
Alyami, Mohammad S.; Lundberg, Peter W.; Cotte, Eddy G.; Glehen, Olivier J.
2016-01-01
Iatrogenic ileostomies are routinely placed during colorectal surgery for the diversion of intestinal contents to permit healing of the distal anastomosis prior to elective reversal. We present an interesting case of spontaneous closure of a diverting ileostomy without any adverse effects to the patient. A 65-year-old woman, positive for hereditary non-polyposis colorectal cancer type-I, with locally invasive cancer of the distal colon underwent en-bloc total colectomy, hysterectomy, and bilateral salpingoophorectomy with creation of a proximal loop ileostomy. The ostomy temporarily closed without reoperation at 10 weeks, after spontaneously reopening, it definitively closed, again without surgical intervention at 18 weeks following the original surgery. This rare phenomenon has occurred following variable colorectal pathology and is poorly understood, particularly in patients with aggressive disease and adjunct perioperative interventions. PMID:27279518
Noce, T.E.; Holzer, T.L.
2003-01-01
The long-term stability of deep holes 1.75 inches. (4.4 cm) in diameter by 98.4 feet (30 m) created by cone penetration testing (CPT) was monitored at a site in California underlain by Holocene and Pleistocene age alluvial fan deposits. Portions of the holes remained open both below and above the 28.6-foot (8.7 m)-deep water table for approximately three years, when the experiment was terminated. Hole closure appears to be a very slow process that may take decades in the stiff soils studied here. Other experience suggests holes in softer soils may also remain open. Thus, despite their small diameter, CPT holes may remain open for years and provide paths for rapid migration of contaminants. The observations confirm the need to grout holes created by CPT soundings as well as other direct-push techniques in areas where protection of shallow ground water is important.
Inverse cascade of magnetic helicity in magnetohydrodynamic turbulence.
Müller, Wolf-Christian; Malapaka, Shiva Kumar; Busse, Angela
2012-01-01
The nonlinear dynamics of magnetic helicity HM, which is responsible for large-scale magnetic structure formation in electrically conducting turbulent media, is investigated in forced and decaying three-dimensional magnetohydrodynamic turbulence. This is done with the help of high-resolution direct numerical simulations and statistical closure theory. The numerically observed spectral scaling of HM is at variance with earlier work using a statistical closure model [Pouquet et al., J. Fluid Mech. 77, 321 (1976)]. By revisiting this theory, a universal dynamical balance relation is found that includes the effects of kinetic helicity as well as kinetic and magnetic energies on the inverse cascade of HM and explains the above-mentioned discrepancy. Consideration of the result in the context of mean-field dynamo theory suggests a nonlinear modification of the α-dynamo effect, which is important in the context of magnetic-field excitation in turbulent plasmas.
On explicit algebraic stress models for complex turbulent flows
NASA Technical Reports Server (NTRS)
Gatski, T. B.; Speziale, C. G.
1992-01-01
Explicit algebraic stress models that are valid for three-dimensional turbulent flows in noninertial frames are systematically derived from a hierarchy of second-order closure models. This represents a generalization of the model derived by Pope who based his analysis on the Launder, Reece, and Rodi model restricted to two-dimensional turbulent flows in an inertial frame. The relationship between the new models and traditional algebraic stress models -- as well as anistropic eddy visosity models -- is theoretically established. The need for regularization is demonstrated in an effort to explain why traditional algebraic stress models have failed in complex flows. It is also shown that these explicit algebraic stress models can shed new light on what second-order closure models predict for the equilibrium states of homogeneous turbulent flows and can serve as a useful alternative in practical computations.
NASA Technical Reports Server (NTRS)
Hsu, Andrew T.
1992-01-01
Turbulent combustion can not be simulated adequately by conventional moment closure turbulent models. The probability density function (PDF) method offers an attractive alternative: in a PDF model, the chemical source terms are closed and do not require additional models. Because the number of computational operations grows only linearly in the Monte Carlo scheme, it is chosen over finite differencing schemes. A grid dependent Monte Carlo scheme following J.Y. Chen and W. Kollmann has been studied in the present work. It was found that in order to conserve the mass fractions absolutely, one needs to add further restrictions to the scheme, namely alpha(sub j) + gamma(sub j) = alpha(sub j - 1) + gamma(sub j + 1). A new algorithm was devised that satisfied this restriction in the case of pure diffusion or uniform flow problems. Using examples, it is shown that absolute conservation can be achieved. Although for non-uniform flows absolute conservation seems impossible, the present scheme has reduced the error considerably.
Turbulence Heating ObserveR - THOR
NASA Astrophysics Data System (ADS)
Retino, Alessandro; Marcucci, Maria FedericaFederica; Vaivads, Andris; Escoubet, C. Philippe; Khotyaintsev, Yuri; Fazakerley, Andrew; Soucek, Jan; Gehler, Martin; Lavraud, Benoit; Vainio, Rami; Valentini, Francesco; Chen, Christopher H. K.; Narita, Yasuhito; Wielders, Arno
2016-07-01
Turbulent fluctuations are ubiquitous in astrophysical plasmas and reach up to scales as large as stars, bubbles or clouds blown out by stellar winds, or even entire galaxies. However, most of the irreversible energy dissipation produced by turbulent fluctuations occurs at very small scales, the so-called kinetic scales, where the plasma no longer behaves as a fluid and the properties of individual plasma species (electrons, protons, and other ions) become important. The heating of different plasma species as well as the acceleration of particles to high energies are governed by kinetic processes which determine how the turbulent electromagnetic fluctuations dissipate. Thus, processes at kinetic scales directly affect the large-scale properties of astrophysical plasmas. Turbulence Heating ObserveR (THOR) is the first mission ever flown in space fully dedicated to study plasma turbulent fluctuations and associated energization mechanisms. It will explore the kinetic plasma processes that determine the fundamental behavior of the majority of baryonic matter in the universe. THOR will lead to an understanding of the basic plasma heating and particle acceleration mechanisms, of their effect on different plasma species and of their relative importance in different turbulent regimes. THOR will provide closure of these fundamental questions by making detailed in situ measurements of the closest available dilute and turbulent magnetized plasmas at unprecedented temporal and spatial resolution. THOR focuses on particular regions in space: the pristine solar wind, the Earth's bow shock and interplanetary shocks, and the compressed solar wind regions downstream of shocks. These regions are selected because of their different turbulence properties, and reflect similar astrophysical environments. THOR is a candidate for selection as the next ESA M4 mission. Here we present THOR's science as well as the results of the ongoing mission study, currently undertaken at ESA.
MEANS: python package for Moment Expansion Approximation, iNference and Simulation
Fan, Sisi; Geissmann, Quentin; Lakatos, Eszter; Lukauskas, Saulius; Ale, Angelique; Babtie, Ann C.; Kirk, Paul D. W.; Stumpf, Michael P. H.
2016-01-01
Motivation: Many biochemical systems require stochastic descriptions. Unfortunately these can only be solved for the simplest cases and their direct simulation can become prohibitively expensive, precluding thorough analysis. As an alternative, moment closure approximation methods generate equations for the time-evolution of the system’s moments and apply a closure ansatz to obtain a closed set of differential equations; that can become the basis for the deterministic analysis of the moments of the outputs of stochastic systems. Results: We present a free, user-friendly tool implementing an efficient moment expansion approximation with parametric closures that integrates well with the IPython interactive environment. Our package enables the analysis of complex stochastic systems without any constraints on the number of species and moments studied and the type of rate laws in the system. In addition to the approximation method our package provides numerous tools to help non-expert users in stochastic analysis. Availability and implementation: https://github.com/theosysbio/means Contacts: m.stumpf@imperial.ac.uk or e.lakatos13@imperial.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153663
Reynolds stress closure in jet flows using wave models
NASA Technical Reports Server (NTRS)
Morris, P. J.
1988-01-01
Ways of implementing the turbulence closure scheme based on modeling the large scale coherent structures as instability waves were sought. The computational tools necessary to apply this scheme to jets of arbitrary geometry were developed. The model, developed earlier, was extended to the shock structure of supersonic jets of arbitrary geometry and multiple jets. It was found that though the qualititate features of the unsteady flow field could be predicted there were always difficulties with some of the quantitative features. This led to the new formation of the closure scheme. The schemes for computations tools which were developed are efficient and represent the application of the very powerful mathematical tools to the problems of practical significance.
Accelerated Tank Closure Demonstration Project
SAMS, T.L.
2003-02-01
Among the highest priorities for action under the ''Hanford Federal Facility and Agreement and Consent Order'', hereafter referred to as the Tri-Party Agreement, is the retrieval, treatment and disposal of Hanford Site tank waste. Tank waste is recognized as one of the primary threats to the Columbia River and one of the most complex technical challenges. Progress has been made in resolving safety issues, characterizing tank waste and past tank leaks, enhancing double-shell tank waste transfer and operations systems, retrieving single-shell tank waste, deploying waste treatment facilities, and planning for the disposal of immobilized waste product. However, limited progress has been made in developing technologies and providing a sound technical basis for tank system closure. To address this limitation the Accelerated Tank Closure Demonstration Project was created to develop information through technology demonstrations in support of waste retrieval and closure decisions. To complete its mission the Accelerated Tank Closure Demonstration Project has adopted performance objectives that include: protecting human health and the environment; minimizing/eliminating potential waste releases to the soil and groundwater; preventing water infiltration into the tank; maintaining accessibility of surrounding tanks for future closure; maintaining tank structural integrity; complying with applicable waste retrieval, disposal, and closure regulations; and maintaining flexibility for final closure options in the future.
Inquiry-Based Science: Turning Teachable Moments into Learnable Moments
ERIC Educational Resources Information Center
Haug, Berit S.
2014-01-01
This study examines how an inquiry-based approach to teaching and learning creates teachable moments that can foster conceptual understanding in students, and how teachers capitalize upon these moments. Six elementary school teachers were videotaped as they implemented an integrated inquiry-based science and literacy curriculum in their…
Progress in turbulence modeling for complex flow fields including effects of compressibility
NASA Technical Reports Server (NTRS)
Wilcox, D. C.; Rubesin, M. W.
1980-01-01
Two second-order-closure turbulence models were devised that are suitable for predicting properties of complex turbulent flow fields in both incompressible and compressible fluids. One model is of the "two-equation" variety in which closure is accomplished by introducing an eddy viscosity which depends on both a turbulent mixing energy and a dissipation rate per unit energy, that is, a specific dissipation rate. The other model is a "Reynolds stress equation" (RSE) formulation in which all components of the Reynolds stress tensor and turbulent heat-flux vector are computed directly and are scaled by the specific dissipation rate. Computations based on these models are compared with measurements for the following flow fields: (a) low speed, high Reynolds number channel flows with plane strain or uniform shear; (b) equilibrium turbulent boundary layers with and without pressure gradients or effects of compressibility; and (c) flow over a convex surface with and without a pressure gradient.
NASA Astrophysics Data System (ADS)
Corsini, A.; Rispoli, F.; Santoriello, A.; Tezduyar, T. E.
2006-09-01
Recent advances in turbulence modeling brought more and more sophisticated turbulence closures (e.g. k-ɛ, k-ɛ - v 2- f, Second Moment Closures), where the governing equations for the model parameters involve advection, diffusion and reaction terms. Numerical instabilities can be generated by the dominant advection or reaction terms. Classical stabilized formulations such as the Streamline Upwind/Petrov Galerkin (SUPG) formulation (Brook and Hughes, comput methods Appl Mech Eng 32:199 255, 1982; Hughes and Tezduyar, comput methods Appl Mech Eng 45: 217 284, 1984) are very well suited for preventing the numerical instabilities generated by the dominant advection terms. A different stabilization however is needed for instabilities due to the dominant reaction terms. An additional stabilization term, called the diffusion for reaction-dominated (DRD) term, was introduced by Tezduyar and Park (comput methods Appl Mech Eng 59:307 325, 1986) for that purpose and improves the SUPG performance. In recent years a new class of variational multi-scale (VMS) stabilization (Hughes, comput methods Appl Mech Eng 127:387 401, 1995) has been introduced, and this approach, in principle, can deal with advection diffusion reaction equations. However, it was pointed out in Hanke (comput methods Appl Mech Eng 191:2925 2947) that this class of methods also need some improvement in the presence of high reaction rates. In this work we show the benefits of using the DRD operator to enhance the core stabilization techniques such as the SUPG and VMS formulations. We also propose a new operator called the DRDJ (DRD with the local variation jump) term, targeting the reduction of numerical oscillations in the presence of both high reaction rates and sharp solution gradients. The methods are evaluated in the context of two stabilized methods: the classical SUPG formulation and a recently-developed VMS formulation called the V-SGS (Corsini et al. comput methods Appl Mech Eng 194:4797 4823, 2005
40 CFR 265.280 - Closure and post-closure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... contaminants caused by wind erosion; and (4) Compliance with § 265.276 concerning the growth of food-chain... unit as appropriate for its post-closure use; (3) Assure that growth of food chain crops complies...
40 CFR 265.280 - Closure and post-closure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... contaminants caused by wind erosion; and (4) Compliance with § 265.276 concerning the growth of food-chain... unit as appropriate for its post-closure use; (3) Assure that growth of food chain crops complies...
40 CFR 265.280 - Closure and post-closure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... contaminants caused by wind erosion; and (4) Compliance with § 265.276 concerning the growth of food-chain... unit as appropriate for its post-closure use; (3) Assure that growth of food chain crops complies...
NASA Technical Reports Server (NTRS)
Kim, S.-W.; Chen, C.-P.
1989-01-01
A multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method is presented. In the model, the effect of the ratio of the production rate to the dissipation rate on eddy viscosity is modeled by use of the multiple-time-scales and a variable partitioning of the turbulent kinetic energy spectrum. The concept of a variable partitioning of the turbulent kinetic energy spectrum and the rest of the model details are based on the previously reported algebraic stress turbulence model. Example problems considered include: a fully developed channel flow, a plane jet exhausting into a moving stream, a wall jet flow, and a weakly coupled wake-boundary layer interaction flow. The computational results compared favorably with those obtained by using the algebraic stress turbulence model as well as experimental data. The present turbulence model, as well as the algebraic stress turbulence model, yielded significantly improved computational results for the complex turbulent boundary layer flows, such as the wall jet flow and the wake boundary layer interaction flow, compared with available computational results obtained by using the standard kappa-epsilon turbulence model.
Not Available
1994-01-01
This report has been prepared to satisfy Section 3156(b) of Public Law 101-189 (Reports in Connection with Permanent Closures of Department of Energy Defense Nuclear Facilities), which requires submittal of a Closure Report to Congress by the Secretary of Energy upon the permanent cessation of production operations at a US Department of Energy (DOE) defense nuclear facility (Watkins 1991). This closure report provides: (1) A complete survey of the environmental problems at the facility; (2) Budget quality data indicating the cost of environmental restoration and other remediation and cleanup efforts at the facility; (3) A proposed cleanup schedule.
[Angle-closure chronic glaucoma].
Lachkar, Y
2003-10-01
The incidence of chronic angle closure glaucoma is considerably greater than the incidence of the acute type. This type of glaucoma may mimic primary open angle glaucoma with visual field deterioration, optic nerve alteration and intraocular pressure elevation with a quiet painless eye. Its diagnosis is based on indentation gonioscopy showing peripheral anterior synechiae. The mechanisms of angle closure are the pupillary block, the plateau iris configuration and the creeping form. The treatment of chronic angle closure glaucoma is based on laser peripheral iridotomy. PMID:14646832
Common omissions and misconceptions of wave propagation in turbulence: discussion.
Charnotskii, Mikhail
2012-05-01
This review paper addresses typical mistakes and omissions that involve theoretical research and modeling of optical propagation through atmospheric turbulence. We discuss the disregard of some general properties of narrow-angle propagation in refractive random media, the careless use of simplified models of turbulence, and omissions in the calculations of the second moment of the propagating wave. We also review some misconceptions regarding short-exposure imaging, propagation of polarized waves, and calculations of the scintillation index of the beam waves.
Turbulence modeling for hypersonic flows
NASA Technical Reports Server (NTRS)
Marvin, J. G.; Coakley, T. J.
1989-01-01
Turbulence modeling for high speed compressible flows is described and discussed. Starting with the compressible Navier-Stokes equations, methods of statistical averaging are described by means of which the Reynolds-averaged Navier-Stokes equations are developed. Unknown averages in these equations are approximated using various closure concepts. Zero-, one-, and two-equation eddy viscosity models, algebraic stress models and Reynolds stress transport models are discussed. Computations of supersonic and hypersonic flows obtained using several of the models are discussed and compared with experimental results. Specific examples include attached boundary layer flows, shock wave boundary layer interactions and compressible shear layers. From these examples, conclusions regarding the status of modeling and recommendations for future studies are discussed.
B.B. Rokhman
2007-09-15
This article considers the Eulerian continuum description of turbulent transfer of momentum and moment of momentum in a solid phase on the basis of the equations of transfer of the second and third moments of pulsations of the linear and angular velocities of particles. The pulsating characteristics of a gas are computed using the two-parameter model of turbulence generalized to the case of gas-dispersed turbulent flows.
Disturbance Dynamics in Transitional and Turbulent Flows
NASA Technical Reports Server (NTRS)
Grosch, Chester E.
1999-01-01
In order to expand the predictive capability of single-point turbulence closure models to account for the early-stage transition regime, a methodology for the formulation and calibration of model equations for the ensemble-averaged disturbance kinetic energy and energy dissipation rate is presented. First the decay of laminar disturbances and turbulence in mean shear-free flows is studied. In laminar flows, such disturbances are linear superpositions of modes governed by the Orr-Sommerfeld equation. In turbulent flows, disturbances are described through transport equations for representative mean quantities. The link between a description based on a deterministic evolution equation and a probability based mean transport equation is established. Because an uncertainty in initial conditions exists in the laminar as well as the turbulent regime, a probability distribution must be defined even in the laminar case. Using this probability distribution, it is shown that the exponential decay of the linear modes in the laminar regime can be related to a power law decay of both the (ensemble) mean disturbance kinetic energy and the dissipation rate. The evolution of these mean disturbance quantities is then described by transport equations similar to those for the corresponding turbulent decaying flow. Second, homogeneous shear flow, where disturbances can be described by rapid distortion theory (RDT), is studied. The relationship between RDT and linear stability theory is exploited in order to obtain a closed set of modeled equations. The linear disturbance equations are solved directly so that the numerical simulation yields a database from which the closure coefficients in the ensemble-averaged disturbance equations can be determined.
Neglected ends: clinical ethics consultation and the prospects for closure.
Fiester, Autumn
2015-01-01
Clinical ethics consultations (CECs) are sometimes deemed complete at the moment when the consultants make a recommendation. In CECs that involve actual ethical conflict, this view of a consult's endpoint runs the risk of overemphasizing the conflict's resolution at the expense of the consult's process, which can have deleterious effects on the various parties in the conflict. This overly narrow focus on reaching a decision or recommendation in consults that involve profound moral disagreement can result in two types of adverse, lingering sequelae: moral distress or negative moral emotions. The problem, succinctly named, is that such consults have insufficient "closure" for patients, families, and providers. To promote closure, and avoid the ills of moral distress and the moral emotions, I argue that CECs need to prioritize assisted conversation between the different stakeholders in these conflicts, what is often referred to as "bioethics mediation."
An experimental Lagrangian study of inhomgeneous turbulence
NASA Astrophysics Data System (ADS)
Stelzenmuller, Nickolas; Mordant, Nicolas
2015-11-01
We investigate experimentally the Lagrangian properties of inhomogeneous turbulence in the general scope of dispersion studies in natural and industrial flows. Lagrangian studies of homogeneous turbulence are becoming common, but very little Lagrangian experimental data exists for inhomogeneous turbulence despite the vast range of applications. Particle tracking velocimetry using a very high speed camera in a fully developed turbulent channel flow in water is achieved at ReH = 33 , 000 . This technique provides Lagrangian velocity and acceleration statistics fully resolved at the smallest turbulent scales near the wall. These statistics, conditioned by the distance to the wall, allow the the investigation of the inhomogeneity of the statistical properties of this flow. Autocorrelations of velocity and acceleration show increasing Lagrangian turbulent scales as distance from the wall increases, as well as decreasing anisotropy. PDF's and moments of Lagrangian quantities are presented by showing the evolution of structure functions across the boundary layer. These results are compared to direct numerical simulation results from a similar flow, and their implications for stochastic models of inhomogeneous flows are discussed.
Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow
NASA Technical Reports Server (NTRS)
Demuren, A. O.
1991-01-01
A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds Stress Model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equations in the latter may be responsible. Computed results with both turbulence models are compared with experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement with mean flow velocity but RSM yields better prediction of the Reynolds stresses.
Turbulence radiation interaction modeling in hydrocarbon pool fire simulations
BURNS,SHAWN P.
1999-12-01
The importance of turbulent fluctuations in temperature and species concentration in thermal radiation transport modeling for combustion applications is well accepted by the radiation transport and combustion communities. A number of experimental and theoretical studies over the last twenty years have shown that fluctuations in the temperature and species concentrations may increase the effective emittance of a turbulent flame by as much as 50% to 300% over the value that would be expected from the mean temperatures and concentrations. With the possibility of such a large effect on the principal mode of heat transfer from a fire, it is extremely important for fire modeling efforts that turbulence radiation interaction be well characterized and possible modeling approaches understood. Toward this end, this report seeks to accomplish three goals. First, the principal turbulence radiation interaction closure terms are defined. Second, an order of magnitude analysis is performed to understand the relative importance of the various closure terms. Finally, the state of the art in turbulence radiation interaction closure modeling is reviewed. Hydrocarbon pool fire applications are of particular interest in this report and this is the perspective from which this review proceeds. Experimental and theoretical analysis suggests that, for this type of heavily sooting flame, the turbulent radiation interaction effect is dominated by the nonlinear dependence of the Planck function on the temperature. Additional effects due to the correlation between turbulent fluctuations in the absorptivity and temperature may be small relative to the Planck function effect for heavily sooting flames. This observation is drawn from a number of experimental and theoretical discussions. Nevertheless, additional analysis and data is needed to validate this observation for heavily sooting buoyancy dominated plumes.
Turbulence Modeling Effects on the Prediction of Equilibrium States of Buoyant Shear Flows
NASA Technical Reports Server (NTRS)
Zhao, C. Y.; So, R. M. C.; Gatski, T. B.
2001-01-01
The effects of turbulence modeling on the prediction of equilibrium states of turbulent buoyant shear flows were investigated. The velocity field models used include a two-equation closure, a Reynolds-stress closure assuming two different pressure-strain models and three different dissipation rate tensor models. As for the thermal field closure models, two different pressure-scrambling models and nine different temperature variance dissipation rate, Epsilon(0) equations were considered. The emphasis of this paper is focused on the effects of the Epsilon(0)-equation, of the dissipation rate models, of the pressure-strain models and of the pressure-scrambling models on the prediction of the approach to equilibrium turbulence. Equilibrium turbulence is defined by the time rate (if change of the scaled Reynolds stress anisotropic tensor and heat flux vector becoming zero. These conditions lead to the equilibrium state parameters. Calculations show that the Epsilon(0)-equation has a significant effect on the prediction of the approach to equilibrium turbulence. For a particular Epsilon(0)-equation, all velocity closure models considered give an equilibrium state if anisotropic dissipation is accounted for in one form or another in the dissipation rate tensor or in the Epsilon(0)-equation. It is further found that the models considered for the pressure-strain tensor and the pressure-scrambling vector have little or no effect on the prediction of the approach to equilibrium turbulence.
Simulation and modeling of homogeneous, compressed turbulence
NASA Technical Reports Server (NTRS)
Wu, C. T.; Ferziger, J. H.; Chapman, D. R.
1985-01-01
Low Reynolds number homogeneous turbulence undergoing low Mach number isotropic and one-dimensional compression was simulated by numerically solving the Navier-Stokes equations. The numerical simulations were performed on a CYBER 205 computer using a 64 x 64 x 64 mesh. A spectral method was used for spatial differencing and the second-order Runge-Kutta method for time advancement. A variety of statistical information was extracted from the computed flow fields. These include three-dimensional energy and dissipation spectra, two-point velocity correlations, one-dimensional energy spectra, turbulent kinetic energy and its dissipation rate, integral length scales, Taylor microscales, and Kolmogorov length scale. Results from the simulated flow fields were used to test one-point closure, two-equation models. A new one-point-closure, three-equation turbulence model which accounts for the effect of compression is proposed. The new model accurately calculates four types of flows (isotropic decay, isotropic compression, one-dimensional compression, and axisymmetric expansion flows) for a wide range of strain rates.
Understanding the basis of space closure in Orthodontics for a more efficient orthodontic treatment
Ribeiro, Gerson Luiz Ulema; Jacob, Helder B.
2016-01-01
ABSTRACT Introduction: Space closure is one of the most challenging processes in Orthodontics and requires a solid comprehension of biomechanics in order to avoid undesirable side effects. Understanding the biomechanical basis of space closure better enables clinicians to determine anchorage and treatment options. In spite of the variety of appliance designs, space closure can be performed by means of friction or frictionless mechanics, and each technique has its advantages and disadvantages. Friction mechanics or sliding mechanics is attractive because of its simplicity; the space site is closed by means of elastics or coil springs to provide force, and the brackets slide on the orthodontic archwire. On the other hand, frictionless mechanics uses loop bends to generate force to close the space site, allowing differential moments in the active and reactive units, leading to a less or more anchorage control, depending on the situation. Objective: This article will discuss various theoretical aspects and methods of space closure based on biomechanical concepts. PMID:27275623
NASA Astrophysics Data System (ADS)
Shatskii, I. P.; Makoviichuk, N. V.
2011-05-01
The problem of closure of collinear cracks during bending of a shallow shell is considered within the framework of the Kirchhoff theory. Crack closure is described using the model of contact along a line on one of the shell faces. Strain and moment intensity factors and fracture load are studied as functions of shell curvature and defect location, and the distribution of contact forces along the cracks is investigated.
Toward a Turbulence Constitutive Relation for Rotating Flows
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1996-01-01
In rapidly rotating turbulent flows the largest scales of the motion are in approximate geostrophic balance. Single-point turbulence closures, in general, cannot attain a geostrophic balance. This article addresses and resolves the possibility of constitutive relation procedures for single-point second order closures for a specific class of rotating or stratified flows. Physical situations in which the geostrophic balance is attained are described. Closely related issues of frame-indifference, horizontal nondivergence, Taylor-Proudman theorem and two-dimensionality are, in the context of both the instantaneous and averaged equations, discussed. It is shown, in the absence of vortex stretching along the axis of rotation, that turbulence is frame-indifferent. A derivation and discussion of a geostrophic constraint which the prognostic equations for second-order statistics must satisfy for turbulence approaching a frame-indifferent limit is given. These flow situations, which include rotating and nonrotating stratified flows, are slowly evolving flows in which the constitutive relation procedures are useful. A nonlinear non-constant coefficient representation for the rapid-pressure strain covariance appearing in the Reynolds stress and heat flux equations consistent with the geostrophic balance is described. The rapid-pressure strain model coefficients are not constants determined by numerical optimization but are functions of the state of the turbulence as parameterized by the Reynolds stresses and the turbulent heat fluxes. The functions are valid for all states of the turbulence attaining their limiting values only when a limit state is achieved. These issues are relevant to strongly vortical flows as well as flows such as the planetary boundary layers, in which there is a transition from a three-dimensional shear driven turbulence to a geostrophic or horizontal turbulence.
Closure and Sealing Design Calculation
T. Lahnalampi; J. Case
2005-08-26
The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not
40 CFR 264.1102 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 264.1102 Section 264.1102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... FACILITIES Containment Buildings § 264.1102 Closure and post-closure care. (a) At closure of a...
40 CFR 264.1102 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Closure and post-closure care. 264.1102 Section 264.1102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... FACILITIES Containment Buildings § 264.1102 Closure and post-closure care. (a) At closure of a...
40 CFR 264.1102 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Closure and post-closure care. 264.1102 Section 264.1102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... FACILITIES Containment Buildings § 264.1102 Closure and post-closure care. (a) At closure of a...
40 CFR 264.1102 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Closure and post-closure care. 264.1102 Section 264.1102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID... FACILITIES Containment Buildings § 264.1102 Closure and post-closure care. (a) At closure of a...
40 CFR 264.197 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Closure and post-closure care. 264.197 Section 264.197 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Tank Systems § 264.197 Closure and post-closure care. (a) At closure of a tank system, the owner...
40 CFR 264.1202 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 264... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure and post-closure care. (a) At... or decontaminated, he or she must close the facility and perform post-closure care in accordance...
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the closure and post-closure requirements that apply to landfills (40 CFR 264.310). ... post-closure care. (a) At closure of a magazine or unit which stored hazardous waste under this subpart... estimates for closure, and financial responsibility for magazines or units must meet all of the...
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the closure and post-closure requirements that apply to landfills (40 CFR 264.310). ... post-closure care. (a) At closure of a magazine or unit which stored hazardous waste under this subpart... estimates for closure, and financial responsibility for magazines or units must meet all of the...
NASA Astrophysics Data System (ADS)
Kaufmann, A.; Moreau, M.; Simonin, O.; Helie, J.
2008-06-01
The purpose of this paper is to evaluate the accuracy of the mesoscopic approach proposed by Février et al. [P. Février, O. Simonin, K.D. Squires, Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution: theoretical formalism and numerical study, J. Fluid Mech. 533 (2005) 1-46] by comparison against the Lagrangian approach for the simulation of an ensemble of non-colliding particles suspended in a decaying homogeneous isotropic turbulence given by DNS. The mesoscopic Eulerian approach involves to solve equations for a few particle PDF moments: number density, mesoscopic velocity, and random uncorrelated kinetic energy (RUE), derived from particle flow ensemble averaging conditioned by the turbulent fluid flow realization. In addition, viscosity and diffusivity closure assumptions are used to compute the unknown higher order moments which represent the mesoscopic velocity and RUE transport by the uncorrelated velocity component. A detailed comparison between the two approaches is carried out for two different values of the Stokes number based on the initial fluid Kolmogorov time scale, St=0.17 and 2.2. In order to perform reliable comparisons for the RUE local instantaneous distribution and for the mesoscopic kinetic energy spectrum, the error due to the computation method of mesoscopic quantities from Lagrangian simulation results is evaluated and minimized. A very good agreement is found between the mesoscopic Eulerian and Lagrangian predictions for the small particle Stokes number case corresponding to the smallest particle inertia. For larger particle inertia, a bulk viscous term is included in the mesoscopic velocity governing equation to avoid spurious spatial oscillation that may arise due to the inability of the numerical scheme to resolve sharp number density gradients. As a consequence, for St=2.2, particle number density and RUE spatial distribution predicted by the
RCRA closure of mixed waste impoundments
Blaha, F.J.; Greengard, T.C.; Arndt, M.B.
1989-11-01
A case study of a RCRA closure action at the Rocky Flats Plant is presented. Closure of the solar evaporation ponds involves removal and immobilization of a mixed hazardous/radioactive sludge, treatment of impounded water, groundwater monitoring, plume delineation, and collection and treatment of contaminated groundwater. The site closure is described within the context of regulatory negotiations, project schedules, risk assessment, clean versus dirty closure, cleanup levels, and approval of closure plans and reports. Lessons learned at Rocky Flats are summarized.
Onsager's-principle-consistent 13-moment transport equations.
Singh, Narendra; Agrawal, Amit
2016-06-01
A new set of generalized transport equations is derived for higher-order moments which are generated in evolution equation for stress tensor and heat flux vector in 13-moment equations. The closure we employ satisfies Onsager's symmetry principle. In the derivation, we do not employ a phase density function based on Hermite polynomial series in terms of higher-order moments, unlike Grad's approach. The distribution function is rather chosen to satisfy collision invariance, and H-theorem and capture relatively strong deviations from equilibrium. The phase density function satisfies the linearized Boltzmann equation and provides the correct value of the Prandtl number for monatomic gas. The derived equations are compared with Grad's 13-moments equations for gas modeled as Maxwellian molecule. The merits of the proposed equations against Grad's and R13 equations are discussed. In particular, it is noted that the proposed equations contain higher-order terms compared to these equations but require a fewer number of boundary conditions as compared to the R13 equations. The Knudsen number envelope which can be covered to describe flows with these equations is therefore expected to be larger as compared to the earlier equations.
Example on how to model and simulate turbulence for flight simulators
NASA Technical Reports Server (NTRS)
Houbolt, John C.
1987-01-01
Analytical developments relative to gust response are discussed. Turbulence length scale, spectral functions, zero crossing values, gust loads analysis, power spectral techniques for analyzing the response of aircraft in turbulence, the spectrum of the rolling moment coefficient, and the spectrum correction factor are among the issues considered.
Point estimates for probability moments
Rosenblueth, Emilio
1975-01-01
Given a well-behaved real function Y of a real random variable X and the first two or three moments of X, expressions are derived for the moments of Y as linear combinations of powers of the point estimates y(x+) and y(x-), where x+ and x- are specific values of X. Higher-order approximations and approximations for discontinuous Y using more point estimates are also given. Second-moment approximations are generalized to the case when Y is a function of several variables. PMID:16578731
NASA Astrophysics Data System (ADS)
Bolla, Michele; Farrace, Daniele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas
2014-03-01
The influence of the turbulence-chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8‑21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results.
NASA Astrophysics Data System (ADS)
Bolla, Michele; Farrace, Daniele; Wright, Yuri M.; Boulouchos, Konstantinos; Mastorakos, Epaminondas
2014-03-01
The influence of the turbulence-chemistry interaction (TCI) for n-heptane sprays under diesel engine conditions has been investigated by means of computational fluid dynamics (CFD) simulations. The conditional moment closure approach, which has been previously validated thoroughly for such flows, and the homogeneous reactor (i.e. no turbulent combustion model) approach have been compared, in view of the recent resurgence of the latter approaches for diesel engine CFD. Experimental data available from a constant-volume combustion chamber have been used for model validation purposes for a broad range of conditions including variations in ambient oxygen (8-21% by vol.), ambient temperature (900 and 1000 K) and ambient density (14.8 and 30 kg/m3). The results from both numerical approaches have been compared to the experimental values of ignition delay (ID), flame lift-off length (LOL), and soot volume fraction distributions. TCI was found to have a weak influence on ignition delay for the conditions simulated, attributed to the low values of the scalar dissipation relative to the critical value above which auto-ignition does not occur. In contrast, the flame LOL was considerably affected, in particular at low oxygen concentrations. Quasi-steady soot formation was similar; however, pronounced differences in soot oxidation behaviour are reported. The differences were further emphasised for a case with short injection duration: in such conditions, TCI was found to play a major role concerning the soot oxidation behaviour because of the importance of soot-oxidiser structure in mixture fraction space. Neglecting TCI leads to a strong over-estimation of soot oxidation after the end of injection. The results suggest that for some engines, and for some phenomena, the neglect of turbulent fluctuations may lead to predictions of acceptable engineering accuracy, but that a proper turbulent combustion model is needed for more reliable results.
Turbulence generation in homogeneous dilute particle- laden flows
NASA Astrophysics Data System (ADS)
Chen, Jeng-Horng
Homogeneous turbulence generated by the motion of particles in dispersed multiphase flows was studied both theoretically and experimentally, motivated by applications to sprays, particle-laden jets, bubble plumes and rainstorms, among others. The experiments involved uniform fluxes of monodisperse spherical particles falling through a slow upflow of air. Particle fluxes and phase velocities were measured by sampling and phase-discriminating laser Doppler velocimetry (LDV), respectively. Measured particle velocities included mean and fluctuating streamwise and cross-stream velocities and probability density functions (PDF's). Measured continuous-phase velocities included mean and fluctuating streamwise and cross-stream velocities, PDF's and the higher moments of velocity fluctuations such as skewness and kurtosis, energy spectra of velocity fluctuations and integral length scales based on streamwise velocity fluctuations. Continuous-phase velocity measurements included conditional averages for particle wake disturbances and the turbulent inter-wake region surrounding these disturbances as well as overall flow properties. Present and earlier results in the literature provided particle Reynolds numbers of 38-990, particle volume fractions less than 0.01% and turbulence intensities (normalized by mean particle relative velocities) of 0.1-10.0%. Theory included characterization of particle wake disturbances as laminar-like turbulent wakes observed for intermediate particle Reynolds numbers in turbulent environments, characterization of the turbulent inter-wake region by analogy to grid-generated isotropic turbulence, and estimation of overall flow properties by conditional averaging of the properties of the wake disturbances and the turbulent inter-wake region. Present measurements showed that particle wake disturbances during turbulence generation were properly characterized by the properties of laminar-like turbulent wakes. The turbulent inter-wake region was
NASA Astrophysics Data System (ADS)
Banach, Zbigniew; Larecki, Wieslaw
2013-06-01
The spectral formulation of the nine-moment radiation hydrodynamics resulting from using the Boltzmann entropy maximization procedure is considered. The analysis is restricted to the one-dimensional flows of a gas of massless fermions. The objective of the paper is to demonstrate that, for such flows, the spectral nine-moment maximum entropy hydrodynamics of fermionic radiation is not a purely formal theory. We first determine the domains of admissible values of the spectral moments and of the Lagrange multipliers corresponding to them. We then prove the existence of a solution to the constrained entropy optimization problem. Due to the strict concavity of the entropy functional defined on the space of distribution functions, there exists a one-to-one correspondence between the Lagrange multipliers and the moments. The maximum entropy closure of moment equations results in the symmetric conservative system of first-order partial differential equations for the Lagrange multipliers. However, this system can be transformed into the equivalent system of conservation equations for the moments. These two systems are consistent with the additional conservation equation interpreted as the balance of entropy. Exploiting the above facts, we arrive at the differential relations satisfied by the entropy function and the additional function required to close the system of moment equations. We refer to this additional function as the moment closure function. In general, the moment closure and entropy-entropy flux functions cannot be explicitly calculated in terms of the moments determining the state of a gas. Therefore, we develop a perturbation method of calculating these functions. Some additional analytical (and also numerical) results are obtained, assuming that the maximum entropy distribution function tends to the Maxwell-Boltzmann limit.
A review of Reynolds stress models for turbulent shear flows
NASA Technical Reports Server (NTRS)
Speziale, Charles G.
1995-01-01
A detailed review of recent developments in Reynolds stress modeling for incompressible turbulent shear flows is provided. The mathematical foundations of both two-equation models and full second-order closures are explored in depth. It is shown how these models can be systematically derived for two-dimensional mean turbulent flows that are close to equilibrium. A variety of examples are provided to demonstrate how well properly calibrated versions of these models perform for such flows. However, substantial problems remain for the description of more complex turbulent flows where there are large departures from equilibrium. Recent efforts to extend Reynolds stress models to nonequilibrium turbulent flows are discussed briefly along with the major modeling issues relevant to practical naval hydrodynamics applications.
Radiation reaction of multipole moments
Kazinski, P. O.
2007-08-15
A Poincare-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.
Radiation reaction of multipole moments
NASA Astrophysics Data System (ADS)
Kazinski, P. O.
2007-08-01
A Poincaré-invariant description is proposed for the effective dynamics of a localized system of charged particles in classical electrodynamics in terms of the intrinsic multipole moments of the system. A relativistic-invariant definition for the intrinsic multipole moments of a system of charged particles is given. A new generally covariant action functional for a relativistic perfect fluid is proposed. In the case of relativistic charged dust, it is proven that the description of the problem of radiation reaction of multipole moments by the model of particles is equivalent to the description of this problem by a hydrodynamic model. An effective model is obtained for a pointlike neutral system of charged particles that possesses an intrinsic dipole moment, and the free dynamics of this system is described. The bound momentum of a point dipole is found.
Direct numerical simulation of turbulent H2-O2 combustion using reduced chemistry
NASA Technical Reports Server (NTRS)
Montgomery, Christopher J.; Kosaly, George; Riley, James J.
1993-01-01
Results of direct numerical simulations of hydrogen-oxygen combustion using a partial-equilibrium chemistry scheme in constant density, decaying, isotropic turbulence are reported. The simulations qualitatively reproduce many features of experimental results, such as superequilibrium radical species mole fractions, with temperature and major species mole fractions closer to chemical equilibrium. It was also observed that the peak reaction rates occur in narrow zones where the stoichiometric surface intersects regions of high scalar dissipation, as might be expected for combustion conditions close to chemical equilibrium. Another finding was that high OH mole fraction correspond more closely to the stoichiometric surface than to areas of high reaction rate for conditions of the simulations. Simulation results were compared to predictions of the Conditional Moment Closure model. This model was found to give good results for all quantities of interest when the conditionally averaged scalar dissipation was used in the prediction. When the nonconditioned average dissipation was used, the predictions compared well to the simulations for most of the species and temperature, but not for the reaction rate. The comparison would be expected to improve for higher Reynolds number flows, however.
Ohira, Yutaka
2013-04-10
We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.
Linearly exact parallel closures for slab geometry
Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun
2013-08-15
Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients)
Linearly exact parallel closures for slab geometry
NASA Astrophysics Data System (ADS)
Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun
2013-08-01
Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).
Energy balance and non-turbulent fluxes
NASA Astrophysics Data System (ADS)
Moderow, Uta; Feigenwinter, Christian; Bernhofer, Christian
2010-05-01
Often, the sum of the turbulent fluxes of sensible heat and latent heat from eddy covariance (EC) measurements does not match the available energy (sum of net radiation, ground heat flux and storage changes). This is referred to as energy balance closure gap. The reported imbalances vary between 0% and 50% (Laubach 1996). In various publications, it has been shown that the uncertainty of the available energy itself does not explain the gap (Vogt et al. 1996; Moderow et al. 2009). Among other reasons, the underestimation is attributed to an underestimation of turbulent fluxes and undetected non-turbulent transport processes, i.e. advection (e.g. Foken et al. 2006). The imbalance is typically larger during nighttime than during daytime as the EC method fails to capture non-turbulent transports that can be significant during night (e.g. Aubinet 2008). Results for the budget of CO2 showed that including non-turbulent fluxes can change the budgets considerably. Hence, it is interesting to see how the budget of energy is changed. Here, the consequences of including advective fluxes of sensible heat and latent heat in the energy balance are explored with focus on nighttime conditions. Non-turbulent fluxes will be inspected critically regarding their plausibility. Following Bernhofer et al. (2003), a ratio similar to Bowen's ratio of the turbulent fluxes are defined for the non-turbulent fluxes and compared to each other. This might have implications for the partitioning of the available energy into sensible heat and latent heat. Data of the ADVEX-campaigns (Feigenwinter et al. 2008) of three different sites across Europe are used and selected periods are inspected. References Aubinet M (2008) Eddy covariance CO2-flux measurements in nocturnal conditions: An analysis of the problem. Ecol Appl 18: 1368-1378 Bernhofer C, Grünwald T, Schwiebus A, Vogt R (2003) Exploring the consequences of non-zero energy balance closure for total surface flux. In: Bernhofer C (ed
Modeling Flow and Turbulence in Forest Canopies
NASA Astrophysics Data System (ADS)
Little, Brandon; McLanahan, Aric; Edburg, Steve; Stock, David; Lamb, Brian
2007-11-01
Control strategies for mountain pine beetles often include releasing trace concentrations of pheromone mimics into the forest canopy. For such a release to be effective for control, diffusivities within the canopy must be known. To compute flow within the canopy, the trees are treated as a porous medium by including sink/source terms in the momentum equations. Trees also affect turbulence within the canopy. With RANS models, sink/source terms can be added to the kinetic energy and dissipation equations to account for this change, but the best form of these added terms is not known. A one-dimensional momentum equation with a k-ɛ closure was used to study various forms of the sink/source terms for k and ɛ for a homogeneous forest with a neutrally stable flow. A new form of the sink/source terms that models the turbulent length scales in the canopy best matched the field data
Analytic Closure Relations in M1 Neutrino Radiation Transport in Core-Collapse Supernovae
NASA Astrophysics Data System (ADS)
Murchikova, Elena; Ott, Christian D.; Abdikamalov, Ernazar; O'Connor, Evan; Wendell, John; Urbatsch, Todd
2015-04-01
Neutrinos play a crucial role in core-collapse supernova explosions. They deposit energy in the region behind the stalled shock and aid its revival. Moreover, together with gravitational waves, they are the only messengers that provide us with information from the supernova core. Full neutrino transport is a 6+1 dimensional problem and efficient yet accurate approximations are necessary to include neutrino transport in simulations. One approximation that has recently become popular is the M1 radiation transport scheme, which solves equations for the first two angular moments of the transport equation and closes the expansion with an analytic closure based on values of the first two moments. The quality of the M1 approximation depends on the quality of the chosen closure relation and it is not a priori clear, which closure to chose under which circumstances. We carry out an extensive study of closure relations available in the literature and compare M1 results to full Monte Carlo transport solutions in the context of spherically-symmetric core-collapse supernovae. We consider post-core-bounce configurations at multiple different times and study the dependence of the physical closure relation (obtained with Monte Carlo) on neutrino energy, species, and the background matter. This research was partially supported by the Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory.
PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS
Burkhart, Blakesley; Lazarian, A.; Gaensler, B. M.
2012-04-20
Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|{nabla}P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |{nabla}P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |{nabla}P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |{nabla}P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |{nabla}P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now expected for the warm ionized
Properties of Interstellar Turbulence from Gradients of Linear Polarization Maps
NASA Astrophysics Data System (ADS)
Burkhart, Blakesley; Lazarian, A.; Gaensler, B. M.
2012-04-01
Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|∇P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |∇P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |∇P|. Particularly, filaments produced by shocks show a characteristic "double jump" profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |∇P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |∇P| reveals a "swiss cheese" topology, while the subsonic cases have characteristics of a "clump" topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now expected for the warm ionized medium.
Second Moments (planar Moments) and Their Application in Spectroscopy
NASA Astrophysics Data System (ADS)
Bohn, Robert K.; Montgomery, John A., Jr.; Michels, H. Harvey; Byrd, Jason N.
2013-06-01
Second moments, also called planar moments (P_{ii} = Σ m_{i}^{} x_{i}^{2}), are the spectroscopic parameters used to determine substitution structures (r_{s}) ) by Kraitchman''s method from spectra of a molecule and its isotopologs. They are also useful for discussing other molecular structural properties. Just as bond lengths and angles are considered transferable among similar molecules, second moments of many common groups are also transferable. This paper discusses applications of second moments of methylene/methyl groups, singly or multiply, isopropyl/tert-butyl groups, phenyl groups, per{f}{l}uoro methylene/methyl groups, combinations of any of them, and planarity of molecules, the historically most common application of second moments. The inertial defect is Δ = (I_{c} - I_{a} - I_{b}) or -2P_{cc}. Some authors err by assuming each isotopolog provides three independent rotational constants, but in some cases they are not all independent. J. Kraitchman, Am. J. Phys. {21 (17), 1953.}
Inquiry-Based Science: Turning Teachable Moments into Learnable Moments
NASA Astrophysics Data System (ADS)
Haug, Berit S.
2014-02-01
This study examines how an inquiry-based approach to teaching and learning creates teachable moments that can foster conceptual understanding in students, and how teachers capitalize upon these moments. Six elementary school teachers were videotaped as they implemented an integrated inquiry-based science and literacy curriculum in their classrooms. In this curriculum, science inquiry implies that students search for evidence in order to make and revise explanations based on the evidence found and through critical and logical thinking. Furthermore, the curriculum material is designed to address science key concepts multiple times through multiple modalities (do it, say it, read it, write it). Two types of teachable moments were identified: planned and spontaneous. Results suggest that the consolidation phases of inquiry, when students reinforce new knowledge and connect their empirical findings to theory, can be considered as planned teachable moments. These are phases of inquiry during which the teacher should expect, and be prepared for, student utterances that create opportunities to further student learning. Spontaneous teachable moments are instances when the teacher must choose to either follow the pace of the curriculum or adapt to the students' need. One implication of the study is that more teacher support is required in terms of how to plan for and effectively utilize the consolidation phases of inquiry.
Fundamental base closure environmental principles
Yim, R.A.
1994-12-31
Military base closures present a paradox. The rate, scale and timing of military base closures is historically unique. However, each base itself typically does not present unique problems. Thus, the challenge is to design innovative solutions to base redevelopment and remediation issues, while simultaneously adopting common, streamlined or pre-approved strategies to shared problems. The author presents six environmental principles that are fundamental to base closure. They are: remediation not clean up; remediation will impact reuse; reuse will impact remediation; remediation and reuse must be coordinated; environmental contamination must be evaluated as any other initial physical constraint on development, not as an overlay after plans are created; and remediation will impact development, financing and marketability.
The mechanics of airway closure.
Heil, Matthias; Hazel, Andrew L; Smith, Jaclyn A
2008-11-30
We describe how surface-tension-driven instabilities of the lung's liquid lining may lead to pulmonary airway closure via the formation of liquid bridges that occlude the airway lumen. Using simple theoretical models, we demonstrate that this process may occur via a purely fluid-mechanical "film collapse" or through a coupled, fluid-elastic "compliant collapse" mechanism. Both mechanisms can lead to airway closure in times comparable with the breathing cycle, suggesting that surface tension is the primary mechanical effect responsible for the closure observed in peripheral regions of the human lungs. We conclude by discussing the influence of additional effects not included in the simple models, such as gravity, the presence of pulmonary surfactant, respiratory flow and wall motion, the airways' geometry, and the mechanical structure of the airway walls. PMID:18595784
Humid site stabilization and closure
Cutshall, N.H.
1981-01-01
The purpose of the work described here is to identify and evaluate the importance of factors that are expected to dictate the nature of site stabilization and closure requirements. Subsequent efforts will plan for implementation of such requirements. Two principal areas of site stabilization and closure effort will be pursued initially - geological management and vegetation management. The geological effort will focus on chemical weathering and surficial erosion. Such catastrophic geologic events as landslides, flooding, earthquakes, volcanos, etc. are already considered in site selection and operation and these factors will not be emphasized initially. Vegetation management will be designed to control erosion, to minimize nuclide mobilization by roots and to be compatible with natural successional pressures. It is anticipated that the results of this work will be important both to site selection and operation as well as the actual stabilization and closure procedure.
Closure of Building 624 incinerator
Ridley, M.N.; Hallisey, M.L.; Terusaki, S.; Steverson, M.
1992-06-01
The Building 624 incinerator was a Resource Conservation Recovery Act (RCRA) mixed waste incinerator at Lawrence Livermore National Laboratory (LLNL). This incinerator was in operation from 1978 to 1989. The incinerator was to be closed as a mixed waste incinerator, but was to continue burning classified nonhazardous solid waste. The decision was later made to discontinue all use of the incinerator. Closure activities were performed from June 15 to December 15, 1991, when a clean closure was completed. The main part of the closure was the characterization, which included 393 samples and 30 blanks. From these 393 samples, approximately 13 samples indicated the need for further investigation, such as an isotopic scan; however, none of the samples was concluded to be hazardous or radioactive.
The behaviour of turbulence anisotropy through shock waves and expansions
NASA Technical Reports Server (NTRS)
Minh, H. H.; Kollmann, W.; Vandromme, D.
1985-01-01
A second order closure has been implemented in an implicit Navier-Stokes solver to study the behavior of the Reynolds stresses under the influence of severe pressure gradients. In the boundary layer zone, the strongly sheared character of the mean flow dominates the turbulence generation mechanisms. However, the pressure gradients play also a very important role for these processes, but at different locations within the boundary layer. This aspect may be emphasized by the analysis of turbulence anisotropy through shock waves and expansions.
Relaxation approximation in the theory of shear turbulence
NASA Technical Reports Server (NTRS)
Rubinstein, Robert
1995-01-01
Leslie's perturbative treatment of the direct interaction approximation for shear turbulence (Modern Developments in the Theory of Turbulence, 1972) is applied to derive a time dependent model for the Reynolds stresses. The stresses are decomposed into tensor components which satisfy coupled linear relaxation equations; the present theory therefore differs from phenomenological Reynolds stress closures in which the time derivatives of the stresses are expressed in terms of the stresses themselves. The theory accounts naturally for the time dependence of the Reynolds normal stress ratios in simple shear flow. The distortion of wavenumber space by the mean shear plays a crucial role in this theory.
Statistical theory of turbulent incompressible multimaterial flow
Kashiwa, B.
1987-10-01
Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of kappa-epsilon modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy kappa, and the rate of fluctuational energy dissipation epsilon, for each material. Hence a set of kappa and epsilon equations must be solved, together with mean mass and momentum conservation equations, for each material. Both kappa and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe.
Second-Order Modeling of Low-Reynolds-Number Turbulence Near Walls
NASA Technical Reports Server (NTRS)
Shih, T.-H.; Mansour, N. N.
1989-01-01
This paper presents a set of second-order closure models for low-Reynolds-number turbulence near the wall. Existing closure models for the Reynolds-stress equations were modified to show proper near-wall behavior. A dissipation-rate equation for the turbulent kinetic energy is also reformulated. The proposed models satisfy realizability and will not produce unphysical behavior. Fully developed channel flows are used for model testing. The equations are solved for the mean velocity, the Reynolds stresses, and the dissipation rate of the turbulent kinetic energy. The calculations are compared with both direct numerical simulations and with measurements. It is shown that the present models perform well in predicting the behavior of the turbulence near a wall. Significant improvements over previous models in predicting the components of the Reynolds stress tensor are obtained in the present models.
LES, DNS and RANS for the analysis of high-speed turbulent reacting flows
NASA Technical Reports Server (NTRS)
Givi, Peyman
1994-01-01
The objective of this research is to continue our efforts in advancing the state of knowledge in Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), and Reynolds Averaged Navier Stokes (RANS) methods for the analysis of high-speed reacting turbulent flows. In the first phase of this research, conducted within the past six months, focus was in three directions: RANS of turbulent reacting flows by Probability Density Function (PDF) methods, RANS of non-reacting turbulent flows by advanced turbulence closures, and LES of mixing dominated reacting flows by a dynamics subgrid closure. A summary of our efforts within the past six months of this research is provided in this semi-annual progress report.
Alarm sensor apparatus for closures
Carlson, James A.; Stoddard, Lawrence M.
1986-01-01
An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or frame work and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.
Alarm sensor apparatus for closures
Carlson, J.A.; Stoddard, L.M.
1984-01-31
An alarm sensor apparatus for closures such as doors and windows, and particularly for closures having loose tolerances such as overhead doors, garage doors or the like, the sensor apparatus comprising a pair of cooperating bracket members, one being attached to the door facing or framework and the other to the door member, two magnetic sensor elements carried by said bracket members, the bracket members comprising a pair of cooperating orthogonal guide slots and plates and a stop member engageable with one of the sensors for aligning the sensors with respect to each other in all three orthogonal planes when the door is closed.
Moments of probable seas: statistical dynamics of Planet Ocean
NASA Astrophysics Data System (ADS)
Holloway, Greg
The ocean is too big. From the scale of planetary radius to scales of turbulent microstructure, the range of length scales is 109. Likewise for time scales. Classical geophysical fluid dynamics does not have an apparatus for dealing with such complexity, while `brute force' computing on the most powerful supercomputers, extant or presently foreseen, barely scratches this complexity. Yet the everywhere-swirling-churning ocean interacts unpredictably in climate history and climate future - against which we attempt to devise planetary stewardship. Can we better take into account the unpredictability of oceans to improve upon present ocean/climate forecasting? What to do? First, recognize that our goal is to comprehend probabilities of possible oceans. Questions we would ask are posed as moments (expectations). Then the dynamical goal is clear: we seek equations of motion of moments of probable oceans. Classical fluid mechanics offers part of the answer but fails to recognize statistical dynamical aspects (missing the arrow of time as past==>future). At probabilities of oceans, the missing physics emerges: moments are forced by gradients of entropy with respect to moments. Time regains its arrow, and first (simplest) approximations to entropy-gradient forces enhance the fidelity of ocean theories and practical models.
Distinguishing ichthyogenic turbulence from geophysical turbulence
NASA Astrophysics Data System (ADS)
Pujiana, Kandaga; Moum, James N.; Smyth, William D.; Warner, Sally J.
2015-05-01
Measurements of currents and turbulence beneath a geostationary ship in the equatorial Indian Ocean during a period of weak surface forcing revealed unexpectedly strong turbulence beneath the surface mixed layer. Coincident with the turbulence was a marked reduction of the current speeds registered by shipboard Doppler current profilers, and an increase in their variability. At a mooring 1 km away, measurements of turbulence and currents showed no such anomalies. Correlation with the shipboard echo sounder measurements indicate that these nighttime anomalies were associated with fish aggregations beneath the ship. The fish created turbulence by swimming against the strong zonal current in order to remain beneath the ship, and their presence affected the Doppler speed measurements. The principal characteristics of the resultant ichthyogenic turbulence are (i) low wave number roll-off of shear spectra in the inertial subrange relative to geophysical turbulence, (ii) Thorpe overturning scales that are small compared with the Ozmidov scale, and (iii) low mixing efficiency. These factors extend previous findings by Gregg and Horne (2009) to a very different biophysical regime and support the general conclusion that the biological contribution to mixing the ocean via turbulence is negligible.
Hierarchical structures in fully developed turbulence
NASA Astrophysics Data System (ADS)
Liu, Li
Analysis of the probability density functions (PDFs) of the velocity increment dvl and of their deformation is used to reveal the statistical structure of the intermittent energy cascade dynamics of turbulence. By analyzing a series of turbulent data sets including that of an experiment of fully developed low temperature helium turbulent gas flow (Belin, Tabeling, & Willaime, Physica D 93, 52, 1996), of a three-dimensional isotropic Navier-Stokes simulation with a resolution of 2563 (Cao, Chen, & She, Phys. Rev. Lett. 76, 3711, 1996) and of a GOY shell model simulation (Leveque & She, Phys. Rev. E 55, 1997) of a very big sample size (up to 5 billions), the validity of the Hierarchical Structure model (She & Leveque, Phys. Rev. Lett. 72, 366, 1994) for the inertial-range is firmly demonstrated. Furthermore, it is shown that parameters in the Hierarchical Structure model can be reliably measured and used to characterize the cascade process. The physical interpretations of the parameters then allow to describe differential changes in different turbulent systems so as to address non-universal features of turbulent systems. It is proposed that the above study provides a framework for the study of non-homogeneous turbulence. A convergence study of moments and scaling exponents is also carried out with detailed analysis of effects of finite statistical sample size. A quantity Pmin is introduced to characterize the resolution of a PDF, and hence the sample size. The fact that any reported scaling exponent depends on the PDF resolution suggests that the validation (or rejection) of a model of turbulence needs to carry out a resolution dependence analysis on its scaling prediction.
NASA Astrophysics Data System (ADS)
Sahm, Michael Kenneth
1992-09-01
turbulence and curvature. A two dimensional boundary layer prediction program employing three different turbulence closure methods was used to model the current data. A low Reynolds number model is seen to produce the best overall prediction.
Consideration of Turbulence Effects in One-Dimensional Laminar Flamelet Equations
NASA Astrophysics Data System (ADS)
Chan, Wai Lee; Ihme, Matthias
2014-11-01
The laminar flamelet formulation has been used as a fundamental building block for the construction of turbulent combustion closures. By assuming that turbulence only leads to a deformation and straining of the local flame structure, the turbulence/chemistry interaction is then considered through a presumed shape probability density function (PDF) approach. However, the consistency of this approach remains unclear in the context of large-eddy simulations (LES), and the objective of this study is to examine the representation of turbulent scalar fluxes and turbulence/chemistry coupling on the flame structure. To this end, a detailed numerical simulation of a turbulent counterflow diffusion flame is performed, and the simulation results are used to analyze the limitations of the classic laminar flamelet formulation and explore a possible alternative approach. Financial support through the Air Force Office of Scientific Research under Award No. FA9550-11-1-0031 is gratefully acknowledged.
Turbulence and Star Formation in a Sample of Spiral Galaxies
NASA Astrophysics Data System (ADS)
Maier, Erin; Chien, Li-Hsin; Hunter, Deidre A.
2016-11-01
We investigate turbulent gas motions in spiral galaxies and their importance to star formation in far outer disks, where the column density is typically far below the critical value for spontaneous gravitational collapse. Following the methods of Burkhart et al. on the Small Magellanic Cloud, we use the third and fourth statistical moments, as indicators of structures caused by turbulence, to examine the neutral hydrogen (H i) column density of a sample of spiral galaxies selected from The H i Nearby Galaxy Survey. We apply the statistical moments in three different methods—the galaxy as a whole, divided into a function of radii and then into grids. We create individual grid maps of kurtosis for each galaxy. To investigate the relation between these moments and star formation, we compare these maps with their far-ultraviolet images taken by the Galaxy Evolution Explorer satellite.We find that the moments are largely uniform across the galaxies, in which the variation does not appear to trace any star-forming regions. This may, however, be due to the spatial resolution of our analysis, which could potentially limit the scale of turbulent motions that we are sensitive to greater than ∼700 pc. From comparison between the moments themselves, we find that the gas motions in our sampled galaxies are largely supersonic. This analysis also shows that the Burkhart et al. methods may be applied not just to dwarf galaxies but also to normal spiral galaxies.
Statistical energy conservation principle for inhomogeneous turbulent dynamical systems.
Majda, Andrew J
2015-07-21
Understanding the complexity of anisotropic turbulent processes over a wide range of spatiotemporal scales in engineering shear turbulence as well as climate atmosphere ocean science is a grand challenge of contemporary science with important societal impact. In such inhomogeneous turbulent dynamical systems there is a large dimensional phase space with a large dimension of unstable directions where a large-scale ensemble mean and the turbulent fluctuations exchange energy and strongly influence each other. These complex features strongly impact practical prediction and uncertainty quantification. A systematic energy conservation principle is developed here in a Theorem that precisely accounts for the statistical energy exchange between the mean flow and the related turbulent fluctuations. This statistical energy is a sum of the energy in the mean and the trace of the covariance of the fluctuating turbulence. This result applies to general inhomogeneous turbulent dynamical systems including the above applications. The Theorem involves an assessment of statistical symmetries for the nonlinear interactions and a self-contained treatment is presented below. Corollary 1 and Corollary 2 illustrate the power of the method with general closed differential equalities for the statistical energy in time either exactly or with upper and lower bounds, provided that the negative symmetric dissipation matrix is diagonal in a suitable basis. Implications of the energy principle for low-order closure modeling and automatic estimates for the single point variance are discussed below.
Statistical energy conservation principle for inhomogeneous turbulent dynamical systems.
Majda, Andrew J
2015-07-21
Understanding the complexity of anisotropic turbulent processes over a wide range of spatiotemporal scales in engineering shear turbulence as well as climate atmosphere ocean science is a grand challenge of contemporary science with important societal impact. In such inhomogeneous turbulent dynamical systems there is a large dimensional phase space with a large dimension of unstable directions where a large-scale ensemble mean and the turbulent fluctuations exchange energy and strongly influence each other. These complex features strongly impact practical prediction and uncertainty quantification. A systematic energy conservation principle is developed here in a Theorem that precisely accounts for the statistical energy exchange between the mean flow and the related turbulent fluctuations. This statistical energy is a sum of the energy in the mean and the trace of the covariance of the fluctuating turbulence. This result applies to general inhomogeneous turbulent dynamical systems including the above applications. The Theorem involves an assessment of statistical symmetries for the nonlinear interactions and a self-contained treatment is presented below. Corollary 1 and Corollary 2 illustrate the power of the method with general closed differential equalities for the statistical energy in time either exactly or with upper and lower bounds, provided that the negative symmetric dissipation matrix is diagonal in a suitable basis. Implications of the energy principle for low-order closure modeling and automatic estimates for the single point variance are discussed below. PMID:26150510
Fundamental Statistical Descriptions of Plasma Turbulence in Magnetic Fields
John A. Krommes
2001-02-16
A pedagogical review of the historical development and current status (as of early 2000) of systematic statistical theories of plasma turbulence is undertaken. Emphasis is on conceptual foundations and methodology, not practical applications. Particular attention is paid to equations and formalism appropriate to strongly magnetized, fully ionized plasmas. Extensive reference to the literature on neutral-fluid turbulence is made, but the unique properties and problems of plasmas are emphasized throughout. Discussions are given of quasilinear theory, weak-turbulence theory, resonance-broadening theory, and the clump algorithm. Those are developed independently, then shown to be special cases of the direct-interaction approximation (DIA), which provides a central focus for the article. Various methods of renormalized perturbation theory are described, then unified with the aid of the generating-functional formalism of Martin, Siggia, and Rose. A general expression for the renormalized dielectric function is deduced and discussed in detail. Modern approaches such as decimation and PDF methods are described. Derivations of DIA-based Markovian closures are discussed. The eddy-damped quasinormal Markovian closure is shown to be nonrealizable in the presence of waves, and a new realizable Markovian closure is presented. The test-field model and a realizable modification thereof are also summarized. Numerical solutions of various closures for some plasma-physics paradigms are reviewed. The variational approach to bounds on transport is developed. Miscellaneous topics include Onsager symmetries for turbulence, the interpretation of entropy balances for both kinetic and fluid descriptions, self-organized criticality, statistical interactions between disparate scales, and the roles of both mean and random shear. Appendices are provided on Fourier transform conventions, dimensional and scaling analysis, the derivations of nonlinear gyrokinetic and gyrofluid equations
A Two-length Scale Turbulence Model for Single-phase Multi-fluid Mixing
Schwarzkopf, J. D.; Livescu, D.; Baltzer, J. R.; Gore, R. A.; Ristorcelli, J. R.
2015-09-08
A two-length scale, second moment turbulence model (Reynolds averaged Navier-Stokes, RANS) is proposed to capture a wide variety of single-phase flows, spanning from incompressible flows with single fluids and mixtures of different density fluids (variable density flows) to flows over shock waves. The two-length scale model was developed to address an inconsistency present in the single-length scale models, e.g. the inability to match both variable density homogeneous Rayleigh-Taylor turbulence and Rayleigh-Taylor induced turbulence, as well as the inability to match both homogeneous shear and free shear flows. The two-length scale model focuses on separating the decay and transport length scales, as the two physical processes are generally different in inhomogeneous turbulence. This allows reasonable comparisons with statistics and spreading rates over such a wide range of turbulent flows using a common set of model coefficients. The specific canonical flows considered for calibrating the model include homogeneous shear, single-phase incompressible shear driven turbulence, variable density homogeneous Rayleigh-Taylor turbulence, Rayleigh-Taylor induced turbulence, and shocked isotropic turbulence. The second moment model shows to compare reasonably well with direct numerical simulations (DNS), experiments, and theory in most cases. The model was then applied to variable density shear layer and shock tube data and shows to be in reasonable agreement with DNS and experiments. Additionally, the importance of using DNS to calibrate and assess RANS type turbulence models is highlighted.
Small-scale anisotropy in turbulent shearless mixing.
Tordella, Daniela; Iovieno, Michele
2011-11-01
The generation of small-scale anisotropy in turbulent shearless mixing is numerically investigated. Data from direct numerical simulations at Taylor Reynolds' numbers between 45 and 150 show not only that there is a significant departure of the longitudinal velocity derivative moments from the values found in homogeneous and isotropic turbulence but that the variation of skewness has an opposite sign for the components across the mixing layer and parallel to it. The anisotropy induced by the presence of a kinetic energy gradient has a very different pattern from the one generated by an homogeneous shear. The transversal derivative moments in the mixing are in fact found to be very small, which highlights that smallness of the transversal moments is not a sufficient condition for isotropy.
A preliminary compressible second-order closure model for high speed flows
NASA Technical Reports Server (NTRS)
Speziale, Charles G.; Sarkar, Sutanu
1989-01-01
A preliminary version of a compressible second-order closure model that was developed in connection with the National Aero-Space Plane Project is presented. The model requires the solution of transport equations for the Favre-averaged Reynolds stress tensor and dissipation rate. Gradient transport hypotheses are used for the Reynolds heat flux, mass flux, and turbulent diffusion terms. Some brief remarks are made about the direction of future research to generalize the model.
Electromagnetic moments of quasistable particle
Ledwig, Tim; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2010-11-01
We deal with the problem of assigning electromagnetic moments to a quasistable particle (i.e., a particle with mass located at the particle's decay threshold). In this case, an application of a small external electromagnetic field changes the energy in a nonanalytic way, which makes it difficult to assign definitive moments. On the example of a spin-1/2 field with mass M{sub *} interacting with two fields of masses M and m, we show how a conventionally defined magnetic dipole moment diverges at M{sub *}=M+m. We then show that the conventional definition makes sense only when the values of the applied magnetic field B satisfy |eB|/2M{sub *}<<|M{sub *}-M-m|. We discuss implications of these results to existing studies in electroweak theory, chiral effective-field theory, and lattice QCD.
CIRSE Vascular Closure Device Registry
Reekers, Jim A.; Mueller-Huelsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zelenak, Kamil; Hooijboer, Pieter; Belli, Anna-Maria
2011-02-15
Purpose: Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. Methods: The CIRSE registry of closure devices with an anchor and a plug started in January 2009 and ended in August 2009. A total of 1,107 patients were included in the registry. Results: Deployment success was 97.2%. Deployment failure specified to access type was 8.8% [95% confidence interval (95% CI) 5.0-14.5] for antegrade access and 1.8% (95% CI 1.1-2.9) for retrograde access (P = 0.001). There was no difference in deployment failure related to local PVD at the access site. Calcification was a reason for deployment failure in only <0.5% of patients. Postdeployment bleeding occurred in 6.4%, and most these (51.5%) could be managed with light manual compression. During follow-up, other device-related complications were reported in 1.3%: seven false aneurysms, three hematoma >5.9 cm, and two vessel occlusions. Conclusion: The conclusion of this registry of closure devices with an anchor and a plug is that the use of this device in interventional radiology procedures is safe, with a low incidence of serious access site complications. There seems to be no difference in complications between antegrade and retrograde access and other parameters.
Discrete models of fluids: spatial averaging, closure and model reduction
Panchenko, Alexander; Tartakovsky, Alexandre M.; Cooper, Kevin
2014-04-15
We consider semidiscrete ODE models of single-phase fluids and two-fluid mixtures. In the presence of multiple fine-scale heterogeneities, the size of these ODE systems can be very large. Spatial averaging is then a useful tool for reducing computational complexity of the problem. The averages satisfy exact balance equations of mass, momentum, and energy. These equations do not form a satisfactory continuum model because evaluation of stress and heat flux requires solving the underlying ODEs. To produce continuum equations that can be simulated without resolving microscale dynamics, we recently proposed a closure method based on the use of regularized deconvolution. Here we continue the investigation of deconvolution closure with the long term objective of developing consistent computational upscaling for multiphase particle methods. The structure of the fine-scale particle solvers is reminiscent of molecular dynamics. For this reason we use nonlinear averaging introduced for atomistic systems by Noll, Hardy, and Murdoch-Bedeaux. We also consider a simpler linear averaging originally developed in large eddy simulation of turbulence. We present several simple but representative examples of spatially averaged ODEs, where the closure error can be analyzed. Based on this analysis we suggest a general strategy for reducing the relative error of approximate closure. For problems with periodic highly oscillatory material parameters we propose a spectral boosting technique that augments the standard deconvolution and helps to correctly account for dispersion effects. We also conduct several numerical experiments, one of which is a complete mesoscale simulation of a stratified two-fluid flow in a channel. In this simulation, the operation count per coarse time step scales sublinearly with the number of particles.
Introduction to quantum turbulence
Barenghi, Carlo F.; Skrbek, Ladislav; Sreenivasan, Katepalli R.
2014-01-01
The term quantum turbulence denotes the turbulent motion of quantum fluids, systems such as superfluid helium and atomic Bose–Einstein condensates, which are characterized by quantized vorticity, superfluidity, and, at finite temperatures, two-fluid behavior. This article introduces their basic properties, describes types and regimes of turbulence that have been observed, and highlights similarities and differences between quantum turbulence and classical turbulence in ordinary fluids. Our aim is also to link together the articles of this special issue and to provide a perspective of the future development of a subject that contains aspects of fluid mechanics, atomic physics, condensed matter, and low-temperature physics. PMID:24704870
Modeling Compressed Turbulence
Israel, Daniel M.
2012-07-13
From ICE to ICF, the effect of mean compression or expansion is important for predicting the state of the turbulence. When developing combustion models, we would like to know the mix state of the reacting species. This involves density and concentration fluctuations. To date, research has focused on the effect of compression on the turbulent kinetic energy. The current work provides constraints to help development and calibration for models of species mixing effects in compressed turbulence. The Cambon, et al., re-scaling has been extended to buoyancy driven turbulence, including the fluctuating density, concentration, and temperature equations. The new scalings give us helpful constraints for developing and validating RANS turbulence models.
40 CFR 265.1102 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Closure and post-closure care. 265.1102 Section 265.1102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID..., STORAGE, AND DISPOSAL FACILITIES Containment Buildings § 265.1102 Closure and post-closure care. (a)...
40 CFR 265.1102 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Closure and post-closure care. 265.1102 Section 265.1102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID..., STORAGE, AND DISPOSAL FACILITIES Containment Buildings § 265.1102 Closure and post-closure care. (a)...
40 CFR 265.1102 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Closure and post-closure care. 265.1102 Section 265.1102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID..., STORAGE, AND DISPOSAL FACILITIES Containment Buildings § 265.1102 Closure and post-closure care. (a)...
40 CFR 265.1102 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 265.1102 Section 265.1102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID..., STORAGE, AND DISPOSAL FACILITIES Containment Buildings § 265.1102 Closure and post-closure care. (a)...
Moment of Inertia by Differentiation
NASA Astrophysics Data System (ADS)
Rizcallah, Joseph A.
2015-11-01
The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral—an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the first place. We here use dimensional analysis along with elementary differentiation techniques to derive the moments of inertia of various extended bodies. The suggested method does not employ integrals and, in effect, is just a disguised application of elementary ordinary differential equations.
Neutron star moments of inertia
NASA Technical Reports Server (NTRS)
Ravenhall, D. G.; Pethick, C. J.
1994-01-01
An approximation for the moment of inertia of a neutron star in terms of only its mass and radius is presented, and insight into it is obtained by examining the behavior of the relativistic structural equations. The approximation is accurate to approximately 10% for a variety of nuclear equations of state, for all except very low mass stars. It is combined with information about the neutron-star crust to obtain a simple expression (again in terms only of mass and radius) for the fractional moment of inertia of the crust.
Models of intermittency in hydrodynamic turbulence
Kraichnan, R.H. )
1990-07-30
A heurisitic model for evolution of the probability distribution (PDF) of transverse velocity gradient {ital s} in incompressible Navier-Stokes turbulence is distilled from an analytical closure for Burgers turbulence. At all Reynolds number {ital scrR}, the evolved PDF is {proportional to}{vert bar}{ital s}{vert bar}{sup {minus}1/2} exp({minus}const{times}{vert bar}{ital s}{vert bar}/{l angle}{ital s}{sup 2}{r angle}{sup 1/2}) for large {vert bar}{ital s}{vert bar}. The model suggests that skewness and flatnesses are asymptotically independent of {ital scrR}, and that cascade to smaller scales is not a fractal process. For Burgers dynamics, both simulations and the analytical closure give a PDF {proportional to}{vert bar}{xi}{vert bar}{sup {minus}1} exp({minus}const{times}{vert bar}{xi}{vert bar}/{l angle}{xi}{sup 2}{r angle}{sup 1/2}) for large negative velocity gradient {xi}.
Turbulent dispersion of balloons and drifters
NASA Astrophysics Data System (ADS)
Lacasce, J. H.
2010-12-01
The relative motion of pairs of particles in flows is of central importance when describing environmental dispersion, for example of spilled oil. Pair statistics have been examined previously with data from the atmosphere and ocean, and from turbulence experiments. The focus frequently is on the dispersion, the second moment of the pair separations. Less attention is usually paid to the probability density functions (PDFs) of the pair displacements, from which the moments derive. The PDFs provide important additional information, for example on how Gaussian the dispersion is. Here we consider dispersion at large scales and examine displacement PDFs from three data sets: 1) the EOLE balloons from the Southern Hemisphere stratosphere, 2) the SCULP surface drifters from the Gulf of Mexico and 3) the POLEWARD surface drifters from the Nordic Seas. We examine how the PDFs evolve in time and compare them to several analytical predictions which exist for the turbulent inertial ranges. The results are largely consistent at the smallest scales, suggesting that the dispersion below the deformation radius is ``non-local''. Non-locality implies that the kinetic energy spectra are steeper than k^(-3). We discuss the implications for atmospheric and oceanic turbulence at submesoscales, and for the parametrization of these scales.
S. Dartevelle
2005-09-05
The objective of this manuscript is to fully derive a geophysical multiphase model able to ''accommodate'' different multiphase turbulence approaches; viz., the Reynolds Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANSLES. This manuscript is the first part of a larger geophysical multiphase project--lead by LANL--that aims to develop comprehensive modeling tools for large-scale, atmospheric, transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear ''mushrooms'', ''supercell'' forest fire plumes) and for boundary-dominated geophysical multiphase gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in street canyons). LES is a partially deterministic approach constructed on either a spatial- or a temporal-separation between the large and small scales of the flow, whereas RANS is an entirely probabilistic approach constructed on a statistical separation between an ensemble-averaged mean and higher-order statistical moments (the so-called ''fluctuating parts''). Within this specific multiphase context, both turbulence approaches are built up upon the same phasic binary-valued ''function of presence''. This function of presence formally describes the occurrence--or not--of any phase at a given position and time and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either the RANS or the LES frameworks. The only differences between these turbulence frameworks are the closures for the various ''turbulence'' terms involving the unknown variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the hydrodynamic and thermodynamic models for RANS and LES have the same set of Partial Differential Equations, the physical interpretations of these PDEs cannot be the same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this manuscript, we also demonstrate that this multiphase model fully fulfills the second law of
NASA Astrophysics Data System (ADS)
Vlaykov, Dimitar G.; Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R. G.
2016-06-01
Compressible magnetohydrodynamic (MHD) turbulence is ubiquitous in astrophysical phenomena ranging from the intergalactic to the stellar scales. In studying them, numerical simulations are nearly inescapable, due to the large degree of nonlinearity involved. However, the dynamical ranges of these phenomena are much larger than what is computationally accessible. In large eddy simulations (LESs), the resulting limited resolution effects are addressed explicitly by introducing to the equations of motion additional terms associated with the unresolved, subgrid-scale dynamics. This renders the system unclosed. We derive a set of nonlinear structural closures for the ideal MHD LES equations with particular emphasis on the effects of compressibility. The closures are based on a gradient expansion of the finite-resolution operator [W. K. Yeo (CUP, 1993)] and require no assumptions about the nature of the flow or magnetic field. Thus, the scope of their applicability ranges from the sub- to the hyper-sonic and -Alfvénic regimes. The closures support spectral energy cascades both up and down-scale, as well as direct transfer between kinetic and magnetic resolved and unresolved energy budgets. They implicitly take into account the local geometry, and in particular, the anisotropy of the flow. Their properties are a priori validated in Paper II [P. Grete et al., Phys. Plasmas 23, 062317 (2016)] against alternative closures available in the literature with respect to a wide range of simulation data of homogeneous and isotropic turbulence.
Updating neutrino magnetic moment constraints
NASA Astrophysics Data System (ADS)
Cañas, B. C.; Miranda, O. G.; Parada, A.; Tórtola, M.; Valle, J. W. F.
2016-02-01
In this paper we provide an updated analysis of the neutrino magnetic moments (NMMs), discussing both the constraints on the magnitudes of the three transition moments Λi and the role of the CP violating phases present both in the mixing matrix and in the NMM matrix. The scattering of solar neutrinos off electrons in Borexino provides the most stringent restrictions, due to its robust statistics and the low energies observed, below 1 MeV. Our new limit on the effective neutrino magnetic moment which follows from the most recent Borexino data is 3.1 ×10-11μB at 90% C.L. This corresponds to the individual transition magnetic moment constraints: |Λ1 | ≤ 5.6 ×10-11μB, |Λ2 | ≤ 4.0 ×10-11μB, and |Λ3 | ≤ 3.1 ×10-11μB (90% C.L.), irrespective of any complex phase. Indeed, the incoherent admixture of neutrino mass eigenstates present in the solar flux makes Borexino insensitive to the Majorana phases present in the NMM matrix. For this reason we also provide a global analysis including the case of reactor and accelerator neutrino sources, presenting the resulting constraints for different values of the relevant CP phases. Improved reactor and accelerator neutrino experiments will be needed in order to underpin the full profile of the neutrino electromagnetic properties.
Measuring the Moment of Inertia
ERIC Educational Resources Information Center
Lehmberg, George L.
1978-01-01
Two physics experiments are described, One, involving a laboratory cart accelerated along a level surface, examines the concept of inertial mass in translation and the other, using a solid cylinder, measures the moment of inertia of a wheel. Equations and illustrations are included. (MA)
Moment of Inertia by Differentiation
ERIC Educational Resources Information Center
Rizcallah, Joseph A.
2015-01-01
The calculation of the moment of inertia of an extended body, as presented in standard introductory-level textbooks, involves the evaluation of a definite integral--an operation often not fully mastered by beginners, let alone the conceptual difficulties it presents, even to the advanced student, in understanding and setting up the integral in the…
Moments of Cambered Round Bodies
NASA Technical Reports Server (NTRS)
Kempf, Gunther
1949-01-01
Results are presented for the moments and position of force centers of a series of cambered round bodies derived from a torpedo-like body of revolution. The effects of placing fins on the rear of the body of revolution are also included.
Elliott, Mark A.; Giersch, Anne
2016-01-01
There has been evidence for the very brief, temporal quantization of perceptual experience at regular intervals below 100 ms for several decades. We briefly describe how earlier studies led to the concept of “psychological moment” of between 50 and 60 ms duration. According to historical theories, within the psychological moment all events would be processed as co-temporal. More recently, a link with physiological mechanisms has been proposed, according to which the 50–60 ms psychological moment would be defined by the upper limit required by neural mechanisms to synchronize and thereby represent a snapshot of current perceptual event structure. However, our own experimental developments also identify a more fine-scaled, serialized process structure within the psychological moment. Our data suggests that not all events are processed as co-temporal within the psychological moment and instead, some are processed successively. This evidence questions the analog relationship between synchronized process and simultaneous experience and opens debate on the ontology and function of “moments” in psychological experience. PMID:26779059
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Lakshmanan, B.; Carlson, John R.
1995-01-01
A three-dimensional Navier-Stokes solver was used to determine how accurately computations can predict local and average skin friction coefficients for attached and separated flows for simple experimental geometries. Algebraic and transport equation closures were used to model turbulence. To simulate anisotropic turbulence, the standard two-equation turbulence model was modified by adding nonlinear terms. The effects of both grid density and the turbulence model on the computed flow fields were also investigated and compared with available experimental data for subsonic and supersonic free-stream conditions.
Observations of turbulence in a partially stratified estuary
Stagey, M.T.; Monismith, Stephen G.; Burau, J.R.
1999-01-01
The authors present a field study of estuarine turbulence in which profiles of Reynolds stresses were directly measured using an ADCP throughout a 25-h tidal day. The dataset that is discussed quantifies turbulent mixing for a water column in northern San Francisco Bay that experiences a sequence of states that includes a weak ebb and flood that are stratified, followed by a strong, and eventually unstratified, ebb and flood. These measurements show that energetic turbulence is confined to a bottom mixed layer by the overlying stratification. Examination of individual Reynolds stress profiles along with profiles of Richardson number and turbulent Froude number shows that the water column can be divided into regions based on the relative importance of buoyancy effects. Using the measured turbulence production rate P, the dissipation rate e. is estimated. The observed turbulence had values of e/vN2 > 20 all of the time and e/vN2 > 200 most of the time, suggesting that the observed motions were buoyancy affected turbulence rather than internal waves. However, at times, turbulent Froude numbers in much of the upper-water column were less than one, indicating important stratification effects. Taken as a whole, the data show that stratification affects the turbulent velocity variance q2 most severely; that is, observed reductions in u'w' are largely associated with small values of q2 rather than with a dramatic reduction in the efficiency with which turbulent motions produce momentum fluxes. Finally, the dataset is compared to predictions made using the popular Mellor-Yamada level 2.5 closure. These comparisons show that the model tends to underestimate the turbulent kinetic energy in regions of strong stratification where the turbulence is strongly inhomogeneous and to overestimate the turbulent kinetic energy in weakly stratified regions. The length scale does not appear to compensate for these errors, and, as a result, similar errors are seen in the eddy viscosity
Radiation characteristics and turbulence-radiation interactions in sooting turbulent jet flames
NASA Astrophysics Data System (ADS)
HASH(0x3416010), R. S.; HASH(0x33f0c38), M. F.; Haworth, D. C.
2010-03-01
A comprehensive modeling strategy including detailed chemistry, soot and radiation models coupled with state-of-the-art closures for turbulence-chemistry interactions and turbulence-radiation interactions is applied to various luminous turbulent jet flames. Six turbulent jet flames are simulated with Reynolds numbers varying from 6700 to 15,000, two fuel types (pure ethylene, 90% methane-10% ethylene blend) and different oxygen concentrations in the oxidizer stream (from 21% O2 to 55% O2). All simulations are carried out with a single set of physical and numerical parameters (model constants). A Lagrangian particle Monte Carlo method is used to solve a modeled joint probability density function (PDF) transport equation, which allows accurate closure for turbulence-chemistry interactions including nonlinear soot subprocesses. Radiation is calculated using a particle-based photon Monte Carlo method that is coupled with the PDF method to accurately account for both emission and absorption turbulence-radiation interactions (TRI). Line-by-line databases are used for accurate spectral radiative properties of CO2 and H2O; soot radiative properties also are modeled as nongray. For the flames that have been investigated, soot emission can be almost 45% of the total emission, even when the peak soot volume fraction is of the order of a few parts-per-million (ppm) and up to 99% of soot emission can escape the domain without re-absorption. Turbulence-radiation interactions have a strong effect on the net radiative heat loss from these sooting flames. For a given temperature, species and soot distribution, TRI increases emission from the flames by 30-60%, and the net heat loss from the flame increases by 45-90% when accounting for TRI. This is higher than the corresponding increase in radiative heat loss due to TRI in nonsooting flames. Absorption TRI was found to be negligible in these laboratory-scale sooting flames with soot levels on the order of a few ppm, but may be
Control-surface hinge-moment calculations for a high-aspect-ratio supercritical wing
NASA Technical Reports Server (NTRS)
Perry, B., III
1978-01-01
The hinge moments, at selected flight conditions, resulting from deflecting two trailing edge control surfaces (one inboard and one midspan) on a high aspect ratio, swept, fuel conservative wing with a supercritical airfoil are estimated. Hinge moment results obtained from procedures which employ a recently developed transonic analysis are given. In this procedure a three dimensional inviscid transonic aerodynamics computer program is combined with a two dimensional turbulent boundary layer program in order to obtain an interacted solution. These results indicate that trends of the estimated hinge moment as a function of deflection angle are similar to those from experimental hinge moment measurements made on wind tunnel models with swept supercritical wings tested at similar values of free stream Mach number and angle of attack.
Kershaw closures for linear transport equations in slab geometry I: Model derivation
NASA Astrophysics Data System (ADS)
Schneider, Florian
2016-10-01
This paper provides a new class of moment models for linear kinetic equations in slab geometry. These models can be evaluated cheaply while preserving the important realizability property, that is the fact that the underlying closure is non-negative. Several comparisons with the (expensive) state-of-the-art minimum-entropy models are made, showing the similarity in approximation quality of the two classes.
On the modeling of low-Reynolds-number turbulence
NASA Technical Reports Server (NTRS)
So, R. M. C.; Yoo, G. J.
1986-01-01
A full Reynolds-stress closure that is capable of describing the flow all the way to the wall was formulated for turbulent flow through circular pipe. Since viscosity does not appear explicitly in the pressure redistribution terms, conventional high-number models for these terms are found to be applicable. However, the models for turbulent diffusion and viscous dissipation have to be modified to account for viscous diffusion near a wall. Two redistribution and two diffusion models are investigated for their effects on the model calculations. Wall correction to pressure redistribution modeling is also examined. Diffusion effects on calculated turbulent properties are further investigated by simplifying the transport equations to algebraic equations for Reynolds stress. Two approximations are explored. These are the equilibrium and nonequilibrium turbulence assumptions. Finally, the two-equation closure is also used to calculate the flow in question and the results compared with all the other model calculations. Fully developed pipe flows at two moderate Reynolds numbers are used to validate these model calculations.
Atrioventricular block after ASD closure
Asakai, Hiroko; Weskamp, Sofia; Eastaugh, Lucas; d'Udekem, Yves; Pflaumer, Andreas
2016-01-01
Objective Secundum atrial septal defect (ASD) is a common congenital heart defect. There is limited data on both early and late atrioventricular (AV) block post ASD closure. The aim of this study was to determine the incidence and risk factors of AV block associated with ASD closure. Methods A retrospective analysis of all patients who underwent ASD closure either with a device or surgical method at the Royal Children's Hospital Melbourne between 1996 and 2010 was performed. Baseline demographics, procedural details and follow-up data were collected from medical records. Results A total of 378 patients were identified; 242 in the device group and 136 in the surgical group. Fourteen patients (3.7%) had AV block (1 with second degree and 13 with first degree) at a median follow-up of 28 months; 11/242 (4.5%) in the device group and 3/135 (2.2%) in the surgical group (p=0.39). Six patients had new-onset AV block after ASD closure. In the device subgroup, patients with AV block at follow-up had a larger indexed device size compared with those without (22 (15–31) vs 18(7–38), p=0.02). Multivariate analysis revealed the presence of AV block either pre procedure or post procedure to be the only variables associated with late AV block. Conclusions Late AV block in patients with repaired ASD is rare and most likely independent of the technique used. In the device subgroup, the only risk factor identified to be associated with late AV block was the presence of either preprocedural or postprocedural AV block, so long-term follow-up for these patients should be provided. PMID:27540418
Flight-crash events in turbulence.
Xu, Haitao; Pumir, Alain; Falkovich, Gregory; Bodenschatz, Eberhard; Shats, Michael; Xia, Hua; Francois, Nicolas; Boffetta, Guido
2014-05-27
The statistical properties of turbulence differ in an essential way from those of systems in or near thermal equilibrium because of the flux of energy between vastly different scales at which energy is supplied and at which it is dissipated. We elucidate this difference by studying experimentally and numerically the fluctuations of the energy of a small fluid particle moving in a turbulent fluid. We demonstrate how the fundamental property of detailed balance is broken, so that the probabilities of forward and backward transitions are not equal for turbulence. In physical terms, we found that in a large set of flow configurations, fluid elements decelerate faster than accelerate, a feature known all too well from driving in dense traffic. The statistical signature of rare "flight-crash" events, associated with fast particle deceleration, provides a way to quantify irreversibility in a turbulent flow. Namely, we find that the third moment of the power fluctuations along a trajectory, nondimensionalized by the energy flux, displays a remarkable power law as a function of the Reynolds number, both in two and in three spatial dimensions. This establishes a relation between the irreversibility of the system and the range of active scales. We speculate that the breakdown of the detailed balance characterized here is a general feature of other systems very far from equilibrium, displaying a wide range of spatial scales.
Flight–crash events in turbulence
Xu, Haitao; Pumir, Alain; Falkovich, Gregory; Bodenschatz, Eberhard; Shats, Michael; Xia, Hua; Francois, Nicolas; Boffetta, Guido
2014-01-01
The statistical properties of turbulence differ in an essential way from those of systems in or near thermal equilibrium because of the flux of energy between vastly different scales at which energy is supplied and at which it is dissipated. We elucidate this difference by studying experimentally and numerically the fluctuations of the energy of a small fluid particle moving in a turbulent fluid. We demonstrate how the fundamental property of detailed balance is broken, so that the probabilities of forward and backward transitions are not equal for turbulence. In physical terms, we found that in a large set of flow configurations, fluid elements decelerate faster than accelerate, a feature known all too well from driving in dense traffic. The statistical signature of rare “flight–crash” events, associated with fast particle deceleration, provides a way to quantify irreversibility in a turbulent flow. Namely, we find that the third moment of the power fluctuations along a trajectory, nondimensionalized by the energy flux, displays a remarkable power law as a function of the Reynolds number, both in two and in three spatial dimensions. This establishes a relation between the irreversibility of the system and the range of active scales. We speculate that the breakdown of the detailed balance characterized here is a general feature of other systems very far from equilibrium, displaying a wide range of spatial scales. PMID:24794529
Turbulence and Star Formation in Dwarf Galaxies
NASA Astrophysics Data System (ADS)
Hollyday, Gigja; Hunter, Deidre Ann; Little Things Team
2015-01-01
We are interested in understanding the nature and role of turbulence in the interstellar medium of dwarf irregular galaxies. Turbulence, resulting from a variety of processes, is a potential source for cloud formation, and thus star formation. We have undertaken an indirect analysis of turbulence via the third (skewness) and fourth (kurtosis) moments of the distribution of atomic hydrogen gas densities using the LITTLE THINGS data for a 40-count sample of nearby (<10.3 Mpc) dwarf galaxies. We followed the formulism used by Burkhart et al. (2010) in a study of the SMC. We found that there is evidence of turbulence in dwarf galaxies at a level comparable to that found in the SMC, but we have found no correlation between integrated star formation rates and integrated kurtosis values nor a clear correlation between kurtosis as a function of radius with gas surface density and star formation profiles. We are grateful for a summer internship provided by the Research Experiences for Undergraduates program at Northern Arizona University, run by Dr. Kathy Eastwood and Dr. David Trilling and funded by the National Science Foundation through grant AST-1004107.
Sampling and monitoring for closure
McLemore, V.T.; Russell, C.C.; Smith, K.S.
2004-01-01
The Metals Mining Sector of the Acid Drainage Technology Initiative (ADTI-MMS) addresses technical drainage-quality issues related to metal mining and related metallurgical operations, for future and active mines, as well as, for historical mines and mining districts. One of the first projects of ADTI-MMS is to develop a handbook describing the best sampling, monitoring, predicting, mitigating, and modeling of drainage from metal mines, pit lakes and related metallurgical facilities based upon current scientific and engineering practices. One of the important aspects of planning a new mine in today's regulatory environment is the philosophy of designing a new or existing mine or expansion of operations for ultimate closure. The holistic philosophy taken in the ADTI-MMS handbook maintains that sampling and monitoring programs should be designed to take into account all aspects of the mine-life cycle. Data required for the closure of the operation are obtained throughout the mine-life cycle, from exploration through post-closure.
Kerstein, A.R.
1996-12-31
One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.
Turbulence generation by waves
Kaftori, D.; Nan, X.S.; Banerjee, S.
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
Characterisation of turbulence downstream of a linear compressor cascade
NASA Astrophysics Data System (ADS)
di Mare, Luca; Jelly, Thomas; Day, Ivor
2014-11-01
Characterisation of turbulence in turbomachinery remains one of the most complex tasks in fluid mechanics. In addition, current closure models required for Reynolds-averaged Navier-Stokes computations do not accurately represent the action of turbulent forces against the mean flow. Therefore, the statistical properties of turbulence in turbomachinery are of significant interest. In the current work, single- and two-point hot-wire measurements have been acquired downstream of a linear compressor cascade in order to examine the properties of large-scale turbulent structures and to assess how they affect turbulent momentum and energy transfer in compressor passages. The cascade has seven controlled diffusion which are representative of high-pressure stator blades found in turbofan engines. Blade chord, thickness and camber are 0.1515 m, 9.3% and 42 degrees, respectively. Measurements were acquired at a chord Reynolds number of 6 . 92 ×105 . Single-point statistics highlight differences in turbulence structure when comparing mid-span and end-wall regions. Evaluation of two-point correlations and their corresponding spectra reveal the length-scales of the energy-bearing eddies in the cascade. Ultimately, these measurements can be used to calibrate future computational models. The authors gratefully acknowledge Rolls-Royce plc for funding this work and granting permission for its publication.
Superconductivity from Emerging Magnetic Moments.
Hoshino, Shintaro; Werner, Philipp
2015-12-11
Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds. PMID:26705649
Superconductivity from Emerging Magnetic Moments
NASA Astrophysics Data System (ADS)
Hoshino, Shintaro; Werner, Philipp
2015-12-01
Multiorbital Hubbard models are shown to exhibit a spatially isotropic spin-triplet superconducting phase, where equal-spin electrons in different local orbitals are paired. This superconducting state is stabilized in the spin-freezing crossover regime, where local moments emerge in the metal phase, and the pairing is substantially assisted by spin anisotropy. The phase diagram features a superconducting dome below a non-Fermi-liquid metallic region and next to a magnetically ordered phase. We suggest that this type of fluctuating-moment-induced superconductivity, which is not originating from fluctuations near a quantum critical point, may be realized in spin-triplet superconductors such as strontium ruthenates and uranium compounds.
Geometric moments for gait description
NASA Astrophysics Data System (ADS)
Toxqui-Quitl, C.; Morales-Batalla, V.; Padilla-Vivanco, A.; Camacho-Bello, C.
2013-09-01
The optical flow associated with a set of digital images of a moving individual is analyzed in order to extract a gait signature. For this, invariant Hu moments are obtained for image description. A Hu Moment History (HMH) is obtained from K frames to describe the gait signature of individuals in a video. The gait descriptors are subsequences of the HMH of variable width. Each subsequence is generated by means of genetic algorithms and used for classification in a neuronal network. The database for algorithm evaluation is MoBo, and the gait classification results are above 90% for the cases of slow and fast walking and 100% for the cases of walking with a ball and inclined walking. An optical processor is also implemented in order to obtain the descriptors of the human gait.
Tactical missile turbulence problems
NASA Technical Reports Server (NTRS)
Dickson, Richard E.
1987-01-01
Of particular interest is atmospheric turbulence in the atmospheric boundary layer, since this affects both the launch and terminal phase of flight, and the total flight for direct fire systems. Brief discussions are presented on rocket artillery boost wind problems, mean wind correction, turbulent boost wind correction, the Dynamically Aimed Free Flight Rocket (DAFFR) wind filter, the DAFFR test, and rocket wake turbulence problems. It is concluded that many of the turbulence problems of rockets and missiles are common to those of aircraft, such as structural loading and control system design. However, these problems have not been solved at this time.
Triggering filamentation using turbulence
NASA Astrophysics Data System (ADS)
Eeltink, D.; Berti, N.; Marchiando, N.; Hermelin, S.; Gateau, J.; Brunetti, M.; Wolf, J. P.; Kasparian, J.
2016-09-01
We study the triggering of single filaments due to turbulence in the beam path for a laser of power below the filamenting threshold. Turbulence can act as a switch between the beam not filamenting and producing single filaments. This positive effect of turbulence on the filament probability, combined with our observation of off-axis filaments, suggests the underlying mechanism is modulation instability caused by transverse perturbations. We hereby experimentally explore the interaction of modulation instability and turbulence, commonly associated with multiple filaments, in the single-filament regime.
A moment-convergence method for stochastic analysis of biochemical reaction networks
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Nie, Qing; Zhou, Tianshou
2016-05-01
Traditional moment-closure methods need to assume that high-order cumulants of a probability distribution approximate to zero. However, this strong assumption is not satisfied for many biochemical reaction networks. Here, we introduce convergent moments (defined in mathematics as the coefficients in the Taylor expansion of the probability-generating function at some point) to overcome this drawback of the moment-closure methods. As such, we develop a new analysis method for stochastic chemical kinetics. This method provides an accurate approximation for the master probability equation (MPE). In particular, the connection between low-order convergent moments and rate constants can be more easily derived in terms of explicit and analytical forms, allowing insights that would be difficult to obtain through direct simulation or manipulation of the MPE. In addition, it provides an accurate and efficient way to compute steady-state or transient probability distribution, avoiding the algorithmic difficulty associated with stiffness of the MPE due to large differences in sizes of rate constants. Applications of the method to several systems reveal nontrivial stochastic mechanisms of gene expression dynamics, e.g., intrinsic fluctuations can induce transient bimodality and amplify transient signals, and slow switching between promoter states can increase fluctuations in spatially heterogeneous signals. The overall approach has broad applications in modeling, analysis, and computation of complex biochemical networks with intrinsic noise.
Characterizing Magnetohydrodynamic Turbulence in the Small Magellanic Cloud
NASA Astrophysics Data System (ADS)
Burkhart, Blakesley K.
2010-01-01
We investigate the nature of turbulence in the Small Magellanic Cloud (SMC) using several diagnostics known to provide information on magnetohydrodynamic sonic and Alfven Mach numbers. We calculated the 2nd, 3rd and 4th statistical moments of the SMC, i.e. variance, skewness and kurtosis, respectively. It is known that a strong dependence of variance, skewness and kurtosis with Ms exists. An analysis of 3rd and 4th order moments give us a average Ms=3-4 for the SMC. We explore moments of smaller scale features in the SMC by making 'moment maps’ with a circular beam aperture. These maps indicate large turbulence in star forming regions and at regions on the interface of supershells. We also investigate how the spatial power spectral slope, which is known to get shallower with increasing sonic Mach number, of the SMC compares with that of simulations. We find that this method gives Ms 3 and suggests the SMC may be super-Alfvenic. We also calculate the sonic Mach number of the SMC using the ratio of kinetic to spin temperature, and obtain a median value for the cold gas of Ms = 7.12 ± 3.41. In addition to these techniques we apply the bispectrum, a new tool for statistical studies of the interstellar medium, in order to study turbulence wave-wave interactions. Unlike the ordinary power spectrum, the bispectrum preserves phase information in the stochastic field. We compare the bispectrum of the SMC with that of 3D isothermal simulations. We explore the bispectrum of the SMC for a variety of velocity channel samplings. We compare the bispectrum of the SMC to bispectrum of simulations of strong and weakly magnetized turbulence and find that the bispectrum of the SMC shows similar properties to supersonic turbulence. This work was in part supported by the NSF Graduate Research Fellowship
Remote visualization and scale analysis of large turbulence datatsets
NASA Astrophysics Data System (ADS)
Livescu, D.; Pulido, J.; Burns, R.; Canada, C.; Ahrens, J.; Hamann, B.
2015-12-01
Accurate simulations of turbulent flows require solving all the dynamically relevant scales of motions. This technique, called Direct Numerical Simulation, has been successfully applied to a variety of simple flows; however, the large-scale flows encountered in Geophysical Fluid Dynamics (GFD) would require meshes outside the range of the most powerful supercomputers for the foreseeable future. Nevertheless, the current generation of petascale computers has enabled unprecedented simulations of many types of turbulent flows which focus on various GFD aspects, from the idealized configurations extensively studied in the past to more complex flows closer to the practical applications. The pace at which such simulations are performed only continues to increase; however, the simulations themselves are restricted to a small number of groups with access to large computational platforms. Yet the petabytes of turbulence data offer almost limitless information on many different aspects of the flow, from the hierarchy of turbulence moments, spectra and correlations, to structure-functions, geometrical properties, etc. The ability to share such datasets with other groups can significantly reduce the time to analyze the data, help the creative process and increase the pace of discovery. Using the largest DOE supercomputing platforms, we have performed some of the biggest turbulence simulations to date, in various configurations, addressing specific aspects of turbulence production and mixing mechanisms. Until recently, the visualization and analysis of such datasets was restricted by access to large supercomputers. The public Johns Hopkins Turbulence database simplifies the access to multi-Terabyte turbulence datasets and facilitates turbulence analysis through the use of commodity hardware. First, one of our datasets, which is part of the database, will be described and then a framework that adds high-speed visualization and wavelet support for multi-resolution analysis of
Reynolds stress closure in jet flows using wave models
NASA Technical Reports Server (NTRS)
Morris, Philip J.
1990-01-01
A collection of papers is presented. The outline of this report is as follows. Chapter three contains a description of a weakly nonlinear turbulence model that was developed. An essential part of the application of such a closure scheme to general geometry jets is the solution of the local hydrodynamic stability equation for a given jet cross-section. Chapter four describes the conformal mapping schemes used to map such geometries onto a simple computational domain. Chapter five describes a solution of a stability problem for circular, elliptic, and rectangular geometries. In chapter six linear models for the shock shell structure in non-circular jets is given. The appendices contain reprints of papers also published during this study including the following topics: (1) instability of elliptic jets; (2) a technique for predicting the shock cell structure in non-circular jets using a vortex sheet model; and (3) the resonant interaction between twin supersonic jets.
Mass and Momentum Turbulent Transport Experiments with Confined Coaxial Jets
NASA Technical Reports Server (NTRS)
Johnson, B. V.; Bennett, J. C.
1981-01-01
Downstream mixing of coaxial jets discharging in an expanded duct was studied to obtain data for the evaluation and improvement of turbulent transport models currently used in a variety of computational procedures throughout the propulsion community for combustor flow modeling. Flow visualization studies showed four major shear regions occurring; a wake region immediately downstream of the inlet jet inlet duct; a shear region further downstream between the inner and annular jets; a recirculation zone; and a reattachment zone. A combination of turbulent momentum transport rate and two velocity component data were obtained from simultaneous measurements with a two color laser velocimeter (LV) system. Axial, radial and azimuthal velocities and turbulent momentum transport rate measurements in the r-z and r-theta planes were used to determine the mean value, second central moment (or rms fluctuation from mean), skewness and kurtosis for each data set probability density function (p.d.f.). A combination of turbulent mass transport rate, concentration and velocity data were obtained system. Velocity and mass transport in all three directions as well as concentration distributions were used to obtain the mean, second central moments, skewness and kurtosis for each p.d.f. These LV/LIF measurements also exposed the existence of a large region of countergradient turbulent axial mass transport in the region where the annular jet fluid was accelerating the inner jet fluid.
Porsev, S. G.; Ginges, J. S. M.; Flambaum, V. V.
2011-04-15
We have considered a mechanism for inducing a time-reversal violating electric dipole moment (EDM) in atoms through the interaction of a nuclear EDM d{sub N} with the hyperfine interaction, the ''magnetic moment effect''. We have derived the operator for this interaction and presented analytical formulas for the matrix elements between atomic states. Induced EDMs in the diamagnetic atoms {sup 129}Xe, {sup 171}Yb, {sup 199}Hg, {sup 211}Rn, and {sup 225}Ra have been calculated numerically. From the experimental limits on the atomic EDMs of {sup 129}Xe and {sup 199}Hg we have placed the following constraints on the nuclear EDMs, |d{sub N}({sup 129}Xe)|<1.1x10{sup -21}|e|cm and |d{sub N}({sup 199}Hg)|<2.8x10{sup -24}|e|cm.
Nuclear Quadrupole Moments and Nuclear Shell Structure
DOE R&D Accomplishments Database
Townes, C. H.; Foley, H. M.; Low, W.
1950-06-23
Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.
Fluid electrons with kinetic closure for long wavelength energetic particles driven modes
Chen Yang; Parker, Scott E.
2011-05-15
A kinetic electron closure scheme is presented for the fluid electron model that has been implemented in the GEM code [J. Lang, Y. Chen, S. E. Parker, and G.-Y. Fu, Phys. Plasmas 16, 102101 (2009)]. The most important element of the closure scheme is a complete Ohm's law for the parallel electric field E{sub ||}, derived by combining the quasineutrality condition, the Ampere's equation and the v{sub ||} moment of the gyrokinetic equations. A discretization method for the closure scheme is presented and studied in detail for a three-dimensional shearless slab plasma. It is found that for long wavelength shear Alfven waves the kinetic closure scheme is both more accurate and more robust than the previous GEM algorithm [Y. Chen and S. E. Parker, J. Comput. Phys. 189, 463 (2003)], whereas for the ion-gradient-driven instability the previous algorithm is more efficient. The fluid electron model with kinetic electron closure is useful for studying energetic particles driven modes with electron kinetic damping effects.
Why turbulence sustains in supercritically stratified free atmosphere?
NASA Astrophysics Data System (ADS)
Zilitinkevich, Sergej
2016-04-01
It is widely believed that in very stable stratifications, at Richardson numbers (Ri) exceeding critical value Ric ˜ 0.25 turbulence decays and flow becomes laminar. This is so at low Reynolds numbers (Re), e.g., in lab experiments; but this is not true in very-high-Re geophysical flows. Free atmosphere and deep ocean are turbulent in spite of strongly supercritical stratifications: 1 << Ri < 103. Until recently, this paradox remained unexplained. The Energy- and Flux-Budget (EFB) turbulence-closure (Zilitinkevich et al., 2013) has disclosed the following turbulence self-control mechanisms. Until recently, the role of negative buoyancy flux, Fb > 0, in turbulence energetics was treated in terms of the turbulent kinetic energy (TKE) budget equation and understood as just consumption of TKE by the buoyancy forces. This has led to the conclusion that sufficiently strong static stability causes the negative buoyancy flux sufficiently strong to exceed the TKE generation rate and thus to kill turbulence. However, considering TKE equation together with budget equation for turbulent potential energy (TPE proportional to the squared buoyancy fluctuations) shows that the role of Fb in turbulence energetics is nothing but conversion of TKE into TPE (Fb just quantifies the rate of this conversion); so that Fb does not affect total turbulent energy (TTE = TKE + TPE). Moreover, as follows from the buoyancy-flux budget equation, TPE generates positive (directed upward) buoyancy flux irrespective of the sign of the buoyancy gradient. Indeed, the warmer fluid particles (with positive buoyancy fluctuation) rise up, whereas the cooler particles sink down, so that both contribute to the positive buoyancy flux opposing to the usual, negative flux generated by mean buoyancy gradient. In this context, strengthening the negative buoyancy flux leads to decreasing TKE and increasing TPE. The latter enhances the counter-gradient share of the total flux, thus reduces |Fb| and, eventually
Properties of turbulence in natural gas-oxygen diffusion flames
Sautet, J.C.; Ditaranto, M. ); Samaniego, J.M.; Charon, O. )
1999-07-01
Measurements of turbulent flow field velocities, including first and second order velocity moments and the shear stress are carried out by laser Doppler velocimetry in five different, 25 kW, turbulent natural gas-oxygen diffusion flames. The mean flow behavior is described including the velocity half value radius as well as centerline velocity. Mean radial velocity profiles are fitted by a Gaussian function. According to the initial momentum ratio, different jet dynamic behaviors are pointed out by the description of the fluctuating velocity field.
NASA Technical Reports Server (NTRS)
Montgomery, David
1988-01-01
Three areas of study in MHD turbulence are considered. These are the turbulent relaxation of the toroidal Z pinch, density fluctuations in MHD fluids, and MHD cellular automata. A Boolean computer game that updates a cellular representation in parallel and that has macroscopic averages converging to solutions of the two-dimensional MHD equations is discussed.
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the closure and post-closure requirements that apply to landfills (40 CFR 264.310). ... decontamination of contaminated components, subsoils, structures, and equipment as required in paragraph (a)...
Clamshell closure for metal drum
Blanton, Paul S
2014-09-30
Closure ring to retain a lid in contact with a metal drum in central C-section conforming to the contact area between a lid and the rim of a drum and further having a radially inwardly directed flange and a vertically downwardly directed flange attached to the opposite ends of the C-section. The additional flanges reinforce the top of the drum by reducing deformation when the drum is dropped and maintain the lid in contact with the drum. The invention is particularly valuable in transportation and storage of fissile material.
Samanta, Devranjan; Dubief, Yves; Holzner, Markus; Schäfer, Christof; Morozov, Alexander N; Wagner, Christian; Hof, Björn
2013-06-25
Turbulence is ubiquitous in nature, yet even for the case of ordinary Newtonian fluids like water, our understanding of this phenomenon is limited. Many liquids of practical importance are more complicated (e.g., blood, polymer melts, paints), however; they exhibit elastic as well as viscous characteristics, and the relation between stress and strain is nonlinear. We demonstrate here for a model system of such complex fluids that at high shear rates, turbulence is not simply modified as previously believed but is suppressed and replaced by a different type of disordered motion, elasto-inertial turbulence. Elasto-inertial turbulence is found to occur at much lower Reynolds numbers than Newtonian turbulence, and the dynamical properties differ significantly. The friction scaling observed coincides with the so-called "maximum drag reduction" asymptote, which is exhibited by a wide range of viscoelastic fluids.
Samanta, Devranjan; Dubief, Yves; Holzner, Markus; Schäfer, Christof; Morozov, Alexander N.; Wagner, Christian; Hof, Björn
2013-01-01
Turbulence is ubiquitous in nature, yet even for the case of ordinary Newtonian fluids like water, our understanding of this phenomenon is limited. Many liquids of practical importance are more complicated (e.g., blood, polymer melts, paints), however; they exhibit elastic as well as viscous characteristics, and the relation between stress and strain is nonlinear. We demonstrate here for a model system of such complex fluids that at high shear rates, turbulence is not simply modified as previously believed but is suppressed and replaced by a different type of disordered motion, elasto-inertial turbulence. Elasto-inertial turbulence is found to occur at much lower Reynolds numbers than Newtonian turbulence, and the dynamical properties differ significantly. The friction scaling observed coincides with the so-called “maximum drag reduction” asymptote, which is exhibited by a wide range of viscoelastic fluids. PMID:23757498
100-D Ponds closure plan. Revision 1
Petersen, S.W.
1997-09-01
The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit is clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure.
Fermion dipole moment and holography
NASA Astrophysics Data System (ADS)
Kulaxizi, Manuela; Rahman, Rakibur
2015-12-01
In the background of a charged AdS black hole, we consider a Dirac particle endowed with an arbitrary magnetic dipole moment. For non-zero charge and dipole coupling of the bulk fermion, we find that the dual boundary theory can be plagued with superluminal modes. Requiring consistency of the dual CFT amounts to constraining the strength of the dipole coupling by an upper bound. We briefly discuss the implications of our results for the physics of holographic non-Fermi liquids.
Electromagnetic moments of 22F
NASA Astrophysics Data System (ADS)
Mihara, M.; Matsuta, K.; Komurasaki, J.; Hirano, H.; Nishimura, D.; Momota, S.; Ohtsubo, T.; Izumikawa, T.; Shimbara, Y.; Kubo, T.; Kameda, D.; Zhou, Dongmei; Zheng, Yongnan; Yuan, Daqing; Zhu, Shengyun; Kitagawa, A.; Kanazawa, M.; Torikoshi, M.; Sato, S.; Nagatomo, T.; Matsumiya, R.; Ishikawa, D.; Fukuda, M.; Minamisono, T.; Nojiri, Y.; Alonso, J. R.; Crebs, G. F.; Symons, T. J. M.
2010-03-01
The magnetic dipole (μ) and electric quadrupole (Q) moments of short-lived nucleus 22F (Iπ=4+, T=4.2s) have been measured for the first time by means of the β-NMR technique. A spin polarized 22F beam was produced through the charge exchange reaction of 22Ne and was implanted into single crysltals of NaF and MgF2 for μ and Q measurements, respectively. As a result, |μ(F22)|=(2.69443±0.00039)μ and |Q(F22)|=(3±2)mb was obtained. These values are well reproduced by the shell model calculations.
NASA Technical Reports Server (NTRS)
Ha Minh, H.; Viegas, J. R.; Rubesin, M. W.; Spalart, P.; Vandromme, D. D.
1989-01-01
The turbulent boundary layer under a freestream whose velocity varies sinusoidally in time around a zero mean is computed using two second order turbulence closure models. The time or phase dependent behavior of the Reynolds stresses are analyzed and results are compared to those of a previous SPALART-BALDWIN direct simulation. Comparisons show that the second order modeling is quite satisfactory for almost all phase angles, except in the relaminarization period where the computations lead to a relatively high wall shear stress.
Sinclair, J.L.
1992-12-31
The successful prediction of particle-laden, turbulent flows relies heavily on the representation of turbulence in the gas phase. Several types of turbulence models for single-phase gas flow have been developed which compare reasonably well with experimental data. In the present work, a ``low-Reynolds`` k-{epsilon}, closure model is chosen to describe the Reynolds stresses associated with gas-phase turbulence. This closure scheme, which involves transport equations for the turbulent kinetic energy and its dissipation rate, is valid in the turbulent core as well as the viscous sublayer. Several versions of the low-Reynolds k-{epsilon} closure are documented in the literature. However, even those models which are similar in theory often differ considerably in their quantitative and qualitative predictions, making the selection of such a model a difficult task. The purpose of this progress report is to document our findings on the performance of ten different versions of the low-Reynolds k-{epsilon} model on predicting fully developed pipe flow. The predictions are compared with the experimental data of Schildknecht, et al. (1979). With the exception of the model put forth by Hoffman (1975), the predictions of all the closures show reasonable agreement for the mean velocity profile. However, important quantitative differences exist for the turbulent kinetic energy profile. In addition, the predicted eddy viscosity profile and the wall-region profile of the turbulent kinetic energy dissipation rate exhibit both quantitative and qualitative differences. An effort to extend the present comparisons to include experimental measurements of other researchers is recommended in order to further evaluate the performance of the models.
ERIC Educational Resources Information Center
Gross, Rosalind L.; White, Harry E.
This publication describes a selected group of child-resistant closures used in packaging five categories of medicine and household products. The material in the document was collected to train survey personnel to identify closures for a planned household study of the effectiveness of child-resistant packaging. The 39 closures described are of…
Accelerating cleanup: Paths to closure
Edwards, C.
1998-06-30
This document was previously referred to as the Draft 2006 Plan. As part of the DOE`s national strategy, the Richland Operations Office`s Paths to Closure summarizes an integrated path forward for environmental cleanup at the Hanford Site. The Hanford Site underwent a concerted effort between 1994 and 1996 to accelerate the cleanup of the Site. These efforts are reflected in the current Site Baseline. This document describes the current Site Baseline and suggests strategies for further improvements in scope, schedule and cost. The Environmental Management program decided to change the name of the draft strategy and the document describing it in response to a series of stakeholder concerns, including the practicality of achieving widespread cleanup by 2006. Also, EM was concerned that calling the document a plan could be misconstrued to be a proposal by DOE or a decision-making document. The change in name, however, does not diminish the 2006 vision. To that end, Paths to Closure retains a focus on 2006, which serves as a point in time around which objectives and goals are established.
Transitional nuclei near shell closures
Mukherjee, G.
2014-08-14
High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.
Structural determinants of hospital closure.
Longo, D R; Chase, G A
1984-05-01
In a retrospective case-control study, structural characteristics of hospitals that closed during the years 1976-1980 were contrasted with three comparison groups: hospitals that were acquired in a merger; hospitals that joined a multihospital system; and hospitals that remained autonomously opened, to investigate these characteristics as predictors of closure. Characteristics investigated included environmental, structural, and process variables. The independent variables were measured 5 years prior to outcome. Findings indicate that closed hospitals resemble hospitals acquired in a merger ("failure"), and likewise autonomous hospitals resemble hospitals that join a multihospital system ("success"). The most important predictors of hospital failure were the physician-to-population ratio, the East North Central and West North Central census regions, the level of diversification, low occupancy rate, location in a standard metropolitan statistical area, the chief executive officer's lack of affiliation in the American College of Hospital Administrators, profit status, bed size of less than 50, and presence in a state with a rate-setting agency. Surprisingly, this study shows the bed-to-population ratio to be unrelated to closure. In addition, the findings strongly support the open-system perspective, which, unlike the closed-system perspective, is concerned with the vulnerability of the organization to the uncontrollable and often unpredictable influences of the environment.
Criticality assessment of LLRWDF closure
Sarrack, A.G.; Weber, J.H.; Woody, N.D.
1992-10-06
During the operation of the Low Level Radioactive Waste Disposal Facility (LLRWDF), large amounts (greater than 100 kg) of enriched uranium (EU) were buried. This EU came primarily from the closing and decontamination of the Naval Fuels Facility in the time period from 1987--1989. Waste Management Operations (WMO) procedures were used to keep the EU boxes separated to prevent possible criticality during normal operation. Closure of the LLRWDF is currently being planned, and waste stabilization by Dynamic Compaction (DC) is proposed. Dynamic compaction will crush the containers in the LLRWDF and result in changes in their geometry. Research of the LLRWDF operations and record keeping practices have shown that the EU contents of trenches are known, but details of the arrangement of the contents cannot be proven. Reviews of the trench contents, combined with analysis of potential critical configurations, revealed that some portions of the LLRWDF can be expected to be free of criticality concerns while other sections have credible probabilities for the assembly of a critical mass, even in the uncompacted configuration. This will have an impact on the closure options and which trenches can be compacted.
Comparing Fullerenes by Spectral Moments.
Taghvaee, F; Ashrafi, A R
2016-03-01
Suppose G is a graph, A(G) its adjacency matrix, and μ1(G)≤(G)μ2(G)≤ ... ≤ μ(n)(G)are eigenvalues of A(G). The numbers S(k)(G) = Σ(i) n = 1 μ(i)k (G), 0 ≤ k ≤ n -1 are said to be the k-th spectral moment of G and the sequence S(G) = (S0(G), S1 (G),..., S(n-1)(G)is called the spectral moments sequence of G. Suppose G1 and G2 are graphs. If there exists an integer k, 1 ≤ k ≤ n - 1, such that for each i, 0 ≤ i ≤ k - 1, S(i) (G1) = S(i)(G2) and S(k)(G1) < S(k)(G2) then we write G1 -<(s) G2. The aim of this paper is order some classes of fullerene graphs with respect to the S-order.
Third Elementary Dipole Moment: Toroidal
NASA Astrophysics Data System (ADS)
Cordrey, Vincent; Eshete, Amanuel; Majewski, Walerian
2015-04-01
In this paper we study the generally unknown characteristics of toroids, magnets without magnetic poles. Toroids have never seemed interesting enough to be studied for their physical features in labs due to the fact that they have no magnetic fields on the outside, but rather a very strong magnetic field trapped inside. Toroidal solenoids or magnets (rings magnetized circumferentially) interact with the external magnetic field only through its curl, which can be created either by an electric current, or by a time-dependent electric flux. We confirmed a theoretical prediction, that a toroid would not interact with the curl-less magnetic field of a current-carrying wire running outside of the torus's hole. We used our toroids as magnetic curlmeters, measuring the torque on the toroid, when the current-carrying wire runs through the toroid. From this torque we found the toroidal dipole moment. We are experimenting on detecting the escape of the inner magnetic field of the toroid outside of it, when magnetic toroid rotates or when electric toroid is driven by AC voltage. We also will discuss toroidal (or anapole) moments of fundamental particles, nuclei and atoms, and toroids' applications in metamaterials.
NASA Astrophysics Data System (ADS)
Rehill, Brendan; Ed J. Walsh Collaboration; Philipp Schlatter, Luca Brandt Collaboration; Tamer A. Zaki Collaboration; Donald M. McEligot Collaboration
2011-11-01
Within the boundary layer transition region turbulent spots emerge and grow to form the fully-turbulent boundary layer. This paper examines the turbulent statistics within turbulent spots in a transitional boundary layer subject to free-stream turbulence intensity of 4 . 7 % . Conditionally sampled DNS results, where the laminar and turbulent contributions to the transition region are separated, are used to obtain the relevant statistics. Conditional sampling of the data provides some improvement over the more classical time-space-averaged data reduction techniques, through providing more insight into the true turbulent statistics within turbulent spots. The statistics are compared to the lowest fully-turbulent DNS available in the literature to identify how the turbulent spots develop and form the fully-turbulent state. Stokes Institute, University of Limerick, Limerick, Ireland
A uniform parametrization of moment tensors
NASA Astrophysics Data System (ADS)
Tape, Walter; Tape, Carl
2015-09-01
A moment tensor is a 3 × 3 symmetric matrix that expresses an earthquake source. We construct a parametrization of the 5-D space of all moment tensors of unit norm. The coordinates associated with the parametrization are closely related to moment tensor orientations and source types. The parametrization is uniform, in the sense that equal volumes in the coordinate domain of the parametrization correspond to equal volumes of moment tensors. Uniformly distributed points in the coordinate domain therefore give uniformly distributed moment tensors. A cartesian grid in the coordinate domain can be used to search efficiently over moment tensors. We find that uniformly distributed moment tensors have uniformly distributed orientations (eigenframes), but that their source types (eigenvalue triples) are distributed so as to favour double couples.
Anomalous anisotropies of cosmic rays from turbulent magnetic fields.
Ahlers, Markus
2014-01-17
The propagation of cosmic rays (CRs) in turbulent interstellar magnetic fields is typically described as a spatial diffusion process. This formalism predicts only a small deviation from an isotropic CR distribution in the form of a dipole in the direction of the CR density gradient or relative background flow. We show that the existence of a global CR dipole moment necessarily generates a spectrum of higher multipole moments in the local CR distribution. These anomalous anisotropies are a direct consequence of Liouville's theorem in the presence of a local turbulent magnetic field. We show that the predictions of this model are in excellent agreement with the observed power spectrum of multi-TeV CRs.
NASA Technical Reports Server (NTRS)
Wilkinson, Stephen P.; Lindemann, A. Margrethe; Beeler, George B.; Mcginley, Catherine B.; Goodman, Wesley L.; Balasubramanian, R.
1986-01-01
A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation.
Modeling turbulent flame propagation
Ashurst, W.T.
1994-08-01
Laser diagnostics and flow simulation techniques axe now providing information that if available fifty years ago, would have allowed Damkoehler to show how turbulence generates flame area. In the absence of this information, many turbulent flame speed models have been created, most based on Kolmogorov concepts which ignore the turbulence vortical structure, Over the last twenty years, the vorticity structure in mixing layers and jets has been shown to determine the entrainment and mixing behavior and these effects need to be duplicated by combustion models. Turbulence simulations reveal the intense vorticity structure as filaments and simulations of passive flamelet propagation show how this vorticity Creates flame area and defines the shape of the expected chemical reaction surface. Understanding how volume expansion interacts with flow structure should improve experimental methods for determining turbulent flame speed. Since the last decade has given us such powerful new tools to create and see turbulent combustion microscopic behavior, it seems that a solution of turbulent combustion within the next decade would not be surprising in the hindsight of 2004.
Moment-to-moment dynamics of ADHD behaviour
2005-01-01
sequences may ultimately lead to deficient development of verbally governed behaviour and self control. The study represents a new approach to analyzing the moment-to-moment dynamics of behaviour, and provides support for the theory that reinforcement processes are altered in ADHD. PMID:16060963
Collapse of higher-order solute concentration moments in groundwater transport
NASA Astrophysics Data System (ADS)
Srzic, Veljko; Andricevic, Roko; Gotovac, Hrvoje; Cvetkovic, Vladimir
2013-08-01
In this paper, we use numerical simulations based on a Lagrangian framework to study contaminant transport through highly heterogeneous porous media due to advection and local diffusion (under local diffusion, we assume coupled effect of mechanical dispersion and molecular diffusion). The analysis of the concentration field is done for the case of a two-dimensional hydraulic conductivity domain representing the aquifer, with three log-conductivity structures that differ in spatial correlation. In addition to different conductivity structures, we focus our investigation on mild and highly heterogeneous porous media characterized by the values of hydraulic log-conductivity variance >(σY2>) being equal to 1 and 8. In the concentration moment analysis, we show that a linear relationship exists between higher-order to second-order normalized concentration moments on a log-log scale up to the fourth-order moment. This leads to the important finding that moments of a higher than the second order can be derived based on information about the first two concentration moments only. Such a property has been observed previously for boundary-layer water channels, wind tunnels, and turbulent diffusion in open terrain and laboratory experiments. Normalized moments are shown to collapse for different types of hydraulic conductivity structures, Peclet (Pe) numbers and σY2 values. In the case of local diffusion absence, a linear log-log relationship is derived analytically and is set as a lower limit. The deviation from the lower limit is explained to be predominantly caused by the local diffusion, which needs time to evolve. In the case of local diffusion presence, we define the moment deriving function (MDF) to describe the linear log-log relationship between higher-order concentration moments to the second-order normalized one. Finally, the comparison between numerical results and those obtained from the Columbus Air Force Base Macrodispersion Experiment (MADE 1) is used to
Rubinstein, Robert; Kurien, Susan; Cambon, Claude
2015-06-22
The representation theory of the rotation group is applied to construct a series expansion of the correlation tensor in homogeneous anisotropic turbulence. The resolution of angular dependence is the main analytical difficulty posed by anisotropic turbulence; representation theory parametrises this dependence by a tensor analogue of the standard spherical harmonics expansion of a scalar. As a result, the series expansion is formulated in terms of explicitly constructed tensor bases with scalar coefficients determined by angular moments of the correlation tensor.
Development of unified Reynolds stress models for non-equilibrium turbulent flows
NASA Astrophysics Data System (ADS)
Xu, Xiang-Hua
Turbulence modeling has played a major role in the calculation of turbulent flows of engineering importance. To solve the flow problems that arise in both nature and engineering, a variety of Reynolds stress models--including simple eddy viscosity models based on the Prandtl mixing length hypothesis, one-equation and two-equation models, nonlinear two-equation and explicit algebraic stress models, as well as full second-order closures--have been proposed during the past few decades. These models, which are typically based on benchmark near-equilibrium turbulence experimental data, perform fairly well in a variety of turbulent flows that are not far from equilibrium. However, it is now well recognized that these models cannot correctly predict turbulent flows that are far from equilibrium. In this dissertation, it is shown that they cannot even properly predict homogeneous turbulent flows that are in strongly strained non-equilibrium states. Two benchmark flows--homogeneous turbulent shear flow and homogeneous plane strain turbulence--are chosen to evaluate the performance of existing turbulence models since these two benchmark flows constitute idealizations of real engineering turbulent flows. It is found that none of the existing Reynolds stress models (including a recent version of a non-equilibrium, near-wall model) can predict results that compare favorably with Rapid Distortion Theory (RDT) in strongly distorted turbulent flows that are far from equilibrium. Moreover, it is demonstrated that the standard linear and nonlinear two-equation models can predict enormous negative values of the normal Reynolds stresses in non-equilibrium homogeneous turbulence that strongly violate basic realizability constraints. In light of the poor performance of existing Reynolds stress models in non-equilibrium homogeneous turbulence, two new Reynolds stress models are developed herein--an explicit algebraic stress model and a full second-order closure--that can correctly
Two-dimensional simulation of optical wave propagation through atmospheric turbulence.
Hyde, Milo W; Basu, Santasri; Schmidt, Jason D
2015-01-15
A methodology for the two-dimensional simulation of optical wave propagation through atmospheric turbulence is presented. The derivations of common statistical field moments in two dimensions, required for performing and validating simulations, are presented and compared with their traditional three-dimensional counterparts. Wave optics simulations are performed to validate the two-dimensional moments and to demonstrate the utility of performing two-dimensional wave optics simulations so that the results may be scaled to those of computationally prohibitive 3D scenarios. Discussions of the benefits and limitations of two-dimensional atmospheric turbulence simulations are provided throughout.
Turbulence Detection and Mitigation Element
NASA Technical Reports Server (NTRS)
Bogue, Rod
2003-01-01
This paper presents viewgraphs on turbulence detection and mitigation technologies in weather accident prevention. The topics include: 1) Organization; 2) Scope of Turbulence Effort; 3) Background; 4) Turbulence Detection and Mitigation Program Metrics; 5) Approach; 6) Turbulence Team Relationships; 7) WBS Structure; 8) Deliverables; 9) TDAM Changes; 10) FY-01 Results/Accomplishments; 11) Out-year Plans; and 12) Element Status.
Turbulence-particle interactions under surface gravity waves
NASA Astrophysics Data System (ADS)
Paskyabi, Mostafa Bakhoday
2016-11-01
The dispersion and transport of single inertial particles through an oscillatory turbulent aquatic environment are examined numerically by a Lagrangian particle tracking model using a series of idealised test cases. The turbulent mixing is incorporated into the Lagrangian model by the means of a stochastic scheme in which the inhomogeneous turbulent quantities are governed by a one-dimensional k- ɛ turbulence closure scheme. This vertical mixing model is further modified to include the effects of surface gravity waves including Coriolis-Stokes forcing, wave breaking, and Langmuir circulations. To simplify the complex interactions between the deterministic and the stochastic phases of flow, we assume a time-invariant turbulent flow field and exclude the hydrodynamic biases due to the effects of ambient mean current. The numerical results show that the inertial particles acquire perturbed oscillations traced out as time-varying sinking/rising orbits in the vicinity of the sea surface under linear and cnoidal waves and acquire a non-looping single arc superimposed with the high-frequency fluctuations beneath the nonlinear solitary waves. Furthermore, we briefly summarise some recipes through the course of this paper on the implementation of the stochastic particle tracking models to realistically describe the drift and suspension of inertial particles throughout the water column.
A minimal model of self-sustaining turbulence
Thomas, Vaughan L.; Gayme, Dennice F.; Farrell, Brian F.; Ioannou, Petros J.
2015-10-15
In this work, we examine the turbulence maintained in a Restricted Nonlinear (RNL) model of plane Couette flow. This model is a computationally efficient approximation of the second order statistical state dynamics obtained by partitioning the flow into a streamwise averaged mean flow and perturbations about that mean, a closure referred to herein as the RNL{sub ∞} model. The RNL model investigated here employs a single member of the infinite ensemble that comprises the covariance of the RNL{sub ∞} dynamics. The RNL system has previously been shown to support self-sustaining turbulence with a mean flow and structural features that are consistent with direct numerical simulations (DNS). Regardless of the number of streamwise Fourier components used in the simulation, the RNL system’s self-sustaining turbulent state is supported by a small number of streamwise varying modes. Remarkably, further truncation of the RNL system’s support to as few as one streamwise varying mode can suffice to sustain the turbulent state. The close correspondence between RNL simulations and DNS that has been previously demonstrated along with the results presented here suggest that the fundamental mechanisms underlying wall-turbulence can be analyzed using these highly simplified RNL systems.
2008-01-25
BOUT is a parallelized 3D nonlocal electromagnetic turbulence code. The principal calculations are the boundary plasma turbulence in a realistic magnetic geometry. BOUT uses fluid Braginskii equations for plasma vorticity, density, electron and ion temperature and Parallel mementum. With sources added in the core-edge region and sinks in the scrape-off-layer (SOL), BOUT follows the self-consistent profile evolution together with turbulence. BOUT also includes coupling to a magnetohyfrodynamic equlibrium (EFIT package) and a two-dimensional hydrodynamic edgemore » transport model (UEDGE package).« less
Periodically kicked turbulence
Lohse
2000-10-01
Periodically kicked turbulence is theoretically analyzed within a mean-field theory. For large enough kicking strength A and kicking frequency f the Reynolds number grows exponentially and then runs into some saturation. The saturation level Re(sat) can be calculated analytically; different regimes can be observed. For large enough Re we find Re(sat) approximately Af, but intermittency can modify this scaling law. We suggest an experimental realization of periodically kicked turbulence to study the different regimes we theoretically predict and thus to better understand the effect of forcing on fully developed turbulence. PMID:11089041
Social Network Closure and Child Adjustment.
ERIC Educational Resources Information Center
Fletcher, Anne C.; Newsome, Deborah; Nickerson, Pamela; Bazley, Ronda
2001-01-01
Identified fourth graders' peer groups and measured social network closure--extent to which meaningful social relationships exist between children and their friends' parents and among parents whose children are friends. Found that higher social network closure related to higher academic achievement and lower parent-reported externalizing…
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264.351 Closure. At closure the owner or operator must remove all hazardous waste and hazardous...
Quick release storage battery closure assembly
Braswell, R.R.
1984-10-16
A quick release storage battery closure assembly for removably engaging the inspection opening defining bosses on a storage battery, the one that replaces the individual caps that normally are used for closing the inspection openings. The closure assembly is particularly adapted for use where the storage batteries are arranged as a group, such as on a golf cart or industrial vehicle.
50 CFR 20.26 - Emergency closures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Emergency closures. 20.26 Section 20.26... PLANTS (CONTINUED) MIGRATORY BIRD HUNTING Taking § 20.26 Emergency closures. (a) The Director may close... in time available and the nature of the particular emergency situation, such notice shall follow...
50 CFR 92.21 - Emergency closures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Emergency closures. 92.21 Section 92.21 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED... Harvest § 92.21 Emergency closures. (a) The Regional Director, after consultation with the...
50 CFR 20.26 - Emergency closures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... wildlife conservation agency, and announcement on local radio and television. (b) Any such closure or... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Emergency closures. 20.26 Section 20.26 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR...
50 CFR 635.28 - Fishery closures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... closure, NMFS will also take into consideration the criteria specified in § 635.27(a)(8). (b) Sharks—(1... this section, when NMFS calculates that the landings for the shark species management group, as... of closure for that shark species, shark management group, and/or region that will be effective...
Hospital closure: Phoenix, Hydra or Titanic?
Dunne, T; Davis, S
1996-01-01
Very little has been published about the effects of hospital closure in terms of the service, financial or management issues of the process. Attempts through a case-study format to redress the balance and as such represents the reflections of practitioners who have recently undergone the experience of hospital closure and the often neglected issues arising both during and after the process.
36 CFR 261.53 - Special closures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Special closures. 261.53 Section 261.53 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PROHIBITIONS Prohibitions in Areas Designated by Order § 261.53 Special closures. When provided in an order, it is prohibited to go into or be upon any...
36 CFR 261.53 - Special closures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 36 Parks, Forests, and Public Property 2 2014-07-01 2014-07-01 false Special closures. 261.53 Section 261.53 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PROHIBITIONS Prohibitions in Areas Designated by Order § 261.53 Special closures. When provided in an order, it is prohibited to go into or be upon any...
36 CFR 261.53 - Special closures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 36 Parks, Forests, and Public Property 2 2011-07-01 2011-07-01 false Special closures. 261.53 Section 261.53 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PROHIBITIONS Prohibitions in Areas Designated by Order § 261.53 Special closures. When provided in an order, it is prohibited to go into or be upon any...
36 CFR 261.53 - Special closures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 36 Parks, Forests, and Public Property 2 2013-07-01 2013-07-01 false Special closures. 261.53 Section 261.53 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE PROHIBITIONS Prohibitions in Areas Designated by Order § 261.53 Special closures. When provided in an order, it is prohibited to go into or be upon any...
50 CFR 20.26 - Emergency closures.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Emergency closures. 20.26 Section 20.26 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED... wildlife conservation agency, and announcement on local radio and television. (b) Any such closure...
50 CFR 20.26 - Emergency closures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 9 2013-10-01 2013-10-01 false Emergency closures. 20.26 Section 20.26 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED... wildlife conservation agency, and announcement on local radio and television. (b) Any such closure...
50 CFR 20.26 - Emergency closures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Emergency closures. 20.26 Section 20.26 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR (CONTINUED... wildlife conservation agency, and announcement on local radio and television. (b) Any such closure...
Key financial ratios can foretell hospital closures.
Lynn, M L; Wertheim, P
1993-11-01
An analysis of various financial ratios sampled from open and closed hospitals shows that certain leverage, liquidity, capital efficiency, and resource availability ratios can predict hospital closure up to two years in advance of the closure with an accuracy of nearly 75 percent.
NASA Technical Reports Server (NTRS)
Abid, R.; Speziale, C. G.
1992-01-01
Turbulent channel flow and homogeneous shear flow have served as basic building block flows for the testing and calibration of Reynolds stress models. A direct theoretical connection is made between homogeneous shear flow in equilibrium and the log-layer of fully-developed turbulent channel flow. It is shown that if a second-order closure model is calibrated to yield good equilibrium values for homogeneous shear flow it will also yield good results for the log-layer of channel flow provided that the Rotta coefficient is not too far removed from one. Most of the commonly used second-order closure models introduce an ad hoc wall reflection term in order to mask deficient predictions for the log-layer of channel flow that arise either from an inaccurate calibration of homogeneous shear flow or from the use of a Rotta coefficient that is too large. Illustrative model calculations are presented to demonstrate this point which has important implications for turbulence modeling.
Spontaneous closure of congenital coronary artery fistulas
Schleich, J; Rey, C; Gewillig, M; Bozio, A
2001-01-01
Six cases of full spontaneous closure of congenital coronary artery fistulas, and one case of near closure, as seen by colour Doppler echocardiography, are presented. It is worth reconsidering the classical view that nearly all cases of spontaneous closure are eligible for surgical or percutaneous correction to prevent the development of significant and potentially fatal complications. As the natural course of coronary artery fistulas is still poorly defined, asymptomatic patients, especially those under 7 years old with small shunts, should be periodically followed up by echocardiography rather than be subjected to operative closure, even by catheterisation. Keywords: congenital heart disease; coronary artery disease; coronary artery fistula; spontaneous closure PMID:11250983
PLAN FOR CLOSURE OF HANFORDS CENTRAL PLATEAU
AUSTIN, B.A.
2004-12-15
This paper summarizes an approach to reduce risk to the public and environment through accelerated closure of Hanford's Central Plateau, based on a plan developed by Fluor Hanford and submitted to the Department of Energy (DOE)-Richland Office, for consideration, in September, 2004. This plan provides a framework and starting point for discussions with regulators and further planning for closure activities on the Plateau. The closure strategy and approach required developing a full inventory of items needing closure as well as identifying and defining technical and regulatory approaches that were compatible with current regulatory processes, reduce risks, and met DOE objectives. This effort, and the paper that follows, integrates closure activities among several contractors and two DOE field offices.
Nursing home closures and quality of care.
Castle, Nicholas G
2005-02-01
The purpose of this research is to examine the relationship between quality of care in nursing homes and their likelihood of closure. We hypothesize that lower-quality facilities will be more likely to close than higher-quality facilities. Using the rates of physical restraint use, urethral catheterization, contractures, pressure ulcers, and psychotropic medication use as quality measures from approximately 12,000 facilities from 1992 to 1998, the author examine cross-sectional and change score relationships between these measures and a nursing home's likelihood of closure. The descriptive analysis shows that 621 nursing homes closed in this time period, and the results for physical restraint use were robust in their positive association with closures in most analyses lending some support for this study's hypothesis. However, overall, the author concludes that nursing facility closures are relatively rare events. And the likelihood of closure, even for poor-quality facilities, is low. PMID:15643031
Dipole Alignment in Rotating MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
Decaying Turbulence in the Generalised Burgers Equation
NASA Astrophysics Data System (ADS)
Boritchev, Alexandre
2014-10-01
We consider the generalised Burgers equation where f is strongly convex and ν is small and positive. We obtain sharp estimates for Sobolev norms of u (upper and lower bounds differ only by a multiplicative constant). Then, we obtain sharp estimates for the dissipation length scale and the small-scale quantities which characterise the decaying Burgers turbulence, i.e., the structure functions and the energy spectrum. The proof uses a quantitative version of an argument by Aurell et al. (J Fluid Mech 238:467-486, 1992). Note that we are dealing with decaying, as opposed to stationary turbulence. Thus, our estimates are not uniform in time. However, they hold on a time interval [ T 1, T 2], where T 1 and T 2 depend only on f and the initial condition, and do not depend on the viscosity. These results allow us to obtain a rigorous theory of the one-dimensional Burgers turbulence in the spirit of Kolmogorov's 1941 theory. In particular, we obtain two results which hold in the inertial range. On one hand, we explain the bifractal behaviour of the moments of increments, or structure functions. On the other hand, we obtain an energy spectrum of the form k -2. These results remain valid in the inviscid limit.
Dynamics of moment neuronal networks.
Feng, Jianfeng; Deng, Yingchun; Rossoni, Enrico
2006-04-01
A theoretical framework is developed for moment neuronal networks (MNNs). Within this framework, the behavior of the system of spiking neurons is specified in terms of the first- and second-order statistics of their interspike intervals, i.e., the mean, the variance, and the cross correlations of spike activity. Since neurons emit and receive spike trains which can be described by renewal--but generally non-Poisson--processes, we first derive a suitable diffusion-type approximation of such processes. Two approximation schemes are introduced: the usual approximation scheme (UAS) and the Ornstein-Uhlenbeck scheme. It is found that both schemes approximate well the input-output characteristics of spiking models such as the IF and the Hodgkin-Huxley models. The MNN framework is then developed according to the UAS scheme, and its predictions are tested on a few examples.
The classical model for moment tensors
NASA Astrophysics Data System (ADS)
Tape, W.; Tape, C.
2013-12-01
A seismic moment tensor is a description of an earthquake source, but the description is indirect. The moment tensor describes seismic radiation rather than the actual physical process that initiates the radiation. A moment tensor 'model' then ties the physical process to the moment tensor. The model is not unique, and the physical process is therefore not unique. In the classical moment tensor model (Aki and Richards, 1980), an earthquake arises from slip along a planar fault, but with the slip not necessarily in the plane of the fault. The model specifies the resulting moment tensor in terms of the slip vector, the fault normal vector, and the Lame elastic parameters, assuming isotropy. We review the classical model in the context of the fundamental lune. The lune is closely related to the space of moment tensors, and it provides a setting that is conceptually natural as well as pictorial. In addition to the classical model, we consider a crack plus double couple model (CDC model) in which a moment tensor is regarded as the sum of a crack tensor and a double couple. A compilation of full moment tensors from the literature reveals large deviations in Poisson's ratio as implied by the classical model. Either the classical model is inadequate or the published full moment tensors have very large uncertainties. We question the common interpretation of the isotropic component as a volume change in the source region.
Closure for milliliter scale bioreactor
Klein, David L.; Laidlaw, Robert D.; Andronaco, Gregory; Boyer, Stephen G.
2010-12-14
A closure for a microreactor includes a cap that is configured to be inserted into a well of the microreactor. The cap, or at least a portion of the cap, is compliant so as to form a seal with the well when the cap is inserted. The cap includes an aperture that provides an airway between the inside of the well to the external environment when the cap is inserted into the well. A porous plug is inserted in the aperture, e.g., either directly or in tube that extends through the aperture. The porous plug permits gas within the well to pass through the aperture while preventing liquids from passing through to reduce evaporation and preventing microbes from passing through to provide a sterile environment. A one-way valve may also be used to help control the environment in the well.
Containerless Ripple Turbulence
NASA Technical Reports Server (NTRS)
Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles
2002-01-01
One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k(sup 5/3) which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M$ millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear
Containerless Ripple Turbulence
NASA Astrophysics Data System (ADS)
Putterman, Seth; Wright, William; Duval, Walter; Panzarella, Charles
2002-11-01
One of the longest standing unsolved problems in physics relates to the behavior of fluids that are driven far from equilibrium such as occurs when they become turbulent due to fast flow through a grid or tidal motions. In turbulent flows the distribution of vortex energy as a function of the inverse length scale [or wavenumber 'k'] of motion is proportional to 1/k5/3 which is the celebrated law of Kolmogorov. Although this law gives a good description of the average motion, fluctuations around the average are huge. This stands in contrast with thermally activated motion where large fluctuations around thermal equilibrium are highly unfavorable. The problem of turbulence is the problem of understanding why large fluctuations are so prevalent which is also called the problem of 'intermittency'. Turbulence is a remarkable problem in that its solution sits simultaneously at the forefront of physics, mathematics, engineering and computer science. A recent conference [March 2002] on 'Statistical Hydrodynamics' organized by the Los Alamos Laboratory Center for Nonlinear Studies brought together researchers in all of these fields. Although turbulence is generally thought to be described by the Navier-Stokes Equations of fluid mechanics the solution as well as its existence has eluded researchers for over 100 years. In fact proof of the existence of such a solution qualifies for a 1 M millennium prize. As part of our NASA funded research we have proposed building a bridge between vortex turbulence and wave turbulence. The latter occurs when high amplitude waves of various wavelengths are allowed to mutually interact in a fluid. In particular we have proposed measuring the interaction of ripples [capillary waves] that run around on the surface of a fluid sphere suspended in a microgravity environment. The problem of ripple turbulence poses similar mathematical challenges to the problem of vortex turbulence. The waves can have a high amplitude and a strong nonlinear
Turbulent flow through screens
NASA Technical Reports Server (NTRS)
Mehta, R. D.
1984-01-01
A detailed experimental investigation has been carried out on the effects of different types of screens on turbulent flow, in particular turbulent boundary layers. The effect of a screen on a turbulent boundary layer is to give it a 'new lease of life'. The boundary layer turbulence is reorganized and the thickness reduced, thus making it less susceptible to separation. The aerodynamic properties of plastic screens are found to differ significantly from those of the conventional metal screens, evidently because of differences in the weaving properties. The 'overshoot' in mean velocity profile near the boudnary layer edge is shown to be a result of the effect of screen inclination on pressure drop coefficient. A more accurate formulation for the deflection coefficient of a screen is also proposed.
NASA Astrophysics Data System (ADS)
Creppy, Adama; Praud, Olivier; Druart, Xavier; Kohnke, Philippa L.; Plouraboué, Franck
2015-09-01
Collective motion of self-sustained swarming flows has recently provided examples of small-scale turbulence arising where viscous effects are dominant. We report the first observation of universal enstrophy cascade in concentrated swarming sperm consistent with a body of evidence built from various independent measurements. We found a well-defined k-3 power-law decay of a velocity field power spectrum and relative dispersion of small beads consistent with theoretical predictions in 2D turbulence. Concentrated living sperm displays long-range, correlated whirlpool structures of a size that provides an integral scale of turbulence. We propose a consistent explanation for this quasi-2D turbulence based on self-structured laminated flow forced by steric interactions and alignment, a state of active matter that we call "swarming liquid crystal." We develop scaling arguments consistent with this interpretation.