NASA Technical Reports Server (NTRS)
Cook, S. R.; Hoffbauer, M. A.
1997-01-01
Measurements of momentum transfer coefficients were made for gas-surface interactions between the Space Shuttle reaction control jet plume gases and the solar panel array materials to be used on the International Space Station. Actual conditions were simulated using a supersonic nozzle source to produce beams of the gases with approximately the same average velocities as the gases have in the Shuttle plumes. Samples of the actual solar panel materials were mounted on a torsion balance that was used to measure the force exerted on the surfaces by the molecular beams. Measurements were made with H2, N2, CO, and CO2 incident upon the solar array material, Kapton, SiO2-coated Kapton, and Z93-coated Al. The measurements showed that molecules scatter from the surfaces more specularly as the angle of incidence increases and that scattering behavior has a strong dependence upon both the incident gas and velocity. These results show that for some technical surfaces the simple assumption of diffuse scattering with complete thermal accommodation is entirely inadequate. It is clear that additional measurements are required to produce models that more accurately describe the gas-surface interactions encountered in rarefied flow regimes.
NASA Technical Reports Server (NTRS)
Cook, Steven R.; Hoffbauer, Mark A.
1997-01-01
Measurements of momentum transfer coefficients were made for gas-surface interactions between the Space Shuttle reaction control jet plume gases and the solar panel array materials to be used on the International Space Station. Actual conditions were simulated using a supersonic nozzle source to produce beams of the gases with approximately the same average velocities as the gases have in the Shuttle plumes. Samples of the actual solar panel materials were mounted on a torsion balance that was used to measure the force exerted on the surfaces by the molecular beams. Measurements were made with H2, N2, CO, and CO2 incident upon the solar array material, Kapton, SiO2-coated Kapton, and Z93-coated Al. The measurements showed that molecules scatter from the surfaces more specularly as the angle of incidence increases and that the scattering behavior has a strong dependence upon both the incident gas and velocity. These results show that for some technical surfaces the simple assumption of diffuse scattering with complete thermal accommodation is entirely inadequate. It is clear that additional measurements are required to produce models that more accurately describe the gas-surface interactions encountered in rarefied flow regimes.
NASA Astrophysics Data System (ADS)
Lüpkes, Christof; Gryanik, Vladimir M.
2015-01-01
The interaction between sea ice and atmosphere depends strongly on the near-surface transfer coefficients for momentum and heat. A parametrization of these coefficients is developed on the basis of an existing parametrization of drag coefficients for neutral stratification that accounts for form drag caused by the edges of ice floes and melt ponds. This scheme is extended to better account for the dependence of surface wind on limiting cases of high and low ice concentration and to include near-surface stability effects over open water and ice on form drag. The stability correction is formulated on the basis of stability functions from Monin-Obukhov similarity theory and also using the Louis concept with stability functions depending on the bulk Richardson numbers. Furthermore, a parametrization is proposed that includes the effect of edge-related turbulence also on heat transfer coefficients. The parametrizations are available in different levels of complexity. The lowest level only needs sea ice concentration and surface temperature as input, while the more complex level needs additional sea ice characteristics. An important property of our parametrization is that form drag caused by ice edges depends on the stability over both ice and water which is in contrast to the skin drag over ice. Results of the parametrization show that stability has a large impact on form drag and, thereby, determines the value of sea ice concentration for which the transfer coefficients reach their maxima. Depending on the stratification, these maxima can occur anywhere between ice concentrations of 20 and 80%.
Momentum transfer from oblique impacts
NASA Technical Reports Server (NTRS)
Schultz, Peter H.; Gault, Donald E.
1987-01-01
A completely satisfactory experiment would be in a low gravity environment where the effect of momentum imparted by ejecta impacting the surface can be removed or controlled from momentum transfer during impact. Preliminary estimates can be made using a ballistic pendulum. Such experiments were initiated at the NASA-Ames Vertical Gun Range in order to examine momentum transfer due to impact vaporization for oblique impacts. The preliminary results indicate that momentum from oblique impacts is very inefficient: decreasing with increasing impact velocity and perhaps size; increasing with decreasing density; and increasing with increasing impact angle. At face value, such results minimize the effect of momentum transfer by grazing impact; the more probable impact angles of 30 deg would have a greater effect, contrary to the commonly held impression.
Cook, S.R.; Hoffbauer, M.A.
1997-07-16
Measurements of momentum transfer coefficients were made for gas-surface interactions between the Space Shuttle reaction control jet plume gases and the solar panel array materials to be used on the International Space Station. Actual conditions were simulated using a supersonic nozzle source to produce beams of the gases with approximately the same average velocities as the gases have in the Shuttle plumes. Samples of the actual solar panel materials were mounted on a torsion balance that was used to measure the force exerted on the surfaces by the molecular beams. Measurements were made with H{sub 2}, N{sub 2}, CO, and CO{sub 2} incident upon the solar array material, Kapton, SiO{sub 2}-coated Kapton, and Z93-coated Al. The measurements showed that molecules scatter from the surfaces more specularly as the angle of incidence increases and that scattering behavior has a strong dependence upon both the incident gas and velocity. These results show that for some technical surfaces the simple assumption of diffuse scattering with complete thermal accommodation is entirely inadequate. It is clear that additional measurements are required to produce models that more accurately describe the gas-surface interactions encountered in rarefied flow regimes.
Atom interferometry with large momentum transfer
NASA Astrophysics Data System (ADS)
Lan, Shau-Yu; Kuan, Pei-Chen; Estey, Brian; Müller, Holger
2011-05-01
The sensitivity of light-pulse atom interferometers can be greatly improved by large momentum transfer (LMT) beam splitters and long interrogation times. Large momentum space separation Δp between two interferometric arms result in increased phase shift proportional to Δp or even (Δp)2, and therefore leads to superior tools for precision measurements. ``BBB'' beam splitters, using high order Bragg diffraction combined with Bloch oscillations, have already been demonstrated and are scalable, as their momentum transfer is not limited by the available laser power. By running an additional conjugate interferometer at the same time, noises common to both interferometers can be eliminated. We will present our work aiming at further improvements, which would allow applications requiring extremely large enclosed areas, such as test of the Einstein equivalence principle, measurements of fundamental constants, or searching for new gravitational effects.
Atom interferometry with large momentum transfer
NASA Astrophysics Data System (ADS)
Kuan, Peichen; Lan, Shau-Yu; Estey, Brian; Müller, Holger
2011-05-01
The sensitivity of light-pulse atom interferometers can be greatly improved by large momentum transfer (LMT) beam splitters and long interrogation times. Large momentum space separation Δp between two interferometric arms result in an increased phase shift proportional to Δp or even (Δp) 2, and therefore leads to superior tools for precision measurements. ``BBB'' beam splitters, using high order Bragg diffraction combined with Bloch oscillations, have already been demonstrated and are scalable, as their momentum transfer is not limited by the available laser power. By running an additional conjugate interferometer at the same time, noise common to both interferometers can be eliminated. We will present our work aiming at further improvements, which would allow applications requiring extremely large enclosed areas, such as test of the Einstein equivalence principle, measurements of fundamental constants, or searching for new gravitational effects.
Efficiency of linear and angular momentum transfer in oblique impact
NASA Astrophysics Data System (ADS)
Shirono, S.; Tada, M.; Nakamura, A. M.; Kadono, T.; Rivkin, A.; Fujiwara, A.
1993-09-01
Linear and angular momentum transfer efficiencies for oblique impacts into spherical mortar targets at velocity up to about 4 km/s were determined. Angular momentum transfer efficiency decreases gradually while linear momentum transfer increases with increasing impact velocity. This is understood by determining the impact velocity dependence of both the total momentum carried by ejecta and its direction.
Ultrafast angular momentum transfer in multisublattice ferrimagnets.
Bergeard, N; López-Flores, V; Halté, V; Hehn, M; Stamm, C; Pontius, N; Beaurepaire, E; Boeglin, C
2014-01-01
Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs. PMID:24614016
Ultrafast angular momentum transfer in multisublattice ferrimagnets.
Bergeard, N; López-Flores, V; Halté, V; Hehn, M; Stamm, C; Pontius, N; Beaurepaire, E; Boeglin, C
2014-03-11
Femtosecond laser pulses can be used to induce ultrafast changes of the magnetization in magnetic materials. However, one of the unsolved questions is that of conservation of the total angular momentum during the ultrafast demagnetization. Here we report the ultrafast transfer of angular momentum during the first hundred femtoseconds in ferrimagnetic Co0.8Gd0.2 and Co0.74Tb0.26 films. Using time-resolved X-ray magnetic circular dichroism allowed for time-resolved determination of spin and orbital momenta for each element. We report an ultrafast quenching of the magnetocrystalline anisotropy and show that at early times the demagnetization in ferrimagnetic alloys is driven by the local transfer of angular momenta between the two exchange-coupled sublattices while the total angular momentum stays constant. In Co0.74Tb0.26 we have observed a transfer of the total angular momentum to an external bath, which is delayed by ~150 fs.
Angular Momentum Transfer in Catastrophic Asteroid Impacts
NASA Astrophysics Data System (ADS)
Love, S. G.; Ahrens, T. J.
1996-09-01
Incomplete knowledge of angular momentum transfer in asteroid impacts has hampered efforts to deduce asteroid collisional histories from their rotation rates. This problem traditionally has been investigated using impact experiments on cm-scale, strength-dominated targets. Recent evidence, however, indicates that impacts on asteroids of km size and larger may be controlled by gravity rather than strength, and that the analogy to laboratory impacts may not hold. Accordingly, we have modelled catastrophic impacts on gravitating asteroids to better understand angular momentum transfer in such events. We employ a 3--D, strengthless, gravitating SPH computer code. Target bodies are 10 to 1000 km in diameter and do not initially rotate. Impact speeds are 3--7 km/s; impact angles are 15--75(deg) . Each target is composed of 1791 mass elements: spatial resolution is coarse but acceptable for large scale energy transfer. We simulate the hydrodynamic phase of each impact, after which particle motions are ballistic and treated analytically. Escaping particles have kinetic energy greater than the gravitational energy binding them to the rest of the system; the others reaccrete to form a ``rubble pile'' which is assumed spherical. The rubble pile's size, mass, and angular momentum define its rotation rate. Spin rates for ejected fragments cannot be determined. The target's final spin period depends on the impact angle and the fraction of target mass ejected, but not on impact speed or target size in the ranges tested. The lack of size dependence cannot explain the observed excess of slowly rotating asteroids of ~ 100 km diameter. The fraction of projectile angular momentum retained by the target varies dramatically with impact speed and angle and with target size and fraction of mass removed, complicating its use in models where collision geometry varies. The final spin period of an asteroid losing 50% of its mass is 6--10 hours, comparable to the asteroidal mean of 8 hours
Heat transfer coefficient of cryotop during freezing.
Li, W J; Zhou, X L; Wang, H S; Liu, B L; Dai, J J
2013-01-01
Cryotop is an efficient vitrification method for cryopreservation of oocytes. It has been widely used owing to its simple operation and high freezing rate. Recently, the heat transfer performance of cryotop was studied by numerical simulation in several studies. However, the range of heat transfer coefficient in the simulation is uncertain. In this study, the heat transfer coefficient for cryotop during freezing process was analyzed. The cooling rates of 40 percent ethylene glycol (EG) droplet in cryotop during freezing were measured by ultra-fast measurement system and calculated by numerical simulation at different value of heat transfer coefficient. Compared with the results obtained by two methods, the range of the heat transfer coefficient necessary for the numerical simulation of cryotop was determined, which is between 9000 W/(m(2)·K) and 10000 W/(m (2)·K).
Polarisation Transfer in Proton Compton Scattering at High Momentum Transfer
Hamilton, David Jonathan
2004-01-01
The Jefferson Lab Hall A experiment E99-114 comprised a series of measurements to explore proton Compton scattering at high momentum transfer. For the first time, the polarisation transfer observables in the p ($\\vec{γ}$, γ' \\vec{p}$) reaction were measured in the GeV energy range, where it is believed that quark-gluon degrees of freedom begin to dominate. The experiment utilised a circularly polarised photon beam incident on a liquid hydrogen target, with the scattered photon and recoil proton detected in a lead-glass calorimeter and a magnetic spectrometer, respectively.
Angular momentum transfer to the inner Jovian satellites
NASA Technical Reports Server (NTRS)
Mogro-Campero, A.
1975-01-01
Transfer of angular momentum from Jupiter to the four inner satellites in the presence of the Jovian magnetic field is considered. Electron-flux measurements near Io's flux tube and theoretical estimates of the electric currents flowing through the same flux tube are used to estimate the angular-momentum transfer during the evolutionary history of the Jovian system. The results show that the electric currents are sufficient to have produced an angular-momentum transfer from Jupiter equal to the present angular momentum of the inner satellites.
Exclusive Reactions at High Momentum Transfer
NASA Astrophysics Data System (ADS)
Radyushkin, Anatoly; Stoler, Paul
2008-03-01
Hard exclusive scattering at JLab / P. Kroll -- AdS/CFT and exclusive processes in QCD / S. J. Brodsky and G. F. de Téramond -- Hadron structure matters in collisions at high energy and momentum / A. W. Thomas -- Inclusive perspectives / P. Hoyer -- Fitting DVCS at NLO and beyond / K. Kumericki, D. Müller and K. Passek-Kumericki -- Spin-orbit correlations and single-spin asymmetries / M. Burkardt -- Electroproduction of soft pions at large momentum transfers / V. M. Braun, D. Yu. Ivanov and A. Peters -- Color transparency: 33 years and still running / M. Strikman -- Meson clouds and nucleon electromagnetic form factors / G. A. Miller -- Covariance, dynamics and symmetries, and hadron form factors / M. S. Bhagwat, I. C. Cloët and C. D. Roberts -- N to [symbol] electromagnetic and axial form factors in full QCD / C. Alexandrou -- Real and virtual compton scattering in perturbative QCD / C.-R. Ji and R. Thomson -- Deeply virtual compton scattering at Jefferson Lab / F. Sabatie -- DVCS at HERMES: recent results / F. Ellinghaus -- Deeply virtual compton scattering with CLAS / F. X. Girod -- Deeply virtual compton scattering off the neutron at JLab Hall A / M. Mazouz -- The future DVCS experiments in Hall A at JLab / J. Roche -- Deeply virtual compton scattering with CLAS12 / L. Elouadrhiri -- Quark helicity flip and the transverse spin dependence of inclusive DIS / A. Afanasev, M. Strikman and C. Weiss -- Deeply virtual pseudoscalar meson production / V. Kubarovsky and P. Stoler -- Exclusive p[symbol] electroproduction on the proton: GPDs or not GPDs? / M. Guidal and S. Morrow -- p[symbol] transverse target spin asymmetry at HERMES / A. Airapetian -- Electroproduction of ø(1020) mesons / J. P. Santoro and E. S. Smith -- Generalized parton distributions from hadronic observables / S. Ahmad ... [et al.] -- Imaging the proton via hard exclusive production in diffractive pp scattering / G. E. Hyde ... [et al.] -- Regge contributions to exclusive electro-production / A
Exclusive Reactions at High Momentum Transfer
NASA Astrophysics Data System (ADS)
Radyushkin, Anatoly; Stoler, Paul
2008-03-01
Hard exclusive scattering at JLab / P. Kroll -- AdS/CFT and exclusive processes in QCD / S. J. Brodsky and G. F. de Téramond -- Hadron structure matters in collisions at high energy and momentum / A. W. Thomas -- Inclusive perspectives / P. Hoyer -- Fitting DVCS at NLO and beyond / K. Kumericki, D. Müller and K. Passek-Kumericki -- Spin-orbit correlations and single-spin asymmetries / M. Burkardt -- Electroproduction of soft pions at large momentum transfers / V. M. Braun, D. Yu. Ivanov and A. Peters -- Color transparency: 33 years and still running / M. Strikman -- Meson clouds and nucleon electromagnetic form factors / G. A. Miller -- Covariance, dynamics and symmetries, and hadron form factors / M. S. Bhagwat, I. C. Cloët and C. D. Roberts -- N to [symbol] electromagnetic and axial form factors in full QCD / C. Alexandrou -- Real and virtual compton scattering in perturbative QCD / C.-R. Ji and R. Thomson -- Deeply virtual compton scattering at Jefferson Lab / F. Sabatie -- DVCS at HERMES: recent results / F. Ellinghaus -- Deeply virtual compton scattering with CLAS / F. X. Girod -- Deeply virtual compton scattering off the neutron at JLab Hall A / M. Mazouz -- The future DVCS experiments in Hall A at JLab / J. Roche -- Deeply virtual compton scattering with CLAS12 / L. Elouadrhiri -- Quark helicity flip and the transverse spin dependence of inclusive DIS / A. Afanasev, M. Strikman and C. Weiss -- Deeply virtual pseudoscalar meson production / V. Kubarovsky and P. Stoler -- Exclusive p[symbol] electroproduction on the proton: GPDs or not GPDs? / M. Guidal and S. Morrow -- p[symbol] transverse target spin asymmetry at HERMES / A. Airapetian -- Electroproduction of ø(1020) mesons / J. P. Santoro and E. S. Smith -- Generalized parton distributions from hadronic observables / S. Ahmad ... [et al.] -- Imaging the proton via hard exclusive production in diffractive pp scattering / G. E. Hyde ... [et al.] -- Regge contributions to exclusive electro-production / A
Momentum transfer in relativistic heavy ion charge-exchange reactions
NASA Technical Reports Server (NTRS)
Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.
1991-01-01
Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.
A Momentum Transfer Demonstration with "Happy/Unhappy" Balls.
ERIC Educational Resources Information Center
Bucheit, Fred
1994-01-01
Describes a simple setup and procedure that uses "happy/unhappy" balls (two balls with different degrees of elasticity) to lead students into a discussion of momentum transfer involving elastic and inelastic collisions. (ZWH)
Onset of incomplete momentum transfer in fusion-like processes
Stokstad, R.G.; Chan, Y.; Murphy, M.; Tserruya, I.; Wald, S.; Budzanowski, A.
1983-03-01
Velocity spectra of evaporation residues from the reactions /sup 16/O + Al, Ca, and Ni have been measured at bombarding energies of 8.8, 13.6, and 19.6 MeV/u. Comparison with statistical model predictions shows clear evidence for the onset of incomplete momentum transfer at about 5 MeV/u above the interaction barrier. To first order, the results are similar for all targets, suggesting that the missing momentum is mainly associated with the projectile. The fraction of transferred linear momentum appears to decrease linearly with increasing relative velocity of the colliding nuclei at the barrier.
Momentum Transfer in Oblique Impacts: Implications for Asteroid Rotations
NASA Astrophysics Data System (ADS)
Yanagisawa, Masahisa; Hasegawa, Sunao
2000-07-01
We calculate the momentum transfer efficiency for small cratering impacts from 59 high-velocity (0.76-4.4 km/s) oblique impact experiments using nylon projectiles and targets made of basalt, aluminum, mild steel, mortar, and nylon. High-speed video frames show an initial luminous stream downrange of impact point for all the target materials. For basaltic and mortar targets there follows axi-symmetric ejection of target material around surface normal at the impact point. Our results suggest that: (1) momentum carried away by the axi-symmetric ejecta would significantly contribute to the normal component of momentum transfer efficiency; and (2) thepenetration depth of the projectile into target could determine the tangential momentum transfer efficiency. We calculated the efficiency of angular momentum transfer from the translational motion of projectiles to the rotation of ellipsoidal asteroids using the efficiencies for the linear momentum. The efficiency is more than four times that for spherical asteroid at their principal axis ratio of 2 : 1.4 : 1. If the experimental results hold for the impact that formed the largest crater on 253 Mathilde, the largest projectile estimated may have despun the asteroid to the present slow rotation by chance.
Angular momentum transfer in oblique impacts: Implications for 1989ML
NASA Astrophysics Data System (ADS)
Yanagisawa, Masahisa; Hasegawa, Sunao
1999-11-01
We conducted 10 shots of high-velocity oblique impact experiments (1.95-3.52 km/s) using nylon projectiles and spherical mortar targets. Large craters were formed, but these targets were not disrupted by the impacts. We then calculated the efficiencies of momentum transfer from the projectile to the post-impact target for each experiment. The efficiencies of angular momentum transfer from the translational motion of the projectiles to the rotation of the post-impact targets were also derived. A representative efficiency of angular momentum transfer was calculated to be 0.17 for random successive collisions. The efficiency was applied to an equation expressing the precession angle of asteroids. It is shown that 1989ML, target of Japan-US asteroid-sample-return-mission (MUSES-C) would be tumbling.
Acoustic Rotational Manipulation Using Orbital Angular Momentum Transfer
NASA Astrophysics Data System (ADS)
Anhäuser, Andreas; Wunenburger, Régis; Brasselet, Etienne
2012-07-01
We report on the first quantitative test of acoustic orbital angular momentum transfer to a sound absorbing object immersed in a viscous liquid. This is done by realizing an original experiment that is to spin a millimeter-size target disk using an ultrasonic vortex beam. We demonstrate the balance between the acoustic radiation torque calculated from the Brillouin stress tensor and the viscous torque evaluated from the steady state spinning frequency. Moreover, we unveil a rotational acoustic streaming phenomenon that results from the acoustic angular momentum transfer to the host fluid. We show that it lowers the viscous torque, thereby restoring the torque balance.
Momentum transfer to rotating magnetized plasma from gun plasma injection
Shamim, Imran; Hassam, A. B.; Ellis, R. F.; Witherspoon, F. D.; Phillips, M. W.
2006-11-15
Numerical simulations are carried out to investigate the penetration and momentum coupling of a gun-injected plasma slug into a rotating magnetized plasma. An experiment along these lines is envisioned for the Maryland Centrifugal Experiment (MCX) [R. F. Ellis et al., Phys. Plasmas 8, 2057 (2001)] using a coaxial plasma accelerator gun developed by HyperV Technologies Corp. [F. D. Witherspoon et al., Bull. Am. Phys. Soc. 50, LP1 87 (2005)]. The plasma gun would be located in the axial midplane and fired off-axis into the rotating MCX plasma annulus. The numerical simulation is set up so that the initial momentum in the injected plasma slug is of the order of the initial momentum of the target plasma. Several numerical firings are done into the cylindrical rotating plasma. Axial symmetry is assumed. The slug is seen to penetrate readily and deform into a mushroom, characteristic of interchange deformations. It is found that up to 25% of the momentum in the slug can be transferred to the background plasma in one pass across a cylindrical chord. For the same initial momentum, a high-speed low density slug gives more momentum transfer than a low-speed high density slug. Details of the numerical simulations and a scaling study are presented.
Condensation heat transfer coefficient versus wettability
NASA Astrophysics Data System (ADS)
Roudgar, M.; De Coninck, J.
2015-05-01
In this paper we show how condensation on substrates can induce wetting behavior that is quite different from that of deposited or impinging drops. We describe surfaces with the same wettability in ambient conditions presenting different wetting behavior and growth of droplets in condensation. The experimental results show a rapid spread of droplets and formation of the film on the copper surface, while droplets on SU-8 surface remains on the regular shape while they grow within the time, without coalescence, as observed for Cu. Although the heat conductivity of SU-8 is much lower, due to a difference in wetting behavior, the heat transfer coefficient (h) is higher for dropwise condensation on Cu with a thin layer of SU-8 than filmwise on the bare copper.
Accurate momentum transfer cross section for the attractive Yukawa potential
Khrapak, S. A.
2014-04-15
Accurate expression for the momentum transfer cross section for the attractive Yukawa potential is proposed. This simple analytic expression agrees with the numerical results better than to within ±2% in the regime relevant for ion-particle collisions in complex (dusty) plasmas.
The maximum momentum transfer in proton-hydrogen collisions
NASA Technical Reports Server (NTRS)
Xu, Y. J.; Khandelwal, G. S.; Wilson, J. W.; Townsend, L. W. (Principal Investigator)
1986-01-01
The upper limit of momentum transfer by a proton to K-shell electrons is calculated in a restricted three-body classical model. The model shows that the infinite upper limit used in practice, is generally good except for low energy protons passing through an extremely rarefied gas.
Measuring Furnace/Sample Heat-Transfer Coefficients
NASA Technical Reports Server (NTRS)
Rosch, William R.; Fripp, Archibald L., Jr.; Debnam, William J., Jr.; Woodell, Glenn A.
1993-01-01
Complicated, inexact calculations now unnecessary. Device called HTX used to simulate and measure transfer of heat between directional-solidification crystal-growth furnace and ampoule containing sample of crystalline to be grown. Yields measurement data used to calculate heat-transfer coefficients directly, without need for assumptions or prior knowledge of physical properties of furnace, furnace gas, or specimen. Determines not only total heat-transfer coefficients but also coefficients of transfer of heat in different modes.
Momentum and Angular Momentum Transfer in Oblique Impacts: Implications for Asteroid Rotations
NASA Astrophysics Data System (ADS)
Yanagisawa, Masahisa; Hasegawa, Sunao; Shirogane, Nobutoshi
1996-09-01
We conducted a series of high velocity oblique impact experiments (0.66-6.7 km/s) using polycarbonate (plastic) projectiles and targets made of mortar, aluminum alloy, and mild steel. We then calculated the efficiencies of momentum transfer for small cratering impacts. They are η = (M‧Vn‧)/(mvn) and ζ = (M‧Vt‧)/(mvt), wheremandvare the mass and velocity of a projectile, andM‧ andV‧ represent those of a postimpact target. Subscripts “n” and “t” denote the components normal and tangential to the target surface at the impact point, respectively. The main findings are: (1) η increases with increasing impact velocity; (2) η is larger for mortar than for ductile metallic targets; (3) ζ for mortar targets seems to increase with the impact velocity in the velocity range less than about 2 km/s and decrease with it in the higher velocity range; (4) ζ for the aluminum alloy targets correlates negatively with incident zenith angle of the projectile. In addition to these findings on the momentum transfer, we show theoretically that “ζL” can be expressed by η and ζ for small cratering impact. Here, ζLis the spin angular momentum that the target acquires at impact divided by the collisional angular momentum due to the projectile. This is an important parameter to study the collisional evolution of asteroid rotation. For a spherical target, ζLis shown to be well approximated by ζ.
Momentum Transfer in a Spinning Fuel Tank Filled with Xenon
NASA Technical Reports Server (NTRS)
Peugeot, John W.; Dorney, Daniel J.
2006-01-01
Transient spin-up and spin-down flows inside of spacecraft fuel tanks need to be analyzed in order to properly design spacecraft control systems. Knowledge of the characteristics of angular momentum transfer to and from the fuel is used to size the de-spin mechanism that places the spacecraft in a controllable in-orbit state. In previous studies, several analytical models of the spin-up process were developed. However, none have accurately predicted all of the flow dynamics. Several studies have also been conducted using Navier-Stokes based methods. These approaches have been much more successful at simulating the dynamic processes in a cylindrical container, but have not addressed the issue of momentum transfer. In the current study, the spin-up and spin-down of a fuel tank filled with gaseous xenon has been investigated using a three-dimensional unsteady Navier-Stokes code. Primary interests have been concentrated on the spin-up/spin-down time constants and the initial torque imparted on the system. Additional focus was given to the relationship between the dominant flow dynamics and the trends in momentum transfer. Through the simulation of both a cylindrical and a spherical tank, it was revealed that the transfer of angular momentum is nonlinear at early times and tends toward a linear pattern at later times. Further investigation suggests that the nonlinear spin up is controlled by the turbulent transport of momentum, while the linear phase is controlled by a Coriolis driven (Ekman) flow along the outer wall. These results indicate that the spinup and spin-down processes occur more quickly in tanks with curved surfaces than those with defined top, bottom, and side walls. The results also provide insights for the design of spacecraft de-spin mechanisms.
Transfer of optical orbital angular momentum to a bound electron
Schmiegelow, Christian T.; Schulz, Jonas; Kaufmann, Henning; Ruster, Thomas; Poschinger, Ulrich G.; Schmidt-Kaler, Ferdinand
2016-01-01
Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light–matter interaction and pave the way for its application and observation in other systems. PMID:27694805
Transfer of optical orbital angular momentum to a bound electron
NASA Astrophysics Data System (ADS)
Schmiegelow, Christian T.; Schulz, Jonas; Kaufmann, Henning; Ruster, Thomas; Poschinger, Ulrich G.; Schmidt-Kaler, Ferdinand
2016-10-01
Photons can carry angular momentum, not only due to their spin, but also due to their spatial structure. This extra twist has been used, for example, to drive circular motion of microscopic particles in optical tweezers as well as to create vortices in quantum gases. Here we excite an atomic transition with a vortex laser beam and demonstrate the transfer of optical orbital angular momentum to the valence electron of a single trapped ion. We observe strongly modified selection rules showing that an atom can absorb two quanta of angular momentum from a single photon: one from the spin and another from the spatial structure of the beam. Furthermore, we show that parasitic ac-Stark shifts from off-resonant transitions are suppressed in the dark centre of vortex beams. These results show how light's spatial structure can determine the characteristics of light-matter interaction and pave the way for its application and observation in other systems.
Analysis of a heat transfer device for measuring film coefficients
NASA Technical Reports Server (NTRS)
Medrow, R. A.; Johnson, R. L.; Loomis, W. R.; Wedeven, L. D.
1975-01-01
A heat transfer device consisting of a heated rotating cylinder in a bath was analyzed for its effectiveness to determine heat transfer coefficient of fluids. A time dependent analysis shows that the performance is insensitive to the value of heat transfer coefficient with the given rig configuration.
Effects of Floodplain Vegetation on Momentum Transfer in Compound Channel
NASA Astrophysics Data System (ADS)
Hasegawa, Fumiaki; Yamamoto, Takuya; Jahra, Fatima; Kawahara, Yoshihisa
Better management of riparian vegetation for flood control and environmental preservation requires in-depth understanding of flow characteristics in the presence of vegetation. This study aims at clarifying the flow structure and lateral momentum transfer process in vegetated compound channels through experiments and numerical simulations. Two types of vegetation zone on a floodplain are discussed. In the first case a floodplain is fully covered by vegetation. In the other case a floodplain has a belt of vegetation zone along the interface between main channel and floodplain. The measured data are compared with the numerical results that are obtained using a non-linear k-ɛ model and a vegetation model. It is found that the numerical model can reproduce the main characteristics of the flow and that the convection and the turbulent diffusion play important roles in the lateral momentum transfer across the interface between vegetated floodplain and main channel.
Nuclear Effects in Neutrino Interactions at Low Momentum Transfer
Miltenberger, Ethan Ryan
2015-05-01
This is a study to identify predicted effects of the carbon nucleus environment on neutrino - nucleus interactions with low momentum transfer. A large sample of neutrino interaction data collected by the MINERvA experiment is analyzed to show the distribution of charged hadron energy in a region with low momentum transfer. These distributions reveal a major discrepancy between the data and a popular interaction model with only the simplest Fermi gas nuclear effects. Detailed analysis of systematic uncertainties due to energy scale and resolution can account for only a little of the discrepancy. Two additional nuclear model effects, a suppression/screening effect (RPA), and the addition of a meson exchange current process (MEC), are shown to improve the description of the data.
Electroexcitation of the Δ+(1232) at low momentum transfer
Blomberg, A.; Anez, D.; Sparveris, N.; Sarty, A. J.; Paolone, M.; Gilad, S.; Higinbotham, D.; Ahmed, Z.; Albataineh, H.; Allada, K.; et al
2016-07-05
We report on new pmore » $$(e,e^\\prime p)\\pi^\\circ$$ measurements at the $$\\Delta^{+}(1232)$$ resonance at the low momentum transfer region. The mesonic cloud dynamics is predicted to be dominant and rapidly changing in this kinematic region offering a test bed for chiral effective field theory calculations. The new data explore the low $Q^2$ dependence of the resonant quadrupole amplitudes while extending the measurements of the Coulomb quadrupole amplitude to the lowest momentum transfer ever reached. The results disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The reported measurements suggest that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.« less
Heat transfer coefficients for drying in pulsating flows
Fraenkel, S.L.
1998-05-01
Pulsating flows generated by a Rijke type combustor are studied for drying of grains and food particles. It is assumed that the velocity fluctuations are the main factor in the enhancement of the drying process. The heat transfer coefficients for drying in vibrating beds are utilized to estimate the heat transfer coefficients of fixed beds in pulsating and permeating flows and are compared to the steady flow heat transfer coefficients obtained for solid porous bodies, after perturbing the main flow. The cases considered are compared to the convective heat transfer coefficients employed in non-pulsating drying.
Hadron-hadron elastic scattering at large momentum transfers
Rubinstein, R.
1983-05-01
Cross sections for ..pi../sup + -/p, K/sup + -/p and p/sup + -/p elastic scattering for incident momenta above a few tens of GeV/c and momentum transfers in the range 1 less than or equal to -t less than or equal to 10 (GeV/c)/sup 2/ have recently been measured. The data are reviewed, and compared with existing models of elastic scattering.
Axial form factor of the nucleon at large momentum transfers
NASA Astrophysics Data System (ADS)
Anikin, I. V.; Braun, V. M.; Offen, N.
2016-08-01
Motivated by the emerging possibilities to study threshold pion electroproduction at large momentum transfers at Jefferson Laboratory following the 12 GeV upgrade, we provide a short theory summary and an estimate of the nucleon axial form factor for large virtualities in the Q2=1 - 10 GeV2 range using next-to-leading-order light-cone sum rules.
Deuteron form factor measurements at low momentum transfers
NASA Astrophysics Data System (ADS)
Schlimme, B. S.; Achenbach, P.; Beričič, J.; Böhm, R.; Bosnar, D.; Correa, L.; Distler, M. O.; Esser, A.; Fonvieille, H.; Friščić, I.; Griffioen, K. A.; Huan, Y.; Kegel, S.; Kohl, Y.; Merkel, H.; Mihovilovič, M.; Müller, J.; Müller, U.; Pochodzalla, J.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Štajner, S.; Thiel, M.; Weber, A.
2016-03-01
A precise measurement of the elastic electron-deuteron scattering cross section at four-momentum transfers of 0.24 fm-1 ≤ Q ≤ 2.7 fm-1 has been performed at the Mainz Microtron. In this paper we describe the utilized experimental setup and the necessary analysis procedure to precisely determine the deuteron charge form factor from these data. Finally, the deuteron charge radius rd can be extracted from an extrapolation of that form factor to Q2 = 0.
Modeling elastic momentum transfer cross-sections from mobility data
NASA Astrophysics Data System (ADS)
Nikitović, Ž. D.; Stojanović, V. D.; Raspopović, Z. M.
2016-04-01
In this letter we present a new method to simply obtain the elastic momentum transfer cross-section which predicts a maximum of reduced mobility and its sensitivity to the temperature variation at low energies. We first determined the transport cross-section which resembles mobility data for similar closed-shell systems by using the Monte Carlo method. Second, we selected the most probable reactive processes and compiled cross-sections from experimental and theoretical data. At the end, an elastic momentum transfer cross-section is obtained by subtracting the compiled cross-sections from the momentum transfer cross-section, taking into account the effects of the angular scattering distributions. Finally, the cross-section set determined in such a way is used as an input in a final Monte Carlo code run, to calculate the flux and bulk reduced mobility for Ne+ + CF4 which were discussed as functions of the reduced electric field E/N (N is the gas density) for the temperature T = 300 K.
Rates of mass, momentum, and energy transfer at the magnetopause
NASA Technical Reports Server (NTRS)
Hill, T. W.
1979-01-01
Empirical estimates of the global rates of transfer of solar wind mass, tangential momentum, and energy at the Earth's magnetopause are presented for comparison against model estimates based on the four principal mechanisms that have been proposed to explain such transfer. The comparisons, although not quite conclusive, strongly favor a model that incorporates some combination of direct magnetic connection and anomalous cross field diffusion. An additional global constraint, the rate at which magnetic flux is cycled through the magnetospheric convection system, strongly suggests that direct magnetic connection plays a significant if not dominant role in the solar wind/magnetosphere interaction.
Momentum transfer within a porous medium. II. Stress boundary condition
NASA Astrophysics Data System (ADS)
Minale, Mario
2014-12-01
In this paper, we derive a boundary condition at the interface between a free fluid and a porous medium stating that the stress is transferred both to the fluid within the porous medium and to the solid skeleton. A zero stress jump is obtained so that the total stress is preserved at the interface. The boundary condition is obtained with the volume averaging method following the approach of Ochoa-Tapia and Whitaker ["Momentum transfer at the boundary between a porous medium and a homogeneous fluid—I. Theoretical development," Int. J. Heat Mass Transfer 38(14), 2635-2646 (1995)], but starting from the momentum balances written on the fluid and on the solid of the porous region, the latter was derived in part I of this paper. In the same way, also the boundary condition at the interface between a porous medium and a homogeneous solid is obtained. Both boundary conditions describe the equilibrium of forces at the interface, where part of the stress is carried by the solid skeleton and part by the fluid within the porous medium. With the derived boundary conditions, together with the stress transfer equation within the solid skeleton, it is now possible to satisfy the overall force equilibrium on a shear cell partially filled with a porous medium.
Polarization Transfer in Proton Compton Scattering at High Momentum Transfer
Hamilton, D.J.; Annand, J.R.M.; Mamyan, V.H.; Aniol, K.A.; Margaziotis, D.J.; Bertin, P.Y.; Camsonne, A.; Laveissiere, G.; Bosted, P.; Paschke, K.; Calarco, J.R.; Chang, G.C.; Horn, T.; Savvinov, N.; Chang, T.-H.; Danagoulian, A.; Nathan, A.M.; Roedelbronn, M.; Chen, J.-P.
2005-06-24
Compton scattering from the proton was investigated at s=6.9 GeV{sup 2} and t=-4.0 GeV{sup 2} via polarization transfer from circularly polarized incident photons. The longitudinal and transverse components of the recoil proton polarization were measured. The results are in disagreement with a prediction of perturbative QCD based on a two-gluon exchange mechanism, but agree well with a prediction based on a reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton.
Oblique impact: Projectile richochet, concomitant ejecta and momentum transfer
NASA Technical Reports Server (NTRS)
Gault, Donald E.; Schultz, Peter H.
1987-01-01
Experimental studies of oblique impact indicate that projectile richochet occurs for trajectory angles less than 30 deg and that the richocheted projectile, accompanied by some target material, are ejected at velocities that are a large fraction of the impact velocity. Because the probability of occurrence of oblique impact less than 30 deg on a planetary body is about one out of every four impact events, oblique impacts would seem to be a potential mechanism to provide a source of meteorites from even the largest atmosphere-free planetary bodies. Because the amount of richocheted target material cannot be determined from previous results, additional experiments in the Ames Vertical Gun laboratory were undertaken toward that purpose using pendulums; one to measure momentum of the richocheted projectile and concomitant target ejecta, and a second to measure the momentum transferred from projectile to target. These experiments are briefly discussed.
Photo-induced Spin Angular Momentum Transfer into Antiferromagnetic Insulator
NASA Astrophysics Data System (ADS)
Fang, Fan; Fan, Yichun; Ma, Xin; Zhu, J.; Li, Q.; Ma, T. P.; Wu, Y. Z.; Chen, Z. H.; Zhao, H. B.; Luepke, Gunter; College of William and Mary Team; Department of Physics, Fudan University Team; Department of Optical Science and Engineering, Fudan University Team
2014-03-01
Spin angular momentum transfer into antiferromagnetic(AFM) insulator is observed in single crystalline Fe/CoO/MgO(001) heterostructure by time-resolved magneto-optical Kerr effect (TR-MOKE). The transfer process is mediated by the Heisenberg exchange coupling between Fe and CoO spins. Below the Neel temperature(TN) of CoO, the fact that effective Gilbert damping parameter α is independent of external magnetic field and it is enhanced with respect to the intrinsic damping in Fe/MgO, indicates that the damping process involves both the intrinsic spin relaxation and the transfer of Fe spin angular momentum to CoO spins via FM-AFM exchange coupling and then into the lattice by spin-orbit coupling. The work at the College of William and Mary was sponsored by the Office of Naval Research. The work at Department of Physics, Fudan, was supported by NSFC. The work at Department of Optical Science and Engineering, Fudan was supported by NSFC and NCET.
Exclusive electron scattering from deuterium at high momentum transfer
Bulten, H.J.; Anthony, P.L.; Arnold, R.G.; Arrington, J.; Beise, E.J.; Belz, E.; van Bibber, K.; Bosted, P.E.; van den Brand, J.F.J.; Chapman, M.S.; Coulter, K.P.; Dietrich, F.S.; Ent, R.; Epstein, M.; Filippone, B.W.; Gao, H.; Gearhart, R.A.; Geesaman, D.F.; Hansen, J.; Holt, R.J.; Jackson, H.E.; Jones, C.E.; Keppel, C.E.; Kinney, E.; Kuhn, S.E.; Lee, K.; Lorenzon, W.; Lung, A.; Makins, N.C.R.; Margaziotis, D.J.; McKeown, R.D.; Milner, R.G.; Mueller, B.; Napolitano, J.; Nelson, J.; O`Neill, T.G.; Papavassiliou, V.; Petratos, G.G.; Potterveld, D.H.; Rock, S.E.; Spengos, M.; Szalata, Z.M.; Tao, L.H.; White, J.L.; Zeidman, B. ||||||||||
1995-06-12
Cross sections are presented for the reaction {sup 2}H({ital e},{ital e}{prime}{ital p}){ital n} for momentum transfers in the range 1.2{le}{ital Q}{sup 2}{le}6.8(GeV/{ital c}){sup 2} and for missing momenta from 0 to 250 MeV/{ital c}. The longitudinal-transverse interference structure function has been separated at {ital Q}{sup 2}=1.2(GeV/{ital c}){sup 2}. The observables are compared to calculations performed in nonrelativistic and relativistic frameworks. The data are best described by a fully relativistic calculation.
NASA Astrophysics Data System (ADS)
Chen, Jun; Li, Bei-Bei; Zhang, Hong-Chao; Qiang, Hao; Shen, Zhong-Hua; Ni, Xiao-Wu
2013-02-01
High-speed photography method is employed to study underwater laser propulsion using targets with and without cavity as well as the effect of the cavity depth. The shapes and motions of bubbles generated from the target tail by Nd: YAG laser are recorded by high-speed camera. Then, the influence of different bubble shapes on the laser propulsion is analyzed. Besides, the velocity and momentum coupling coefficient of the targets are investigated. The results show that the bubble is hemispherical in the case of target without cavity, while it is toroidal in the case of target with cavity. Experiments verify that compared with hemispherical bubble, the toroidal bubble is more conducive to laser propulsion in water, which means the target with cavity obtains more momentum than the target without cavity. In addition, the momentum coupling coefficient increases with laser energy first, and then it levels out and decreases a bit for the target with cavity. There is little effect of the cavity depth on propulsion.
Electroexcitation of the Δ+(1232) at low momentum transfer
NASA Astrophysics Data System (ADS)
Blomberg, A.; Anez, D.; Sparveris, N.; Sarty, A. J.; Paolone, M.; Gilad, S.; Higinbotham, D.; Ahmed, Z.; Albataineh, H.; Allada, K.; Anderson, B.; Aniol, K.; Annand, J.; Arrington, J.; Averett, T.; Baghdasaryan, H.; Bai, X.; Beck, A.; Beck, S.; Bellini, V.; Benmokhtar, F.; Boeglin, W.; Camacho, C. M.; Camsonne, A.; Chen, C.; Chen, J. P.; Chirapatpimol, K.; Cisbani, E.; Dalton, M.; Deconinck, W.; Defurne, M.; De Leo, R.; Flay, D.; Fomin, N.; Friend, M.; Frullani, S.; Fuchey, E.; Garibaldi, F.; Gilman, R.; Gu, C.; Hamilton, D.; Hanretty, C.; Hansen, O.; Hashemi Shabestari, M.; Hen, O.; Holmstrom, T.; Huang, M.; Iqbal, S.; Kalantarians, N.; Kang, H.; Kelleher, A.; Khandaker, M.; Korover, I.; Leckey, J.; LeRose, J.; Lindgren, R.; Long, E.; Mammei, J.; Margaziotis, D. J.; Martí Jimenez-Arguello, A.; Meekins, D.; Meziani, Z. E.; Mihovilovic, M.; Muangma, N.; Norum, B.; Nuruzzaman; Pan, K.; Phillips, S.; Piasetzky, E.; Polychronopoulou, A.; Pomerantz, I.; Posik, M.; Punjabi, V.; Qian, X.; Rakhman, A.; Reimer, P. E.; Riordan, S.; Ron, G.; Saha, A.; Schulte, E.; Selvy, L.; Shneor, R.; Sirca, S.; Sjoegren, J.; Subedi, R.; Sulkosky, V.; Tireman, W.; Wang, D.; Watson, J.; Wojtsekhowski, B.; Yan, W.; Yaron, I.; Ye, Z.; Zhan, X.; Zhang, J.; Zhang, Y.; Zhao, B.; Zhao, Z.; Zheng, X.; Zhu, P.
2016-09-01
We report on new p (e ,e‧ p)π∘ measurements at the Δ+ (1232) resonance at the low momentum transfer region, where the mesonic cloud dynamics is predicted to be dominant and rapidly changing, offering a test bed for chiral effective field theory calculations. The new data explore the Q2 dependence of the resonant quadrupole amplitudes and for the first time indicate that the Electric and the Coulomb quadrupole amplitudes converge as Q2 → 0. The measurements of the Coulomb quadrupole amplitude have been extended to the lowest momentum transfer ever reached, and suggest that more than half of its magnitude is attributed to the mesonic cloud in this region. The new data disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The measurements indicate that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.
NASA Astrophysics Data System (ADS)
Hamidifar, H.; Omid, M. H.; Keshavarzi, A.
2016-06-01
In this paper, the effect of flow relative depth (ratio of the floodplain to the main channel flow depths) and vegetation density on the kinetic energy and momentum correction coefficients (termed as α and β, respectively) was described based on an experimental study. A series of experiments was run using rigid dowels with seven flow relative depths and four vegetation densities in an asymmetric compound channel. The local flow velocities were measured using an acoustic Doppler velocimeter (ADV). Using regression analysis, velocity data were considered and equations were developed for calculating the kinetic energy and momentum correction coefficients as a function of the flow relative depth and vegetation density. The results show that the values of α and β decrease as the relative depth increases. Also, as the vegetation density increases, the effects of the vegetation on α and β increase too. Finally, by comparing with the findings of the previous researchers, it was found that the average values of the α for asymmetric compound channels with vegetation are 26.5% and 43.3% greater than those for asymmetric and symmetric compound channels without vegetation respectively while these values for β are 12.7% and 18.1%, respectively. Furthermore, the floodplain vegetation can increase the average values of coefficients α and β by 52.8% and 21.6%, respectively, in comparison with single channels.
An optical model description of momentum transfer in heavy ion collisions
NASA Technical Reports Server (NTRS)
Khan, F.; Khandelwal, G. S.; Townsend, Lawrence W.; Wilson, J. W.; Norbury, John W.
1989-01-01
An optical model description of momentum transfer in relativistic heavy ion collisions, based upon composite particle multiple scattering theory, is presented. The imaginary component of the complex momentum transfer, which comes from the absorptive part of the optical potential, is identified as the longitudinal momentum downshift of the projectile. Predictions of fragment momentum distribution observables are made and compared with experimental data. Use of the model as a tool for estimating collision impact parameters is discussed.
Optical model description of momentum transfer in relativistic heavy ion collisions
NASA Technical Reports Server (NTRS)
Khan, F.; Khandelwal, G. S.; Townsend, L. W.; Wilson, J. W.; Norbury, J. W.
1991-01-01
An optical model description of momentum transfer in relativistic heavy ion collisions, based upon composite particle multiple scattering theory, is presented. The imaginary component of the complex momentum transfer, which comes from the absorptive part of the optical potential, is identified as the longitudinal momentum downshift of the projectile. Predictions of fragment momentum distribution observables are made and compared with experimental data. Use of the model as a tool for estimating collision impact parameters is discussed.
An investigation of the normal momentum transfer for gases on tungsten
NASA Technical Reports Server (NTRS)
Moskal, E. J.
1971-01-01
The near monoenergetic beam of neutral helium and argon atoms impinged on a single crystal tungsten target, with the (100) face exposed to the beam. The target was mounted on a torsion balance. The rotation of this torsion balance was monitored by an optical lever, and this reading was converted to a measurement of the momentum exchange between the beam and the target. The tungsten target was flashed to a temperature in excess of 2000 C before every clean run, and the vacuum levels in the final chamber were typically between 0.5 and 1 ntorr. The momentum exchange for the helium-tungsten surface and the argon-tungsten surface combination was obtained over approximately a decade of incoming energy (for the argon gas) at angles of incidence of 0, 30, and 41 deg on both clean and dirty (gas covered) surfaces. The results exhibited a significant variation in momentum transfer between the data obtained for the clean and dirty surfaces. The values of normal momentum accommodation coefficient for the clean surface were found to be lower than the values previously reported.
Modeling Momentum Transfer from Kinetic Impacts: Implications for Redirecting Asteroids
Stickle, A. M.; Atchison, J. A.; Barnouin, O. S.; Cheng, A. F.; Crawford, D. A.; Ernst, C. M.; Fletcher, Z.; Rivkin, A. S.
2015-05-19
Kinetic impactors are one way to deflect a potentially hazardous object headed for Earth. The Asteroid Impact and Deflection Assessment (AIDA) mission is designed to test the effectiveness of this approach and is a joint effort between NASA and ESA. The NASA-led portion is the Double Asteroid Redirect Test (DART) and is composed of a ~300-kg spacecraft designed to impact the moon of the binary system 65803 Didymos. The deflection of the moon will be measured by the ESA-led Asteroid Impact Mission (AIM) (which will characterize the moon) and from ground-based observations. Because the material properties and internal structure ofmore » the target are poorly constrained, however, analytical models and numerical simulations must be used to understand the range of potential outcomes. Here, we describe a modeling effort combining analytical models and CTH simulations to determine possible outcomes of the DART impact. We examine a wide parameter space and provide predictions for crater size, ejecta mass, and momentum transfer following the impact into the moon of the Didymos system. For impacts into “realistic” asteroid types, these models produce craters with diameters on the order of 10 m, an imparted Δv of 0.5–2 mm/s and a momentum enhancement of 1.07 to 5 for a highly porous aggregate to a fully dense rock.« less
Modeling Momentum Transfer from Kinetic Impacts: Implications for Redirecting Asteroids
Stickle, A. M.; Atchison, J. A.; Barnouin, O. S.; Cheng, A. F.; Crawford, D. A.; Ernst, C. M.; Fletcher, Z.; Rivkin, A. S.
2015-05-19
Kinetic impactors are one way to deflect a potentially hazardous object headed for Earth. The Asteroid Impact and Deflection Assessment (AIDA) mission is designed to test the effectiveness of this approach and is a joint effort between NASA and ESA. The NASA-led portion is the Double Asteroid Redirect Test (DART) and is composed of a ~300-kg spacecraft designed to impact the moon of the binary system 65803 Didymos. The deflection of the moon will be measured by the ESA-led Asteroid Impact Mission (AIM) (which will characterize the moon) and from ground-based observations. Because the material properties and internal structure of the target are poorly constrained, however, analytical models and numerical simulations must be used to understand the range of potential outcomes. Here, we describe a modeling effort combining analytical models and CTH simulations to determine possible outcomes of the DART impact. We examine a wide parameter space and provide predictions for crater size, ejecta mass, and momentum transfer following the impact into the moon of the Didymos system. For impacts into “realistic” asteroid types, these models produce craters with diameters on the order of 10 m, an imparted Δv of 0.5–2 mm/s and a momentum enhancement of 1.07 to 5 for a highly porous aggregate to a fully dense rock.
The laser elevator - Momentum transfer using an optical resonator
NASA Technical Reports Server (NTRS)
Meyer, Thomas R.; Mckay, Christopher P.; Mckenna, Paul M.
1987-01-01
In a conventional laser lightsail system the payload is propelled by the momentum imparted to it by the reflection of a laser beam without the use of any propellant. Because of the unfavorable relationship between energy and momentum in a light beam, these systems are very inefficient. The efficiency can be greatly improved, in principle, if the photons that impact the payload mirror are returned to the source and then redirected back toward the payload again. This system, which recirculates the laser beam, is defined as the 'laser elevator'. The gain of the laser elevator over conventional lightsails depends on the number of times the beam is recycled which is limited by the reflectance of the mirrors used, any losses in the transmission of the beam, and diffraction. Due to the increase pathlength of the folded beam, diffraction losses occur at smaller separations of the payload and the source mirror than for conventional lightsail system. The laser elevator has potential applications in launching to low earth orbit, orbital transfer, and rapid interplanetary delivery of small payloads.
Measurements of deuteron magnetic form factor high momentum transfer
Arnold, R.G.; Benton, D.; Bosted, P.; Clogher, L.; DeChambrier, G.; Katramatou, A.T.; Lambert, J.; Lung, A.; Petratos, G.G.; Rahbar, A.; and others
1987-04-27
The deuteron magnetic form factor B(Q/sup 2/) has been measured at momentum transfers Q/sup 2/ = 1.21, 1.49, 1.61, 1.74, 1.98, 2.23, 2.48, 2.53, and 2.77 (GeV/c)/sup 2/ at the Stanford Linear Accelerator Center by detection of electrons backscattered at 180/sup 0/ in coincidence with recoiling deuterons at 0/sup 0/. The data for B(Q/sup 2/) are found to decrease rapidly from Q/sup 2/ = 1.2 to 2 (GeV/c)/sup 2/, then rise to a secondary maximum around Q/sup 2/ = 2.5 (GeV/c)/sup 2/, in qualitative agreement with impulse-approximation calculations.
NASA Astrophysics Data System (ADS)
Shields, F. Douglas
1982-04-01
The acoustical method has been used to determine energy and tangential momentum accomodation coefficients on three different polycrystalline tungsten surfaces. To obtain the second surface, the first was highly oxidized and then cleaned by vacuum flashing at 2150 K. The third surface, manufactured by the same chemical deposition process as the first, was specified as having half the microscopic roughness of the first. Photographs made with the scanning electron microscope indicate that though the oxidation dramatically increased the roughness of the surface, this roughness was removed in the flashing process. The electron micrographs also showed that flashing dramatically increased the grain size in the third surface. This third surface, though supposedly smoother, was found to have larger AC values than the first. This has been attributed to a shorter accumulated flashing time at the time the measurements were made and, therefore, smaller grain size. The microscopic roughness does not appear to be an important factor in determining AC values after the surface is flashed. The problem of simultaneously determining energy and tangential momentum accomodation coefficients is discussed.
Heat-transfer coefficients in agitated vessels. Latent heat models
Kumpinsky, E.
1996-03-01
Latent heat models were developed to calculate heat-transfer coefficients in agitated vessels for two cases: (1) heating with a condensable fluid flowing through coils and jackets; (2) vacuum reflux cooling with an overhead condenser. In either case the mathematical treatment, based on macroscopic balances, requires no iterative schemes. In addition to providing heat-transfer coefficients, the models predict flow rates of service fluid through the coils and jackets, estimate the percentage of heat transfer due to latent heat, and compute reflux rates.
Overall Heat and Mass Transfer Coefficient of Water Vapor Adsorption
NASA Astrophysics Data System (ADS)
Hamamoto, Yoshinori; Mori, Hideo; Godo, Masazumi; Miura, Kunio; Watanabe, Yutaka; Ishizawa, Toshihiko; Takatsuka, Takeshi
A fundamental investigation was performed to develop a compact and simple desiccant ventilation unit which is one of the main components of a novel energy saving air-conditioning system. Water vapor in the air is adsorbed and/or desorbed to be controlled the humidity of supply air through a unit of an adsorbent packed bed. A numerical simulation helps to understand the phenomena of heat and mass transfer in the bed. Overall transfer coefficients of them as properties for the simulation were estimated by performing both experiment and calculation. It was clarified that the transient overall equivalent heat and mass transfer does not strongly depend on the air flow rate through the packed bed, the averaged equivalent mass transfer is governed by surface and pore diffusion in a particle of adsorbent at low flow rate. Moreover, the coefficient during the adsorption process is slightly larger than desorption. An equation of the overall mass transfer coefficient is derived. It shows five times as large as the value estimated by experiment. Therefore, the correlation and fitting parameters are presented for prediction of the overall heat and mass transfer coefficients. The estimation accuracy was improved.
Heat transfer coefficient in serpentine coolant passage for CCDTL
Leslie, P.; Wood, R.; Sigler, F.; Shapiro, A.; Rendon, A.
1998-12-31
A series of heat transfer experiments were conducted to refine the cooling passage design in the drift tubes of a coupled cavity drift tube linac (CCDTL). The experimental data were then compared to numerical models to derive relationships between heat transfer rates, Reynold`s number, and Prandtl number, over a range of flow rates. Data reduction consisted of axisymmetric finite element modeling where the heat transfer coefficients were modified to match the experimental data. Unfortunately, the derived relationship is valid only for this specific geometry of the test drift tube. Fortunately, the heat transfer rates were much better (approximately 2.5 times) than expected.
Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Han, Shuo; Yang, Haifang; Xu, Xiangang; Wang, Zhengping; Petrov, V; Wang, Jiyang
2013-11-12
We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angular momentum of light beams and PVLs. The angular momentum of twisting SP electromagnetic field is tunable by the twisted metal/dielectric interfaces of PVLs and angular momentum of illuminating singular light. This work may open the door for several possible applications of SP vortices in subwavelength region.
Yu, Haohai; Zhang, Huaijin; Wang, Yicheng; Han, Shuo; Yang, Haifang; Xu, Xiangang; Wang, Zhengping; Petrov, V.; Wang, Jiyang
2013-01-01
We demonstrate the optical orbital angular momentum conservation during the transfer process from subwavelength plasmonic vortex lens (PVLs) to light and the generating process of surface plasmon polaritons (SPPs). Illuminating plasmonic vortex lenses with beams carrying optical orbital angular momentum, the SP vortices with orbital angular momentum were generated and inherit the optical angular momentum of light beams and PVLs. The angular momentum of twisting SP electromagnetic field is tunable by the twisted metal/dielectric interfaces of PVLs and angular momentum of illuminating singular light. This work may open the door for several possible applications of SP vortices in subwavelength region. PMID:24217130
Heat transfer coefficients of dilute flowing gas-solids suspensions
NASA Technical Reports Server (NTRS)
Kane, R. S.; Pfeffer, R.
1973-01-01
Heat transfer coefficients of air-glass, argon-glass, and argon-aluminum suspensions were measured in horizontal and vertical tubes. The glass, 21.6 and 36.0 micron diameter particles, was suspended at gas Reynolds numbers between 11,000 and 21,000 and loading ratios between 0 and 2.5. The presence of particles generally reduced the heat transfer coefficient. The circulation of aluminum powder in the 0.870 inch diameter closed loop system produced tenacious deposits on protuberances into the stream. In the vertical test section, the Nusselt number reduction was attributed to viscous sublayer thickening; in the horizontal test section to particle deposition.
Determination of the heat transfer coefficients in transient heat conduction
NASA Astrophysics Data System (ADS)
Nho Hào, Dinh; Thanh, Phan Xuan; Lesnic, D.
2013-09-01
The determination of the space- or time-dependent heat transfer coefficient which links the boundary temperature to the heat flux through a third-kind Robin boundary condition in transient heat conduction is investigated. The reconstruction uses average surface temperature measurements. In both cases of the space- or time-dependent unknown heat transfer coefficient the inverse problems are nonlinear and ill posed. Least-squares penalized variational formulations are proposed and new formulae for the gradients are derived. Numerical results obtained using the nonlinear conjugate gradient method combined with a boundary element direct solver are presented and discussed.
Verbeek, Martijn G
2010-04-01
This work presents a simulation technique that can be used to compute the thermal interaction between a gas and a cylindrically shaped wall. The method is computationally simple and is based on the Maxwell-Smoluchowski thermal wall scenario often used for the slit pore geometry. A geometric argument is used to find the corresponding thermalization mechanism for the cylindrical confinement. The algorithm serves as a thermostat, which enables one to perform constant-temperature simulations. By means of simple numerical simulations, Smoluchowski's expression for self-diffusivity D s is then recovered in reduced units. The tangential momentum accommodation coefficient is interpreted as a coupling constant for the thermostat similar to the one used for the ordinary Andersen thermostat but applied locally onto the boundary crossing particles.
Modeling NAPL dissolution fingering with upscaled mass transfer rate coefficients
NASA Astrophysics Data System (ADS)
Imhoff, Paul T.; Farthing, Matthew W.; Miller, Cass T.
2003-10-01
The dissolution of nonaqueous phase liquids (NAPLs) at residual saturation in porous media has sometimes resulted in the development of preferential dissolution pathways or NAPL dissolution fingers. While NAPL dissolution fingering may be modeled using numerical simulators with fine discretization, this approach is computational intensive. We derived an expression for an upscaled mass transfer rate coefficient that accounts for the growth of dissolution fingers within porous media contaminated uniformly with residual NAPL. This expression was closely related to the lengthening of the dissolution front. Data from physical experiments and numerical simulations in two dimensions were used to examine the growth of the dissolution front and the corresponding upscaled mass transfer rate coefficient. Using this upscaled mass transfer rate coefficient, the time when dissolution fingering results in a reduction in the overall mass transfer rate and thus controls the rate of NAPL dissolution was determined. This crossover time is a convenient parameter for assessing the influence of dissolution fingering on NAPL removal. For the physical experiments and numerical simulations analyzed in this study, the crossover time to dissolution fingering control always occurred before the dissolution front had moved 14 cm within NAPL-contaminated porous media, which is small compared to the scale of typical systems of concern. To verify the utility of this approach, data from a three-dimensional physical experiment were predicted reasonably well using an upscaled mass transfer rate coefficient that was determined independently from this experiment.
Turbulent transfer coefficient and roughness length in a high-altitude lake, Tibetan Plateau
NASA Astrophysics Data System (ADS)
Li, Zhaoguo; Lyu, Shihua; Zhao, Lin; Wen, Lijuan; Ao, Yinhuan; Wang, Shaoying
2016-05-01
A persistent unstable atmospheric boundary layer was observed over Lake Ngoring, caused by higher temperature on the water surface compared with the overlying air. Against this background, the eddy covariance flux data collected from Lake Ngoring were used to analyse the variation of transfer coefficients and roughness lengths for momentum, heat and moisture. Results are discussed and compared with parameterization schemes in a lake model. The drag coefficient and momentum roughness length rapidly decreased with increasing wind velocity, reached a minimum value in the moderate wind velocity and then increased slowly as wind velocity increased further. Under weak wind conditions, the surface tension or small scale capillary wave becomes more important and increases the surface roughness. The scalar roughness length ratio was much larger than unity under weak wind conditions, and it decreased to values near unity as wind velocity exceeded 4.0 m s-1. The lake model could not reproduce well the variation of drag coefficient, or momentum roughness length, versus wind velocity in Lake Ngoring, but it did simulate well the sensible heat and latent heat fluxes, as a result of complementary opposite errors.
Mass transfer coefficients determination from linear gradient elution experiments.
Pfister, David; Morbidelli, Massimo
2015-01-01
A procedure to estimate mass transfer coefficients in linear gradient elution chromatography is presented and validated by comparison with experimental data. Mass transfer coefficients are traditionally estimated experimentally through the van Deemter plot, which represents the HETP as a function of the fluid velocity. Up to now, the HETP was obtained under isocratic elution conditions. Unfortunately, isocratic elution experiments are often not suitable for large biomolecules which suffer from severe mass transfer hindrances. Yamamoto et al. were the first to propose a semi-empirical equation to relate HETPs measured from linear gradient elution experiments to those obtained under isocratic conditions [7]. Based on his pioneering work, the approach presented in this work aims at providing an experimental procedure supported by simple equations to estimate reliable mass transfer parameters from linear gradient elution chromatographic experiments. From the resolution of the transport model, we derived a rigorous analytical expression for the HETP in linear gradient elution chromatography.
Momentum transfer of a Boltzmann-lattice fluid with boundaries
NASA Astrophysics Data System (ADS)
Bouzidi, M'hamed; Firdaouss, Mouaouia; Lallemand, Pierre
2001-11-01
We study the velocity boundary condition for curved boundaries in the lattice Boltzmann equation (LBE). We propose a LBE boundary condition for moving boundaries by combination of the "bounce-back" scheme and spatial interpolations of first or second order. The proposed boundary condition is a simple, robust, efficient, and accurate scheme. Second-order accuracy of the boundary condition is demonstrated for two cases: (1) time-dependent two-dimensional circular Couette flow and (2) two-dimensional steady flow past a periodic array of circular cylinders (flow through the porous media of cylinders). For the former case, the lattice Boltzmann solution is compared with the analytic solution of the Navier-Stokes equation. For the latter case, the lattice Boltzmann solution is compared with a finite-element solution of the Navier-Stokes equation. The lattice Boltzmann solutions for both flows agree very well with the solutions of the Navier-Stokes equations. We also analyze the torque due to the momentum transfer between the fluid and the boundary for two initial conditions: (a) impulsively started cylinder and the fluid at rest, and (b) uniformly rotating fluid and the cylinder at rest.
Measurement of the Electromagnetic Coupling at Large Momentum Transfer
Levine, I.; Koltick, D.; Howell, B.; Shibata, E.; Fujimoto, J.; Tauchi, T.; Adachi, I.; Enomoto, R.; Fujii, H.; Fujii, K.; Ikeda, H.; Itoh, R.; Iwasaki, H.; Kawabata, S.; Kichimi, H.; Kobayashi, M.; Miyamoto, A.; Tsukamoto, T.; Uno, S.; Yamamoto, A.; Yamauchi, M.; Abe, K.; Abe, T.; Aoki, M.; Itami, S.; Kajikawa, R.; Nakabayashi, K.; Ohishi, N.; Ohnishi, Y.; Sugiyama, A.; Suzuki, S.; Tomoto, M.; Adachi, K.; Fujiwara, N.; Hayashii, H.; Ikeda, H.; Iwasaki, M.; Miyabayashi, K.; Noguchi, S.; Aoki, M.; Kaneyuki, K.; Ochi, A.; Ohshima, Y.; Tanimori, T.; Watanabe, K.; Watanabe, Y.; Emi, K.; Hirano, H.; Mamada, H.; Nitoh, O.; Takahashi, K.; Tsumura, T.; Fujii, T.; Inoue, Y.; Nakamura, M.; Nakano, E.; Okusawa, T.; Takahashi, T.; Teramoto, Y.; Kato, S.; Okuno, H.; Fujii, T.; Nagai, K.; Ochiai, F.
1997-01-01
We report the first purely electroweak measurement of the strengthening of the electromagnetic coupling, {alpha}{sub QED} with increasing momentum transfer Q{sup 2}, by comparing the process e{sup +}e{sup -}{r_arrow}{mu}{sup +}{mu}{sup -} with the process e{sup +}e{sup -}{r_arrow}e{sup +}e{sup -}{mu}{sup +}{mu}{sup -}. The data were accumulated at an average center-of-mass energy {l_angle}{radical}(s){r_angle}=57.77GeV using the TOPAZ detector at the TRISTAN e{sup +}e{sup -} collider. We measure {alpha}{sup -1}{sub QED}(Q{sup 2}) to change from its known value of {alpha}{sup -1}{sub QED}{congruent} 137.0 at Q{sup 2}=0to1 28.5{plus_minus}1.8(stat){plus_minus}0.7(syst) at Q{sup 2}=(57.77GeV/c){sup 2}. This result agrees with electroweak predictions. {copyright} {ital 1997} {ital The American Physical Society}
Multicomponent NAPL source dissolution: evaluation of mass-transfer coefficients.
Mobile, Michael A; Widdowson, Mark A; Gallagher, Daniel L
2012-09-18
Mass transfer rate coefficients were quantified by employing an inverse modeling technique to high-resolution aqueous phase concentration data observed following an experimental release of a multicomponent nonaqueous phase liquid (NAPL) at a field site. A solute transport model (SEAM3D) was employed to simulate advective-dispersive transport over time coupled to NAPL dissolution. Model calibration was demonstrated by accurately reproducing the observed breakthrough times and peak concentrations at multiple observation points, observed mass discharge at pumping wells, and the reported mass depletions for three soluble NAPL constituents. Vertically variable NAPL mass transfer coefficients were derived for each constituent using an optimized numerical solute transport model, ranging from 0.082 to 2.0 day(-1) across all constituents. Constituent-specific coefficients showed a positive correlation with liquid-phase diffusion coefficients. Application of a time-varying mass transfer coefficient as NAPL mass depleted showed limited sensitivity during which over 80% of the most soluble NAPL constituent dissolved from the source. Long-term simulation results, calibrated to the experimental data and rendered in terms of mass discharge versus source mass depletion, exhibited multistage behavior.
A correlation for heat transfer coefficients in food extruders.
Levine, L; Rockwood, J
1986-06-01
A dimensionless correlation of heat transfer coefficient for heat flow between the extruder barrel wall and extrudate is presented. The standard error of estimate of the correlation is 12.4%. The correlation is useful for the design and scale-up of food extruders and the design of associated temperature control systems.
Dissociation and Mass Transfer Coefficients for Ammonia Volatilization Models
Technology Transfer Automated Retrieval System (TEKTRAN)
Process-based models are being used to predict ammonia emissions from manure sources, but their accuracy has not been fully evaluated for cattle manure. Laboratory trials were conducted to measure the dissociation and mass transfer coefficients for ammonia volatilization from media of buffered ammon...
Heat-transfer coefficients in agitated vessels. Sensible heat models
Kumpinsky, E.
1995-12-01
Transient models for sensible heat were developed to assess the thermal performance of agitated vessels with coils and jackets. Performance is quantified with the computation of heat-transfer coefficients by introducing vessel heating and cooling data into model equations. Of the two model categories studied, differential and macroscopic, the latter is preferred due to mathematical simplicity and lower sensitivity to experimental data variability.
Momentum transfer at the interface between a porous medium and a pure fluid
NASA Astrophysics Data System (ADS)
Hu, Howard; Zhang, Songpeng
2015-11-01
We examine the flow parallel to the interface between a porous medium and a liquid, focusing on the boundary conditions at the interface. When Darcy's law is used to describe the momentum transport in the porous layer, the classic Beavers-Joseph condition relates the shear rate and the slip velocity at the interface with a slip parameter that depends on the structure of the porous surface. When the Brinkman equation is used, the averaged velocity is continuous at the interface, however the fluid shear stress across the interface commonly experiences a jump. This shear stress jump can be expressed in terms of the slip velocity at the interface divided by a length characterized by the square root of the permeability, and a dimensionless stress jump coefficient. In this work, we study the momentum transfer from the clear fluid onto the solid structure at the interface, and proposed a stress partition parameter that characterizes the stress transfer from the clear fluid to the fluid (and solid) phase of the porous medium. Simple models are developed to formulate this stress partition parameter for porous media that are brush-like, long fibers, and random, respectively. Our model predictions are compared with numerical and experimental results in the literature.
NASA Astrophysics Data System (ADS)
Ahmad, Muhammad Raza; Jamil, Yasir; Qaiser Zakaria, M.; Hussain, Tousif; Ahmad, Riaz
2015-07-01
We introduce for the first time the novel idea of manipulating the momentum coupling coefficient using plasma confinement and shock wave reflection from the cavity walls. The plasma was confined using cylindrical geometries of various cavity aspect ratios to manipulate the momentum coupling coefficient (C m ). The Nd: YAG laser (532 nm, 5 ns pulse duration) was focused on the ferrite sample surface to produce plasma in a region surrounded by cylindrical cavity walls. The multiple reflections of the shockwaves from the cavity walls confined the laser-induced plasma to the central region of the cavity that subsequently resulted in a significant enhancement of the momentum coupling coefficient values. The plasma shielding effect has also been observed for particular values of laser fluencies and cavity aspect ratios. Compared with the direct ablation, the confined ablation provides an effective way to obtain high C m values.
CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Determination of the heat transfer coefficients in porous media
Kim, L.V.
1994-06-01
The process of transpiration cooling is considered. Methods are suggested for estimating the volumetric coefficient of heat transfer with the use of a two-temperature model and the surface heat transfer coefficient at entry into a porous wall. The development of new technology under conditions of increasing heat loads puts the search for effective methods of heat transfer enhancement in the forefront of theoretical investigations. One of the promising trends in the solution of this problem is the use of porous materials (PM) in the elements of power units. For thermal protection against convective or radiative heat fluxes, the method of transpiration cooling is successfully used. The mechanism operative in the thermal protection involves the injection of a coolant through a porous medium to produce a screen over the contour of a body in a flow for removing heat energy from the skeleton of the porous material.
Heat transfer coefficients for staggered arrays of short pin fins
NASA Astrophysics Data System (ADS)
Vanfossen, G. J.
Short pin fins are often used to increase that heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).
Heat transfer coefficients for staggered arrays of short pin fins
NASA Astrophysics Data System (ADS)
Vanfossen, G. J.
1981-03-01
Short pin fins are often used to increase the heat transfer to the coolant in the trailing edge of a turbine blade. Due primarily to limits of casting technology, it is not possible to manufacture pins of optimum length for heat transfer purposes in the trailing edge region. In many cases the pins are so short that they actually decrease the total heat transfer surface area compared to a plain wall. A heat transfer data base for these short pins is not available in the literature. Heat transfer coefficients on pin and endwall surfaces were measured for several staggered arrays of short pin fins. The measured Nusselt numbers when plotted versus Reynolds numbers were found to fall on a single curve for all surfaces tested. The heat transfer coefficients for the short pin fins (length to diameter ratios of 1/2 and 2) were found to be about a factor of two lower than data from the literature for longer pin arrays (length to diameter ratios of about 8).
Lee, J. P.; Wright, J. C.; Bonoli, P. T.; Parker, R. R.; Catto, P. J.; Podpaly, Y. A.; Rice, J. E.; Reinke, M. L.
2011-12-23
Significant ion toroidal rotation (50km/s) has been measured by X-Ray spectroscopy for impurities in Alcator C-Mod during lower hybrid (LH) RF power injection. We investigate the relation between the computed toroidal momentum input from LH waves and the measured INITIAL change of ion toroidal rotation when the LH power is turned on. The relation may depend on the plasma current and magnetic configuration. Because of the fast build up time of the electron quasilinear plateau (<1 millisecond), the electron distribution function rapidly reaches steady state in which the electrons transfer momentum to the ions. The LH wave momentum input is computed from the self consistent steady state electron distribution function and a bounce-averaged quasilinear diffusion coefficient that are obtained by iterating a full wave code (TORLH) with a Fokker Plank code (CQL3D)
Acoustic orbital angular momentum transfer to matter by chiral scattering
NASA Astrophysics Data System (ADS)
Wunenburger, Régis; Israel Vazquez Lozano, Juan; Brasselet, Etienne
2015-10-01
We report on orbital angular momentum exchange between sound and matter mediated by a non-dissipative chiral scattering process. An experimental demonstration is made possible by irradiating a three-dimensional printed, spiral-shaped chiral object with an incident ultrasonic beam carrying zero orbital angular momentum. Chiral refraction is shown to impart a nonzero orbital angular momentum to the scattered field and to rotate the object. This result constitutes a proof of concept of a novel kind of acoustic angular manipulation of matter.
Bell, J H; Hand, L A
2005-04-21
The growth rate of a crystal in a supersaturated solution is limited by both reaction kinetics and the local concentration of solute. If the local mass transfer coefficient is too low, concentration of solute at the crystal-solution interface will drop below saturation, leading to a defect in the growing crystal. Here, mass transfer coefficients are calculated for a rotating crystal growing in a supersaturated solution of potassium diphosphate (KDP) in water. Since mass transfer is difficult to measure directly, the heat transfer coefficient of a scale model crystal in water is measured using temperature-sensitive paint (TSP). To the authors' knowledge this is the first use of TSP to measure temperatures in water. The corresponding mass transfer coefficient is then calculated using the Chilton- Colburn analogy. Measurements were made for three crystal sizes at two running conditions each. Running conditions include periodic reversals of rotation direction. Heat transfer coefficients were found to vary significantly both across the crystal faces and over the course of a rotation cycle, but not from one face to another. Mean heat transfer coefficients increased with both crystal size and rotation rate. Computed mass transfer coefficients were broadly in line with expectations from the full-scale crystal growth experiments. Additional experiments show that continuous rotation of the crystal results in about a 30% lower heat transfer compared to rotation with periodic reversals. The continuous rotation case also shows a periodic variation in heat transfer coefficient of about 15%, with a period about 1/20th of the rotation rate.
NASA Technical Reports Server (NTRS)
Rigby, D. L.; Vanfossen, G. J.
1992-01-01
A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.
Effect of particle momentum transfer on an oblique-shock-wave/laminar-boundary-layer interaction
NASA Astrophysics Data System (ADS)
Teh, E.-J.; Johansen, C. T.
2016-11-01
Numerical simulations of solid particles seeded into a supersonic flow containing an oblique shock wave reflection were performed. The momentum transfer mechanism between solid and gas phases in the shock-wave/boundary-layer interaction was studied by varying the particle size and mass loading. It was discovered that solid particles were capable of significant modulation of the flow field, including suppression of flow separation. The particle size controlled the rate of momentum transfer while the particle mass loading controlled the magnitude of momentum transfer. The seeding of micro- and nano-sized particles upstream of a supersonic/hypersonic air-breathing propulsion system is proposed as a flow control concept.
NASA Astrophysics Data System (ADS)
Lim, William W.; Suaning, Gregg J.; McKenzie, David R.
2016-09-01
The tangential momentum accommodation coefficient (TMAC) influences the rate of pressure driven flow of a gas in a channel. The manner in which TMAC depends on the molecular mass is of importance as it influences the extent to which gas flow rates are affected by their mass, but there are conflicting opinions in the literature concerning the extent and even the sign of this dependence. We simulate the flow of the noble gases He, Ne, Ar, Kr, and Xe using molecular dynamics with Lennard-Jones potentials. The interaction with the wall is made realistic by simulating five layers of mobile atoms and allowing for adsorbed gas on the wall. With increasing mass of the gas, the TMAC exhibits asymptotic behaviour in approaching the value assumed to apply for an entrapped atom. Either increasing or decreasing TMAC with respect to an increasing molecular mass is produced, depending on the assumed TMAC of an entrapped atom. This resolves a conflict in the literature, where both increasing and decreasing trends are observed with mass.
Saponification reaction system: a detailed mass transfer coefficient determination.
Pečar, Darja; Goršek, Andreja
2015-01-01
The saponification of an aromatic ester with an aqueous sodium hydroxide was studied within a heterogeneous reaction medium in order to determine the overall kinetics of the selected system. The extended thermo-kinetic model was developed compared to the previously used simple one. The reaction rate within a heterogeneous liquid-liquid system incorporates a chemical kinetics term as well as mass transfer between both phases. Chemical rate constant was obtained from experiments within a homogeneous medium, whilst the mass-transfer coefficient was determined separately. The measured thermal profiles were then the bases for determining the overall reaction-rate. This study presents the development of an extended kinetic model for considering mass transfer regarding the saponification of ethyl benzoate with sodium hydroxide within a heterogeneous reaction medium. The time-dependences are presented for the mass transfer coefficient and the interfacial areas at different heterogeneous stages and temperatures. The results indicated an important role of reliable kinetic model, as significant difference in k(L)a product was obtained with extended and simple approach.
Hancox, Cindy I; Doret, S Charles; Hummon, Matthew T; Krems, Roman V; Doyle, John M
2005-01-14
The Zeeman relaxation rate in cold collisions of Ti(3d(2)4s(2) 3F2) with He is measured. We find that collisional transfer of angular momentum is dramatically suppressed due to the presence of the filled 4s(2) shell. The degree of electronic interaction anisotropy, which is responsible for Zeeman relaxation, is estimated to be about 200 times smaller in the Ti-He complex than in He complexes with typical non-S-state atoms.
Transfer of orbital angular momentum through sub-wavelength waveguides.
Wang, Yanqin; Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Huang, Cheng; Pan, Wenbo; Zhao, Bo; Cui, Jianhua; Luo, Xiangang
2015-02-01
Data capacity of optical communication is achieving its limit owing to the non-linear effect of optical fiber. As an effective alternative, light carrying orbital angular momentum can greatly increase the capacity for its unprecedented degree of freedom. We demonstrate the propagation of orbital angular momentum with topological charge of 1 and 2 in plasmonic circular waveguide with sub-wavelength diameter with little propagation loss of 2.73 dB/μm, which has never been observed in optical fibers with sub-wavelength diameter. We also confirm that lights carrying orbital angular momentum can be maintained in sharp bended sub-wavelength waveguide. This plasmonic waveguide may serve as a key component in on-chip systems involving OAM.
Spin absorption, windmill, and magneto-optic effects in optical angular momentum transfer
Normanno, Davide; Capitanio, Marco; Pavone, Francesco Saverio
2004-11-01
Laser beams exert torque on microparticles through very different physical mechanisms. In this paper, optical angular momentum transferred by laser light to a trapped absorbing superparamagnetic microsphere has been studied, distinguishing between different contributions. We have found the main contribution to the torque arising from the transfer of the spin angular momentum carried by absorbed laser light. Detailed polarization status contribution of the laser light to the momentum transfer has been then analyzed. A general method to separate and quantify contributions to the optical angular momentum transferred has been developed. We have thus quantified contributions due to radiation pressure, through an effect similar to the wind on a windmill, and contributions arising from magneto-optic effects.
A local collision probability approximation for predicting momentum transfer cross sections.
Bleiholder, Christian
2015-10-21
The local collision probability approximation (LCPA) method is introduced to compute molecular momentum transfer cross sections for comparison to ion mobility experiments. The LCPA replaces the (non-local) scattering trajectory used in the trajectory method to describe the collision process by a (local) collision probability function. This momentum transfer probability is computed using the exact same analyte-buffer interaction potential as used in the trajectory method. Subsequently, the momentum transfer cross section ΩLCPA(T) is calculated in a projection-type manner (corrected for shape effects through a shape factor). Benchmark calculations on a set of 208 carbon clusters with a range of molecular size and degree of concavity demonstrate that LCPA and trajectory calculations agree closely with one another. The results discussed here indicate that the LCPA is suitable to efficiently calculate momentum transfer cross sections for use in ion mobility spectrometry in conjunction with different buffer gases.
NASA Technical Reports Server (NTRS)
Khan, F.; Townsend, L. W.; Tripathi, R. K.; Cucinotta, F. A.
1993-01-01
A microscopic optical model formalism for estimating momentum transfer in intermediate energy heavy ion collisions predicts universal behavior of the transverse component. In particular, for symmetric systems heavier than niobium, it appears that values of P(perpendicular)/A are independent of the mass and charge of the colliding nuclei and vary only with impact parameter and incident beam energy. This suggests that momentum transfer per nucleon saturates to some limiting value with increasing mass.
On angular momentum transfer in binary systems. [stellar orbital period change
NASA Technical Reports Server (NTRS)
Wilson, R. E.; Stothers, R.
1975-01-01
The maximum limit for the conversion of orbital angular momentum into rotational angular momentum of the mass-gaining component in a close binary system is derived. It is shown that this conversion process does not seriously affect the rate of orbital period change and can be neglected in computing the mass transfer rate. Integration of this limit over the entire accretion process results in a value for the maximum accumulated rotational angular momentum that is 3 to 4 times larger than that implied by the observed underluminosity of stars in such systems as Mu(1) Sco, V Pup, SX Aur, and V356 Sgr. It is suggested that shell stars and emission-line stars in binary systems may be produced when the core angular momentum is transferred into an envelope having a rotational angular momentum close to the maximum limit.-
Beye, M; Hennies, F; Deppe, M; Suljoti, E; Nagasono, M; Wurth, W; Föhlisch, A
2009-12-01
Experimentally, we observe angular-momentum transfer in electron-phonon scattering, although it is commonly agreed that phonons transfer mostly linear momentum. Therefore, the incorporation of angular momentum to describe phonons is necessary already for simple semiconductors and bears significant implications for the formation of new quasiparticles in correlated functional materials. Separation of linear and angular-momentum transfer in electron-phonon scattering is achieved by highly selective excitations on the femtosecond time scale of resonant inelastic x-ray scattering.
NASA Technical Reports Server (NTRS)
Khandelwal, Govind S.; Khan, Ferdous
1989-01-01
An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.
Transfer coefficients of radionuclides secreted in milk of dairy cows
Sam, D.; Williams, W.F.; Rockmann, D.D.; Allen, J.T.
1980-09-01
This study simulated experimentally the transfer of radionuclides to milk of dairy cows on a worst-case situation using various radionuclides known to emanate from nuclear power stations and which have been detected on particulates. Two lactating Holstein cows were administered orally one gelatin capsule containing 10 radionuclides in water-soluble form per day for 14 consecutive days. Milk samples were collected and aliquots analyzed in a germanium lithium-drifted detector coupled to a 2048-multichannel gamma-ray analyzer to measure small amounts of complex mixtures of radionuclides. The transfer coefficients of the radionuclides were calculated when their secretion in milk reached or approached a plateau of concentration. The radionuclides and their transfer coefficients to milk were: chromium/sup 51/ less than 0.01%; manganese/sup 54/ 0.033 +- 0.005%; cobalt/sup 60/ 0.01 +- 0.002%; iron/sup 59/ 0.0048 +- 0.002%; zinc/sup 65/ 0.31 +- 0.07%; selenium/sup 75/ 0.29 +- 0.1%; antimony/sup 125/ 0.011 +- 0.003%; iodine/sup 131/ 0.88 +- 0.05%; and cesium/sup 137/ 0.79 +- 0.08%.
Mechanism of angular momentum transfer from microwaves to a copper ring
NASA Astrophysics Data System (ADS)
Emile, Olivier; Niemiec, Ronan; Brousseau, Christian; Emile, Janine; Mahdjoubi, Kouroch; Wei, Wenlong; Thide, Bo
2016-08-01
In the exchange of orbital angular momentum between an electromagnetic wave and a copper ring we examine the origin of the Angular Momentum. We then investigate the transfer mechanism between the microwave and the object, and compare it with other mechanisms. We evidence a transfer mechanism based on the reflection of the electromagnetic field on the copper ring. In particular, at a microscopic scale, we show that the electromagnetic field induces alternative electric currents in the ring, with a small drift. Although little, the resistivity of copper leads to a force that rotates the ring. The estimation of the torque, which is of the order of 10-8 Nm, is in good agreement with the experimental measurements. We also show that the transfer of electromagnetic orbital angular momentum to objects could be a way to measure the orbital angular momentum carried by electromagnetic fields, and we discuss possible applications.
Angular momentum transfer in low velocity oblique impacts - Implications for asteroids
NASA Technical Reports Server (NTRS)
Yanagisawa, Masahisa; Eluszkiewicz, Janusz; Ahrens, Thomas J.
1991-01-01
An experimental study has been conducted for the low-velocity oblique impact efficiency of angular momentum transfer, which is defined as that fraction of incident angular momentum that is transferred to the rotation of a target. The results obtained suggest that more energetic impacts are able to transfer angular momentum more efficiently. In the cases of ricochetted projectiles, the fraction of angular momentum carried off by the ejecta was noted to be less than 30 percent. It is suggested that, if asteroid spin rates are due to mutual noncatastrophic collisions and the taxonomic classes are indicative of bulk properties, the differences between corresponding spin rates will be smaller than expected from a consideration of relative strength and density alone.
Improved transfer matrix methods for calculating quantum transmission coefficient.
Biswas, Debabrata; Kumar, Vishal
2014-07-01
Methods for calculating the transmission coefficient are proposed, all of which arise from improved nonreflecting WKB boundary conditions at the edge of the computational domain in one-dimensional geometries. In the first, the Schrödinger equation is solved numerically, while the second is a transfer matrix (TM) algorithm where the potential is approximated by steps, but with the first and last matrix modified to reflect the new boundary condition. Both methods give excellent results with first-order WKB boundary conditions. The third uses the transfer matrix method with third-order WKB boundary conditions. For the parabolic potential, the average error for the modified third-order TM method reduces by factor of 4100 over the unmodified TM method.
NASA Astrophysics Data System (ADS)
Moulin, A.; Wirth, A.
2016-09-01
We consider air-sea interaction at the (atmospheric) synoptic and the mesoscale due to momentum transfer only. Two superposed one-layer fine-resolution shallow-water models are numerically integrated, where the upper layer represents the atmosphere and the lower layer the ocean. The frictional force between the two layers is implemented using a quadratic drag law and experiments with different values of the surface drag coefficient are performed. The actual energy loss of the atmosphere and the energy gain by the ocean, due to the interfacial shear, is determined and compared to estimates based on average speeds. The correlation between the vorticity in the atmosphere and the ocean is determined. Results differ from previous investigations where the exchange of momentum was considered at basin scale. It is shown that the ocean has a passive role, absorbing kinetic energy at nearly all times and locations, results showing that the energy input to the ocean increases almost quadratically with the value of the drag coefficient. Due to the feeble velocities in the ocean, the energy transfer depends only weakly on the oceanic velocity. The ocean dynamics leave nevertheless their imprint on atmospheric dynamics, leading to a quenched disordered state of the atmosphere-ocean system for the highest value of the drag coefficient considered. This finding questions the ergodic hypothesis for the idealized configuration studied here. The ergodic hypothesis is at the basis of a large number of experimental, observational and numerical results in ocean, atmosphere and climate dynamics.
Lateral transfer of streamwise momentum caused by a roughness transition across a shallow channel
NASA Astrophysics Data System (ADS)
Vermaas, D. A.; Uijttewaal, W. S. J.; Hoitink, A. J. F.
2011-02-01
Research on lateral exchange of streamwise momentum between parallel flows in open channels has mainly been focused on compound channels composed of a main channel and a floodplain, on mixing layer development downstream of river confluences, and on partially vegetated channels. This study aims to establish the mechanisms responsible for streamwise momentum exchange between concurrent parallel flows subject to different bed roughnesses. The contribution of momentum exchange of each mechanism is determined on the basis of flume experiments. For an initially uniform flow that experiences a bed with two parallel lanes of different roughnesses, three mechanisms for exchange of streamwise momentum can be distinguished: cross-channel secondary circulations, turbulent mixing resulting from vortices acting in the horizontal plane, and mass transfer from the decelerating flow over the rough-bottomed lane to the accelerating flow in the parallel smooth-bottomed lane. The mass transfer and associated momentum transfer across the channel cause a gain in longitudinal momentum. The secondary circulations are driven by turbulence anisotropy and feature a main cell that extends over the full water depth, which is centered at the smooth side of the smooth-to-rough transition. The gain of momentum corresponding to the mass transfer in the developing reach is on the same order of magnitude as the momentum exchange by turbulent mixing and of that by secondary circulations in the most downstream position, where the flow is nearly developed. The contribution of the secondary circulations to the exchange of streamwise momentum between the parallel flows gradually becomes dominant over the contribution of turbulent mixing when depth increases.
Ratios of transfer coefficients for radiocesium transport in ruminants
Assimakopoulos, P.A.; Ioannides, K.G.; Karamanis, D.
1995-09-01
A corollary of the multiple-compartment model for the transport of trace elements through animals was tested for cows, goats, and sheep. According to this corollary, for a given body {open_quotes}compartment{close_quotes} k of the animal (soft tissue, lung, liver, etc.), the ratio a(k)=f(k)/f(blood) of the transfer coefficients f, should exhibit similar values for physiologically similar animals. In order to verify this prediction, two experiments were performed at the Agricultural Research Station of Ioannina and at the facilities of Ria Pripyat in Pripyat, Ukranine. Eight animals in the first experiment and eighteen in the second were housed in individual pens and were artificially contaminated with a constant daily dose of radiocesium until equilibrium was reached. the animals were then sacrificed and transfer coefficients f(k) to twelve body {open_quotes}compartments{close_quotes} k were measured. These data were used to calculate the ratios a(k). The results were in accordance with predictions of the model and average values of a(k) were extracted for ruminants. It is concluded that these values may be employed for the prediction of animal contamination in any body compartment through the measurement of blood samples. 7 refs., 8 tabs.
Momentum: The 2005 Report on University Research and Knowledge Transfer
ERIC Educational Resources Information Center
Association of Universities and Colleges of Canada, 2005
2005-01-01
This 2005 report on university research and knowledge transfer report by the Association of Universities and Colleges of Canada (AUCC) on the collective efforts of universities with respect to research and knowledge transfer is the first periodic public report by the AUCC on the collective efforts of universities with respect to research and…
NASA Technical Reports Server (NTRS)
Ameri, Ali A.; Rigby, David L.; Steinthorsson, Erlendur; Heidmann, James D.; Fabian, John C.
2008-01-01
The effect of the upstream wake on the blade heat transfer has been numerically examined. The geometry and the flow conditions of the first stage turbine blade of GE s E3 engine with a tip clearance equal to 2 percent of the span was utilized. Based on numerical calculations of the vane, a set of wake boundary conditions were approximated, which were subsequently imposed upon the downstream blade. This set consisted of the momentum and thermal wakes as well as the variation in modeled turbulence quantities of turbulence intensity and the length scale. Using a one-blade periodic domain, the distributions of unsteady heat transfer rate on the turbine blade and its tip, as affected by the wake, were determined. Such heat transfer coefficient distribution was computed using the wall heat flux and the adiabatic wall temperature to desensitize the heat transfer coefficient to the wall temperature. For the determination of the wall heat flux and the adiabatic wall temperatures, two sets of computations were required. The results were used in a phase-locked manner to compute the unsteady or steady heat transfer coefficients. It has been found that the unsteady wake has some effect on the distribution of the time averaged heat transfer coefficient on the blade and that this distribution is different from the distribution that is obtainable from a steady computation. This difference was found to be as large as 20 percent of the average heat transfer on the blade surface. On the tip surface, this difference is comparatively smaller and can be as large as four percent of the average.
ERIC Educational Resources Information Center
Doyle, William R.
2011-01-01
Several studies have reported a positive impact of increased academic momentum on transfer from community colleges to four-year institutions. This result may be due to selection bias. Using data from the Beginning Postsecondary Students dataset, I test whether taking more credits in the first year has an impact on transfer rates among bachelor's…
Dudley, Peter N; Bonazza, Riccardo; Porter, Warren P
2013-07-01
Animal momentum and heat transfer analysis has historically used direct animal measurements or approximations to calculate drag and heat transfer coefficients. Research can now use modern 3D rendering and computational fluid dynamics software to simulate animal-fluid interactions. Key questions are the level of agreement between simulations and experiments and how superior they are to classical approximations. In this paper we compared experimental and simulated heat transfer and drag calculations on a scale model solid aluminum African elephant casting. We found good agreement between experimental and simulated data and large differences from classical approximations. We used the simulation results to calculate coefficients for heat transfer and drag of the elephant geometry.
The importance of momentum transfer in collision-induced breakups in low Earth orbit
NASA Technical Reports Server (NTRS)
Reynolds, Robert C.; Lillie, Brian J.
1991-01-01
Although there is adequate information on larger objects in low Earth orbit, specifically those objects larger than about 10 cm in diameter, there is little direct information on objects from this size down to 1 mm. Yet, this is the sized regime where objects acting as projectiles represent the ability to seriously damage or destroy a functioning spacecraft if they collide with it. The observed consequences of known collisional breakups in orbit indicates no significant momentum transfer in the resulting debris cloud. The position taken in this paper is that this is an observational selection effect: what is seen in these events is an explosion-like breakup of the target structure arising from shock waves introduced into the structure by the collision, but one that occurs significantly after the collision processes are completed; the collision cloud, in which there is momentum transfer, consists of small, unobserved fragments. Preliminary computations of the contribution of one known collisional breakup, Solwind at 500 km in 1985, and Cosmos 1275 in 1981, assume no momentum transfer on breakup and indicate that these two events are the dominant contributors to the current millimeter and centimeter population. A different story would emerge if momentum transfer was taken into account. The topics covered include: (1) observation of on-orbit collisional breakups; (2) a model for momentum transfer; and (3) velocity space representation of breakup clouds.
Design and development of an optical scanning mechanism (OSMA) with minimum momentum transfer
NASA Technical Reports Server (NTRS)
Sainz, L. B. F.; Herrera, E.; Bajo, J. M.; Mallard, H. J.
1981-01-01
The development model for an optical scanning mechanism assembly is described as being two equal inertial masses which collide with each other to minimize the momentum transfer to the satellite and other mounted instruments. The design criteria for the mirror, the compensating inertia structure and other components are given. The details of the design are discussed and related test results are presented, which show the validity of the design concept for momentum compensation.
Globalism of commutation relation and mechanism of momentum transfer in the Aharonov-Bohm effect
NASA Astrophysics Data System (ADS)
Li, Chun-Fang
1997-09-01
After examining the domain of an operator that has classical analog, which is shown to be the whole spatial space, the concept of globalism of a commutation relation is introduced through analyzing the quantization of the kinetic angular momentum in the Aharonov-Bohm effect. Its applications are also given to explain in an elegant and precise way, the mechanism of momentum transfer in the Aharonov-Bohm scattering and to study the probability distribution of the momentum for a particle in a one-dimensional infinitely deep square potential well.
Energy and angular momentum transfer in binary galaxies
NASA Technical Reports Server (NTRS)
Namboodiri, P. M. S.; Kochhar, R. K.
1990-01-01
The authors numerically studied tidal effects of a massive perturber on a satellite galaxy. The model consists of a spherical satellite galaxy and a point mass perturber and the encounter is non-penetrating. A wide range of density ratios and eccentricities of the relative orbits have been considered. The disruption of the satellite galaxy has been observed when the numerical value of the fractional change in the energy is greater than two. The changes in the energy and angular momentum show smooth variation in the case of unbound orbits and irregular variation in the bound orbit cases. It is shown that for a constant pericentral distance, increasing the density ratio decreases the tidal effects; and for a given density ratio an increase in the eccentricity decreases the tidal effects.
New Precision Measurements of Deuteron Structure Function A(Q) at Low Momentum Transfer
Lee, Byungwuek
2009-08-01
Differences between previous measurements of low momentum transfer electron-deuteron elastic scattering prevent a clean determination of even the sign of the leading low momentum transfer relativistic corrections, or of the convergence of chiral perturbation theory. We have attempted to resolve this issue with a new high-precision measurement in Jefferson Lab Hall A. Elastic electron scattering was measured on targets of tantalum, carbon, hydrogen, and deuterium at beam energy of 685 MeV. The four-momentum transfer covered the range of 0.15 - 0.7 GeV. The experiment included a new beam calorimeter, to better calibrate the low beam currents used in the experiment, and new collimators to better define the spectrometer solid angles. We obtained cross sections of deuteron as ratios to hydrogen cross sections. A fit function of B(Q) world data is newly made and subtracted from cross sections to find values of A(Q).
Proton Transfer Rate Coefficient Measurements of Selected Volatile Organic Molecules
NASA Astrophysics Data System (ADS)
Brooke, G.; Popović, S.; Vušković, L.
2002-05-01
We have developed an apparatus based on the selected ion flow tube (SIFT)footnote D. Smith and N.G. Adams, Ads. At. Mol. Phys. 24, 1 (1987). that allows the study of proton transfer between various positive ions and volatile organic molecules. Reactions in the flow tube occur at pressures of approximately 300 mTorr, eliminating the requirement of thermal beam production. The proton donor molecule H_3O^+ has been produced using several types of electrical discharges in water vapor, such as a capacitively coupled RF discharge and a DC hollow cathode discharge. Presently we are developing an Asmussen-type microwave cavity discharge using the components of a standard microwave oven that has the advantages of simple design and operation, as well as low cost. We will be presenting the results of the microwave cavity ion source to produce H_3O^+, and compare it to the other studied sources. In addition, we will be presenting a preliminary measurement of the proton transfer rate coefficient in the reaction of H_3O^+ with acetone and methanol.
Simultaneous transfer of linear and orbital angular momentum to multiple low-index particles
NASA Astrophysics Data System (ADS)
Daria, Vincent Ricardo; Go, Mary Ann; Bachor, Hans-A.
2011-04-01
We demonstrate simultaneous transfer of linear and orbital angular momentum (OAM) to hollow glass microbeads using a dynamic array of optical vortices. Previous reports have shown that the transfer of OAM is due to light scattering which creates a tangential force on a particle and causes it to move on a circular orbit around a vortex. In this paper we describe a case with reduced frictional force, as the low-index particle is pinned to the wall of the sample cell. This results in a more efficient transfer of OAM, which sets a hollow microbead into orbital motion around the optical vortex. We show that the localized OAM carried by each vortex in the array can be independently transferred to one microbead trapped per vortex. Finally, we present novel demonstrations showing simultaneous transfer of both orbital angular and linear momentum to multiple microbeads.
Acoustic radiation force expressed using complex phase shifts and momentum-transfer cross sections.
Zhang, Likun; Marston, Philip L
2016-08-01
Acoustic radiation force is expressed using complex phase shifts of partial wave scattering functions and the momentum-transfer cross section, herein incorporated into acoustics from quantum mechanisms. Imaginary parts of the phase shifts represent dissipation in the object and/or in the boundary layer adjacent to the object. The formula simplifies the force as summation of functions of complex phase shifts of adjacent partial waves involving differences of real parts and sums of imaginary parts, providing an efficient way of exploring the force parameter-space. The formula for the force is proportional to a generalized momentum-transfer cross section for plane waves and no dissipation. PMID:27586777
Unusual angular momentum transfer in electron-impact excitation of neon
NASA Astrophysics Data System (ADS)
Hargreaves, L. R.; Campbell, C.; Khakoo, M. A.; Zatsarinny, Oleg; Bartschat, Klaus
2012-05-01
We report results from a joint experimental and theoretical study of the angular momentum transfer in electron-impact excitation of the (2p6)1S0→(2p53s)1P1 resonance transition in Ne. Both the measured and calculated data show the circular light polarization P3 to be positive for an incident energy of 25 eV at scattering angles below 40∘. This observation implies a negative angular momentum transfer L⊥, which is the opposite sign of orientation expected from a well-known propensity rule for S→P excitation at small scattering angles.
Angular momentum transfer by gravitational torques and the evolution of binary protostars
NASA Technical Reports Server (NTRS)
Boss, A. P.
1984-01-01
The efficiency of angular momentum transport by gravitational torques is investigated semianalytically for two idealized models. The first model, a rotating ellipsoid embedded within another ellipsoid, is compared with numerical results for the fission instability of a radpidly-rotating polytrope. The fission instability is aborted by the rapid transfer of angular momentum outward by gravitational torques. The global rates of angular momentum transfer by gravitational torques in rotating gas clouds such as the presolar nebula are shown to be comparable to the rates assumed to be appropriate for transfer by turbulent stresses. The second model is a binary system embedded within a rotating ellipsoid. The binary orbital angular momentum decreases significantly when the phase angle with the ellipsoid is constant; the binary separation may then decrease by a factor of 100 within about an orbital period. For a variable phase angle, little secular loss of orbital angular momentum occurs. Binaries which form in the isothermal regime of the theory of hierarchical fragmentation will not undergo orbital decay, whereas very close binaries composed of nonisothermal fragments may decay and merge into single objects.
NASA Astrophysics Data System (ADS)
Zanino, R.; Giors, S.
2008-03-01
Computational Fluid Dynamics (CFD) techniques have been proposed and applied in a series of papers to analyze cable-in-conduit conductors (CICC) for the International Thermonuclear Experimental Reactor (ITER). Previous work on the pressure drop in the central channel of ITER CICC is extended here to the problem of combined heat and momentum transfer. The CFD model, solved by the FLUENT commercial code, is first validated against 2D and 3D data from compact heat exchangers, showing good agreement. The Colburn analogy between the friction factor f and the Nusselt number Nu is not verified in the considered 2D geometries, as shown by both experiment and simulation. The validated CFD model is finally applied to the 3D analysis of central channel-like geometries relevant for ITER CICC. It is shown that the heat transfer coefficient on the central channel side stays relatively close to the smooth-pipe (Dittus-Boelter) value.
NASA Astrophysics Data System (ADS)
Rodríguez-Abudo, S.; Foster, D. L.
2014-12-01
Observations of the nearbed velocity field over a rippled sediment bed under asymmetric wave forcing conditions were collected using a submersible particle image velocimetry (PIV) system. To examine the role of bed form-induced dynamics in the total momentum transfer, a double-averaging technique was implemented on the two-dimensional time-dependent velocity field by means of the full momentum equation. This approach allows for direct determination of the bed form-induced stresses, i.e., stresses that arise due to the presence of bed forms, which are zero in flat bed conditions. This analysis suggests that bed form-induced stresses are closely related to the presence of coherent motions and may be partitioned from the turbulent stresses. Inferences of stress provided by a bed load transport model suggest that total momentum transfer obtained from the double-averaging technique is capable of reproducing bed form mobilization. Comparisons between the total momentum transfer and stress estimates obtained from local velocity profiles show significant variability across the ripple and suggest that an array of sensors is necessary to reproduce bed form evolution. The imbalance of momentum obtained by resolving the different terms constituting the near-bed momentum balance (i.e., acceleration deficit, stress gradient, and bed form-induced skin friction) provides an estimate of the bed form-induced pressure that is consistent with flow separation. This analysis reveals three regions in the flow: the free-stream, where all terms are relatively balanced; the near-bed, where momentum imbalance is significant during flow weakening; and below ripple crests, where bed form-induced pressure is the leading order mechanism.
Jovanovic, J.V.; Vrhovac, S. B.
2004-12-01
In this paper we have presented two applications of Momentum Transfer Theory (MTT), which were both aimed at obtaining reliable data for modeling of non-equilibrium plasma. Transport properties of ion swarms in presence of Resonant Charge Transfer (RCT) collisions are studied using Momentum Transfer Theory (MTT). Using the developed MTT we tested a previously available anisotropic set of cross-sections for Ar++Ar collisions bay making the comparisons with the available data for the transverse diffusion coefficient. We also developed an anisotropic set of Ne++Ne integral cross-sections based on the available data for mobility, longitudinal and transverse diffusion. Anisotropic sets of cross-sections are needed for Monte Carlo simulations of ion transport and plasma models. Application of Blanc's Law for drift velocities of electrons and ions in gas mixtures at arbitrary reduced electric field strengths E/n0 was studied theoretically and by numerical examples. Corrections for Blanc's Law that include effects of inelastic collisions were derived. In addition we have derived the common mean energy procedure that was proposed by Chiflikian in a general case both for ions and electrons. Both corrected common E/n0 and common mean energy procedures provide excellent results even for electrons at moderate E/n0 where application of Blanc's Law was regarded as impossible. In mixtures of two gases that have negative differential conductivity (NDC) even when neither of the two pure gases show NDC the Blanc's Law procedure was able to give excellent predictions.
Experimentally Determined Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments
NASA Technical Reports Server (NTRS)
Bue, Grant; Watts, Carly; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vonau, Walt; Vogel, Matt; Conger, Bruce
2015-01-01
A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flowrate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.
NASA Astrophysics Data System (ADS)
Diallo, S. O.; Lin, J. Y. Y.; Abernathy, D. L.; Azuah, R. T.
2016-11-01
Inelastic neutron scattering at high momentum transfers (i.e. Q ≥ 20 A ˚), commonly known as deep inelastic neutron scattering (DINS), provides direct observation of the momentum distribution of light atoms, making it a powerful probe for studying single-particle motions in liquids and solids. The quantitative analysis of DINS data requires an accurate knowledge of the instrument resolution function Ri(Q , E) at each momentum Q and energy transfer E, where the label i indicates whether the resolution was experimentally observed i = obs or simulated i=sim. Here, we describe two independent methods for determining the total resolution function Ri(Q , E) of the ARCS neutron instrument at the Spallation Neutron Source, Oak Ridge National Laboratory. The first method uses experimental data from an archetypical system (liquid 4He) studied with DINS, which are then numerically deconvoluted using its previously determined intrinsic scattering function to yield Robs(Q , E). The second approach uses accurate Monte Carlo simulations of the ARCS spectrometer, which account for all instrument contributions, coupled to a representative scattering kernel to reproduce the experimentally observed response S(Q , E). Using a delta function as scattering kernel, the simulation yields a resolution function Rsim(Q , E) with comparable lineshape and features as Robs(Q , E), but somewhat narrower due to the ideal nature of the model. Using each of these two Ri(Q , E) separately, we extract characteristic parameters of liquid 4He such as the intrinsic linewidth α2 (which sets the atomic kinetic energy < K > ∼α2) in the normal liquid and the Bose-Einstein condensate parameter n0 in the superfluid phase. The extracted α2 values agree well with previous measurements at saturated vapor pressure (SVP) as well as at elevated pressure (24 bars) within experimental precision, independent of which Ri(Q , y) is used to analyze the data. The actual observed n0 values at each Q vary little
NASA Astrophysics Data System (ADS)
Tsatsoulis, T.; Illg, C.; Haag, M.; Mueller, B. Y.; Zhang, L.; Fähnle, M.
2016-04-01
During ultrafast demagnetization after the excitation of ferromagnetic films with femtosecond laser pulses, the angular momentum of the electronic system is transferred to the lattice via electron-phonon scatterings. The actual amount of transfer is calculated for Ni and Fe by considering spin-phonon eigenmodes, which have a sharp angular momentum. Because the considered Hamiltonian is not isotropic, the total angular momentum is not conserved.
Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul
2015-09-15
External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m^{2}∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.
Miles, Robin; Havstad, Mark; LeBlanc, Mary; Golosker, Ilya; Chang, Allan; Rosso, Paul
2015-09-15
External heat transfer coefficients were measured around a surrogate Indirect inertial confinement fusion (ICF) based on the Laser Inertial Fusion Energy (LIFE) design target to validate thermal models of the LIFE target during flight through a fusion chamber. Results indicate that heat transfer coefficients for this target 25-50 W/m2∙K are consistent with theoretically derived heat transfer coefficients and valid for use in calculation of target heating during flight through a fusion chamber.
Design of experiments for measuring heat-transfer coefficients with a lumped-parameter calorimeter
NASA Technical Reports Server (NTRS)
Vanfossen, G. J., Jr.
1975-01-01
A theoretical investigation was conducted to determine optimum experimental conditions for using a lumped-parameter calorimeter to measure heat-transfer coefficients and heating rates. A mathematical model of the transient temperature response of the calorimeter was used with the measured temperature response to predict the heat-transfer coefficient and the rate of heating. A sensitivity analysis was used to determine the optimum transient experiment for simultaneously measuring the heat addition during heating and the convective heat-transfer coefficient during heating and cooling of a lumped-parameter calorimeter. Optimum experiments were also designed for measuring the convective heat-transfer coefficient during both heating and cooling and cooling only.
Energy transfer, orbital angular momentum, and discrete current in a double-ring fiber array
Alexeyev, C. N.; Volyar, A. V.; Yavorsky, M. A.
2011-12-15
We study energy transfer and orbital angular momentum of supermodes in a double-ring array of evanescently coupled monomode optical fibers. The structure of supermodes and the spectra of their propagation constants are obtained. The geometrical parameters of the array, at which the energy is mostly confined within the layers, are determined. The developed method for finding the supermodes of concentric arrays is generalized for the case of multiring arrays. The orbital angular momentum carried by a supermode of a double-ring array is calculated. The discrete lattice current is introduced. It is shown that the sum of discrete currents over the array is a conserved quantity. The connection of the total discrete current with orbital angular momentum of discrete optical vortices is made.
NASA Astrophysics Data System (ADS)
Bulgakov, Evgeny N.; Sadreev, Almas F.
2016-09-01
We consider scattering of electromagnetic plane waves by a linear periodic array of dielectric spheres. For incident waves with circular polarization with frequency tuned to the bound states with orbital angular momentum in the radiation continuum, the spin angular momentum of the incident wave transfers into the orbital angular momentum. This, in turn, gives rise to giant vortical power currents rotating around the array. Incident wave with linear polarization with frequency tuned to the Bloch bound state in the continuum induces giant laminar power currents.
The momentum transfer of incompressible turbulent separated flow due to cavities with steps
NASA Technical Reports Server (NTRS)
White, R. E.; Norton, D. J.
1977-01-01
An experimental study was conducted using a plate test bed having a turbulent boundary layer to determine the momentum transfer to the faces of step/cavity combinations on the plate. Experimental data were obtained from configurations including an isolated configuration and an array of blocks in tile patterns. A momentum transfer correlation model of pressure forces on an isolated step/cavity was developed with experimental results to relate flow and geometry parameters. Results of the experiments reveal that isolated step/cavity excrecences do not have a unique and unifying parameter group due in part to cavity depth effects and in part to width parameter scale effects. Drag predictions for tile patterns by a kinetic pressure empirical method predict experimental results well. Trends were not, however, predicted by a method of variable roughness density phenomenology.
Photoproduction of the rho^0 Meson on the Proton at Large Momentum Transfer
M. Battaglieri; E. Anciant; M. Anghinolfi; R. De Vita; E. Golovach; J. M. Laget; V. Mokeev; M. Ripani; G. Adams; M. J. Amaryan; D. S. Armstrong; B. Asavapibhop; G. Asryan; G. Audit; T. Auger; H. Avakian; S. Barrow; K. Beard; M. Bektasoglu; B. L. Berman; N. Bianchi; A. S. Biselli; S. Boiarinov; D. Branford; W. J. Briscoe; W. K. Brooks; V. D. Burkert; J. R. Calarco; G. P. Capitani; D. S. Carman; B. Carnahan; A. Cazes; C. Cetina; P. L. Cole; A. Coleman; D. Cords; P. Corvisiero; D. Crabb; H. Crannell; J. P. Cummings; E. DeSanctis; P. V. Degtyarenko; R. Demirchyan; H. Denizli; L. Dennis; K. V. Dharmawardane; K. S. Dhuga; C. Djalali; G. E. Dodge; D. Doughty; P. Dragovitsch; M. Dugger; S. Dytman; M. Eckhause; H. Egiyan; K. S. Egiyan; L. Elouadrhiri; L. Farhi; R. J. Feuerbach; J. Ficenec; T. A. Forest; A. P. Freyberger; V. Frolov; H. Funsten; S. J. Gaff; M. Gai; S. Gilad; G. P. Gilfoyle; K. L. Giovanetti; K. Griffioen; M. Guidal; M. Guillo; V. Gyurjyan; D. Hancock; J. Hardie; D. Heddle; F. W. Hersman; K. Hicks; R. S. Hicks; M. Holtrop; C. E. Hyde-Wright; M. M. Ito; K. Joo; J. H. Kelley; M. Khandaker; W. Kim; A. Klein; F. J. Klein; M. Klusman; M. Kossov; L. H. Kramer; Y. Kuang; S. E. Kuhn; D. Lawrence; M. Lucas; K. Lukashin; R. W. Major; J. J. Manak; C. Marchand; S. McAleer; J. McCarthy; J. W. C. McNabb; B. A. Mecking; M. D. Mestayer; C. A. Meyer; K. Mikhailov; R. Minehart; M. Mirazita; R. Miskimen; V. Muccifora; J. Mueller; G. S. Mutchler; J. Napolitano; S. O. Nelson; B. B. Niczyporuk; R. A. Niyazov; J. T. O'Brien; A. K. Opper; G. Peterson; S. A. Philips; N. Pivnyuk; D. Pocanic; O. Pogorelko; E. Polli; B. M. Preedom; J. W. Price; D. Protopopescu; L. M. Qin; B. A. Raue; A. R. Reolon; G. Riccardi; G. Ricco; B. G. Ritchie; F. Ronchetti; P. Rossi; D. Rowntree; P. D. Rubin; K. Sabourov; C. Salgado; M. Sanzone-Arenhovel; V. Sapunenko; R. A. Schumacher; V. S. Serov; A. Shafi; Y. G. Sharabian; J. Shaw; A. V. Skabelin; E. S. Smith; T. Smith; L. C. Smith; D. I. Sober; M. Spraker; A. Stavinsky; S. Stepanyan; P. Stoler; M. Taiuti; S. Taylor; D. J. Tedeschi; L. Todor; R. Thompson; M. F. Vineyard; A. V. Vlassov; L. B. Weinstein; A. Weisberg; H. Weller; D. P. Weygand; C. S. Whisnant; E. Wolin; M. Wood; A. Yegneswaran; J. Yun; B. Zhang; J. Zhao; Z. Zhou
2001-10-01
The differential cross section, d{sigma}/dt, for p0 meson photoproduction on the proton above the resonance region was measured up to a momentum transfer -t = 5 GeV2 using the CLAS detector at the Thomas Jefferson National Accelerator Facility. The p0 channel was extracted from the measured two charged-pion cross sections by fitting the {pi}+{pi}- and p{pi}+ invariant masses. The low momentum transfer region shows the typical diffractive pattern expected from Reggeon exchange. The flatter behavior at large -t cannot be explained solely in terms of QCD-inspired two-gluon exchange models. The data indicate that other processes, like quark interchange, are important to fully describe p photoproduction.
Heating due to momentum transfer in low-energy positronium-antiproton scattering
NASA Astrophysics Data System (ADS)
Charlton, M.; Kadyrov, A. S.; Bray, I.
2016-09-01
We investigate the consequences of unexpectedly large elastic cross sections for the scattering of low-energy antiprotons from n ≤3 positronium (Ps) on the experimental implementation of antihydrogen formation via Ps-antiproton collisions. The integrated elastic cross sections, obtained using the two-center convergent close-coupling theory, can be up to three orders of magnitude greater than their counterparts for antihydrogen formation. The differential momentum transfer cross sections, which suppress the large cross sections at forward scattering angles, show remarkably rich behavior across all scattering angles. We discuss the implications of these findings for the heating, via momentum transfer, of clouds of trapped antiprotons that are typically used for the creation of antihydrogen.
Banerjee, S.; Hassan, Y.A.
1995-09-01
Condensation in the presence of noncondensible gases plays an important role in the nuclear industry. The RELAP5/MOD3 thermal hydraulic code was used to study the ability of the code to predict this phenomenon. Two separate effects experiments were simulated using this code. These were the Massachusetts Institute of Technology`s (MIT) Pressurizer Experiment, the MIT Single Tube Experiment. A new iterative approach to calculate the interface temperature and the degraded heat transfer coefficient was developed and implemented in the RELAP5/MOD3 thermal hydraulic code. This model employs the heat transfer simultaneously. This model was found to perform much better than the reduction factor approach. The calculations using the new model were found to be in much better agreement with the experimental values.
Densification of functional plasma polymers by momentum transfer during film growth
Hegemann, Dirk; Koerner, Enrico; Blanchard, Noemi; Drabik, Martin; Guimond, Sebastien
2012-11-19
Functional plasma polymers were deposited from pure ethylene discharges and with the addition of carbon dioxide or ammonia. The incorporation of oxygen and nitrogen-containing functional groups depends on the fragmentation in the gas phase as well as on the densification during film growth. While a minimum energy per deposited carbon atom is required for cross-linking, the densification and accompanying reduction of functional group incorporation was found to scale linearly with momentum transfer through ion bombardment during film growth.
NASA Technical Reports Server (NTRS)
Hines, C. O.
1974-01-01
Presented are models of two proposed mechanisms for transferring angular momentum from ionospheric heights to the vicinity of the tropopause. The first mechanism consist of a vicious coupling of the upper atmosphere to the troposphere and the second requires changes in the reflection of planetary waves by the thermosphere. This second mechanism is very appealing because it makes use only of energy derived from the lower atmosphere itself, with solar activity directly modifying only the thermospheric reflectivity.
Momentum transfer in the one-dimensional impact of spaced plates
NASA Technical Reports Server (NTRS)
Abbott, R. D.; Bjorkman, Michael D.
1991-01-01
The two-dimensional hydrocode CSQ III was used to calculate the fraction of momentum transferred from a flyer plate to a target of two spaced plates. The effect of the vaporization phase transition, as calculated with the ANEOS analytical complete three-phase equation of state, was estimated. Application of these results to the protection of spacecraft from meteoroids and orbital debris is discussed.
Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Trajmar, S.
1982-01-01
Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.
Transfer having a coupling coefficient higher than its active material
NASA Technical Reports Server (NTRS)
Lesieutre, George A. (Inventor); Davis, Christopher L. (Inventor)
2001-01-01
A coupling coefficient is a measure of the effectiveness with which a shape-changing material (or a device employing such a material) converts the energy in an imposed signal to useful mechanical energy. Device coupling coefficients are properties of the device and, although related to the material coupling coefficients, are generally different from them. This invention describes a class of devices wherein the apparent coupling coefficient can, in principle, approach 1.0, corresponding to perfect electromechanical energy conversion. The key feature of this class of devices is the use of destabilizing mechanical pre-loads to counter inherent stiffness. The approach is illustrated for piezoelectric and thermoelectrically actuated devices. The invention provides a way to simultaneously increase both displacement and force, distinguishing it from alternatives such as motion amplification, and allows transducer designers to achieve substantial performance gains for actuator and sensor devices.
Improved transverse (e,e{sup '}) response function of {sup 3}He at intermediate momentum transfers
Efros, Victor D.; Leidemann, Winfried; Orlandini, Giuseppina; Tomusiak, Edward L.
2010-03-15
The transverse electron scattering response function of {sup 3}He is studied in the quasielastic peak region for momentum transfers between 500 and 700 MeV/c. A conventional description of the process leads to results that vary substantially from experiment. To improve the results, the present calculation is done in a reference frame [the active nucleon Breit (ANB) frame] that diminishes the influence of relativistic effects on nuclear states. The laboratory frame response function is then obtained via a kinematics transformation. In addition, a one-body nuclear current operator is employed that includes all leading-order relativistic corrections. Multipoles of this operator are listed. It is shown that the use of the ANB frame leads to a sizable shift in the quasielastic peak to lower energy and, contrary to the relativistic current, also to an increase in the peak height. The additionally considered meson exchange current contribution is quite small in the peak region. In comparison with experiment, there is excellent agreement of the peak positions. The peak height agrees well with experiment for the lowest considered momentum transfer (500 MeV/c) but tends to be too high for higher momentum transfer (10% at 700 MeV/c).
Mass and momentum transfer across solid-fluid boundaries in the lattice-Boltzmann method.
Yin, Xuewen; Le, Guigao; Zhang, Junfeng
2012-08-01
Mass conservation and momentum transfer across solid-fluid boundaries have been active topics through the development of the lattice-Boltzmann method. In this paper, we review typical treatments to prevent net mass transfer across solid-fluid boundaries in the lattice-Boltzmann method, and argue that such efforts are in general not necessary and could lead to incorrect results. Carefully designed simulations are conducted to examine the effects of normal boundary movement, tangential density gradient, and lattice grid resolution. Our simulation results show that the global mass conservation can be well satisfied even with local unbalanced mass transfer at boundary nodes, while a local mass conservation constraint can produce incorrect flow and pressure fields. These simulations suggest that local mass conservation, at either a fluid or solid boundary node, is not only an unnecessary consequence to maintain the global mass conservation, but also harmful for meaningful simulation results. In addition, the concern on the momentum addition and reduction associated with status-changing nodes is also not technically necessary. Although including this momentum addition or reduction has no direct influence on flow and pressure fields, the incorrect fluid-particle interaction may affect simulation results of particulate suspensions.
Effects of lateral momentum transfer on the predication of river flow and flood inundation
NASA Astrophysics Data System (ADS)
Yu, D.; Yin, J.
2012-12-01
Previous studies on 2D modelling of flood inundation have predominately linked the river flow with floodplain inundation through mass exchange at the common boundary, but excluded the lateral momentum transfer. This study describes the coupling of a 1D river flow model and 2D inertial-based flood inundation model (FloodMap) that accounts for both the mass and momentum exchange between the two sub-systems. Simulations were undertaken to evaluate the effect of excluding momentum exchange on river flow prediction and flood inundation. Two sets of simulations were undertaken: (i) within an artificial floodplain where the effects of longitudinal channel slope, transverse hillslope and flow magnitude are evaluated; and (ii) in a real-world setting where benchmarking data are available from previous studies carried out by the UK Environment Agency. Results demonstrate the spatial and temporal difference of both the river flow and floodplain inundation between the simulation with both mass and momentum exchange considered and its counterpart which excludes the lateral momentum exchange between the river and floodplain flow. In the artificial setting, when the lateral momentum flux is excluded, the overall pattern of response in the river channel is the overestimation of water depth during the rising limb and underestimation during the recession limb. The magnitude of over/underestimation is proportionate to that of the flood event and channel longitudinal slope. Compared to a horizontal transverse floodplain slope, the magnitude of depth overestimation when flow rises is smaller when there is an inward transverse slope from the floodplain to the river channel. On the other hand, the depth underestimation is higher when flow recedes, resulting in a larger overall underestimation magnitude. In the real-world simulation, the magnitude and timing of the over-/underestimation demonstrate a much more complex pattern due to the non-linear flow exchange occurring at the river and
Final-state angular momentum distributions in charge transfer collisions at high energies
NASA Astrophysics Data System (ADS)
Burgdörfer, Joachim
1985-11-01
We investigate the influence of different terms of the Born series on the final-state angular momentum ( l) distribution and the anisotropy of the captured electron. A variety of different l distributions depending on the projectile velocity v and the charge asymmetry {Z p}/{Z T} of the collision system can be found, revealing different underlying mechanisms for charge transfer. We compare the predictions of perturbation theories such as the first and second Born approximation, the continuum distorted wave (CDW) approximation and the post-collision interaction (PCI) model valid at high velocities with those of the "quasi-resonant over barrier" model of charge transfer valid at intermediate velocities.
Investigation of two-phase heat transfer coefficients of argon-freon cryogenic mixed refrigerants
NASA Astrophysics Data System (ADS)
Baek, Seungwhan; Lee, Cheonkyu; Jeong, Sangkwon
2014-11-01
Mixed refrigerant Joule Thomson refrigerators are widely used in various kinds of cryogenic systems these days. Although heat transfer coefficient estimation for a multi-phase and multi-component fluid in the cryogenic temperature range is necessarily required in the heat exchanger design of mixed refrigerant Joule Thomson refrigerators, it has been rarely discussed so far. In this paper, condensation and evaporation heat transfer coefficients of argon-freon mixed refrigerant are measured in a microchannel heat exchanger. A Printed Circuit Heat Exchanger (PCHE) with 340 μm hydraulic diameter has been developed as a compact microchannel heat exchanger and utilized in the experiment. Several two-phase heat transfer coefficient correlations are examined to discuss the experimental measurement results. The result of this paper shows that cryogenic two-phase mixed refrigerant heat transfer coefficients can be estimated by conventional two-phase heat transfer coefficient correlations.
NASA Technical Reports Server (NTRS)
Banan, Mohsen; Gray, Ross T.; Wilcox, William R.
1992-01-01
The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was experimentally determined using in-situ temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same order of magnitude as the theoretical value estimated by standard heat transfer calculations.
A novel approach to determine the heat transfer coefficient in directional solidification furnaces
NASA Technical Reports Server (NTRS)
Banan, Mohsen; Gray, Ross T.; Wilcox, William R.
1990-01-01
The heat transfer coefficient between a molten charge and its surroundings in a Bridgman furnace was determined using an approach utilizing in-situ temperature measurement. The ampoule containing an isothermal melt was suddenly moved from a higher temperature zone to a lower temperature zone. The temperature-time history was used in a lumped-capacity cooling model to evaluate the heat transfer coefficient between the charge and the furnace. The experimentally determined heat transfer coefficient was of the same order of magnitude as the value estimated by standard heat transfer calculations.
NASA Astrophysics Data System (ADS)
Morimoto, Kenichi; Suzuki, Yuji; Kasagi, Nobuhide
An adjoint-based shape optimization method of heat exchangers, which takes into account the heat transfer performance with the pressure loss penalty, is proposed, and its effectiveness is examined through a series of numerical simulation. Undulated heat transfer surface is optimized under an isothermal heated condition based on the variational method with the first derivative of the cost function, which is determined by an adjoint analysis of momentum and heat transfer. When applied to a modeled heat-exchanger passage with a pair of oblique wavy walls, the present optimization method refines the duct shape so as to enhance the heat transfer while suppressing the flow separation. It is shown that the j/f factor is further increased by 4% from the best value of the initial obliquely wavy duct. The effects of the initial wave amplitude upon the shape evolution process are also investigated.
NASA Astrophysics Data System (ADS)
Slonczewski, John
2013-03-01
Consider two nanoscopic monodomain magnets connected by a spacer that is composed of a non-magnetic metal or a tunnel barrier. Any externally applied electric current flowing through these three layers contributes tiny pseudo-torques to both magnetic moments (J . S . 1989). Such a weak spin-transfer torque (STT) may counteract and overcome a comparably small torque caused by viscous dissipation (L. Berger1996; J . S . 1996). Any initial motion (e. g. excited by ambient temperature) of one moment (or both), may grow in amplitude and culminate in steady precession or a transient switch to a new direction of static equilibrium. In a memory element, the STT effect writes 0 or 1 in a magnetic-tunnel junction. Indeed, world-wide developments of memory arrays and radio-frequency oscillators utilizing current-driven STT today enjoy a nine-digit dollar commitment. But the fact that transfer of each half-unit of spin momentum h/4 π through a barrier requires the transfer of at least one unit of electric charge limits its efficiency. Arguably, STT should also arise from the flow of external heat, in either direction, between an insulating magnet, of ferrite or garnet (e. g. YIG) composition, and a metallic spacer (J . S . 2010). Whenever s-d exchange annihilates a hot magnon at the insulator/metal-spacer interface, it transfers one unit h/2 π of spin momentum to the spacer. Conduction electrons within the spacer will transport this spin momentum to the second magnet without requiring an electric current. Such a thermagnonicmethod, modestly powered by a Joule-effect heater, can substantially increase the efficiency of STT. Support for this prediction comes from (1) an estimate of the sd-exchange coefficient from data on spin relaxation in magnetically dilute (Cu,Ag,Au):Mn alloys; (2) a DFT computation (J. Xiao et al 2010); and (3) most persuasively, data from spin pumping driven across a YIG/Au interface by ferromagnetic resonance (B. Heinrich et al 2011; C. Burrowes et al
Photon momentum transfer plane for asteroid, meteoroid, and comet orbit shaping
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W. (Inventor)
2004-01-01
A spacecraft docks with a spinning and/or rotating asteroid, meteoroid, comet, or other space object, utilizing a tether shaped in a loop and utilizing subvehicles appropriately to control loop instabilities. The loop is positioned about a portion of the asteroid and retracted thereby docking the spacecraft to the asteroid, meteoroid, comet, or other space object. A deployable rigidized, photon momentum transfer plane of sufficient thickness may then be inflated and filled with foam. This plane has a reflective surface that assists in generating a larger momentum from impinging photons. This plane may also be moved relative to the spacecraft to alter the forces acting on it, and thus on the asteroid, meteoroid, comet, or other space object to which it is attached. In general, these forces may be utilized, over time, to alter the orbits of asteroids, meteoroids, comets, or other space objects. Sensors and communication equipment may be utilized to allow remote operation of the rigidized, photon momentum transfer plane and tether.
Rotating fiber array molecular driver and molecular momentum transfer device constructed therewith
Milleron, Norman
1983-01-01
A rotating fiber array molecular driver is disclosed which includes a magnetically suspended and rotated central hub to which is attached a plurality of elongated fibers extending radially therefrom. The hub is rotated so as to straighten and axially extend the fibers and to provide the fibers with a tip speed which exceeds the average molecular velocity of fluid molecules entering between the fibers. Molecules colliding with the sides of the rotating fibers are accelerated to the tip speed of the fiber and given a momentum having a directional orientation within a relatively narrow distribution angle at a point radially outward of the hub, which is centered and peaks at the normal to the fiber sides in the direction of fiber rotation. The rotating fiber array may be used with other like fiber arrays or with other stationary structures to form molecular momentum transfer devices such as vacuum pumps, molecular separators, molecular coaters, or molecular reactors.
Schmidt, L Ph H; Lower, J; Jahnke, T; Schößler, S; Schöffler, M S; Menssen, A; Lévêque, C; Sisourat, N; Taïeb, R; Schmidt-Böcking, H; Dörner, R
2013-09-01
We simultaneously measured the momentum transferred to a free-floating molecular double slit and the momentum change of the atom scattering from it. Our experimental results are compared to quantum mechanical and semiclassical models. The results reveal that a classical description of the slits, which was used by Einstein in his debate with Bohr, provides a surprisingly good description of the experimental results, even for a microscopic system, if momentum transfer is not ascribed to a specific pathway but shared coherently and simultaneously between both.
NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.
2015-09-01
Consequences of the complete system of transfer equations of the properties (momentum, energy, and mass) of particles and their pairs are considered under local equilibrium conditions with regard to the Bogoliubov hierarchy of relaxation times between the first and second distribution functions (DFs) and distinctions in the characteristic relaxation times of particle momentum, energy, and mass. It is found that even under the local equilibrium condition in the Bogoliubov hierarchy of relaxation times between the first and second DFs, pair correlations are maintained between all dynamic variables (velocity, temperature, and density) whose values are proportional to the gradients of transferable properties. A criterion is introduced requiring there be no local equilibrium condition upon reaching the critical value at which the description of the transfer process becomes incorrect in classical nonequilibrium thermodynamics. External forces are considered in the equations for strongly nonequilibrium processes. Along with allowing for intermolecular potentials, it becomes possible to discuss the concept of passive forces (introduced in thermodynamics by Gibbs) from the standpoint of the kinetic theory. It is shown that use of this concept does not reflect modern representations of real processes.
Töws, W; Pastor, G M
2015-11-20
Exact calculated time evolutions in the framework of a many-electron model of itinerant magnetism provide new insights into the laser-induced ultrafast demagnetization observed in ferromagnetic (FM) transition metal thin films. The interplay between local spin-orbit interactions and interatomic hopping is shown to be at the origin of the observed postexcitation breakdown of FM correlations between highly stable local magnetic moments. The mechanism behind spin- and angular-momentum transfer is revealed from a microscopic perspective by rigorously complying with all fundamental conservation laws. An energy-resolved analysis of the time evolution shows that the efficiency of the demagnetization process reaches almost 100% in the excited states.
Andrew Puckett
2009-12-01
Electromagnetic form factors are fundamental properties of the nucleon that describe the effect of its internal quark structure on the cross section and spin observables in elastic lepton-nucleon scattering. Double-polarization experiments have become the preferred technique to measure the proton and neutron electric form factors at high momentum transfers. The recently completed GEp-III experiment at the Thomas Jefferson National Accelerator Facility used the recoil polarization method to extend the knowledge of the proton electromagnetic form factor ratio GpE/GpM to Q2 = 8.5 GeV2. In this paper we present the preliminary results of the experiment.
David Abbott; Abdellah Ahmidouch; Heinz Anklin; Francois Arvieux; Jacques Ball; S. Beedoe; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; K. Dow; Jean-Eric Ducret; James Dunne; Lars Ewell; Laurent Eyraud; Christophe Furget; Michel Garcon; Ronald Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; Adrian Honegger; Juerg Jourdan; Serge Kox; Gerfried Kumbartzki; L. Lu; Allison Lung; David Mack; Pete Markowitz; Justin McIntyre; David Meekins; Fernand Merchez; Joseph Mitchell; R. Mohring; Sekazi Mtingwa; Hamlet Mkrtchyan; David Pitz; Liming Qin; Ronald Ransome; Jean-Sebastien Real; Philip Roos; Paul Rutt; Reyad Sawafta; Samuel Stepanyan; Raphael Tieulent; Egle Tomasi-Gustafsson; William Turchinetz; Kelley Vansyoc; Jochen Volmer; Eric Voutier; William Vulcan; Claude Williamson; Stephen Wood; Chen Yan; Jie Zhao; Wenxia Zhao
2000-05-01
Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c){sup 2}. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q{sup 2} the deuteron charge form factors G{sub C} and G{sub Q}. They are in good agreement with relativistic calculations and disagree with pQCD predictions.
Measurement of the total optical angular momentum transfer in optical tweezers.
Parkin, Simon; Knöner, Gregor; Nieminen, Timo A; Heckenberg, Norman R; Rubinsztein-Dunlop, Halina
2006-07-24
We describe a way to determine the total angular momentum, both spin and orbital, transferred to a particle trapped in optical tweezers. As an example an LG(02) mode of a laser beam with varying degrees of circular polarisation is used to trap and rotate an elongated particle with a well defined geometry. The method successfully estimates the total optical torque applied to the particle. For this technique, there is no need to measure the viscous drag on the particle, as it is an optical measurement. Therefore, knowledge of the particle's size and shape, as well as the fluid's viscosity, is not required.
Estimating monthly averaged air-sea transfers of heat and momentum using the bulk aerodynamic method
NASA Technical Reports Server (NTRS)
Esbensen, S. K.; Reynolds, R. W.
1981-01-01
Air-sea transfers of sensible heat, latent heat and momentum are computed from 25 years of middle-latitude and subtropical ocean weather ship data in the North Atlantic and North Pacific using the bulk aerodynamic method. The results show that monthly averaged wind speeds, temperatures and humidities can be used to estimate the monthly averaged sensible and latent heat fluxes from the bulk aerodynamic equations to within a relative error of approximately 10%. The estimates of monthly averaged wind stress under the assumption of neutral stability are shown to be within approximately 5% of the monthly averaged nonneutral values.
Inelastic x-ray scattering from polycrystalline materials at low momentum transfer
Bosak, Alexey; Krisch, Michael; Fischer, Irmengard; Huotari, Simo; Monaco, Giulio
2007-02-01
The inelastic x-ray scattering from polycrystalline materials at low momentum transfer is analyzed with respect to the orientation-averaged acoustic phonon dispersion and the relationship between the derived sound velocities and their corresponding macroscopic entities. The effect of texturing on the sound dispersion is discussed and illustrated using the examples of hcp cobalt and hexagonal graphite. Our theoretical considerations are supported by experimental results and emphasize the importance to carefully consider the effects of elastic anisotropy when data obtained by inelastic x-ray scattering are compared or confronted with macroscopic measurements.
Small chamber tests were conducted to experimentally determine the overall mass transfer coefficient for pollutant emissions from still water under simulated indoor-residential or occupational-environmental conditions. Fourteen tests were conducted in small environmental chambers...
Transfer of orbital angular momentum of light using two-component slow light
NASA Astrophysics Data System (ADS)
Ruseckas, Julius; Kudriašov, Viačeslav; Yu, Ite A.; Juzeliūnas, Gediminas
2013-05-01
We study the manipulation of slow light with an orbital angular momentum propagating in a cloud of cold atoms. Atoms are affected by four co-propagating control laser beams in a double tripod configuration of the atomic energy levels involved, allowing us to minimize the losses at the vortex core of the control beams. In such a situation the atomic medium is transparent for a pair of co-propagating probe fields, leading to the creation of two-component (spinor) slow light. We study the interaction between the probe fields when two control beams carry optical vortices of opposite helicity. As a result, a transfer of the optical vortex takes place from the control to the probe fields without switching off and on the control beams. This feature is missing in a single tripod scheme where the optical vortex can be transferred from the control to the probe field only during either the storage or retrieval of light.
Inclusive electron scattering from nuclei in the quasielastic region at large momentum transfer
NASA Astrophysics Data System (ADS)
Fomin, Nadia
2008-12-01
Experiment E02-019, performed in Hall C at the Thomas Jefferson National Accelerator Facility (TJNAF), was a measurement of inclusive electron cross sections for several nuclei (^{2}H,^{3}He, ^{4}He, ^{9}Be,^{12}C, ^{63}Cu, and ^{197}Au) in the quasielastic region at high momentum transfer. In the region of low energy transfer, the cross sections were analyzed in terms of the reduced response, F(y), by examining its y-scaling behavior. The data were also examined in terms of the nuclear structure function ν W_2^A and its behavior in x and the Nachtmann variable ξ. The data show approximate scaling of ν W_2^A in ξ for all targets at all kinematics, unlike scaling in x, which is confined to the DIS regime. However, y-scaling observations are limited to the kinematic region dominated by the quasielastic response ({y<0}), where some scaling violations arising from FSIs are observed.
NASA Astrophysics Data System (ADS)
Hashimoto, Katsumi; Kiyotani, Akihiro; Sasaki, Naoe
The CO2 heat pump water heater ”ECO CUTE” which was commercialized in 2001 has a high potential for energy conservation and greenhouse abatement. The most important element apparatus is always the evaporator in order to develop smaller and higher performance equipment. In this paper, an experimental study has been conducted to measure the pure CO2 flow boiling heat transfer coefficient (99.999 % purity, without oil) in a horizontal smooth tube (outer diameter 6 mm, thickness 0.4 mm). The measured mean heat transfer coefficients are compared with calculated value with using previous experimental heat transfer correlation equations. These two values are different from each other. Mean heat transfer coefficients are measured with varying mass velocity, pressure and heat transfer lengths. The tube length is varied to 3.0 m, 4.0 m and 5.0 m, to distinguish the influence of mass velocity and that of heat flux to the heat transfer coefficient. The test conditions were: CO2 mass velocity from about 150 to about 700 kg⁄(m2s) (heat flux from about 10 to about 40 kW⁄m2), quality at inlet of test section is 0.17, CO2 super heat at outlet of test section is 5 K and saturation temperature of CO2 ranges from 0 to 10 °C. As a result, it has been understood that heat flux has a greater influence on the heat transfer coefficient.
Irregular spin angular momentum transfer from light to small birefringent particles
Rothmayer, M.; Tierney, D.; Schmitzer, H.; Frins, E.; Dultz, W.
2009-10-15
The transfer of spin angular momentum from photons to small particles is a key experiment of quantum physics. The particles rotate clockwise or counterclockwise depending on the polarization of the light beam which holds them in an optical trap. We show that even perfectly disk shaped particles will in general not rotate with a constant angular speed. The particles will periodically accelerate and decelerate their rotational motion due to a varying spin angular momentum transfer from the light. Using the Poincare sphere we derive the equation of motion of a birefringent plate and verify the results by measuring the time dependent rotation of small crystals of Hg(I) iodide and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) in the trap of polarized optical tweezers. For small ellipticities of the polarized light in the tweezers the plate stops in a fixed orientation relative to the axes of the light ellipse. We discuss the origin of this halt and propose an application of small birefringent plates as self-adjusting optical retarders in micro-optics.
High-energy, large-momentum-transfer processes: Ladder diagrams in. var phi. sup 3 theory
Newton, C.L.J.
1990-01-01
Relativistic quantum field theories may help one to understand high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, the author studies ladder diagrams in {var phi}{sup 3} theory. He shows that in the limit s {much gt} {vert bar}t{vert bar} {much gt} m{sup 2}, the scattering amplitude for the N-rung ladder diagram takes the form s{sup {minus}1}{vert bar}t{vert bar}{sup {minus}N+1} times a homogeneous polynomial of degree 2N {minus} 2 and ln s and ln {vert bar}t{vert bar}. This polynomial takes different forms depending on the relation of ln {vert bar}t{vert bar} to ln s. More precisely, the asymptotic formula for the N-rung ladder diagram has points of non-analytically when ln {vert bar}t{vert bar} = {gamma} ln s for {gamma} = 1/2, 1/3, {hor ellipsis}, 1/N{minus}2.
Two-photon exchange corrections in elastic lepton-proton scattering at small momentum transfer
NASA Astrophysics Data System (ADS)
Tomalak, Oleksandr; Vanderhaeghen, Marc
2016-03-01
In recent years, elastic electron-proton scattering experiments, with and without polarized protons, gave strikingly different results for the electric over magnetic proton form factor ratio. A mysterious discrepancy (``the proton radius puzzle'') has been observed in the measurement of the proton charge radius in muon spectroscopy experiments versus electron spectroscopy and electron scattering. Two-photon exchange (TPE) contributions are the largest source of the hadronic uncertainty in these experiments. We compare the existing models of the elastic contribution to TPE correction in lepton-proton scattering. A subtracted dispersion relation formalism for the TPE in electron-proton scattering has been developed and tested. Its relative effect on cross section is in the 1 - 2 % range for a low value of the momentum transfer. An alternative dispersive evaluation of the TPE correction to the hydrogen hyperfine splitting was found and applied. For the inelastic TPE contribution, the low momentum transfer expansion was studied. In addition with the elastic TPE it describes the experimental TPE fit to electron data quite well. For a forthcoming muon-proton scattering experiment (MUSE) the resulting TPE was found to be in the 0 . 5 - 1 % range, which is the planned accuracy goal.
NASA Astrophysics Data System (ADS)
Regan, Caitlin; Hayakawa, Carole K.; Choi, Bernard
2016-03-01
Laser speckle imaging (LSI) enables measurement of relative blood flow in microvasculature and perfusion in tissues. To determine the impact of tissue optical properties and perfusion dynamics on speckle contrast, we developed a computational simulation of laser speckle contrast imaging. We used a discrete absorption-weighted Monte Carlo simulation to model the transport of light in tissue. We simulated optical excitation of a uniform flat light source and tracked the momentum transfer of photons as they propagated through a simulated tissue geometry. With knowledge of the probability distribution of momentum transfer occurring in various layers of the tissue, we calculated the expected laser speckle contrast arising with coherent excitation using both reflectance and transmission geometries. We simulated light transport in a single homogeneous tissue while independently varying either absorption (.001-100mm^-1), reduced scattering (.1-10mm^-1), or anisotropy (0.05-0.99) over a range of values relevant to blood and commonly imaged tissues. We observed that contrast decreased by 49% with an increase in optical scattering, and observed a 130% increase with absorption (exposure time = 1ms). We also explored how speckle contrast was affected by the depth (0-1mm) and flow speed (0-10mm/s) of a dynamic vascular inclusion. This model of speckle contrast is important to increase our understanding of how parameters such as perfusion dynamics, vessel depth, and tissue optical properties affect laser speckle imaging.
Study on heat transfer coefficients during cooling of PET bottles for food beverages
NASA Astrophysics Data System (ADS)
Liga, Antonio; Montesanto, Salvatore; Mannella, Gianluca A.; La Carrubba, Vincenzo; Brucato, Valerio; Cammalleri, Marco
2016-08-01
The heat transfer properties of different cooling systems dealing with Poly-Ethylene-Terephthalate (PET) bottles were investigated. The heat transfer coefficient (Ug) was measured in various fluid dynamic conditions. Cooling media were either air or water. It was shown that heat transfer coefficients are strongly affected by fluid dynamics conditions, and range from 10 W/m2 K to nearly 400 W/m2 K. PET bottle thickness effect on Ug was shown to become relevant under faster fluid dynamics regimes.
The Study of the D(e,e'p)n Reaction at High Four-Momentum Transfer
NASA Astrophysics Data System (ADS)
Khanal, Hari
2014-09-01
A study of the D (e ,e' p) reaction has been carried out at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for a set of fixed values of four-momentum transfers Q2 = 2.1 and 0.8 (GeV/c)2 and for missing momenta pm ranging from pm = 0.03 to pm = 0.65 GeV/c. The analysis resulted in the determination of absolute D (e ,e' p) n cross sections as a function of the recoiling neutron momentum and it's scattering angle with respect to the momentum transfer q-> . The experimental momentum distribution of the bound proton inside the deuteron has been determined for the first time at a set of fixed neutron recoil angle. A study of the D (e ,e' p) reaction has been carried out at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for a set of fixed values of four-momentum transfers Q2 = 2.1 and 0.8 (GeV/c)2 and for missing momenta pm ranging from pm = 0.03 to pm = 0.65 GeV/c. The analysis resulted in the determination of absolute D (e ,e' p) n cross sections as a function of the recoiling neutron momentum and it's scattering angle with respect to the momentum transfer q-> . The experimental momentum distribution of the bound proton inside the deuteron has been determined for the first time at a set of fixed neutron recoil angle. Department of Energy (DOE).
Measurement of local connective heat transfer coefficients of four ice accretion shapes
NASA Technical Reports Server (NTRS)
Smith, M. E.; Armilli, R. V.; Keshock, E. G.
1984-01-01
In the analytical study of ice accretions that form on aerodynamic surfaces (airfoils, engine inlets, etc.) it is often necessary to be able to calculate convective heat transfer rates. In order to do this, local convective heat transfer coefficients for the ice accretion shapes must be known. In the past, coefficients obtained for circular cylinders were used as an approximation to the actual coefficients since no better information existed. The purpose of this experimental study was to provide local convective heat transfer coefficients for four shapes that represent ice accretions. The shapes were tested with smooth and rough surfaces. The experimental method chosen was the thin-skin heat rate technique. Using this method local Nusselt numbers were determined for the ice shapes. In general it was found that the convective heat transfer was higher in regions where the model's surfaces were convex and lower in regions where the model's surfaces were concave. The effect of roughness was to increase the heat transfer in the high heat transfer regions by approximately 100% while little change was apparent in the low heat transfer regions.
Charge transfer and momentum exchange in exospheric D-H(+) and H-D(+) collisions
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.; Breig, E. L.
1993-01-01
Mechanisms that control the escape of deuterium from planetary exospheres include the acceleration of D(+) in the polar wind, and the production of suprathermal D atoms through nonthermal collisions. In this paper we examine the effects of neutral-ion interactions involving deuterium and hydrogen on the velocity distribution of neutral D. A two-center scattering approximation is used as the basis for calculations of the differential cross sections for charge transfer and elastic scatter in collision of H with D(+) and of D with H(+) for ionosphere-exosphere collision energies below 10 e V. These data are used to derive temperature dependent rate coefficients for the charge transfer branches of these interactions, and to determine the effects of ion-neutral temperature differences on the rate of generation of suprathermal D through charge transfer and elastic scatter.
Backmixing and heat transfer coefficients in bubble columns using aqueous glycerol solutions
Knickle, H.N.; Holcombe, N.T.; O'Dowd, W.; Smith, D.N.
1983-01-01
Nonisothermal bubble column experiments have been performed to determine the effect of gas and liquid velocities on steady-state viscous cocurrent upflow. Aqueous solutions of glycerol and water were used with nitrogen at 5.1 atmospheres to determine backmixing and heat transfer coefficients in a 0.078-m-diameter, 1.68-m-high bubble column. Superficial gas velocity ranged from a low of 0.0121 m/s to 0.364 m/s, and liquid superficial velocity from 0.000835 m/s to 0.0121 m/s. Nonlinear regression was used to determine the best fit for these coefficients. The backmixing coefficient varied inversely with liquid viscosity to the 0.21 power. Two regions were examined for the heat transfer coefficients depending on whether the superficial gas velocity was greater or less than 0.1 m/sec. In the lower velocity range, the heat transfer coefficient varied inversely with viscosity to the 0.25 power; and in the higher range, inversely to the 0.18 power. In the lower range the heat transfer coefficient varied directly with liquid velocity to the 0.18 power; and in the higher range, to the 0.35 power. It is thought that this marked variation with liquid velocity is due to the importance of the increased turbulence of the liquid in this viscous system.
Calculation of the mass transfer coefficient for the combustion of a carbon particle
Scala, Fabrizio
2010-01-15
In this paper we address the calculation of the mass transfer coefficient around a burning carbon particle in an atmosphere of O{sub 2}, N{sub 2}, CO{sub 2}, CO, and H{sub 2}O. The complete set of Stefan-Maxwell equations is analytically solved under the assumption of no homogeneous reaction in the boundary layer. An expression linking the oxygen concentration and the oxygen flux at the particle surface (as a function of the bulk gas composition) is derived which can be used to calculate the mass transfer coefficient. A very simple approximate explicit expression is also given for the mass transfer coefficient, that is shown to be valid in the low oxygen flux limit or when the primary combustion product is CO{sub 2}. The results are given in terms of a correction factor to the equimolar counter-diffusion mass transfer coefficient, which is typically available in the literature for specific geometries and/or fluid-dynamic conditions. The significance of the correction factor and the accuracy of the different available expressions is illustrated for several cases of practical interest. Results show that under typical combustion conditions the use of the equimolar counter-diffusion mass transfer coefficient can lead to errors up to 10%. Larger errors are possible in oxygen-enriched conditions, while the error is generally low in oxy-combustion. (author)
Calculation of heat transfer coefficients at the ingot surface during DC casting
Kuwana, K.; Viswanathan, S.; Clark, John A, III; Sabau, A.; Hassan, M.; Saito, K.; Das, S.
2005-02-01
Surface heat transfer coefficients representing the various regimes of water cooling during the Direct Chill (DC) casting of aluminum 3004 alloy ingots have been calculated using the inverse heat transfer technique. ProCAST, a commercial casting simulation package, which includes heat transfer, fluid flow, solidification, and inverse heat transfer, was used for this effort. Thermocouple data from an experimental casting run, and temperature-dependent thermophysical properties of the alloy were used in the calculation. The use of a structured vs. unstructured mesh was evaluated. The calculated effective heat transfer coefficient, which is a function of temperature and time, covers three water cooling regimes, i.e., convection, nucleate boiling, and film boiling, and the change of water flow rate with time.
Inverse cascades sustained by the transfer rate of angular momentum in a 3D turbulent flow
NASA Astrophysics Data System (ADS)
Burguete, Javier; Lopez-Caballero, Miguel
2013-11-01
The existence of energy cascades as signatures of conserved magnitudes is one of the universal characteristics of turbulent flows. In this work we present the evidence of an inverse cascade in a fully developed 3D experimental turbulent flow where the conserved magnitude is the angular momentum. We analyze the behavior of a fluid in a closed cavity where two inhomogeneous and strongly turbulent flows collide in a thin region. The experimental volume is a closed cylinder (diameter of 20 cm) where two impellers rotate in opposite directions. A key characteristic of this setup the high stability of the propellers (the instantaneous fluctuations are below 0 . 1 %). We have performed PIV and LDA measurements of the velocity fields. Typical characteristics of the turbulent flow in this setup are: turbulence intensity 50 % , the Reλ = 900 , the Taylor microscale λT = 1 . 8 mm and the integral scale LI = 15 mm. The analysis of the data series reveal that below the injection scales an inverse cascade can be identified (-1/3 in time, -7/3 in space) that can be explained as the transfer of angular momentum between the diferent fluid layers. A. de la Torre, J. Burguete, Phys Rev Lett 99 (2007) 054101. M. Lopez-Caballero, J. Burguete, Phys Rev Lett 110 (2013) 124501.
NASA Astrophysics Data System (ADS)
Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim
2015-04-01
the spray of droplets generation, especially heat transfer. The work was supported by RFBR grants (14-05-91767, 14-08-31740, 15-35-20953) and RSF grant 14-17-00667 and by President grant for young scientists MK-3550.2014.5 References: 1. Emanuel, K. A. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics // J. Atmos. Sci., 52(22), 3969-3976,1995. 2. Brian K. Haus, Dahai Jeong, Mark A. Donelan, Jun A. Zhang, and Ivan Savelyev Relative rates of sea-air heat transfer and frictional drag in very high winds // GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L07802, doi:10.1029/2009GL042206, 2010 3. Yu. I. Troitskaya, D.A. Sergeev, A.A. Kandaurov, G.A Baidakov, M.A. Vdovin, V.I. Kazakov Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions // JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C00J21, 13 PP., 2012 doi:10.1029/2011JC007778 4. Yu.I.Troitskaya, D.A.Sergeev, A.A.Kandaurov, M.I. Vdovin, A.A. Kandaurov, E.V.Ezhova, S.S.Zilitinkevich Momentum and buoyancy exchange in a turbulent air boundary layer over a wavy water surface. Part 2. Wind wave spectra // Nonlinear. Geoph. Processes, Vol. 20, P. 841-856, 2013.
Frodyma, M.; Arnold, R.G.; Benton, D.; Bosted, P.E.; Clogher, L.; Dechambrier, G.; Katramatou, A.T.; Lambert, J.; Lung, A.; Petratos, G.G.; Rahbar, A.; Rock, S.E.; Szalata, Z.M.; Debebe, B.; Hicks, R.S.; Hotta, A.; Peterson, G.A.; Gearhart, R.A.; Alster, J.; Lichtenstadt, J.; Dietrich, F.; van Bibber, K. University of Massachusetts, Amherst, Massachusetts 01003 Stanford Linear Accelerator Center, Stanford, California 94309 Tel Aviv University, Tel Aviv Lawrence Livermore National Laboratory, Livermore, California 94550 )
1993-04-01
Deuteron electrodisintegration cross sections near 180[degree] have been measured near breakup threshold for the four-momentum transfer squared [ital Q][sup 2] range 1.21--2.76 (GeV/[ital c])[sup 2]. Evidence for a change of slope in the cross section near [ital Q][sup 2]=1 (GeV/[ital c])[sup 2] has been obtained. The data are compared to nonrelativistic calculations, which predict a strong influence of meson-exchange currents. The data are also compared to a hybrid quark-hadron model. None of these calculations agrees with the data over the entire measured range of [ital Q][sup 2]. The ratio of inelastic structure functions [ital W][sub 1]([ital Q][sup 2],[ital E][sub [ital n][ital p
Electroproduction of Eta Mesons in the S11(1535) Resonance Region at High Momentum Transfer
Dalton, Mark; Adams, Gary; Ahmidouch, Abdellah; Angelescu, Tatiana; Arrington, John; Asaturyan, Razmik; Baker, Keith; Benmouna, Nawal; Bertoncini, Crystal; Boeglin, Werner; Bosted, Peter; Breuer, Herbert; Christy, Michael; Connell, S.; Cui, Y.; Danagoulian, Samuel; Day, Donal; Dodario, T.; Dunne, James; Dutta, Dipangkar; Khayari, N.El; Ent, R.; Fenker, Howard; Frolov, Valera; Gan, Liping; Gaskell, David; Hafidi, Kawtar; Hinton, Wendy; Holt, Roy; Horn, Tanja; Huber, Garth; Hungerford, Ed; Jiang, Xiaodong; Jones, Mark; Joo, Kyungseon; Kalantarians, Narbe; Kelly, J.J.; Keppel, Cynthia; Koubarovski, Valeri; Kubarovsky, Valery; Kubarovsky, Valery; Kubarovsky, Valery; Li, Y.; Liang, Y.; Malace, S.; Markowitz, Pete; McKee, Paul; Meekins, David; Mkrtchyan, Hamlet; Moziak, B.; Navasardyan, Tigran; Niculescu, Gabriel; Niculescu, Maria-Ioana; Opper, Allena; Ostapenko, Tanya; Reimer, Paul; Reinhold, Joerg; Roche, Julie; ROCK, S.E.; Schulte, Elaine; Segbefia, Edwin; Smith, C.; Smith, Gregory; Stoler, Paul; Tadevosyan, Vardan; Tang, Liguang; Tvaskis, Vladas; Ungaro, Maurizio; Uzzle, Alicia; Vidakovic, S.; Villano, A.; Vulcan, William; WANG, M.; Warren, Glen; Wesselmann, Frank; Wojtsekhowski, Bogdan; Wood, Stephen; Xu, C.; Yuan, Lulin; Zheng, Xiaochao; Guo Zhu, Hong
2009-01-01
The differential cross-section for the process p(e,e'p)eta has been measured at Q2 ~ 5.7 and 7.0 (GeV/c)2 for centre-of-mass energies from threshold to 1.8 GeV, encompassing the S11(1535) resonance, which dominates the channel. This is the highest momentum transfer measurement of this exclusive process to date. The helicity-conserving transition amplitude A_1/2, for the production of the S11(1535) resonance, is extracted from the data. This quantity appears to begin scaling as 1/Q3, a predicted signal of the dominance of perturbative QCD, at Q2 ~ 5 (GeV/c)2.
NASA Technical Reports Server (NTRS)
Thompson, E.; Collins, W. E.; Burger, A.; George, M. A.; Conner, J. D.
1995-01-01
This research project involves the systematic study of the MPD thruster for dual uses. Though it was designed as a thruster for space vehicles, the characteristics of the plasma make it an excellent candidate for industrial applications. This project will seek to characterize the system for use in materials processing and characterization. Crystals grown at Fisk University for use with solid state detectors will be studied. Surface modification on ZnCdTe, CdTe, and ZnTe will be studied using AFM, XPS and SAES. In addition to the surface modification studies, design work on a momentum transfer measurement device has been completed. The design and limitations of the device will be presented.
A covariant formalism for the N* electroproduction at high momentum transfer
Gilberto Ramalho,Franz Gross,Maria Haderer De La Pena S,Kazuo Tsushima
2011-05-01
A constituent quark model based on the spectator formalism is applied to the gamma N -> N* transition for the three cases, where N* is the nucleon, the Delta and the Roper resonance. The model is covariant, and therefore can be used for the predictions at higher four-momentum transfer squared, Q2. The baryons are described as an off-mass-shell quark and a spectator on-mass-shell diquark systems. The quark electromagnetic current is described by quark form factors, which have a form inspired by the vector meson dominance. The valence quark contributions of the model are calibrated by lattice QCD simulations and experimental data. Contributions of the meson cloud to the inelastic processes are explicitly included.
Töws, W; Pastor, G M
2015-11-20
Exact calculated time evolutions in the framework of a many-electron model of itinerant magnetism provide new insights into the laser-induced ultrafast demagnetization observed in ferromagnetic (FM) transition metal thin films. The interplay between local spin-orbit interactions and interatomic hopping is shown to be at the origin of the observed postexcitation breakdown of FM correlations between highly stable local magnetic moments. The mechanism behind spin- and angular-momentum transfer is revealed from a microscopic perspective by rigorously complying with all fundamental conservation laws. An energy-resolved analysis of the time evolution shows that the efficiency of the demagnetization process reaches almost 100% in the excited states. PMID:26636871
NASA Astrophysics Data System (ADS)
Falter, James L.; Lowe, Ryan J.; Zhang, Zhenlin
2016-09-01
Here we synthesize data from previous field and laboratory studies describing how rates of nutrient uptake and metabolite exchange (mass transfer) are related to form drag and bottom stresses (momentum transfer). Reanalysis of this data shows that rates of mass transfer are highly correlated (r2 ≥ 0.9) with the root of the bottom stress (τbot0.4) under both waves and currents and only slightly higher under waves (~10%). The amount of mass transfer that can occur per unit bottom stress (or form drag) is influenced by morphological features ranging anywhere from millimeters to meters in scale; however, surface-scale roughness (millimeters) appears to have little effect on actual nutrient uptake by living reef communities. Although field measurements of nutrient uptake by natural reef communities agree reasonably well with predictions based on existing mass-momentum transfer relationships, more work is needed to better constrain these relationships for more rugose and morphologically complex communities.
Goncalves, V. P.; Sauter, W. K.
2010-04-01
The vector meson production in coherent hadron-hadron interactions at LHC energies is studied assuming that the color singlet t-channel exchange carries large momentum transfer. We consider the nonforward solution of the Balitsky, Fadin, Kuraev, and Lipatov equation at high energy and large momentum transfer and estimate the rapidity distribution and total cross section for the process h{sub 1}h{sub 2{yields}}h{sub 1}J/{Psi}X, where h{sub i} can be a proton or a nucleus. We predict large rates, which implies that the experimental identification can be feasible at the LHC.
Sauter, W. K.; Goncalves, V. P.
2010-11-12
The vector meson production in coherent hadron-hadron interactions at LHC energies is addressed assuming that the color singlet t-channel exchange carries large momentum transfer. We consider the non-forward solution of the BFKL equation at high energy and large momentum transfer and estimate the rapidity distribution and total cross section for the process h{sub 1}h{sub 2{yields}}h{sub 1}J/{Psi}X, where h{sub i} can be a proton or a nucleus. We predict large rates, which implies that the experimental identification could be feasible at the LHC.
NASA Astrophysics Data System (ADS)
Kočí, Václav; Kočí, Jan; Korecký, Tomáš; Maděra, Jiří; Černý, Robert Č.
2015-04-01
The radiative heat transfer coefficient at high temperatures is determined using a combination of experimental measurement and computational modeling. In the experimental part, cement mortar specimen is heated in a laboratory furnace to 600°C and the temperature field inside is recorded using built-in K-type thermocouples connected to a data logger. The measured temperatures are then used as input parameters in the three dimensional computational modeling whose objective is to find the best correlation between the measured and calculated data via four free parameters, namely the thermal conductivity of the specimen, effective thermal conductivity of thermal insulation, and heat transfer coefficients at normal and high temperatures. The optimization procedure which is performed using the genetic algorithms provides the value of the high-temperature radiative heat transfer coefficient of 3.64 W/(m2K).
Modeling momentum transfer by the DART spacecraft into the moon of Didymos
NASA Astrophysics Data System (ADS)
Stickle, Angela M.; Atchison, Justin A.; Barnouin, Olivier S.; Cheng, Andy F.; Ernst, Carolyn M.; Richardson, Derek C.; Rivkin, Andy S.
2015-11-01
The Asteroid Impact and Deflection Assessment (AIDA) mission is a joint concept between NASA and ESA designed to test the effectiveness of a kinetic impactor in deflecting an asteroid. The mission is composed of two independent, but mutually supportive, components: the NASA-led Double Asteroid Redirect Test (DART), and the ESA-led Asteroid Impact Monitoring (AIM) mission. The spacecraft will be sent to the near-Earth binary asteroid 65803 Didymos, which makes unusually close approaches to Earth in 2022 and 2024. These close approaches make it an ideal target for a kinetic impactor asteroid deflection demonstration, as it will be easily observable from Earth-based observatories. The ~2 m3, 300 kg DART spacecraft will impact the moon of the binary system at 6.25 km/s. The deflection of the moon will then be determined by the orbiting AIM spacecraft and from ground-based observations by measuring the change in the moon’s orbital period. A modeling study supporting this mission concept was performed to determine the expected momentum transfer to the moon following impact. The combination of CTH hydrocode models, analytical scaling predictions, and N-body pkdgrav simulations helps to constrain the expected results of the kinetic impactor experiment.To better understand the large parameter space (including material strength, porosity, impact location and angle), simulations of the DART impact were performed using the CTH hydrocode. The resultant crater size, velocity imparted to the moon, and momentum transfer were calculated for all cases. For “realistic” asteroid types, simulated DART impacts produce craters with diameters on the order of 10 m, an imparted Δv of 0.5-2 mm/s and a dimensionless momentum enhancement (“beta factor”) of 1.07-5 for targets ranging from a highly porous aggregate to a fully dense rock. These results generally agree with predictions from theoretical and analytical studies. Following impact, pkdgrav simulations of the system evolution
NASA Astrophysics Data System (ADS)
Oralsyn, Gulaym
2016-08-01
We study an inverse coefficient problem for a model equation for one-dimensional heat transfer with a preservation of medium temperature. It is needed (together with finding its solution) to find time dependent unknown coefficient of the equation. So, for this inverse problem, existence of an unique generalized solution is proved. The main difficulty of the considered problems is that the eigenfunction system of the corresponding boundary value problems does not have the basis property.
CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient
NASA Astrophysics Data System (ADS)
Mihálka, Peter; Matiašovský, Peter
2016-07-01
The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity of an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.
NASA Technical Reports Server (NTRS)
Schey, Oscar W; Rollin, Vern G
1936-01-01
This report presents the results of an investigation to determine the effect of baffles on the temperature distribution and the heat-transfer coefficient of finned cylinders. The tests were conducted in a 30-inch wind tunnel on electrically heated cylinders with fins of 0.25 and 0.31 inch pitch. The results of these tests showed that the use of integral baffles gave a reduction of 31.9 percent in the rear wall temperatures and an increase of 54.2 percent in the heat transfer coefficient as compared with a cylinder without baffles.
NASA Astrophysics Data System (ADS)
Piasecka, Magdalena; Strąk, Kinga
2016-03-01
The aim of the paper is to estimate effect of the heating surface enhancement on FC-72 flow boiling heat transfer for a vertical minichannel 1.7 mm deep, 24 mm wide and 360 mm long. Two types of enhanced heating surfaces were used: one with minicavities distributed unevenly, and the other with capillary metal fibrous structure. It was to measure temperature field on the plain side of the heating surface by means of the infrared thermography and to observe the two-phase flow patterns on the enhanced foil side. The paper analyses mainly the impact of the microstructured heating surface on the heat transfer coefficient. The results are presented as heat transfer coefficient dependences on the distance along the minichannel length. The data obtained using two types of enhanced heating surfaces in experiments was compared with the data when smooth foil as the heating surface was used. The highest local values of heat transfer coefficient were obtained using enhanced foil with minicavities - in comparison to other cases. Local values of heat transfer coefficient received for capillary fibrous structure were the lowest, even compared with data obtained for smooth foil. Probably this porous structure caused local flow disturbances.
Effect of impeller geometry on gas-liquid mass transfer coefficients in filamentous suspensions.
Dronawat, S N; Svihla, C K; Hanley, T R
1997-01-01
Volumetric gas-liquid mass transfer coefficients were measured in suspensions of cellulose fibers with concentrations ranging from 0 to 20 g/L. The mass transfer coefficients were measured using the dynamic method. Results are presented for three different combinations of impellers at a variety of gassing rates and agitation speeds. Rheological properties of the cellulose fibers were also measured using the impeller viscometer method. Tests were conducted in a 20 L stirred-tank fermentor and in 65 L tank with a height to diameter ratio of 3:1. Power consumption was measured in both vessels. At low agitation rates, two Rushton turbines gave 20% better performance than the Rushton and hydrofoil combination and 40% better performance than the Rushton and propeller combination for oxygen transfer. At higher agitation rates, the Rushton and hydrofoil combination gave 14 and 25% better performance for oxygen transfer than two Rushton turbines and the Rushton and hydrofoil combination, respectively.
Identification of nuclear effects in neutrino-carbon interactions at low three-momentum transfer
Rodrigues, P. A.
2016-02-17
Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current νμ interactions is combined with muon kinematics to permit separation of the quasielastic and Δ(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and Δ resonance processes are needed to describe the data. The data in this kinematic region also have an enhanced populationmore » of multiproton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Furthermore, improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.« less
Identification of Nuclear Effects in Neutrino-Carbon Interactions at Low Three-Momentum Transfer.
Rodrigues, P A; Demgen, J; Miltenberger, E; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; Chvojka, J; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Elkins, M; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Leistico, J R; Lovlein, A; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman; Osta, J; Paolone, V; Patrick, C E; Perdue, G N; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Ruterbories, D; Schellman, H; Schmitz, D W; Solano Salinas, C J; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D
2016-02-19
Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current ν_{μ} interactions is combined with muon kinematics to permit separation of the quasielastic and Δ(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and Δ resonance processes are needed to describe the data. The data in this kinematic region also have an enhanced population of multiproton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.
Identification of Nuclear Effects in Neutrino-Carbon Interactions at Low Three-Momentum Transfer
NASA Astrophysics Data System (ADS)
Rodrigues, P. A.; Demgen, J.; Miltenberger, E.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Chvojka, J.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Elkins, M.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Gallagher, H.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Kiveni, M.; Kleykamp, J.; Kordosky, M.; Le, T.; Leistico, J. R.; Lovlein, A.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Muhlbeier, T.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Ramirez, M. A.; Ransome, R. D.; Ray, H.; Ren, L.; Rimal, D.; Ruterbories, D.; Schellman, H.; Schmitz, D. W.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Minerva Collaboration
2016-02-01
Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current νμ interactions is combined with muon kinematics to permit separation of the quasielastic and Δ (1232 ) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and Δ resonance processes are needed to describe the data. The data in this kinematic region also have an enhanced population of multiproton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments.
Inclusive electron scattering from nuclei in the quasielastic region at large momentum transfer
Fomin, Nadia
2008-12-01
Experiment E02-019, performed in Hall C at the Thomas Jefferson National Accelerator Facility (TJNAF), was a measurement of inclusive electron cross sections for several nuclei (^{2}H,^{3}He, ^{4}He, ^{9}Be,^{12}C, ^{63}Cu, and ^{197}Au) in the quasielastic region at high momentum transfer. In the region of low energy transfer, the cross sections were analyzed in terms of the reduced response, F(y), by examining its y-scaling behavior. The data were also examined in terms of the nuclear structure function νW^{A}_{ 2} and its behavior in x and the Nachtmann variable ξ. The data show approximate scaling of νW^{A}_{ 2} in ξ for all targets at all kinematics, unlike scaling in x, which is confined to the DIS regime. However, y-scaling observations are limited to the kinematic region dominated by the quasielastic response (y <0), where some scaling violations arising from FSIs are observed.
Identification of Nuclear Effects in Neutrino-Carbon Interactions at Low Three-Momentum Transfer.
Rodrigues, P A; Demgen, J; Miltenberger, E; Aliaga, L; Altinok, O; Bellantoni, L; Bercellie, A; Betancourt, M; Bodek, A; Bravar, A; Budd, H; Cai, T; Carneiro, M F; Chvojka, J; Devan, J; Dytman, S A; Díaz, G A; Eberly, B; Elkins, M; Felix, J; Fields, L; Fine, R; Gago, A M; Galindo, R; Gallagher, H; Ghosh, A; Golan, T; Gran, R; Harris, D A; Higuera, A; Hurtado, K; Kiveni, M; Kleykamp, J; Kordosky, M; Le, T; Leistico, J R; Lovlein, A; Maher, E; Manly, S; Mann, W A; Marshall, C M; Martinez Caicedo, D A; McFarland, K S; McGivern, C L; McGowan, A M; Messerly, B; Miller, J; Mislivec, A; Morfín, J G; Mousseau, J; Muhlbeier, T; Naples, D; Nelson, J K; Norrick, A; Nuruzzaman; Osta, J; Paolone, V; Patrick, C E; Perdue, G N; Ramirez, M A; Ransome, R D; Ray, H; Ren, L; Rimal, D; Ruterbories, D; Schellman, H; Schmitz, D W; Solano Salinas, C J; Tagg, N; Tice, B G; Valencia, E; Walton, T; Wolcott, J; Wospakrik, M; Zavala, G; Zhang, D
2016-02-19
Two different nuclear-medium effects are isolated using a low three-momentum transfer subsample of neutrino-carbon scattering data from the MINERvA neutrino experiment. The observed hadronic energy in charged-current ν_{μ} interactions is combined with muon kinematics to permit separation of the quasielastic and Δ(1232) resonance processes. First, we observe a small cross section at very low energy transfer that matches the expected screening effect of long-range nucleon correlations. Second, additions to the event rate in the kinematic region between the quasielastic and Δ resonance processes are needed to describe the data. The data in this kinematic region also have an enhanced population of multiproton final states. Contributions predicted for scattering from a nucleon pair have both properties; the model tested in this analysis is a significant improvement but does not fully describe the data. We present the results as a double-differential cross section to enable further investigation of nuclear models. Improved description of the effects of the nuclear environment are required by current and future neutrino oscillation experiments. PMID:26943528
NASA Astrophysics Data System (ADS)
Tomas, Severine; Eiff, Olivier; Masson, Valery
2011-03-01
The turbulent characteristics of the neutral boundary layer developing over rough surfaces are not well predicted with operational weather-forecasting models. The problem is attributed to inadequate mixing-length models, to the anisotropy of the flow and to a lack of controlled experimental data against which to validate numerical studies. Therefore, in order to address directly the modelling difficulties for the development of a neutral boundary layer over rough surfaces, and to investigate the turbulent momentum transfer of such a layer, a set of hydraulic flume experiments were carried out. In the experiments, the mean and turbulent quantities were measured by a particle image velocimetry (PIV) technique. The measured velocity variances and fluxes {(overline{{ui^'{uj^')} in longitudinal vertical planes allowed the vertical and longitudinal gradients (∂/∂ z and ∂/∂ x) of the mean and turbulent quantities (fluxes, variances and third-order moments) to be evaluated and the terms of the evolution equations for ∂ e/∂ t, {partial overline{u^' 2}}/partial t}, {partial overline{w^' 2}}/partial t} and {partial overline{{u^'{w^'/partial t} to be quantified, where e is the turbulent kinetic energy. The results show that the pressure-correlation terms allow the turbulent energy to be transferred equitably from {overline{{u^'2}} to {overline{{w^'2}}. It appears that the repartition between the constitutive terms of the budget of e, {overline{{u^'2}}, {overline{{w^'2}} and {overline{{u^'{w^' is not significantly affected by the development of the rough neutral boundary layer. For the whole evolution, the transfers of energy are governed by the same terms that are also very similar to the smooth-wall case. The PIV measurements also allowed the spatial integral scales to be computed directly and to be compared with the dissipative and mixing length scales, which were also computed from the data.
Egorov, M. V.; Fix, A. I.
2013-05-15
The role of two-nucleon mechanisms in pion photoproduction on nuclei was studied in the region of high momentum transfers to the residual nucleus. The process in which the photoproduction of negative pions on a {sup 12}C nucleus is accompanied by proton emission was considered by way of example. The results of the calculations were compared with available experimental data.
NASA Astrophysics Data System (ADS)
Luo, Benyi; Lu, Yigang
2008-10-01
Based on several hypotheses about the process of supercritical carbon dioxide extraction, the onflow around the solute granule is figured out by the Navier-Stocks equation. In combination with the Higbie’s solute infiltration model, the link between the mass-transfer coefficient and the velocity of flow is found. The mass-transfer coefficient with the ultrasonical effect is compared with that without the ultrasonical effect, and then a new parameter named the ultrasonic-enhanced factor of mass-transfer coefficient is brought forward, which describes the mathematical model of the supercritical carbon dioxide extraction process enhanced by ultrasonic. The model gives out the relationships among the ultrasonical power, the ultrasonical frequency, the radius of solute granule and the ultrasonic-enhanced factor of mass-transfer coefficient. The results calculated by this model fit well with the experimental data, including the extraction of Coix Lacryma-jobi Seed Oil (CLSO) and Coix Lacryma-jobi Seed Ester (CLSE) from coix seeds and the extraction of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) from the alga by means of the ultrasonic-enhanced supercritical carbon dioxide extraction (USFE) and the supercritical carbon dioxide extraction (SFE) respectively. This proves the rationality of the ultrasonic-enhanced factor model. The model provides a theoretical basis for the application of ultrasonic-enhanced supercritical fluid extraction technique.
Technology Transfer Automated Retrieval System (TEKTRAN)
An empirical correlation of volumetric mass transfer coefficient was developed for a pilot scale internal-loop rectangular airlift bioreactor that was designed for biotechnology. The empirical correlation combines classic turbulence theory, Kolmogorov’s isotropic turbulence theory with Higbie’s pen...
Measurements of pressure drop, heat transfer coefficient and critical energy of a bundle conductor
Junghans, D.
1981-09-01
Friction factor, saturation temperature, heat transfer coefficient and critical energy of an eight strand bundle conductor were measured in the test facility SULTAN at SIN in Switzerland. The measured values of the critical energy are in good agreement with those calculated by the computer code LONSA. 10 refs.
Heat transfer coefficients in two-dimensional Yukawa systems (numerical simulations)
Khrustalyov, Yu. V. Vaulina, O. S.
2013-05-15
New data on heat transfer in two-dimensional Yukawa systems have been obtained. The results of a numerical study of the thermal conductivity for equilibrium systems with parameters close to the conditions of laboratory experiments in dusty plasma are presented. The Green-Kubo relations are used to calculate the heat transfer coefficients. The influence of dissipation (internal friction) on the heat transfer processes in nonideal systems is studied. New approximations are proposed for the thermal conductivity and diffusivity for nonideal dissipative systems. The results obtained are compared with the existing experimental and numerical data.
Oezerdem, B.
2000-04-01
Heat transfer from a rotating cylinder is one of the problems, which is drawing attention due to its wide range of engineering applications. The present paper deals with convective heat transfer from a horizontal cylinder rotating in quiescent air, experimentally. The average convective heat transfer coefficients have been measured by using radiation pyrometer, which offers a new method. According to the experimental results, a correlation in terms of the average Nusselt number and rotating Reynolds number has been established. The average Nusselt number increased with an increase in the rotating speed. Comparison of the results, with previous studies, have been showed a good agreement with each other.
The ^2H(e,e'p)n Reaction at High Four-Momentum Transfer
Hassan Ibrahim
2006-12-31
This dissertation presents the highest four-momentum transfer, Q^2,quasielastic (x_Bj = 1) results from Experiment E01-020 which systematically explored the 2He(e,e'p)n reaction ("Electro-disintegration" of the deuteron) at three different four-momentum transfers, Q^2 = 0.8, 2.1, and 3.5 GeV^2 and missing momenta, P_miss = 0, 100, 200, 300, 400, and 500 GeV including separations of the longitudinal-transverse interference response function, R_LT, and extractoin of the longitudinal-transverse asymmetry, A_LT. This systematic approach will help to understand the reaction mechanism and the deuteron structure down to the short range part of the nucleon-nucleon interaction which is one of the fundamental missions of nuclear physics. By studying the very short distance structure of the deuteron, one may also determine whether or to what extent the description of nuclei in terms of nucleon/meson degrees of freedom must be supplemented by inclusion of explicit quark effects. The unique combination of energy, current, duty factor, and control of systematics for Hall A at Jefferson Lab made Jefferson Lab the only facility in the world where these systematic studies of the deuteron can be undertaken. This is especially true when we want to understand the short range structure of the deuteron where high energies and high luminosity/duty factor are needed. All these features of Jefferson Lab allow us to examine large missing momenta (short range scales) at kinematics where the effects of final state interactions (FSI), meson exchange currents (MEC), and isobar currents (IC) are minimal, making the extraction of the deuteron structure less model-dependent. Jefferson Lab also provides the kinematical flexibility to perform the separation of R_LT over a broad range of missing momenta and momentum transfers. Experiment E01-020 use the standard Hall A equipment in coincidence configuration in addition to the cryogenic target system. The low and middle Q^2 kinematics were completed
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Opitz, Armin W; Czymmek, Kirk J; Wickstrom, Eric; Wagner, Norman J
2013-02-01
Targeted delivery of imaging agents to cells can be optimized with the understanding of uptake and efflux rates. Cellular uptake of macromolecules is studied frequently with fluorescent probes. We hypothesized that the internalization and efflux of fluorescently labeled macromolecules into and out of mammalian cells could be quantified by confocal microscopy to determine the rate of uptake and efflux, from which the mass transfer coefficient is calculated. The cellular influx and efflux of a third generation poly(amido amine) (PAMAM) dendrimer labeled with an Alexa Fluor 555 dye was measured in Capan-1 pancreatic cancer cells using confocal fluorescence microscopy. The Capan-1 cells were also labeled with 5-chloromethylfluorescein diacetate (CMFDA) green cell tracker dye to delineate cellular boundaries. A dilution curve of the fluorescently labeled PAMAM dendrimer enabled quantification of the concentration of dendrimer in the cell. A simple mass transfer model described the uptake and efflux behavior of the PAMAM dendrimer. The effective mass transfer coefficient was found to be 0.054±0.043μm/min, which corresponds to a rate constant of 0.035±0.023min(-1) for uptake of the PAMAM dendrimer into the Capan-1 cells. The effective mass transfer coefficient was shown to predict the efflux behavior of the PAMAM dendrimer from the cell if the fraction of labeled dendrimer undergoing non-specific binding is accounted for. This work introduces a novel method to quantify the mass transfer behavior of fluorescently labeled macromolecules into mammalian cells.
Therese, L; Ghalem, Z; Guillot, P; Belenguer, P
2006-09-01
In radiofrequency glow discharge emission spectrometry (RF-GDOES), the excitation voltage used to create the plasma is applied to the back or front end of the sample to be analyzed. In this paper we focus on back-applied voltage systems (a configuration that represents about half of the instruments available on the market), and on applied voltage problems (the power coupling efficiency and materials analysis are beyond the scope of this study). In the RF-GDOES of nonconductive samples, a voltage drop develops inside the material. The voltage transfer coefficient is defined as the ratio between the peak voltage in front of the sample (facing the plasma) and the peak voltage applied to the back of the sample. In this work, we show that it is possible to increase the voltage transfer coefficient by increasing the capacitance of the sample. The capacitance of a given nonconductive material depends on its surface, its thickness and its permittivity. Increasing the voltage transfer coefficient permits higher power deposition in the plasma. This study is based on an electrical equivalent circuit for the discharge device, which takes into account the sample and reactor capacitances as well as the voltage probes used for the measurements. This circuit, when modeled by a commercial electrical circuit simulator, gives the voltage transfer coefficient as a function of the sample capacitance. Different approaches to increasing the sample capacitance and their influence on the voltage transfer coefficient are presented and related to the 750.4 nm argon line intensity, which is correlated to the electron density. PMID:16724217
Heat transfer coefficients in bubbly and slug flows under microgravity conditions
Rezkallah, K.S.; Rite, R.W.
1996-12-31
Experimental local heat transfer data were collected onboard NASA`s KC-135 reduced gravity aircraft for two-phase, air-water flow in vertical, upward, co-current flow through a 9.53 mm circular tube. It was found that in the bubbly and slug flow regimes (surface tension dominated regimes), reduced gravity has a tendency to lower the heat transfer coefficient by up to 50% at the lowest gas qualities. As the gas quality is increased (transition to annular flow), the difference between the 1-g and {micro}-g heat transfer coefficients is much less significant. Empirical correlations were developed in terms of the pertinent dimensionless groups; namely the superficial liquid Reynolds number, the Froude number, the Graetz number and the Morton number. The correlations predicted the experimental data within 10--25%, depending on the flow regime and the superficial gas Weber number.
NASA Astrophysics Data System (ADS)
Clifford, R. J.; Jones, T. V.; Dunnne, S. T.
1983-03-01
Techniques developed jointly by Rolls-Royce Bristol and Oxford University for determining detailed heat transfer distributions inside turbine blade and vane cooling passages are reviewed. Use is made of a low temperature phase change paint to map the heat flux distributions within models of the cooling passages; the paints change from an opaque coating to a clear liquid at a well-defined melting point. In this way the surface temperature history of a model subjected to transient convective heating is recorded. The heat transfer coefficient distribution is deduced from this history using a transient conduction analysis within the model. Results are presented on detailed heat transfer coefficient distributions within a variety of cooling passages; and data obtained from a comprehensive study of a typical engine multipass cooling geometry are examined.
Demsis, Anwar; Verma, Bhaskar; Prabhu, S V; Agrawal, Amit
2009-07-01
In this paper, the measurement of the heat transfer coefficient in rarefied gases is presented; these are among the first heat transfer measurements in the slip flow regime. The experimental setup is validated by comparing friction factor in the slip regime and heat transfer coefficient in the continuum regime. Experimental results suggest that the Nusselt number is a function of Reynolds and Knudsen numbers in the slip flow regime. The measured values for Nusselt numbers are smaller than that predicted by theoretical or simulation results, and can become a few orders of magnitude smaller than the theoretical values in the continuum regime. The results are repeatable and expected to be useful for further experimentation and modeling of flow in the slip and transition regimes.
NASA Astrophysics Data System (ADS)
Jun, Oh-Sung; Kim, Paul Y.
1994-02-01
The influence coefficients for undamped flexible rotors are analytically derived and then compared and discussed for various damping coefficients. The concept of the transfer matrix method is partially adapted in the formulation. Single-disk and single cylinder rotor models are used for one- and two-plane balancing models, respectively. The gyroscopic effect of the disk or cylinder, which has been included in the formulation, is proved important through a simplified example rotor model. Taking the gyroscopic effect into account when calculating the influence coefficient is especially important near the resonant and antiresonant frequencies of the rotor. The simplified model also shows that an increase in damping reduces the sharpness of magnitude curve of influence coefficients and smoothens the change of phase at around the resonant and antiresonant frequencies.
Vos, M.; Went, M. R.
2006-11-15
High-resolution measurements of 40-keV electrons scattered over 44.3 deg. from evaporated carbon films are presented. The observed width of the energy distribution of electrons scattered from carbon is significantly larger than the experimental energy resolution, and its position is shifted to lower energy. Measurements were done for transmission and reflection geometries for thin films with thicknesses varying from 90 A ring to 1400 A ring . The observed peak shape is largely independent of the thickness and measurement geometry. The peak shape deviates from Gaussian in all cases, in a way consistent with theories that describe these processes beyond the impulse approximation. The energy shift of the carbon peak is measured by evaporating a small amount of Au on these films. Separation of the Au and C peak is somewhat smaller than calculated assuming scattering from free C and Au atoms, but independent of measurement geometry. Finally spectra were measured from highly oriented pyrolytic graphite (HOPG) films. Now different widths are observed in reflection geometry and transmission geometry. This is attributed to the anisotropy of the motion of the C atoms in HOPG. Also the Au-C separation is slightly orientation dependent for HOPG. All observations agree at least semiquantitatively with neutron Compton scattering results, a related scattering experiment that studies neutron-atom collisions at similar momentum transfers.
Riad Suleiman
1999-10-01
The deuteron elastic structure functions, A(Q{sup 2}) and B(Q{sup 2}), have been extracted from cross section measurements of elastic electron-deuteron scattering in coincidence using the Continuous Electron Beam Accelerator and Hall A Facilities of Jefferson Laboratory. Incident electrons were scattered off a high-power cryogenic deuterium target. Scattered electrons and recoil deuterons were detected in the two High Resolution Spectrometers of Hall A. A(Q{sup 2}) was extracted from forward angle cross section measurements in the squared four-momentum transfer range 0.684 ≤ Q{sup 2} ≤ 5.90 (GeV/c){sup 2}. B(Q{sup 2}) was determined by means of a Rosenbluth separation in the range 0.684 ≤ Q{sup 2} ≤ 1.325 (GeV/c){sup 2}. The data are compared to theoretical models based on the impulse approximation with the inclusion of meson-exchange currents and to predictions of quark dimensional scaling and perturbative quantum chromodynamics. The results are expected to provide insights into the transition from meson-nucleon to quark-gluon descriptions of the nuclear two-body system.
NASA Technical Reports Server (NTRS)
Hodges, R. R., Jr.; Breig, E. L.
1991-01-01
The implications of a traditional assumption of exospheric physics, that collisions of hydrogen atoms and protons preferentially result in charge exchange with negligible momentum transfer are examined. Initially adopted as a necessary convenience to accommodate limited computer resources in exosphere model calculations, this approximation results in a direct transformation of the proton velocity distribution into a hot component of neutral hydrogen. With expanding computational facilities, the need for the approximation has passed. As the first step toward its replacement with a realistic, quantum mechanical model of the H - H(+) collision process, differential and cumulative cross sections were calculated for quantum elastic scattering of indistinguishable nuclei for a fine grid of encounter energies and scattering angles. These data are used to study the nature of ionosphere-exosphere coupling through H - H(+) collisions, and to demonstrate that the distribution of velocities of scattered H produced in the traditional exospheric charge exchange approximation, as well as that arising from an alternative, fluid dynamic approach, leads to unacceptable abundances of coronal atoms in long-term, highly elliptic trajectories.
The NEOTωIST mission (Near-Earth Object Transfer of angular momentum spin test)
NASA Astrophysics Data System (ADS)
Drube, Line; Harris, Alan W.; Engel, Kilian; Falke, Albert; Johann, Ulrich; Eggl, Siegfried; Cano, Juan L.; Ávila, Javier Martín; Schwartz, Stephen R.; Michel, Patrick
2016-10-01
We present a concept for a kinetic impactor demonstration mission, which intends to change the spin rate of a previously-visited asteroid, in this case 25143 Itokawa. The mission would determine the efficiency of momentum transfer during an impact, and help mature the technology required for a kinetic impactor mission, both of which are important precursors for a future space mission to deflect an asteroid by collisional means in an emergency situation. Most demonstration mission concepts to date are based on changing an asteroid's heliocentric orbit and require a reconnaissance spacecraft to measure the very small orbital perturbation due to the impact. Our concept is a low-cost alternative, requiring only a single launch. Taking Itokawa as an example, an estimate of the order of magnitude of the change in the spin period, δP, with such a mission results in δP of ~4 min (0.5%), which could be detectable by Earth-based observatories. Our preliminary study found that a mission concept in which an impactor produces a change in an asteroid's spin rate could provide valuable information for the assessment of the viability of the kinetic-impactor asteroid deflection concept. Furthermore, the data gained from the mission would be of great benefit for our understanding of the collisional evolution of asteroids and the physics behind crater and ejecta-cloud development.
Determination of drying kinetics and convective heat transfer coefficients of ginger slices
NASA Astrophysics Data System (ADS)
Akpinar, Ebru Kavak; Toraman, Seda
2016-10-01
In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient ( R 2), reduced Chi-square ( χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick's diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10-10 to 6.977 × 10-10 m2/s and 19.313-22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33-2.11 W/m2 °C.
Controlled random search technique for estimation of convective heat transfer coefficient
NASA Astrophysics Data System (ADS)
Mehta, R. C.; Tiwari, S. B.
2007-09-01
This paper is concerned with a method for solving inverse heat conduction problem. The method is based on the controlled random search (CRS) technique in conjunction with modified Newton-Raphson method. The random search procedure does not need the computation of derivative of the function to be evaluated. Therefore, it is independent of the calculation of the sensitivity coefficient for nonlinear parameter estimation. The algorithm does not depend on the future-temperature information and can predict convective heat transfer coefficient with random errors in the input temperature data. The technique is first validated against an analytical solution of heat conduction equation for a typical rocket nozzle. Comparison with an earlier analysis of inverse heat conduction problem of a similar experiment shows that the present method provides solutions, which are fully consistent with the earlier results. Once validated, the technique is used to investigate another estimation of heat transfer coefficient for an experiment of short duration, high heating rate, and employing indepth temperature measurement. The CRS procedure, in conjunction with modified Newton-Raphson method, is quite useful in estimating the value of the convective heat-transfer coefficient from the measured transient temperature data on the outer surface or imbedded thermocouple inside the rocket nozzle. Some practical examples are illustrated, which demonstrate the stability and accuracy of the method to predict the surface heat flux.
Determination of the heat transfer coefficient from IRT measurement data using the Trefftz method
NASA Astrophysics Data System (ADS)
Maciejewska, Beata; Strąk, Kinga; Piasecka, Magdalena
2016-03-01
The paper presents the method of heat transfer coefficient determination for boiling research during FC-72 flow in the minichannels, each 1.7 mm deep, 24 mm wide and 360 mm long. The heating element was the thin foil, enhanced on the side which comes into contact with fluid in the minichannels. Local values of the heat transfer coefficient were calculated from the Robin boundary condition. The foil temperature distribution and the derivative of the foil temperature were obtained by solving the two-dimensional inverse heat conduction problem, due to measurements obtained by IRT. Calculations was carried out by the method based on the approximation of the solution of the problem using a linear combination of Trefftz functions. The basic property of this functions is they satisfy the governing equation. Unknown coefficients of linear combination of Trefftz functions are calculated from the minimization of the functional that expresses the mean square error of the approximate solution on the boundary. The results presented as IR thermographs, two-phase flow structure images and the heat transfer coefficient as a function of the distance from the channel inlet, were analyzed.
Determination of drying kinetics and convective heat transfer coefficients of ginger slices
NASA Astrophysics Data System (ADS)
Akpinar, Ebru Kavak; Toraman, Seda
2015-12-01
In the present work, the effects of some parametric values on convective heat transfer coefficients and the thin layer drying process of ginger slices were investigated. Drying was done in the laboratory by using cyclone type convective dryer. The drying air temperature was varied as 40, 50, 60 and 70 °C and the air velocity is 0.8, 1.5 and 3 m/s. All drying experiments had only falling rate period. The drying data were fitted to the twelve mathematical models and performance of these models was investigated by comparing the determination of coefficient (R 2), reduced Chi-square (χ 2) and root mean square error between the observed and predicted moisture ratios. The effective moisture diffusivity and activation energy were calculated using an infinite series solution of Fick's diffusion equation. The average effective moisture diffusivity values and activation energy values varied from 2.807 × 10-10 to 6.977 × 10-10 m2/s and 19.313-22.722 kJ/mol over the drying air temperature and velocity range, respectively. Experimental data was used to evaluate the values of constants in Nusselt number expression by using linear regression analysis and consequently, convective heat transfer coefficients were determined in forced convection mode. Convective heat transfer coefficient of ginger slices showed changes in ranges 0.33-2.11 W/m2 °C.
Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element
NASA Astrophysics Data System (ADS)
Moreau, P.; César de Sá, J.; Grégoire, S.; Lochegnies, D.
2007-05-01
Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication…). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.
Integration Of Heat Transfer Coefficient In Glass Forming Modeling With Special Interface Element
Moreau, P.; Gregoire, S.; Lochegnies, D.; Cesar de Sa, J.
2007-05-17
Numerical modeling of the glass forming processes requires the accurate knowledge of the heat exchange between the glass and the forming tools. A laboratory testing is developed to determine the evolution of the heat transfer coefficient in different glass/mould contact conditions (contact pressure, temperature, lubrication...). In this paper, trials are performed to determine heat transfer coefficient evolutions in experimental conditions close to the industrial blow-and-blow process conditions. In parallel of this work, a special interface element is implemented in a commercial Finite Element code in order to deal with heat transfer between glass and mould for non-meshing meshes and evolutive contact. This special interface element, implemented by using user subroutines, permits to introduce the previous heat transfer coefficient evolutions in the numerical modelings at the glass/mould interface in function of the local temperatures, contact pressures, contact time and kind of lubrication. The blow-and-blow forming simulation of a perfume bottle is finally performed to assess the special interface element performance.
NASA Technical Reports Server (NTRS)
Balakotaiah, V.
1996-01-01
We examined the effect of the gas flow on the liquid film when the gas flows in the countercurrent direction in a vertical pipe at normal gravity conditions. The most dramatic effect of the simultaneous flow of gas and liquid in pipes is the greatly increased transport rates of heat, mass, and momentum. In practical situations this enhancement can be a benefit or it can result in serious operational problems. For example, gas-liquid flow always results in substantially higher pressure drop and this is usually undesirable. However, much higher heat transfer coefficients can be expected and this can obviously be of benefit for purposes of design. Unfortunately, designers know so little of the behavior of such two phase systems and as a result these advantages are not utilized. Due to the complexity of the second order boundary model as well as the fact that the pressure variation across the film is small compared to the imposed gas phase pressure, the countercurrent gas flow affect was studied for the standard boundary layer model. A different stream function that can compensate the shear stress affect was developed and this stream function also can predict periodic solutions. The discretized model equations were transformed to a traveling wave coordinate system. A stability analysis of these sets of equations showed the presence of a Hopf bifurcation for certain values of the traveling wave velocity and the shear stress. The Hopf celerity was increased due to the countercurrent shear. For low flow rate the increases of celerity are more than for the high flow rate, which was also observed in experiments. Numerical integration of a traveling wave simplification of the model also predicts the existence of chaotic large amplitude, nonperiodic waves as observed in the experiments. The film thickness was increased by the shear.
Dimethylsulfide gas transfer coefficients from algal blooms in the Southern Ocean
NASA Astrophysics Data System (ADS)
Bell, T. G.; De Bruyn, W.; Marandino, C. A.; Miller, S. D.; Law, C. S.; Smith, M. J.; Saltzman, E. S.
2015-02-01
Air-sea dimethylsulfide (DMS) fluxes and bulk air-sea gradients were measured over the Southern Ocean in February-March 2012 during the Surface Ocean Aerosol Production (SOAP) study. The cruise encountered three distinct phytoplankton bloom regions, consisting of two blooms with moderate DMS levels, and a high biomass, dinoflagellate-dominated bloom with high seawater DMS levels (> 15 nM). Gas transfer coefficients were considerably scattered at wind speeds above 5 m s-1. Bin averaging the data resulted in a linear relationship between wind speed and mean gas transfer velocity consistent with that previously observed. However, the wind-speed-binned gas transfer data distribution at all wind speeds is positively skewed. The flux and seawater DMS distributions were also positively skewed, which suggests that eddy covariance-derived gas transfer velocities are consistently influenced by additional, log-normal noise. A flux footprint analysis was conducted during a transect into the prevailing wind and through elevated DMS levels in the dinoflagellate bloom. Accounting for the temporal/spatial separation between flux and seawater concentration significantly reduces the scatter in computed transfer velocity. The SOAP gas transfer velocity data show no obvious modification of the gas transfer-wind speed relationship by biological activity or waves. This study highlights the challenges associated with eddy covariance gas transfer measurements in biologically active and heterogeneous bloom environments.
DMS gas transfer coefficients from algal blooms in the Southern Ocean
NASA Astrophysics Data System (ADS)
Bell, T. G.; De Bruyn, W.; Marandino, C. A.; Miller, S. D.; Law, C. S.; Smith, M. J.; Saltzman, E. S.
2014-11-01
Air/sea dimethylsulfide (DMS) fluxes and bulk air/sea gradients were measured over the Southern Ocean in February/March 2012 during the Surface Ocean Aerosol Production (SOAP) study. The cruise encountered three distinct phytoplankton bloom regions, consisting of two blooms with moderate DMS levels, and a high biomass, dinoflagellate-dominated bloom with high seawater DMS levels (>15 nM). Gas transfer coefficients were considerably scattered at wind speeds above 5 m s-1. Bin averaging the data resulted in a linear relationship between wind speed and mean gas transfer velocity consistent with that previously observed. However, the wind speed-binned gas transfer data distribution at all wind speeds is positively skewed. The flux and seawater DMS distributions were also positively skewed, which suggests that eddy covariance-derived gas transfer velocities are consistently influenced by additional, log-normal noise. A~flux footprint analysis was conducted during a transect into the prevailing wind and through elevated DMS levels in the dinoflagellate bloom. Accounting for the temporal/spatial separation between flux and seawater concentration significantly reduces the scatter in computed transfer velocity. The SOAP gas transfer velocity data shows no obvious modification of the gas transfer-wind speed relationship by biological activity or waves. This study highlights the challenges associated with eddy covariance gas transfer measurements in biologically active and heterogeneous bloom environments.
Ludlow, Michelle K; Soudackov, Alexander V; Hammes-Schiffer, Sharon
2010-02-01
Electrochemical proton-coupled electron transfer of an osmium aquo complex attached to a self-assembled monolayer on a gold electrode is studied with a recently developed theoretical formulation. The calculated hydrogen/deuterium kinetic isotope effect for the standard rate constant, the cathodic transfer coefficient at zero overpotential, and the Tafel plot are in excellent agreement with experimental data. The input quantities to the heterogeneous rate constant expressions were calculated with density functional theory in conjunction with dielectric continuum models, and no parameters were fit to experimental data. The theoretical calculations indicate that the asymmetry of the Tafel plot and the deviation of the transfer coefficient at zero overpotential from the standard value of one-half arise from the change in the equilibrium proton donor-acceptor distance upon electron transfer. The direction of the asymmetry and deviation from one-half is determined by the sign of this distance change, and the magnitude of these effects is determined by the magnitude of this distance change, as well as the reorganization energy and the distance dependence of the overlap between the initial and final proton vibrational wave functions. This theory provides experimentally testable predictions for the impact of specific system properties on the qualitative behavior of the Tafel plots. PMID:20067257
Single-phase ambient and cryogenic temperature heat transfer coefficients in microchannels
NASA Astrophysics Data System (ADS)
Baek, S.; Bradley, P. E.
2015-12-01
Micro-scaling cryogenic refrigerators, in particular the Joule-Thomson (JT) variety require very good information about heat transfer characteristics of the refrigerants flowing in the microchannels for optimal design and performance. The extremely low Reynolds flow is present in a micro JT cryocooler, the heat transfer characteristics at these conditions require investigation. There are numerous studies regarding heat transfer coefficient measurements of liquid flow in microchannels at/near ambient temperature and high Reynolds flow (Re>2000), that agree well with the conventional correlations. However, results from previous studies of gaseous flow in microchannels at low Reynolds flow (Re<1000) disagree with conventional theory. Moreover, the studies performed at cryogenic temperatures are quite limited in number. In this paper, the single-phase heat transfer coefficients and friction factors for nitrogen are measured at ambient and cryogenic temperatures. The hydraulic diameters for this study are 60, 110 and 180 μm for circular microchannels. The Reynolds numbers varied from a very low value of 10 to 3000. The measured friction factors are comparable to those in macro-scale tubes. The experimental results of the heat transfer indicate that Nusselt numbers derived from measurements are significantly affected by axial conduction at low Reynolds flow (Re<500). The Nusselt numbers at high Reynolds flow (Re>1000) follow conventional theory. The detailed experiment, procedure, and measured results are presented in this paper and discussed regarding deviation from ideal theory at low Reynolds flow.
Fukui, Toru; Kataoka, Yoshiyuki; Hatamiya, Shigeo
1990-01-01
New concepts with passive safety systems that use no active compounds, such as pumps, have been recently developed for next-generation nuclear power plants. In these concepts, several ideas and their combination of passive components were adopted for emergency core cooling and residual heat removal systems. For the residual heat removal system, utilization of natural circulation heat transfer in water pools was proposed as a passive containment cooling system (PCCS), which removes decay heat from the primary containment vessel (PCV) during loss-of-coolant accidents (LOCAs). This system consists of a suppression pool (S/P) and an outer pool (O/P), which are set adjacently inside and outside of the steel PCV wall. The core decay heat during LOCA is released through a break as steam and is led into the S/P. The injected steam condenses there, resulting a pool temperature rise. The adsorbed heat in the S/P is transferred to the O/P by convection in both pools and thermal conduction through the steel PCV wall. The heat transferred to the O/P is finally released to the atmosphere by vaporization of the O/P water. Estimation of the convectional heat transfer coefficients in both pools is necessary to predict the heat removal capability in this system precisely. The heat transfer coefficients measured in this study are useful for the design of the next-generation nuclear reactor as the fundamental thermal-hydraulic data in the primary containment vessel with the outer pool.
On the influence of the surface heat transfer coefficient on wet underwater welds
Hamann, R.; Mahrenholtz, O.
1994-12-31
This paper deals with the influence of the surface heat transfer on the temperature distribution during wet underwater welding. A model for the heat-transfer-coefficient on a horizontal plate considering different effects is presented. The influence of undercooled boiling, surface orientation and heater material on the temperature course are discussed. Welding experiments were performed on low carbon steel plates in a shallow water basin using Plasma-MIG underwater welding technique. For the numerical simulation of the welding process a new welding model has been developed for the Plasma-MIG underwater welding technique. The temperature problem is solved using finite element method. The numerical and experimental data are compared.
NASA Technical Reports Server (NTRS)
Chung, S.
1973-01-01
Heat transfer phenomena of rarefied gas flows is discussed based on a literature survey of analytical and experimental rarefied gas dynamics. Subsonic flows are emphasized for the purposes of meteorological thermometry in the high atmosphere. The heat transfer coefficients for three basic geometries are given in the regimes of free molecular flow, transition flow, slip flow, and continuum flow. Different types of heat phenomena, and the analysis of theoretical and experimental data are presented. The uncertainties calculated from the interpolation rule compared with the available experimental data are discussed. The recovery factor for each geometry in subsonic rarefied flows is also given.
Gallo, J M; Lam, F C; Perrier, D G
1991-03-01
In vitro and in vivo techniques have been utilized to estimate mass transfer coefficients for physiological pharmacokinetic models. No single method has been adopted for estimating this parameter, in part, due to the different model structures with which this parameter may be associated. A specific method has been derived to calculate mass transfer coefficients for non-eliminating membrane-limited tissue compartments. The present method is based on observed concentration-time data, and requires the calculation of the areas under the zero and first moment curves for plasma, and the first moment curve for the tissue. A Monte Carlo simulation technique was used to determine the percentage biases of the method based on a published model for streptozoticin and adriamycin. For the latter model, the method was compared to a non-linear regression parameter estimation technique. PMID:2031994
NASA Technical Reports Server (NTRS)
Masiulaniec, K. Cyril; Vanfossen, G. James, Jr.; Dewitt, Kenneth J.; Dukhan, Nihad
1995-01-01
A technique was developed to cast frozen ice shapes that had been grown on a metal surface. This technique was applied to a series of ice shapes that were grown in the NASA Lewis Icing Research Tunnel on flat plates. Nine flat plates, 18 inches square, were obtained from which aluminum castings were made that gave good ice shape characterizations. Test strips taken from these plates were outfitted with heat flux gages, such that when placed in a dry wind tunnel, can be used to experimentally map out the convective heat transfer coefficient in the direction of flow from the roughened surfaces. The effects on the heat transfer coefficient for both parallel and accelerating flow will be studied. The smooth plate model verification baseline data as well as one ice roughened test case are presented.
Nonlinear inverse problem for the estimation of time-and-space dependent heat transfer coefficients
NASA Astrophysics Data System (ADS)
Osman, A. M.; Beck, J. V.
1987-01-01
The aim of this paper is to describe a method and an algorithm for the direct estimation of the time-and-space dependent heat transfer coefficients from transient temperature data measured at approximate points inside a heat conducting solid. This inverse estimation problem is called herein the inverse heat transfer coefficient problem. An application considered in the present is the quenching of a solid in a liquid. The solution method used here is an extension of the sequential temperature future-information method introduced by Beck for solving the inverse heat conduction problem. The finite-difference method, based on the control volume approach, was used for the discretization of the direct heat conduction problem. Numerical results show that the proposed method is accurate and efficient.
Estimation of heat-transfer coefficients, the upward heat flow, and evaporation in a solar still
Sharma, V.B.; Mullick, S.C. . Centre of Energy Studies)
1991-02-01
The present work enables prediction of the performance of a solar still through simple calculations. Estimation of the temperature of the glass cover by an empirical relation developed in this work permits calculation of the heat-transfer coefficients, the upward heat flow, and evaporation. Since some of the heat-transfer coefficients vary substantially and nonlinearly with temperature, the empirical relation developed for glass cover temperature is based on an approximate solution of the heat balance equation. Hence, the overall upward heat flow factor is obtained with a maximum absolute error of three percent compared to the value obtained through a numerical solution of the heat balance equation along with the relations for vapor pressure and latent heat. The fraction of upward heat flow utilized for evaporation is determined with a maximum absolute error of 0.5 percent. The range of variables covered is 30{degrees}C to 80{degrees}C in water temperature, 5W/m{sup 2}K to 40W/M{sup 2}K in wind heat-transfer coefficient, and 5{degrees}C to 40{degrees}C in ambient temperature.
Adiabatic Effectiveness and Heat Transfer Coefficient on a Film-Cooled Rotating Blade
NASA Technical Reports Server (NTRS)
Garg, Vijay K.
1997-01-01
three-dimensional Navier-Stokes code has been used to compute the adiabatic effectiveness and heat transfer coefficient on a rotating film-cooled turbine blade. The blade chosen is the United Technologies Research Center(UTRC) rotor with five film-cooling rows containing 83 holes, including three rows on the shower head with 49 holes, covering about 86% of the blade span. The mainstream is akin to that under real engine conditions with stagnation temperature 1900 K and stagnation pressure 3 MPa. The blade speed is taken to be 5200 rpm. The adiabatic effectiveness is higher for a rotating blade as compared to that for a stationary blade. Also, the direction of coolant injection from the shower-head holes considerably affects the effectiveness and heat transfer coefficient values on both the pressure and suction surfaces. In all cases the heat transfer coefficient and adiabatic effectiveness are highly three-dimensional in the vicinity of holes but tend to become two-dimensional far downstream.
NASA Astrophysics Data System (ADS)
Mirmanto, M.
2016-01-01
Experiments to investigate local pressure distribution and local heat transfer coefficients during flow boiling of water in a microchannel were performed. The hydraulic diameter of the channel was 0.635 mm. The nominal mass fluxes used were varied from 200 to 700 kg/m2 s and heat fluxes ranging from 171 to 685 kW/m2 were applied. An inlet fluid temperature of 98 °C and pressure of 125 kPa were maintained at the microchannel entrance. There were six pressure tappings inserted into the channel to measure the local pressures and six thermocouple inserted into the channel block with equally distances to measure the wall local temperatures. The local pressure measurements during flow boiling show a non linear line connecting each local pressure, especially at higher heat fluxes or pressure drops. The non linear local pressure influences the value of the estimated local heat transfer coefficient. The effects of mass flux and heat flux on local heat transfer coefficient are also discussed.
Transfer coefficients of selected radionuclides to animal products. II. Hen eggs and meat
Ennis, M.E. Jr.; Ward, G.M.; Johnson, J.E.; Boamah, K.N.
1988-02-01
Transfer coefficients to eggs and meat were determined after acute oral doses of /sup 95m/Tc, /sup 99/Mo, /sup 123m/Te, /sup 133/Ba, /sup 131/I, /sup 95/Zr and /sup 95/Nb to laying hens. The mean values (in units of d kg-1) to eggs and hen meat were, respectively, 3.0 and 0.03 for Tc, 0.87 and 0.18 for Mo, 5.1 and 0.60 for Te, 0.87 and 9.2 x 10(-3) for Ba, 3.2 and 0.01 for I, 2 x 10(-4) and 6 x 10(-5) for Zr, and 1 x 10(-3) and 3 x 10(-4) for Nb. For the same radionuclides administered in the same chemical form, transfer coefficients for eggs are about one to two orders of magnitude higher than for cow's milk, while the transfer coefficients for hen meat are several orders of magnitude higher than for beef.
Measurements of the deuteron and proton magnetic form factors at large momentum transfers
Bosted, P.E.; Katramatou, A.T.; Arnold, R.G.; Benton, D.; Clogher, L.; DeChambrier, G.; Lambert, J.; Lung, A.; Petratos, G.G.; Rahbar, A.; Rock, S.E.; Szalata, Z.M. ); Debebe, B.; Frodyma, M.; Hicks, R.S.; Hotta, A.; Peterson, G.A. ); Gearhart, R.A. ); Alster, J.; Lichtenstadt, J. ); Dietrich, F.; van Bibber, K. )
1990-07-01
Measurements of the deuteron elastic magnetic structure function {ital B}({ital Q}{sup 2}) are reported at squared four-momentum transfer values 1.20{le}{ital Q}{sup 2}{le}2.77 (GeV/{ital c}){sup 2}. Also reported are values for the proton magnetic form factor {ital G}{sub {ital M}{ital p}}({ital Q}{sup 2}) at 11 {ital Q}{sup 2} values between 0.49 and 1.75 (GeV/{ital c}){sup 2}. The data were obtained using an electron beam of 0.5 to 1.3 GeV. Electrons backscattered near 180{degree} were detected in coincidence with deuterons or protons recoiling near 0{degree} in a large solid-angle double-arm spectrometer system. The data for {ital B}({ital Q}{sup 2}) are found to decrease rapidly from {ital Q}{sup 2}=1.2 to 2 (GeV/{ital c}){sup 2}, and then rise to a secondary maximum around {ital Q}{sup 2}=2.5 (GeV/{ital c}){sup 2}. Reasonable agreement is found with several different models, including those in the relativistic impulse approximation, nonrelativistic calculations that include meson-exchange currents, isobar configurations, and six-quark configurations, and one calculation based on the Skyrme model. All calculations are very sensitive to the choice of deuteron wave function and nucleon form factor parametrization. The data for {ital G}{sub {ital M}{ital p}}({ital Q}{sup 2}) are in good agreement with the empirical dipole fit.
NASA Technical Reports Server (NTRS)
Register, D. F.; Trajmar, S.
1984-01-01
Relative elastic-scattering differential cross sections were measured in the 5-100-eV impact energy and 10-145 deg angular ranges. Normalization of these cross sections was achieved by utilizing accurate total electron-scattering cross sections. A phase-shift analysis of the angular distributions in terms of real phase shifts has been carried out. From the differential cross sections, momentum-transfer cross sections were obtained and the values of the critical energy and angle were established (associated with the lowest value of the differential cross section) as 62.5 + or - 2.5 eV and 101.7 deg + or - 1.5 deg, respectively. The present phase shifts, the critical parameters, and differential, integral, and momentum-transfer cross sections are compared to previous experimental and theoretical results. The error associated with the present data is about 10 percent.
Kamyshkov, Yuri; Tithof, Jeffrey; Vysotsky, Mikhail
2008-12-01
We found that spin-one new light particle exchanges are strongly bounded by high-energy and small momentum transfer np elastic scattering data; the analogous bound for a scalar particle is considerably weaker, while for a pseudoscalar particle no bounds can be set. These bounds are compared with the bounds extracted from low-energy n-Pb scattering experiments and from the bounds of {pi}{sup 0} and K{sup +} meson decays.
NASA Astrophysics Data System (ADS)
Mobile, Michael; Widdowson, Mark; Stewart, Lloyd; Nyman, Jennifer; Deeb, Rula; Kavanaugh, Michael; Mercer, James; Gallagher, Daniel
2016-04-01
Better estimates of non-aqueous phase liquid (NAPL) mass, its persistence into the future, and the potential impact of source reduction are critical needs for determining the optimal path to clean up sites impacted by NAPLs. One impediment to constraining time estimates of source depletion is the uncertainty in the rate of mass transfer between NAPLs and groundwater. In this study, an innovative field test is demonstrated for the purpose of quantifying field-scale NAPL mass transfer coefficients (klN) within a source zone of a fuel-contaminated site. Initial evaluation of the test concept using a numerical model revealed that the aqueous phase concentration response to the injection of clean groundwater within a source zone was a function of NAPL mass transfer. Under rate limited conditions, NAPL dissolution together with the injection flow rate and the radial distance to monitoring points directly controlled time of travel. Concentration responses observed in the field test were consistent with the hypothetical model results allowing field-scale NAPL mass transfer coefficients to be quantified. Site models for groundwater flow and solute transport were systematically calibrated and utilized for data analysis. Results show klN for benzene varied from 0.022 to 0.60 d- 1. Variability in results was attributed to a highly heterogeneous horizon consisting of layered media of varying physical properties.
Mass transfer coefficient in ginger oil extraction by microwave hydrotropic solution
NASA Astrophysics Data System (ADS)
Handayani, Dwi; Ikhsan, Diyono; Yulianto, Mohamad Endy; Dwisukma, Mandy Ayulia
2015-12-01
This research aims to obtain mass transfer coefficient data on the extraction of ginger oil using microwave hydrotropic solvent as an alternative to increase zingiberene. The innovation of this study is extraction with microwave heater and hydrotropic solvent,which able to shift the phase equilibrium, and the increasing rate of the extraction process and to improve the content of ginger oil zingiberene. The experiment was conducted at the Laboratory of Separation Techniques at Chemical Engineering Department of Diponegoro University. The research activities carried out in two stages, namely experimental and modeling work. Preparation of the model postulated, then lowered to obtain equations that were tested and validated using data obtained from experimental. Measurement of experimental data was performed using microwave power (300 W), extraction temperature of 90 ° C and the independent variable, i.e.: type of hydrotropic, the volume of solvent and concentration in order, to obtain zingiberen levels as a function of time. Measured data was used as a tool to validate the postulation, in order to obtain validation of models and empirical equations. The results showed that the mass transfer coefficient (Kla) on zingiberene mass transfer models ginger oil extraction at various hydrotropic solution attained more 14 ± 2 Kla value than its reported on the extraction with electric heating. The larger value of Kla, the faster rate of mass transfer on the extraction process. To obtain the same yields, the microwave-assisted extraction required one twelfth time shorter.
Mobile, Michael; Widdowson, Mark; Stewart, Lloyd; Nyman, Jennifer; Deeb, Rula; Kavanaugh, Michael; Mercer, James; Gallagher, Daniel
2016-04-01
Better estimates of non-aqueous phase liquid (NAPL) mass, its persistence into the future, and the potential impact of source reduction are critical needs for determining the optimal path to clean up sites impacted by NAPLs. One impediment to constraining time estimates of source depletion is the uncertainty in the rate of mass transfer between NAPLs and groundwater. In this study, an innovative field test is demonstrated for the purpose of quantifying field-scale NAPL mass transfer coefficients (kl(N)) within a source zone of a fuel-contaminated site. Initial evaluation of the test concept using a numerical model revealed that the aqueous phase concentration response to the injection of clean groundwater within a source zone was a function of NAPL mass transfer. Under rate limited conditions, NAPL dissolution together with the injection flow rate and the radial distance to monitoring points directly controlled time of travel. Concentration responses observed in the field test were consistent with the hypothetical model results allowing field-scale NAPL mass transfer coefficients to be quantified. Site models for groundwater flow and solute transport were systematically calibrated and utilized for data analysis. Results show kl(N) for benzene varied from 0.022 to 0.60d(-1). Variability in results was attributed to a highly heterogeneous horizon consisting of layered media of varying physical properties.
NASA Astrophysics Data System (ADS)
Kruijff, M.; van der Heide, E. J.
2008-08-01
This paper highlights the design, qualification and mission performance of a comprehensive tethered momentum transfer technology on ESA's second Young Engineers' Satellite (YES2), aiming specifically on the tether deployer. The deployer is designed with a broad range of near-term tether applications in mind and therefore opens up novel possibilities e.g. small satellite missions. The system contains the following critical elements. The tether, including features to enhance safety, wound up in controlled manner onto a spool core; optical deployment sensors and electronics; a "barberpole" friction brake controlled by a stepper motor; and a triple cutter system. A spring-based ejection system and, on the subsatellite side, a timer/release system facilitate the stagings required for accurate tethered momentum transfer. In addition a small, 6 kg re-entry capsule was developed with 1 kg scientific payload and parachute system. On September 25th, 2007, YES2 deployed a 32 km tether in orbit and gathered a wealth of data. This paper aims to provide an overview of the design, qualification and flight performance of the tether deployer hardware. This performance is compared to the design and from this can be concluded a suitability of the hardware for tether deployment and tethered momentum transfer.
NASA Astrophysics Data System (ADS)
Guzey, V.; Zhalov, M.
2014-02-01
Based on accurate calculations of the flux of equivalent photons of the proton and heavy nuclei and the pQCD framework for the gluon distribution in the proton and nuclei, we analyze the rapidity and momentum transfer distributions of coherent J/ψ photoproduction in ultraperipheral proton-Pb collisions at the LHC. We demonstrate that unlike the case of proton-proton UPCs marred by certain theoretical uncertainties and experimental limitations, after a cut excluding the region of small momentum transfers, ultraperipheral proton-Pb collisions offer a clean way to study the gluon distribution in the proton down to x ≈ 10-5. Our analysis of the momentum transfer distributions shows that an interplay of J/ψ production by low-energy photons on the nucleus and by high-energy photons on the proton in proton-Pb UPCs can result in some excess of events at small p t in a definite region of the rapidity y.
NASA Technical Reports Server (NTRS)
Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.
1989-01-01
This paper examines a parameterization of a quasi-geostrophic eddy transport that takes into account the time variation of eddy transfer coefficients according to Green's (1970) theory. It was found that, in the original eddy transfer relationship of Green, connecting the integral of the northward eddy entropy flux through midlatitudes with the second power of the difference in 500-mb entropy across the region of baroclinic activity, a value of 4 for the exponent is obtained when the temperature gradients at 500 mb are used. When the gradients at 1000 mb are used, an exponent of 1.5 is obtained. The differences in the powers in the eddy transfer relation were explored in a two-level zonally averaged model. It was found that an appropriate choice of power may be of special importance if the model is devised to simulate the seasonal climate cycle or to test astronomical changes inducing different seasonalities.
Hong, ZhenYu; Zhang, Jie; Drinkwater, Bruce W
2015-05-29
We observe distinct regimes of orbital angular momentum (OAM) transfer from two-dimensional Bessel-shaped acoustic vortices to matter. In a homogeneous diphasic mixture of microparticles and water, slow swirling about the vortex axis is seen. This effect is driven by the absorption of OAM across the mixture, the motion following the OAM density distribution. Larger particles are formed into clusters by the acoustic radiation force, making the mixture nonhomogeneous. Here, the OAM transfer to the microparticle clusters dominates and they spin at high speeds entraining the surrounding fluid. PMID:26066437
Goemans, M.G.E.; Gloyna, E.F.
1996-10-01
The potential of sub- and supercritical water as extraction solvents has been demonstrated for the (reactive) extraction of coals, used car tires, organic species from residual aqueous solutions, and class selective extraction of organic pollutants with different polarities from solids. In addition, the potential of extraction of coal with supercritical aqueous solutions has been studied. However, physical transport in water at elevated temperature and pressures- and their impact on heterogenous reactions and (reactive) extraction -are not adequately understood. This situation is largely due to the limited data that is available for diffusion in high temperature, high pressure water mixture. Only the molecular diffusion of Iodine ions and hydroquinone in near-critical subcritical water and the self diffusion of coefficient of compressed supercritical water have been reported. In this paper, we present molecular diffusion coefficients of benzophenone, acetone, naphthalene, and anthracene in water at infinite dilution. Pressures ranged from 250 to 500 bar at temperatures ranging from 50{degrees}C to 500{degrees}C resulting in water densities ranging from 1000 to 150 kg/m{sup 3}. Diffusion coefficients were determined by the Taylor-Aris dispersion technique. The effects of increased diffusion on the mass transfer coefficients for emulsions and packed beds were quantified. Molecular division coefficients were 10 to 20 times faster in supercritical water than in water at ambient conditions. Experimental results were correlated with hydrodynamic and kinetic theory. This study and results to be published elsewhere show that diffusion-limited conditions are much more likely to be encountered in supercritical water than is commonly acknowledged.
NASA Astrophysics Data System (ADS)
Wang, Z.; Ireland, P. T.; Jones, T. V.
1995-04-01
The heat transfer coefficient over the surface of a pedestal with fillet radii has been measured using thermochromic liquid crystals and the transient heat transfer method. The tests were performed at engine representative Reynolds numbers for a geometry typical of those used in turbine blade cooling systems. The heat conduction process that occurs in the engine was subsequently modeled numerically with a finite element discretization of the solid pedestal. The measured heat transfer coefficients were used to derive the exact boundary conditions applicable to the engine. The temperature field within the pedestal, calculated using the correct heat transfer coefficient distribution, is compared to that calculated using an area-averaged heat transfer coefficient. Metal temperature differences of 90 K are predicted across the blade wall.
A model for calculating heat transfer coefficient concerning ethanol-water mixtures condensation
NASA Astrophysics Data System (ADS)
Wang, J. S.; Yan, J. J.; Hu, S. H.; Yang, Y. S.
2010-03-01
The attempt of the author in this research is made to calculate a heat transfer coefficient (HTC) by combining the filmwise theory with the dropwise notion for ethanol-water mixtures condensation. A new model, including ethanol concentration, vapor pressure and velocity, is developed by introducing a characteristic coefficient to combine the two mentioned-above theories. Under different concentration, pressure and velocity, the calculation is in comparison with experiment. It turns out that the calculation value is in good agreement with the experimental result; the maximal error is within ±30.1%. In addition, the model is applied to calculate related experiment in other literature and the values obtained agree well with results in reference.
NASA Astrophysics Data System (ADS)
Gladden, H. J.; Proctor, M. P.
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.
NASA Technical Reports Server (NTRS)
Gladden, H. J.; Proctor, M. P.
1985-01-01
A transient technique was used to measure heat transfer coefficients on stator airfoils in a high-temperature annular cascade at real engine conditions. The transient response of thin film thermocouples on the airfoil surface to step changes in the gas stream temperature was used to determine these coefficients. In addition, gardon gages and paired thermocouples were also utilized to measure heat flux on the airfoil pressure surface at steady state conditions. The tests were conducted at exit gas stream Reynolds numbers of one-half to 1.9 million based on true chord. The results from the transient technique show good comparison with the steady-state results in both trend and magnitude. In addition, comparison is made with the STAN5 boundary layer code and shows good comparison with the trends. However, the magnitude of the experimental data is consistently higher than the analysis.
NASA Astrophysics Data System (ADS)
Chelkowski, Szczepan; Bandrauk, André D.; Corkum, Paul B.
2015-11-01
In most models and theoretical calculations describing multiphoton ionization by infrared light, the dipole approximation is used. This is equivalent to setting the very small photon momentum to zero. Using numerical solutions of the two-dimensional (2-D) time-dependent Schrödinger equation for one electron (H-like) systems, we show that, for linear polarization, the radiation pressure on photoelectrons is very sensitive to the details of the ionization mechanism. The directly ionized photoelectrons, those that never recollide with the parent ion, are driven in the direction of the laser photon momentum, whereas a fraction of slower photoelectrons are pushed in the opposite direction, leading to the counterintuitive shifts observed in recent experiments [Phys. Rev. Lett. 113, 243001 (2014), 10.1103/PhysRevLett.113.243001]. This complex response is due to the interplay between the Lorentz force and the Coulomb attraction from the ion. On average, however, the photoelectron momentum is in the direction of the photon momentum as in the case of circular polarization. The influence of the photon momentum is shown to be discernible in the holographic patterns of time-resolved atomic and molecular holography with photoelectrons, thus suggesting a new research subject in multiphoton ionization.
O(+) acceleration due to resistive momentum transfer in the auroral field line plasma
NASA Technical Reports Server (NTRS)
Mitchell, H. G., Jr.; Palmadesso, P. J.
1984-01-01
An analytical model is defined to demonstrate that parallel acceleration of an O(+) ion beam in the ionosphere can occur naturally due to the presence of a quasi-static parallel electric field. Momentum equations are defined for friction between hydrogen ions and electrons, which produces a quasi-static electric field. The field can accelerate ions, e.g., the O(+) ions, which do not participate in the frictional momentum exchange. The conditions are shown to be applicable to the auroral field line plasma if a current is present along the magnetic field. A simulation performed with the equations shows that the field line plasma exhibits dynamic behavior after a field-aligned current appears. The resulting momentum gain by O(+) ions can be sufficient for causing a potential drop of several kilovolts along the field line.
Surface heat transfer coefficient, heat efficiency, and temperature of pulsed solid-state lasers
Mann, K.; Weber, H.
1988-08-01
The temperature of solid-state lasers is a critical parameter. Efficiency and output power are strongly influenced by it. The two parameters which determine the temperature are the heat generation efficiency (HGE) and the surface heat transfer coefficient (SHTC) of the laser rod. These parameters allow the scaling of the rod temperature up to high pumping powers. Moreover, from the temperature inside the rod, the temperature gradients and the mechanical stress can be evaluated. Using transient temperature measurements, the SHTC and the HGE were determined for air- and water-cooled Nd:YAG and alexandrite lasers. The SHTC can be confirmed by theoretical considerations.
Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients
Dan Wendt; Greg Mines
2011-10-01
Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation of the HCRF
Radiative transfer theory for inhomogeneous media with random extinction and scattering coefficients
NASA Technical Reports Server (NTRS)
Manning, Robert M.
1989-01-01
The small-angle scattering approximation of the scalar radiative transfer equation (RTE) is examined for the case where the extinction and scattering coefficients have a component that is a deterministic function of position along the propagation path and a component that is a random function of position transverse to the propagation direction. It is found that the resulting stochastic RTE can be reduced to a system of two stochastic integrodifferential equations for the average and fluctuating components of the radiant intensity. Two transfer equations are obtained describing the average radiant intensity and the spatial correlation function of the intensity fluctuations. The average intensity equation is then solved and applied to a simple propagation scenario. An approximate solution is also derived for the equation giving the correlation function. The developed equations can be applied to problems involving short wavelength electromagnetic wave propagation through media possessing the variable characteristics of turbulence and turbidity, such as plasmas, the atmosphere, and the ocean.
NASA Astrophysics Data System (ADS)
Li, Huiping; He, Lianfang; Zhang, Chunzhi; Cui, Hongzhi
2016-04-01
The thermal physical parameters have significant effects on the calculation accuracy of physical fields, and the boundary heat transfer coefficient between the die and water is one of the most important thermal physical parameters in the hot stamping. In order to attain the boundary heat transfer coefficient, the testing devices and test procedures are designed according to the characteristic of heat transfer in the hot stamping die. A method of estimating the temperature-dependent boundary heat transfer coefficient is presented, and an inverse heat conduction software is developed based on finite element method, advance-retreat method and golden section method. The software is used to calculate the boundary heat transfer coefficient according to the temperatures measured by NiCr-NiSi thermocouples in the experiment. The research results show that, the convergence of the method given in the paper is well, the surface temperature of sample has a significant effect on the boundary heat transfer coefficient between the die and water. The boundary heat transfer coefficient increases as the surface temperature of sample reduces, and the variation is nonlinear.
Rong, Li; Nielsen, Peter V; Zhang, Guoqiang
2010-04-01
This paper reports the results of an investigation, based on fundamental fluid dynamics and mass transfer theory, carried out to obtain a general understanding of ammonia mass transfer from an emission surface. The effects of airflow and aqueous ammonium solution temperature on ammonia mass transfer are investigated by using computational fluid dynamics (CFD) modeling and by a mechanism modeling using dissociation constant and Henry's constant models based on the parameters measured in the experiments performed in a wind tunnel. The validated CFD model by experimental data is used to investigate the surface concentration distribution and mass transfer coefficient at different temperatures and velocities for which the Reynolds number is from 1.36 x 10(4) to 5.43 x 10(4) (based on wind tunnel length). The surface concentration increases as velocity decreases and varies greatly along the airflow direction on the emission surface. The average mass transfer coefficient increases with higher velocity and turbulence intensity. However, the mass transfer coefficient estimated by CFD simulation is consistently larger than the calculated one by the method using dissociation constant and Henry's constant models. In addition, the results show that the liquid-air temperature difference has little impact on the simulated mass transfer coefficient by CFD modeling, whereas the mass transfer coefficient increases with higher liquid temperature using the other method under the conditions that the liquid temperature is lower than the air temperature. Although there are differences of mass transfer coefficients between these two methods, the mass transfer coefficients determined by these two methods are significantly related.
Calculating Hot Spring/Atmospheric Coupling Using the Coefficient of Convective Heat Transfer
NASA Astrophysics Data System (ADS)
Lindsey, C.; Price, A. N.; Fairley, J. P., Jr.; Larson, P. B.
2015-12-01
We calculated the correlation between discharge temperature and wind speed for multiple hydrothermal springs, both in the Alvord Basin of southeast Oregon and our primary field location in Yellowstone National Park, using spring temperatures, wind speeds, and air temperatures logged at three minute intervals for multiple days. We find that some hydrothermal springs exhibit strong coupling with wind speed and/or air temperatures. The three springs described in this work display this strong coupling, with correlations between wind speed and spring temperature as high as 70 percent; as a result, we can use the changes in spring temperature as a proxy for changes in the coefficient of convective heat transfer (h) between the springs and the atmosphere. The coefficient of convective heat transfer is a complex parameter to measure, but is a necessary input to many heat and mass flux analyses. The results of this study provide a way to estimate h for springs with strong atmospheric coupling, which is a critical component of a total energy balance for hydrothermal discharge areas.
NASA Astrophysics Data System (ADS)
Lim, Kieran F.
1994-11-01
The collisional deactivation of highly vibrationally excited toluene-d0 and toluene-d8 by helium bath gas has been investigated using quasiclassical trajectory simulations. Collisional energy transfer was found to increase with initial toluene internal energy, in agreement with the experiments of Toselli and Barker [J. Chem. Phys. 97, 1809 (1992), and references therein]. The temperature dependence of <ΔE2>1/2 is predicted to be T(0.44±0.10), in agreement with the experiments of Heymann, Hippler, and Troe [J. Chem. Phys. 80, 1853 (1984)]. Toluene is found to have no net angular-momentum (rotational-energy) transfer to helium bath gas, although <ΔJ2>1/2 has a temperature dependence of T(0.31±0.07). Re-evaluation of earlier calculations [``Paper I:'' Lim, J. Chem. Phys. 100, 7385 (1994)] found that rotational energy transfer could be induced by increasing the mass of the collider, or by increasing the strength of the intermolecular interaction: in these cases, angular-momentum transfer depended on the initial excitation energy. In all cases, the final rotational distributions remained Boltzmann.
The Proton Elastic Form Factor Ratio mu(p) G**p(E)/G**p(M) at Low Momentum Transfer
G. Ron; J. Glister; B. Lee; K. Allada; W. Armstrong; J. Arrington; A. Beck; F. Benmokhtar; B.L. Berman; W. Boeglin; E. Brash; A. Camsonne; J. Calarco; J. P. Chen; Seonho Choi; E. Chudakov; L. Coman; B. Craver; F. Cusanno; J. Dumas; C. Dutta; R. Feuerbach; A. Freyberger; S. Frullani; F. Garibaldi; R. Gilman; O. Hansen; D. W. Higinbotham; T. Holmstrom; C.E. Hyde; H. Ibrahim; Y. Ilieva; C. W. de Jager; X. Jiang; M. K. Jones; A. Kelleher; E. Khrosinkova; E. Kuchina; G. Kumbartzki; J. J. LeRose; R. Lindgren; P. Markowitz; S. May-Tal Beck; E. McCullough; D. Meekins; M. Meziane; Z.-E. Meziani; R. Michaels; B. Moffit; B.E. Norum; Y. Oh; M. Olson; M. Paolone; K. Paschke; C. F. Perdrisat; E. Piasetzky; M. Potokar; R. Pomatsalyuk; I. Pomerantz; A. Puckett; V. Punjabi; X. Qian; Y. Qiang; R. Ransome; M. Reyhan; J. Roche; Y. Rousseau; A. Saha; A.J. Sarty; B. Sawatzky; E. Schulte; M. Shabestari; A. Shahinyan; R. Shneor; S. ˇ Sirca; K. Slifer; P. Solvignon; J. Song; R. Sparks; R. Subedi; S. Strauch; G. M. Urciuoli; K. Wang; B. Wojtsekhowski; X. Yan; H. Yao; X. Zhan; X. Zhu
2007-11-01
High precision measurements of the proton elastic form factor ratio have been made at four-momentum transfers, Q^2, between 0.2 and 0.5 GeV^2. The new data, while consistent with previous results, clearly show a ratio less than unity and significant differences from the central values of several recent phenomenological fits. By combining the new form-factor ratio data with an existing cross-section measurement, one finds that in this Q^2 range the deviation from unity is primarily due to GEp being smaller than the dipole parameterization.
Nuclear and Q{sup 2} dependence of quaselastic (e,e{prime}p) scattering at large momentum transfer
Jackson, H.E.; Geesaman, D.F.; Jones, C.E.
1995-08-01
An experiment was completed at the Stanford Linear Accelerator Center in which measurements of the (e,e{prime}p) coincidence quasielastic cross section in nuclei were extended to the largest possible Q{sup 2} attainable with the Nuclear Physics Injector and the End Station A spectrometers. Coincidence measurements of the quasielastic (e,e{prime}p) cross section were made on nuclei from carbon to gold in the Q{sup 2} range of 1-7 (GeV/c){sup 2}. Several papers describing the results were published or submitted. Analysis of the data is in its final stages. In summary, the cross section for quasielastic {sup 12}C(e,e{prime}p) scattering was measured at momentum transfer Q{sup 2}=1, 3, 5, and 6.8 (GeV/c){sup 2}. The results are consistent with scattering from a single nucleon as the dominant process. The nuclear transparency is obtained and compared with theoretical calculations that incorporate color transparency effects. No significant rise of the transparency with Q{sup 2} is observed. Cross sections were reported for the reaction {sup 2}H(e,e{prime}p)n for momentum transfers in the range 1.2 {<=}Q{sup 2}{<=}6.8 (GeV/c){sup 2} and for missing momenta from 0 to 250 MeV/c. The longitudinal-transverse interference structure function was separated at Q{sup 2}=1.5 (GeV/c){sup 2}. The observables were compared to calculations performed in nonrelativistic and relativistic frameworks. The data are best described by a fully relativistic calculation. The A-dependence of the quasielastic A(e,e{prime}p) reaction was studied with {sup 2}H, C, Fe, and Au nuclei at momentum transfers Q{sup 2}=1, 3, 5, and 6.8 (GeV/c){sup 2}. The nuclear transparency T A,Q{sup 2}, a measure of the average probability that the struck proton escapes from the nucleu A without interaction, was extracted. Several calculations predict a significant increase in T with momentum transfer, a phenomenon known as color transparency. No significant rise within errors is seen for any of the nuclei studied.
NASA Technical Reports Server (NTRS)
Pesnell, W. D.; Omidvar, Kazem; Hoegy, Walter R.
1993-01-01
The interaction of the thermosphere and ionosphere is largely governed by collisions between ions and neutral particles. On Venus and the Earth, O(+) is a dominant ion, and atomic O dominates throughout much of the thermosphere; therefore an accurate O(+)-O cross section is an important prerequisite for understanding the dynamics of planetary upper atmospheres. The cross section and momentum transfer collision frequency are calculated with a quantum mechanical code which includes resonance charge exchange, polarization, and charge-quadrupole effects. Our results agree well with earlier calculations of Stubbe (1968) and Stallcop et al. (1991).
Estimating monthly-averaged air-sea transfers of heat and momentum using the bulk aerodynamic method
NASA Technical Reports Server (NTRS)
Esbensen, S. K.; Reynolds, R. W.
1980-01-01
Air-sea transfers of sensible heat, latent heat, and momentum are computed from twenty-five years of middle-latitude and subtropical ocean weather ship data in the North Atlantic and North Pacific using the bulk aerodynamic method. The results show that monthly-averaged wind speeds, temperatures, and humidities can be used to estimate the monthly-averaged sensible and latent heat fluxes computed from the bulk aerodynamic equations to within a relative error of approximately 10%. The estimate of monthly-averaged wind stress under the assumption of neutral stability are shown to be within approximately 5% of the monthly-averaged non-neutral values.
Matsuda, Y.; Smith, G.R.; Cohen, R.H.
1988-01-01
Efficiency of current drive by electron-cyclotron waves is investigated numerically by a bounce-average Fokker-Planck code to elucidate the effects of momentum transfer from resonant to bulk electrons, finite bulk temperature relative to the energy of resonant electrons, and trapped electrons. Comparisons are made with existing theories to assess their validity and quantitative difference between theory and code results. Difference of nearly a factor of 2 was found in efficiency between some theory and code results. 4 refs., 4 figs.
NASA Astrophysics Data System (ADS)
Chabi, A. R.; Zarrinabadi, S.; Peyghambarzadeh, S. M.; Hashemabadi, S. H.; Salimi, M.
2016-06-01
Forced convective heat transfer in a microchannel heat sink (MCHS) using CuO/water nanofluids with 0.1 and 0.2 vol% as coolant was investigated. The experiments were focused on the heat transfer enhancement in the channel entrance region at Re < 1800. Hydraulic performance of the MCHS was also estimated by measuring friction factor and pressure drop. Results showed that higher convective heat transfer coefficient was obtained at the microchannel entrance. Maximum enhancement of the average heat transfer coefficient compared with deionized water was about 40 % for 0.2 vol% nanofluid at Re = 1150. Enhancement of the convective heat transfer coefficient of nanofluid decreased with further increasing of Reynolds number.
Prediction of gas-liquid mass transfer coefficient in sparged stirred tank bioreactors.
Garcia-Ochoa, Felix; Gomez, Emilio
2005-12-20
Oxygen mass transfer in sparged stirred tank bioreactors has been studied. The rate of oxygen mass transfer into a culture in a bioreactor is affected by operational conditions and geometrical parameters as well as the physicochemical properties of the medium (nutrients, substances excreted by the micro-organism, and surface active agents that are often added to the medium) and the presence of the micro-organism. Thus, oxygen mass transfer coefficient values in fermentation broths often differ substantially from values estimated for simple aqueous solutions. The influence of liquid phase physicochemical properties on kLa must be divided into the influence on k(L) and a, because they are affected in different ways. The presence of micro-organisms (cells, bacteria, or yeasts) can affect the mass transfer rate, and thus kLa values, due to the consumption of oxygen for both cell growth and metabolite production. In this work, theoretical equations for kLa prediction, developed for sparged and stirred tanks, taking into account the possible oxygen mass transfer enhancement due to the consumption by biochemical reactions, are proposed. The estimation of kLa is carried out taking into account a strong increase of viscosity broth, changes in surface tension and different oxygen uptake rates (OURs), and the biological enhancement factor, E, is also estimated. These different operational conditions and changes in several variables are performed using different systems and cultures (xanthan aqueous solutions, xanthan production cultures by Xanthomonas campestris, sophorolipids production by Candida bombicola, etc.). Experimental and theoretical results are presented and compared, with very good results.
Hindasageri, V; Vedula, R P; Prabhu, S V
2013-02-01
Temperature measurement by thermocouples is prone to errors due to conduction and radiation losses and therefore has to be corrected for precise measurement. The temperature dependent emissivity of the thermocouple wires is measured by the use of thermal infrared camera. The measured emissivities are found to be 20%-40% lower than the theoretical values predicted from theory of electromagnetism. A transient technique is employed for finding the heat transfer coefficients for the lead wire and the bead of the thermocouple. This method does not require the data of thermal properties and velocity of the burnt gases. The heat transfer coefficients obtained from the present method have an average deviation of 20% from the available heat transfer correlations in literature for non-reacting convective flow over cylinders and spheres. The parametric study of thermocouple error using the numerical code confirmed the existence of a minimum wire length beyond which the conduction loss is a constant minimal. Temperature of premixed methane-air flames stabilised on 16 mm diameter tube burner is measured by three B-type thermocouples of wire diameters: 0.15 mm, 0.30 mm, and 0.60 mm. The measurements are made at three distances from the burner tip (thermocouple tip to burner tip/burner diameter = 2, 4, and 6) at an equivalence ratio of 1 for the tube Reynolds number varying from 1000 to 2200. These measured flame temperatures are corrected by the present numerical procedure, the multi-element method, and the extrapolation method. The flame temperatures estimated by the two-element method and extrapolation method deviate from numerical results within 2.5% and 4%, respectively.
Goemans, M.G.E.; Gloyna, E.F.; Buelow, S.J.
1996-04-01
Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.
NASA Astrophysics Data System (ADS)
Sharifi Haddad, Amin
characterize the slope of the linear function for different rock geometries. The final part of the study is the development of a lumped mass transfer coefficient between fractures and rock matrix blocks with different geometries. The obtained lumped mass transfer coefficient confirms that the scale of study, dispersivity, and the rate of injection of the fluid into the wellbore are important variables in solute transport in fractured rocks.
NASA Astrophysics Data System (ADS)
Mikielewicz, Dariusz; Jakubowska, Blanka
2016-06-01
In the paper presented are the results of calculations using authors own model to predict heat transfer coefficient during flow boiling of carbon dioxide. The experimental data from various researches were collected. Calculations were conducted for a full range of quality variation and a wide range of mass velocity. The aim of the study was to test the sensitivity of the in-house model. The results show the importance of taking into account the surface tension as the parameter exhibiting its importance in case of the flow in minichannels as well as the influence of reduced pressure. The calculations were accomplished to test the sensitivity of the heat transfer model with respect to selection of the appropriate two-phase flow multiplier, which is one of the elements of the heat transfer model. For that purpose correlations due to Müller-Steinhagen and Heck as well as the one due to Friedel were considered. Obtained results show a good consistency with experimental results, however the selection of two-phase flow multiplier does not significantly influence the consistency of calculations.
Heat transfer coefficient for flow boiling in an annular mini gap
NASA Astrophysics Data System (ADS)
Hożejowska, Sylwia; Musiał, Tomasz; Piasecka, Magdalena
2016-03-01
The aim of this paper was to present the concept of mathematical models of heat transfer in flow boiling in an annular mini gap between the metal pipe with enhanced exterior surface and the external glass pipe. The one- and two-dimensional mathematical models were proposed to describe stationary heat transfer in the gap. A set of experimental data governed both the form of energy equations in cylindrical coordinates and the boundary conditions. The models were formulated to minimize the number of experimentally determined constants. Known temperature distributions in the enhanced surface and in the fluid helped to determine, from the Robin condition, the local heat transfer coefficients at the enhanced surface - fluid contact. The Trefftz method was used to find two-dimensional temperature distributions for the thermal conductive filler layer, enhanced surface and flowing fluid. The method of temperature calculation depended on whether the area of single-phase convection ended with boiling incipience in the gap or the two-phase flow region prevailed, with either fully developed bubbly flow or bubbly-slug flow. In the two-phase flow, the fluid temperature was calculated by Trefftz method. Trefftz functions for the Laplace equation and for the energy equation were used in the calculations.
Leung, Juliana Y; Srinivasan, Sanjay
2016-09-01
Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It
NASA Astrophysics Data System (ADS)
Leung, Juliana Y.; Srinivasan, Sanjay
2016-09-01
Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It
Leung, Juliana Y; Srinivasan, Sanjay
2016-09-01
Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It
The effect of eddy distribution on momentum and heat transfer near the wall in turbulent pipe flow
NASA Technical Reports Server (NTRS)
Zurawski, Robert L.; Grisnik, Stanley P.; Hardy, Terry L.; Ghorashi, Bahman
1987-01-01
A study was conducted to determine the effect of eddy distribution on momentum and heat transfer near the wall in turbulent pipe flow. The buffer zone was of particular interest in that it is perhaps the most complicated and least understood region in the turbulent flow field. Six eddy diffusivity relationships are directly compared on their ability to predict mean velocity and temperature distributions in turbulent air flow through a cylindrical, smooth-walled pipe with uniform heat transfer. Turbulent flow theory and the development of the eddy diffusivity relationships are briefly reviewed. Velocity and temperature distributions derived from the eddy diffusivity relationships are compared to experimental data for fully-developed pipe flow in turbulent air at a Prandtl number of 0.73 and Reynolds numbers ranging from 8100 to 25 000.
Liu Tong; Gu Weimin; Hou Shujin; Liang Enwei; Lei Weihua; Lin Lin; Zhang Shuangnan; Dai Zigao
2012-11-20
Soft extended emission (EE) following initial hard spikes up to 100 s was observed with Swift/BAT for about half of known short-type gamma-ray bursts (SGRBs). This challenges the conversional central engine models of SGRBs, i.e., compact star merger models. In the framework of black-hole-neutron-star merger models, we study the roles of radial angular momentum transfer in the disk and the magnetic barrier around the black hole in the activity of SGRB central engines. We show that radial angular momentum transfer may significantly prolong the lifetime of the accretion process, which may be divided into multiple episodes by the magnetic barrier. Our numerical calculations based on models of neutrino-dominated accretion flows suggest that disk mass is critical for producing the observed EE. In the case of the mass being {approx}0.8 M {sub Sun }, our model can reproduce the observed timescale and luminosity of both the main and the EE episodes in a reasonable parameter set. The predicted luminosity of the EE component is lower than the observed EE within about one order of magnitude and the timescale is shorter than 20 s if the disk mass is {approx}0.2 M {sub Sun }. Swift/BAT-like instruments may be not sensitive enough to detect the EE component in this case. We argue that the EE component could be a probe for the merger process and disk formation for compact star mergers.
Characterization of the interfacial heat transfer coefficient for hot stamping processes
NASA Astrophysics Data System (ADS)
Luan, Xi; Liu, Xiaochuan; Fang, Haomiao; Ji, Kang; El Fakir, Omer; Wang, LiLiang
2016-08-01
In hot stamping processes, the interfacial heat transfer coefficient (IHTC) between the forming tools and hot blank is an essential parameter which determines the quenching rate of the process and hence the resulting material microstructure. The present work focuses on the characterization of the IHTC between an aluminium alloy 7075-T6 blank and two different die materials, cast iron (G3500) and H13 die steel, at various contact pressures. It was found that the IHTC between AA7075 and cast iron had values 78.6% higher than that obtained between AA7075 and H13 die steel. Die materials and contact pressures had pronounced effects on the IHTC, suggesting that the IHTC can be used to guide the selection of stamping tool materials and the precise control of processing parameters.
NASA Astrophysics Data System (ADS)
Caron, Etienne; Daun, Kyle J.; Wells, Mary A.
2013-04-01
The heat transfer coefficient (HTC) between the sheet metal and the cold tool is required to predict the final microstructure and mechanical properties of parts manufactured via hot forming die quenching. Temperature data obtained from hot stamping experiments conducted on boron steel blanks were processed using an inverse heat conduction algorithm to calculate heat fluxes and temperatures at the blank/die interface. The effect of the thermocouple response time on the calculated heat flux was compensated by minimizing the heat imbalance between the blank and the die. Peak HTCs obtained at the end of the stamping phase match steady-state model predictions. At higher blank temperatures, the time-dependent deformation of contact asperities is associated with a transient regime in which calculated HTCs are a function of the initial stamping temperature.
NASA Astrophysics Data System (ADS)
Krot, A. M.
2009-04-01
A statistical theory for a cosmological body forming based on the spheroidal body model has been proposed in the works [1]-[4]. This work studies a slowly evolving process of gravitational condensation of a spheroidal body from an infinitely distributed gas-dust substance in space. The equation for an initial evolution of mass density function of a gas-dust cloud is considered here. It is found this equation coincides completely with the analogous equation for a slowly gravitational compressed spheroidal body [5]. A conductive flow in dissipative systems was investigated by I. Prigogine in his works (see, for example, [6], [7]). As it has been found in [2], [5], there exists a conductive antidiffusion flow in a slowly compressible gravitating spheroidal body. Applying the equation of continuity to this conductive flow density we obtain a linear antidiffusion equation [5]. However, if an intensity of conductive flow density increases sharply then the linear antidiffusion equation becomes a nonlinear one. Really, it was pointed to [6] analogous linear equations of diffusion or thermal conductivity transform in nonlinear equations respectively. In this case, the equation of continuity describes a nonlinear mass flow being a source of instabilities into a gravitating spheroidal body because the gravitational compression factor G is a function of not only time but a mass density. Using integral substitution we can reduce a nonlinear antidiffusion equation to the linear antidiffusion equation relative to a new function. If the factor G can be considered as a specific angular momentum then the new function is an angular momentum density. Thus, a nonlinear momentum density flow induces a flow of angular momentum density because streamlines of moving continuous substance come close into a gravitating spheroidal body. Really, the streamline approach leads to more tight interactions of "liquid particles" that implies a superposition of their specific angular momentums. This
Determination of heat transfer coefficients in plastic French straws plunged in liquid nitrogen.
Santos, M Victoria; Sansinena, M; Chirife, J; Zaritzky, N
2014-12-01
The knowledge of the thermodynamic process during the cooling of reproductive biological systems is important to assess and optimize the cryopreservation procedures. The time-temperature curve of a sample immersed in liquid nitrogen enables the calculation of cooling rates and helps to determine whether it is vitrified or undergoes phase change transition. When dealing with cryogenic liquids, the temperature difference between the solid and the sample is high enough to cause boiling of the liquid, and the sample can undergo different regimes such as film and/or nucleate pool boiling. In the present work, the surface heat transfer coefficients (h) for plastic French straws plunged in liquid nitrogen were determined using the measurement of time-temperature curves. When straws filled with ice were used the cooling curve showed an abrupt slope change which was attributed to the transition of film into nucleate pool boiling regime. The h value that fitted each stage of the cooling process was calculated using a numerical finite element program that solves the heat transfer partial differential equation under transient conditions. In the cooling process corresponding to film boiling regime, the h that best fitted experimental results was h=148.12±5.4 W/m(2) K and for nucleate-boiling h=1355±51 W/m(2) K. These values were further validated by predicting the time-temperature curve for French straws filled with a biological fluid system (bovine semen-extender) which undergoes freezing. Good agreement was obtained between the experimental and predicted temperature profiles, further confirming the accuracy of the h values previously determined for the ice-filled straw. These coefficients were corroborated using literature correlations. The determination of the boiling regimes that govern the cooling process when plunging straws in liquid nitrogen constitutes an important issue when trying to optimize cryopreservation procedures. Furthermore, this information can lead to
Determination of heat transfer coefficients in plastic French straws plunged in liquid nitrogen.
Santos, M Victoria; Sansinena, M; Chirife, J; Zaritzky, N
2014-12-01
The knowledge of the thermodynamic process during the cooling of reproductive biological systems is important to assess and optimize the cryopreservation procedures. The time-temperature curve of a sample immersed in liquid nitrogen enables the calculation of cooling rates and helps to determine whether it is vitrified or undergoes phase change transition. When dealing with cryogenic liquids, the temperature difference between the solid and the sample is high enough to cause boiling of the liquid, and the sample can undergo different regimes such as film and/or nucleate pool boiling. In the present work, the surface heat transfer coefficients (h) for plastic French straws plunged in liquid nitrogen were determined using the measurement of time-temperature curves. When straws filled with ice were used the cooling curve showed an abrupt slope change which was attributed to the transition of film into nucleate pool boiling regime. The h value that fitted each stage of the cooling process was calculated using a numerical finite element program that solves the heat transfer partial differential equation under transient conditions. In the cooling process corresponding to film boiling regime, the h that best fitted experimental results was h=148.12±5.4 W/m(2) K and for nucleate-boiling h=1355±51 W/m(2) K. These values were further validated by predicting the time-temperature curve for French straws filled with a biological fluid system (bovine semen-extender) which undergoes freezing. Good agreement was obtained between the experimental and predicted temperature profiles, further confirming the accuracy of the h values previously determined for the ice-filled straw. These coefficients were corroborated using literature correlations. The determination of the boiling regimes that govern the cooling process when plunging straws in liquid nitrogen constitutes an important issue when trying to optimize cryopreservation procedures. Furthermore, this information can lead to
NASA Astrophysics Data System (ADS)
Cao, Yongyou; Guo, Zhipeng; Xiong, Shoumei
2012-07-01
High-pressure die cast B390 alloy was prepared on a 350 ton cold chamber die casting machine. The metal/die interfacial heat transfer coefficient of the alloy was investigated. Considering the filling process, a "finger"-shaped casting was designed for the experiments. This casting consisted of five plates with different thicknesses (0.05 inch or 1.27 mm to 0.25 inch or 6.35 mm) as well as individual ingates and overflows. Experiments under various operation conditions were conducted, and temperatures were measured at various specific locations inside the die. Based on the results, the interfacial heat transfer coefficient and heat flux were determined by solving the inverse heat transfer problem. The influence of the mold-filling sequence, sensor locations, as well as processing parameters including the casting pressure, die temperature, and fast/slow shot speeds on the heat transfer coefficient were discussed.
Orbital angular momentum (OAM) multiplexing in free-space optical data transfer
NASA Astrophysics Data System (ADS)
Lin, Jiao; Yuan, Xiao-Cong; Tao, Shaohua
2006-08-01
In the optical wireless communication systems proposed by Gibson, et al, the information is encoded as states of orbital angular momentum (OAM) of light and the transmitter unit can produce laser beam with single OAM-state in a time-slot. Recently we have proved that it is possible to generate multiple OAM-states simultaneously by single spatial light modulator. This method is adopted in our free-space optical wireless communication system and these OAM-states can be detected in the receiving unit by a computer-generated hologram. Hence, the transmission capacity is enhanced significantly without increasing the complexity of system.
Coherent transfer of optical orbital angular momentum in multi-order Raman sideband generation.
Strohaber, J; Zhi, M; Sokolov, A V; Kolomenskii, A A; Paulus, G G; Schuessler, H A
2012-08-15
Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman-active crystal, one set containing optical orbital angular momentum and the other serving as a reference, Young's double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.
NASA Technical Reports Server (NTRS)
Hayashi, M.; Sakurai, A.; Aso, S.
1986-01-01
A thin film heat transfer gauge is applied to the measurement of heat transfer coefficients in the interaction regions of incident shock waves and fully developed turbulent boundary layers. It was developed to measure heat flux with high spatial resolution and fast response for wind tunnels with long flow duration. To measure the heat transfer coefficients in the interaction region in detail, experiments were performed under the conditions of Mach number = 4, total pressure = 1.2 MPa, 0.59 to approximately 0.65. Reynolds number = 1.3 to approximately 1.5 x 10 to the 7th power and incident shock angles from 17.8 to 22.8 degrees. The results show that the heat transfer coefficient changes complicatedly in the interaction region. At the beginning the interaction region, the heat transfer coefficient decreases at first, reaches its minimum value at the point where the pressure begins to increase, and then increases sharply. When the boundary layer begins to separate, even a small separation bubble causes significant changes in the heat transfer coefficient, while the pressure does not show any changes which suggests that the boundary layer begins to separate.
Understanding the Role of Interannual Variability and Momentum Transfer on Wind Energy
NASA Astrophysics Data System (ADS)
Koerner, S.; Brunsell, N. A.; Miller, L.; Mechem, D. B.
2014-12-01
Forecasting realistic wind power potential is essential for wind energy to assist with meeting future energy demands. Current wind power estimates rely on the use of mean climatological wind speeds. This approach to estimating wind power neglects the influence of momentum extraction by the turbines (i.e. turbine-turbine interactions) and interannual variability in windspeed. The present study will use a wind turbine parameterization within the Weather and Research Forecasting (WRF) model to assess the role of interannual and climatic variability on power extraction. The WRF model will be forced by NARR, and run from 1980-2010 to incorporate different climatic conditions over the central United States. Analysis focusses on the role of climate variability on wind power extraction; specifically on the role of drought and wet periods, as well as variability in the Great Plains Low Level Jet. In addition, WRF will be used to assess the impact of wind turbines on each term of the momentum budget. Understanding the impact of interannual variability will improve our understanding of the role that wind power can play in meeting future energy demands.
On the momentum transfer of the solar wind to the Martian topside ionosphere
Lundin, R.; Norberg, O. ); Dubinin, E.M.; Pissarenko, N.; Barabash, S.W. ); Koskinen, H. )
1991-06-01
Hot plasma measurements from the Soviet Phobos-2 spacecraft in the Martian magnetosphere suggests that the solar wind interaction with Mars is cometary-like, with mass loading of the solar wind and ion pick-up occuring also outside the subsolar bow-shock. The interaction is characterized by a pronounced decrease of the solar wind speed inside what has been termed the mass-loading boundary (MLB). Well outside the MLB, the ion pick-up process acts in a normal sense. There ions pick up approximately the solar wind velocity - independent of mass. Inside the MLB, the momentum loss of solar wind ions is more pronounced - heavy ions of Martian origin taking up most of the solar wind ion maximum flux. The heavy mass-loading of solar wind ions in the innermost part of the Martian boundary layer (near the magnetopause) leads to a loaded ion pick-up. The process can be understood as internal loading of an MHD-dynamo, propelled by a driver plasma - the solar wind. The ASPERA ion composition and momentum data is consistent with such a pick-up process. Inside the magnetopause ions of Martian origin are accelerated up to energies close to those of the solar wind protons. The authors propose two types of acceleration processes, one similar to that acting within the Earth's auroral acceleration region (acting in the presence of an ambient magnetic field), another pick-up process acting within a limited spatial region.
NASA Astrophysics Data System (ADS)
Mulligan, Ryan P.; Hanson, Jeffrey L.
2016-06-01
Wave and current measurements from a cross-shore array of nearshore sensors in Duck, NC, are used to elucidate the balance of alongshore momentum under energetic wave conditions with wide surf zones, generated by passing hurricanes that are close to and far from to the coast. The observations indicate that a distant storm (Hurricane Bill, 2009) with large waves has low variability in directional wave characteristics resulting in alongshore currents that are driven mainly by the changes in wave energy. A storm close to the coast (Hurricane Earl, 2010), with strong local wind stress and combined sea and swell components in wave energy spectra, has high variability in wave direction and wave period that influence wave breaking and nearshore circulation as the storm passes. During both large wave events, the horizontal current shear is strong and radiation stress gradients, bottom stress, wind stress, horizontal mixing, and cross-shore advection contribute to alongshore momentum at different spatial locations across the nearshore region. Horizontal mixing during Hurricane Earl, estimated from rotational velocities, was particularly strong suggesting that intense eddies were generated by the high horizontal shear from opposing wind-driven and wave-driven currents. The results provide insight into the cross-shore distribution of the alongshore current and the connection between flows inside and outside the surf zone during major storms, indicating that the current shear and mixing at the interface between the surf zone and shallow inner shelf is strongly dependent on the distance from the storm center to the coast.
NASA Technical Reports Server (NTRS)
Sabin, C. M.; Poppendiek, H. F.
1971-01-01
A number of heat transfer and fluid flow mechanisms that control once-through, forced convection potassium boiling are studied analytically. The topics discussed are: (1) flow through tubes containing helical wire inserts, (2) motion of droplets entrained in vapor flow, (3) liquid phase distribution in boilers, (4) temperature distributions in boiler tube walls, (5) mechanisms of heat transfer regime change, and (6) heat transfer in boiler tubes. Whenever possible, comparisons of predicted and actual performances are made. The model work presented aids in the prediction of operating characteristics of actual boilers.
Experimental study on convective heat transfer coefficient around a vertical hexagonal rod bundle
NASA Astrophysics Data System (ADS)
Makhmalbaf, M. H. M.
2012-06-01
Research on convective heat transfer coefficient around a rod bundle has many diverse applications in industry. So far, many studies have been conducted in correlations related to internal and turbulent fully-developed flow. Comparison shows that Dittus-Boelter, Sieder-Tate and Petukhov have so far been the most practical correlations in fully-developed turbulent fluid flow heat transfer. The present study conducts an experimental examination of the validity of these frequently-applied correlations and introduces a manufactured test facility as well. Due to its generalizibility, the unique geometry of this test facility (hexagonal arranged, 7 vertical rods in a hexagonal tube) can fulfil extensive applications. The paper also studies the major deviation sources in data measurements, calibrations and turbulence of fluid flow in this. Finally, regarding to sufficient number of experiments in a vast fluid mean velocity range (3,800 < Re < 40,000), a new curve and correlation are presented and the results are compared with the above mentioned commonly-applied correlations.
NASA Astrophysics Data System (ADS)
Iyer, Ganesh Ramamurthy
1998-12-01
A modified low Reynolds number k-varepsilon model for predicting effects of high free stream turbulence (FST) on momentum transport and heat transfer in a flat plate turbulent boundary layer is presented. The prediction capabilities of four well tested k-varepsilon models (Launder-Sharma, K-Y Chien, Lam-Bremhorst and Jones-Launder) under high FST conditions (initial turbulence intensity, Tusbi>5%) were investigated using a partial differential equation solver. Predictions became poorer (overprediction up to more than 50% for skin friction coefficient and Stanton number, and underprediction of TKE up to more than 50%) as FST increased to about 26%. The high FST data sets against which the predictions were compared had initial FST intensities of 6.53% and 25.7%. Predictions clearly indicated a deficit of TKE levels in the boundary layer, when compared to experimental data. An additional production term which incorporated the effects of FST intensity (velocity scale) and length scale was included in the TKE equation. The constant csb{mu} in the equation for the transport coefficient musbt was modified using experimental data. This new model, then provided excellent results for Stanton number and skin friction coefficient (within ±3.5% of data) for both the data sets (Tusbi = 6.53% and Tusbi = 25.7%). TKE and other hydrodynamic results were excellent for Tusbi = 6.53%, but not so good for Tusbi = 25.7%. Further, this new model was implemented for calculating another case of flat plate turbulent boundary layer under high FST (Tusbi = 5.3%) subjected to pressure gradient. Results for skin friction and heat transfer coefficients were reasonably good (within 11% of experimental data). The present model incorporates physics of transport of free stream turbulence in turbulence modeling and provides a new method for simulating flows with high FST. Future work should concentrate on implementing this model for more cases with Tusbi going up to more than 20% and various length
Local Mass Transfer Coefficient for Idealized 2D Urban Street Canyon Models
NASA Astrophysics Data System (ADS)
Leung, Ka Kit; Liu, Chun-Ho
2011-09-01
Human activities in urban areas is one of the major sources of anthropogenic releases in the atmospheric boundary layer (ABL). The mechanism of urban morphology for the heat and mass transfer in built environment is thus an attractive topic in the research community. In this paper, a series of laboratory measurements is conducted to elucidate the mass transfer from hypothetical urban roughness constructed by idealized 2D street canyons. The experiments are carried out in the wind tunnel in the University of Hong Kong. The urban ABL structure inside the wind tunnel is controlled by placing small cubic Styrofoam blocks upstream of the test section. The street canyons are fabricated by movable rectangular acrylic blocks so that different building height to street width (aspect) ratios are examined. The height of building blocks is kept minimum to make sure that the urban ABL over the street canyons is high enough for fully developed turbulent flows. The prevailing wind is normal to the street axis, demonstrating the scenario of least pollutant removal from the street canyons to the urban ABL. The sample street canyon is covered by soaked filter papers to represent uniform mass concentrations on the building facades and ground surface. The wet bulb temperature of the filter papers is continuously monitored to ensure saturated conditions. Their weight before and after an experiment is used to measure the amount of water evaporated. Preliminary results illustrate the local mass transfer coefficient distribution for aspect ratios 1/4, 1/2, 1, and 2, which are comparable with those available in literuatre.
Quasielastic (e,e{prime}p) scattering at large momentum transfer
Ent, R.; Abbott, D.; Dunne, J.
1997-08-01
Coincidence cross sections for (e, e{prime} p) quasi-elastic scattering were measured at CEBAF with high statistical precision for C, Fe, and Au targets for 0.6 < Q{sup 2} < 3.3 GeV{sup 2}. Missing energy and missing momentum distributions obtained from a preliminary analysis are in reasonable agreement with prior data from SLAC. The preliminary results are compared with a PWIA calculation to determine the nuclear transparency as a function of Q{sup 2} and A. At both A{sup 2} = 0.6 and Q{sup 2} = 1.8 GeV{sup 2} data were taken to perform a Rosenbluth separation to extract the longitudinal and transverse cross sections. The preliminary missing-energy distributions of the forward and backward angle measurements do not indicate an obvious excess of transverse strength.
Momentum transfer driven textural changes of CeO{sub 2} thin films
Van Steenberge, S. Leroy, W. P.; Depla, D.
2014-09-15
The influence of the target erosion depth on the film texture was investigated during DC reactive magnetron sputter deposition of CeO{sub 2} thin films. Three fluxes towards the substrate surface (the relative negative oxygen ion flux, the material flux, and the energy flux) were measured and related to the ongoing erosion of a cerium target. As the deposition rate increased for more eroded targets, both the energy flux and the negative ion flux decreased. Cerium oxide thin films that were deposited at different target erosion states, exhibited a change in preferential crystalline orientation from [200] to [111]. This textural change cannot be explained in terms of the energy per arriving atom concept. Instead, it is shown that the momentum of the high energetic negative ions is an essential condition to clarify the witnessed trends.
NASA Astrophysics Data System (ADS)
Slepyshev, A. A.
2016-05-01
Free internal waves are considered in a Boussinesq approximation in the situation when horizontal eddy viscosity and diffusion in a vertically inhomogeneous flow are taken into account. The dispersion relation and wave damping factor are found in a linear approximation. The Stokes drift velocity is determined in the second order of smallness based on the wave amplitude. It has been indicated that the Stokes drift velocity, transverse with respect to the wave propagation direction, differs from zero if the flow-rate transverse component depends on the vertical coordinate. Vertical momentum fluxes differ from zero and can be comparable with or exceed the corresponding turbulent fluxes if eddy viscosity and diffusion are taken into account.
Momentum-space Argonne V18 interaction
Veerasamy, S.; Polyzou, W. N.
2011-09-15
This paper gives a momentum-space representation of the Argonne V18 potential as an expansion in products of spin-isospin operators with scalar coefficient functions of the momentum transfer. Two representations of the scalar coefficient functions for the strong part of the interaction are given. One is as an expansion in an orthonormal basis of rational functions and the other as an expansion in Chebyshev polynomials on different intervals. Both provide practical and efficient representations for computing the momentum-space potential that do not require integration or interpolation. Programs based on both expansions are available as supplementary material. Analytic expressions are given for the scalar coefficient functions of the Fourier transform of the electromagnetic part of the Argonne V18. A simple method for computing the partial-wave projections of these interactions from the operator expressions is also given.
Spataru, Catalin D.; Léonard, François
2014-08-13
Topological insulators are of interest for many applications in electronics and optoelectronics, but harnessing their unique properties requires detailed understanding and control of charge injection at electrical contacts. Here we present large-scale ab initio calculations of the electronic properties of Au, Ni, Pt, Pd, and graphene contacts to Bi2Se3. We show that regardless of the metal, the Fermi level is located in the conduction band, leading to n-type Ohmic contact to the first quintuplet. Furthermore, we find strong charge transfer and band-bending in the first few quintuplets, with no Schottky barrier for charge injection even when the topoplogical insulator ismore » undoped. Our calculations indicate that Au and graphene leave the spin-momentum locking mostly unaltered, but on the other hand, Ni, Pd, and Pt strongly hybridize with Bi2Se3 and relax spin-momentum locking. In conclusion, our results indicate that judicious choice of the contact metal is essential to reveal the unique surface features of topological insulators.« less
Spataru, Catalin D.; Léonard, François
2014-08-13
Topological insulators are of interest for many applications in electronics and optoelectronics, but harnessing their unique properties requires detailed understanding and control of charge injection at electrical contacts. Here we present large-scale ab initio calculations of the electronic properties of Au, Ni, Pt, Pd, and graphene contacts to Bi_{2}Se_{3}. We show that regardless of the metal, the Fermi level is located in the conduction band, leading to n-type Ohmic contact to the first quintuplet. Furthermore, we find strong charge transfer and band-bending in the first few quintuplets, with no Schottky barrier for charge injection even when the topoplogical insulator is undoped. Our calculations indicate that Au and graphene leave the spin-momentum locking mostly unaltered, but on the other hand, Ni, Pd, and Pt strongly hybridize with Bi_{2}Se_{3} and relax spin-momentum locking. In conclusion, our results indicate that judicious choice of the contact metal is essential to reveal the unique surface features of topological insulators.
Dalton, M. M.; Adams, G. S.; Ahmidouch, A.; Angelescu, T.; Arrington, J.; Holt, R. J.; Hafidi, K.; Reimer, P.; Schulte, E.; Zheng, X.; Physics; Univ. of Witwatersrand; Rensselaer Polytechnic Inst.; North Carolina A & T State Univ.; Bucharest Univ.; Yerevan Physics Inst.
2009-07-01
The differential cross section for the process p(e,e{prime}p) {eta} has been measured at Q{sup 2} {approx} 5.7 and 7.0(GeV/c){sup 2} for center-of-mass energies from threshold to 1.8 GeV, encompassing the S{sub 11}(1535) resonance, which dominates the channel. This is the highest momentum-transfer measurement of this exclusive process to date. The helicity-conserving transition amplitude A{sub 1/2}, for the production of the S{sub 11}(1535) resonance, is extracted from the data. Within the limited Q{sup 2} now measured, this quantity appears to begin scaling as Q{sup -3} - a predicted, but not definitive, signal of the dominance of perturbative QCD at Q{sup 2} {approx} 5 (GeV/c){sup 2}.
Electroproduction of {eta} mesons in the S{sub 11}(1535) resonance region at high momentum transfer
Dalton, M. M.; Adams, G. S.; Moziak, B.; Stoler, P.; Villano, A.; Ahmidouch, A.; Danagoulian, S.; Angelescu, T.; Malace, S.; Arrington, J.; Hafidi, K.; Holt, R. J.; Reimer, P. E.; Schulte, E.; Zheng, X.; Asaturyan, R.; Mkrtchyan, H.; Navasardyan, T.; Tadevosyan, V.; Baker, O. K.
2009-07-15
The differential cross section for the process p(e,e{sup '}p){eta} has been measured at Q{sup 2}{approx}5.7 and 7.0(GeV/c){sup 2} for center-of-mass energies from threshold to 1.8 GeV, encompassing the S{sub 11}(1535) resonance, which dominates the channel. This is the highest momentum-transfer measurement of this exclusive process to date. The helicity-conserving transition amplitude A{sub 1/2}, for the production of the S{sub 11}(1535) resonance, is extracted from the data. Within the limited Q{sup 2} now measured, this quantity appears to begin scaling as Q{sup -3}--a predicted, but not definitive, signal of the dominance of perturbative QCD at Q{sup 2}{approx}5 (GeV/c){sup 2}.
Sengupta, S.; Sherif, S.A.; Wong, K.V.
1995-12-31
This paper reports on results of an experimental investigation where the emphasis was placed on obtaining empirical correlations for the frost thickness-time history and the heat transfer coefficient-time history for a cylinder in humid air cross flow. The facility employed for the investigation consisted of a low velocity wind tunnel comprised of a rectangular test section, a transition section and a honeycomb placed at the tunnel entrance. An external refrigerator was used to cool an antifreeze solution having a mixture of 90% methanol and 10% ethylene glycol. Measured parameters included, among other things, the heat transfer coefficient as well as the frost thickness.
Towards a Precision Measurement of Parity-Violating e-p Elastic Scattering at Low Momentum Transfer
Pan, Jie
2012-01-01
The goal of the Q-weak experiment is to make a measurement of the proton's weak charge Q_{W}^{p} = 1 - 4 sin^{2}(θ_{W2(θW2(θWWp by measuring the parity violating asymmetry in elastic electron-proton scattering at low momentum transfer Q2 = 0.026 (GeV/c)2 and forward angles (8 degrees). The anticipated size of the asymmetry, based on the SM, is about 230 parts per billion (ppb). With the proposed accuracy, the experiment may probe new physics beyond Standard Model at the TeV scale. This thesis focuses on my contributions to the experiment, including track reconstruction for momentum transfer determination of the scattering process, and the focal plane scanner, a detector I designed and built to measure the flux profile of scattered electrons on the focal plane of the Q-weak spectrometer to assist in the extrapolation of low beam current tracking results to high beam current. Preliminary results from the commissioning and the first run period of the Q-weak experiment are reported and discussed.}
Two-Body Electrodisintegration of $^3$He at High Momentum Transfer
R. Schiavilla; O. Benhar; A. Kievsky; L.E. Marcucci; M. Viviani
2005-08-01
The {sup 3}He (e,e{prime}p)d reaction is studied using an accurate three-nucleon bound state wave function, a model for the electromagnetic current operator including one- and two-body terms, and the Glauber approximation for the treatment of final state interactions. In contrast to earlier studies, the profile operator in the Glauber expansion is derived from a nucleon-nucleon scattering amplitude, which retains its full spin and isospin dependence and is consistent with phase-shift analyses of two-nucleon scattering data. The amplitude is boosted from the center-of-mass frame, where parameterizations for it are available, to the frame where rescattering occurs. Exact Monte Carlo methods are used to evaluate the relevant matrix elements of the electromagnetic current operator. The predicted cross section is found to be in quantitative agreement with the experimental data for values of the missing momentum p{sub m} in the range (0--700) MeV/c, but underestimates the data at p{sub m} {approx} 1 GeV/c by about a factor of two. However, the longitudinal-transverse asymmetry, measured up to p{sub m} {approx} 600 MeV/c, is well reproduced by theory. A critical comparison is carried out between the results obtained in the present work and those of earlier studies.
Coherent dynamics of exciton orbital angular momentum transferred by optical vortex pulses
NASA Astrophysics Data System (ADS)
Shigematsu, K.; Yamane, K.; Morita, R.; Toda, Y.
2016-01-01
The coherent dynamics of the exciton center-of-mass motion in bulk GaN are studied using degenerate four-wave-mixing (FWM) spectroscopy with Laguerre-Gaussian (LG) mode pulses. We evaluate the exciton orbital angular momentum (OAM) dynamics from the degree of OAM, which is derived from the distributions of OAM (topological charge) of the FWM signals. When excitons are excited with two single-mode LG pulses, the exciton OAM decay time significantly exceeds the exciton dephasing time, which can be attributed to high uniformity of the exciton dephasing in our bulk sample because the decoherence of the exciton OAM is governed by the angular variation in the exciton dephasing. We also analyze the topological charge (ℓ ) dependence of the OAM decay using a multiple-mode LG pump pulse, which allows us to simultaneously observe the dynamics of the exciton OAM for different ℓ values under the same excitation conditions. The OAM decay times of the ℓ =1 component are usually longer than those of the ℓ =0 component. The ℓ -dependent OAM decay is supported by a phenomenological model which takes into account the local nonuniformity of the exciton dephasing.
Experimentally Determined Overall Heat Transfer Coefficients for Spacesuit Liquid Cooled Garments
NASA Technical Reports Server (NTRS)
Bue, Grant; Rhodes, Richard; Anchondo, Ian; Westheimer, David; Campbell, Colin; Vogel, Matt; Vonaue, Walt; Conger, Bruce; Stein, James
2015-01-01
A Human-In-The-Loop (HITL) Portable Life Support System 2.0 (PLSS 2.0) test has been conducted at NASA Johnson Space Center in the PLSS Development Laboratory from October 27, 2014 to December 19, 2014. These closed-loop tests of the PLSS 2.0 system integrated with human subjects in the Mark III Suit at 3.7 psi to 4.3 psi above ambient pressure performing treadmill exercise at various metabolic rates from standing rest to 3000 BTU/hr (880 W). The bulk of the PLSS 2.0 was at ambient pressure but effluent water vapor from the Spacesuit Water Membrane Evaporator (SWME) and the Auxiliary Membrane Evaporator (Mini-ME), and effluent carbon dioxide from the Rapid Cycle Amine (RCA) were ported to vacuum to test performance of these components in flight-like conditions. One of the objectives of this test was to determine the overall heat transfer coefficient (UA) of the Liquid Cooling Garment (LCG). The UA, an important factor for modeling the heat rejection of an LCG, was determined in a variety of conditions by varying inlet water temperature, flow rate, and metabolic rate. Three LCG configurations were tested: the Extravehicular Mobility Unit (EMU) LCG, the Oceaneering Space Systems (OSS) LCG, and the OSS auxiliary LCG. Other factors influencing accurate UA determination, such as overall heat balance, LCG fit, and the skin temperature measurement, will also be discussed.
Theoretical gas phase mass transfer coefficients for endogenous gases in the lungs.
Condorelli, P; George, S C
1999-01-01
Gas phase mass transfer coefficients for nitric oxide (NO), ethanol (EtOH), and water vapor (H2O) were determined for typical conducting airway geometry and tracheal flows (5 x 10(-5)and 5 x 10(-4) m3 s(-1)), by solving the steady-state two-dimensional diffusion equation. A constant absolute production rate with first order consumption reactions in pulmonary tissue was assumed for NO. For EtOH and H2O, constant concentrations were assumed in the blood and tissue, respectively. Results, expressed in terms of the average Sherwood number (Sh), were correlated with the Peclet (Pe(r)) number, and the length-to-diameter (L/D) ratio for each airway branch in terms of a lumped variable, Pe(r)(L/D)n. (Sh) increases as the solubility of the gas in tissue and blood increases. In addition, Sh passes through a minimum value at Pe(r)(D/L)n equal to approximately one when axial convection and diffusion have equal but opposite magnitudes. We conclude that Sh is not a monotonic function of Pe(r)(L/D)n within the entire airway tree and that it depends on the physical properties of the gas in the tissue. This conclusion contrasts with previous experimental and theoretical correlations.
Cloutier, N.R.; Clulow, F.V.; Lim, T.P.; Dave, N.K.
1986-06-01
The 226Ra level in vegetation growing on U mine tailings in Elliot Lake, Ontario, Canada, was 211 + 22 mBq g-1 (dry weight) compared to less than 7 mBq g-1 (dry weight) in material from a control site. Skeletons of meadow voles (Microtus pennsylvanicus) established on the tailings had concentrations of 226Ra of 6083 +/- 673 mBq per animal in winter; 7163 +/- 1077 mBq per animal in spring; 1506 +/- 625 mBq per animal in summer; and 703 +/- 59 mBq per animal in fall, compared to less than 7 mBq per animal in controls. The /sup 226/Ra transfer coefficient from vegetation to voles (defined as total millibecquerels of /sup 226/Ra in adult vole per total millibecquerels of 226Ra consumed by the vole in its lifetime) was calculated as 4.6 +/- 2.9 X 10(-2) in summer and 2.8 +/- 0.6 X 10(-2) in fall.
McLaskey, Gregory C.; Lockner, David A.; Kilgore, Brian D.; Beeler, Nicholas M.
2015-01-01
We describe a technique to estimate the seismic moment of acoustic emissions and other extremely small seismic events. Unlike previous calibration techniques, it does not require modeling of the wave propagation, sensor response, or signal conditioning. Rather, this technique calibrates the recording system as a whole and uses a ball impact as a reference source or empirical Green’s function. To correctly apply this technique, we develop mathematical expressions that link the seismic moment $M_{0}$ of internal seismic sources (i.e., earthquakes and acoustic emissions) to the impulse, or change in momentum $\\Delta p $, of externally applied seismic sources (i.e., meteor impacts or, in this case, ball impact). We find that, at low frequencies, moment and impulse are linked by a constant, which we call the force‐moment‐rate scale factor $C_{F\\dot{M}} = M_{0}/\\Delta p$. This constant is equal to twice the speed of sound in the material from which the seismic sources were generated. Next, we demonstrate the calibration technique on two different experimental rock mechanics facilities. The first example is a saw‐cut cylindrical granite sample that is loaded in a triaxial apparatus at 40 MPa confining pressure. The second example is a 2 m long fault cut in a granite sample and deformed in a large biaxial apparatus at lower stress levels. Using the empirical calibration technique, we are able to determine absolute source parameters including the seismic moment, corner frequency, stress drop, and radiated energy of these magnitude −2.5 to −7 seismic events.
NASA Technical Reports Server (NTRS)
Florschuetz, L. W.; Metzger, D. E.; Berry, R. A.
1979-01-01
Heat transfer characteristics were measured for inline and staggered arrays of circular jets impinging on a surface parallel to the jet orifice plate. The impinging flow was constrained to exit in a single direction along the channel formed by the jet plate and the heat transfer surface. In this configuration the air discharged from upstream transverse rows of jet holes imposes a crossflow of increasing magnitude on the succeeding downstream jet rows. Streamwise heat transfer coefficient profiles were determined for a streamwise resolution of one-third the streamwise hole spacing, utilizing a specially constructed test surface.
Karunakara, N; Ujwal, P; Yashodhara, I; Rao, Chetan; Sudeep Kumara, K; Dileep, B N; Ravi, P M
2013-10-01
Detailed studies were carried out to establish site-specific soil to grass transfer factors (Fv) and grass to cow milk transfer coefficients (Fm) for radioactive cesium ((137)Cs) and stable cesium (Cs) for Kaiga region, where a nuclear power station has been in operation for more than 10 years. The study included adopted cows, cows of local farmers, and cows from the dairy farm. A grass field was developed specifically for the study and 2 local breed cows were adopted and allowed to graze in this grass field. The soil and grass samples were collected regularly from this field and analyzed for the concentrations of (137)Cs and stable Cs to evaluate the soil to grass Fv values. The milk samples from the adopted cows were analyzed for the (137)Cs and stable Cs concentrations to evaluate Fm values. For comparison, studies were also carried out in dominant grazing areas in different villages around the nuclear power plant and the cows of local farmers which graze in these areas were identified and milk samples were collected and analyzed regularly. The geometric mean values of Fv were found to be 1.1 × 10(-1) and 1.8 × 10(-1) for (137)Cs and stable Cs, respectively. The Fm of (137)Cs had geometric mean values of 1.9 × 10(-2) d L(-1) and 4.6 × 10(-2) d L(-1), respectively, for adopted Cows 1 and 2; 1.7 × 10(-2) d L(-1) for the cows of local farmers, and 4.0 × 10(-3) d L(-1) for the dairy farm cows. The geometric mean values of Fm for stable Cs were similar to those of (137)Cs. The Fm value for the dairy farm cows was an order of magnitude lower than those for local breed cows. The Fm values observed for the local breed cows were also an order of magnitude higher when compared to the many values reported in the literature and in the IAEA publication. Possible reasons for this higher Fm values were identified. The correlation between Fv and Fm values for (137)Cs and stable Cs and their dependence on the potassium content ((40)K and stable K) in
Data Qualification Report For DTN: MO0012RIB00065.002, Parameter Values For Transfer Coefficients
C.H. Tung
2001-01-09
A data-qualification evaluation was conducted on Reference Information Base (RIB) data set MOO0 12RIB00065.002, ''Parameter Values for Transfer Coefficients''. The corroborating data method was used to evaluate the data. This method was selected because it closely matches the literature-review method followed to select parameter values. Five criteria were considered when the corroborating method was used: adequacy of the corroborative literature, sufficiency of value-selection criteria, implementation of the selection criteria, documentation of the process, and whether the analysis was conducted in accordance with applicable quality assurance (QA) procedures. Three criteria were used when a literature review was not conducted: appropriate logic used to select parameters, documentation of the process, and whether the analysis was conducted in accordance with applicable QA procedures. The RIB data item, the associated Analysis and Model Report (AMR), the corroborative literature, and the results of an audit revision O/ICN 0 of the AMR were examined. All calculations and the selection process for all values were repeated and confirmed. The qualification team concluded: (1) A sufficient quantity of corroborative literature was reviewed and no additional literature was identified that should have been considered. (2) The selection criteria were sufficient and resulted in valid parameter values. (3) The process was well defined, adequately documented in the AMR, and correctly followed. (4) The analysis was developed in accordance with applicable QA procedures. No negative findings were documented that resulted in questions about the quality of the data. The qualification team therefore recommends that the qualification status of RIB data set MO0012RIB00065.002 be changed to qualified.
Effects of oxygen transfer coefficient on dihydroxyacetone production from crude glycerol
Zheng, Xiao-juan; Jin, Kui-qi; Zhang, Lei; Wang, Gang; Liu, Yu-Peng
2016-01-01
The principal objective of this study was to evaluate the kinetics of dihydroxyacetone production by Gluconobacter frateurii CGMCC 5397 under different oxygen volumetric mass transfer coefficient (kLa) conditions in submerged bioreactors using biodiesel-derived crude glycerol as the carbon source. kLa is a key fermentation parameter for the production of dihydroxyacetone. Cultivations were conducted in baffled- and unbaffled-flask cultures (the kLa values were 24.32 h−1 and 52.05 h−1, respectively) and fed-batch cultures (the kLa values were held at 18.21 h−1, 46.03 h−1, and 82.14 h−1) to achieve high dihydroxyacetone concentration and productivity. The results showed that a high kLa could dramatically increase dihydroxyacetone concentrations and productivities. The baffled-flask culture (with a kLa of 52.05 h−1) favored glycerol utilization and dihydroxyacetone production, and a dihydroxyacetone concentration as high as 131.16 g/L was achieved. When the kLa was set to 82.14 h−1 in the fed-batch culture, the dihydroxyacetone concentration, productivity and yield were 175.44 g/L, 7.96 g/L/h and 0.89 g/g, respectively, all of which were significantly higher than those in previous studies and will benefit dihydroxyacetone industrial production. PMID:26887235
Ward, G.M.; Johnson, J.E.
1985-08-31
The goat milk transfer coefficient of Tc administered as TcO/sub 4//sup -/ was found to be 20 to 40 times that of Tc administered in a reduced form. The fraction of Tc, as TcO/sub 4//sup -/, transferred from gut to blood was approximately 6 to 10 times that of reduced Tc. The milk transfer coefficient of Tc administered as TcO/sub 4//sup -/ was 6 to 8 times greater for goats than cows. The fraction of Tc, as TcO/sub 4//sup -/, absorbed from the gut by cows, however, was approximately twice that absorbed by goats. The mean time for loss of Tc in cows' milk based on the average values plotted in Figure 2 was approximately 10 hours. The fraction of Tc, administered as TcO/sub 4//sup -/, absorbed from blood to mammary gland by cows was estimated to be approximately 2% that of goats. 4 refs., 15 tabs.
NASA Astrophysics Data System (ADS)
Zhang, Liqiang; Tan, Wenfang; Hu, Hao
2016-06-01
For modeling solidification process of casting accurately, a reliable heat transfer boundary condition data is required. In this paper, an inverse conduction model was established to determine the heat flux and heat transfer coefficient at the metal-sand mold interface for cylindrical casting in the lost foam process. The numerically calculated temperature was compared with analytic solution and simulation solution obtained by commercial software ProCAST to investigate the accuracy of heat conduction model. The instantaneous cast and sand mold temperatures were measured experimentally and these values were used to determine the interfacial heat transfer coefficient (IHTC). The IHTC values during lost foam casting were shown to vary from 20 to 800 W m-2 K-1. Additionally, the characteristics of the time-varying IHTC have also been discussed in this study.
Nogueira, Bruno L; Pérez, Julio; van Loosdrecht, Mark C M; Secchi, Argimiro R; Dezotti, Márcia; Biscaia, Evaristo C
2015-09-01
In moving bed biofilm reactors (MBBR), the removal of pollutants from wastewater is due to the substrate consumption by bacteria attached on suspended carriers. As a biofilm process, the substrates are transported from the bulk phase to the biofilm passing through a mass transfer resistance layer. This study proposes a methodology to determine the external mass transfer coefficient and identify the influence of the mixing intensity on the conversion process in-situ in MBBR systems. The method allows the determination of the external mass transfer coefficient in the reactor, which is a major advantage when compared to the previous methods that require mimicking hydrodynamics of the reactor in a flow chamber or in a separate vessel. The proposed methodology was evaluated in an aerobic lab-scale system operating with COD removal and nitrification. The impact of the mixing intensity on the conversion rates for ammonium and COD was tested individually. When comparing the effect of mixing intensity on the removal rates of COD and ammonium, a higher apparent external mass transfer resistance was found for ammonium. For the used aeration intensities, the external mass transfer coefficient for ammonium oxidation was ranging from 0.68 to 13.50 m d(-1) and for COD removal 2.9 to 22.4 m d(-1). The lower coefficient range for ammonium oxidation is likely related to the location of nitrifiers deeper in the biofilm. The measurement of external mass transfer rates in MBBR will help in better design and evaluation of MBBR system-based technologies.
MASS TRANSFER COEFFICIENTS FOR A NON-NEWTONIAN FLUID AND WATER WITH AND WITHOUT ANTI-FOAM AGENTS
Leishear, R.
2009-09-09
Mass transfer rates were measured in a large scale system, which consisted of an 8.4 meter tall by 0.76 meter diameter column containing one of three fluids: water with an anti-foam agent, water without an anti-foam agent, and AZ101 simulant, which simulated a non-Newtonian nuclear waste. The testing contributed to the evaluation of large scale mass transfer of hydrogen in nuclear waste tanks. Due to its radioactivity, the waste was chemically simulated, and due to flammability concerns oxygen was used in lieu of hydrogen. Different liquids were used to better understand the mass transfer processes, where each of the fluids was saturated with oxygen, and the oxygen was then removed from solution as air bubbled up, or sparged, through the solution from the bottom of the column. Air sparging was supplied by a single tube which was co-axial to the column, the decrease in oxygen concentration was recorded, and oxygen measurements were then used to determine the mass transfer coefficients to describe the rate of oxygen transfer from solution. Superficial, average, sparging velocities of 2, 5, and 10 mm/second were applied to each of the liquids at three different column fill levels, and mass transfer coefficient test results are presented here for combinations of superficial velocities and fluid levels.
NASA Astrophysics Data System (ADS)
Santos, Jane Meri; Kreim, Virginie; Guillot, Jean-Michel; Reis, Neyval Costa; de Sá, Leandro Melo; Horan, Nigel John
2012-12-01
This study has investigated overall mass transfer coefficients of hydrogen sulphide from quiescent liquid surfaces under simulated laboratory conditions. Wind flow (friction velocity) has been correlated with the overall mass transfer coefficient (KL) of hydrogen sulphide in the liquid phase using a wind tunnel study. The experimental values for this coefficient have been compared with predicted KL values obtained from three different emission models that are widely used to determine volatilization rates from the quiescent surfaces of wastewater treatment unit processes. Friction velocity (in a range of 0.11 and 0.27 m s-1) was found to have a negligible influence on the overall mass transfer coefficients for hydrogen sulphide but by contrast two of the models predicted a stronger influence of friction velocity and overestimate the KL values by up to a factor of 12.5, thus risking unnecessary expenditure on odour control measures. However, at low wind speeds or friction velocities, when more odour complaints might be expected due to poor atmospheric dispersion, a better agreement of emission rates with experimental data was found for all the models.
NASA Astrophysics Data System (ADS)
Stricker, M.; Steinbichler, G.
2014-05-01
Appropriate modeling of heat transfer from the polymer material to the injection mold is essential to achieve accurate simulation results. The heat transfer is commonly modeled using convective heat transfer and applying heat transfer coefficients (HTC) to the polymer-mold-interface. The set HTC has an influence on the results for filling pressure, cooling performance and shrinkage, among others. The current paper, presents a new strategy to measure HTC in injection molding experiments using Newtons law of cooling. The heat flux is calculated out of demolding heat (measured by means of calorimetry), injection heat (measured by means of an IR-sensor), cooling time and part mass. Cavity surface area, average mold surface temperature and average part surface temperature lead to the HTC.
Nowak, Jaroslaw A.; /Louisiana State U.
2009-09-01
The MiniBooNE experiment has collected what is currently the world's largest sample of {nu}{sub {mu}} charged current single charged pion (CCl{pi}{sup +}) interactions, roughly 46,000 events. The purity of the CCl{pi}{sup +} sample is 87% making this the purest event sample observed in the MiniBooNE detector. The average energy of neutrinos producing CC{pi}{sup +} interactions in MiniBooNE is about 1 GeV, therefore the study of these events can provide insight into both resonant and coherent pion production processes. In this talk, we will discuss the long-standing discrepancy in four-momentum transfer observed between CC{pi}{sup +} data and existing predictions. Several attempts to address this problem will be presented. Specifically, the Rein-Sehgal model has been extended to include muon mass terms for both resonant and coherent production. Using calculations from, an updated form for the vector form factor has also been adopted. The results of this improved description of CC{pi}{sup +} production will be compared to the high statistics MiniBooNE CC{pi}{sup +} data and several existing parametrizations of the axial vector form factor.
Two-center interference effects in (e, 2e) ionization of H2 and CO2 at large momentum transfer
NASA Astrophysics Data System (ADS)
Yamazaki, Masakazu; Nakajima, Isao; Satoh, Hironori; Watanabe, Noboru; Jones, Darryl; Takahashi, Masahiko
2015-09-01
In recent years, there has been considerable interest in understanding quantum mechanical interference effects in molecular ionization. Since this interference appears as a consequence of coherent electron emission from the different molecular centers, it should depend strongly on the nature of the ionized molecular orbital. Such molecular orbital patterns can be investigated by means of binary (e, 2e) spectroscopy, which is a kinematically-complete electron-impact ionization experiment performed under the high-energy Bethe ridge conditions. In this study, two-center interference effects in the (e, 2e) cross sections of H2 and CO2 at large momentum transfer are demonstrated with a high-statistics experiment, in order to elucidate the relationship between molecular orbital patterns and the interference structure. It is shown that the two-center interference is highly sensitive to the phase, spatial pattern, symmetry of constituent atomic orbital, and chemical bonding nature of the molecular orbital. This work was partially supported by Grant-in-Aids for Scientific Research (S) (No. 20225001) and for Young Scientists (B) (No. 21750005) from the Ministry of Education, Culture, Sports, Science and Technology.
Electroproduction of η Mesons in the S_{11}(1535) Resonance Region at High Momentum Transfer
Dalton, Mark Macrae
2008-08-01
The differential cross-section for the exclusive process p(e, e0p) has been measured at Q^{2} 5.7 and 7.0 (GeV/c)^{2}, which represents the highest momentum transfer measurement of this to date, significantly higher than the previous highest at Q^{2} 3.6 (GeV/c)^{2}. Data was taken for centre-of-mass energies from threshold to 1.8 GeV, encompassing the S11(1535) resonance, which dominates the pη channel. The total cross section is obtained, from which is extracted the helicity-conserving transition amplitude A_{1/2}, for the production of the S11(1535) resonance. This quantity appears to begin scaling as Q^{-3}, a predicted signal of the dominance of perturbative QCD, within the Q^{2} range of this measurement. No currently available theoretical predictions can account for the behaviour of this quantity over the full measured range of Q^{2}.
NASA Technical Reports Server (NTRS)
Collins, W. E.; Burger, A.; Dyer, K.; George, M.; Henderson, D.; Morgan, S.; Mu, R.; Shi, D.; Conner, D; Thompson, E.; Collins, L.; Curry, L.; Mattox, S.; Williams, G.
1996-01-01
Phase 1 of this work involved design work on a momentum transfer device. The progress on design and testing will be presented. Phase 2 involved the systematic study of the MPD thruster for dual uses. Though it was designed as a thruster for space vehicles, the characteristics of the plasma make it an excellent candidate for industrial applications. This project sought to characterize the system for use in materials processing and characterization. The surface modification on ZnCdTe, CdTe, and ZnTe will be presented. Phase 3 involved metal colloids and semiconductor quantum dots. One aspect of this project involves a collaborative effort with the Solid State Division of ORNL. The thrust behind this research is to develop ion implantation for synthesizing novel materials (quantum dots wires and wells, and metal colloids) for applications in all optical switching devices, up conversion, and the synthesis of novel refractory materials. The ions of interest are Au, Ag, Cd, Se, In, P, Sb, Ga, and As. The specific materials of interest are: CdSe, CdTe, InAs, GaAs, InP, GaP, InSb, GaSb, and InGaAs. A second aspect of this research program involves using porous glass (25-200 A) for fabricating materials of finite size. The results of some of this work will also be reported.
NASA Technical Reports Server (NTRS)
Massman, William J.
1987-01-01
The semianalytical model outlined in a previous study (Massman, 1987) to describe momentum exchange between the atmosphere and vegetated surfaces is extended to include the exchange of heat. The methods employed are based on one-dimensional turbulent diffusivities, and use analytical solutions to the steady-state diffusion equation. The model is used to assess the influence that the canopy foliage structure and density, the wind profile structure within the canopy, and the shelter factor can have upon the inverse surface Stanton number (kB exp -1), as well as to explore the consequences of introducing a scalar displacement height which can be different from the momentum displacement height. In general, the triangular foliage area density function gives results which agree more closely with observations than that for constant foliage area density. The intended application of this work is for parameterizing the bulk aerodynamic resistances for heat and momentum exchange for use within large-scale models of plant-atmosphere exchanges.
Entrance effect and gas-film mass-transfer coefficient in a large-diameter packed column
Doan, H.D.; Fayed, M.E.
2000-04-01
The effects of the bed height and the entrance section below the packing support on mass transfer in a 1.2-m diameter packed bed of 50-mm ceramic Intalox saddles were investigated under various gas flow rates from 1,957 to 7,828 kg/h {sm_bullet}m{sup 2} and liquid flow rates from 12,200 to 46,700 kg/h {sm_bullet}m{sup 2}. The entrance effect accounted for 17% of the overall water vapor transferred from moist air to a calcium chloride solution in the tower, regardless of the packing height. For a 0.91-m high bed, the average mass-transfer coefficient was directly proportional to the gas rate and was proportional to the liquid rate to the power of 0.24. For a 1.8-m high bed, the average mass-transfer coefficient was proportional to the gas rate to the power of 0.89 and appeared to be independent of the liquid rate. The height of a transfer unit (HTU) for 50-mm ceramic Intalox saddles remained relatively constant under various gas rates used in the present study. The HTU was about 0.5 m for the short bed and 0.8 m for the tall bed.
Yao, Kangning; Chi, Yong; Wang, Fei; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa
2016-01-01
A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s(-1) and 0.02191 s(-1) at a gas flow rate of 0.67 L min(-1) in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L(-1), 400 mg L(-1), and 600 mg L(-1), while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater.
Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L
2013-04-01
Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed.
Orgill, James J; Atiyeh, Hasan K; Devarapalli, Mamatha; Phillips, John R; Lewis, Randy S; Huhnke, Raymond L
2013-04-01
Trickle-bed reactor (TBR), hollow fiber membrane reactor (HFR) and stirred tank reactor (STR) can be used in fermentation of sparingly soluble gasses such as CO and H2 to produce biofuels and bio-based chemicals. Gas fermenting reactors must provide high mass transfer capabilities that match the kinetic requirements of the microorganisms used. The present study compared the volumetric mass transfer coefficient (K(tot)A/V(L)) of three reactor types; the TBR with 3 mm and 6 mm beads, five different modules of HFRs, and the STR. The analysis was performed using O2 as the gaseous mass transfer agent. The non-porous polydimethylsiloxane (PDMS) HFR provided the highest K(tot)A/V(L) (1062 h(-1)), followed by the TBR with 6mm beads (421 h(-1)), and then the STR (114 h(-1)). The mass transfer characteristics in each reactor were affected by agitation speed, and gas and liquid flow rates. Furthermore, issues regarding the comparison of mass transfer coefficients are discussed. PMID:23434811
NASA Astrophysics Data System (ADS)
Mihailovic, D. T.; Alapaty, K.; Lalic, B.; Arsenic, I.; Rajkovic, B.; Malinovic, S.
2004-10-01
A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8 17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.
Zyvoloski, George A.; Dash, Zora V.; Murphy, Hugh D.
1983-06-20
The accurate assessment of temperatures in the casing and liner is critical to the safety of EE-3 during the upcoming fracturing experiment. The purpose of this experiment is to obtain heat transfer coefficients for the nitrogen filled annulus as well as the water filled annulus below the nitrogen water interface. In addition the flowing temperature logs that were not obtained during Experiment 2026 because of an obstruction; will now be obtained in this experiment.
A Study of the Heat Transfer Coefficient of a Mini Channel Evaporator with R-134a as Refrigerant
NASA Astrophysics Data System (ADS)
Dollera, E. B.; Villanueva, E. P.
2015-09-01
The present study is to evaluate the heat transfer coefficient of the minichannel copper blocks used as evaporator with R-134a as the refrigerant. Experiments were conducted using three evaporator specimens of different channel hydraulic diameters (1.0mm, 2.0mm, 3.0mm). The total length for each channel is 640 mm. The dimension of each is 100mm.x50mm.x20mm. and the outside surfaces were machined to have fins. They were connected to a standard vapour compression refrigeration system. During each run of the experiment, the copper block evaporator was placed inside a small wind tunnel where controlled flow of air from a forced draft fan was introduced for the cooling process. The experimental set-up used data acquisition software and computer-aided simulation software was used to simulate the pressure drop and temperature profiles of the evaporator during the experimental run. The results were then compared with the Shah correlation. The Shah correlation over predicted and under predicted the values as compared with the experimental results for all of the three diameters and high variation for Dh=1.0mm. This indicates that the Shah correlation at small diameters is not the appropriate equation for predicting the heat transfer coefficient. The trend of the heat transfer coefficient is increasing as the size of the diameter increases.
NASA Astrophysics Data System (ADS)
Alfandi, Ashraf; Yoon, Juhyeon; Abusaleem, Khalifeh; Albati, Mohammad; Khafaji, Salih
2015-11-01
In this study, the effect on a shell-side heat transfer coefficient is investigated using the CFD code FLUENT with a variation in longitudinal pitch to diameter ratio, SL, in the range of 1.15 to 2.6 with a fixed transverse pitch to diameter ratio. For the benchmark purposes with the available empirical correlation, typical thermal-hydraulic conditions for the Zukauskas correlation are assumed. Many sensitivity calculations for different mesh sizes and turbulent models are performed to check the accuracy of the numerical solution. A realizable κ- ɛ turbulence model was found to be in good agreement with results of the Zukauskas correlation among the other turbulence models, at least for the staggered tube bank. It was found that the average heat transfer coefficient of a crossflow over a staggered tube bank calculated using FLUENT is in good agreement with the Zukauskas correlation-calculated heat transfer coefficient in the range of 1.15 - 2.6. For a staggered tube bank, using the Zukauskas correlation seems to be valid down to SL = 1.15.
Wang, Lin-Hwa; Lin, Hwai-Ting; Lo, Kuo-Cheng; Hsieh, Yung-Chun; Su, Fong-Chin
2010-07-01
The purpose of this study was to investigate the differences of momentum transfer from the trunk and upper extremities to the racket between open and square stances for different skill levels players in the two-handed backhand stroke. The motion capture system with twenty-one reflective markers attached on anatomic landmarks of the subject was used for two-handed backhand stroke motion data collection. Twelve subjects were divided into an advanced group and an intermediate group based on skill level. The three-dimensional linear and angular momentums of the trunk, upper arm, forearm, hand and racket were used for kinetic chain analysis. Results showed that all players with the square stance had significantly larger backward linear momentum contribution in trunk and upper arm than with the open stance (p<.05) irrespective of playing level. However, the external rotation angular momentum of the shoulder joint was significantly larger with an open stance than with a square stance (p=.047). Comparison of playing levels showed that the intermediate group performed higher linear momentum in three components of the trunk, upper arm backward linear momentum, and trunk right bending angular momentum than the advanced group significantly (p<.05). The advanced group reduces trunk linear movement to keep stability and applies trunk and linkage segment rotation to generate backhand stroke power. The advanced group also has a quick backswing for increasing acceleration and maintains longer in the follow-through phase for shock energy absorption. This information could improve training protocol design for teaching the two-handed backhand stroke and teaching players, especially beginners, how to make an effective stroke.
Two Experiments for Estimating Free Convection and Radiation Heat Transfer Coefficients
ERIC Educational Resources Information Center
Economides, Michael J.; Maloney, J. O.
1978-01-01
This article describes two simple undergraduate heat transfer experiments which may reinforce a student's understanding of free convection and radiation. Apparatus, experimental procedure, typical results, and discussion are included. (Author/BB)
Yao, Kangning; Chi, Yong; Wang, Fei; Yan, Jianhua; Ni, Mingjiang; Cen, Kefa
2016-01-01
A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s(-1) and 0.02191 s(-1) at a gas flow rate of 0.67 L min(-1) in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L(-1), 400 mg L(-1), and 600 mg L(-1), while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater. PMID:27120652
Gallis, Michail A.; Castaneda, Jaime N.; Rader, Daniel John; Torczynski, John Robert; Trott, Wayne Merle
2010-10-01
Thermal accommodation coefficients have been derived for a variety of gas-surface combinations using an experimental apparatus developed to measure the pressure dependence of the conductive heat flux between parallel plates at unequal temperature separated by a gas-filled gap. The heat flux is inferred from temperature-difference measurements across the plates in a configuration where the plate temperatures are set with two carefully controlled thermal baths. Temperature-controlled shrouds provide for environmental isolation of the opposing test plates. Since the measured temperature differences in these experiments are very small (typically 0.3 C or less over the entire pressure range), high-precision thermistors are used to acquire the requisite temperature data. High-precision components have also been utilized on the other control and measurement subsystems in this apparatus, including system pressure, gas flow rate, plate alignment, and plate positions. The apparatus also includes the capability for in situ plasma cleaning of the installed test plates. Measured heat-flux results are used in a formula based on Direct Simulation Monte Carlo (DSMC) code calculations to determine the thermal accommodation coefficients. Thermal accommodation coefficients have been determined for three different gases (argon, nitrogen, helium) in contact with various surfaces. Materials include metals and alloys such as aluminum, gold, platinum, and 304 stainless steel. A number of materials important to fabrication of Micro Electro Mechanical Systems (MEMS) devices have also been examined. For most surfaces, coefficient values are near 0.95, 0.85, and 0.45 for argon, nitrogen, and helium, respectively. Only slight differences in accommodation as a function of surface roughness have been seen. Surface contamination appears to have a more significant effect: argon plasma treatment has been observed to reduce thermal accommodation by as much as 0.10 for helium. Mixtures of argon and
Hughes, Thomas F; Bartlett, Rodney J
2008-08-01
A natural linear-scaled coupled-cluster (CC) method has been developed to calculate the response properties of large molecules, for example, dynamic polarizabilities and dispersion coefficients. The method is based on the transferability of the CC effective Hamiltonian from the equation-of-motion (EOM)-CC methods, subject to its representation in terms of highly transferable natural localized molecular orbitals. This transferability allows the interactions among regions in a molecule to be classified according to their important inter-region excitations and de-excitations. Dynamic polarizabilities determined in this way provide insight into calculating the excited states of large molecules using localized orbital concepts. Dispersion coefficients for the interactions within large molecules can be similarly determined. These could be useful in constructing corrective long-range potentials. Applications to alkanes, tryptophan, and polyglycine are presented. For those cases which are possible, conventional results can be reproduced. Dynamic polarizabilities of tryptophan indicate that the first excited state is localized to the indole group, while the second is localized to the carboxyl group.
NASA Technical Reports Server (NTRS)
Fang, Z.; Kwong, Victor H. S.
1997-01-01
The charge transfer rate coefficient for the reaction N(2+)(2p(sup 2)P(sup 0)) + He yields products is measured by recording the time dependence of the N(2+) ions stored in an ion trap. A cylindrical radio-frequency ion trap was used to store N(2+) ions produced by laser ablation of a solid titanium nitride target. The decay of the ion signals was analyzed by single exponential least-squares fits to the data. The measured rate coefficient is 8.67(0.76) x 10(exp -11)sq cm/s. The N(2+) ions were at a mean energy of 2.7 eV while He gas was at room temperature, corresponding to an equivalent temperature of 3.9 x 10(exp 3) K. The measured value is in good agreement with a recent calculation.
NASA Astrophysics Data System (ADS)
Manapova, Aigul
2016-08-01
We consider optimal control problems for second order elliptic equations with non-self-adjoint operators-convection-diffusion problems. Control processes are described by semi-linear convection-diffusion equation with discontinuous data and solutions (states) subject to the boundary interface conditions of imperfect type (i.e., problems with a jump of the coefficients and the solution on the interface; the jump of the solution is proportional to the normal component of the flux). Controls are involved in the coefficients of diffusion and convective transfer. We prove differentiability and Lipshitz continuity of the cost functional, depending on a state of the system and a control. The calculation of the gradients uses the numerical solutions of direct problems for the state and adjoint problems.
NASA Astrophysics Data System (ADS)
Tobajas, M.; García-Calvo, E.
Mass transfer in bioreactors has been examined. In the present work, dynamic methods are used for the determination of KLa values for water, model media and a fermentation broth (Candida utilis) in an airlift reactor. The conventional dynamic method is applied at the end of the microbial process in order to avoid an alteration in the metabolism of the microorganisms. New dynamic methods are used to determine KLa in an airlift reactor during the microbial growth of Candida utilis on glucose. One of the methods is based on the continuous measurement of carbon dioxide production while the other method is based on the relationship between the oxygen transfer and biomass growth rates. These methods of determining KLa does not interfere with the microorganisms action. A theoretical mass transfer model has been used for KLa estimation for the systems described above. Some differences between calculated and measured values are found for fermentation processes due to the model is developed for two-phase air-water systems. Nevertheless, the average deviation between the predicted values and those obtained from the relationship between oxygen transfer and biomass production rates are lower than 25% in any case.
NASA Astrophysics Data System (ADS)
Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Molina, J.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Zhang, L.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.
2015-11-01
Measurements of the five most significant angular coefficients, A0 through A4, for Z bosons produced in pp collisions at √{ s} = 8 TeV and decaying to μ+μ- are presented as a function of the transverse momentum and rapidity of the Z boson. The integrated luminosity of the dataset collected with the CMS detector at the LHC corresponds to 19.7fb-1. These measurements provide comprehensive information about the Z boson production mechanisms, and are compared to the QCD predictions at leading order, next-to-leading order, and next-to-next-to-leading order in perturbation theory.
Determination of the mass-transfer coefficient in liquid phase in a stream-bubble contact device
NASA Astrophysics Data System (ADS)
Dmitriev, A. V.; Dmitrieva, O. S.; Madyshev, I. N.
2016-09-01
One of the most effective energy saving technologies is the improvement of existing heat and mass exchange units. A stream-bubble contact device is designed to enhance the operation efficiency of heat and mass exchange units. The stages of the stream-bubble units that are proposed by the authors for the decarbonization process comprise contact devices with equivalent sizes, whose number is determined by the required performance of a unit. This approach to the structural design eliminates the problems that arise upon the transition from laboratory samples to industrial facilities and makes it possible to design the units of any required performance without a decrease in the effectiveness of mass exchange. To choose the optimal design that provides the maximum effectiveness of the mass-exchange processes in units and their intensification, the change of the mass-transfer coefficient is analyzed with the assumption of a number of parameters. The results of the study of the effect of various structural parameters of a stream-bubble contact device on the mass-transfer coefficient in the liquid phase are given. It is proven that the mass-transfer coefficient increases in the liquid phase, in the first place, with the growth of the level of liquid in the contact element, because the rate of the liquid run-off grows in this case and, consequently, the time of surface renewal is reduced; in the second place, with an increase in the slot diameter in the downpipe, because the jet diameter and, accordingly, their section perimeter and the area of the surface that is immersed in liquid increase; and, in the third place, with an increase in the number of slots in the downpipe, because the area of the surface that is immersed in the liquid of the contact element increases. Thus, in order to increase the mass-transfer coefficient in the liquid phase, it is necessary to design the contact elements with a minimum width and a large number of slots and their increased diameter; in
Transition from downward to upward air-sea momentum transfer in swell-dominated light wind condition
NASA Astrophysics Data System (ADS)
Smedman, Ann-Sofi; Högström, Ulf; Rutgersson, Anna
2016-04-01
Atmospheric and surface wave data from two oceanic experiments carried out on FLIP and ASIS platforms are analysed in order to identify swell-related effects on the momentum exchange during low wind speed conditions. The RED experiment was carried out on board an R/P Floating Instrument Platform, FLIP, anchored north east of the Hawaiian island Oahu with sonic anemometers at four levels: 5.1 m, 6.9 m, 9.9 m and 13.8 m respectively. The meteorological conditions were characterized by north- easterly trade wind and with swell present during most of the time. During swell the momentum flux was directed downwards meaning a positive contribution to the stress. The FETCH experiment was carried out in the Gulf of Lion in the north-western Mediterranean Sea. On the ASIS (air-sea interaction spar) buoy a sonic anemometer was mounted at 7 m above the mean surface level. During strong swell conditions the momentum flux was directed upwards meaning a negative contribution to the stress in this case. The downward momentum flux is shown to be a function of the orbital circulation while the upward momentum flux is a function of wave height. The dividing wind speed is found to be 3.5 m/s Conclusion: Wind speed > 3.5 m/s creates waves (ripples) and thus roughness. Combination of orbital motion and asymmetric structure of ripples lead to flow perturbation and downward transport of negative momentum. With low wind speed (no ripples but viscosity) circulations will form above the crest and the trough with opposite direction which will cause a pressure drop in the vertical direction and an upward momentum transport from the water to the air.
NASA Technical Reports Server (NTRS)
Liebert, Curt H.; Ehlers, Robert C.
1961-01-01
Local experimental heat-transfer coefficients were measured in the chamber and throat of a 2400-pound-thrust ammonia-oxygen rocket engine with a nominal chamber pressure of 600 pounds per square inch absolute. Three injector configurations were used. The rocket engine was run over a range of oxidant-fuel ratio and chamber pressure. The injector that achieved the best performance also produced the highest rates of heat flux at design conditions. The heat-transfer data from the best-performing injector agreed well with the simplified equation developed by Bartz at the throat region. A large spread of data was observed for the chamber. This spread was attributed generally to the variations of combustion processes. The spread was least evident, however, with the best-performing injector.
The effect of the liquid-solid system properties on the interline heat transfer coefficient
NASA Technical Reports Server (NTRS)
Wayner, P. C., Jr.
1977-01-01
A theoretical procedure to determine the heat transfer characteristics of the interline region of an evaporating meniscus using the macroscopic optical and thermophysical properties of the system is outlined. The analysis is based on the premise that the interline transport processes are controlled by the London-van der Waals forces between condensed phases (solid and liquid). The procedure is used to compare the relative size of the interline heat sink of various systems using a constant heat flux model. This solution demonstrates the importance of the interline heat flow number which is evaluated for various systems. The heat transfer characteristics of the decane-steel system are numerically compared with those of the carbon tetrachloride-quartz system.
Johnson, J.E.; Ward, G.M.; Ennis, M.E. Jr.; Boamah, K.N.
1988-02-01
The diet-milk transfer coefficient, Fm (Bq L-1 output in milk divided by Bq d-1 intake to the animal) was studied for eight radionuclides that previously had been given little attention. The Fm values for cows and goats, respectively, were: 2.3 x 10(-5) and 1.5 x 10(-4) for /sup 99m/Tc, 1.4 x 10(-4) and 8.5 x 10(-4) for /sup 95m/Tc, 1.1 x 10(-2) for /sup 99/Tc (goats only); 1.7 x 10(-3) and 9 x 10(-3) for /sup 99/Mo; 4.8 x 10(-4) and 4.4 x 10(-3) for /sup 123m/Te; 4.8 x 10(-4) and 4.6 x 10(-3) for /sup 133/Ba; 5.5 x 10(-7) and 5.5 x 10(-6) for /sup 95/Zr; and 4.1 x 10(-7) and 6.4 x 10(-6) for /sup 95/Nb. The goat/cow transfer coefficient ratios for milk were approximately 10, but the goat/cow ratios for meat varied by three orders of magnitude.
NASA Astrophysics Data System (ADS)
Crow, W. T.; Kustas, W. P.
2003-12-01
Recent advances in land data assimilation have yielded data assimilation techniques designed to solve the surface energy balance based on remote observations of surface radiometric temperature and a simple prognostic equation for surface temperature. These approaches have a number of potential advantages over existing diagnostic models, including the ability to make energy flux predictions between satellite overpass times, more physically realistic representations of ground heat flux, and reduced requirements for ancillary parameter estimation. Of particular interest is the variational approach presented by Caparrini et al. (Journal of Hydrometeorology, 2003) which uses a force-restore equation for surface temperature as a constraint for the simultaneous estimation of both evaporative fraction and bulk heat transfer coefficients from sequences of surface radiometric temperature observations. Using eddy correlation flux tower data and analogous energy balance results obtained from the diagnostic Two-Source Model (TSM), this presentation will examine the performance of the Caparrini et al. algorithm over a range of vegetative and hydrologic conditions in the southern United States. Results identify circumstances under which the simultaneous - and unambiguous - retrieval of both surface evaporation fraction and heat transfer coefficients is possible and clarify parameter interpretation issues associated with the single-source geometry of the variational approach. Inter-comparison with the TSM model illustrates circumstances under which the increased parameter complexity of the TSM model is justified by its more accurate two-source representation of thermal emission from partial vegetation canopies. Potential improvements to current variational data assimilation techniques will also be discussed.
Bennion, Kevin; Moreno, Gilberto
2015-09-29
Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.
NASA Technical Reports Server (NTRS)
Ibrahim, Mounir; Kannapareddy, Mohan; Tew, Roy C.; Dudenhoefer, James E.
1991-01-01
Twelve different cases of multidimensional models of Stirling engine components for space applications have been numerically investigated for oscillating, incompressible laminar flow with heat transfer. The cases studied covered wide ranges of Valensi number (from 44 to 700), Re(max) number (from 8250 to 60,000), and relative amplitude of fluid motion of 0.686 and 1.32. The Nusselt numbers obtained from the present study indicate a very complex shape with respect to time and axial location in the channel. The results indicate that three parameters can be used to define the local Nusselt number variation, namely: time average, amplitude, and phase angle. These parameters could be correlated respectively using: Re(max), Va and Re(max), and the relative amplitude of fluid motion.
Measurements of absorbed heat flux and water-side heat transfer coefficient in water wall tubes
NASA Astrophysics Data System (ADS)
Taler, Jan; Taler, Dawid; Kowal, Andrzej
2011-04-01
The tubular type instrument (flux tube) was developed to identify boundary conditions in water wall tubes of steam boilers. The meter is constructed from a short length of eccentric tube containing four thermocouples on the fire side below the inner and outer surfaces of the tube. The fifth thermocouple is located at the rear of the tube on the casing side of the water-wall tube. The boundary conditions on the outer and inner surfaces of the water flux-tube are determined based on temperature measurements at the interior locations. Four K-type sheathed thermocouples of 1 mm in diameter, are inserted into holes, which are parallel to the tube axis. The non-linear least squares problem is solved numerically using the Levenberg-Marquardt method. The heat transfer conditions in adjacent boiler tubes have no impact on the temperature distribution in the flux tubes.
Drag and Bulk Transfer Coefficients Over Water Surfaces in Light Winds
NASA Astrophysics Data System (ADS)
Wei, Zhongwang; Miyano, Aiko; Sugita, Michiaki
2016-08-01
The drag coefficient (CD), experimentally determined from observed wind speed and surface stress, has been reported to increase in the low wind-speed range (<3 m s^{-1}) as wind speed becomes smaller. However, until now, the exact causes for its occurrence have not been determined. Here, possible causes for increased CD values in near-calm conditions are examined using high quality datasets selected from three-year continuous measurements obtained from the centre of Lake Kasumigaura, the second largest lake in Japan. Based on our analysis, suggested causes including (i) measurement errors, (ii) lake currents, (iii) capillary waves, (iv) the possibility of a measurement height within the interfacial/transition sublayer, and (v) a possible mismatch in the representative time scale used for mean and covariance averaging, are not considered major factors. The use of vector-averaged, instead of scalar-averaged, wind speeds and the presence of waves only partially explain the increase in CD under light winds. A small increase in turbulent kinetic energy due to buoyant production at low wind speeds is identified as the likely major cause for this increase in CD in the unstable atmosphere dominant over inland water surfaces.
Gillespie, D.R.H.; Wang, Z.; Ireland, P.T.; Kohler, S.T.
1998-01-01
Cast impingement cooling geometries offer the gas turbine designer higher structural integrity and improved convective cooling when compared to traditional impingement cooling systems, which rely on plate inserts. In this paper, it is shown that the surface that forms the jets contributes significantly to the total cooling. Local heat transfer coefficient distributions have been measured in a model of an engine wall cooling geometry using the transient heat transfer technique. The method employs temperature-sensitive liquid crystals to measure the surface temperature of large-scale perspex models during transient experiments. Full distributions of local Nusselt number on both surfaces of the impingement plate, and on the impingement target plate, are presented at engine representative Reynolds numbers. The relative effects of the impingement plate thermal boundary condition and the coolant supply temperature on the target plate heat transfer have been determined by maintaining an isothermal boundary condition at the impingement plate during the transient tests. The results are discussed in terms of the interpreted flow field.
Han, Xianhong; Hao, Xin; Yang, Kun; Zhong, Yaoyao
2013-12-16
Heat transfer is a crucial aspect for hot stamping process, the fully austenitized boron steel blank with temperature about 900°C is transferred to the tool, then formed rapidly and quenched in the cooled tool. The desired fully martensitic transformation will happen only if the cooling rate exceeds a critical value approximately 27 K/s. During such process, the heat transfer coefficient (abbreviated as HTC) between the tool and blank plays a decisive role for the variation of the blank temperature. In this work, a theoretical formula based on the joint-roughness model is presented to describe the law of HTC, which relies on the roughness, hardness, and other material parameters of the tool and blank. Moreover, a non-contact temperature measuring system based on the infrared thermal camera is built to catch the temperature change course, and then the HTC value is derived through the inverse analysis. Based on the theoretical and experimental results, the change rule of HTC especially its dependence on the process pressure will be discussed in detail.
NASA Astrophysics Data System (ADS)
Tarlow, Thomas; Beausang, Cornelius; Hughes, Richard; Ross, Timothy; Gell, Kristen; Vyas, Gargi
2013-10-01
The structure of even and odd Gd nuclei at low/moderate spins and up to high excitation energies in the vicinity of the N = 90 shape change region have been probed using the (p,t) and (p,d) reactions on even-even targets. The proton beam, at a beam energy of 25 MeV, was provided by the 88-Inch Cyclotron at Lawrence Berkeley National Laboratory. Outgoing charged particles, between ~30 and 60 degrees, were detected by the STARS silicon telescope while coincident gamma-rays were detected with the clover Ge detectors of the Liberace Array. The measured angular distributions for outgoing deuterons and tritons are well reproduced by DWBA calculations for discrete low-lying states, whereas at higher excitations of (2 - 9) MeV the angular momentum distribution of the continuum region should be represented by a distribution of L-transfer values. The angular distribution of the continuum region has been investigated in the present work . Weighted linear combinations of calculated (DWBA) angular distributions for L-transfer values of ΔL = 0 to 6 ℏ are compared to the experimental angular distribution in a chi-square minimization technique to find the best fitting distribution of angular momentum transfers in gadolinium nuclei. Preliminary results will be presented.
Duan, Shasha; Han, Guosheng; Su, Yongheng; Zhang, Xiaoyu; Liu, Yanyan; Wu, Xianli; Li, Baojun
2016-06-28
Magnetic core-shell structures provide abundant opportunities for the construction of multifunctional composites. In this article, magnetic core-shells were fabricated with Co nanoparticles (NPs) as cores and g-C3N4 as shells. In the fabrication process, the Co@g-C3N4 core-shells were anchored onto the rGO nanosheets to form a Co@g-C3N4-rGO composite (CNG-I). For hydrogen generation from the hydrolysis of NaBH4 or NH3BH3, the Co NP cores act as catalytic active sites. The g-C3N4 shells protect Co NPs cores from aggregating or growing. The connection between Co NPs and rGO was strengthened by the g-C3N4 shells to prevent them from leaching or flowing away. The g-C3N4 shells also work as a cocatalyst for hydrogen generation. The magnetism of Co NPs and the shape of rGO nanosheets achieve effective momentum transfer in the external magnetic field. In the batch reactor, a higher catalytic activity was obtained for CNG-I in self-stirring mode than in magneton stirring mode. In the continuous-flow process, stable hydrogen generation was carried out with CNG-I being fixed and propelled by the external magnetic field. The separation film is unnecessary because of magnetic momentum transfer. This idea of the composite design and magnetic momentum transfer will be useful for the development of both hydrogen generation and multifunctional composite materials. PMID:27276187
Duan, Shasha; Han, Guosheng; Su, Yongheng; Zhang, Xiaoyu; Liu, Yanyan; Wu, Xianli; Li, Baojun
2016-06-28
Magnetic core-shell structures provide abundant opportunities for the construction of multifunctional composites. In this article, magnetic core-shells were fabricated with Co nanoparticles (NPs) as cores and g-C3N4 as shells. In the fabrication process, the Co@g-C3N4 core-shells were anchored onto the rGO nanosheets to form a Co@g-C3N4-rGO composite (CNG-I). For hydrogen generation from the hydrolysis of NaBH4 or NH3BH3, the Co NP cores act as catalytic active sites. The g-C3N4 shells protect Co NPs cores from aggregating or growing. The connection between Co NPs and rGO was strengthened by the g-C3N4 shells to prevent them from leaching or flowing away. The g-C3N4 shells also work as a cocatalyst for hydrogen generation. The magnetism of Co NPs and the shape of rGO nanosheets achieve effective momentum transfer in the external magnetic field. In the batch reactor, a higher catalytic activity was obtained for CNG-I in self-stirring mode than in magneton stirring mode. In the continuous-flow process, stable hydrogen generation was carried out with CNG-I being fixed and propelled by the external magnetic field. The separation film is unnecessary because of magnetic momentum transfer. This idea of the composite design and magnetic momentum transfer will be useful for the development of both hydrogen generation and multifunctional composite materials.
Makins, N.C.R.; Ent, R.; Chapman, M.S.; Hansen, J.; Lee, K.; Milner, R.G.; Nelson, J. ); Arnold, R.G.; Bosted, P.E.; Keppel, C.E.; Lung, A.; Rock, S.E.; Spengos, M.; Szalata, Z.M.; Tao, L.H.; White, J.L. ); Coulter, K.P.; Geesaman, D.F.; Holt, R.J.; Jackson, H.E.; Papavassiliou, V.; Potterveld, D.H.; Zeidman, B. ); Arrington, J.; Beise, E.J.; Belz, E.; Filippone, B.W.; Gao, H.; Lorenzon, W.; Mueller, B.; McKeown, R.D.; O'Neill, T.G. ); Epstein, M.; Margaziotis, D.J. ); Napolitano, J. (Rensselaer Polytechnic Institute, Troy, New York 12180 (United S
1994-03-28
The cross section for quasielastic [sup 12]C([ital e],[ital e][prime][ital p]) scattering has been measured at momentum transfer [ital Q][sup 2]=1, 3, 5, and 6.8 (GeV/[ital c])[sup 2]. The results are consistent with scattering from a single nucleon as the dominant process. The nuclear transparency is obtained and compared with theoretical calculations that incorporate color transparency effects. No significant rise of the transparency with [ital Q][sup 2] is observed.
Li, Zhengqiang; Li, Kaitao; Li, Donghui; Yang, Jiuchun; Xu, Hua; Goloub, Philippe; Victori, Stephane
2016-09-20
The Cimel new technologies allow both daytime and nighttime aerosol optical depth (AOD) measurements. Although the daytime AOD calibration protocols are well established, accurate and simple nighttime calibration is still a challenging task. Standard lunar-Langley and intercomparison calibration methods both require specific conditions in terms of atmospheric stability and site condition. Additionally, the lunar irradiance model also has some known limits on its uncertainty. This paper presents a simple calibration method that transfers the direct-Sun calibration constant, V_{0,Sun}, to the lunar irradiance calibration coefficient, C_{Moon}. Our approach is a pure calculation method, independent of site limits, e.g., Moon phase. The method is also not affected by the lunar irradiance model limitations, which is the largest error source of traditional calibration methods. Besides, this new transfer calibration approach is easy to use in the field since C_{Moon} can be obtained directly once V_{0,Sun} is known. Error analysis suggests that the average uncertainty of C_{Moon} over the 440-1640 nm bands obtained with the transfer method is 2.4%-2.8%, depending on the V_{0,Sun} approach (Langley or intercomparison), which is comparable with that of lunar-Langley approach, theoretically. In this paper, the Sun-Moon transfer and the Langley methods are compared based on site measurements in Beijing, and the day-night measurement continuity and performance are analyzed.
Li, Zhengqiang; Li, Kaitao; Li, Donghui; Yang, Jiuchun; Xu, Hua; Goloub, Philippe; Victori, Stephane
2016-09-20
The Cimel new technologies allow both daytime and nighttime aerosol optical depth (AOD) measurements. Although the daytime AOD calibration protocols are well established, accurate and simple nighttime calibration is still a challenging task. Standard lunar-Langley and intercomparison calibration methods both require specific conditions in terms of atmospheric stability and site condition. Additionally, the lunar irradiance model also has some known limits on its uncertainty. This paper presents a simple calibration method that transfers the direct-Sun calibration constant, V_{0,Sun}, to the lunar irradiance calibration coefficient, C_{Moon}. Our approach is a pure calculation method, independent of site limits, e.g., Moon phase. The method is also not affected by the lunar irradiance model limitations, which is the largest error source of traditional calibration methods. Besides, this new transfer calibration approach is easy to use in the field since C_{Moon} can be obtained directly once V_{0,Sun} is known. Error analysis suggests that the average uncertainty of C_{Moon} over the 440-1640 nm bands obtained with the transfer method is 2.4%-2.8%, depending on the V_{0,Sun} approach (Langley or intercomparison), which is comparable with that of lunar-Langley approach, theoretically. In this paper, the Sun-Moon transfer and the Langley methods are compared based on site measurements in Beijing, and the day-night measurement continuity and performance are analyzed. PMID:27661591
NASA Technical Reports Server (NTRS)
Hippensteele, Steven A.; Poinsatte, Philip E.
1993-01-01
In this transient technique the preheated isothermal model wall simulates the classic one-dimensional, semi-infinite wall heat transfer conduction problem. By knowing the temperature of the air flowing through the model, the initial temperature of the model wall, and the surface cooling rate measured at any location with time (using the fast-response liquid-crystal patterns recorded on video tape), the heat transfer coefficient can be calculated for the color isothermal pattern produced. Although the test was run transiently, the heat transfer coefficients are for the steady-state case. The upstream thermal boundary condition was considered to be isothermal. This transient liquid-crystal heat-transfer technique was used in a transient air tunnel in which a square-inlet, 3-to-1 exit transition duct was placed. The duct was preheated prior to allowing room temperature air to be suddenly drawn through it. The resulting isothermal contours on the duct surfaces were revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record was made of the temperature and time data for all points on the duct surfaces during each test. The duct surfaces were uniformly heated using two heating systems: the first was an automatic temperature-controlled heater blanket completely surrounding the test duct like an oven, and the second was an internal hot-air loop through the inside of the test duct. The hot-air loop path was confined inside the test duct by insulated heat dams located at the inlet and exit ends of the test duct. A recirculating fan moved hot air into the duct inlet, through the duct, out of the duct exit, through the oven, and back to the duct inlet. The temperature nonuniformity of the test duct model wall was held very small. Test results are reported for two inlet Reynolds numbers of 200,000 and 1,150,000 (based on the square-inlet hydraulic diameter) and two free-stream turbulence
Ishikawa, K.; Patton, B.; Olsen, B. A.; Jau, Y.-Y.; Happer, W.
2011-06-15
Optical pumping of alkali-metal atoms in vapor cells causes spin currents to flow to the cell walls where excess angular momentum accumulates in the wall nuclei. Experiments reported here indicate that the substantial enhancement of the nuclear-spin polarization of salts at the cell walls is primarily due to the nuclear-spin current, with a lesser contribution from the electron-spin current of the vapor.
NASA Astrophysics Data System (ADS)
Baskakov, A. P.; Rakov, O. A.
2013-11-01
The analytical equations for the steady-state heat-and-mass transfer in the steam evaporation/condensation processes from the steam-gas mixtures on the planar and spherical surfaces are derived. The vapor flow through the motionless dry gas is considered according to the method proposed by Maxwell for the solution of the diffusion problems. The relationships for the calculation of the coefficients taking into account an increase in the mass output and an increase or a decrease in the heat emission (depending on the directions of the heat-and-mass flows) as a result of the influence of the Stefan flow are presented. The derived relationships can be used to calculate the apparatuses in which the steam evaporation or condensation from the steam-gas mixture occurs (the coolers of the vapor from deaerators, the apparatuses for the deep utilization of the heat of the combustion products, the condensation boilers, etc.).
NASA Astrophysics Data System (ADS)
MacIntyre, S.; Crowe, A. T.; Amaral, J. H.; Arneborg, L.; Bastviken, D.; Forsberg, B. R.; Melack, J. M.; Tota, J.; Tedford, E. W.; Karlsson, J.; Podgrajsek, E.; Andersson, A.; Rutgersson, A.
2014-12-01
Similarity scaling predicts that wind induced shear will be the dominant source of turbulence near the air-water interface in lakes with low to moderate wind forcing. Turbulence is expected to be enhanced with wave activity; results are conflicting on the effects of heating and cooling. We measured turbulence with an acoustic Doppler velocimeter (ADV) and / or a temperature-gradient microstructure profiler and obtained correlative time series measurements of meteorology and water column temperature in a 800 m2 arctic pond, a 1 ha boreal lake, and a large tropical reservoir. Turbulence measurements with both instruments corroborated those calculated from similarity scaling in the boreal lake. Within the arctic pond, dissipation rates obtained with the ADV were in agreement with those from similarity scaling when winds exceeded ~1.5 m/s with a greater frequency of measurable dissipation rates when surface waves were present. Dissipation rates in the tropical reservoir reached and often exceeded 10-6 m2 s-3 in the upper meter under light winds and decreased by an order of magnitude with cooling or rainfall. Under cooling, dissipation rates were at least an order of magnitude higher in the uppermost 25 cm bin than in the water column below. Gas transfer coefficients calculated from concurrent measurements of greenhouse gas fluxes with floating chambers and the surface renewal model using the estimates of turbulence were in agreement. These results support the predictions of Monin-Obuhov similarity scaling in that shear dominates turbulence production near the air-water interface under heating and cooling, illustrate spatial variability in turbulence production in small water bodies due to the intermittency of wind interacting with the water's surface, are in agreement with prior oceanic observations that shear and associated turbulence can be intensified in shallow mixing layers under heating with light winds, and illustrate the utility of similarity scaling for
Shitzer, Avraham
2006-03-01
The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published "new" WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a "gold standard" for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized. PMID:16397760
Shitzer, Avraham
2006-03-01
The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published "new" WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a "gold standard" for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.
NASA Astrophysics Data System (ADS)
Shitzer, Avraham
2006-03-01
The wind-chill index (WCI), developed in Antarctica in the 1940s and recently updated by the weather services in the USA and Canada, expresses the enhancement of heat loss in cold climates from exposed body parts, e.g., face, due to wind. The index provides a simple and practical means for assessing the thermal effects of wind on humans outdoors. It is also used for indicating weather conditions that may pose adverse risks of freezing at subfreezing environmental temperatures. Values of the WCI depend on a number of parameters, i.e, temperatures, physical properties of the air, wind speed, etc., and on insolation and evaporation. This paper focuses on the effects of various empirical correlations used in the literature for calculating the convective heat transfer coefficients between humans and their environment. Insolation and evaporation are not included in the presentation. Large differences in calculated values among these correlations are demonstrated and quantified. Steady-state wind-chill-equivalent temperatures (WCETs) are estimated by a simple, one-dimensional heat-conducting hollow-cylindrical model using these empirical correlations. Partial comparison of these values with the published “new” WCETs is presented. The variability of the estimated WCETs, due to different correlations employed to calculate them, is clearly demonstrated. The results of this study clearly suggest the need for establishing a “gold standard” for estimating convective heat exchange between exposed body elements and the cold and windy environment. This should be done prior to the introduction and adoption of further modifications to WCETs and indices. Correlations to estimate the convective heat transfer coefficients between exposed body parts of humans in windy and cold environments influence the WCETs and need to be standardized.
NASA Astrophysics Data System (ADS)
Wang, Binbin; Liao, Qian; Fillingham, Joseph H.; Bootsma, Harvey A.
2015-03-01
Recent studies suggested that under low to moderate wind conditions without bubble entraining wave breaking, the air-water gas transfer velocity k+ can be mechanistically parameterized by the near-surface turbulence, following the small eddy model (SEM). Field measurements have supported this model in a variety of environmental forcing systems. Alternatively, surface divergence model (SDM) has also been shown to predict the gas transfer velocity across the air-water interface in laboratory settings. However, the empirically determined model coefficients (α in SEM and c1 in SDM) scattered over a wide range. Here we present the first field measurement of the near-surface turbulence with a novel floating PIV system on Lake Michigan, which allows us to evaluate the SEM and SDM in situ in the natural environment. k+ was derived from the CO2 flux that was measured simultaneously with a floating gas chamber. Measured results indicate that α and c1 are not universal constants. Regression analysis showed that α˜log>(ɛ>) while the near-surface turbulence dissipation rate ɛ is approximately greater than 10-6 m2 s-3 according to data measured for this study as well as from other published results measured in similar environments or in laboratory settings. It also showed that α scales linearly with the turbulent Reynolds number. Similarly, coefficient c1 in the SDM was found to linearly scale with the Reynolds number. These findings suggest that larger eddies are also important parameters, and the dissipation rate in the SEM or the surface divergence β' in the SDM alone may not be adequate to determine k+ completely.
NASA Astrophysics Data System (ADS)
Khatua, A. K.; Kumar, P.; Singh, H. N.; Kumar, R.
2016-04-01
The experimental conductive heat transfer results for flow through inserted perforated twisted tapes in a horizontal tube during condensation of pure R-245fa vapor. The test section consisting of two separate coaxial double pipes assembled in series, acted like a counter flow heat exchanger, where the refrigerant condensed inside the inner tube by rejecting heat to the cooling water flowing inside the outer tube in reversed direction. Data for three perforated twisted tapes having constant twist ratio of 7.1 mm and pitch of perforation as 12.5, 25.0 and 37.5 mm, inserted one by one in full length of test condenser by varying refrigerant mass flux from 100 to 200 kg/m2 s in steps of 50 kg/m2 s for the range of vapor quality from 0.1 to 0.9, were collected together with flow and without insert (plain tube). It has been found that the perforated twisted tape insert having pitch of perforation equal to in order of 12.5 mm gives the highest value of average heat transfer coefficient and is of the order of 37.5 % more than that of the plain one and the correlation predicts the experimental data within an error band of ±15 %.
NASA Astrophysics Data System (ADS)
Plotkin-Swing, Benjamin; McAlpine, Katherine; Gochnauer, Daniel; Saxberg, Brendan; Gupta, Subhadeep
2016-05-01
The narrow momentum and position spread of a Bose-Einstein condensate (BEC) can help improve atom interferometric measurements. In earlier work, we demonstrated a contrast interferometer with ytterbium (Yb) BECs. Here, we report progress towards implementing a second generation Yb BEC interferometer with the goal of measuring h/m, where h is Planck's constant and m is the mass of a Yb atom, in order to determine the fine structure constant α. The use of the non-magnetic Yb atom and the symmetric geometry of the interferometer make the measurement immune to several error sources. We have produced Yb BECs in a new apparatus, and are currently installing and testing the laser pulse atom-optics needed for the interferometry sequence. The precision of our measurement scales with N2, where 2N is the number of photon recoils separating the interfering momentum states in the interferometer. We will discuss our progress towards realizing Bloch oscillations (BO) pulses for large N. Using an extension of our previous analysis2, we will also discuss the role of diffraction phases in our interferometer due to the BO pulses. This work is supported by the NSF.
NASA Astrophysics Data System (ADS)
Maciejewska, Beata; Piasecka, Magdalena
2016-08-01
The paper presents an application of the semi-analytical method, called the non-continuous Trefftz method, to the calculation of the heat transfer coefficients. It is very effective method for solving direct and inverse problems. The results obtained by this method are consistent with the results obtained by using complicated methods: the FEM and Beck method. Sought local heat transfer coefficients between the heating surface and the boiling liquid flowing through 1 mm deep minichannel were calculated from the Robin boundary condition. The temperature of the heating surface and the derivative of the temperature were was found from solving the inverse problem. The study is limited to the identification of the heat transfer coefficient in the subcooled and the saturated nucleate boiling regions. The article presents also the measurement stand and methodology of conducting the experiment. Presented issues allows verification of state-of-the-art methods of solving the inverse problem by using the authors' empirical data from the experiment.
Durbha, Krishna Sandilya; Aravamudan, Kannan
2012-05-01
The efficacy of power ultrasound of 20 kHz in enhancing the volumetric mass transfer coefficient was investigated in this study. Breakage and dissolution of sparingly soluble benzoic acid dispersed in either water or 24% aqueous glycerol was monitored as a function of time and ultrasound power input. Particle size measurements were carried out at intermediate times during the experiment to estimate the mean particle size and surface area. Linear combination of lognormal distributions was found to fit the experimental particle size distribution data. The De Brouckere mean diameters (d(43)) obtained from the particle size distributions decreased with increase in the ultrasonic power level. Empirical correlations were developed for the evolution of surface area as a function of ultrasonic energy input per unit mass. The effect of ultrasound on the intrinsic mass transfer coefficient (k(c)) could be decoupled from the volumetric mass transfer coefficient (k(c)a) as the surface area was also estimated. Different approaches involving either constant or variable intrinsic mass transfer coefficients were employed when carrying out the delineation. Mass transfer rates were enhanced due to both higher ultrasound induced intrinsic convective mass transfer coefficient and additional surface area created from particle breakage. To delineate the effects of particle breakage from solid dissolution, experiments were also carried out under non-mass transfer conditions by pre-saturating the solvents with benzoic acid. Both the solid-liquid systems examined in the present study attained saturation concentration when the ultrasonic energy input per unit mass was approximately 60 kJ/kg, irrespective of the ultrasonic power level setting.
NASA Astrophysics Data System (ADS)
Roy, Arindam; Ramasubramaniam, Rajagopal; Gaonkar, Harshavardhan A.
2012-11-01
Kubelka-Munk (K-M) theory is a phenomenological light transport theory that provides analytical expressions for reflectance and transmittance of diffusive substrates such as tissues. Many authors have derived relations between coefficients of K-M theory and that of the more fundamental radiative transfer equations. These relations are valid only in diffusive light transport regime where scattering dominates over absorption. They also fail near boundaries where incident beams are not diffusive. By measuring total transmittance and total reflectance of tissue phantoms with varying optical parameters, we have obtained empirical relations between K-M coefficients and the radiative transport coefficients for integrating sphere-based spectrophotometers that use uniform, nondiffusive incident beams. Our empirical relations show that the K-M scattering coefficients depend only on reduced scattering coefficient (μs‧), whereas the K-M absorption coefficient depends on both absorption (μa) and reduced scattering (μs‧) coefficients of radiative transfer theory. We have shown that these empirical relations are valid in both the diffusive and nondiffusive regimes and can predict total reflectance within an error of 10%. They also can be used to solve the inverse problem of obtaining multiple optical parameters such as chromophore concentration and tissue thickness from the measured reflectance spectra with a maximum accuracy of 90% to 95%.
NASA Astrophysics Data System (ADS)
Shao, Y. F.; Song, F.; Jiang, C. P.; Xu, X. H.; Wei, J. C.; Zhou, Z. L.
2016-02-01
We study the difference in the maximum stress on a cylinder surface σmax using the measured surface heat transfer coefficient hm instead of its average value ha during quenching. In the quenching temperatures of 200, 300, 400, 500, 600 and 800°C, the maximum surface stress σmmax calculated by hm is always smaller than σamax calculated by ha, except in the case of 800°C; while the time to reach σmax calculated by hm (fmmax) is always earlier than that by ha (famax). It is inconsistent with the traditional view that σmax increases with increasing Biot number and the time to reach σmax decreases with increasing Biot number. Other temperature-dependent properties also have a small effect on the trend of their mutual ratios with quenching temperatures. Such a difference between the two maximum surface stresses is caused by the dramatic variation of hm with temperature, which needs to be considered in engineering analysis.
NASA Astrophysics Data System (ADS)
Patorski, Jacek A.; Gindrat, Malko
2009-05-01
The proton beam passing through the wall area of a liquid metal (LM) target container, called entrance window, is causing deposition of maximum high heat flux amount 140 W/cm2.Previous experimental thermo-hydraulics investigations for the MEGAPIE LM-target at the SINQ facility of Heat- Transfer-Coefficient (HTC) using InfraRed-Thermography (IRT) have been presented at Thermosense 2006 and 2007 [1], [2] and references therein. During these investigations the IRT active sensors with applied heat fluxes of the small and low range from 2.5 to 15.2 W/cm2 are used. The heating shell foil of the sensor has been connected to steel dish enclosing LM target container by using electrical insulation ceramic glue. A higher, then achieved 15 W/cm2, heat flux has lead to delaminating of the heater. Because of interest to determinate the HTC-chart under real heat flux conditions and investigate some positive effect of heat flux buoyancy on cooling, the idea for the High Heat Flux (HHF) IRT Sensors, using of the Low Pressure Plasma Spraying - Thin Film (LPPS-TF) technology of the Sulzer Metco Company has been created. The paper presents the idea of multilayer thermal sprayed construction of HHF-IRT-Sensor, few realizations and some results of the first pre-test performed at the PSI LBE Double Pump Loop using the new sensor and the 2DD IRT methodology presented in [1].
Sabau, Adrian S
2007-01-01
Lubricant spray application experiments were conducted for the die casting process. The heat flux was measured in situ using a differential thermopile sensor for three application techniques. First, the lubricant was applied under a constant flowrate while the nozzle was held in the same position. Second, the lubricant was applied in a pulsed, static manner, in which the nozzle was held over the same surface while it was turned on and off several times. Third, the lubricant was applied in a sweeping manner, in which the nozzle was moved along the die surface while it was held open. The experiments were conducted at several die temperatures and at sweep speeds of 20, 23, and 68 cm/s. The heat flux data, which were obtained with a sensor that was located in the centre of the test plate, were presented and discussed. The sensor can be used to evaluate lubricants, monitor the consistency of die lubrication process, and obtain useful process data, such as surface temperature, heat flux, and heat transfer coefficients. The heat removed from the die surface during lubricant application is necessary for (a) designing the cooling channels in the die, i.e. their size and placement, and (b) performing accurate numerical simulations of the die casting process.
Sandy, Andy L; Guo, Jia; Miskewitz, Robert J; McGillis, Wade R; Rodenburg, Lisa A
2013-02-01
Air-water exchange is an important process controlling the fate of many organic chemicals in the environment. Modeling this process is hampered by the lack of direct observations. Thus, the purpose of this work was to derive direct measurements of the mass transfer coefficients for air-water exchange (v(aw)) of polychlorinated biphenyls (PCBs) that may be used to check the validity of values derived from tracer gas experiments. v(aw) values for PCBs were determined using previously published turbulent fluxes divided by the corresponding dissolved phase concentrations. The median v(aw) values for each homolog decreased with increasing molecular weight and ranged from 0.29 for hexachlorobiphenyls to 2.2 m d(-1) for monochlorobiphenyls with a propagated uncertainty of about 70%, lower than in previous studies. Due to relatively low wind speeds and possible sorption of PCBs to colloids, these numbers may be biased low. These field measurements of v(aw) differ by as much as a factor of 23 from predictions based on the widely-used Whitman two-film model. Therefore a new formulation for the calculation of v(aw) based on field measurements is needed. This study demonstrates that micrometeorological approaches are a viable option for the measurement of v(aw) for hydrophobic organics such as PCBs and should be used to generate enough field data on the air-water exchange of hydrophobic organics to allow the development of new predictive models. PMID:23040647
NASA Astrophysics Data System (ADS)
Wang, Y. Y.; Dravid, V. P.; Bulut, N.; Han, P. D.; Klein, M. V.; Schnatterly, S. E.; Zhang, F. C.
1995-09-01
Momentum-transfer-resolved electron energy loss spectroscopy of the valence band transitions in BaBiO3 has revealed for the first time that dispersion of the excitation at the optical gap \\(~2 eV\\) and an optically forbidden transition at 4.5 eV are all anisotropic along [100] and [110]. The anisotropic dispersion of the threshold excitation cannot be described by a simple charge density wave picture but can be explained by a small exciton model proposed in this paper. The optically forbidden transition is found to agree well with a proposed molecular orbital model, where the transition is assigned as the excitation from the O 2pσ nonbonding states to the empty Bi 6s state.
A tale of two solutes: Dual-domain flow and the role of the mass transfer coefficient
NASA Astrophysics Data System (ADS)
Callaghan, M. V.; Bishop, J. M.; Cey, E. E.; Bentley, L. R.
2011-12-01
' histories were different because of the difference in their distribution at the beginning of the experiment. Dual-permeability water flow and solute transport has been modeled using the HYDRUS software package. The numerical model was calibrated to both the observed salt and tracer concentrations, and, consequently, the distinct behavior of the two solutes. The numerical modeling results indicate that salt and tracer transport are sensitive to the mass transfer coefficient between matrix and macropore domains and, consequently, proper selection of the coefficient value is key to the accurate prediction of transport in dual permeability media.
NASA Astrophysics Data System (ADS)
Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.
1987-05-01
Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.
The Henry’s law constant (HLC) and the overall mass transfer coefficient are both important parameters for modeling formaldehyde emissions from aqueous solutions. In this work, the apparent HLCs for aqueous formaldehyde solutions were determined in the concentration range from 0....
NASA Technical Reports Server (NTRS)
Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.
1987-01-01
Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.
NASA Technical Reports Server (NTRS)
Lowdermilk, Warren H; Grele, Milton D
1950-01-01
A heat-transfer investigation was conducted with air flowing through an electrically heated Inconel tube having either a long-approach or a right-angle-edge entrance, an inside diameter of 0.402 inch, and a length of 24 inches over a range of Reynolds numbers up to 375,000 and average inside-tube-wall temperatures up to 2000 degrees R. Good correlation of heat-transfer data was obtained for both entrances, which substantiates work previously reported. A fair correlation of friction data was obtained for both entrances. The entrance configuration had little effect on the average heat-transfer and friction coefficients.
Voigt, G.; Mueller, H.P.; Proehl, G.P.; Paretzke, H.G.; Propstmeier, G.; Roehrmoser, G.H.; Hofmann, P. )
1989-12-01
Following the Chernobyl accident in April 1986, the transfer of {sup 131}I and {sup 137}Cs from feed to milk was studied under experimental and common agricultural conditions. From measurements in different dairy farms in Southern Bavaria, equilibrium transfer coefficients for cow's milk were calculated to be 0.003 d L-1 (range 0.0015 to 0.005) for {sup 131}I and 0.003 d L-1 (range 0.0025 to 0.004) for {sup 137}Cs. In feeding experiments with cows and sheep under more controlled conditions, milk transfer coefficients of 0.007 d L-1 (range 0.0055 to 0.0081) for {sup 131}I and 0.003 d L-1 (range 0.0023 to 0.0053) for {sup 137}Cs were obtained for cows, while for sheep the {sup 137}Cs transfer coefficient was higher: 0.06 d L-1. The kinetics of the Cs transfer from fodder to cow's milk can be described by two exponential terms assuming biological half-lives in milk of 1-2 d and 10-20 d. The use of a fast component with 1.5 d and a fraction of 0.8, and a slow component with 15 d, gives a good approximation to the kinetics for all cows in this experiment.
LaJohn, L. A.
2010-04-15
The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression (RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q{yields}0), valid even at relativistic incident photon energies {omega}{sub 1}>m provided that the average initial momentum of the ejected electron
is not too high, that is,
NASA Astrophysics Data System (ADS)
Lajohn, L. A.
2010-04-01
The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression (RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q→0), valid even at relativistic incident photon energies ω1>m provided that the average initial momentum of the ejected electron
NASA Technical Reports Server (NTRS)
Lee, Dorothy B; Faget, Maxime A
1956-01-01
A modified method of Van Driest's flat-plate theory for turbulent boundary layer has been found to simplify the calculation of local skin-friction coefficients which, in turn, have made it possible to obtain through Reynolds analogy theoretical turbulent heat-transfer coefficients in the form of Stanton number. A general formula is given and charts are presented from which the modified method can be solved for Mach numbers 1.0 to 12.0, temperature ratios 0.2 to 6.0, and Reynolds numbers 0.2 times 10 to the 6th power to 200 times 10 to the 6th power.
Assessment of the differential linear coherent scattering coefficient of biological samples
NASA Astrophysics Data System (ADS)
Conceição, A. L. C.; Antoniassi, M.; Poletti, M. E.
2010-07-01
New differential linear coherent scattering coefficient, μ CS, data for four biological tissue types (fat pork, tendon chicken, adipose and fibroglandular human breast tissues) covering a large momentum transfer interval (0.07≤ q≤70.5 nm -1), resulted from combining WAXS and SAXS data, are presented in order to emphasize the need to update the default data-base by including the molecular interference and the large-scale arrangements effect. The results showed that the differential linear coherent scattering coefficient demonstrates influence of the large-scale arrangement, mainly due to collagen fibrils for tendon chicken and fibroglandular breast samples, and triacylglycerides for fat pork and adipose breast samples at low momentum transfer region. While, at high momentum transfer, the μ CS reflects effects of molecular interference related to water for tendon chicken and fibroglandular samples and, fatty acids for fat pork and adipose samples.
NASA Astrophysics Data System (ADS)
Bahrim, Cristian; Thumm, Uwe; Fabrikant, Ilya I.
2000-06-01
Based on the relativistic Dirac R-matrix method, we analyze various angle-dependent cross sections for electron scattering by Rb, Cs and Fr targets at energies below 3 eV. We show our angle-dependent and total spin-exchange cross sections for scattering of non-polarized (or polarized) electrons by polarized (or non-polarized) Rb, Cs and Fr targets, and we compare them with available experimental data (B. Jaduszliwer, N.D. Bhaskar, and B. Bederson Phys.Rev. A 14), 162 (1976).. The influence of relativistic effects is discussed. From the energy and angular dependence analysis of the differential cross section, we obtain clear evidence of the Cs^-(^3F^o) shape resonance at 1.528 eV, in excellent agreement with accurate experiments (W. Gehenn and E. Reichert, J.Phys. B 10), 3105 (1977).. We compare our electron momentum-transfer cross section with available data obtained in swarm experiments for Rb (Y. Nakamura, Trans. IEE of Japan 102-A), 23 (1982). and Cs (H.T. Saelee and J. Lucas, J.Phys. D 12), 1275 (1979)..
Kelleher, Aidan
2010-02-01
Knowledge of the electric and magnetic elastic form factors of the nucleon is essential for an understanding of nucleon structure. Of the form factors, the electric form factor of the neutron has been measured over the smallest range in Q^{2} and with the lowest precision. Jefferson Lab experiment 02-013 used a novel new polarized ^{3} He target to nearly double the range of momentum transfer in which the neutron form factor has been studied and to measure it with much higher precision. Polarized electrons were scattered off this target, and both the scattered electron and neutron were detected. G^{n} _{E} was measured to be 0.0242 ± 0.0020(stat) ± 0.0061(sys) and 0.0247 ± 0.0029(stat) ± 0.0031(sys) at Q^{2} = 1.7 and 2.5 GeV^{2} , respectively.
Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Grossbard, Neil
2010-06-15
Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); ibid.13, 112902 (2006)]). In the present paper, which is intended as a sequel, it is concluded from FAST satellite data that the electrostatic ion-cyclotron turbulence that appears is due to the operation of an electron, bump-on-tail-driven ion-cyclotron instability for downward currents in the long-range potential region of the Earth's magnetosphere. Approximate closed-form expressions for the anomalous momentum and energy transfer rates for the ion-cyclotron turbulence are obtained. The turbulent, inhomogeneous, nonuniformly magnetized, multimoment fluid theory given above, in the limit of a turbulent, homogeneous, uniformly magnetized, quasisteady plasma, yields the well-known formula for the anomalous resistivity given by Gary and Paul [Phys. Rev. Lett. 26, 1097 (1971)] and Tange and Ichimaru [J. Phys. Soc. Jpn. 36, 1437 (1974)].
Eckels, S.J.; Doerr, T.M.; Pate, M.B.
1998-10-01
This paper reports average heat transfer coefficients and pressure drops during the evaporation and condensation of mixtures of R-134a and a 150 SUS penta erythritol ester branched-acid lubricant. The smooth tube and micro-fin tube tested in this study had outer diameters of 9.52 mm (3/8 in.). The micro-fin tube had 60 fins, a fin height of 0.2 mm (0.008 in), and a spiral angle of 18{degree}. The objective of this study is to evaluate the effectiveness of the micro-fin tube with R-134a and to determine the effect of circulating lubricant. The experimental results show that the micro-fin tube has distinct performance advantages over the smooth tube. For example, the average heat transfer coefficients during evaporation and condensation in the micro-fin tube were 50--200% higher than those for the smooth tube, while the average pressure drops were on average only 10--50% higher. The experimental results indicate that the presence of a lubricant degrades the average heat transfer coefficients during both evaporation and condensation at high lubricant concentrations. Pressure drops during evaporation increased with the addition of a lubricant in both tubes. For condensation, pressure drops were unaffected by the addition of a lubricant.
2013-01-01
Background Among disposable bioreactor systems, cylindrical orbitally shaken bioreactors show important advantages. They provide a well-defined hydrodynamic flow combined with excellent mixing and oxygen transfer for mammalian and plant cell cultivations. Since there is no known universal correlation between the volumetric mass transfer coefficient for oxygen kLa and relevant operating parameters in such bioreactor systems, the aim of this current study is to experimentally determine a universal kLa correlation. Results A Respiration Activity Monitoring System (RAMOS) was used to measure kLa values in cylindrical disposable shaken bioreactors and Buckingham’s π-Theorem was applied to define a dimensionless equation for kLa. In this way, a scale- and volume-independent kLa correlation was developed and validated in bioreactors with volumes from 2 L to 200 L. The final correlation was used to calculate cultivation parameters at different scales to allow a sufficient oxygen supply of tobacco BY-2 cell suspension cultures. Conclusion The resulting equation can be universally applied to calculate the mass transfer coefficient for any of seven relevant cultivation parameters such as the reactor diameter, the shaking frequency, the filling volume, the viscosity, the oxygen diffusion coefficient, the gravitational acceleration or the shaking diameter within an accuracy range of +/− 30%. To our knowledge, this is the first kLa correlation that has been defined and validated for the cited bioreactor system on a bench-to-pilot scale. PMID:24289110
ERIC Educational Resources Information Center
Shakur, Asif; Sinatra, Taylor
2013-01-01
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in…
Plasma momentum meter for momentum flux measurements
Zonca, Fulvio; Cohen, Samuel A.; Bennett, Timothy; Timberlake, John R.
1993-01-01
Invention comprises an instrument in which momentum flux onto a biasable target plate is transferred via a suspended quartz tube onto a sensitive force transducer--a capacitance-type pressure gauge. The transducer is protected from thermal damage, arcing and sputtering, and materials used in the target and pendulum are electrically insulating, rigid even at elevated temperatures, and have low thermal conductivity. The instrument enables measurement of small forces (10.sup.-5 to 10.sup.3 N) accompanied by high heat fluxes which are transmitted by energetic particles with 10's of eV of kinetic energy in a intense magnetic field and pulsed plasma environment.
Tam, L.M.; Ghajar, A.J.
1996-12-31
The local heat transfer characteristics for ethylene glycol water mixtures flowing in a horizontal circular straight tube with a bell-mouth inlet have been determined experimentally over a flow Reynolds number range of 1,500 to 27,000. A wall-boundary heating condition of uniform heat flux was imposed. The variation of local heat transfer coefficient with length in the transition and turbulent flow regimes is very unusual. For the bell-mouth inlet, the boundary layer along the tube wall is at first laminar and then changes through a transition region to the turbulent condition causing a dip in the Nu-x/D curve. The length of the dip in the transition region is much longer than that in the turbulent region. For the experiments the length of the dip in the transition region varied from x/D = 100 to 175 in comparison to an x/D < 25 for the turbulent region. The presence of the dip in the transition region causes a significant influence on both the local and the average heat transfer coefficients. This is particularly important for heat transfer calculations in short tubes with a bell-mouth inlet.
Santos, M V; Sansinena, M; Zaritzky, N; Chirife, J
2012-01-01
In oocyte vitrification, plunging directly into liquid nitrogen favor film boiling and strong nitrogen vaporization. A survey of literature values of heat transfer coefficients (h) for film boiling of small metal objects with different geometries plunged in liquid nitrogen revealed values between 125 to 1000 W per per square m per K. These h values were used in a numerical simulation of cooling rates of two oocyte vitrification devices (open-pulled straw and Cryotop), plunged in liquid and slush nitrogen conditions. Heat conduction equation with convective boundary condition was considered a linear mathematical problem and was solved using the finite element method applying the variational formulation. COMSOL Multiphysics was used to simulate the cooling process of the systems. Predicted cooling rates for OPS and Cryotop when cooled at -196 degree C (liquid nitrogen) or -207 degree C (average for slush nitrogen) for heat transfer coefficients estimated to be representative of film boiling, indicated lowering the cooling temperature produces only a maximum 10 percent increase in cooling rates; confirming the main benefit of plunging in slush over liquid nitrogen does not arise from their temperature difference. Numerical simulations also demonstrated that a hypothetical four-fold increase in the cooling rate of vitrification devices when plunging in slush nitrogen would be explained by an increase in heat transfer coefficient. This improvement in heat transfer (i.e., high cooling rates) in slush nitrogen is attributed to less or null film boiling when a sample is placed in slush (mixture of liquid and solid nitrogen) because it first melts the solid nitrogen before causing the liquid to boil and form a film.
NASA Astrophysics Data System (ADS)
Kabeel, A. E.; Abdelgaied, Mohamed
2016-08-01
Nano-fluids are used to improve the heat transfer rates in heat exchangers, especially; the shell-and-tube heat exchanger that is considered one of the most important types of heat exchangers. In the present study, an experimental loop is constructed to study the thermal characteristics of the shell-and-tube heat exchanger; at different concentrations of Al2O3 nonmetallic particles (0.0, 2, 4, and 6 %). This material concentrations is by volume concentrations in pure water as a base fluid. The effects of nano-fluid concentrations on the performance of shell and tube heat exchanger have been conducted based on the overall heat transfer coefficient, the friction factor, the pressure drop in tube side, and the entropy generation rate. The experimental results show that; the highest heat transfer coefficient is obtained at a nano-fluid concentration of 4 % of the shell side. In shell side the maximum percentage increase in the overall heat transfer coefficient has reached 29.8 % for a nano-fluid concentration of 4 %, relative to the case of the base fluid (water) at the same tube side Reynolds number. However; in the tube side the maximum relative increase in pressure drop has recorded the values of 12, 28 and 48 % for a nano-material concentration of 2, 4 and 6 %, respectively, relative to the case without nano-fluid, at an approximate value of 56,000 for Reynolds number. The entropy generation reduces with increasing the nonmetallic particle volume fraction of the same flow rates. For increase the nonmetallic particle volume fraction from 0.0 to 6 % the rate of entropy generation decrease by 10 %.
Kubota, Y; Katano, H; Senda, M
2001-01-01
The ion-transfer reaction of local anesthetics at an organic solvent/water interface has been studied using cyclic voltammetry (CV) with a stationary nitrobenzene (NB)/water (W) interface. Procaine and seven other local anesthetics gave reversible or quasi-reversible voltammograms at the NB/W interface in the pH range between 0.9 and 9.6. These drugs are present in aqueous solution in either neutral or ionic form, or both forms. The half-wave potential, as determined by the midpoint potential in CV, vs. pH curves, were determined and analyzed to determine the partition coefficients of both neutral and ionic forms of the drugs between NB and W. The partition coefficients of the ionic forms were derived from their formal potential of transfer at an NB/W interface. The dissociation constants of ionic forms of the drugs in NB were also deduced. A high correlation between the pharmacological activity and the partition coefficient of the ionic form of amide-linked local anesthetics has been shown.
NASA Astrophysics Data System (ADS)
da Costa, Romarly F.; de Oliveira, Eliane M.; Bettega, Márcio H. F.; Varella, Márcio T. do N.; Jones, Darryl B.; Brunger, Michael J.; Blanco, Francisco; Colmenares, Rafael; Limão-Vieira, Paulo; García, Gustavo; Lima, Marco A. P.
2015-03-01
We report theoretical and experimental total cross sections for electron scattering by phenol (C6H5OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the Nopen-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the number of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].
Costa, Romarly F. da; Oliveira, Eliane M. de; Lima, Marco A. P.; Bettega, Márcio H. F.; Varella, Márcio T. do N.; Jones, Darryl B.; Brunger, Michael J.; Blanco, Francisco; Colmenares, Rafael; and others
2015-03-14
We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the number of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].
Gillespie, D.R.H.; Byerley, A.R.; Ireland, P.T.; Wang, Z.; Jones, T.V.; Kohler, S.T.
1996-04-01
The local heat transfer inside the entrance to large-scale models of film cooling holes has been measured using the transient heat transfer technique. The method employs temperature-sensitive liquid crystals to measure the surface temperature of large-scale perspex models. Full distributions of local Nusselt number were calculated based on the cooling passage centerline gas temperature ahead of the cooling hole. The circumferentially averaged Nusselt number was also calculated based on the local mixed bulk driving gas temperature to aid interpretation of the results, and to broaden the potential application of the data. Data are presented for a single film cooling hole inclined at 90 and 150 deg to the coolant duct wall. Both holes exhibited entry length heat transfer levels that were significantly lower than those predicted by entry length data in the presence of crossflow. The reasons for the comparative reduction are discussed in terms of the interpreted flow field.
NASA Technical Reports Server (NTRS)
Newton, James E.; Vanfossen, G. James; Poinsatte, Phillip E.; Dewitt, Kenneth J.
1988-01-01
Wind tunnels typically have higher free stream turbulence levels than are found in flight. Turbulence intensity was measured to be 0.5 percent in the NASA Lewis Icing Research Tunnel (IRT) with the cloud making sprays off and around 2 percent with cloud making equipment on. Turbulence intensity for flight conditions was found to be too low to make meaningful measurements for smooth air. This difference between free stream and wing tunnel conditions has raised questions as to the validity of results obtained in the IRT. One objective of these tests was to determine the effect of free stream turbulence on convective heat transfer for the NASA Lewis LEWICE ice growth prediction code. These tests provide in-flight heat transfer data for a NASA-0012 airfoil with a 533 cm chord. Future tests will measure heat transfer data from the same airfoil in the Lewis Icing Research Tunnel. Roughness was obtained by the attachment of small, 2 mm diameter hemispheres of uniform size to the airfoil in three different patterns. Heat transfer measurements were recorded in flight on the NASA Lewis Twin Otter Icing Research Aircraft. Measurements were taken for the smooth and roughened surfaces at various aircraft speeds and angles of attack up to four degrees. Results are presented as Frossling number versus position on the airfoil for various roughnesses and angles of attack.
Mass transfer between aquifer material and groundwater is often modeled as first-order rate-limited sorption or diffusive exchange between mobile zones and immobile zones with idealized geometries. Recent improvements in experimental techniques and advances in our understanding o...
NASA Astrophysics Data System (ADS)
Shakur, Asif; Sinatra, Taylor
2013-12-01
The gyroscope in a smartphone was employed in a physics laboratory setting to verify the conservation of angular momentum and the nonconservation of rotational kinetic energy. As is well-known, smartphones are ubiquitous on college campuses. These devices have a panoply of built-in sensors. This creates a unique opportunity for a new paradigm in the physics laboratory. Many traditional physics experiments can now be performed very conveniently in a pedagogically enlightening environment while simultaneously reducing the laboratory budget substantially by using student-owned smartphones.
NASA Astrophysics Data System (ADS)
Lewandowska, Monika; Herzog, Robert; Malinowski, Leszek
2015-01-01
A heat slug propagation experiment in the final design dual channel ITER TF CICC was performed in the SULTAN test facility at EPFL-CRPP in Villigen PSI. We analyzed the data resulting from this experiment to determine the equivalent transverse heat transfer coefficient hBC between the bundle and the central channel of this cable. In the data analysis we used methods based on the analytical solutions of a problem of transient heat transfer in a dual-channel cable, similar to Renard et al. (2006) and Bottura et al. (2006). The observed experimental and other limits related to these methods are identified and possible modifications proposed. One result from our analysis is that the hBC values obtained with different methods differ by up to a factor of 2. We have also observed that the uncertainties of hBC in both methods considered are much larger than those reported earlier.
Kirikae, M.; Diksic, M.; Yamamoto, Y.L.
1988-08-01
An autoradiographic method for the measurement of the rate of valine incorporation into brain proteins is described. The transfer coefficients for valine into and out of the brain and the rate of valine incorporation into normal rat brain proteins are given. The valine incorporation and the transfer constants of valine between different biological compartments are provided for 14 gray matter and 2 white matter structures of an adult rat brain. The rate of valine incorporation varies between 0.52 +/- 0.19 nmol/g/min in white matter and 1.94 +/- 0.47 in inferior colliculus (gray matter). Generally, the rate of valine incorporation is about three to four times higher in the gray matter than in the white matter structures.
NASA Technical Reports Server (NTRS)
Chang, Y. V.
1986-01-01
The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.
NASA Technical Reports Server (NTRS)
Temma, T.; Baines, K. H.; Butler, R. A. H.; Brown, L. R.; Sagui, L.; Kleiner, I.
2006-01-01
PH3 exponential sum k coefficients were computed between 2750 and 3550/cm (2.82-3.64 (microns), in view of future application to radiative transfer analyses of Jupiter and Saturn in a phosphine absorption band near 3 microns. The temperature and pressure of this data set cover the ranges from 80 to 350 K and from 10 (exp -3)to 10(exp 1) bars, respectively. Transmission uncertainty incurred by the use of the k coefficients is smaller than a few percent as long as the radiation is confined above an altitude of a few bars in the giant planets. In spectral regions of weak absorption at high pressures close to 10 bars, contributions from far wings of strong absorption lines must be carefully taken into account. Our data set helps map the three-dimensional distribution of PH3 on the giant planets, revealing their global atmospheric dynamics extending down to the deep interior. The complete k coefficient data set of this work is available at the Web site of the NASA Planetary Data System Atmospheres Node.
Plasma momentum meter for momentum flux measurements
Zonca, F.; Cohen, S.A.; Bennett, T.; Timberlake, J.R.
1993-08-24
An apparatus is described for measuring momentum flux from an intense plasma stream, comprising: refractory target means oriented normal to the flow of said plasma stream for bombardment by said plasma stream where said bombardment by said plasma stream applies a pressure to said target means, pendulum means for communicating a translational displacement of said target to a force transducer where said translational displacement of said target is transferred to said force transducer by an elongated member coupled to said target, where said member is suspended by a pendulum configuration means and where said force transducer is responsive to said translational displacement of said member, and force transducer means for outputting a signal representing pressure data corresponding to said displacement.
Total longitudinal momentum in a dispersive optical waveguide.
Yu, Jianhui; Chen, Chunyan; Zhai, Yanfang; Chen, Zhe; Zhang, Jun; Wu, Lijun; Huang, Furong; Xiao, Yi
2011-12-01
Using the Lorentz force law, we derived simpler expressions for the total longitudinal (conserved) momentum and the mechanical momentums associated with an optical pulse propagating along a dispersive optical waveguide. These expressions can be applied to an arbitrary non-absorptive optical waveguide having continuous translational symmetry. Our simulation using finite difference time domain (FDTD) method verified that the total momentum formula is valid in a two-dimensional infinite waveguide. We studied the conservation of the total momentum and the transfer of the momentum to the waveguide for the case when an optical pulse travels from a finite waveguide to vacuum. We found that neither the Abraham nor the Minkowski momentum expression for an electromagnetic wave in a waveguide represents the complete total (conserved) momentum. Only the total momentum as we derived for a mode propagating in a dispersive optical waveguides is the 'true' conserved momentum. This total momentum can be expressed as PTot = -U Die/(vg) + neff (U/c). It has three contributions: (1) the Abraham momentum; (2) the momentum from the Abraham force, which equals to the difference between the Abraham momentum and the Minkowski momentum; and (3) the momentum from the dipole force which can be expressed as -UDie/vg. The last two contributions constitute the mechanical momentum. Compared with FDTD-Lorentz-force method, the presently derived total momentum formula provides a better method in terms of analyzing the permanent transfer of optical momentum to a waveguide.
NASA Astrophysics Data System (ADS)
Nihashi, Sohey; Ohshima, Kay I.
2008-06-01
The bulk heat transfer coefficient in the ice-upper ocean system (Kb) in the ice melt season is estimated by a new method at 18 areas that cover much of the Antarctic seasonal ice zone. The method is based on a model in which ice melting is caused only by heat input through open water and is treated in a bulk fashion in the ice-upper ocean system. Kb is estimated by fitting a convergent curve derived from the model to an observed ice concentration-temperature plot (CT-plot). Estimated Kb is 1.15 ± 0.72 × 10-4 m s-1 on average. If Kb can be expressed by the product of the heat transfer coefficient (ch) and the friction velocity (uτ), ch is 0.0113 ± 0.0055. This value is about two times larger than that estimated at the ice bottom. The relationship between Kb and the geostrophic wind speed (Uw), which is roughly proportional to uτ, shows a significant positive correlation, as expected. Further, Kb seems more likely to be proportional to the square or cube of Uw rather than a linear relationship. Since Kb estimated from our method is associated with ice melting in a bulk fashion in the ice-upper ocean system, this relationship likely indicates both the mixing process of heat in the upper ocean (proportional to uτ3) and the local heat transfer process at the ice-ocean interface (proportional to uτ).
Vandenhove, Hildegarde; Van Hees, May; Olyslaegers, Geert; Vidal, Miquel
2009-04-01
The objective of this study was to compile data, based on an extensive literature survey, for the soil solid-liquid distribution coefficient (K(d)) and soil-to-plant transfer factor (TF) for nickel. The K(d) best estimates were calculated for soils grouped according to texture and organic matter content (sand, loam, clay and organic) and soil cofactors affecting soil-nickel interaction, such as pH, organic matter, and clay content. Variability in K(d) was better explained by pH than by soil texture. Nickel TF estimates were presented for major crop groups (cereals, leafy vegetables, non-leafy vegetables, root crops, tubers, fruits, herbs, pastures/grasses and fodder), and also for plant compartments within crop groups. Transfer factors were also calculated per soil group, as defined by their texture and organic matter content. Furthermore an evaluation of transfer factor dependency on specific soil characteristics was performed following regression analysis. The derived estimates were compared with parameter estimates currently in use.
Vandenhove, Hildegarde; Van Hees, May; Olyslaegers, Geert; Vidal, Miquel
2009-04-01
The objective of this study was to compile data, based on an extensive literature survey, for the soil solid-liquid distribution coefficient (K(d)) and soil-to-plant transfer factor (TF) for nickel. The K(d) best estimates were calculated for soils grouped according to texture and organic matter content (sand, loam, clay and organic) and soil cofactors affecting soil-nickel interaction, such as pH, organic matter, and clay content. Variability in K(d) was better explained by pH than by soil texture. Nickel TF estimates were presented for major crop groups (cereals, leafy vegetables, non-leafy vegetables, root crops, tubers, fruits, herbs, pastures/grasses and fodder), and also for plant compartments within crop groups. Transfer factors were also calculated per soil group, as defined by their texture and organic matter content. Furthermore an evaluation of transfer factor dependency on specific soil characteristics was performed following regression analysis. The derived estimates were compared with parameter estimates currently in use. PMID:19223096
NASA Technical Reports Server (NTRS)
Tan, Benjamin
1995-01-01
Using thermochromatic liquid crystal to measure surface temperature, an automated transient method with time-varying free-stream temperature is developed to determine local heat transfer coefficients. By allowing the free-stream temperature to vary with time, the need for complicated mechanical components to achieve a step temperature change is eliminated, and by using the thermochromatic liquid crystals as temperature indicators, the labor intensive task of installing many thermocouples is omitted. Bias associated with human perception of the transition of the thermochromatic liquid crystal is eliminated by using a high speed digital camera and a computer. The method is validated by comparisons with results obtained by the steady-state method for a circular Jet impinging on a flat plate. Several factors affecting the accuracy of the method are evaluated.
Connan, O; Solier, L; Hébert, D; Maro, D; Lamotte, M; Voiseux, C; Laguionie, P; Cazimajou, O; Le Cavelier, S; Godinot, C; Morillon, M; Thomas, L; Percot, S
2014-11-01
The aim of this work was to study the near-field dispersion of (85)Kr around the nuclear fuel reprocessing plant at La Hague (AREVA NC La Hague - France) under stable meteorological conditions. Twenty-two (85)Kr night-time experimental campaigns were carried out at distances of up to 4 km from the release source. Although the operational Gaussian models predict for these meteorological conditions a distance to plume touchdown of several kilometers, we almost systematically observed a marked ground signal at distances of 0.5-4 km. The calculated atmospheric transfer coefficients (ATC) show values (1) higher than those observed under neutral conditions, (2) much higher than those proposed by the operational models, and (3) higher than those used in the impact assessments.
NASA Technical Reports Server (NTRS)
Hill, P R
1958-01-01
A method of calculating the temperature of thick walls has been developed in which the time series and the response to a unit triangle variation of surface temperature concepts are used, together with essentially standard formulas for transient temperature and heat flow into thick walls. The method can be used without knowledge of the mathematical tools of its development. The method is particularly suitable for determining the wall temperature in one-dimensional thermal problems in aeronautics where there is a continuous variation of the heat-transfer coefficient and adiabatic-wall temperature. The method also offers a convenient means for solving the inverse problem of determining the heat-flow history when temperature history is known.
NASA Astrophysics Data System (ADS)
Lewandowska, Monika; Herzog, Robert
2011-10-01
Two ITER TF dual channel Cable-in-Conduit Conductors (CICCs) have been tested in the SULTAN test facility. The samples were heated either by foil heaters mounted on the outside of the conductor jacket or by induced AC losses. The steady-state temperature response of several thermometers installed on the jacket surface as well as inside the cable were analyzed using the two-channel analytical model proposed by Renard et al. to obtain the equivalent transverse heat transfer coefficient between the bundle and central channel as a function of the mass flow rate. In addition, on the basis of the measured pressure drop and helium flow velocities, the friction factors for helium flow in the bundle and in the central channel were determined. The obtained results may serve as a reference for these cables.
Roper, C. D.; Dunham, J. D.; Tornow, W.
2010-01-01
Measurements of the H-2(d, n)(3) He transverse vector polarization-transfer coefficient K-y(y)' at 0 degrees. are reported for 29 outgoing neutron energies between 3.94 and 8.47MeV. Our new results determine K-y(y)' (0 degrees) more accurately than previous data, especially for neutron energies below 5MeV. Low-energy data for this reaction are important both as a high-intensity source of highly polarized neutrons for nuclear physics studies with polarized neutron beams, and as a test of the emerging theoretical descriptions of the four-body system, where recently substantial progress has been made.
Connan, O; Solier, L; Hébert, D; Maro, D; Lamotte, M; Voiseux, C; Laguionie, P; Cazimajou, O; Le Cavelier, S; Godinot, C; Morillon, M; Thomas, L; Percot, S
2014-11-01
The aim of this work was to study the near-field dispersion of (85)Kr around the nuclear fuel reprocessing plant at La Hague (AREVA NC La Hague - France) under stable meteorological conditions. Twenty-two (85)Kr night-time experimental campaigns were carried out at distances of up to 4 km from the release source. Although the operational Gaussian models predict for these meteorological conditions a distance to plume touchdown of several kilometers, we almost systematically observed a marked ground signal at distances of 0.5-4 km. The calculated atmospheric transfer coefficients (ATC) show values (1) higher than those observed under neutral conditions, (2) much higher than those proposed by the operational models, and (3) higher than those used in the impact assessments. PMID:25078471
NASA Astrophysics Data System (ADS)
Consalvi, J. L.; Nmira, F.
2016-03-01
The main objective of this article is to quantify the influence of the soot absorption coefficient-Planck function correlation on radiative loss and flame structure in an oxygen-enhanced propane turbulent diffusion flame. Calculations were run with and without accounting for this correlation by using a standard k-ε model and the steady laminar flamelet model (SLF) coupled to a joint Probability Density Function (PDF) of mixture fraction, enthalpy defect, scalar dissipation rate, and soot quantities. The PDF transport equation is solved by using a Stochastic Eulerian Field (SEF) method. The modeling of soot production is carried out by using a flamelet-based semi-empirical acetylene/benzene soot model. Radiative heat transfer is modeled by using a wide band correlated-k model and turbulent radiation interactions (TRI) are accounted for by using the Optically-Thin Fluctuation Approximation (OTFA). Predicted soot volume fraction, radiant wall heat flux distribution and radiant fraction are in good agreement with the available experimental data. Model results show that soot absorption coefficient and Planck function are negatively correlated in the region of intense soot emission. Neglecting this correlation is found to increase significantly the radiative loss leading to a substantial impact on flame structure in terms of mean and rms values of temperature. In addition mean and rms values of soot volume fraction are found to be less sensitive to the correlation than temperature since soot formation occurs mainly in a region where its influence is low.
Twining, J R; Payne, T E; Itakura, T
2004-01-01
Measurements of soil-to-plant transfer of (134)Cs, (85)Sr and (65)Zn from two tropical red earth soils ('Blain' and 'Tippera') to sorghum and mung crops have been undertaken in the north of Australia. The aim of the study was to identify factors that control bioaccumulation of these radionuclides in tropical regions, for which few previous data are available. Batch sorption experiments were conducted to determine the distribution coefficient (K(d)) of the selected radionuclides at pH values similar to natural pH values, which ranged from about 5.5 to 6.7. In addition, K(d) values were obtained at one pH unit above and below the soil-water equilibrium pH values to determine the effect of pH. The adsorption of Cs showed no pH dependence, but the K(d) values for the Tippera soils (2300-4100 ml/g) exceeded those for the Blain soils (800-1200 ml/g) at equilibrium pH. This was related to the greater clay content of the Tippera soil. Both Sr and Zn were more strongly adsorbed at higher pH values, but the K(d) values showed less dependence on the soil type. Strontium K(d)s were 30-60 ml/g whilst Zn ranged from 160 to 1630 ml/g for the two soils at equilibrium pH. With the possible exception of Sr, there was no evidence for downward movement of radionuclides through the soils during the course of the growing season. There was some evidence of surface movement of labelled soil particles. Soil-to-plant transfer factors varied slightly between the soils. The average results for sorghum were 0.1-0.3 g/g for Cs, 0.4-0.8 g/g for Sr and 18-26 g/g for Zn (dry weight) with the initial values relating to Blain and the following values to Tippera. Similar values were observed for the mung bean samples. The transfer factors for Cs and Sr were not substantially different from the typical values observed in temperate studies. However, Zn transfer factors for plants grown on both these tropical soils were greater than for soils in temperate climates (by more than an order of magnitude
Yifat, Jonathan; Gannot, Israel
2015-03-01
Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method.
Yifat, Jonathan; Gannot, Israel
2015-03-01
Early detection of malignant tumors plays a crucial role in the survivability chances of the patient. Therefore, new and innovative tumor detection methods are constantly searched for. Tumor-specific magnetic-core nano-particles can be used with an alternating magnetic field to detect and treat tumors by hyperthermia. For the analysis of the method effectiveness, the bio-heat transfer between the nanoparticles and the tissue must be carefully studied. Heat diffusion in biological tissue is usually analyzed using the Pennes Bio-Heat Equation, where blood perfusion plays an important role. Malignant tumors are known to initiate an angiogenesis process, where endothelial cell migration from neighboring vasculature eventually leads to the formation of a thick blood capillary network around them. This process allows the tumor to receive its extensive nutrition demands and evolve into a more progressive and potentially fatal tumor. In order to assess the effect of angiogenesis on the bio-heat transfer problem, we have developed a discrete stochastic 3D model & simulation of tumor-induced angiogenesis. The model elaborates other angiogenesis models by providing high resolution 3D stochastic simulation, capturing of fine angiogenesis morphological features, effects of dynamic sprout thickness functions, and stochastic parent vessel generator. We show that the angiogenesis realizations produced are well suited for numerical bio-heat transfer analysis. Statistical study on the angiogenesis characteristics was derived using Monte Carlo simulations. According to the statistical analysis, we provide analytical expression for the blood perfusion coefficient in the Pennes equation, as a function of several parameters. This updated form of the Pennes equation could be used for numerical and analytical analyses of the proposed detection and treatment method. PMID:24462603
Reduced drag coefficient for high wind speeds in tropical cyclones.
Powell, Mark D; Vickery, Peter J; Reinhold, Timothy A
2003-03-20
The transfer of momentum between the atmosphere and the ocean is described in terms of the variation of wind speed with height and a drag coefficient that increases with sea surface roughness and wind speed. But direct measurements have only been available for weak winds; momentum transfer under extreme wind conditions has therefore been extrapolated from these field measurements. Global Positioning System sondes have been used since 1997 to measure the profiles of the strong winds in the marine boundary layer associated with tropical cyclones. Here we present an analysis of these data, which show a logarithmic increase in mean wind speed with height in the lowest 200 m, maximum wind speed at 500 m and a gradual weakening up to a height of 3 km. By determining surface stress, roughness length and neutral stability drag coefficient, we find that surface momentum flux levels off as the wind speeds increase above hurricane force. This behaviour is contrary to surface flux parameterizations that are currently used in a variety of modelling applications, including hurricane risk assessment and prediction of storm motion, intensity, waves and storm surges.
Mounsef, Jihane Rahbani; Salameh, Dominique; Louka, Nicolas; Brandam, Cedric; Lteif, Roger
2015-09-20
The aeration is a key factor for Bacillus thuringiensis growth, sporulation and δ-endotoxins production. The objective of our work was to study the effect of aeration on the fermentation kinetics of Bacillus thuringiensis kurstaki (Btk), cultivated in a cereal milling byproduct (CMB) mono-component medium, in order to improve the δ-endotoxins productivity. Aeration conditions were systematically characterized by the volumetric mass transfer coefficient KLa. In the 6% CMB culture medium, different values of the maximal specific oxygen uptake rate were obtained at different values of KLa. For KLa of 7.2 h(-1), the growth was inhibited and the sporulation was defective. There was a linear increase of the average specific growth rate and faster sporulation and liberation of spores and δ-endotoxins crystals when KLa was increased between 13.3 h(-1) and 65.5 h(-1). Similar kinetic was observed in cultures performed at KLa equal to 65.5 h(-1) and 106.2 h(-1). The highest toxins productivity of 96.1 mg L(-1) (h)-1 was obtained in the 9% CMB culture medium for KLa of 102 h(-1). It was possible to track the evolution of the bacterial cells between vegetative growth, sporulation and liberation of mature spores by following the variation of the CO2 percent in the effluent gas.
Gaspar, A; Strodiot, L; Thonart, P
1998-01-01
To improve xylanase productivity from Penicillium canescens 10-10c culture, an optimization of oxygen supply is required. Because the strain is sensitive to shear forces, leading to lower xylanase productivity as to morphological alteration, vigorous mixing is not desired. The influence of turbine design, agitation speed, and air flow rate on K1a (global mass transfer coefficient, h(-1)) and enzyme production is discussed. K1a values increased with agitation speed and air flow rate, whatever the impeller, in our assay conditions. Agitation had more influence on K1a values than air flow, when a disk-mounted blade's impeller (DT) is used; an opposite result was obtained with a hub-mounted pitched blade's impeller (PBT). Xylanase production appeared as a function of specific power (W/m3), and an optimum was found in 20 and 100 L STRs fitted with DT impellers. On the other hand, the use of a hub-mounted pitched blade impeller (PBT8), instead of a disk-mounted blade impeller (DT4), reduced the lag time of hemicellulase production and increased xylanase productivity 1.3-fold. PMID:18576019
Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop
2014-10-01
This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612.
NASA Astrophysics Data System (ADS)
Hippensteele, S. A.; Russell, L. M.; Torres, F. J.
Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.
NASA Technical Reports Server (NTRS)
Hippensteele, S. A.; Russell, L. M.; Torres, F. J.
1987-01-01
Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.
Momentum harvesting techniques for solar system travel
NASA Technical Reports Server (NTRS)
Willoughby, Alan J.
1991-01-01
Astronomers are lately estimating there are 400,000 earth visiting asteroids larger than 100 meters in diameter. These asteroids are uniquely accessible sources of building materials, propellants, oxygen, water, and minerals. They also constitute a huge momentum reserve, potentially usable for travel throughout the solar system. To use this momentum, these stealthy objects must be tracked and the ability to extract the desired momentum obtained. Momentum harvesting by momentum transfer from asteroid to spacecraft, and by using the momentum of the extraterrestrial material to help deliver itself to its destination is discussed. The purpose is neither to quantify nor justify the momentum exchange processes, but to stimulate collective imaginations with some intriguing possibilities which emerge when momentum as well as material is considered. A net and tether concept is the suggested means of asteroid capture, the basic momentum exchange process. The energy damping characteristics of the tether determines the velocity mismatch that can be tolerated, and hence the amount of momentum that can be harvested per capture. As the tether plays out of its reel, drag on the tether steadily accelerates the spacecraft and dilutes, in time, the would-be collision. A variety of concepts for riding and using asteroids after capture are introduced. The hitchhiker uses momentum transfer only. The beachcomber, the caveman, the swinger, the prospector, and the rock wrecker also take advantage of raw asteroid materials. The chemist and the hijacker go further, they process the asteroid into propellants. Or, an asteroid railway system could be constructed with each hijacked asteroid becoming a scheduled train. Travelers could board this space railway system assured that water, oxygen propellants, and shielding await them. Austere space travel could give way to comforts, with a speed and economy impossible without nature's gift of earth visiting asteroids.
Gupta, Unnati; Singh, Pushpendra P.; Singh, Devendra P.; Sharma, Manoj Kumar; Yadav, Abhishek; Singh, B. P.; Prasad, R.; Kumar, R.; Gupta, S.; Bhardwaj, H. D.
2009-08-15
Forward recoil ranges of heavy reaction products have been measured to disentangle full and/or partial linear momentum transfer events in the {sup 16}O+{sup 169}Tm system at E{sub proj}{approx_equal}76 and 81 MeV. The experimentally measured forward recoil ranges of complete and/or incomplete fusion products are found to be in satisfactory agreement with that estimated using range-energy formulations. The angular distributions of several heavy reaction products have also been measured at E{sub proj}{approx_equal}81 MeV to get complementary information about incomplete fusion. To figure out the influence of incomplete fusion on complete fusion at such low projectile energies, the relative strengths of their contributions in {alpha}-emitting channel(s) have been deduced from the measurement of recoil range distributions.
Momentum broadening of a fast parton in a perturbative quark-gluon plasma
Majumder, Abhijit; Mueller, Berndt; Mrowczynski, Stanislaw
2009-12-15
The average transverse momentum transfer per unit path length to a fast parton scattering elastically in a perturbative quark-gluon plasma is related to the radiative energy loss of the parton. We first calculate the momentum transfer coefficient q-circumflex in terms of a classical Langevin problem and then define it quantum mechanically through a scattering matrix element. After treating the well-known case of a quark-gluon plasma in equilibrium, we consider an off-equilibrium unstable plasma. As a specific example, we treat the two-stream plasma with unstable modes of longitudinal chromoelectric field. In the presence of the instabilities, q-circumflex is shown to exponentially grow in time.
Introducing Electromagnetic Field Momentum
ERIC Educational Resources Information Center
Hu, Ben Yu-Kuang
2012-01-01
I describe an elementary way of introducing electromagnetic field momentum. By considering a system of a long solenoid and line charge, the dependence of the field momentum on the electric and magnetic fields can be deduced. I obtain the electromagnetic angular momentum for a point charge and magnetic monopole pair partially through dimensional…
ERIC Educational Resources Information Center
Utgikar, Vivek P.; MacPherson, David
2016-01-01
Students in the undergraduate "transport phenomena" courses typically have a greater difficulty in understanding the theoretical concepts underlying the mass transport phenomena as compared to the concepts of momentum and energy transport. An experiment based on dissolution of carbon dioxide in water was added to the course syllabus to…
Smith, G.R.
1980-01-01
The (p,d) reaction was studied for the first time at 800 MeV on seven targets ranging from /sup 7/Li to /sup 40/Ca. The experimental resolution (approx. 400 keV) attained was sufficient to observe many discrete levels in each of the residual nuclei. A modified version of the one-nucleon model successfully describes the magnitude and angular dependence of almost all of the transitions observed. A specific counter example to the two-nucleon model of the reaction mechanism is suggested. The calculations are also sensitive to the neutron single-particle wave function, in accordance with the expectation that the high-momentum components of this wave function are probed at higher bombarding energies. States that have never been seen before were strongly populated in the high excitation region (up to 25 MeV) of some of the residual nuclei. The relative intensities of the other levels observed suggest that coupled-channels mechanisms play an important role for some of these states. Explicit calculations were performed to confirm this for several examples. The first high-resolution measurements of the (..pi../sup +/,p) reaction were also performed on /sup 6/Li, /sup 7/Li, /sup 12/C, and /sup 13/C at pion bombarding energies on and off the pion-nucleon resonance. Calculations employing a one-nucleon model of the reaction mechanism similar to the model successfully used for the (p,d) reaction are unable to account for transitions in the (..pi../sup +/,p) reaction. It is, however, unclear whether this failure is due to a fundamental inadequacy of the model or improper treatment of details in the calculations. A striking similarity was observed in the spectra of the (..pi../sup +/,p) and 800-MeV (p,d) reactions on the same target; this result implies a similar mechanism for the two reactions. 120 references, 97 figures, 15 tables.
NASA Astrophysics Data System (ADS)
Rosengrant, David
2011-01-01
Multiple representations are a valuable tool to help students learn and understand physics concepts. Furthermore, representations help students learn how to think and act like real scientists.2 These representations include: pictures, free-body diagrams,3 energy bar charts,4 electrical circuits, and, more recently, computer simulations and animations.5 However, instructors have limited choices when they want to help their students understand impulse and momentum. One of the only available options is the impulse-momentum bar chart.6 The bar charts can effectively show the magnitude of the momentum as well as help students understand conservation of momentum, but they do not easily show the actual direction. This paper highlights a new representation instructors can use to help their students with momentum and impulse—the impulse-momentum diagram (IMD).
NASA Astrophysics Data System (ADS)
Chicheportiche, A.; Lepetit, B.; Benhenni, M.; Gadea, F. X.; Yousfi, M.
2013-03-01
Ion-atom collision cross-sections and transport coefficients are computed from several He2+ interaction potentials. Differential and integral momentum transfer cross-sections are obtained with a close-coupling quantum method using several literature interaction potentials. These collision cross-sections are used in an optimized Monte Carlo code to calculate the ion transport coefficients over a wide range of reduced electric field considering first the scattering anisotropy by using a differential cross-section and then an isotropic scattering approximation based on momentum transfer cross-section. Reduced mobilities are compared with available experimental data. This allows us to segregate accurate potentials which provide reduced mobilities falling within experimental error bars.
TDRSS momentum unload planning
NASA Technical Reports Server (NTRS)
Cross, George R.; Potter, Mitchell A.; Whitehead, J. Douglass; Smith, James T.
1991-01-01
A knowledge-based system is described which monitors TDRSS telemetry for problems in the momentum unload procedure. The system displays TDRSS telemetry and commands in real time via X-windows. The system constructs a momentum unload plan which agrees with the preferences of the attitude control specialists and the momentum growth characteristics of the individual spacecraft. During the execution of the plan, the system monitors the progress of the procedure and watches for unexpected problems.
Nonsurvivable momentum exchange system
NASA Technical Reports Server (NTRS)
Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)
2007-01-01
A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.
Debuncher Momentum Aperture Measurements
O'Day, S.
1991-01-01
During the November 1990 through January 1991 {bar p} studies period, the momentum aperture of the beam in the debuncher ring was measured. The momentum aperture ({Delta}p/p) was found to be 4.7%. The momentum spread was also measured with beam bunch rotation off. A nearly constant particle population density was observed for particles with {Delta}p/p of less than 4.3%, indicating virtually unobstructed orbits in this region. The population of particles with momenta outside this aperture was found to decrease rapidly. An absolute or 'cut-off' momentum aperture of {Delta}p/p = 5.50% was measured.
Do waves carrying orbital angular momentum possess azimuthal linear momentum?
Speirits, Fiona C; Barnett, Stephen M
2013-09-01
All beams are a superposition of plane waves, which carry linear momentum in the direction of propagation with no net azimuthal component. However, plane waves incident on a hologram can produce a vortex beam carrying orbital angular momentum that seems to require an azimuthal linear momentum, which presents a paradox. We resolve this by showing that the azimuthal momentum is not a true linear momentum but the azimuthal momentum density is a true component of the linear momentum density.
NASA Astrophysics Data System (ADS)
Ishii, K.; Fujita, A.; Toyama, S.; Terakawa, A.; Matsuyama, S.; Arai, H.; Osada, N.; Takyu, S.; Matsuyama, T.; Koshio, S.; Watanabe, K.; Ito, S.; Kasahara, K.
Edible wild plants growing in the area around the Fukushima Daiichi nuclear power plant remain contaminated. It is important to identify plants with low levels of contamination for the restoration of agriculture in the area. We collected specimens of 10 wild plant species growing in Iitate village which is one of the most highly contaminated areas and also sampled the soil beneath each plant. We measured the specific activity of 137Cs and the concentrations of Na, Mg, Al, Si, P, S, K, Ca, Fe, Zn, Rb and Sr in these samples using a germanium detector and PIXE analysis, respectively. We compared the soil-plant transfer coefficient of 137Cs with those of each element and determined their correlation with 137Cs. It was found that a low Sr transfer coefficient could be used to determine the plants with a low 137Cs transfer coefficient. We suggest that PIXE analysis is a useful analysis technique for agricultural remediation projects in highly contaminated areas around the Fukushima Daiichi nuclear power plant.
Introducing conservation of momentum
NASA Astrophysics Data System (ADS)
Brunt, Marjorie; Brunt, Geoff
2013-09-01
The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton’s laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered for the case of a car hitting a child.
Introducing Conservation of Momentum
ERIC Educational Resources Information Center
Brunt, Marjorie; Brunt, Geoff
2013-01-01
The teaching of the principle of conservation of linear momentum is considered (ages 15 + ). From the principle, the momenta of two masses in an isolated system are considered. Sketch graphs of the momenta make Newton's laws appear obvious. Examples using different collision conditions are considered. Conservation of momentum is considered…
Photon momentum and optical forces in cavities
NASA Astrophysics Data System (ADS)
Partanen, Mikko; Häyrynen, Teppo; Oksanen, Jani; Tulkki, Jukka
2016-03-01
During the past century the electromagnetic field momentum in material media has been under debate in the Abraham-Minkowski controversy as convincing arguments have been advanced in favor of both the Abraham and Minkowski forms of photon momentum. Here we study the photon momentum and optical forces in cavity structures in the cases of dynamical and steady state fields. In the description of the single-photon transmission process we use a field-kinetic one-photon theory. Our model suggests that in the medium photons couple with the induced atomic dipoles forming polariton quasiparticles with the Minkowski form momentum. The Abraham momentum can be associated to the electromagnetic field part of the coupled polariton state. The polariton with the Minkowski momentum is shown to obey the uniform center of mass of energy motion that has previously been interpreted to support only the Abraham momentum. When describing the steady state non-equilibrium field distributions we use the recently developed quantized fluctuational electrodynamics (QFED) formalism. While allowing detailed studies of light propagation and quantum field fluctuations in interfering structures, our methods also provide practical tools for modeling optical energy transfer and the formation of thermal balance in nanodevices as well as studying electromagnetic forces in optomechanical devices.
Transport coefficients of heavy baryons
NASA Astrophysics Data System (ADS)
Tolos, Laura; Torres-Rincon, Juan M.; Das, Santosh K.
2016-08-01
We compute the transport coefficients (drag and momentum diffusion) of the low-lying heavy baryons Λc and Λb in a medium of light mesons formed at the later stages of high-energy heavy-ion collisions. We employ the Fokker-Planck approach to obtain the transport coefficients from unitarized baryon-meson interactions based on effective field theories that respect chiral and heavy-quark symmetries. We provide the transport coefficients as a function of temperature and heavy-baryon momentum, and analyze the applicability of certain nonrelativistic estimates. Moreover we compare our outcome for the spatial diffusion coefficient to the one coming from the solution of the Boltzmann-Uehling-Uhlenbeck transport equation, and we find a very good agreement between both calculations. The transport coefficients for Λc and Λb in a thermal bath will be used in a subsequent publication as input in a Langevin evolution code for the generation and propagation of heavy particles in heavy-ion collisions at LHC and RHIC energies.
Using Wind Setdown and Storm Surge on Lake Erie to Calibrate the Air-Sea Drag Coefficient
Drews, Carl
2013-01-01
The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309
Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.
Drews, Carl
2013-01-01
The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1. PMID:23977309
Using wind setdown and storm surge on Lake Erie to calibrate the air-sea drag coefficient.
Drews, Carl
2013-01-01
The air-sea drag coefficient controls the transfer of momentum from wind to water. In modeling storm surge, this coefficient is a crucial parameter for estimating the surge height. This study uses two strong wind events on Lake Erie to calibrate the drag coefficient using the Coupled Ocean Atmosphere Wave Sediment Transport (COAWST) modeling system and the the Regional Ocean Modeling System (ROMS). Simulated waves are generated on the lake with Simulating WAves Nearshore (SWAN). Wind setdown provides the opportunity to eliminate wave setup as a contributing factor, since waves are minimal at the upwind shore. The study finds that model results significantly underestimate wind setdown and storm surge when a typical open-ocean formulation without waves is used for the drag coefficient. The contribution of waves to wind setdown and storm surge is 34.7%. Scattered lake ice also increases the effective drag coefficient by a factor of 1.1.
Momentum fractionation on superstrata
Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.
2016-05-11
Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in highdegree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifoldmore » singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Lastly, our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.« less
Momentum fractionation on superstrata
NASA Astrophysics Data System (ADS)
Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.
2016-05-01
Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.
Angular Momentum Sharing in Dissipative Collisions
NASA Astrophysics Data System (ADS)
Casini, G.; Poggi, G.; Bini, M.; Calamai, S.; Maurenzig, P. R.; Olmi, A.; Pasquali, G.; Stefanini, A. A.; Taccetti, N.; Steckmeyer, J. C.; Laforest, R.; Saint-Laurent, F.
1999-09-01
Light charged particles emitted by the projectilelike fragment were measured in the direct and reverse collision of 93Nb and 116Sn at 25A MeV. The experimental multiplicities of hydrogen and helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of hydrogen and helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.
Thermal conduction by dark matter with velocity and momentum-dependent cross-sections
Vincent, Aaron C.; Scott, Pat E-mail: patscott@physics.mcgill.ca
2014-04-01
We use the formalism of Gould and Raffelt [1] to compute the dimensionless thermal conduction coefficients for scattering of dark matter particles with standard model nucleons via cross-sections that depend on the relative velocity or momentum exchanged between particles. Motivated by models invoked to reconcile various recent results in direct detection, we explicitly compute the conduction coefficients α and κ for cross-sections that go as v{sub rel}{sup 2}, v{sub rel}{sup 4}, v{sub rel}{sup −2}, q{sup 2}, q{sup 4} and q{sup −2}, where v{sub rel} is the relative DM-nucleus velocity and q is the momentum transferred in the collision. We find that a v{sub rel}{sup −2} dependence can significantly enhance energy transport from the inner solar core to the outer core. The same can true for any q-dependent coupling, if the dark matter mass lies within some specific range for each coupling. This effect can complement direct searches for dark matter; combining these results with state-of-the-art solar simulations should greatly increase sensitivity to certain DM models. It also seems possible that the so-called Solar Abundance Problem could be resolved by enhanced energy transport in the solar core due to such velocity- or momentum-dependent scatterings.
Uniqueness of the momentum map
NASA Astrophysics Data System (ADS)
Esposito, Chiara; Nest, Ryszard
2016-08-01
We give a detailed discussion of existence and uniqueness of the momentum map associated to Poisson Lie actions, which was defined by Lu. We introduce a weaker notion of momentum map, called infinitesimal momentum map, which is defined on one-forms and we analyze its integrability to the Lu's momentum map. Finally, the uniqueness of the Lu's momentum map is studied by describing, explicitly, the tangent space to the space of momentum maps.
Explorations of Representational Momentum.
ERIC Educational Resources Information Center
Kelly, Michael H.; Freyd, Jennifer J.
1987-01-01
Figures that undergo an implied rotation are remembered as being slightly beyond their final position, a phenomenon called representational momentum. Eight experiments explored the questions of what gets transformed and what types of transformations induce such representational distortions. (GDC)
Nucleon spin structure at low momentum transfers
NASA Astrophysics Data System (ADS)
Pasechnik, Roman S.; Soffer, Jacques; Teryaev, Oleg V.
2010-10-01
The generalized Gerasimov-Drell-Hearn sum rule is known to be very sensitive to QCD radiative and power corrections. We improve the previously developed QCD-inspired model for the Q2 dependence of the Gerasimov-Drell-Hearn sum rule. We take into account higher order radiative and higher-twist power corrections extracted from precise Jefferson Lab data on the lowest moment of the spin-dependent proton structure function Γ1p(Q2) and on the Bjorken sum rule Γ1p-n(Q2). By using the singularity-free analytic perturbation theory we demonstrate that the matching point between chiral-like positive-Q2 expansion and QCD operator product 1/Q2 expansion for the nucleon spin sum rules can be shifted down to rather low Q≃ΛQCD leading to a good description of recent proton, neutron, deuteron, and Bjorken sum rule data at all accessible Q2.
Momentum transfer in indirect explosive drive
Kennedy, J.E.; Warnes, R.H.; Cherry, C.R.; Cherry, C.R. Jr.; Fischer, S.H.
1996-07-01
Material which is not in direct contact with detonating explosives may still be driven by the explosion through impact by driven material or by attachment to driven material. In such circumstances the assumption of inelastic collision permits estimation of the final velocity of an assemblage. Examples of the utility of this assumption are demonstrated through use of Gurney equations. The inelastic collision calculation may also be used for metal parts which are driven by explosives partially covering the metal. We offer a new discounting angle to account for side energy losses from laterally unconfined explosive charges in cases where the detonation wave travels parallel to the surface which is driven.
DOE R&D Accomplishments Database
Schwinger, J.
1952-01-26
The commutation relations of an arbitrary angular momentum vector can be reduced to those of the harmonic oscillator. This provides a powerful method for constructing and developing the properties of angular momentum eigenvectors. In this paper many known theorems are derived in this way, and some new results obtained. Among the topics treated are the properties of the rotation matrices; the addition of two, three, and four angular momenta; and the theory of tensor operators.
Momentum induced by laser-tissue interaction
Dingus, R.S.
1993-01-01
Impulsive momentum is imparted to residual tissue during pulsed-laser ablation because the moss ablated is generally ejected with a sizable velocity. Accurate measurements of the impulse are possible, which can provide an important monitor of the ablation process. Simple models can be used to predict the impulse under a variety of conditions; in some cases, complex radiation-hydrodynamic code calculations are required. In this paper, this modeling is discussed along with the dependence of momentum on the pulsed heating and target conditions. Momentum measurement techniques are discussed briefly. The behavior is explained in terms of dimensionless parameters and the impulse coupling coefficient as a function of incident fluence, which has a well defined threshold as well as a maximum. Complications in the mixed liquid-vapor phase are also addressed.
Momentum induced by laser-tissue interaction
Dingus, R.S.
1993-04-01
Impulsive momentum is imparted to residual tissue during pulsed-laser ablation because the moss ablated is generally ejected with a sizable velocity. Accurate measurements of the impulse are possible, which can provide an important monitor of the ablation process. Simple models can be used to predict the impulse under a variety of conditions; in some cases, complex radiation-hydrodynamic code calculations are required. In this paper, this modeling is discussed along with the dependence of momentum on the pulsed heating and target conditions. Momentum measurement techniques are discussed briefly. The behavior is explained in terms of dimensionless parameters and the impulse coupling coefficient as a function of incident fluence, which has a well defined threshold as well as a maximum. Complications in the mixed liquid-vapor phase are also addressed.
NASA Astrophysics Data System (ADS)
García López, J.; Siejka, J.; Lemaitre, Y.; Mage, J. C.; Marcilhac, B.
An experimental chamber was connected to the 2.5 MV Van de Graaff accelerator allowing in situ sample annealing at T ≤ 700°C and under pO2 ranging from 10-8 to 1 bar. For the first time to our knowledge the 16O(3He,α)15O nuclear reaction has been employed to monitor in situ the oxygen loss and uptake in Y1Ba2Cu3 O7-x (YBCO) thin films as a function of oxygen pressure and temperature (T ≤ 500°C). The role played by the presence of carbon contamination on YBCO surface was elucidated. Using the 12C(d,p)13C nuclear reaction the carbon loss was observed for T ≥ 250°C and it was associated with the oxygen loss enhancement in YBCO. It is found that in absence of carbon contamination, oxygen in-diffusion rate in YBCO is much faster than the out-diffusion rate, the later being surface reaction limited. The oxygen diffusion coefficients and the surface exchange coefficients of YBCO films have been evaluated. These results will be discussed in relation with the mechanism of high temperature YBCO thin film growth by cathodic sputtering and with the mechanism of the oxygen loss and/or uptake during the sample cooling.
Lu, W.J.; Chou, I.-Ming; Burruss, R.C.; Yang, M.Z.
2006-01-01
A new method was developed for in situ study of the diffusive transfer of methane in aqueous solution under high pressures near hydrate formation conditions within an optical capillary cell. Time-dependent Raman spectra of the solution at several different spots along the one-dimensional diffusion path were collected and thus the varying composition profile of the solution was monitored. Diffusion coefficients were estimated by the least squares method based on the variations in methane concentration data in space and time in the cell. The measured diffusion coefficients of methane in water at the liquid (L)-vapor (V) stable region and L-V metastable region are close to previously reported values determined at lower pressure and similar temperature. This in situ monitoring method was demonstrated to be suitable for the study of mass transfer in aqueous solution under high pressure and at various temperature conditions and will be applied to the study of nucleation and dissolution kinetics of methane hydrate in a hydrate-water system where the interaction of methane and water would be more complicated than that presented here for the L-V metastable condition. ?? 2006 Society for Applied Spectroscopy.
NASA Technical Reports Server (NTRS)
Jones, T. V.; Hippensteele, S. A.
1987-01-01
Tests were performed in a transient heat transfer tunnel in which the model under test was preheated prior to allowing room temperature air to be suddenly drawn over the model. The resulting movement of isothermal contours on the model is revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record is obtained of a temperature and time data pair for all points on the model during a single test. Experiments on a duct model are reported in which the model was preheated using a hot air stream. A manner in which initial model temperature nonuniformities could be taken into account was investigated. The duct model was also tested with a steady-state measurement technique and results were compared with the transient measurements, but recognizing that differences existed between the upstream thermal boundary conditions. The steady-state and transient measurements were shown to be consistent with predicted values. The main advantage of this transient heat transfer technique using liquid crystals is that since the test model need not be actively heated, high-resolution measurements on surfaces with complex shapes may be obtained.
NASA Technical Reports Server (NTRS)
Jones, Terry V.; Hippensteele, Steven A.
1988-01-01
Tests were performed in a transient heat transfer tunnel in which the model under test was preheated prior to allowing room temperature air to be suddenly drawn over the model. The resulting movement of isothermal contours on the model is revealed using a surface coating of thermochromic liquid crystals that display distinctive colors at particular temperatures. A video record is obtained of a temperature and time data pair for all points on the model during a single test. Experiments on a duct model are reported in which the model was preheated using a hot air stream. A manner in which initial model temperature nonuniformities could be taken into account was investigated. The duct model was also tested with a steady-state measurement technique and results were compared with the transient measurements, but recognizing that differences existed between the upstream thermal boundary conditions. The steady-state and transient measurements were shown to be consistent with predicted values. The main advantage of this transient heat transfer technique using liquid crystals is that since the test model need not be actively heated, high-resolution measurements on surfaces with complex shapes may be obtained.
A spectral analysis of the earth's angular momentum budget
NASA Technical Reports Server (NTRS)
Eubanks, T. M.; Steppe, J. A.; Dickey, J. O.; Callahan, P. S.
1985-01-01
The exchange of angular momentum between the solid earth and the atmosphere from January 1976 through March 1982 is investigated using estimates of the earth's rotation from optical astrometry and lunar laser ranging and meteorological estimates of the atmospheric angular momentum M(atm). The physics of the earth's angular momentum budget is described, and earth rotation measurements are related to changes in the angular momentum of the fluid parts of the earth. The availability and reliability of earth rotation and M(atm) data are reported, and the possibility of estimating the exchange of angular momentum with the oceans and with the core is examined. Estimates of the power spectrum, cospectral coherence, and linear transfer functions and an analysis of the unmodeled part of the angular momentum budget are presented and discussed. The amplitude and phase of the semiannual, monthly, and fortnightly tidal variations in the length of day are estimated after removing observed atmospheric excitation.
NASA Astrophysics Data System (ADS)
Robinson, Stephen
2015-03-01
Angular momentum is a notoriously difficult concept to grasp. Visualization often requires three-dimensional pictures of vectors pointing in seemingly arbitrary directions. A simple student-run laboratory experiment coupled with intuitive explanations by an instructor can clear up some of the inherent ambiguity of rotational motion. Specifically, the precessional period of a suspended spinning bicycle wheel can be related to the spinning frequency through a simple algebraic expression. An explanation of this precession apart from the concept of angular momentum will be given.
NASA Technical Reports Server (NTRS)
Humble, Leroy V; Lowdermilk, Warren H; Desmon, Leland G
1951-01-01
An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through smooth tubes for an over-all range of surface temperature from 535 degrees to 3050 degrees r, inlet-air temperature from 535 degrees to 1500 degrees r, Reynolds number up to 500,000, exit Mach number up to 1, heat flux up to 150,000 btu per hour per square foot, length-diameter ratio from 30 to 120, and three entrance configurations. Most of the data are for heat addition to the air; a few results are included for cooling of the air. The over-all range of surface-to-air temperature ratio was from 0.46 to 3.5.
NASA Technical Reports Server (NTRS)
Dateo, Christopher E.; Arnold, James O. (Technical Monitor)
1994-01-01
A new analytic global potential energy surface describing the hydroperoxyl radical system H((sup 2)S) + O2(X (sup 3)Sigma((sup -)(sub g))) (reversible reaction) HO2 ((X-tilde) (sup 2)A'') (reversible reaction) O((sup 3)P) + O H (X (sup 2)Pi) has been fitted using the ab initio complete active space SCF (self-consistent-field)/externally contracted configuration interaction (CASSCF/CCI) energy calculations of Walch and Duchovic. Results of quasiclassical trajectory studies to determine the rate coefficients of the forward and reverse reactions at combustion temperatures will be presented. In addition, vibrational energy levels were calculated using the quantum DVR-DGB (discrete variable representation-distributed Gaussian basis) method and the splitting due to H atom migration is investigated. The material of the proposed presentation was reviewed and the technical content will not reveal any information not already in the public domain and will not give any foreign industry or government a competitive advantage.
NASA Astrophysics Data System (ADS)
Santapaga, Thomas; Guinan, E. F.; Ballouz, R.; Engle, S. G.; Dewarf, L.
2011-01-01
HD189733A is a K2V star that has attracted much attention because it hosts a transiting, hot Jupiter-exoplanet. HD189733b has one of the shortest known orbital-periods (P = 2.22-days) and is only 0.031AU from its host star (Buchy et al. 2005). Based on measurements of the K2V star's P(rot) from starspot-modulations of 12-d, coronal Lx 1028 ergs/s, and chromospheric Ca II-HK emission, indicate an age 0.6 -1.0 Gyr - inferred from our rotation-age-activity relations. However, this age is discrepant with an older-age inferred from the star's low Lithium-abundance ( 1/10 Solar.). However, the age-rotation-activity determination assumes no tidal-effects from close companions- such as close planet. Recently Gaspar et al. (2006) discovered a dM4 companion star (HD 189733 B: 12'' distance to the K-dwarf). X MM-Newton observations of the HD 189733 A&B carried out recently by Pilliteri et al. (2010), surprisingly revealed that HD 189733B shows no X-ray emission, with an upper limit of 9*1026 ergs/s. Using activity-age relationships for dM-stars, we expected a Lx of an order of magnitude higher for age <1.0 Ga. This apparent discrepancy can be resolved by the supposition that the K2V-star has been spun-up by its nearby planetary companion, and that its age determined from activity-rotation relationships is invalid. This supposition is supported by the recent photometry by the Kepler for 300+ exoplanet candidate systems discovered thus far (Borucki et al. 2010). The analysis these data have reveal that tidal locking between the planet and host star has occurred for a significant number of exoplanet with short orbital periods. We explain the fast rotation of the K2 star via the transfer of the planet's orbital angular momentum to the star via tidal interactions. The significance of these finding with respect to the evolution of planetary systems is discussed. This work is partially supported by NSF/RUI grant AST-1009903.
Momentum distributions: An overview
NASA Astrophysics Data System (ADS)
Sokol, P. E.; Silver, R. N.; Clark, J. W.
There have been several excellent reviews of momentum-distribution research in particular subject areas of physics such as electronic systems and nuclear systems. However, it is the commonality of interests, difficulties, and prospects across all of physics, along with certain pivotal advances, which led to the organization of an interdisciplinary Workshop on Momentum Distributions held at Argonne National Laboratory on 24 and 26 October 1988. The purpose of this overview is to explain why scientists with such diverse backgrounds were brought together at this meeting, to introduce and discuss the common elements of momentum-distribution studies, and to establish a common language. We hope to facilitate an appreciation of the more specialized articles which follow in these proceedings. We begin by summarizing the general properties of momentum distributions. Differences and similarities of atomic, electronic, and nuclear many-body systems are examined, in terms of characteristic lengths and energies, relative importance of exchange, and the nature of the two-particle interactions. We continue with a brief commentary on the microscopic methods used to calculate n(p) from first principles.
ERIC Educational Resources Information Center
Parker, G. W.
1978-01-01
Discusses, classically and quantum mechanically, the angular momentum induced in the bound motion of an electron by an external magnetic field. Calculates the current density and its magnetic moment, and then uses two methods to solve the first-order perturbation theory equation for the required eigenfunction. (Author/GA)
Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich
2015-08-14
In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion.
Daneyko, Anton; Hlushkou, Dzmitry; Baranau, Vasili; Khirevich, Siarhei; Seidel-Morgenstern, Andreas; Tallarek, Ulrich
2015-08-14
In recent years, chromatographic columns packed with core-shell particles have been widely used for efficient and fast separations at comparatively low operating pressure. However, the influence of the porous shell properties on the mass transfer kinetics in core-shell packings is still not fully understood. We report on results obtained with a modeling approach to simulate three-dimensional advective-diffusive transport in bulk random packings of monosized core-shell particles, covering a range of reduced mobile phase flow velocities from 0.5 up to 1000. The impact of the effective diffusivity of analyte molecules in the porous shell and the shell thickness on the resulting plate height was investigated. An extension of Giddings' theory of coupled eddy dispersion to account for retention of analyte molecules due to stagnant regions in porous shells with zero mobile phase flow velocity is presented. The plate height equation involving a modified eddy dispersion term excellently describes simulated data obtained for particle-packings with varied shell thickness and shell diffusion coefficient. It is confirmed that the model of trans-particle mass transfer resistance of core-shell particles by Kaczmarski and Guiochon [42] is applicable up to a constant factor. We analyze individual contributions to the plate height from different mass transfer mechanisms in dependence of the shell parameters. The simulations demonstrate that a reduction of plate height in packings of core-shell relative to fully porous particles arises mainly due to reduced trans-particle mass transfer resistance and transchannel eddy dispersion. PMID:26162667
Quantum Heuristics of Angular Momentum
ERIC Educational Resources Information Center
Levy-Leblond, Jean-Marc
1976-01-01
Discusses the quantization of angular momentum components, Heisenberg-type inequalities for their spectral dispersions, and the quantization of the angular momentum modulus, without using operators or commutation relations. (MLH)
MONDE: MOmentum Neutron DEtector
NASA Astrophysics Data System (ADS)
Santa Rita, P.; Acosta, L.; Favela, F.; Huerta, A.; Ortiz, M. E.; Policroniades, R.; Chávez, E.
2016-07-01
MONDE is a large area neutron momentum detector, consisting of a 70x160x5 cm3 plastic scintillator slab surrounded by 16 photomultiplier tubes, standard NIM signal processing electronics and a CAMAC data acquisition system. In this work we present data from a characterization run using an external trigger. For that purpose, coincident gamma rays from a 60Co radioactive source were used together with a NaI external detector. First results with an "external" trigger are presented.
Gaffney, Brecca M; Murray, Amanda M; Christiansen, Cory L; Davidson, Bradley S
2016-03-01
Patients with unilateral dysvascular transtibial amputation (TTA) have a higher risk of developing low back pain than their healthy counterparts, which may be related to movement compensations used in the absence of ankle function. Assessing components of segmental angular momentum provides a unique framework to identify and interpret these movement compensations alongside traditional observational analyses. Angular momentum separation indicates two components of total angular momentum: (1) transfer momentum and (2) rotational momentum. The objective of this investigation was to assess movement compensations in patients with dysvascular TTA, patients with diabetes mellitus (DM), and healthy controls (HC) by examining patterns of generating and arresting trunk and pelvis segmental angular momenta during gait. We hypothesized that all groups would demonstrate similar patterns of generating/arresting total momentum and transfer momentum in the trunk and pelvis in reference to the groups (patients with DM and HC). We also hypothesized that patients with amputation would demonstrate different (larger) patterns of generating/arresting rotational angular momentum in the trunk. Patients with amputation demonstrated differences in trunk and pelvis transfer angular momentum in the sagittal and transverse planes in comparison to the reference groups, which indicates postural compensations adopted during walking. However, patients with amputation demonstrated larger patterns of generating and arresting of trunk and pelvis rotational angular momentum in comparison to the reference groups. These segmental rotational angular momentum patterns correspond with high eccentric muscle demands needed to arrest the angular momentum, and may lead to consequential long-term effects such as low back pain.
Gaffney, Brecca M; Murray, Amanda M; Christiansen, Cory L; Davidson, Bradley S
2016-03-01
Patients with unilateral dysvascular transtibial amputation (TTA) have a higher risk of developing low back pain than their healthy counterparts, which may be related to movement compensations used in the absence of ankle function. Assessing components of segmental angular momentum provides a unique framework to identify and interpret these movement compensations alongside traditional observational analyses. Angular momentum separation indicates two components of total angular momentum: (1) transfer momentum and (2) rotational momentum. The objective of this investigation was to assess movement compensations in patients with dysvascular TTA, patients with diabetes mellitus (DM), and healthy controls (HC) by examining patterns of generating and arresting trunk and pelvis segmental angular momenta during gait. We hypothesized that all groups would demonstrate similar patterns of generating/arresting total momentum and transfer momentum in the trunk and pelvis in reference to the groups (patients with DM and HC). We also hypothesized that patients with amputation would demonstrate different (larger) patterns of generating/arresting rotational angular momentum in the trunk. Patients with amputation demonstrated differences in trunk and pelvis transfer angular momentum in the sagittal and transverse planes in comparison to the reference groups, which indicates postural compensations adopted during walking. However, patients with amputation demonstrated larger patterns of generating and arresting of trunk and pelvis rotational angular momentum in comparison to the reference groups. These segmental rotational angular momentum patterns correspond with high eccentric muscle demands needed to arrest the angular momentum, and may lead to consequential long-term effects such as low back pain. PMID:26979898
Orbital angular momentum and generalized transverse momentum distribution
NASA Astrophysics Data System (ADS)
Zhao, Yong; Liu, Keh-Fei; Yang, Yi-Bo
2016-03-01
We show that, when boosted to the infinite momentum frame, the quark and gluon orbital angular momentum operators defined in the nucleon spin sum rule of Chen et al. are the same as those whose matrix elements correspond to the moments of generalized transverse momentum distributions. This completes the connection between the infinite momentum limit of each term in that sum rule and experimentally measurable observables. We also show that these orbital angular momentum operators can be defined locally and discuss the strategies of calculating them in lattice QCD.
Effect of sea sprays on air-sea momentum exchange at severe wind conditions
NASA Astrophysics Data System (ADS)
Troitskaya, Yu.; Ezhova, E.; Semenova, A.; Soustova, I.
2012-04-01
Wind-wave interaction at extreme wind speed is of special interest now in connection with the problem of explanation of the sea surface drag saturation at the wind speed exceeding 30 m/s. The idea on saturation (and even reduction) of the coefficient of aerodynamic resistance of the sea surface at hurricane wind speed was first suggested in [1] on the basis of theoretical analysis of sensitivity of maximum wind speed in a hurricane to the ratio of the enthalpy and momentum exchange coefficients. Both field [2-4] and laboratory [5] experiments confirmed that at hurricane wind speed the sea surface drag coefficient is significantly reduced in comparison with the parameterization obtained at moderate to strong wind conditions. Two groups of possible theoretical mechanisms for explanation of the effect of the sea surface drag reduction can be specified. In the first group of models developed in [6,7], the sea surface drag reduction is explained by peculiarities of the air flow over breaking waves. Another approach more appropriate for the conditions of developed sea exploits the effect of sea drops and sprays on the wind-wave momentum exchange. Papers[8,9] focused on the effect of the sea drops on stratification of the air-sea boundary layer similar to the model of turbulent boundary layer with the suspended particles [10], while papers [11-13] estimated the momentum exchange of sea drops and air-flow. A mandatory element of the spray induced momentum flux is a parameterization of the momentum exchange between droplets and air flow, which determines the "source function" in the momentum balance equation. In this paper a model describing the motion of a spume droplet, the wind tear away from the crest of a steep surface wave, and then falling into the water. We consider two models for the injection of droplets into the air flow. The first one assumes that the drop starts from the surface at the orbital velocity of the wave. In the second model we consider droplets from
Plate tectonics conserves angular momentum
NASA Astrophysics Data System (ADS)
Bowin, C.
2010-03-01
A new combined understanding of plate tectonics, Earth internal structure, and the role of impulse in deformation of the Earth's crust is presented. Plate accelerations and decelerations have been revealed by iterative filtering of the quaternion history for the Euler poles that define absolute plate motion history for the past 68 million years, and provide an unprecedented precision for plate angular rotation variations with time at 2-million year intervals. Stage poles represent the angular rotation of a plate's motion between adjacent Euler poles, and from which the maximum velocity vector for a plate can be determined. The consistent maximum velocity variations, in turn, yield consistent estimates of plate accelerations and decelerations. The fact that the Pacific plate was shown to accelerate and decelerate, implied that conservation of plate tectonic angular momentum must be globally conserved, and that is confirmed by the results shown here (total angular momentum ~1.4+27 kg m2 s-1). Accordingly, if a plate decelerates, other plates must increase their angular momentums to compensate. In addition, the azimuth of the maximum velocity vectors yields clues as to why the "bend" in the Emperor-Hawaiian seamount trend occurred near 46 Myr. This report summarizes processing results for 12 of the 14 major tectonic plates of the Earth (except for the Juan de Fuca and Philippine plates). Plate accelerations support the contention that plate tectonics is a product of torques that most likely are sustained by the sinking of positive density anomalies revealed by geoid anomalies of the degree 4-10 packet of the Earth's spherical harmonic coefficients. These linear positive geoid anomalies underlie plate subduction zones and are presumed due to phase changes in subducted gabbroic lithosphere at depth in the upper lower mantle (above 1200 km depth). The tectonic plates are pulled along by the sinking of these positive mass anomalies, rather than moving at near constant
The momentum imbalance paradox
NASA Astrophysics Data System (ADS)
Pichevin, Thierry; Nof, Doron
1997-03-01
The classical question of what happens when anomalous water enters an ocean via a meridional northward channel is addressed analytically using a reduced-gravity nonlinear model. The channel corresponds to either a conduit connecting 2 otherwise separated basins (e.g., the Yucatan Channel) or a conduit carrying water from an independent source. The traditional view is that, due to the Coriolis force, such an anomalous northward flowing current turns to the right (looking offshore) and forms a zonal boundary current that flows eastward. In this scenario, a front (corresponding to a surfacing interface) separates the oceanic and the anomalous water. Integration of the steady inviscid momentum equation along the boundary gives the long-shore flow-force and shows that such a scenario leads to a paradox. Specifically, such a flow corresponds to an unbalanced flow-force and, therefore, cannot exist. To balance the integrated momentum and resolve the paradox the inflow constantly sheds anticyclones which propagate to the left due to β. Under such conditions, the momentum of the eddies moving to the left balances the momentum of the current flowing to the right. This new eddy shedding mechanism may explain why the Loop Current produces loops and why other inflows produce anticyclones. A nonlinear analytical solution to the problem is constructed with the aid of a new and powerful theoretical approach which is based on the idea that, after each eddy generation process, the system returns to its original state. This implies that nonlinear periodic flows can be integrated over a control volume in a similar manner to the integration used in steady flows. This novel method enables us to extract the details of the resulting features (i.e., their size, speed, periodicity and depth of the shedded rings) without solving for the details of the incredibly complicated three-dimensional and time-dependent generation process. It turns out that the problem involves a new eddy length
Quark Orbital Angular Momentum
NASA Astrophysics Data System (ADS)
Burkardt, Matthias
2016-06-01
Generalized parton distributions provide information on the distribution of quarks in impact parameter space. For transversely polarized nucleons, these impact parameter distributions are transversely distorted and this deviation from axial symmetry leads on average to a net transverse force from the spectators on the active quark in a DIS experiment. This force when acting along the whole trajectory of the active quark leads to transverse single-spin asymmetries. For a longitudinally polarized nucleon target, the transverse force implies a torque acting on the quark orbital angular momentum (OAM). The resulting change in OAM as the quark leaves the target equals the difference between the Jaffe-Manohar and Ji OAMs.
Momentum correction techniques for neoclassical transport in stellarators
Maassberg, H.; Beidler, C. D.; Turkin, Y.
2009-07-15
In the traditional neoclassical ordering for stellarators, monoenergetic transport coefficients are evaluated using the simplified Lorentz form of the pitch-angle collision operator which violates momentum conservation. In this paper, the parallel momentum balance with radial parallel momentum transport and viscosity terms is analyzed, in particular, with respect to the radial electric field. Next, the impact of momentum conservation in the stellarator long-mean-free-path regime is estimated for the radial transport and the parallel electric conductivity. Two different momentum correction techniques are described based on monoenergetic transport coefficients calculated by the DKES code [W. I. van Rij and S. P. Hirshman, Phys. Fluids B 1, 563 (1989)]. The benchmarking of the parallel electric conductivity and of the bootstrap current is presented for a tokamak as well as for two W7-X stellarator configurations [G. Grieger et al., Phys. Fluids B 4, 2081 (1992)]. Finally, the impact of the momentum correction on the expected total bootstrap current is briefly analyzed for two W7-X scenarios.
Changes in angular momentum during the tennis serve.
Bahamonde, R E
2000-08-01
Three-dimensional cinematography and the direct linear transformation method were used to obtain the coordinates of the landmarks of five right-handed collegiate tennis players. A 15-segment model was used to calculate the total body angular momentum about three orthogonal axes (X, parallel to the baseline; Y, normal to baseline and pointing towards the net; and Z, pointing upwards) passing through the centre of mass and to obtain the segmental contribution of the trunk, arms and legs. Most of the clockwise angular momentum about the X-axis was concentrated in the trunk and the racket-arm. Between the events of maximum external rotation and ball impact, the clockwise angular momentum about the X-axis of rotation of most body segments was reduced and the racket-arm gained clockwise angular momentum. The body angular momentum about the Y-axis of rotation had two distinct patterns and was the result of the lateral rotation of the trunk as the racket shoulder was elevated in preparation for impact. This body angular momentum was clockwise from the event of maximum external rotation to impact for the players with the greatest ball speed, whereas it was counterclockwise for the other players. The angular momentum about the Z-axis of rotation was small and lacked a consistent pattern. The largest source of angular momentum in the tennis serve derives from the remote angular momentum about the X- and Y-axes of rotation, which are then transferred from the trunk to the racket-arm and finally to the racket. Near impact, most of the angular momentum (75.1%) was concentrated in the racket-arm. Of the angular momentum of the racket-arm, the largest percentages were concentrated in the racket (35.9%) and the forearm segment (25.7%).
Measurement of off-diagonal transport coefficients in two-phase flow in porous media.
Ramakrishnan, T S; Goode, P A
2015-07-01
The prevalent description of low capillary number two-phase flow in porous media relies on the independence of phase transport. An extended Darcy's law with a saturation dependent effective permeability is used for each phase. The driving force for each phase is given by its pressure gradient and the body force. This diagonally dominant form neglects momentum transfer from one phase to the other. Numerical and analytical modeling in regular geometries have however shown that while this approximation is simple and acceptable in some cases, many practical problems require inclusion of momentum transfer across the interface. Its inclusion leads to a generalized form of extended Darcy's law in which both the diagonal relative permeabilities and the off-diagonal terms depend not only on saturation but also on the viscosity ratio. Analogous to application of thermodynamics to dynamical systems, any of the extended forms of Darcy's law assumes quasi-static interfaces of fluids for describing displacement problems. Despite the importance of the permeability coefficients in oil recovery, soil moisture transport, contaminant removal, etc., direct measurements to infer the magnitude of the off-diagonal coefficients have been lacking. The published data based on cocurrent and countercurrent displacement experiments are necessarily indirect. In this paper, we propose a null experiment to measure the off-diagonal term directly. For a given non-wetting phase pressure-gradient, the null method is based on measuring a counter pressure drop in the wetting phase required to maintain a zero flux. The ratio of the off-diagonal coefficient to the wetting phase diagonal coefficient (relative permeability) may then be determined. The apparatus is described in detail, along with the results obtained. We demonstrate the validity of the experimental results and conclude the paper by comparing experimental data to numerical simulation. PMID:25748636
Momentum Deposition in Curvilinear Coordinates
Cleveland, Mathew Allen; Lowrie, Robert Byron; Rockefeller, Gabriel M.; Thompson, Kelly Glen; Wollaber, Allan Benton
2015-08-03
The momentum imparted into a material by thermal radiation deposition is an important physical process in astrophysics and inertial confinement fusion (ICF) simulations. In recent work we presented a new method of evaluating momentum deposition that relies on the combination of a time-averaged approximation and a numerical integration scheme. This approach robustly and efficiently evaluates the momentum deposition in spherical geometry. Future work will look to extend this approach to 2D cylindrical geometries.
Angular momentum evolution for galaxies
NASA Astrophysics Data System (ADS)
Pedrosa, S. E.; Tissera, P. B.
2015-08-01
Using cosmological hydrodinamics simulations we study the angular momentum content of the simulated galaxies in relation with their morphological type. We found that not only the angular momentum of the disk component follow the expected theoretical relation (Mo, Mao White model), but also the spheroidal one, with a gap due to its lost of angular momentum. We also found that the galaxy size can plot in one general relation, despite the morphological type,, in agreement with recent findings.
Orbital angular momentum microlaser.
Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M; Feng, Liang
2016-07-29
Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.
Partonic Transverse Momentum Distributions
Rossi, Patrizia
2010-08-04
In recent years parton distributions have been generalized to account also for transverse degrees of freedom and new sets of more general distributions, Transverse Momentum Dependent (TMD) parton distributions and fragmentation functions were introduced. Different experiments worldwide (HERMES, COMPASS, CLAS, JLab-Hall A) have measurements of TMDs in semi-inclusive DIS processes as one of their main focuses of research. TMD studies are also an important part of the present and future Drell-Yan experiments at RICH and JPARC and GSI, respectively, Studies of TMDs are also one of the main driving forces of the Jefferson Lab (JLab) 12 GeV upgrade project. Progress in phenomenology and theory is flourishing as well. In this talk an overview of the latest developments in studies of TMDs will be given and newly released results, ongoing activities, as well as planned near term and future measurements will be discussed.
Orbital angular momentum microlaser
NASA Astrophysics Data System (ADS)
Miao, Pei; Zhang, Zhifeng; Sun, Jingbo; Walasik, Wiktor; Longhi, Stefano; Litchinitser, Natalia M.; Feng, Liang
2016-07-01
Structured light provides an additional degree of freedom for modern optics and practical applications. The effective generation of orbital angular momentum (OAM) lasing, especially at a micro- and nanoscale, could address the growing demand for information capacity. By exploiting the emerging non-Hermitian photonics design at an exceptional point, we demonstrate a microring laser producing a single-mode OAM vortex lasing with the ability to precisely define the topological charge of the OAM mode. The polarization associated with OAM lasing can be further manipulated on demand, creating a radially polarized vortex emission. Our OAM microlaser could find applications in the next generation of integrated optoelectronic devices for optical communications in both quantum and classical regimes.
Ultrafast coherent control of angular momentum during a one-photon excitation
Malik, D. A.; Eppink, A. T. J. B.; Meerts, W. L.; Kimel, A. V.; Kirilyuk, A.; Rasing, Th.; Zande, W. J. van der
2011-10-15
The subpicosecond dynamics of angular momentum transfer in the excited rubidium 5p state is studied in real time by observing photoelectron angular distributions with velocity map imaging. Retrieving the populations of the degenerate Zeeman levels and reconstructing the angular momentum, we show that in the case of resonant excitation the angular momentum does not follow the momentary helicity of the electric field of the pulse. This is in contrast with off-resonant excitation where the angular momentum and pulse helicity are fully correlated. Our study shows how to generate and shape ultrashort pulses of orbital and spin angular momentum in a controllable way.
Turbulent Equipartition Theory of Toroidal Momentum Pinch
NASA Astrophysics Data System (ADS)
Hahm, T. S.
2007-11-01
The turbulent convective flux (pinch) of the toroidal angular momentum density is derived using the nonlinear toroidal gyrokinetic equation which conserves phase space density and energy[1], and a novel pinch mechanism which originates from the symmetry breaking due to the magnetic field curvature is identified. A net parallel momentum transfer from the waves to the ion guiding centers is possible when the fluctuation intensity varies on the flux surface, resulting in imperfect cancellation of the curvature drift contribution to the parallel acceleration. This pinch velocity of the angular momentum density can also be understood as a manifestation of a tendency to homogenize the profile of ``magnetically weighted angular momentum density,'' nmiRU/B^2. This part of the pinch flux is mode-independent (whether it's TEM driven or ITG driven), and radially inward for fluctuations peaked at the low-B-field side, with a pinch velocity typically, V^TEPAng˜- 2 χφ/R0. We compare and contrast the pinch of toroidal angular momentum with the now familiar ``turbulent equipartition'' (TEP) mechanism for the particle pinch[2] which exhibit some relevance in various L-mode plasmas in tokamaks. In our theoretical model[3], the TEP momentum pinch is shown to arise from the fact that, in a low-β tokamak equilibrium, B^2uE= cB x∇ δφ is approximately incompressible, so that the magnetically weighted angular momentum density (minU/B^3 minUR/B^2) is locally advected by fluctuating E xB velocities, to the lowest order in O(a/R). As a consequence minUR/B^2 is mixed or homogenized, so that ψ minUR/B^2 ->0. [1] T.S. Hahm, Phys. Fluids 31, 2670 (1988) [2] V.V. Yankov, JETP Lett. 60, 171 (1994); M.B. Isichenko et al., Phys. Rev. Lett. 74, 4436 (1995); X. Garbet et al., Phys. Plasmas 12, 082511 (2005). [3] T.S. Hahm, P.H. Diamond, O. Gurcan, and G. Rewoldt, Phys. Plasmas 14, 072302 (2007).
Munera, Hector A.
2010-07-28
Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.
NASA Astrophysics Data System (ADS)
Múnera, Héctor A.
2010-07-01
Advantages of a neo-Cartesian approach to classical mechanics are noted. If conservation of linear momentum is the fundamental principle, Newton's three laws become theorems. A minor paradox in static Newtonian mechanics is identified, and solved by reinterpreting force as a current of momentum. Contact force plays the role of a mere midwife in the exchange of momentum; however, force cannot be eliminated from physics because it provides the numerical value for momentum current. In this sense, in a neo-Cartesian formulation of mechanics the concept of force becomes strengthened rather than weakened.
Factor Scores, Structure Coefficients, and Communality Coefficients
ERIC Educational Resources Information Center
Goodwyn, Fara
2012-01-01
This paper presents heuristic explanations of factor scores, structure coefficients, and communality coefficients. Common misconceptions regarding these topics are clarified. In addition, (a) the regression (b) Bartlett, (c) Anderson-Rubin, and (d) Thompson methods for calculating factor scores are reviewed. Syntax necessary to execute all four…
Momentum Transport in Rarefied Gases.
NASA Astrophysics Data System (ADS)
Hickey, Keith Alan
The study of non-uniform rarefied gas flow under different geometries and boundary conditions is fundamental to problems in a variety of systems. This dissertation investigates problems of viscous flow or momentum transport in the thin regions (Knudsen layers) close to the boundaries where rarefied gas flows must be described by the Boltzmann equation (Kinetic Theory). The problems of planar slip flow and planar Poiseuille flow for rigid spheres are examined by solving the linearized Boltzmann equation using the discrete ordinates (S_{rm N} ) method. The slip flow or half-space problem of rarefied gas flow is considered and use of the S_ {rm N} (discrete ordinates) algorithm outlined. Accurate numerical results for the velocity slip coefficient and velocity defect are obtained for a rigid sphere gas and are compared with previously reported results and experimental data. In plane Poiseuille flow, the continuum limit is characterized by the Burnett distribution. Explicit results for this distribution are obtained by solving numerically the relevant integral equations for a rigid sphere gas in the context of the linearized Boltzmann equation. This distribution together with the Chapman-Enskog distribution is used to obtain asymptotic results (near-continuum) for mass and heat fluxes corresponding to planar thermal transpiration and mechanocaloric effects. The problem of plane Poiseuille flow of a rarefied gas is solved by the S_{rm N } method. Explicit results for the flow rates and velocity profiles for a rigid sphere intermolecular interaction are obtained, and compared with the BGK and one-term synthetic model results. The flow rates are verified by use of variational expressions incorporating the newly developed Burnett distribution values. The rigid sphere values for the flow rates are in better agreement with the available experimental data than those based on the BGK kinetic model and the one term synthetic model. The development of the appropriate equations
MINET (momentum integral network) code documentation
Van Tuyle, G J; Nepsee, T C; Guppy, J G
1989-12-01
The MINET computer code, developed for the transient analysis of fluid flow and heat transfer, is documented in this four-part reference. In Part 1, the MINET models, which are based on a momentum integral network method, are described. The various aspects of utilizing the MINET code are discussed in Part 2, The User's Manual. The third part is a code description, detailing the basic code structure and the various subroutines and functions that make up MINET. In Part 4, example input decks, as well as recent validation studies and applications of MINET are summarized. 32 refs., 36 figs., 47 tabs.
Intrinsic Angular Momentum of Light.
ERIC Educational Resources Information Center
Santarelli, Vincent
1979-01-01
Derives a familiar torque-angular momentum theorem for the electromagnetic field, and includes the intrinsic torques exerted by the fields on the polarized medium. This inclusion leads to the expressions for the intrinsic angular momentum carried by the radiation traveling through a charge-free medium. (Author/MA)
Angular Momentum Transport in Double White Dwarf Binaries
NASA Astrophysics Data System (ADS)
Motl, Patrick M.; Tohline, J. E.; Frank, J.
2006-12-01
We present numerical simulations of dynamically unstable mass transfer in a double white dwarf binary with initial mass ratio, q = 0.4. The binary components are approximated as polytropes of index n = 3/2 and the synchronously rotating, semi-detached equilibrium binary is evolved hydrodynamically with the gravitational potential being computed through the solution of Poisson's equation. Upon initiating deep contact, the mass transfer rate grows by more than an order of magnitude over approximately ten orbits, as would be expected for dynamically unstable mass transfer. However, the mass transfer rate then reaches a peak value, the binary expands and the mass transfer event subsides. The binary must therefore have crossed the critical mass ratio for stability against dynamical mass transfer. Despite the initial loss of orbital angular momentum into the spin of the accreting star, we find that the accretor's spin saturates and angular momentum is returned to the orbit more efficiently than has been previously suspected for binaries in the direct impact accretion mode. To explore this surprising result, we directly measure the critical mass ratio for stability by imposing artificial angular momentum loss at various rates to drive the binary to an equilibrium mass transfer rate. For one of these driven evolutions, we attain equilibrium mass transfer and deduce that the mass ratio for stability is approximately 2/3. This is consistent with the result for mass transferring binaries that effectively return angular momentum to the orbit through an accretion disk. This work has been supported in part by NSF grants AST 04-07070 and PHY 03-26311 and in part through NASA's ATP program grant NAG5-13430. The computations were performed primarily at NCSA through grant MCA98N043 and at LSU's Center for Computation & Technology.
Transverse angular momentum of photons
Aiello, Andrea
2010-05-15
We develop the quantum theory of transverse angular momentum of light beams. The theory applies to paraxial and quasiparaxial photon beams in vacuum and reproduces the known results for classical beams when applied to coherent states of the field. Both the Poynting vector, alias the linear momentum, and the angular-momentum quantum operators of a light beam are calculated including contributions from first-order transverse derivatives. This permits a correct description of the energy flow in the beam and the natural emergence of both the spin and the angular momentum of the photons. We show that for collimated beams of light, orbital angular-momentum operators do not satisfy the standard commutation rules. Finally, we discuss the application of our theory to some concrete cases.
Accelerating momentum for change!
Wenzel, S; Panetta, J
1995-05-01
As we develop strategies to compete globally, we are challenged with integrating our resources to execute these strategies effectively. Many companies are in the midst of dramatic shifts in corporate cultures, giving more responsibility to employees while raising expectations for their performance. The extent of these changes is far reaching and brings significant challenges to both employees and corporations. This article is a continuation of the evolution (over five years) of a corrective action/continuous improvement process implemented at Exide Electronics. It discusses organizational structures, including steering committees, corrective action teams, task teams, and work cells. Specific expectations, goals, and results of the teams are presented, along with ground rules for functioning within the organization. After structuring the organization and coordinating the resources effectively, the next challenge is accelerating momentum for change. The presentation also discusses the evolutionary process required to make a culture focused on change, including ongoing communication and feedback, constant evaluation and direction of the process, and measuring and paying for performance.
Direct Extraction of One-loop Integral Coefficients
Forde, Darren
2007-04-16
We present a general procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted by considering two-particle and triple unitarity cuts of the corresponding bubble and triangle integral functions. After choosing a specific parameterization of the cut loop momentum we can uniquely identify the coefficients of the desired integral functions simply by examining the behavior of the cut integrand as the unconstrained parameters of the cut loop momentum approach infinity. In this way we can produce compact forms for scalar integral coefficients. Applications of this method are presented for both QCD and electroweak processes, including an alternative form for the recently computed three-mass triangle coefficient in the six-photon amplitude A{sub 6}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup -}, 6{sup +}). The direct nature of this extraction procedure allows for a very straightforward automation of the procedure.
Angular momentum in human walking.
Herr, Hugh; Popovic, Marko
2008-02-01
Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body's center of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces), there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly regulated throughout the walking cycle about all three spatial directions [|Lt| approximately 0], and therefore horizontal ground reaction forces and the center of pressure trajectory can be explained predominantly through an analysis that assumes zero net moment about the body's CM. Using a 16-segment human model and gait data for 10 study participants, we found that calculated zero-moment forces closely match experimental values (Rx2=0.91; Ry2=0.90). Additionally, the centroidal moment pivot (point where a line parallel to the ground reaction force, passing through the CM, intersects the ground) never leaves the ground support base, highlighting how closely the body regulates angular momentum. Principal component analysis was used to examine segmental contributions to whole-body angular momentum. We found that whole-body angular momentum is small, despite substantial segmental momenta, indicating large segment-to-segment cancellations ( approximately 95% medio-lateral, approximately 70% anterior-posterior and approximately 80% vertical). Specifically, we show that adjacent leg-segment momenta are balanced in the medio-lateral direction (left foot momentum cancels right foot momentum, etc.). Further, pelvis and abdomen momenta are balanced by leg, chest and head momenta in the anterior-posterior direction, and leg momentum is balanced by upper-body momentum in the vertical direction. Finally, we discuss the determinants of gait in the context of these segment-to-segment cancellations of angular momentum.
Heat transfer to the transpired turbulent boundary layer.
NASA Technical Reports Server (NTRS)
Kays, W. M.
1972-01-01
This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.