Science.gov

Sample records for monazite geochronology geochemistry

  1. Provisional zircon and monazite uranium-lead geochronology for selected rocks from Vermont

    USGS Publications Warehouse

    Aleinikoff, John N.; Ratcliffe, Nicholas M.; Walsh, Gregory J.

    2011-01-01

    This report presents the results of zircon and monazite uranium-lead (U-Pb) geochronologic analyses of 24 rock samples. The samples in this study were collected from mapped exposures identified while conducting either new, detailed (1:24,000-scale) geologic quadrangle mapping or reconnaissance mapping, both of which were used for compilation of the bedrock geologic map of Vermont. All of the collected samples were judged to be igneous rocks (either intrusive or extrusive) on the basis of field relations and geochemistry. The one exception is the Okemo Quartzite on Ludlow Mountain. These geochronologic data were used to supplement regional correlations between igneous suites on the basis of similar geochemistry and geologic mapping.

  2. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    USGS Publications Warehouse

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.

    2012-01-01

    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains. Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss. Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade

  3. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    USGS Publications Warehouse

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.

    2012-01-01

    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains.Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss.Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade

  4. Lower Carboniferous post-orogenic granites in central-eastern Sierra de Velasco, Sierras Pampeanas, Argentina: U-Pb monazite geochronology, geochemistry and Sr-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Söllner, Frank; Báez, Miguel A.; Toselli, Alejandro J.; Rossi, Juana N.; de La Rosa, Jesus D.

    2009-07-01

    The central-eastern part of the Sierra de Velasco (Sierras Pampeanas, NW Argentina) is formed by the large Huaco (40 × 30 km) and Sanagasta (25 × 15 km) granite massifs and the small La Chinchilla stock (2 × 2 km). The larger granites intrude into Ordovician metagranitoids and crosscut Devonian (?) mylonitic shear zones, whereas the small stock sharply intrudes into the Huaco granite. The two voluminous granites are biotitic-muscovitic and biotitic porphyritic syeno- to monzogranites. They contain small and rounded tonalitic and quartz-dioritic mafic microgranular enclaves. The small stock is an equigranular, zinnwaldite- and fluorite-bearing monzogranite. The studied granites are silica-rich (SiO2 >70%), potassium-rich (K2O >4%), ferroan, alkali-calcic to slightly calk-alkalic, and moderately to weakly peraluminous (A/CNK: 1.06-1.18 Huaco granite, 1.01-1.09 Sanagasta granite, 1.05-1.06 La Chinchilla stock). They have moderate to strong enrichments in several LIL (Li, Rb, Cs) and HFS (Nb, Ta, Y, Th, U) elements, and low Sr, Ba and Eu contents. U-Pb monazite age determinations indicate Lower Carboniferous crystallization ages: 350-358 Ma for the Huaco granite, 352.7 ± 1.4 Ma for the Sanagasta granite and 344.5 ± 1.4 Ma for the La Chinchilla stock. The larger granites have similar ɛNd values between -2.1 and -4.3, whereas the younger stock has higher ɛNd of -0.6 to -1.4, roughly comparable to the values obtained for the Carboniferous San Blas granite (-1.4 to -1.7), located in the north of the sierra. The Huaco and Sanagasta granites have a mainly crustal source, but with some participation of a more primitive, possibly mantle-derived, component. The main crustal component can be attributed to Ordovician peraluminous metagranitoids. The La Chinchilla stock derives from a more primitive source, suggesting an increase with time in the participation of the primitive component during magma genesis. The studied granites were generated during a post-orogenic period

  5. Geochronology of accessory allanite and monazite in the Barrovian metamorphic sequence of the Central Alps, Switzerland

    NASA Astrophysics Data System (ADS)

    Boston, Kate R.; Rubatto, Daniela; Hermann, Jörg; Engi, Martin; Amelin, Yuri

    2017-08-01

    The formation of accessory allanite, monazite and rutile in amphibolite-facies rocks across the Barrovian sequence of the Central Alps (Switzerland) was investigated with a combination of petrography and geochemistry and related to the known structural and metamorphic evolution of the Lepontine dome. For each of these minerals a specific approach was adopted for geochronology, taking into account internal zoning and U-Th-Pb systematics. In-situ U-Th-Pb dating of allanite and monazite by ion microprobe revealed systematic trends for the ages of main deformation and temperature in the Lepontine dome. Isotope dilution TIMS dating of rutile returns dates in line with this picture, but is complicated by inheritance of pre-Alpine rutile and possible Pb loss during Alpine metamorphism. Allanite is generally a prograde mineral that is aligned along the main foliation of the samples and found also as inclusions in garnet. Prograde allanite formation is further documented by rutile inclusions with formation temperatures significantly lower than the maximum T recorded by the rock mineral assemblage. Allanite ages vary from 31.3 ± 1.1 Ma in orthogneisses in the East to 31.7 ± 1.1 Ma for a Bündnerschiefer and 28.5 ± 1.3 Ma for a metaquartzite in the central area, to 26.8 ± 1.1 Ma in the western part of the Lepontine dome. These ages are interpreted to date the main deformation events (nappe stacking and isoclinal deformation of the nappe stack), close to peak pressure conditions. The timing of the thermal peak in the Lepontine dome is recorded in monazite that grew at the expense of allanite and after a main episode of garnet growth at temperatures of 620 °C. Monazite in the central area yields an age of 22.0 ± 0.3 Ma, which is indistinguishable from the age of 21.7 ± 0.4 Ma from a metapelite in the western part of the Lepontine dome. In the central area some of the classical kyanite-staurolite-garnet schists directly underlying the metamorphosed Mesozoic sediments

  6. The Triassic reworking of the Yunkai massif (South China): EMP monazite and U-Pb zircon geochronologic evidence

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Liu, Yung-Hsin; Lee, Chi-Yu; Sano, Yuji; Zhou, Han-Wen; Xiang, Hua; Takahata, Naoto

    2017-01-01

    Geohistory of the Yunkai massif in South China Block is important in understanding the geodynamics for the build-up of this block during the Phanerozoic orogenies. To investigate this massif, we conduct EMP monazite and U-Pb zircon geochronological determinations on mineral inclusions and separate for seventeen samples in four groups, representing metamorphic rocks from core domain, the Gaozhou Complex (amphibolite facies, NE-striking) and the Yunkai Group (greenschist facies, NW-striking) of this massif and adjacent undeformed granites. Some EMP monazite ages are consistent with the NanoSIMS results. Monazite inclusions, mostly with long axis parallel to the cleavage of platy and elongated hosts, give distinguishable age results for NW- and NE-trending deformations at 244-236 Ma and 236-233 Ma, respectively. They also yield ages of 233-230 Ma for core domain gneissic granites and 232-229 Ma for undefomed granites. Combining U-Pb zircon ages of the same group, 245 Ma and 230 Ma are suggested to constrain the time of two phases of deformation. Aside from ubiquity of Triassic ages in studied rocks, ages of detrital monazite in the meta-sandstone match the major U-Pb zircon age clusters of the metamorphic rock that are largely concentrated at Neoproterozoic (1.0-0.9 Ga) and Early Paleozoic (444-431 Ma). Based on these geochronological data, Triassic is interpreted as representing the time for recrystallization of these host minerals on the Early Paleozoic protolith, and the also popular Neoproterozoic age is probably inherited. With this context, Yunkai massif is regarded as a strongly reactivated Triassic metamorphic terrain on an Early Paleozoic basement which had incorporated sediments with Neoproterozoic provenances. Triassic tectonic evolution of the Yunkai massif is suggested to have been controlled by converging geodynamics of the South China and Indochina Blocks as well as mafic magma emplacement related to the Emeishan large igneous province (E-LIP).

  7. Linking monazite geochronology with fluid infiltration and metamorphic histories: Nature and experiment

    NASA Astrophysics Data System (ADS)

    Shazia, J. R.; Harlov, D. E.; Suzuki, K.; Kim, S. W.; Girish-Kumar, M.; Hayasaka, Y.; Ishwar-Kumar, C.; Windley, B. F.; Sajeev, K.

    2015-11-01

    Migmatised metapelites from the Kodaikanal region, central Madurai Block, southern India have undergone ultrahigh-temperature metamorphism (950-1000 °C; 7-8 kbar). In-situ electron microprobe Th-U-Pb isochron (CHIME) dating of monazites in a leucosome and surrounding silica-saturated and silica-poor restites from the same outcrop indicates three principal ages that can be linked to the evolutionary history of these rocks. Monazite grains from the silica-saturated restite have well-defined, inherited cores with thick rims that yield an age of ca. 1684 Ma. This either dates the metamorphism of the original metapelite or is a detrital age of inherited monazite. Monazite grains from the silica-poor restite, thick rims from the silica-saturated restite, and monazite cores from the leucosome have ages ranging from 520 to 540 Ma suggesting a mean age of 530 Ma within the error bars. In the leucosome the altered rim of the monazite gives an age of ca. 502 Ma. Alteration takes the form of Th-depleted lobes of monazite with sharp curvilinear boundaries extending from the monazite grain rim into the core. We have replicated experimentally these altered rims in a monazite-leucosome experiment at 800 °C and 2 kbar. This experiment, coupled with earlier published monazite-fluid experiments involving high pH alkali-bearing fluids at high P-T, helps to confirm the idea that alkali-bearing fluids, in the melt and along grain boundaries during crystallization, were responsible for the formation of the altered monazite grain rims via the process of coupled dissolution-reprecipitation.

  8. Microstructure of 24-1928 Ma concordant monazites; implications for geochronology and nuclear waste deposits

    NASA Astrophysics Data System (ADS)

    Seydoux-Guillaume, Anne-Magali; Wirth, Richard; Deutsch, Alex; Schärer, Urs

    2004-06-01

    The microstructure of monazite was studied using scanning electron microscopy (SEM), electron microprobe analysis (EMP), X-ray diffraction patterns (XRD), and transmission electron microscopy (TEM). Four well-characterized monazites were investigated, having very different concordant U-Pb ages (24 to 1928 Ma), and up to ˜15 wt.% ThO 2, and ˜0.94 wt. % UO 2. The SEM and EMP analyses of polished single crystal fragments reveal the absence of significant chemical zoning. XRD and TEM investigations show that the monazites are not metamict, despite their old ages, very high abundances of radionuclides, and hence, high time-integrated radiation doses. Except for the youngest one, the monazite crystals are composed of a mosaic of crystalline but slightly distorted domains. This structure is responsible for the presence of (1) mottled diffraction contrasts on the TEM, and (2) a second structural phase (B), with very broad reflections in the XRD patterns. Older monazites receive higher self-irradiation doses, and hence, they contain higher amounts of this B-phase. For the 1928 Ma monazite, XRD reveals only the broad reflections of phase B, implying that the whole monazite was affected by radiation damage that resulted in total distortion of the lattice. It is concluded that radiation damage in the form of amorphous domains does not accumulate in monazite because self-annealing heals the defects as they are produced by α-decay damage. The only memory of irradiation-induced defects is the presence of distorted domains. As the diffusion rate of Pb in an undisturbed monazite lattice is extremely low, Pb loss due to volume diffusion out of the monazite lattice is virtually impossible. This is considered as one reason why almost all monazites have concordant U-Th-Pb ages. Moreover, as long-term self-irradiation effects are limited in monazite, we consider this phase as a good candidate for the storage of high-level nuclear waste under the aspect of its high resistance to

  9. Geology, geochemistry and geochronology of the Songwe Hill carbonatite, Malawi

    NASA Astrophysics Data System (ADS)

    Broom-Fendley, Sam; Brady, Aoife E.; Horstwood, Matthew S. A.; Woolley, Alan R.; Mtegha, James; Wall, Frances; Dawes, Will; Gunn, Gus

    2017-10-01

    Songwe Hill, Malawi, is one of the least studied carbonatites but has now become particularly important as it hosts a relatively large rare earth deposit. The results of new mapping, petrography, geochemistry and geochronology indicate that the 0.8 km diameter Songwe Hill is distinct from the other Chilwa Alkaline Province carbonatites in that it intruded the side of the much larger (4 × 6 km) and slightly older (134.6 ± 4.4 Ma) Mauze nepheline syenite and then evolved through three different carbonatite compositions (C1-C3). Early C1 carbonatite is scarce and is composed of medium-coarse-grained calcite carbonatite containing zircons with a U-Pb age of 132.9 ± 6.7 Ma. It is similar to magmatic carbonatite in other carbonatite complexes at Chilwa Island and Tundulu in the Chilwa Alkaline Province and others worldwide. The fine-grained calcite carbonatite (C2) is the most abundant stage at Songwe Hill, followed by a more REE- and Sr-rich ferroan calcite carbonatite (C3). Both stages C2 and C3 display evidence of extensive (carbo)-hydrothermal overprinting that has produced apatite enriched in HREE (<2000 ppm Y) and, in C3, synchysite-(Ce). The final stages comprise HREE-rich apatite fluorite veins and Mn-Fe-rich veins. Widespread brecciation and incorporation of fenite into carbonatite, brittle fracturing, rounded clasts and a fenite carapace at the top of the hill indicate a shallow level of emplacement into the crust. This shallow intrusion level acted as a reservoir for multiple stages of carbonatite-derived fluid and HREE-enriched apatite mineralisation as well as LREE-enriched synchysite-(Ce). The close proximity and similar age of the large Mauze nepheline syenite suggests it may have acted as a heat source driving a hydrothermal system that has differentiated Songwe Hill from other Chilwa carbonatites.

  10. Monazite Geochronology of Al-Fe Granulites Of Amesmessa Area from In-Ouzzal Terrane (Western Hoggar, Algeria)

    NASA Astrophysics Data System (ADS)

    Ahmed, Benbatta; Abderrahmane, Bendaoud; Bénédicte, Cenki-Tok; Zohir, Adjerid; Olivier, Bruguier; Jesus, Garrido Marin Carlos; Safouane, Djemai; Khadija, Ouzegane

    2017-04-01

    ABSTRACT: The In Ouzzal terrane in western Hoggar (South Algeria) preserves evidence of ultrahigh-temperature (UHT) crustal metamorphism. It consists in Archean crustal units, composed of orthogneissic domes and green stone belts, strongly remobilized during the Paleoproterozoic orogeny (2000 Ma, Peucat et al., 1996). Ouzegane et al. (2003) summarize this UHT metamorphic history as two granulitic stages of high temperature : a prograde evolution with peak conditions around 9-11 kbar and 950-1050°C, leading to the appearance of exceptional paragenèses with corundum-quartz, sapphirine-quartz and sapphirine-spinel-quartz in Al-Mg granulites, Al-Fe granulites and quartzites; followed by retrograde event characterized by a pressure drop to 5-7 kbar. This retrograde event is marked by intrusive carbonatite bodies and the occurrence of leptynites veins. The present study is interested in Al-Fe granulites which outcrop in a still little known region situated in southeastern part of In-Ouzzal terrane. These granulites are mainly composed by quartz, spinel, garnet, sillimanite, cordierite, biotite, perthitic feldspar, ilmenite, ± corundum. The study consist to dating these Al-Fe granulites by monazites (U-Pb - ICP-MS method) combined with their internal structures revealed by BSE imaging. The primary results suggest two major facts: 1- for the first time, the existence of at least one metamorphism older than 2.5 Ga; 2- a long live paleoproterozoic high temperature metamorphism. These geochronological results completed and combined with a detailed phases relationship study of these Al-Fe granulites will are of major importance as for future discussion on the geodynamic context responsible for this regional UHT metamorphism as well as indicating a record the time of the different stages of granulitic metamorphism. Keywords: UHT metamorphism, Granulites, Paleoproterozoïc, Archaean; Southeastern In Ouzzal terrane; Monazite geochronology; Hoggar

  11. Monazite trumps zircon: applying SHRIMP U-Pb geochronology to systematically evaluate emplacement ages of leucocratic, low-temperature granites in a complex Precambrian orogen

    NASA Astrophysics Data System (ADS)

    Piechocka, Agnieszka M.; Gregory, Courtney J.; Zi, Jian-Wei; Sheppard, Stephen; Wingate, Michael T. D.; Rasmussen, Birger

    2017-08-01

    Although zircon is the most widely used geochronometer to determine the crystallisation ages of granites, it can be unreliable for low-temperature melts because they may not crystallise new zircon. For leucocratic granites U-Pb zircon dates, therefore, may reflect the ages of the source rocks rather than the igneous crystallisation age. In the Proterozoic Capricorn Orogen of Western Australia, leucocratic granites are associated with several pulses of intracontinental magmatism spanning 800 million years. In several instances, SHRIMP U-Pb zircon dating of these leucocratic granites either yielded ages that were inconclusive (e.g., multiple concordant ages) or incompatible with other geochronological data. To overcome this we used SHRIMP U-Th-Pb monazite geochronology to obtain igneous crystallisation ages that are consistent with the geological and geochronological framework of the orogen. The U-Th-Pb monazite geochronology has resolved the time interval over which two granitic supersuites were emplaced; a Paleoproterozoic supersuite thought to span 80 million years was emplaced in less than half that time (1688-1659 Ma) and a small Meso- to Neoproterozoic supersuite considered to have been intruded over 70 million years was instead assembled over 130 million years and outlasted associated regional metamorphism by 100 million years. Both findings have consequences for the duration of associated orogenic events and any estimates for magma generation rates. The monazite geochronology has contributed to a more reliable tectonic history for a complex, long-lived orogen. Our results emphasise the benefit of monazite as a geochronometer for leucocratic granites derived by low-temperature crustal melting and are relevant to other orogens worldwide.

  12. Tectonic evolution of high-grade metamorphic terranes in central Vietnam: Constraints from large-scale monazite geochronology

    NASA Astrophysics Data System (ADS)

    Nakano, Nobuhiko; Osanai, Yasuhito; Owada, Masaaki; Nam, Tran Ngoc; Charusiri, Punya; Khamphavong, Keo

    2013-09-01

    Several metamorphic complexes in Southeast Asia have been interpreted as Precambrian basement, characterized by amphibolite to granulite facies metamorphism. In this paper, we re-evaluate the timing of this thermal event based on the large-scale geochronology and compositional variation of monazites from amphibolite to granulite facies metamorphic terranes in central Vietnam. Most of the samples in this study are from metamorphic rocks (n = 38) and granitoids (n = 11) in the Kontum Massif. Gneisses (n = 6) and granitoids (n = 5) from the Hai Van Migmatite Complex and the Truong Son Belt, located to the north of the massif, were also studied. Two distinct thermal episodes (245-230 Ma and 460-430 Ma) affected Kontum Massif gneisses, while a single dominant event at 240-220 Ma is recorded in the gneisses from the Hai Van Complex and the Truong Son Belt. Monazites from granitoids commonly yield an age of 240-220 Ma. Mesoproterozoic ages (1530-1340 Ma) were obtained only from monazite cores that are surrounded by c. 440 Ma overgrowths. Thermobarometric results, combined with concentrations of Y2O3, Ce2O3, and heavy rare earth elements in monazite, and recently reported pressure-temperature paths suggest that Triassic ages correspond to retrograde metamorphism following decompression from high- to medium-pressure/temperature conditions. Ordovician-Silurian ages reflect low-pressure/temperature metamorphism accompanied by isobaric heating during prograde metamorphism. Some samples were affected by both metamorphic events. We conclude that high-grade metamorphism observed in so-called Precambrian basement terranes in central Vietnam occurred during both the Permian-Triassic and the Ordovician-Silurian, while peraluminous granitoid magmatism is Triassic. Additionally, our preliminary analyses for U-Pb zircon age and whole-rock chemistry of granitic gneisses from the Truong Song Belt suggests the presence of the Ordovician-Silurian volcanic arc magmatism in the region. Based

  13. In detail monazite characterization in a carbonatite weathering profile - a new tool for landscape geochronology

    NASA Astrophysics Data System (ADS)

    Renno, A. D.; Le Bras, L.; Ziegenrücker, R.; Couffignal, F.; Wiedenbeck, M.; Haser, S.; Hlawacek, G.

    2016-12-01

    The Post-Gondwana geology of South Africa is marked by two prominent planation surfaces, the result of two distinct phases of uplift and erosion. The first of these took place during the mid- to late Cretaceous (the so-called "African planation"), whilst the second is tentatively placed into the Miocene or Oligocene (the "Post-African I planation"). Humid and warm climatic conditions are recorded by deep lateritic weathering columns of suitable lithologies. The present study tests the suitability of U-Th-Pb dating on supergene monazite as a geochronometer for landscape formation and the downward progression of the chemical weathering process. We investigated material from the Zandkopsdrift carbonatite, Namaqualand, South Africa, a pipe-shaped intrusion located in the Northern Cape Province of South Africa. The age of carbonatite intrusion has been determined to be Eocene (54-56 Ma). This carbonatite has a well-developed lateritic cap that is more than 80 m thick in places and that is highly enriched in REE's hosted mostly by very fine crystalline monazite of presumably supergene origin. Due to the fact that the age of intrusion postdates the African planation surface, the lateritic cap almost certainly marks the Post-African I erosion surface. Both the onset and duration of the Post-African I cycle of erosion remain uncertain. This study addresses the duration of the Post-African I event through the dating of supergene monazite from the Zandkopsdrift laterite cap. A detailed description of the petrographic and mineralogical properties has identified the most promising samples for dating using secondary ion mass spectrometry (SIMS). A detailed description of the internal structure, microporosity and inclusions as well as intergrowths and pseudomorphic mineral formations has helped greatly toward understand the origins of the Zandkopsdrift sequence and the genesis of the REE within this profile. These data establish important anchor points for the reconstruction of

  14. LASS U-Th-Pb monazite and rutile geochronology of felsic high-pressure granulites (Rhodope, N Greece): Effects of fluid, deformation and metamorphic reactions in local subsystems

    NASA Astrophysics Data System (ADS)

    Wawrzenitz, Nicole; Krohe, Alexander; Baziotis, Ioannis; Mposkos, Evripidis; Kylander-Clark, Andrew R. C.; Romer, Rolf L.

    2015-09-01

    The specific chemical composition of monazite in shear zones is controlled by the syndeformation dissolution-precipitation reactions of the rock-forming minerals. This relation can be used for dating deformation, even when microfabric characteristics like shape preferred orientation or intracrystalline deformation of monazite itself are missing. Monazite contemporaneously formed in and around the shear zones may have different compositions. These depend on the local chemical context rather than reflecting successive crystallization episodes of monazite. This is demonstrated in polymetamorphic, mylonitic high-pressure (HP) garnet-kyanite granulites of the Alpine Sidironero Complex (Rhodope UHP terrain, Northern Greece). The studied mylonitic rocks escaped from regional migmatization at 40-36 Ma and from subsequent shearing through cooling until 36 Ma. In-situ laser-ablation split-stream inductively-coupled plasma mass spectrometry (LASS) analyses have been carried out on monazite from micro-scale shear zones, from pre-mylonitic microlithons as well as of monazite inclusions in relictic minerals complimented by U-Pb data on rutile and Rb-Sr data of biotite. Two major metamorphic episodes, Mesozoic and Cenozoic, are constrained. Chemical compositions, isotopic characteristics and apparent ages systematically vary among monazite of four different microfabric domains (I-IV). Within three pre-mylonitic domains (inclusions in (I) pre-mylonitic kyanite and (II) garnet porphyroclasts, and (III) in pre-mylonitic microlithons) monazite yields ages of ca. 130-150 Ma for HP-granulite metamorphism, in line with previous geochronological results in the area. Patchy alteration of the pre-mylonitic monazite by intra-grain dissolution-precipitation processes variably increased negative Eu anomaly and reduced the HREE contents. The apparent age of this altered monazite is reduced. Monazite in the syn-mylonitic shear bands (IV) differs in chemical composition from unaltered and

  15. High-spatial-resolution isotope geochemistry of monazite (U-Pb & Sm-Nd) and zircon (U-Pb & Lu-Hf) in the Old Woman and North Piute Mountains, Mojave Desert, California

    NASA Astrophysics Data System (ADS)

    Phillips, Stacy E.; Hanchar, John M.; Miller, Calvin F.; Fisher, Christopher M.; Lancaster, Penny J.; Darling, James R.

    2014-05-01

    Recent improvements in analytical capabilities allow us to reveal details of magmatic processes at an increasingly finer spatial and temporal scale. In situ analyses of the isotopic and trace element composition of accessory minerals at the sub-grain scale have proven to be effective tools for solving a wide range of geological problems. This study presents new data on accessory minerals including monazite & zircon, examined by in situ LA-ICP-MS and Laser Ablation Split Stream (LASS) techniques, analyzing multiple isotopic systems (U-Pb + Sm-Nd, and U-Pb + Lu-Hf in monazite and zircon, respectively) in order to track geochemical changes over time through a magmatic system. The late Cretaceous granitoids of the Old Woman Mountains in the Mojave Desert, California, provide an excellent opportunity to apply these analytical techniques. The peraluminous granites of the Sweetwater Wash, Painted Rock, and North Piute plutons represent different depths of the magmatic system, and are well understood in terms of field relations and whole-rock geochemistry. A preliminary study on the Sweetwater Wash monazites (Fisher et al., in preparation) has revealed significant inter-grain isotopic heterogeneity in the ɛNd composition of the source region (~1700 Ma); however, the U-Pb ages show an isotopic resetting during emplacement at ~75 Ma. This decoupling of U-Pb and Sm-Nd isotopic systems is suggested by Fisher et al. to be due to recrystallisation and/or dissolution-reprecipitation of monazite. If grain boundary diffusion of Pb overrides the more kinetically limited volume diffusion, then the U-Pb systematics will be reset while Sm and Nd remain immobile in the monazite structure as essential structural components of the lattice. This new data will allow the further investigation of these preliminary results, providing new insights into the observed isotopic disequilibrium, with the LASS technique accurately linking the multiple isotopic systems. This will provide important

  16. Petrology, phase equilibria and monazite geochronology of granulite-facies metapelites from deep drill cores in the Ordos Block of the North China Craton

    NASA Astrophysics Data System (ADS)

    He, Xiao-Fang; Santosh, M.; Bockmann, Kiara; Kelsey, David E.; Hand, Martin; Hu, Jianmin; Wan, Yusheng

    2016-10-01

    Among the various Precambrian crustal blocks in the North China Craton (NCC), the geology and evolution of the Ordos Block remain largely enigmatic due to paucity of outcrop. Here we investigate granulite-facies metapelites obtained from deep-penetrating drill holes in the Ordos Block and report petrology, calculated phase equilibria and in-situ monazite LA-ICP-MS geochronology. The rocks we studied are two samples of cordierite-bearing garnet-sillimanite-biotite metapelitic gneisses and one graphite-bearing, two-mica granitic gneiss. The peak metamorphic age from LA-ICP-MS dating of monazite in all three samples is in the range of 1930-1940 Ma. The (U + Pb)-Th chemical ages through EPMA dating reveals that monazite occurring as inclusions in garnet are older than those in the matrix. Calculated metamorphic phase diagrams for the cordierite-bearing metapelite suggest peak P-T conditions ca. 7-9 kbar and 775-825 °C, followed by decompression and evolution along a clockwise P-T path. Our petrologic and age data are consistent with those reported from the Khondalite Belt in the Inner Mongolia Suture Zone in the northern part of the Ordos Block, suggesting that these granulite-facies metasediments represent the largest Paleoproterozoic accretionary belt in the NCC.

  17. Application of Geochronology and Geochemistry of Speleothems to Hydrologic Change

    NASA Astrophysics Data System (ADS)

    Banner, J. L.; Musgrove, M.; Mickler, P. J.; Mack, L. E.; James, E. W.

    2001-12-01

    in spite of the many complexities of regional and local variability both within and between aquifer systems, climate signals are discernable. Coupled studies of speleothems and the modern groundwater system help constrain mechanisms that link hydrologic and climatic processes over multiple timescales. The calibration of modern speleothem geochemistry and growth rates with aquifer and climatic measurements is a new research avenue toward this end.

  18. U-Pb geochronology of zircon and monazite from Mesoproterozoic granitic gneisses of the northern Blue Ridge, Virginia and Maryland, USA

    USGS Publications Warehouse

    Aleinikoff, J.N.; Burton, W.C.; Lyttle, P.T.; Nelson, A.E.; Southworth, C.S.

    2000-01-01

    Mesoproterozoic granitic gneisses comprise most of the basement of the northern Blue Ridge geologic province in Virginia and Maryland. Lithology, structure, and U-Pb geochronology have been used to subdivide the gneisses into three groups. The oldest rocks, Group 1, are layered granitic gneiss (1153 ?? 6 Ma), hornblende monzonite gneiss (1149 ?? 19 Ma), porphyroblastic granite gneiss (1144 ?? 2 Ma), coarse-grained metagranite (about 1140 Ma), and charnockite (>1145 Ma?). These gneisses contain three Proterozoic deformational fabrics. Because of complex U-Pb systematics due to extensive overgrowths on magmatic cores, zircons from hornblende monzonite gneiss were dated using the sensitive high-resolution ion microprobe (SHRIMP), whereas all other ages are based on conventional U-Pb geochronology. Group 2 rocks are leucocratic and biotic varieties of Marshall Metagranite, dated at 1112??3 Ma and 1111 ?? 2 Ma respectively. Group 3 rocks are subdivided into two age groups: (1) garnetiferous metagranite (1077 ?? 4 Ma) and quartz-plagioclase gneiss (1077 ?? 4 Ma); (2) white leucocratic metagranite (1060 ?? 2 Ma), pink leucocratic metagranite (1059 ?? 2), biotite granite gneiss (1055 ?? 4 Ma), and megacrystic metagranite (1055 ?? 2 Ma). Groups 2 and 3 gneisses contain only the two younger Proterozoic deformational fabrics. Ages of monazite, seprated from seven samples, indicate growth during both igneous and metamorphic (thermal) events. However, ages obtained from individual grains may be mixtures of different age components, as suggested by backscatter electron (BSE) imaging of complexly zoned grains. Analyses of unzoned monazite (imaged by BSE and thought to contain only one age component) from porphyroblastic granite gneiss yield ages of 1070, 1060, and 1050 Ma. The range of ages of monazite (not reset to a uniform date) indicates that the Grenville granulite event at about 1035 Ma did not exceed about 750??C. Lack of evidence for 1110 Ma growth of monazite in

  19. Zircon and monazite geochronology of the granulites and associated gneisses from the Rengali Province, India: Growth of the southern margin of the Singhbhum Craton

    NASA Astrophysics Data System (ADS)

    Bose, S.; Das, K.; Kimura, K.; Hayasaka, Y.; Hidaka, H.; Dasgupta, A.; Ghosh, G.; Mukhopadhyay, J.

    2013-12-01

    Geological evidences show that cratons grew in size by multiple orogenic cycles which can best be studied in their marginal orogenic belts. Rengali Province, occurring at the southern margin of the Singhbhum Craton, India is one such belt, characterized by low- to high-grade metamorphic signatures. This is sharply different from the virtually unmetamorphosed cratonic rocks in north and ultrahigh temperature metamorphosed rocks of the Eastern Ghats Province in south. High-grade gneisses and granitoids (including charnockite) constitute the central highland of this province. Several large-scale faults and shear zones juxtapose rocks of contrasting metamorphic grades. Our geochronological investigation from samples of high-grade orthogneiss and paragneiss along with the intrusive granitoids from central and eastern part of the Rengali Province using zircon (SHRIMP) and monazite chemical techniques reveal a complex evolutionary history. Zircon grains of the metapelitic granulites from the eastern segment yield detrital ages in the time span of ca. 3528-3087 Ma, without perceptible evidence of subsequent metamorphism. In contrast, monazite grains from the same samples record strong metamorphic signature at ca. 2.8-2.7 Ga along with inherited populations of ca. 3.0-2.9 Ga. Charnockite from the eastern segment has protolith age of 3058×15 Ma while that from the central segment records high-grade metamorphism at 2818×15 Ma. Mafic granulite from the central segment preserves the oldest core age of 2844×7 Ma. Synkinematic leucogranite in the central and undeformed granitoid in the eastern segment were emplaced at 2807×13 Ma and 2809×13 Ma respectively. Most of the samples show zircon overgrowth at ca. 2500 Ma, which possibly caused by a separate tectonothermal overprinting. From the available geochronological data, we postulate the existence of marine basin which opened at ca. 3050 Ma, received sediments from the adjacent cratonic hinterland, switched to an active

  20. Coupling thermodynamic modeling and high-resolution in situ LA-ICP-MS monazite geochronology: evidence for Barrovian metamorphism late in the Grenvillian history of southeastern Ontario

    NASA Astrophysics Data System (ADS)

    McCarron, Travis; Gaidies, Fred; McFarlane, Christopher R. M.; Easton, R. Michael; Jones, Peter

    2014-12-01

    The Flinton Group is a greenschist to upper amphibolite facies package of metasediments in southeastern Ontario that was metamorphosed during the Ottawan Orogeny. Thermodynamic modeling of metapelitic mineral assemblages suggests an increase in peak conditions of metamorphism across the 40 km wide study area from 3.5 to 7.9 kbar and 540 to 715 °C. Garnet isopleth thermobarometry applied to the cores of compositionally zoned porphyroblasts reveals remarkably similar P-T conditions of initial crystallization at approximately 3.7-4.0 kbar and 512-520 °C, corresponding to a relatively high geothermal gradient of ca. 34-45 °C km-1. It is inferred from modeling and reaction textures that metamorphism was along Barrovian P-T paths. Major and trace element zoning in garnet from one sample records a complex growth history as evidenced by major and trace element zoning and the distribution of xenotime, allanite and monazite inclusions. High-resolution (6 μm) LA-ICP-MS U-Pb geochronology performed on monazite in the rock matrix and included in the outer 150 μm of garnet rim-ward of a Y annulus revealed an age of 976 ± 4 Ma. The age is interpreted to reflect monazite growth at the expense of allanite and apatite late in garnet's growth history over the P-T interval 4.5-6.8 kbar and 540-640 °C. This new age estimate for near peak metamorphism fits well into the regional framework but is significantly younger than previously reported ages for Ottawan metamorphism. Based on microstructures this new age suggests that compressional tectonics were operating much later in the history of the Grenville of southeastern Ontario than previously thought.

  1. U-Pb geochronology and geochemistry of the Morro-Islay volcanic complex, southern California

    NASA Astrophysics Data System (ADS)

    Beck, M. D.; Johnston, S. M.

    2011-12-01

    The Morro-Islay volcanic complex is an important reference point in southern California used to reconstruct the tectonic setting of the North American continental margin during the early evolution of the San Andreas Fault. The age and petrologic formation of the Morro-Islay volcanic complex directly affects the accuracy of these reconstructions, and therefore its geologic properties should be reexamined as new techniques become available. Here, we present new U-Pb geochronology and geochemistry results to place constraints on the timing of the Morro-Islay volcanic complex and add to the existing geochemical database. Samples for U-Pb analysis were collected from felsic units exposed at Cerro Cabrillo to the west and Islay Hill to the east, and processed in the mineral separation laboratory at Cal Poly San Luis Obispo to extract zircons. U-Pb isotopic ratios for individual zircon grains were then determined using laser ablation ICP mass spectrometry in the dual-ICP laboratory at the University of California, Santa Barbara. The age of Cerro Cabrillo was determined to be 26.7 +0.2/-0.1 Ma and the age of Islay Hill was determined to be 26.7 +0.1/-0.1 Ma. Geochemical samples, preferentially selected for the most mafic compositions identified in thin section, were collected from Morro Rock and Cerro Cabrillo, both near the western end of the complex. Despite point counts that suggested relatively high mafic content in the two samples, whole rock geochemistry from these samples yielded high silica concentrations with Morro Rock classified as a dacite and Cerro Cabrillo Classified as a rhyolite. Both samples contain significant trace element depletions in Nb, Ta, Sr, and Ti, with subtle negative Eu anomalies and flat HREE signatures. This new data significantly tightens the age range for the formation of the Morro-Islay volcanic complex and supports previous tectonic reconstructions of Southern California in the Oligocene. In addition, the new geochemical and

  2. Geochemistry and 40Ar/39Ar geochronology of the ophiolite in Northern Xinjiang

    NASA Astrophysics Data System (ADS)

    Qinqin, Xu; Jianqing, Ji

    2010-05-01

    As the remnant of ancient oceanic crust, ophiolite is extremely important to reconstruct the framework of ancient ocean and continent. There are several ophiolite belts in Northern Xinjiang, assuming planar distribution, and they are generally related to different faults since Paleozoic in the outcrops. This paper presents a systematic study of geochemistry and geochronology of the gabbro, diabase and basalt of ophiolite collected from different regions in Northern Xinjiang. The intermediate and basic rocks in ophiolite show similar patterns in primitive mantle-normalized REE and trace elements diagrams with MORB and different from IAT, indicating that the ophiolite may be formed in mid-ocean ridge. Their Sr, Nd and Pb isotopic compositions also show that they have mid-ocean ridge environment affinity. Additionally, their Sr, Nd and Pb isotopic ratios are similar respectively, suggesting the same source area, and they also have positive epsilon Nd values(4.40 ~ 8.04), which indicates they likely originate from the depleted mantle. The previous and the author's researches show that the forming time of ophiolite in Northern Xinjiang is early Paleozoic, but 40Ar/39Ar ages of gabbro, diabase and basalt are in the range of 396 ~ 226Ma (mainly from 350 to 250Ma), and no ages of early Paleozoic are gained. Moreover, this time coincides with the timing of late Paleozoic post-collisional plutonism, indicating the ophiolite in Northern Xinjiang was reworked by the late thermal events. The ophiolite widely exposed in Northern Xinjiang have similar characteristics of occurrence, lithologic association and isotopes in spite of diverse special features, which indicates that a relatively uniform and integrated source region has existed in Northern Xinjiang since Paleozoic. It is likely to infer that this source region is related with the long lasting remnant oceanic basin and the related lithosphere since Paleozoic in North Xinjiang. Key Words: Ophiolite, 40Ar/39Ar age

  3. Timing of anatexis and melt crystallization in the Socorro-Guaxupé Nappe, SE Brazil: Insights from trace element composition of zircon, monazite and garnet coupled to Usbnd Pb geochronology

    NASA Astrophysics Data System (ADS)

    Rocha, B. C.; Moraes, R.; Möller, A.; Cioffi, C. R.; Jercinovic, M. J.

    2017-04-01

    The timing of partial melting and melt crystallization in granulite facies rocks of the Socorro-Guaxupé Nappe (SGN), Brazil is constrained using a combination of imaging techniques, LA-ICP-MS and EPMA dating, trace element geochemistry and thermobarometry. (Orthopyroxene)-garnet-bearing migmatite that records extensive biotite dehydration melting shows evidence for a clockwise P-T-t path. UHT peak conditions were attained at 1030 ± 110 °C, 11.7 ± 1.4 kbar, with post-peak cooling to 865 ± 38 °C, 8.9 ± 0.8 kbar. Cryogenian igneous inheritance of ca. 720-640 Ma is identified in oscillatory zoned zircon cores (n = 167) with steep HREE patterns. Resorbed, Y-rich monazite cores preserve a prograde growth stage at 631 ± 4 Ma prior to the partial melting event, providing an upper age limit for the granulite facies metamorphism in the SGN. REE-rich, Th-depleted monazite related to apatite records the initial stages of decompression at 628 ± 4 Ma. Multiple monazite growth episodes record melt crystallization events at 624 ± 3 Ma, 612 ± 5 Ma and 608 ± 6 Ma. Stubby, equant ;soccer ball; zircon provide evidence for melt crystallization at 613 ± 2 Ma and 607 ± 4 Ma. The excess scatter in zircon and monazite age populations between 629 ± 4 and 601 ± 3 Ma is interpreted as discontinuous and episodic growth within this age range, characterizing a prolonged metamorphic event in the SGN lasting ca. 30 m.y. The development of Y + HREE-rich monazite rims at ca. 600 Ma documents retrograde garnet breakdown, extensive biotite growth and the final stages of melt crystallization. Th-rich, Y + HREE-poor monazite rims at ca. 590 Ma record monazite recrystallization.

  4. Paragneiss zircon geochronology and trace element geochemistry, North Qaidam HP/UHP terrane, western China

    USGS Publications Warehouse

    Mattinson, C.G.; Wooden, J.L.; Zhang, J.X.; Bird, D.K.

    2009-01-01

    In the southeastern part of the North Qaidam terrane, near Dulan, paragneiss hosts minor peridotite and UHP eclogite. Zircon geochronology and trace element geochemistry of three paragneiss samples (located within a ???3 km transect) indicates that eclogite-facies metamorphism resulted in variable degrees of zircon growth and recrystallization in the three samples. Inherited zircon core age groups at 1.8 and 2.5 Ga suggest that the protoliths of these rocks may have received sediments from the Yangtze or North China cratons. Mineral inclusions, depletion in HREE, and absence of negative Eu anomalies indicate that zircon U-Pb ages of 431 ?? 5 Ma and 426 ?? 4 Ma reflect eclogite-facies zircon growth in two of the samples. Ti-in-zircon thermometry results are tightly grouped at ???660 and ???600 ??C, respectively. Inclusions of metamorphic minerals, scarcity of inherited cores, and lack of isotopic or trace element inheritance demonstrate that significant new metamorphic zircon growth must have occurred. In contrast, zircon in the third sample is dominated by inherited grains, and rims show isotopic and trace element inheritance, suggesting solid-state recrystallization of detrital zircon with only minor new growth. ?? 2009 Elsevier Ltd.

  5. Geochronology and geochemistry of volcanic glasses associated with early Homo sapiens in Ethiopia.

    NASA Astrophysics Data System (ADS)

    Morgan, L. E.; Renne, P. R.; Woldegabriel, G.; White, T. D.

    2005-12-01

    In past work at hominid sites in Ethiopia, 40Ar/39Ar dating was used to constrain obsidian from the base of the Upper Herto Member of the Bouri Formation to 160 ± 2 ka. An overlying vitric tuff was then geochemically correlated to one from the Konso region of Ethiopia, which is constrained to be older than 154 ± 7 ka, thus leaving only 6 ± 7 ky between eruption and deposition of the fossils and artifacts at Herto. To continue these studies, we have collected and are currently analyzing obsidian and associated volcanic ashes from Middle Stone Age (MSA) archaeological and paleontological sites in the Middle Awash, Ethiopia. Distinctive geochemical signatures among most obsidian fragments collected (n=20 per site) suggest that obsidian was being derived from a variety of sources. By comparing our geochemical data with that from known obsidian deposits in Ethiopia and elsewhere in East Africa, we hope to determine the source localities for the obsidian and thus gauge the extent of trade networks during the MSA. Thus, by characterizing obsidian using both 40Ar/39Ar geochronology and trace element geochemistry, will make it possible to temporally refine the stratigraphy and prehistory at hominid sites, which in turn improves understanding of hominid behavior and evolution.

  6. Prolonged episodic Paleoproterozoic metamorphism in the Thelon Tectonic Zone, Canada: an in-situ SHRIMP/EPMA monazite geochronology study

    NASA Astrophysics Data System (ADS)

    Mitchell, Rhea; William, Davis; Robert, Berman; Sharon, Carr; Michael, Jercinovic

    2017-04-01

    The Thelon Tectonic zone (TTZ), Nunavut, Canada, is a >500km long geophysically, lithologically and structurally distinct N-NNE striking Paleoproterozoic boundary zone between the Slave and Rae Archean provinces. The TTZ has been interpreted as a ca. 2.0 Ga continental arc on the western edge of the Rae craton, that was deformed during collision with the Slave craton ca. 1.97 Ga. Alternatively, the Slave-Rae collision is interpreted as occurring during the 2.35 Ga Arrowsmith orogeny while the 1.9-2.0 Ga TTZ represents an intra-continental orogenic belt formed in previously thinned continental crust, postdating the Slave-Rae collision. The central part of the TTZ comprises three >100 km long, 10-20 km wide belts of ca. 2.0 Ga, mainly charnockitic plutonic rocks, and a ca. 1910 Ma garnet-leucogranite belt. Metamorphism throughout these domains is upper-amphibolite to granulite-facies, with metasedimentary rocks occurring as volumetrically minor enclaves and strands of migmatites. The Ellice River domain occurs between the western and central plutonic belts. It contains ca. 1950 Ma ultramafic to dacitic volcanic rocks and foliated Paleoproterozoic psammitic metasedimentary rocks at relatively lower grade with lower to middle amphibolite-facies metamorphic assemblages. In-situ U-Pb analyses of monazite using a combination of Sensitive High-Resolution Ion Microprobe (SHRIMP) and Electron Probe Microanalyzer (EPMA) were carried out on high-grade metasedimentary rocks from seventeen samples representing the eastern margin of the Slave Province and all major lithological domains of the TTZ. 207Pb/206Pb monazite ages from SHRIMP analysis form the foundation of this dataset, while EPMA ages are supplementary. The smaller <6µm spot size of EPMA allowed for further constraint on ages of micro-scale intra-crystalline domains in some samples. Monazite ages define four distinct Paleoproterozoic metamorphic events and one Archean metamorphic event at ca. 2580 Ma. The latter is

  7. High spatial resolution U-Pb geochronology and Pb isotope geochemistry of magnetite-apatite ore from the Pea Ridge iron oxide-apatite deposit, St. Francois Mountains, southeast Missouri, USA

    USGS Publications Warehouse

    Neymark, Leonid; Holm-Denoma, Christopher S.; Pietruszka, Aaron; Aleinikoff, John N.; Fanning, C. Mark; Pillers, Renee M.; Moscati, Richard J.

    2016-01-01

    The Pea Ridge iron oxide-apatite (IOA) deposit is one of the major rhyolite-hosted magnetite deposits of the St. Francois Mountains terrane, which is located within the Mesoproterozoic (1.5–1.3 Ga) Granite-Rhyolite province in the U.S. Midcontinent. Precise and accurate determination of the timing and duration of oreforming processes in this deposit is crucial for understanding its origin and placing it within a deposit-scale and regional geologic context. Apatite and monazite, well-established U-Pb mineral geochronometers, are abundant in the Pea Ridge orebody. However, the potential presence of multiple generations of dateable minerals, processes of dissolution-reprecipitation, and occurrence of micrometer-sized intergrowths and inclusions complicate measurements and interpretations of the geochronological results. Here, we employ a combination of several techniques, including ID-TIMS and high spatial resolution geochronology of apatite and monazite using LA-SC-ICPMS and SHRIMP, and Pb isotope geochemistry of pyrite and magnetite to obtain the first direct age constraints on the formation and alteration history of the Pea Ridge IOA deposit. The oldest apatite TIMS 207Pb*/206Pb* dates are 1471 ± 1 and 1468 ± 1 Ma, slightly younger than (but within error of) the ~1474 to ~1473 Ma U-Pb zircon ages of the host rhyolites. Dating of apatite and monazite inclusions within apatite provides evidence for at least one younger metasomatic event at ~1.44 Ga, and possibly multiple superimposed metasomatic events between 1.47 and 1.44 Ga. Lead isotop analyses of pyrite show extremely radiogenic 206Pb/204Pb ratios up to ~80 unsupported by in situ U decay. This excess radiogenic Pb in pyrite may have been derived from the spatially associated apatite as apatite recrystallized several tens of million years after its formation. The low initial 206Pb/204Pb ratio of ~16.5 and 207Pb/204Pb ratio of ~15.4 for individual magnetite grains indicate closed U-Pb system behavior in

  8. Early Acadian exhumation history of garnet-kyanite schists from western Massachusetts determined by LASS analysis of metamorphic monazite (Invited)

    NASA Astrophysics Data System (ADS)

    Peterman, E. M.; Snoeyenbos, D. R.; Kylander-Clark, A. R.

    2013-12-01

    Assessing the mechanics of exhumation (e.g. steady vs. episodic processes) requires constraints on the timing and rates of metamorphism and deformation, which can be accomplished by directly dating minerals that formed along the exhumation path. This research focuses on metamorphic monazites contained in restitic high-pressure garnet-kyanite schists from the Goshen Dome in western Massachusetts that record exhumation during the early Acadian. We employ the laser ablation split stream (LASS) technique to simultaneously collect geochronological and geochemical information from the same volume of material. By measuring in situ, LASS analysis allows coordination of petrology, geochemistry and geochronology to reconstruct the timing of metamorphic mineral growth concomitant with exhumation. The gar + ky × crd schists analyzed in this study contain monazite in a variety of petrographic contexts, some of which are interpreted to represent prograde metamorphism. Because we are concerned with exhumation, this contribution focuses on matrix monazite. Matrix monazites are generally aligned with their long axes parallel to foliation. All grains have at least one metamorphic overgrowth, and many grains have multiple generations of overgrowths, thus presenting a detailed record of events. The majority of the matrix monazite cores are 378 to 374 Ma with variable Y concentrations and REE trends. From 375 to 371 Ma, monazite depleted in Y with steep HREE profiles and higher LREE concentrations overgrew pre-existing cores or formed as neoblasts. Dates from most of these monazite domains cluster around 374 to 373 Ma. Neoblasts are typically elongated parallel to the foliation. From 370 to 369 Ma, overgrowths have intermediate Y concentrations with shallower HREE trends and intermediate LREE concentrations, indicating growth during garnet breakdown; these domains are commonly overgrowths with a consistent thickness (ca. 10-15 um), but some domains are more rounded. A pulse of

  9. Cold seep carbonates along the Norwegian margin, insights into U-Th geochronology and S geochemistry

    NASA Astrophysics Data System (ADS)

    Cremiere, A.; Lepland, A.; Wing, B. A.; Sahy, D.; Condon, D. J.; Chand, S.; Noble, S. R.; Bui, T. H.; Thorsnes, T.; Brunstad, H.

    2015-12-01

    Cold seep carbonates along the Norwegian margin, insights into U-Th geochronology and S geochemistryAuthigenic carbonate crusts form in shallow subsurface of marine sediments due to the microbial anaerobic oxidation of methane (AOM). As a result they are unique archives of the locus and intensity of past methane seepage that can be dated by using U-daughter decay affording the unique opportunity to constrain the absolute timing of methane release events. Because AOM is mainly driven by the microbial reduction of seawater sulfate, multiple sulfur isotope compositions of paired carbonate-associated sulfate (CAS) and pyrite in seep carbonates taken as proxies for porewater sulfate and sulfide, respectively, have the potential to reconstruct the biogeochemical conditions under which seep carbonates precipitate. Methane-derived carbonate crusts were collected from several seepage sites on the Norwegian continental shelf, including sites in the North Sea, the Norwegian Sea and the Barents Sea. The U-Th dating results constrain the main episode of carbonate crust formation in the Barents and Norwegian seas during the time interval between 14 and 7 ka. Such ages suggest that the methane seepage along the northern Norwegian margin was most active after the collapse of the Scandinavian ice sheet and deglaciation of the area that took place at about 15 ka. The methane flux for the carbonate crust formation was likely provided by the dissociation of methane hydrates that extensively formed in underlying sediments during the last glacial period, but became unstable due to depressuring effects of retreating ice sheet. The precipitation of studied North Sea carbonate crusts occurred more recently, from 6 to 1 ka, suggesting that their formation is unrelated to the glacial history of the area. The paired sulfur stable isotope compositions of pyrite-CAS record a large range of fractionation factors (from 30 to 70 ‰) reflecting change of sulfate-reduction rates possibly controlled

  10. U Pb zircon and monazite geochronology of Variscan magmatism related to syn-convergence extension in Central Northern Portugal

    NASA Astrophysics Data System (ADS)

    Valle Aguado, B.; Azevedo, M. R.; Schaltegger, U.; Martínez Catalán, J. R.; Nolan, J.

    2005-05-01

    The Viseu area is located in the Central Iberian Zone of the Iberian Variscan Belt and hosts numerous post-thickening, collision-related granitoids intruded into upper and middle crustal levels. The present paper reports high precision U-Pb zircon and monazite ages for four plutons of the Viseu area: the syn-kinematic granitoids of Maceira (314±5 Ma), Casal Vasco (311±1 Ma) and Junqueira (307.8±0.7 Ma) and the late-kinematic biotite monzogranites of Cota (306±9 Ma). This points to a synchronous emplacement of the different syn-kinematic plutons shortly followed by the intrusion of the late-kinematic granites and shows that the Upper Carboniferous plutonism occurred within a short time span of ca. 10 million years. The ascent of granite magmas took place after an extensional tectonic event (D 2) and is coeval with dextral and sinistral crustal-scale transcurrent shearing (D 3). Field and petrographical evidence suggest a narrow time-span between peak T metamorphic conditions and the intrusion of granitic melts which implies very fast uplift rates accommodated through active tectonic exhumation. Magma compositions evolve through time, reflecting an increasing involvement of mid-crustal sources and the underplating effect of an upwelling asthenospheric mantle at the base of a thinning and stretching continental crust.

  11. Stratigraphy, geochronology, geochemistry and tectonic setting of the Mesozoic Nazas Formation, north-central Mexico

    NASA Astrophysics Data System (ADS)

    Bartolini, Claudio

    Late Triassic to Middle Jurassic volcanic-sedimentary sequences that were part of the Mesozoic continental-margin of western North America are exposed in northern and central Mexico. These sequences have been grouped into the Nazas Formation and crop out in the states of Durango, Coahuila, Zacatecas, and San Luis Potosi. The Nazas Formation consists of 2,500 m or more of volcanic and pyroclastic rocks and interbedded clastic sedimentary rocks that were deposited in alluvial fan and fluvial depositional systems that developed in intra-arc basins, mainly fault-bound grabens and topographic depressions within an extending Mesozoic volcanic arc. Major and trace element geochemistry of volcanic rocks suggests that the volcanic suite is calc-alkaline and includes rhyolite, dacite, rhyodacite, andesite, trachyandesite and rare basalt. Pyroclastic rocks are basically air-fall tuffs and volcanic breccias. The sedimentary strata include conglomerate, sandstone, shale, and siltstone, locally red in color. Geochronology (Ar-Ar, K-Ar and Rb-Sr) and field evidence indicate that the age of the Nazas Formation ranges from Late Triassic to Middle Jurassic, but the peak of arc volcanism appears to be Early and Middle Jurassic. The Mesozoic magmatic arc in Mexico has a northwest trend and extends from Sonora to Chiapas. The arc structure is more than 2,000 km long, and possibly up to 150 km wide. The width of the arc is uncertain due to the limited number of surface outcrops, however, it did not extend east into the Gulf of Mexico. Arc-related magmatism began in latest Triassic time, but the peak of arc evolution occurred during the Early and Middle Jurassic. By Oxfordian time, the arc was deeply dissected and eroded, and magmatic activity had ceased. A marine transgression from the Gulf of Mexico covered most of the Nazas arc, depositing the initial sediments of the Oxfordian Zuloaga Limestone in the Mexican Geosyncline. Jurassic crustal extension in the Gulf of Mexico was

  12. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite

    USGS Publications Warehouse

    Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H.

    2006-01-01

    High-grade rocks of the Wilmington Complex, northern Delaware and adjacent Maryland and Pennsylvania, contain morphologically complex zircons that formed through both igneous and metamorphic processes during the development of an island-arc complex and suturing of the arc to Laurentia. The arc complex has been divided into several members, the protoliths of which include both intrusive and extrusive rocks. Metasedimentary rocks are interlayered with the complex and are believed to be the infrastructure upon which the arc was built. In the Wilmingto n Complex rocks, both igneous and metamorphic zircons occur as elongate and equant forms. Chemical zoning, shown by cathodoluminescence (CL), includes both concentric, oscillatory patterns, indicative of igneous origin, and patchwork and sector patterns, suggestive of metamorphic growth. Metamorphic monazites are chemically homogeneous, or show oscillatory or spotted chemical zoning in backscattered electron images. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date complexly zoned zircon and monazite. All but one member of the Wilmington Complex crystallized in the Ordovician between ca. 475 and 485 Ma; these rocks were intruded by a suite of gabbro-to-granite plutonic rocks at 434 ?? Ma. Detrital zircons in metavolcanic and metasedimentary units were derived predominantly from 0.9 to 1.4 Ga (Grenvillian) basement, presumably of Laurentian origin. Amphibolite to granulite facies metamorphism of the Wilmington Complex, recorded by ages of metamorphic zircon (428 ?? 4 and 432 ?? 6 Ma) and monazite (429 ?? 2 and 426 ?? 3 Ma), occurred contemporaneously with emplacement of the younger plutonic rocks. On the basis of varying CL zoning patterns and external morphologies, metamorphic zircons formed by different processes (presumably controlled by rock chemistry) at slightly different times and temperatures during prograde metamorphism. In addition, at least three other thermal episodes are

  13. Geochronology of granulite, charnockite and gneiss in the poly-metamorphosed Gaozhou Complex (Yunkai massif), South China: Emphasis on the in-situ EMP monazite dating

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Liu, Yung-Hsin; Lee, Chi-Yu; Xiang, Hua; Zhou, Han-Wen

    2012-07-01

    The in-situ EMP (electron microprobe) monazite age dating performed directly in the polished sections, in addition to the conventional U-Pb zircon and EMP monazite age dating on grains from heavy mineral concentrates, has been applied to the granulite, charnockite and gneiss in the Gaozhou Complex of the Yunkai massif in South China. While the conventional dating systems all give Caledonian ages, the in-situ EMP monazite ages provide more information to reveal not only detailed age groups pertaining to the Caledonian orogeny but also traces of later thermal events overprinting these rocks. For granulites, although some monazites present zoning (concentric, patchy and complex) in the BSE images, no discernable age differences are observed. Resetting of the Th-U-Pb monazite dating system under the high temperature condition could be the reason. Ages of homogeneous monazite in garnet porphyroblast (ca. 440 Ma) of the garnet-cordierite granulite that match nicely with the U-Pb zircon ages are systematically older than those in the matrix (ca. 430 Ma). The same case of two age groups is also present in the orthopyroxene-biotite granulite as revealed by monazite inclusions in plagioclase and orthopyroxene and those in quartz, respectively. For charnockites, despite similar ages of ca. 430 Ma are given by monazite in biotite and zircon in the rock, significant younger ages are obtained from monazites with particular features. Relict monazites with a breakdown texture to form successive layers of apatite and allanite in the rim as well as those which are close to the biotite-chlorite microvein always show a similar age of ca. 230 Ma. Moreover, tiny monazites in close association with the garnetiferous corona mainly surrounding orthopyroxene give rise to another age group around 370 Ma. For gneissic rocks, monazites enclosed by quartz give 434 Ma and those setting in the chlorite-epidote microvein of a paragneiss yield 237 Ma, consistent with the U-Pb zircon core-rim age

  14. Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Chenery, Simon; Bland, David J.

    1996-12-01

    In spite of the major importance of monazite as a repository for the rare earths and Th in the continental crust, for U-Th-Pb geochronology, and as a possible form for high-level nuclear waste, very little work has been carried out so far on the behaviour of this mineral during fluid-rock events. This contribution describes two contrasting examples of the hydrothermal alteration of monazite. The first case comes from a sample of the Carnmenellis granite (Cornwall, Southwest England), chloritized at 284 ± 16°C, whereas the other occurs in the Skiddaw granite (Lake District, Northwest England), which underwent greisenization at 200 ± 30°C. An integrated study involving backscattered scanning electron microscopy, electron microprobe analyses, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) reveals that the chloritization event was characterized by the coupled substitution 2REE 3+ ⇌ Th 4+ + Ca 2+ in the altered parts of the monazite, thus leaving the P-O framework of the crystal untouched. In contrast, greisenization led to the coupled substitution REE 3+ + P 5+ ⇌ Th 4+ + Si 4+, and therefore involved a partial destruction of the phosphate framework. The resulting rare earth element patterns are quite different for these two examples, with a maximum depletion for Dy and Er in the altered parts of the Carnmenellis monazite, whereas the Skiddaw monazite shows a light rare earth depletion but an Yb and Er enrichment during alteration. This latter enrichment, accompanied by an increase in U but roughly unchanged Pb concentrations, probably resulted from a decrease in the size of the 9-coordinated site in monazite, thereby favouring the smaller rare earths. These contrasted styles of monazite alteration show that the conditions of fluid-rock interaction will not only affect the aqueous geochemistry of the lanthanides, actinides and lead, and the relative stability of the different minerals holding these elements. Variations in these

  15. Monazite stability, composition and geochronology as tracers of Paleoproterozoic events at the eastern margin of the East European Craton (Taratash complex, Middle Urals)

    NASA Astrophysics Data System (ADS)

    Sindern, Sven; Gerdes, Axel; Ronkin, Yuri L.; Dziggel, Annika; Hetzel, Ralf; Schulte, Bernd Aloys

    2012-02-01

    The Precambrian Taratash complex (Middle Urals) is one of the rare windows into the Palaeoproterozoic and earlier history of the eastern margin of the East European Craton. Monazite from intensively deformed rocks within a major amphibolite-facies shear zone in the Taratash complex has been investigated by means of electron-probe microanalysis and laser-ablation SF-ICP-MS. Metamorphic and magmatic cores of monazite from metasedimentary and metagranitoid rocks yield U-Pb ages of 2244 ± 19 and 2230 ± 22 Ma (± 2 σ) and record a previously unknown pre-deformational HT-metamorphic event in the Taratash complex. Subsequent dissolution-reprecipitation of monazite, during shear zone formation under amphibolite-facies conditions, caused patchy zonation and chemical alteration of the recrystallised monazite domains, leading to higher cheralite and huttonite components. This process, which was mediated by a probable (alkali + OH)-bearing metamorphic fluid also caused a total resetting of the U-Pb-system. The patchy domains yield concordant U-Pb-ages between 2052 ± 16 and 2066 ± 22 Ma, interpreted as the age of the shear zone. In line with previously published ages of high grade metamorphism and migmatisation, the data may point to a Palaeoproterozoic orogenic event at the eastern margin of the East European Craton. Post-deformational fluid-induced greenschist-facies retrogression caused partial to complete breakdown of monazite to fluorapatite, REE + Y-rich epidote, allanite and Th-orthosilicate.The retrograde assemblages either form coronas around monazite, or occur as dispersed reaction zones, indicating that the REE, Y, and Th were mobile at least on the thin section scale. The greenschist-facies metamorphic fluid was aqueous and rich in Ca. Monazite affected by advanced breakdown responded to the retrogression by incorporating the cheralite or huttonite components during a fluid-induced dissolution-reprecipitation process. This event did not reset the U

  16. The Anari and Tapirapua Jurassic formations, western Brazil: Paleomagnetism, geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Montes-Lauar, C. R.; Pacca, I. G.; Melfi, A. J.; Piccirillo, E. M.; Bellieni, G.; Petrini, R.; Rizzieri, R.

    1994-12-01

    The Anari and Tapirapua formations are very similar from the point of view of paleomagnetic, geochronological and geochemical results. They date from around 197 Ma and the flows are mainly tholeiitic basalts with a low TiO2 and incompatible element content. The magnetic carriers in rocks from these two formations were highly oxidized titanomagnetites, maghemites and, probably, titanomaghemites. Paleomagnetic analysis has shown that the magnetizations are all normal in polarity and virtual geomagnetic poles obtained for both formations are indistinguishable at the 95% confidence level. The calculated mean for these poles is 250.3 deg E, 65.5 deg S (N = 15; A95 = 3.6 deg; KSC = 1578). This pole is compatible with Jurassic poles which have been determined for South America or transposed from Africa.

  17. Along-Strike Variations in the Timing of Melt Crystallization and Metamorphism Across Central and Eastern Bhutan: New Insights from LASS Monazite Geochronology and Trace-Element Abundances

    NASA Astrophysics Data System (ADS)

    Gordon, S. M.; Kauffman, R.; Gonzales-Clayton, B.; Kylander-Clark, A. R.; Agustsson, K. S.; Long, S. P.

    2014-12-01

    Continent-continent collisional systems represent the largest orogens on Earth and provide locations to study processes that drive the transition from contraction and crustal thickening to extension and collapse. The Greater Himalayan Zone (GHZ) exposed along strike of the Himalayan orogen contains exhumed mid-crustal metasedimentary rocks. To better understand the history of burial, crustal flow, and partial melting during the early stages of Himalayan tectonics in the Eocene to ~40 Myr into its orogenic evolution, monazite was analyzed from five migmatitic gneisses and five host gneisses exposed across two transects within central and eastern Bhutan. Monazite was analyzed in situ by the split-stream laser-ablation (LASS) ICPMS technique, which allows simultaneous collection of U-Th-Pb isotopes and trace-element abundances. The migmatites from the eastern Bhutan transect yield monazite dates that record melt crystallization as young as ca. 15-13 Ma. The host gneisses yield similar to younger (down to ca. 11 Ma) dates, documenting coeval to continued metamorphism of the GHZ. In comparison, melt crystallization in the central Bhutan rocks ended by ca. 18 Ma, and metamorphic monazite from a metapelite record metamorphism until ca. 14 Ma. In the migmatite and host-rock samples from both transects, the trace-element data show an inverse correlation between date and the HREE concentration. This trend likely documents the breakdown of garnet, which probably coincides with the first stages of GHZ exhumation. Thus, the LASS data showed that garnet breakdown and GHZ exhumation occurred from ca. 18 to 14 Ma in eastern Bhutan and ca. 20 to 17 Ma in central Bhutan. The new monazite data suggest different histories for the melt crystallization, metamorphism, and exhumation of the GHZ rocks between central and eastern Bhutan, even though the present day rocks from the two transects are only exposed ~60 km apart. Moreover, in comparison to other parts of the eastern Himalaya, the

  18. Geochemistry and Geochronology of Middle Tertiary Volcanic Rocks of the Central Chiricahua Mountains, Southeast Arizona

    USGS Publications Warehouse

    du Bray, Edward A.; Pallister, John S.; Snee, Lawrence W.

    2004-01-01

    Middle Tertiary volcanic rocks of the central Chiricahua Mountains in southeast Arizona are the westernmost constituents of the Eocene-Oligocene Boot Heel volcanic field of southwestern New Mexico and southeastern Arizona. About two dozen volumetric ally and stratigraphically significant volcanic units are present in this area. These include large-volume, regionally distributed ash-flow tuffs and smaller volume, locally distributed lava flows. The most voluminous of these units is the Rhyolite Canyon Tuff, which erupted 26.9 million years ago from the Turkey Creek caldera in the central Chiricahua Mountains. The Rhyolite Canyon Tuff consists of 500-1,000 cubic kilometers of rhyolite that was erupted from a normally zoned reservoir. The tuff represents sequential eruptions, which became systematically less geochemically evolved with time, from progressively deeper levels of the source reservoir. Like the Rhyolite Canyon Tuff, other ashflow tuffs preserved in the central Chiricahua Mountains have equivalents in nearby, though isolated mountain ranges. However, correlation of these other tuffs, from range to range, has been hindered by stratigraphic discontinuity, structural complexity, and various lithologic similarities and ambiguities. New geochemical and geochronologic data presented here enable correlation of these units between their occurrences in the central Chiricahua Mountains and the remainder of the Boot Heel volcanic field. Volcanic rocks in the central Chiricahua Mountains are composed dominantly of weakly peraluminous, high-silica rhyolite welded tuff and rhyolite lavas of the high-potassium and shoshonitic series. Trace-element, and to a lesser extent, major-oxide abundances are distinct for most of the units studied. Geochemical and geochronologic data depict a time and spatial transgression from subduction to within-plate and extensional tectonic settings. Compositions of the lavas tend to be relatively homogeneous within particular units. In

  19. Geochemistry and geochronology of HP mélanges from Tinos and Andros, cycladic blueschist belt, Greece

    NASA Astrophysics Data System (ADS)

    Bulle, Florian; Bröcker, Michael; Gärtner, Claudia; Keasling, Alan

    2010-06-01

    U-Pb zircon geochronology, Sr-Nd isotope and bulk-rock geochemistry have been applied to meta-igneous and meta-sedimentary rocks from high-pressure metamorphic mélanges exposed on the Cycladic islands of Tinos, Syros and Andros. Ion microprobe (SHRIMP) U-Pb zircon dating of 7 samples representing meta-igneous blocks (Tinos), a blackwall zone (Tinos) and chlorite-talc schists from block-matrix contacts (Syros and Tinos) yielded Cretaceous ages of c. 80 Ma. Many of the criteria commonly used to distinguish between magmatic or metamorphic zircon genesis (internal structure, Th/U ratio, REE characteristics, Ti-in zircon thermometry, enclosed mineral phases) do not provide unambiguous constraints for the mode of formation. However, a magmatic origin for Cretaceous zircon of meta-gabbros and eclogites is considered likely. Supporting evidence for a previously suggested metamorphic origin for c. 80 Ma zircon in eclogite has not been found. Zircon of the same age occurring in chlorite-talc schists is presumably related to non-magmatic processes. Well-defined Cretaceous age groups clustering at c. 79 Ma also occur in the detrital zircon populations of 2 quartz mica schists representing the mélange matrix on Tinos, and suggest a much later time for sediment accumulation than previously assumed. The importance of c. 57 Ma zircon ages remains unclear, but may record either HP metamorphic processes or a post-57 Ma depositional age. The youngest age group in a third quartz mica schist from Tinos, collected outside the main mélange occurrences, clusters at c. 226-238 Ma. In all clastic metasediments from Tinos, most data points plot along the concordia between c. 300 and 900 Ma; single data points indicate concordant ages of c. 2.5 Ga, 2.3 Ga and 1 Ga, respectively. The youngest 206Pb/ 238U age group that has been recognized in a felsic paragneiss from Andros indicates an age of 163.1 ± 3.9 Ma, and mostly represents overgrowths around zircon with ages in the range from ˜ 272

  20. Petrography, geochemistry and geochronology of granite hosted rhyodacites associated with a disseminated pyrite mineralization (Arnolz, Southern Bohemian Massif, Austria)

    NASA Astrophysics Data System (ADS)

    Göd, Richard; Kurzweil, Johannes; Klötzli, Urs

    2017-04-01

    The study focuses on a subvolcanic rhyodacite dyke intruding a fine grained biotite granite and paragneisses of the South Bohemian Massif, part of the Variscan Orogenic Belt in Central Europe. The subvertical dyke strikes NNE, displays a thickness of about 30 m and has been traced by boulder mapping for approximately 7 km. The rhyodacites have been affected by two hydrothermal fluids. An older one of oxidizing condition giving rise to a reddish to brownish type of rock (Type I) and a younger fluid of reducing condition causing a greenish variety (Type II). The hydrothermal alteration is associated with the formation of the clay minerals chlorite, sericite, kaolinite and smectite and a disseminated pyrite mineralization. Bulk chemistries of the rhyodacites emphasize the hydrothermal alterations to be isochemical with the exception of sulphur enriched up to a maximum of 0.6 wt%. Trace element composition of the rhyodacites points to a barren geochemical environment in terms of base and precious elements. Sulphur isotope investigations of pyrites from the rhyodacites and the hosting granites respectively yield d34S data ranging from +0.07 to -2.22 ‰, emphasizing a magmatic origin of the sulphur. Geochronological investigations yield in situ U/Pb zircon ages of 312 ± 4 Ma for the biotite granite and of 292 ± 4 Ma for the rhyodacitic dykes indicating a time gap of ≈ 20 Ma between these two intrusive events. A contemporaneous but geochemically specialized granitic intrusion associated with NW striking "felsitic" dykes occurs about 10 to 20 km to the NW of Arnolz. However, the rhyodacites around Arnolz differ significantly from these felsitic dykes in their geochemistry and alteration phenomena which points to a different magmatic source. This coincides with a change in the orientation of the dykes from a NW direction controlling the geochemically specialized intrusions in the NW to a dominating NNE direction mirrored by the studied rhyodacites at Arnolz.

  1. Petrography, geochemistry and geochronology of granite hosted rhyodacites associated with a disseminated pyrite mineralization (Arnolz, Southern Bohemian Massif, Austria)

    NASA Astrophysics Data System (ADS)

    Göd, Richard; Kurzweil, Johannes; Klötzli, Urs

    2016-09-01

    The study focuses on a subvolcanic rhyodacite dyke intruding a fine grained biotite granite and paragneisses of the South Bohemian Massif, part of the Variscan Orogenic Belt in Central Europe. The subvertical dyke strikes NNE, displays a thickness of about 30 m and has been traced by boulder mapping for approximately 7 km. The rhyodacites have been affected by two hydrothermal fluids. An older one of oxidizing condition giving rise to a reddish to brownish type of rock (Type I) and a younger fluid of reducing condition causing a greenish variety (Type II). The hydrothermal alteration is associated with the formation of the clay minerals chlorite, sericite, kaolinite and smectite and a disseminated pyrite mineralization. Bulk chemistries of the rhyodacites emphasize the hydrothermal alterations to be isochemical with the exception of sulphur enriched up to a maximum of 0.6 wt%. Trace element composition of the rhyodacites points to a barren geochemical environment in terms of base and precious elements. Sulphur isotope investigations of pyrites from the rhyodacites and the hosting granites respectively yield d34S data ranging from +0.07 to -2.22 ‰, emphasizing a magmatic origin of the sulphur. Geochronological investigations yield in situ U/Pb zircon ages of 312 ± 4 Ma for the biotite granite and of 292 ± 4 Ma for the rhyodacitic dykes indicating a time gap of ≈ 20 Ma between these two intrusive events. A contemporaneous but geochemically specialized granitic intrusion associated with NW striking "felsitic" dykes occurs about 10 to 20 km to the NW of Arnolz. However, the rhyodacites around Arnolz differ significantly from these felsitic dykes in their geochemistry and alteration phenomena which points to a different magmatic source. This coincides with a change in the orientation of the dykes from a NW direction controlling the geochemically specialized intrusions in the NW to a dominating NNE direction mirrored by the studied rhyodacites at Arnolz.

  2. Geochronology and geochemistry of pre-Jurassic superterranes in Marie Byrd Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Pankhurst, R. J.; Weaver, S. D.; Bradshaw, J. D.; Storey, B. C.; Ireland, T. R.

    1998-02-01

    Marie Byrd Land, Antarctica, is a major part of the proto-Pacific supercontinental margin. On the basis of new geochronological and geochemical data relating to its pre-Jurassic evolution, Marie Byrd Land is subdivided into western or interior ("Ross") and eastern or exterior ("Amundsen") provinces, equivalent to two superterranes in New Zealand. The Ross province is characterized by Cambrian? metagraywackes and I-type orthogneiss dated at 505±5 Ma by U-Pb SHRIMP (Sensitive High Resolution Ion Microprobe). Its magmatic record consists of Devonian-Carboniferous (375±5 Ma and circa 339±6 Ma), predominantly I-type granitoids, and further minor granitic magmatism in Permo-Triassic times. This Paleozoic history is comparable to that of the Gondwana margin in northern Victoria Land, western New Zealand, and SE Australia. The Amundsen province has no observed Paleozoic graywacke succession; evidence from Rb-Sr and U-Pb SHRIMP dating supports calc-alkaline granitoid events in Ordovician/Silurian (450-420 Ma) and Permian (276±2 Ma) times. The latter may be the previously unknown source of Permian volcanic detritus in the Ellsworth and Transantarctic mountains. The Amundsen province is considered to be the equivalent of the Median Tectonic Zone of New Zealand, and arc magmatism of comparable ages is found in the Antarctic Peninsula and Thurston Island. The underlying lithosphere of the two provinces may be distinguished by Nd isotope data; granitoids and metasedimentary rocks of the Ross province have Meso-Proterozoic Nd model ages, generally 1300-1500 Ma, compared to 1000-1300 Ma for the Amundsen province. On the basis of published palaeomagnetic data, the two provinces amalgamated to form Marie Byrd Land in mid-Cretaceous times, only shortly before rifting of the New Zealand continental block away from Antarctica.

  3. Miocene silicic volcanism in southwestern Idaho: Geochronology, geochemistry, and evolution of the central Snake River Plain

    USGS Publications Warehouse

    Bonnichsen, B.; Leeman, W.P.; Honjo, N.; McIntosh, W.C.; Godchaux, M.M.

    2008-01-01

    New 40Ar-39Ar geochronology, bulk rock geochemical data, and physical characteristics for representative stratigraphic sections of rhyolite ignimbrites and lavas from the west-central Snake River Plain (SRP) are combined to develop a coherent stratigraphic framework for Miocene silicic magmatism in this part of the Yellowstone 'hotspot track'. The magmatic record differs from that in areas to the west and east with regard to its unusually large extrusive volume, broad lateral scale, and extended duration. We infer that the magmatic systems developed in response to large-scale and repeated injections of basaltic magma into the crust, resulting in significant reconstitution of large volumes of the crust, wide distribution of crustal melt zones, and complex feeder systems for individual eruptive events. Some eruptive episodes or 'events' appear to be contemporaneous with major normal faulting, and perhaps catastrophic crustal foundering, that may have triggered concurrent evacuations of separate silicic magma reservoirs. This behavior and cumulative time-composition relations are difficult to relate to simple caldera-style single-source feeder systems and imply complex temporal-spatial development of the silicic magma systems. Inferred volumes and timing of mafic magma inputs, as the driving energy source, require a significant component of lithospheric extension on NNW-trending Basin and Range style faults (i.e., roughly parallel to the SW-NE orientation of the eastern SRP). This is needed to accommodate basaltic inputs at crustal levels, and is likely to play a role in generation of those magmas. Anomalously high magma production in the SRP compared to that in adjacent areas (e.g., northern Basin and Range Province) may require additional sub-lithospheric processes. ?? Springer-Verlag 2007.

  4. Igneous rocks of Arctic Ocean deep sea ridges: new data on petrology, geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Shevchenko, Sergey; Sergeev, Sergey; Belyatsky, Boris; Shatov, Vitaly; Petrov, Eugeny

    2015-04-01

    The aggregate results of studies of igneous rocks, collected from the central part of the Arctic Ocean during scientific marine expeditions «Arctic-2000, 2005, 2007 and 2012» are presented and discussed in the frame of modern understanding of High Polar Arctic tectonic constraint. Petrological, geochemical and isotope-geochronological studies of more than 500 samples have shown that the sedimentary rocks are of dominated population among the rock fragments dredged from deep-sea bottom, and represented by metamorphosed dolomite and quartz sandstone, limestone, sometimes with the Devonian - Permian fauna. Igneous rocks are 10-15% only (Archean and Paleoproterozoic gneissouse granites and gabbro, Neoproterozoic dolerite) and metamorphic rocks (green shales, metabasites, gneisses). Apparently, these rocks are part of the acoustic basement underlying the Late Mesozoic - Cenozoic layered loose sediments. In addition to the dredged fragments of the ancient mafic rocks, some samples were taken as a core during deep-water drilling in the northern and southern slopes of the Mendeleev Ridge and represented by trachybasalts, marking the border of Late-Cenozoic deposit cover and acoustic basement and quite similar in composition to those of Early-Late Cretaceous basalts form northward of the Chukchi Plateau seamounts, Alpha Ridge, Franz Josef Land, De Long islands and other parts of the large igneous province of the High Arctic (HALIP). Video-filming of Mendeleev Ridge escarps proofs the existing of rock outcrops and supports local origin of most of the rock fragments found in the sampling areas. Thus the continental type of the earth's crust of the Central Arctic Ridges basement is based on all obtained results of our study of sea-bottom excavated rock material.

  5. Resolving arc processes through detrital zircon U-Pb geochronology and geochemistry: a case study from the southern California Mesozoic convergent margin

    NASA Astrophysics Data System (ADS)

    Johnston, S. M.; Kylander-Clark, A. R.

    2015-12-01

    Detrital zircon geochronology has been widely exploited to establish temporal characteristics in sedimentary source terranes. Detrital zircon geochemistry, however, has been largely overlooked given results from continentally derived igneous zircon that show subtle intersample variation in trace-element concentrations, and which make correlation between detrital zircon and their host terrane difficult. Nevertheless, recent studies suggest systematically variable geochemistry in McCoy Mountain detrital zircons derived from the southern California Mesozoic arc, and our preliminary data from the Peninsular Ranges batholith indicates strong correlations between whole-rock and zircon geochemistry. Here, we present coupled U-Pb geochronology and geochemistry measured by laser ablation split stream ICPMS on detrital zircons from Nacimiento block forearc sediments in Central California to characterize temporal and geochemical trends in the adjacent Mesozoic arc terrane. 1098 grains of Mesozoic age analyzed from 22 samples in the Nacimiento block define three periods of high magmatic flux in the Permian (270-250 Ma), Jurassic (170-140 Ma), and late Cretaceous (115-90 Ma). Zircon from the Permian arc is the least abundant of the three magmatic pulses, although they consistently display elevated Yb/Gd and U/Yb. Jurassic zircons display consistently low U/Yb, variably elevated Yb/Gd, abruptly higher Th/U and LREE from 155-145, and abruptly lower REE concentrations from 145-140 Ma. Zircon from the Cretaceous arc displays gradually increasing U/Yb, Th/U and LREE, with abruptly decreasing Yb/Gd at 95 Ma. The geochemical trends observed in the Nacimiento block detrital zircons of Cretaceous age are strikingly similar to temporal changes in geochemistry known from Cretaceous arc rocks of the Mojave and Peninsular Ranges, and strongly suggest a southern California provenance for Nacimiento block sediments. Furthermore, the similarity of geochemical trends between Cretaceous detrital

  6. Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia

    NASA Astrophysics Data System (ADS)

    Villagómez, Diego; Spikings, Richard; Magna, Tomas; Kammer, Andreas; Winkler, Wilfried; Beltrán, Alejandro

    2011-08-01

    Autochthonous rocks of the pre-Cretaceous continental margin of NW South America (the Tahami Terrane) are juxtaposed against a series of para-autochthonous rock units that assembled during the Early Cretaceous. Allochthonous, oceanic crust of the Caribbean Large Igneous Province collided with and accreted onto the margin during the Late Cretaceous. We present the first regional-scale dataset of zircon U-Pb LA-ICP-MS ages for intrusive and metamorphic rocks of the autochthonous Tahami Terrane, Early Cretaceous igneous para-autochthonous rocks and accreted oceanic crust. The U-Pb zircon data are complemented by multiphase 40Ar/ 39Ar crystallization and cooling ages. The geochronological data are combined with whole rock major oxide, trace element and REE data acquired from the same units to constrain the tectonic origin of the rock units and terranes exposed in the Western Cordillera, Cauca-Patía Valley and the Central Cordillera of Colombia. The Tahami Terrane includes lower Paleozoic orthogneisses (~ 440 Ma) that may have erupted during the active margin stage of the Rheic Ocean. Basement gneisses were intruded by Permian, continental arc granites during the final assembly of Pangea. Triassic sedimentary rocks were subsequently deposited in rift basins and partially melted during high-T metamorphism associated with rifting of western Pangea during 240-220 Ma. Continental arc magmatism during 180-145 Ma is preserved along the whole length of the Central Cordillera and was followed by an Early Cretaceous out-board step of the arc axis and the inception of the Quebradagrande Arc that fringed the continental margin. Back-stepping of the arc axis may have been caused by the collision of buoyant seamounts, which were coeval with plateau rocks exposed in the Nicoya Peninsular of Costa Rica. Rapid westward drift of South America closed the Quebradagrande basin in the late Aptian and caused medium-high P-T metamorphic rocks of the Arquía Complex to exhume and obduct onto

  7. Geology, geochronology and geochemistry of a basanitic volcano, White Island, Ross Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Cooper, Alan F.; Adam, Lotte J.; Coulter, Roseanne F.; Eby, G. Nelson; McIntosh, William C.

    2007-09-01

    White Island, Ross Sea, Antarctica is a Plio-Pleistocene basanite to tephriphonolite shield volcano, forming part of the Erebus Province, McMurdo Volcanic Group. Four new 40Ar/ 39Ar dates extend the age of surface volcanism from a previously determined 0.17 Ma to 5.05 ± 0.31 Ma. A U/Pb age on zircon in an anorthoclasite nodule extends White Island magmatism back to 7.65 ± 0.69 Ma. Volcanism was predominantly subaerial with eruption of agglutinated spatter-clast breccias and lava flows from vents with a NNE structural alignment. An early phase of inferred subaqueous/subglacial activity formed pillow breccias. Two nunataks in the southern part of the island comprise basanitic tuff cones, composed of poorly bedded pyroclastic deposits dominated by sideromelane lapilli, and containing horizons rich in accretionary and armoured lapilli. Many of the basanites have compositions of near-primary magmas and contain an assortment of Cr-diopside and Al-augite suite mantle nodules, lower crustal gabbros, mafic granulites, and assorted megacrysts. Peridotites are dominated by spinel facies inclusions, but include plagioclase-spinel lherzolites derived from shallow mantle beneath the tectonically thinned and attenuated Ross Sea lithosphere. Mantle nodules contain accessory amounts of pale brown, metasomatic amphibole. Volcanic geochemistry is compatible with fractionation of olivine, pyroxene, titano-magnetite and minor apatite from a basanite parent yielding tephriphonolite residual liquids. Magmatism is focused along, or at the termination of, Cenozoic rift basins in the Ross Sea. The regional McMurdo Volcanic Group distribution and tectonic setting, and the history of Erebus Province volcanic centres are difficult to reconcile in terms of active mantle plumes. Instead, more randomly distributed magmatism is inferred to result from rift-related decompression melting of previously enriched mantle that may have been fertilized by plume interaction prior to Gondwana

  8. Geochemistry and zircon geochronology of Late Proterozoic leucogranites north of Boston, eastern Massachusetts

    SciTech Connect

    Markus, R.; Hon, R. . Geology and Geophysics); Dunning, G. . Dept. of Earth Sciences)

    1993-03-01

    An igneous sequence that includes Late Precambrian volcanics (Lynn Volcanics) and granites, granodiorites, tonalites, plus diorites of the Dedham North suite, is located in a tectonic block bounded by the Walden Pond and Northern Boundary Faults north of the Boston Basin. Within the block between the rhyolites and granodiorites is a several hundred foot wide zone of leucogranites that contains frequent roof pendants in various stages of partial melting. The migmatitic nature of the pendants suggests that the leucogranites were locally derived by melt extraction from the partially melted pendant xenoliths. U-Pb zircon ages were obtained from samples of the leucogranite, granodiorite and diorite. Their crystallization ages are: leucogranite 609 [+-] 4 Ma, granodiorite 607 [+-] 4 Ma, and diorite 606 [+-] 3 Ma. All three samples yield ages that are identical within their statistical error limits and all three samples contain inherited component with average mid-Proterozoic ages. Major and trace element geochemistry of 43 samples of all representative types show that the predominantly pelitic'' layers underwent extensive partial melting and that the leucogranites represent a minimum granite melt at 0.5 to 2.0 kb of P(H2O). Geochemical modeling also supports the origin by partial melting of the pendant inclusions. Once formed, the leucogranite melts were then mixed with mafic magmas which must have also been the provider of the necessary heat to sustain the partial melting process. The data indicate that the Dedham North plutonic suite was formed at shallow crustal levels and that its compositional range is a result of magma mixing of varying proportions between the leucogranite and mafic melts.

  9. El Ventorrillo, a paleostructure of Popocatépetl volcano: insights from geochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Sosa-Ceballos, G.; Macías, J. L.; García-Tenorio, F.; Layer, P.; Schaaf, P.; Solís-Pichardo, G.; Arce, J. L.

    2015-10-01

    Volcán Popocatépetl (México) was constructed over the remains of a volcanic paleostructure. Based on fieldwork, 40Ar/39Ar dating, U-Pb dating, and geochemistry, we have determined the age, chemistry, and location of this paleostructure and named it El Ventorrillo. Most remnants of El Ventorrillo are covered by deposits from subsequent activity of Popocatépetl, except for the El Abanico scarp and the Barranca de Nexpayantla, where the stratigraphy of El Ventorrillo eruptive products can be investigated. Inception of volcanism at El Ventorrillo occurred at 331 ± 10 ka with emission of the Nexpayantla andesitic lavas, and continued with extrusion of the Yoloxochitl (267 ± 31 ka) and microwave (227 ± 6 ka) domes. Intrusion of dikes occurred at 298 ± 94 and 230 ± 3 ka. Activity at El Ventorrillo continued with the emission of lavas that built the El Abanico scarp (193 ± 29 to 96 ± 8 ka) and continued until the Tutti Frutti eruption destroyed the cone 14.1 kyr ago. El Ventorrillo magmas produced rocks divided into two mineralogical groups. The first group contains biotite-amphibole-rich rocks and the second group consists of biotite-amphibole-free lavas. The rocks that contain biotite and amphibole are older than 198 ± 13 ka, whereas the rocks with no hydrous phases are younger than 227 ± 6 ka and contain skarn and granodiorite xenoliths. We interpret the change to an anhydrous mineral assemblage and the occurrence of skarn and granodiorite xenoliths as evidence for the formation of a new, shallower reservoir. A granodiorite xenolith was chosen for 40Ar/39Ar dating and U-Pb zircon analyses. The U-Pb method yielded an age of 540 ± 110 ka and the 40Ar/39Ar an age of 109 ± 24 ka. These ages are interpreted to indicate granodiorite crystallization (540 ± 110 ka), which metamorphosed the calcareous basement beneath Popocatépetl into skarn and an influx of magma (109 ± 24 ka) that reheated the granodiorite. Major and trace elements, Sr, Nd, and Pb isotopic

  10. Geochronology, geochemistry, and petrology of the Precambrian Sandia granite, Albuquerque, New Mexico

    SciTech Connect

    Majumdar, A.

    1985-01-01

    The Precambrian Sandia granite of north-central New Mexico belongs to the 1.2-1.6 Ga crustal province of the western USA. The granite shows an intrusive contact with the metamorphic country rocks. The Rb-Sr whole rock isochron age of the country rocks is 1.61 +/- 0.06 Ga, (/sup 87/Sr//sup 86/Sr)/sub 0/ = 0.705 +/- 0.001. The culmination of the intrusion of the Sandia granite took place at 1.44 +/- 0.04 GA. (/sup 87/Sr//sup 86/)/sub 0/ = 0.7054 +/- 0.0005. Rb-Sr ages on biotite-whole rock pairs and an /sup 40/Ar//sup 39/Ar dating of a biotite from the granite indicate final cooling to 300-350/sup 0/C at 1.33 Ga. This suggests slow cooling of the granite at rates which averaged 4/sup 0/C/Ma for about 100 Ma after its emplacement; during this period the Rb-Sr isotope system perhaps remained partially open. The Sandia granite shows compositional variation from granodiorite to quartz monzonite in both the northern and southern blocks. The field geology, petrology, and geochemistry of the two blocks suggest that they form a single pluton. Both the Sandia granite and mesocratic, two pyroxene granulite xenoliths therein give an ..delta../sup 18/O value of +8.0 +/- 0.5% indicating (meta)igneous source ricks for each of them. These values tend to rule out Condie's (1978) favored hypothesis for magma generation of 30-50% partial melting of siliceous gradulites. Rather, they favor an alternative hypothesis, equally satisfactory from the geochemical viewpoint, involving 5-10% melt of a gabbroic or two-pyroxene granulite parent rock in the lower crust. The Sandia granite, and by implication, the other high-Ca granitic rocks of the western USA thus do not seem to represent addition of new mantle-derived materials to the middle-late Proterozoic crust of this section of the continent.

  11. Geochemistry.

    ERIC Educational Resources Information Center

    Fyfe, William S.

    1979-01-01

    Techniques in geochemistry continue to improve in sensitivity and scope. The exciting areas of geochemistry still include the classical fields of the origin of the elements and objects in space, but environmental crisis problems are important as well. (Author/BB)

  12. Elucidating the construction of the Austurhorn Intrusion, SE Iceland, using zircon elemental and isotopic geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Padilla, A. J.; Miller, C. F.; Carley, T. L.; Economos, R. C.; Schmitt, A. K.; Fisher, C. M.; Hanchar, J. M.; Bindeman, I. N.; Wooden, J. L.; Sigmarsson, O.

    2013-12-01

    The Austurhorn Intrusive Complex (AIC) in SE Iceland comprises large bodies of granophyre, gabbro, and a mafic-felsic composite zone (MFCZ) that exemplifies mafic-felsic interactions common in Icelandic silicic systems. However, despite being one of Iceland's best-studied intrusions (Blake 1966; Furman et al 1992a,b; Thorarinsson & Tegner 2009), few studies have included detailed analyses of zircon, a mineral widely recognized as a valuable tracer of the history and evolution of its parental magma(s). In this study, we employ in-situ zircon elemental and isotopic (hafnium and oxygen) geochemistry, as well as U-Pb geochronology, as tools for elucidating the complex construction and magmatic evolution of Austurhorn's MFCZ. The elemental compositions of AIC zircons form a broad but coherent array partly overlapping with the zircon geochemical signature for Icelandic silicic volcanic rocks (Carley et al 2011). With some exceptions (see below), Hf concentrations are low (less than 10,000 ppm), typical of Icelandic zircon, and Ti concentrations range from 6 to 25 ppm (Ti-in-zircon temps. 730-870°C). Their δ18O values are generally well-constrained at +2.5 to +4 ‰, consistent with other Icelandic magmatic zircon (Bindeman et al 2012) and preserving evidence for partial melting of hydrothermally-altered crust as the source of silicic magmas within the Austurhorn system. Epsilon-Hf values cluster tightly at +13×1 ɛ-units, suggesting a single source for the different units of the MFCZ. The notable exceptions to the trends described above are zircons from a high-silica granophyre displaying CL-dark zones and convoluted zoning. These fall well outside the AIC geochemical arrays, primarily distinguished by high Hf (up to 24,000 ppm) and lower Ti (down to 2 ppm), far higher Hf and lower Ti than any other analyzed Icelandic zircon, and extremely low δ18O values (down to -6 ‰). We interpret these to reflect multiple episodes of partial melting and melt extraction of the

  13. Elucidating the magmatic history of the Austurhorn silicic intrusive complex (southeast Iceland) using zircon elemental and isotopic geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Padilla, A. J.; Miller, C. F.; Carley, T. L.; Economos, R. C.; Schmitt, A. K.; Coble, M. A.; Wooden, J. L.; Fisher, C. M.; Vervoort, J. D.; Hanchar, J. M.

    2016-09-01

    The Austurhorn intrusive complex (AIC) in southeast Iceland comprises large bodies of granophyre and gabbro, and a mafic-silicic composite zone (MSCZ) that exemplifies magmatic interactions common in Icelandic silicic systems. Despite being one of Iceland's best-studied intrusions, few studies have included detailed analyses of zircon, a mineral widely recognized as a valuable tracer of the history and evolution of its parental magma(s). In this study, we employ high spatial resolution zircon elemental and isotopic geochemistry and U-Pb geochronology as tools for elucidating the complex construction and magmatic evolution of Austurhorn's MSCZ. The trace element compositions of AIC zircon crystals form a broad but coherent array that partly overlaps with the geochemical signature for zircons from Icelandic silicic volcanic rocks. Typical of Icelandic zircons, Hf concentrations are relatively low (<10,000 ppm) and Ti concentrations range from 5 to 40 ppm (Ti-in-zircon model temperatures = 761-981 °C). Zircon δ18O values vary from +2.2 to +4.8 ‰, consistent with magmatic zircons from other Icelandic silicic rocks, and preserve evidence for recycling of hydrothermally altered crust as a significant contribution to the generation of silicic magmas within the AIC. Zircon ɛ Hf values generally range from +11 to +15. This range overlaps with that of Icelandic basalts from off-rift settings as well as the least depleted rift basalts, suggesting that the AIC developed within a transitional rift environment. In situ zircon U-Pb ages yield a weighted mean of 6.52 ± 0.03 Ma for the entire complex, but span a range of ~320 kyr, from 6.35 ± 0.08 to 6.67 ± 0.06 Ma (2 σ SE). Gabbros and the most silicic units make up the older part of this range, while granophyres and intermediate units make up the younger part of the complex, consistent with field relationships. We interpret the ~320 kyr range in zircon ages to represent the approximate timescale of magmatic construction

  14. The Ellsworth terrane, coastal Maine: Geochronology, geochemistry, and Nd-Pb isotopic composition - Implications for the rifting of Ganderia

    USGS Publications Warehouse

    Schulz, K.J.; Stewart, D.B.; Tucker, R.D.; Pollock, J.C.; Ayuso, R.A.

    2008-01-01

    The Ellsworth terrane is one of a number of fault-bounded blocks that occur along the eastern margin of Ganderia, the western-most of the peri-Gondwanan domains in the northern Appalachians that were accreted to Laurentia in the Paleozoic. Geologic relations, detrital zircon ages, and basalt geochemistry suggest that the Ellsworth terrane is part of Ganderia and not an exotic terrane. In the Penobscot Bay area of coastal Maine, the Ellsworth terrane is dominantly composed of bimodal basalt-rhyolite volcanic sequences of the Ellsworth Schist and unconformably overlying Castine Volcanics. We use new U-Pb zircon geochronology, geochemistry, and Nd and Pb isotopes for these volcanic sequences to constrain the petrogenetic history and paleotectonic setting of the Ellsworth terrane and its relationship with Ganderia. U-Pb zircon geochronology for rhyolites indicates that both the Ellsworth Schist (508.6 ?? 0.8 Ma) and overlying Castine Volcanics (503.5 ?? 2.5 Ma) are Middle Cambrian in age. Two tholefitic basalt types are recognized. Type Tb-1 basalt, present as pillowed and massive lava flows and as sills in both units, has depleted La and Ce ([La/Nd]N = 0.53-0.87) values, flat heavy rare earth element (REE) values, and no positive Th or negative Ta anomalies on primitive mantle-normalized diagrams. In contrast, type Th-2 basalt, present only in the Castine Volcanics, has stightly enriched LREE ([La/Yb]N = 1.42-2.92) values and no Th or Th anomalies. Both basalt types have strongly positive ??Nd (500) values (Th-1 = +7.9-+8.6; Th-2 = +5.6-+7.0) and relatively enriched Pb isotopic compositions (206Ph/204Pb = 18.037-19.784; 207/204Pb = 15.531-15.660; 2088Pb/204Pb = 37.810-38.817). The basalts have compositions transitional between recent normal and enriched mid-ocean-ridge basalt, and they were probably derived by partial melting of compositionatly heterogeneous asthenosphenc mantle. Two types of rhyolite also are present. Type R-1 rhyolite, which mostly occurs as tuffs

  15. Geochemistry

    ERIC Educational Resources Information Center

    Ailin-Pyzik, Iris B.; Sommer, Sheldon E.

    1977-01-01

    Enumerates some of the research findings in geochemistry during the last year, including X-ray analysis of the Mars surface, trace analysis of fresh and esterarine waters, and analysis of marine sedements. (MLH)

  16. Geochemistry

    ERIC Educational Resources Information Center

    Ailin-Pyzik, Iris B.; Sommer, Sheldon E.

    1977-01-01

    Enumerates some of the research findings in geochemistry during the last year, including X-ray analysis of the Mars surface, trace analysis of fresh and esterarine waters, and analysis of marine sedements. (MLH)

  17. Records of near-isothermal decompression and clockwise P-T history from the Paleoproterozoic Mahakoshal Belt, Central Indian Tectonic Zone: Constraints from pseudosection modelling and monazite geochronology

    NASA Astrophysics Data System (ADS)

    Deshmukh, Tanzil; Naraga, Prabhakar; Bhattacharya, Abhijit; Kaliappan, Madhavan

    2017-04-01

    The Mahakoshal Belt (MB) is regarded as the oldest subunit along the northern collar of the Central Indian Tectonic Zone (CITZ) arguably representing the zone of accretion between the North India Block and the South India Block. The following study focuses on deciphering the structural and metamorphic P-T-t history of the schists/phyllites from the eastern part of the belt, and provides insights into the Paleoproterozoic tectonic development in the CITZ. The schists comprise phengite, quartz, andalusite, biotite, muscovite and margarite, and are associated with veins of rare andalusite + corundum + quartz assemblage. The field relations combined with deformation microtextures in the MB schists suggests three episodes of metamorphism, M1, M2 and M3, corresponding with D1, D2 and D3 deformation events respectively. Inclusion trails (S1) of phengite + biotite + quartz ± chlorite in syn/post-S2 andalusite porphyroblasts constrain the M1 metamorphic event in pelitic schists. The application of pseudosection modelling estimated peak metamorphic conditions at ˜8 kbar and 520 ˚ C. Near isothermal decompression (<4 kbar) resulted in the formation of the andalusite + muscovite bearing retrograde assemblage that stabilized at the expense of phengite-bearing assemblage. Further, andalusite porphyroblasts are replaced by margarite + muscovite + chlorite pseudomorphs (2-3 kbar) during syn/post-S3 fluid-aided metamorphism. Th-U-total Pb dating of monazite grains yield core populations at 1.8-1.9 Ga, and rim populations at 1.7-1.8 Ga and 1.5-1.6 Ga. Thus, the peak metamorphism in MB schists was Paleoproterozoic in age, 1.8-1.9 Ga, and the clockwise P-T path was recorded at 1.7-1.8 Ga, which overlaps with the emplacement of blastoporphyritic granitoids along southern margin of the MB. The results obtained in this study combined with the existing structural-metamorphic-chronological information demonstrate the CITZ to be a composite of desperately-evolved crustal domains. With

  18. Rhyolite volcanism at Öræfajökull Volcano, Iceland - geochemistry, field relations & 40Ar/39Ar geochronology

    NASA Astrophysics Data System (ADS)

    Walker, Angela; Burgess, Ray; McGarvie, David; Smellie, John

    2010-05-01

    Öræfajökull is Iceland's largest stratovolcano, situated at the southern tip of Vatnajökull Glacier in the south east of the island. Its position away from the extensional tectonic forces of the rift zone has enabled the build-up of a substantial edifice 2110m in height. The majority of the volcanic edifice, including its 5km wide caldera is covered by glacial ice, leaving only the southern flanks of the volcano exposed. This area of South East Iceland has been completely glaciated at least 16 times in the last 5 million years (Helgason and Duncan, 2001) and evidence from previous field studies suggests that throughout periods in the geological past, Öræfajökull and the surrounding area were covered by ice to a much greater extent than we see today (Stevenson et al., 2006). The volcano has erupted twice since historical records began, in 1727 and 1362, the latter being one of Iceland's most explosive historical eruptive events producing over 6x109m3 of rhyolitic tephra (Selbekk and Trønnes, 2007). However, the abundance of hyaloclastite present across much of the exposed southern flank of the edifice suggests that Öræfajökull has been at its most active during glacial periods (Prestvik, 1979). The post-eruptive geomorphic evolution of volcanic deposits at Öræfajökull has been dominated by volcano-ice interaction and characteristic glaciovolcanic landforms are evident at many exposures. A multidisciplinary approach combining field observation, geochemistry and isotope geochronology is being utilised in order to establish the geological evolution of the Goðafjall area on the southern flanks of Öraefajökull and a record of regional minimum ice thicknesses during the development of the volcanic edifice throughout the varying climatic conditions of the mid to late Quaternary. Individual eruptive events have been identified in the field using a combination of traditional field mapping techniques and geochemistry, and the units are being dated using 40Ar

  19. Geochronology and geochemistry of late Paleozoic magmatic rocks in the Yinwaxia area, Beishan: Implications for rift magmatism in the southern Central Asian Orogenic Belt

    NASA Astrophysics Data System (ADS)

    Zheng, Rongguo; Wu, Tairan; Zhang, Wen; Meng, Qingpeng; Zhang, Zhaoyu

    2014-09-01

    Mafic-ultramafic rocks are distributed widely in the Beishan rift, which is located in the southern Beishan, central southern Central Asian Orogenic Belt. The Yinwaxia study area is located in eastern Beishan rift, where mafic-ultramafic rocks occur along major faults. The zircon SHRIMP U-Pb age obtained of a gabbro is 281 ± 11 Ma, and the age of the basalt is constrained by the youngest xenocrystal with an age of 265 Ma, which substantiate that these mafic rocks formed in Permian. Basalts and gabbros exhibit similar geochemical characteristics including: high SiO2, total Fe2O3 and TiO2 contents; low MgO contents and Mg# values; and tholeiitic characteristics. Yinwaxia mafic rocks have relatively high total rare earth element contents, enrichment in light rare earth elements, enrichments in the high field strength elements, and obvious negative Nb-Ta-Ti anomalies. Basalts exhibit low (87Sr/86Sr)i and high εNd(t) values, while gabbros exhibit relatively high (87Sr/86Sr)i and low εNd(t) values. Isotopic compositions of these mafic rocks display a mixed trend between depleted and enriched mantles. Meanwhile, differing εNd(t) values show that basalts were intensively contaminated by juvenile crustal materials, but gabbros were contaminated by older continental crust. We conclude that Yinwaxia mafic rocks were derived from lithospheric mantle metasomatized by fluids and/or melts from subducted slab; parental magmas underwent AFC processes, then emplaced along faults in a continental rift. We collected geochemical and geochronological data in the study area, and collated geochronological data from previous workers in the Beishan orogenic belt to develop a geochronological frequency diagram. From these data and analyses we deduced a model of tectonic evolution for the Beishan orogenic belt. Considering the geochemistry, sedimentological evidence for rifting, and the geochronological frequency diagram, we propose that the Beishan rift had entered a post-collision stage

  20. Origin and time-space distribution of hydrothermal systems in east-central Australian sedimentary basins: Constraints from illite geochronology and isotope geochemistry.

    NASA Astrophysics Data System (ADS)

    Uysal, I. Tonguç

    2016-04-01

    Some well-known precious mineral deposits and hydrocarbon resources occur extensively in east-central Australian sedimentary Basins. The metal occurrences are abundant in northwestern and eastern part of Queensland, whereas no significant deposits are known in large areas further south, which may, however, be hidden beneath the Jurassic-Cretaceous sedimentary basins. Important hydrocarbon resources exist within the Jurassic-Cretaceous sedimentary rocks at relatively shallow depths, of which the distribution represent zones of high paleo-geothermal gradients. This study examines the time-space distribution in relation to the regional tectonic history of concealed metal deposits and areas of high paleo-geothermal gradient leading to hydrocarbon maturation. To this end, authigenic illitic clay minerals representing various locations and stratigraphic depths in east-central Australia were investigated, of which the Rb-Sr and Ar-Ar geochronology and stable isotope geochemistry assist in delineating zones of hydrothermal systems responsible for hydro-carbon maturation/migration and potentially ore deposition. The Late Carboniferous - Early Permian crustal extension that affected large areas of eastern Australia and led to the epithermal mineralisations (e.g., the Drummond Basin) is also recorded in northern South Australia and southwest Queensland. A Late Triassic - Early Jurassic tectonic event being responsible for coal maturation and gas generation in the Bowen Basin and the epithermal mineralisation in the North Arm goldfield in SE Queensland likewise affected the areas much further west in Queensland. Some illites from the basement in outback Queensland and fault gouges from the Demon Fault in NE New South Wales yield younger Rb-Sr and Ar-Ar ages indicating the effect of hydrothermal processes as a result of a Middle-Upper Jurassic tectonic event. The majority of illite samples from the crystalline basement rocks, Permian Cooper Basin, and Jurassic

  1. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Zhuang, Guangsheng; Najman, Yani; Guillot, Stephane; Roddaz, Martin; Antoine, Pierre-Olivier; Metais, Gregoire; Carter, Andrew; Marivaux, Laurent; Solangi, Sarfraz

    2016-04-01

    The timing of India-Asia suturing in the Western Himalaya is complex, with the relative timings of collision between the Indian plate and Asian plate with the Kohistan Island arc and a proposed Tethyan Himalayan microcontinent, debated. Here we present an integrated provenance study of geochronology, thermochronology, and geochemistry on the late Cretaceous-Pleistocene sediments from the lower Indus basin on the Indian plate. The detrital zircon U-Pb and fission track data show a reversal in sediment source from a pure Indian signature to increasing inputs from the suture zone and the Asian plate between the middle Paleocene and early Oligocene. The Nd and Sr isotopes narrow down this change to 50 Ma by revealing input of Asian detritus and the establishment of a Nd & Sr isotopic pattern similar to that of the present-day Indus Fan by 50 Ma, with no significant variations up section, contrary to what might be expected if later major collisions had occurred. Our isotopic data indicate that since 50 Ma, Greater India was occupied by a fluvial-deltaic system, analogous to the present-day Indus and named as the Paleo-Indus, which has been transporting Asian detritus southward across the suture zone and Kohistan-Ladakh arc. This suggests that no other ocean basins were located between India and Asia after this time in this region. Our data require that in the west, the India-Asia collision was accomplished by ˜50 Ma.

  2. Petrology, major and trace element geochemistry, geochronology, and isotopic composition of granitic intrusions from the vicinity of the Bosumtwi impact crater, Ghana

    NASA Astrophysics Data System (ADS)

    Losiak, Anna; Schulz, Toni; Buchwaldt, Robert; Koeberl, Christian

    2013-09-01

    The Bosumtwi crater is 10.5 km in diameter, 1.07 Ma old, well preserved impact structure located in Ghana (centered at 06°30‧N, 01°25‧W). It was excavated in rocks of the Early Proterozoic Birimian Supergroup, part of the West African craton. Here, we present a full and detailed characterization of the three granitoid complexes and one mafic dike in the vicinity of the Bosumtwi crater in terms of petrology, major and trace element geochemistry, geochronology, and isotopic composition. This allows us to characterize magmatic evolution of the West African Craton in this area and better understand the geological framework and target rocks of the impact. This study shows that the similar composition (strongly peraluminous muscovite granites and granodiorites) and age (between 2092 ± 6 Ma and 2098 ± 6 Ma) of all granitic intrusions in the proximity of the Bosumtwi crater suggest that they are co-genetic. Granitoids were probably formed as a result of anatexis of TTGs (or rocks derived from them) at relatively low pressure and temperature. We propose that the intrusions from the Bosumtwi area are genetically related to the Banso granite occurring to the east of the crater and can be classified as basin-type, late-stage granitoids. Also a mafic dike located to the NE of the Bosumtwi crater seems to be genetically related to those felsic intrusions. Based on those findings a revised version of the geological map of the Bosumtwi crater area is proposed.

  3. Paleomagnetism, Geochronology, and Geochemistry of the Type Section of the Stanislaus Group: Reference Parameters from the Stable Sierra Nevada Microplate, CA

    NASA Astrophysics Data System (ADS)

    Farner, M. J.; Pluhar, C. J.; Asami, R.; Putirka, K. D.; Busby, C.; Renne, P. R.

    2012-12-01

    The Late Miocene Stanislaus Group, of California and Nevada is composed of Table Mountain Formation, Eureka Valley Tuff, and Dardanelles Formation. This ~9.0-~10.2 million year old unit interrupted Miocene andesitic arc volcanism in the Sierra Nevada, providing a regional lithostratigraphic marker that has been used extensively to reconstruct tilt and uplift of the range, Neogene tectonics of the Walker Lane Belt, magmagenetic processes beneath the Sierra Nevada, and lithospheric evolution of the Sierra Nevada and Eastern California. A recent study (Koerner et al, 2009) produced a measured section and geologic map of the Stanislaus Group type section, but until now this locality has never seen comprehensive multidisciplinary study of the geochronology, geochemistry, and magnetostratigraphy of the site and to integrate this into the overall understanding of the Stanislaus Group. Stratigraphy, geochemistry, and paleomagnetism from the type section suggest addition of a basal trachyte lava flow member to the Eureka Valley tuff and adds an additional intermediate-polarity lava flow to Table Mountain Formation magnetostratigraphy. This study dates the youngest member of the Stanislaus Group, the Dardanelles Formation, by 40Ar/39Ar radioisotopic dating for the first time, yielding an age of 9.048 ± 0.017 Ma. Paleomagnetic results verify the previous paleomagnetic reference direction from the Sierra Nevada microplate for the Tollhouse Flat Member of the Eureka Valley Tuff (King et al., 2007). However, our work revises the By-Day Member reference direction to D = 349.6°, I = 51.9° n = 8, α95 = 3.0°, k = 346. This difference is because the prior work analyzed By-Day localities within the tectonically-active Walker Lane Belt. The revised reference direction is critical for measurements of relative vertical-axis rotation studies in the Walker Lane. Our study also demonstrates that little to no vertical-axis rotation of the Sierra Nevada microplate has occurred since

  4. CO2 outburst events in relation to seismicity: Constraints from microscale geochronology, geochemistry of late Quaternary vein carbonates, SW Turkey

    NASA Astrophysics Data System (ADS)

    Ünal-İmer, Ezgi; Uysal, I. Tonguç; Zhao, Jian-Xin; Işık, Veysel; Shulmeister, James; İmer, Ali; Feng, Yue-Xing

    2016-08-01

    Vein and breccia carbonates precipitated in a highly fractured/faulted carbonate bedrock in SW Turkey were investigated through high-resolution U-series geochronology, microstructural and geochemical studies including C-O-Sr isotope and rare-earth element and yttrium (REY) analyses. Petrographical observations and geochronological data are interpreted as evidence that the calcite veins formed through a crack-seal mechanism, mostly accompanied/initiated by intensive hydraulic fracturing of the host limestone in response to high-pressure fluids, which is manifested by multi-stage breccia deposits. Microscale U-series dates (272.6-20.5 kyr) and geochemical compositions of the vein/breccia samples provide information on the timing and mechanism of the vein formation and identify the source of CO2-bearing fluids responsible for the carbonate precipitation. δ18OVPDB and δ13CVPDB values of the calcite veins range between -5.9 and -1.7‰, and -10.6 and -4.6‰, respectively. The isotopic compositions of the veins show highly fluctuating values as calcite grew successively perpendicular to vein walls, which, in combination with microstructural and geochronological constraints, are interpreted to reflect episodic CO2 degassing events associated with seismic and aseismic deformation. Oxygen and Sr isotope compositions (δ18OVPDB: -5.9 to -1.7‰; 87Sr/86Sr: 0.7082 to 0.7085) together with REY concentrations indicate deep infiltration of meteoric waters with various degrees of interactions mostly with the host limestone and siliciclastic parts of the basement rocks. Oxygen and carbon isotope compositions suggest CO2 degassing through intensive limestone dissolution. While majority of the veins display similar Post-Archaean Australian Shale (PAAS)-normalised REY variations, some of the veins show positive EuPAAS anomalies, which could be indicative of contributions from a deeply derived, heated, and reduced fluid component, giving rise to multiple fluid sources for the

  5. Rapid forearc spreading between 130 and 120 Ma: Evidence from geochronology and geochemistry of the Xigaze ophiolite, southern Tibet

    NASA Astrophysics Data System (ADS)

    Dai, Jingen; Wang, Chengshan; Polat, Ali; Santosh, M.; Li, Yalin; Ge, Yukui

    2013-07-01

    The Cretaceous Xigaze ophiolite is best exposed at the central Yarlung Zangbo Suture Zone (YZSZ, Tibet) which also includes the Gangdese arc and the Xigaze forearc basin. This study reports new geochronological and geochemical data for this ophiolite to revisit its geodynamic and petrogenetic evolution. The Xigaze peridotites have low CaO and Al2O3 contents and U-shaped Rare Earth Element (REE) patterns, suggesting that they are residues after moderate to high degrees of partial melting and were modified by infiltration of Light Rare Earth Element (LREE)-enriched boninitic melts. The Xigaze crustal rocks belong to two groups: Mid-Ocean Ridge Basalt (MORB)-like rocks and boninitic rocks showing a uniform LREE depletion and flat to LREE enrichment on chondrite-normalized patterns, respectively. Geochemically, both groups show the influence of subducting oceanic slab-derived fluids. LA-ICPMS zircon U-Pb and Lu-Hf analyses from dolerite and quartz diorite dikes, which intruded into the mantle peridotite, and dolerite sheeted sills show that they were generated between 127 and 124 Ma. The zircons possess positive εHf(t) values ranging from + 7.5 to + 17.3. Taking into account the geological and geochronological characteristics of the central-western YZSZ, we propose that ophiolites in this region formed in a forearc spreading setting through rapid slab rollback during subduction initiation between 130 and 120 Ma. Following this stage of spreading, the forearc was stabilized and the zone of melting migrated beneath the Gangdese arc producing the voluminous Late Cretaceous granitoids displaying depleted mantle-type Hf isotopic compositions. Our model provides a new explanation for the generation and evolution of forearc-type ophiolites.

  6. Geochemistry and geochronology of granitoids in the Kibi-Asamankese area of the Kibi-Winneba volcanic belt, southern Ghana

    NASA Astrophysics Data System (ADS)

    Anum, Solomon; Sakyi, Patrick Asamoah; Su, Ben-Xun; Nude, Prosper M.; Nyame, Frank; Asiedu, Daniel; Kwayisi, Daniel

    2015-02-01

    In Ghana the West African Craton is represented by Birimian and Tarkwaian rocks with extensive granitoid bodies. Granitoids from Asamankese area of the Kibi-Winneba volcanic belt, southern Ghana were analysed for major and trace element contents and found to be characterised by highly-fractionated REE, enrichments, in LILE, and depletion in Nb, Ta and Sr. The LILE enrichment relative to strong Nb-Ta depression, indicates that these granitoids were emplaced in an active margin. Based on field relations, geochemical composition and geochronological data, the granitoids from the Kibi-Asamankese area can be divided into three types, namely; the Eburnean biotite granodiorite (2133-2127 Ma) and hornblende granodiorite (2147 Ma), and the Pre-Eburnean gneissic biotite granite (2193 Ma). The geochemical data of the studied rocks plot in the tholeiitic field, whereas on the A/CNK-A/NK diagram, they generally fall within the metaluminous field, with A/CNK values between 0.69 and 0.88. U-Pb dating of zircons in the granitoids yielded ages ranging from 2193 to 2127 Ma, which are among the oldest ages obtained from the granitoid plutons in Ghana. Such high-precision geochronological data indicate that magmatism occurred over a time-span of about 70 Ma. This provides further evidence that the period 2.1-2.2 Ga was one of the important stages of Birimian magmatism that led to the generation of the granitoids. From the above-mentioned ages, it is possible to link the geological activities to crustal processes and establish the cyclic geotectonic evolution in the West African Craton over time as part of an arc-back-arc basin system.

  7. Reply to comment on ;Geochronology and geochemistry of rhyolites from Hormuz Island, southern Iran: A new Cadomian arc magmatism in the Hormuz Formation; by Atapour, H. and Aftabi, A

    NASA Astrophysics Data System (ADS)

    Faramarzi, Narges Sadat; Amini, Sadraddin; Borg, Gregor; Schmitt, Axel Karl; Hassanzadeh, Jamshid; McKeegan, Kevin; Mortazavi, Seyed Mohsen; Jamshidibadr, Mahboobeh; Razavi, Seyed Mohammad Hosein

    2017-07-01

    We appreciate the discussion by Atapour and Aftabi (2016) and would like to reply to their comments in detail. Atapour and Aftabi (2016) do not dispute our key findings concerning zircon geochronology, geochemistry, and thermometry. In fact, their criticism is focused on two topics: 1) our geological mapping, which they claim is not robust; 2) that the Hormuz rhyolites are not of the I-type, formed from subduction-related magmatism in an active continental margin setting but rather claim that these rocks are A-type rhyolites formed in a rift-related or within plate setting.

  8. Geochronology and geochemistry of zircon from the northern Western Gneiss Region: Insights into the Caledonian tectonic history of western Norway

    NASA Astrophysics Data System (ADS)

    Gordon, Stacia M.; Whitney, Donna L.; Teyssier, Christian; Fossen, Haakon; Kylander-Clark, Andrew

    2016-03-01

    The Western Gneiss Region (WGR) of Norway is divided by the Møre-Trøndelag shear zone (MTSZ) into a southern region that contains domains of Caledonian ultrahigh-pressure (UHP) metamorphic rocks (> 2.5 GPa) and a northern area of similar Caledonian-aged rocks that record a maximum pressure reported thus far of 1.5 GPa. Although both regions contain similar lithologies (primarily migmatitic quartzofeldspathic gneiss containing mafic lenses) and structural relationship of basement rocks to infolded nappes, this difference in maximum pressure implies a difference in tectonic history (continental subduction south of the shear zone, none to the north) and raises questions about the role of the MTSZ in the metamorphic history (including exhumation) of the WGR. Previous geochronology results indicated a difference in timing of peak metamorphism (older in north, younger in south). In order to better understand the tectonic history of the northern WGR and the MTSZ, and in particular the late- to post-Caledonian tectonic history, U-Pb zircon geochronology and trace-element abundances were obtained using the split-stream, laser-ablation ICPMS technique from metabasaltic lenses and migmatitic quartzofeldspathic host rocks from the structurally lowest exposed region of the northern WGR (Roan Peninsula basement), as well as leucosomes from an intercalated portion of the Seve Nappe Complex and a pegmatite in the MTSZ. Zircon from Roan gneiss and metabasite yield metamorphic ages of ca. 410-406 Ma, and zircon from a variety of migmatite samples (foliation-parallel leucosome to dikes) indicate melt crystallization at ca. 410 to 405 Ma. The Seve Nappe leucosomes yield only early Caledonian dates that cluster at ca. 437 Ma and ca. 465 Ma, suggesting that the allochthons in this region did not experience (or record) the same Scandian tectonic history as the basement rocks. Zircon from a weakly deformed pegmatite dike within the MTSZ crystallized at ca. 404 Ma, indicating that this

  9. A-type granites from the Guéra Massif, Central Chad: Petrology, geochemistry, geochronology, and petrogenesis.

    NASA Astrophysics Data System (ADS)

    Pham, Ngoc Ha T.; Shellnutt, J. Gregory; Yeh, Meng-Wan; Lee, Tung-Yi

    2017-04-01

    The poorly studied Saharan Metacraton of North-Central Africa is located between the Arabian-Nubian Shield in the east, the Tuareg Shield in the west and the Central African Orogenic Belt in the south. The Saharan Metacraton is composed of Neoproterozoic juvenile crust and the relics of pre-Neoproterozoic components reactivated during the Pan-African Orogeny. The Republic of Chad, constrained within the Saharan Metacraton, comprises a Phanerozoic cover overlying Precambrian basement outcroppings in four distinct massifs: the Mayo Kebbi, Tibesti, Ouaddaï, and the Guéra. The Guéra massif is the least studied of the four massifs but it likely preserves structures that were formed during the collision between Congo Craton and Saharan Metacraton. The Guéra Massif is composed of mostly granitic rocks. The granitoids have petrologic features that are consistent with A-type granite, such as micrographic intergrowth of sodic and potassic feldspar, the presence of sodic- and iron-rich amphibole, and iron-rich biotite. Compositionally, the granitic rocks of the Guéra Massif have high silica (SiO2 ≥ 68.9 wt.%) content and are metaluminous to marginally peraluminous. The rocks are classified as ferroan calc-alkalic to alkali-calcic with moderately high to very high Fe* ratios. The first zircon U/Pb geochronology of the silicic rocks from the Guéra Massif yielded three main age groups: 590 Ma, 570 Ma, 560 Ma, while a single gabbro yielded an intermediate age ( 580 Ma). A weakly foliated biotite granite yielded two populations, in which the emplacement age is interpreted to be 590 ± 10 Ma, whereas the younger age (550 ± 11 Ma) is considered to be a deformation age. Furthermore, inherited Meso- to Paleoproterozoic zircons are found in this sample. The geochemical and geochronology data indicate that there is a temporal evolution in the composition of rocks with the old, high Mg# granitoids shifting to young, low Mg# granitoids. This reveals that the A-type granites in

  10. The Geochronology and Geochemistry of Caldera-related Plutons in the Southern Rocky Mountain Volcanic Field: Insight into the Volcanic-plutonic Connection

    NASA Astrophysics Data System (ADS)

    Zimmerer, M. J.; Mills, R. D.; Tappa, M. J.; McIntosh, W. C.; Coleman, D. S.

    2009-12-01

    source of the Wall Mountain Tuff. Four zircon ages indicate emplacement at ~35.4 Ma. Ar-Ar biotite ages are between 35.7 and 30.7 Ma, suggesting protracted emplacement or thermal resetting. Whole-rock Sr, Nd, and Pb isotopes of the Wall Mountain Tuff and Mt. Princeton batholith do not overlap, indicating the two are not related. A single resurgent pluton intrudes the intracaldera Badger Creek Tuff and is geochemically and temporally similar to the caldera forming ignimbrite. The relationship between the Mt. Princeton batholith and regional ignimbrites is still unclear. The Mt. Princeton batholith may represent Wall Mountain postcaldera magmatism or Badger Creek precaldera magmatism. Additional geochronology and geochemistry of Mt. Princeton batholith will help determine this relationship.

  11. Geochemistry and U-Pb geochronology of detrital zircons in the Brujas beach sands, Campeche, Southwestern Gulf of Mexico, Mexico

    NASA Astrophysics Data System (ADS)

    Tapia-Fernandez, Hector J.; Armstrong-Altrin, John S.; Selvaraj, Kandasamy

    2017-07-01

    This study investigated the bulk sediment geochemistry, U-Pb ages and rare earth element (REE) geochemistry of one hundred detrital zircons recovered from the Brujas beach sands in southwestern Gulf of Mexico to understand the provenance and age spectra. The bulk sediments are high in Zr and Hf contents (∼1400-3773 ppm and ∼33-90 ppm, respectively) suggested the abundance of resistant mineral zircon. The chondrite normalized REE patterns of the bulk sediments are less fractionated with enriched low REE (LREE; LaCN/SmCN = ∼491-693), depleted heavy REE (HREE; GdCN/YbCN = ∼44-69) and a negative Eu anomaly (Eu/Eu∗ = ∼0.44-0.67) suggested that the source rock is felsic type. The results of this study revealed highly varied contents of Th (∼4.2-321 ppm), U (∼20.7-1680 ppm), and Hf (∼6970-14,200 ppm) in detrital zircons compared to bulk sands. The total REE content (∼75 and 1600 ppm) and its chondrite-normalized pattern with positive Ce and negative Eu anomalies as well as low Th/U ratio of zircon grains indicated that they were dominantly of magmatic origin. U-Pb data of zircons indicated two age populations, with predominance of Permian-Triassic (∼216-286 Ma) and Neoproterozoic (∼551-996 Ma). The Permian-Triassic zircons were contributed by the granitoids and recycled metasedimentary rocks of the Chiapas Massif Complex. The major contribution of Neoproterozoic zircons was from the Chaucus, Oaxacan, and Chiapas Massif Complexes in Grenville Province, southern Mexico. U-Pb ages of zircons from the Brujas beach are consistent to the reported zircon ages from the drainage basins of Usumacinta, Coatzacoalcos, and Grijalva Rivers in southern Mexico, suggesting that the sediments delivered by the rivers to the beach area are vital in defining the provenance of placers.

  12. Black monazite from Taiwan

    USGS Publications Warehouse

    Matzko, J.J.; Overstreet, W.C.

    1977-01-01

    Two forms of detrital monazite are known in offshore bars in southwestern Taiwan: a yellow-green to colorless form and an unusual but abundant pelletlike form, generally black but also colored gray or brown. These black pellets, which are about 160 by 200 microns in size, are composed of fine-grained monazite crystals from 2 to 20 microns in size. The pellets are associated with highly variable amounts of discrete grains of detrital quartz, rutile, amphibole, tourmaline, and other minerals. Intergrown with the monazite are quartz, a cerium oxide mineral, chlorite, sulfides, and other minerals. Opaqueness of the pelletlike monazite is due principally to the cryptocrystalline nature of part of the monazite; only a small part of the opaqueness can be attributed to opaque inclusions. The black pelletlike monazite lacks thorium and has a high content of europium. In this respect, as in color, shape, size, and inclusions, the pelletlike monazite differs from the yellow-green detrital monazite. Despite the fact that they occur together in the littoral placers, they appear to have had different origins. The yellow-green monazite originated as an accessory mineral in plutonic rocks and has accumulated at the coast through erosion and transport. The origin of the pelletlike monazite is as yet unknown, but it is here inferred that it originated in unconsolidated coastal plain sediments through migration of cerium from the detrital monazite during weathering, and of the intermediate weight mobile rare earths from clay minerals during diagenesis. Possibly these pelletlike grains are detrital particles formed through erosion and transport from originally larger aggregates cemented by diagenetic monazite.

  13. Geochemistry and Re-Os geochronology of the organic-rich sedimentary rocks in the Jingtieshan Fe-Cu deposit, North Qilian Mountains, NW China

    NASA Astrophysics Data System (ADS)

    Yang, Xiuqing; Zhang, Zuoheng; Li, Chao; Duan, Shigang; Jiang, Zongsheng

    2016-04-01

    The Jingtieshan Group in the North Qilian Mountains, NW China, is dominantly composed of banded iron formations (BIFs), copper deposits and organic-rich sedimentary rocks (ORS, carbonaceous phyllite). X-ray diffraction analysis of the ORS shows the mineral assemblage to be quartz + clay minerals. The total organic carbon contents show a range of 0.44-1.72%. Here we present the results of the geochemistry and Re-Os geochronology of the ORS from the Jingtieshan Group. The high values of Chemical Index of Alteration (CIA), Chemical Index of Weathering (CIW), Plagioclase Index of Alteration (PIA), and Th/U ratio, indicate intense weathering. The Al2O3/TiO2, Zr/Sc, Th/Sc, La/Th ratios, high rare earth elements abundances, light rare earth elements enrichment (normalized to chondrite), and distinctly negative Eu anomalies, suggest that the Jingtieshan Group ORS were derived mainly from felsic volcanic units. The new Re-Os isochron age of 1308 ± 100 Ma (2σ, n = 6, MSWD = 23) broadly overlap with the previous published ages determined using Sm-Nd and U-Pb isotope systems. The new age represents the depositional age of the Jingtieshan Group, as well that of BIF in the Jingtieshan area. Furthermore, the initial 187Os/188Os ratios (0.44 ± 0.07) indicate that the Os in the seawater was dominantly derived from hydrothermal fluids (∼75%). The Ce anomaly (Ce/Ce∗ = 0.95-1.00) and V/(V + Ni) ratios (0.71-0.86), as well as the lack of enrichment in redox-sensitive trace elements such as U, V, Zn, Pb, Cu, Ni, Cr, Co and Mn, together with the presence of overlying BIF, suggest that the Jingtieshan area represents a ferruginous deep-water succession. This, and intense submarine hydrothermal activities contributed to the deposition of the Jingtieshan BIF.

  14. The plutonic-volcanic connection in porphyry copper deposits: Evidence from zircon geochemistry and high-precision CA-ID-TIMS geochronology

    NASA Astrophysics Data System (ADS)

    Buret, Y.; Von Quadt, A.; Wotzlaw, J. F.; Heinrich, C. A.

    2016-12-01

    Porphyry Cu deposits represent the interface between plutonic and volcanic domains of upper crustal magmatic systems. These deposits are typically composed of multiple porphyritic intrusions which constrain the duration of ore formation to a maximum of several 104 years [1] and are commonly intruded into the base of volcanoes. The relationship between volcanic activity and porphyry stocks is often difficult to establish, as they are rarely exposed together unless later faulting and/or tilting occurred [2]. In order to investigate the relationships between extrusive magmatism and porphyry Cu formation we compare zircon petrochronology from late stage volcanic units with the nearby world class Bajo de la Alumbrera porphyry Cu deposit, from the Late Miocene Farallón Negro Volcanic Complex (FNVC) in Northwest Argentina. In this study we texturally characterise zircon crystals by CL-imaging prior to obtaining in-situ geochemical and geochronological information by LA-ICP-MS. Analysed zircon grains were then extracted and analysed by high precision CA-ID-TIMS. This approach has the two-fold benefit of screening for inherited cores, and obtaining texturally defined geochemical information, prior to dissolution of the zircon crystal for CA-ID-TIMS analysis. We use this information to establish temporal and geochemical links between studied volcanic and porphyry units in the FNVC. The results of this study suggest a close temporal and genetic link between the Bajo de la Alumbrera porphyry Cu deposit and the late stage volcanism at the FNVC. Voluminous explosive volcanism immediately following porphyry formation has important implications for the thermal and rheological state of the magma that is parental to the porphyries and fed the eruption. Further work investigating the geochemistry of other accessory and major minerals could shed further light on the evolution of the magmatic body prior to eruption/ emplacement. References: [1] Buret et al. (2016) EPSL 450:120-131; [2

  15. Geology, geochronology, and geochemistry of basaltic flows of the Cat Hills, Cat Mesa, Wind Mesa, Cerro Verde, and Mesita Negra, central New Mexico

    USGS Publications Warehouse

    Maldonado, F.; Budahn, J.R.; Peters, L.; Unruh, D.M.

    2006-01-01

    The geochronology, geochemistry, and isotopic compositions of basaltic flows erupted from the Cat Hills, Cat Mesa, Wind Mesa, Cerro Verde, and Mesita Negra volcanic centres in central New Mexico indicate that each of these lavas had unique origins and that the predominant mantle involved in their production was an ocean-island basalt type. The basalts from Cat Hills (0.11 Ma) and Cat Mesa (3.0 Ma) are similar in major and trace element composition, but differences in MgO contents and Pb isotopic values are attributed to a small involvement of a lower crustal component in the genesis of the Cat Mesa rocks. The Cerro Verde rock is comparable in age (0.32 Ma) to the Cat Hills lavas, but it is more radiogenic in Sr and Nd, has higher MgO contents, and has a lower La/Yb ratio. This composition is explained by the melting of an enriched mantle source, but the involvement of another crustal component cannot be disregarded. The Wind Mesa rock is characterized by similar age (4.01 Ma) and MgO contents, but it has enriched rare-earth element contents compared with the Cat Mesa samples. These are attributed to a difference in the degree of partial melting of the Cat Mesa source. The Mesita Negra rock (8.11 Ma) has distinctive geochemical and isotopic compositions that suggest a different enriched mantle and that large amounts of a crustal component were involved in generating this magma. These data imply a temporal shift in magma source regions and crustal involvement, and have been previously proposed for Rio Grande rift lavas. ?? 2006 NRC Canada.

  16. Decoding polyphase migmatites using monazite petrochronology

    NASA Astrophysics Data System (ADS)

    Yakymchuk, C.; Brown, M.; Korhonen, F. J.; Piccoli, P. M.; Siddoway, C. S.

    2014-12-01

    Unraveling the P-T-t evolution of deep crustal rocks requires the use of multiple high-temperature geochronometers integrated with careful petrography and quantitative phase equilibria modeling. As an example, in situ U-Pb monazite ages and Lu-Hf garnet geochronology are used to distinguish mineral parageneses associated with overprinting suprasolidus metamorphic events in migmatitic paragneisses and orthogneisses from the Fosdick migmatite-granite complex in West Antarctica. Then phase equilibria modeling is used to quantify the P-T conditions for each event. In the Fosdick complex, U-Pb monazite ages define two populations at 365-300 Ma (minor population; cores of polychronic grains) and 120-96 Ma (dominant population; monochronic grains and rims of polychronic grains). For seven samples, Lu-Hf ages of garnet range from 116 to 111 Ma, which are interpreted to record the approximate timing of peak metamorphism during the overprinting Cretaceous metamorphic event. Phase equilibria modeling constrains peak P-T conditions to 720-800°C at 0.45-1.0 GPa for the older (Devonian-Carboniferous) metamorphic event and 850-880°C at 0.65-0.80 GPa for the overprinting Cretaceous event. This younger metamorphic event is dominant throughout the Fosdick complex; it has extensively reworked evidence of the older metamorphic event as indicated by resorbed Devonian-Carboniferous cores of polychronic monazite grains that are always surrounded by Cretaceous overgrowths. Within the Cretaceous monazite population, the paucity of ages predating peak metamorphism suggests that prograde monazite growth was limited or prograde monazite was obliterated. Y-enriched overgrowths on monazite spatially associated with cordierite and biotite yield ages of 106-97 Ma, which are interpreted to record growth during breakdown of garnet in the presence of melt in the course of exhumation and cooling of the complex. Most monazite in the Cretaceous population yields ages that range from 106 to 96 Ma with

  17. U-Pb geochronology and geochemistry of the McCoy Mountains Formation, southeastern California: A Cretaceous retroarc foreland basin

    USGS Publications Warehouse

    Barth, A.P.; Wooden, J.L.; Jacobson, C.E.; Probst, K.

    2004-01-01

    The timing of deposition of fluvial sediments now forming the >7-km-thick McCoy Mountains Formation is one of the key uncertainties in reconstructing the Mesozoic poleogeography of southern California and western Arizona. Ion-microprobe U-Pb geochronologic data for individual zircons from nine sandstones from the McCoy Mountains type section and six associated igneous rocks provide significant new constraints on the tectonic setting and the timing of deposition within the northwest-trending McCoy basin. U-Pb zircon data from a metavolcanic rock of the underlying Dome Rock sequence in the Palen Mountains confirm that the McCoy Mountains Formation was deposited after regional Middle to Late Jurassic arc magmatism. U-Ph zircon data from a Late Cretaceous granodiorite intruding the formation in the Coxcomb Mountains confirm that the formation was deformed and metamorphosed prior to 73.5 ?? 1.3 Ma. Populations of detrital zircons vary systematically with both rock type and stratigraphic height; lithic arkoses predominantly derived from the west have consistently more abundant younger zircons than do litharenite sandstones predominantly derived from the north, and the youngest zircons yield maximum depositional ages that decrease from 116 Ma near the base to 84 Ma near the top of the section. The detrital-zircon data permit a Late Jurassic age for the basal, comparatively quartz-rich sandstone. However, the data further suggest that >90% of the formation was deposited between middle Early and middle Late Cretaceous time. These results are consistent with the hypothesis that most of the McCoy Mountains Formation represents a retroarc foreland basin, deposited behind the active, evolving Cretaceous Cordilleran continental-margin magmatic arc that lay to the west and in the foreland of the actively deforming Cretaceous Maria fold-and-thrust belt.

  18. Resetting Monazite Dates by Fluid Moderated Coupled Dissolution-Reprecipitation

    NASA Astrophysics Data System (ADS)

    Williams, M. L.; Jercinovic, M. J.; Harlov, D. E.; Budzyn, B.

    2009-12-01

    Monazite has increasingly been used as a geochronometer, especially in deformed and metamorphosed rocks. Monazite is appropriate for this application because it has a very broad compositional range, and can be produced in a number of chemical reactions. Because diffusion is slow, monazite compositions tend to be preserved as core and rim domains. Ideally, the compositional and textural domains can be linked with structural fabrics and/or metamorphic reactions and thus, provide a means of directly dating the deformation events or metamorphic reactions. The use of multidomain monazite to constrain stages in a P-T history depends on the assumption that compositions and ages are essentially unmodified during subsequent events. Although closure temperatures are certainly high, recent studies suggest that under some circumstances, monazite compositions (and possibly dates) can be modified by fluid-moderated coupled dissolution-reprecipitation processes. This is particularly important for geochronologic studies because the replacement process may not involve the complete removal of some components, such as Pb, and thus spurious dates, either older or younger than the true age, could possibly result. We show results of one experimental investigation in which the starting monazite was strikingly altered to a new monazite composition by solid state dissolution-reprecipitation processes. In some grains, the new monazite occurs in regular domains near the grain boundaries, and might be misinterpreted as overgrowths. In other grains, new monazite occurs internally, near inclusions or microfractures or as irregular patchy domains. Altered domains are generally distinctive and distinguishable from growth domains. The new compositions are extremely uniform from grain to grain (Th: initial= 7.0 wt. %; altered = 2.0 wt%). The altered monazite domains are free of Pb. Thus, at least in this example, the monazite date was essentially reset to zero. The results suggest that it is

  19. Geology, geochemistry and Ar Ar geochronology of the Nangimali ruby deposit, Nanga Parbat Himalaya (Azad Kashmir, Pakistan)

    NASA Astrophysics Data System (ADS)

    Pêcher, A.; Giuliani, G.; Garnier, V.; Maluski, H.; Kausar, A. B.; Malik, R. H.; Muntaz, H. R.

    2002-12-01

    The Nangimali ruby deposit in the southern part of the Nanga Parbat Himalaya, has been investigated through field work, geochemistry, stable and radiogenic isotopes. It outcrops in the Shontar valley in a large north-vergent syncline consisting of high-grade metamorphic gneisses capped by a metasedimentary series dominated by marbles and amphibolites. The ore-body is stratiform. Ruby is found within 0.1-2 cm thick shear-veinlets and gash veins cutting dolomitic marbles and carbonate-bearing bands. The marbles of the Nangimali Formation display restricted ranges in δ18O (from 23.6 to 27.6‰ relative to SMOW) and in δ13C (from -1.9 to 2.6‰ relative to PDB). Fluid infiltration along the shear-zone in the marble has no effect on the isotopic signatures of the carbonates. Fluids are metamorphic and CO 2 is derived from the decarbonation of marbles. Mass-balance and geochemical analyses suggest that the mobilisation by the fluids of aluminium and chromium in the marbles is sufficient to enable the formation of ruby in the shear-zone. Rubies have been indirectly dated using a stepwise 40Ar- 39Ar laser heating technique on syngenetic phlogopites. The Miocene age records a Neogene cooling in the South of the Nanga Parbat massif and a minimum formation age for ruby of 16 Ma.

  20. Detrital zircon U-Pb geochronology, Hf isotopes and geochemistry constraints on crustal growth and Mesozoic tectonics of southeastern China

    NASA Astrophysics Data System (ADS)

    Meng, Lifeng; Li, Zheng-Xiang; Chen, Hanlin; Li, Xian-Hua; Zhu, Chen

    2015-06-01

    In situ U-Pb geochronological, Hf isotopic and REE geochemical analyses of detrital zircons from Mesozoic sandstones in central Jiangxi and east Hunan of the South China Block (SCB) are used to provide not only information about crustal evolution process, but more importantly new constraints on sedimentary provenances as well as Mesozoic basin evolutions in central SCB. A total of 417 concordant zircon analyses define five U-Pb age populations at ca. 2.6-2.3 Ga, ca. 2.0-1.7 Ga, ca. 1.0-0.7 Ga, ca. 500-400 Ma and ca. 300-200 Ma. Integrated analyses of zircon U-Pb ages and Hf isotopes of detrital zircons reveal five episodes of juvenile continental crust growth: ca. 2.5 Ga, ca. 1.7 Ga, ca. 850 Ma, ca. 440 Ma and ca. 230 Ma, with all but the ca. 2.5 Ga episode likely represent that of the SCB. None of the three samples from T3-J1 strata showed strong ca. 1850 Ma and ca. 230 Ma peaks suggesting that the T3-J1 sediments probably sourced from the Yangtze Block. In contrast, stronger peaks of ca. 1850 Ma and ca. 250-230 Ma in post-J1 strata relative to that of T3-J1 strata suggest a dominantly local Cathaysian provenance. In addition, the distinct low εHf(T) values for zircons of ca. 430 Ma from T3-J1 strata in comparison with higher εHf(T) values for that from post-J1 strata also support aforementioned viewpoint. Such sharp changes between the pre-J1 and post-J1 strata coincide with the remarkable change in regional palaeogeography from a broad shallow marine basin in the Late Triassic-Early Jurassic time to a basin-and-range-style province in the Middle Jurassic. The characteristics and time evolution of detrital zircons from the studied area are consistent with the flat-slab subduction model which involves the development of a broad sag basin during the T3-J1 time, and a rapid regional uplift in the Cathaysia Block caused by the reinitiating of normal subduction along the coastal region at ca. 190 Ma.

  1. Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Wang, Zeng-Zhen; Han, Bao-Fu; Feng, Li-Xia; Liu, Bo

    2015-01-01

    The Langshan area is the northeastern part of the Alxa block and adjacent to the Inner Mongolia-Da Hinggan Orogenic Belt (IMDOB) to the north, and geochronological and geochemical studies of the Langshan plutons would be helpful for unraveling the relationship of the magmatism in the Langshan area with that in the IMDOB. Based on zircon U-Pb ages presented in this study and in published papers, five magmatic stages are recognized in Langshan area: Late Silurian (∼418 Ma), Carboniferous (328-304 Ma), Early Permian (294-272 Ma), Late Permian (260-254 Ma) and Middle-Late Triassic (245-227 Ma). The Late Silurian two-mica granite is peraluminous and has a source from ancient continental crust, indicating a collision event. The late Early Carboniferous mafic plutons are subalkaline, show appinitic affinities, and may originate from the subduction-modified continental lithospheric mantle. The late Early Permian granodiorite is weakly peraluminous and high-K calc-alkaline and may be derived from ancient continental crust, while the late Early Permian alkaline gabbro-diorite displays EM I-like Sr-Nd isotopic signatures, indicating an enriched subcontinental lithospheric mantle source. The Late Permian granodiorite is calc-alkaline and peraluminous and may result from the partial melting of ancient lower continental crust, whereas the Late Permian leuconorite belongs to low-K tholeiitic series and has a cumulate origin from an enriched mantle source with the input of juvenile mantle materials. The Paleozoic-Triassic magmatic stages in the Langshan area are consistent with the main magmatic periods in the northern NCC, which are the Late Silurian to Middle Devonian (∼418-386 Ma) and Early Carboniferous to Late Triassic (∼342-211 Ma, with three magmatic stages of Carboniferous, Permian and Triassic). Especially, the Carboniferous to Late Triassic magmatic period in the northern NCC are closely comparable with that in the IMDOB, indicating the two domains might be

  2. Geochemistry and Geochronology of the Heilongjiang Complex and Its Implications in the Late Paleozoic Tectonics of Eastern NE China

    NASA Astrophysics Data System (ADS)

    GE, M.; Zhang, J.; Liu, K.; Ling, Y.; Wang, M.; Wang, J.

    2016-12-01

    The Paleozoic to early Mesozoic tectonic framework of Northeast China, especially the Jiamusi block and its related structural belts, are highly debated. In this contribution, geochemical, geochronological and isotopic analyses were carried out on the basalts in the Heilongjiang complex to address these issues. The Heilongjiang complex defines the suture belt between the Jiamusi block and the Songliao block in Northeast China, and the blueschist is a major composition for this complex, coexisting with ultramafic rocks, amphibolite, greenschist, quartzite and mica schist. The blueschist has a mineral association of sodic amphibole, epidote, chlorite, phengite, albite and quartz with accessory phases of apatite, titanite, zircon and ilmenite. Together with the lithological association, the geochemical results present that the protoliths of the blueschist can be divided into the alkaline and tholeiitic basalts and have OIB affinities, formed in an ocean island setting, indicated by the (La/Yb) N values of 3.57 - 11.54, and the (La/Sm) N values of 0.69 - 3.64. The high and positive ɛNd (t) values of + 3.7 to +9.0, and relative enrichment in Nb and Ta show that both the alkaline and tholeiitic basalts may be derived from the asthenospheric mantle. Magmatic zircons from the blueschist in Yilan area yield a 206Pb/238U age of 281 - 288 Ma, interpreted as its protolithic age. The amphibolite from Xiachengzi area has a zircon U-Pb age of 248 ± 4 Ma, interpreted as its protolith age and has N-MORB affinities, supported by (La/Yb)N ratios of 0.60-0.89 and (La/Sm)N of 0.62-0.84, and high ɛNd (t) values ranging from + 7.8 to + 9.5, deriving from a depleted mantle source. A new 40Ar/39Ar amphibole plateau age of 195 ± 3 Ma and a youngest age of 200 Ma of the detrital zircons from Heilongjiang complex are reported to constrain the metamorphic age of the Heilongjiang complex. In addition, a huge north-south trending granitic belt generated from 174 Ma - 200 Ma has been

  3. Evolution of Pleistocene to Holocene eruptions in the Lesser Caucasus Mts:Insights from geology, petrology, geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Savov, Ivan; Meliksetian, Khachatur; Connor, Charles; Karakhanian, Arkadi; Sugden, Patrick; Navasardyan, Gevorg; Halama, Ralf; Ishizuka, Osamu; Connor, Laura; Karapetian, Sergei

    2016-04-01

    Both effusive and highly explosive (VEI>5) and often voluminous caldera volcanism has developed atop the collision zone between the Arabian and the Eurasian plates. Currently what is exposed on the Anatolian-Armenian-Iranian active orogenic plateau is post-Mesozoic felsic to intermediate collision-related plutons, and mostly collision or post-collision related Quaternary volcanic structures. We have studied in detail the volcanism, tectonics and geophysics on the territory of E.Turkey and Armenia, where several large stratovolcanoes (Ararat, Lesser Ararat, Aragats, Tsghuk, Ishkhanasar) are surrounded by distinct monogenetic volcanic fields (distributed volcanism). These large in volume stratovolcanoes and the associated low volume monogenetic cones range from normal calk-alkaline to high-K shoshonitic in affinity, with their products ranging from basanites to high K trachytes and rhyolites. Several volcanic provinces, namely Kechut/Javakheti, Aragats, Gegham, Vardenis and Syunik are recognized in Armenia and each of them has > 100 mapped volcanoes. These have distinct geochemical (mineral chemistry, trace element and Sr-Nd-B isotope systematics) and petrological (melt eruption temperatures and volatile contents) fingerprints that may or may not vary over time. Age determinations and volcano-stratigraphy sections for each of the case studies we aim to present shows that the volcanism includes a continuous record from Pleistocene to Holocene, or even historical eruptions. The excellent volcano exposures and the now complete high resolution database (GIS), geological mapping, and new and improved K-Ar and Ar-Ar geochronology, uniquely allows us to evaluate the driving forces behind the volcanism in this continent-continent collision setting that is uniquely associated with long lasting eruption episodes. We shall compare the now well studied historical/Holocene eruptions with those pre-dating them, with the aim to identify possible geochemical or petrological

  4. Papuan Ultramafic Belt (PUB) Ophiolite: Field Mapping, Petrology, Mineral chemistry, Geochemistry, Geochronology, And Experimental Studies Of The Metamorphic Sole

    NASA Astrophysics Data System (ADS)

    Lus, W. Y.; Green, D.; McDougall, I.; Eggins, S.; Davies, H.

    2001-12-01

    The Papuan Ultramafic Belt (PUB) ophiolite in Papua New Guinea (PNG) is a large and well known section of former oceanic crust and upper mantle exposed in the western Pacific region. The PUB ophiolite was emplaced onto the southeast PNG continental crust possibly in the early Cenozoic . Detailed west-east transects during field mapping in the Musa-Kumusi divide area has shown that the Emo Metamorphics grade into amphibolites which grade up into the granulites which grade up into or are in contact with the ultramafic base of the PUB ophiolite. The ultramafics at the base of the PUB consist of harzburgites, and banded peridotites consisting of lherzolite, pyronenite and harzburgite layers. The harzburgites in the ultramafics have Fo92 olivine but there are small and correlated differences in Cr/Al ratio of both spinel and orthopyroxene and in CaO content. The pyroxenes in the lherzolite are very Ca-rich diopside and co-existing orthopyroxene with low CaO content, but higher than that of orthopyroxene in harzburgite. Temperature of equilibration by two pyroxene thermometry is 814-865oC, at 3 kbar. Hornblende is the dominant mineral phase in the granulites and amphibolites coexisting with olivine, orthopyroxene, clinopyroxene, plagioclase, ilmenite, magnetite. Lower SiO2, CaO, Al2O3 and higher MgO, TiO2, (Na2O+K2O), P2O5 contents of the granulites and the high MgO content and normative olivine (10% ) suggest that the sole granulites are essentially picritic in composition and are similar or transitional to the basic rocks of the Emo Metamorphics, and differ from the gabbroic rocks of the PUB ophiolite in lower TiO2, lower Na2O, higher Al2O3, lower FeO and lower P2O5 of the PUB, at similar MgO contents. A conventional A K-Ar, 40Ar-39Ar total fusion and incremental step-heating 40Ar-39Ar geochronological study on the metamorphic sole using amphiboles from emplacement-related granulites and amphibolites have been concluded. Sandwich melting experiments have been conducted

  5. Geochronology and geochemistry of the high Mg dioritic dikes in Eastern Tianshan, NW China: Geochemical features, petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Li, Deng-Feng; Zhang, Li; Chen, Hua-Yong; Hollings, Pete; Cao, Ming-Jian; Fang, Jing; Wang, Cheng-Ming; Lu, Wan-Jian

    2016-01-01

    Zircon U-Pb ages of high Mg dioritic dikes in the Mesoproterozoic Kawabulake Group in the Eastern Tianshan area, NW China indicate that they were emplaced in the Early Carboniferous at 353-348 Ma. The dikes consist of medium-grained plagioclase and hornblende with minor clinopyroxene and trace quartz. They are characterized by intermediate SiO2 (60-62 wt.%), low TiO2 (0.63-0.71 wt.%), relatively high Al2O3 (15.1-15.8 wt.%) and MgO contents (3.45-4.15 wt.%) with Mg# generally higher than 56 (56-59). The geochemistry of the high Mg diorites suggest they were formed by similar magmatic processes to sanukitoid high Mg Andesites such as those of the Setouchi volcanic belt, Japan. Zircons from the high Mg dioritic dikes have εHf(t) values of -6.8 to +14.5. The dominantly positive values suggest a juvenile source, whereas the small number of negative values suggests mature components were also incorporated into the source. Similarly, the positive εNd(t) values (0 to +2.2) are interpreted to reflect a juvenile source whereas the negative values of (-5.2 to 0) suggest participation of old crustal rocks in the petrogenesis of the diorites. The variable εHf(t) and εNd(t) values suggest that the mature material was assimilated during magma ascent rather than in the mantle wedge which would result in more uniform values. Mass balance calculations suggest that the dioritic dikes were derived from sources composed of approximately 97% juvenile mantle-derived material and 3% sediment. Petrographic, elemental, and isotopic evidence suggest that the dioritic dikes were generated by partial melting of depleted mantle that migrated into the shallow crust where it assimilated older sedimentary rocks of the Mesoproterozoic Kawabulake Group.

  6. U-Pb-Th geochronology of monazite and zircon in albitite metasomatites of the Rožňava-Nadabula ore field (Western Carpathians, Slovakia): implications for the origin of hydrothermal polymetallic siderite veins

    NASA Astrophysics Data System (ADS)

    Hurai, V.; Paquette, J.-L.; Lexa, O.; Konečný, P.; Dianiška, I.

    2015-10-01

    Sodic metasomatites (albitites) occur around and within siderite veins in the southern part of the Gemeric tectonic unit of the Western Carpathians. Accessory minerals of the metasomatites represented by monazite, zircon, apatite, rutile, tourmaline and siderite are basically identical with the quartz-tourmaline stage of other siderite and stibnite veins of the tectonic unit. Statistical analysis of chemical Th-U(total)-Pb isochron method (CHIME) of monazite dating yielded Jurassic-Cretaceous ages subdivided into 3-4 modes, spreading over time interval between 78 and 185 Ma. In contrast, LA-ICPMS 206Pb/238U dating carried out on the same monazite grains revealed a narrow crystallization interval, showing ages of Th-poor cores with phengite inclusions identical within the error limit with Th-rich rims with cauliflower-like structure. The determined lower intercept at 139 ± 1 Ma overlapped the Vallanginian-Berriasian boundary, thus corroborating the model of formation of hydrothermal vein structures within an arcuate deformation front built up in the Variscan basement as a response to Early Cretaceous compression, folding and thrusting. In contrast, associated zircons are considerably older than the surrounding Early-Palaeozoic volcano-sedimentary rocks, showing Neoproterozoic ages. The zircon grains in albitite metasomatites are thus interpreted as fragments of Pan-African magmatic detritus incorporated in the vein structures by buoyant hydrothermal fluids.

  7. Petrology, geochemistry and geochronology of the magmatic suite from the Jianzha Complex, central China: Petrogenesis and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Li, Xiaowei; Mo, Xuanxue; Bader, Thomas; Scheltens, Mark; Yu, Xuehui; Dong, Guochen; Huang, Xiongfei

    2014-12-01

    The intermediate-mafic-ultramafic rocks in the Jianzha Complex (JZC) at the northern margin of the West Qinling Orogenic Belt have been interpreted to be a part of an ophiolite suite. In this study, we present new geochronological, petrological, geochemical and Sr-Nd-Hf isotopic data and provide a different interpretation. The JZC is composed of dunite, wehrlite, olivine clinopyroxenite, olivine gabbro, gabbro, and pyroxene diorite. The suite shows characteristics of Alaskan-type complexes, including (1) the low CaO concentrations in olivine; (2) evidence of crystal accumulation; (3) high calcic composition of clinopyroxene; and (4) negative correlation between FeOtot and Cr2O3 of spinels. Hornblende and phlogopite are ubiquitous in the wehrlites, but minor orthopyroxene is also present. Hornblende and biotite are abundant late crystallized phases in the gabbros and diorites. The two pyroxene-bearing diorite samples from JZC yield zircon U-Pb ages of 245.7 ± 1.3 Ma and 241.8 ± 1.3 Ma. The mafic and ultramafic rocks display slightly enriched LREE patterns. The wehrlites display moderate to weak negative Eu anomalies (0.74-0.94), whereas the olivine gabbros and gabbros have pronounced positive Eu anomalies. Diorites show slight LREE enrichment, with (La/Yb)N ratios ranging from 4.42 to 7.79, and moderate to weak negative Eu anomalies (Eu/Eu∗ = 0.64-0.86). The mafic and ultramafic rocks from this suite are characterized by negative Nb-Ta-Zr anomalies as well as positive Pb anomalies. Diorites show pronounced negative Ba, Nb-Ta and Ti spikes, and typical Th-U, K and Pb peaks. Combined with petrographic observations and chemical variations, we suggest that the magmatism was dominantly controlled by fractional crystallization and crystal accumulation, with limited crustal contamination. The arc-affinity signature and weekly negative to moderately positive εNd(t) values (-2.3 to 1.2) suggest that these rocks may have been generated by partial melting of the juvenile

  8. The Beiminghe skarn iron deposit, eastern China: Geochronology, isotope geochemistry and implications for the destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    Shen, Jun-Feng; Santosh, M.; Li, Sheng-Rong; Zhang, Hua-Feng; Yin, Na; Dong, Guo-Cheng; Wang, Yan-Juan; Ma, Guang-Gang; Yu, Hong-Jun

    2013-01-01

    The Beiminghe (BMH) iron ore in the southern part of the Taihang Mountain (TM), Hebei province, is one of the largest skarn iron deposits in China. Here we report phlogopite 40Ar-39Ar and zircon U-Pb age data, as well as sulfur, lead, and He-Ar isotope geochemistry of pyrite from the ores and skarnitized rocks in the deposit in an attempt to constrain the timing and mechanism of formation of the mineralization. The phlogopite 40Ar-39Ar and LA-ICP-MS zircon U-Pb data show markedly consistent ages constraining the timing of ore formation as 136-137 Ma. The presence of several inherited zircons with late Archean or Paleoproterozoic ages indicates the participation of the basement rocks during the ore-forming process. The δ34S values of pyrite from the ores range from 12.2 to 16.5‰, with 206Pb/204Pb = 17.84-18.79, 207Pb/204Pb = 15.46-15.62, and 208Pb/204Pb = 37.93-39.75, suggesting that continental crust is the major contributor. This is further confirmed by the He-Ar isotope data (3He/4He = 0.0648-0.1886 Ra, mean 0.1237Ra; 40Ar/36Ar = 311.7-22909.4; and 40Ar*/4He = 0.036-0.421). The Mesozoic magmatism and metallogeny in the BMH correlate well with the peak event of lithospheric thinning and destruction of the North China Craton during this process, the early Precambrian lower crustal rocks in the region were re-melted through underplating of mantle magmas, leading to the formation of the Beiminghe monzodioritic pluton. Minor mantle input occurred during the evolution of the monzodiorite magma, which scavenged the ore-forming materials from the lower crust. Interaction of the magmas and fluids with the surrounding rocks resulted in the formation of the Beiminghe skarn iron deposits. The magmatism and metallogeny in the Taihang Mountain are signatures of the extensive craton destruction and lithospheric thinning in the eastern part of the North China Craton during Mesozoic, probably associated with Pacific slab subduction.

  9. Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet

    NASA Astrophysics Data System (ADS)

    Guilmette, Carl; Hébert, Réjean; Wang, Chengshan; Villeneuve, Mike

    2009-09-01

    Strongly foliated amphibolite clasts are found embedded within the ophiolitic mélange underlying the Xigaze Ophiolite near Bainang and Angren, Yarlung Zangbo Suture Zone, Southern Tibet. These high-grade amphibolites are interpreted as remnants of a dismembered subophiolitic metamorphic sole that would have formed during the inception of a subduction. They include garnet-clinopyroxene amphibolites, clinopyroxene amphibolites and common amphibolites. Petrographic descriptions, mineral chemistry and thermobarometry of these rocks can be found in a companion paper [Guilmette, C., Hébert, R., Dupuis, C., Wang, C.S., Li, Z.J., 2008. Metamorphic history and geodynamic significance of high-grade metabasites from the ophiolitic mélange beneath the Yarlung Zangbo Ophiolites, Xigaze area, Tibet. Journal of Asian Earth Sciences, 32, 423-437.]. The geochemistry of the amphibolites confirms that their protoliths were igneous mafic rocks of basaltic to pyroxenitic composition that were likely part of an upper oceanic crust. Rare Earth Elements contents are suggestive of an N-MORB origin. However, enriched LILEs and depleted Nb-Ta-Ti when compared to N-MORBs rather suggest a suprasubduction zone influence. A large proportion of the overlying ophiolitic mafic rocks share the same geochemical characteristics, suggesting the protoliths of the amphibolites might have crystallized in the same environment as the Xigaze ophiolitic crust, likely in a back-arc basin. 40Ar/39Ar step-heating dating of hornblende concentrates from three samples yielded ages of 123.6 ± 2.9 Ma, 127.7 ± 2.2 Ma and 127.4 ± 2.3 Ma. These cooling ages are slightly younger or overlapping magmatic and sedimentary ages obtained from the overlying ophiolite. All these new data support a model in which the ophiolitic crust and the protolith of the amphibolites were formed along the same spreading center above a subduction zone. The demise of the early subduction circa 130 Ma forced the inception of a new

  10. Thorium Diffusion in Monazite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.

    2006-05-01

    Diffusion of thorium has been characterized in synthetic monazite under dry conditions. The synthetic monazites (either pure CePO4, NdPO4, or a mixed LREE phosphate containing Ce, Nd, and Sm) were grown via a Na2CO3-MoO3 flux method. The source of diffusant for the experiments were either synthesized ThSiO4 or CaTh(PO4)2 powders. Experiments were performed by placing source and monazite in Pt capsules and annealing capsules in 1 atm furnaces for times ranging from 10 days to a few hours, at temperatures from 1400 to 1550C. The Th distributions in the monazite were profiled by Rutherford Backscattering Spectrometry (RBS). The following Arrhenius relation was obtained for diffusion in monazite: DSm = 7.2x103 exp(-814 kJ mol-1/RT) m2sec-1 The diffusivity of Th was similar for monazites containing a single REE and the mixed LREE phosphates. Th diffusion was also similar for experiments run using the Th silicate and Ca-Th phosphate sources, suggesting that the substitutional mechanism for Th in monazite, i.e, Th+4 + Si+4 for REE+3 + P+5 with the ThSiO4 source, and Th+4 + Ca+2 for 2REE+3 with the CaTh(PO4)2 source, does not significantly affect Th diffusivities, and that Th is likely the rate-limiting species. Th diffusion in monazite is about 4 orders of magnitude slower than Pb diffusion (Cherniak et al., 2004). This contrasts with findings of Gardes et al. (2005) who determined that Pb, Th and REE diffusivities in monazite are similar. Th diffusion in zircon (Cherniak et al., 1997) is about an order of magnitude slower than in monazite, but with similar activation energy for diffusion. The smaller diffusivities in zircon may be a consequence of the larger disparity in size between Th and the Zr site in zircon as compared with Th and the REE site in monazite. Nonetheless, Th is essentially immobile in monazite with respect to exchange by volume diffusion under most geologic conditions; these findings may have implications for containment of high- level actinide

  11. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Zhuang, Guangsheng; Najman, Yani; Guillot, Stéphane; Roddaz, Martin; Antoine, Pierre-Olivier; Métais, Grégoire; Carter, Andrew; Marivaux, Laurent; Solangi, Sarfraz H.

    2015-12-01

    Knowledge of the timing of India-Asia collision is a fundamental prerequisite for understanding the evolution of the Himalayan-Tibetan orogen and its role in global climate, oceanic chemistry, and ecological evolution. Despite much active research, the basic pre-collision tectonic configuration and the timing of terminal India-Asia suturing remain debated. For example, debates regarding when and how the intervening Kohistan-Ladakh arc was sutured with India and Asia still remain elusive; some models propose the arc collided with Asia at about 100 Ma, with India-Asia collision at ca. 55 Ma, whilst a newer model proposed the arc's collision with India at 50 Ma and subsequently with Asia at 40 Ma. Another example is the recent proposition that an oceanic Greater India Basin separated the Tethyan Himalaya microcontinent from the remaining Indian plate until 20- 25 Ma with the consumption of this oceanic basin marking the final collision at this time. These controversies relate to whether the commonly documented 50 Ma contact represents the terminal India-Asia suturing or the amalgamation between various arcs or microcontinents with India or Asia. Here we present an integrated provenance study of geochronology, thermochronology, and geochemistry on the late Cretaceous-Pleistocene sediments from the lower Indus basin on the Indian plate. The detrital zircon U-Pb and fission track data show a reversal in sediment source from a pure Indian signature to increasing inputs from the suture zone and the Asian plate between the middle Paleocene and early Oligocene. The Nd and Sr isotopes narrow down this change to 50 Ma by revealing input of Asian detritus and the establishment of a Nd & Sr isotopic pattern similar to the present-day Indus Fan by 50 Ma, with no significant variations up section, contrary to what might be expected if later major collisions had occurred. Our isotopic data indicate that Greater India was occupied by a fluvial-deltaic system, analogous to the

  12. The syncollisional granitoid magmatism and continental crust growth in the West Kunlun Orogen, China - Evidence from geochronology and geochemistry of the Arkarz pluton

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Niu, Yaoling; Hu, Yan; Liu, Jinju; Ye, Lei; Kong, Juanjuan; Duan, Meng

    2016-02-01

    The West Kunlun orogenic belt (WKOB) at the northwest margin of the Greater Tibetan Plateau records seafloor subduction, ocean basin closing and continental collision with abundant syncollisional granitoids in response to the evolution of the Proto- and Paleo-Tethys Oceans from the early-Paleozoic to the Triassic. Here we present a combined study of detailed zircon U-Pb geochronology, whole-rock major and trace elements and Sr-Nd-Hf isotopic geochemistry on the syncollisional Arkarz (AKAZ) pluton with mafic magmatic enclaves (MMEs) exposed north of the Mazha-Kangxiwa suture (MKS) zone. The granitoid host rocks and MMEs of the AKAZ pluton give the same late Triassic age of ~ 225 Ma. The granitoid host rocks are metaluminous granodiorite and monzogranite. They have initial 87Sr/86Sr of 0.70818 to 0.70930, εNd(225 Ma) = - 4.61 to - 3.91 and εHf(225 Ma) = - 3.01 to 0.74. The MMEs are more mafic than the host with varying SiO2 (51.00-63.24 wt.%) and relatively low K2O (1.24-3.02 wt.%), but have similar Sr-Nd-Hf isotope compositions to the host ((87Sr/86Sr)i = 0.70830-0.70955, εNd(225 Ma) = - 4.88 to - 4.29, εHf(225 Ma) = - 2.57 to 0.25). Both the host and MMEs have rare earth element (REE) and trace element patterns resembling those of bulk continental crust (BCC). The MMEs most likely represent cumulate formed from common magmas parental to the granitoid host. The granitoid magmatism is best explained as resulting from melting of amphibolite of MORB protolith during continental collision, which produces andesitic melts with a remarkable compositional similarity to the BCC and the inherited mantle-like isotopic compositions. Simple isotopic mixing calculations suggest that ~ 80% ocean crust and ~ 20% continental materials contribute to the source of the AKAZ pluton. Thus, the hypothesis "continental collision zones as primary sites for net continental crust growth" is applicable in the WKOB as shown by studies in southern Tibet, East Kunlun and Qilian orogens. In

  13. Geochemistry and geochronology of the mafic dikes in the Taipusi area, northern margin of North China Craton: Implications for Silurian tectonic evolution of the Central Asian Orogen

    NASA Astrophysics Data System (ADS)

    Wu, Jing-Hua; Li, Huan; Xi, Xiao-Shuang; Kong, Hua; Wu, Qian-Hong; Peng, Neng-Li; Wu, Xi-Ming; Cao, Jing-Ya; Gabo-Ratio, Jillian Aira S.

    2017-07-01

    The Taipusi area in the Bainaimiao Arc Belt is located in the northern margin of the North China Craton, at the southern margin of the middle Central Asian Orogenic Belt. It is characterized by large exposures of mafic dikes. In this contribution, we present first-hand whole-rock major and trace elements, zircon U-Pb geochronology and in situ trace element geochemistry data for these mafic rocks, which reveal their petrogenesis and tectonic evolution. These mafic dikes display varied compositions of SiO2 (49.42-54.29%), TiO2 (0.63-1.08%), Al2O3 (13.94-17.60%), MgO (4.66-10.51%), Fe2O3 (1.59-3.07%), FeO (4.60-6.90%), CaO (4.57-8.91%), Na2O (1.61-4.26%), K2O (0.92-2.54%) and P2O5 (0.11-0.29%). They are mainly of high-K calc-alkaline series with indistinct Eu anomalies, enriched in large ion lithophile elements (e.g., Rb, Ba, K and Sr) but depleted in high field strength elements (e.g., Nb, P and Ti). These suggest that the crystallizing magma was derived from enriched mantle altered by metasomatic fluids in a subduction setting with imprints of active continental margin features. The high concentrations of Hf, U, Th, Pb and Y, pronounced positive Ce but slightly negative Eu anomalies in zircons indicating that the magma underwent a fractional crystallization and crustal contamination process, with medium to high fO2. Zircon LA-ICP-MS U-Pb dating yielded concordant ages of 437-442 Ma for these mafic dikes, which is consistent with the early Paleozoic volcanic arc magmatic activity in the Bainaimiao area. Hence, we conclude that the Bainaimiao Arc Belt is a continental arc formed by the southward subduction of the Paleo-Asian ocean during early Paleozoic.

  14. Geochemistry, geochronology, and origin of the Neoarchean Planalto Granite suite, Carajás, Amazonian craton: A-type or hydrated charnockitic granites?

    NASA Astrophysics Data System (ADS)

    Feio, G. R. L.; Dall'Agnol, R.; Dantas, E. L.; Macambira, M. J. B.; Gomes, A. C. B.; Sardinha, A. S.; Oliveira, D. C.; Santos, R. D.; Santos, P. A.

    2012-10-01

    New whole-rock geochemistry and LA-MC-ICPMS and Pb-evaporation geochronological data were obtained on zircon from the Neoarchean Planalto suite granites and associated charnockitic rocks of the Canaã area of the Carajás province, eastern Amazonian craton, Brazil. The Pb-evaporation ages of three samples from the Planalto suite are around 2730 Ma (2733 ± 2 Ma, 2731 ± 1 Ma and 2736 ± 4 Ma), whereas U-Pb LA-MC-ICPMS concordia ages obtained for these samples are 2729 ± 17 Ma, 2710 ± 10 Ma, and 2706 ± 5 Ma, respectively. An orthopyroxene quartz gabbro associated with the Pium complex and Planalto suite yielded a U-Pb concordia age of 2735 ± 5 Ma, interpreted as its crystallization age. The Planalto suite granites and the charnockitic rocks associated with the Mesoarchean Pium complex were probably crystallized at 2730 ± 10 Ma. The Planalto granites have ferroan character and are similar geochemically to reduced A-type granites. In previous studies, they have been classified as such, despite the fact that they are syntectonic. The tectonic setting and the association between the Planalto suite and charnockitic series led us to classify these biotite-hornblende granites as hydrated granites of the charnockitic series. The Planalto suite and the Neoarchean charnockitic magmas were more probably derived by partial melting of mafic to intermediate tholeiitic orthopyroxene-bearing rocks similar to those of the Pium complex. At 2.76 Ga, upwelling of asthenospheric mantle in an extensional setting propitiated the formation of the Carajás basin. Later on, at ca. 2.73 Ga, heat input associated with underplate of mafic magma induced partial melting of mafic to intermediate lower crustal rocks, originating the Planalto and charnockitic magmas. The emplacement of these magmas occurred under active regional stress and resultant major shear zones found in the Canaã dos Carajás area. The close association between the Planalto suite and charnockitic rocks suggests that they

  15. Contrasted monazite and allanite crystalline lattice responses under hydrothermal alteration

    NASA Astrophysics Data System (ADS)

    Poitrasson, F.

    2004-05-01

    Various cases of monazite and allanite hydrothermal alteration have been studied using micro-imaging (BSE-SEM), in situ spectroscopic (micro-Raman) and in situ chemical approaches (electron microprobe and LA-ICP-MS). These data, combined with literature results lead to the conclusion that monazite displays much more variable responses to fluid-mineral interactions than allanite despite a much simpler crystallographic structure. Depending on the fluid-rock conditions, monazite alteration can translate into cationic substitutions, monoclinic to hexagonal structure transition, dissolution and replacement by allanite, selective thorium removal and replacement by pyrite or dissolution-reprecipitation. In contrast, allanite responses to alteration are rather limited since they consist mostly in the substitution leading to epidote or to the leaching of the A-crystallographic sites prior to mineral dissolution. These results are surprising since monazite has only on cationic site besides that of phosphorous, whereas allanite has six different types of crystallographic sites, and can thus potentially display more variable chemical exchanges with fluids than monazite. This finding can be put in perspective with the tendency of minerals to occur in the metamict state in nature. Silicates, like zircon and allanite are frequently found in such a state, whereas metamict phosphates, like monazite and apatite are rare. It has been shown that this results mostly from the very low annealing temperature, below 200oC, of monazite and apatite, compared to allanite and zircon which need temperatures in excess to 700oC to fully restore their crystal lattice from the amorphous state. Apatite, like monazite, can also show a lot of different cationic substitutions. All these properties can be summarised as a much greater flexibility of the phosphate crystalline lattices compared to the silicate ones and this has important implications for geochronology, fluid-mineral chemical exchanges and

  16. The Siderian-Orosirian magmatism in the Gavião Paleoplate, Brazil: U-Pb geochronology, geochemistry and tectonic implications

    NASA Astrophysics Data System (ADS)

    Pereira Cruz, Simone Cerqueira; Figueiredo Barbosa, Johildo Salomão; Pinto, Marilda Santos; Peucat, Jean-Jacques; Paquette, Jean Louis; Santos de Souza, Jailma; de Souza Martins, Violeta; Júnior, Farid Chemale; Carneiro, Mauricio Antonio

    2016-08-01

    The southern portion of the Gavião Paleoplate is composed by Archean orthogneisses, Archean-Paleoproterozoic metavolcano-sedimentary rocks and Siderian-Rhyacian-Orosirian granitoids. Petrographic, geochemical, U-Pb (Laser Ablation, ICPMS) and Sm-Nd data are presented for five Paleoproterozoic granitoids that were recently mapped: Jussiape II, Lagoa das Almas, Humaitá, Belo Campo and Broco granitoids. These granitoids present U-Pb zircon (LA-ICPMS) ages of 2052 ± 43, 2114 ± 24, 2140 ± 9, 2049 ± 23 and 2038 ± 8 Ma, respectively. In addition to these granitoids, another twenty-five ones were identified and studied by several authors, resulting in a total of twenty-nine plutons. Despite the previous petrography, geochemistry and geochronology studies that have been performed, no model had been proposed to explain the tectonic setting of this extensive granitogenesis. Integration of the new data and the literature has been done and corresponds to the second part of the article. Based on U-Pb dating and geochemical data, Siderian-Rhyacian-Orosirian granitoids of the southern Gavião Paleoplate were classified into five groups, or five suites: 1 (2324 ± 6 to 2091 ± 6.6 Ma), 2a (2054 -6/+8 to 2041 ± 23 Ma), 2b (2066 ± 37 to 2019 ± 32 Ma), 2c (2058 ± 8 to 1852 ± 50 Ma) and 2d (2049 ± 12 to 1929 ± 16 Ma). The granitoids of Group 1 present heterogeneous deformation, while the granitoids of groups 2a to 2d are generally not deformed. Usually the rocks are potassic, but sodic granitic rocks can be found in samples of groups 1, 2c and 2d. Several chemical classification parameters are presented and discussed herein, but it is noteworthy that the granitoids of Group 1 are mainly classified as calcic to calc-alkalic, while the rocks of the second group are mostly classified as alkalic ones. In the remaining groups, the samples vary between calc-alkalic and alkali-calcic. The ɛNd values range between 4.0 and -15.4 and suggest an important and varied share of the

  17. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U-Pb zircon geochronology

    NASA Astrophysics Data System (ADS)

    Hosseini, Mohammad Reza; Hassanzadeh, Jamshid; Alirezaei, Saeed; Sun, Weidong; Li, Cong-Ying

    2017-07-01

    The Urumieh-Dokhtar magmatic belt of Central Iran runs parallel to the Zagros orogenic belt and has been resulted from Neotethys ocean subduction underneath Eurasia. The Bahr Aseman volcanic-plutonic complex (BAC), covering an area 2000 km2 in the Kerman magmatic belt (KMB) in the southern section of the Urumieh-Dokhtar belt, has long been considered as the earliest manifestation of extensive Cenozoic arc magmatism in KMB. The nature and timing of the magmatism, however, is poorly constrained. An area 1000 km2, in BAC and adjacent Razak volcaniclastic complex and Jebal Barez-type granitoids, was mapped and sampled for geochemistry and geochronology. Andesite and basaltic andesite are the main volcanic components in the study area; plutonic bodies vary from tonalite to quartz diorite, granodiorite and biotite-granite. The rocks in BAC display dominantly normal calc-alkaline character. On spider diagrams, the rocks are characterized by enrichments in LILE relative to HFSE and enrichments in LREE relative to HREE. These features suggest a subduction related setting for the BAC. LaN/YbN ratios for the intrusive and volcanic rocks range from 1.41 to 5.16 and 1.01 to 6.42, respectively. These values are lower than those for other known granitoids in KMB, namely the abyssal, dominantly Oligocene Jebal Barez-type (LaN/YbN = 1.66-9.98), and the shallow, dominantly late Miocene Kuh Panj-type (LaN/YbN = 12.97-36.04) granitoids. This suggests a less evolved magma source for the BAC igneous rocks. In Y vs. Nb and Th/Yb vs. La/Yb discrimination diagrams, an island-arc setting is defined for the BAC rocks. The rocks further plot in primitive island-arc domain in Nb vs. Rb/Zr and Y/Nb vs. TiO2 diagrams. The BAC volcanic and plutonic rocks yielded zircon U-Pb ages of 78.1 to 82.7 Ma and 77.5 to 80.8 Ma, respectively. Zircon U-Pb dating of volcanic rocks and granitoids from the adjacent Razak complex and the Jebal Barez-type granitoids indicated 48.2 Ma and 26.1 Ma ages

  18. A review of the geochronology and geochemistry of Late Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China: Implications for magma evolution related to slab break-off and rollback in the Cretaceous

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Qiu, Jian-Sheng; Yang, Xue-Mei

    2014-01-01

    The Cretaceous plutonic suites in the Fujian coastal area include abundant I-type and A-type granitoids and lesser gabbroids. They are important components of the Late Yanshanian magmatic belt along the southeastern coast of China, and define a linear NNE-SSW-trending belt of magmatism. Geochronological, geochemical and geological data from thirty intrusions are summarised in this paper, and the data provide distinct magmatic, geochemical and tectonic patterns in the area. A compilation of geochronological data for these intrusive rocks indicates emplacement mainly from around 125 to 90 Ma, with a major peak from 115 to 90 Ma, and a subordinate peak from 125 to 115 Ma. Besides their temporal and spatial coexistence, all these intrusive rocks have similar geochemical patterns which point to involvement of components from a depleted asthenospheric mantle source for the parental magmas, most probably by magma mixing. The first appearance of sparse I-type granitoids with post-collisional extensional granite affinities, and the emplacement of the Baijuhuajian and Suzhou A-type granites, mark the beginning of extension during the Early Cretaceous at ca. 125 to 119 Ma. The subsequent development of bimodal magmatism at 115 to 90 Ma, with numerous arc-related mafic gabbros and I-type granites, together with some A-type granites, suggests that this major igneous event took place as a response to back-arc extension. On the basis of petrology, geochronology, tectonics, and elemental and isotopic geochemistry, we speculate that break-off and rollback of the subducting Palaeo-Pacific Plate during the Cretaceous were responsible for the Late Yanshanian regional tectono-magmatic evolution in the area. We suggest that this process facilitated a strong and rapid linear upwelling of the asthenospheric mantle beneath the coastal area of southeastern China, with consequential extension of the overlying continental lithosphere, and ultimately the large-scale Late Yanshanian magmatism

  19. The behaviour of monazite from greenschist facies phyllites to anatectic gneisses: An example from the Chugach Metamorphic Complex, southern Alaska.

    PubMed

    Gasser, Deta; Bruand, Emilie; Rubatto, Daniela; Stüwe, Kurt

    2012-03-01

    Monazite is a common accessory mineral in various metamorphic and magmatic rocks, and is widely used for U-Pb geochronology. However, linking monazite U-Pb ages with the PT evolution of the rock is not always straightforward. We investigated the behaviour of monazite in a metasedimentary sequence ranging from greenschist facies phyllites into upper amphibolites facies anatectic gneisses, which is exposed in the Eocene Chugach Metamorphic Complex of southern Alaska. We investigated textures, chemical compositions and U-Pb dates of monazite grains in samples of differing bulk rock composition and metamorphic grade, with particular focus on the relationship between monazite and other REE-bearing minerals such as allanite and xenotime. In the greenschist facies phyllites, detrital and metamorphic allanite is present, whereas monazite is absent. In lower amphibolites facies schists (~ 550-650 °C and ≥ 3.4 kbar), small, medium-Y monazite is wide-spread (Mnz1), indicating monazite growth prior and/or simultaneous with growth of garnet and andalusite. In anatectic gneisses, new low-Y, high-Th monazite (Mnz2) crystallised from partial melts, and a third, high-Y, low-Th monazite generation (Mnz3) formed during initial cooling and garnet resorption. U-Pb SHRIMP analysis of the second and third monazite generations yields ages of ~ 55-50 Ma. Monazite became unstable and was overgrown by allanite and/or allanite/epidote/apatite coronas within retrograde muscovite- and/or chlorite-bearing shear zones. This study documents polyphase, complex monazite growth and dissolution during a single, relatively short-lived metamorphic cycle.

  20. The behaviour of monazite from greenschist facies phyllites to anatectic gneisses: An example from the Chugach Metamorphic Complex, southern Alaska

    PubMed Central

    Gasser, Deta; Bruand, Emilie; Rubatto, Daniela; Stüwe, Kurt

    2012-01-01

    Monazite is a common accessory mineral in various metamorphic and magmatic rocks, and is widely used for U–Pb geochronology. However, linking monazite U–Pb ages with the PT evolution of the rock is not always straightforward. We investigated the behaviour of monazite in a metasedimentary sequence ranging from greenschist facies phyllites into upper amphibolites facies anatectic gneisses, which is exposed in the Eocene Chugach Metamorphic Complex of southern Alaska. We investigated textures, chemical compositions and U–Pb dates of monazite grains in samples of differing bulk rock composition and metamorphic grade, with particular focus on the relationship between monazite and other REE-bearing minerals such as allanite and xenotime. In the greenschist facies phyllites, detrital and metamorphic allanite is present, whereas monazite is absent. In lower amphibolites facies schists (~ 550–650 °C and ≥ 3.4 kbar), small, medium-Y monazite is wide-spread (Mnz1), indicating monazite growth prior and/or simultaneous with growth of garnet and andalusite. In anatectic gneisses, new low-Y, high-Th monazite (Mnz2) crystallised from partial melts, and a third, high-Y, low-Th monazite generation (Mnz3) formed during initial cooling and garnet resorption. U–Pb SHRIMP analysis of the second and third monazite generations yields ages of ~ 55–50 Ma. Monazite became unstable and was overgrown by allanite and/or allanite/epidote/apatite coronas within retrograde muscovite- and/or chlorite-bearing shear zones. This study documents polyphase, complex monazite growth and dissolution during a single, relatively short-lived metamorphic cycle. PMID:26525358

  1. Shallow-Crustal Magmatic Evolution and Timescales of Mineralization in Porphyry-Skarn Cu-Au Deposits from High-Precision Zircon U-Pb Geochronology and Trace Element Geochemistry

    NASA Astrophysics Data System (ADS)

    Large, S. J. E.; Von Quadt, A.; Wotzlaw, J. F.; Heinrich, C. A.

    2016-12-01

    Metal endowed porphyry deposits are the result of the magmatic-hydrothermal interplay in the upper crust. These porphyry stocks are small rapidly cooling apophyses of much larger magma chambers below that are the locus of zircon crystallization. Understanding the magmatic evolution in this larger magma reservoir together with the pace of emplacement of a single porphyry stock are key questions in understanding these deposits. In order to fully quantify these processes we apply a combination of spatially resolved in-situ geochemistry with high precision CA-ID-TIMS geochronology on zircons from the Ok Tedi deposit, Papua New Guinea, one of the youngest ( 1.2 Ma) known giant Cu-Au porphyry deposits. Zircons from intrusive rocks associated with the Ok Tedi porphyry skarn deposit, were imaged for internal textures (CL), followed by spatially resolved geochemical and geochronological data acquisition by LA-ICP-MS. We selected inclusion and inheritance free zircons from the analyzed zircons to obtain high precision U-Pb CA-ID-TIMS dates. This combination of spatially resolved in-situ trace element analysis with high precision dating enables us to reconstruct the magma chamber evolution from zircon saturation to the emplacement of the porphyry intrusions at <10,000 years resolution. Zircon geochronology from pre- and syn-mineralization intrusives at Ok Tedi indicates protracted zircon crystallization within the magma chamber over some 105 years and a rapid succession of emplacement and subsequent mineralization within few 104 years. Similar geochemical trends in zircons from all samples trace progressive fractional crystallization in the underlying magma reservoir and point to a common magmatic source of all investigated intrusives. A portion of the youngest zircons from the syn-mineralization porphyry record distinct chemical characteristics that are not coherent with the fractional crystallization trend and point to a rapid change of the chemical conditions towards the

  2. Lead diffusion in monazite

    NASA Astrophysics Data System (ADS)

    Smith, Harold A.; Giletti, Bruno J.

    1997-03-01

    We have measured the tracer diffusion rate of Pb in natural, annealed, gem-quality monazite from Alexander Co., NC, USA, and Riverside Co., CA, USA. Observations from the literature concerning low T annealing in monazite suggest the possibility that Pb diffusion at geologic conditions occurs, in effect, within a similarly annealed lattice. Our experiments were performed by evaporating an aqueous solution containing 204Pb onto a crystal face and then heating the charge to 1000-1200°C for 4 to 36 days. To the extent that the compositions of the two samples differed, we observed no effect of composition upon the rate of Pb diffusion. We do find that transport parallel to the c-axis is ˜2-5 times slower than that measured perpendicular to c. For Pb diffusion perpendicular to c, the Arrhenius parameters are Q = 180 ± 48 kJ/mol and log D0 = -14.18 ± 1.54 (for D0 in m 2/s). While these parameters now allow for a direct calculation of closure temperatures for monazite, we believe a more useful form of our data for geochronologists is the fraction of Pb lost from crystals, expressed as a function of T, time, and crystal size. We have applied this formalism to discordant monazite UPb ages from the recent literature and find that Pb diffusion at rates extrapolated from our experiments can account for the observed degree of discordancy. We suggest that, rather than employing the concept of closure temperature to evaluate possible Pb loss in monazite, the diffusion data presented here be used in Pb loss models based upon T and duration conditions appropriate for a given geological setting.

  3. Monazite behaviours during high-temperature metamorphism: a case study from Dinggye region, Tibetan Himalaya

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Shi-Ran; Zhang, Jin-Jiang

    2017-04-01

    Monazite is a key accessory mineral for metamorphic geochronology, but its growth mechanisms during melt-bearing high-temperature metamorphism is not well understood. Therefore, the petrology, pressure-temperature and timing of metamorphism have been investigated in pelitic and psammitic granulites from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent an isothermal decompression process from pressure conditions of >10 kbar to <5 kbar with constant temperatures of 750-830°C, and recorded three metamorphic stages of kyanite-grade (M1), sillimanite-grade (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were analyzed for ages by microbeam techniques either in mounts or thin sections. Ages were linked to specific conditions of mineral growth by comprehensive studies on zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural correlations with coexisting minerals. The results show that inherited domains (500-400 Ma) are common in monazite even at granulite-facies conditions. Few monazites formed at the M1-stage ( 30-29 Ma) and recorded heterogeneous Th, Y, and HREE compositions, which formed by recrystallization related to muscovite dehydration melting reaction. These monazite grains were protected from dissolution or lateral overprinting mainly by the armour effect of matrix crystals (biotite and quartz). Most monazite grains formed at the M3-stage (21-19 Ma) through either dissolution-reprecipitation or recrystallization that was related to biotite dehydration melting reaction. These monazite grains record HREE and Y signatures in local equilibrium with different reactions involving either garnet breakdown or peritectic garnet growth. Another peak of monazite growth occurs during melt crystallization ( 15 Ma), and these monazites are unzoned and have homogeneous compositions. Our results documented the widespread

  4. Geology, geochemistry, geochronology, and economic potential of Neogene volcanic rocks in the Laguna Pedernal and Salar de Aguas Calientes segments of the Archibarca lineament, northwest Argentina

    NASA Astrophysics Data System (ADS)

    Richards, J. P.; Jourdan, F.; Creaser, R. A.; Maldonado, G.; DuFrane, S. A.

    2013-05-01

    This study presents new geochemical, geochronological, isotopic, and mineralogical data, combined with new geological mapping for a 2400 km2 area of Neogene volcanic rocks in northwestern Argentina near the border with Chile, between 25°10‧S and 25°45‧S. The area covers the zone of intersection between the main axis of the Cordillera Occidental and a set of NW-SE-trending structures that form part of the transverse Archibarca lineament. This lineament has localized major ore deposits in Chile (e.g., the late Eocene La Escondida porphyry Cu deposit) and large volcanic centers such as the active Llullaillaco and Lastarría volcanoes on the border between Chile and Argentina, and the Neogene Archibarca, Antofalla, and Cerro Galán volcanoes in Argentina. Neogene volcanic rocks in the Laguna Pedernal and Salar de Aguas Calientes areas are mostly high-K calc-alkaline in composition, and range from basaltic andesites, through andesites and dacites, to rhyolites. Magmatic temperatures and oxidation states, estimated from mineral compositions, range from ~ 1000 °C and ∆FMQ ≈ 1.0-1.5 in andesites, to ~ 850 °C and ∆FMQ ≈ 1.5-2.0 in dacites and rhyolites. The oldest rocks consist of early-middle Miocene andesite-dacite plagioclase-pyroxene-phyric lava flows and ignimbrites, with 40Ar/39Ar ages ranging from 17.14 ± 0.10 Ma to 11.76 ± 0.27 Ma. Their major and trace element compositions are typical of the Andean Central Volcanic Zone, and show strong crustal contamination trends for highly incompatible elements such as Cs, Rb, Th, and U. These rocks are geochemically grouped as sub-suite 1. This widespread intermediate composition volcanism was followed in the middle-late Miocene by a period of more focused rhyodacitic flow-dome complex formation. These felsic rocks are characterized by less extreme enrichments in highly incompatible elements, and increasing depletion of heavy rare earth elements. These rocks are geochemically grouped as sub-suite 2. The

  5. Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Jercinovic, Michael J.; Terry, Michael P.

    1999-11-01

    High-resolution X-ray mapping and dating of monazite on the electron microprobe are powerful geochronological tools for structural, metamorphic, and tectonic analysis. X-ray maps commonly show complex Th, U, and Pb zoning that reflects monazite growth and overgrowth events. Age maps constructed from the X-ray maps simplify the zoning and highlight age domains. Microprobe dating offers a rapid, in situ method for estimating ages of mapped domains. Application of these techniques has placed new constraints on the tectonic history of three areas. In western Canada, age mapping has revealed multiphase monazite, with older cores and younger rims, included in syntectonic garnet. Microprobe ages show that tectonism occurred ca. 1.9 Ga, 700 m.y. later than mylonitization in the adjacent Snowbird tectonic zone. In New Mexico, age mapping and dating show that the dominant fabric and triple-point metamorphism occurred during a 1.4 Ga reactivation, not during the 1.7 Ga Yavapai-Mazatzal orogeny. In Norway, monazite inclusions in garnet constrain high-pressure metamorphism to ca. 405 Ma, and older cores indicate a previously unrecognized component of ca. 1.0 Ga monazite. In all three areas, microprobe dating and age mapping have provided a critical textural context for geochronologic data and a better understanding of the complex age spectra of these multistage orogenic belts.

  6. Geochemistry, petrography, and zircon U-Pb geochronology of Paleozoic metaigneous rocks in the Mount Veta area of east-central Alaska: implications for the evolution of the westernmost part of the Yukon-Tanana terrane

    USGS Publications Warehouse

    Dusel-Bacon, Cynthia; Day, Warren C.; Aleinikoff, John N.

    2013-01-01

    We report the results of new mapping, whole-rock major, minor, and trace-element geochemistry, and petrography for metaigneous rocks from the Mount Veta area in the westernmost part of the allochthonous Yukon–Tanana terrane (YTT) in east-central Alaska. These rocks include tonalitic mylonite gneiss and mafic metaigneous rocks from the Chicken metamorphic complex and the Nasina and Fortymile River assemblages. Whole-rock trace-element data from the tonalitic gneiss, whose igneous protolith was dated by SHRIMP U–Pb zircon geochronology at 332.6 ± 5.6 Ma, indicate derivation from tholeiitic arc basalt. Whole-rock analyses of the mafic rocks suggest that greenschist-facies rocks from the Chicken metamorphic complex, a mafic metavolcanic rock from the Nasina assemblage, and an amphibolite from the Fortymile River assemblage formed as island-arc tholeiite in a back-arc setting; another Nasina assemblage greenschist has MORB geochemical characteristics, and another mafic metaigneous rock from the Fortymile River assemblage has geochemical characteristics of calc-alkaline basalt. Our geochemical results imply derivation in an arc and back-arc spreading region within the allochthonous YTT crustal fragment, as previously proposed for correlative units in other parts of the terrane. We also describe the petrography and geochemistry of a newly discovered tectonic lens of Alpine-type metaharzburgite. The metaharzburgite is interpreted to be a sliver of lithospheric mantle from beneath the Seventymile ocean basin or from sub-continental mantle lithosphere of the allochthonous YTT or the western margin of Laurentia that was tectonically emplaced within crustal rocks during closure of the Seventymile ocean basin and subsequently displaced and fragmented by faults.

  7. Monazite behaviour during isothermal decompression in pelitic granulites: a case study from Dinggye, Tibetan Himalaya

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Shi-Ran; Zhang, Jin-Jiang; Liu, Xiao-Chi; Yang, Lei

    2017-10-01

    Monazite is a key accessory mineral for metamorphic geochronology, but interpretation of its complex chemical and age zoning acquired during high-temperature metamorphism and anatexis remains a challenge. We investigate the petrology, pressure-temperature and timing of metamorphism in pelitic and psammitic granulites that contain monazite from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent isothermal decompression from pressure of >10 kbar to 5 kbar at temperatures of 750-830 °C, and recorded three metamorphic stages at kyanite (M1), sillimanite (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were dated by microbeam techniques either as grain separates or in thin sections. U-Th-Pb ages are linked to specific conditions of mineral growth on the basis of zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural relationships with co-existing minerals. The results show that inherited domains (500-400 Ma) are preserved in monazite even at granulite-facies conditions. Few monazites or zircon yield ages related to the M1-stage ( 30-29 Ma), possibly corresponding to prograde melting by muscovite dehydration. During the early stage of isothermal decompression, inherited or prograde monazites in most samples were dissolved in the melt produced by biotite dehydration-melting. Most monazite grains crystallized from melt toward the end of decompression (M3-stage, 21-19 Ma) and are chemically related to garnet breakdown reactions. Another peak of monazite growth occurred at final melt crystallization ( 15 Ma), and these monazite grains are unzoned and are homogeneous in composition. In a regional context, our pressure-temperature-time data constrains peak high-pressure metamorphism within the GHC to 30-29 Ma in Dinggye Himalaya. Our results are in line with a melt-assisted exhumation of the GHC rocks.

  8. Geochemistry and geochronology from Cretaceous magmatic and sedimentary rocks at 6°35‧ N, western flank of the Central cordillera (Colombian Andes): Magmatic record of arc growth and collision

    NASA Astrophysics Data System (ADS)

    Jaramillo, J. S.; Cardona, A.; León, S.; Valencia, V.; Vinasco, C.

    2017-07-01

    The spatio-temporal, compositional and deformational record of magmatic arcs are sensible markers of the long-term evolution of convergent margins including collisional events. In this contribution, field relations, U-Pb LA-ICP-MS zircon geochronology from magmatic and sedimentary rocks, and whole-rock geochemistry from volcanic and plutonic rocks are used to reconstruct the Cretaceous arc growth and collision in the awakening of the Northern Andean orogeny in northwestern Colombia. The Quebradagrande Complex that includes a sequence of volcanic rocks intercalated with quartz-rich sediments is a tholeiitic arc characterized by an enrichment in LREE and Nb-Ti anomalies that document crustal thickening in an arc system that was already active by ca. 93 Ma. This arc was built associated with thin continental and newly formed oceanic crust, as suggested by the presence of Triassic and older detrital zircons in the associated sandstones. This fringing arc subsequently experienced deformation and a major switch to and enriched calc-alkaline high-k plutonism between 70 and 73 Ma. The deformation record and changes in composition are related to an opposite double-vergence Molucca-sea type arc-arc collision that ended with the accretion to the continental margin of an allochthonous island arc built on an oceanic plateau associated with the Caribbean plate. The new time-framework suggest that the Late Cretaceous to Paleocene collisional tectonics include various stages before the switching to a subduction-dominated regime in most of the Cenozoic.

  9. Petrography, geochemistry, and U-Pb geochronology of pegmatites and aplites associated with the Alvand intrusive complex in the Hamedan region, Sanandaj-Sirjan zone, Zagros orogen (Iran)

    NASA Astrophysics Data System (ADS)

    Sepahi, Ali Asghar; Salami, Sedigheh; Lentz, David; McFarlane, Christopher; Maanijou, Mohammad

    2017-07-01

    The Alvand intrusive complex in the Hamedan area in Iran is in the Sanandaj-Sirjan zone of the Zagros orogen. It consists of a wide range of plutonic rocks, mainly gabbro, diorite, granodiorite, granite, and leucogranites that were intruded by aplitic and pegmatitic dykes. At least three successive magmatic episodes generated an older gabbro-diorite-tonalite assemblage, followed by a voluminous granodiorite-granite association, which was then followed by minor leucocratic granitoids. Aplitic and pegmatitic dykes and bodies have truncated both plutonic rocks of the Alvand intrusive complex and its metamorphic aureole. Chemically they belong to peraluminous LCT (Li-, Cs-, and Ta-bearing) family of pegmatites. Mineralogically, they resemble Muscovite (MS) and Muscovite Rare Element (MSREL) classes of pegmatites. High amounts of some elements, such as Sn (up to 10,000 ppm), Rb (up to 936 ppm), Ba (up to 706 ppm), and LREE (up to 404 ppm) indicate the highly fractionated nature of some of these aplites and pegmatites. U-Pb dating of monazite, zircon, and allanite by LA-ICPMS indicate the following ages: monazite-bearing aplites of Heydareh-e-Poshteshahr and Barfejin areas, southwest of Hamedan, give an age range of 162-172 Ma; zircon in Heydareh-e-Poshteshar gives an average age of 165 Ma and for allanite-bearing pegmatites of Artiman area, north of Tuyserkan, an age of 154.1 ± 3.7 Ma was determined. These overlap with previously reported ages (ca. 167-153 Ma) for the plutonic rocks of the Alvand complex. Therefore, these data reveal that the Jurassic was a period of magmatism in the Hamedan region and adjacent areas in the Sanandaj-Sirjan zone, which was situated at the southern edge of the central Iranian micro-plate (southern Eurasian plate) at this time. Our results also suggest that advective heating in a continental arc setting has caused melting of fertile supracrustal lithologies, such as meta-pelites. These partial melts were then emplaced at much higher

  10. Geochronology, geochemistry, and tectonic characterization of Quaternary large-volume travertine deposits in the southwestern United States and their implications for CO2 sequestration

    NASA Astrophysics Data System (ADS)

    Priewisch, Alexandra

    Travertines are freshwater carbonates that precipitate from carbonic groundwater due to the degassing of CO2. Travertine deposits are often situated along faults that serve as conduits for CO2-charged groundwater and their geochemistry often records mixing of deeply-derived fluids and volatiles with shallow meteoric water. Travertines are surface expressions of dynamic mantle processes related to the tectonic setting. This dissertation includes four chapters that focus on different aspects of travertine formation and their scientific value. They are excellent, although underestimated, diagnostic tools for climatology, hydrology, tectonics, geochemistry, geomicrobiology, and they can inform carbon sequestration models. Quaternary large-volume travertine deposits in New Mexico and Arizona occur in an extensional tectonic stress regime on the southeastern Colorado Plateau and along the Rio Grande rift. They accumulated above fault systems during episodes of high hydraulic head in confined aquifers, increased regional volcanic activity, and high input of mantle-derived volatiles such as CO 2 and He. Stable isotope and trace element geochemistry of travertines is controlled by groundwater geochemistry as well as the degassing of CO 2. The geochemical composition allows for distinguishing different travertine facies and evaluating past groundwater flow. The travertine deposits in New Mexico are interpreted to be extinct CO2 fields due to the large volumes that accumulated and in analogy to the travertine deposits in Arizona that are associated with an active CO2-gas field. Travertines are natural analogues for CO2 leakage along fault systems that bypassed regional cap rocks and they provide important insight into the migration of CO2 from a reservoir to the surface. The volume of travertine can be used to infer the integrated CO2 leakage along a fault system over geologic time. This leakage is estimated as: (1) CO2 that becomes fixed in CaCO3/travertine (tons of carbon

  11. U-Pb Geochronology, Geochemistry and Kinematic Analyses of Subduction-Related Late Triassic Basins in Northern Chile (24.5º-26ºS).

    NASA Astrophysics Data System (ADS)

    Espinoza, M. E.

    2015-12-01

    In northern Chile (24.5°-26°S) two Pre-Andean depocenters crop out: the Cifuncho basin in the Coastal Cordillera and the Profeta basin in the Precordillera. These basins have been classically interpreted as a continental rifting unrelated to subduction during the period prior to the Andean orogenic cycle. However, recent petrographic and geochemical data suggest the development of these basins in an active subduction system. In order to test this hypothesis and to establish the geologic evolution of the basins and the strain field during the rifting process, we present preliminary U-Pb geochronological and geochemical data together with structural analyses of synrift structures. The geochronological data along the Cifuncho and Profeta basins, show a main continental sedimentary deposition during the Norian to Raethian. Volcanosedimentary rocks show a main detrital supply of Early Permian age (~297-283 Ma). This input can be associated with the volcanic La Tabla Formation and/or the exhumation of Permian granitoids. A minor supply close to ~478 Ma is related to a source from the Lower Ordovician arc (~480 Ma), suggesting the tectonic exhumation of this source to the east of the Profeta basin during the Late Triassic. On the other hand, structural analysis was carried in third and four order extensional faults (<10 m of slip) along the Profeta basin. Most of the faults show a clear synrift character with the development of fault controlled growing strata. The kinematic analyses evidence a variability in the orientation of the maximum strain axes from a main northwest to a subordinate northeast direction of extension. Thus, the intimate relation between the continental sedimentary deposition and a proximal volcanism of intermediate composition and calk-alkaline affinity, suggests the development of these basins in a supra-subduction setting during the Late Triassic. Structural data probably reflect local variation in the strain field across the basins.

  12. Monazite petrochronology from the UHP Western Gneiss Region, Norway

    NASA Astrophysics Data System (ADS)

    Holder, R. M.; Hacker, B. R.; Kylander-Clark, A. R.

    2013-12-01

    To understand the significance of U/Th-Pb chronology, dates from accessory minerals need to be tied to petrological conditions such as pressure, temperature, and mineral assemblage. This work examines monazite composition, petrologic texture, and U/Th-Pb dates acquired via LASS (laser ablation split stream) geochronology from pelites across the ultrahigh-pressure (UHP) Western Gneiss Region, Norway (WGR), to evaluate the range in monazite compositions preserved in UHP terranes and determine the petrologic reasons for the observed compositions. Proterozoic monazites (1600 & 1100-900 Ma) occur in amphibolite- to granulite-facies rocks across the WGR and as garnet inclusions in eclogite- and amphibolite-facies rocks. The oldest Paleozoic monazites have dates of 460 Ma (1 sample), sector zoning, and show typical HREE profiles (Gd/Yb <1000). Four samples have dates of 430-420 Ma, and a decrease in HREE with time (up to Gd/Yb >10000), but no trend in Eu/Eu*, compatible with garnet + plagioclase stable conditions during prograde metamorphism. Three samples from the Sørøyane UHP domain have dates of 410-405 Ma, depleted HREE (Gd/Yb >1000), weaker Eu anomalies, 2-3% common Pb, and, in one sample, high Sr contents relative to younger monazites in the same rock (0.6 vs <0.1 wt%). High Gd/Yb ratios, weak Eu/Eu*, and relatively high Sr concentrations are compatible with garnet-stable, plagioclase-absent conditions during (U)HP metamorphism. Except for the samples listed above, most monazites measured from the WGR have concordant dates from 400-390 Ma with increasing HREE concentrations over time, compatible with garnet resorbtion during the decompression that followed the (U)HP metamorphism. Two of the 430-420 Ma and most of the 400-390 Ma monazites have rims that vary laterally in width and composition, in the form of finger- to scallop-shaped embayments. These rims have large variation in U/Th, U/Pb and Th/Pb ratios, suggesting that alteration, by a fluid or other mechanism

  13. Paleoproterozoic crustal evolution in the East Sarmatian Orogen: Petrology, geochemistry, Sr-Nd isotopes and zircon U-Pb geochronology of andesites from the Voronezh massif, Western Russia

    NASA Astrophysics Data System (ADS)

    Terentiev, R. A.; Savko, K. A.; Santosh, M.

    2016-03-01

    Andesites and related plutonic rocks are major contributors to continental growth and provide insights into the interaction between the mantle and crust. Paleoproterozoic volcanic rocks are important components of the East Sarmatian Orogen (ESO) belonging to the East European Craton, although their petrogenesis and tectonic setting remain controversial. Here we present petrology, mineral chemistry, bulk chemistry, Sr-Nd isotopes, and zircon U-Pb geochronological data from andesites and related rocks in the Losevo and Vorontsovka blocks of the ESO. Clinopyroxene phenocrysts in the andesites are depleted in LREE, and enriched in HFSE (Th, Nb, Zr, Hf, Ti) and LILE (Ba, Sr). Based on the chemistry of pyroxenes and whole rocks, as well as Fe-Ti oxides, we estimate a temperature range of 1179 to 1262 °С, pressures of 11.3 to 13.0 kbar, H2O content of 1-5 wt.%, and oxygen fu gacity close to the MH buffer for the melts of the Kalach graben (KG) and the Baygora area (BA) andesites. Our zircon U-Pb geochronological data indicate new zircon growth during the middle Paleoproterozoic as displayed by weighted mean 207Pb/206Pb ages of 2047 ± 17 Ma and 2040 ± 16 Ma for andesite and dacite-porphyry of the BA, and 2050 ± 16 Ma from high-Mg basaltic andesite of the KG. The andesites and related rocks of the KG and BA are characterized by high magnesium contents (Mg # up to 0.68). All these volcanic rocks are depleted in LREE and HFSE, and display negative Nb and Ti anomalies relative to primitive mantle. The high-Mg bulk composition, and the presence of clinopyroxene phenocrysts suggests that the parent melts of the KG and BA suite were in equilibrium with the mantle rocks. The rocks show positive εNd(T) values and low initial 87Sr/86Sr, suggesting that the magmas were mostly derived from metasomatized mantle source. The geochemical differences between the two andesite types are attributed to: the predominance of fractional crystallization, and minor role of contamination in

  14. Detrital zircon U-Pb geochronology, Lu-Hf isotopes and REE geochemistry constrains on the provenance and tectonic setting of Indochina Block in the Paleozoic

    NASA Astrophysics Data System (ADS)

    Wang, Ce; Liang, Xinquan; Foster, David A.; Fu, Jiangang; Jiang, Ying; Dong, Chaoge; Zhou, Yun; Wen, Shunv; Van Quynh, Phan

    2016-05-01

    In situ U-Pb geochronology, Lu-Hf isotopes and REE geochemical analyses of detrital zircons from Cambrian-Devonian sandstones in the Truong Son Belt, central Vietnam, are used to provide the information of provenance and tectonic evolution of the Indochina Block. The combined detrital zircon age spectra of all of the samples ranges from 3699 Ma to 443 Ma and shows with dominant age peaks at ca. 445 Ma and 964 Ma, along with a number of age populations at 618-532 Ma, 1160-1076 Ma, 1454 Ma, 1728 Ma and 2516 Ma. The zircon age populations are similar to those from time equivalent sedimentary sequences in continental blocks disintegrated from the East Gondwana during the Phanerozoic. The younger zircon grains with age peaks at ca. 445 Ma were apparently derived from middle Ordovician-Silurian igneous and metamorphic rocks in Indochina. Zircons with ages older than about 600 Ma were derived from other Gondwana terrains or recycled from the Precambrian basement of the Indochina Block. Similarities in the detrital zircon U-Pb ages suggest that Paleozoic strata in the Indochina, Yangtze, Cathaysia and Tethyan Himalayas has similar provenance. This is consistent with other geological constrains indicating that the Indochina Block was located close to Tethyan Himalaya, northern margin of the India, and northwestern Australia in Gondwana.

  15. Middle Neoproterozoic (ca. 705-716 Ma) arc to rift transitional magmatism in the northern margin of the Yangtze Block: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Ruirui; Xu, Zhiqin; Santosh, M.; Xu, Xianbing; Deng, Qi; Fu, Xuehai

    2017-09-01

    The South Qinling Belt in Central China is an important window to investigate the Neoproterozoic tectono-magmatic processes along the northern margin of the Yangtze Block. Here we present whole-rock geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of a suite of Middle Neoproterozoic intrusion from the Wudang Uplift in South Qinling. Zircon LA-ICP-MS U-Pb ages reveal that these rocks were formed at ca. 705-716 Ma. Geochemical features indicate that the felsic magmatic rocks are I-type granitoids, belong to calcic- to calc-alkaline series, and display marked negative Nb, Ta and Ti anomalies. Moreover, the enrichment of light rare earth elements (LREEs) and large ion lithophile elements (LILEs), combined with depletion of heavy rare earth elements (HREEs) support that these rocks have affinity to typical arc magmatic rocks formed in Andean-type active continental margins. The REE patterns are highly to moderately fractionated, with (La/Yb)N = 5.13-8.10 in meta-granites, and 2.32-2.35 in granodiorite. The granitoids have a wide range of zircon εHf(t) values (-29.91 to 14.76) and zircon Hf two-stage model ages (696-3482 Ma). We suggest that the ca. 705-716 Ma granitoids were sourced from different degrees of magma mixing between partial melting of the overlying mantle wedge triggered by hydrous fluids released from subducted materials and crustal melting. The hybrid magmas were emplaced in the shallow crust accompanied by assimilation and fractional crystallization (AFC). Both isotopic and geochemical data suggest that the ca. 705-716 Ma felsic magmatic rocks were formed along a continental arc. These rocks as well as the contemporary A-type granite may mark a transitional tectonic regime from continental arc to rifting, probably related to slab rollback during the oceanic subduction beneath the northern margin of Yangtze Block.

  16. PROCESSING OF MONAZITE SAND

    DOEpatents

    Calkins, G.D.; Bohlmann, E.G.

    1957-12-01

    A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.

  17. Geochemistry and Sr-Nd isotopes of the subvolcanic sill complex and sandstone geochronology from María Magdalena island, Nayarit, Mexico

    NASA Astrophysics Data System (ADS)

    Villanueva, D.; Schaaf, P. E.; Hernandez, T.; Solis, G.; Weber, B.; Pompa, V.

    2013-12-01

    María Magdalena island is part of the Islas Marías archipielago, located at the mouth of the Gulf of California. Understanding the nature and origin of the archipelago is very important for reconstructing the paleoposition of Baja California Peninsula prior to the opening of the Gulf of California. We present the first geochemical, isotopic and geochronologic data from María Magdalena, a lithologically different island compared to the rest of the archipelago. María Magdalena island is located southeast of María Madre and northeast of María Cleofas islands and is composed by a sedimentary sequence of sandstones and minor shale, which is intruded by gabbroic sills. The sedimentary sequence dips approximately 20 degrees to the NW. The thickness of sills range from 1 to 3 meters with mineralogical variations of plagioclase +/- orthopyroxene +/- clinopyroxene +/- hornblende and some altered olivine crystals. Textures are mostly porphyritic with plagioclase crystals sizes up to 5 cm and olivines up to 5 mm. The gabbroic sills show SiO2 contents from 42.7 to 47.5 wt. %; TiO2 from 0.8 to 2 wt. %; Fe2O3t from 7.7 to 11.9 wt. %; MgO from 6.2 to 19.8 wt. % and of CaO from 6 to 11.6 wt. %, indicating mafic to ultramafic compositions. A multielement spider diagram as well as REE patterns show compositions very similar to N-MORB or even peridotites, which is confirmed by 87Sr/86Sr values from 0.70273 to 0.70497, and 143Nd/144Nd values from 0.513003 to 0.513100. U-Pb single zircon geochronology of the intruded sandstones display the following age distribution: eight crystals show ages from 80 to 86 Ma, three crystals have ages from 61 to 72 Ma, and three are around 21 Ma which constrains a maximum sandstone deposition age. Consequently, the sills must be younger than 21 Ma. There is not much lithological similarity with neighboring María Madre island to the NW (containing a metamorphic complex, granitoids and acid volcanic roks) and with María Cleofas island to the SE

  18. Geochronology and Geochemistry of a Late Cretaceous Granitoid Suite, Santa Rosa Range, Nevada: Linking Arc Magmatism in Northwestern Nevada to the Sierra Nevada Batholith

    NASA Astrophysics Data System (ADS)

    Brown, K.; Stuck, R.; Hart, W. K.

    2010-12-01

    Throughout the Mesozoic, an arc-trench system dominated the western margin of North America. One of the principal records of this system’s evolution is a discontinuous alignment of deeply eroded batholiths, which represent the once-active roots of ancient volcanic systems. Although these batholiths extend from Alaska to Mexico, there is a prominent (~500 km) gap located in present-day Nevada that contains scattered plutons that are hypothesized to be similar in age and origin to the larger batholiths. The current understanding of these isolated plutons, however, remains limited to regional isotopic studies aimed at identifying major crustal boundaries and structural studies focused on emplacement mechanisms. Therefore, detailed petrogenetic studies of the plutons exposed within the Santa Rosa Range (SRR) of NW Nevada will better characterize magmatism in this region, placing them within a regional context that explores the hypothesized links between the intrusions of NW Nevada to the Sierra Nevada batholith (SNB). A compilation of published geochronology from this region shows that plutons in the SRR are broadly coeval with the Cathedral Range Intrusive Epoch (~95-83 Ma) and the Shaver Sequence (~118-105 Ma) of the SNB. Preliminary Rb-Sr geochronology from the Granite Peak stock reveals a previously unrecognized period of magmatism (ca. 85.0 Ma) in this region. Therefore, ongoing work will more completely characterize the timing of magmatic pulses in this region and their relationships to the SNB. Preliminary petrographic, geochemical, and isotopic observations suggest that two distinct compositional/textural groups exist: the Santa Rosa/ Andorno group (SRA) and Granite Peak/ Sawtooth group (GPS). The chemical and isotopic variations between the two groups suggest that they were not consanguineous. Whereas the SRA group is generally more mafic (64-72 wt% SiO2) and metaluminous, the GPS group is more felsic (72- 76 wt% SiO2) and peraluminous. This observation is

  19. Petrologic significance of silicic magmatism in the Ferrar Large Igneous Province: geochemistry and geochronology of the Butcher Ridge Igneous Complex, Antarctica

    NASA Astrophysics Data System (ADS)

    Nelson, D. A.; Cottle, J. M.; Barboni, M.; Schoene, B.

    2014-12-01

    Mafic sills and lavas of the c. 183 Ma Ferrar Large Igneous Province are assumed to have originated from the same parental magma source with minor differentiation during long-distance transport, storage, and emplacement. However, a brief field study by Marshak et al. (1981) reported that the Butcher Ridge Igneous Complex (BRIC), a ~6000 km3 glassy hypabyssal intrusion in the Cook Mountains of southern Victoria Land, reputed to be a significant magma distribution center within the Ferrar LIP, contains lithologies and structures consistent with a major episode of magma differentiation. At present, based on available data, it remains unclear whether production of compositionally diverse magmas, ranging from 53 to 73 wt. % SiO2, originated purely via fractional crystallization of a parental Ferrar magma(s) or whether crustal contamination, and/or re-melting of granitoid basement played a significant role in driving differentiation. In addition, the timing and duration of BRIC magmatism with respect to the main phase of Ferrar magmatism is debated. Here we present the results of new isotopic, major- and trace-element geochemical analyses for (n=130) BRIC samples that, when combined with detailed petrologic and thermodynamic modeling, delineate the geochemical diversity within the BRIC, and enable detailed comparisons with new and existing data for the remainder of Ferrar LIP. In addition, new high-resolution U-Pb ID-TIMS geochronology on baddeleyite from both the BRIC and Dolerite sills from the Ferrar LIP indicate magmatism occurred over a relatively short time span (<<100ka) and overlaps with the main phase of Ferrar magma emplacement. These data are combined with ongoing geochemical and thermodynamic modeling to develop a petrogenetic model for the BRIC and establish the origins and petrologic significance of silicic magmatism within the Ferrar LIP and other LIPs globally.

  20. Geochemistry and geochronology of the blueschist in the Heilongjiang Complex and its implications in the late Paleozoic tectonics of eastern NE China

    NASA Astrophysics Data System (ADS)

    Ge, Mao-hui; Zhang, Jin-jiang; Liu, Kai; Ling, Yi-yun; Wang, Meng; Wang, Jia-min

    2016-09-01

    The Paleozoic to early Mesozoic tectonic framework and evolution of Northeast China, especially the Jiamusi block and its related structural belts, are highly debated. In this paper, geochemical, geochronological and isotopic analyses were carried out on the blueschist in the Heilongjiang Complex to address these issues. The Heilongjiang Complex defines the suture belt between the Jiamusi block and the Songliao block in NE China, and the blueschist is a major composition for this complex, coexisting with mafic-ultramafic rocks, greenschist, quartzite and mica schist. The blueschist has a mineral association of sodic amphibole, epidote, chlorite, phengite, albite and quartz with accessory phases of apatite, titanite, zircon and ilmenite. Together with the lithological association, the major and trace element compositions present that the protoliths of the blueschist can be divided into the alkaline and tholeiitic basalts and have OIB affinities, formed in an ocean island setting, indicated by the (La/Yb) N values of 3.57 - 11.54, and the (La/Sm) N values of 0.69 - 3.64. The high and positive εNd (t) values of + 3.7 to + 9.0, and relative enrichment in Nb (vs. Th) and Ta (vs. U) show that both the alkaline and tholeiitic basalts may be derived from the asthenospheric mantle with insignificant crustal contamination. Magmatic zircons from the blueschist in Yilan area yield a 206Pb/238U age of 281 ± 3 Ma, interpreted as its protolithic age. The youngest ages of 200 Ma of the detrital zircons in the associated mica schist from Mudanjiang area place constraints on the timing of metamorphism for the blueschist. These indicate that a big ocean existed between the Jiamusi and Songliao blocks at least since the early Permian, and the blueschist formed since the late Triassic to late Jurassic by the subduction of this ocean. Such an ocean during the Permian - Jurassic is difficult to be interpreted by the tectonic evolution of the Paleo-Asian Ocean.

  1. Geochemistry, geochronology, and tectonic setting of Early Cretaceous volcanic rocks in the northern segment of the Tan-Lu Fault region, northeast China

    NASA Astrophysics Data System (ADS)

    Ling, Yi-Yun; Zhang, Jin-Jiang; Liu, Kai; Ge, Mao-Hui; Wang, Meng; Wang, Jia-Min

    2017-08-01

    We present new geochemical and geochronological data for volcanic and related rocks in the regions of the Jia-Yi and Dun-Mi faults, in order to constrain the late Mesozoic tectonic evolution of the northern segment of the Tan-Lu Fault. Zircon U-Pb dating shows that rhyolite and intermediate-mafic rocks along the southern part of the Jia-Yi Fault formed at 124 and 113 Ma, respectively, whereas the volcanic rocks along the northern parts of the Jia-Yi and Dun-Mi faults formed at 100 Ma. The rhyolite has an A-type granitoid affinity, with high alkalis, low MgO, Ti, and P contents, high rare earth element (REE) contents and Ga/Al ratios, enrichments in large-ion lithophile (LILEs; e.g., Rb, Th, and U) and high-field-strength element (HFSEs; e.g., Nb, Ta, Zr, and Y), and marked negative Eu anomalies. These features indicate that the rhyolites were derived from partial melting of crustal material in an extensional environment. The basaltic rocks are enriched in light REEs and LILEs (e.g., Rb, K, Th, and U), and depleted in heavy REEs, HFSEs (e.g., Nb, Ta, Ti, and P), and Sr. These geochemical characteristics indicate that these rocks are calc-alkaline basalts that formed in an intraplate extensional tectonic setting. The dacite is a medium- to high-K, calc-alkaline, I-type granite that was derived from a mixed source involving both crustal and mantle components in a magmatic arc. Therefore, the volcanic rocks along the Jia-Yi and Dun-Mi faults were formed in an extensional regime at 124-100 Ma (Early Cretaceous), and these faults were extensional strike-slip faults at this time.

  2. U-Pb geochronology and geochemistry of Bibi-Maryam pluton, eastern Iran: Implication for the late stage of the tectonic evolution of the Sistan Ocean

    NASA Astrophysics Data System (ADS)

    Delavari, Morteza; Amini, Sadraddin; Schmitt, Axel K.; McKeegan, Kevin D.; Mark Harrison, T.

    2014-07-01

    The Bibi-Maryam pluton crops out in the Sistan suture zone, eastern Iran. This pluton is a 1.5 × 2 km stock composed of leucocratic tonalite, granodiorite and granite. U-Pb zircon geochronology of a leucogranite indicates an emplacement age of 58.6 ± 2.1 Ma (95% confidence). The Bibi-Maryam rock suite is sodic with elevated Na2O/K2O (2.9 to 5.5), Sr/Y (15.6-62.2), La/Yb (13.3-22.2), and low MgO (0.86-1.81) abundances. It lacks significant Eu anomalies. Because of these geochemical characteristics, Bibi-Maryam rocks are similar to high-SiO2 adakites. Trace element modeling indicates that the Bibi-Maryam adakitic rocks could be produced by 5-8% non-modal batch partial melting from a source with composition of 95% N-MORB + 5% sediment in the presence of 35-40% amphibole + 5-10% garnet + 55-60% clinopyroxene + 1% apatite + 1% rutile. This source mineralogy is similar to hornblende eclogite or garnet amphibolites. Collectively, these data provide new constraints for the evolution of the Sistan suture zone and suggest that the Bibi-Maryam pluton formed via slab melting in an oceanic arc and pre-plate collision tectonic setting. This implies that the closure of the Sistan Ocean and Lut-Afghan continental blocks collision happened after the Bibi-Maryam emplacement at 58.6 ± 2.1 Ma.

  3. Geochronology and geochemistry of the Parashi granitoid, NE Colombia: Tectonic implication of short-lived Early Eocene plutonism along the SE Caribbean margin

    NASA Astrophysics Data System (ADS)

    Cardona, A.; Weber, M.; Valencia, V.; Bustamante, C.; Montes, C.; Cordani, U.; Muñoz, C. M.

    2014-03-01

    The Parashi granitoid of northeasternmost Colombia intrudes the Upper Cretaceous to Lower Paleocene accretionary complex formed by the collision of the Caribbean arc and the continental margin of South America. This granitoid presently separated of the continental margin includes a major quartzdiorite body with andesite to dacite dikes and mafic enclaves. Zircon U-Pb LA-MC-ICP-MS and K-Ar geochronology on the quartzdiorite and the dikes suggest that crystallization extended from ca. 47 to 51 Ma. Major and trace elements are characterized by a medium-K, immature continental arc signature and high Al2O3, Na2O and Ba-Sr contents. Initial 87Sr/86Sr isotopic values range between 0.7050 and 0.7054, with 143Nd/144Nd = 0.51235-0.51253, ɛNd and ɛHf values from -0.81 to -4.40 and -4.4 and -5.2. Major and trace element ratios and isotopic modeling suggest that sedimentary and/or quartzofeldspathic crustal sources were mixed with a mafic melt input. The petrotectonic and geological constraints derived from this granitoid suggest that Parashi plutonism records an immature, oblique subduction-zone setting in which the presence of a high-temperature mantle realm and strong plate coupling associated to upper crust subduction caused the partial fusion of a previously tectonically underplated mafic crust and associated metasediments exposed in the continental margin. The limited temporal expression of this magmatism and the transition to a regional magmatic hiatus are related to a subsequent change to strongly and slow oblique tectonics in the Caribbean-South America plate interactions and the underflow of a relatively thick slab of Caribbean oceanic crust.

  4. Geochronology and geochemistry of eclogites from the Mariánské Lázně Complex, Czech Republic: Implications for Variscan orogenesis

    NASA Astrophysics Data System (ADS)

    Beard, Brian L.; Medaris-Jr, L. Gordon; Johnson, Clark M.; Jelínek, Emil; Tonika, J.; Riciputi, Lee R.

    The Mariánské Lázně complex (MLC) is located in the Bohemian Massif along the north-western margin of the Teplá-Barrandian microplate and consists of metagabbro, amphibolite and eclogite, with subordinate amounts of serpentinite, felsic gneiss and calc-silicate rocks. The MLC is interpreted as a metaophiolite complex that marks the suture zone between the Saxothuringian rocks to the north-west and the Teplá-Barrandian microplate to the south-east. Sm-Nd geochronology of garnet-omphacite pairs from two eclogite samples yields ages of 377+/-7, and 367+/-4Ma. Samples of eclogite and amphibolite do not define a whole rock Sm-Nd isochron, even though there is a large range in Sm/Nd ratio, implying that the suite of samples may not be cogenetic. Eclogites do not have correlated ɛNd values and initial 87Sr/86Sr ratios. Five of the eight eclogite samples have high ɛNd values (+10.2 to +7.1) consistent with derivation from a MORB-like source, but variable 87Sr/86Sr ratios (0.7033 to 0.7059) which probably reflect hydrothermal seawater alteration. Three other eclogite samples have lower ɛNd values (+5.4 to -0.8) and widely variable 87Sr/86Sr ratios (0.7033 to 0.7096). Such low ɛNd values are inconsistent with derivation from a MORB source and may reflect a subduction or oceanic island basalt component in their source. The MLC is an important petrotectonic element in the Bohemian Massif, providing evidence for Cambro-Ordovician formation of oceanic crust and interaction with seawater, Late Devonian (Frasnian-Famennian) high- and medium-pressure metamorphism related to closure of a Saxothuringian ocean basin, Early Carboniferous (Viséan) thrusting of the Teplá terrane over Saxothuringian rocks and Late Viséan extension.

  5. Mineralogy, geochronology and geochemistry of early Triassic blueschists in the Lancang metamorphic zone of Southwest China: fingerprints of the Paleotethyan subduction

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Fan, W.; Zhang, Y.; Cai, Y.; Jourdan, M.

    2013-12-01

    The subduction of the Paleotethyan Ocean and subsequent continental collision along the Lancang tectonic belt of the southeastern Paleotethyan belt is a major tectonic event for Southwest China, but the timing of the subduction and associated thermal structure preceding the final collision are still unknown. The mafic blueschists exposed in the Lancang accretionary complex provide the crucial records of the kinematics and thermal dynamics for the subduction zone. In this paper, we present a set of new mineralogical, geochronological and geochemical data for the Xuyi blueschists and report the presence of high-pressure Na-amphibole in the Lancang metamorphic zone. The mineral assemblage of these blueschists consists of zoned sodic amphibole (25-30 %), albite (15-20 %), epidote (25-30 %), phengite (5-10 %), chlorite (~5-10 %), and minor amounts of actinolite, apatite, sphere, zircon, ilmenite, quartz and secondary limonite. They display a progressive metamorphism from ~0.5 GPa to ~0.9 GPa and retrograde metamorphic overprinting (back to ~0.6 GPa) within the temperature range 300-450°C. The glaucophane and phengite developed during progressive metamorphism yielded the Ar-Ar ages of 246-251 Ma, and the glaucophane overprinted by retrograde metamorphism gave the Ar-Ar plateau ages of 233.2 ×3.1 Ma. The Xuyi blueschists yielded the zircon U-Pb age of 254 × 3 Ma, and are compositionally identical to the subalkaline basalt with typical OIB-type REE and multi-elemental patterns and ɛNd(t) values of +3.35 to +4.85. Based on all the available data, it is inferred that the protolith originated from the basaltic seamount with shallow-marine carbonate cap in the Paleotethyan Ocean till 254 Ma. The seamounts subducted eastward down to 30-35 km depths beneath the Lincang arc and became metamorphosed to form the epidote blueschists at ~246 -251 Ma. The blueschists were subsequently transported to shallower crustal levels in response to the continuous underthrust of the

  6. Geochronology, Geochemistry and Tectonics of Subduction-Related Late Triassic Rift Basins in Northern Chile (24º-26ºS).

    NASA Astrophysics Data System (ADS)

    Espinoza, M. E.; Oliveros, V.; Celis, C.

    2016-12-01

    As plate-tectonic processes ultimately control the location, initiation, and evolution of sedimentary basins, the study of these is crucial to understand the geodynamic framework of a specific period. In northern Chile, Late Triassic depocenters crop out along the Coastal Cordillera and Precordillera. These basins have been typically associated to a continental rifting unrelated to subduction prior to the Andean orogeny. In this work, we characterize these basins and present field and analytical data suggesting the development of these basins during an active subduction system. U-Pb geochronology show the opening of these basins probably during the Anisian-Carnian (>233 Ma) with the deposition of highly mature sediments in fluvial systems, followed by the initiation of the volcanism and associated fluvial-alluvial redeposition. Furthermore, a continental (fluvial and lacustrine) deposition and its transition to shallow marine facies are recorded during the Norian to Raethian (212-200 Ma), contemporaneous with the development of acidic volcanic centers. The sedimentary provenance evidence a main detrital supply of Early Permian age ( 297-283 Ma) corresponding to volcanic and plutonic basement rocks and a minor supply close to 478 Ma related to the exhumed Famatinian arc to the east. Geochemical results from volcanic products present in the basins show a typical subduction signal (calc-alkaline trend, low HFS/LILE ratio and Nb-Ta negative anomalies), while petrography indicate a wide compositional variation more than a bimodal distribution. These basins present half-graben geometries with the recognition of structural highs separating local depocenters. Kinematic analyses carried in synrift extensional faults show a bimodal distribution of the maximum strain axes from a NE-SW to a subordinate NW-SE direction of elongation. This bimodality could be related to the co-existence of two competing strain directions associated to the breakup of Pangea and the presence of a

  7. Protolith, metamorphic history and tectonic implications of newly discovered Triassic eclogites in the east-central Qiangtang: Evidences from mineralogy, geochemistry, Sr-Nd isotope, and geochronology

    NASA Astrophysics Data System (ADS)

    Jin, X.; Liu, J. M.; Zhou, X. Y.; Zhang, Y.

    2016-12-01

    The Triassic west-central Qiangtang metamorphic belt, consisting of blueschist- and eclogite-bearing mélange, whereas there are no eclogites reported in the east-central Qiangtang. In this study, geochemical, Sr-Nd isotopic, and geochronological methods, together with geothermobarometers, are used to reveal the protolith, metamorphic conditions, and tectonic implications of newly discovered (U)HP eclogites in east-cental Qiangtang, central Tibetan Plateau. These eclgites are mainly composed of garnet, omphacite, rutile, phengite, and amphibole. According to the Sr-Nd isotopic ratios [(87Sr/86Sr)i value: 0.7078 0.7086; ɛNd(t) value: -0.58 +1.96], the protoliths of eclogites were originated from depleted mantle and experienced continental crustal contamination. The REEs and HFSEs are immobile, so they are employed to discriminate the protolith and tectonic environments. In the Hf/3-Th-Ta diagram, most samples are ploted in island arc basalts and E-MORB fields. These eclogites also display arc-related features (Nb, Ta negative anomalies, high LREE/HREE ratios), and enriched MORB-like geological characteristics (flat REE patterns without Nb, Ta negative anomalies), respectively. In addition, compared with the north Anduo backarc basin basalts (BABB), and the Qilian eclogites (BABB as protolith), the protoliths are suggested to form in backarc basin for the similarity. Zircons in eclogite show no oscillatory zoning, possibly due to the high grade metamorphic conditions of 2.7 GPa / 742 °, which are acquired by Grt-Omp-Phe geothermobarometers. Subsequently, it experienced retragrade metamorphism, characterized by the decomposition of rutile, garnet, and omphacite. The coesite pseudomorph in garnet is also consistent with the peak metamorphic conditions. Eight zircons with low Th/U ratios defined concordant age of 223 ± 11 Ma, representing the age of peak metamorphism. In conclusion, the newly discovered eclogites formed in backarc basin, and consequently subducted

  8. Evolution of the Cretaceous magmatism in the Apuseni-Timok-Srednogorie metallogenic belt and implications for the geodynamic reconstructions: new insight from geochronology, geochemistry and isotope studies

    NASA Astrophysics Data System (ADS)

    von Quadt, A.; Peytcheva, I.; Heinrich, C. A.; Frank, M.; Cvetkovic, V.

    2003-04-01

    Most major Cu-Au (-PGE) deposits in the Carpathian Balkan orogen are related to a 1500 km long belt of Upper Cretaceous magmatism extending from southern Romania through Yugoslavia to Bulgaria, with a likely continuation southeast of the Black Sea into Turkey, known as the Apuseni Banat Timok Srednogorie (ABTS) belt (Popov et al., 2000). In the frame of ABTS belt a new investigation was started to reveal the relation between Cretaceous magmatism and the Cu-Au-PGE deposits across the belt in East Serbia (Yugoslavia) and the Panagyurishte district (Bulgaria). The Late Cretaceous (Palaeogene?) magmatism of East Serbia developed along the Timok Magmatic Complex (TMC) in the east and the Ridanj Krepoljin Zone (RKZ) in the west. High precision U-Pb single zircon dating and a combination of isotope tracing, geochronological data as well as petrological data were used to provide additional data for the geodynamic evolution. A maximum life span of 2.5 Ma could be calculated for the first phase of volcanic activity in TMC, starting with the Amf-andesites of Veliki Kravelj (86.29 ± 0.32 Ma) and finishing with the Timozites (84.66 ± 0.5 Ma). Ore bearing magmatism in a single deposit (Veliki Kravelj) extended a maximum of 0.6 Ma ("pre-ore": 86.29 ± 0.32 Ma, "post-ore": 86.17 ± 0.15 Ma). Preliminary data for the dacites (70.3 ± 3.5 Ma) outcropping near Krepoljin give evidence for a shifting of the volcanic activity from TMC to RKZ together with changing the ore-deposit type from Cu-Au-PGE (TMC) to Pb-Zn-Cu (RKZ). Isotope tracing give evidence for mantle dominated source with increasing of crustal contamination in the same direction: (87Sr/86Sr ratios: 0.70388 to 0.706050, e-Hf-zircon data: +12 in TMC to +4.5 in RKZ). The Panagyurishte district (Bulgaria) show a duration time of the magmatic activity of 14 Ma, starting in the north at 92 Ma and finishing in the south at 78 Ma. Ore-related magmatism becomes younger in the same direction but finishes with 86 Ma. Multiple short

  9. Geochronology, geochemistry, and its geological significance of the Damaoqi Permian volcanic sequences on the northern margin of the North China Block

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Zhang, Zhicheng; Li, Ke; Chen, Yan; Tang, Wenhao; Li, Jianfeng

    2015-01-01

    The Suji volcanic sequences are situated on the boundary between the northern margin of the North China Block (NCB) and southern margin of the Inner Mongolia-Daxinganling Orogenic Belt (IMDOB). The sequences mainly consist of dacites and rhyolites. Zircons from the Suji rhyolite and dacite yielded weighted mean 206Pb/238U ages of 270.2 ± 2.7 Ma and 268.0 ± 3.8 Ma. These ages constrain the volcanic sequences erupted at the late Early Permian. The SiO2 content of the volcanic sequences ranges from 55.2 wt% to 78.8 wt%. These rocks exhibit high alkali contents, enrichment of large ion lithophile elements and light rare earth elements, and depletion in high field strength elements, with (87Sr/86Sr)i ratios of 0.70601-0.71427, ɛNd(t) of -9.5 to -11.8. The high (87Sr/86Sr)i and negative ɛNd(t) values are indicative of a significant contribution of crustal-derived rocks in the petrogenesis of the Suji volcanic rocks. The rhyolitic rocks have high ratios of Rb/Sr, K/Rb and 10000 × Ga/Al, and fractionated REE patterns with strong negative Eu anomalies. These geochemical features show a typical A2-type affinity, suggesting the late Early Permian Suji volcanic sequences formed in a post-collisional extensional setting. The distinct geochemistry features of the Suji volcanic sequences, combined with many previous studies from neighbouring regions, demonstrate that the final collision orogenesis in southern IMDOB took place as early as 270 Ma.

  10. Geochronology and geochemistry of the Badaguan porphyry Cu-Mo deposit in Derbugan metallogenic belt of the NE China, and their geological significances

    NASA Astrophysics Data System (ADS)

    Gao, Bingyu; Zhang, Lianchang; Jin, Xindi; Li, Wenjun; Chen, Zhiguang; Zhu, Mingtian

    2016-03-01

    The Badaguan porphyry Cu-Mo deposit belongs to the Derbugan metallogenic belt, which is located in the Ergun block, NE China. In the mining area, the Cu-Mo mineralization mainly occurs in quartz diorite porphyry and is hosted within silicified-sericitized and sericite alteration zone. Geochemical results of the host porphyry is characterized by high SiO2, high Al2O3, low MgO, weak positive Eu anomalies and clearly HREE depletion, high Sr, low Y and low Yb, similar to those of adakite. The Sr-Nd isotopic composition of the host porphyry displays an initial (87Sr/86Sr)i ratio of 0.7036-0.7055 and positive Nd( t) values of +0.1 to +0.6, which are similar to the OIB, reflecting the source of the host porphyry may derive from subducted ocean slab, and the new lower crust also had some contribution to the magma sources. The SIMS zircon U-Pb age from the host porphyry is 229 ± 2 Ma. The Re-Os isochron age for the molybdenite in the deposit is 225 ± 2 Ma closed to zircon U-Pb age of the host porphyry, indicating that Cu-Mo mineralization event occurred in Triassic. Combining the geology-geochemistry of the host porphyry and the regional tectonic evolution, we infer that the subduction processes of Mongol-Okhotsk oceanic slab under the Ergun block led to the formation of the Badaguan porphyry Cu-Mo deposit during the Triassic.

  11. Provenance and paleogeography of the Mesozoic strata in the Muang Xai Basin, northern Laos: petrology, whole-rock geochemistry, and U-Pb geochronology constraints

    NASA Astrophysics Data System (ADS)

    Wang, Yanlu; Wang, Licheng; Wei, Yushuai; Shen, Lijian; Chen, Ke; Yu, Xiaocan; Liu, Chenglin

    2017-06-01

    The Muang Xai Basin, located in northern Laos, is associated with the Simao, Vientiane, and Khorat Basins. The paleogeographic link of these basins has not been investigated in great detail; thus, the investigation presented in this study is a comprehensive analysis of petrology, whole-rock geochemistry, and detrital zircon U-Pb chronology used to characterize the provenance of the Muang Xai Basin. Results suggest that the sedimentary source includes felsic rocks from an active continental margin or continental arc with minor amounts of recycled passive continental margin sediments. Sandstones of the Muang Xai Basin contain detrital zircons with varying U-Pb peak ages. The youngest age peak of all the zircons is 103 Ma, which limits the age of the Mesozoic strata to the Late Cretaceous. Detrital zircon U-Pb and trace element data, combined with geochemical result, reveal that the pre-Ordovician zircons were derived from recycled sediments of the Yangtze Block, which are originally sourced from the Qinling Orogenic belt. This provenance is shared with coeval sediments in the Simao and Khorat Basins, while magmatic rocks of the Ailaoshan, Truong Son Belt, and Lincang terrane are responsible for zircons of 416-466 and 219-308 Ma in age. Zircons of 101-110 and 149-175 Ma in age were sourced from magmatic rocks of the southwestern South China Block and northern Vietnam. These provenance results suggest that sediments flow into the Khorat red beds was likely from the Great Simao Basin and northern Vietnam, and not directly from the Yangtze Block.

  12. Geochronology, geochemistry and Sr-Nd-Hf isotopes of mafic dikes in the Huicheng Basin: Constraints on intracontinental extension of the Qinling orogen

    NASA Astrophysics Data System (ADS)

    Li, Wei; Dong, Yunpeng; Guo, Anlin; Liu, Xiaoming; Wang, Yuejun; Liu, Wenhang; Yang, Yuanzhen

    2015-05-01

    The diabase dikes intruded the Lower Cretaceous sandstone in the Huicheng Basin are key to understanding the Mesozoic tectonic evolution of the Qinling orogen. LA-ICP-MS zircon U-Pb dating yields a crystallization age of 107 ± 1 Ma for them. The dikes have low contents of SiO2 (42.46-50.16 wt.%), MgO (3.47-5.59 wt.%) with low Mg# of 49-59, and TiO2 (1.35-1.63 wt.%), high TFe2O3 (8.15-9.36 wt.%), Al2O3 (14.75-17.23 wt.%) and K2O (0.87-3.61 wt.%). Their Ni and Cr contents are in range of 16.8-111 and 45.7-315 ppm, respectively. They are significantly enriched in light rare earth elements and large ion lithophile elements (e.g., Cs, Pb and Ba), and depleted in Rb, K, P, and Ti. The dikes show relatively high whole-rock initial 87Sr/86Sr ratios (0.7071-0.7079) and negative εNd (t) values (-1.5 to -4.8) with single-stage Nd model ages of 941-1186 Ma. In addition, they have low zircon εHf (t) values (-8.6 to +3.5) with single-stage Hf model ages of 674-1117 Ma. Both elemental and isotopic geochemistry suggests that the magma of these dikes has undergone significant crystallization fractionation of olivine and pyroxene but weak crustal contamination during magma evolution. They were derived from partial melting of an enriched lithospheric mantle source. Together with regional geological data, these results suggest that the Qinling orogen experienced an intracontinental extension during the late Early Cretaceous.

  13. Palaeoproterozoic continental arc magmatism, and Neoproterozoic metamorphism in the Aravalli-Delhi orogenic belt, NW India: New constraints from in situ zircon U-Pb-Hf isotope systematics, monazite dating and whole-rock geochemistry

    NASA Astrophysics Data System (ADS)

    Kaur, Parampreet; Zeh, Armin; Chaudhri, Naveen

    2017-04-01

    Presently, the extent, origin and petrogenesis of late Palaeoproterozoic (ca. 1.85 Ga) magmatism in the north-central Aravalli-Delhi orogenic belt, NW India and subsequent metamorphic overprints are poorly constrained. Results of new in situ zircon U-Pb-Hf isotope analyses in combination with whole-rock elemental and isotopic data provide the first hard evidence that granitoid magmatism occurred in a continental magmatic arc setting between 1.86 and 1.81 Ga. The Hf-Nd model ages of 3.0-2.6 Ga and inherited zircon grains of 3.3-2.5 Ga indicate abundant reworking of Archaean crust. Flat HREE patterns with negative Eu anomalies furthermore reveal that the granitoids were generated from garnet-free and plagioclase-rich sources at shallow depths. Significant isotope variation among granitoid samples (εHft = -3.7 to -9.0; εNdt = -4.8 to -7.9) indicate that the reworked Archaean crust was not completely homogenised during the Palaeoproterozoic. This is best reflected by zircon Hf-isotope variation of ca. 9.5 epsilon units within the oldest granitoid sample. Zircon grains from this sample define three discrete Hf-isotope groups at εHf1.86Ga = -8.9, -4.8 and -1.6. These are interpreted to result from mixing of zircon-saturated magmas derived from three distinct sources within the crust prior to solidification. A monazite U-Pb isochron age of 868 ± 4 Ma from one of the granitoid samples furthermore indicates that the Aravalli fold belt was affected by an important post-magmatic overprint, perhaps related to the widespread metasomatic, granulite metamorphic and/or magmatic events during the same time span.

  14. Differentiating Detrital and Metamorphic Monazite in Greenschist-Facies Sandstones From the Witwatersrand Supergroup

    NASA Astrophysics Data System (ADS)

    Muhling, J. R.; Rasmussen, B.

    2009-05-01

    , calcite and titanate, and monazite has been partially replaced by fine intergrowths of allanite, apatite and Th-silicate. Careful characterisation of monazite in low-grade metasedimentary rocks can distinguish detrital grains from metamorphic, and open the way for precise geochronology of low-temperature events.

  15. Petrology, geochemistry and U-Pb geochronology of magmatic rocks from the high-sulfidation epithermal Au-Cu Chelopech deposit, Srednogorie zone, Bulgaria

    NASA Astrophysics Data System (ADS)

    Chambefort, Isabelle; Moritz, Robert; von Quadt, Albrecht

    2007-10-01

    The Chelopech deposit is one of the largest European gold deposits and is located 60 km east of Sofia, within the northern part of the Panagyurishte mineral district. It lies within the Banat-Srednegorie metallogenic belt, which extends from Romania through Serbia to Bulgaria. The magmatic rocks define a typical calc-alkaline suite. The magmatic rocks surrounding the Chelopech deposit have been affected by propylitic, quartz-sericite, and advanced argillic alteration, but the igneous textures have been preserved. Alteration processes have resulted in leaching of Na2O, CaO, P2O5, and Sr and enrichment in K2O and Rb. Trace element variation diagrams are typical of subduction-related volcanism, with negative anomalies in high field strength elements (HFSE) and light element, lithophile elements. HFSE and rare earth elements were relatively immobile during the hydrothermal alteration related to ore formation. Based on immobile element classification diagrams, the magmatic rocks are andesitic to dacitic in compositions. Single zircon grains, from three different magmatic rocks spanning the time of the Chelopech magmatism, were dated by high-precision U-Pb geochronology. Zircons of an altered andesitic body, which has been thrust over the deposit, yield a concordant 206Pb/238U age of 92.21 ± 0.21 Ma. This age is interpreted as the crystallization age and the maximum age for magmatism at Chelopech. Zircon analyses of a dacitic dome-like body, which crops out to the north of the Chelopech deposit, give a mean 206Pb/238U age of 91.95 ± 0.28 Ma. Zircons of the andesitic hypabyssal body hosting the high-sulfidation mineralization and overprinted by hydrothermal alteration give a concordant 206Pb/238U age of 91.45 ± 0.15 Ma. This age is interpreted as the intrusion age of the andesite and as the maximum age of the Chelopech epithermal high-sulfidation deposit. 176Hf/177Hf isotope ratios of zircons from the Chelopech magmatic rocks, together with published data on the

  16. Geology, Geochemistry and Geochronology of the Upper Cretaceous high-K volcanics in the southern Part of the Eastern Pontides: Implications for Mesozoic Geodynamic Evolution of NE Turkey

    NASA Astrophysics Data System (ADS)

    Eyuboglu, Y.

    2009-04-01

    The Eastern Pontide Orogenic Belt is one of the most complex geodynamic settings in the Alpine-Mediterranean region. Its geodynamic evolution is very controversial due to lack of systematic, quantitative structural, geochemical and geochronological data. This belt is divided into three subgroups: northern, southern and axial zones, distinguished from north to south by different lithological units, facies changes and tectonic characteristics. Especially, the southern zone is very attractive with its numerous rock associations such as alaskan-type mafic-ultramafic intrusions, shoshonitic and ultrapotassic volcanics, adakitic magmatics, glaucophane-bearing gabbros, metamorphic and ultramafic massifes. This study focuses on the petrology, geotectonic setting and evidence for subduction polarity of the Upper Cretaceous shoshonitic and ultrapotassic volcanics exposed in the most southerly part of the eastern Pontide magmatic arc. Geological, geochemical and isotopic data indicate that there were two distinct cycles of high-K volcanic activity in the southern part of the eastern Pontide magmatic arc during the Late Cretaceous. The first cycle (Early Campanian), represented by shoshonitic trachyandesites and associated pyroclastics, containing high K2O (2.74-4.81 wt %) and Na2O (3.60-5.51 wt %), overlies the Middle-Cretaceous ophiolitic-olistostromal melange formed during the rifting stage of a back-arc basin (Neotethys). The second cycle of high-K volcanism is characterized by potassic or ultrapotassic analcime-bearing volcanics, erupted in a lagoonal environment during the Maastrichtian. Progressive shallowing of the basin indicates that Upper Cretaceous high-K volcanism developed during the final stage of pull-apart basin development in the southern zone of the eastern Pontides. These volcanic rocks, intercalated with continental detritus, are characterized by high Na2O (3.22-7.16 wt %) concentrated in secondary analcime crystals. Their K2O contents also range between 0

  17. Petrography, geochemistry, and geochronology of granitoid rocks in the Neoproterozoic-Paleozoic Lufilian?Zambezi belt, Zambia: Implications for tectonic setting and regional correlation

    NASA Astrophysics Data System (ADS)

    Katongo, Crispin; Koller, Friedrich; Kloetzli, Urs; Koeberl, Christian; Tembo, Francis; Waele, Bert De

    2004-12-01

    There are several pre-orogenic Neoproterozoic granitoid and metavolcanic rocks in the Lufilian-Zambezi belt in Zambia and Zimbabwe that are interpreted to have been emplaced in a continental-rift setting that is linked to the break-up of the Rodinia supercontinent. However, no geochemical data were previously available for these rocks in the Zambian part of the belt to support this model. We conducted petrographic and whole-rock chemical analyses of the Neoproterozoic Nchanga Granite, Lusaka Granite, Ngoma Gneiss and felsic metavolcanic rocks from the Lufilian-Zambezi belt in Zambian, in order to evaluate their chemical characteristics and tectonic settings. Other magmatic rocks of importance for understanding the evolution of the belt in Zambia, included in this study, are the Mesoproterozoic Munali Hills Granite and associated amphibolites and the Mpande Gneiss. The Neoproterozoic rocks have monzogranitic compositions, aluminum-saturation indices (ASI) < 1.1, and high contents of high field strength elements (HFSE) and rare earth elements (REE). The chondrite-normalised spider diagrams are similar to those of A-type granites from the Lachlan fold belt and show negative Sr, P, and Ti anomalies. On various tectonic discrimination diagrams the Neoproterozoic rocks plot mainly in A-type granite fields. These petrographic and trace element compositions indicate that these rocks are A-type felsic rocks, but they do not have features of granites and rhyolites emplaced in true continental-rift settings, as previously suggested. On the basis of the A-type features and independent regional geological and geochronological data, we suggest that the Neoproterozoic granitoid and felsic metavolcanic rocks were emplaced during the earliest extensional stages of continental rifting in the Lufilian-Zambezi belt. The apparent continental-arc like chemistry of the granitoid and felsic metavolcanic rocks is thus inferred to be inherited from calcalkaline sources. The Mesoproterozoic

  18. Mid-Neoproterozoic intraplate magmatism in the northern margin of the Southern Granulite Terrane, India: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deeju, T. R.; Santosh, M.; Yang, Qiong-Yan; Pradeepkumar, A. P.; Shaji, E.

    2016-11-01

    The northern margin of the Southern Granulite Terrane in India hosts a number of mafic, felsic and alkaline magmatic suites proximal to major shear/paleo-suture zones and mostly represents magmatism in rift-settings. Here we investigate a suite of gabbros and granite together with intermediate (dioritic) units generated through mixing and mingling of a bimodal magmatic suite. The massive gabbro exposures represent the cumulate fraction of a basic magma whereas the granitoids represent the product of crystallization in felsic magma chambers generated through crustal melting. Diorites and dioritic gabbros mostly occur as enclaves and lenses within host granitoids resembling mafic magmatic enclaves. Geochemistry of the felsic units shows volcanic arc granite and syn-collisional granite affinity. The gabbro samples show mixed E-MORB signature and the magma might have been generated in a rift setting. The trace and REE features of the rocks show variable features of subduction zone enrichment, crustal contamination and within plate enrichment, typical of intraplate magmatism involving the melting of source components derived from both depleted mantle sources and crustal components derived from older subduction events. The zircons in all the rock types show magmatic crystallization features and high Th/U values. Their U-Pb data are concordant with no major Pb loss. The gabbroic suite yields 206Pb/238U weighted mean ages in the range of 715 ± 4-832.5 ± 5 Ma marking a major phase of mid Neoproterozoic magmatism. The diorites crystallized during 206Pb/238U weighted mean age of 724 ± 6-830 ± 2 Ma. Zircons in the granite yield 206Pb/238U weighted mean age of 823 ± 4 Ma. The age data show broadly similar age ranges for the mafic, intermediate and felsic rocks and indicate a major phase of bi-modal magmatism during mid Neoproterozoic. The zircons studied show both positive and negative εHf(t) values for the gabbros (-6.4 to 12.4), and negative values for the diorites (-7

  19. Geochemistry and U-Pb zircon geochronology of the pegmatites in Ede area, southwestern Nigeria: A newly discovered oldest Pan African rock in southwestern Nigeria

    NASA Astrophysics Data System (ADS)

    Adetunji, A.; Olarewaju, V. O.; Ocan, O. O.; Ganev, V. Y.; Macheva, L.

    2016-03-01

    Field and petrographic studies, whole rock geochemistry and in-situ LA-ICP-MS geochemical and isotopic U-Pb measurements on zircons have been performed on granitic pegmatites of Ede area, southwestern Nigeria with a view to characterize them, determining their mineralization potentials, petrogenetic attributes and emplacement age. The pegmatites are hosted by migmatite gneiss complex, biotite-muscovite schist and associated quartzite. The textural and mineralogical characteristics of these pegmatites indicate the occurrence of two main varieties, namely, muscovite pegmatite and garnet pegmatite. Of less importance are inclusions and pods of graphic granite, quartz-microcline aplitic and pegmatitic bodies. At the present level of erosion, the parent igneous rocks of the pegmatites are not exposed. The two dominant pegmatite varieties show slightly different chemical peculiarities but similar peraluminous character. The average K/Rb ratios of 165 and 163, respectively, for muscovite and garnet pegmatites combined with other trace element compositions are indicative of affinity to muscovite class of pegmatite which are generally not promising for rare elements mineralization. However, the unusually high concentration of bismuth in the zircons indicates Bi mineralization in the area which can either be in the pegmatites or host rocks. The Nb/Ta ratios for both muscovite and garnet pegmatites range from 0.7 to 15.2 and 1.0 to 14.8, respectively. These Nb/Ta ratios and Eu anomalies are statistically similar for both pegmatites. These probably indicate the pegmatites crystallized from a common source but separated into crystallization paths that produced different pegmatite varieties through liquid-liquid immiscibity mechanism. In-situ measurements of REE, P, Y, Nb, Hf, Ta, Bi, Th and U of individual zircon grains show the existence of two chemically and texturally different domains which are indicative of alteration that may be due to interface-coupled dissolution

  20. U-Pb zircon geochronology, Sr-Nd geochemistry, petrogenesis and tectonic setting of Mahoor granitoid rocks (Lut Block, Eastern Iran)

    NASA Astrophysics Data System (ADS)

    Beydokhti, Roohollah Miri; Karimpour, Mohammad Hassan; Mazaheri, Seyed Ahmad; Santos, José Francisco; Klötzli, Urs

    2015-11-01

    The Mahoor Cu-Zn-bearing porphyritic granitoid rocks belong to the Lut Block volcanic-plutonic belt (central Eastern Iran). These granitoid rocks occur mainly as dykes and stocks that intrude into Eocene volcanics and pyroclastic rocks. Petrographically, all the studied intrusives display porphyritic textures with mm-sized phenocrysts, most commonly of plagioclase and hornblende, embedded in a fine-grained groundmass with variable amounts of plagioclase, hornblende, clinopyroxene, quartz and opaque minerals. Hydrothermal alteration affected these granitoid rocks, as revealed by the common occurrence of sericite, chlorite, titanite, epidote and calcite. Chemical classification criteria show that the intrusives may be named as gabbrodiorites, diorites, monzodiorites and tonalites. Major elements geochemistry reveals that all the studied lithologies are typically metaluminous (A/CNK ⩽ 0.9). Magnetic susceptibility (1485 × 10-5 SI) together with mineralogical and geochemical features shows that they belong to magnetite granitoid series (I-type). Trace element patterns normalized to chondrite and primitive mantle are very similar to each other and show enrichments in LREE relative to HREE and in LILE relative to HFSE, as well as negative anomalies of Ta, Nb and Ti. Eu/Eu∗ ratios vary from 0.88 (in the most mafic composition) to 0.65, showing that plagioclase played a role in magma differentiation. LA-MC-ICP-MS U-Pb zircon data from a diorite, yielded similar concordia ages of ca. 31.88 ± 0.2 Ma (Error: 2σ), which corresponds to the Oligocene period. These granitoid rocks have (87Sr/86Sr)i values vary between 0.7055 and 0.7063. In terms of isotopic compositions, while εNdi is between -0.6 and -2.5, suggesting that magmas underwent contamination through being exposed to the continental crust. The whole set of geochemical data agree with the emplacement of the studied intrusions in a magmatic belt above a subduction zone. Primitive magmas should have formed by

  1. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  2. 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotope geochemistry of the Neogene bimodal volcanism in the Yükselen area, NW Konya (Central Anatolia, Turkey)

    NASA Astrophysics Data System (ADS)

    Gençoğlu Korkmaz, Gülin; Asan, Kürşad; Kurt, Hüseyin; Morgan, Ganerød

    2017-05-01

    Bimodal volcanic suites occur in both orogenic and anorogenic geotectonic settings. Although their formation can be attributed to either fractional crystallization from basaltic parents to felsic derivatives or partial melting of different sources, the origin of bimodal suites is still unclear. By reporting mineral chemistry, 40Ar/39Ar geochronology, elemental and Sr-Nd-Pb isotope geochemistry data, this study aims to investigate the genesis of bimodal basalt-dacite association from the Yükselen area located on the northern end of the Sulutas Volcanic Complex (Konya, Central Anatolia). The Yükselen area volcanic rocks are represented by basaltic lava flows, and dacitic dome with enclaves and pyroclastics. Basaltic flows and pyroclastic rocks are interlayered with the Neogene fluvio-lacustrine sedimentary units, while dacitic rocks cut the pre-Neogene basement in the area. A biotite separation from dacites yielded 40Ar/39Ar plateau age of 16.11 ± 0.18 Ma. On the other hand, a whole rock sample from basalts gave two plateau ages of 16.45 ± 0.76 Ma and 22.37 ± 0.65 Ma for the first steps and next steps, respectively. The investigated basalts are sodic alkaline, and characterized by ocean island basalt (OIB)-like anorogenic geochemical signatures. However, dacites are calc-alkaline and metaluminous, and carry geochemical signatures of orogenic adakites. Sr-Nd-Pb isotopic systematics suggest that the basalts were derived from an asthenospheric mantle source enriched by recycled crustal rocks. The dacites show more enriched Sr and Pb ratios and more depleted Nd ones relative to the basalts, which at the first glance might be attributed to crustal contamination of the associated basalts. However, trace element features of the dacites rule out cogenetic relationship between the two rock types, and point to an origin by melting of lower crust. On the other hand, enclaves share several elemental and isotopic characteristics with the dacites, and appear to be fragments

  3. Paleoproterozoic magmatism across the Archean-Proterozoic boundary in central Fennoscandia: Geochronology, geochemistry and isotopic data (Sm-Nd, Lu-Hf, O)

    NASA Astrophysics Data System (ADS)

    Lahtinen, Raimo; Huhma, Hannu; Lahaye, Yann; Lode, Stefanie; Heinonen, Suvi; Sayab, Mohammad; Whitehouse, Martin J.

    2016-10-01

    characterized by both I-type and A-type (CFGC/A) intermediate and felsic granitoids. The I-type granitoids are divided into two groups at ≥ 1885 Ma and ≤ 1882 Ma, where the latter overlap in age with the CFGC/A granitoids. Both I-type CFGC and CFGC/A granitoids are interpreted to have formed from mixing of Paleoproterozoic SCLM-derived melts with crustal melts from hydrous and dry intermediate-felsic igneous sources, respectively. The geochemistry, dominantly δ18O values below 6.5‰ in zircons and TDM (2.11-2.42 Ga) of the CFGC granitoids favor the occurrence of older crust (ca. 2.1-2.0 Ga) in their genesis. The BZ granitoids are similar in age but more juvenile with TDM ages between 1.94 Ga and 2.16 Ga. The 1.92 Ga granodiorite in the BB is correlated with juvenile gneissic tonalites and granodiorites found from the AP boundary. We suggest that the present high-velocity lower crust under the CFGC is composed of melt-extracted granulites (crustal source age ≥ 2.0 Ga) and mafic cumulates which both formed during 1.90-1.88 Ga arc magmatism. The ≤ 1.88 Ga stage represents the end of compression/transpression and is followed by 1.87-1.86 Ga buckling, forming the Bothnian Oroclines.

  4. Dating Shearing and Exhumation in the Eastern Adriondack Mountains: Integrating Monazite into Microstructural and Petrologic Studies

    NASA Astrophysics Data System (ADS)

    Williams, M. L.; Jercinovic, M. J.; McLelland, J. M.; Wong, M.

    2010-12-01

    Absolute age constraints on deformation events are critical for interpreting the tectonic history of orogenic belts. Constraints are commonly indirect, for example, interpreting relationships with dated igneous rocks. In-situ mapping and dating of monazite is a promising alternative for directly dating tectonic processes. Monazite is a fabric-forming mineral that is typically aligned with foliations and lineations. It can contain aligned inclusions or occur as aligned inclusions in other phases. Compositional domains in polygenetic monazite can define sigma and delta tails, strain shadows, or fracture- fillings that can be kinematically linked to deformation. Significantly, the growth or breakdown of monazite (and other accessory phases) can be understood in terms of silicate reactions that are linked to deformation (i.e. low-Y monazite domains associated with garnet growth during crustal thickening). Typically, a small number of monazite grains have unambiguous microstructural relationships. Thus, a “Rosetta Stone” approach can be successful. Full-section compositional maps are used to locate all accessory minerals in structural context. A subset of grains are mapped and analyzed to define the general sequence of monazite growth events in the rock or region. Finally, high-resolution compositional single-grain images are used to identify the rare “Rosetta” grains that can place specific timing constraints. An example involves unraveling the timing of shear-related structures in the eastern Adirondack Mountains, NY. Pervasive east-dipping fabrics with east-plunging lineations indicate a major, relatively late-stage event of east-directed (normal) shearing. Polygenetic monazite within the garnet-rich gneisses of this region can be used to directly constrain this event. Relatively rare monazite (inner) cores are ca. 1170 Ma, probably reflecting Shawinigan orogenesis. Dominant interior domains “outer cores” are ca 1050 Ma, reflecting high-P-T Ottawan

  5. In situ U Pb dating and element mapping of three generations of monazite: Unravelling cryptic tectonothermal events in low-grade terranes

    NASA Astrophysics Data System (ADS)

    Rasmussen, Birger; Fletcher, Ian R.; Muhling, Janet R.

    2007-02-01

    In situ U-Pb dating of monazite and xenotime in sedimentary rocks from the mid-Archean Soanesville Group in the Pilbara Craton, yields ages for provenance, diagenesis and multiple low-grade metamorphic events. Detrital monazite and xenotime grains give dates >3250 Ma, whereas diagenetic xenotime provides a new minimum age of 3190 ± 10 Ma for deposition of the basal Soanesville Group, previously constrained between ˜3235 Ma and ˜2955 Ma. Metamorphic monazite provides evidence for three episodes of growth: at 2.88, 2.16 and 1.65 Ga. Element mapping of monazite for La, Sm, Y and Th reveals distinct cores and rims in some crystals that were used to guide the placement of analytical spots during in situ U-Pb dating by sensitive high-resolution ion microprobe (SHRIMP). Specifically, La and Sm distributions closely correlate with different generations of monazite. The presence of two generations in single monazite crystals highlights the need for characterizing mineral chemistry prior to geochronology. It also shows the importance of using in situ dating techniques rather than methods that rely on the analysis of entire, potentially multi-aged, crystals. The ages recorded by metamorphic monazite span more than one billion years and are interpreted to record cryptic tectonothermal events within the craton. The 2.88 Ga age coincides with a phase of regional deformation, metamorphism and gold mineralization along a major crustal lineament, whereas the most common monazite age population (at 2.16 Ga) corresponds with the migration of a foreland fold-and-thrust belt across the craton. The youngest age (1.65 Ga) coincides with an episode of tectonic reworking in the Capricorn Orogen along the southern Pilbara margin. The prolonged history of monazite growth may, in part, relate to channelized fluid flow during reactivation of long-lived N- to NE-trending crustal structures that transect the craton. Despite repeated episodes of metamorphism, the isotopic system in each

  6. Monazite deposits of the southeastern Atlantic States

    USGS Publications Warehouse

    Mertie, John Beaver

    1953-01-01

    Monazite, a phosphate of the rare earths, is the principal mineral from which the cerium earths and thorium are obtained. Fluviatile monazite placers were mined in the Piedmont province of North and South Carolina from 1887 to 1911, and again intermittently from 1915 to 1917; but the principal sources In recent years have been the beach placers of India and Brazil. In 1946, an embargo was placed on the exportation of Indian monazite, and the Brazilian production has not increased materially to replace this loss. Accordingly monazite in recent years has become a scarce commodity. The principal domestic sources from which monazite may be recovered commercially are in Idaho and in the Piedmont province of the southeastern States. Some monazite is now being produced in Idaho, and a small output is being recovered as a byproduct of heavy mineral mining in Florida. The southeastern placers were not exhausted by the earlier mining and new deposits have been discovered; but production from this region awaits adequate exploration. The country rock of the southeastern Piedmont province is a complex assemblage of metamorphic and igneous rocks. The monazite occurs in two belts. A western belt has been traced from east-central Virginia for 600 miles southwestward into Alabama; and an eastern belt has been traced from the vicinity of Fredericksburg, Va., south-southwestward for 200 miles into North Carolina. Monazite-bearing rocks near. Rion, S. C., appear to indicate a southwestward continuation of the eastern belt. The western, or principal belt, includes the placers that were formerly mined in North and South Carolina. These placers were sampled, and the monazite was separated from the best of the samples, for mineralogical and chemical analysis. The tabulated results show a mean tenor, in the headwater placers of highest grade, of 8.4 pounds of monazite to the cubic yard. Farther downstream where mining must be done to obtain larger yardages, the tenor will be much lower

  7. Geochronology and Nd isotope geochemistry of the Gameleira Cu-Au deposit, Serra dos Carajás, Brazil: 1.8-1.7 Ga hydrothermal alteration and mineralization

    NASA Astrophysics Data System (ADS)

    Pimentel, Márcio M.; Lindenmayer, Zara G.; Laux, Jorge H.; Armstrong, Richard; de Araújo, Janice Caldas

    2003-01-01

    . The geochronological data suggest that the Gameleira Cu-Au mineralization is related to a Paleoproterozoic (ca. 1.83 Ga) episode of hydrothermal activity and is not Archaean. The younger ages of ca. 1.70-1.73 might be interpreted as products of the lower blocking temperatures of biotite in relation to the Ar-Ar and Sm-Nd isotopic systems. Combined with previous geochemistry and stable isotope data, the Nd isotopic data suggest that the mineralizing fluids were derived from, or strongly interacted with, a Paleoproterozoic crustal granite, possibly similar in age and composition to the Pojuca granite.

  8. Contribution of Columbia and Gondwana Supercontinent assembly- and growth-related magmatism in the evolution of the Meghalaya Plateau and the Mikir Hills, Northeast India: Constraints from U-Pb SHRIMP zircon geochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Kumar, Santosh; Rino, Vikoleno; Hayasaka, Yasutaka; Kimura, Kosuke; Raju, Shunmugam; Terada, Kentaro; Pathak, Manjari

    2017-04-01

    The Meghalaya Plateau and the Mikir Hills constitute a northeastern extension of the Precambrian Indian Shield. They are dominantly composed of Proterozoic basement granite gneisses, granites, migmatites, granulites, the Shillong Group metasedimentary cover sequence, and Mesozoic-Tertiary igneous and sedimentary rocks. Medium to coarse grained, equigranular to porphyritic Cambrian granite plutons intrude the basement granite gneisses and the Shillong Group. U-Pb SHRIMP zircon geochronology and geochemistry of the granite gneisses and granites have been carried out in order to understand the nature and timing of granite magmatism, supercontinent cycles, and crustal growth of the Meghalaya Plateau and Mikir Hills. Zircons from the Rongjeng granite gneiss record the oldest magmatism at 1778 ± 37 Ma. An inherited zircon core has an age of 2566.4 ± 26.9 Ma, indicating the presence of recycled Neoarchaean crust in the basement granite gneisses. Zircons from the Sonsak granite have two ages: 523.4 ± 7.9 Ma and 1620.8 ± 9.2 Ma, which indicate partial assimilation of an older granite gneiss by a younger granite melt. Zircons from the Longavalli granite gneiss of the Mikir Hills has a crystallization age of 1430.4 ± 9.6 Ma and a metamorphic age of 514 ± 18.6 Ma. An inherited core of a zircon from Longavalli granite gneiss has an age of 1617.1 ± 14.5 Ma. Zircons from younger granite plutons have Cambrian mean ages of 528.7 ± 5.5 Ma (Kaziranga), 516 ± 9.0 Ma (South Khasi), 512.5 ± 8.7 Ma (Kyrdem), and 506.7 ± 7.1 Ma and 535 ± 11 Ma (Nongpoh). These plutons are products of the global Pan-African tectonothermal event, and their formation markedly coincides with the later stages of East Gondwana assembly (570-500 Ma, Kuunga orogen). The older inherited zircon cores (2566.4 ± 26.9 Ma, 1758.1 ± 54.3 Ma, 1617.1 ± 14 Ma) imply a significant role for recycled ancient crust in the generation of Cambrian granites. Thus the Meghalaya Plateau and Mikir Hills experienced

  9. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Calkins, G.D.

    1957-10-29

    A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.

  10. Interpretation of U-Th-Pb in-situ ages of hydrothermal monazite-(Ce) and xenotime-(Y): evidence from a large-scale regional study in clefts from the western alps

    NASA Astrophysics Data System (ADS)

    Grand'Homme, A.; Janots, E.; Bosse, V.; Seydoux-Guillaume, A. M.; De Ascenção Guedes, R.

    2016-12-01

    In eleven Alpine clefts of the western Alps, in-situ dating of monazite-(Ce) and xenotime-(Y) has been attempted to gain insights on possible disturbances of the geochronological U-Th-Pb systems and age interpretations in hydrothermal conditions. In most clefts, monazite-(Ce) in-situ 208Pb/232Th dating using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) yields well-resolved ages (with errors typically <0.3 Ma, quoted at the 2σ level), indicative of a short duration monazite-(Ce) growth. However, monazite-(Ce) dating demonstrates two successive episodes of growth separated by several million years within two single clefts. Only in one cleft, complex age mixture in a porous and complex zoned monazite-(Ce) suggests disturbance of the 208Pb/232Th ages due to replacement by dissolution-precipitation processes. While some U-Pb ages are coherent with the 208Pb/232Th ages, U-Pb ages are generally disturbed by significant 206Pb excess in monazite-(Ce) with high Th/U ratio (>100). Xenotime-(Y) has remarkably high Th/U ratios and U-Pb dating is also disturbed by 206Pb excess, whereas 208Pb/232Th dating gave well-resolved ages (34.9 ± 0.5 Ma), close to but higher than the monazite-(Ce) age obtained in the same cleft (32.3 ± 0.3 Ma). Correlation of the monazite-(Ce) U-Th-Pb age dataset with other geochronological data suggests for monazite-(Ce) precipitation at periods of high tectonic activity. In the external massifs, monazite-(Ce) dating confirms a polyphased transpressive regime with activity periods around 13-11 Ma and 8-6 Ma. Older monazite-(Ce) ages in the Argentera massif (20.6 ± 0.3 Ma) are consistent with the regional diachronism in the western external Alps. In the 2 clefts of the internal massifs, monazite-(Ce) dating provides first ages of hydrothermal activity: the monazite-(Ce) age at 32.3 ± 0.3 Ma coincides with the exhumation along the Penninic front, but the monazite-(Ce) age at 23.3 ± 0.2 Ma is complex to attribute to a

  11. Paleomagnetism and Monazite Dating of Grenville Rocks, Adirondack Mountains, NY

    NASA Astrophysics Data System (ADS)

    Brown, L.; McEnroe, S.; Jercinovic, M.

    2003-12-01

    Paleomagnetic studies on three rock units from the Adirondack Highlands, New York State yield stable magnetic directions. Electron microprobe monazite geochronology suggests a strong ca. 1050 Ma signature, corresponding to Ottawan granulite-facies metamorphism. Remnants of older (ca. 1130-1190 Ma) monazite, consistent with early-Grenville tectonomagmatic events are also documented. There is no evidence of younger (<1050 Ma) events with the exception of partial alteration (with Ca-enrichment) of some monazite. Sillimanite-microcline gneisses (gms) of the far-western Highlands, associated with negative aeromagnetic anomalies, exhibit strong stable magnetization dominated by titanohematite with abundant exsolutions of ilmenite, pyrophanite, rutile and spinel. Mean magnetic directions for 14 sites are I-62.8, D=289.2 and a-95=7.6. Sampled in the central Highlands is the post-orogenic fayalite ferro-hedenbergite Wanakena Granite. Samples contain magnetite with ilmenite oxy-exsolution, occurring as discrete grains and inclusions in silicates. Directions from the Wanakena are steeply negative with westerly declinations (I=-76.4, D=296.7, a-95=4.4, N=7). The Marcy meta-anorthosite was sampled in the central and eastern Highlands, although many of these sites proved unstable. Stable results were combined with unpublished data from Rob Hargraves for 13 sites (I=-64.4, D=286.2, a-95=9.1). Over half of the anorthosites and one gms site have normal directions; all Wanakena sites are reversed. Combined anorthosites and gms units give a pole position of 20S/151E; the Wanakena pole is at -29S/132E. Both poles fall in the southern extent of the Grenville loop. The thermodynamically constrained equilibrium phase diagram for ilm-hem predicts that very fine exsolution, most likely responsible for the stable magnetization of the gms rocks, starts to form around 390C, well below the conditions of granulite grade metamorphism. The abundant lamellae provide a stable NRM through the

  12. Constraints on Alpine hydrothermal activity and deformation from U-Th-Pb dating of cleft monazite and xenotime (Western Alps)

    NASA Astrophysics Data System (ADS)

    Grand'Homme, Alexis; Janots, Emilie; Bosse, Valerie; Seydoux-Guillaume, Anne-Magali; De Ascencao, Roger

    2016-04-01

    In this large-scale regional study, age of hydrothermal monazite (and xenotime) precipitation has been investigated through in-situ U-Th-Pb dating of crystals collected in 11 clefts (veins) taken in the internal and external massifs (Western Alps). The investigated clefts are composed of quartz, chlorite (± epidote), albite and millimetric accessory minerals (monazite, apatite, xenotime, anatase, rutile). Prior to dating, cleft monazite composition was thoroughly studied to reveal potential zoning. In-situ dating through different compositional domains of single monazite crystal yields well-resolved Th-Pb ages (typically with 0.1-0.3 Ma resolution) indicating for growth episodes with short duration. Comparison of U-Pb and Th-Pb dating indicates that the U-Pb systematics appears successful to date cleft monazite with low Th/U ratio (typically <30). In one cleft, in which monazite and xenotime coexist, xenotime was dated using the monazite analytical protocol. Hydrothermal xenotime has remarkably high Th/U ratio and U-Pb dating shows evidence of 206Pb excess. In comparison, Th-Pb dating gives robust ages (35.2 ± 0.8 Ma) that are close but higher than the monazite date obtained in the same cleft (32.3 ± 0.3 Ma). Brief episodic monazite crystallization is likely attributed to enhanced hydrothermal activity during periods of higher tectonic activity. Correlation with other geochronological data suggests that it occurs in a host-rock that already cooled down at temperature close or below to the zircon fission track. In the Belledonne massif, the new monazite ages confirm for two periods of hydrothermal activity at around 11-13 Ma and 8-6 Ma, respectively. Only one vertical cleft monazite was investigated in the Mont-Blanc massif but it gives an age that is similar to the early population of the Belledonne massif (11.1 ± 0.2 Ma). Monazite dating therefore suggests for similar late-stage tectonic activity from Belledonne up to the Aar massifs, likely due to dextral

  13. Progress report of southeastern monazite exploration, 1952

    USGS Publications Warehouse

    Overstreet, W.C.; Theobald, P.K.; White, A.M.; Cuppels, N.P.; Caldwell, D.W.; Whitlow, J.W.

    1953-01-01

    Reconnaissance of placer monazite during the field season of 1952 covered 6,600 square miles drained by streams in the western Piedmont of Virginia 5 North Carolina, South Carolina,, and Georgia. Emphasis during this investigation was placed on the area between the Savannah River at the border of South Carolina and Georgia and the Catawba River in North Carolina because it contains most of the placers formerly mined for monaziteo Four other areas along the strike of the monazite-bearing crystalline rocks were also studied, They center around Mt. Airy, N.C., Athens, Ga. Griffin, Ga. and LaGrange, Ga. In the Savannah River Catawba River district, studies indicate that even the highest grade stream deposits of more than 10 million cubic yards of alluvium contain less than 1 pound of monazite per cubic yard. The average grade of the better deposits is about 0 0 5 pound of monazite per cubic yard. Only trace amounts of niobium, tantalum, and tin have been detected in the placers. Tungsten is absent. Locally gold adds a few cents per cubic yard to the value of placer ground. The best deposits range in size from 1 to 5 million cubic yards and contain 1 to 2 pounds of monazite to the cubic yard. Hundreds of placers smaller than 1 million cubic yards exceed 2 pounds of monazite to the cubic yard and locally attain an average of 10 pounds Monazite deposits around Athens, Ga., are similar to the smaller deposits in the central part of the Savannah River - Catawba River district. A few small very low-grade monazite placers were found near Mt. Airy, N.C., Griffin, Ga., and LaGrange Ga., but they are of no economic value. The larger the flood plain and the farther it lies from the source of the stream, the lower is the monazite content of the sediment. Monazite cannot be profitably mined .from the crystalline rocks in the five areas. The alluvial placers are in stream sediments of post-Wisconsin age. Some pre-Wisconsin terrace gravel of small areal extent is exposed but it

  14. Geochemistry, geochronology, mineralogy, and geology suggest sources of and controls on mineral systems in the southern Toquima Range, Nye County, Nevada; with geochemistry maps of gold, silver, mercury, arsenic, antimony, zinc, copper, lead, molybdenum, bismuth, iron, titanium, vanadium, cobalt, beryllium, boron, fluorine, and sulfur; and with a section on lead associations, mineralogy and paragenesis, and isotopes

    USGS Publications Warehouse

    Shawe, Daniel R.; Hoffman, James D.; Doe, Bruce R.; Foord, Eugene E.; Stein, Holly J.; Ayuso, Robert A.

    2003-01-01

    Geochemistry maps showing the distribution and abundance of 18 elements in about 1,400 rock samples, both mineralized and unmineralized, from the southern Toquima Range, Nev., indicate major structural and lithologic controls on mineralization, and suggest sources of the elements. Radiometric age data, lead mineralogy and paragenesis data, and lead-isotope data supplement the geochemical and geologic data, providing further insight into timing, sources, and controls on mineralization. Major zones of mineralization are centered on structural margins of calderas and principal northwest-striking fault zones, as at Round Mountain, Manhattan, and Jefferson mining districts, and on intersections of low-angle and steep structures, as at Belmont mining district. Paleozoic sedimentary rocks, mostly limestones (at Manhattan, Jefferson, and Belmont districts), and porous Oligocene ash-flow tuffs (at Round Mountain district) host the major deposits, although all rock types have been mineralized as evidenced by numerous prospects throughout the area. Principal mineral systems are gold-silver at Round Mountain where about 7 million ounces of gold and more than 4 million ounces of silver has been produced; gold at Gold Hill in the west part of the Manhattan district where about a half million ounces of gold has been produced; gold-mercury-arsenic-antimony in the east (White Caps) part of the Manhattan district where a few hundred thousand ounces of gold has been produced; and silver-lead-antimony at Belmont where more than 150,000 ounces of silver has been produced. Lesser amounts of gold and silver have been produced from the Jefferson district and from scattered mines elsewhere in the southern Toquima Range. A small amount of tungsten was produced from mines in the granite of the Round Mountain pluton exposed east of Round Mountain, and small amounts of arsenic, antimony, and mercury have been produced elsewhere in the southern Toquima Range. All elements show unique

  15. Structural interpretation of the Steenkampskraal monazite deposit, Western Cape, South Africa

    NASA Astrophysics Data System (ADS)

    Basson, I. J.; Muntingh, J. A.; Jellicoe, B. C.; Anthonissen, C. J.

    2016-09-01

    The Steenkampskraal Monazite Mine was first established in 1952, to extract monazite ore for the production of thorium and rare earth element (REE) concentrate. Refurbishment of the mine in recent years has required the re-inspection and re-evaluation of the mineralized monazite zone (MMZ). This contribution presents a structural review of the MMZ and its emplacement, based on recent data and its setting at the southern extent of the Bushmanland Sub-province of the Namaqua-Natal Metamorphic Belt. New surface and underground mapping confirm that the MMZ is a moderately-dipping body within gneissic host rocks on the southern limb of a broad F3 antiform. Thickness variations, both down-dip and along-strike, are the result of D2 and D3 deformation. The MMZ has been locally transected and steepened by subsequent late-D3, "steep-structures", which are typical of the Okiep copper district, ∼150 km north of Steenkampskraal. Geochronological data suggest that the MMZ was intruded, emplaced or formed at 1046 ± 7.5 Ma, at the start of the D3 Klondikean Episode (1040-1020 Ma). Unlike the analogous copper-bearing Koperberg Suite in the Okiep Copper district, the MMZ was not intruded into Klondikean-aged steep structures, but was rather transected and steepened by these. Local steepening of the otherwise moderately-dipping to flat-lying MMZ makes it locally amenable to detection by soil sampling and radiometric surveys.

  16. Sub-micron geochronology by EPMA

    NASA Astrophysics Data System (ADS)

    Jercinovic, M. J.; Williams, M. L.; Berman, R.

    2013-12-01

    Actinide-bearing, geochronologically applicable accessory phases can exhibit remarkably complex internal compositional structures, commonly revealing polygenesis and allowing timing constraints to be placed on the structural and metamorphic evolution of multiply tectonized terrains. These fine-scale mineral domains have been revealed by high resolution compositional mapping by EPMA of natural monazite (LREE PO4), and can exist at nearly all spatial scales, including domains substantially below 1 micron in width. Accurate compositional characterization of such domains by any technique is difficult, but hardware and software developments in EPMA offer some opportunities to approach these challenging but important targets accurately. In this regard, we have analyzed Paloeproterozoic (ca. 1.8 Ga) monazite domains which penetrate along cleavage planes in larger, older monazite grains (ca. 2.55 and 2.37 Ga) from the Boothia peninsula, Nanavut Canada. As such, this represents a successful nanogeochronologic analysis. The direct analytical volume, as defined by the convolution of the error functions resulting from primary (beam) electron scattering and characteristic X-ray generation volume dimensions, can be restricted to considerably less than 1 micron with the use of high brightness sources (LaB6, CeB6, or Schottky) and modest beam energy (15kV or less) in monazite (Z ca. 39). However, the analysis is rendered far more complex by the effects of boundary fluorescence and beam damage. For this analysis, we use a high thermal/electrical conductivity double coating of aluminum and carbon to mitigate sample damage at high current density. Although imperfect (there remains a net loss of P relative to REEs and actinides), this analysis results in relatively minor counting errors relative to the concentrations, and accuracy can be further improved by use of time-dependent count acquisition methods. Reduction of the beam energy substantially below 10kV results in extreme damage

  17. U-Pb monazite ages in amphibolite- to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway

    NASA Astrophysics Data System (ADS)

    Bingen, Bernard; van Breemen, Otto

    In the Rogaland-Vest Agder terrain of the Sveconorwegian Province of SW Norway, two main Sveconorwegian metamorphic phases are reported: a phase of regional metamorphism linked to orogenic thickening (M1) and a phase of low-pressure thermal metamorphism associated with the intrusion of the 931 +/- 2 Ma anorthosite-charnockite Rogaland igneous complex (M2). Phase M1 reached granulite facies to the west of the terrane and M2 culminated locally at 800-850 °C with the formation of dry osumilite-bearing mineral associations. Monazite and titanite U-Pb geochronology was conducted on 17 amphibolite- to granulite-facies orthogneiss samples, mainly from a suite of 1050 +2/-8 Ma calc-alkaline augen gneisses, the Feda suite. In these rocks, prograde negatively discordant monazite crystallized during breakdown of allanite and titanite in upper amphibolite facies at 1012-1006 Ma. In the Feda suite and other charnockitic gneisses, concordant to slightly discordant monazite at 1024-997 Ma probably reflects breakdown of biotite during granulite-facies M1 metamorphism. A spread of monazite ages down to 970 Ma in biotite +/- hornblende samples possibly corresponds to the waning stage of this first event. In the Feda suite, a well defined monazite growth episode at 930-925 Ma in the amphibolite-facies domain corresponds to major clinopyroxene formation at the expense of hornblende during M2. Growth or resetting of monazite was extremely limited during this phase in the granulite-facies domain, up to the direct vicinity of the anorthosite complex. The M2 event was shortly followed by cooling through ca. 610 °C as indicated by tightly grouped U-Pb ages of accessory titanite and titanite relict inclusions at 918 +/- 2 Ma over the entire region. A last generation of U-poor monazite formed during regional cooling below 610 °C, in hornblende-rich samples at 912-904 Ma. This study suggests: (1) that monazite formed during the prograde path of high-grade metamorphism may be preserved; (2

  18. Using multi-scale structural and petrological analysis coupled with zircon and monazite SIMS and in-situ EPMA geochronology to document the evolution of a mid-crustal transpression system: a case study from the Northern Appalachians, U.S.A.

    NASA Astrophysics Data System (ADS)

    Massey, M. A.; Moecher, D. P.; McCulla, J. K.; Draper, K. P. J.; Young, J.; Rohrer, L.; Walker, T. B.; O'Brien, T.

    2015-12-01

    Three-dimensional transpressional strain is commonly associated with zones of oblique convergence, rather than ideal 2D simple shear or pure shear. Consequently, a considerable body of modeling has been aimed at understanding the progressive evolution of transpression, which has been used to explain an assortment of structures observed in natural settings. The basic tenants of most models involve simultaneous strike-slip and shortening, which provide the underlying mechanism for a constantly evolving finite strain geometry and magnitude. Despite the obvious temporal-dependence, very few studies have evaluated timescales of transpression. In the Northern Appalachians, the Bronson Hill arc and Central Maine basin of southern New England largely reflect highly oblique dextral transpression. Fabrics were initially characterized by strong foliations, subhorizontal lineations, and dextral kinematics, all of which are present in 360-354 Ma tonalite, diorite, and granite intrusions, the youngest placing a maximum age on transpression. As strains accumulated, fabrics began to reflect the increasing manipulation of the shortening component, marked by tightening of foliations, closed to isoclinal folding, and reverse high strain zones; stretching lineations changed in orientation to steeply plunging parallel to dip, while older pre-existing subhorizontal lineations were rotated. Syntectonic monazite and metamorphic zircon nucleated episodically throughout this time. Y-enriched monazite nucleated at 330 Ma along with fabric-forming biotite and sillimanite, and place a minimum age on the development of dip-parallel lineations. Mineral assemblages and associated ages document retrograde cooling attending deformation from partial melting at 355-350 Ma, to sillimanite grade at 330 Ma, below the Ar closure temperature for amphibole of 500°C at 326-314 Ma, and into biotite grade deformation as young as 295 Ma. Collectively, structures, fabrics, mineral assemblages, and

  19. Petrogenesis and geodynamic setting of Early Cretaceous felsic rocks in the Gan-Hang Belt, Southeast China: Constraints from geochronology and geochemistry of the tuffs and trachyandesitic rocks in Shengyuan volcanic Basin

    NASA Astrophysics Data System (ADS)

    Shu, Xun; Yang, Shui-Yuan; Jiang, Shao-Yong; Ye, Mao

    2017-07-01

    The Late Mesozoic geology of the Gan-Hang Belt is characterized by extensive magmatism forming a belt of volcanic-intrusive complex. The geochronology, petrogenesis, and geodynamic setting of the Late Mesozoic magmatic rocks in the Gan-Hang Belt are still controversial. The Shengyuan volcanic Basin is located in the NW region of the belt and mainly contains crystal tuff, welded tuff, and trachyandesitic rocks. We integrate geochronological and geochemical data for these tuffs and trachyandesitic rocks, to explore the origin of these rocks and improve our understanding of the Late Mesozoic magmatic and tectonic evolution of the region. Zircon U-Pb dating shows that these samples were formed in the Early Cretaceous (135-137 Ma). All the tuffs have a pronounced A2-type geochemical signature and their chemical compositions are controlled by crystal fractionation. All trachyandesitic rocks exhibit high K2O contents and were attributed to the shoshonite series; they are characterized by arc-like trace element distribution patterns, with significant enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE) but depletion in high field-strength elements (HFSE). Moreover, all the tuffs and trachyandesitic rocks were characterized by negative whole rock εNd(t) and zircon εHf(t). An integrated interpretation of all these geochemical data leads to the conclusion that the Shengyuan trachyandesitic rocks were primarily derived from mantle materials and oceanic crust-derived melt. The Shengyuan tuffs were formed by the partial melting of the Proterozoic orthometamorphic and parametamorphic rocks. Our studies together with previous published data suggest that the Early Cretaceous A-type felsic rocks, with ages between 138 Ma and 122 Ma, occurred along the Gan-Hang Belt, indicating an important Late Mesozoic extensional event in the Belt. This event represents a back-arc tectonic setting due to the rollback of the Paleo-Pacific plate.

  20. Petrology, geochemistry and modelling of the granulitic-ultramafic rocks in Beni Bousera (Rif, Morocco): implications for direct crust-mantle interactions and melt-extraction systems

    NASA Astrophysics Data System (ADS)

    Manthei, C. D.; Álvarez-Valero, A.; Jagoutz, O. E.

    2011-12-01

    The Beni Bousera (N. Morocco) and Ronda (S. Spain) ultramafic massifs of the Betic-Rif orogenic belt are two of the most pristine exposures of upper-mantle/lower crustal material on Earth's surface. Unlike other samples of the mantle, they are relatively unaltered and preserve a record of ultra-high pressure conditions, within the diamond-stability field (e.g. Slodkevich, 1980; Pearson et al., 1989). The process of removing of the massifs from the diamond-stability field, and the ensuing emplacement into the continental crust, is an ongoing area of research in regional tectonics. Here, we focus specifically on Beni Bousera, and note that the up-risen material is of higher density than its host, prompting the development of models that use melt-induced buoyancy forces as the primary driver of exhumation (Jagoutz et al., 2006; Gerya and Burg, 2007). We find evidence for discrete reaction zones in the ultramafic rocks that were formed by pervasive infiltration of melt, which may have channelized, lowered the integrated bulk density of the massif (e.g., Jagoutz et al., 2006), and driven exhumation. Since key questions concerning the emplacement mechanisms are still unanswered, complementary studies of the surrounding crustal material -granulitic rocks, which are mostly metapelitic with local intercalation of mafic composition-, assist in deepening our understanding crust-mantle processes. We will discuss our ongoing research at Beni Bousera, focusing on: (1) the petrological, structural, geochronological and physical relationships between mantle and crust by combining field petrology, petrography and phase diagram modeling, geochemistry, zircons/monazite dating, and numerical modeling; (2) the emplacement mechanisms of ultramafic and granulitic rocks by proposing a new hypothesis of very rapid exhumation of the mantle material. This rapid ascent is currently being constrained/tested by combining geobarometric calculations and high precision U-Pb zircon geochronology on

  1. The pace of continental deformation and geochronology

    NASA Astrophysics Data System (ADS)

    Parrish, R. R.

    2007-12-01

    Continental tectonics and geochronology have had a symbiotic relationship for many decades. A diverse range of chronometers has been applied to tectonic problems and to quantify rates of geological processes. These chronometers include U-Th-Pb, Ar-Ar, ZFTA, U-Th-He, and other systems and fall into geo-chronomters that date geological events (i.e. mineral crystallisation concurre3nt with igneous or metamorphic mineral growth) and thermo-chronometers (dating the time of cooling during exhumation, for example). With advances in linking mineral chemistry of accessory minerals to metamorphic reactions, it goes without saying that careful petrology, petrography, mineral chemistry and imaging are essential to arriving at an appropriate interpretation of U-Th-Pb dates of accessory minerals in metamorphic rocks (e.g. monazite, zircon, titanite). Examples from the Himalaya will be used to illustrate how ID-TIMS and intra-crystal SIMS and LA-ICP-MS U-Th-Pb dating can be used to elucidate P-T-t paths of metamorphic rocks during metamorphism and exhumation. By contrast, an emerging area of study involves using single detrital minerals to reconstruct provenance and patterns of erosion in mountain systems. Because these detrital minerals (mica, monazite, zircon, rutile, allanite, titanite, etc.) have been separated from their petrographic context, interpretations based upon ages of these minerals will be much less constrained and it is all the more important to ask 'what do the dates mean?'. Further examples will be presented that attempt to explore whether a comprehensive approach to mineral provenance analysis in sedimentary materials (chronology, mineral chemistry, isotopes) can provide an accurate and useful snapshot of the geological characteristics of a portion of a mountain system undergoing erosion and exhumation. What can be reconstructed by this approach and what are its limitations? Of particular interest are monazite, rutile, garnet, and zircon which may provide

  2. Radiation damage in zircon and monazite

    SciTech Connect

    Meldrum, A.; Boatner, L.A.; Weber, W.J.; Ewing, R.C.

    1998-07-01

    Monazite and zircon respond differently to ion irradiation and to thermal and irradiation-enhanced annealing. The damage process (i.e., elastic interactions leading to amorphization) in radioactive minerals (metamictization) is basically the same as for the ion-beam-irradiated samples with the exception of the dose rate which is much lower in the case of natural samples. The crystalline-to-metamict transition in natural samples with different degrees of damage, from almost fully crystalline to completely metamict, is compared to the sequence of microstructures observed for ion-beam-irradiated monazite and zircon. The damage accumulation process, representing the competing effects of radiation-induced structural disorder and subsequent annealing mechanisms (irradiation-enhanced and thermal) occurs at much higher temperatures for zircon than for monazite. The amorphization dose, expressed as displacements per atom, is considerably higher in the natural samples, and the atomic-scale process leading to metamictization appears to develop differently. Ion-beam-induced amorphization data were used to calculate the {alpha}-decay-event dose required for amorphization in terms of a critical radionuclide concentration, i.e., the concentration above which a sample of a given age will become metamict at a specific temperature. This equation was applied to estimate the reliability of U-Pb ages, to provide a qualitative estimate of the thermal history of high-U natural zircons, and to predict whether actinide-bearing zircon or monazite nuclear waste forms will become amorphous (metamict) over long timescales.

  3. U-Th-Total Pb ages in monazites of the Los Pedroches batholith (Spain): evidence of postcrsytallization events

    NASA Astrophysics Data System (ADS)

    García de Madinabeitia, S.; Santos Zalduegui, J. F.; Carracedo, M.; Gil Ibarguchi, J. I.

    2003-04-01

    The U-Th-total Pb composition of monazite determined by electron microprobe methods has been successfully applied in geochronology using different age calculation procedures (1). One of the main problems in the use of this geochronological tool is the impossibility to asses the degree of discordance of the minerals analyzed. The Los Pedroches batholith of the Central-Iberian Zone (S Spain) is a late-Hercynian magmatic alignment essentially formed by a granodiorite unit and several granite intrusions. The batholith was emplaced subsequently to the main Hercynian deformation phase during upper Westphalian to lower Stephanian times (ca. 300 Ma). The emplacement was controlled by a crustal-scale shear zone trending N120--130E developed in a transtensional regime (2). There is no evidence of major deformational events after the emplacement. Thirty representative monazites from four granitic plutons (Santa Eufemia, El Guijo, Cerro Mogábar, Cardeña-Virgen de La Cabeza) of the Los Pedroches batholith have been analyzed by electron microprobe using standard procedures described in (3). Data obtained from 166 analyses were processed and plotted on different diagrams proposed for U-Th-total Pb dating assessment (1, 3, 4). In U/Pb vs. Th/Pb diagrams, analyzed monazites exhibit gradual variations in U, Th and Pb contents, but deviate from the reference isochron lines. Data sets for each pluton show considerable scatter on age histograms which also prevent obtaining ages with reasonable errors. Yet, individual monazite grains show variable patterns and generally present the higher frequency of data at ca. 300 Ma with tails down to ca. 250 Ma. On the other hand, data plotted on the ThO_2* (%) vs. PbO (%) diagrams generally crosscut in PbO negative values, indicating some Pb loss after mineral crystallization. It appears, therefore, that despite the absence of field, structural and geophysical evidence of post-emplacement deformation and recrystallization in granites, the

  4. Geochemistry and zircon U-Pb geochronology of the ultramafic and mafic rocks emplaced within the anatectic series of the Variscan Pyrenees: The example of the Gavarnie-Heas dome (France)

    NASA Astrophysics Data System (ADS)

    Kilzi, Mohammad A.; Grégoire, Michel; Bosse, Valérie; Benoît, Mathieu; Driouch, Youssef; de Saint Blanquat, Michel; Debat, Pierre

    2016-02-01

    The origin and evolution of ultramafic (UM), mafic (M) and intermediate rocks emplaced within the metamorphic and anatectic series of the middle crust of the Variscan segment of the Pyrenees are defined in the light of new isotopic data U-Pb zircon ages, and Sr, Nd isotopic ratios. In the Gavarnie-Heas dome (central Pyrenees), ultramafic, mafic and intermediate rocks form three massifs several kilometers in size emplaced within the anatectic series: (i) the Gloriettes massif, which mostly consists of norites with enclaves of ultramafic rocks; (ii) the Troumouse massif, which comprises intermediate rocks (gabbro-diorite and diorite) with norite enclaves, and (iii) the Aguila massif, which consists of intermediate rocks with hornblendite enclaves. U-Pb zircon geochronology (first data for these rock types in the Axial Zone of the Pyrenees) revealed an age of 294 Ma for the diorite crystallization and correlatively for the crystallization of the anatectic granite. This new radiometric age allows us to suggest that the Variscan orogeny continued at least until the Early Permian and spread over around 30 Ma. The Nd and Sr isotopic compositions of all UM and M samples plot within the field of the continental crust. Two scenarios can explain the genesis and the emplacement of the components of the magmatic suite: i) evolution of mantle melts and contamination (AFC); ii) evolution of melts originating from a heterogeneous source (mantle + crust) at the local or regional scale. The strong crustal affinity of all UM and M rock types from Gavarnie-Heas leads us to favor the second scenario.

  5. Geochronology and geochemistry of late Paleozoic-early Mesozoic igneous rocks of the Erguna Massif, NE China: Implications for the early evolution of the Mongol-Okhotsk tectonic regime

    NASA Astrophysics Data System (ADS)

    Li, Yu; Xu, Wen-Liang; Wang, Feng; Tang, Jie; Zhao, Shuo; Guo, Peng

    2017-08-01

    We undertook geochemical and geochronological studies on late Paleozoic-early Mesozoic igneous rocks from the Erguna Massif with the aim of constraining the early evolution of the Mongol-Okhotsk tectonic regime. Zircon crystals from nine representative samples are euhedral-subhedral, display oscillatory growth zoning, and have Th/U values of 0.14-6.48, indicating a magmatic origin. U-Pb dating of zircon using SIMS and LA-ICP-MS indicates that these igneous rocks formed during the Late Devonian (∼365 Ma), late Carboniferous (∼303 Ma), late Permian (∼256 Ma), and Early-Middle Triassic (246-238 Ma). The Late Devonian rhyolites, together with coeval A-type granites, formed in an extensional environment related to the northwestwards subduction of the Heihe-Nenjiang oceanic plate. Their positive εHf(t) values (+8.4 to +14.4) and Hf two-stage model ages (TDM2 = 444-827 Ma) indicate they were derived from a newly accreted continental crustal source. The late Carboniferous granodiorites are geochemically similar to adakites, and their εHf(t) values (+10.4 to +12.3) and Hf two-stage model ages (TDM2 = 500-607 Ma) suggest they were sourced from thickened juvenile lower crustal material, this thickening may be related to the amalgamation of the Erguna-Xing'an and Songnen-Zhangguangcai Range massifs. Rocks of the late Permian to Middle Triassic suite comprise high-K calc-alkaline monzonites, quartz monzonites, granodiorites, and monzogranites. These rocks are relatively enriched in light rare earth elements and large ion lithophile elements, and depleted in heavy rare earth elements and high field strength elements. They were emplaced, together with coeval porphyry-type ore deposits, along an active continental margin where the Mongol-Okhotsk oceanic plate was subducting beneath the Erguna Massif.

  6. Geochronology, Nd isotopes and reconnaissance geochemistry of volcanic and metavolcanic rocks of the São Luís Craton, northern Brazil: Implications for tectonic setting and crustal evolution

    NASA Astrophysics Data System (ADS)

    Klein, Evandro L.; Luzardo, Renê; Moura, Candido A. V.; Lobato, Denise C.; Brito, Reinaldo S. C.; Armstrong, Richard

    2009-02-01

    New field work, in addition to zircon geochronology, Nd isotopes and reconnaissance geochemical data allow the recognition of Paleoproterozoic volcanic and metavolcanic sequences in the São Luís Craton of northern Brazil. These sequences record at least five volcanic pulses occurring probably in three distinct epochs and in different tectonic settings. (1) The Pirocaua Formation of the Aurizona Group comprises early arc-related calc-alkaline metapyroclastic rocks of 2240 ± 5 Ma formed from juvenile protoliths in addition to minor older crustal components. (2) The Matará Formation of the Aurizona Group holds mafic tholeiitic and ultramafic metavolcanic rocks of back arc and/or island arc setting, which are likely coeval to the Pirocaua Formation. (3) The Serra do Jacaré volcanic unit is composed of tholeiitic basalts and predominantly metaluminous, normal- to high- K calc-alkaline andesites of 2164 ± 3 Ma formed in mature arc or active continental margin from juvenile protoliths along with subordinate older (Paleoproterozoic) materials and associated to the main calc-alkaline orogenic stage. (4) The Rio Diamante Formation consists of late-orogenic metaluminous, medium- K, calc-alkaline rhyolite to dacite and tuffs of 2160 ± 8 Ma formed in continental margin setting from reworked Paleoproterozoic crust (island arc) with incipient Archean contribution. (5) The Rosilha volcanic unit is composed of weakly peraluminous, medium- K, calc-alkaline dacite and tuff formed probably at about 2068 Ma from reworked crustal protoliths. As a whole the volcanic and metavolcanic rocks record and characterized better the previously proposed orogenic evolution of the São Luís Craton.

  7. Constraining metamorphic rates through allanite and monazite petrochronology: a case study from the Miyar Valley (High Himalayan Crystalline of Zanskar, NW India)

    NASA Astrophysics Data System (ADS)

    Robyr, Martin; Goswami-Banerjee, Sriparna

    2014-05-01

    porphyroblasts yield respective ages of 33.6 ± 0.9 Ma and 29.5 ± 0.2 Ma, constraining the time elapsed between allanite crystallization (~ 420 °C) and monazite crystallization (~ 600°C). These data indicate that the rock needed ~ 4 Myr to be subducted from the 420 °C isotherm down to the 600°C isotherm, implying a heating rate of ca. 45°C/m.y. References Robyr, M., Epard, J.-L. & El Korh, A., 2014. Structural, metamorphic and geochronological relations between the Zanskar Shear Zone and the Miyar Shear Zone (NW Indian Himalaya): Evidence for two distinct tectonic structures and implications for the evolution of the High Himalayan Crystalline of Zanskar. Journal of Asian Earth Sciences, 79, 1-15. Robyr, M., Hacker, B. R. & Mattinson, J. M., 2006. Doming in compressional orogenic settings: New geochronological constraints from the NW Himalaya. Tectonics, 25. Robyr, M., Vannay, J. C., Epard, J. L. & Steck, A., 2002. Thrusting, extension, and doming during the polyphase tectonometamorphic evolution of the High Himalayan Crystalline Zone in NW India. Journal of Asian Earth Sciences, 21, 221-239.

  8. The Indus-Yarlung Zangbo (IYZ) ophiolites from Nanga Parbat to Namche Barwa syntaxes, Southern Tibet: First synthesis of the petrology, geochemistry and geochronology of the IYZ ophiolites, and implications for geodynamic reconstructions of Neo-Tethys

    NASA Astrophysics Data System (ADS)

    Hébert, Réjean; Bezard, Rachel; Guilmette, Carl; Dostal, Jaroslav; Wang, Chengshan; Liu, Zf

    2013-04-01

    The purpose of this first synthesis is to summarize findings on the Yarlung Zangbo Suture Zone (YZSZ) ophiolites in Southern Tibet, and to discuss some of thel remaining scientific problems. The YZSZ ophiolites have been studied for almost 30 years and constitute the youngest of the sutures recognized on the Tibet Plateau. It is now acknowledged the YZSZ is a complex assemblage of sedimentary, metamorphic and igneous rocks produced during and shortly after the collision between India and Eurasia. The ages of the various lithological units span a time interval from the Jurassic to the Middle Miocene, with some Permian and Devonian exotic blocks in the mélange zone. The YZSZ is characterized by ophiolitic complexes and an ophiolitic mélange. The ophiolites are of two types with complete and incomplete pseudostratigraphies. The complete sections, although tectonically reworked, are observed along the segment from Dazhuqu to Jiding in the Xigaze area and the Spontang ophiolite. The incomplete sequences are found in various locations, including Nidar, Kiogar, Jungbwa, Saga, Sangsang, Xigugabu, Luobusa. The incomplete nature of these ophiolites could be related to intraoceanic or orogenic/collisional origins. The YZSZ ophiolites are also distributed into two groups of ages: the Luobusa, Zedang and Kiogar sequences are Jurassic-Lower Cretaceous in age, whereas all other sequences are of a Lower Cretaceous age. Compilation of geochronological data suggest that some ophiolite sequences might have evolved for over more than 70 m.y. from their inital igneous genesis to obduction, which occurred around 70-90 Ma. Although the YZSZ ophiolites differ in terms of their petrological and geochemical characters, they were all generated in a suprasubduction zone setting, and more specifically in arc (few fore-arc) and back-arc environments. Our synthesis of ~500 geochemical analyses show variable mixing of components from N-MORB-type to IAT-CAB and to OIB end-members. The Jurassic

  9. Geochemistry, U-Pb geochronology, Sm-Nd and O isotopes of ca. 50 Ma long Ediacaran High-K Syn-Collisional Magmatism in the Pernambuco Alagoas Domain, Borborema Province, NE Brazil

    NASA Astrophysics Data System (ADS)

    Francisco da Silva Filho, Adejardo; de Pinho Guimarães, Ignez; Santos, Lucilene; Armstrong, Richard; Van Schmus, William Randall

    2016-07-01

    The Pernambuco Alagoas (PEAL) domain shows the major occurrence of granitic batholiths of the Borborema Province, NE Brazil, with Archean to Neoproterozoic range of Nd TDM model ages, giving clues on the role of granites during the Brasiliano orogeny. SHRIMP U/Pb zircon geochronological data for seven granitic intrusions of the PEAL domain divide the studied granitoids into three groups: 1) early-to syn-collision granitoids with crystallization ages ca. 635 Ma (Serra do Catú pluton), 2) syn-collision granitoids with crystallization ages 610-618 Ma (Santana do Ipanema, Água Branca, Mata Grande and Correntes plutons) and 3) late-to post-collision granitoids with ages of ca. 590 Ma (Águas Belas, and Cachoeirinha plutons). The intrusions of group 1 and 2, except the Mata Grande and Correntes plutons, show Nd TDM model ages ranging from 1.2 to 1.5 Ga, while the granitoids from group 3, and Mata Grande Pluton and Correntes plutons have Nd TDM model ages ranging from 1.7 to 2.2 Ga. The studied granitoids with ages <600 Ma are high-K, calc-alkaline, shoshonitic and those with ages <600 Ma are transitional high-K calc-alkaline to alkaline. The volcanic arc signatures associated with the Paleoproterozoic Nd TDM model ages are interpreted as inherited from the source rocks. The oldest ages and lower Nd TDM model ages are recorded from granitoids intruded in the southwest part of the PEAL domain, suggesting that these intrusions are associated with slab-tearing during convergence between the PEAL and the Sergipano domains. Zircon oxygen isotopic data in some of the studied plutons, together with the available Nd isotopic data suggest that the Brasiliano orogeny strongly reworked older crust, of either Paleoproterozoic or Tonian ages. The studied granitoids are coeval with calc-alkaline granitoids of the Transversal Zone and Sergipano domains and rare high-K calc-alkaline granitoids from the Transversal Zone domain. Such large volumes of high-K granitoids with

  10. Petrogenesis of late Paleozoic volcanic rocks from the Daheshen Formation in central Jilin Province, NE China, and its tectonic implications: Constraints from geochronology, geochemistry and Sr-Nd-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Yu, Qian; Ge, Wen-Chun; Yang, Hao; Zhao, Guo-Chun; Zhang, Yan-Long; Su, Li

    2014-04-01

    We present geochronological, geochemical, whole-rock Sr-Nd and zircon Hf-isotopic data for late Paleozoic volcanic rocks from the Daheshen Formation in central Jilin Province, northeastern China, and constrain the petrogenesis of the volcanic rocks and late Paleozoic tectonic evolution of the northern margin of the Northern China Craton, which is regarded as the eastern segment of the Central Asian Orogenic Belt (CAOB). Lithologically, the Daheshen Formation is composed mainly of rhyolite, rhyolitic tuff, dacite and andesite, with minor basalt. The zircons from three rhyolites, two dacites, one rhyolitic tuff and one basalt are euhedral-subhedral, display oscillatory zoning and have high Th/U ratios (0.50-2.28), implying a magmatic origin. LA-ICP-MS zircon U-Pb age data indicate that the volcanic rocks from the Daheshen Formation formed during Late Carboniferous-Early Permian time (302-299 Ma). Geochemically, late Paleozoic volcanic rocks have SiO2 = 52.13-81.77 wt.% and K2O = 0.86-6.88 wt.%, belonging to mid-K to high-K calc-alkaline series. These rocks are characterized by enrichment in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs, such as Nb, Ta, and Ti) and heavy rare earth elements (HREEs), with affinities to igneous rocks forming in an active continental margin setting. All volcanic rocks have depleted Nd isotopic compositions (ɛNd(t) = + 2.4 to + 2.5 for the basalts and + 5.8 to + 7.1 for the andesites and dacites, respectively). In situ Hf isotopic results of zircon from the rhyolites show that they have ɛHf(t) = - 1.1 to + 10.6. All these geochemical features indicate that the andesites, dacites, and rhyolites likely originated from the partial melting of Meso-Neoproterozoic accreted lower crust (Hf and Nd model ages (TDM2) of 1384-662 Ma and 1061-800 Ma, respectively). In contrast, the basalts were derived from the partial fusion of a depleted lithospheric mantle that

  11. Geochemistry and Sm-Nd geochronology of the metasomatised mafic rocks in the Khetri complex, Rajasthan, NW India: Evidence of an Early Cryogenian metasomatic event in the northern Aravalli orogen

    NASA Astrophysics Data System (ADS)

    Kaur, Parampreet; Chaudhri, Naveen; Hofmann, Albrecht W.; Raczek, Ingrid; Okrusch, Martin

    2013-01-01

    processes varied on a local scale depending on the fluid composition. A whole-rock-mineral (clinopyroxene and scapolite) Sm-Nd isochron of the scapolitised clinopyroxenite at Dosi yields an age of 831 ± 15 Ma. Synthesis of this age data along with previously published geochronological data indicate an important Early Cryogenian (850-830 Ma) metasomatic event in the northern Aravalli orogen, which is also synchronous with the Erinpura granite event in the southern Aravalli orogen.

  12. Early Cretaceous arc volcanic suite in Cebu Island, Central Philippines and its implications on paleo-Pacific plate subduction: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    NASA Astrophysics Data System (ADS)

    Deng, Jianghong; Yang, Xiaoyong; Zhang, Zhao-Feng; Santosh, M.

    2015-08-01

    The Philippine island arc system is a collage of amalgamated terranes of oceanic, continental and island arc affinities. Here we investigate a volcanic suite in Cebu Island of central Philippines, including basalt, diabase dike, basaltic pyroclastic rock and porphyritic andesite. LA-ICP-MS U-Pb geochronology of zircon grains from the porphyritic andesite and pyroclastic rock yielded ages of 126 ± 3 Ma and 119 ± 2 Ma, respectively, indicating an Early Cretaceous age. The age distribution of the detrital zircons from river sand in the area displays a peak at ca. 118 Ma, close to the age of the pyroclastic rock. The early Cretaceous volcanic rocks in the central Philippines were previously regarded as parts of ophiolite complexes by most investigators, whereas the Cebu volcanics are distinct from these, and display calc-alkaline affinity and island arc setting, characterized by high LREE/HREE ratios and low HFSE contents. These features are similar to the Early Cretaceous arc basalts in the Amami Plateau and east Halmahera in the northernmost and southernmost West Philippine Basin respectively. Zircon Hf isotopes of the pyroclastic rocks show depleted nature similar to those of the Amami Plateau basalts, implying the subducted Pacific-type MORB as probable source. Zircon Hf isotopes of the porphyritic andesite show slight enrichment relative to that of the pyroclastic rocks and MORB, indicating subducted sediments as a minor end-member in the source. The Hf isotopic compositions of the volcanic rocks are also reflected in the detrital zircons from the river sands. We propose that the volcanic rocks of Cebu Island were derived from partial melting of sub-arc mantle wedge which was metasomatized by dehydration of subducted oceanic crust together with minor pelagic sediments. Within the tectonic environment of Southeast Asia during Early Cretaceous, the volcanic rocks in Cebu Island can be correlated to the subduction of paleo-Pacific plate. The Early Cretaceous

  13. 40Ar/39Ar Geochronology, Isotope Geochemistry (Sr, Nd, Pb), and petrology of alkaline lavas near Yampa, Colorado: migration of alkaline volcanism and evolution of the northern Rio Grande rift

    USGS Publications Warehouse

    Cosca, Michael A.; Thompson, Ren A.; Lee, John P.; Turner, Kenzie J.; Neymark, Leonid A.; Premo, Wayne R.

    2014-01-01

    Volcanic rocks near Yampa, Colorado (USA), represent one of several small late Miocene to Quaternary alkaline volcanic fields along the northeast margin of the Colorado Plateau. Basanite, trachybasalt, and basalt collected from six sites within the Yampa volcanic field were investigated to assess correlations with late Cenozoic extension and Rio Grande rifting. In this paper we report major and trace element rock and mineral compositions and Ar, Sr, Nd, and Pb isotope data for these volcanic rocks. High-precision 40Ar/39Ar geochronology indicates westward migration of volcanism within the Yampa volcanic field between 6 and 4.5 Ma, and the Sr, Nd, and Pb isotope values are consistent with a primary source in the Proterozoic subcontinental lithospheric mantle. Relict olivine phenocrysts have Mg- and Ni-rich cores, whereas unmelted clinopyroxene cores are Na and Si enriched with finely banded Ca-, Mg-, Al-, and Ti-enriched rims, thus tracing their crystallization history from a lithospheric mantle source region to one in contact with melt prior to eruption. A regional synthesis of Neogene and younger volcanism within the Rio Grande rift corridor, from northern New Mexico to southern Wyoming, supports a systematic overall southwest migration of alkaline volcanism. We interpret this Neogene to Quaternary migration of volcanism toward the northeast margin of the Colorado Plateau to record passage of melt through subvertical zones within the lithosphere weakened by late Cenozoic extension. If the locus of Quaternary alkaline magmatism defines the current location of the Rio Grande rift, it includes the Leucite Hills, Wyoming. We suggest that alkaline volcanism in the incipient northern Rio Grande rift, north of Leadville, Colorado, represents melting of the subcontinental lithospheric mantle in response to transient infiltration of asthenospheric mantle into deep, subvertical zones of dilational crustal weakness developed during late Cenozoic extension that have been

  14. Evolution of the Mazatzal province and the timing of the Mazatzal orogeny: Insights from U-Pb geochronology and geochemistry of igneous and metasedimentary rocks in southern New Mexico

    USGS Publications Warehouse

    Amato, J.M.; Boullion, A.O.; Serna, A.M.; Sanders, A.E.; Farmer, G.L.; Gehrels, G.E.; Wooden, J.L.

    2008-01-01

    New U-Pb zircon ages, geochemistry, and Nd isotopic data are presented from three localities in the Paleoproterozoic Mazatzal province of southern New Mexico, United States. These data help in understanding the source regions and tectonic setting of magmatism from 1680 to 1620 Ma, the timing of the Mazatzal orogeny, the nature of postorogenic maginatism, Proterozoic plate tectonics, and provide a link between Mazatzal subblocks in Arizona and northern New Mexico. The data indicate a period from 1680 to 1650 Ma in which juvenile felsic granitoids were formed, and a later event between 1646 and 1633 Ma, when these rocks were deformed together with sedimentary rocks. No evidence of pre-1680 Ma rocks or inherited zircons was observed. The igneous rocks have ENd(t) from -1.2 to +4.3 with most between +2 and +4, suggesting a mantle source or derivation from similar-aged crust. Nd isotope and trace element concentrations are consistent with models for typical are magmatism. Detrital zircon ages from metasedimentary rocks indicate that sedimentation occurred until at least 1646 Ma. Both local and Yavapai province sources contributed to the detritus. All of the samples older than ca. 1650 Ma are deformed, whereas undeformed porphyroblasts were found in the contact aureole of a previously dated 1633 Ma gabbro. Regionally, the Mlazatzal orogeny occurred mainly between 1654 and 1643 Ma, during final accretion of a series of island arcs and intervening basins that may have amalgamated offshore. Rhyolite magmatism in the southern Mazatzal province was coeval with gabbro intrusions at 1633 Ma and this bimodal magmatism may have been related to extensional processes following arc accretion. ?? 2007 Geological Society of America.

  15. Petrography, geochemistry and geochronology of the host porphyries and associated alteration at the Tuwu Cu deposit, NW China: a case for increased depositional efficiency by reaction with mafic hostrock?

    NASA Astrophysics Data System (ADS)

    Shen, Ping; Pan, Hongdi; Zhou, Taofa; Wang, Jingbin

    2014-08-01

    Tuwu is the largest porphyry copper deposit discovered in the Eastern Tianshan Mountains, Xinjiang, China. A newly recognized volcanic complex in the Early Carboniferous Qi'eshan Group at Tuwu consists of basalt, andesite, and diorite porphyry. The plagiogranite porphyry was emplaced into this complex at 332.8±2.5 Ma (U-Pb zircon SIMS determination). Whole-rock element geochemistry shows that the volcanic complex and plagiogranite porphyry formed in the same island arc, although the complex was derived by partial melting of the mantle wedge and the plagiogranite porphyry by partial melting of a subducting slab. The diorite and the plagiogranite porphyries have both been subjected to intense hydrothermal alteration and associated mineralization, but the productive porphyry is the plagiogranite porphyry. Three alteration and mineralization stages, including pre-, syn- and post-ore stages, have been recognized. The pre-ore stage formed a barren propylitic alteration which is widespread in the volcanic complex. The syn-ore stage is divided into three sub-stages: Stage 1 is characterized by potassic alteration with chalcopyrite + bornite + chalcocite; Stage 2 is marked by chlorite-sericite-albite alteration with chalcopyrite ± pyrite ± bornite; Stage 3 is represented by phyllic alteration with chalcopyrite + pyrite ± molybdenite. The post-ore stage produced a barren argillic alteration limited to the diorite porphyry. A specific feature of the Tuwu deposit is that the productive porphyry was emplaced into a very mafic package, and reaction of the resulting fluids with the ferrous iron-rich hostrocks was a likely reason that Tuwu is the largest porphyry in the district.

  16. Dithizone method for determination of lead in monazite

    USGS Publications Warehouse

    Powell, R.A.; Kinser, C.A.

    1958-01-01

    In the determination of lead in monazite-to be used as the basis for geologic age measurements-it was necessary to eliminate interferences due to the presence of phosphates of thorium and the rare earth metals. The method involves attacking the monazite samples with hot, concentrated sulfuric acid, then taking them up with dilute nitric acid. Lead is extracted as the dithizonate and determined spectrophotometrically at 520 m??. Rapid determinations were made with good reproducibility on a series of monazite samples.

  17. Monazite in Atlantic shore-line features

    USGS Publications Warehouse

    Dryden, Lincoln; Miller, Glen A.

    1954-01-01

    This report is a survey of present and potential production of monazite from part of the Maryland-Florida section of the Atlantic Coastal Plain. The part of the Coastal Plain covered here is the outer (shore-ward) half. In this area, all the large heavy-mineral placers so far discovered occur in sand bodies that, by their shape, size, orientation, and lithology, appear to be ancient beaches, spits, bars, or dunes. Smaller placers have produced from recent shore-line features. The inner part of the Coastal Plain, to be treated in another report, is underlain generally by older rocks, ranging in age from Cretaceous to older Pleistocene. Only two large heavy-mineral placers are now in production at Trail Ridge, and near Jacksonville, both in Florida. Production is planned for the near future near Yulee, Fla.: in Folkston, Ga.: and at one or two localities in eastern North Carolina. Each of these three will produce monazite as a byproduct; the total new reserve for the three placers is about 33,000 tons of monazite. In large heavy-mineral placers of this type, monazite has not been found to run more than about 1 percent of total heavy minerals. In some large placers, notably Trail Ridge, it is almost or completely lacking. No reason for its sporadic occurrence has been found in this investigation. Two placers of potential economic value have been found by this project in Virginia, one west and one east of Chesapeake Bay. Neither is of promise for monazite production, but if they serve to open up exploration or production in the area, there is a chance for monazite as a byproduct from other placers. A discovery of considerable scientific interest has to do with the occurrence of two different suites of heavy minerals in the Coastal Plain, at least south of Virginia. One, an “older” suite, lacks epidote, hornblende, and garnet; this suite occurs in all older formations and in Pleistocene deposits lying above about 50 or 60 feet above sea level. The other,

  18. The legacy of monazite processing in Brazil.

    PubMed

    da Costa Lauria, Dejanira; Rochedo, Elaine R R

    2005-01-01

    The exploitation of natural resources containing naturally occurring radionuclides may lead to enhanced levels of radioactive isotope and enhanced potential for exposure to naturally occurring radionuclides in products, by-products, residues or wastes. Such resources include, for instance, monazite, the processing of which, in Brazil, generated a great amount of radioactive residues, being stored in buried concrete tanks, in temporary storage buildings and in sealed trenches. In addition, during the 1980s there were no radiological protection rules concerning the storage and transportation of these kinds of residues. Mineral radioactive residues were used as landfills and the residues of chemical processes contaminated floors and buildings. The decommissioning process and cleaning of old plants have generated tons of wastes that has been added to previously produced wastes. This paper reports and discusses the cycle of monazite in Brazil and its consequences in terms of site remediation and amount of wastes and residues generated and stored.

  19. Petrology, geochemistry and zircon U-Pb geochronology of a layered igneous complex from Akarui Point in the Lützow-Holm Complex, East Antarctica: Implications for Antarctica-Sri Lanka correlation

    NASA Astrophysics Data System (ADS)

    Kazami, Sou; Tsunogae, Toshiaki; Santosh, M.; Tsutsumi, Yukiyasu; Takamura, Yusuke

    2016-11-01

    The Lützow-Holm Complex (LHC) of East Antarctica forms part of a complex subduction-collision orogen related to the amalgamation of the Neoproterozoic supercontinent Gondwana. Here we report new petrological, geochemical, and geochronological data from a metamorphosed and disrupted layered igneous complex from Akarui Point in the LHC which provide new insights into the evolution of the complex. The complex is composed of mafic orthogneiss (edenite/pargasite + plagioclase ± clinopyroxene ± orthopyroxene ± spinel ± sapphirine ± K-feldspar), meta-ultramafic rock (pargasite + olivine + spinel + orthopyroxene), and felsic orthogneiss (plagioclase + quartz + pargasite + biotite ± garnet). The rocks show obvious compositional layering reflecting the chemical variation possibly through magmatic differentiation. The metamorphic conditions of the rocks were estimated using hornblende-plagioclase geothermometry which yielded temperatures of 720-840 °C. The geochemical data of the orthogneisses indicate fractional crystallization possibly related to differentiation within a magma chamber. Most of the mafic-ultramafic samples show enrichment of LILE, negative Nb, Ta, P and Ti anomalies, and constant HFSE contents in primitive-mantle normalized trace element plots suggesting volcanic arc affinity probably related to subduction. The enrichment of LREE and flat HREE patterns in chondrite-normalized REE plot, with the Nb-Zr-Y, Y-La-Nb, and Th/Yb-Nb/Yb plots also suggest volcanic arc affinity. The felsic orthogneiss plotted on Nb/Zr-Zr diagram (low Nb/Zr ratio) and spider diagrams (enrichment of LILE, negative Nb, Ta, P and Ti anomalies) also show magmatic arc origin. The morphology, internal structure, and high Th/U ratio of zircon grains in felsic orthogneiss are consistent with magmatic origin for most of these grains. Zircon U-Pb analyses suggest Early Neoproterozoic (847.4 ± 8.0 Ma) magmatism and protolith formation. Some older grains (1026-882 Ma) are regarded as

  20. Monazite Th-Pb age depth profiling

    SciTech Connect

    Grove, M.; Harrison, T.M.

    1999-06-01

    The significant capabilities of the ion microprobe for thermochronometric investigations of geologic materials remain largely unexploited. Whereas {sup 208}Pb/{sup 232}Th spot analysis allows {approximately} 10-mm-scale imaging of Pb loss profiles or overgrowths in sectioned monazite grains, the spatial resolution offered by depth profiling into the surface region of natural crystals is more than two orders of magnitude higher. The authors document here the ability of the high-resolution ion microprobe to detect {sup 208}Pb/{sup 232}Th age differences of < 1 m.y. with better than 0.05 {micro}m depth resolution in the outer micron of Tertiary monazites from the hanging wall of the Himalayan Main Central thrust. Age gradients on this scale are inaccessible to ion microprobe spot analysis or conventional thermal ionization mass spectrometry. Interpretation of the near-surface {sup 208}Pb distributions with available monazite Pb diffusion data illustrates the potential of the approach for recovering continuous, high-temperature thermal history information not previously available.

  1. Subduction-related Late Carboniferous to Early Permian Magmatism in the Eastern Pontides, the Camlik and Casurluk plutons: Insights from geochemistry, whole-rock Sr-Nd and in situ zircon Lu-Hf isotopes, and U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif

    2016-12-01

    Late Carboniferous to early Permian granitoid rocks represent a volumetrically minor component of the Eastern Pontide lithosphere, but they preserve useful information about the region's tectonomagmatic history. The Casurluk and Camlik plutons primarily consist of gabbro, gabbroic diorite, diorite, monzogabbro, monzodiorite and monzonite, which intrude early to middle Carboniferous granitic basement rocks in the region. In this study, we use in situ zircon U-Pb ages and Lu-Hf isotopic values, whole-rock Sr-Nd isotopic values, and mineral chemistry and geochemistry of these plutons to determine petrogenesis and crustal evolution; we also discuss geodynamic implications. LA-ICP-MS zircon U-Pb dating of magmatic zircons from the rocks suggests that the plutons were emplaced during the late Carboniferous to early Permian (302 Ma). The metaluminous and I-type intrusive rocks belong to the high-K calc-alkaline series. In addition, they are relatively enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs); they are depleted in heavy rare earth elements (HREEs) and high field strength elements (HFSEs), such as Nb and Ti. All of the samples have homogeneous initial ISr values (0.70675 to 0.70792) and low εNd (t) values (- 5.1 to - 3.3). Zircons from the rocks of both plutons have uniform negative to slightly positive εHf (t) values (- 3.5 to 1.4) and old Hf two-stage model ages (1323 to 1548 Ma), implying that they have the same source, as well as suggesting the involvement of old enriched lithospheric mantle materials during their magma genesis. These results, combined with the εHf (t) values and two-stage model ages, demonstrate that the primary magmas were derived from partial melting of old lithospheric mantle material metasomatized by subduction-related fluids. Considering other regional geological data from the Sakarya Zone where these plutons formed, we conclude that late Carboniferous to early Permian magmatism in the area

  2. The Oldest Known Caldera Associated with the Yellowstone Hotspot: New Geologic Mapping, Geochemistry, and 40Ar/39Ar Geochronology for the Northern McDermitt Volcanic Field, Northern Nevada and Southeastern Oregon

    NASA Astrophysics Data System (ADS)

    Benson, T. R.; Mahood, G. A.

    2015-12-01

    McDermitt Volcanic Field (MVF) of Nevada and Oregon is one of three major caldera centers associated with Mid-Miocene Steens/Columbia River flood basalts. Pioneering geologic mapping of MVF by Rytuba and McKee (1984) and subsequent work established four main ignimbrites within the field. Our new 40Ar/39Ar ages (FCT=28.02 Ma) are 16.41±0.02 (±2σ) Ma for Tuff of Oregon Canyon, 16.35±0.04 Ma for Tuff of Trout Creek Mountains, 16.30±0.04 Ma for Tuff of Long Ridge, and 15.56±0.08 Ma for Tuff of Whitehorse Creek. We have mapped two previously unrecognized overlapping calderas that we interpret as sources for Tuff of Oregon Canyon and Tuff of Trout Creek. These ~20-km diameter calderas lie north of the well-known McDermitt Caldera; a smaller 7-km caldera that formed on eruption of the Tuff of Whitehorse Creek is nested within them. Argon ages and geochemistry of alkali rhyolite lava domes in the northern MVF define two populations: ~16.6-16.3 Ma associated with the newly recognized calderas, and ~15.5-15.3 Ma outlining the margins of the younger Whitehorse Caldera. Consistent with both ignimbrites erupting from the same evolving magma system, the high-silica alkali rhyolite Tuff of Oregon Canyon lies on compositional trends defined by the Tuff of Trout Creek, which is zoned from a moderately crystal-rich high-silica alkali rhyolite to a strongly porphyritic low-silica alkali rhyolite. They both are distinguished from the Tuff of Long Ridge from McDermitt Caldera by their higher Zr/Rb, and relatively high FeO* concentrations distinguish all MVF ignimbrites from ignimbrites from the nearby High Rock Caldera Complex, where the oldest caldera formed on eruption of the Idaho Canyon Tuff at 16.38±0.02 Ma (Coble and Mahood, in review). The Tuff of Trout Creek rests conformably on the Tuff of Oregon Canyon west and southwest of the calderas, where they overlie a thick stack of Steens Basalt lavas. To the east and southeast the two ignimbrites are separated by as much as

  3. Geochemistry, Sr-Nd-Pb isotopes and geochronology of amphibole- and mica-bearing lamprophyres in northwestern Iran: Implications for mantle wedge heterogeneity in a palaeo-subduction zone

    NASA Astrophysics Data System (ADS)

    Aghazadeh, Mehraj; Prelević, Dejan; Badrzadeh, Zahra; Braschi, Eleonora; van den Bogaard, Paul; Conticelli, Sandro

    2015-02-01

    Lamprophyres of different age showing distinctive mineralogy, geochemistry and isotopic ratios are exposed in northwestern Iran. They can be divided into Late Cretaceous sannaite, Late Oligocene-Early Miocene camptonite (amphibole-bearing) and Late Miocene minette (mica-bearing) and spessartite (amphibole-bearing) lamprophyres. Sannaites have high-Ti amphibole along with high-Ti and Al clinopyroxene, and they are characterised by homogeneous enrichment in incompatible trace elements with troughs at Pb. Spessartites have hornblende and low-Al and Ti clinopyroxene, and they are characterised by enriched incompatible trace element pattern with depletions of Nb, Ta, Pb, and Ti with respect to large ion lithophile elements. Minettes have high-Ti and Al brown mica and low-Al and Ti clinopyroxene, and similar to spessartite, are characterised by fractionation of high field strength elements with respect to large ion lithophile elements, with troughs at Nb, Ta, and Ti and a peak at Pb. Minettes show high initial 87Sr/86Sr values up to 0.70760 and low initial 143Nd/144Nd down to 0.512463 with a negative correlation, consistent with the trace element distribution related with an enriched mantle source modified after sediment recycling during subduction and continental collision. Cretaceous sannaites and Early Miocene spessartites show low initial 87Sr/86Sr approaching 0.70447 and high 143Nd/144Nd values up to 0.512667, which are consistent with a depleted within-plate mantle source. Minette and spessartite lamprophyres show high initial 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values, whereas sannaites have lower, but variable, initial 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values with respect to those of calc-alkaline lamprophyres. Minettes originated by partial melting of a metasomatised lithospheric mantle following siliciclastic sediment recycling by subduction. In contrast, sannaites were generated from the partial melting of a similar lithospheric mantle that was

  4. Exploration Geochemistry.

    ERIC Educational Resources Information Center

    Closs, L. Graham

    1983-01-01

    Contributions in mineral-deposit model formulation, geochemical exploration in glaciated and arid environments, analytical and sampling problems, and bibliographic research were made in symposia held and proceedings volumes published during 1982. Highlights of these symposia and proceedings and comments on trends in exploration geochemistry are…

  5. Tectono-magmatic evolution of the Chihuahua-Sinaloa border region in northern Mexico: Insights from zircon-apatite U-Pb geochronology, zircon Hf isotope composition and geochemistry of granodiorite intrusions

    NASA Astrophysics Data System (ADS)

    Mahar, Munazzam Ali; Goodell, Philip C.; Feinstein, Michael Nicholas

    2016-11-01

    We present the whole-rock geochemistry, LA-ICP-MS zircon-apatite U-Pb ages and zircon Hf isotope composition of the granodioritic plutons at the southwestern boundary of Chihuahua with the states of Sinaloa and Sonora. These granodiorites are exposed in the north and south of the Rio El Fuerte in southwest Chihuahua and northern Sinaloa. The magmatism spans over a time period of 37 Ma from 90 to 53 Ma. Zircons are exclusively magmatic with strong oscillatory zoning. No inheritance of any age has been observed. Our new U-Pb dating ( 250 analyses) does not support the involvement of older basement lithologies in the generation of the granitic magmas. The U-Pb apatite ages from granodiorites in southwest Chihuahua vary from 52 to 70 Ma. These apatite ages are 1 to 20 Ma younger than the corresponding zircon U-Pb crystallization ages, suggesting variable cooling rates from very fast to 15 °C/Ma ( 800 °C to 500 °C) and shallow to moderate emplacement depths. In contrast, U-Pb apatite ages from the Sinaloa batholith are restricted from 64 to 61 Ma and are indistinguishable from the zircon U-Pb ages range from 67 to 60 Ma within the error, indicating rapid cooling and very shallow emplacement. However, one sample from El Realito showed a larger difference of 20 Ma in zircon-apatite age pair: zircon 80 ± 0.8 Ma and apatite 60.6 ± 4 Ma, suggesting a slower cooling rate of 15 °C/Ma. The weighted mean initial εHf (t) isotope composition (2σ) of granodiorites varies from + 1.8 to + 5.2. The radiogenic Hf isotope composition coupled with previous Sr-Nd isotope data demonstrates a significant shift from multiple crustal sources in the Sonoran batholithic belt to the predominant contribution of the mantle-derived magmas in the southwest Chihuahua and northern Sinaloa. Based on U-Pb ages, the absence of inheritance, typical high Th/U ratio and radiogenic Hf isotope composition, we suggest that the Late Cretaceous-Paleogene magmatic rocks in this region are not derived from

  6. Systematic variation of rare earths in monazite

    USGS Publications Warehouse

    Murata, K.J.; Rose, H.J.; Carron, M.K.

    1953-01-01

    Ten monazites from widely scattered localities have been analyzed for La, Ce, Pr, Nd, Sm, Gd, Y and Th by means of a combined chemical and emission spectrographic method. The analytical results, calculated to atomic percent of total rare earths (thorium excluded), show a considerable variation in the proportions of every element except praseodymium, which is relatively constant. The general variation trends of the elements may be calculated by assuming that the monazites represent different stages in a fractional precipitation process, and by assuming that there is a gradational increase in the precipitability of rare earth elements with decreasing ionic radius. Fractional precipitation brings about an increase in lanthanum and cerium, little change in praseodymium, and a decrease in neodymium, samarium, gadolinium, and yttrium. Deviations from the calculated lines of variation consist of a simultaneous, abnormal increase or decrease in the proportions of cerium, praseodymium, and neodymium with antipathetic decrease or increase in the proportions of the other elements. These deviations are ascribed to abnormally high or low temperatures that affect the precipitability of the central trio of elements (Ce, Pr, Nd) relatively more than that of the other elements. The following semiquantitative rules have been found useful in describing the composition of rare earths from monazite: 1. 1. The sum of lanthanum and neodymium is very nearly a constant at 42 ?? 2 atomic percent. 2. 2. Praseodymium is very nearly constant at 5 ?? 1 atomic percent. 3. 3. The sum of Ce, Sm, Gd, and Y is very nearly a constant at 53 ?? 3 atomic percent. No correlation could be established between the content of Th and that of any of the rare earth elements. ?? 1953.

  7. Combining in situ LA-ICP-MS U-Pb monazite dating and thermobarometric modeling confirms an Alpine UHT event in the Gruf Complex of the Central Alps

    NASA Astrophysics Data System (ADS)

    Oalmann, Jeffrey; Möller, Andreas; Bousquet, Romain

    2017-04-01

    Ultra-high temperature (UHT) metamorphism requires geodynamic processes that bring excess heat to the lower crust. Therefore, understanding the exact timing of a UHT event has important implications for the thermal, tectonic, and rheological evolution of mountain belts. The sapphirine-bearing granulites and charnockites of the Gruf Complex are enigmatic in that they are the only known UHT rocks in the Central Alps. Different researchers have attributed UHT metamorphism to either Permian rifting (Galli et al., 2012, Contrib. Mineral. Petrol.) or Paleogene Alpine orogenic processes (e.g., Oalmann et al., in prep.). U-Pb zircon geochronology alone does not constrain the timing of UHT metamorphism because the zircons in the granulites are dominated by inherited Permian (and Jurassic) age populations, which were partly resorbed during UHT metamorphism. The Alpine zircon rims likely crystallized from partial melts during cooling from UHT conditions (Oalmann et al., in prep.). Texturally-controlled U-Pb monazite dating combined with P-T estimates for the monazite-bearing textures constrains an important near-peak part of the P-T-t evolution of the UHT sapphirine granulites. Sapphirine + high-Al orthopyroxene + cordierite +monazite textures equilibrated at ca. 900-1000°C and 7.5-9.5 kbar. UHT garnet breakdown possibly provided the chemical components necessary for phosphate mineral growth. All analyzed monazite domains record concordant U-Pb ages between ca. 33 and 31 Ma, and no inherited components were observed (consistent with chemical dates presented by Schmitz et al. (2009, Eur. J. Mineral.). This age overlaps with the age of the oldest population of Alpine zircon rims (32.5 ± 0.5 Ma), which are interpreted to have crystallized shortly after UHT metamorphism (Oalmann et al., in prep.). Intergrowths of monazite with UHT indicator minerals indicate that the monazite grew during UHT metamorphism. The lack of Permian (or any older) monazite domains precludes a Permian

  8. Direct Comparison of Detrital Garnet, Monazite, and Zircon Ages from a Southern Appalachian Tributary System for the French Broad River, North Carolina, USA

    NASA Astrophysics Data System (ADS)

    Maneiro, K. A.; Baxter, E. F.; Samson, S. D.; Marschall, H.

    2016-12-01

    ) or differential mineral growth during the Taconic Orogeny, with monazite growing early followed by later zircon reprecipitation and garnet growth. Regardless of interpretation, detrital garnet geochronology adds to the detrital zircon and monazite records, ensuring full interpretation of the region's Paleozoic tectonic history from the detrital record.

  9. Geochemistry for Chemists.

    ERIC Educational Resources Information Center

    Hostettler, John D.

    1985-01-01

    A geochemistry course for chemists is described. Includes: (1) general course information; (2) subject matter covered; and (3) a consideration of the uses of geochemistry in a chemistry curriculum, including geochemical "real world" examples, geochemistry in general chemistry, and geochemistry as an elective. (JN)

  10. A Monazite-bearing clast in Apollo 17 melt breccia

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.

    1993-01-01

    A phosphate-rich clast in a pigeonite-plagioclase mineral assemblage occurs in Apollo 17 impact-melt breccia 76503,7025. The clast, measuring 0.9 x 0.4 mm in thin section, contains 3.3 percent (volume) apatite (Ca5P3O12(F,Cl)), 0.8 percent whitlockite (Ca16(Mg,Fe)2REE2P14O56), and trace monazite ((LREE)PO4). Major minerals include 26 percent pigeonite, En53-57FS34-35W08-13, and 69 percent plagioclase, An84-92Ab7-15Oro.6-1.1. Troilite, ilmenite, and other accessory minerals constitute less than 1 percent of the assemblage and Fe-metal occurs along fractures. Also present in the melt breccia as a separate clast is a fragment of felsite. Based on the association of these clasts and their assemblages, a parent lithology of alkali-anorthositic monzogabbro is postulated. Monazite occurs in the phosphate-bearing clast as two less than 10 micron grains intergrown with whitlockite. The concentration of combined REE oxides in monazite is 63.5 percent and the chondrite-normalized REE pattern is strongly enriched in LREE, similar to lunar monazite in 10047,68 and terrestrial monazite. Thorium concentration was not measured in monazite, but based on oxide analyses of approximately 100 percent (including interpolated values for REE not measured), substantial Th concentration is not indicated, similar to monazite in 10047,68. Measured monazite/whitlockite REE ratios are La: 11, Ce: 8, Sm: 3.6, Y: 0.9, and Yb: 0.5. Compositions of monazite and coexisting whitlockite and apatite are given.

  11. A Critical Look at NORM In The Monazite Cycle

    NASA Astrophysics Data System (ADS)

    Paschoa, Anselmo S.; da Cunha, Kenya Dias

    2008-08-01

    Thorium, cerium, lanthanum and other rare earths have been extracted from monazite sands for a long time due to several reasons. At the end of the XIX century monazite sands from Brazilian beaches were concentrated gravimetrically to be clandestinely transported to Europe to be used in the manufacture of fabric bags to be burned. Those bags when burning had their brightness enhanced by a mixture of thorium, lanthanum and cerium. The thorium oxide (ThO2) percentages found in monazite concentrates from several parts of the world range from 1 to 11%. While not burned or processed chemically monazite concentrate can be considered hazardous only due to gamma radiation and 220Rn (thoron) inhalation by those who stay very close to storage piles. In old monazite plants the thoron concentration in air reached levels higher than 20 kBqṡm-3. Fortunately, the industrial hygiene improved with time and today's monazite separation plants do not present such high thoron concentrations. Old and recent data from rare earth processing plants suggest that occupational annual doses indoors may be up to two orders of magnitude higher than the worldwide average effective dose reported by the United Nations Scientific Committee on the Effects of the Atomic Radiation (UNSCEAR) due to the inhalation of thoron. Consumer products, like fabric bags used in gas or kerosene lamps have 232Th concentrations of the order of 150 Bqṡg-1. Remnants of the monazite industrial cycle can present 228Ra activity concentrations as high as 5.0 kBqṡg-1. Piles of monazite concentrates were kept for strategic reasons during cold war times in several places of the territories of the United States and the former Soviet Union. Cleanup at those sites may be hazardous mostly due to high concentrations of thoron daughters that may be inhaled by workers. The paper will take a critical look at the naturally occurring radioactive materials (NORM) extant in the monazite cycle and its remnants.

  12. A dithizone method for the determination of lead in monazite

    USGS Publications Warehouse

    Powell, R.A.; Kinser, C.A.

    1956-01-01

    In determining lead in monazite [(Ce,La,Th)PO4]--to be used as the basis for geologic age measurements--it was necessary to eliminate interferences due to the presences of phosphates of thorium and the rare-earth metals. The method, in which monazite samples are attacked with hot concentrated sulfuric acid, taken up with dilute nitric acid, lead extracted as the dithizonate and then determined spectrophotometrically at 520 mμ, was successfully applied to a series of monazite samples. Rapid determinations were made with good reproducibility.

  13. Detection of inherited monazite in the Manaslu leucogranite by 208Pb/(232Th) ion microprobe dating: Crystallization age and tectonic implications

    NASA Astrophysics Data System (ADS)

    Harrison, T. Mark; McKeegan, K. D.; LeFort, P.

    1995-07-01

    Although leucogranites are among the least petrologically variable of all igneous rocks, ironically they are among the most difficult to reliably date. The High Himalayan leucogranites have been the subject of numerous geochronological investigations because of their interrelationship with the most significant tectonic features of that mountain belt. For a variety of reasons linked to the minimum melt composition of these leucogranites, these dating studies have not been entirely successful. We report results of a new ion microprobe dating method based on the decay of 232Th to 208Pb in monazite that has directly revealed the presence of inherited Pb in monazite from the Manalsu granite, casting doubt on its previously accepted age. Monazite ages obtained from this leucogranite yield two distinct populations, a large number of ages with a normal distribution and mean age of 22.4 ± 0.5 Ma (±2 S.E.) that we interpret to be the crystallization age, and a smaller inherited fraction with an age of ca. 600 Ma. Because formation of the granite is thought to be related to slip on the Main Central Thrust, both this date and a second less precise result from a structurally similar pluton near Mt. Everest indicate that the Main Central Thrust was active in the interval 24-22 Ma, but do not constrain its initiation. Together with crosscutting relationships, these data require that movement on the North Himalayan Fault occurred prior to 22 Ma at both locations.

  14. Stenian - Tonian and Ediacaran metamorphic imprints in the southern Paleoproterozoic Ubendian Belt, Tanzania: Constraints from in situ monazite ages

    NASA Astrophysics Data System (ADS)

    Boniface, Nelson; Appel, Peter

    2017-09-01

    In situ monazite geochronological data yield the timing of migmatitic metamorphism in southern Ubendian Belt. The mineral assemblage of garnet-biotite- sillimanite- K-feldspar- plagioclase-quartz- ilmenite, in migmatitic metapelitic gneisses was achieved during the Ediacaran metamorphic episode between 565 ± 4 Ma and 559 ± 8 Ma as manifested by dating of monazite grains that include garnet. The Ediacaran metamorphic event in the southern Ubendian Belt overprinted the Paleoproterozoic metamorphic event established at 1808 ± 9 Ma and the Mesoproterozoic metamorphic event at 944 ± 4 Ma (Tonian Period). The Stenian - Tonian and Ediacaran metamorphic imprints in the southern Ubendian Belt fall within the time window of metamorphism and deformation of the neighboring Irumide, southern Irumide, and Unango/Marrupa Complexes. The ca. 560 Ma old granulite facies imprinting in the southern Ubendian Belt is coeval with shear zone patterns in the neighboring Nyika Terrane in NE Malawi the event that was followed by eclogite facies metamorphism during the last stage of Gondwana amalgamation.

  15. Composition of monazites from pegmatites in eastern Minas Gerais, Brazil

    USGS Publications Warehouse

    Murata, K.J.; Dutra, C.V.; da Costa, M.T.; Branco, J.J.R.

    1959-01-01

    Two zoned pegmatites in south-eastern Minas Gerais were sampled in detail for their content of monazite and xenotime and the monazite was analysed for certain of the rare-earth elements and thorium. The ratio of xenotime to monazite increases in both pegmatites from the wall toward the quartz core. The content of the less basic rare-earth elements and of thorium in monazite rises in the same direction. These variation trends suggest that during the crystallization of these pegmatites there was a fractionation of the elements leading to a more or less steady enrichment of the less basic rare-earth elements and of thorium in the residual fluids. One mode of explaining these observed effects postulates that the rare-earth elements and thorium were present in pegmatitic fluids as co-ordination complexes rather than as simple cations. ?? 1959.

  16. Plasticity In High Temperature Materials: Tantalum and Monazite

    DTIC Science & Technology

    2014-03-12

    AFRL-OSR-VA-TR-2014-0065 PLASTICITY IN HIGH TEMPERATURE MATERIALS: TANTALUM AND MONAZITE Jeffrey Kysar THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE...Agency Air Force Office of Scientific Research Title of Project Plasticity in High Temperature Materials: Tantalum and Monazite February 28, 2014...centered cu- bic tantalum , the methodology also demonstrated a relationship between dislocation mean free path length and GND density. A framework to

  17. The Khoy ophiolite: new field observations, geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Lechmann, Anna; Burg, Jean-Pierre; Mohammadi, Ali; Faridi, Mohammad

    2017-04-01

    The tectonic assemblage at the junction of the Bitlis-Zagros and Izmir-Ankara-Erzincan suture zones is exposed in the region of the Khoy Ophiolitic Complex, in the Azerbaijan Province of NW Iran. We present new petrography, major and trace element analyses, LA-ICP-MS U-Pb zircon ages and Sr-Nd-Pb isotope data of mantle and crustal suites together with field observations and stratigraphic ages obtained from foraminifera-bearing sediments. Ultramafic rocks crop out as mappable (km-scale) continuous units with fault bounded contacts to neighbouring lithologies and as blocks (m-scale) within an olistostrome. They vary from fresh lherzolite, harzburgite and dunite tectonites with primary mantle structures to completely serpentinized and metasomatized (with metamorphic olivine) samples. Rodingite dikes with MORB-REE signatures are common. Gabbros, also with MORB signature, occur only in small volumes. Pillow basalts have either a MORB or a calc-alkaline signature depending on sample location. First results show that the Khoy Ophiolitic Complex formed during the Jurassic (152-159 Ma) and came in a supra-subduction position, with calc-alkaline magmatism showing negative Nb-Ta and Ti anomalies, in Albian (105-109 Ma) times. Heavy minerals including Cr-spinel and serpentine within the turbidites of the region indicate that the ophiolites were being eroded as early as the Late Cretaceous. An Early Miocene olistostrome, containing blocks of the ophiolitic sequences unconformably covers the ophiolitic complex and the Late-Cretaceous to Eocene turbiditic sequences. A tuff layer dated at 43 Ma within a fine-grained and thin-bedded sandstone block within the olistostrome witnesses continuing volcanic activity in Eocene times. The Khoy Ophiolite compares well with the Inner Zagros and North Makran ophiolites, recording Jurassic extension in the Iranian continental margin followed by Late Cretaceous subduction. This work is supported by SNF Research Grant (project 200021_153124/1).

  18. Complexities of Lu-Hf geochronology in convergent orogens

    NASA Astrophysics Data System (ADS)

    Mulcahy, S. R.; Vervoort, J. D.

    2015-12-01

    Subduction, terrane accretion, and arc magmatism leave a complex and sometimes incomplete record of metamorphism and deformation. The range of metamorphic temperatures and assemblages produced throughout the tectonic evolution of a single orogen often requires multiple isotopic systems to date distinct events. Lu-Hf geochronology, notably, has proven successful for dating metamorphism from a variety of bulk compositions spanning temperatures <350-850 C. We review the success of applying Lu-Hf geochronology in combination with other isotopic systems to date metamorphism from range of metamorphic conditions within convergent margins. We then discuss some complexities of Lu-Hf geochronology when dating samples with complicated metamorphic histories. Garnet and lawsonite isochrons often exhibit excess scatter (high MSWD's) that can be attributed to a number of factors: secondary mineral inclusions, prolonged garnet growth durations, disequilibrium at low temperatures, and polyphase metamorphic histories. Samples with high-Hf inclusions in isotopic equilibrium host phases can lead to decreased precision, but still produce meaningful ages. At high temperatures Lu-Hf ages may date peak metamorphism, cooling from peak temperatures, or result in spurious ages because of preferential retention of 176Hf over 176Lu in garnet. Despite these complexities, and perhaps because of them, new aspects of the metamorphic history may be revealed that are not readily recorded by other isotopic systems. Minerals other than garnet and lawsonite, particularly apatite, and perhaps epidote, offer exciting new possibilities for Lu-Hf geochronology. Careful fieldwork, detailed petrology and geochemistry, and collaborative efforts using multiple isotopic systems offer the best approach to solving tectonic problems in convergent orogens.

  19. The Argon Geochronology Experiment (AGE)

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Bode, R.; Fennema, A.; Chutjian, A.; MacAskill, J. A.; Darrach, M. R.; Clegg, S. M.; Wiens, R. C.; Cremers, D.

    2006-01-01

    This viewgraph presentation reviews the Argon Geochronology Experiment (AGE). Potassium-Argon dating is shown along with cosmic ray dating exposure. The contents include a flow diagram of the Argon Geochronology Experiment, and schematic diagrams of the mass spectrometer vacuum system, sample manipulation mechanism, mineral heater oven, and the quadrupole ion trap mass spectrometer. The Laser-Induced Breakdown Spectroscopy (LIBS) Operation with elemental abundances is also described.

  20. Electron microprobe observations of PB diffusion in metamorphosed detrital monazites

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Adachi, M.; Kajizuka, I.

    1994-12-01

    Electron microprobe analyses have been made on monazite grains from paragneiss samples in the andalusite-sillimanite transition (620 +/- 15 C) and sillimanite-orthoclase (680 +/- 15 C) zones of the Cretaceous Ryoke metamorphic belt, southwest Japan. Monazites from pelitic gneisses are of metamorphic origin, euhedral to subhedral and chronologically homogeneous, giving chemical Th-U-total Pb isochron (CHIME) ages of 98.8 +/- 3.3 - 98.0 +/- 3.2 Ma. Two psammitic gneisses of individual metamorphic grade contain both metamorphic monazite grains and detrital ones as old as ca. 1700 Ma. Most detrital monazite grains are heterogeneous in the ThO2 and UO2 concentrations and have multiple or single rims as young as ca. 100 Ma. Several detrital monazite grains are well rounded in form, exhibit homogeneous Th and U distributions and show a Pb diffusion profile in the margin. The width of the diffusion zones is approximately constant throughout grains from each psammitic gneiss: 18-22 micrometers for 620 C and 48-58 micrometers for 680 C. Assuming the isothermal diffusion of Pb from homogeneous monazite spheres during a 5 Ma duration of peak metamorphism, we obtain diffusion coefficients of 1.9 (+/- 0.3) x 10-21 and 1.5 (+/- 0.3) x 10-20 sq cm/s at 620 C and 680 C, respectively. These data derive an activation energy of 2.44 (+2.85/-1.26) x 105 J/mol and a frequency factor of 3.4 x 10-7 (8.5 x 10-12 - 2.2 x 107 sq cm/s, taking account of uncertainties of +/- 15 C in the temperatures and of +/- 20% in the diffusion coefficients. The diffusion parameters obtained from natural samples in this study provide a reliable insight into the closure temperature for Pb in monazite that has been poorly understood so far.

  1. Characterization of Minerals of Geochronological Interest by EPMA and Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Snoeyenbos, D.; Jercinovic, M. J.; Reinhard, D. A.; Hombourger, C.

    2012-12-01

    Isotopic and chemical dating techniques for zircon and monazite rely on several assumptions: that initial common Pb is low to nonexistent, that the analyzed domain is chronologically homogeneous, and that any relative migration of radiogenic Pb and its parent isotopes has not exceeded the analyzed domain. Yet, both zircon and monazite commonly contain significant submicron heterogeneities that may challenge these assumptions and can complicate the interpretation of chemical and isotopic data. Compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA have been found to be useful techniques both for the characterization of these heterogeneities, and for quantitative geochronological determinations within the analytical limits of these techniques and the statistics of submicron sampling. Complementary to high-resolution EPMA techniques is Atom Probe Tomography (APT), wherein a specimen with dimensions of a few hundreds of nanometers is field evaporated atom by atom. The original position of each atom is identified, along with its atomic species and isotope. The result is a reconstruction allowing quantitative three-dimensional study of the specimen at the atomic scale, with low detection limits and high mass resolution. With the introduction of laser-induced thermal pulsing to achieve field evaporation, the technique is no longer limited to conductive specimens. There exists the capability to explore the compositional and isotopic structure of insulating materials at sub-nanometer resolution. Minerals of geochronological interest have been studied by an analytical method involving first compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA, and subsequent use of these data to select specific sites for APT specimen extraction by FIB. Examples presented include 1) zircon from the Taconian of New England, USA, containing a fossil resorption front included between an unmodified igneous core, and a subsequent metamorphic

  2. Detrital geochronology of unroofing magmatic complexes

    NASA Astrophysics Data System (ADS)

    Malusà, Marco Giovanni; Villa, Igor Maria; Vezzoli, Giovanni; Garzanti, Eduardo

    2010-05-01

    . 110, 985-1009 (1998). DeCelles, P. G., Gehrels, G. E., Najman, Y., Martin, A. J., Carter, A., Garzanti, E. Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett. 227, 313-330 (2004). Jäger, E. in Rb-Sr Altersbestimmungen an Glimmern der Zentralalpen, Beitr. Geol. Karte Schweiz NF 134 (eds. Jäger, E., Niggli, E. & Wenk, E.) 28-31 (Bern, Kümmerly & Frey, 1967). Dodson, M. H. Closure temperature in cooling geochronological and petrological systems. Contr. Miner. Petrol. 40, 259-274 (1973). Giger, M. & Hurford, A. J. Tertiary intrusives of the Central Alps: their Tertiary uplift, erosion, redeposition and burial in the south-alpine foreland. Eclogae geol. Helv. 82, 857-866 (1989). Garzanti, E. & Malusà, M. G. The Oligocene Alps: Domal unroofing and drainage development during early orogenic growth. Earth Planet. Sci. Lett. 268, 487-500 (2008). Villa, I. M. From nanometer to megameter: Isotopes, atomic-scale processes, and continent-scale tectonic models. Lithos 87, 155-173 (2006).

  3. Late Devonian - Early Carboniferous polyphase metamorphic evolution of the Orlica-Śnieżnik Dome (NE Bohemian Massif, Poland): evidence from Th-U-total Pb monazite dating

    NASA Astrophysics Data System (ADS)

    Budzyń, Bartosz; Jastrzębski, Mirosław; Stawikowski, Wojciech

    2014-05-01

    younger age domains of 371-356 Ma and 336-331 Ma are defined by monazite from four K-feldspar free light quartzites (SF), and two K-feldspar bearing light quartzite (SF). Similar two age domains of 372-363 Ma and 342-332 Ma yields monazite from six mica schists (SF), with a faint record of ca. 406 Ma in one of these samples. The geochronological results suggest polyphase Devono-Carboniferous metamorphic evolution that embraced at least two tectonometamorphic episodes. Microstructures indicate that the record of 370-360 Ma ages presumably defines a progressive metamorphism, whereas pervasive record of 340-330 Ma ages presumably reflects the superimposed penetrative shearing connected with exhumation. There is no evidence of pre-Variscan regional or contact metamorphism of the Młynowiec-Stronie Group. Cambrian to Ordovician monazites developed only in K-feldspar bearing rocks, i.e. orthogneisses and light quartzites (SF), which suggests growth of the Early Palaeozoic monazites during formation of their, respectively, magmatic and partially volcanic protoliths. Acknowledgements. The project was funded by the National Science Center of Poland, grant number DEC 2011/03/B/ST10/05638.

  4. Bioleaching of rare earth elements from monazite sand.

    PubMed

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance.

  5. Heat capacities of lanthanide and actinide monazite-type ceramics

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr M.; Beridze, George; Vinograd, Victor L.; Bosbach, Dirk

    2015-09-01

    (Ln, An)xPO4 monazite-type ceramics are considered as potential matrices for the disposal of nuclear waste. In this study we computed the heat capacities and the standard entropies of these compounds using density functional perturbation theory. The calculations of lanthanide monazites agree well with the existing experimental data and provide information on the variation of the standard heat capacities and entropies along the lanthanide series. The results for AnPO4 monazites are similar to those obtained for the isoelectronic lanthanide compounds. This suggests that the missing thermodynamic data on actinide monazites could be similarly computed or assessed based on the properties of their lanthanide analogs. However, the computed heat capacity of PuPO4 appear to be significantly lower than the measured data. We argue that this discrepancy might indicate potential problems with the existing experimental data or with their interpretation. This shows a need for further experimental studies of the heat capacities of actinide-bearing, monazite-type ceramics.

  6. Microstructural observation and chemical dating on monazite from the Shilu Group, Hainan Province of South China: Implications for origin and evolution of the Shilu Fe-Co-Cu ore district

    NASA Astrophysics Data System (ADS)

    Xu, Deru; Kusiak, Monika A.; Wang, Zhilin; Chen, Huayong; Bakun-Czubarow, Nonna; Wu, Chuanjun; Konečný, Patrik; Hollings, Peter

    2015-02-01

    New monazite chemical U-Th-total-Pb (CHIME) ages, combined with microstructural observations, mineral compositions, and whole-rock geochemistry, indicate that the large-scale, banded iron formation (BIF)-type Shilu Fe-Co-Cu ore district in Hainan Province, South China is a multistage product of sedimentation, metamorphism, and hydrothermal-metasomatic alteration associated with multiple orogenies. Two types of monazite, i.e. "polygenetic" and "metamorphic", were identified. The "polygenetic monazite" comprises a magmatic and/or metamorphic core surrounded by a metamorphic rim, and shows complex zoning. Breakdown corona structure, with a core of monazite surrounded by a mantle of fluorapatite, allanite, and/or epidote as concentric growth rings, is commonly observed. This type of monazite yielded three main CHIME-age peaks at ca. 980 Ma, ca. 880 Ma and ca. 450 Ma. The ages which range up to ca. 880 Ma for detrital cores, record a pre-deformational magmatic and/or metamorphic event(s), and is considered to be the depositional time-interval of the Shilu Group and interbedded BIFs in a marine, back-arc foreland basin likely due to the Grenvillian or South China Sibao orogeny. After deposition, the Shilu district was subjected to an orogenic event, which is recorded by the syndeformational metamorphic monazite with ca. 560-450 Ma population. Probably this event not only caused amphibolite facies metamorphism and associated regional foliation S1 but also enriched the original BIFs, and most likely corresponds to the "Pan-African" and/or the South China Caledonian orogeny. The post-deformational "metamorphic" monazite occurs mostly as inclusions in garnet and shows ca. 260 Ma age. It likely represents the Late Permian post-magmatic hydrothermal and related retrograde event(s) initiated by the Indosinian orogeny due to the closure of the Paleo-Tethys. The breakdown of monazite to secondary coronal mineral phases as well as the Fe-remobilization and associated skarnization

  7. A 30 Myr record of retrograde metamorphism and multiple generations of monazite and garnet in western MA revealed by coordinated LASS and EPMA

    NASA Astrophysics Data System (ADS)

    Peterman, E. M.; Burton, Z. F. M.; Rubel, J. N.; Snoeyenbos, D. R.; Kylander-Clark, A. R.

    2014-12-01

    Garnet-kyanite-cordierite pelitic schists with relict phosphatic garnets thought to record ultrahigh-pressure metamorphism (e.g., Snoeyenbos and Koziol, 2008) crop out along the western margin of the Goshen Dome in western Massachusetts. These schists contain monazite inclusions within Grt, Ky, Crd, Bt, Pl, Qz, and Chl. Compositional maps via EPMA-WDS show overgrowths on each monazite grain, indicating that each grain records multiple metamorphic events. We analyzed monazite in situ using laser-ablation split-stream (LASS) ICPMS to correlate the geochemical and age domains and to reconstruct the polyphase metamorphic history. We used WDS compositional maps of Y and Th, and ICPMS Gd/Yb ratios and U/Pb ages to define the timing of major garnet growth and breakdown processes, and melting and/or fluid-rich metamorphism. For example, decreasing Gd/Yb and high Y concentrations are consistent with garnet breakdown; highly variable Gd/Yb indicate melting and/or fluid-rich metamorphism (e.g., Stearns et al., 2013). The following cumulative histories are interpreted from two samples (B and G). In both samples, decreasing Gd/Yb in monazite suggest garnet breakdown from c. 398 to 387 Ma. Data from sample B (n = 644 analyses) indicate two additional phases of garnet growth: 382 to 377 Ma and 375 to 369 Ma (see figure). Data from sample G (n = 231 analyses) also indicate two additional phases of garnet growth: 387 to 381 Ma and 379 to 369 Ma. The final garnet growth event affecting both samples is marked by the most variable Gd/Yb ratios in monazite from all petrographic contexts and is consistent with melting or a fluid-rich metamorphic event. These data are most consistent with metamorphism during emplacement to crustal levels in the early Acadian, and a substantial overprint during the regional thermal maximum. This complex record can only be unraveled by collecting geochronologic and geochemical data in situ to preserve the petrographic context of each grain, thus

  8. National Geochronological Database

    USGS Publications Warehouse

    Revised by Sloan, Jan; Henry, Christopher D.; Hopkins, Melanie; Ludington, Steve; Original database by Zartman, Robert E.; Bush, Charles A.; Abston, Carl

    2003-01-01

    The National Geochronological Data Base (NGDB) was established by the United States Geological Survey (USGS) to collect and organize published isotopic (also known as radiometric) ages of rocks in the United States. The NGDB (originally known as the Radioactive Age Data Base, RADB) was started in 1974. A committee appointed by the Director of the USGS was given the mission to investigate the feasibility of compiling the published radiometric ages for the United States into a computerized data bank for ready access by the user community. A successful pilot program, which was conducted in 1975 and 1976 for the State of Wyoming, led to a decision to proceed with the compilation of the entire United States. For each dated rock sample reported in published literature, a record containing information on sample location, rock description, analytical data, age, interpretation, and literature citation was constructed and included in the NGDB. The NGDB was originally constructed and maintained on a mainframe computer, and later converted to a Helix Express relational database maintained on an Apple Macintosh desktop computer. The NGDB and a program to search the data files were published and distributed on Compact Disc-Read Only Memory (CD-ROM) in standard ISO 9660 format as USGS Digital Data Series DDS-14 (Zartman and others, 1995). As of May 1994, the NGDB consisted of more than 18,000 records containing over 30,000 individual ages, which is believed to represent approximately one-half the number of ages published for the United States through 1991. Because the organizational unit responsible for maintaining the database was abolished in 1996, and because we wanted to provide the data in more usable formats, we have reformatted the data, checked and edited the information in some records, and provided this online version of the NGDB. This report describes the changes made to the data and formats, and provides instructions for the use of the database in geographic

  9. Geochronological potential of a dedicated southern Appalachian deep research drill hole

    SciTech Connect

    Dalimeyer, R.D.

    1985-01-01

    A Southern Appalachian Deep Research Drill Hole (SADRDH) would offer a unique opportunity to provide geochronological controls for regional tectonothermal events as well as serve as a natural laboratory for the investigation of a variety of diffusion-controlled, radiometric systems. Considerable uncertainty exists as to the relative extents and crustal levels of translations, and the temporal relations between thrusting and regional metamorphic events. SADRDH would provide unweathered, continuous sections across many of these allochthonous units and the intervening tectonic contacts. If sufficient 3'' core is recovered, collaborative U-Pb (zircon and monazite) and Sm-Nd (whole-rock and mineral) age determinations could be integrated with careful petrologic studies to provide reliable crystallization ages for the various igneous lithologies penetrated. These results together with a coordinated, systematic determination of /sup 40/Ar//sup 39/Ar and fission track mineral ages could provide complete time-temperature profiles of the various allochthonous units and allow for recognition of contrasts across tectonic contacts. Integration of this record with results of fluid-inclusion and oxygen isotopic studies within ductile shear zones could help resolve the times and crustal conditions of thrusting. Geochronological evaluation of the thermal record within these sequences could provide control on the extent and times of basement involvement in the tectonothermal events recorded in the overlying allochthonous units.

  10. Monazite U-Th-Pb EPMA and zircon U-Pb SIMS chronological constraints on the tectonic, metamorphic, and thermal events in the inner part of the Variscan orogen, example from the Sioule series, French Massif Central

    NASA Astrophysics Data System (ADS)

    Do Couto, Damien; Faure, Michel; Augier, Romain; Cocherie, Alain; Rossi, Philippe; Li, Xian-Hua; Lin, Wei

    2016-03-01

    In the northern Variscan French Massif Central, the Sioule metamorphic series exposes from top to bottom the tectonic superposition of the Upper Gneiss Unit (UGU), Lower Gneiss Unit (LGU), and Para-autochthonous Unit (PAU). The nappe stacking developed throughout two prograde syn-metamorphic events: D1 is a top-to-the-SW shearing coeval with a probable Devonian migmatization and D2 is a top-to-the-NW shearing event. Both events were completed before the unconformable deposition of the undeformed and unmetamorphosed "Tufs anthracifères" formation, dated at ca 330 Ma (Late Visean). Furthermore, the UGU experienced a high-pressure metamorphism ascribed to a D0 event during which eclogite or granulite crystallized in several parts of the UGU. Monazite U-Th-Pb and zircon U-Pb SIMS datings were carried out in order to constrain the ages of these D0, D1, and D2 tectono-metamorphic events. These new geochronological results are placed in a P-T-t diagram constructed for the UGU, LGU, and PAU. Monazite sampled in UGU, LGU, and PAU rocks yields similar 365-350 Ma ages consistent with the D2 event dated in other places of the French Massif Central. A zoned monazite grain from a granulitic paragneiss yields 416 ± 15 and 362 ± 14 Ma ages interpreted as those of the D0 and D2 events, respectively. Zircon from the same granulitic paragneiss yields SIMS ages at 343 ± 2 and 328 ± 2 Ma that are interpreted as recrystallization processes associated with post-thickening thermal events, possibly recording the onset of orogenic collapse of the Northern Massif Central. It is worth to note that neither monazite nor zircon recorded the D1 event.

  11. Contrasting Styles of Monazite Growth in the Nelson Contact Aureole, British Columbia.

    NASA Astrophysics Data System (ADS)

    Tomkins, H. S.; Pattison, D. R.

    2004-05-01

    The Jurassic Nelson Batholith in southern British Columbia has undergone post-intrusion tilting, such that the surrounding contact aureole reveals a series of contrasting pressure-dependent prograde mineral assemblage sequences in pelitic rocks of similar bulk composition. Three east-west transects across the aureole within 10 km of each other show garnet-staurolite bearing rocks in the north (highest pressure), andalusite + biotite ± garnet-bearing rocks along the middle transect, and garnet-free cordierite-bearing assemblages in the south (lowest pressure). The low-grade pelitic protolith in all three transects is virtually identical with respect to both major and accessory mineral assemblages, containing biotite + muscovite + quartz + albitic plagioclase + graphite with abundant, sub- to euhedral apatite, euhedral allanite, and no monazite. The transition from an allanite-dominant to monazite-bearing assemblage is seen texturally in both of the southerly transects, where monazite can be shown to directly replace allanite downgrade of either cordierite or andalusite development. In the most southerly transect, rocks in the cordierite + biotite zone contain distinct `clusters' of monazite, most likely as pseudomorphs after allanite. These monazites show no chemical zonation, and little change in morphology or distribution from low to high grade. In the middle transect, rocks in the andalusite zone show two distinct forms of monazite, depending on the presence or absence of garnet. Samples without garnet contain monazite distributed in clusters, as described above. In contrast, garnet-bearing rocks contain monazite as lone grains in the matrix, often with a high Th core. With increasing grade, these monazites become coarser, with a more rounded, regular shape, and commonly display a Th+Y-rich rim. In the highest pressure, garnet + staurolite-bearing samples, the garnet-in isograd abruptly marks the last appearance of allanite and the first occurrence of monazite

  12. Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth

    NASA Astrophysics Data System (ADS)

    Yakymchuk, Chris

    2017-03-01

    The suprasolidus behaviour of apatite and monazite is examined for an average metapelite composition using phase equilibria modelling coupled with solubility equations of these minerals. Both closed- and open-system scenarios are considered. Partial melting above the solidus requires apatite and monazite breakdown in order to saturate the anatectic melt in phosphorus and the light rare earth elements. In general, melt loss is predicted to increase the stability of apatite and monazite at high temperature. Most apatite is predicted to survive up to ultrahigh temperature conditions except for rocks with low bulk phosphorus concentrations. By contrast, most monazite is expected to be consumed by UHT conditions. Thorium substitution in monazite is expected to increase the stability of monazite to higher temperatures. The presence of LREE-rich apatite decreases the stability of monazite above the solidus, but the breakdown of this apatite during anatexis may generate prograde monazite at the apatite-melt interface in local pockets of melt oversaturation. However, prograde suprasolidus monazite along grain boundaries is expected to be consumed during further partial melting or during melt homogenization when an interconnected melt network develops. Anatectic melts are predicted to be saturated with respect to apatite except at UHT conditions and for rocks with low initial P2O5 bulk concentrations.

  13. ID-TIMS Geochronology of ca 1 Ma leucogranites from the core of Nanga Parbat

    NASA Astrophysics Data System (ADS)

    Bowring, S. A.; Searle, M. P.; Waters, D. J.; Hodges, K. V.; Schmitz, M. D.; Crowley, J.

    2003-12-01

    Although isotope-dilution, themal-ioniaztion mass spectrometry (ID-TIMS) is the most precise method available for U-Th-Pb geochronology of accessory minerals, the technique is traditionally not applied to samples youger than ca. 10 Ma due to low concentrations of radiogenic Pb. However, recent analytical advances allow the routine measurement of less than 5-10 picograms of radiogenic Pb, and the reduction of laboratory blanks to extremely low levels. As a consequence, it is now possible to use ID-TIMS for U-Pb geochronology of very young accessory mineral suites to develop new insights regarding the time scales and patterns of inheritance, melt production, and segregation in collisional orogens. The Nanga Parbat syntaxis of the northwestern Himalaya has had a long and complex thermal history, but it is famous for the evidence it provides for extremely young (<5 Ma) metamorphism and anatexis. Some of the youngest anatexites in the core of the syntaxis are cordierite-bearing granites which intruded as dikes and sills along extensional shear zones. High-precision ID-TIMS U-Pb geochronology of these granites using single crystals and several grains of monazite, zircon, xenotime, and uraninite indicate a melt crystallization age of <1 Ma. However, mineral dates within a single sample show a dispersion of several hundred thousand years that is greater than analytical imprecision and likely to represent the timescales of melt production and segregation. These are the youngest U-Pb ages known from any Himalayan leucogranite and, combined with P-T data, show that 15-17 km has been eroded off the summit area of Nanga Parbat in less than 1 million years.

  14. Thermodynamic studies on charge-coupled substituted synthetic monazite

    NASA Astrophysics Data System (ADS)

    Rawat, D.; Phapale, S.; Mishra, R.; Dash, S.

    2017-04-01

    Phosphate-based monazite ceramic is considered worldwide as a potential crystalline host matrix for immobilization of long-lived tri- and tetra-valent actinides present in high-level nuclear waste. Monazite is chemically stable with respect to the leaching processes and has high radiation stability. The present paper describes the influence of charged coupled (Ca2+, Th4+) substitution in place of La3+ on thermodynamic stability of synthetic monazite ceramics. XRD-analysis of Ca, Th substituted LaPO4 viz., La1-xCax/2Thx/2PO4 (0 ≤ x ≤ 1) points to the formation of ideal solid-solution in the entire range of composition. However, thermodynamic analysis indicates deviation from ideal solid-solution with a minima at x = 0.25. The substituted La1-xCax/2Thx/2PO4 system is found to be iso-entropic and stabilized mainly by enthalpy. Enthalpies of formation as a function of Ca2+, Th4+ substitution were analysed to provide insights into the development of thermodynamically stable nuclear waste matrix.

  15. Ediacaran ( 620 Ma) high grade regional metamorphism in the northern Arabian Nubian Shield: U/Th-Pb monazite ages of the Elat schist

    NASA Astrophysics Data System (ADS)

    Elisha, Bar; Katzir, Yaron; Kylander-Clark, Andrew

    2017-04-01

    Ediacaran times witnessed a hemisphere-scale orogenesis forming the extensive Pan-African mountain ranges and resulting in the final assembly of Gondwana supercontinent. The Elat metamorphic basement (S Israel) located at the northernmost tip of a major Pan-African orogenic suture, the Arabian Nubian Shield (ANS), comprises amphibolite facies schists and gneisses and was most likely shaped by this major continental collision. However the timing, number and duration of metamorphic events in Elat and elsewhere in the ANS are non-conclusive and a major emphasis was given to pre-Ediacaran island-arc related tectonics. This is mostly because U-Pb dating of zircon, widely used in Elat and elsewhere, is very successful in constraining the ages of the igneous and sedimentary protoliths, but is 'blind' to metamorphism at grades lower than granulite. Here U/Th-Pb dating of monazite, a precise chronometer of metamorphic mineral growth, is systematically applied to the Elat schist and unveils the tectono-metamorphic evolution of the Elat basement. Previous U-Pb dating of detrital zircon has shown that the sedimentary protoliths of the Elat schist are the oldest basement components (≥800 Ma), and detailed structural observations of the schists portrayed a complex deformation history including four successive phases (Shimron, 1972). The earliest three phases were defined as ductile and penetrative, but some of the available geochronological data apparently contradict field relations. In-situ analysis of metamorphic monazites by LASS (Laser Ablation Split Stream) involves simultaneous measurement of U/Th-Pb isotope ratios and REE contents in a single 10 μm sized grain or domain, thus allowing determining the age of specific texture and metamorphic assemblage. Monazite dating of the Elat schist yielded two concordant age clusters at 712±6 and 613±5 Ma. The corresponding REE patterns of the dated monazite grains indicate that porphyroblast growth, either garnet or staurolite

  16. Sediment unmixing using detrital geochronology

    USGS Publications Warehouse

    Sharman, Glenn R.; Johnstone, Samuel

    2017-01-01

    Sediment mixing within sediment routing systems can exert a strong influence on the preservation of provenance signals that yield insight into the influence of environmental forcings (e.g., tectonism, climate) on the earth’s surface. Here we discuss two approaches to unmixing detrital geochronologic data in an effort to characterize complex changes in the sedimentary record. First we summarize ‘top-down’ mixing, which has been successfully employed in the past to characterize the different fractions of prescribed source distributions (‘parents’) that characterize a derived sample or set of samples (‘daughters’). Second we propose the use of ‘bottom-up’ methods, previously used primarily for grain size distributions, to model parent distributions and the abundances of these parents within a set of daughters. We demonstrate the utility of both top-down and bottom-up approaches to unmixing detrital geochronologic data within a well-constrained sediment routing system in central California. Use of a variety of goodness-of-fit metrics in top-down modeling reveals the importance of considering the range of allowable mixtures over any single best-fit mixture calculation. Bottom-up modeling of 12 daughter samples from beaches and submarine canyons yields modeled parent distributions that are remarkably similar to those expected from the geologic context of the sediment-routing system. In general, mixture modeling has potential to supplement more widely applied approaches in comparing detrital geochronologic data by casting differences between samples as differing proportions of geologically meaningful end-member provenance categories.

  17. Origins of organic geochemistry

    USGS Publications Warehouse

    Kvenvolden, K.A.

    2008-01-01

    When organic geochemistry actually began as a recognized geoscience is a matter of definition and perspective. Constraints on its beginning are placed by the historical development of its parent disciplines, geology and organic chemistry. These disciplines originated independently and developed in parallel, starting in the latter half of the 18th century and flourishing thereafter into the 21st century. Organic geochemistry began sometime between 1860 and 1983; I argue that 1930 is the best year to mark its origin.

  18. U-Th-PbT Monazite Gechronology in the South Carpathian Basement: Variscan Syn-Metamorphic Tectonic Stacking and Long-Lasting Post-Peak Decompressional Overprints

    NASA Astrophysics Data System (ADS)

    Săbău, G.; Negulescu, E.

    2012-12-01

    Dating metamorphic events appears to be unsatisfactorily addressed by most of the widely-employed and otherwise accurate and productive isotopic techniques, because the phases and systems investigated do not directly relate to the metamorphic events themselves. An adequate answer to this challenge is instead provided by microprobe-assisted chemical U-Th-PbT monazite geochronology, by its spatial resolution, truly in situ character and the possibility to reference analyses against well-defined textural environments and features, as well as a qualitative timeframe derived therefrom. Though chemical U-Th-PbT monazite geochronology is increasingly applied to seek answers ranging form a general characterization to fine details of the thermotectonic evolution of magmatic and metamorphic rocks, there are so far, unlike in the case of isotopic geochronological methods, no clearly defined standard analytical and data processing protocols. Two main reasons for this have to be mentioned, namely that chemical U-Th-PbT chronology is actually a proxy for isotopic geochronology, and the quantification of the errors and their propagation cannot be directly assessed because apparent ages are related to the measured element concentrations by an implicit function, the law of radioactive decay. Current approaches rely on treating calculated individual age values as primary data, a priori grouping of analyses supposed (and subsequently tested) to be coeval, and their statistical processing in order to obtain age values. An alternative approach we applied in basement units of the South Carpathians consists in an explicit approximation of the age formula and associated errors propagated from element concentrations to age values, and individual treatment of each age datum. The separation of the age clusters from the overall age spectrum of each sample was operated by tracing the variations of the normalized age gradient on the age spectrum sorted by increasing age values, and fine

  19. Monazite chemical age and composition correlations, an insight in the Palaeozoic evolution of the Leaota Massif, South Carpathians

    NASA Astrophysics Data System (ADS)

    Săbău, Gavril; Negulescu, Elena

    2015-04-01

    Notwithstanding remarkable advantages of monazite microprobe U-Th-PbT geochronology of metamorphic formations, such as the direct investigation of a metamorphic mineral in a truly in situ setting, unequalled spatial resolution, and cost-effective analyses, it essentially remains affected by indeterminations as regards the accuracy and the representativity of the results. Besides the experimental hurdles related to trace element analyses with the microprobe (sensitivity, background and overlap effects) the method faces two main biases, firstly its inherently blind status emerging from the aprioric assumption of isotopic equilibrium, and secondly the marked susceptibility of monazite to fluid-stimulated chemical recrystallization and compositional resetting (e. g. Kelly et al. 2012). Age spectra obtained from individual sampled habitually display a significant scatter of calculated age data, in such a way that the separation of coherent and geologically relevant populations may often represent a substantial challenge. The interpretation of the results greatly benefits from the qualitative analysis of the textural and paragenetic setting or a trial-and error quantitative statistical assessment of distinct age clusters (Montel et al., 1996), though still maintaining a variable degree of subjectivity, as in any interpretative process not fully sustained by quantitative analysis. Additional dependable support can be gained from further qualitative parameters characterizing, besides the distribution of individual age data, also the global chemical composition of the analysed monazite grains, as well as the relationship to the corresponding metamorphic assemblages (Săbău & Negulescu, 2013). The quantitative assessment of the age patterns of individual samples can be achieved by plotting the normalized age gradient from the sorted age pattern, allowing distinction of quasi-gaussian distribution domains likely to correspond to coherent age clusters of geologic significance

  20. "SHRIMP geochronology for the 1450 Ma Lakhna dyke swarm: Its implication for the presence of Eoarchaean crust in the Bastar Craton and 1450-517 Ma depositional age for Purana basin (Khariar), Eastern Indian Peninsula": Comment

    NASA Astrophysics Data System (ADS)

    Basu, Abhijit; Bickford, M. E.

    2011-11-01

    As critical comments to the recent paper by Ratre et al. (2010, Journal of Asian Earth Sciences 39, 565-577) we cite U-Pb SHRIMP and CHIME ages of magmatic and detrital zircon and monazite from the Chhattisgarh and the Khariar basins in the Bastar craton to argue that these basins closed ca. 1000 Ma. We further argue that geochronologic data, geological evidence, and geological logic strongly indicate that sedimentation in the Khariar basin did not continue up to or beyond 517 Ma, as stated by Ratre et al. (op. cit).

  1. Formation of monazite via prograde metamorphic reactions among common silicates: implications for age determinations

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; Malloy, Margaret A.

    2004-01-01

    Three lines of evidence from schists of the Great Smoky Mountains, NC, indicate that isogradic monazite growth occurred at the staurolite-in isograd at ˜600°C: (1) Monazite is virtually absent below the staurolite-in isograd, but is ubiquitous (several hundred grains per thin section) in staurolite- and kyanite-grade rocks. (2) Many monazite grains are spatially associated with biotite coronas around garnets, formed via the reaction Garnet + Chlorite + Muscovite = Biotite + Plagioclase + Staurolite + H 2O. (3) Garnets contain high-Y annuli that result from prograde dissolution of garnet via the staurolite-in reaction, followed by regrowth, and rare monazite inclusions occur immediately outside the annulus and in the matrix, but not in the garnet core. Larger monazite grains also exhibit quasi-continuous Th zoning with high Th cores and low Th rims, consistent with monazite growth via a single reaction and fractional crystallization during prograde growth. Common silicates may host sufficient P and LREEs that reactions among them can produce observable LREE phosphate. Specifically phosphorus contents of garnet and plagioclase are hundreds of parts per million, and dissolution of garnet and recrystallization of plagioclase could form thousands of phosphate grains several micrometers in diameter per thin section. LREEs may be more limiting, but sheet silicates and plagioclase can contain tens to ˜100 (?) ppm LREE, so recrystallization of these silicates to lower LREE contents could produce hundreds of grains of monazite per thin section. Monazite ages, determined via electron and ion microprobes, are ˜400 Ma, directly linking prograde Barrovian metamorphism of the Western Blue Ridge with the "Acadian" orogeny, in contrast to previous interpretations that metamorphism was "Taconian" (˜450 Ma). Interpretation of ages from metamorphic monazite grains will require prior chemical characterization and identification of relevant monazite-forming reactions, including

  2. Monazite-type SrCr O4 under compression

    NASA Astrophysics Data System (ADS)

    Gleissner, J.; Errandonea, D.; Segura, A.; Pellicer-Porres, J.; Hakeem, M. A.; Proctor, J. E.; Raju, S. V.; Kumar, R. S.; Rodríguez-Hernández, P.; Muñoz, A.; Lopez-Moreno, S.; Bettinelli, M.

    2016-10-01

    We report a high-pressure study of monoclinic monazite-type SrCr O4 up to 26 GPa. Therein we combined x-ray diffraction, Raman, and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCr O4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMn O4 -type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCr O4 . We determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active modes. In all three phases most Raman modes harden under compression, however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCr O4 , the band gap blueshifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCr O4 . Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray-diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCr O4 . A comparison of the high-pressure behavior of the electronic properties of SrCr O4 (SrW O4 ) and PbCr O4 (PbWO4) will also be made. Finally, the possible occurrence of a third structural phase transition is discussed.

  3. Monazite-type SrCrO4 under compression

    DOE PAGES

    Gleissner, J.; Errandonea, Daniel; Segura, A.; ...

    2016-10-20

    We report a high-pressure study of monoclinic monazite-type SrCrO4 up to 26 GPa. Therein we combined x-ray diffraction, Raman, and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO4. We determined the pressure evolution of the band gap for the low- and high-pressure phases as well as themore » frequencies and pressure dependencies of the Raman-active modes. In all three phases most Raman modes harden under compression, however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCrO4, the band gap blueshifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCrO4. Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray-diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCrO4. A comparison of the high-pressure behavior of the electronic properties of SrCrO4 (SrWO4) and PbCrO4 (PbWO4) will also be made. Lastly, the possible occurrence of a third structural phase transition is discussed.« less

  4. Chemical distribution of hazardous natural radionuclides during monazite mineral processing.

    PubMed

    Hamed, Mostafa M; Hilal, M A; Borai, E H

    2016-10-01

    It is very important to calculate the radioactivity concentration for low-grade monazite ore (50%) and different other materials produced as results of chemical processing stages to avoid the risk to workers. Chemical processing of low-grade monazite pass through different stages, washing by hydrochloric acid and digested with sulfuric acid and influence of pH on the precipitation of rare earth elements has been studied. The radioactivity concentrations of (238)U((226)Ra) and (232)Th as well as (40)K were calculated in crude low-grade ore and found to be 54,435 ± 3138, 442,105 ± 29,200 and 5841 ± 345 Bq/kg, respectively. These values are greatly higher than the exempt levels 25 Bq/kg. After chemical digestion of the ore, the results demonstrated that un-reacted material contains significant radioactivity reached to approximately 8, 13 and 23% for (238)U, (232)Th and (40)K, respectively. The results show that 60% of (232)Th are located in the digested white slurry with small portions of (238)U and (40)K. Most of (238)U radioactivity is extracted in the green phosphoric acid which produced from conversion of P2O5 by H2SO4 into phosphoric acid. The average values of the Raeq for monazite ore, un-reacted black precipitate, white precipitate, brown precipitate and crystalline material samples were calculated and found to be 687,095 ± 44,921, 85,068 ± 5339, 388,381 ± 22,088, 313,046 ± 17,923 and 4531 ± 338 Bq/kg, respectively. The calculated values of Raeq are higher than the average world value (it must be less than 370 Bq/kg). Finally the external hazardous, internal hazardous and Iγr must be less than unity. This means that specific radiation protection program must be applied and implemented during monazite processing.

  5. Radioactive Dating: A Method for Geochronology.

    ERIC Educational Resources Information Center

    Rowe, M. W.

    1985-01-01

    Gives historical background on the discovery of natural radiation and discusses various techniques for using knowledge of radiochemistry in geochronological studies. Indicates that of these radioactive techniques, Potassium-40/Argon-40 dating is used most often. (JN)

  6. Radioactive Dating: A Method for Geochronology.

    ERIC Educational Resources Information Center

    Rowe, M. W.

    1985-01-01

    Gives historical background on the discovery of natural radiation and discusses various techniques for using knowledge of radiochemistry in geochronological studies. Indicates that of these radioactive techniques, Potassium-40/Argon-40 dating is used most often. (JN)

  7. Assembling and disassembling california: A zircon and monazite geochronologic framework for proterozoic crustal evolution in southern California

    USGS Publications Warehouse

    Barth, A.P.; Wooden, J.L.; Coleman, D.S.; Vogel, M.B.

    2009-01-01

    The Mojave province in southern California preserves a comparatively complete record of assembly, postorogenic sedimentation, and rifting along the southwestern North American continental margin. The oldest exposed rocks are metasedimentary gneisses and amphibolite, enclosing intrusive suites that range from tonalite and quartz mon-zodiorite to granite with minor trondhjemite. Discrete magmatic episodes occurred at approximately 1790-1730 and 1690-1640 Ma. Evidence from detrital and premagmatic zircons indicates that recycling of 1900-1790 Ma Paleopro-terozoic crust formed the unique isotopic character of the Mojave province. Peak metamorphic conditions in the Mojave province reached middle amphibolite to granulite facies; metamorphism occurred locally from 1795 to 1640 Ma, with widespread evidence for metamorphism at 1711-1689 and 1670-1650 Ma. Structures record early, tight to isoclinal folding and penetrative west-vergent shear during the final metamorphic event in the west Mojave province. Proterozoic basement rocks are overlain by siliciclastic-carbonate sequences of Mesoproterozoic, Neoproterozoic, and Cambrian age, recording environmental change over the course of the transition from stable Mojave crust to the rifted Cordilleran margin. Neoproterozoic quartzites have diverse zircon populations inconsistent with a southwest North American source, which we infer were derived from the western conjugate rift pair within Rodinia, before establishment of the miogeocline. Neoproterozoic-Cambrian miogeoclinal clastic rocks record an end to rifting and establishment of the Cordilleran miogeocline in southern California by latest Neoproterozoic to Early Cambrian time. ?? 2009 by The University of Chicago.

  8. Constraints on the timing of Co-Cu ± Au mineralization in the Blackbird district, Idaho, using SHRIMP U-Pb ages of monazite and xenotime plus zircon ages of related Mesoproterozoic orthogneisses and metasedimentary rocks

    USGS Publications Warehouse

    Aleinikoff, John N.; Slack, John F.; Lund, Karen; Evans, Karl V.; Fanning, C. Mark; Mazdab, Frank K.; Wooden, Joseph L.; Pillers, Renee M.

    2012-01-01

    The Blackbird district, east-central Idaho, contains the largest known Co reserves in the United States. The origin of strata-hosted Co-Cu ± Au mineralization at Blackbird has been a matter of controversy for decades. In order to differentiate among possible genetic models for the deposits, including various combinations of volcanic, sedimentary, magmatic, and metamorphic processes, we used U-Pb geochronology of xenotime, monazite, and zircon to establish time constraints for ore formation. New age data reported here were obtained using sensitive high resolution ion microprobe (SHRIMP) microanalysis of (1) detrital zircons from a sample of Mesoproterozoic siliciclastic metasedimentary country rock in the Blackbird district, (2) igneous zircons from Mesoproterozoic intrusions, and (3) xenotime and monazite from the Merle and Sunshine prospects at Blackbird. Detrital zircon from metasandstone of the biotite phyllite-schist unit has ages mostly in the range of 1900 to 1600 Ma, plus a few Neoarchean and Paleoproterozoic grains. Age data for the six youngest grains form a coherent group at 1409 ± 10 Ma, regarded as the maximum age of deposition of metasedimentary country rocks of the central structural domain. Igneous zircons from nine samples of megacrystic granite, granite augen gneiss, and granodiorite augen gneiss that crop out north and east of the Blackbird district yield ages between 1383 ± 4 and 1359 ± 7 Ma. Emplacement of the Big Deer Creek megacrystic granite (1377 ± 4 Ma), structurally juxtaposed with host rocks in the Late Cretaceous ca. 5 km north of Blackbird, may have been involved in initial deposition of rare earth elements (REE) minerals and, possibly, sulfides. In situ SHRIMP ages of xenotime and monazite in Co-rich samples from the Merle and Sunshine prospects, plus backscattered electron imagery and SHRIMP analyses of trace elements, indicate a complex sequence of Mesoproterozoic and Cretaceous events. On the basis of textural relationships

  9. Community-Based Development of Standards for Geochemical and Geochronological Data

    NASA Astrophysics Data System (ADS)

    Lehnert, K. A.; Walker, D.; Vinay, S.; Djapic, B.; Ash, J.; Falk, B.

    2007-12-01

    The Geoinformatics for Geochemistry (GfG) Program (www.geoinfogeochem.org) and the EarthChem project (www.earthchem.org) aim to maximize the application of geochemical data in Geoscience research and education by building a new advanced data infrastructure for geochemistry that facilitates the compilation, communication, serving, and visualization of geochemical data and their integration with the broad Geoscience data set. Building this new data infrastructure poses substantial challenges that are primarily cultural in nature, and require broad community involvement in the development and implementation of standards for data reporting (e.g., metadata for analytical procedures, data quality, and analyzed samples), data publication, and data citation to achieve broad acceptance and use. Working closely with the science community, with professional societies, and with editors and publishers, recommendations for standards for the reporting of geochemical and geochronological data in publications and to data repositories have been established, which are now under consideration for adoption in journal and agency policies. The recommended standards are aligned with the GfG and EarthChem data models as well as the EarthChem XML schema for geochemical data. Through partnerships with other national and international data management efforts in geochemistry and in the broader marine and terrestrial geosciences, GfG and EarthChem seek to integrate their development of geochemical metadata standards, data format, and semantics with relevant existing and emerging standards and ensure compatibility and compliance.

  10. Polymetamorphic evolution of the upper part of the Iezer Complex (Leaota Massif, South Carpathians) constrained by petrological data and monazite ages

    NASA Astrophysics Data System (ADS)

    Negulescu, Elena; Săbău, Gavril; Massonne, Hans-Joachim

    2015-04-01

    The Leaota Massif in Romania consists of a flat-lying sequence of five structurally concordant units displaying mutual and partly internal lithologic and metamorphic contrasts. The lower part of the lithologic sequence is the Iezer Complex, a medium-grade psammopelitic unit with a structurally concordant thin granite sill located at its upper part. The lower limit of the granite is marked discontinuously by hornfels, also present as enclaves, which experienced intense strain and a subsequent low-pressure thermal overprint. Both granite and hornfels were affected by a medium-temperature, medium- to high-pressure event (Săbău, 2000). This event was also identified in gneisses below the hornfels. These rocks contain the assemblage garnet-phengite-chloritoid-kyanite which had overprinted an older garnet-kyanite-staurolite-biotite-muscovite assemblage. Available U-Th zircon ages indicate 472.7 ± 7.3 Ma (Balintoni et al. 2009) for the granite. Monazite geochronology (Săbău & Negulescu, 2013) reveals for the associated hornfels (1) inherited ages of 528 ± 17.86 Ma overprinted by pervasive Ordovician contact metamorphism (462 ± 4.54 Ma), slightly postdating the age of magmatic zircon in the granite, (2) Silurian to Early Devonian recrystallization episodes, and (3) a Variscan medium- to high-pressure metamorphic overprint responsible for the garnet-phengite-kyanite assemblage. New petrological and geochronological data constraining the polymetamorphic evolution of the upper part of the Iezer Complex were acquired from kyanite-garnet mylonitic gneisses made up of large garnet porphyroclasts embedded in a strongly deformed matrix. Large garnets are rich in quartz, phengite, epidote, kyanite, rutile, and ilmenite inclusions. Biotite, chlorite, apatite, monazite, and Al-cerite inclusions are also present. Garnet porphyroclasts are wrapped by laminae of small garnet - white mica - biotite - quartz or zoisite - kyanite - plagioclase alternating with bands made up of fine

  11. Sulfate incorporation in monazite lattice: potential for dating the cycle of sulfur in metamorphic belts

    NASA Astrophysics Data System (ADS)

    Laurent, Antonin; Seydoux-Guillaume, Anne-Magali; Duchene, Stéphanie; Bingen, Bernard; Bosse, Valérie

    2016-04-01

    Monazite is a common accessory mineral in magmatic and metamorphic rocks that often shows complex chemical zoning at the μm- to nm-scale. The large number of cations that may be accommodated in its lattice, makes monazite particularly responsive to changes in the rock-forming minerals and fluid composition. Chemical zoning resulting from replacement or overgrowth may coincide, or not, with age zoning derived from U-Th-Pb isotopes. In this study, we focus on the potential for monazite to record both the redox condition of its crystalizing medium and an absolute U-Th-Pb isotopic age, during polyphase metamorphism in the Proterozoic province of Rogaland, S. Norway. The metamorphic evolution of several samples is derived from phase diagrams and the oxygen fugacity estimated from the FeO/Fe2O3 ratio measured by titration. Monazite grains were mapped at high spatial resolution for minor elements with electron microprobe, revealing convolute chemical zoning. Some of these zones yield appreciable content of S (up to 7000 ppm), accommodated following the Ca2+ + S6+ = REE3+ + P5+ substitution vector. The incorporation of sulfate in monazite has been subsequently investigated by TEM thanks to site specific FIB preparations. Besides, LA-ICP-MS U-Pb isotopic ages of monazite grains show a remarkable correlation with the sulfate content. It is therefore possible to distinguish different generations of monazite based on their S-content. From our petrological study we conclude that sulfate-bearing monazite reflects incongruent melting of Fe-Cu-As sulfides under oxidizing conditions, coeval with biotite dehydration melting. Monazite may therefore be used to probe the presence of sulfur in anatectic melts from high-grade terrains at a specific point in time. This property can be used to investigate the mineralization potential of a given geological event within a larger orogenic framework.

  12. Timing of Deformation in the Central Metasedimentary Belt Boundary Thrust Zone (CMBbtz), southern Ontario, Canada, from Electron Microprobe Dating of Monazite

    NASA Astrophysics Data System (ADS)

    Markley, M. J.; Dunn, S. R.; Peck, W. H.; Jercinovic, M. J.; Williams, M. L.

    2015-12-01

    In the Grenville Province of Southern Ontario, the Central Metasedimentary Belt boundary thrust zone (CMBbtz) is a crustal-scale tectonic boundary between the older, granulite-facies Central Gneiss Belt to the NW and the younger, amphibolite-facies Central Metasedimentary Belt to the SE. Although there are a range of tectonic models for the CMBbtz, most workers agree it is a major tectonic boundary that accommodated ductile thrusting and crustal shortening during the Ottawan phase of the Grenville Orogeny (~1080-1020 Ma). Some studies suggest that ductile thrusting in the CMBbtz was roughly synchronous with synorogenic extensional collapse below an orogenic lid. Previous geochronological studies also provide evidence of earlier deformation and/or metamorphic events in the CMBbtz, although the relation between deformation in the CMBbtz to the Elzeviran (~1230 Ma) and Shawinigan (~1180 Ma) orogenies is unclear. Our study is the first to report in situ electron microprobe monazite (mnz) dates from amphibolite-grade ortho- and para-gneisses of the CMBbtz. Our results are broadly consistent with other chronometers. We present dates from 132 age-domains within 83 mnz grains in 14 samples. Although our data provide strong evidence for deformation and metamorphism along the length of the CMBbtz during the Ottawan (1080-1020 Ma), we also report two other clusters of ages: 1140-1110 Ma and 1230-1170 Ma. The latter cluster falls between the widely accepted ranges for the Elzeviran and Shawinigan orogenies. In addition, some individual outcrops, particularly those in Killaloe and Minden, show mnz ages spanning over 200 m.y., and the setting and compositions of individual monazite domains allow us to link mnz growth to episodes of garnet growth during multiple events. Together these data indicate an unexpectedly continuous and long-lived period of deformation and metamorphism in the CMBbtz.

  13. Dating rock deformation with monazite: The impact of dissolution precipitation creep

    NASA Astrophysics Data System (ADS)

    Wawrzenitz, Nicole; Krohe, Alexander; Rhede, Dieter; Romer, Rolf L.

    2012-03-01

    The U-Th-Pb system of monazite behaves differently dependent on the deformation mechanism - dissolution precipitation creep (DPC) or dislocation creep - activated in the hosting metamorphic rocks. This can be exploited to use monazite for dating deformation, as is shown in rocks subsequently deformed by dislocation creep and DPC. In rock layers intensely deformed by DPC, mineral reactions, particularly the dissolution of feldspar and apatite increased the alkali-content and reactivity of the fluid. This in turn led to dissolution of old predeformative monazite grains. New synmetamorphic monazite grains formed as the result of inter-grain transport of material over distances within the grain-scale. This process efficiently led to complete resetting of the monazite U-Th-Pb system, even at temperatures prevailing during greenschist facies conditions. The chemical composition of the new monazite records the dissolution of the old feldspar by a less pronounced negative Eu anomaly compared to old monazite. The shape of the monazite grains that precipitated during creep indicates the sense of shear in the shear zone, thus linking the obtained ages directly to the map-scale tectonic transport. In rock layers predominantly deformed by dislocation creep, old monazite grains survived intense mylonitization and high strain, and show a core-rim structure. The cores are patchy, reflecting intra-grain, coupled dissolution-reprecipitation replacement processes. A wide range in apparent, geologically inaccurate Th/Pb and U/Pb ages among the patchy zones is the result of incomplete removal of in-situ grown radiogenic Pb from the patchy domains, depletion of Th and U and the redistribution of Th and U among the domains. Exclusively in the rims of the old monazite, the chemical composition correlates to that of the syndeformative monazites, and the U-Th-Pb system reflects the subsequent DPC. Accordingly, rocks pervasively deformed by DPC should be preferably used to obtain monazite

  14. Coupled dissolution-precipitation in natural monazite: effect of irradiation damage or fluid mediation?

    NASA Astrophysics Data System (ADS)

    Seydoux-Guillaume, Anne-Magali; Montel, Jean-Marc; de Parseval, Philippe; Bingen, Bernard; Janots, Emilie

    2010-05-01

    The LREE orthophosphate monazite is a common accessory mineral, important as a U-Th-Pb geochronometer in both metamorphic and magmatic rocks. In order to correctly interpret measured ages, it is essential to properly understand mechanisms that control them. Few studies have shown that coupled dissolution-crystallisation in the presence of a fluid phase is a mechanism incomparably more efficient that solid state diffusion to reset isotopic signature within monazite grains. It is known that dissolution-precipitation is efficiency enhanced by the presence of defects within crystals. Because of its high actinide contents (U and Th), monazite receives intense self-irradiation doses. In contrast to zircon (a silicate), monazite (a phosphate) is less sensitive to irradiation. Natural amorphous monazite has never been reported and the only proof that monazite lattice was destroyed by irradiation is shown by the presence of lattice distortion (strained lattice); this is because defect healing is more efficient than amorphization. The present study focuses on large (cm) single monazite crystals from five distinct localities in Norway, Madagascar, Srilanka, Zwaziland and Morefield. They have different chemical compositions, especially with regard to U, Th and Pb contents, and have ages ranging from ca. 500 to 1000 Ma. Nevertheless, all of them share the same petrographic features. Optical microscope and SEM images reveal variably intense fracturation. BSE imaging in the SEM indicates that monazite is composed of multiple phases: an unaltered monazite (Mnz1) + an altered monazite (Mnz2) associated with Th-rich phase (Thorium silicate or Thorium oxide) +/- Xenotime, depending on the initial composition of Mnz1. Analogous textures were already described by Seydoux-Guillaume et al. (2007) and Hetherington and Harlov (2008;). The alteration textures are always associated with radial cracks emanating from the high radioactive phase (Th-rich phase). The question addressed in the

  15. Appendix G: Geochemistry

    SciTech Connect

    Cantrell, Kirk J.; Serne, R. Jeffrey; Zachara, John M.; Krupka, Kenneth M.; Dresel, P. Evan; Brown, Christopher F.; Freshley, Mark D.

    2008-01-17

    This appendix discusses the geology of the Hanford Site and singe-shell tank (SST) waste management areas (WMAs). The purpose is to provide the most recent geochemical information available for the SST WMAs and the Integrated Disposal Facility. This appendix summarizes the information in the geochemistry data package for the SST WMAs.

  16. New geochronological history of the Mbuji-Mayi Supergroup (Proterozoic, DRC) through U-Pb and Sm-Nd dating

    NASA Astrophysics Data System (ADS)

    François, Camille; Baludikay, Blaise K.; Storme, Jean-Yves; Baudet, Daniel; Paquette, Jean-Louis; Fialin, Michel; Debaille, Vinciane; Javaux, Emmanuelle J.

    2016-04-01

    The Mbuji-Mayi Supergroup, DRC is located between the Archean-Paleoproterozoic Kasai Craton and the Mesoproterozoic Kibaran Belt. This sedimentary sequence, unaffected by regional metamorphism, preserves a large diversity of well-preserved acritarchs (organic-walled microfossils), evidencing the diversification of complex life (early eukaryotes) for the first time in mid-Proterozoic redox stratified oceans of Central Africa (Baludikay et al., in review). This Supergroup is composed of two distinct lithostratigraphic successions (i) BI Group: a lower siliciclastic sequence (ca. 1175 Myr to ca. 882 Myr or ca. 1050 Myr (Cahen, 1954; Holmes & Cahen, 1955; Delpomdor et al., 2013) unconformably overlying the ca. 2.82-2.56 Gyr granitoid Dibaya Complex to the North (Cahen & Snelling; recent notice on DRC geological map); and (ii) BII Group: a poorly age-constrained upper carbonate sequence with sparse shales . Basaltic lavas (including pillow lavas) overlying the Mbuji-Mayi Supergroup were dated around 950 Myr (Cahen et al., 1974; Cahen et al., 1984). To better constraint the age of this Supergroup in the Meso-Neoproterozoic limit, we combine different geochronological methods, in particular on diagenetic minerals such as monazite (Montel et al., 1996; Rasmussen & Muhling, 2007) and xenotime (McNaughton et al., 1999) but also on detrital zircons. For the BI Group, results of in situ U-Pb dating with LA-ICP-MS on monazite, xenotime and zircon (Laboratoire Magmas et Volcans, Clermont-Ferrand) provide ages between 2.9 and 1.2 Gyr for zircons and between 1.4 and 1.03 Gyr for monazites and xenotimes. New results of in situ U-Th-Pb dating of well-crystallized monazites and xenotimes with Electron MicroProbe (Camparis, UPMC, Paris), highlight that some crystals display zonations with an inherited core older than 1125 Myr and diagenetic rims around 1050-1075 Myr. This suggests that the diagenesis of BI Group is younger than 1175 Myr (Delpomdor et al., 2013) and probably around

  17. Unmixing detrital geochronology age distributions

    NASA Astrophysics Data System (ADS)

    Sundell, Kurt E.; Saylor, Joel E.

    2017-08-01

    Despite recent advances in quantitative methods of detrital provenance analysis, there is currently no widely accepted method of unmixing detrital geochronology age distributions. We developed a model that determines mixing proportions for source samples through inverse Monte Carlo modeling, wherein mixed samples are compared to randomly generated combinations of source distributions, and a range of best mixing proportions are retained. Results may then be used to constrain a forward optimization routine to find a single best-fit mixture. Quantitative comparison is based on the Kolmogorov-Smirnov (KS) test D statistic and Kuiper test V statistic for cumulative distribution functions, and the Cross-correlation coefficient for finite mixture distributions (probability density plots or kernel density estimates). We demonstrate the capacity of this model through a series of tests on synthetic data, and published empirical data from North America mixed in known proportions; this proof-of-concept testing shows the model is capable of accurately unmixing highly complex distributions. We apply the model to two published empirical data sets mixed in unknown proportions from Colombia and central China. Neither example yields perfect model fits, which provides a cautionary note of potentially inadequate characterization of source and/or mixed samples, and highlights the importance of such characterization for accurate interpretation of sediment provenance. Sample size appears to be a major control on mixture model results; small (n < 100) samples may lead to misinterpretation. The model is available as a MATLAB-based stand-alone executable (.exe file) graphical user interface.

  18. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia

    NASA Astrophysics Data System (ADS)

    Rubatto, Daniela; Williams, Ian S.; Buick, Ian S.

    2001-01-01

    We report an extensive field-based study of zircon and monazite in the metamorphic sequence of the Reynolds Range (central Australia), where greenschist- to granulite-facies metamorphism is recorded over a continuous crustal section. Detailed cathodoluminescence and back-scattered electron imaging, supported by SHRIMP U-Pb dating, has revealed the different behaviours of zircon and monazite during metamorphism. Monazite first recorded regional metamorphic ages (1576 ± 5 Ma), at amphibolite-facies grade, at ˜600 °C. Abundant monazite yielding similar ages (1557 ± 2 to 1585 ± 3 Ma) is found at granulite-facies conditions in both partial melt segregations and restites. New zircon growth occurred between 1562 ± 4 and 1587 ± 4 Ma, but, in contrast to monazite, is only recorded in granulite-facies rocks where melt was present (≥700 °C). New zircon appears to form at the expense of pre-existing detrital and inherited cores, which are partly resorbed. The amount of metamorphic growth in both accessory minerals increases with temperature and metamorphic grade. However, new zircon growth is influenced by rock composition and driven by partial melting, factors that appear to have little effect on the formation of metamorphic monazite. The growth of these accessory phases in response to metamorphism extends over the 30 Ma period of melt crystallisation (1557-1587 Ma) in a stable high geothermal regime. Rare earth element patterns of zircon overgrowths in leucosome and restite indicate that, during the protracted metamorphism, melt-restite equilibrium was reached. Even in the extreme conditions of long-lasting high temperature (750-800 °C) metamorphism, Pb inheritance is widely preserved in the detrital zircon cores. A trace of inheritance is found in monazite, indicating that the closure temperature of the U-Pb system in relatively large monazite crystals can exceed 750-800 °C.

  19. An application of Petrochronology: U/Th-Pb geochronologic rates of burial and exhumation in the Cordilleran hinterland, northern Nevada, USA

    NASA Astrophysics Data System (ADS)

    Hallett, B. W.

    2014-12-01

    Monazite and zircon U/Th-Pb dating and yttrium thermometry results from metapelitic rocks of the northern East Humboldt Range, Nevada provide insight into the tectonic evolution of the North American Cordillera. Combining a petrologic approach with in situ U/Th-Pb SHRIMP geochronology gives constraints on the timing and rates of burial and exhumation. When integrated with the results from studies of the intrusive igneous and structural evolution of a complexly deformed crustal block, a broad picture of the behavior of the thickened middle crust in an orogenic wedge begins to emerge. In samples from the upper limb of the south verging Winchell Lake nappe, monazite cores giving moderate YPO4 components yield a mean U-Pb age of 82.8 ± 1.3 Ma representing initial growth near garnet zone conditions. A cycle of burial and heating giving way to decompression and melting, followed by zircon growth accompanied by low YPO4 monazite growth giving a wide range of ages (77.1-62.4 Ma) apparently documents cooling and melt crystallization. Monazite core and zircon ages from these samples bracket the time frame for this cycle through peak pressure and then temperature. Rates of burial therefore are ~1.0­-4.5 mm/year for the Winchell Lake nappe. Migmatitic pelites from the Lizzies Basin area, structurally beneath the Winchell Lake nappe give U-Pb monazite age brackets of 96.5-79.4 Ma, yielding a narrower range of burial rates, ~0.5-2.0 mm/year. Calculated exhumation rates for the same rocks from both the upper limb of the Winchell Lake nappe and the Lizzies Basin area fall between ~0.4 and 1.7 mm/year. Rapid burial followed by rapid exhumation is consistent with thickening by an overthrust mechanism followed by vertical ductile thinning, underplating, erosion, and/or normal faulting. Exhumation is generally slower than estimates for exhumation of metamorphic core complexes north of the Snake River Plain calculated by Bendick and Baldwin (2009). This may represent a difference in

  20. Zircon Lu-Hf isotope systematics and U-Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya Zone-NE Turkey: a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif

    2017-05-01

    The early Mesozoic was a critical era for the geodynamic evolution of the Sakarya Zone as transition from accretion to collision events in the region. However, its complex evolutionary history is still debated. To address this issue, we present new in situ zircon U-Pb ages and Lu-Hf isotope data, whole-rock Sr-Nd isotopes, and mineral chemistry and geochemistry data of plutonic rocks to better understand the magmatic processes. The Gokcedere pluton is mainly composed of gabbro and gabbroic diorite. LA-ICP-MS zircon U-Pb dating reveals that the pluton was emplaced in the early Jurassic (177 Ma). These gabbros and gabbroic diorites are characterized by relatively low SiO2 content of 47.09 to 57.15 wt% and high Mg# values varying from 46 to 75. The samples belong to the calc-alkaline series and exhibit a metaluminous I-type character. Moreover, they are slightly enriched in large ion lithophile elements (Rb, Ba, Th and K) and light rare earth elements and depleted in high field strength elements (Nb and Ti). Gabbroic rocks of the pluton have a depleted Sr-Nd isotopic composition, including low initial 87Sr/86Sr ranging from 0.705124 to 0.705599, relatively high ɛ Nd ( t) values varying from 0.1 to 3.5 and single-stage Nd model ages ( T DM1 = 0.65-0.95 Ga). In situ zircon analyses show that the rocks have variable and positive ɛ Hf ( t) values (4.6 to 13.5) and single-stage Hf model ages ( T DM1 = 0.30 to 0.65 Ga). Both the geochemical signature and Sr-Nd-Hf isotopic composition of the gabbroic rocks reveal that the magma of the studied rocks was formed by the partial melting of a depleted mantle wedge metasomatized by slab-derived fluids. The influence of slab fluids is mirrored by their trace-element characteristics. Trace-element modeling suggests that the primary magma was generated by a low and variable degree of partial melting ( 5-15%) of a depleted and young lithospheric mantle wedge consisting of phlogopite- and spinel-bearing lherzolite. Heat to melt the

  1. Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages

    NASA Astrophysics Data System (ADS)

    Erickson, Timmons M.; Timms, Nicholas E.; Kirkland, Christopher L.; Tohver, Eric; Cavosie, Aaron J.; Pearce, Mark A.; Reddy, Steven M.

    2017-03-01

    Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the U-Th-Pb systematics remain poorly constrained. We have, therefore, analyzed shock-deformed monazite grains from the central uplift of the Vredefort impact structure, South Africa, and impact melt from the Araguainha impact structure, Brazil, using electron backscatter diffraction, electron microprobe elemental mapping, and secondary ion mass spectrometry (SIMS). Crystallographic orientation mapping of monazite grains from both impact structures reveals a similar combination of crystal-plastic deformation features, including shock twins, planar deformation bands and neoblasts. Shock twins were documented in up to four different orientations within individual monazite grains, occurring as compound and/or type one twins in (001), (100), ( 10bar{1} ), {110}, { 212 }, and type two (irrational) twin planes with rational shear directions in [0bar{1}bar{1}] and [bar{1}bar{1}0]. SIMS U-Th-Pb analyses of the plastically deformed parent domains reveal discordant age arrays, where discordance scales with increasing plastic strain. The correlation between discordance and strain is likely a result of the formation of fast diffusion pathways during the shock event. Neoblasts in granular monazite domains are strain-free, having grown during the impact events via consumption of strained parent grains. Neoblastic monazite from the Inlandsee leucogranofels at Vredefort records a 207Pb/206Pb age of 2010 ± 15 Ma (2 σ, n = 9), consistent with previous impact age estimates of 2020 Ma. Neoblastic monazite from Araguainha impact melt yield a Concordia age of 259 ± 5 Ma (2 σ, n = 7), which is consistent with previous impact age estimates of 255 ± 3 Ma. Our results demonstrate that targeting discrete microstructural domains in shocked monazite, as identified through orientation mapping, for in

  2. Geochronologic constraints on syntaxial development in the Nanga Parbat region, Pakistan

    NASA Astrophysics Data System (ADS)

    Winslow, David M.; Zeitler, Peter K.; Chamberlain, C. Page; Williams, Ian S.

    1996-12-01

    40Ar/39Ar data (hornblende, biotite, muscovite, and K-feldspar) and U/Pb data (zircons) were obtained from the Nanga Parbat-Haramosh Massif (NPHM), NW Pakistan, along three transects in the southern regions of the NPHM. We have based our interpretations on our new data as well as geochronologic dates from previous studies in the northern regions of the massif. Geochronologic data show that the NPHM has experienced exceptionally high denudation and cooling rates over the past 10 m.y. U/Pb ages determined through sensitive high-resolution ion microprobe (SHRIMP) "depth-profiling" experiments on metamorphic zircons and conventional U/Pb monazite dates suggest that the timing of metamorphism varied across the massif. In addition, we have documented that the massif has experienced postmetamorphic, differential cooling both along and across strike. Thermochronologic data on currently exposed surface rocks suggest that cooling occurred more recently and at greater rates in the south-central regions of the massif (representing deeper crustal levels) than along the margins and northern regions of the massif. Within the Tato region, cooling following peak metamorphic temperatures of 600°-700 °C was as high as 140 °C/m.y. following partial melting of pelitic units. Biotites from this area record plateau ages of 0.9 ± 0.1 Ma. Along the Astor and Indus gorges, cooling was less rapid (approximately 70°-80°C/m.y.) following peak metamorphism as indicated by U/Pb monazite ages of 6-8 Ma and 40Ar/39Ar muscovite cooling ages of 2.2-3.4 Ma. Cooling over the last 3 m.y. occurred at rates of 100°-140 °C/m.y. The overall cooling age pattern within the massif is interpreted syntaxial growth through the development of north plunging antiforms prior to 3 Ma, followed by reverse faulting along east dipping fault zones. Along the Raikot River transect the biotite cooling age pattern is consistent with the folding of isotherms during folding of the foliation surfaces. The age pattern

  3. Monazite and allanite U-Th-Pb vs mica 39Ar-40Ar ages in equilibrated metasediments: closure behavior and closure temperatures

    NASA Astrophysics Data System (ADS)

    Allaz, J.; Engi, M.; Berger, A.; Janots, E.; Villa, I. M.

    2009-12-01

    The art of geochronology implies identification of processes, so as to correctly interpret an isotopic age as (1) crystallization, (2) cooling, or (3) meaningless owing to inheritance and/or late mineral recrystallization. We address here a field calibration of 39Ar-40Ar ages against U-Th-Pb ages. We demonstrate that detailed petrological, micro-textural and micro-chemical investigations are a necessary prerequisite for meaningful geochronology. The Barrovian metamorphism in the Alps results from the collision of Europe and Apulia and reaches its thermal maximum (upper amphibolite facies) in the Central Alps. Age estimates for the Alpine orogeny have long been controversial, despite a multitude of studies. Based on the resetting of Rb-Sr and K-Ar ages in muscovite from polymetamorphic gneisses, Jäger [1] had proposed an age of 38±2 Ma for the Barrovian metamorphism, corresponding to a “closure temperature TC” (following [2]) of 350 °C for K-Ar in muscovite. However, a uniform Eocene age for the metamorphism in the Central Alps was in conflict already with early monazite and xenotime U-Pb ages from the same area, namely 30 Ma in the southern, and ~20 Ma in the northern part (e.g. [3]). A recent study [4] both confirmed the young monazite ages in the north (SHRIMP U-Pb of 18-19 Ma near Tmax = 570 °C), and demonstrated that ca. 30 Ma ago this part of the belt was still heating up, as allanite grew prograde near 440 °C. These results once more prove isotopic inheritance, and therefore underestimation of mica K-Ar TC, in Jäger’s [1] samples. To avoid isotopic inheritance problems we selected only Mesozoic metasediments from the northern Central Alps. We screened all samples by PTAX: many had undergone a variety of retrogression reactions and calculations show petrological disequilibrium; we favored those in near-ideal petrological equilibrium. 39Ar-40Ar ages for mica separates from equilibrium samples yield ages between 18.93±0.83 and 15.79±0.11 Ma for

  4. Variscan Collisional Magmatism and Deformation In The Viseu Area (northern Central Portugal) - Constraints From U-pb Geochronology of Granitoids

    NASA Astrophysics Data System (ADS)

    Azevedo, M. R.; Aguado, B. V.; Scaltegger, U.; Nolan, J.; Martins, M. R.; Medina, J.

    The Viseu area is located in the innermost zone of the Iberian Variscan Fold Belt (the Central Iberian Zone). It consists of abundant post-thickening, collision related grani- toids intruded into upper and middle crustal levels. The ascent of granite magmas took place after an extensional tectonic event (D2) and is coeval with D3 dextral and sinis- tral crustal-scale transcurrent shear zones. In the northern part of the area, the presence of a well preserved Upper Carboniferous tectonic basin filled with deformed conti- nental clastic sediments, bounded by contemporaneously exhumed deep crustal rocks and intruded by late-tectonic granites documents an episode of extension involving basin subsidence, uplift and erosion of the basement and granite magmatism in a post- thickening, but syn-convergent scenario. Convergence is manifested by strike-slip tec- tonics and basin inversion. According to structural criteria, the Variscan granitoids can be subdivided into two major groups: (1) syn-D3 granitoids including two dif- ferent petrological associations, highly peraluminous leucogranite and granodiorite- monzogranite intrusions and (2) late-D3 granitoids comprising slightly metaluminous to peraluminous granodiorites and monzogranites. Four plutons representing the syn- D3 leucogranites (Junqueira) and monzogranites (Maceira and Casal Vasco) and the late-D3 biotite granites (Cota) yielded U-Pb zircon + monazite or monazite ages of 310 Ma, 311 Ma, 311 Ma and 306 Ma, respectively. This points to a synchronous emplacement of the different syn-D3 plutons shortly followed by the intrusion of the late-D3 granites and suggests that the Upper Carboniferous plutonism occurred within a short time span of ca. 5 myr. Stratigraphic markers show that the oldest continental sediments in the Carboniferous basin are Westphalian whilst field relationships in- dicate that the deformation occurred prior to the intrusion of the late-D3 granitoids. Precise U-Pb geochronology proves that basin

  5. Spectrochemical determination of thorium in monazite by the powder-d.c. arc technique

    USGS Publications Warehouse

    Dutra, C.V.; Murata, K.J.

    1954-01-01

    Thorium in monazite is determined by a d.c. carbon-arc technique using zirconium as the internal standard. The analytical curve for Th II 2870.413 A??/Zr II 2844-579 A?? is established by means of synthetic standards containing graduated amounts of thoria and 0.500 per cent zirconia in pegmatite base (60 parts quartz, 40 parts microchne, and 1 part ferric oxide). Monazite samples are diluted 14-fold with pegmatite base that contains 0.538 per cent ZrO2, so that the zirconia content of the resulting mixture is also 0.500 per cent. In addition, both the standards and the diluted monazites are mixed with one-half their weight of powdered graphite. Approximately 25 mg of the prepared samples are arced to completion at 15.5 to 17.5 amperes. With the 14-fold dilution employed, the accurate range of the method is 3 to 20 per cent thoria in the original monazite. The coefficient of variation for a single determination is 4 per cent at the 7 per cent thoria level. Tests with synthetic unknowns and chemically analyzed monazites show a maximum error of ??10 per cent of the thoria content. If niobium is substituted for zirconium as the internal standard, there is a loss of precision. Platinum as the internal standard gives results of good precision but introduces a marked sensitivity to matrix effects. ?? 1954.

  6. Structural investigations of (La,Pu)PO4 monazite solid solutions: XRD and XAFS study

    NASA Astrophysics Data System (ADS)

    Arinicheva, Yulia; Popa, Karin; Scheinost, Andreas C.; Rossberg, André; Dieste-Blanco, Oliver; Raison, Philippe; Cambriani, Andrea; Somers, Joseph; Bosbach, Dirk; Neumeier, Stefan

    2017-09-01

    A solid state method was used to synthesize La1-xPuxPO4 (x = 0.01, 0.05, 0.10, 0.15, (0.5)) solid solutions with monazite structure. XRD measurements of the compounds with x = 0.50 revealed the formation of two phases: (La,Pu)PO4-monazite and a cubic phase (PuO2). Pure-phase La1-xPuxPO4-monazite solid solutions were obtained for materials with x = 0.00-0.15 and confirmed by a linear dependence of the lattice parameters on composition according to Vegard's law. X-ray absorption spectroscopy (XAS) analysis at the Pu-LIII and La-LIII edges confirmed the +III valence state of plutonium in the monazite solid solutions. The local environment of Pu is PuPO4-like along the solid solution series, except for the longest fitted cation-cation distance, which may be an indication of cluster formation consisting of a few Pu-atoms in the La-Pu-monazite lattice.

  7. Age trends in garnet-hosted monazite inclusions from upper amphibolite facies schist in the northern Grouse Creek Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Hoisch, Thomas D.; Wells, Michael L.; Grove, Marty

    2008-11-01

    We performed in situ Th-Pb dating of monazite in upper amphibolite facies pelitic schist from the Grouse Creek Mountains in northwest Utah. Sixty-six ages from inclusions in four garnet grains range from 37 to 72 Ma and decrease with radial distance from garnet cores. The age range of 30 matrix monazite grains overlaps and extends to younger ages than inclusions (25-58 Ma). The monazite grains are not intersected by cracks in the garnets, through which dissolution, reprecipitation or Pb loss might occur, and are generally too small (<20 μm) to allow for more than one age determination on any one grain. Processes that might explain inclusion ages that decrease with radial distance from garnet cores include: (1) Pb diffusion in monazite, (2) dissolution and reprecipitation of monazite, and (3) co-crystallization of monazite and garnet. After consideration of these possibilities, it is concluded that the co-crystallization of monazite and garnet is the most plausible, with monazite neoblasts deriving REE s from the breakdown of muscovite. Garnet ages derived by regression of the inclusion ages and assuming a constant rate of volume increase during garnet growth yield model ages with a maximum difference between core and rim of 22 m.y.

  8. The data of geochemistry

    USGS Publications Warehouse

    Clarke, Frank Wigglesworth

    1924-01-01

    Upon the subject of geochemistry a vast literature exists, but it is widely scattered and portions of it are difficult of access. The general treatises, like the classical works of Bischof and of Koth, are not recent, and great masses of modern data are as yet uncorrelated. The American material alone is singularly rich, but most of it has been accumulated since Roth's treatise was published. The science of chemistry, moreover, has undergone great changes during the last 25 years, and many subjects now appear under new and generally unfamiliar aspects. The methods and principles of physical chemistry are being more and more applied to the solution of geochemical problems,1 as is shown by the well-known researches of Van't Hoff upon the Stassfurt salts and the magmatic studies of Vogt, Doelter, and others. The great work in progress at the geophysical laboratory of the Carnegie Institution is another illustration of the change now taking place in geochemical investigation. To bring some of the data together, to formulate a few of the problems and to present certain general conclusions in their modern form are the purposes of this memoir. It is not an exhaustive monograph upon geochemistry, but rather a critical summary of what is now known, and a guide to the more important literature of the subject. If it does no more than to make existing data available to the reader, its preparation will be justified.

  9. Linking microstructures, petrology and in situ U-(Th)-Pb geochronology to constrain P-T-t-D evolution of the Greather Himalyan Sequences in Western Nepal (Central Himalaya)

    NASA Astrophysics Data System (ADS)

    Iaccarino, Salvatore; Montomoli, Chiara; Carosi, Rodolfo; Langone, Antonio

    2013-04-01

    Last advances in forward modelling of metamorphic rocks and into the understanding of accessories minerals behaviour, suitable for geochronology (e.g. zircon and monazite), during metamorphism, bring new insights for understanding the evolution of metamorphic tectonites during orogenic cycles (Williams and Jercinovic, 2012 and reference therein). One of the best exposure of high- to medium grade- metamorphic rocks, is represented by the Greater Himalayan Sequence (GHS) in the Himalayan Belt, one of the most classic example of collisional orogen. Recent field work in Mugu Karnali valley, Western Nepal (Central Himalaya), identified a compressional top to the South ductile shear zone within the core of the GHS, named Magri Shear Zone (MSZ), developed in a high temperature regime as testified by quartz microstructures and syn-kinematic growth of sillimanite. In order to infer the tectono-metamorphic meaning of MSZ, a microstructural study coupled with pseudosection modelling and in situ U-(Th)-Pb monazite geochronology was performed on selected samples from different structural positions. Footwall sample constituted by (Grt + St ± Ky) micaschist shows a prograde garnet growth (cores to inner rims zoning), from ~500°C, ~0.60GPa (close to garnet-in curve) to ~580°C, ~1.2 GPa temporal constrained between 21-18 Ma, by medium Y cores to very low Y mantles monazite micro-chemical/ages domain . In this sample garnet was still growing during decompression and heating at ~640°C, ~0.75 GPa (rims), and later starts to be consumed, in conjunction with staurolite growth at 15-13 Ma, as revealed by high Y rims monazite micro-chemical/ages domain. Hanging-wall mylonitic samples have a porphyroclastic texture, with garnet preserve little memory of prograde path. Garnet near rim isoplets and matrix minerals intersect at ~700°C and ~0.70 GPa. A previous higher P stage, at ~1.10 GPa ~600°C, is testified by cores of larger white mica porhyroclasts. Prograde zoned allanite (Janots

  10. Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts

    NASA Astrophysics Data System (ADS)

    Laurent, Antonin T.; Seydoux-Guillaume, Anne-Magali; Duchene, Stéphanie; Bingen, Bernard; Bosse, Valérie; Datas, Lucien

    2016-11-01

    Microgeochemical data and transmission electron microscope (TEM) imaging of S-rich monazite crystals demonstrate that S has been incorporated in the lattice of monazite as a clino-anhydrite component via the following exchange Ca2+ + S6+ = REE3+ + P5+, and that it is now partly exsolved in nanoclusters (5-10 nm) of CaSO4. The sample, an osumilite-bearing ultra-high-temperature granulite from Rogaland, Norway, is characterized by complexly patchy zoned monazite crystals. Three chemical domains are distinguished as (1) a sulphate-rich core (0.45-0.72 wt% SO2, Th incorporated as cheralite component), (2) secondary sulphate-bearing domains (SO2 >0.05 wt%, partly clouded with solid inclusions), and (3) late S-free, Y-rich domains (0.8-2.5 wt% Y2O3, Th accommodated as the huttonite component). These three domains yield distinct isotopic U-Pb ages of 1034 ± 6, 1005 ± 7, and 935 ± 7 Ma, respectively. Uranium-Th-Pb EPMA dating independently confirms these ages. This study illustrates that it is possible to discriminate different generations of monazite based on their S contents. From the petrological context, we propose that sulphate-rich monazite reflects high-temperature Fe-sulphide breakdown under oxidizing conditions, coeval with biotite dehydration melting. Monazite may therefore reveal the presence of S in anatectic melts from high-grade terrains at a specific point in time and date S mobilization from a reduced to an oxidized state. This property can be used to investigate the mineralization potential of a given geological event within a larger orogenic framework.

  11. In-situ Rb-Sr geochronology

    NASA Astrophysics Data System (ADS)

    Anderson, F. S.; Nowicki, K.; Whitaker, T.

    This paper reports on the first rubidium-strontium (Rb-Sr) radiometric dates using a Laser Desorption Resonance Ionization Mass Spectrometry (LDRIMS) instrument capable of being miniaturized for flight to another planet. The LDRIMS instrument produces dates in under 24 hours, requires minimal sample preparation, and avoids the interference and mass resolution issues associated with other geochronology measurements. We have begun testing the bench-top prototype on the Boulder Creek Granite (BCG), from Colorado, comprised primarily of a gneissic quartz monzonite and granodiorite; whole rock Rb-Sr TIMS measurements result in dates of 1700± 40 Ma [1]. Data reduction of the LDRIMS Rb-Sr measurements on calibrated repeat runs result in a date for the BCG of 1.727± 0.087 Ga (n=288, MSWD=1). Most geochronology applications are willing to accept an MSWD up to ~2.7; at MSWD=2, the precision improves to ± 0.062 Ga. This technology is moving from lab prototype to field deployable instrument, and provides an opportunity to directly address the science goals of Mars Sample Return (MSR) within the bounds posed by current scientific, fiscal, and political pressures on the Mars program. Additionally, LDRIMS could potentially be flown to the Moon under the Discovery or New Frontiers program. We posit that in-situ geochronology missions to Mars to triage and validate samples for Mars Sample Return (MSR) are technically feasible in the 2018-2022 time frame.

  12. Improving Consistency in Laser Ablation Geochronology

    NASA Astrophysics Data System (ADS)

    Horstwood, Matt; Gehrels, George; Bowring, James

    2010-07-01

    Workshop on Data Handling in LA-ICP-MS U-Th-Pb Geochronology; San Francisco, California, 12-13 December 2009; The use of uranium-thorium-lead (U-Th-Pb) laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) geochronology involves rapid analysis of U-and Th-rich accessory minerals. It routinely achieves 1-2% precision for U-Th-Pb dates constituting detrital mineral age spectra and for dating igneous and metamorphic events. The speed and low setup and analysis cost of LA-ICP-MS U-Th-Pb geochronology has led to a proliferation of active laboratories. Tens of thousands of analyses are produced per month, but there is little agreement on how to transform these data into accurate U-Th-Pb dates. Recent interlaboratory blind comparisons of zircon samples indicate that resolvable biases exist among laboratories and the sources of bias are not fully understood. Common protocols of data reduction and reporting are essential for scientists to be able to compare and interpret these data accurately.

  13. Sulfide Mineralogy and Geochemistry

    NASA Astrophysics Data System (ADS)

    Dilles, John

    2007-02-01

    Reviews in Mineralogy and Geochemistry Series, Volume 61 David J. Vaughan, Editor Geochemical Society and Mineralogical Society of America; ISBN 0-939950-73-1 xiii + 714 pp.; 2006; $40. Sulfide minerals as a class represent important minor rock-forming minerals, but they are generally known as the chief sources of many economic metallic ores. In the past two decades, sulfide research has been extended to include important roles in environmental geology of sulfide weathering and resultant acid mine drainage, as well as in geomicrobiology in which bacteria make use of sulfides for metabolic energy sources. In the latter respect, sulfides played an important role in early evolution of life on Earth and in geochemical cycling of elements in the Earth's crust and hydrosphere.

  14. Preservation of old (prograde metamorphic) U-Th-Pb ages in unshielded monazite from the high-pressure paragneisses of the Variscan Ulten Zone (Italy)

    NASA Astrophysics Data System (ADS)

    Langone, Antonio; Braga, Roberto; Massonne, Hans-Joachim; Tiepolo, Massimo

    2011-11-01

    Three samples of garnet-kyanite paragneiss from the Variscan Ulten Zone (Northern Italy) were studied in detail for U-Th-Pb monazite dating. Monazite in these gneisses is abundant, shows highly variable grain size and occupies different textural positions: within the matrix, as inclusion in garnet and kyanite, within apatite aggregates. Monazite shows different deformation features as a function of the textural position: enclosed (shielded) monazite is generally more fractured than matrix (unshielded) monazite. The integration of textural information with deformation features and in situ U-Th-Pb analyses by LA-ICP-MS indicates that there is no direct correlation between textural site and monazite ages. Old ages of 351-343 Ma, determined on portions of large matrix (unshielded) monazite and on rare domains of monazite shielded by garnet, have been related to a prograde stage of the Variscan metamorphic evolution of the Ulten Zone. Ages of 330-326 Ma, which are related to the thermal peak, are recorded by small matrix monazite, external domains of large matrix monazite, and by (domains of) fractured monazite enclosed in garnet and kyanite. Large, old unshielded grains formed as blasts during the prograde metamorphic history and survived the peak metamorphism during which crystallisation/re-crystallisation partially occurred.

  15. Disequilibrium Textures vs Equilibrium Modelling: Geochronology at the Crossroads

    NASA Astrophysics Data System (ADS)

    Villa, I. M.

    2007-12-01

    Observations made by electron microscopy show the processes affecting minerals at the atomic scale. The majority of reported analyses demonstrate chemical disequilibrium. A classic example are overgrowths of one mineral generation by a secondary one, which may be recognized on textural grounds. Disequilibrium recrystallization is promoted by water, which is everywhere on this planet (granites, contact aureoles, regional metamorphism, faults). It is mostly easier and energetically less costly to recrystallize a mineral at any temperature than to induce genuine volume diffusion in it. However, these observations are only relevant to geochronologists if chemical disequilibria are also accompanied by isotopic disequilibria. If a mineral mixture gives a mixed isotope record, then the interpretation of ages does not come cheap. If, on the contrary, diffusive reequilibration of the isotopic record is faster than that of chemical heterogeneities, then the petrology and microchemistry of a mineral could be ignored and its apparent age termed a "cooling age". First principle arguments and experimental data of the last decade concordantly show that the diffusivity of radiogenic isotopes is never higher than that of major elements forming the mineral structure. And indeed, end- member ages of mineral mixtures can be unravelled if the petrogenesis is understood. This was first shown by CL images of zircon grains (Gebauer et al, Schweiz Min Pet Mitt 68 (1988) 485-490). Similar progress was reported on monazite (Williams et al, Ann Rev Earth Planet Sci 35 (2007) 137-175), amphibole (Belluso et al, Eur J Mineral 12 (2000) 45-62), K-feldspar (Nyfeler et al, Schweiz Min Pet Mitt 78 (1998) 11-21), biotite (Villa et al, Water Rock Interaction 10 (2001) 1589-92). The mechanism for resetting the isotope record in nature thus seems more dependent on the availability of water to enhance disequilibrium recrystallization than on reaching a preset temperature. Intercomparison of laboratory

  16. Geochronologic, Thermochronologic, and Thermobarometric Constraints on the Tectonic Evolution of the Northeastern Pamir

    NASA Astrophysics Data System (ADS)

    Robinson, A. C.; Yin, A.; Manning, C. E.; Harrison, T. M.; Hei, W.; Xiong, M. Y.; Feng, W. X.

    2001-12-01

    exhumation of the Kongur Shan (and Muztaghata) massifs along the Kongur normal fault. High grade metamorphism in the Kongur Shan massif due to tectonic burial is constrained to be ~ 9 Ma from in-situ SIMS monazite geochronology. A 10 Ma biotite 40Ar/39Ar age from two km west of the ductile shear zone is interpreted to roughly indicate the timing of initiation of normal faulting.

  17. Monazite trace-element and isotopic signatures of high-pressure metamorphism: examples from the Western Gneiss region, Norway

    NASA Astrophysics Data System (ADS)

    Holder, R. M.; Hacker, B. R.; Kylander-Clark, A. R.; Cottle, J. M.

    2014-12-01

    Monazite U-Pb and trace-element data were gathered using LASS (laser-ablation split-stream ICP-MS) from the Western Gneiss region, Norway, to investigate how trace-element composition can be used to differentiate (ultra)high-pressure monazite from low-pressure monazite. Monazite from six samples contains up to 3 % common Pb, despite high U and Th concentrations. These high common-Pb monazites are characterized by high Sr, weak Eu anomalies, and low Y+HREE. The high common-Pb and Sr abundances and the weak Eu/Eu* are interpreted to reflect the absence of feldspar at (U)HP, and the low Y+HREE content is attributed to fractionation of those elements into garnet. Sr and common Pb in monazite provide a tool for constraining the timing and duration of (U)HP metamorphism. More generally, Sr in monazite is a potential indicator of feldspar instability and may be applicable in other geologic settings, such as igneous systems in which the abundance of feldspar changes due to melting and crystallization. Sr is expected to be more reliable than Eu and Eu/Eu* as a tracer of feldspar stability, because Sr partitioning is less strongly influenced by oxidation state.

  18. Surface chemistry and flotation behavior of monazite, apatite, ilmenite, quartz, rutile, and zircon using octanohydroxamic acid collector

    NASA Astrophysics Data System (ADS)

    Nduwa Mushidi, Josue

    Global increase in rare earth demand and consumption has led to further understanding their beneficiation and recovery. Monazite is the second most important rare earth mineral that can be further exploited. In this study, the surface chemistry of monazite in terms of zeta potential, adsorption density, and flotation response by microflotation using octanohydroxamic acid is determined. Apatite, ilmenite, quartz, rutile, and zircon are minerals that frequently occur with monazite among other minerals. Hence they were chosen as gangue minerals in this study. The Iso Electric Point (IEP) of monazite, apatite, ilmenite, quartz, rutile, and zircon are 5.3, 8.7, 3.8, 3.4, 6.3, and 5.1 respectively. The thermodynamic parameters of adsorption were also evaluated. Ilmenite, rutile and zircon have high driving forces for adsorption with DeltaGads. = 20.48, 22.10, and 22.4 kJ/mol respectively. The free energy of adsorption is 14.87 kJ/mol for monazite. Adsorption density testing shows that octanohydroxamic acid adsorbs on negatively charged surfaces of monazite and its gangue minerals which indicates chemisorption. This observation was further confirmed by microflotation experiments. Increasing the temperature to 80°C raises the adsorption and flotability of monazite and gangue minerals. This does not allow for effective separation. Sodium silicate appeared to be most effective to depress associated gangue minerals. Finally, the fundamentals learned were applied to the flotation of monazite ore from Mt. Weld. However, these results showed no selectivity due to the presence of goethite as fine particles and due to a low degree of liberation of monazite in the ore sample.

  19. Metamorphic and structural evolution of the Straits Schist, W. Connecticut: U-PB monazite constraints

    SciTech Connect

    Lanzirotti, A.; Hanson, G.N. . Dept. of Earth and Space Sciences)

    1993-03-01

    U-Pb dating of monazites from two outcrops of The Straits Schist south of Waterbury Dome precisely constrains the timing of Acadian metamorphism and deformation. Synkinematic pegmatites which parallel schistosity are common in The Straits Schist south of Waterbury. A pegmatite at the type-section of The Straits Schist east of Straitsville yields U-Pb monazite ages of 385 [+-] 2.5 Ma. At both outcrops the axial planar schistosity is defined by muscovites and biotites which wrap around axes of folds but are not themselves deformed, suggesting they represent a recrystallized fabric. Monazites in the schists at both outcrops display petrographic evidence of grain boundary pinning against mica surfaces and growth across muscovite-biotite grain boundaries, consistent with growth during or after biotite and muscovite crystallization. Monazites from the schist at Straitsville and Naugatuck yield U-Pb ages of 383 [+-] 3 Ma. The U-Pb data, coupled with field and petrographic observations, suggest that pegmatite intrusion, deformation, and metamorphic recrystallization occurred within 3 Ma of about 383 Ma.

  20. The Influence of Interfacial Roughness on Fiber Sliding in Oxide Composites with La-Monazite Interphases

    NASA Technical Reports Server (NTRS)

    Davis, J. B.; Hay, R. S.; Marshall, D. B.; Morgan, P. E. D.; Sayir, A.; Gray, Hugh R. (Technical Monitor); Farmer, Serene C. (Technical Monitor)

    2002-01-01

    Room temperature debonding and sliding of La-Monazite coated fibers is assessed using a composite with a polycrystalline alumina matrix and fibers of several different single crystal (mullite, sapphire) and directionally solidified eutectic (Al2O3/Y3Al5O12 and Al2O3/Y-ZrO2) compositions. These fibers provide a range of residual stresses and interfacial roughnesses. Sliding occurred over a debond crack at the fiber-coating interface when the sliding displacement and surface roughness were relatively small. At large sliding displacements with relatively rough interfaces, the monazite coatings were deformed extensively by fracture, dislocations and occasional twinning, whereas the fibers were undamaged. Dense, fine-grained (10 nm) microstructures suggestive of dynamic recrystallization were also observed in the coatings. Frictional heating during sliding is assessed. The possibility of low temperature recrystallization is discussed in the light of the known resistance of monazite to radiation damage. The ability of La-Monazite to undergo plastic deformation relatively easily at low temperatures may be enabling for its use as a composite interface.

  1. Characterization of Compressive Creep Behavior of Oxide/Oxide Composite with Monazite Coating at Elevated Temperature

    DTIC Science & Technology

    2006-03-01

    Materials, and Structures: A. Ed. Mrityunjay Singh and Todd Jensen. Westerville, OH: The American Ceramic Society, 2001. 5. Antti, M-L, E. Lara-Curzio... Emmanuel E. Boakye, Pavel Mogilevsky, and Michael K. Cinibulk. “Effectiveness of Monazite Coatings in Oxide/Oxide Composites after Long-Term Exposure

  2. Investigation of Natural Radioactivity in a Monazite Processing Plant in Japan.

    PubMed

    Iwaoka, Kazuki; Yajima, Kazuaki; Suzuki, Toshikazu; Yonehara, Hidenori; Hosoda, Masahiro; Tokonami, Shinji; Kanda, Reiko

    2017-09-01

    Monazite is a naturally occurring radioactive material that is processed for use in a variety of domestic applications. At present, there is little information available on potential radiation doses experienced by people working with monazite. The ambient dose rate and activity concentration of natural radionuclides in raw materials, products, and dust in work sites as well as the Rn and Rn concentrations in work sites were measured in a monazite processing plant in Japan. Dose estimations for plant workers were also conducted. The activity concentration of the U series in raw materials and products for the monazite processing plant was found to be higher than the relevant values described in the International Atomic Energy Agency Safety Standards. The ambient dose rates in the raw material yard were higher than those in other work sites. Moreover, the activity concentrations of dust in the milling site were higher than those in other work sites. The Rn concentrations in all work sites were almost the same as those in regular indoor environments in Japan. The Rn concentrations in all work sites were much higher than those in regular indoor environments in Japan. The maximum value of the effective dose for workers was 0.62 mSv y, which is lower than the reference level range (1-20 mSv y) for abnormally high levels of natural background radiation published in the International Commission of Radiological Protection Publication 103.

  3. Doming in compressional orogenic settings: New geochronological constraints from the NW Himalaya

    NASA Astrophysics Data System (ADS)

    Robyr, Martin; Hacker, Bradley R.; Mattinson, James M.

    2006-04-01

    In the central and southeastern parts of the Himalayas, the High Himalayan Crystalline (HHC) high-grade rocks are mainly exhumed in the frontal part of the range, as a consequence of a tectonic exhumation controlled by combined thrusting along the Main Central Thrust (MCT) and extension along the South Tibetan Detachment System (STDS). In the NW Himalaya, however, the hanging wall of the MCT in the frontal part of the range consists mainly of low- to medium-grade metasediments (Chamba zone), whereas most of the amphibolite facies to migmatitic gneisses of the HHC of Zanskar are exposed in a more internal part of the orogen as a large-scale dome structure referred to as the Gianbul dome. This Gianbul dome is cored by migmatitic paragneisses formed at peak conditions of 800°C and 8 kbar. This migmatitic core is symmetrically surrounded by rocks of the sillimanite, kyanite ± staurolite, garnet, biotite, and chlorite mineral zones. The structural data from the Miyar-Gianbul Valley section reveal that the Gianbul dome is bounded by two major converging thrust zones, the Miyar Thrust Zone and the Zanskar Thrust Zone, which were reactivated as ductile zones of extension referred to as the Khanjar Shear Zone (KSZ) and the Zanskar Shear Zone (ZSZ), respectively. Geochronological dating of monazites from various migmatites and leucogranite in the core of the Gianbul dome indicates ages between 26.6 and 19.8 Ma. These results likely reflect a high-temperature stage of the exhumation history of the HHC of Zanskar and consequently constrain the onset of extension along both the ZSZ and the KSZ to start shortly before 26.6 Ma. Several recent models interpret that ductile extrusion of the high-grade, low-viscosity migmatites of HHC reflects combined extension along the ZSZ and thrusting along the MCT. Hence our new data constrain the onset of the thrusting along the MCT to start shortly before 26.6 Ma.

  4. CHIME monazite dating using FE-EPMA equipped with R=100 mm spectrometers

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Shimizu, M.; Suzuki, K.; Sueoka, S.; Niwa, M.

    2015-12-01

    The age spectrum of detrital monazite grains is used to unravel the tectono-thermal history of the pre-Neogene terranes, which is required for geological disposal of high-level radioactive waste on tectonically active Japanese Islands. The CHIME (Chemical Th-U-total Pb isochron method, Suzuki and Adachi, 1991) is best suited for dating of detrital monazite whose grains are not chronologically uniform. In the previous studies (eg, Suzuki, 2011), EPMA equipped with conventional R=140 mm spectrometers was used for measurement of U, Th and Pb. However the spectrometers have low count rate of measurement of Pb. The JEOL JXA-8530F FE-EPMA equipped with R=100 mm spectrometers has been applied for the CHIME monazite dating. The intrinsic responses of each of the R=100 mm spectrometers for PbMβ are around ten times higher than that of the R=140 mm spectrometer. The R=100 mm spectrometers permits obtaining high count rate, which enables us to shorten measurement time than before. As these spectrometers have peculiar spectral interference, the method reported by Amli and Griffin (1978) is applied for correction of the interference. In order to verify the dating using the FE-EPMA and the interference correction method, two distinct age groups of monazite were measured. The ages were 425±25 Ma for monazite from Cooma granite in southeastern Australia, which had dated by SHRIMP as 432.8 ± 3.5 Ma (Williams, 2001) and 67 ± 7 Ma for monazite of the Kojaku granite in southwestern Japan, which is corresponding to the LA-ICP-MS U-Pb zircon ages of 68.5 ± 0.7 Ma. These results indicate that the FE-EPMA and the interference correction method are useful for the CHIME monazite dating and for revealing the tectono-thermal history of the terranes. This study was carried out under a contract with Agency of Natural Resources and Energy(ANRE), part of Ministry of Economy, Trade and Industry (METI) of Japan as part of its R&D supporting program for developing geological disposal technology.

  5. Geochronology, geochemistry and tectonic implications of Late Triassic granites in the Mongolian Altai Mountains

    NASA Astrophysics Data System (ADS)

    Dash, Batulzii; Boldbaatar, Enkhjargal; Zorigtkhuu, Oyun-Erdene; Yin, An

    2016-03-01

    Although the closure of the Paleo-Asian Ocean in western China and western Mongolia occurred in the Late Carboniferous and Early Permian, widespread intra-continental magmatism continued to occur across this region from the Late Permian to the end of the Triassic. In this study we document field relationships and geochemical characterization of a Late Triassic felsic intrusive complex in the western Mongolian Altai. The plutonic complex occurs as sills, dikes, and small stocks and its composition varies from biotite granite, two-mica granite, to leucogranite. Structurally, the plutonic complex occurs in the hanging wall of a segment of the regionally extensively (>1500 km long) Irtysh-Ertix-Bulgan thrust zone. As the plutonic bodies both cut and are deformed by the shear fabrics in this regional thrust shear zone, the duration of felsic magmatism and regional thrusting was temporally overlapping. This suggests that magmatism was coeval with crustal thickening. Major- and trace-element data and isotopic analysis of granitoid samples from our study area indicate that the felsic intrusions were derived from partial melting of meta-sediments, with the biotite and two-mica granite generated through vapor-absent melting and the leucogranite from flux melting. Although the Mongolian Altai intrusions were clearly originated from anatexis, coeval granite in the Chinese Altai directly west of our study area in the hanging wall of the Irtysh-Ertix-Bulgan thrust was derived in part from mantle melting. To reconcile these observations, we propose a Himalayan-style intracontinental-subduction model that predicts two geologic settings for the occurrence of felsic magmatism: (1) along the intracontinental thrust zone where granite was entirely generated by anatexis and (2) in the hanging wall of the intracontinental thrust where convective removal and/or continental subduction induced mantle melting.

  6. Application of geochronology/geochemistry of zircon in understanding the construction of the Peninsular Range Batholith

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Johnston, S. M.

    2015-12-01

    Trace-element signatures of zircon are becoming increasingly used as a tool to infer the petrologic history of the rock from which that zircon crystallized. In this study, we sampled 11 igneous rocks from west to east across the northern Peninsular Ranges Batholith (PRB) to test how well REE patterns in zircon reflect those of the whole rock in arc magmas (granodiorite-tonalite). Previous studies of the PRB show two transitions from west to east, with respect to their REE patterns; transition 1) a decrease in HREE, from the west to the central PRB, and 2) an increase in LREE from the central to the eastern PRB. Whole rock samples in this study, analyzed by XRF and ICPMS, reproduce this pattern and thus provide a variety of REE signatures with which to test whether zircon can be used as a proxy for whole-rock data. Zircon from the 11 samples was analyzed by LASS (Laser Ablation Split Stream) ICP-MS, to measure both the age of the zircons and their trace-element compositions. In general, as expected, ages young from west (ca. 104 Ma) to east (ca. 90 Ma). Patterns of HREE in zircon correlate well with those of the whole rock, whereas the LREE correlation is weak. The distribution coefficient for HREE between zircon and whole rock, however, decreases with increasing HREE. Possibilities for this negative relation include: 1) minor changes in whole-rock chemistry, as samples become slightly more felsic from west to east, 2) changes in crystallization temperature from west to east, and 3) sampling bias of HREE-poor zircon rims with HREE fractionated in zircon cores. Other trace element data measured in zircon and whole rock include P, Ti, Y, Nb, Hf, Ta, Th, and U and provide interesting results. Nb and Ta show a moderate correlation between zircon and whole rock, but the Nb/Ta ratio does not. Also, though U correlates well between whole rock and zircon and Th/U correlates well between zircon and age, the Th/U ratio of the zircon is negatively correlated with the whole rock; thus, in this case, Th/U changes in zircon are not a good indication of Th/U trends overall. Finally, Ti in zircon correlates strongly with location and whole-rock HREE concentration, indicating that either temperatures and/or Ti activity were higher in the west, early in the construction of the batholith.

  7. A Tale of Two Magma Series: Geochronology and Geochemistry of Volcanism on Grenada, Lesser Antilles

    NASA Astrophysics Data System (ADS)

    White, W. M.; Devine *Deceased, J. D.; Copeland, P.

    2015-12-01

    Volcanic rocks from Grenada have long been recognized to belong to two distinct magma series: the olivine microphyric M-series and the ankaramitic, calcium-rich C-series. Mafic members of both series are readily distinguished on the basis of both major and trace element compositions and radiogenic isotope ratios, with the M-series having more radiogenic Sr and Pb and less radiogenic Nd than the C-series. The two series evolve along distinct paths to compositionally and isotopically similar silica-rich hornblende andesites and dacites. We report 29 new 40Ar/39Ar dates ranging from 0.06 to 6.06 Ma, which are notably younger than previous K-Ar ages ranging up to 21 Ma, perhaps reflecting non-atmospheric inherited Ar. The two series have erupted contemporaneously and ages of both series tend to cluster in two periods: 0 to 1.7 Ma and 4.8 to 6 Ma. The oldest lavas are located in the northeastern and southwestern ends of the island. There is little or no systematic variation in chemistry with age. A dike intruding Tufton Hall Formation (THF) sediments in the south of the island is much older at 37.8 Ma; C-series isotope ratios correlate with MgO, which has previously been interpreted as a consequence of fractional crystallization and assimilation (AFC) of marine sediments. Isotope ratios of M-series lavas, in contrast, show no systematic variation with MgO. We agree that the C-series magmas have experienced AFC, but argue that the assimilant is simply the M-series products that makes up two-thirds of the mass of the island. A variety of evidence supports this interpretation. First, K2O/Na2O ratios decrease with decreasing MgO in the C-series. Second, the THF is volcanogenic likely derived from ancestral volcanoes and also are not a suitable isotopic end-member. Third, O isotope ratios in clinopyroxenes correlate with radiogenic isotope ratios, but not with MgO. Finally, the most differentiated C-series lavas are indistinguishable, isotopically and otherwise, from M-series compositions. Such auto-assimilation may be common in volcanic systems, and may affect the M-series as well, but only becomes apparent in cases such as this where magmas are compositionally distinct from the volcanic edifice they rise through.

  8. Petrology, geochemistry, and geochronology of trondhjemites from the Qori Complex, Neyriz, Iran

    NASA Astrophysics Data System (ADS)

    Fazlnia, Abdolnaser; Schenk, Volker; van der Straaten, François; Mirmohammadi, Mirsaleh

    2009-10-01

    Metamorphism, magmatism, and thrusting were the result of subduction of Neotethys beneath the continental-margin arc of the Sanandaj-Sirjan shear zone (SSSZ) during the Mesozoic. The Qori metamorphic complex is a part of the southern SSSZ. Leuco-granitic (trondhjemitic) rocks crop out in the Qori metamorphic complex and are rare rock types in the SSSZ. These rocks have intruded into the marbles and garnet amphibolites, the highest grade metamorphic rocks of the Qori metamorphic complex, and in some outcrops, a transitional boundary between the amphibolites and the granitoids can be distinguished. The granitoids are granular in texture and consist of plagioclase (albite-oligoclase), quartz ± K-feldspar ±muscovite and subordinate garnet, spinel, rutile, and apatite which primarily occur as inclusions in the main phases. The peraluminous trondhjemitic rocks are enriched in Na 2O and SiO 2 and depleted in FeO, MgO, and CaO. Similarities with some trondhjemitic liquids produced through partial melting of amphibolites or hydrous basalts (i.e., low-Al 2O 3 content, less than 15 wt.%; low Ba, Sr, TiO 2, and Eu content, all with negative anomalies; moderately enriched LREEs and Y, and flat HREE patterns) suggest that the evolution of the parental magma was controlled by residual plagioclases during partial melting of a garnet amphibolite source. Concentrations of ferromagnesian elements, Mg, Fe, and Mn, are low, suggesting that the granitic rocks were not produced by high degrees of partial melting. Furthermore, they display low amounts of ferromagnesian components from the protolith (garnet amphibolite). This is supported by consideration of compatible elements, especially Cr, Ni and Ti (and the less robust HREE), which respectively show very high and high bulk partition coefficients for relatively small degrees (< 20%) of partial melting of the source. The partial melting of the garnet amphibolites occurred at pressures and temperatures between 7.5 and 9.5 kbar (at a depth of 25 to 32 km) and 680 and 720 °C, respectively, based on the Grt-Hbl and Hbl-Pl thermometers and a Grt-Hbl-Pl-Qtz barometer. Precise U-Th zircon SHRIMP ages of the trondhjemite show magmatic ages of 147.4 ± 0.76 Ma, Volgian, Late Jurassic, and suggest that Neotethys began to subduct beneath the continental-margin arc of the SSSZ. As a result of this process, an arc-related metamorphism occurred, leading to the development of the garnet amphibolites in the Qori metamorphic complex.

  9. Geochronology, Geochemistry and Petrogenesis of the Intermediate and Acid Dykes in Linzhou Basin, Southern Tibet

    NASA Astrophysics Data System (ADS)

    Dong, M.; Zhao, Z.; Zhu, D. C.; Dong, G.; Mo, X.

    2015-12-01

    The Linzizong volcanic succession (also called Linzizong Group, ~65-45 Ma), which occurred in southern Gangdese magmatic belt in response to the collision processes between India and Eurasia continents, have been well studied in the Linzhou Basin, to the northeast of Lhasa. Our research obtains some new results of zircon U-Pb, Hf isotopic data, and whole rock major and trace elements geochemical data of the intermediate (diorite porphyry) to acid (granite porphyry) dykes intruded into the Linzizong volcanics in Linzhou Basin. These dykes intruded into Dianzhong and Nianbo formations of Linzizong Group. All the samples are sub-alkaline, varying from calc-alkaline to high-K calc-alkaline series. They are peraluminous (A/CNK>1.1). The diorite porphyry, intruded in 62.4Ma with positive zircon Hf isotopes (ɛHf(t)=+5.1~+7.6), have similar composition to the andesitic rocks from Dianzhong Formation. The granite porphyries, intruded between 55.1Ma and 61.1Ma, with ɛHf(t) ranging from -1.1 to +10.4, have comparable composition with the rhyolitic Nianbo Formation. A series of evidences, including: (1) the samples have positive, mantle-like Hf feature (average ɛHf(t)=+5.9 of 86 samples); (2) wide-range variation of ɛHf(t) in samples (3.5~8.8 ɛ units in the four granite porphyries), which implying an inhomogeneous source regions; (3) magma-mixing trend in the plots of FeOT against MgO, suggesting that the magma-mixing processes that have taken place in the southern Gangdese belt, can also be applied to explain the origin of these dykes in Linzhou Basin. The dykes intruded coeval or shortly later than their equivalent volcanic rocks (Dianzhong and Nianbo formations), are in the transitional settings from subduction of Tethyan oceanic crust to the collisional between India and Eurasia continents.

  10. Progress Towards an Open Data Ecosystem for Australian Geochemistry and Geochronology Data

    NASA Astrophysics Data System (ADS)

    McInnes, B.; Rawling, T.; Brown, W.; Liffers, M.; Wyborn, L. A.; Brown, A.; Cox, S. J. D.

    2016-12-01

    Technological improvements in laboratory automation and microanalytical methods are producing an unprecedented volume of high-value geochemical data for use by geoscientists in understanding geological and planetary processes. In contrast, the research infrastructure necessary to systematically manage, deliver and archive analytical data has not progressed much beyond the minimum effort necessary to produce a peer-reviewed publication. Anecdotal evidence indicates that the majority of publically funded data is underreported, and what is published is relatively undiscoverable to experienced researchers let alone the general public. Government-funded "open data" initiatives have a role to play in the development of networks of data management and delivery ecosystems and practices allowing access to publically funded data. This paper reports on progress in Australia towards creation of an open data ecosystem involving multiple academic and government research institutions cooperating to create an open data architecture linking researchers, physical samples, sample metadata, laboratory metadata, analytical data and consumers.

  11. Geology, geochemistry, and geochronology of volcanic rocks between Cuauhtemoc and La Junta, central Chihahua, Mexico

    NASA Astrophysics Data System (ADS)

    Duex, T. W.

    The 1200 sq Km area straddles the boundary between the Sierra Madre Occidental and Basin and Range physiographic provinces and contains three north-northwest trending, block-faulted mountain ranges. The stratigraphy includes a 200 m thick sequence of ash-flow tuffs with subordinate mafic flows that either overlie or are interlayered with the ash-flow tuffs. This sequence overlies an approximately equal thickness of rhyolitic to dacitic flows and tuffs. At the base of the section occurs a distinctly different and thinner (about 50 m thick) sequence of flows, tuffs, and volcaniclastic sediments that is more nearly intermediate in average composition. In the northwest part of the area a Pb-Zn mine is found within a ridge of Lower Cretaceous limestone and shale that was intruded by a granitic stock. With the exception of thick ash-flow sheets, most units are localized and lenticular, precluding correlation of volcanic units between ranges. No large calderas were found although volcanic vents are suspected in several areas.

  12. Geology, geochemistry, and geochronology of the East Bay gold trend, Red Lake, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Gallagher, Shaun; Camacho, Alfredo; Fayek, Mostafa; Epp, Mark; Spell, Terry L.; Armstrong, Richard

    2017-04-01

    The Red Lake greenstone belt is situated in northwestern Ontario within the Uchi Subprovince, Superior Province. Most gold deposits therein are associated with major deformation corridors; the east-west oriented "Mine trend" hosts most of the large deposits and the northeast-southwest "East Bay trend" hosts several small deposits and showings. Gold along the East Bay trend typically occurs in quartz replacement veins that were emplaced into pre-existing quartz-carbonate veins. Gold can occur as free gold or along vein margins associated with pyrite and pyrrhotite. Most primary fluid inclusions, preserved in relatively undeformed portions of veins, are carbonaceous with lesser quantities of aqueous inclusions. The average homogenization temperature of aqueous fluids is 250 °C; however, the abundance of three-phase inclusions, variation in liquid-vapor ratios, and a wide range in homogenization temperatures indicate that immiscibility, effervescence, and fluid mixing are mechanisms associated with gold deposition. The age ( 2550 Ma) of alteration minerals in the Abino area is considerably younger (by 100 Myr) than alteration minerals in other deposits in the Red Lake district, indicating that the mineralizing fluid history was more protracted than previously thought. Along the East Bay trend, barren veins generally have lower δ18OVSMOW values (0.0 to 8.5‰) relative to auriferous veins (9.6 and 13.1‰). Consequently, the oxygen isotopic composition of quartz could be used as a vector for gold mineralization. The genetic model for the East Bay trend involves several stages of vein formation. Auriferous veins formed near the upper boundary of the mesozonal regime (depth of 5-6 km).

  13. Geochronology, geochemistry, and tectonic environment of porphyry mineralization in the central Alaska Peninsula

    USGS Publications Warehouse

    Wilson, Frederic H.; Cox, Dennis P.

    1983-01-01

    Porphyry type sulfide systems on the central Alaska Peninsula occupy a transition zone between the Aleutian island magmatic arc and the continental magmatic arc of southern Alaska. Mineralization occurs associated with early and late Tertiary magmatic centers emplaced through a thick section of Mesozoic continental margin clastic sedimentary rocks. The systems are of the molybdenum-rich as opposed to gold-rich type and have anomalous tungsten, bismuth, and tin, attributes of continental-margin deposits, yet gravity data suggest that at least part of the study area is underlain by oceanic or transitional crust. Potassium-argon age determinations indicate a variable time span of up to 2 million years between emplacement and mineralization in a sulfide system with mineralization usually followed by postmineral intrusive events. Finally, mineralization in the study area occurred at many times during the time span of igneous activity and should be an expected stage in the history of a subduction related magmatic center.

  14. The Jurassic-early Cretaceous Ilo batholith of southern coastal Peru: geology, geochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Boekhout, Flora; Sempere, Thierry; Spikings, Richard; Schaltegger, Urs

    2010-05-01

    The Ilo batholith (17°00 - 18°30 S) crops out in an area of about 20 by 100 km, along the coast of southern Peru. This batholith is emplaced into the ‘Chocolate‘ Formation of late Permian to middle Jurassic age, which consists of more than 1000 m of basaltic and andesitic lavas, with interbedded volcanic agglomerates and breccias. The Ilo Batholith is considered to be a rarely exposed fragment of the Jurassic arc in Peru. Our aim is to reconstruct the magmatic evolution of this batholith, and place it within the context of long-lasting magma genesis along the active Andean margin since the Paleozoic. Sampling for dating and geochemical analyses was carried out along several cross sections through the batholith that were exposed by post-intrusion eastward tilting of 20-30°. Sparse previous work postulates early to middle Jurassic and partially early Cretaceous emplacement, on the basis of conventional K/Ar and 40Ar/39Ar dating methods in the Ilo area. Twenty new U-Pb zircon ages (LA-ICP-MS and CA-ID-TIMS) accompanied by geochemical data suggests the Ilo batholith formed via the amalgamation of middle Jurassic and early Cretaceous, subduction-related plutons. Preliminary Hf isotope studies reveal a primitive mantle source for middle Jurassic intrusions. Additional Sr, Nd and Hf isotope analyses are planned to further resolve the source regions of different pulses of plutonic activity. We strongly suggest that batholith emplacement was at least partly coeval with the emplacement of the late Permian to middle Jurassic Chocolate Formation, which was deposited in an extensional tectonic regime. Our age results and geochemical signature fit into the scheme of episodic emplacement of huge amounts of subduction related magmatism that is observed throughout the whole Andean event, particularly during the middle Jurassic onset of the first Andean cycle (southern Peru, northern Chile and southern Argentina). Although the exact geodynamic setting remains to be precisely defined, these events can be linked to extensional episodes during the breakup of Pangea, which commenced at 230-220 Ma along the western South American margin, with a period of rifting, and culminated in the Jurassic with arc and back-arc extension.

  15. The genetics of geochemistry.

    PubMed

    Croal, Laura R; Gralnick, Jeffrey A; Malasarn, Davin; Newman, Dianne K

    2004-01-01

    Bacteria are remarkable in their metabolic diversity due to their ability to harvest energy from myriad oxidation and reduction reactions. In some cases, their metabolisms involve redox transformations of metal(loid)s, which lead to the precipitation, transformation, or dissolution of minerals. Microorganism/mineral interactions not only affect the geochemistry of modern environments, but may also have contributed to shaping the near-surface environment of the early Earth. For example, bacterial anaerobic respiration of ferric iron or the toxic metalloid arsenic is well known to affect water quality in many parts of the world today, whereas the utilization of ferrous iron as an electron donor in anoxygenic photosynthesis may help explain the origin of Banded Iron Formations, a class of ancient sedimentary deposits. Bacterial genetics holds the key to understanding how these metabolisms work. Once the genes and gene products that catalyze geochemically relevant reactions are understood, as well as the conditions that trigger their expression, we may begin to predict when and to what extent these metabolisms influence modern geochemical cycles, as well as develop a basis for deciphering their origins and how organisms that utilized them may have altered the chemical and physical features of our planet.

  16. Establishing Denudation Chronology through Weathering Geochronology

    NASA Astrophysics Data System (ADS)

    Riffel, S. B.; Vasconcelos, P. M.; Farley, K. A.; Carmo, I. O.

    2011-12-01

    Planar landforms - erosion surfaces - are used as temporal markers in denudation chronology. These surfaces are interpreted as the result of long-term weathering and denudation controlled by a specific base level within a given time-interval characterized by long-term tectonic stability. The presence of several planar landforms at distinct elevations is interpreted as evidence for distinct denudation events, separated by periods of tectonic reactivation and crustal uplift. We selected an area in the Paraná-La Plata basin, southern Brazil (25°S lat.) to investigate if the application of weathering geochronology by the 40Ar/39Ar and (U-Th)/He methods could permit differentiating different elevation landsurfaces. We dated supergene Mn oxyhydroxides by 40Ar/39Ar geochronology and coexisting supergene Fe oxyhydroxides by the (U-Th)/He method from one of the three regional landsurfaces - The First, Second, and Third Paraná plateaus - previously identified in this area. Two sites were sampled from the Second Paraná Plateau: a ferricrust at Serra das Almas (7 hand specimens of goethite at 1080 m of altitude) and deeply weathered ferricretes and saprolites at Vila Velha (11 hand specimens of cryptomelane and 14 of goethite at 910 m of altitude). The Serra das Almas sites hosts a stratified weathering profile with ferricrust, and mottle zone. The Vila Velha site results from intense weathering that led to the precipitation of well-crystallized supergene minerals precipitated within fractures in the saprolites. The geochronological results are correlatable between the two sites and the two distinct methods (40Ar/39Ar and (U-Th)/He), and they reveal three generations of weathering and mineral precipitation: Late Eocene-Oligocene, Early Miocene, and Pleistocene. The geochronological results suggested that the Second Paraná Plateau formed by regional erosion during the Oligocene, and that this landsurface has been continuously exposed to weathering and erosion since then

  17. Mid-Late Triassic metamorphic event for Changhai meta-sedimentary rocks from the SE Jiao-Liao-Ji Belt, North China Craton: Evidence from monazite U-Th-Pb and muscovite Ar-Ar dating

    NASA Astrophysics Data System (ADS)

    Liu, Fulai; Wang, Fang; Liou, J. G.; Meng, En; Liu, Jianhui; Yang, Hong; Xiao, Lingling; Cai, Jia; Shi, Jianrong

    2014-11-01

    The precise constraints on the timing of metamorphism of the Changhai metamorphic complex is of great importance considering the prolonged controversial issue of the north margin and the extension of the Sulu-Dabie HP-UHP Belt. While the monazite U-Th-Pb and muscovite 40Ar/39Ar techniques are widely accepted as two of the most powerful dating tools for revealing the thermal histories of medium-low grade metamorphic rocks and precisely constraining the timing of metamorphism. The Changhai metamorphic complex at the SE Jiao-Liao-Ji Belt, North China Craton consists of a variety of pelitic schist and Grt-Ky-bearing paragneiss, and minor quartzite and marble. Analyses of mineral inclusions and back-scattered electric (BSE) images of monazites, combined with LA-ICP-MS U-Th-Pb ages for monazites and 40Ar/39Ar ages for muscovites, provide evidence of the origin and metamorphic age of the Changhai metamorphic complex. Monazites separates from various Grt-Mus schists and Grt-Ky-St-Mus paragneisses exhibit homogeneous BSE images from cores to rims, and contain inclusion assemblages of Grt + Mus + Qtz ± Ctd ± Ky in schist, and Grt + Ky + St + Mus + Pl + Kfs + Qtz inclusions in paragneiss. These inclusion assemblages are very similar to matrix minerals of host rocks, indicating they are metamorphic rather than inherited or detrital in origin. LA-ICP-MS U-Th-Pb dating reveals that monazites of schist and paragneiss have consistent 206Pb/238U ages ranging from 228.1 ± 3.8 to 218.2 ± 3.7 Ma. In contrast, muscovites from various schists show slightly older 40Ar/39Ar plateau ages of 236.1 ± 1.5 to 230.2 ± 1.2 Ma. These geochronological and petrological data conclude that the pelitic sediments have experienced a metamorphic event at the Mid-Late Triassic (236.1-218.2 Ma) rather than the Paleoproterozoic (1950-1850 Ma), commonly regarded as the Precambrian basement for the Jiao-Liao-Ji Belt. Hence, the Changhai metamorphic complex should be considered as a discrete

  18. Kyanite-garnet gneisses of the Kåfjord Nappe - North Norwegian Caledonides: P-T conditions and monazite Th-U-Pb dating

    NASA Astrophysics Data System (ADS)

    Ziemniak, Grzegorz; Kośmińska, Karolina; Majka, Jarosław; Janák, Marian; Manecki, Maciej

    2016-04-01

    The Kåfjord Nappe is the part of the Skibotn Nappe Complex traditionally ascribed to the Upper Allochthon of the North Norwegian Caledonides. Pressure-temperature (P-T) conditions and metamorphic age of the Kåfjord Nappe are not well constrained, geochronological data are limited to a single Rb-Sr age of c. 440 Ma (Dangla et al. 1978). Metamorphic evolution of kyanite-garnet gneisses of the Kåfjord Nappe is presented here. The kyanite-garnet gneisses are associated with a few meters thick amphibolite lenses. The gneisses mainly consist of quartz, plagioclase, biotite, muscovite, garnet, kyanite, and rutile. Retrograde minerals are represented by sillimanite and chlorite. Garnet occurs as two textural types. Garnet-I forms euhedral porphyroblasts with multiple small inclusions. Profiles through garnet-I show chemical zonation in all components. The composition varies from Alm64-68Prp11-16Grs13-18Sps2-8 in the core to Alm68-70Prp17-18Grs10-13Sps1-3 in the rim. Garnet-II is subhedral to anhedral, its core is inclusion-rich, whereas rim contains only single inclusions. Chemical composition of garnet-II is similar to that of the garnet-I rim. P-T conditions have been estimated using the garnet-biotite-muscovite-plagioclase (GBPM) geothermobarometer (Holdaway, 2001; Wu, 2014). Calculated peak P-T metamorphic conditions are 610-625 °C and 7.6-8.2 kbar corresponding to the amphibolite facies conditions. Phase equilibrium modelling in the NCKFMMnASH system yields peak metamorphic conditions of c. 620 °C at 8 kbar. Growth conditions of garnet-I core modelled in the NCKFMMnASH system are c. 570 °C at 9.7 kbar. Chemical Th-U-total Pb monazite dating has been performed. Preliminary dating results from the kyanite-garnet gneiss of the Kåfjord Nappe yield an array of dates from 468 Ma to 404 Ma. There is a correlation between an increase of yttrium content and decrease of monazite single dates. Compositional maps confirm an increase of yttrium towards the rim of the

  19. Provenance implications of Th U Pb electron microprobe ages from detrital monazite in the Carboniferous Upper Silesia Coal Basin, Poland

    NASA Astrophysics Data System (ADS)

    Kusiak, Monika Agnieszka; Kędzior, Artur; Paszkowski, Mariusz; Suzuki, Kazuhiro; González-Álvarez, Ignacio; Wajsprych, Bolesław; Doktor, Marek

    2006-05-01

    This paper reports the results of CHIME (chemical Th-U-Pb isochron method) dating of detrital monazites from Carboniferous sandstones in the Upper Silesia Coal Basin (USCB). A total of 4739 spots on 863 monazite grains were analyzed from samples of sandstone derived from six stratigraphic units in the sedimentary sequence. Age distributions were identified in detrital monazites from the USCB sequence and correlated with specific dated domains in potential source areas. Most monazites in all samples yielded ca. 300-320 Ma (Variscan) ages; however, eo-Variscan, Caledonian and Cadomian ages were also obtained. The predominant ages are comparable to reported ages of certain tectonostratigraphic domains in the polyorogenic Bohemian Massif (BM), which suggests that various crystalline lithologies in the BM were the dominant sources of USCB sediments.

  20. Experimental and geologic evaluation of monazite (U-Th)/He thermochronometry: Catnip Sill, Catalina Core Complex, Tucson, AZ

    NASA Astrophysics Data System (ADS)

    Peterman, E. M.; Hourigan, J. K.; Grove, M.

    2014-10-01

    Monazite is a petrologically important and analytically promising target for (U-Th)/He thermochronology. Previous studies have reported highly variable He diffusion results from monazite from a single sample and demonstrated that composition can significantly affect He diffusion parameters. In this study, we performed incremental heating of single monazite grains to experimentally determine the 4He diffusion properties of reference monazite ‘554’ that occurs within a peraluminous two-mica granite from the Catnip Sill within the Catalina Core complex, Arizona. Assuming that the grain size defines the diffusion geometry, the six experiments yielded Ea values of 212 to 238±5 kJ mol (1σ) and Do values of 15.7 to 103 cm s with one value of 784 cm s. Monazite (U-Th)/He data from five grains yielded closure temperatures of 291 to 262 °C (± c. 15 °C) and ages of 23.8-20.3 (±∼1.2;2σ) Ma; the weighted mean age is 21.8±0.73 (MSWD=1.83, n=5) and the weighted mean closure temperature is 282±6 °C (MSWD=0.96, n=5;1σ). We tested the accuracy of these results by comparing our monazite thermochronology data with monazite Th/Pb depth profiling results, the 40Ar/39Ar thermal history for the Catnip Sill constrained using coexisting muscovite, biotite, and K-feldspar, and published regional zircon and apatite fission track results. The monazite Th/Pb data indicate emplacement of the Catnip Sill at ∼45 Ma. The 40Ar/39Ar muscovite and biotite data indicate cooling from 460 to 350 °C from 27 to 26 Ma. K-feldspar MDD modeling suggests cooling from 360 to 240 °C from 26 to 24 Ma. Zircon fission track data indicate cooling through 250 °C between 29 and 20 Ma. Additional cooling through 110 °C is recorded by apatite fission track ages of 19-16 Ma. Because the monazite thermochronology results are reproducible and consistent with the thermal history constrained by the other chronometers, our results 1) confirm the accuracy of the 4He diffusion kinetics from monazite

  1. Investigating Age Resolution in Laser Ablation Geochronology

    NASA Astrophysics Data System (ADS)

    Horstwood, Matt; Kosler, Jan; Jackson, Simon; Pearson, Norman; Sylvester, Paul

    2009-02-01

    Workshop on Data Handling in LA-ICP-MS U-Th-Pb Geochronology; Vancouver, British Columbia, Canada, 12-13 July 2008; Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) uranium-thorium-lead (U-Th-Pb) dating is an increasingly popular approach for determining the age of mineral grains and the timing of geological events. The spatial resolution offered by this technique allows detailed investigations of complex igneous and metamorphic processes, and the speed of data capture allows vast amounts of information to be gathered rapidly. Laser ablation U-Th-Pb dating is therefore becoming an increasingly influential technique to the geochronology community, providing cost-effective and ready access to age data for laboratories and end users worldwide. However, complications in acquiring, processing, and interpreting data can lead to inaccurate age information entering the literature. With the numbers of practitioners expanding rapidly, the need to standardize approaches and resolve difficulties (particularly involving the subjectivity in processing laser ablation U-Th-Pb data) is becoming important.

  2. Crustal melting and recycling: geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian Zone). A U-Pb LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    López-Moro, F. J.; López-Plaza, M.; Gutiérrez-Alonso, G.; Fernández-Suárez, J.; López-Carmona, A.; Hofmann, M.; Romer, R. L.

    2017-04-01

    In this study, we report U-Pb Laser Ablation ICP-MS zircon and ID-TIMS monazite ages for peraluminous granitoid plutons (biotite ± muscovite ± cordierite ± sillimanite) in the Tormes Dome, one of the gneiss-cored domes located in the Central Iberian Zone of the Variscan belt of northern Spain. Textural domains in zircon, interpreted to represent the magmatic crystallization of the granitoids (and one monazite fraction in the Ledesma pluton) yielded ages around 320 Ma, in agreement with other geochronological studies in the region. This age is interpreted to date the timing of decompression crustal melting driven by the extensional collapse of the orogenic belt in this domain of the Variscan chain of western Europe. In addition, there are several populations of inherited (xenocrystic) zircon: (1) Carboniferous zircon crystals (ca. 345 Ma) as well as one of the monazite fractions in the coarse-grained facies of the Ledesma pluton that also yielded an age of ca. 343 Ma. (2) Devonian-Silurian zircon xenocrysts with scattered ages between ca. 390 and 432 Ma. (3) Middle Cambrian-Ordovician (ca. 450-511 Ma). (4) Ediacaran-Cryogenian zircon ages (ca. 540-840 Ma). (5) Mesoproterozoic to Archaean zircon (900-2700 Ma). The abundance of Carboniferous-inherited zircon shows that crustal recycling/cannibalization may often happen at a fast pace in orogenic scenarios with only short lapses of quiescence. In our case study, it seems plausible that a "crustal layer" of ca. 340 Ma granitoids/migmatites was recycled, partially or totally, only 15-20 My after its emplacement.

  3. Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia

    NASA Astrophysics Data System (ADS)

    Broska, Igor; Williams, C. Terry; Janák, Marian; Nagy, Géza

    2005-05-01

    In the granitic rocks of the Western Carpathians, xenotime-(Y) occurs both as a late-stage magmatic mineral, and as a secondary post-magmatic phase. Magmatic xenotime occurs with monazite and displays minor compositional zonation involving Si, Th and U. The source of elements for the formation of secondary xenotime-(Y) in the granitic rocks results from leaching of P and (Y+REE), mainly from zircon and apatite. Both xenotime-(Y) and monazite-(Ce) are unstable during fluid-activated overprinting. Low temperature alteration of monazite in S-type granites leads to the formation of apatite enriched in the britholite component, but low to medium grades of metamorphism result in the formation of apatite and LREE enriched epidote (partly allanite) as a corona enclosing the monazite-(Ce) core. Xenotime-(Y) shows a similar alteration pattern, but with different REE distributions within the products. At greenschist/amphibolite facies, rims of secondary Y-rich apatite and Y-rich epidote form around xenotime-(Y). In low-Ca granites however, apatite is missing from this alteration assemblage as xenotime-(Y) breaks down directly to Y-enriched epidote. The relative mobilities of the heavy and light REE are different during breakdown of monazite and xenotime. The fluid responsible for the breakdown of monazite and xenotime contains elements released from alteration of anorthite (Ca) and biotite (Si, Al and F).

  4. Geochemistry of sedimentary ore deposits

    SciTech Connect

    Maynard, J. B.

    1983-01-01

    A text providing a sedimentological treatment of a study on ore deposits, and especially as related to geochemistry. Excellently documented (about 5000 citations). Well indexed with the index of deposits and localities separated. Contents, Iron. Copper and silver. Aluminum and nickel. Manganese. Uranium. Lead and zinc. Volcanic-sedimentary ores. Appendix. Indexes.

  5. Medical geochemistry of tropical environments

    NASA Astrophysics Data System (ADS)

    Dissanayake, C. B.; Chandrajith, Rohana

    1999-10-01

    Geochemically, tropical environments are unique. This uniqueness stems from the fact that these terrains are continuously subjected to extreme rainfall and drought with resulting strong geochemical fractionation of elements. This characteristic geochemical partitioning results in either severe depletion of elements or accumulation to toxic levels. In both these situations, the effect on plant, animal and human health is marked. Medical geochemistry involves the study of the relationships between the geochemistry of the environment in which we live and the health of the population living in this particular domain. Interestingly, the relationships between geochemistry and health are most marked in the tropical countries, which coincidentally are among the poorest in the world. The very heavy dependence on the immediate environment for sustainable living in these lands enables the medical geochemist to observe correlations between particular geochemical provinces and the incidence of certain diseases unique to these terrains. The aetiology of diseases such as dental and skeletal fluorosis, iodine deficiency disorders, diseases of humans and animals caused by mineral imbalances among others, lie clearly in the geochemical environment. The study of the chemistry of the soils, water and stream sediments in relation to the incidence of geographically distributed diseases in the tropics has not only opened up new frontiers in multidisciplinary research, but has offered new challenges to the medical profession to seriously focus attention on the emerging field of medical geochemistry with the collaboration of geochemists and epidemiologists.

  6. Advancing Geomicrobiology and Microbial Geochemistry

    NASA Astrophysics Data System (ADS)

    Druschel, Gregory K.; Dick, Gregory J.

    2014-03-01

    By examining microbial and geochemical processes together, scientists have been able to gain a vastly clearer picture of how microorganisms shape their surrounding environment and vice versa. This was the central theme of a 2-day workshop held in October 2013 in Chicago, Ill., that brought together 30 leading scientists from the rapidly growing field of geomicrobiology and microbial geochemistry (GMG).

  7. Molecular environmental geochemistry

    NASA Astrophysics Data System (ADS)

    O'Day, Peggy A.

    1999-05-01

    The chemistry, mobility, and bioavailability of contaminant species in the natural environment are controlled by reactions that occur in and among solid, aqueous, and gas phases. These reactions are varied and complex, involving changes in chemical form and mass transfer among inorganic, organic, and biochemical species. The field of molecular environmental geochemistry seeks to apply spectroscopic and microscopic probes to the mechanistic understanding of environmentally relevant chemical processes, particularly those involving contaminants and Earth materials. In general, empirical geochemical models have been shown to lack uniqueness and adequate predictive capability, even in relatively simple systems. Molecular geochemical tools, when coupled with macroscopic measurements, can provide the level of chemical detail required for the credible extrapolation of contaminant reactivity and bioavailability over ranges of temperature, pressure, and composition. This review focuses on recent advances in the understanding of molecular chemistry and reaction mechanisms at mineral surfaces and mineral-fluid interfaces spurred by the application of new spectroscopies and microscopies. These methods, such as synchrotron X-ray absorption and scattering techniques, vibrational and resonance spectroscopies, and scanning probe microscopies, provide direct chemical information that can elucidate molecular mechanisms, including element speciation, ligand coordination and oxidation state, structural arrangement and crystallinity on different scales, and physical morphology and topography of surfaces. Nonvacuum techniques that allow examination of reactions in situ (i.e., with water or fluids present) and in real time provide direct links between molecular structure and reactivity and measurements of kinetic rates or thermodynamic properties. Applications of these diverse probes to laboratory model systems have provided fundamental insight into inorganic and organic reactions at

  8. Crustal thickening leading to exhumation of the Himalayan Metamorphic core of central Nepal: Insight from U-Pb Geochronology and 40Ar/39Ar Thermochronology

    NASA Astrophysics Data System (ADS)

    Godin, Laurent; Parrish, Randall R.; Brown, Richard L.; Hodges, Kip V.

    2001-10-01

    New and published U-Pb geochronology and 40Ar/39Ar thermochronology from footwall and hanging wall rocks of a segment of the South Tibetan detachment system exposed in the Annapurna area of central Nepal Himalaya bring additional constraints on the timing of metamorphism, crustal thickening, and normal faulting resulting in exhumation of the Himalayan metamorphic core. Early Oligocene crustal thickening led to Eohimalayan kyanite-grade metamorphism between 35 Ma and 32 Ma. The resulting thermal event affected the Early Ordovician augen gneiss (Formation III) and produced kyanite-bearing leucosomes in the upper part of the metamorphic core. This event is linked with underthrusting of the Greater Himalayan metamorphic sequence below the Tethyan sedimentary sequence and the growth of an Oligocene fan structure that has thickened the Tethyan sedimentary sequence to 25 km, thus provoking kyanite-grade melting at deeper structural levels. Early Paleozoic monazite and zircon populations indicate that part of the metamorphism affecting the Himalayan metamorphic core could be pre-Cenozoic. Regional correlations indicate that the Annapurna detachment was active during early Miocene time. A weakly deformed leucogranitic dike intruding into the immediate hanging wall yielded reversely discordant monazite ages between 23 and 22.5 Ma, which suggest that the ductile strain in the Annapurna detachment zone terminated at ca. 22 Ma. On the basis of a 40Ar/39Ar muscovite age, renewed southwest verging deformation (D4) is interpreted to occur at ca. 18 Ma. Rapid exhumation resulting from extensional faulting cooled the entire metamorphic core through the muscovite Ar closure temperature (330°-430°C) between 15 and 13 Ma. Muscovites from the immediate hanging wall of the Annapurna detachment yielded slightly younger ages, between 13 and 11 Ma, testifying to late hydrothermal activity in the Annapurna detachment zone that could be linked with the initiation of brittle faulting

  9. Magmatism as a response to exhumation of the Priest River complex, northern Idaho: Constraints from zircon U-Pb geochronology and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Stevens, L. M.; Baldwin, J. A.; Crowley, J. L.; Fisher, C. M.; Vervoort, J. D.

    2016-10-01

    Zircon and monazite U-Pb geochronology and zircon Hf isotopes place constraints on the temporal and source relationships between crustal anatexis, magmatism, and exhumation of the Priest River metamorphic core complex, northern Idaho. Granitoids that intruded the migmatitic, pelitic Hauser Lake gneiss include the < 76.5 ± 0.1 Ma Spokane granite, 50.13 ± 0.02 Ma Silver Point quartz monzonite, c. 47.9 Ma Wrencoe granodiorite, < 46.4 ± 1.8 Ma Rathdrum granite, and a < 49.8 ± 0.4 Ma leucocratic dike. Cretaceous magmatism preceded the c. 64 Ma peak metamorphism (recorded by monazite) of the Hauser Lake gneiss, whereas discrete pulses of Eocene magmatic activity post-date the onset of exhumation by 10 Ma. The relative timing of pluton emplacement in the Priest River complex indicates that it was primarily a response to decompression rather than a cause. The mylonitized Silver Point and undeformed Wrencoe plutons bracket the end of a rapid phase of exhumation to c. 50-48 Ma. Zircon εHf(i) values and Lu-Hf isotope evolution indicate that the Silver Point and Wrencoe plutons crystallized from homogeneous magmas sourced from Archean-Proterozoic basement orthogneisses, whereas the Spokane granite and two leucocratic units appear to have been produced by partial melting of the Hauser Lake gneiss. Comparison of the Priest River complex with other deeply exhumed northern Cordilleran complexes indicates variability in the timing and, therefore, relative influences of partial melting and magmatism on the initiation of exhumation, which must be accounted for in numerical models of metamorphic core complex formation and evolution.

  10. Chemical and ceramic methods toward safe storage of actinides using monazite. 1998 annual progress report

    SciTech Connect

    Morgan, P.E.D.; Boatner, L.A.

    1998-06-01

    'The use of ceramic monazite, (La,Ce)PO{sub 4}, for sequestering actinides, especially plutonium, and some other radioactive waste elements (rare earths e.g.) and thus isolating them from the environment has been championed by Lynn Boatner of ORNL. It may be used alone or, as it is compatible with many other minerals in nature, can be used in composite combinations. Natural monazite, which almost invariably contains Th and U, is often formed in hydrothermal pegmatites and is extremely water resistant--examples are known where the mineral has been washed out of rocks (becoming a placer mineral as on the beach sands of India, Australia, Brazil etc.) then reincorporated into new rocks with new crystal overgrowths and then washed out again--being 2.5--3 billion years old. During this demanding water treatment it has retained Th and U. Where very low levels of water attack have been seen (in more siliceous waters), the Th is tied up as new ThSiO{sub 4} and remains immobile. Lest it be thought that rare-earths are rare or expensive, this is not so. In fact, the less common lanthanides such as gadolinium, samarium, europium, and terbium, are necessarily extracted and much used by, e.g., the electronics industry, leaving La and Ce as not-sufficiently-used by-products. The recent development of large scale use of Nd in Nd-B-Fe magnets has further exaggerated this. Large deposits of the parent mineral bastnaesite are present in the USA and in China. (Mineral monazite itself is not preferred due to its thorium content.) In the last 5 years it has become apparent show that monazite (more specifically La-monazite) is an unrecognized/becoming-interesting ceramic material. PuPO4 itself has the monazite structure; the PO{sub 4} 3-unit strongly stabilizes actinides and rare earths in their trivalent state. Monazite melts without decomposition (in a closed system) at 2,074 C and, being compatible with common ceramic oxides such as alumina, mullite, zirconia and YAG, is useful in

  11. Analysis of monazite, zircon, and apatite from the southeastern Piedmont. National uranium resource evaluation program

    SciTech Connect

    Karfunkel, B S; Fay, W M; Price, V Jr

    1981-12-01

    Two hundred sixty-three monazite, 191 zircon, and 16 apatite grains from 52 stream-sediment locations in the Southeastern Piedmont were analyzed by electron microprobe for one of the following suites of elements: Ca, La, Ce, Pr, Nd, Sm, Eu, Gd, Er, Dy, Y, Th, U, P, and F, or Ca, La, Ce, Fe, Er, Hf, Y, Th, U, P, Zr, Mg, Al, and Si. Monazite samples that had high uranium or thorium content and zircon samples that had high hafnium or iron content from a total of six locations were reanalyzed to confirm the initial results. This report contains a description of sample collection and preparation procedures, analytical methods, tables of analyses, and a statistical summary of analyses.

  12. Invited review article: Recent developments in isotope-ratio mass spectrometry for geochemistry and cosmochemistry.

    PubMed

    Ireland, Trevor R

    2013-01-01

    Mass spectrometry is fundamental to measurements of isotope ratios for applications in isotope geochemistry, geochronology, and cosmochemistry. Magnetic-sector mass spectrometers are most common because these provide the best precision in isotope ratio measurements. Where the highest precision is desired, chemical separation followed by mass spectrometric analysis is carried out with gas (noble gas and stable isotope mass spectrometry), liquid (inductively coupled plasma mass spectrometry), or solid (thermal ionization mass spectrometry) samples. Developments in in situ analysis, including ion microprobes and laser ablation inductively coupled plasma mass spectrometry, have opened up issues concerning homogeneity according to domain size, and allow ever smaller amounts of material to be analyzed. While mass spectrometry is built solidly on developments in the 20th century, there are new technologies that will push the limits in terms of precision, accuracy, and sample efficiency. Developments of new instruments based on time-of-flight mass spectrometers could open up the ultimate levels of sensitivity per sample atom.

  13. Autonomous anorthosites of the Anabar Shield: Age, geochemistry, and formation mechanism

    NASA Astrophysics Data System (ADS)

    Glukhovskii, M. Z.; Kuz'min, M. I.; Bayanova, T. B.; Bazhenova, G. N.; Lyalina, L. M.; Serov, P. A.

    2015-10-01

    The new high-accuracy data on U-Pb zircon geochronology, Sm-Nd systematics, and geochemistry of anorthosites of the Anabar Shield are discussed. It is established that anorthosite massifs are composed of gabbro-anorthosites (1.96 Ga old) and oligoclasites (1.93 Ga old) in association with monzodiorites (1.84-1.90 Ga old) and porphyroblastic granites. These rocks were generated in the Archean (3.2-2.7 Ga ago) in the lower crust from quartz-diorite melts under the plume tectonics regime in line with the filterpressing mechanism. The rocks were successively exhumed to upper levels of the crust owing to the Paleoproterozoic impact-triggered process to form a tectonically juxtaposed complementary magmatic complex.

  14. Monazite/melt partition coefficients for U, Th: Preliminary results from experiments

    NASA Astrophysics Data System (ADS)

    Xing, L.; Trail, D.; Watson, E. B.

    2009-12-01

    Monazite/melt partition coefficients for Th and U ([conc. in monazite]/[conc. in melt]) were obtained in a piston cylinder apparatus for peraluminous silicate melts. In order to identify the petrologic variables that influence Th and U partition coefficients, experiments were run at 10 kar, temperatures from 875 to 1100°C, bulk initial water contents of 3-12 wt%, and 51-70wt% SiO2 . Concentrations of Th and U in coexisting monazite and quenched glass were measured by electron microprobe. Our preliminary results indicate a negative correlation between the U and Th partition coefficients and temperature. Melt composition also exerts a strong influence on the partition coefficients; with increasing melt polymerization, partition coefficients increase by a factor of ~3. At 1100°C, for example, a change in melt SiO2 content from 61-67 wt% caused the Th partition coefficient to increase from ~50 to ~150. As previously observed for apatite/melt partitioning of rare-earth elements (Watson & Green EPSL 1981, 56, 405), however, dissolved water content seems to have relatively little effect on the Th and U partition coefficient. Melts of similar SiO2 contents run at similar temperatures yield nearly identical partition coefficients regardless of H2O concentrations. The broader goal of the present experimental study is to evaluate the factors that affect monazite/melt partitioning of Th and U in natural systems, and to provide a comprehensive set of partitioning data for use in melting and crystallization models.

  15. DateView: a windows geochronology database

    NASA Astrophysics Data System (ADS)

    Eglington, Bruce M.

    2004-10-01

    DateView is a freeware desktop database system for the structured storage and retrieval of geochronological information. It provides a user-friendly interface for constructing queries based on information in the database so as to extract information on specific units, isotope systems, age interpretations, provinces, terranes, reference sources and many other characteristics which geochronologists and geologists might require. Once a subset of the records in the database has been selected, users may choose from several forms of graph so as to better visualise the data. Available graphs include probability histograms, age versus initial ratio or epsilon, and age versus closure temperature. Simple locality (latitude vs longitude) graphs are also available. Grouping of data by interpretation or age interval in the graphs is user customizable. The database may also be shared with colleagues on an intranet.

  16. History of the recognition of organic geochemistry in geoscience

    USGS Publications Warehouse

    Kvenvolden, K.A.

    2002-01-01

    The discipline of organic geochemistry is an outgrowth of the application of the principles and methods of organic chemistry to sedimentary geology. Its origin goes back to the last part of the nineteenth century and the first part of the twentieth century concurrent with the evolution of the applied discipline of petroleum geochemistry. In fact, organic geochemistry was strongly influenced by developments in petroleum geochemistry. Now, however, organic geochemistry is considered an umbrella geoscience discipline of which petroleum geochemistry is an important component.

  17. Monazite RW-1: a homogenous natural reference material for SIMS U-Pb and Th-Pb isotopic analysis

    NASA Astrophysics Data System (ADS)

    Ling, Xiao-Xiao; Huyskens, Magdalena H.; Li, Qiu-Li; Yin, Qin-Zhu; Werner, Ronald; Liu, Yu; Tang, Guo-Qiang; Yang, Ya-Nan; Li, Xian-Hua

    2017-04-01

    Well-characterized matrix-matched natural mineral references of known age are an important prerequisite for SIMS (secondary ion mass spectrometry) U-Th-Pb dating. We have characterized RW-1, a 44 g yellowish-brown single monazite specimen from a Norwegian pegmatite as an excellent hi-Th reference material for secondary ion mass spectrometric U-Th-Pb dating. A total of 206 secondary ion mass spectrometric analyses over six analytical sessions were performed on different monazite fragments of RW-1. The analyses resulted in 207Pb-based common lead corrected 206Pb/238U ages and Th-Pb ages with overall 2 % (2 SD = standard deviation) variations, indicating the good U-Th-Pb system homogeneity. The homogeneity of Th content of 11.8 ± 1.0 wt% (2 SD) and Th/U of 42 ± 3 (2 SD) make this crystal also a good compositional reference material. We used the combined ID-TIMS(Pb)/ID-MC-ICP-MS(U) technique (i.e. isotope dilution thermal ionization mass spectrometry for Pb, and isotope dilution multi-collector inductively-coupled plasma mass spectrometry for U) to determine U-Pb ages of the monazite samples studied. The mean 207Pb/235U age of 904.15 ± 0.26 Ma (95 % confidence level) is recommended as the best estimate crystallization age for RW-1 monazite. Considering that the most commonly distributed U-Pb monazite reference materials have rather low ThO2, we suggest that this RW-1 monazite with its ThO2 of 13.5 wt% is a suitable reference material providing investigators more confidence when dating high-Th monazite unknowns.

  18. Monazite RW-1: a homogenous natural reference material for SIMS U-Pb and Th-Pb isotopic analysis

    NASA Astrophysics Data System (ADS)

    Ling, Xiao-Xiao; Huyskens, Magdalena H.; Li, Qiu-Li; Yin, Qin-Zhu; Werner, Ronald; Liu, Yu; Tang, Guo-Qiang; Yang, Ya-Nan; Li, Xian-Hua

    2016-10-01

    Well-characterized matrix-matched natural mineral references of known age are an important prerequisite for SIMS (secondary ion mass spectrometry) U-Th-Pb dating. We have characterized RW-1, a 44 g yellowish-brown single monazite specimen from a Norwegian pegmatite as an excellent hi-Th reference material for secondary ion mass spectrometric U-Th-Pb dating. A total of 206 secondary ion mass spectrometric analyses over six analytical sessions were performed on different monazite fragments of RW-1. The analyses resulted in 207Pb-based common lead corrected 206Pb/238U ages and Th-Pb ages with overall 2 % (2 SD = standard deviation) variations, indicating the good U-Th-Pb system homogeneity. The homogeneity of Th content of 11.8 ± 1.0 wt% (2 SD) and Th/U of 42 ± 3 (2 SD) make this crystal also a good compositional reference material. We used the combined ID-TIMS(Pb)/ID-MC-ICP-MS(U) technique (i.e. isotope dilution thermal ionization mass spectrometry for Pb, and isotope dilution multi-collector inductively-coupled plasma mass spectrometry for U) to determine U-Pb ages of the monazite samples studied. The mean 207Pb/235U age of 904.15 ± 0.26 Ma (95 % confidence level) is recommended as the best estimate crystallization age for RW-1 monazite. Considering that the most commonly distributed U-Pb monazite reference materials have rather low ThO2, we suggest that this RW-1 monazite with its ThO2 of 13.5 wt% is a suitable reference material providing investigators more confidence when dating high-Th monazite unknowns.

  19. The growth of the continental crust: Constraints from radiogenic isotope geochemistry

    NASA Technical Reports Server (NTRS)

    Taylor, Paul N.

    1988-01-01

    Most models for evolution of continental crust are expressed in the form of a diagram illustrating the cumulative crustal mass (normalized relative to the present crustal mass) as a function of time. Thus, geochronological data inevitably play a major role in either constructing or testing crustal growth models. For all models, determining the start-time for effective crustal accretion is of vital importance. To this end, the continuing search for, and reliable characterization of, the most ancient crustal rock-units remains a worthy enterprise. Another important role for geochronology and radiogenic isotope geochemistry is to assess the status of major geological events as period either of new crust generation or of reworking of earlier formed continental crust. For age characterization of major geological provinces, using the critieria outined, the mass (or volume) of crust surviving to the present day should be determinable as a function of crust formation age. More recent developments, however, appear to set severe limitations on recycling of crust, at least by the process of sediment subduction. In modeling crustal growth without recycling, valuable constaints on growth rate variations through time can be provided if variations in the average age of the continental crust can be monitored through geological history. The question of the average age of the exposed continental crust was addressed by determining Sm-Nd crustal residence model ages (T-CR) for fine-grained sediment loads of many of the world's major rivers.

  20. Rethinking early Earth phosphorus geochemistry

    PubMed Central

    Pasek, Matthew A.

    2008-01-01

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO32−), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks. PMID:18195373

  1. Rethinking early Earth phosphorus geochemistry.

    PubMed

    Pasek, Matthew A

    2008-01-22

    Phosphorus is a key biologic element, and a prebiotic pathway leading to its incorporation into biomolecules has been difficult to ascertain. Most potentially prebiotic phosphorylation reactions have relied on orthophosphate as the source of phosphorus. It is suggested here that the geochemistry of phosphorus on the early Earth was instead controlled by reduced oxidation state phosphorus compounds such as phosphite (HPO(3)(2-)), which are more soluble and reactive than orthophosphates. This reduced oxidation state phosphorus originated from extraterrestrial material that fell during the heavy bombardment period or was produced during impacts, and persisted in the mildly reducing atmosphere. This alternate view of early Earth phosphorus geochemistry provides an unexplored route to the formation of pertinent prebiotic phosphorus compounds, suggests a facile reaction pathway to condensed phosphates, and is consistent with the biochemical usage of reduced oxidation state phosphorus compounds in life today. Possible studies are suggested that may detect reduced oxidation state phosphorus compounds in ancient Archean rocks.

  2. Quaternary evolution of the rivers of northeast Hainan Island, China: Tracking the history of avulsion from mineralogy and geochemistry of river and delta sands

    NASA Astrophysics Data System (ADS)

    Pe-Piper, Georgia; Piper, David J. W.; Wang, Ying; Zhang, Yongzhan; Trottier, Corwin; Ge, Chendong; Yin, Yong

    2016-03-01

    The mineralogy and geochemistry of sands were investigated in the Nandu and Wanquan rivers, Hainan Island, China, to determine the history of avulsion in the lower reaches of the Nandu River. The study also provided the opportunity to assess the utility of geochemical analysis of sands as a provenance tool. Much of the heavy mineral fraction in the rivers consists of subangular Fe-Ti oxide and Fe-(hydr)oxide minerals, and less stable minerals such as amphibole, epidote, and andalusite, whereas rounded resistant ilmenite, rutile, tourmaline and zircon predominate on the deltaic coast. Mineral assemblage and chemical composition of individual samples are related to specific source areas and river tributaries. The results demonstrate northwestwards flow of the Nandu River during the mid-Holocene and earlier avulsion of the river to the northeast coast, probably during a Late Pleistocene marine highstand. Minor basement tilting, producing little relief, was sufficient to divert the lower reaches of rivers, and this effect was enhanced where basalt flows dammed former river courses. Bulk sample REE geochemistry is largely controlled by the relative abundance of monazite, allanite, titanite, zircon and epidote, derived principally from granites. Detrital geochemistry alone shows too much variability to interpret provenance. However, a smaller number of heavy mineral analyses provide an understanding of the mineralogical origins of geochemical variation, thus enabling interpretations of provenance.

  3. EARTHTIME: Teaching geochronology to high school students

    NASA Astrophysics Data System (ADS)

    Bookhagen, Britta; Buchwaldt, Robert; McLean, Noah; Rioux, Matthew; Bowring, Samuel

    2010-05-01

    The authors taught an educational module developed as part of the EARTHTIME (www.earth-time.org) outreach initiative to 215 high school students from a Massachusetts (USA) High School as part of an "out-of-school" field trip. The workshop focuses on uranium-lead (U-Pb) dating of zircons and its application to solving a geological problem. The theme of our 2.5-hour module is the timing of the K-T boundary and a discussion of how geochronology can be used to evaluate the two main hypotheses for the cause of the concurrent extinction—the Chicxlub impact and the massive eruption of the Deccan Traps. Activities are divided into three parts: In the first part, the instructors lead hands-on activities demonstrating how rock samples are processed to isolate minerals by their physical properties. Students use different techniques, such as magnetic separation, density separation using non-toxic heavy liquids, and mineral identification with a microscope. We cover all the steps from sampling an outcrop to determining a final age. Students also discuss geologic features relevant to the K-T boundary problem and get the chance to examine basalts, impact melts and meteorites. In the second part, we use a curriculum developed for and available on the EARTHTIME website (http://www.earth-time.org/Lesson_Plan.pdf). The curriculum teaches the science behind uranium-lead dating using tables, graphs, and a geochronology kit. In this module, the students start by exploring the concepts of half-life and exponential decay and graphically solving the isotopic decay equation. Manipulating groups of double-sided chips labeled with U and Pb isotopes reinforces the concept that an age determination depends on the Pb/U ratio, not the absolute number of atoms present. Next, the technique's accuracy despite loss of parent and daughter atoms during analysis, as well as the use of isotopic ratios rather than absolute abundances, is explained with an activity on isotope dilution. Here the students

  4. Rejuvenation effects during plastic deformation of Zircon: geochronological implications

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Klötzli, Urs

    2013-04-01

    -deformation events and hosted by the shear zones? How to evaluate the significance of isotopic-system resetting in deformed domains? How to estimate the possibility of dating the deformation events and what is the reliability of such dating? A complex of methods is used for this research: transmitted and reflected light microscopy, CL (cathode luminescence) imaging for growth history, BSE (backscattered electrons) imaging for orientation and chemical contrast, SE (secondary elements) pictures for surface relief, SHRIMP (Sensitive High Resolution Ion Microprobe) for age dating, EBSD for crystallographic orientations. We suppose that careful combination of all these methods will lead to better understanding of some internal processes which happen with mineral during its evolution in host rocks. References: Moser D.E., Davis W.J., Reddy S.M., Flemming R.L., Hart R.J., 2009. Zircon U-Pb strain chronometry reveals deep impact-triggered flow. Earth and Planetary Science Letters 277, 73-79. Reddy, S.M., Timms, N.E., Pantleon, W., Trimby, T., 2007. Quantitative characterization of plastic deformation of zircon and geological implications. Contributions to Mineralogy and Petrology 153, 625-645. Reddy, S.M., Timms, N.E., 2010. Deformation of zircon and implications for geochemistry and geochronology. Source Abstracts with Programs - Geological Society of America 42 (5), 634.

  5. Building Interactive Visualizations for Geochronological Data

    NASA Astrophysics Data System (ADS)

    Zeringue, J.; Bowring, J. F.; McLean, N. M.; Pastor, F.

    2014-12-01

    Since the early 1990s, Ken Ludwig's Isoplot software has been the tool of choice for visualization and analysis of isotopic data used for geochronology. The software is an add-in to Microsoft Excel that allows users to generate visual representations of data. However, recent changes to Excel have made Isoplot more difficult to use and maintain, and the software is no longer supported. In the last several years, the Cyber Infrastructure Research and Development Lab for the Earth Sciences (CIRDLES), at the College of Charleston, has worked collaboratively with geochronologists to develop U-Pb_Redux, a software product that provides some of Isoplot's functionality for U-Pb geochronology. However, the community needs a full and complete Isoplot replacement that is open source, platform independent, and not dependent on proprietary software. This temporary lapse in tooling also presents a tremendous opportunity for scientific computing in the earth sciences. When Isoplot was written for Excel, it gained much of the platform's flexibility and power but also was burdened with its limitations. For example, Isoplot could not be used outside of Excel, could not be cross-platform (so long as Excel wasn't), could not be embedded in other applications, and only static images could be produced. Nonetheless this software was and still is a powerful tool that has served the community for more than two decades and the trade-offs were more than acceptable. In 2014, we seek to gain flexibility not available with Excel. We propose that the next generation of charting software be reusable, platform-agnostic, and interactive. This new software should allow scientists to easily explore—not just passively view—their data. Beginning in the fall of 2013, researchers at CIRDLES began planning for and prototyping a 21st-century replacement for Isoplot, which we call Topsoil, an anagram of Isoplot. This work is being conducted in the public domain at https://github.com/CIRDLES/topsoil. We

  6. Statistics of large detrital geochronology datasets

    NASA Astrophysics Data System (ADS)

    Saylor, J. E.; Sundell, K. E., II

    2014-12-01

    Implementation of quantitative metrics for inter-sample comparison of detrital geochronological data sets has lagged the increase in data set size, and ability to identify sub-populations and quantify their relative proportions. Visual comparison or application of some statistical approaches, particularly the Kolmogorov-Smirnov (KS) test, that initially appeared to provide a simple way of comparing detrital data sets, may be inadequate to quantify their similarity. We evaluate several proposed metrics by applying them to four large synthetic datasets drawn randomly from a parent dataset, as well as a recently published large empirical dataset consisting of four separate (n = ~1000 each) analyses of the same rock sample. Visual inspection of the cumulative probability density functions (CDF) and relative probability density functions (PDF) confirms an increasingly close correlation between data sets as the number of analyses increases. However, as data set size increases the KS test yields lower mean p-values implying greater confidence that the samples were not drawn from the same parent population and high standard deviations despite minor decreases in the mean difference between sample CDFs. We attribute this to the increasing sensitivity of the KS test when applied to larger data sets, which in turn limits its use for quantitative inter-sample comparison in detrital geochronology. Proposed alternative metrics, including Similarity, Likeness (complement to Mismatch), and the coefficient of determination (R2) of a cross-plot of PDF quantiles, point to an increasingly close correlation between data sets with increasing size, although they are the most sensitive at different ranges of data set sizes. The Similarity test is most sensitive to variation in data sets with n < 100 and is relatively insensitive to further convergence between larger data sets. The Likeness test reaches 90% of its asymptotic maximum at data set sizes of n = 200. The PDF cross-plot R2 value

  7. Growth, preservation of Paleoproterozoic-shear-zone-hosted monazite, north of the Western Dharwar Craton (India), and implications for Gondwanaland assembly

    NASA Astrophysics Data System (ADS)

    Rekha, S.; Bhattacharya, A.

    2013-10-01

    We examine the conditions and processes of growth and preservation of multiaged monazite in micaceous matrix and in garnet porphyroblasts in staurolite-kyanite mica schists hosted in a hitherto-undiscovered shear zone that limits the northern extent of the Western Dharwar Craton (WDC), India. Garnet in the footwall schists grew during mid-crustal (600 ± 40 °C, 7.3 ± 1.2 kbar) loading and cooling as a consequence of the northward transport of the WDC lithologies. U-Th-Pb (total) ages in monazites in the matrix and in post-tectonic garnets yield well-defined peaks at 2.5, 2.2 and 1.9 Ga. In garnet, 2.5 and 2.2 Ga monazite grains, and 2.2 Ga monazites with 2.5 Ga cores are commonly occluded, but monazites with 1.9 Ga mantles around older cores are rare. By contrast, in the matrix, 1.9 Ga monazite grains and monazite with 1.9 Ga mantles around older cores are prominent, but the peak age frequencies of the two older populations are significantly lower than for monazites hosted as inclusions in garnet. Both in the matrix and garnet, the low-Th, high-Y domains in monazites yield the two older peak ages, while the 1.9 Ga ages correspond to the high-Th, low-Y domains. The preponderance of older ages in monazite hosted as inclusions in garnet relative to matrix monazites is because garnets formed between 2.2 and 1.9 Ga shielded the older monazites from dissolution-precipitation at 1.9 Ga. A few 1.9 Ga monazites hosted as inclusions in the garnet rims suggest renewed garnet growth at post-1.9 Ga. Multiple Pb-Pb age populations (2.5, 2.25, 2.1 and 1.8 Ga) in detrital zircon in the Sahanataha Group north of the Paleoarchean Antongil-Masora block (NE Madagascar) are identical to the multiple monazites ages north of the WDC, inferred to share a similar history and to be contiguous with the Antongil-Masora block in pre-Jurassic reconstructions of the Gondwanaland. We suggest the newly discovered Paleoproterozoic tectonic zone continued westward into Madagascar north of the

  8. National geochronological and natural radioelement data bases

    USGS Publications Warehouse

    Zartman, Robert E.; Bush, Charles A.; Abston, C.C.

    1995-01-01

    This CD-ROM contains both the National Geochronological Data Base [NGDB] and the Natural Radioelement Data Base [NRDB]. Supporting location, geologic, and reference information is provided for both data bases. The NGDB is a compilation of more than 30,000 individual published Pb-alpha, fission-track, K-Ar, Rb-Sr, U-Th-Pb, and Sm-Nd rock and mineral ages reported on approximately 18,000 dated samples from the United States. A program is provided to search the data files by latitude and longitude, state, analytical method, and age range. The NGDB is provided as quote-comma delimited files that can be entered into most commercial spreadsheet programs. The NRDB gives gamma-ray spectrometric analyses of the natural radioelements (U, Th, and K) for more than 8500 whole-rock samples obtained under the USGS Natural Radioelement Distribution Project. A program is provided to search the data files by state, keyword, U content, Th content, and K content.

  9. Optimization of Heating Schedules for Measurement of Helium Diffusion in Monazite

    NASA Astrophysics Data System (ADS)

    Day, C.; Grove, M.; Peterman, E.

    2010-12-01

    Minerals accumulate alpha particles (4-He) as radioactive thorium and uranium contained within them decay to lead. Mineral such as monazite, a rare-earth-element-bearing phosphate, contain significant amounts of U and Th and thus build up significant concentrations of He over geologic time. Depending upon temperature and other factors, some of this helium escapes from the mineral by intracrystalline diffusion. Although the balance between radiogenic in-growth and diffusive loss of He is a sensitive monitor of the rates and magnitude of geologic processes, such as crustal deformation and erosion, experimental calibration is required. A major goal of this project was to help develop practical temperature-time (T-t) schedules for measuring diffusive release of helium from monazite. Although activation energy (E) and frequency factor (Do) are intrinsic properties of a given monazite composition, diffusive length scale (r) is determined by the dimensions of the crystals and can be varied in the experiment by selecting grains of different size. To determine optimum T-t schedules for a given experiment, appropriate solutions of the diffusion equation were used to calculate the fraction of helium loss and diffusion coefficients as a function of measured r and estimated E and Do. For ease of measurement, the heating schedule had to satisfy the following criteria: (1) the helium loss per step should never be lower than about 0.5 femtomoles; (2) the average helium loss should be around 0.1 to 1.0 picomoles. The results of these calculations lead to the following conclusions: (1) both E and T significantly impact the amount of He release at a given stage of the experiment. In the diffusion equation, E and T occur within the exponential term exp(-E/RT)where R is the gas law constant. Increasing E retards release of He while increasing T has the opposite effect. Exponential dependence means that a large amount of He will be released from the sample over a narrow range of T

  10. The nature and evolution of the Main Central Thrust: Structural and geochronological constraints from the Sikkim Himalaya, NE India

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Dilip K.; Chakraborty, Sumit; Trepmann, Claudia; Rubatto, Daniela; Anczkiewicz, Robert; Gaidies, Fred; Dasgupta, Somnath; Chowdhury, Priyadarshi

    2017-06-01

    The Main Central Thrust (MCT) is a prominent continental-scale fault within the Himalaya. Its definition has been the topic of some debate in the literature. After a brief consideration of the state of discussion to clarify the definition we use in this work, we report features from the field- to the microstructural- scale of a particularly well-exposed section in Sikkim, NE India. The nature of the protoliths as well as the overlying and underlying rocks is characterized in terms of ε-Nd. The dates of motion on the fault are constrained using U-Pb geochronology of zircon and monazite from pegmatitic dikes that cross-cut the deformation fabric. It is found that the mechanism of deformation recorded in the fault zone rocks is different compared to that found in the overlying Greater Himalayan (GH) or the underlying Lesser Himalayan (LH) rocks. The GH and LH have different protolith characteristics as well. Combined with existing data on P-T history, dates of metamorphism, and cooling- and exhumation-rates of the GH and the LH, our measurements show that major motion on this fault occurred before 20 Ma at 450-700 °C but after peak metamorphism of rocks (750-800 °C) in this zone. Isolated events occurred in this zone as late as 11 Ma, possibly in the brittle domain. This underscores the pulsed nature of movement over an extended period on such major faults, and the related difficulties in dating fault movement, determination of the rates of movement, and designating a fault plane as in- or out-of-sequence within a propagating deformation front.

  11. Himalayan gneiss dome formation in the middle crust and exhumation by normal faulting: New geochronology of Gianbul dome, northwestern India

    USGS Publications Warehouse

    Horton, Forrest; Lee, Jeffrey; Hacker, Bradley; Bowman-Kamaha'o, Meilani; Cosca, Michael A.

    2015-01-01

    A general lack of consensus about the origin of Himalayan gneiss domes hinders accurate thermomechanical modeling of the orogen. To test whether doming resulted from tectonic contraction (e.g., thrust duplex formation, antiformal bending above a thrust ramp, etc.), channel flow, or via the buoyant rise of anatectic melts, this study investigates the depth and timing of doming processes for Gianbul dome in the western Himalaya. The dome is composed of Greater Himalayan Sequence migmatite, Paleozoic orthogneiss, and metasedimentary rock cut by multiple generations of leucogranite dikes. These rocks record a major penetrative D2 deformational event characterized by a domed foliation and associated NE-SW–trending stretching lineation, and they are flanked by the top-down-to-the-SW (normal-sense) Khanjar shear zone and the top-down-to-the-NE (normal sense) Zanskar shear zone (the western equivalent of the South Tibetan detachment system). Monazite U/Th-Pb geochronology records (1) Paleozoic emplacement of the Kade orthogneiss and associated granite dikes; (2) prograde Barrovian metamorphism from 37 to 33 Ma; (3) doming driven by upper-crustal extension and positive buoyancy of decompression melts between 26 and 22 Ma; and (4) the injection of anatectic melts into the upper levels of the dome—neutralizing the effects of melt buoyancy and potentially adding strength to the host rock—by ca. 22.6 Ma on the southwestern flank and ca. 21 Ma on the northeastern flank. As shown by a northeastward decrease in 40Ar/39Ar muscovite dates from 22.4 to 20.2 Ma, ductile normal-sense displacement within the Zanskar shear zone ended by ca. 22 Ma, after which the Gianbul dome was exhumed as part of a rigid footwall block below the brittle Zanskar normal fault, tilting an estimated 5°–10°SW into its present orientation.

  12. Mechanical, Chemical and Microstructural Characterization of Monazite-Coated Silicon Carbide Fibers

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Wheeler, D. R.; Chen, Y. L.

    2000-01-01

    Tensile strengths of as-received Hi-Nicalon and Sylramic fibers and those having monazite surface coatings, deposited by atmospheric pressure chemical vapor deposition, were measured at room temperature and the Weibull statistical parameters determined. The average tensile strengths of uncoated Hi-Nicalon and Sylramic fibers were 3.19 +/- 0.73 and 2.78 +/- 0.53 GPa with a Weibull modulus of 5.41 and 5.52, respectively. The monazite-coated Hi-Nicalon and Sylramic fibers showed strength loss of approx. 10 and 15 percent, respectively, compared with the as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive X-ray spectroscopy. The LaPO4 coating on Hi-Nicalon fibers was approximately stoichiometric and about 50 nm thick. The coating on the Sylramic fibers extended to a depth of about 100 to 150 nm. The coating may have been stoichiometric LaPO4 in the first 30 to 40 nm of the layer. However, the surface roughness of Sylramic fiber made this profile somewhat difficult to interpret. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. Hi-Nicalon fiber consists of fine beta-SiC nanocrystals ranging in size from 1 to 30 mn embedded in an amorphous matrix. Sylramic is a polycrystalline stoichiometric silicon carbide fiber consisting of submicron beta-SiC crystallites ranging from 100 to 300 nm. Small amount of TiB2 nanocrystallites (approx. 50 nm) are also present. The LaPO4 coating on Hi-Nicalon fibers consisted of a chain of peanut shape particles having monazite-(La) structure. The coating on Sylramic fibers consisted of two layers. The inner layer was a chain of peanut shape particles having monazite-(La) structure. The outer layer was comprised of much smaller particles with a microcrystalline structure.

  13. Tracing irradiation-induced defect state of monazite by photoluminescence of rare Earth elements

    NASA Astrophysics Data System (ADS)

    Panczer, G.; Seydoux-Guillaume, A. M.; Montel, J. M.; Champagnon, B.

    2003-04-01

    Natural monazite is known in contrast to zircon, to almost never be found in the metamict state (Ewing, 1975) despite the fact that it received intensive radiation doses during geologic history by U and Th incorporation. Radiation damages in natural monazite seems to be limited to isolated domains within the crystal (Meldrum et al., 1998). Such property controlled the fact that the monazite lattice is easily healed even at low temperature as it was shown by TEM, XRD and Raman spectrometry (Seydoux-Guillaume et al., 2002). In order to estimate the degree of disorder and the healing of defects we used trivalent neodymium as an internal luminescent probe (Gaft et al., 2001). As a matter of fact the radiative electronic transitions of rare earth elements are very sensible to the short-range crystallographic order around them. Three natural monazites thermally untreated and quenched at 450, 500, 700, 800 and 1000^oC were analyzed under 514 nm Argon laser excitation with a Renishaw microspectrometer. Nd3+ emission was recorded in the range of 750 nm to 1 μm. The ^4F3/2 rightarrow ^4I9/2 transition parameters (position and width) show that 1) the position of the Stark levels do not change during thermal treatment, and 2) that the emission line widths decrease continuously (from 25 to 37%) from room temperature to 1000^oC. These results indicates that before annealing, sub sites of Nd were present with slight different environments induced by internal irradiation induced displacement of ions around them (short range disorder). After thermal treatment a continuous reorganization of the lattice occurs up to 1000^oC with quite strong rearrangement of the environment around the rare-earth leading to a decrease of the Nd sub site number. Thus, the luminescent probe reveals that defect healing continue at much higher temperatures than what was previously reported indicating that luminescence is a very sensible tool to appreciate the degree of disorder in mineral phases. Gaft M

  14. A first principle study of the pressure dependent elastic properties of monazite LaPO4

    NASA Astrophysics Data System (ADS)

    Ali, Kawsar; Arya, A.; Ghosh, P. S.; Dey, G. K.

    2016-05-01

    DFT based ab-initio simulations have been performed to study the effect of pressure on the elastic properties of monazite LaPO4 which is a promising host material for immobilization of high level nuclear waste. The phase is found to be stable up to 30 GPa. The calculated polycrystalline bulk, shear and Young moduli show an increasing trend as a function of pressure. The ductility and anisotropy in shear modulus of the material have been found to increase with pressure; whilethe bulk modulus anisotropy decreases with pressure.

  15. [Book review] The geochronology and evolution of Africa

    USGS Publications Warehouse

    Wilson, Frederic H.

    1987-01-01

    This book was written 'to provide an up-to-date data bank from which those wishing to construct models concerned with the evolution of Africa .... can draw.' As such, it attempts a survey of 'integrated geology and geochronology' of the African continent throughout the Precambrian and into the Phanerozoic. Political and language divisions often hinder the synthesis of continent-wide data, therefore, this well-indexed inventory of selected data and synthesis of present geochronological knowledge for Africa as a whole provides an important reference for researchers and explorationists, many of whom have limited access to complete collections of the geological literature of Africa.

  16. The Modern Detrital Record of Northern and Central California: Assessing the Propagation of Geochronological and Geochemical Provenance Signals

    NASA Astrophysics Data System (ADS)

    Malkowski, M. A.; Sharman, G. R.; Grove, M.; Kimbrough, D. L.; Graham, S. A.

    2016-12-01

    We couple U-Pb detrital zircon geochronology (n=30) and bulk sediment geochemistry (n=41) from modern Sacramento and San Joaquin Rivers, the Sacramento-San Joaquin Delta, San Francisco Bay, and offshore sediments to assess the propagation of provenance signals across the sediment dispersal system. Detrital zircon U-Pb ages show pronounced down-system variations that progressively become homogenized within the Delta. La/Yb ratios show a systematic north to south increase along the Central Valley reflecting the variability of more primitive arc and ophiolitic rocks within the Klamath Mountains and northern Sierra Nevada to more fractionated arc rocks and plutons in the central and southern Sierra Nevada batholith. Proximal to the Klamath Mountains, the Sacramento River contains abundant Early Paleozoic zircon that is rapidly diluted downstream. Similarly, sands from west-flowing Battle Creek carry almost 100% 500 ka zircon from the Mount Lassen area while none is recovered in the downstream Sacramento River. Samples are initially enriched in Jurassic and then 100-85 Ma zircon down the Sacramento River, particularly south of the American River. Similarly, in the north-flowing San Joaquin River, upstream samples are dominated by Early Cretaceous and Jurassic zircon, while downstream samples become progressively enriched in 100-85 Ma grains from major tributaries. The Delta samples most resemble the Sierra Nevada batholith. Sediment deposited downstream in San Francisco Bay and offshore is further modified by sediment eroded from Cretaceous-Cenozoic Franciscan Coast Range strata. Overall, our results highlight the ability of large detrital zircon data sets to discriminate smaller-scale point sources, demonstrate how geochronological and geochemical provenance proxies are propagated down-stream, and reveal how bulk geochemical tracers can effectively highlight larger-scale trends in the composition of source regions.

  17. Detrital Zircon Geochronology Applied to Basin Analysis

    NASA Astrophysics Data System (ADS)

    Gehrels, G. E.

    2014-12-01

    During the past ~15 years, detrital zircon geochronology has developed into a powerful tool for analyzing sedimentary features and processes. One of the most common applications is to use the ages of the youngest detrital zircons in a sample to constrain the maximum age of deposition. In an ideal case, for example in a region with active volcanism, the youngest zircon grains would have crystallized immediately prior to deposition and the lag time between crystallization and deposition is negligible. Such ages provide opportunities for reconstructing the chrono-stratigraphy of a sedimentary sequence, and establishing the chrono-correlation of sedimentary units and surfaces across broad regions. Most sedimentary units also yield detrital zircon grains that significantly predate deposition (because of the extreme durability of zircon). The ages of these grains provide a fingerprint (or chrono-facies) that can be used for comparison of sedimentary units. Such comparisons have traditionally been based on the presence/absence of age populations, but with larger data sets it is becoming possible to determine proportions of ages in a robust fashion, and thereby compare strata much more quantitatively. Common methodology for conducting these types of analyses is to determine ages for several hundred detrital zircon grains from each sample, with random selection of grains to generate a robust age distribution. If necessary, additional analyses are conducted on "young-looking" grains to improve precision on the max depo age. Such analyses commonly yield max depo ages that are reliable to 1-2%. Determining whether a max depo age approximates true depo age commonly requires geologic arguments (e.g., presence of volcanic lithic fragments, size/shape of the youngest zircon crystals, order of youngest ages in a sedimentary sequence). In addition to these chronologic applications, detrital zircon ages provide powerful tools for determining provenance, reconstructing dispersal

  18. Multiple generations of monazite growth in metapelites of the Wepawaug Schist, southern Connecticut

    SciTech Connect

    Lanzirotti, A.; Hanson, G.N. . Dept. of Earth and Space Sciences)

    1992-01-01

    The Wepawaug Schist, part of the Orange Milford Belt of southern Connecticut, consists dominantly of micaceous phyllites and schists. A progression in metamorphic zonation from chlorite through kyanite grade occurs within 3 km. There were previously no constraints on either the depositional age of the Wepawaug Schist or the time of metamorphism. Concordant U-Pb sphene ages of 457 [+-] 3 Ma for the Woodbridge granite, which cuts the Wepawaug Schist, mean that the metapelites are older than late Ordovician. Kyanite grade rocks contain two distinct monazite populations within a single outcrop: (1) Crystals from a graphitic schist are clear, round, and xenoblastic. They have [approximately]0.9 wt.% Th, Sm/Nd = 0.12--0.14, and display pronounced chemical zonation. These give normality discordant U-Pb ages that define an upper intercept age of 420 [+-] 12 Ma. (2) In a less graphitic schist they are light yellow, idioblastic, tabular crystals that cut muscovites. They have Sm/Nd = 0.16 and [approximately] 2.6 wt.% Th and give concordant U-Pb ages of 377 [+-] 3 Ma. The authors suggest that the Wepawaug Schist is older than 457 Ma and was affected by two events which resulted in monazite growth, one during the Middle Devonian (377 Ma) and one in the Late Silurian (420 Ma).

  19. Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite.

    PubMed

    Maes, Synthia; Zhuang, Wei-Qin; Rabaey, Korneel; Alvarez-Cohen, Lisa; Hennebel, Tom

    2017-02-07

    Rare earth elements (REEs) have become increasingly important in modern day technologies. Unfortunately, their recycling is currently limited, and the conventional technologies for their extraction and purification are exceedingly energy and chemical intensive. New sustainable technologies for REE extraction from both primary and secondary resources would be extremely beneficial. This research investigated a two-stage recovery strategy focused on the recovery of neodymium (Nd) and lanthanum (La) from monazite ore that combines microbially based leaching (using citric acid and spent fungal supernatant) with electrochemical extraction. Pretreating the phosphate-based monazite rock (via roasting) dramatically increased the microbial REE leaching efficiency. Batch experiments demonstrated the effective and continued leaching of REEs by recycled citric acid, with up to 392 mg of Nd L(-1) and 281 mg of La L(-1) leached during seven consecutive 24 h cycles. Neodymium was further extracted in the catholyte of a three-compartment electrochemical system, with up to 880 mg of Nd L(-1) achieved within 4 days (at 40 A m(-2)). Meanwhile, the radioactive element thorium and counterions phosphate and citrate were separated effectively from the REEs in the anolyte, favoring REE extraction and allowing sustainable reuse of the leaching agent. This study shows a promising technology that is suitable for primary ores and can further be optimized for secondary resources.

  20. Inter-atomic potentials for radiation damage studies in CePO4 monazite

    NASA Astrophysics Data System (ADS)

    Jolley, Kenny; Asuvathraman, Rajaram; Smith, Roger

    2017-02-01

    An original empirical potential used for modelling phosphate glasses is adapted to be suitable for use with monazite (CePO4) so as to have a consistent formulation for radiation damage studies of phosphates. This is done by adding a parameterisation for the Ce-O interaction to the existing potential set. The thermal and structural properties of the resulting computer model are compared to experimental results. The parameter set gives a stable monazite structure where the volume of the unit cell is almost identical to that measured experimentally, but with some shrinkage in the a and b lengths and a small expansion in the c direction compared to experiment. The thermal expansion, specific heat capacity and estimates of the melting point are also determined. The estimate of the melting temperature of 2500 K is comparable to the experimental value of 2318 ± 20 K, but the simulated thermal expansion of 49 ×10-6 K-1 is larger than the usually reported value. The simulated specific heat capacity at constant pressure was found to be approximately constant at 657 J kg-1 K-1 in the range 300-1000 K, however, this is not observed experimentally or in more detailed ab initio calculations.

  1. Altered rocks of the Onguren carbonatite complex in the Western Tansbaikal Region: Geochemistry and composition of accessory minerals

    NASA Astrophysics Data System (ADS)

    Savelyeva, V. B.; Bazarova, E. P.; Sharygin, V. V.; Karmanov, N. S.; Kanakin, S. V.

    2017-07-01

    The paper discusses the mineralogy and geochemistry of altered rocks associated with calcite and dolomite-ankerite carbonatites of the Onguren dyke-vein complex in the Western Transbaikal Region. The alteration processes in the Early Proterozoic metamorphic complex and synmetamorphic granite hosting carbonatite are areal microclinization and riebeckitization; carbonates, phlogopite, apatite, and aegirine occur in the near-contact zones of the dolomite-ankerite carbonatite veins; and silicification is displayed within separated zones adjacent to the veins. In aluminosilicate rocks, microclinization was accompanied by an increasing content of K, Fe3+, Ti, Nb (up to 460 ppm), Th, Cu, and REE; Na, Ti, Fe3+, Mg, Nb (up to 1500 ppm), Zr (up to 2800 ppm), Ta, Th, Hf, and REE accumulated in the inner zone of the riebeckitization column. High contents of Ln Ce (up to 11200 ppm), U (23 ppm), Sr (up to 7000 ppm), Li (up to 400 ppm), Zn (up to 600 ppm), and Th (up to 700 ppm) are typical of apatite-phlogopite-riebeckite altered rock; silicified rock contains up to (ppm): 2000 Th, 20 U, 13000 Ln Ce, and 5000 Ba. Ilmenite and later rutile are the major Nb carriers in alkali altered rocks. These minerals contain up to 2 and 7 wt % Nb2O5, respectively. In addition, ferrocolumbite and aeschynite-(Ce) occur in microcline and riebeckite altered rocks. Fluorapatite containing up to 2.7 wt % ( Ln Ce)2O3, monazite-(Ce), cerite-(Ce), ferriallanite-(Ce), and aeschynite-(Ce) are the REE carriers in riebeckite altered rock. Bastnäsite-(Ce), rhabdophane-group minerals, and xenotime-(Y) are typical of silicified rock. Thorite, monazite-(Ce), and rhabdophane-group minerals are the Th carriers.

  2. Baseline evaluation for natural radioactivity level and radiological hazardous parameters associated with processing of high grade monazite.

    PubMed

    El Afifi, E M; Shahr El-Din, A M; Aglan, R F; Borai, E H; Abo-Aly, M M

    2017-10-01

    Egyptian monazite is a promising resource and investment attractive for production of valuable metals of industrial or nuclear interest such as rare earth elements (REEs), thorium (Th) and uranium (U). The study was focused to establish a baseline framework in viewpoint of radiation protection for the workers in production of REEs from high-grade monazite treated by sodium hydroxide (NaOH) solutions. Radiological hazard indices (cancer, gonadal and other risks) were evaluated, due to emissions (α-, β- and γ-radiations) of radium-isotopes ((228)Ra, (226)Ra, (223)Ra) and lead ((210)Pb). The values of the estimated radiological hazard indices were higher than the permissible safe limits, worldwide average and varied with those reported in other countries. It was found that more than 70% of radioactivity and radiological hazardous indices resulted from emissions of (228)Ra, while the rest was attributed to (226)Ra, (223)Ra and (210)Pb. Therefore, processing of the Egyptian monazite can cause a significant radiological impact on workers through external exposure from γ-radiations and/or internal exposure through inhalation or ingestion airborne contaminated by the radionuclides. Thus, the results recommended that protection rules could be considered to prevent the radiation hazards associated with the production of the REEs from the high grade monazite attacked by caustic method. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Thorium resonance ionization mass spectrometry for geochronological and geochemical applications

    SciTech Connect

    Fearey, B.L.; Johnson, S.G.; Nogar, N.; Murrell, M.T.; Miller, C.M.

    1990-01-01

    Resonance Ionization Mass Spectrometry (RIMS) is being developed to measure thorium isotopics from geological samples. These measurements, in conjunction with uranium measurements by thermal ionization, permit geochronological dating in the timescale of 10,000 to 350,000 years. 15 refs., 2 figs.

  4. Isotope Geochemistry for Comparative Planetology of Exoplanets

    NASA Astrophysics Data System (ADS)

    Mandt, K. E.; Atreya, S. A.; Luspay-Kuti, A.; Mousis, O.; Simon, A.; Hofstadter, M. D.

    2017-02-01

    Isotope geochemistry has played a critical role in understanding the origins of solar system bodies. Application of these techniques to exoplanets would be revolutionary and would allow comparative planetology with origins of exoplanet systems.

  5. U-Th-Pb ion microprobe analysis of monazite from the Paleoproterozoic Karrat rare earth element (REE) deposit, western Greenland

    NASA Astrophysics Data System (ADS)

    Mott, A.; Grove, M.; Bird, D. K.

    2012-12-01

    The Karrat rare earth element (REE) deposit is located at 72°N on the Niaqornakavsak peninsula of Qeqertarssuq Island on the western coast of Greenland. Metasomatic alteration of an amphibolite host rock by carbonatite derived fluids resulted in REE mineralization in the Karrat Isfjord area. REE in the mineralization are primarily found in bastnasite, allanite, and monazite. In-situ analysis of monazite was conducted on samples obtained from three sites of mineralization: (1) the primary deposit at Niaqornakavsak consisting of a single distinct ~30m thick unit; (2) at Umiamako Nuna 7 km to the east of Niaqornakavsak where the majority of REE mineralization occurs within the first 20m of the surface; and (3) a 6m thick REE-rich vein 100m below the surface at Umiamako Nuna. Formation ages for monazite at Niaqornakavsak, Umiamako Nuna (surface), and Umiamako Nuna (vein) have been calculated using 207Pb/206Pb, 206Pb/238U, and 208Pb/232Th isotope ratios. Multiple isotope ratios were examined to determine the ideal method of monazite analysis based on the inherent issues of low U content of monazite, difficulties measuring 204Pb, common Pb corrections, and peak interferences resulting from high concentrations of REE. 208Pb/232Th analysis resulted in the best precision and smallest spread of values. Energy filtering was applied to 208Pb/232Th analyses in an effort to reduce interferences at several peaks. Although all three isotope ratio analyses result in a Paleoproterozoic age similar to the timing of convergence of the North Atlantic craton, Rae craton, and Aasiat domain as well as the emplacement of the Prøven Igneous Complex in Greenland (1.95-1.80Ga), the values range between 1.7-1.9Ga depending on the isotope ratio.

  6. Monazite and zircon as major carriers of Th, U, and Y in peraluminous granites: examples from the Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Breiter, Karel

    2016-12-01

    The chemical compositions of zircon and monazite and the relationships between the contents of Th, U, Y, and REE in both minerals and in the bulk samples of their parental rocks were studied in three Variscan composite peraluminous granite plutons in the Bohemian Massif. It was established that granites of similar bulk composition contain zircon and monazite of significantly different chemistry. Monazite typically contains 5-13 wt% (rarely up to 28 wt%) ThO2, 0.4-2 wt% (up to 8.2 wt%) UO2, and 0.5-2 wt% (up to 5 wt%) Y2O3, whereas zircon typically contains less than 0.1 wt% (rarely up to 1.7 wt%) ThO2, less than 1 wt% UO2 (in the Plechý/Plockenstein granite, commonly, 1-2 wt% and scarcely up to 4.8 wt% UO2), and less than 1 wt% Y2O3 (in the Nejdek pluton often 2-5, maximally 7 wt% Y2O3). Monazite is an essential carrier of thorium, hosting more than 80 % of Th in all studied granites. Monazite also appears to be an important carrier of Y (typically 14-16 %, and in the Melechov pluton, up to 81 % of the total rock content) and U (typically 18-35 % and occasionally 6-60 % of the total rock budget). The importance of zircon for the rock budget of all the investigated elements in granites is lower: 4-26 % U, 5-17 % Y, and less than 5 % Th.

  7. Isotopic geochemistry of Panama rivers

    USGS Publications Warehouse

    Harmon, Russell S.; Worner, Gerhard; Pribil, Michael; Kern, Zoltan; Forizs, Istvan; Lyons, W. Berry; Gardner, Christopher B.; Goldsmith, Steven T.

    2015-01-01

    River water samples collected from 78 watersheds rivers along a 500-km transect across a Late Cretaceous-Tertiary andesitic volcanic arc terrane in west-central Panama provide a synoptic overview of riverine geochemistry, chemical denudation, and CO2 consumption in the tropics. D/H and 18O/16O relationships indicate that bedrock dissolution of andesitic arc crust in Panama is driven by water-rock interaction with meteoric precipitation as it passes through the critical zone, with no evidence of a geothermal or hydrothermal input. Sr-isotope relationships suggest a geochemical evolution for Panama riverine waters that involves mixing of bedrock pore water with water having 87Sr/86Sr ratios between 0.7037-0.7043 and relatively high Sr-contents with waters of low Sr content that enriched in radiogenic Sr that are diluted by infiltrating rainfall to variable extents.

  8. Th-Pb Monazite-in-Garnet Ages From the Greater Himalayan Sequence of Central Nepal

    NASA Astrophysics Data System (ADS)

    Gehrels, G.; Decelles, P.; Martin, A.

    2007-12-01

    431 new Th-Pb ages have been determined from rocks of the Greater Himalayan Sequence (GHS) of central Nepal. Some of these ages are reported by Martin et al. (2007, Chem. Geol.), most have not been reported previously. 42 samples were collected from transects along Kali Gandaki, Modi Khola, Seti Nadi, Madi Nadi, Nayu Ridge, and Marsyangdi Nadi in the Annapurna region, with three transects extending across the GHS and three transects concentrated near the base of the sequence. Garnet crystals were extracted from the samples, and monazite inclusions were identified by BSE imaging and then analyzed by LA-MC-ICPMS with a 10 micron laser beam. Where possible, inclusions were sampled from both cores and rims of the garnet crystals. The resulting ages belong to four groups: (1) 3 ages (all cores) between 801 Ma and 1407 Ma that are inherited from GHS protoliths, (2) 42 ages (all cores) from 550 Ma to 400 Ma (peak age of 487 Ma) that record early Paleozoic prograde metamorphism, (3) 102 ages (nearly all cores) scattered between 400 Ma and ~50 Ma that are interpreted as early Paleozoic grains which have experienced either Pb loss or overgrowth of Tertiary monazite, and (4) 284 ages (2/3 cores, 1/3 rims) between ca. 50 Ma and ca. 10 Ma, with cores only slightly (avg of 1.5 m.y.) older than rims. The Tertiary ages consistently young northward/upsection from ca. 35 to ca. 18 Ma, and in Marsyangdi Nadi define two separate panels that are interpreted to be imbricated along a north-dipping thrust fault. This fault is near the base of sillimanite-bearing rocks, similar to the Langtang thrust (Kohn et al. 2005, JMG), and may be partly responsible for the inverted metamorphic gradient discussed by many previous workers. Our preferred structural scenario is that the Tertiary monazite ages record progressive burial of the GHS by shortening in the Tethyan thrust belt between ca. 35 and ca. 18 Ma, termination of this metamorphism due to onset of motion along the MCT, and ca. 10 Ma

  9. Geochemistry

    ERIC Educational Resources Information Center

    Brett, Robin; Hanshaw, Bruce B.

    1978-01-01

    The past year has seen the development of certain fields of geochemical research including Nd-Sm isotope studies of meteorites and ancient terrestrial rocks; the use of the consortium approach of assembling a multidisciplined team to tackle a problem; and the handling and analysis of small quantities of materials. (Author/MA)

  10. Geochemistry

    ERIC Educational Resources Information Center

    Brett, Robin; Hanshaw, Bruce B.

    1978-01-01

    The past year has seen the development of certain fields of geochemical research including Nd-Sm isotope studies of meteorites and ancient terrestrial rocks; the use of the consortium approach of assembling a multidisciplined team to tackle a problem; and the handling and analysis of small quantities of materials. (Author/MA)

  11. Petrogenesis, Geochemistry and REE Mineralization of the Ilmenite-series Granitoids in Northern Palawan, Philippines

    NASA Astrophysics Data System (ADS)

    Padrones, J. T.; Imai, A.; Takahashi, R.; Gabo, J. A. S.; Tani, K.

    2015-12-01

    A sliver of the Palawan Continental Block associated with the Late Yanshanian magmatism was recently recognized in northern Palawan, Philippines. This intrusive unit is the Late Cretaceous Daroctan granites. This granitic intrusive body, as well as the Middle Miocene Kapoas granitoids, were studied for their petrogenesis. The REE mineralization was also examined because of the I-type and ilmenite-series character of the granitoids and the close spatial and temporal relationship with the granitic units in southern and eastern China, which are viable sources for ion-adsorption type REE mineralization. The granitic intrusive rocks being investigated in this study are composed of biotite granodiorite and biotite granites. Both intrusive units are characterized by high-K calc-alkaline, intermediate I and S-types, and peraluminous. Despite the difference in ages, the geochemistry of both intrusive units shows distinct similarities which suggest same source materials, the partial melting of middle to lower continental crust. The granitoids in the Kapoas show higher light rare earth element (LREE) enrichment than that in the Daroctan but the weathered granitic crusts show higher enrichment in the Daroctan granites compared to the parent granitic rocks. Sequential leaching extraction for REE, Y, and Nb using 8 reagents which selectively dissolved REEs with different mode of occurence (i.e. water soluble, ion-exchangeable salts, Pb- displaceable, acid soluble, Mn-oxide occluded, organically-bound, amorphous Fe-oxide occluded, and crystalline Fe-oxide occluded) show that the Daroctan granites has a potential of ion-adsorption type REE resource with 60 - 73% adsorbed ΣREE. On the other hand, about 18 - 28% adsorbed ΣREE was extracted in the Kapoas granitoid samples. Only monazite occurs as the residual REE-bearing mineral in the Kapoas granitoids, while monazite and xenotime occur in the Daroctan granite. In both samples, mica minerals were altered to vermiculite, which

  12. Applied Geochemistry Special Issue on Environmental geochemistry of modern mining

    USGS Publications Warehouse

    Seal, Robert R.; Nordstrom, D. Kirk

    2015-01-01

    Environmental geochemistry is an integral part of the mine-life cycle, particularly for modern mining. The critical importance of environmental geochemistry begins with pre-mining baseline characterization and the assessment of environmental risks related to mining, continues through active mining especially in water and waste management practices, and culminates in mine closure. The enhanced significance of environmental geochemistry to modern mining has arisen from an increased knowledge of the impacts that historical and active mining can have on the environment, and from new regulations meant to guard against these impacts. New regulations are commonly motivated by advances in the scientific understanding of the environmental impacts of past mining. The impacts can be physical, chemical, and biological in nature. The physical challenges typically fall within the purview of engineers, whereas the chemical and biological challenges typically require a multidisciplinary array of expertise including geologists, geochemists, hydrologists, microbiologists, and biologists. The modern mine-permitting process throughout most of the world now requires that potential risks be assessed prior to the start of mining. The strategies for this risk assessment include a thorough characterization of pre-mining baseline conditions and the identification of risks specifically related to the manner in which the ore will be mined and processed, how water and waste products will be managed, and what the final configuration of the post-mining landscape will be.In the Fall 2010, the Society of Economic Geologists held a short course in conjunction with the annual meeting of the Geological Society of America in Denver, Colorado (USA) to examine the environmental geochemistry of modern mining. The intent was to focus on issues that are pertinent to current and future mines, as opposed to abandoned mines, which have been the focus of numerous previous short courses. The geochemical

  13. Ordovician appinites in the Wugongshan Domain of the Cathaysia Block, South China: Geochronological and geochemical evidence for intrusion into a local extensional zone within an intracontinental regime

    NASA Astrophysics Data System (ADS)

    Zhong, Yufang; Ma, Changqian; Liu, Lei; Zhao, Junhong; Zheng, Jianping; Nong, Junnian; Zhang, Zejun

    2014-06-01

    Palaeozoic mafic igneous rocks are potentially significant in constraining the tectonic nature and evolution of the Kwangsian Orogeny in the eastern South China Block, yet they have received little attention because of their limited outcrop. Geochemistry and geochronology was carried out on newly identified Ordovician ultramafic-mafic appinites in the Wugongshan Domain of the Cathaysia Block. Seven appinite samples yielded 206Pb/238U crystallisation ages ranging from 452 ± 4 Ma to 473 ± 3 Ma. Abundant 480-500 Ma zircon xenocrysts and/or inherited zircons were found in the appinites, possibly indicating an earlier magmatism episode in the early Palaeozoic period. The Wugongshan appinites are ultramafic to mafic in composition, and the ultramafic rocks display features of cumulates (high concentrations of MgO, Fe2O3t, Cr, Ni, and low concentrations of total alkali and total rare earth elements [REE]). The appinite geochemistry displays: relatively flat chondrite normalised REE patterns with slight enrichment in light REE and weak negative Eu anomalies; enrichment in large-ion lithophile elements (such as Rb, K), and weak depletion in Nb-Ta in primitive mantle normalised trace element patterns. We suggest that the Wugongshan appinites likely originated from an ancient metasomatised mantle, and that crustal assimilation, fractional crystallisation (AFC), magma mingling and hydration were involved in the petrogenetic process, based on the combination of geochemistry, crust-like bulk Sr, Nd and zircon Hf isotopic compositions (εNd (t) = - 8.2 to - 3.2, initial 87Sr/86Sr ratios of 0.7067-0.7144, zircon εHf (t) values peaking at - 9 to - 3) and regional geological data. Further considering the alignment and chronology of the appinites, we suggest that the appinitic magmas probably were emplaced along the Jiangshan-Shaoxing Fault in a local extensional zone in an intracontinental regime in the early Palaeozoic.

  14. Revised Geochronology and Magnetostratigraphy of Northwest Iceland

    NASA Astrophysics Data System (ADS)

    Riishuus, M. S.; Duncan, R. A.; Kristjansson, L.

    2013-12-01

    .5-15.0 Ma - and at a significantly higher growth rate. This suggests that the period of volcanic quiescence, during which the lignite-bearing laterites were deposited, was long-lived (1-1.5 Myr). Our results also reveal significant variations in growth rates SW-NE along strike of the lava pile, presumably reflecting differences in the volcanic productivity along the rift zone, as well as higher resolution of temporal growth rate variations from 17 to 8 Ma (~350 m/Myr @ 17-15 Ma, ~2200m/Myr @ 14.5-13.8 Ma, ~700m/Myr @ 13.8-11.6 Ma, ~1500m/Myr @ 11.6-10.6 Ma, ~800m/Myr @ 10.5-8 Ma) than hitherto thought. At several stratigraphic levels the new absolute ages are significantly older than the recalculated age data from earlier studies. This requires reassessment of the correlation of the observed polarity patterns with the Geomagnetic Polarity Time Scale. McDougall, I., Kristjansson, L. and Saemundsson, K., 1984. Magnetostratigraphy and geochronology of Northwest Iceland. Journal of Geophysical Research 89, 7029-7060.

  15. Characterization of PAH matrix with monazite stream containing uranium, gadolinium and iron

    NASA Astrophysics Data System (ADS)

    Pal, Sangita; Meena, Sher Singh; Goswami, D.

    2016-05-01

    Uranium (U) gadolinium(Gd) and iron (Fe) containing alkaline waste simulated effluent (relevant to alkaline effluent of monazite ore) has been treated with a novel amphoteric resin viz, Polyamidehydroxamate (PAH) containing amide and hydroxamic acid groups. The resin has been synthesized in an eco-friendly manner by polymerization nad conversion to functional groups characterized by FT-IR spectra and architectural overview by SEM. Coloration of the loaded matrix and de-coloration after extraction of uranium is the special characteristic of the matrix. Effluent streams have been analyzed by ICP-AES, U loaded PAH has been characterized by FT-IR, EXAFS, Gd and Fe by X-ray energy values of EDXRF at 6.053 Kev and 6.405 Kev respectively. The remarkable change has been observed in Mössbauer spectrum of Fe-loaded PAH samples.

  16. Behavior of traces of refractory minerals (including monazite) in the lithium metaborate fusion

    SciTech Connect

    Feldman, C.

    1983-01-01

    In the analysis of rocks using the LiBO/sub 2/ fusion - acid dissolution procedure, traces of various elements may escape detection if the minerals in which they occur resist fusion, or are converted by the fusion to some form that is insoluble in the quenching liquid used. To check for such behavior, 20 to 100 mg samples of 12 chemically resistant minerals were fused. Nine (cassiterite, ilmenite, rutile, wolfamite, magnetite, zircon, corundum, beryl, columbite-tantalite) gave melts which dissolved to give clear, stable solutions in 3% HNO/sub 3/ containing, in some cases, appropriate additives. Chromite produced a chromium carbide which could not be dissolved, but whose formation could be prevented by including NaBO/sub 3/ in the fusion mixture. The melt obtained with monazite required 6N HCl for dissolution. Molybdenite (MoS/sub 2/) was not attacked by any of the fusions tried.

  17. Characterization of PAH matrix with monazite stream containing uranium, gadolinium and iron

    SciTech Connect

    Pal, Sangita Goswami, D.; Meena, Sher Singh

    2016-05-23

    Uranium (U) gadolinium (Gd) and iron (Fe) containing alkaline waste simulated effluent (relevant to alkaline effluent of monazite ore) has been treated with a novel amphoteric resin viz, Polyamidehydroxamate (PAH) containing amide and hydroxamic acid groups. The resin has been synthesized in an eco-friendly manner by polymerization nad conversion to functional groups characterized by FT-IR spectra and architectural overview by SEM. Coloration of the loaded matrix and de-coloration after extraction of uranium is the special characteristic of the matrix. Effluent streams have been analyzed by ICP-AES, U loaded PAH has been characterized by FT-IR, EXAFS, Gd and Fe by X-ray energy values of EDXRF at 6.053 KeVand 6.405 KeV respectively. The remarkable change has been observed in Mössbauer spectrum of Fe-loaded PAH samples.

  18. He diffusion systematics in minerals: Evidence from synthetic monazite and zircon structure phosphates

    NASA Astrophysics Data System (ADS)

    Farley, K. A.

    2007-08-01

    Helium diffusivity was measured in synthetic rare-earth-element orthophosphates with systematically varying properties to evaluate potential controls on He transport in minerals. In the zircon structure phosphates (in this study, the phosphates of Tb, Dy, Ho, Er, Tm, Yb, and Lu as well as synthetic xenotime, YPO 4), He diffusion is strongly anisotropic. Transport apparently proceeds preferentially through channels aligned with the c-axis. The activation energy for diffusion is almost the same (122 ± 6 kJ/mol) in all members of this family, but there is a monotonic decrease in Do with atomic number from TbPO 4 (˜10 5 cm 2/s) to LuPO 4 (˜10 cm 2/s). The c-parallel channels become increasingly constricted in the same sequence, likely accounting for the systematically decreasing diffusivity. The He closure temperature ( r = 1 cm, d T/d t = 10 °C/Myr) increases with atomic number from 44 °C for TbPO 4 to 88 °C for LuPO 4. Diffusion of radiogenic helium from natural zircon and xenotime is much slower than these synthetic analogs predict, suggesting that coupled substitution of REE and P for Zr and Si and/or radiation damage profoundly modify the energetics of interstitial He diffusion. In particular, α-recoil may play a key role by damaging the continuity and integrity of the channels. Monazite structure phosphates (here La, Ce, Pr, Nd, Sm, and Gd phosphate) are far more He retentive than those of the zircon structure. Activation energies increase smoothly with atomic number from LaPO 4 (183 kJ/mol) to NdPO 4 (224 kJ/mol) then decrease again to GdPO 4 (198 kJ/mol). Do values mimic this pattern, spanning a range from ˜10 -1 cm 2/s (GdPO 4) to 10 4 cm 2/s (NdPO 4). Nevertheless, He closure temperatures increase monotonically with atomic number, from 300 °C in LaPO 4 to 410 °C in GdPO 4. No evidence was obtained bearing on diffusion anisotropy, but the monazite structure lacks through-going channels so it is not expected. Diffusion parameters for radiogenic helium

  19. Disturbance versus preservation of U-Th-Pb ages in monazite during fluid-rock interaction: textural, chemical and isotopic in situ study in microgranites (Velay Dome, France)

    NASA Astrophysics Data System (ADS)

    Didier, A.; Bosse, V.; Boulvais, P.; Bouloton, J.; Paquette, J.-L.; Montel, J.-M.; Devidal, J.-L.

    2013-06-01

    Monazite is extensively used to date crustal processes and is usually considered to be resistant to diffusive Pb loss. Nevertheless, fluid-assisted recrystallisation is known to be capable of resetting the monazite chronometer. This study focuses on chemical and isotopic disturbances in monazite grains from two microgranite intrusions in the French Central Massif (Charron and Montasset). Petrologic data and oxygen isotopes suggest that both intrusions have interacted with alkali-bearing hydrothermal-magmatic fluids. In the Charron intrusion, regardless of their textural location, monazite grains are sub-euhedral and cover a large domain of compositions. U-Pb chronometers yield a lower intercept age of 297 ± 4 Ma. An inherited component at 320 Ma is responsible for the scattering of the U-Th-Pb ages. The Montasset intrusion was later affected by an additional F-rich crustal fluid with crystallisation of Ca-REE-fluorocarbonates, fluorite, calcite and chloritisation. Pristine monazite is chemically homogeneous and displays 208Pb/232Th and 206Pb/238U concordant ages at 307 ± 2 Ma. By contrast, groundmass monazite shows dissolution-recrystallisation features associated with apatite and thorite precipitation (Th-silicate) and strong chemical reequilibration. 208Pb/232Th ages are disturbed and range between 270 and 690 Ma showing that the Th/Pb ratio is highly fractionated during the interaction with fluids. Apparent U-Pb ages are older due to common Pb incorporation yielding a lower intercept age at 312 ± 10 Ma, the age of the pristine monazite. These results show that F-rich fluids are responsible for Th mobility and incorporation of excess Pb, which thus strongly disturbed the U-Th-Pb chronometers in the monazite.

  20. Microstructural, geothermobarometric and geochronological constraints on the complex Alpine collisional history recorded on the low-grade "Psunj Complex" metamorphic rocks of the Slavonian Mts. (Croatia)

    NASA Astrophysics Data System (ADS)

    Balen, Dražen

    2014-05-01

    Metamorphic rocks of the Slavonian Mts. (NE Croatia) cropping out on the SW edge of the Pannonian Basin belong to the Bihor nappe system of Tisia Mega-Unit i.e. of the lithospheric fragment broken off from the southern margin of the European plate. The present-day position of this Unit resulted from complex regional-scale Mesozoic and Cenozoic movements during the Alpine-Carpathian-Dinaridic orogenic system geodynamic evolution. Usually, the metamorphic rocks of the Slavonian Mts. are interpreted as a part of igneous-metamorphic complex belonging to metamorphic belt formed during or even prior to the Variscan orogeny. Until recently, the Alpine metamorphic evolution was considered insignificant and often neglected or described just in general terms due to considerable lack of geothermobarometric, phase equilibrium, fossil and/or geochronological age constraints. The chlorite schists are widely distributed lithology in the area, comprising simple peak metamorphic mineral assemblage chlorite + plagioclase (albite) + muscovite + quartz ± garnet and are associated to the local complex called Psunj complex (PsC). Metamorphic conditions for non-garnetiferous chlorite schists are obtained with chlorite (Al(IV)) thermometry and white mica barometry are 300 °C and 2.4±0.6 kbar. The chlorite schists are thrusted over (~ to the NE) microtectonically similar chloritoid-bearing schists that reached peak P-T values of 3.5-4 kbar and 340-380 °C. At least two distinct penetrative low-grade metamorphic foliations recorded in the chlorite schists are accompanied by existence of different populations of small (~3.5 µm) low-Th monazites, giving an average age 99±15 Ma. Histogram of obtained ages shows two peaks at 120 and 80 Ma while age modelling recognized two peaks at 113±20 and 82±23 Ma. First Alpine (113±20 Ma) event represents a rare record of late Early Cretaceous thermal event that affected Bihor nappe system. The age contradicts common opinion that Bihor nappe

  1. Prolonged history of episodic fluid flow in giant hematite ore bodies: Evidence from in situ U Pb geochronology of hydrothermal xenotime

    NASA Astrophysics Data System (ADS)

    Rasmussen, Birger; Fletcher, Ian R.; Muhling, Janet R.; Thorne, Warren S.; Broadbent, Graeme C.

    2007-06-01

    Absolute ages for hydrothermal mineralization and fluid flow are critical for understanding the geological processes that concentrate metals in the Earth's crust, yet many ore deposits remain undated because suitable mineral chronometers have not been found. The origin of giant hematite ore deposits, which are hosted in Precambrian banded-iron formations (BIFs), remains contentious. Several models have been formulated based on different sources and timing for the mineralizing fluids; supergene-metamorphic, syn-orogenic, late-orogenic extensional collapse and syn-extensional. Precise geochronology of the ore offers a means of discriminating between these models. In this study, two U-Pb chronometers, xenotime and monazite, have been identified in high-grade hematite ore bodies from the Mount Tom Price mine in the Hamersley Province, northwestern Australia. Both phosphate minerals occur as inclusions within the hematite ore and as coarser crystals intergrown with martite (hematite pseudomorph after magnetite) and microplaty hematite, indicating that the xenotime and monazite precipitated during mineralization. In situ U-Pb dating by ion microprobe indicates that both phosphate minerals grew during multiple discrete events. Our results suggest that ore genesis may have commenced as early as ˜ 2.15 Ga, with subsequent hydrothermal remobilization and/or mineralization at ˜ 2.05 Ga, ˜ 1.84 Ga, ˜ 1.67 Ga, ˜ 1.59 Ga, ˜ 1.54 Ga, ˜ 1.48 Ga and ˜ 0.85 Ga. The location of the ore bodies along ancient fault systems, and the coincidence of at least some of the U-Pb phosphate dates with episodes of tectonothermal activity in the adjacent Proterozoic Capricorn Orogen, implies that fluids were channelled through major structures in the southern Pilbara Craton during discrete phases of tectonic compression and extension. Our results show that the hematite ore bodies formed at sites of repeated focussed hydrothermal fluid flow. In contrast to the aforementioned models, our

  2. A direct comparison of the ages of detrital monazite versus detrital zircon in Appalachian foreland basin sandstones: Searching for the record of Phanerozoic orogenic events

    NASA Astrophysics Data System (ADS)

    Hietpas, Jack; Samson, Scott; Moecher, David

    2011-10-01

    The provenance potential of detrital monazite was investigated by in situ measurement of 232Th- 208Pb dates of grains isolated from six Middle Carboniferous-Permian sandstones from the Appalachian foreland basin. Provenance assessment of these units was previously investigated by measuring U-Pb crystallization ages of detrital zircon (Thomas et al., 2004; Becker et al., 2005, 2006). Approximately 90% of the detrital zircon ages record Mesoproterozoic or older ages, with only 10% recording the three major pulses of tectonism (Taconian, Acadian and Alleghanian) that are the hallmark of the Appalachian Orogen. 232Th- 208Pb ages of detrital monazite, however, strongly record the complex phases of Paleozoic orogenesis. Nearly 65% of the ages record Paleozoic events, while 35% record Neoproterozoic or older ages. In several of the analyzed sandstones, detrital monazite ages record Paleozoic orogenic events that are completely missed by detrital zircon ages, demonstrating that monazite ages more accurately reflect the character of the sediment source rocks. The inferred maximum age of sediment deposition, as determined by the youngest monazite grains, is ~ 550 Ma younger for two of the analyzed sandstones compared to depositional constraints based on the youngest detrital zircon. The different physical properties and petrogenesis of zircon and monazite are interpreted to be factors for the dramatic differences in sediment provenance information provided by each mineral. The results from this study have important implications for determining sediment provenance, constraining maximum age of sediment deposition, and developing robust regional tectonic models.

  3. Divisions of geologic time-major chronostratigraphic and geochronologic units

    USGS Publications Warehouse

    ,

    2010-01-01

    Effective communication in the geosciences requires consistent uses of stratigraphic nomenclature, especially divisions of geologic time. A geologic time scale is composed of standard stratigraphic divisions based on rock sequences and is calibrated in years. Over the years, the development of new dating methods and the refinement of previous methods have stimulated revisions to geologic time scales. Advances in stratigraphy and geochronology require that any time scale be periodically updated. Therefore, Divisions of Geologic Time, which shows the major chronostratigraphic (position) and geochronologic (time) units, is intended to be a dynamic resource that will be modified to include accepted changes of unit names and boundary age estimates. This fact sheet is a modification of USGS Fact Sheet 2007-3015 by the U.S. Geological Survey Geologic Names Committee.

  4. Detrital Zircon U-Pb Geochronology Applied to Tectonics

    NASA Astrophysics Data System (ADS)

    Gehrels, George

    2014-05-01

    Detrital zircon geochronology is rapidly developing into an essential tool in Earth science research because of the widespread occurrence of zircon in sedimentary systems; the wide range of information that can be extracted from zircon crystals; the ability to determine ages with reasonable precision, accuracy, and efficiency; and the wide range of new ideas about how to use detrital zircon geochronologic information. The U-Pb system is particularly powerful because three chronometers are available (238U+206Pb, 235U+207Pb, and 232Th+208Pb), but challenges arise because of complexities from inheritance and Pb loss. Ages can be used to constrain the age of deposition of the host sediment, reconstruct provenance, characterize a sedimentary unit, and characterize many different aspects of source regions. Detrital zircon geochronology has an exciting future given the growth history recorded in individual crystals; the variety of detrital minerals that can provide complementary information; and the large number of geochemical, isotopic, and chronologic systems that can be applied to these minerals.

  5. Geochronological constraints on the evolution of El Hierro (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Becerril, Laura; Ubide, Teresa; Sudo, Masafumi; Martí, Joan; Galindo, Inés; Galé, Carlos; Morales, Jose María; Yepes, Jorge; Lago, Marceliano

    2016-01-01

    New age data have been obtained to time constrain the recent Quaternary volcanism of El Hierro (Canary Islands) and to estimate its recurrence rate. We have carried out 40Ar/39Ar geochronology on samples spanning the entire volcanostratigraphic sequence of the island and 14C geochronology on the most recent eruption on the northeast rift of the island: 2280 ± 30 yr BP. We combine the new absolute data with a revision of published ages onshore, some of which were identified through geomorphological criteria (relative data). We present a revised and updated chronology of volcanism for the last 33 ka that we use to estimate the maximum eruptive recurrence of the island. The number of events per year determined is 9.7 × 10-4 for the emerged part of the island, which means that, as a minimum, one eruption has occurred approximately every 1000 years. This highlights the need of more geochronological data to better constrain the eruptive recurrence of El Hierro.

  6. Proterozoic polymetamorphism in the Quanji Block, northwestern China: Evidence from microtextures, garnet compositions and monazite CHIME ages

    NASA Astrophysics Data System (ADS)

    Wang, Qinyan; Pan, Yuanming; Chen, Nengsong; Li, Xiaoyan; Chen, Haihong

    2009-05-01

    The Quanji Block, situated close to the triple junction of three major Precambrian terranes in China (i.e., the North China Craton, the Yangtze Block and the Tarim Block), is composed of Precambrian metamorphic crystalline basement and an unmetamorphosed Mesozoic-Paleozoic sedimentary cover; it has been interpreted as a remnant continental fragment. Microtextural relationships, garnet trace element compositions, and monazite CHIME ages in paragneisses, schists and granitic leucosomes show two episodes of regional metamorphism in the Quanji Block basement. The first regional metamorphism and accompaning anatexis took place at ˜1.93 Ga; the second regional metamorphism occurred between ˜1.75 and ˜1.71 Ga. Mineral compositions of the first metamorphism, including those of monazite, were significantly disturbed by the second event. These two regional metamorphic episodes were most likely linked to assembly and breakup of the supercontinent Columbia, respectively.

  7. Post-peak, fluid-mediated modification of granulite facies zircon and monazite in the Trivandrum Block, southern India

    NASA Astrophysics Data System (ADS)

    Taylor, Richard J. M.; Clark, Chris; Fitzsimons, Ian C. W.; Santosh, M.; Hand, M.; Evans, Noreen; McDonald, Brad

    2014-08-01

    The quarry at Kottavattom in the Trivandrum Block of southern India contains spectacular examples of fluid-assisted alteration of high-grade metamorphic rocks. Garnet-biotite gneiss has undergone a change in mineral assemblage to form submetre scale orthopyroxene-bearing patches, later retrogressed to form an amphibole-bearing lithology. These patches, often referred to as arrested or incipient charnockite, crosscut the original metamorphic foliation and are typically attributed to passage of a low aH2O fluid through the rock. Whilst this conversion is recognised as a late stage process, little detailed chronological work exists to link it temporally to metamorphism in the region. Zircon and monazite analysed from Kottavattom not only record metamorphism in the Trivandrum Block but also show internal, lobate textures crosscutting the original zoning, consistent with fluid-aided coupled dissolution-reprecipitation during formation of the orthopyroxene-bearing patches. High-grade metamorphism at the quarry occurred between the formation of metamorphic monazite at ~585 Ma and the growth of metamorphic zircon at ~523 Ma. The fluid-assisted alteration of the garnet-biotite gneiss is poorly recorded by altered zircon with only minimal resetting of the U-Pb system, whereas monazite has in some cases undergone complete U-Pb resetting and records an age for fluid infiltration at ~495 Ma. The fluid event therefore places the formation of the altered patches at least 25 Myr after the zircon crystallisation in the garnet-biotite gneiss. The most likely fluid composition causing the modification and U-Pb resetting of zircon and monazite is locally derived hypersaline brine.

  8. It's About Time: How Accurate Can Geochronology Become?

    NASA Astrophysics Data System (ADS)

    Harrison, M.; Baldwin, S.; Caffee, M. W.; Gehrels, G. E.; Schoene, B.; Shuster, D. L.; Singer, B. S.

    2015-12-01

    As isotope ratio precisions have improved to as low as ±1 ppm, geochronologic precision has remained essentially unchanged. This largely reflects the nature of radioactivity whereby the parent decays into a different chemical species thus putting as much emphasis on the determining inter-element ratios as isotopic. Even the best current accuracy grows into errors of >0.6 m.y. during the Paleozoic - a span of time equal to ¼ of the Pleistocene. If we are to understand the nature of Paleozoic species variation and climate change at anything like the Cenozoic, we need a 10x improvement in accuracy. The good news is that there is no physical impediment to realizing this. There are enough Pb* atoms in the outer few μm's of a Paleozoic zircon grown moments before eruption to permit ±0.01% accuracy in the U-Pb system. What we need are the resources to synthesize the spikes, enhance ionization yields, exploit microscale sampling, and improve knowledge of λ correspondingly. Despite advances in geochronology over the past 40 years (multicollection, multi-isotope spikes, in situ dating), our ability to translate a daughter atom into a detected ion has remained at the level of 1% or so. This means that a ~102 increase in signal can be achieved before we approach a physical limit. Perhaps the most promising approach is use of broad spectrum lasers that can ionize all neutrals. Radical new approaches to providing mass separation of such signals are emerging, including trapped ion cyclotron resonance and multi-turn, sputtered neutral TOF spectrometers capable of mass resolutions in excess of 105. These innovations hold great promise in geochronology but are largely being developed for cosmochemistry. This may make sense at first glance as cosmochemists are classically atom-limited (IDPs, stardust) but can be a misperception as the outer few μm's of a zircon may represent no more mass than a stardust mote. To reach the fundamental limits of geochronologic signals we need to

  9. AGE (Argon Geochronology Experiment): An Instrument for Geochronology on the Surface of Mars

    NASA Technical Reports Server (NTRS)

    Swindle, T. D.; Bode, R.; Boynton, W. V.; Kring, D. A.; Williams, M.; Chutjian, A.; Darrach, M. R.; Cremers, D. A.; Wiens, R. C.; Baldwin, S. L.

    2003-01-01

    As our knowledge of the planet Mars continues to grow, one parameter that remains elusive is the absolute chronology of the planet s geological history. Although crater counts have provided a robust relative chronology, impactor fluxes are poorly enough known that there are places on Mars where the absolute age is uncertain by a factor of two or more. To resolve these uncertainties, it will be necessary to either analyze well-documented samples returned to the Earth from the Martian surface or to perform in situ measurements with sufficient precision. Sample return is still at least a decade away, and even then it might be from a biologically interesting area that might be geologically complex. Hence an in situ measurement, within an uncertainty of 20% or better, could greatly improve our knowledge of the history of Mars. With funding from the Planetary Instrument Definition and Development Program (PIDDP), we have been working on an instrument to perform potassium-argon (K-Ar) and cosmic-ray exposure (CRE) dating in situ on the surface of Mars. For either of these techniques, it is necessary to measure the abundance of one or more major or minor elements (K in the case of KAr; all majors and minors in the case of CRE) and the abundance and isotopes composition of a noble gas (Ar in the case of K-Ar; He, Ne and Ar for CRE dating). The technology for either of these types of measurements exists, but has never before been integrated for a spacecraft. We refer to the instrument as AGE, the Argon Geochronology Experiment (although we will measure the noble gases He and Ne as well for CRE ages). We report here on the basic components that go into such an instrument, both those that use existing technology and those that had to be developed to create the integrated package.

  10. Bonding characteristics, thermal expansibility, and compressibility of RXO(4) (R = rare earths, X = P, As) within monazite and zircon structures.

    PubMed

    Li, Huaiyong; Zhang, Siyuan; Zhou, Shihong; Cao, Xueqiang

    2009-05-18

    Systematically theoretical research was performed on the monazite- and zircon-structure RXO(4) (R = Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu; X = P, As) series by using the chemical bond theory of dielectric description. The chemical bond properties of R-O and X-O bonds were presented. In the zircon phase, the covalency fractions of X-O bonds increased in the order of V-O < As-O < P-O, which was in accordance with the ionic radii and electronegative trends, and the covalency fractions of R-O bonds varied slightly due to the lanthanide contraction. While in the monazite phase, both R-O and X-O bonds were divided into two groups by their covalency fractions. The contributions from the bond to the lattice energy, linear thermal expansion coefficient (LTEC), and bulk modulus were explored. The X-O bonds with short bond lengths and high chemical valence made greater contributions to the lattice energy and performed nearly rigidly during the deformation. A regular variation of lattice energy, LTEC, and bulk modulus with the ionic radii of the lanthanides was observed in both monazite and zircon phases.

  11. U-Pb SHRIMP geochronology and trace-element geochemistry of coesite-bearing zircons, North-East Greenland Caledonides

    USGS Publications Warehouse

    McClelland, W.C.; Power, S.E.; Gilotti, J.A.; Mazdab, F.K.; Wopenka, B.

    2006-01-01

    Obtaining reliable estimates for the timing of eclogite-facies metamorphism is critical to establishing models for the formation and exhumation of high-pressure and ultrahigh-pressure (UHP) metamorphic terranes in collisional orogens. The presence of pressure-dependent phases, such as coesite, included in metamorphic zircon is generally regarded as evidence that zircon growth occurred at UHP conditions and, ifdated, should provide the necessary timing information. We report U-Pb sensitive high-resolution ion microprobe (SHRIMP) ages and trace-element SHRIMP data from coesite-bearing zircon suites formed during UHP metamorphism in the North- East Greenland Caledonides. Kyanite eclogite and quartzofeldspathic host gneiss samples from an island in J??kelbugt (78??00'N, 18??04'W) contained subspherical zircons with well-defined domains in cathodoluminescence (CL) images. The presence of coesite is confirmed by Raman spectroscopy in six zircons from four samples. Additional components of the eclogite-facies inclusion suite include kyanite, omphacite, garnet, and rutile. The trace-element signatures in core domains reflect modification of igneous protolith zircon. Rim signatures show flat heavy rare earth element (HREE) patterns that are characteristic of eclogite-facies zircon. The kyanite eclogites generally lack a Eu anomaly, whereas a negative Eu anomaly persists in all domains of the host gneiss. The 207Pb- corrected 206Pb/238U ages range from 330 to 390 Ma for the host gneiss and 330-370 Ma for the kyanite eclogite. Weighted mean 206Pb/238U ages for coesite-bearing domains vary from 364 ?? 8 Ma for the host gneiss to 350 ?? 4 Ma for kyanite eclogite. The combined U-Pb and REE data interpreted in conjunction with observed CL domains and inclusion suites suggest that (1) Caledonian metamorphic zircon formed by both new zircon growth and recrystallization, (2) UHP metamorphism occurred near the end of the Caledonian collision, and (3) the 30-50m.y. span of ages records long residence times at eclogite-facies conditions for the UHProcks of North-East Greenland. This spread in observed ages is interpreted to be characteristic of metamorphic rocks that have experienced relatively long (longer than 10 m.y.) residence times at UHP conditions. ?? 2006 Geological Society of America.

  12. Mechanisms and timescales of generating eruptible rhyolitic magmas at Yellowstone caldera from zircon and sanidine geochronology and geochemistry

    USGS Publications Warehouse

    Stelten, Mark; Cooper, Kari M.; Vazquez, Jorge A.; Calvert, Andrew T.; Glessner, Justin G

    2015-01-01

    We constrain the physical nature of the magma reservoir and the mechanisms of rhyolite generation at Yellowstone caldera via detailed characterization of zircon and sanidine crystals hosted in three rhyolites erupted during the (ca. 170 – 70 ka) Central Plateau Member eruptive episode – the most recent post-caldera magmatism at Yellowstone. We present 238U-230Th crystallization ages and trace-element compositions of the interiors and surfaces (i.e., unpolished rims) of individual zircon crystals from each rhyolite. We compare these zircon data to 238U- 230Th crystallization ages of bulk sanidine separates coupled with chemical and isotopic data from single sanidine crystals. Zircon age and trace-element data demonstrate that the magma reservoir that sourced the Central Plateau Member rhyolites was long-lived (150 – 250 kyr) and genetically related to the preceding episode of magmatism, which occurred ca. 256 ka. The interiors of most zircons in each rhyolite were inherited from unerupted material related to older stages of Central Plateau Member magmatism or the preceding late Upper Basin Member magmatism (i.e., are antecrysts). Conversely, most zircon surfaces crystallized near the time of eruption from their host liquids (i.e., are autocrystic). The repeated recycling of zircon interiors from older stages of magmatism demonstrates that sequentially erupted Central Plateau Member rhyolites are genetically related. Sanidine separates from each rhyolite yield 238U-230Th crystallization ages at or near the eruption age of their host magmas, coeval with the coexisting zircon surfaces, but are younger than the coexisting zircon interiors. Chemical and isotopic data from single sanidine crystals demonstrate that the sanidines in each rhyolite are in equilibrium with their host melts, which considered along with their near-eruption crystallization ages suggests that nearly all CPM sanidines are autocrystic. The paucity of antecrystic sanidine crystals relative to antecrystic zircons require a model where eruptible rhyolites are generated by extracting melt and zircons from a long-lived mush of immobile crystal-rich magma. In this process the larger sanidine crystals remain trapped in the locked crystal network. The extracted melts (plus antecrystic zircon) amalgamate into a liquid dominated (i.e., eruptible) magma body that is maintained as a physically distinct entity relative to the bulk of the long-lived crystal mush. Zircon surfaces and sanidines in each rhyolite crystallize after melt extraction/amalgamation and their ages constrain the residence time of eruptible magmas at Yellowstone. Residence times of the large volume rhyolites (~40 – 70 km3) are ≤ 1 kyr (conservatively < 6 kyr), which suggests that large volumes of rhyolite can be generated rapidly by extracting melt from a crystal mush. Because the lifespan of the crystal mush that sourced the Central Plateau Member rhyolites is two orders of magnitude longer than the residence time of eruptible magma bodies within the reservoir, it is apparent that the Yellowstone magma reservoir spends most of its time in a largely-crystalline (i.e., uneruptible) state, similar to the present-day magma reservoir, and that eruptible magma bodies are ephemeral features.

  13. Prolonged Eclogite-Facies Metamorphism: Evidence From Geochronology and Trace Element Geochemistry, North Qaidam UHP Terrane, NW China

    NASA Astrophysics Data System (ADS)

    Mattinson, C. G.; Wooden, J. L.; Mazdab, F. K.; Liou, J. G.; Bird, D. K.; Wu, C.

    2006-12-01

    Amphibolite-facies felsic gneisses near Dulan, at the southeast end of the North Qaidam terrane, enclose minor (<10 vol%) eclogite and peridotite which record ultra-high pressure (UHP) metamorphism. Field relations, and coesite inclusions in zircons from paragneiss suggest that felsic, mafic, and ultramafic rocks all experienced UHP metamorphism and a common amphibolite-facies retrogression. SHRIMP-RG U-Pb and REE analyses of zircons from four eclogites yield weighted mean ages of 449--422 Ma; REE patterns (flat HREE, no Eu anomaly) and inclusions of garnet, omphacite, and rutile indicate that these ages record eclogite-facies metamorphism. Trace element variations in zircon are similar to core-to-rim trace element zoning of coexisting garnet revealed by LA-ICP-MS analysis. The coherent field relations, and the similar range of individual ages in each sample suggests that the ~25 m.y. age range reflects the duration of eclogite-facies conditions. Ti-in-zircon thermometry results show considerable spread, but may suggest cooling from 650-700°C (442--449 Ma) to 600-650°C (433--422 Ma). One group of zircons yields 770--810°C temperatures, possibly related to granulite-facies overprinting during exhumation. In contrast to Ti-in-zircon, Zr- in-rutile thermometry yields tightly clustered results of 590°C for all four eclogites and one 426 ± 4 Ma paragneiss. The ~25 m.y. duration as well as possible cooling during eclogite-facies metamorphism suggests the UHP rocks decoupled from the downgoing plate, and were refrigerated by continued, structurally deeper subduction. In the Lüliang Shan (350 km NW) in the North Qaidam terrane, eclogite and garnet peridotite ages of 414-- 495 Ma suggest that this locality also records a protracted eclogite-facies history. Evidence of prolonged eclogite-facies metamorphism in other HP/UHP localities (Greenland, Norway, Alps, Dabie-Sulu) suggests that eclogite-facies residence times of >15--25 m.y. may be globally significant in continental subduction/collision zones.

  14. Geochronology and geochemistry constraints of the Early Cretaceous Taibudai porphyry Cu deposit, northeast China, and its tectonic significance

    NASA Astrophysics Data System (ADS)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Wu, Xin-Li; Ouyang, Hen-Gen

    2015-05-01

    The southern Great Xing'an Range (SGXR), located in the southeastern part of Inner Mongolia, China, shows intense Mesozoic tectono-magmatic activity and hosts economically important polymetallic (Cu-Pb-Zn-Sn-Fe-Ag-Au-Mo) mineralization. Here, we present new zircon U-Pb ages, whole-rock geochemical data, Nd-Sr-Hf isotopic data and Re-Os ages for the Taibudai deposit in the SGXR. The Taibudai granitoids show high SiO2 (70.62-72.13 wt.%) and alkali (Na2O + K2O = 7.04-8.60 wt.%) concentrations, low MgO (0.89-1.37 wt.%) and Al2O3 (∼14 wt.%), ASI ratios <1.1 (0.94-0.97), LILEs (e.g., Rb) enriched, HFSEs (e.g., Nb, Ta, Ti, and P) depleted, and have low Sr and Yb concentrations, classifying these rocks as fractionated I-type granites. The Taibudai granitoids have negative εNd (t) values ranging from -2.2 to -1.6 and relatively low initial 87Sr/86Sr ratios from 0.70536 to 0.70581. In situ Hf isotopic analyses on zircons using LA-MC-ICP-MS show variable positive εHf (t) values ranging from +0.80 to +13.55, corresponding to relatively young two-stage Hf model ages from 801 to 942 Ma (excluding one spot). These mineralogical, geochemical, and isotopic features strongly suggest that the primary magmas of the Taibudai granitoids were derived mainly from the partial remelting of Neoproterozoic juvenile crustal material, with no remarkable modification through incorporation of continental or subduction-related material. Re-Os isotope analyses of molybdenite from the deposit yield an ore-forming age of 137.1 ± 1.4 Ma. Re contents range from 4.37 to 41.77 ppm, implying ore material components have a mixed crust-mantle origin. SHRIMP analysis of zircons show that the monzogranitic porphyry and biotite granite in the Taibudai deposit were formed at 137.0 ± 0.9 Ma and 138.3 ± 0.9 Ma, respectively, indicating a temporal link between granitic magmatism and Cu mineralization. This result, combined with the regional geology, tectonic evolution, and age data from the literature, suggests that the Early Cretaceous (∼140 Ma) was the peak metallogenic epoch for the Great Xing'an Range, and the mineralization in this period generally takes the form of porphyry, skarn, or hydrothermal polymetallic ore deposits in an active extensional continental margin environment. The Taibudai porphyry and associated mineralization provides a typical example of magmatism and metallogeny associated with a Paleo-Pacific plate subduction, continental margin, back-arc extensional setting.

  15. Geochronology and geochemistry of lithologies of the Tabuaço W-prospect area (Northern Portugal)

    NASA Astrophysics Data System (ADS)

    Cerejo, Tiago; Francisco Santos, Jose; Sousa, Joao Carlos; Castanho, Nuno; Sergio, Gabriel; Ribeiro, Sara

    2016-04-01

    This work is focussed on lithologies occurring at Quinta de São Pedro das Águias, which is located in the Tabuaço prospect (an area of 45 km2 where exploration for W-skarn deposits is taking place, in northern Portugal, close to the Douro valley). At Quinta de São Pedro das Águias several lithologies are recognized: "normal" phyllites, black phyllites (graphite-bearing), marbles, calcsilicate (s.s.) rocks and skarns (sometimes, scheelite-bearing), belonging to the Bateiras Formation, of the Douro Group (one of the two major subdivisions of the Neoproterozoic-Cambrian Dúrico-Beirão Supergroup); Paredes da Beira-Tabuaço granite; several aplitic and pegmatitic bodies. The studied area belongs to the Central Iberian Zone, a geotectonic unit of the Iberian Variscan Chain. Rb-Sr isotope analyses done in the scope of this work, provided a 316 ± 7 Ma whole-rock isochron (MSWD = 1.7; initial 87Sr/86Sr = 0.7146) for the granitoids, using the 87Rb decay constant recently recommended by IUPAC-IUGS (Villa et al., 2015). This date is interpreted here as the emplacement age of those rocks, during a late stage of the Variscan D3. The granite revealed a S-type nature, namely because it is a muscovite granite, it shows a peraluminous composition (average A/CNK = 1.28), and the Sr and Nd isotope fingerprints (-8.9 ≤ ɛNd(316Ma) ≤ -7.8; +0.7105 ≤ 87Sr/86Sr(316Ma) ≤ 0.7182) fit into the composition of metasedimentary crust. The analysed phyllites show the following isotopic compositions: -9.7 ≤ ɛNd(316Ma) ≤ -8.2; +0.7148 ≤ 87Sr/86Sr(316Ma) ≤ 0.7188. Therefore, the isotope signatures, at 316 Ma, of the granite and of the studied metapelites overlap, suggesting that the parental magma was generated by anatexis of Grupo do Douro metasediments. According to their petrographic, geochemical and isotopic features, aplites and pegmatites are viewed as extreme differentiates from the granite. São Pedro das Águias metapelites show biotite zone parageneses. Geochemically, their REE normalized patterns are very similar to those displayed by NIBAS and by other upper crustal reference compositions. Isotopically, especially due to their lower ɛNd316, the studied metapelites are clearly distinct from the Grupo das Beiras metasediments (the other major division of the Dúrico-Beirão Supergroup), and, instead, they resemble other metasedimentary units of the Iberian Massif. Several lines of evidence, namely the isotope data (-8.1 ≤ ɛNd(316Ma) ≤ -6.4; +0.7090 ≤ 87Sr/86Sr(316Ma) ≤ 0.7102) and the occurrence of fine intercalations of sub-mm layers enriched in phyllosilicates, suggest that calcsilicate (s.l.) rocks owe their composition not only to metasomatism that accompanied the granite intrusion, but also to an inheritance from their protoliths, which should have resulted from mixed sedimentation, both chemical and terrigenous. This work was financially supported by: - FEDER funds trough Operational Programme Competitiveness Factors - COMPETE and by national funds through FCT - Fundação para a Ciência e a Tecnologia in the scope of projects Petrochron (PTDC/CTE-GIX/112561/2009) and Geobiotec (UID/GEO/04035/2013); - Colt Resources. Reference: Villa, I.M., De Bièvre, P., Holden, N.E., Renne, P.R., 2015. IUPAC-IUGS recommendation on the half life of 87Rb. Geochim. Cosmochim. Acta 164, 382-385.

  16. Geochronology and Geochemistry of the Paleoproterozoic Yinyugou Group in the Southern North China Craton: Implications for Provenance and Tectonic Evolution

    NASA Astrophysics Data System (ADS)

    Sun, Q.

    2016-12-01

    Clastic rocks that experience low-grade metamorphism are widely used to understand the formation and evolution of the continental crust. The Paleoproterozoic Yinyugou Group in the southern North China Craton is a littoral facies clastic sedimentary sequence which is mainly composed of sandstones and mica schists. Most sandstones have lower Chemical Index of Alteration values than the schists, indicating that the sandstones experienced relatively weak chemical weathering process. The relatively mature material source of sandstones is evidenced by higher SiO2/Al2O3 value and lower Index of Compositional Variability values relative to the schists. Enrichment of LREE relative to HREE, flat HREE patterns and slightly negative Eu anomalies indicate the sedimentary sources are mainly composed of felsic rocks. Discrimination diagrams reveal that the Yinyugou Group received detritus dominantly from felsic sources with important contribution from mafic igneous rocks. U-Pb ages of detrital zircons can be divided into three groups: 2.65-2.40 Ga, 2.90-2.70 Ga and 3.50-3.20 Ga, with one predominant age peak at 2.50 Ga. A weighted average age of 2383±38 Ma calculated from the youngest detrital zircons bracket the maximum depositional age at 2380 Ma. Most 2.50 Ga zircons show sub-depleted mantle positive ɛHf(t) values and TDMC ages chiefly range from 3.10-2.70 Ga, representing the time of juvenile magmas extracted from depleted mantle. A small proportion of 2.50 Ga zircons give depleted mantle-like ɛHf(t) values with TDMC ages slightly older than their 207Pb/206Pb ages, suggesting growth of juvenile crust plus to the extensive reworking of mature crust at 2.5 Ga. The characteristics of dual sources and both passive margin and arc-related setting suggest that the Yinyugou Group were most likely deposited in a back-arc setting. Considering the previous studies, we propose that the NCC experienced a cycle of subduction-extension-subduction processes during Paleoproterozoic.

  17. Geochronology, stratigraphy and geochemistry of Cindery Tuff in Pliocene hominid-bearing sediments of the Middle Awash, Ethiopia.

    PubMed

    Hall, C M; Walter, R C; Westgate, J A; York, D

    Cindery Tuff is a subalkaline, rhyolitic air-fall deposit that was probably produced by a mixed-magma eruption. It is a distinctive, datable, regional isochronous marker bed within the Pliocene sediments of the Middle Awash district, and is stratigraphically situated between two new fossil hominid discoveries. Based on 40Ar/39Ar analyses of plagioclase, rhyolitic glass and basaltic glass, as well as fission-track analyses of zircons, we estimate its age to be 3.8-4.0 Myr. This implies that associated hominid skull fragments are at least 3.9 Myr old.

  18. Late Paleozoic to Early Mesozoic arc-related magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry

    NASA Astrophysics Data System (ADS)

    Yi, Keewook; Cheong, Chang-sik; Kim, Jeongmin; Kim, Namhoon; Jeong, Youn-Joong; Cho, Moonsup

    2012-11-01

    Phanerozoic granitoids are widespread in the Korean Peninsula and form a part of the East Asian Cordilleran-type granitoid belt extending from southeastern China to Far East Russia. Here we present SHRIMP zircon U-Pb ages and geochemical and Nd isotopic compositions of Late Paleozoic to Early Jurassic granitoid plutons in the northern Gyeongsang basin, southeastern Korea; namely the Jangsari, Yeongdeok, Yeonghae, and Satkatbong plutons. The granite and associated gabbroic rocks from the Jangsari pluton were coeval and respectively dated at 257.3 ± 2.0 Ma and 255.7 ± 1.4 Ma. This result represents the first finding of a Late Paleozoic pluton in South Korea. Three granite samples from the Yeongdeok pluton yielded a slightly younger age span ranging from 252.9 ± 2.5 Ma to 246.7 ± 2.1 Ma. Two diorite samples from the Yeonghae pluton gave much younger ages of 195.1 ± 1.9 Ma and 196.3 ± 1.6 Ma. An Early Jurassic age of 192.4 ± 1.6 Ma was also obtained from a diorite sample from the Satkatbong pluton. The mineral assemblage and Al2O3/(Na2O + K2O) versus Al2O3/(CaO + Na2O + K2O) relationship indicate that all the analyzed plutons are subduction zone granitoids. Enrichments in large-ion-lithophile-elements and depletions in high-field-strength-elements of these plutons are also concordant with geochemical characteristics typical for the subduction zone magma. The presence of Late Permian to Early Triassic arc system is in contrast with the conventional idea that the arc magmatism along the continental margin of the Korean Peninsula has commenced from Early Jurassic after the termination of Triassic collisional orogenesis. The ɛNd(t) values of the granitoid plutons are consistently positive (2.4-4.6), suggesting that crustal residence time of the basement beneath the Gyeongsang basin is relatively short. Moreover, the reevaluation of previously-published data reveals that geochemical compositions of the Yeongdeok pluton are compatible with those of high-silica adakites; La/Yb = 37.5-114.6, Sr/Y = 138.2-214.0, SiO2 = 62.9-72.0 wt.%, Al2O3 = 15.5-17.0 wt.%, Sr = 562-1173 ppm, MgO = 0.4-1.6 wt.%, Y = 3-6 ppm, Yb = 0.18-0.45 ppm, and Eu/Eu* = 0.92-1.31. The occurrence of adakites in southeastern Korea, and presumably in the Hida belt of central-western Japan, is indicative of a hot subduction regime developing at least partly along the East Asian continental margin during the Permian-Triassic transition period.

  19. Geochemistry, geochronology and isotope geology of Nakfa intrusive rocks, northern Eritrea: products of a tectonically thickened Neoproterozoic arc crust

    NASA Astrophysics Data System (ADS)

    Teklay, M.; Kröner, A.; Mezger, K.

    2001-08-01

    The north-south-trending Neoproterozoic volcano-sedimentary plutonic associations in northern Eritrea are part of the Nubian Shield. The Nakfa intrusive rocks range in composition from gabbro to syeno-diorite to granite and alkaline syenite and intrude supracrustal rocks of volcanic and sedimentary origin. All granitoid rocks are metaluminous or slightly peraluminous and have typical I-type chemical signatures. The calc-alkaline intrusive rocks and the alkaline syenites have geochemical characteristics (e.g. low Nb values) typical of arc intrusives and plot as volcanic arc granites on various discriminant diagrams. Single zircon evaporation Pb-Pb ages and conventional multigrain U-Pb ages on zircons and titanites yielded emplacement ages of ˜620-640 Ma. These are comparable to those of adjacent juvenile terranes in the Nubian Shield. No pre-Pan-African rocks have so far been found in northern Eritrea. Isotopic data show a limited range, with initial ɛ Nd values ranging from 3.5 to 5.6 and initial Sr ratios from 0.7018 to 0.7037. The high positive initial ɛ Nd values and low initial Sr ratios indicate that the granitoid rocks were derived from a mantle and/or juvenile crustal source with no, or only insignificant, contribution from an older continental component. This is further supported by the absence of inherited zircons and the lack of rocks of continental affinity. Leached K-feldspars from Nakfa intrusive rocks have Pb isotope ratios ( 206Pb/ 204Pb = 17.60-17.88, 207Pb/ 204Pb = 15.49-15.53 and 208Pb/ 204Pb = 37.12-37.37) similar to those for 'oceanic leads' from Saudi Arabia, which are interpreted as manifesting a mantle source. Hence, the Pb isotope ratios, in agreement with the Sr and Nd isotopic data, indicate an insignificant involvement of older crustal components in the generation of Pan-African crust in northern Eritrea. The ages and isotopic characteristics of the Nakfa intrusive rocks are comparable to those of adjacent juvenile terranes in the Arabian-Nubian Shield and strengthen models for the generation of large volumes of juvenile continental crust during Neoproterozoic times. A substantial number of Nakfa granitoid rocks show geochemical characteristics (low Y, high Sr/Y and steeper REE pattern), indicating that crust formation involved the fractional crystallisation of mafic magma and the melting of lower crust.

  20. Geochronology and geochemistry of the rocks associated with a late proterozoic ophiolite in West Pokot, NW Kenya

    NASA Astrophysics Data System (ADS)

    Ries, A. C.; Vearncombe, J. R.; Price, R. C.; Shackleton, R. M.

    1992-01-01

    Mafic and ultramafic rocks in the W Pokot area, NW Kenya are identified as parts of a dismembered ophiolite. They lie within the late Proterozoic Mozambique Belt and are associated with metasediments and calc-alkaline volcanics and intruded by granitic rocks. All these rocks are allochthonous, thrust westwards towards the Archaean Tanzanian Craton. The calc-alkaline volcanics, which are chemically similar to present-day island-arc volcanic rocks, give a Rb/Sr whole-rock isochron age of 663 ± 49 Ma, and the associated metasediments give an age of 584 ± 25 Ma, both ages interpreted as dating a regional amphibolitefacies metamorphism. These rocks are intruded by the Marich Granite from which a Rb/Sr whole-rock isochron age of 593 ± 50 Ma was obtained with an 87Sr/ 86Sr initial ratio of 0/7072 ± 5 implying some crustal contamination either from the magmatite complex, which structurally underlies the ophiolitic rocks, or from deeper crustal rocks. The age spectrum is broadly similar to that established for similar sequences of rocks northwards along strike in Sudan, Egypt and Saudi Arabia. There is no support for the view that these high-grade metamorphic rocks of this part of the Mozambique Belt are an older series underlying the lower grade Late Prpterozoic rocks of NE Africa and Saudi Arabia.

  1. Geochronology and geochemistry of Eocene potassic felsic intrusions in the Nangqian basin, eastern Tibet: Tectonic and metallogenic implications

    NASA Astrophysics Data System (ADS)

    Xu, Yue; Bi, Xian-Wu; Hu, Rui-Zhong; Chen, You-wei; Liu, He-qing; Xu, Lei-luo

    2016-03-01

    The Jinshajiang-Ailaoshan copper belt is the most significant porphyry copper belt in eastern Tibet. In the northern segment of this belt within the Nangqian basin, which occurs 100 km east of the Yulong porphyry copper deposit, several felsic intrusions have been recently discovered. The Yulong porphyry copper deposit is one of the largest porphyry copper deposits in China, and it is associated with peraluminous adakitic rocks formed in a post-collisional setting. The Nangqian felsic intrusions vary from syenite porphyry to monzonite porphyry in rock types. No significant Cu-Au mineralization has been found in the Nangqian felsic intrusions despite extensive exploration in recent years. LA-ICP-MS zircon U-Pb dating reveals that the Nangqian syenite porphyry and monzonite porphyry were emplaced at 35.6±0.3 Ma and from 39.5±0.3 to 37.4±0.3 Ma, respectively, similar to the age of the Yulong porphyry copper deposit. The Nangqian felsic intrusions are characterized by metaluminous compositions (A/CNK = 0.82-1.01), and they share some common features with shoshonites such as high K2O contents (4.58-5.58 wt.%), high K2O/Na2O ratios (0.92-1.28), LREE-LILE enrichments and negative Nb-Ta-Ti-P anomalies, as well as with adakites derived from an eclogite-facies source with high Al2O3 (14.98-15.74 wt.%), Sr (954-2190 ppm), Sr/Y (68-132) and La/Yb (53-85), and low Y and Yb contents. The Nangqian felsic intrusions have high initial 87Sr/86Sr (0.7050-0.7055), variable εNd(t) (- 0.31-1.43) and small variations in (206Pb/204Pb)i (18.68-18.74), (207Pb/204Pb)i (15.53-15.62) and (208Pb/204Pb)i (38.51-38.80). Zircon crystals from both syenite and monzonite porphyries are characterized by positive εHf(t) from 5.2 to 8.5. The results suggest that the syenite and monzonite magmas were differentiated from parental shoshonitic melts by fractional crystallization of olivine, clinopyroxene and minor feldspar. The parent magmas originated from a lithospheric mantle metasomatized by slab-derived fluids or melts during continental subduction. The differences in both sources and depths of partial melting may explain the difference in the extent of Cu-Au mineralization between the Yulong and Nangqian porphyries.

  2. Geology, isotope geochemistry and geochronology of the Jinshachang carbonate-hosted Pb-Zn deposit, southwest China

    NASA Astrophysics Data System (ADS)

    Zhou, Jia-Xi; Bai, Jun-Hao; Huang, Zhi-Long; Zhu, Dan; Yan, Zai-Fei; Lv, Zhi-Cheng

    2015-02-01

    The Jinshachang Pb-Zn deposit, an exceptionally radiogenic Pb-enriched sulfide deposit, hosted by dolostone of the Upper Sinian (Neoproterozoic) Dengying Formation and the Lower Cambrian Meishucun Formation, is located in the western Yangtze Block, about 300 km northeast of Kunming city in southwest China. Ore bodies in this deposit are dominated by strata-bound type and steeply dipping vein type. Primary ores in these two types are composed of sphalerite, galena, fluorite, barite and quartz with massive, banded, veined and disseminated structures. Twenty-seven ore bodies in the Jinshachang deposit host 4.6 million tons of sulfide ores at average grades of 4.07 wt.% Pb and 5.03 wt.% Zn. Quartz separates from the sulfide ores have δDH2O values ranging from -137‰ to -86.2‰ with an average of -114‰ (n = 7), lower than those of magmatic, metamorphic and meteoric water, suggesting a contribution of organic water. δ34SCDT values of ninety-one sulfide separates range from +1.1‰ to +13.4‰ with an average of +5.7‰, lower than those of evaporites (δ34SCDT = +15‰ to +35‰) in the Cambrian to Triassic sedimentary strata in NE Yunnan province. δ34SCDT values of eight barite separates range from +32‰ to +35‰ (average +34‰), within the range of evaporites. These data suggest that S2- in the hydrothermal fluids derived from evaporites by thermo-chemical sulfate reduction (TSR), whereas SO42- directly originated from the evaporites. Six sulfide separates have highly radiogenic 206Pb/204Pb ratios ranging from 20.74 to 21.18 (average 20.92), 207Pb/204Pb ratios ranging from 15.85 to 15.89 (average 15.87), and 208Pb/204Pb ratios ranging from 40.89 to 41.42 (average 41.16). The Pb isotopes of the sulfides plot above the upper crust Pb average evolution curve and overlap the Cambrian sedimentary rocks, but are different from the Sinian dolostone. This indicates a crustal source of Pb most likely derived from the Cambrian sedimentary rocks. The initial 87Sr/86Sr ratio of seven main stage sphalerite separates from the Jinshachang deposit is 0.713, which is higher than those of the Upper Sinian Dengying Formation dolostone (0.708-0.710), Lower Cambrian carbonates (0.708-0.710), Devonian to Lower Permian sedimentary rocks (0.707-0.711) and Middle Permian Emeishan flood basalts (0.704-0.708), and lower than those of the Proterozoic folded basement rocks (0.724-0.729), but similar to those of Lower Cambrian black shale (0.712-0.714). Therefore, the Sr isotope data of the sphalerite support the view that the Lower Cambrian sedimentary rocks, in particular the black shale, were important source of metals. The main stage sphalerite separates have an Rb-Sr isotopic age of 206.8 ± 3.7 Ma, reflecting the timing of Pb-Zn mineralization. This study suggests that the Jinshachang Pb-Zn deposit is an epigenetic, thrust fold-controlled and strata-bound deposit with fluids and metals derived from the Cambrian sedimentary strata.

  3. Organic geochemistry - A retrospective of its first 70 years

    USGS Publications Warehouse

    Kvenvolden, K.A.

    2006-01-01

    Organic geochemistry had its origin in the early part of the 20th century when organic chemists and geologists realized that detailed information on the organic materials in sediments and rocks was scientifically interesting and of practical importance. The generally acknowledged "father" of organic geochemistry is Alfred E. Treibs (1899-1983), who discovered and described, in 1936, porphyrin pigments in shale, coal, and crude oil, and traced the source of these molecules to their biological precursors. Thus, the year 1936 marks the beginning of organic geochemistry. However, formal organization of organic geochemistry dates from 1959 when the Organic Geochemistry Division (OGD) of The Geochemical Society was founded in the United States, followed 22 years later (1981) by the establishment of the European Association of Organic Geochemists (EAOG). Organic geochemistry (1) has its own journal, Organic Geochemistry (beginning in 1979) which, since 1988, is the official journal of the EAOG, (2) convenes two major conferences [International Meeting on Organic Geochemistry (IMOG), since 1962, and Gordon Research Conferences on Organic Geochemistry (GRC), since 1968] in alternate years, and (3) is the subject matter of several textbooks. Organic geochemistry is now a widely recognized geoscience in which organic chemistry has contributed significantly not only to geology (i.e., petroleum geochemistry, molecular stratigraphy) and biology (i.e., biogeochemistry), but also to other disciplines, such as chemical oceanography, environmental science, hydrology, biochemical ecology, archaeology, and cosmochemistry.

  4. Geochronological Constraints on the Exhumation and Emplacement of Subcontinental Lithospheric Mantle Peridotites in the Westernmost Mediterranean

    NASA Astrophysics Data System (ADS)

    Garrido, Carlos J.; Hidas, Károly; Marchesi, Claudio; Varas-Reus, María Isabel; Booth-Rea, Guillermo

    2017-04-01

    Exhumation of subcontinental mantle peridotite in the Western Mediterranean has been attributed to different tectonic processes including pure extension, transpression, or alternating contractive and extensional processes related with continental subduction followed by extension, before final their contractive intracrustal emplacement. Any model trying to explain the exhumation and emplacement of subcontinental lithospheric mantle peridotites in the westernmost Mediterranean should take into account the available geochronological constraints, as well as the petrological and geochemical processes that lead to internal tectono-magmatic zoning so characteristic of the Betic and Rif orogenic peridotites. Different studies have suggested a Hercynian, Cenozoic-Mesozoic or an Alpine age for the late tectono-magmatic evolution and intra-crustal emplacement of Betic-Rif peridotites. The pervasive presence of Mesozoic U-Pb zircon ages in Ronda UHP and HP garnet pyroxenites does not support a Hercynian age for the intracrustal emplacement of the peridotite. A hyper-extended margin setting for is in good agreement with the Jurassic extensional event that pervasively affected ALKAPECA terrains (i.e. the Alboran, Kabylides, Peloritani, and Calabria domains) in the western Mediterranean due to the opening of the Piemonte-Ligurian Ocean. However, a Jurassic age and a passive margin tectonic setting do not account, among other observations, for the late Miocene thermochronological ages recorded in zircons rims (U-Pb) and garnets (Lu-Hf) in garnet pyroxenites from the Betic-Rif peridotites, the pervasive Miocene resetting of U-Pb zircon and monazite ages in the overlying Jubrique crustal section, the supra-subduction radiogenic signature of late pyroxenite intrusive dikes in the Ronda peridotite, and the arc tholeiitic affinity of late mantle-derived, gabbroic dykes intruding in the Ronda and Ojen plagioclase lherzolites. These data are more consistent with a supra

  5. Evidence for Late Cretaceous-early Tertiary lower plate mylonitization and extension in the Harcuvar metamorphic core complex, Arizona: Evidence from U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Wrobel, A.; Wong, M.; Singleton, J. S.

    2014-12-01

    results raise questions about the time scales of core complex development and the role of tectonic inheritance in Miocene extension. U-Pb zircon and monazite geochronology currently in progress will further refine the timing of plutonic and metamorphic events and their role in the development of this core complex.

  6. Growth and collapse of a deeply eroded orogen: Insights from structural, geophysical, and geochronological constraints on the Pan-African evolution of NE Mozambique

    NASA Astrophysics Data System (ADS)

    Viola, G.; Henderson, I. H. C.; Bingen, B.; Thomas, R. J.; Smethurst, M. A.; de Azavedo, S.

    2008-10-01

    This paper presents results of a large multidiciplinary geological mapping project in NE Mozambique, with a focus on the structural evolution of this part of the East African Orogen (EAO). It integrates field structural studies with geophysical interpretations and presents new geochronological data. The tectonic architecture of NE Mozambique can be subdivided into five megatectonic units on the basis of lithology, structure and geochronology: unit 1, Paleoproterozoic Ponta Messuli Complex in the extreme NW corner of NE Mozambique, which represents the local NW foreland to the EAO; unit 2, a collage of Mesoproterozoic metamorphic complexes, which forms the basement to unit 3, a stack of Neoproterozoic, NW directed imbricate thrust nappes named here the "Cabo Delgado Nappe Complex" (CDNC); unit 4, restricted Neoproterozoic metasedimentary basins; and unit 5, two exotic Neoproterozoic granulite mélange complexes. The units were assembled during a long and complex history of NW directed shortening, which commenced with nappe stacking and emplacement of the CDNC over the Mesoproterozoic basement terranes toward the NW foreland. It is proposed that the CDNC and the Eastern Granulites farther north in Tanzania are remnants of Neoproterozoic volcanic arcs and microcontinents formed "outboard" of the Mesoproterozoic continent after 596 ± 11 Ma. Field and potential field geophysical data show that the nappes were folded by regional-scale NE-SW trending folds that formed in response to a later stage of the same shortening episode and this episode gave rise to the Lurio Belt, a prominent structural feature of northern Mozambique and a key element (often as suture zone) in many Gondwana reconstructions. The Lurio Belt is here interpreted as a structure generated during folding of the CDNC during later stages of the progressive shortening event. It is, however, a repeatedly reactivated shear zone, probably at the site of an older (Mesoproterozoic?) discontinuity, with an

  7. Geochemistry and Minerality of Wine

    NASA Astrophysics Data System (ADS)

    Oze, C.; Horton, T. W.; Beaman, M.

    2010-12-01

    Kaolinite (Al2Si2O5(OH)4) and gibbsite (Al(OH)3) are capable of forming in a variety of environments including anthropogenic solutions such as wine. Here, we evaluate the geochemistry of twelve white wines in order to assess the potential relationship between kaolinite/gibbsite saturation and minerality, a common wine descriptor used to express the rock and/or soil character in the aromas and flavors of wines. Aluminum and Si concentrations ranged from 228-1,281 µg L-1 and 6,583-19,746 µg L-1, respectively, where Si and Al are the only elements to demonstrate positive covariance with minerality scores. Sulfur levels varied from 25,013-167,383 µg L-1 and show the strongest negative covariance with minerality scores. However, like all of the elements studied (Al, Si, Na, Mg, S, K, Ca, and Fe), these trends were not significantly different than random at the 95% confidence level. In contrast, the relative degrees of gibbsite/kaolinite saturation display strong positive covariance with minerality scores and these trends are not random at the greater than 95% confidence level. Overall, our tasters were able to accurately assess the degree of gibbsite/kaolinite saturation amongst the twelve wines based on the objective of assessing minerality. Although the wines were undersaturated with respect to gibbsite/kaolinite, geochemical modeling reveals that increasing the wines’ pHs from ~3.3 to 4.1-4.6 (which is achievable on the palate where saliva has a pH of 7.4) results in gibbsite/kaolinite oversaturation. By considering that minerality is a function of gibbsite/kaolinite saturation and decreasing S, the origin of minerality’s taste and chemical origin in wine with known physical standards becomes increasingly crystalline.

  8. Geochronology of the Xihuashan composite granitic body and tungsten mineralization, Jiangxi province, south China.

    USGS Publications Warehouse

    McKee, E.H.; Rytuba, J.J.; Xu, Keqin

    1987-01-01

    One of the goals of this visit was to collect samples of different granitic rocks in the pluton for radiometric dating to establish the geochronology of intrusion, alteration, and mineralization. This report summarises geochronologic studies during a visit by Chinese and US scientists to the Xihuashan mine.-after Authors

  9. Combined Raman and photoluminescence spectroscopic investigation of He-irradiation effects in monazite

    NASA Astrophysics Data System (ADS)

    Lenz, C.; Petautschnig, C.; Akhmadaliev, S.; Hanf, D.; Talla, D.; Nasdala, L.

    2012-04-01

    We present first results of a study addressing effects of the corpuscular self-irradiation on stress/strain and optical properties (in particular the photoluminescence behaviour) in monazite-(Ce). For this, natural samples, and synthetic CePO4 crystals mildly doped with Nd3+, were irradiated with 7.7 MeV He ions, which are analogues of alpha particles generated in the 214Po → 210Pb decay event (238U decay series). Light-ion irradiation was preferred over heavy-ion irradiation (i.e., ~100 keV heavy ions as analogues of alpha recoils) for two reasons. First, MeV He ions penetrate much deeper into mineral targets (tens of micrometres vs. a few hundred angstroms), resulting in irradiated volumes that are "measurable" using micro-spectroscopy techniques. Second, the depth distribution profiles of nuclear and electronic energy losses vary appreciably in the case of MeV He ions. The latter is most helpful in assigning observed effects to either point defects created or target ionisation. The irradiations were done at the 3 MV Tandem accelerator of the Helmholtz-Zentrum Dresden-Rossendorf (Germany). The fluences applied varied in the range 1013-1017 He/cm2. The degree of disturbance of the short-range order in the samples irradiated was evaluated from the broadening of the ν1(PO4) Raman band (symmetric PO4 stretching; A1g mode) near 970 cm-1 [1,2]. The majority of the damage created was observed near 28 μm into the monazite-(Ce) targets, i.e., near the ends of the helium trajectories. Here, the ν1(PO4) Raman band may broaden appreciably, from 2.2 cm-1 (in the case of synthetic CePO4) to well above 20 cm-1. The generation of additional damage was also observed upon He irradiation of naturally radiation-damaged monazite-(Ce). By contrast, there was no indication of any annealing effect of the MeV He ions irradiated in these samples (compare [3]; a similar effect of alpha-assisted annealing was suspected by [4] in the discussion of fission tracks). Sharp luminescence

  10. Electron-microprobe Th-U-Pb monazite dating in Early-Palaeozoic high-grade gneisses as a completion of U-Pb isotopic ages (Wilson Terrane, Antarctica)

    NASA Astrophysics Data System (ADS)

    Schulz, B.; Schüssler, U.

    2013-08-01

    The electron microprobe (EMP) Th-U-Pb monazite bulk chemical dating method was applied to granulite-facies rocks of the Wilson Terrane in Antarctica. A combination of this method to isotopic U-Pb-SHRIMP ages for the evaluation of metamorphic processes required the analysis of reference monazites. These can be subdivided into three groups: a) Monazite with variable total Pb at constant Th (e.g. VK-1) is unsuitable for EMP data evaluation; b) Monazite with highly variable total Pb and Th, but with at least some Th/Pb approximating an apparent isochrone (e.g. MPN) is partly useful; and c) Monazite with constant Th/Pb at high Th (e.g. Madmon monazite) is best suitable for the combined approach and can be additionally used to improve the Th calibration for EMP. Study of monazite in grain mounts and in thin sections led to partly different but complementary results: Older monazites with EMP ages up to 680 Ma occur mainly in a grain mount from diatexite and metatexite and are interpreted as detrital relics. Some of these monazites show structures and mineral-chemical zonation trends resembling metasomatism by alkali-bearing fluids. A marked mobility of Th, P, Ce, Si and U is observed. The age of the metasomatic event can be bracketed between 510 and 450 Ma. Furthermore, in the grain mount and in numerous petrographic thin sections of migmatites and gneisses, the EMP Th-U-Pb and SHRIMP U-Pb monazite data uniformly signal a major metamorphic event with a medium-pressure granulite facies peak between 512 and 496 Ma. Subsequent isothermal uplift and then amphibolite-facies conditions between 488 and 466 Ma led to crystallisation of pristine monazite. The high-grade metamorphic event, related to the Ross Orogeny, can be uniformly traced more than 600 km along strike in the Wilson Terrane.

  11. Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    deMelo, Gustavo H. C.; Monteiro, Lena V. S.; Xavier, Roberto P.; Moreto, Carolina P. N.; Santiago, Erika S. B.; Dufrane, S. Andrew; Aires, Benevides; Santos, Antonio F. F.

    2017-06-01

    The giant Salobo copper-gold deposit is located in the Carajás Province, Amazon Craton. Detailed drill core description, petrographical studies, and U-Pb SHRIMP IIe and LA-ICP-MS geochronology unravel its evolution regarding the host rocks, hydrothermal alteration and mineralization. Within the Cinzento Shear Zone, the deposit is hosted by orthogneisses of the Mesoarchean Xingu Complex (2950 ± 25 and 2857 ± 6.7 Ma) and of the Neoarchean Igarapé Gelado suite (2763 ± 4.4 Ma), which are crosscut by the Old Salobo granite. Remnants of the Igarapé Salobo metavolcanic-sedimentary sequence are represented by a quartz mylonite with detrital zircon populations (ca. 3.1-3.0, 2.95, 2.86, and 2.74 Ga). High-temperature calcic-sodic hydrothermal alteration (hastingsite-actinolite) was followed by silicification, iron-enrichment (almandine-grunerite-magnetite), tourmaline formation, potassic alteration with biotite, copper-gold ore formation, and later Fe-rich hydrated silicate alteration. Myrmekitic bornite-chalcocite and magnetite comprise the bulk of copper-gold ore. All these alteration assemblages have been overprinted by post-ore hematite-bearing potassic and propylitic alteration, which is also recognized in the Old Salobo granite. In the central zone of the deposit the mylonitized Igarapé Gelado suite rocks yield an age of 2701 ± 30 Ma. Zircon ages of 2547 ± 5.3 and 2535 ± 8.4 Ma were obtained for the Old Salobo granite and for the high-grade copper ore, respectively. A U-Pb LA-ICP-MS monazite age (2452 ± 14 Ma) from the copper-gold ore indicates hydrothermal activity and overprinting in the Siderian. Therefore, a protracted tectono-thermal event due to the reactivation of the Cinzento Shear Zone is proposed for the evolution of the Salobo deposit.

  12. Provenance, detrital zircon U-Pb geochronology and tectonic consequences of Late Cretaceous-Eocene turbiditic sequences of Azerbaijan Province, NW Iran

    NASA Astrophysics Data System (ADS)

    Mohammadi, Ali; Lechmann, Anna; Burg, Jean-Pierre

    2017-04-01

    Turbidites in the Azerbaijan Province, Northwest Iran, represent an accretionary wedge formed in the Mesozoic-Cenozoic Tethys. Two types of turbiditic sequences are identified: (1) Pyroclastic turbidites are mostly in the south and in the west and (2) terrigenous turbidites in the east of the study area. We determined the provenance, the sandstone framework and the heavy mineral assemblages of Late Cretaceous-Eocene deep marine sandstones. Geochronological and geochemical study including LA-ICP-MS U-Pb ages and in-situ Hf isotopic compositions of detrital zircons are also presented. 300-400 point counts following the Gazzi-Dikinson method in each thin section of 13 sandstones define litharenites and feldspathic litharenites. Sandstone framework compositions reveal a continental magmatic arc as main source of detritus. 200-300 heavy mineral grains were identified and counted in 12 samples. Heavy mineral suites include (1) ultra-stable minerals (zircon, monazite, tourmaline, rutile and sphene) in terrigenous turbidites, derived from granitic continental crust sources, (2) metastable minerals delivered from variable metamorphic-grade source rocks (epidote group, garnet, staurolite, chloritoid, andalusite, glaucophane), (3) pyroxene-rich source in the pyroclastic sandstone and (4) chromian-spinel from ultrabasic rocks. Heavy mineral assemblages confirm a continental magmatic arc source and Cr-spinel reveal ultramafic rocks, likely ophiolite, as a subsidiary source. Glaucophane in only one sample indicates high-pressure/low-temperature metamorphic rocks in the detrital source areas. The first appearance of Cr-spinel in Late Cretaceous sandstones indicates that erosion of ophiolites (most probably the nearby Khoy ophiolite) occurred at that time. The euhedral to anhedral shape of detrital zircon crystals suggests short transport distances from source to sink. This imply that the magmatic arc was located in the proximity of the study area.

  13. The Role of the Ion Microprobe in Solid-Earth Geochemistry

    NASA Astrophysics Data System (ADS)

    Hauri, E. H.

    2002-12-01

    Despite the early success of the electron microprobe in taking petrology to the micron scale, and the widespread use of mass spectrometers in geochemistry and geochronology, it was not until the mid-1970s that the ion microprobe came into its own as an in situ analytical tool in the Earth sciences. Despite this inauspicious beginning, secondary ion mass spectrometry (SIMS) was widely advertised as a technology that would eventually eclipse thermal ion mass spectrometry (TIMS) in isotope geology. However this was not to happen. While various technical issues in SIMS such as interferences and matrix effects became increasingly clear, an appreciation grew for the complimentary abilities of SIMS and TIMS that, even with the advent of ICP-MS, continues to this day. Today the ion microprobe is capable of abundance measurements in the parts-per-billion range across nearly the entire periodic table, and SIMS stable isotope data quality is now routinely crossing the 1 per mil threshold, all at the micron scale. Much of this success is due to the existence of multi-user community facilities for SIMS research, and the substantial efforts of interested scientists to understand the fundamentals of sputtered ion formation and their application to geochemistry. Recent discoveries of evidence for the existence of ancient crust and oceans, the emergence of life on Earth, the large-scale cycling of surficial materials into the deep Earth, and illumination of fundamental high-pressure phenomena have all been made possible by SIMS, and these (and many more) discoveries owe a debt to the vision of creating and supporting multi-user community facilities for SIMS. The ion microprobe remains an expensive instrument to purchase and maintain, yet it is also exceedingly diverse in application. Major improvements in SIMS, indeed in all mass spectrometry, are visible on the near horizon. Yet the geochemical community cannot depend on commercial manufacturers alone to design and build the next

  14. Multiple Basinal Fluid Events in the Lower Belt Supergroup, Montana: Constraints From CHIME Ages and REE Patterns of Monazites

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alvarez, I.; Kusiak, M. A.

    2004-05-01

    Chemical dates (CHIME) on 105 spots and REE patterns of monazites were obtained from coarse sandstones and siltstones in the Mesoproterozoic siliciclastic Appekunny and Grinnell formations, lower Belt Supergroup, Montana, by EMPA. At least three post-depositional events induced by basinal fluids can be recognized: (a) red coloration accompanied by a major K-addition; (b) a green overprint of red siltstones; and (c) dolomitization. Fluid advection in the unmineralized lower Belt is pervasive and may have been alkaline and oxidizing. These three events progressively modified the primary geochemical characteristics of the siliciclastic rocks. Calculated ages show similar ranges in the fine and coarse-grained facies. For siltstones there are two age clusters: (1) at 1,801 ± 21 to 1,968 ± 26 Ma, as well as (2) at 854 ± 7 to 962 ± 13 Ma. Coarse sandstones show similar age clusters (3) at 1,831 ± 14 to 1,982 ± 12 Ma, and (4) at 803 ± 6 to 944 ± 9 Ma. A wide range of dates plots between the clusters for both facies. Clusters (1) and (3) are interpreted as the result of detrital monazites from a source area ~1.8 to 1.9 Ga old. Mineralogical variations and trace element systematic reveal basinal brines, which mobilized MREE and HREE, locally generating secondary monazites, influencing large domains of the lower Belt. The lower Belt Supergroup is estimated to have been deposited between 1.47 Ga and 1.45 Ga; consequently, the second age cluster for sandstones and siltstones is viewed as constraining the timeframe of a major basinal fluid event at ~0.80 to 0.96 Ga. That event is clearly distinct from the hydrothermal system associated with the Sullivan sedex base metal deposit at the base of the Belt. Ages between the clusters are interpreted either as secondary, formed during additional basinal fluid events or as reset of detrital monazites. Accordingly, the Belt basin was intermittently an open system to fluids from ~1.47 to ~0.80 Ga. Chondrite-normalized REE patterns

  15. U.S. National Committee for Geochemistry

    ERIC Educational Resources Information Center

    Geotimes, 1974

    1974-01-01

    Reports highlights of the April, 1973 meeting of the U.S. National Committee for Geochemistry. Some of the topics reported on were: The Geophysics Research Board, deep drilling, exchange of geochemists with China and the activities of the Subcommittee on Geochemical Environment in Relation to Health and Disease. (BR)

  16. Geochemistry of coalbed gas - a review

    USGS Publications Warehouse

    Clayton, J.L.

    1998-01-01

    Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greehouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.Coals are both sources and reservoirs of large amounts of gas that has received increasing attention in recent years as a largely untapped potential energy resource. Coal mining operations, such as ventilation of coalbed gas from underground mines, release coalbed CH4 into the atmosphere, an important greenhouse gas whose concentration in the atmosphere is increasing. Because of these energy and environmental issues, increased research attention has been focused on the geochemistry of coalbed gas in recent years. This paper presents a summary review of the main aspects of coalbed gas geochemistry and current research advances.

  17. U.S. National Committee for Geochemistry

    ERIC Educational Resources Information Center

    Geotimes, 1974

    1974-01-01

    Reports highlights of the April, 1973 meeting of the U.S. National Committee for Geochemistry. Some of the topics reported on were: The Geophysics Research Board, deep drilling, exchange of geochemists with China and the activities of the Subcommittee on Geochemical Environment in Relation to Health and Disease. (BR)

  18. U-Pb zircon geochronology of amphibolites: new insight on the tectonic evolution of the southwestern Ossa Morena Zone, Portugal

    NASA Astrophysics Data System (ADS)

    Akker, Vénice; Burg, Jean-Pierre; Tajčmanová, Lucie; Marques, Fernando

    2017-04-01

    The tectonic evolution of the Évora - Beja domain, in the southwestern Ossa Morena Zone, is disputed because of the scarcity of integrated structural, petrological and geochronological data. Therefore, no strong correlation exists between terranes of the Ossa Morena Zone. We combine geochronological data and geochemistry with the structural and metamorphic evolutions in order to constrain the geological history of the Évora - Beja domain, between the ophiolitic units of the Pulo du Lobo and the Beja - Acebuches complexes, to the south, and the Central Portuguese Zone, to the north. The rocks in the Évora - Beja domain include marbles, micaschists and quartzites, a volcano- sedimentary sequence and phyllites, with local occurrences of amphibolites. New U-Pb age dating on zircons of amphibolites yield upper Proterozoic protolith ages of 789.3±4.5 Ma. Accordingly, most of the marbles, the micaschists and quartzites in the Évora - Beja domain can be ascribed to the Série Negra formation. The geochemical characterization of the amphibolites, which shows a basaltic protolith with subalkaline affinity, suggest a back-arc setting related to the oldest part of the tectonic evolution in the late Neoproterozoic. Phase equilibria modelling of amphibolites shows a metamorphic path consisting of three parts: (1) high pressure/low temperature event of ca 480±20°C and 1.04±0.06 GPa, (2) medium pressure/high temperature event of ca 550±20°C and 0.72±0.06 Gpa, and (3) retrogression into the greenschist facies, at less than 425°C and 0.7 GPa. The second stage is closely related to the magmatic emplacement of the Beja Igneous Complex and related deformation in the late Paleozoic. The geodynamic evolution of the Ossa Morena Zone is reportedly affected by two orogenic cycles, the Cadomian and Variscan orogenies, recording a geological history which goes back to Proterozoic times. The geology of the Évora - Beja domain contributes to this history.

  19. Monazite and titanite U-Pb dating of Caledonian high-grade metamorphism in the Mid-Scandinavian Caledonides, Norway: a combined SHRIMP and ID-TIMS approach

    NASA Astrophysics Data System (ADS)

    Bingen, B.; Davis, W. J.; Hamilton, M. A.; Osmundsen, P. T.; Nordgulen, Ø.

    2003-04-01

    Crystals of metamorphic monazite commonly display age domains related to distinct episodes of growth or secondary crystallization. SHRIMP analyses of monazite in metapelite samples from north-central Norway, demonstrate homogeneous monazite populations, with unimodal age distribution. ID-TIMS analyses of single-grain or small fractions give reliable and precise estimates for the timing of monazite growth. Monazite, titanite and zircon U-Pb data constrain the duration of high-grade Scandian metamorphism to be 25 m.y. in this part of the orogen (426-401 Ma) and underscore the importance of late-Scandian extensional detachments as tectonometamorphic breaks between the Central Norway Basement Window (CNBW) and overlying nappes of the Upper (Köli nappes) and Uppermost Allochthons (Helgeland nappes). The CNBW is a core complex-like culmination trending ENE-WSW, made of high-pressure amphibolite-facies (locally granulite-facies) Proterozoic gneisses and in-folded supracrustal rocks. Monazite from a garnet-kyanite gneiss yields an age of 426 +/- 1 Ma reflecting conspicuous migmatization in the rock. Monazite in two garnet +/- kyanite gneisses with minor staurolite yields ages of 420 +/-2 and 403 +/-5 Ma. A deformed garnet-bearing granitic dyke yields a zircon intrusion age of 417 +/- 5 Ma. Titanite in four samples of calc-silicate gneiss and marble define a tight cluster between 403 and 401 +/-2 Ma. Titanite pre-dates top-WSW ductile extensional shearing along the Høybakken detachment in the SW of the CNBW and consequently constrains final exhumation of the window to be younger than 401 Ma. The Upper and Uppermost allochthons overlying the CNBW are made of greenshist to amphibolite-facies supracrustal rocks and plutonic complexes intruded at ca. 495, 480, 460, 445 and 428 Ma. Scandian translation of these outboard nappes onto Baltica occurred after 428 Ma. In the eastern Helgeland nappes, monazite in mica gneiss and titanite in amphibole gneiss and marble range from 431

  20. Geochemical, geochronological characterization and tectonic setting of the metamorphic rocks from the Biga Peninsula, NW Turkey

    NASA Astrophysics Data System (ADS)

    Şengün, F.; Tunç, Ä.°. O.; Yiǧitbaş, E.

    2012-04-01

    The Biga Peninsula in the northwest Turkey is one of the world's important natural laboratories to study geochronology due to having complex geology. The Biga Peninsula has different metamorphic basements including Kazdağ Massif, Çamlıca metamorphics, Kemer metamorphics and Karadağ Massif under cover of the Cenozoic volcano-sedimentary association. The Çamlıca metamorphic assemblage are one of the most critical regions for understanding of the geology of northwestern Turkey. The Çamlıca metamorphic association located on the westernmost part of Turkey is mainly composed of the Andıktası formation, the Dedetepe formation and the Salihler formation, from bottom to top. Metasedimentary rocks of the Çamlıca metamorphics have high SiO2 and medium Al2O3 and TiO2 values. The protolith of these metasediments is arkose-subarkose and greywacke. However, whole-rock geochemistry for the HP eclogite/blueschist within the Çamlıca metamorphics suggests that their protolith was basalt with high TiO2 and K2O-Na2O content and Nb/Y ratios. REE pattern and trace element contents of the HP eclogite/blueschist similar to typical MORB based on tectonic discrimination diagrams. The metavolcanic rocks occurring on the lowest part of the Çamlıca metamorphicassociation has andesitic composition with calc-alkaline character. All metavolcanic rocks in this unit cluster within the volcanic arc field. Zircon grains from metavolcanic rocks and HP eclogite/blueschists were dated by LA-ICPMS. Zircon ages of two metavolcanic samples yielded 328.6 ± 3.5 Ma and 343.2 ± 2.6 Ma, respectively. These ages are interpreted as the time of protolith crystallization of metavolcanic rocks. Moreover, zircon ages from HP eclogite/blueschist yielded 338 ± 1.8 Ma (Early Carboniferous) which is interpreted as the age of protolith crystallization of HP eclogite/blueschist. Geochemical and isotopic data indicate that Early Carboniferous Variscan ages within the Sakarya Zone may form the eastern

  1. U-Th-Pb geochronology of the Massabesic Gneiss and the granite near Milford, South-Central New Hampshire: New evidence for avalonian basement and taconic and alleghenian disturbances in Eastern New England

    USGS Publications Warehouse

    Aleinikoff, J.N.; Zartman, R.E.; Lyons, J.B.

    1979-01-01

    U-Th-Pb systematics for zircon and monazite from Massabesic Gneiss (paragneiss and orthogneiss) and the granite near Milford, New Hampshire, were determined. Zircon morphology suggests that the paragneiss may be volcaniclastic (igneous) in origin, and thus the age data probably record the date (minimum of 646 m.y.) at which the rock was extruded. A two-stage lead-loss model is proposed to explain the present array of data points on a concordia diagram. Orthogneiss ages range only narrowly and are clustered around 475 m.y. Data for the granite of Milford, New Hampshire, are scattered, but may be interpreted in terms of inheritance and modern lead loss, yielding a crystallization age of 275 m.y. This is the only known occurrence of Avalonian-type basement in New Hampshire and as such provides evidence for the location of the paleo-Africa-paleo- North America suture. The geochronology also further documents the occurrence of disturbances during the Ordovician and Permian. ?? 1979 Springer-Verlag.

  2. Late alteration in titanite (CaTiSiO[sub 5]): Redistribution and remobilization of rare earth elements and implications for U/Pb and Th/Pb geochronology and nuclear waste disposal

    SciTech Connect

    Yuanming Pan; Fleet, M.E.; MacRae, N.D. )

    1993-01-01

    Translucent, dark-colored titanites from a wide variety of geological environments are commonly partly replaced by very fine-grained aggregates of REE-rich minerals (including allanite, monazite, and bastnaesite), rutile, quartz, calcite, apatite, and chlorite along grain fractures and boundaries. The aggregates of REE-rich minerals are bordered by an irregular zone of altered titanite, which, by secondary ion mass spectrometry (SIMS), is considerably lower in REEs, U, and Th than the adjacent unaltered matrix. Light REEs and Th are differentially depleted in the altered zone and correspondingly enriched in secondary minerals. Additionally, HREEs and U have been lost to the external system, the loss of HREEs being in proportion to the increase in atomic number. Natural radiation damage was not an important factor in promoting the late alteration of titanite. Titanite which has been subjected to late hydrothermal activity would not remain a closed system in respect to either U or Th decay series and therefore cannot be used for U/Pb and Th/Pb geochronology. The observed leaching and partial dissolution of titanite under hydrothermal conditions are generally consistent with laboratory experimentation, indicating that proper isolation from any communication with hydrothermal fluids is essential in the application of titanite-based ceramics for the immobilization of radioactive waste. 42 refs., 4 figs., 3 tabs.

  3. The Impact of Chemical Substitutions on Interfacial Properties of REE Orthophosphates (Monazite, Xenotime)

    NASA Astrophysics Data System (ADS)

    Gamage McEvoy, J.; Thibault, Y.

    2016-12-01

    Mineral surface properties strongly influence liquid-solid interface behaviour in the presence of various ligands, and can significantly affect processes of natural (ex. fluids, melts) and industrial (ex. oil recovery) relevance. Many Rare Earth Element (REE)-bearing minerals display extensive solid solutions resulting in significant chemical variations which influence their crystal and surface properties and, can consequently impact the interfacial features of their interaction with substances such as organic molecules (i.e. reactivity and sorption). For example, the surface charge properties of some REE orthophosphates show an uncharacteristically wide variation in reported values, where large differences in literature are commonly attributed to compositional differences between samples. However the impact of these chemical substitutions remains largely unknown. As such, the aim of this research was to systematically investigate the influence of mineralogical variation within the compositional space of the REE orthophosphates on their surface chemistry and resulting interaction with organic molecules. To better isolate the chemical, structural, and morphological variables, the synthesis of REE orthophosphate crystals along a number of defined substitutions was conducted, and their surface chemistry characteristics benchmarked against well-characterized natural monazite and xenotime from various localities. The interaction of these crystal surfaces with model organic molecules (long chain carboxylic acids and alkyl hydroxamic acids, respectively) was then studied and characterized via surface (X-ray photoelectron) and near-surface (vibrational) spectroscopic techniques. The implications of crystal surface-organic molecule interactions to mineral processing through flotation were also experimentally investigated.

  4. First-principles study of point defects in CePO4 monazite

    NASA Astrophysics Data System (ADS)

    Yi, Yong; Zhao, Xiaofeng; Teng, Yuancheng; Bi, Beng; Wang, Lili; Wu, Lang; Zhang, Kuibao

    2016-12-01

    CePO4 monazite is an important radiation-resistant material that may act as a potential minor actinides waste form. Here, we present the results of the calculations for the basic radiation defect modellings in CePO4 crystals, along with the examination of their defect formation energies and effect of the defect concentrations. This study focused on building a fully-relaxed CePO4 model with the step iterative optimization from the DFT-GGA calculations using the VASP and CASTEP databases. The results show that the Frenkel defect configuration resulting from the center interstitials has a lower energy when compared to two adjacent orthophosphate centers (the saddle point position). High formation energies were found for all the types of intrinsic Frenkel and vacancy defects. The formation energies conform to the following trend (given in the decreasing order of energy): Ce Frenkel (12.41 eV) > O Frenkel (11.02 eV) > Ce vacancy (9.09 eV) > O vacancy (6.69 eV). We observed almost no effect from the defect concentrations on the defect formation energies.

  5. Magnetic measurements of the transuranium elements and charge state characterization of actinides in monazite. Progress report

    SciTech Connect

    Huray, P. G.

    1980-01-01

    A micromagnetic susceptometer for the purpose of measuring extremely small sample quantities (on the microgram level) was designed, constructed, and calibrated in previous years. (The 1979 progress report gives details of its operation.) This device has operated without significant downtime in this funding period, and much progress has been made in the magnetic characterization of elements beyond Am in the periodic table. This program has roughly doubled man's knowledge of magnetism in Cm, Bk, and Cf, and includes the only Es magnetic measurements to date. The incorporation of an automatic data collection system in this period has made analysis much more accurate, and has allowed quicker turnaround of compounds and metals for study. Results obtained for the compounds and metals studied this year are summarized. The lanthanide orthophosphates are being investigated as an alternate means of primary containment for high-level actinide wastes. Researchers at the Oak Ridge National Laboratory are involved in preparation of actinide-doped compounds for all of the lanthanide transition series (La through Lu) for a study of leaching characteristics and E.S.R. classification. To aid this study the charge state of /sup 237/Np or /sup 57/Fe has been identified, either in the as-prepared compounds or following radioactive decay of /sup 241/Am via the Moessbauer Effect. The final charge state will be an influential variable in the immobilization characteristics of the waste products stored in this synthetic monazite form. 10 figures, 1 table. (RWR)

  6. Altered volcanic ash layers of the Late Cretaceous San Felipe Formation, Sierra Madre Oriental (Northeastern Mexico): Usbnd Pb geochronology, provenance and tectonic setting

    NASA Astrophysics Data System (ADS)

    Velasco-Tapia, Fernando; Martínez-Paco, Margarita; Iriondo, Alexander; Ocampo-Díaz, Yam Zul Ernesto; Cruz-Gámez, Esther María; Ramos-Ledezma, Andrés; Andaverde, Jorge Alberto; Ostrooumov, Mikhail; Masuch, Dirk

    2016-10-01

    A detailed petrographic, geochemical, and Usbnd Pb geochronological study of altered volcanic ash layers, collected in eight outcrops of the Late Cretaceous San Felipe Formation (Sierra Madre Oriental, Northeastern Mexico), has been carried out. The main objectives have been: (1) to establish a deposit period, and (2) to propose a reliable provenance-transport-deposit-diagenetic model. These volcano-sedimentary strata represent the altered remains of vitreous-crystalline ash (main grains: quartz + K-feldspar (sanidine) + Na-plagioclase + zircon + biotite; groundmass: glass + calcite + clinochlore + illite) deposited and preserved in a shallow, relatively large in area, open platform environment. Major and trace element geochemistry indicate that parent volcanism was mainly rhyodacitic to rhyolitic in composition. Discrimination diagrams suggest a link to continental arc transitional to extension tectonic setting. Usbnd Pb geochronology in zircon has revealed that the volcanic ash was released from their sources approximately during the range 84.6 ± 0.8 to 73.7 ± 0.3 Ma, being transported to the depocenters. Burial diagenesis process was marked by: (a) a limited recycling, (b) the partial loss of original components (mainly K-feldspar, plagioclase, biotite and glass), and (c) the addition of quartz, calcite, illite and clinochlore. The location of the source area remains uncertain, although the lack of enrichment in Zr/Sc ratio suggests that ashes were subjected to relatively fast and short-distance transport process. El Peñuelo intrusive complex, at 130-170 km west of the depocenters, is the nearest known zone of active magmatism during the Upper Cretaceous. This intermediate to felsic pluton, characterized by a geochemical affinity to post-orogenic tectonic setting, could be linked to the volcanic sources.

  7. An integrated study of geochemistry and mineralogy of the Upper Tukau Formation, Borneo Island (East Malaysia): Sediment provenance, depositional setting and tectonic implications

    NASA Astrophysics Data System (ADS)

    Nagarajan, Ramasamy; Roy, Priyadarsi D.; Kessler, Franz L.; Jong, John; Dayong, Vivian; Jonathan, M. P.

    2017-08-01

    An integrated study using bulk chemical composition, mineralogy and mineral chemistry of sedimentary rocks from the Tukau Formation of Borneo Island (Sarawak, Malaysia) is presented in order to understand the depositional and tectonic settings during the Neogene. Sedimentary rocks are chemically classified as shale, wacke, arkose, litharenite and quartz arenite and consist of quartz, illite, feldspar, rutile and anatase, zircon, tourmaline, chromite and monazite. All of them are highly matured and were derived from a moderate to intensively weathered source. Bulk and mineral chemistries suggest that these rocks were recycled from sedimentary to metasedimentary source regions with some input from granitoids and mafic-ultramafic rocks. The chondrite normalized REE signature indicates the presence of felsic rocks in the source region. Zircon geochronology shows that the samples were of Cretaceous and Triassic age. Comparable ages of zircon from the Tukau Formation sedimentary rocks, granitoids of the Schwaner Mountains (southern Borneo) and Tin Belt of the Malaysia Peninsular suggest that the principal provenance for the Rajang Group were further uplifted and eroded during the Neogene. Additionally, presence of chromian spinels and their chemistry indicate a minor influence of mafic and ultramafic rocks present in the Rajang Group. From a tectonic standpoint, the Tukau Formation sedimentary rocks were deposited in a passive margin with passive collisional and rift settings. Our key geochemical observation on tectonic setting is comparable to the regional geological setting of northwestern Borneo as described in the literature.

  8. Three Proterozoic orogenic cycles in the Livingstone Mountains, Tanzania: Evidence from petrology and ion microprobe dating of zircon and monazite

    NASA Astrophysics Data System (ADS)

    Nitsche, Christoph; Schenk, Volker; Schmitt, Axel; Kazimoto, Emmanuel

    2017-04-01

    The Livingstone Mountains at Lake Nyasa in southern Tanzania are situated in an area where three orogenic belts seem to be overlapping: the Ubendian-Usagaran belts, the Irumide Belt and the East African Orogen, whose formations are linked to the assembly of the Proterozoic supercontinents of Columbia, Rodinia and Gondwana. Granulite-facies migmatitic metapelites and two orthogneisses were studied petrologically and by ion microprobe dating of monazite and zircon to decipher their tectono-metamorphic history and to find out if and to which degree the rocks of the Livingstone Mountains were affected by the different orogenies. Zircon dating of orthogneiss yielded a magmatic age of ca. 2.2 Ga. Texturally controlled ion microprobe U-Pb dating of monazite inclusions in garnet of a Grt-Sil-Bt migmatite in combination with discordant zircon data point to sillimanite-garnet grade metamorphism at 1857±27 Ma during the Ubendian-Usagaran orogeny. Oscillatory zoned concordant zircon of another orthogneiss was dated at 997±8.6 Ma, whereas the age of monazite inclusions in garnet and matrix of a garnet-sillimanite-gneiss revealed an associated high-grade metamorphism at 1067±20 Ma during the Irumide orogeny. Low Th/U overgrowths on orthogneiss zircon and concordant matrix monazite in metapelite are dated at 653±9.1 Ma, which is in agreement with the known ages of Pan-African events in the East African Orogen and in the Ubendian Belt (655-550 Ma) (Möller et al., 2000; Boniface et al, 2012). Garnet is homogeneous in Fe and Mg, but cores are mantled by Ca-rich garnet which shows rim-ward depletion in Ca. Thermobarometry using compositions of garnet rims and matrix minerals yielded 770-820 °C and 7-8 kbar, which we interpret to represent conditions during the Neoproterozoic metamorphic event. The high-grossular mantle might reflect earlier conditions of kyanite-grade metamorphism tentatively correlated with high-pressure metamorphism during the Mesoproterozoic Irumide orogeny

  9. Microcrystals of Th-rich monazite (La) with a negative Ce anomaly in metadiorite and their role for documenting Cretaceous metamorphism in the Slavonian Mountains (Croatia)

    NASA Astrophysics Data System (ADS)

    Starijaš Mayer, Biljana; Krenn, Erwin; Finger, Fritz

    2014-04-01

    Microcrystals (1-15 μm) of unusual monazite (La) with 41-47 mol% cheralite [ThCa(PO4)2] component and a strong negative Ce anomaly are described from a metadiorite from the SW Slavonian Mountains, Psunj, Croatia. The dioritic host rock still shows a relictic igneous fabric on macroscopic scale. However, metamorphic reaction textures can be recognized in thin section. These include partial recrystallization of igneous plagioclase to albite coupled with the formation of epidote. Furthermore, partial replacement of igneous hornblende by a fine-grained orthoamphibole-chamosite-epidote paragenesis can be observed and replacement of ilmenite by titanite. The compositions of the metamorphic minerals indicate upper greenschist facies conditions (460-500 °C according to two-feldspar geothermometry) under a high oxygen fugacity. Microstructures show that the monazite crystals belong to the metamorphic paragenesis and formed at the expense of magmatic allanite. Their negative Ce anomalies reflect the oxidizing conditions of metamorphism. Application of the xenotime in monazite solvus geothermometer provides unrealistically high temperatures of ~500-660 °C which disagree with the greenschist facies metamorphic paragenesis. We interpret that the presence of cheralite has a profound effect on the nature of the monazite-xenotime solvus curve and hence the existing calibrations of this geothermometer may be generally unsuitable for cheralite-rich monazite. An important geological result is that the Th-U-total Pb ages of the monazite grains are uniformingly Upper Cretaceous. Our data thus suggest that the imprint of the Alpine orogeny on the Slavonian Mountains was stronger than presumed until now.

  10. Apparent partial resetting of U-Th-Pb systems in experimentally altered monazite resulting from nano-mixtures due to incomplete replacement.

    NASA Astrophysics Data System (ADS)

    Grand'homme, Alexis; Janots, Emilie; Seydoux-Guillaume, Anne-Magali; Guillaume, Damien; Bosse, Valérie; Magnin, Valérie

    2016-04-01

    Hydrothermal alteration experiments of natural monazite crystals (Manangotry, Madagascar; 555 Ma) under alkali conditions (NaOH 1M in 18O doped solution) at low temperature conditions (300, 400, 500 and 600°C), 200 MPa, were conducted to clarify the origin of unsupported Pb (radiogenic or not) in altered monazite (Seydoux-Guillaume et al., 2012). At 300°C, no evidence of monazite replacement was observed. From 400 to 600°C, experimental products show a replacement texture with pristine monazite (Mnz1) surrounded by an alteration rim with a different composition (SEM and EPMA). In the altered domains, in-situ isotopic and chemical U-Th-Pb dating yields intermediate ages between original monazite (555 Ma) and complete experimental resetting (0 Ma). Incomplete resetting is due to the systematic presence of Pb in altered domains, whose concentration decreases with increasing temperature. Transmission Electron Microscope (TEM) observations reveal an incomplete replacement of Mnz1 by a secondary monazite (Mnz2), free of Pb, within the altered domain. The latter domain, apparently homogeneous in BSE images, is in fact constituted by closely associated nano-mixtures of Mnz1 and Mnz2. Furthermore, the volume of Mnz2 within the altered domain, i.e. the efficiency of replacement, increases with increasing temperature. Apparent partial resetting of U-Th-Pb systems results from the unavoidable nano-mixture of different proportion of Mnz1 and Mnz2 within the analytical microvolume (EPMA, LA-ICP-MS). This study therefore indicates that the micrometric resolution (even the 5 μm3 for EPMA) of in-situ dating techniques may be not sufficient to solve such nano-replacement domains, especially when alteration occurs at low-temperature. Ref: Seydoux-Guillaume, A.-M., Montel, J.-M., Bingen, B., Bosse, V., de Parseval, P., Paquette, J.-L., Janots, E., and Wirth, R., (2012). Chemical Geology, v. 330-331, p. 140-158.

  11. A precise 232Th-208Pb chronology of fine-grained monazite: Age of the Bayan Obo REE-Fe-Nb ore deposit, China

    USGS Publications Warehouse

    Wang, Jingyuan; Tatsumoto, M.; Li, X.; Premo, W.R.; Chao, E.C.T.

    1994-01-01

    We have obtained precise Th-Pb internal isochron ages on monazite and bastnaesite for the world's largest known rare earth elements (REE)-Fe-Nb ore deposit, the Bayan Obo of Inner Mongolia, China. The monazite samples, collected from the carbonate-hosted ore zone, contain extremely small amounts of uranium (less than 10 ppm) but up to 0.7% ThO2. Previous estimates of the age of mineralization ranged from 1.8 to 0.255 Ga. Magnetic fractions of monazite and bastnaesite samples (<60-??m size) showed large ranges in 232Th 204Pb values (900-400,000) and provided precise Th-Pb internal isochron ages for paragenetic monazite mineralization ranging from 555 to 398 Ma within a few percent error (0.8% for two samples). These results are the first indication that REE mineralization within the giant Bayan Obo ore deposit occurred over a long period of time. The initial lead isotopic compositions (low 206Pb 204Pb and high 208Pb 204Pb) and large negative ??{lunate}Nd values for Bayan Obo ore minerals indicate that the main source(s) for the ores was the lower crust which was depleted in uranium, but enriched in thorium and light rare earth elements for a long period of time. Zircon from a quartz monzonite, located 50 km south of the ore complex and thought to be related to Caledonian subduction, gave an age of 451 Ma, within the range of monazite ages. Textural relations together with the mineral ages favor an epigenetic rather than a syngenetic origin for the orebodies. REE mineralization started around 555 Ma (disseminated monazite in the West, the Main, and south of the East Orebody), but the main mineralization (banded ores) was related to the Caledonian subduction event ca. 474-400 Ma. ?? 1994.

  12. Whole-Rock Geochemistry and Zircon U-Pb Isotopes of the Late Cretaceous Granitoids of the Eastern Taurus (turkey): Implications for Petrogenesis and Geodynamic Setting

    NASA Astrophysics Data System (ADS)

    Beyarslan, Melahat; Lin, Yu-Chin; Chung, Sun-Lin; Feyzi Bingol, Ahmet; Yildirim, Esra

    2015-04-01

    The granitoid plutons out crop largely in the Eastern Taurus, in Turkey. New data, including a combination of field relation, U-Pb zircon geochronology and rock geochemistry on the granitoids in the Eastern Taurus of the Tethyan orogen in Turkey, come from four plutons ( Pertek, Baskil, Göksun and Şifrin). Pertek, Baskil and Göksun plutons consist mainly of diorite, quartz-diorites, tonalite, granodiorites and granites of I-type, with minor monzonite, the Şifrin pluton consists of syenogranite, syenite, monzogranite, monzonite. U-Pb zircon geochronology of four samples of diorite and granite from Pertek and Baskil plutons indicate ages of 86±2 - 79 ± 1Ma. U-Pb zircon geochronology of four samples from the Şifrin granitoid yield ages 77±1-72±1 Ma. Considering these ages, emplacement of the plutons took place during Late Cretaceous (Santonian-Campanian), from 86 to 72 Ma. Although the SiO2 of rocks forming granitoids varies in wide range ( 46.792- 74.092 wt%), they show arc and syn-collision geochemical affinity, with enrichment of LILE (K, Rb, Sr and Ba) and depletion of HFSE (Nb, Ta and Ti) and P. Geochemical data indice that the diorite, tonalite and granodiorite are low-K tholeiite, monzodiorite, monzogranite, granite and K-granite are calc-alkaline and high-K calc-alkaline and monzonite, syenomonzonite and syenite of Şifrin pluton and some samples of the Pertek pluton are shoshonitic. The Eastern Taurus granitoids would be formed by partial melting of possible juvenile arc-derived rocks during subduction of the South Branch of the Neo-Tethyan oceanic crust and subsequent arc-continent collision.

  13. Traditional applications and novel approaches in Lu-Hf geochronology

    NASA Astrophysics Data System (ADS)

    Herwartz, D.; Nagel, T. J.; Sandmann, S.; Vitale Brovarone, A.; Rexroth, S.; Rojas-Agramonte, Y.; Froitzheim, N.; Kröner, A.; Skublov, S. G.; Münker, C.

    2012-04-01

    Lutetium-Hf geochronology is currently becoming a routine method for dating metamorphism of garnet bearing rocks, such as eclogites. Prograde garnet growth ages are mostly preserved because blocking temperatures exceed 630 °C [1] and prograde Lu zoning patterns have even been observed in samples that were exposed to temperatures above 800 °C [2]. Here we discuss Lu-Hf ages from various eclogite localities, such as the Northern Tianshan, Kyrgyzstan (~ 470 Ma), the Kola Peninsula, Russia (~ 1900 Ma) [3], Cuba (~70 Ma and ~124 Ma), Alpine Corsica (~ 34 Ma) and the Tauern Window (~32.7 Ma). Age precisions are in the order of 0.1 to 1 % and all ages can be safely attributed to the timing of garnet growth. Some samples, however, contain two garnet populations which complicates Lu-Hf geochronology. In the Adula Nappe (Central Alps) relict garnet has survived a second orogenic cycle, including subduction to mantle depth. By carefully separating the two garnet populations present within the same eclogite sample we obtained a minimum Variscan age of 333 Ma and a maximum Alpine age of 38 Ma [4]. A similar relationship is now evident in samples from the Tauern Window (Eastern Alps), where only one population of garnet generation is visible macroscopically. However, few relics of Variscan garnet inside Alpine garnet are observed in electron microprobe element maps and are also evident from isotopic heterogeneity in 176Lu/177Hf vs. 176Hf/177Hf space. Garnet relics stemming from previous metamorphic events are frequently observed in HP units around the world and the Lu-Hf system is a promising tool to resolve the respective growth ages. Apart from garnet, lawsonite Lu-Hf geochronology was recently identified as a new tool to investigate subduction processes [5]. Here we present a lawsonite Lu-Hf isochron 37,6 ± 1.4 Ma (MSWD = 0.30; n =5) from a lawsonite blueschist from Alpine Corsica. The lawsonite slightly predates the timing of garnet growth (~34 Ma) in three eclogite

  14. Fifty years of IMOG (International Meetings on Organic Geochemistry)

    USGS Publications Warehouse

    Kvenvolden, Keith A.

    2012-01-01

    IMOG2011 is the 25th of a series of international meetings on organic geochemistry that began in 1962. Thus, this 25th meeting marks the 50th anniversary year of IMOG, which has (a) had a rich history with meetings taking place in 11 different countries, (b) published Proceedings, titled “Advances in Organic Geochemistry,” from each meeting that now number 24 volumes totaling almost 18,000 pages, and (c) documented the content and development of the science of organic geochemistry. IMOG2011 adds a new milestone to the progress of organic geochemistry through time.

  15. Fluid-induced dissolution breakdown of monazite from Tso Morari complex, NW Himalayas: evidence for immobility of trace elements

    NASA Astrophysics Data System (ADS)

    Upadhyay, Dewashish; Pruseth, Kamal Lochan

    2012-08-01

    Primary igneous monazite from the Polokongka La granite of the Tso Morari complex in the western Himalayas has been partially replaced by a three-layered corona of metamorphic fluor-apatite, allanite + U- and Th-bearing phases (huttonite + brabantite), and epidote. The alteration is related to high-pressure amphibolite-facies (10-11 kbar and 587-695 °C) fluid-induced retrogression of the ultra-high-pressure granite during exhumation after India-Asia collision. The corona textures can be explained by pseudomorphic partial replacement of the original monazite to apatite and allanite via a fluid-mediated coupled dissolution-reprecipitation process. Mass balance calculations using the volume proportions and compositions of coronal minerals show that the REE, U, Th, Pb, Ba and P were conserved and not transported outside the alteration corona. The formation of fluor-apatite, allanite, huttonite and coffinite from monazite and the immobility of REE, U and Th require an influx of alkali- and F-bearing, Ca-rich fluid having high Ca/Na into the corona. We are aware of only two other occurrences of such alteration textures, and these have several similarities in terms of geodynamic setting and P-T histories of the host rocks. We suggest that there may be a common mechanism of exhumation style, and source and composition of fluids during retrogression of granitoid rocks in collisional orogens and that such breakdown textures can be used to identify metagranites that have experienced high-P metamorphism in continental collision zones, which is otherwise difficult to constrain due to the high variance of the mineral assemblages in these rocks.

  16. Geology and geochronology of the Spirit Mountain batholith, southern Nevada: Implications for timescales and physical processes of batholith construction

    USGS Publications Warehouse

    Walker, B.A.; Miller, C.F.; Lowery, Claiborne L.; Wooden, J.L.; Miller, J.S.

    2007-01-01

    The Spirit Mountain batholith (SMB) is a ??? 250??km2 composite silicic intrusion located within the Colorado River Extensional Corridor in southernmost Nevada. Westward tilting of 40-50?? has exposed a cross-section from the roof through deep levels of the batholith. Piecemeal construction is indicated by zircon geochronology, field relations, and elemental geochemistry. Zircon U/Pb data (SHRIMP) demonstrates a ??? 2??million year (17.4-15.3??Ma) history for the SMB. Individual samples contain zircons with ages that span the lifetime of the batholith, suggesting recycling of extant zircon into new magma pulses. Field relations reveal several distinct intrusive episodes and suggest a common injection geometry of stacked horizontal sheets. The largest unit of the SMB is a gradational section (from roof downward) of high-silica leucogranite through coarse granite into foliated quartz monzonite. Solidification of this unit spans most of the history of the batholith. The 25??km ?? 2??km leucogranite was emplaced incrementally as subhorizontal sheets over most or all of the history of this section, suggesting repeated fractional crystallization and melt segregation events. The quartz monzonite and coarse granite are interpreted to be cumulate residuum of this fractionation. Age data from throughout this gradational unit show multiple zircon populations within individual samples. Subsequent distinct intrusions that cut this large unit, which include minor populations of zircons that record the ages of earlier events in construction of the batholith, preserve a sheeted, sill-on-sill geometry. We envision the SMB to have been a patchwork of melt-rich, melt-poor, and entirely solid zones throughout its active life. Preservation of intrusion geometries and contacts depended on the consistency of the host rock. Zircons recycled into new pulses of magma document remobilization of previously emplaced crystal mush, suggesting the mechanisms by which evidence for initial

  17. Isotope Geochemistry for Comparative Planetology of Exoplanets

    NASA Technical Reports Server (NTRS)

    Mandt, K. E.; Atreya, S.; Luspay-Kuti, A.; Mousis, O.; Simon, A.; Hofstadter, M. D.

    2017-01-01

    Isotope geochemistry has played a critical role in understanding processes at work in and the history of solar system bodies. Application of these techniques to exoplanets would be revolutionary and would allow comparative planetology with the formation and evolution of exoplanet systems. The roadmap for comparative planetology of the origins and workings of exoplanets involves isotopic geochemistry efforts in three areas: (1) technology development to expand observations of the isotopic composition of solar system bodies and expand observations to isotopic composition of exoplanet atmospheres; (2) theoretical modeling of how isotopes fractionate and the role they play in evolution of exoplanetary systems, atmospheres, surfaces and interiors; and (3) laboratory studies to constrain isotopic fractionation due to processes at work throughout the solar system.

  18. Precambrian organic geochemistry - Preservation of the record

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Wedeking, K. W.; Kaplan, I. R.

    1983-01-01

    A review of earlier studies is presented, and new results in Precambrian organic geochemistry are discussed. It is pointed out that two lines of evidence can be developed. One is based on structural organic chemistry, while the other is based on isotopic analyses. In the present investigation, the results of both structural and isotopic investigations of Precambrian organic matter are discussed. Processes and products related to organic geochemistry are examined, taking into account the carbon cycle, an approximate view of the principal pathways of carbon cycling associated with organic matter in the present global ecosystem, processes affecting sedimentary organic matter, and distribution and types of organic matter. Attention is given to chemical fossils in Precambrian sediments, kerogen analyses, the determination of the structural characteristics of kerogen, and data concerning the preservation of the Precambrian organic geochemical record.

  19. An Unlikely Connection: Geochemistry and Nuclear Structure

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    2000-12-01

    Although geochemistry belongs to the earth sciences, historically it has interacted importantly with the physical sciences, in particular with astrophysics and nuclear physics. These interactions, which in traditional historiography have received little notice from either historians of physics or historians of geology, are the subjects of the present paper, which focuses on the period between 1915 and 1950. During the 1920s, geochemists established empirical regularities in the abundance data of the elements in rocks and meteorites, and from these they suggested that an improved knowledge of the atomic nucleus could be obtained. More significantly, geochemists supplied astrophysicists, cosmologists and nuclear physicists with important data that could not be obtained otherwise. The link between geochemistry and basic, nuclear physics is a historical reality. The paper explores parts of this link.

  20. Precambrian organic geochemistry - Preservation of the record

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.; Wedeking, K. W.; Kaplan, I. R.

    1983-01-01

    A review of earlier studies is presented, and new results in Precambrian organic geochemistry are discussed. It is pointed out that two lines of evidence can be developed. One is based on structural organic chemistry, while the other is based on isotopic analyses. In the present investigation, the results of both structural and isotopic investigations of Precambrian organic matter are discussed. Processes and products related to organic geochemistry are examined, taking into account the carbon cycle, an approximate view of the principal pathways of carbon cycling associated with organic matter in the present global ecosystem, processes affecting sedimentary organic matter, and distribution and types of organic matter. Attention is given to chemical fossils in Precambrian sediments, kerogen analyses, the determination of the structural characteristics of kerogen, and data concerning the preservation of the Precambrian organic geochemical record.

  1. Nd Isotope and U-Th-Pb Age Mapping of Single Monazite Grains by Laser Ablation Split Stream Analysis

    NASA Astrophysics Data System (ADS)

    Fisher, C. M.; Hanchar, J. M.; Miller, C. F.; Phillips, S.; Vervoort, J. D.; Martin, W.

    2015-12-01

    Monazite is a common accessory mineral that occurs in medium to high grade metamorphic and Ca-poor felsic igneous rocks, and often controls the LREE budget (including Sm and Nd) of the host rock in which it crystallizes. Moreover, it contains appreciable U and Th, making it an ideal mineral for determining U-Th-Pb ages and Sm-Nd isotopic compositions, both of which are readily determined using in situ techniques with very high spatial resolution like LA-MC-ICPMS. Here, we present the results of laser ablation split stream analyses (LASS), which allows for simultaneous determination of the age and initial Nd isotopic composition in a single analysis. Analyses were done using a 20mm laser spot that allowed for detailed Nd isotope mapping of monazite grains (~30 analyses per ~250mm sized grain). Combined with LREE ratios (e.g., Sm/Nd, Ce/Gd, and Eu anomalies) these results yield important petrogenetic constraints on the evolution of peraluminous granites from the Old Woman-Piute batholith in southeastern California. Our findings also allow an improved understanding of the causes of isotope heterogeneity in granitic rocks. U-Th-Pb age mapping across the crystals reveals a single Cretaceous age for all grains with precision and accuracy typical of laser ablation analyses (~2%). In contrast, the concurrent Nd isotope mapping yields homogeneous initial Nd isotope compositions for some grains and large initial intra-grain variations of up to 8 epsilon units in others. The grains that yield homogeneous Nd isotope compositions have REE ratios suggesting that they crystallized in a fractionally crystallizing magma. Conversely, other grains, which also record fractional crystallization of both feldspar and LREE rich minerals, demonstrate a change in the Nd isotope composition of the magma during crystallization of monazite. Comparison of inter- and intra-grain Nd isotope compositions reveals further details on the potential mechanisms responsible for isotope heterogeneity

  2. Two Phase Monazite/Xenotime 30LaPO4-70YPO4 Coating of Ceramic Fiber Tows (Postprint)

    DTIC Science & Technology

    2008-04-01

    should be addressed. e-mail: emmanuel.boa kye@wpafb.af.mil Manuscript No. 23142. Received April 27, 2007; approved July 19, 2007. Journal J . Am. Ceram. Soc...91 [1] 17–25 (2008) DOI: 10.1111/ j .1551-2916.2007.02005.x r 2007 The American Ceramic Society 171 adding NH4OH to pH5B9, and were further dispersed...B. Marshall, ‘‘Ceramic Composites of Monazite and Alumina,’’ J . Am. Ceram. Soc., 78, 1553–63 (1995). 2K. A. Keller et al., ‘‘Effectiveness of

  3. Apatite- and monazite-bearing glass-crystal composites for the immobilization of low-level nuclear and hazardous wastes

    SciTech Connect

    Wronkiewicz, D.J.; Wolf, S.F.; DiSanto, T.S.

    1995-12-31

    This study demonstrates that glass-crystal composite waste forms can be produced from waste streams containing high proportions of phosphorus, transition metals, and/or halides. The crystalline phases produced in crucible-scale melts include apatite, monazite, spinels, and a Zr-Si-Fe-Ti phase. These phases readily incorporated radionuclide and toxic metals into their crystal structures, while corrosion tests have demonstrated that glass-crystal composites can be up to 300-fold more durable than simulated high-level nuclear waste glasses, such as SRL 202U.

  4. A first principle study of the pressure dependent elastic properties of monazite LaPO{sub 4}

    SciTech Connect

    Ali, Kawsar Arya, A.; Ghosh, P. S.; Dey, G. K.

    2016-05-06

    DFT based ab-initio simulations have been performed to study the effect of pressure on the elastic properties of monazite LaPO{sub 4} which is a promising host material for immobilization of high level nuclear waste. The phase is found to be stable up to 30 GPa. The calculated polycrystalline bulk, shear and Young moduli show an increasing trend as a function of pressure. The ductility and anisotropy in shear modulus of the material have been found to increase with pressure; whilethe bulk modulus anisotropy decreases with pressure.

  5. The Geochemistry of Mass Extinction

    NASA Astrophysics Data System (ADS)

    Kump, L. R.

    2003-12-01

    The course of biological evolution is inextricably linked to that of the environment through an intricate network of feedbacks that span all scales of space and time. Disruptions to the environment have biological consequences, and vice versa. Fossils provide the prima facie evidence for biotic disruptions: catastrophic losses of global biodiversity at various times in the Phanerozoic. However, the forensic evidence for the causes and environmental consequences of these mass extinctions resides primarily in the geochemical composition of sedimentary rocks deposited during the extinction intervals. Thus, advancement in our understanding of mass extinctions requires detailed knowledge obtained from both paleontological and geochemical records.This chapter reviews the state of knowledge concerning the geochemistry of the "big five" extinctions of the Phanerozoic (e.g., Sepkoski, 1993): the Late Ordovician (Hirnantian; 440 Ma), the Late Devonian (an extended or multiple event with its apex at the Frasnian-Famennian (F-F) boundary; 367 Ma), the Permian-Triassic (P-Tr; 251 Ma), the Triassic-Jurassic (Tr-J; 200 Ma), and the Cretaceous-Tertiary (K-T; 65 Ma). The focus on the big five is a matter of convenience, as there is a continuum in extinction rates from "background" to "mass extinction." Although much of the literature on extinctions centers on the causes and extents of biodiversity loss, in recent years paleontologists have begun to focus on recoveries (see, e.g., Hart, 1996; Kirchner and Weil, 2000; Erwin, 2001 and references therein).To the extent that the duration of the recovery interval may reflect a slow relaxation of the environment from perturbation, analysis of the geochemical record of recovery is an integral part of this effort. In interpreting the geochemical and biological records of recovery, we need to maintain a clear distinction among the characteristics of the global biota: their biodiversity (affected by differences in origination and extinction

  6. Long-distance Dating: In situ geochronology for planetary missions

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Cohen, B. A.

    2016-12-01

    Isotopic dating is an essential tool to establish an absolute chronology for geological events. It enables a planet's crystallization history, magmatic evolution, and alteration to be placed into the framework of solar system history. The capability for in situ geochronology will open up the ability for this crucial measurement to be accomplished as part of lander or rover complement. An in situ geochronology package can also complement sample return missions by identifying the most interesting rocks to cache or return to Earth. The capability of flight instruments to conduct in situ geochronology is called out in the NASA Planetary Science Decadal Survey and the NASA Technology Roadmap as needing development to serve the community's needs. Beagle 2 is the only mission launched to date with the explicit aim to perform in situ K-Ar isotopic dating [1], but it failed to communicate and was lost. The first in situ K-Ar date on Mars, using SAM and APXS measurements on the Cumberland mudstone [2], yielded an age of 4.21 ± 0.35 Ga and validated the idea of K-Ar dating on other planets, though the Curiosity method is not purpose-built for dating and requires many assumptions that degrade its precision. To get more precise and meaningful ages, multiple groups are developing dedicated in situ dating instruments [3-7], including the K-Ar Laser Experiment (KArLE) [5]. KArLE ablates a rock sample, measures K using laser-induced breakdown spectroscopy (LIBS), measures liberated Ar using mass spectrometry (MS), and relates the two by measuring the volume of the ablated pit with optical imaging. The KArLE breadboard tested planetary analog samples yielding ages with 25% uncertainty on very young samples (<50Ma) and 10% uncertainties on older samples. [1] Talboys, et al. (2009) Planetary and Space Science 57, 1237-1245, doi:10.1016/j.pss.2009.02.012. [2] Farley, et al. (2014) Science 343, doi:10.1126/science.1247166. [3] Anderson, et al. (2015) Rapid Comm. Mass Spec. 29, 191

  7. The Potassium-Argon Laser Experiment (KArLE): In Situ Geochronology for Planetary Missions

    NASA Astrophysics Data System (ADS)

    Cohen, B. A.

    2016-10-01

    KArLE is intended to yield in situ geochronology data and enhance functionality of existing flight instruments using flight hardware that would be reliable, reconfigurable and adaptable to multiple partner instruments and mission architectures.

  8. Performance of DFT+U method for prediction of structural and thermodynamic parameters of monazite-type ceramics.

    PubMed

    Blanca Romero, Ariadna; Kowalski, Piotr M; Beridze, George; Schlenz, Hartmut; Bosbach, Dirk

    2014-07-05

    We performed a density functional theory (DFT) study of the monazite-type ceramics using DFT+U method, where the Hubbard U parameters are derived ab initio, with the main goal in testing the predictive power of this computational method for modeling of f-electron materials that are of interest in nuclear waste management. We show that DFT+U approach with PBEsol as the exchange-correlation functional significantly improves description of structures and thermodynamic parameters of lanthanide-bearing oxides and monazites over commonly used standard DFT (PBE) approach. We found that it is essential to use the Hubbard U parameter derived for a given element and a given structure to reproduce the structural parameters of the measured materials. We obtained exceptionally good description of the structural parameters with U parameter derived using the linear response approach of Cococcioni and de Gironcoli (Phys. Rev. B 2005, 71, 035105). This shows that affordable methods, such as DFT+U with a clever choice of exchange-correlation functional and the Hubbard U parameter can lead to a good description of f-electron materials.

  9. Three decades of geochronologic studies in the New England Appalachians

    USGS Publications Warehouse

    Zartman, R.E.

    1988-01-01

    Over the past 30 years, both isotope geochronology and plate tectonics grew from infancy into authoritative disciplines in the geological sciences. The existing geochronlogy is summarized into a map and table emphasizing the temporal construction of the New England Appalachians. By using lithotectonic zones as the building blocks of the orogen, seven such zones are defined in terms of pre-, syn-, and post-assembly geologic history. The boundaries between these zones are faults in most cases, some of which may have had recurring movement to further complicate any plate-tectonic scenario. A delineation of underlying Grenvillian, Chain Lakes, and Avalonian basement is also attempted, which now can make use of isotopes in igneous rocks as petrogenic indicators to supplement the rare occurrences of basement outcrop within mobile zones of the orogen. -from Author

  10. Laser-Ablation (U-Th)/He Geochronology

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Boyce, J.

    2003-12-01

    Over the past decade, ultraviolet laser microprobes have revolutionized the field of 40Ar/39Ar geochronology. They provide unprecedented information about Ar isotopic zoning in natural crystals, permit high-resolution characterization of Ar diffusion profiles produced during laboratory experiments, and enable targeted dating of multiple generations of minerals in thin section. We have modified the analytical protocols used for 40Ar/39Ar laser microanalysis for use in (U-Th)/He geochronologic studies. Part of the success of the 40Ar/39Ar laser microprobe stems from fact that measurements of Ar isotopic ratios alone are sufficient for the calculation of a date. In contrast, the (U-Th)/He method requires separate analysis of U+Th and 4He. Our method employs two separate laser microprobes for this process. A target mineral grain is placed in an ultrahigh vacuum chamber fitted with a window of appropriate composition to transmit ultraviolet radiation. A focused ArF (193 nm) excimer laser is used to ablate tapered cylindrical pits on the surface of the target. The liberated material is scrubbed with a series of getters in a fashion similar to that used for 40Ar/39Ar geochronology, and the 4He abundance is determined using a quadrupole mass spectrometer with well-calibrated sensitivity. A key requirement for calculation of the 4He abundance in the target is a precise knowledge of the volume of the ablation pit. This is the principal reason why we employ the ArF excimer for 4He analysis rather than a less-expensive frequency-multiplied Nd-YAG laser; the excimer creates tapered cylindrical pits with extremely reproducible and easily characterized geometry. After 4He analysis, U and Th are measured on the same sample surface using the more familiar technique of laser-ablation inductively coupled plasma mass spectrometry (LA-ICPMS). Our early experiments have been done using a frequency-quintupled Nd-YAG microprobe (213nm), While the need to analyze U+Th and He in separate

  11. Component geochronology in the polyphase ca. 3920 Ma Acasta Gneiss

    USGS Publications Warehouse

    Mojzsis, Stephen J.; Cates, Nicole L.; Caro, Guillaume; Trail, Dustin; Abramov, Oleg; Guitreau, Martin; Blichert-Toft, Janne; Hopkins, Michelle D.; Bleeker, Wouter

    2014-01-01

    The oldest compiled U–Pb zircon ages for the Acasta Gneiss Complex in the Northwest Territories of Canada span about 4050–3850 Ma; yet older ca. 4200 Ma xenocrystic U–Pb zircon ages have also been reported for this terrane. The AGC expresses at least 25 km2 of outcrop exposure, but only a small subset of this has been documented in the detail required to investigate a complex history and resolve disputes over emplacement ages. To better understand this history, we combined new ion microprobe235,238U–207,206Pb zircon geochronology with whole-rock and zircon rare earth element compositions ([REE]zirc), Ti-in-zircon thermometry (Tixln) and 147Sm–143Nd geochronology for an individual subdivided ∼60 cm2 slab of Acasta banded gneiss comprising five separate lithologic components. Results were compared to other variably deformed granitoid-gneisses and plagioclase-hornblende rocks from elsewhere in the AGC. We show that different gneissic components carry distinct [Th/U]zirc vs. Tixln and [REE]zirc signatures correlative with different zircon U–Pb age populations and WR compositions, but not with 147Sm–143Nd isotope systematics. Modeled  [REE] from lattice-strain theory reconciles only the ca. 3920 Ma zircons with the oldest component that also preserves strong positive Eu∗ anomalies. Magmas which gave rise to the somewhat older (inherited) ca. 4020 Ma AGC zircon age population formed at ∼IW (iron–wüstite) to

  12. Component geochronology in the polyphase ca. 3920 Ma Acasta Gneiss

    NASA Astrophysics Data System (ADS)

    Mojzsis, Stephen J.; Cates, Nicole L.; Caro, Guillaume; Trail, Dustin; Abramov, Oleg; Guitreau, Martin; Blichert-Toft, Janne; Hopkins, Michelle D.; Bleeker, Wouter

    2014-05-01

    The oldest compiled U-Pb zircon ages for the Acasta Gneiss Complex in the Northwest Territories of Canada span about 4050-3850 Ma; yet older ca. 4200 Ma xenocrystic U-Pb zircon ages have also been reported for this terrane. The AGC expresses at least 25 km2 of outcrop exposure, but only a small subset of this has been documented in the detail required to investigate a complex history and resolve disputes over emplacement ages. To better understand this history, we combined new ion microprobe 235,238U-207,206Pb zircon geochronology with whole-rock and zircon rare earth element compositions ([REE]zirc), Ti-in-zircon thermometry (Tixln) and 147Sm-143Nd geochronology for an individual subdivided ˜60 cm2 slab of Acasta banded gneiss comprising five separate lithologic components. Results were compared to other variably deformed granitoid-gneisses and plagioclase-hornblende rocks from elsewhere in the AGC. We show that different gneissic components carry distinct [Th/U]zirc vs. Tixln and [REE]zirc signatures correlative with different zircon U-Pb age populations and WR compositions, but not with 147Sm-143Nd isotope systematics. Modeled DWRzircon [REE] from lattice-strain theory reconciles only the ca. 3920 Ma zircons with the oldest component that also preserves strong positive Eu∗ anomalies. Magmas which gave rise to the somewhat older (inherited) ca. 4020 Ma AGC zircon age population formed at ˜IW (iron-wüstite) to

  13. Quantifying comparison of large detrital geochronology data sets

    NASA Astrophysics Data System (ADS)

    Saylor, J. E.; Sundell, K. E., II

    2015-12-01

    The increasing size of detrital geochronological data challenges existing approaches to data visualization and comparison, highlighting the need for quantitative techniques able to compare multiple large data sets. Using the DZstats software package we applied five metrics to twenty large synthetic data sets and one large empirical data set. The metrics included the Kolmogorov-Smirnov (K-S) and Kuiper tests as well as Cross-correlation, Likeness, and Similarity coefficients of probability density plots (PDPs), kernel density estimates (KDEs) and locally adaptive, variable-bandwidth KDEs (LA-KDEs). We evaluate the metrics' utility based on three criteria: 1) samples from the same population should become systematically more similar with increasing sample size; 2) the metrics should maximize the range of possible coefficients; and 3) the metrics should minimize artifacts resulting from sample-specific complexity. K-S and Kuiper test p-values, and all KDE and LA-KDE coefficients passed a maximum of one criterion. Likeness and Similarity coefficients of PDPs, as well as K-S and Kuiper test D- and V-values passed two of the criteria. Cross-correlation of PDPs passed all three. As hypothesis tests of derivation from a common source, individual K-S and Kuiper p-values too frequently reject the null hypothesis that samples come from a common source. However, mean p-values calculated by bootstrap subsampling and comparison of sample data sets yield a binary discrimination of identical versus different source populations. Cross-correlation and Likeness of PDPs, and Cross-correlation of KDEs yield the widest divergence in coefficients and thus a consistent discrimination between identical and different source populations, with Cross-correlation of PDPs requiring the smallest sample size. In light of this, we recommend standard acquisition of large (n > 300) detrital geochronology data sets and repeated subsampling for robust quantitative comparison using Likeness, Cross

  14. Using Eu(3+) as an atomic probe to investigate the local environment in LaPO4-GdPO4 monazite end-members.

    PubMed

    Huittinen, Nina; Arinicheva, Yulia; Schmidt, Moritz; Neumeier, Stefan; Stumpf, Thorsten

    2016-12-01

    In the present study, we have investigated the luminescent properties of Eu(3+) as a dopant in a series of synthetic lanthanide phosphates from the monazite group. Systematic trends in the spectroscopic properties of Eu(3+) depending on the size of the host cation and the dopant to ligand distance have been observed. Our results show that the increasing match between host and dopant radii when going from Eu(3+)-doped LaPO4 toward the smaller GdPO4 monazite decreases both the full width at half maximum of the Eu(3+) excitation peak, as well as the (7)F2/(7)F1 emission band intensity ratio. The decreasing Ln⋯O bond distance within the LnPO4 series causes a systematic bathochromic shift of the Eu(3+) excitation peak, showing a linear dependence of both the host cation size and the Ln⋯O distance. The linear relationship can be used to predict the energy band gap for Eu(3+)-doped monazites for which no Eu(3+) luminescent data is available. Finally, mechanisms for metal-metal energy transfer between host and dopant lanthanides have been explored based on recorded luminescence lifetime data. Luminescence lifetime data for Eu(3+) incorporated in the various monazite hosts clearly indicated that the energy band gap between the guest ion emission transition and the host ion absorption transition can be correlated to the degree of quenching observed in these materials with otherwise identical geometries and chemistries.

  15. Solid-state synthesis of monazite-type compounds containing tetravalent elements.

    PubMed

    Bregiroux, Damien; Terra, Olivier; Audubert, Fabienne; Dacheux, Nicolas; Serin, Virgine; Podor, Renaud; Bernache-Assollant, Didier

    2007-11-26

    On the basis of optimized grinding/heating cycles developed for several phosphate-based ceramics, the preparation of brabantite and then monazite/brabantite solid solutions loaded with tetravalent thorium, uranium, and cerium (as a plutonium surrogate) was examined versus the heating temperature. The chemical reactions and transformations occurring when heating the initial mixtures of AnO2/CeO2, CaHPO(4).2H2O (or CaO), and NH4H2PO4 were identified through X-ray diffraction (XRD) and thermogravimetric/differential thermal analysis experiments. The incorporation of thorium, which presents only one stabilized oxidation state, occurs at 1100 degrees C. At this temperature, all the thorium-brabantite samples appear to be pure and single phase as suggested by XRD, electron probe microanalyses, and micro-Raman spectroscopy. By the same method, tetravalent uranium can