Sample records for monazites

  1. The behaviour of monazite from greenschist facies phyllites to anatectic gneisses: An example from the Chugach Metamorphic Complex, southern Alaska

    PubMed Central

    Gasser, Deta; Bruand, Emilie; Rubatto, Daniela; Stüwe, Kurt

    2012-01-01

    Monazite is a common accessory mineral in various metamorphic and magmatic rocks, and is widely used for U–Pb geochronology. However, linking monazite U–Pb ages with the PT evolution of the rock is not always straightforward. We investigated the behaviour of monazite in a metasedimentary sequence ranging from greenschist facies phyllites into upper amphibolites facies anatectic gneisses, which is exposed in the Eocene Chugach Metamorphic Complex of southern Alaska. We investigated textures, chemical compositions and U–Pb dates of monazite grains in samples of differing bulk rock composition and metamorphic grade, with particular focus on the relationship between monazite and other REE-bearing minerals such as allanite and xenotime. In the greenschist facies phyllites, detrital and metamorphic allanite is present, whereas monazite is absent. In lower amphibolites facies schists (~ 550–650 °C and ≥ 3.4 kbar), small, medium-Y monazite is wide-spread (Mnz1), indicating monazite growth prior and/or simultaneous with growth of garnet and andalusite. In anatectic gneisses, new low-Y, high-Th monazite (Mnz2) crystallised from partial melts, and a third, high-Y, low-Th monazite generation (Mnz3) formed during initial cooling and garnet resorption. U–Pb SHRIMP analysis of the second and third monazite generations yields ages of ~ 55–50 Ma. Monazite became unstable and was overgrown by allanite and/or allanite/epidote/apatite coronas within retrograde muscovite- and/or chlorite-bearing shear zones. This study documents polyphase, complex monazite growth and dissolution during a single, relatively short-lived metamorphic cycle. PMID:26525358

  2. Black monazite from Taiwan

    USGS Publications Warehouse

    Matzko, J.J.; Overstreet, W.C.

    1977-01-01

    Two forms of detrital monazite are known in offshore bars in southwestern Taiwan: a yellow-green to colorless form and an unusual but abundant pelletlike form, generally black but also colored gray or brown. These black pellets, which are about 160 by 200 microns in size, are composed of fine-grained monazite crystals from 2 to 20 microns in size. The pellets are associated with highly variable amounts of discrete grains of detrital quartz, rutile, amphibole, tourmaline, and other minerals. Intergrown with the monazite are quartz, a cerium oxide mineral, chlorite, sulfides, and other minerals. Opaqueness of the pelletlike monazite is due principally to the cryptocrystalline nature of part of the monazite; only a small part of the opaqueness can be attributed to opaque inclusions. The black pelletlike monazite lacks thorium and has a high content of europium. In this respect, as in color, shape, size, and inclusions, the pelletlike monazite differs from the yellow-green detrital monazite. Despite the fact that they occur together in the littoral placers, they appear to have had different origins. The yellow-green monazite originated as an accessory mineral in plutonic rocks and has accumulated at the coast through erosion and transport. The origin of the pelletlike monazite is as yet unknown, but it is here inferred that it originated in unconsolidated coastal plain sediments through migration of cerium from the detrital monazite during weathering, and of the intermediate weight mobile rare earths from clay minerals during diagenesis. Possibly these pelletlike grains are detrital particles formed through erosion and transport from originally larger aggregates cemented by diagenetic monazite.

  3. Selected fluvial monazite deposits in the southeastern United States

    USGS Publications Warehouse

    Overstreet, William C.; White, A.M.; Theobald, P.K.; Caldwell, D.W.

    1971-01-01

    Farther southwest in Georgia, around Griffin and Zebullon, along streams tributary to the Flint River in the monazite belt the flood plains are generally small and discontinuous, and only about 1 percent of the sediment is gravel. The area between Griffin, Zebullon, and the Flint River is underlain by biotite schist and biotite gneiss into which biotite granite has been intruded. Only along one stream, Flat Creek, which drains monazite-bearing granite near Zetella, Ga., are the tenors in monazite even moderately high, but a combination of thick, clayey overburden and discontinuous flood plains make the stream unsuitable for placer mining. Elsewhere in the Flint River area the heavy-mineral concentrates contain less than 1 percent monazite. The southwesternmost area in which reconnaissance of the monazite belt was conducted includes a groups of southwest-flowing tributaries to the Chattahoochee River north of Pine Mountain and near La Grange, Ga. A combination of three characteristics of the alluvium make the area unfavorable for mining: (1) the upper half of the sedimentary sequence is clay and silt, (2) there is scant gravel, and (3) much of the sand is fine grained. Monazite is associated with the Snelson Granite, schists, and gneisses north of the Towaliga fault, but even in this area the tenor of most riffle sediments is only 0.1 to 0.5 pound of monazite per cubic yard, and the average tenor of the alluvium is about 0.2 pound per cubic Yard. Rocks south of the Towaliga fault contain scant monazite. The monazite-bearing area in the drainage basin of the Chattahoochee River has no monazite placers. Evidence from the areas on the Flint and Chattahoochee Rivers shows that streams in western Georgia are a much poorer source of monazite than streams farther to the northeast in Georgia, South Carolina, and North Carolina. Also, the northeastern part of the belt in the drainage basins of the Yadkin and Dan Rivers is a poorer source for monazite than the area between the Savannah and Catawba Rivers, S.C.-N.C. Monazite-bearing crystalline rocks in the western belt contain about 0.06 pound of monazite per cubic yard. Residual soil derived from the crystalline rocks contains about 0.3 to 0.4 pound of monazite per cubic yard, and colluvial sediments formed by sheet-wash from saprolite, residual soil, and, rarely, old stream deposits, have an average of 3.1 pounds of monazite to the cubic yard. The data on the tenors of residual and colluvial deposits are far less comprehensive than those an the quantity of monazite in the crystalline rocks, but the tenors are probably of the correct order of magnitude. Neither the crystalline rocks nor the residual soils are ores of monazite. Because the colluvial deposits are thin and have patch distribution they could not be mined independently, but some colluvium could be stripped from the adjoining hills in conjunction with the mining of alluvial deposits in the valleys. It is most unlikely that alluvial monazite placers have formed in the trunk streams leading southeastward out of the monazite belt. Churn drilling on the Broad and North Tyger Rivers, South Carolina, at the east edge of the belt has shown that the bulk of the alluvium is fine-grained sediment that contains 0.2 to 0.4 pound of monazite per cubic yard--tenors that represent no considerable enrichment over those in the crystalline rocks and residual soils. The probable persistence of predominantly fine-grained alluvium downstream to the Coastal Plain and the certain dilution of monazite-bearing concentrates by the inflow of monazite-free suites of heavy minerals between the belt and the fall line suggest that the trunk streams east of the belt are the least favorable sources for alluvial monazite in the Piedmont?

  4. Interactions of phosphate solubilising microorganisms with natural rare-earth phosphate minerals: a study utilizing Western Australian monazite.

    PubMed

    Corbett, Melissa K; Eksteen, Jacques J; Niu, Xi-Zhi; Croue, Jean-Philippe; Watkin, Elizabeth L J

    2017-06-01

    Many microbial species are capable of solubilising insoluble forms of phosphate and are used in agriculture to improve plant growth. In this study, we apply the use of known phosphate solubilising microbes (PSM) to the release of rare-earth elements (REE) from the rare-earth phosphate mineral, monazite. Two sources of monazite were used, a weathered monazite and mineral sand monazite, both from Western Australia. When incubated with PSM, the REE were preferentially released into the leachate. Penicillum sp. released a total concentration of 12.32 mg L -1 rare-earth elements (Ce, La, Nd, and Pr) from the weathered monazite after 192 h with little release of thorium and iron into solution. However, cultivation on the mineral sands monazite resulted in the preferential release of Fe and Th. Analysis of the leachate detected the production of numerous low-molecular weight organic acids. Gluconic acid was produced by all microorganisms; however, other organic acids produced differed between microbes and the monazite source provided. Abiotic leaching with equivalent combinations of organic acids resulted in the lower release of REE implying that other microbial processes are playing a role in solubilisation of the monazite ore. This study demonstrates that microbial solubilisation of monazite is promising; however, the extent of the reaction is highly dependent on the monazite matrix structure and elemental composition.

  5. Linking monazite geochronology with fluid infiltration and metamorphic histories: Nature and experiment

    NASA Astrophysics Data System (ADS)

    Shazia, J. R.; Harlov, D. E.; Suzuki, K.; Kim, S. W.; Girish-Kumar, M.; Hayasaka, Y.; Ishwar-Kumar, C.; Windley, B. F.; Sajeev, K.

    2015-11-01

    Migmatised metapelites from the Kodaikanal region, central Madurai Block, southern India have undergone ultrahigh-temperature metamorphism (950-1000 °C; 7-8 kbar). In-situ electron microprobe Th-U-Pb isochron (CHIME) dating of monazites in a leucosome and surrounding silica-saturated and silica-poor restites from the same outcrop indicates three principal ages that can be linked to the evolutionary history of these rocks. Monazite grains from the silica-saturated restite have well-defined, inherited cores with thick rims that yield an age of ca. 1684 Ma. This either dates the metamorphism of the original metapelite or is a detrital age of inherited monazite. Monazite grains from the silica-poor restite, thick rims from the silica-saturated restite, and monazite cores from the leucosome have ages ranging from 520 to 540 Ma suggesting a mean age of 530 Ma within the error bars. In the leucosome the altered rim of the monazite gives an age of ca. 502 Ma. Alteration takes the form of Th-depleted lobes of monazite with sharp curvilinear boundaries extending from the monazite grain rim into the core. We have replicated experimentally these altered rims in a monazite-leucosome experiment at 800 °C and 2 kbar. This experiment, coupled with earlier published monazite-fluid experiments involving high pH alkali-bearing fluids at high P-T, helps to confirm the idea that alkali-bearing fluids, in the melt and along grain boundaries during crystallization, were responsible for the formation of the altered monazite grain rims via the process of coupled dissolution-reprecipitation.

  6. Progress report of southeastern monazite exploration, 1952

    USGS Publications Warehouse

    Overstreet, W.C.; Theobald, P.K.; White, A.M.; Cuppels, N.P.; Caldwell, D.W.; Whitlow, J.W.

    1953-01-01

    Reconnaissance of placer monazite during the field season of 1952 covered 6,600 square miles drained by streams in the western Piedmont of Virginia 5 North Carolina, South Carolina,, and Georgia. Emphasis during this investigation was placed on the area between the Savannah River at the border of South Carolina and Georgia and the Catawba River in North Carolina because it contains most of the placers formerly mined for monaziteo Four other areas along the strike of the monazite-bearing crystalline rocks were also studied, They center around Mt. Airy, N.C., Athens, Ga. Griffin, Ga. and LaGrange, Ga. In the Savannah River Catawba River district, studies indicate that even the highest grade stream deposits of more than 10 million cubic yards of alluvium contain less than 1 pound of monazite per cubic yard. The average grade of the better deposits is about 0 0 5 pound of monazite per cubic yard. Only trace amounts of niobium, tantalum, and tin have been detected in the placers. Tungsten is absent. Locally gold adds a few cents per cubic yard to the value of placer ground. The best deposits range in size from 1 to 5 million cubic yards and contain 1 to 2 pounds of monazite to the cubic yard. Hundreds of placers smaller than 1 million cubic yards exceed 2 pounds of monazite to the cubic yard and locally attain an average of 10 pounds Monazite deposits around Athens, Ga., are similar to the smaller deposits in the central part of the Savannah River - Catawba River district. A few small very low-grade monazite placers were found near Mt. Airy, N.C., Griffin, Ga., and LaGrange Ga., but they are of no economic value. The larger the flood plain and the farther it lies from the source of the stream, the lower is the monazite content of the sediment. Monazite cannot be profitably mined .from the crystalline rocks in the five areas. The alluvial placers are in stream sediments of post-Wisconsin age. Some pre-Wisconsin terrace gravel of small areal extent is exposed but it contains only a small amount of monazite Pre-Wisconsin to early post-Wisconsin colluvial sediments locally contain 2 pounds of monazite to the cubic yard. Mode of presentation of reports covering field work during the seasons of 1951 - 52 is given. No further reconnaissance will be undertaken, in the western monazite belt.

  7. Why natural monazite never becomes amorphous: Experimental evidence for alpha self-healing

    DOE PAGES

    Seydoux-Guillaume, Anne -Magali; Deschanels, Xavier; Baumier, Cedric; ...

    2018-05-01

    Monazite, a common accessory rare-earth orthophosphate mineral in the continental crust widely used in U-Pb geochronology, holds promise for (U-Th)/He thermochronology and for the immobilization of Pu and minor actinides (MA) coming from spent nuclear fuel reprocessing. Previous results obtained on natural and plutonium-doped monazite have demonstrated the ability of this structure to maintain a crystalline state despite high radiation damage levels. However, the low critical temperature (180 °C), above which amorphization cannot be achieved in natural monazite under ion irradiation, does not explain this old and unsolved paradox: why do natural monazites, independent of their geological history, remain crystallinemore » even when they did not experience any thermal event that could heal the defects? This is what the present study aims to address. Synthetic polycrystals of LaPO 4-monazite were irradiated sequentially and simultaneously with α particles (He) and gold (Au) ions. Here, our results demonstrate experimentally for the first time in monazite, the existence of the defect recovery mechanism, called α-healing, acting in this structure due to electronic energy loss of α particles, which explains the absence of amorphization in natural monazite samples. This mechanism is critically important for monazite geo- and thermochronology and to design and predictively model the long-term behavior of ceramic matrices for nuclear waste conditioning.« less

  8. Why natural monazite never becomes amorphous: Experimental evidence for alpha self-healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seydoux-Guillaume, Anne -Magali; Deschanels, Xavier; Baumier, Cedric

    Monazite, a common accessory rare-earth orthophosphate mineral in the continental crust widely used in U-Pb geochronology, holds promise for (U-Th)/He thermochronology and for the immobilization of Pu and minor actinides (MA) coming from spent nuclear fuel reprocessing. Previous results obtained on natural and plutonium-doped monazite have demonstrated the ability of this structure to maintain a crystalline state despite high radiation damage levels. However, the low critical temperature (180 °C), above which amorphization cannot be achieved in natural monazite under ion irradiation, does not explain this old and unsolved paradox: why do natural monazites, independent of their geological history, remain crystallinemore » even when they did not experience any thermal event that could heal the defects? This is what the present study aims to address. Synthetic polycrystals of LaPO 4-monazite were irradiated sequentially and simultaneously with α particles (He) and gold (Au) ions. Here, our results demonstrate experimentally for the first time in monazite, the existence of the defect recovery mechanism, called α-healing, acting in this structure due to electronic energy loss of α particles, which explains the absence of amorphization in natural monazite samples. This mechanism is critically important for monazite geo- and thermochronology and to design and predictively model the long-term behavior of ceramic matrices for nuclear waste conditioning.« less

  9. Monazite behaviours during high-temperature metamorphism: a case study from Dinggye region, Tibetan Himalaya

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Shi-Ran; Zhang, Jin-Jiang

    2017-04-01

    Monazite is a key accessory mineral for metamorphic geochronology, but its growth mechanisms during melt-bearing high-temperature metamorphism is not well understood. Therefore, the petrology, pressure-temperature and timing of metamorphism have been investigated in pelitic and psammitic granulites from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent an isothermal decompression process from pressure conditions of >10 kbar to <5 kbar with constant temperatures of 750-830°C, and recorded three metamorphic stages of kyanite-grade (M1), sillimanite-grade (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were analyzed for ages by microbeam techniques either in mounts or thin sections. Ages were linked to specific conditions of mineral growth by comprehensive studies on zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural correlations with coexisting minerals. The results show that inherited domains (500-400 Ma) are common in monazite even at granulite-facies conditions. Few monazites formed at the M1-stage ( 30-29 Ma) and recorded heterogeneous Th, Y, and HREE compositions, which formed by recrystallization related to muscovite dehydration melting reaction. These monazite grains were protected from dissolution or lateral overprinting mainly by the armour effect of matrix crystals (biotite and quartz). Most monazite grains formed at the M3-stage (21-19 Ma) through either dissolution-reprecipitation or recrystallization that was related to biotite dehydration melting reaction. These monazite grains record HREE and Y signatures in local equilibrium with different reactions involving either garnet breakdown or peritectic garnet growth. Another peak of monazite growth occurs during melt crystallization ( 15 Ma), and these monazites are unzoned and have homogeneous compositions. Our results documented the widespread recrystallization to account for monazite growth during high-temperature metamorphism and related melting reactions that trigger monazite recrystallization. In a regional sense, our P-T-t data along with published data indicate that the pre-M1 eclogite-facies metamorphism occurred at 39-30 Ma in the Dinggye Himalaya. Our results are in favour of a steady exhumation of the GHC rocks since Oligocene that was contributed by partial melting. Key words: U-Th-Pb geochronology, Monazite, Recrystallization, Pelitic granulite, Himalaya

  10. Geochemical and textural characterization of phosphate accessory phases in the vein assemblage and metasomatically altered Llallagua tin porphyry

    NASA Astrophysics Data System (ADS)

    Betkowski, Wladyslaw B.; Rakovan, John; Harlov, Daniel E.

    2017-09-01

    Petrographic and geochemical characterization of phosphate accessory minerals represents a powerful tool in understanding the mineralization and metasomatic history of one of the world's biggest tin deposits, the Siglo XX mine, Salvadora stock, Llallagua, Bolivia. The Llallagua tin deposit lies in a hydrothermally altered porphyry stock that is part of the subduction-related Bolivian tin belt. Despite numerous studies, there is still a debate over the timing and characteristics of mineralization history of the deposit. Primary igneous fluorapatite and monazite (for the first time) were recognized in the altered porphyry. The igneous monazite is enriched in Th, unlike the hydrothermal monazite that is recognized for its low Th concentration. Fluorapatite, monazite, and xenotime also coexist with cassiterite within the hydrothermal vein assemblage. Fluorapatite and xenotime are essentially pristine. Monazite, however, shows various degrees of alteration in the form of regenerative mineral replacement (RMR). This exemplifies differential reactivity and selective mineral replacement/alteration of three accessory phosphate minerals, that are all important geochemical tracers of magmatic and hydrothermal processes, and which can all be used as geochronometers. Mineral textures and composition in the altered porphyry and vein assemblages have been evaluated. Monazite-xenotime geothermometry indicates monazite crystallization beginning around 550 °C. Monazite continues to grow as temperatures gradually decrease to about 300 °C, when most of cassiterite precipitation occurred in the samples studied. The primary mechanism of phosphate alteration has been identified as a coupled dissolution-reprecipitation process, which led to REE exchange in the igneous fluorapatite and hydrothermal monazite. In Type I local alteration, La and Pr-Nd show continuity across the pre- and post- alteration concentric zones indicating that they were not affected by alteration. This is an example of a selective elemental exchange during coupled dissolution-precipitation. Type II, pervasive post-growth alteration, is evident by the presence of micro-porosity and the formation of secondary, reaction induced minerals. Release of HREE from the monazite goes into the formation of void filling xenotime inclusions; the first documentation of this metasomatic alteration product in monazite. A well-documented discrepancy exists among ages determined from the zircon, fluorapatite, monazite, and altered porphyry minerals. These observations, regarding selective alteration of fluorapatite and monazite, may help to elucidate the reasons for this discrepancy.

  11. Surface chemistry and flotation behavior of monazite, apatite, ilmenite, quartz, rutile, and zircon using octanohydroxamic acid collector

    NASA Astrophysics Data System (ADS)

    Nduwa Mushidi, Josue

    Global increase in rare earth demand and consumption has led to further understanding their beneficiation and recovery. Monazite is the second most important rare earth mineral that can be further exploited. In this study, the surface chemistry of monazite in terms of zeta potential, adsorption density, and flotation response by microflotation using octanohydroxamic acid is determined. Apatite, ilmenite, quartz, rutile, and zircon are minerals that frequently occur with monazite among other minerals. Hence they were chosen as gangue minerals in this study. The Iso Electric Point (IEP) of monazite, apatite, ilmenite, quartz, rutile, and zircon are 5.3, 8.7, 3.8, 3.4, 6.3, and 5.1 respectively. The thermodynamic parameters of adsorption were also evaluated. Ilmenite, rutile and zircon have high driving forces for adsorption with DeltaGads. = 20.48, 22.10, and 22.4 kJ/mol respectively. The free energy of adsorption is 14.87 kJ/mol for monazite. Adsorption density testing shows that octanohydroxamic acid adsorbs on negatively charged surfaces of monazite and its gangue minerals which indicates chemisorption. This observation was further confirmed by microflotation experiments. Increasing the temperature to 80°C raises the adsorption and flotability of monazite and gangue minerals. This does not allow for effective separation. Sodium silicate appeared to be most effective to depress associated gangue minerals. Finally, the fundamentals learned were applied to the flotation of monazite ore from Mt. Weld. However, these results showed no selectivity due to the presence of goethite as fine particles and due to a low degree of liberation of monazite in the ore sample.

  12. A weathering-related origin of widespread monazite in S-type granites

    NASA Astrophysics Data System (ADS)

    Sawka, Wayne N.; Banfield, Jillian F.; Chappell, Bruch W.

    1986-01-01

    The S-type granite suites comprising more than a quarter of the extensively developed granites in the Lachlan Fold Belt, Australia, contain monazite which may be related to the chemical weathering of the sedimentary source rocks. We report a process whereby chemical weathering fixes mobile rare-earth elements (REE) in hydrous phosphate phases such as florencite and rhabdophane. This material contains up to 50 wt% LREE and occurs as very small particles (~3μm). Dehydration of these hydrous REE phases during anatexis directly yields monazite. The low solubility of phosphorus in S-type granite melts inhibits dissolution of both monazite and apatite. Refractory monazite may be thus entrained and transported in S-type granites in a manner similar to processes resulting in inherited zircon. Since both Th and the light REE are major components in monazite, materials containing this minute phase may be of widespread geochemical significance in both granites and metamorphic rocks.

  13. Coupled dissolution-precipitation in natural monazite: effect of irradiation damage or fluid mediation?

    NASA Astrophysics Data System (ADS)

    Seydoux-Guillaume, Anne-Magali; Montel, Jean-Marc; de Parseval, Philippe; Bingen, Bernard; Janots, Emilie

    2010-05-01

    The LREE orthophosphate monazite is a common accessory mineral, important as a U-Th-Pb geochronometer in both metamorphic and magmatic rocks. In order to correctly interpret measured ages, it is essential to properly understand mechanisms that control them. Few studies have shown that coupled dissolution-crystallisation in the presence of a fluid phase is a mechanism incomparably more efficient that solid state diffusion to reset isotopic signature within monazite grains. It is known that dissolution-precipitation is efficiency enhanced by the presence of defects within crystals. Because of its high actinide contents (U and Th), monazite receives intense self-irradiation doses. In contrast to zircon (a silicate), monazite (a phosphate) is less sensitive to irradiation. Natural amorphous monazite has never been reported and the only proof that monazite lattice was destroyed by irradiation is shown by the presence of lattice distortion (strained lattice); this is because defect healing is more efficient than amorphization. The present study focuses on large (cm) single monazite crystals from five distinct localities in Norway, Madagascar, Srilanka, Zwaziland and Morefield. They have different chemical compositions, especially with regard to U, Th and Pb contents, and have ages ranging from ca. 500 to 1000 Ma. Nevertheless, all of them share the same petrographic features. Optical microscope and SEM images reveal variably intense fracturation. BSE imaging in the SEM indicates that monazite is composed of multiple phases: an unaltered monazite (Mnz1) + an altered monazite (Mnz2) associated with Th-rich phase (Thorium silicate or Thorium oxide) +/- Xenotime, depending on the initial composition of Mnz1. Analogous textures were already described by Seydoux-Guillaume et al. (2007) and Hetherington and Harlov (2008;). The alteration textures are always associated with radial cracks emanating from the high radioactive phase (Th-rich phase). The question addressed in the discussion is the role and the chronology of each process, i.e. irradiation vs coupled dissolution-precipitation. U-Th-Pb ages obtained by chemical dating on electron microprobe from altered and unaltered monazites show no significant differences. Therefore U-Pb dating using SIMS and LA-ICP-MS are in progress to determine precise isotopic age that would refine the alteration chronology. Finally, these results will be compared with experimental work, which are currently investigating the role of structural defects on coupled dissolution-precipitation in monazite. Hetherington and Harlov (2008). Am. Mineral., 93, 806-820. Seydoux-Guillaume et al. (2007). Eur. J. Mineral., 19, 7-14.

  14. Simultaneous in situ determination of both U-Th-Pb and Sm-Nd isotopes in monazite by laser ablation using a magnetic sector ICP-MS and a multicollector ICP-MS

    NASA Astrophysics Data System (ADS)

    Goudie, D. J.; Fisher, C. M.; Hanchar, J. M.; Davis, W. J.; Crowley, J. L.; Ayers, J. C.

    2012-12-01

    We present a method for the simultaneous in situ determination of U-Th-Pb and Sm-Nd isotopes in monazite, using a laser ablation (LA) system coupled to both a magnetic sector inductively coupled plasma mass spectrometer (HR) ICP-MS and a multicollector (MC) ICP-MS. The ablated material is split using a glass Y-connector and transported simultaneously to both mass spectrometers via helium carrier gas. The MC-ICP-MS is configured to provide relative Ce, Gd, and Eu contents, in addition to Sm and Nd. This approach obtains both age (U-Pb), tracer isotope (Sm-Nd), and REE element data (Ce, Gd, and Eu), in the same ablation volume, thus reducing sampling problems associated with fine-scale zoning and other internal structures. The accuracy and precision of the U-Pb data are demonstrated using six well characterized monazite reference materials from the Geological Survey of Canada (three of which are currently used as SHRIMP standards) and agree well with previously determined ID-TIMS ages. The accuracy of the Sm-Nd isotopic data was assessed by comparison to TIMS measurements on a well-characterized in-house monazite standard. The dual LA-ICP-MS method was applied to the Birch Creek Pluton (BCP) in the White Mountains, California in a case study to test the utility of U-Th-Pb dating coupled with Sm-Nd (and Ce, Gd, Eu) isotopic data for solving geologic problems. Previous work on the Cretaceous BCP [1] used Th-Pb ages coupled with O isotopic data to constrain hydrothermal fluid events, as recorded in monazite. The original study suggested that the high delta 18O monazite in Paleozoic country rocks adjacent to the BCP grew in response to fluid alternation associated with the intrusion of the BCP, based on overlapping age with the BCP. New monazite split-stream U-Pb and Sm-Nd data show that monazite from the BCP pluton and monazite from altered country rock have homogenous and overlapping initial Nd isotopic composition, further strengthening the proposal that monazite in altered country rock can be a tracer of fluid alternation events. The split-stream U-Pb ages agrees with new high precision ID-TIMS U-Pb ages from the same monazite grains. These results demonstrate how monazite age and Sm-Nd isotopic data, coupled with delta 18O, can identify hydrothermal monazite and constrain the timing and potential sources of fluid events. [1] Ayers et al., Geology 34 (2006) 653-656.

  15. EBSD Imaging of Monazite: a Petrochronological Tool?

    NASA Astrophysics Data System (ADS)

    Mottram, C. M.; Cottle, J. M.

    2014-12-01

    Recent advances in in-situ U-Th/Pb monazite petrochronology allow ages obtained from micron-scale portions of texturally-constrained, individual crystals to be placed directly into a quantitative Pressure-Temperature framework. However, there remain major unresolved challenges in linking monazite ages to specific deformation events and discerning the effects of deformation on the isotopic and elemental tracers in these phases. Few studies have quantitatively investigated monazite microstructure, and these studies have largely focused only on crystals produced experimentally (e.g. Reddy et al., 2010). The dispersion in age data commonly yielded from monazite U-Th/Pb datasets suggest that monazite dynamically recrystallises during deformation. It remains unclear how this continual recrystallisation is reflected in the monazite crystal structure, and how this subsequently impacts the ages (or age ranges) yielded from single crystals. Here, combined laser ablation split-stream analysis of deformed monazite, EBSD imaging and Pressure-Temperature (P-T) phase equilibria modelling is used to quantify the influence of deformation on monazite (re)crystallisation mechanisms and its subsequent effect on the crystallographic structure, ages and trace-element distribution in individual grains. These data provide links between ages and specific deformation events, thus helping further our understanding of the role of dynamic recrystallisation in producing age variation within and between crystals in a deformed rock. These data provide a new dimension to the field of petrochronology, demonstrating the importance of fully integrating the Pressure-Temperature-time-deformation history of accessory phases to better interpret the meaningfulness of ages yielded from deformed rocks. Reddy, S. et al., 2010. Mineralogical Magazine 74: 493-506

  16. Monazite paragenesis and U-Pb systematics in rocks of the eastern Mojave Desert, California, U.S.A.: implications for thermochronometry

    USGS Publications Warehouse

    Kingsbury, J.A.; Miller, C.F.; Wooden, J.L.; Harrison, T.M.

    1993-01-01

    Studies of the paragenesis and U-Pb systematics of monazite in rocks from the eastern Mojave Desert, California, corroborate its potential usefulness as a prograde thermochronometer and in dating granite inheritance. Unmetamorphosed Latham Shale and its equivalents at grades ranging from greenschist to upper amphibolite facies are virtually identical in composition. Monazite is absent in the shale and low-grade schists, but it is abundant in schists at staurolite and higher grades. Lower-grade schists instead include minute Th- and Ce-oxides and unidentified Ce-poor LREE-phosphates that apparently are lower-temperature precursors to monazite. Thus monazite originates when the pelite passes through lower-amphibolite-facies conditions. Monazites from three Upper Cretaceous granites yield ages that are strongly discordant. Upper intercepts of 1.6-1.7 Ga are similar to those defined by U-Pb data for coexisting zircons and coincide with a period of copious magmatism in the Mojave crust. As the host Upper Cretaceous granitic magmas were all above 700??C, effective closure of the restitic monazites to Pb loss must be well in excess of this temperature. U-Pb compositions of monazite from Proterozoic granitoids and schist also indicate high Pb retentivity. Taken together, these studies support the suggestion that monazite can be an effective prograde thermochronometer. At least in pelites, it is not usually retained as a detrital mineral, but rather forms during moderate-temperature metamorphism. Its U-Pb system should not be reset by subsequent higher-grade metamorphism. ?? 1993.

  17. Shocked monazite chronometry: integrating microstructural and in situ isotopic age data for determining precise impact ages

    NASA Astrophysics Data System (ADS)

    Erickson, Timmons M.; Timms, Nicholas E.; Kirkland, Christopher L.; Tohver, Eric; Cavosie, Aaron J.; Pearce, Mark A.; Reddy, Steven M.

    2017-03-01

    Monazite is a robust geochronometer and occurs in a wide range of rock types. Monazite also records shock deformation from meteorite impact but the effects of impact-related microstructures on the U-Th-Pb systematics remain poorly constrained. We have, therefore, analyzed shock-deformed monazite grains from the central uplift of the Vredefort impact structure, South Africa, and impact melt from the Araguainha impact structure, Brazil, using electron backscatter diffraction, electron microprobe elemental mapping, and secondary ion mass spectrometry (SIMS). Crystallographic orientation mapping of monazite grains from both impact structures reveals a similar combination of crystal-plastic deformation features, including shock twins, planar deformation bands and neoblasts. Shock twins were documented in up to four different orientations within individual monazite grains, occurring as compound and/or type one twins in (001), (100), ( 10bar{1} ), {110}, { 212 }, and type two (irrational) twin planes with rational shear directions in [0bar{1}bar{1}] and [bar{1}bar{1}0]. SIMS U-Th-Pb analyses of the plastically deformed parent domains reveal discordant age arrays, where discordance scales with increasing plastic strain. The correlation between discordance and strain is likely a result of the formation of fast diffusion pathways during the shock event. Neoblasts in granular monazite domains are strain-free, having grown during the impact events via consumption of strained parent grains. Neoblastic monazite from the Inlandsee leucogranofels at Vredefort records a 207Pb/206Pb age of 2010 ± 15 Ma (2 σ, n = 9), consistent with previous impact age estimates of 2020 Ma. Neoblastic monazite from Araguainha impact melt yield a Concordia age of 259 ± 5 Ma (2 σ, n = 7), which is consistent with previous impact age estimates of 255 ± 3 Ma. Our results demonstrate that targeting discrete microstructural domains in shocked monazite, as identified through orientation mapping, for in situ U-Th-Pb analysis can date impact-related deformation. Monazite is, therefore, one of the few high-temperature geochronometers that can be used for accurate and precise dating of meteorite impacts.

  18. The behaviour of monazite at high temperature and high stress in the lower crust

    NASA Astrophysics Data System (ADS)

    Clark, Chris; Taylor, Richard; Erickson, Timmons; Reddy, Steven; Fougerouse, Denis; Fitzsimons, Ian; Hand, Martin

    2017-04-01

    Monazite is fast becoming the go to geochronometer for establishing the timing of metamorphic, deformational and hydrothermal events in crustal rocks. This is principally due to monazite forming in rocks that are petrologically useful (e.g. metapelites), it's susceptibility to recrystallization (both fluid and deformation driven) and the suite of trace elements it incorporates during growth. In dry conditions (i.e. the melt-depleted lower crust) monazite has a high closure temperature. It therefore has the ability to record the timing of prograde to peak metamorphic conditions. The reactivity of monazite in the presence of fluid allows the timing of post-peak fluid and melt crystallisation events to be constrained. Under high-stress monazite will recrystallise, forming new crystals that can be used to constrain the age of deformational events - this feature is particularly useful as high-grade reworking of lower crustal rocks often leave no geochronological record within other accessory minerals (e.g. zircon). However, it has long been recognised that monazite can record a cryptic range and/or distribution of ages that are difficult reconcile with how we traditionally believe the lower crust responds to deformational events - e.g. the anhydrous nature of lower crustal rocks and the preservation of granulite facies mineral assemblages. Here we present datasets collected by a suite of microanalytical techniques on monazite grains from lower-crustal rocks that have experienced deformation, fluid-rock interaction and ultrahigh temperature metamorphism. To better understand how monazite behaves in these environments we integrate electron probe, electron backscatter diffraction, laser ablation split stream petrochronology, transmission electron microscopy and Atom Probe Tomography datasets to image and quantify behaviour of key elements from the micro- to the nanoscale. When used sequentially, these techniques provide a detailed view of the processes that re-distribute U-Th-REE-Y-Pb at the nanoscale. Understanding how monazite behaves under different stress and thermal conditions is the key to using this geochronometer to develop and refine event chronologies in the lower crust.

  19. Syntrophic effect of indigenous and inoculated microorganisms in the leaching of rare earth elements from Western Australian monazite.

    PubMed

    Corbett, Melissa K; Eksteen, Jacques J; Niu, Xi-Zhi; Watkin, Elizabeth Lj

    2018-05-28

    The unique physiochemical properties exhibited by rare earth elements (REEs) and their increasing application in high-tech industries has created a demand for secure supply lines with established recovery procedures that create minimal environmental damage. Bioleaching experiments conducted on a non-sterile monazite concentrate with a known phosphate solubilising microorganism (PSM) resulted in greater mobilisation of REEs into solution in comparison to experiments conducted on sterile monazite. By combining the native consortia with an introduced PSM, a syntrophic effect between the populations effectively leached a greater amount of REEs than either a single PSM or the indigenous population alone. With sterile monazite, Penicillium sp.CF1 inoculated experiments released a total REE concentration of 12.32 mg L -1 after incubation for 8 days, whereas on non-sterile ore, double the soluble REE concentration was recorded (23.7 mg L -1 ). Comparable effects were recorded with Enterobacter aerogenes, Pantoea agglomerans and Pseudomonas putida. Alterations in the microbial populations during bioleaching of the monazite ore were determined by diversity profiling and demonstrated noticeable changes in community inhabitants over 14 days. The presence of native Firmicutes on the monazite appears to greatly contribute to the increased leaching recorded when using non-sterile monazite for REE recovery. Copyright © 2018. Published by Elsevier Masson SAS.

  20. Vanishing Act: Experiments on Fission Track Annealing in Monazite

    NASA Astrophysics Data System (ADS)

    Shipley, N. K.; Fayon, A. K.

    2006-12-01

    To determine the viability of monazite as a low temperature thermochronometer, we conducted fission track annealing experiments under isothermal conditions. These experiments evaluated the effects of uranium concentration and zoning on annealing rates. Fission track annealing rates in monazite were also compared to those in Durango apatite. Preliminary results indicate that monazite grains with higher initial track densities anneal at faster rates than those with low initial densities and that fission tracks in monazite anneal at a faster rate than those in apatite. Monazite sand grains were selected from a placer sand deposit, mounted in teflon, and polished. Grains were imaged with electron backscattering to characterize zoning patterns and variations in uranium concentration. Monazite grain mounts were etched in boiling 37% HCl for 50 minutes and fission track densities were determined using standard fission track counting techniques. Durango apatite was etched in 5N HNO3 at room temperature for 20 seconds. After the initial track densities were determined, mounts in one group were annealed at 150 ° C for 1to 6 h. The mounts in a second group were annealed at 200 ° C for 2 hour periods along with mounts of Durango apatite grains. All grains were re-polished prior to each anneal. Upon completion of the experiment, backscatter images were taken of grains from which fission track counts were obtained to verify continuance of concentric zoning. Results of these experiments indicate that annealing rates of fission tracks in monazite vary as a function of uranium concentration. Uranium concentration was constrained on the basis of zoning patterns obtained from electron backscatter images. Fission track densities in grains with initial track densities of approximately 2.4 × 106 tracks/cm2 were reduced at average rate of 16% every two hours. In contrast, track densities in grains with initial track densities of approximately 1.6 × 106 tracks/cm2 average 4.6% density reduction every two hours. In both cases, track density reduction in monazite was faster than the rate of 0.1 % every two hours obtained for apatite. This would indicate that fission track annealing occurs at a lower temperature in monazite than in apatite. Thus monazite would be useful as a low temperature chronometer for determining cooling histories in recently exhumed rocks.

  1. Composition of monazites from pegmatites in eastern Minas Gerais, Brazil

    USGS Publications Warehouse

    Murata, K.J.; Dutra, C.V.; da Costa, M.T.; Branco, J.J.R.

    1959-01-01

    Two zoned pegmatites in south-eastern Minas Gerais were sampled in detail for their content of monazite and xenotime and the monazite was analysed for certain of the rare-earth elements and thorium. The ratio of xenotime to monazite increases in both pegmatites from the wall toward the quartz core. The content of the less basic rare-earth elements and of thorium in monazite rises in the same direction. These variation trends suggest that during the crystallization of these pegmatites there was a fractionation of the elements leading to a more or less steady enrichment of the less basic rare-earth elements and of thorium in the residual fluids. One mode of explaining these observed effects postulates that the rare-earth elements and thorium were present in pegmatitic fluids as co-ordination complexes rather than as simple cations. ?? 1959.

  2. Provenance implications of Th U Pb electron microprobe ages from detrital monazite in the Carboniferous Upper Silesia Coal Basin, Poland

    NASA Astrophysics Data System (ADS)

    Kusiak, Monika Agnieszka; Kędzior, Artur; Paszkowski, Mariusz; Suzuki, Kazuhiro; González-Álvarez, Ignacio; Wajsprych, Bolesław; Doktor, Marek

    2006-05-01

    This paper reports the results of CHIME (chemical Th-U-Pb isochron method) dating of detrital monazites from Carboniferous sandstones in the Upper Silesia Coal Basin (USCB). A total of 4739 spots on 863 monazite grains were analyzed from samples of sandstone derived from six stratigraphic units in the sedimentary sequence. Age distributions were identified in detrital monazites from the USCB sequence and correlated with specific dated domains in potential source areas. Most monazites in all samples yielded ca. 300-320 Ma (Variscan) ages; however, eo-Variscan, Caledonian and Cadomian ages were also obtained. The predominant ages are comparable to reported ages of certain tectonostratigraphic domains in the polyorogenic Bohemian Massif (BM), which suggests that various crystalline lithologies in the BM were the dominant sources of USCB sediments.

  3. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia

    NASA Astrophysics Data System (ADS)

    Rubatto, Daniela; Williams, Ian S.; Buick, Ian S.

    2001-01-01

    We report an extensive field-based study of zircon and monazite in the metamorphic sequence of the Reynolds Range (central Australia), where greenschist- to granulite-facies metamorphism is recorded over a continuous crustal section. Detailed cathodoluminescence and back-scattered electron imaging, supported by SHRIMP U-Pb dating, has revealed the different behaviours of zircon and monazite during metamorphism. Monazite first recorded regional metamorphic ages (1576 ± 5 Ma), at amphibolite-facies grade, at ˜600 °C. Abundant monazite yielding similar ages (1557 ± 2 to 1585 ± 3 Ma) is found at granulite-facies conditions in both partial melt segregations and restites. New zircon growth occurred between 1562 ± 4 and 1587 ± 4 Ma, but, in contrast to monazite, is only recorded in granulite-facies rocks where melt was present (≥700 °C). New zircon appears to form at the expense of pre-existing detrital and inherited cores, which are partly resorbed. The amount of metamorphic growth in both accessory minerals increases with temperature and metamorphic grade. However, new zircon growth is influenced by rock composition and driven by partial melting, factors that appear to have little effect on the formation of metamorphic monazite. The growth of these accessory phases in response to metamorphism extends over the 30 Ma period of melt crystallisation (1557-1587 Ma) in a stable high geothermal regime. Rare earth element patterns of zircon overgrowths in leucosome and restite indicate that, during the protracted metamorphism, melt-restite equilibrium was reached. Even in the extreme conditions of long-lasting high temperature (750-800 °C) metamorphism, Pb inheritance is widely preserved in the detrital zircon cores. A trace of inheritance is found in monazite, indicating that the closure temperature of the U-Pb system in relatively large monazite crystals can exceed 750-800 °C.

  4. U-Pb geochronologic constraints on the origin of a unique monazite- xenotime gneiss, Hudson Highlands, New York

    USGS Publications Warehouse

    Aleinikoff, J.N.; Grauch, R.I.

    1990-01-01

    A unique rock composed almost entirely of equal proportions of monazite and xenotime occurs as a small, lenticular body (2 ?? 0.5 ?? 0.3 m) in association with paragneiss, migmatite, and Canada Hill Granite in an outcrop in the Hudson Highlands of southeastern New York. The paragneiss contains detrital zircon (207Pb/206Pb ages of 1150-1460 Ma), monazite, and xenotime (both dated at about 1000 Ma). Zircons from the monazite-xenotime gneiss contain dark, rounded cores and clear rims, a morphology suggestive of derivation from the paragneiss, with subsequent metamorphic overgrowth. We conclude, based on results from xenotime and zircon rims, that the monazite-xenotime gneiss formed at about 985 Ma. Based on zircon morphology and age relations within the outcrop, we prefer a metasomatic origin over other possibilities such as a paleo-placer or anatectic restite. -from Authors

  5. Phase transformations and indications for acoustic mode softening in Tb-Gd orthophosphate

    DOE PAGES

    Tschauner, Oliver; Ushakov, Sergey V.; Navrotsky, Alexandra; ...

    2016-01-06

    At ambient conditions the anhydrous rare-earth orthophosphates assume either the xenotime (zircon) or the monazite structure, with the latter favored for the heavier rare earths. Tb 0.5Gd 0.5PO 4 assumes the xenotime structure at ambient conditions but is at the border between the xenotime and monazite structures. Here we show that, at high pressure, Tb 0.5Gd 0.5PO 4 does not transform directly to monazite but through an intermediate anhydrite-type structure. We show softening of (c 1133 + c 1313) combined elastic moduli close to the transition from the anhydrite to the monazite structure. Stress response of rare-earth orthophosphate ceramics canmore » be affected by both formation of the anhydrite-type phase and the elastic softening in the vicinity of the monazite-phase. In conclusion, we report the first structural data for an anhydrite-type rare earth orthophosphate.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    P.E.D. Morgan; R.M. Housley; J.B. Davis

    A very import, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. THe use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements )e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations.

  7. The distribution and composition of REE-bearing minerals in placers of the Atlantic and Gulf coastal plains, USA

    USGS Publications Warehouse

    Bern, Carleton R.; Shah, Anjana K.; Benzel, William M.; Lowers, Heather A.

    2016-01-01

    Rare earth element (REE) resources are currently of great interest because of their importance as raw materials for high-technology manufacturing. The REE-phosphates monazite (light REE enriched) and xenotime (heavy REE enriched) resist weathering and can accumulate in placer deposits as part of the heavy mineral assemblage. The Atlantic and Gulf coastal plains of the southeastern United States are known to host heavy mineral deposits with economic concentrations of zircon, ilmenite and rutile. This study provides a perspective on the distribution and composition of REE phosphate minerals in the region. The elemental chemistry and mineralogy of sands and associated heavy-mineral assemblages from new and archived sediment samples across the coastal plains are examined, along with phase-specific compositions of monazite, xenotime and zircon. Both monazite and xenotime are present across the coastal plains. The phase-specific compositions allow monazite content to be estimated using La as a geochemical proxy. Similarly, both Y and Yb are geochemical proxies for xenotime, but their additional presence in zircon and monazite require a correction to prevent overestimation of xenotime content. Applying this correction, maps of monazite and xenotime content across the coastal plains were generated using sample coverage from the National Geochemical Database (NGS) and National Uranium Resource Evaluation (NURE). The NGS and NURE approach of sampling stream sediments in small watersheds links samples to nearby lithologies. The results show an approximately 40 km-wide band of primarily Cretaceous, marine sediments bordering the Piedmont province from North Carolina to Alabama in which monazite and xenotime content are relatively high (up to 4.4 wt. % in < 150 μm bulk sediment). Strong correlations between concentrations of the two phases were found, with estimated monazite:xenotime ratios ranging approximately 6:1 to 12:1 depending upon the dataset analyzed. From a resource perspective, xenotime correlation with monazite indicates a heavy REE potential in coastal plain placers, and exploration may be warranted within the identified coastal plain band along the boundary of the Piedmont region.

  8. Microstructural observation and chemical dating on monazite from the Shilu Group, Hainan Province of South China: Implications for origin and evolution of the Shilu Fe-Co-Cu ore district

    NASA Astrophysics Data System (ADS)

    Xu, Deru; Kusiak, Monika A.; Wang, Zhilin; Chen, Huayong; Bakun-Czubarow, Nonna; Wu, Chuanjun; Konečný, Patrik; Hollings, Peter

    2015-02-01

    New monazite chemical U-Th-total-Pb (CHIME) ages, combined with microstructural observations, mineral compositions, and whole-rock geochemistry, indicate that the large-scale, banded iron formation (BIF)-type Shilu Fe-Co-Cu ore district in Hainan Province, South China is a multistage product of sedimentation, metamorphism, and hydrothermal-metasomatic alteration associated with multiple orogenies. Two types of monazite, i.e. "polygenetic" and "metamorphic", were identified. The "polygenetic monazite" comprises a magmatic and/or metamorphic core surrounded by a metamorphic rim, and shows complex zoning. Breakdown corona structure, with a core of monazite surrounded by a mantle of fluorapatite, allanite, and/or epidote as concentric growth rings, is commonly observed. This type of monazite yielded three main CHIME-age peaks at ca. 980 Ma, ca. 880 Ma and ca. 450 Ma. The ages which range up to ca. 880 Ma for detrital cores, record a pre-deformational magmatic and/or metamorphic event(s), and is considered to be the depositional time-interval of the Shilu Group and interbedded BIFs in a marine, back-arc foreland basin likely due to the Grenvillian or South China Sibao orogeny. After deposition, the Shilu district was subjected to an orogenic event, which is recorded by the syndeformational metamorphic monazite with ca. 560-450 Ma population. Probably this event not only caused amphibolite facies metamorphism and associated regional foliation S1 but also enriched the original BIFs, and most likely corresponds to the "Pan-African" and/or the South China Caledonian orogeny. The post-deformational "metamorphic" monazite occurs mostly as inclusions in garnet and shows ca. 260 Ma age. It likely represents the Late Permian post-magmatic hydrothermal and related retrograde event(s) initiated by the Indosinian orogeny due to the closure of the Paleo-Tethys. The breakdown of monazite to secondary coronal mineral phases as well as the Fe-remobilization and associated skarnization of the Shilu BIF ore source rocks might also be induced during this retrograde greenschist-facies metamorphism.

  9. Isotope and chemical age of the Greater Caucasus basement metamorphic rocks

    NASA Astrophysics Data System (ADS)

    Konilov, A. N.; Somin, M. L.; Mukhanova, A. A.

    2009-04-01

    It is widely accepted that metamorphic basement of the Greater Caucasus is essentially Proterozoic [i.e. Gamkrelidze & Shengelia, 2005 ]. New results of geochronological study, mainly on magmatic zircon, contradict this opinion [Somin, 2007; Somin et al., 2007a, b, c and references therein]. To precise age of metamorphism we tried to apply CHIME method on monazite [Suzuki, Adachi, 1991]. The facility consists of Tescan SEM VEGA II xmu equipped with EDS Energy 400 and WDS Wave 500 from Oxford Instruments. This system and analytical protocol for monazite analysis are close to described by Slagstad [2006]. Samples of three metamorphic units were used with purpose to investigate their PT conditions and chemical composition of accessory monazite, xenotime and zircon. In the Blyb Complex Ky-bearing St-Grt-Bt schist was studied. Temperature calculated using Grt-St and Grt-Bt thermometers are 550-600 oC at 10 kb. Because xenotime absence and very low Y2O3 content in monazite, temperature determination on Mnz thermometer was impossible. Isochron chemical age of monazite is 288±24 Ma. In the Gondary Complex the Sil-bearing Grt-Bt gneiss was studied. Temperature calculated using Grt-Bt thermometer and Grt-Pl-Sil-Qtz geobarometer correspond to 610 oC at 4 kb. Monazite thermometer [Pyle et al., 2001] indicates temperature range 533-640 oC for three samples. Monazite chemical age is 303±31 Ma, zircon of leucosome yields SHRIMP age 321-288 Ma. In the Makera Complex the And-Bt-Ms and Grt-Bt-Ms metapelites were examinated. Temperature calculated using Grt-Bt thermometer and Grt-Pl-And-Qtz geobarometer correspond to 500 oC at 2,5 kb. Monazite thermometer indicates average temperatures 293-433-447 oC. Two isochrones correspond to 239±28 Ma and 282±19 Ma. Our results of monazite dating are close to the U-Pb zircon data although not similar being some younger. Therefore conclusion on Precambrian metamorphic events in the studied complexes of the Greater Caucasus is erroneous. These complexes independently of baric type seem to be formed roughly synchronously during Variscan epoch. References: Gamkrelidze I.P., Shengelia D.M. ( 2005).The Precambrian-Paleozoic Regional Metamorphism, Granitoid Magmatism, and Geodynamics of the Caucasus. M: Nauchnyi Mir [in Russian]. Pyle J.M., Frank S. Spear F.S. et al. (2001). Monazite-Xenotime-Garnet Equilibrium in Metapelites and a New Monazite-Garnet Thermometer. Journal of Petrology, , 42, 2083-2107. Slagstad T. (2006).Chemical (U-Th-Pb) dating of monazite: Analytical protocol for a LEO 1450VP scanning electron microscope and examples from Rogaland and Finnmark, Norway. Norges geologiske undersøkelse Bulletin, 446, 11-18. Somin M.L. (2007a). Pre-Alpine basement of the Greater Caucasus: main features. In: Alpine history of the Greater Caucasus (Yu.G. Leonovб Ed.). GEOS. Moscow. P.15-38. Somin M.L., Lepekhina E.N., Konilov A.N. ( 2007b). Age of the High-Temperature Gneiss Core of the Central Caucasus. Doklady Earth Sciences, 415, 690-694. Somin M.L., Levchenkov O.A., Kotov A.B. et al. (2007c). The Paleozoic Age of High-Pressure Metamorphic Rocks in the Dakhov Salient, North-Western Caucasus: Results of U-Pb Geochronological Investigations. Doklady Earth Sciences, 416, 1018-1021. Suzuki K., Adachi M. (1991). Precambrian provenance and Silurian metamorphism of the Tsunosava paragneiss in South Kitakami terrane, northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Journal of Geochemistry, 25, 357-376.

  10. Sulphate incorporation in monazite lattice and dating the cycle of sulphur in metamorphic belts

    NASA Astrophysics Data System (ADS)

    Laurent, Antonin T.; Seydoux-Guillaume, Anne-Magali; Duchene, Stéphanie; Bingen, Bernard; Bosse, Valérie; Datas, Lucien

    2016-11-01

    Microgeochemical data and transmission electron microscope (TEM) imaging of S-rich monazite crystals demonstrate that S has been incorporated in the lattice of monazite as a clino-anhydrite component via the following exchange Ca2+ + S6+ = REE3+ + P5+, and that it is now partly exsolved in nanoclusters (5-10 nm) of CaSO4. The sample, an osumilite-bearing ultra-high-temperature granulite from Rogaland, Norway, is characterized by complexly patchy zoned monazite crystals. Three chemical domains are distinguished as (1) a sulphate-rich core (0.45-0.72 wt% SO2, Th incorporated as cheralite component), (2) secondary sulphate-bearing domains (SO2 >0.05 wt%, partly clouded with solid inclusions), and (3) late S-free, Y-rich domains (0.8-2.5 wt% Y2O3, Th accommodated as the huttonite component). These three domains yield distinct isotopic U-Pb ages of 1034 ± 6, 1005 ± 7, and 935 ± 7 Ma, respectively. Uranium-Th-Pb EPMA dating independently confirms these ages. This study illustrates that it is possible to discriminate different generations of monazite based on their S contents. From the petrological context, we propose that sulphate-rich monazite reflects high-temperature Fe-sulphide breakdown under oxidizing conditions, coeval with biotite dehydration melting. Monazite may therefore reveal the presence of S in anatectic melts from high-grade terrains at a specific point in time and date S mobilization from a reduced to an oxidized state. This property can be used to investigate the mineralization potential of a given geological event within a larger orogenic framework.

  11. Timing of anatexis and melt crystallization in the Socorro-Guaxupé Nappe, SE Brazil: Insights from trace element composition of zircon, monazite and garnet coupled to Usbnd Pb geochronology

    NASA Astrophysics Data System (ADS)

    Rocha, B. C.; Moraes, R.; Möller, A.; Cioffi, C. R.; Jercinovic, M. J.

    2017-04-01

    The timing of partial melting and melt crystallization in granulite facies rocks of the Socorro-Guaxupé Nappe (SGN), Brazil is constrained using a combination of imaging techniques, LA-ICP-MS and EPMA dating, trace element geochemistry and thermobarometry. (Orthopyroxene)-garnet-bearing migmatite that records extensive biotite dehydration melting shows evidence for a clockwise P-T-t path. UHT peak conditions were attained at 1030 ± 110 °C, 11.7 ± 1.4 kbar, with post-peak cooling to 865 ± 38 °C, 8.9 ± 0.8 kbar. Cryogenian igneous inheritance of ca. 720-640 Ma is identified in oscillatory zoned zircon cores (n = 167) with steep HREE patterns. Resorbed, Y-rich monazite cores preserve a prograde growth stage at 631 ± 4 Ma prior to the partial melting event, providing an upper age limit for the granulite facies metamorphism in the SGN. REE-rich, Th-depleted monazite related to apatite records the initial stages of decompression at 628 ± 4 Ma. Multiple monazite growth episodes record melt crystallization events at 624 ± 3 Ma, 612 ± 5 Ma and 608 ± 6 Ma. Stubby, equant "soccer ball" zircon provide evidence for melt crystallization at 613 ± 2 Ma and 607 ± 4 Ma. The excess scatter in zircon and monazite age populations between 629 ± 4 and 601 ± 3 Ma is interpreted as discontinuous and episodic growth within this age range, characterizing a prolonged metamorphic event in the SGN lasting ca. 30 m.y. The development of Y + HREE-rich monazite rims at ca. 600 Ma documents retrograde garnet breakdown, extensive biotite growth and the final stages of melt crystallization. Th-rich, Y + HREE-poor monazite rims at ca. 590 Ma record monazite recrystallization.

  12. Constraining metamorphic rates through allanite and monazite petrochronology: a case study from the Miyar Valley (High Himalayan Crystalline of Zanskar, NW India)

    NASA Astrophysics Data System (ADS)

    Robyr, Martin; Goswami-Banerjee, Sriparna

    2014-05-01

    Dating metamorphic rocks raises specific issues because metamorphism comprises a complex sequence of structural changes and chemical reactions that can be extended over millions or tens of millions of years so that metamorphic rocks cannot in general be said to have "an age". Therefore, an accurate interpretation of radiometric age data from metamorphic rocks requires first to establish the behavior of the isotopic system used for dating relative to the pressure and temperature (P-T) conditions that a metamorphic rock experienced. As the U-Th-Pb system in LREE-accessory phases like monazite and allanite is not easily reset during subsequent temperature increase, allanite and monazite U-Th-Pb ages are collectively interpreted as reflecting crystallization ages. As a consequence, to correctly interpret allanite and monazite crystallization ages, it is essential to accurately determine the physical conditions of their crystallization. A meticulous account of the chemical and textural evolution of monazite and allanite along a well constrained prograde pelitic sequence of the High Himalayan Crystalline of Zanskar (Miyar Valley; e.g. Robyr et al., 2002; 2006; 2014) reveals that: (1) the occurrence of the first metamorphic allanite coincides with the biotite-in isograd and (2) the formation of the first metamorphic monazite occurs at the staurolite-in isograd. The finding of both monazite and allanite as inclusion in staurolite porphyroblasts indicates that the breakdown of allanite and the formation of monazite occurred during staurolite crystallization. Thermobarometry results show that the metamorphic allanites are appeared in the 400-420 °C, while the signature of the first metamorphic monazite is found at ~ 600 °C with staurolite-in isograd. Allanite and monazite U-Th-Pb ages thus constrain the timing when the rocks reached the ~ 420 °C and ~ 600 °C isotherms respectively. In situ LA-ICPMS dating of coexisting allanite and monazite inclusions in garnet porphyroblasts yield respective ages of 33.6 ± 0.9 Ma and 29.5 ± 0.2 Ma, constraining the time elapsed between allanite crystallization (~ 420 °C) and monazite crystallization (~ 600°C). These data indicate that the rock needed ~ 4 Myr to be subducted from the 420 °C isotherm down to the 600°C isotherm, implying a heating rate of ca. 45°C/m.y. References Robyr, M., Epard, J.-L. & El Korh, A., 2014. Structural, metamorphic and geochronological relations between the Zanskar Shear Zone and the Miyar Shear Zone (NW Indian Himalaya): Evidence for two distinct tectonic structures and implications for the evolution of the High Himalayan Crystalline of Zanskar. Journal of Asian Earth Sciences, 79, 1-15. Robyr, M., Hacker, B. R. & Mattinson, J. M., 2006. Doming in compressional orogenic settings: New geochronological constraints from the NW Himalaya. Tectonics, 25. Robyr, M., Vannay, J. C., Epard, J. L. & Steck, A., 2002. Thrusting, extension, and doming during the polyphase tectonometamorphic evolution of the High Himalayan Crystalline Zone in NW India. Journal of Asian Earth Sciences, 21, 221-239.

  13. Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications

    NASA Astrophysics Data System (ADS)

    Poitrasson, Franck; Chenery, Simon; Bland, David J.

    1996-12-01

    In spite of the major importance of monazite as a repository for the rare earths and Th in the continental crust, for U-Th-Pb geochronology, and as a possible form for high-level nuclear waste, very little work has been carried out so far on the behaviour of this mineral during fluid-rock events. This contribution describes two contrasting examples of the hydrothermal alteration of monazite. The first case comes from a sample of the Carnmenellis granite (Cornwall, Southwest England), chloritized at 284 ± 16°C, whereas the other occurs in the Skiddaw granite (Lake District, Northwest England), which underwent greisenization at 200 ± 30°C. An integrated study involving backscattered scanning electron microscopy, electron microprobe analyses, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) reveals that the chloritization event was characterized by the coupled substitution 2REE 3+ ⇌ Th 4+ + Ca 2+ in the altered parts of the monazite, thus leaving the P-O framework of the crystal untouched. In contrast, greisenization led to the coupled substitution REE 3+ + P 5+ ⇌ Th 4+ + Si 4+, and therefore involved a partial destruction of the phosphate framework. The resulting rare earth element patterns are quite different for these two examples, with a maximum depletion for Dy and Er in the altered parts of the Carnmenellis monazite, whereas the Skiddaw monazite shows a light rare earth depletion but an Yb and Er enrichment during alteration. This latter enrichment, accompanied by an increase in U but roughly unchanged Pb concentrations, probably resulted from a decrease in the size of the 9-coordinated site in monazite, thereby favouring the smaller rare earths. These contrasted styles of monazite alteration show that the conditions of fluid-rock interaction will not only affect the aqueous geochemistry of the lanthanides, actinides and lead, and the relative stability of the different minerals holding these elements. Variations in these conditions will also lead to various possible chemical exchanges between the crystalline phases and the hydrothermal fluids. The occurrence of common lead along penetrative cracks in the Carnmenellis monazite shows that only a leaching, prior to the U-Pb analyses of the whole-grain, will permit an accurate determination of the magmatic crystallization age. In contrast, for the Skiddaw case it may be possible to date the fluid-rock event by in situ 207Pb/ 206Pb geochronology. The observation that the altered parts of both monazite examples display Nd leaching and no significant Sm/Nd fractionation indicates that they should not affect the host whole-rock Nd isotopic signatures. Finally, it appears that monazite-like ceramics designed for the containment of high-level nuclear wastes will retain Th and the geochemically equivalent transuranic elements during fluid-rock events similar to those documented in this study but may release Nd, U and the corresponding radionuclides to the environment.

  14. Microprobe monazite geochronology: new techniques for dating deformation and metamorphism

    NASA Astrophysics Data System (ADS)

    Williams, M.; Jercinovic, M.; Goncalves, P.; Mahan, K.

    2003-04-01

    High-resolution compositional mapping, age mapping, and precise dating of monazite on the electron microprobe are powerful additions to microstructural and petrologic analysis and important tools for tectonic studies. The in-situ nature and high spatial resolution of the technique offer an entirely new level of structurally and texturally specific geochronologic data that can be used to put absolute time constraints on P-T-D paths, constrain the rates of sedimentary, metamorphic, and deformational processes, and provide new links between metamorphism and deformation. New analytical techniques (including background modeling, sample preparation, and interference analysis) have significantly improved the precision and accuracy of the technique and new mapping and image analysis techniques have increased the efficiency and strengthened the correlation with fabrics and textures. Microprobe geochronology is particularly applicable to three persistent microstructural-microtextural problem areas: (1) constraining the chronology of metamorphic assemblages; (2) constraining the timing of deformational fabrics; and (3) interpreting other geochronological results. In addition, authigenic monazite can be used to date sedimentary basins, and detrital monazite can fingerprint sedimentary source areas, both critical for tectonic analysis. Although some monazite generations can be directly tied to metamorphism or deformation, at present, the most common constraints rely on monazite inclusion relations in porphyroblasts that, in turn, can be tied to the deformation and/or metamorphic history. Examples will be presented from deep-crustal rocks of northern Saskatchewan and from mid-crustal rocks from the southwestern USA. Microprobe monazite geochronology has been used in both regions to deconvolute overprinting deformation and metamorphic events and to clarify the interpretation of other geochronologic data. Microprobe mapping and dating are powerful companions to mass spectroscopic dating techniques. They allow geochronology to be incorporated into the microstructural analytical process, resulting in a new level of integration of time (t) into P-T-D histories.

  15. Bioleaching of rare earth elements from monazite sand.

    PubMed

    Brisson, Vanessa L; Zhuang, Wei-Qin; Alvarez-Cohen, Lisa

    2016-02-01

    Three fungal strains were found to be capable of bioleaching rare earth elements from monazite, a rare earth phosphate mineral, utilizing the monazite as a phosphate source and releasing rare earth cations into solution. These organisms include one known phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a Paecilomyces spp. strain WE3-F. Although monazite also contains the radioactive element Thorium, bioleaching by these fungi preferentially solubilized rare earth elements over Thorium, leaving the Thorium in the solid residual. Adjustments in growth media composition improved bioleaching performance measured as rare earth release. Cell-free spent medium generated during growth of A. terreus strain ML3-1 and Paecilomyces spp. strain WE3-F in the presence of monazite leached rare earths to concentrations 1.7-3.8 times those of HCl solutions of comparable pH, indicating that compounds exogenously released by these organisms contribute substantially to leaching. Organic acids released by the organisms included acetic, citric, gluconic, itaconic, oxalic, and succinic acids. Abiotic leaching with laboratory prepared solutions of these acids was not as effective as bioleaching or leaching with cell-free spent medium at releasing rare earths from monazite, indicating that compounds other than the identified organic acids contribute to leaching performance. © 2015 Wiley Periodicals, Inc.

  16. Spectrochemical determination of thorium in monazite by the powder-d.c. arc technique

    USGS Publications Warehouse

    Dutra, C.V.; Murata, K.J.

    1954-01-01

    Thorium in monazite is determined by a d.c. carbon-arc technique using zirconium as the internal standard. The analytical curve for Th II 2870.413 A??/Zr II 2844-579 A?? is established by means of synthetic standards containing graduated amounts of thoria and 0.500 per cent zirconia in pegmatite base (60 parts quartz, 40 parts microchne, and 1 part ferric oxide). Monazite samples are diluted 14-fold with pegmatite base that contains 0.538 per cent ZrO2, so that the zirconia content of the resulting mixture is also 0.500 per cent. In addition, both the standards and the diluted monazites are mixed with one-half their weight of powdered graphite. Approximately 25 mg of the prepared samples are arced to completion at 15.5 to 17.5 amperes. With the 14-fold dilution employed, the accurate range of the method is 3 to 20 per cent thoria in the original monazite. The coefficient of variation for a single determination is 4 per cent at the 7 per cent thoria level. Tests with synthetic unknowns and chemically analyzed monazites show a maximum error of ??10 per cent of the thoria content. If niobium is substituted for zirconium as the internal standard, there is a loss of precision. Platinum as the internal standard gives results of good precision but introduces a marked sensitivity to matrix effects. ?? 1954.

  17. Age mapping and dating of monazite on the electron microprobe: Deconvoluting multistage tectonic histories

    NASA Astrophysics Data System (ADS)

    Williams, Michael L.; Jercinovic, Michael J.; Terry, Michael P.

    1999-11-01

    High-resolution X-ray mapping and dating of monazite on the electron microprobe are powerful geochronological tools for structural, metamorphic, and tectonic analysis. X-ray maps commonly show complex Th, U, and Pb zoning that reflects monazite growth and overgrowth events. Age maps constructed from the X-ray maps simplify the zoning and highlight age domains. Microprobe dating offers a rapid, in situ method for estimating ages of mapped domains. Application of these techniques has placed new constraints on the tectonic history of three areas. In western Canada, age mapping has revealed multiphase monazite, with older cores and younger rims, included in syntectonic garnet. Microprobe ages show that tectonism occurred ca. 1.9 Ga, 700 m.y. later than mylonitization in the adjacent Snowbird tectonic zone. In New Mexico, age mapping and dating show that the dominant fabric and triple-point metamorphism occurred during a 1.4 Ga reactivation, not during the 1.7 Ga Yavapai-Mazatzal orogeny. In Norway, monazite inclusions in garnet constrain high-pressure metamorphism to ca. 405 Ma, and older cores indicate a previously unrecognized component of ca. 1.0 Ga monazite. In all three areas, microprobe dating and age mapping have provided a critical textural context for geochronologic data and a better understanding of the complex age spectra of these multistage orogenic belts.

  18. The Influence of Interfacial Roughness on Fiber Sliding in Oxide Composites with La-Monazite Interphases

    NASA Technical Reports Server (NTRS)

    Davis, J. B.; Hay, R. S.; Marshall, D. B.; Morgan, P. E. D.; Sayir, A.; Gray, Hugh R. (Technical Monitor); Farmer, Serene C. (Technical Monitor)

    2002-01-01

    Room temperature debonding and sliding of La-Monazite coated fibers is assessed using a composite with a polycrystalline alumina matrix and fibers of several different single crystal (mullite, sapphire) and directionally solidified eutectic (Al2O3/Y3Al5O12 and Al2O3/Y-ZrO2) compositions. These fibers provide a range of residual stresses and interfacial roughnesses. Sliding occurred over a debond crack at the fiber-coating interface when the sliding displacement and surface roughness were relatively small. At large sliding displacements with relatively rough interfaces, the monazite coatings were deformed extensively by fracture, dislocations and occasional twinning, whereas the fibers were undamaged. Dense, fine-grained (10 nm) microstructures suggestive of dynamic recrystallization were also observed in the coatings. Frictional heating during sliding is assessed. The possibility of low temperature recrystallization is discussed in the light of the known resistance of monazite to radiation damage. The ability of La-Monazite to undergo plastic deformation relatively easily at low temperatures may be enabling for its use as a composite interface.

  19. Rare-earth-element minerals in martian breccia meteorites NWA 7034 and 7533: Implications for fluid-rock interaction in the martian crust

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Ma, Chi; Beckett, John R.; Chen, Yang; Guan, Yunbin

    2016-10-01

    Paired martian breccia meteorites, Northwest Africa (NWA) 7034 and 7533, are the first martian rocks found to contain rare-earth-element (REE) phosphates and silicates. The most common occurrence is as clusters of anhedral monazite-(Ce) inclusions in apatite. Occasionally, zoned, irregular merrillite inclusions are also present in apatite. Monazite-bearing apatite is sometimes associated with alkali-feldspar and Fe-oxide. Apatite near merrillite and monazite generally contains more F and OH (F-rich region) than the main chlorapatite host and forms irregular boundaries with the main host. Locally, the composition of F-rich regions can reach pure fluorapatite. The chlorapatite hosts are similar in composition to isolated apatite without monazite inclusions, and to euhedral apatite in lithic clasts. The U-Th-total Pb ages of monazite in three apatite are 1.0 ± 0.4Ga (2σ), 1.1 ± 0.5Ga (2σ), and 2.8 ± 0.7Ga (2σ), confirming a martian origin. The texture and composition of monazite inclusions are mostly consistent with their formation by the dissolution of apatite and/or merrillite by fluid at elevated temperatures (>100 °C). In NWA 7034, we observed a monazite-chevkinite-perrierite-bearing benmoreite or trachyandesite clast. Anhedral monazite and chevkinite-perrierite grains occur in a matrix of sub-micrometer REE-phases and silicates inside the clast. Monazite-(Ce) and -(Nd) and chevkinite-perrierite-(Ce) and -(Nd) display unusual La and Ce depletion relative to Sm and Nd. In addition, one xenotime-(Y)-bearing pyrite-ilmenite-zircon clast with small amounts of feldspar and augite occurs in NWA 7034. One xenotime crystal was observed at the edge of an altered zircon grain, and a cluster of xenotime crystals resides in a mixture of alteration materials. Pyrite, ilmenite, and zircon in this clast are all highly altered, zircon being the most likely source of Y and HREE now present in xenotime. The association of xenotime with zircon, low U and Th contents, and the low Yb content relative to Gd and Dy in xenotime suggest the possible formation of xenotime as a byproduct of fluid-zircon reactions. On the basis of relatively fresh apatite grains and lithic clasts in the same samples, we propose that the fluid-rock/mineral reactions occurred in the source rocks before their inclusion in NWA 7034 and 7533. Additionally, monazite-bearing apatite and REE-mineral-bearing clasts are possibly derived from different crustal origins. Thus, our results imply the wide-occurrence of hydrothermal fluids in the martian crust at 1 Ga or older, which were probably induced by impacts or large igneous intrusions.

  20. CHIME monazite dating using FE-EPMA equipped with R=100 mm spectrometers

    NASA Astrophysics Data System (ADS)

    Shibata, K.; Shimizu, M.; Suzuki, K.; Sueoka, S.; Niwa, M.

    2015-12-01

    The age spectrum of detrital monazite grains is used to unravel the tectono-thermal history of the pre-Neogene terranes, which is required for geological disposal of high-level radioactive waste on tectonically active Japanese Islands. The CHIME (Chemical Th-U-total Pb isochron method, Suzuki and Adachi, 1991) is best suited for dating of detrital monazite whose grains are not chronologically uniform. In the previous studies (eg, Suzuki, 2011), EPMA equipped with conventional R=140 mm spectrometers was used for measurement of U, Th and Pb. However the spectrometers have low count rate of measurement of Pb. The JEOL JXA-8530F FE-EPMA equipped with R=100 mm spectrometers has been applied for the CHIME monazite dating. The intrinsic responses of each of the R=100 mm spectrometers for PbMβ are around ten times higher than that of the R=140 mm spectrometer. The R=100 mm spectrometers permits obtaining high count rate, which enables us to shorten measurement time than before. As these spectrometers have peculiar spectral interference, the method reported by Amli and Griffin (1978) is applied for correction of the interference. In order to verify the dating using the FE-EPMA and the interference correction method, two distinct age groups of monazite were measured. The ages were 425±25 Ma for monazite from Cooma granite in southeastern Australia, which had dated by SHRIMP as 432.8 ± 3.5 Ma (Williams, 2001) and 67 ± 7 Ma for monazite of the Kojaku granite in southwestern Japan, which is corresponding to the LA-ICP-MS U-Pb zircon ages of 68.5 ± 0.7 Ma. These results indicate that the FE-EPMA and the interference correction method are useful for the CHIME monazite dating and for revealing the tectono-thermal history of the terranes. This study was carried out under a contract with Agency of Natural Resources and Energy(ANRE), part of Ministry of Economy, Trade and Industry (METI) of Japan as part of its R&D supporting program for developing geological disposal technology.

  1. Experimental constraints on the monazite-fluorapatite-allanite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote phase relations as a function of pressure, temperature, and Ca vs. Na activity in the fluid

    NASA Astrophysics Data System (ADS)

    Budzyń, Bartosz; Harlov, Daniel E.; Majka, Jarosław; Kozub, Gabriela A.

    2014-05-01

    Stability relations of monazite-fluorapatite-allanite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote are strongly dependent on pressure, temperature and fluid composition. The increased Ca bulk content expands stability field of allanite relative to monazite towards higher temperatures (Spear, 2010, Chem Geol 279, 55-62). It was also reported from amphibolite facies Alpine metapelites, that both temperature and bulk CaO/Na2O ratio control relative stabilities of allanite, monazite and xenotime (Janots et al., 2008, J Metam Geol 26, 5, 509-526). This study experimentally defines influence of pressure, temperature, high activity of Ca vs. Na in the fluid, and high vs. moderate bulk CaO/Na2O ratio on the relative stabilities of monazite-fluorapatite-allanite/REE-rich epidote and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote. This work expands previous experimental study on monazite (Budzyń et al., 2011, Am Min 96, 1547-1567) to wide pressure-temperature range of 2-10 kbar and 450-750°C, utilizing most reactive fluids used in previous experiments. Experiments were performed using cold-seal autoclaves on a hydrothermal line (2-4 kbar runs) and piston-cylinder apparatus (6-10 kbar runs) over 4-16 days. Four sets of experiments, two for monazite and two for xenotime, were performed with 2M Ca(OH)2 and Na2Si2O5 + H2O fluids. The starting materials included inclusion-free crystals of monazite (pegmatite, Burnet County, TX, USA) or xenotime (pegmatite, Northwest Frontier Province, Pakistan) mixed with (1) labradorite (Ab37An60Kfs3) + K-feldspar + biotite + muscovite ± garnet + SiO2 + CaF2 + 2M Ca(OH)2 or (2) albite (Ab100) + K-feldspar + biotite + muscovite ± garnet + SiO2 + CaF2 + Na2Si2O5 + H2O. 20-35 mg of solids and 5 mg of fluid were loaded into 3x15 mm Au capsules and arc welded shut. The monazite alteration is observed in all runs. Newly formed REE-rich fluorapatite and/or britholite are stable in all experimental P-T range in the presence of both fluids. Alteration of monazite and subsequent formation of REE-rich epidote or allanite, REE-rich fluorapatite and britholite was promoted by high activity of Ca in the fluid, with high bulk CaO/Na2O ratio of ca. 11.5 in the system. In contrast, neither REE-rich epidote nor allanite does form in the presence of Na2Si2O5 + H2O fluid, with bulk CaO/Na2O ratio of ca. 1.0. Results indicating that stability field of allanite relative to monazite expands towards higher temperatures along with increased Ca bulk content are consistent with recent thermodynamic modeling of phase equilibria (Spear, 2010). Experiments also support natural observations from the amphibolite-facies Alpine metapelites regarding the influence of CaO/Na2O ratio in bulk content on the relative stabilities of monazite and REE-rich epidote (Janots et al., 2008). Alteration of xenotime is observed in all runs. (Y,HREE)-rich britholite or (Y,HREE)-rich fluorapatite always formed. In contrast to monazite experiments, (Y,HREE)-rich epidote formed only at 650°C and 8-10 kbar, in the presence of 2M Ca(OH)2. Results are partially consistent with natural observations showing that stability of (Y,HREE)-rich epidote is promoted by high Ca bulk content with high CaO/Na2O ratio (Janots et al., 2008). However, experimental results indicate that the relative stabilities of xenotime and (Y,HREE)-rich epidote are strongly controlled by pressure. Acknowledgements. The project was funded by the National Science Center of Poland, grant no. 2011/01/D/ST10/04588.

  2. [Quantitative determination of glass content in monazite glass-ceramics by IR technique].

    PubMed

    He, Yong; Zhang, Bao-min

    2003-04-01

    Monazite glass-ceramics consist of both monazite and metaphoshate glass phases. The absorption bands of both phases do not overlap each other, and the absorption intensities of bands 1,275 and 616 cm-1 vary with the glass contents. The correlation coefficient between logarithmic absorbance ratio of the two bands and glass contents was r = 0.9975 and its regression equation was y = 48.356 + 25.93x. The absorbance ratio of bands 952 and 616 cm-1 also varied with different ratios of Ce2O3/La2O3 in synthetic monazites, with r = 0.9917 and a regression equation y = 0.2211 exp (0.0221x). High correlation coefficients show that the IR technique could find new application in the quantitative analysis of glass content in phosphate glass-ceramics.

  3. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  4. A precise 232Th-208Pb chronology of fine-grained monazite: Age of the Bayan Obo REE-Fe-Nb ore deposit, China

    USGS Publications Warehouse

    Wang, Jingyuan; Tatsumoto, M.; Li, X.; Premo, W.R.; Chao, E.C.T.

    1994-01-01

    We have obtained precise Th-Pb internal isochron ages on monazite and bastnaesite for the world's largest known rare earth elements (REE)-Fe-Nb ore deposit, the Bayan Obo of Inner Mongolia, China. The monazite samples, collected from the carbonate-hosted ore zone, contain extremely small amounts of uranium (less than 10 ppm) but up to 0.7% ThO2. Previous estimates of the age of mineralization ranged from 1.8 to 0.255 Ga. Magnetic fractions of monazite and bastnaesite samples (<60-??m size) showed large ranges in 232Th 204Pb values (900-400,000) and provided precise Th-Pb internal isochron ages for paragenetic monazite mineralization ranging from 555 to 398 Ma within a few percent error (0.8% for two samples). These results are the first indication that REE mineralization within the giant Bayan Obo ore deposit occurred over a long period of time. The initial lead isotopic compositions (low 206Pb 204Pb and high 208Pb 204Pb) and large negative ??{lunate}Nd values for Bayan Obo ore minerals indicate that the main source(s) for the ores was the lower crust which was depleted in uranium, but enriched in thorium and light rare earth elements for a long period of time. Zircon from a quartz monzonite, located 50 km south of the ore complex and thought to be related to Caledonian subduction, gave an age of 451 Ma, within the range of monazite ages. Textural relations together with the mineral ages favor an epigenetic rather than a syngenetic origin for the orebodies. REE mineralization started around 555 Ma (disseminated monazite in the West, the Main, and south of the East Orebody), but the main mineralization (banded ores) was related to the Caledonian subduction event ca. 474-400 Ma. ?? 1994.

  5. Sodium aluminum-iron phosphate glass-ceramics for immobilization of lanthanide oxide wastes from pyrochemical reprocessing of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Stefanovsky, S. V.; Stefanovsky, O. I.; Kadyko, M. I.; Nikonov, B. S.

    2018-03-01

    Sodium aluminum (iron) phosphate glass ceramics containing of up to 20 wt.% rare earth (RE) oxides simulating pyroprocessing waste were produced by melting at 1250 °C followed by either quenching or slow cooling to room temperature. The iron-free glass-ceramics were composed of major glass and minor phosphotridymite and monazite. The iron-bearing glass-ceramics were composed of major glass and minor monazite and Na-Al-Fe orthophosphate at low waste loadings (5-10 wt.%) and major orthophosphate and minor monazite as well as interstitial glass at high waste loadings (15-20 wt.%). Slowly cooled samples contained higher amount of crystalline phases than quenched ones. Monazite is major phase for REs. Leach rates from the materials of major elements (Na, Al, Fe, P) are 10-5-10-7 g cm-2 d-1, RE elements - lower than 10-5 g cm-2 d-1.

  6. Experimental constraints on the relative stabilities of the two systems monazite-(Ce) - allanite-(Ce) - fluorapatite and xenotime-(Y) - (Y,HREE)-rich epidote - (Y,HREE)-rich fluorapatite, in high Ca and Na-Ca environments under P-T conditions of 200-1000 MPa and 450-750 °C

    NASA Astrophysics Data System (ADS)

    Budzyń, Bartosz; Harlov, Daniel E.; Kozub-Budzyń, Gabriela A.; Majka, Jarosław

    2017-04-01

    The relative stabilities of phases within the two systems monazite-(Ce) - fluorapatite - allanite-(Ce) and xenotime-(Y) - (Y,HREE)-rich fluorapatite - (Y,HREE)-rich epidote have been tested experimentally as a function of pressure and temperature in systems roughly replicating granitic to pelitic composition with high and moderate bulk CaO/Na2O ratios over a wide range of P-T conditions from 200 to 1000 MPa and 450 to 750 °C via four sets of experiments. These included (1) monazite-(Ce), labradorite, sanidine, biotite, muscovite, SiO2, CaF2, and 2 M Ca(OH)2; (2) monazite-(Ce), albite, sanidine, biotite, muscovite, SiO2, CaF2, Na2Si2O5, and H2O; (3) xenotime-(Y), labradorite, sanidine, biotite, muscovite, garnet, SiO2, CaF2, and 2 M Ca(OH)2; and (4) xenotime-(Y), albite, sanidine, biotite, muscovite, garnet, SiO2, CaF2, Na2Si2O5, and H2O. Monazite-(Ce) breakdown was documented in experimental sets (1) and (2). In experimental set (1), the Ca high activity (estimated bulk CaO/Na2O ratio of 13.3) promoted the formation of REE-rich epidote, allanite-(Ce), REE-rich fluorapatite, and fluorcalciobritholite at the expense of monazite-(Ce). In contrast, a bulk CaO/Na2O ratio of 1.0 in runs in set (2) prevented the formation of REE-rich epidote and allanite-(Ce). The reacted monazite-(Ce) was partially replaced by REE-rich fluorapatite-fluorcalciobritholite in all runs, REE-rich steacyite in experiments at 450 °C, 200-1000 MPa, and 550 °C, 200-600 MPa, and minor cheralite in runs at 650-750 °C, 200-1000 MPa. The experimental results support previous natural observations and thermodynamic modeling of phase equilibria, which demonstrate that an increased CaO bulk content expands the stability field of allanite-(Ce) relative to monazite-(Ce) at higher temperatures indicating that the relative stabilities of monazite-(Ce) and allanite-(Ce) depend on the bulk CaO/Na2O ratio. The experiments also provide new insights into the re-equilibration of monazite-(Ce) via fluid-aided coupled dissolution-reprecipitation, which affects the Th-U-Pb system in runs at 450 °C, 200-1000 MPa, and 550 °C, 200-600 MPa. A lack of compositional alteration in the Th, U, and Pb in monazite-(Ce) at 550 °C, 800-1000 MPa, and in experiments at 650-750 °C, 200-1000 MPa indicates the limited influence of fluid-mediated alteration on volume diffusion under high P-T conditions. Experimental sets (3) and (4) resulted in xenotime-(Y) breakdown and partial replacement by (Y,REE)-rich fluorapatite to Y-rich fluorcalciobritholite. Additionally, (Y,HREE)-rich epidote formed at the expense of xenotime-(Y) in three runs with 2 M Ca(OH)2 fluid, at 550 °C, 800 MPa; 650 °C, 800 MPa; and 650 °C, 1000 MPa similar to the experiments involving monazite-(Ce). These results confirm that replacement of xenotime-(Y) by (Y,HREE)-rich epidote is induced by a high Ca bulk content with a high CaO/Na2O ratio. These experiments demonstrate also that the relative stabilities of xenotime-(Y) and (Y,HREE)-rich epidote are strongly controlled by pressure.

  7. NanoSIMS U-Pb dating of hydrothermally altered monazite: Constraints on the Timing of LaoZaiWan Carlin-type gold deposit in the golden triangle region, SW China

    NASA Astrophysics Data System (ADS)

    PI, Q.

    2017-12-01

    Abstract: Direct dating of Carlin-type Au deposits was restricted due to the absence of a geochronometer. Back-scattered electron (BSE) imaging and X-ray element mapping of monazite in gold-rich ore samples from the LaoZaiWan Au deposit in SW China, reveal the presence of distinct, high-Th cores surrounded by low-Th, inclusion-rich rims. The monazite grain is considered to be the product of fluid-aided coupled dissolution-reprecipitation during Au mineralization via prograde metamorphic reactions. We present results of in situ NonSIMS U-Pb dating applied to the rims of monazite . NonSIMS U-Pb age of hydrothermal monazite gave ages of 228 ± 9 Ma(2σ) and 230 ± 16 Ma(2σ) for LaoZaiWan Au deposit. These ages are interpreted as Au mineralization ages, which consistent with the Re-Os age of arsenopyite for JinYa Au deposit, the U-Pb age of rutile for and 40Ar-39Ar age of sericite for Zhesang Au deposit. We postulate that the formation of the Carlin-type Au deposits in the Golden Triangle region was triggered by the Indosinian Orogen, related to collision of the Indochina Block with South China Block.

  8. Monazite in Atlantic shore-line features

    USGS Publications Warehouse

    Dryden, Lincoln; Miller, Glen A.

    1954-01-01

    This report is a survey of present and potential production of monazite from part of the Maryland-Florida section of the Atlantic Coastal Plain. The part of the Coastal Plain covered here is the outer (shore-ward) half. In this area, all the large heavy-mineral placers so far discovered occur in sand bodies that, by their shape, size, orientation, and lithology, appear to be ancient beaches, spits, bars, or dunes. Smaller placers have produced from recent shore-line features. The inner part of the Coastal Plain, to be treated in another report, is underlain generally by older rocks, ranging in age from Cretaceous to older Pleistocene. Only two large heavy-mineral placers are now in production at Trail Ridge, and near Jacksonville, both in Florida. Production is planned for the near future near Yulee, Fla.: in Folkston, Ga.: and at one or two localities in eastern North Carolina. Each of these three will produce monazite as a byproduct; the total new reserve for the three placers is about 33,000 tons of monazite. In large heavy-mineral placers of this type, monazite has not been found to run more than about 1 percent of total heavy minerals. In some large placers, notably Trail Ridge, it is almost or completely lacking. No reason for its sporadic occurrence has been found in this investigation. Two placers of potential economic value have been found by this project in Virginia, one west and one east of Chesapeake Bay. Neither is of promise for monazite production, but if they serve to open up exploration or production in the area, there is a chance for monazite as a byproduct from other placers. A discovery of considerable scientific interest has to do with the occurrence of two different suites of heavy minerals in the Coastal Plain, at least south of Virginia. One, an “older” suite, lacks epidote, hornblende, and garnet; this suite occurs in all older formations and in Pleistocene deposits lying above about 50 or 60 feet above sea level. The other, “younger” suite contains these three minerals: it is restricted to recent beaches and streams, and to Pleistocene deposits at low altitudes. Monazite may occur with either of these suites. The percentage of titania (TiO2) in illmenite is of both scientific and economic interest. Illmenite is by far the most sought-for mineral in present exploration, and whether it contains the “normal” 53 percent of titania or, as it commonly does in Florida, 60 percent, is often of decisive importance in its exploitation. The nature, time, and place of this “enrichment” in titania has not been worked out. The heavy-mineral industry of the area seems to give promise of considerable expansion in the near future, and a greater monazite production seems assured.

  9. Oxygen diffusion in monazite

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.

    2004-09-01

    We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.

  10. The timing of tertiary metamorphism and deformation in the Albion-Raft River-Grouse Creek metamorphic core complex, Utah and Idaho

    USGS Publications Warehouse

    Strickland, A.; Miller, E.L.; Wooden, J.L.

    2011-01-01

    The Albion-Raft River-Grouse Creek metamorphic core complex of southern Idaho and northern Utah exposes 2.56-Ga orthogneisses and Neoproterozoic metasedimentary rocks that were intruded by 32-25-Ma granitic plutons. Pluton emplacement was contemporaneous with peak metamorphism, ductile thinning of the country rocks, and top-to-thewest, normal-sense shear along the Middle Mountain shear zone. Monazite and zircon from an attenuated stratigraphic section in the Middle Mountain were dated with U-Pb, using a SHRIMP-RG (reverse geometry) ion microprobe. Zircons from the deformed Archean gneiss preserve a crystallization age of 2532 ?? 33 Ma, while monazites range from 32.6 ?? 0.6 to 27.1 ?? 0.6 Ma. In the schist of the Upper Narrows, detrital zircons lack metamorphic overgrowths, and monazites produced discordant U-Pb ages that range from 52.8 ?? 0.6 to 37.5 ?? 0.3 Ma. From the structurally and stratigraphically highest unit sampled, the schist of Stevens Spring, narrow metamorphic rims on detrital zircons yield ages from 140-110 Ma, and monazite grains contained cores that yield an age of 141 ??2 Ma, whereas rims and some whole grains ranged from 35.5 ?? 0.5 to 30.0 ?? 0.4 Ma. A boudinaged pegmatite exposed in Basin Creek is deformed by the Middle Mountains shear zone and yields a monazite age of 27.6 ?? 0.2 Ma. We interpret these data to indicate two periods of monazite and metamorphic zircon growth: a poorly preserved Early Cretaceous period (???140 Ma) that is strongly overprinted by Oligocene metamorphism (???32-27 Ma) related to regional plutonism and extension. ?? 2011 by The University of Chicago.

  11. High-pressure structural and vibrational properties of monazite-type BiPO4, LaPO4, CePO4, and PrPO4

    NASA Astrophysics Data System (ADS)

    Errandonea, D.; Gomis, O.; Rodríguez-Hernández, P.; Muñoz, A.; Ruiz-Fuertes, J.; Gupta, M.; Achary, S. N.; Hirsch, A.; Manjon, F. J.; Peters, L.; Roth, G.; Tyagi, A. K.; Bettinelli, M.

    2018-02-01

    Monazite-type BiPO4, LaPO4, CePO4, and PrPO4 have been studied under high pressure by ab initio simulations and Raman spectroscopy measurements in the pressure range of stability of the monazite structure. A good agreement between experimental and theoretical Raman-active mode frequencies and pressure coefficients has been found which has allowed us to discuss the nature of the Raman-active modes. Besides, calculations have provided us with information on how the crystal structure is modified by pressure. This information has allowed us to determine the equation of state and the isothermal compressibility tensor of the four studied compounds. In addition, the information obtained on the polyhedral compressibility has been used to explain the anisotropic axial compressibility and the bulk compressibility of monazite phosphates. Finally, we have carried out a systematic discussion on the high-pressure behavior of the four studied phosphates in comparison to results of previous studies.

  12. Magmatic and hydrothermal R.E.E. fractionation in the Xihuashan granites (SE China)

    NASA Astrophysics Data System (ADS)

    Maruéjol, Patricia; Cuney, Michel; Turpin, Laurent

    1990-11-01

    The Xihuashan stock (South Jiangxi, China) is composed of cogenetic granitic units (granites Xe, γa, γc, γd and γb) and emplaced during the Yanshanian orogeny (153±0.2 Ma). They are two feldspars, Fe-rich biotite±garnet and slightly peraluminous granites. Primary accessory minerals are apatite 1, monazite, zircon, uranothorite±xenotime in granites Xe and γa, zircon, uranothorite, uraninite, betafite, xenotime 1; hydrothermal minerals are monazite altered into parisite and apatite 2, Y-rich parisite, yttroparisite, Y-rich fluorite and xenotime 2 in granites γc and γb. Petrographic observations, major element, REE, Y and Rb-Sr isotropic data point to a magmatic suite (granites Xe and γa → granites γc and γd → granite γb) distinct from hydrothermal Na-or K-alteration of γb. From granite Xe to granite γb, LREE, Eu, Th and Zr content are strongly depleted, while HREE, Y and U content increase. During K-alteration of γb, these variations are of minor importance. Major and accessory mineral evidences, geochemical and fluid inclusion results indicate two successive alteration fluids interacting with γb, (1) a late-magmatic F- and CO2-rich fluid and (2) a post-magmatic, aqueous and slightly saline fluid. The depletion of LREE and Th content and the increase in HREE, Y and U content correspond, in the magmatic suite to the early fractionation of monazite in the granites where there is no hydrothermal alteration (granites Xe and γe) and to the hydrothermal alteration of monazite into parisite and secondary apatite, intense new formation of yttroparisite, Y enrichment and U loss in the uranothorite and late crystallization of uraninite in the granites γc and γb. Moreover, simulated crystallization of monazite and temperature of monazite saturation show early fractionation of monazite from the magma in the less evolved granites (Xe and γe) and prevailing hydrothermal leaching of monazite in the most evolved granites (γc-γd and γb) related to a late-magmetic event. The slight variations of REE, Y, Th and U content in the K-altered granites compared to granite γb emphazes the distinct chemical nature of the successive hydrothermal fluids. Rb-Sr and Sm-Nd isotopic results point to a 30 Ma period of time between the late-magmatic and the post-magmatic fluid circulation.

  13. Investigation of Natural Radioactivity in a Monazite Processing Plant in Japan.

    PubMed

    Iwaoka, Kazuki; Yajima, Kazuaki; Suzuki, Toshikazu; Yonehara, Hidenori; Hosoda, Masahiro; Tokonami, Shinji; Kanda, Reiko

    2017-09-01

    Monazite is a naturally occurring radioactive material that is processed for use in a variety of domestic applications. At present, there is little information available on potential radiation doses experienced by people working with monazite. The ambient dose rate and activity concentration of natural radionuclides in raw materials, products, and dust in work sites as well as the Rn and Rn concentrations in work sites were measured in a monazite processing plant in Japan. Dose estimations for plant workers were also conducted. The activity concentration of the U series in raw materials and products for the monazite processing plant was found to be higher than the relevant values described in the International Atomic Energy Agency Safety Standards. The ambient dose rates in the raw material yard were higher than those in other work sites. Moreover, the activity concentrations of dust in the milling site were higher than those in other work sites. The Rn concentrations in all work sites were almost the same as those in regular indoor environments in Japan. The Rn concentrations in all work sites were much higher than those in regular indoor environments in Japan. The maximum value of the effective dose for workers was 0.62 mSv y, which is lower than the reference level range (1-20 mSv y) for abnormally high levels of natural background radiation published in the International Commission of Radiological Protection Publication 103.

  14. U-Pb, Re-Os, and Ar/Ar geochronology of rare earth element (REE)-rich breccia pipes and associated host rocks from the Mesoproterozoic Pea Ridge Fe-REE-Au deposit, St. Francois Mountains, Missouri

    USGS Publications Warehouse

    Aleinikoff, John N.; Selby, David; Slack, John F.; Day, Warren C.; Pillers, Renee M.; Cosca, Michael A.; Seeger, Cheryl; Fanning, C. Mark; Samson, Iain

    2016-01-01

    Rare earth element (REE)-rich breccia pipes (600,000 t @ 12% rare earth oxides) are preserved along the margins of the 136-million metric ton (Mt) Pea Ridge magnetite-apatite deposit, within Mesoproterozoic (~1.47 Ga) volcanic-plutonic rocks of the St. Francois Mountains terrane in southeastern Missouri, United States. The breccia pipes cut the rhyolite-hosted magnetite deposit and contain clasts of nearly all local bedrock and mineralized lithologies.Grains of monazite and xenotime were extracted from breccia pipe samples for SHRIMP U-Pb geochronology; both minerals were also dated in one polished thin section. Monazite forms two morphologies: (1) matrix granular grains composed of numerous small (<50 μm) crystallites intergrown with rare xenotime, thorite, apatite, and magnetite; and (2) coarse euhedral, glassy, bright-yellow grains similar to typical igneous or metamorphic monazite. Trace element abundances (including REE patterns) were determined on selected grains of monazite (both morphologies) and xenotime. Zircon grains from two samples of host rhyolite and two late felsic dikes collected underground at Pea Ridge were also dated. Additional geochronology done on breccia pipe minerals includes Re-Os on fine-grained molybdenite and 40Ar/39Ar on muscovite, biotite, and K-feldspar.Ages (±2σ errors) obtained by SHRIMP U-Pb analysis are as follows: (1) zircon from the two host rhyolite samples have ages of 1473.6 ± 8.0 and 1472.7 ± 5.6 Ma; most zircon in late felsic dikes is interpreted as xenocrystic (age range ca. 1522–1455 Ma); a population of rare spongy zircon is likely of igneous origin and yields an age of 1441 ± 9 Ma; (2) pale-yellow granular monazite—1464.9 ± 3.3 Ma (no dated xenotime); (3) reddish matrix granular monazite—1462.0 ± 3.5 Ma and associated xenotime—1453 ± 11 Ma; (4) coarse glassy-yellow monazite—1464.8 ± 2.1, 1461.7 ± 3.7 Ma, with rims at 1447.2 ± 4.7 Ma; and (5) matrix monazite (in situ)—1464.1 ± 3.6 and 1454.6 ± 9.6 Ma, and matrix xenotime (in situ)—1468.0 ± 8.0 Ma. Two slightly older ages of cores are about 1478 Ma. The young age of rims on the coarse glassy monazite coincides with an Re-Os age of 1440.6 ± 9.2 Ma determined in this study for molybdenite intergrown with quartz and allanite, and with the age of monazite inclusions in apatite from the magnetite ore (Neymark et al., 2016). A 40Ar/39Ar age of 1473 ± 1 Ma was obtained for muscovite from a breccia pipe sample.Geochronology and trace element geochemical data suggest that the granular matrix monazite and xenotime (in polygonal texture), and cores of coarse glassy monazite precipitated from hydrothermal fluids during breccia pipes formation at about 1465 Ma. The second episode of mineral growth at ca. 1443 Ma may be related to faulting and fluid flow that rebrecciated the pipes. The ca. 10-m.y. gap between the ages of host volcanic rocks and breccia pipe monazite and xenotime suggests that breccia pipe mineral formation cannot be related to the felsic magmatism represented by the rhyolitic volcanic rocks, and hence is linked to a different magmatic-hydrothermal system.

  15. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Calkins, G.D.

    1957-10-29

    A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.

  16. Thorium: Issues and prospects in Malaysia

    NASA Astrophysics Data System (ADS)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman; Bahri, Che Nor Aniza Che Zainul

    2015-04-01

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This paper will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment.

  17. Swelling induced by alpha decay in monazite and zirconolite ceramics: A XRD and TEM comparative study

    NASA Astrophysics Data System (ADS)

    Deschanels, X.; Seydoux-Guillaume, A. M.; Magnin, V.; Mesbah, A.; Tribet, M.; Moloney, M. P.; Serruys, Y.; Peuget, S.

    2014-05-01

    Zirconolite and monazite matrices are potential ceramics for the containment of actinides (Np, Cm, Am, Pu) which are produced over the reprocessing of spent nuclear fuel. Actinides decay mainly through the emission of alpha particles, which in turn causes most ceramics to undergo structural and textural changes (amorphization and/or swelling). In order to study the effects of alpha decays on the above mentioned ceramics two parallel approaches were set up. The first involved the use of an external irradiation source, Au, which allowed the deposited recoil energy to be simulated. The second was based on short-lived actinide doping with 238Pu, (i.e. an internal source), via the incorporation of plutonium oxide into both the monazite and zirconolite structures during synthesis. In both types of irradiation experiments, the zirconolite samples became amorphous at room temperature with damage close to 0.3 dpa; corresponding to a critical dose of 4 × 1018 α g-1 (i.e. ∼1.3 × 1021 keV cm-3). Both zirconolite samples also showed the same degree of macroscopic swelling at saturation (∼6%), with ballistic processes being the predominant damaging effect. In the case of the monazite however, the macroscopic swelling and amorphization were dependent on the nature of the irradiation. Externally, (Au), irradiated samples became amorphous while also demonstrating a saturation swelling of up to 8%. In contrast to this, the swelling of the 238Pu doped samples was much smaller at ∼1%. Also, unlike the externally (Au) irradiated monazite these 238Pu doped samples remained crystalline up to 7.5 × 1018 α g-1 (0.8 dpa). XRD, TEM and swelling measurements were used to fully characterize and interpret this behavior. The low swelling and the conservation of the crystalline state of 238Pu doped monazite samples indicates that alpha annealing took place within this material.

  18. Contemporaneous migmitization and granite emplacement during regional metamorphism: Evidence for mid-crustal contribution to the batholiths of the Arabian-Nubian Shield

    NASA Astrophysics Data System (ADS)

    Elisha, B.; Katzir, Y.; Kylander-Clark, A. R.

    2017-12-01

    Collision-related granitoid batholiths, like those of the Hercynian and Himalayan orogens, are mostly fed by magma derived from meta-sedimentary sources. However, in the late Neoproterozoic calc-alkaline batholiths of the Arabian Nubian Shield (ANS), which constitutes the northern half of the East African orogen, sedimentary contribution is obscured by the juvenile character of the crust and the scarcity of migmatites. Here we use paired in-situ measurements of U-Th-Pb isotope ratios and REE contents of monazite and xenotime by LASS to demonstrate direct linkage between granites and migmatites in the northernmost ANS. Our results indicate a single prolonged period of monazite growth, 640-600 Ma, in metapelites, migmatites and peraluminous granites of the Abu-Barqa (SW Jordan), Roded (S Israel) and Taba-Nuweiba (Sinai, Egypt) metamorphic suites. Distribution of monazite dates and age zoning in single monazite grains in migmatites suggest that peak thermal conditions and partial melting prevailed for 10 Myr, from 620 to 610 Ma. REE patterns of monazite are well correlated with age, recording garnet growth and garnet breakdown in association with the prograde and retrograde stages of the melting reactions, respectively. Xenotime dates (n=40) cluster at 600-580 Ma recording retrogression to greenschist-facies conditions as garnet continues to destabilize. Phase equilibrium modelling and mineral thermobarometry illustrate that melting occurred either by dehydration of muscovite or by water-fluxed melting at 650-680° and 5-7 kbar. The expected melt production is 8-14%, allowing melt connectivity network to form and eventually melt extraction and segregation. The crystallization time of peritectic melt retained in dia- and metataxites overlaps the emplacement time of a vast calc-alkaline granitic flux throughout the northern ANS, which was previously considered post-collisional. Similar monazite ages ( 620 Ma) of the amphilolite-facies non-anatectic Elat schist indicate that migmatites are the result of widespread regional, rather than local contact metamorphism, representing the climax of East African orogenesis.

  19. Zircon and monazite petrochronologic record of prolonged amphibolite to granulite facies metamorphism in the Ivrea-Verbano and Strona-Ceneri Zones, NW Italy

    NASA Astrophysics Data System (ADS)

    Guergouz, Celia; Martin, Laure; Vanderhaeghe, Olivier; Thébaud, Nicolas; Fiorentini, Marco

    2018-05-01

    In order to improve the understanding of thermal-tectonic evolution of high-grade terranes, we conducted a systematic study of textures, REE content and U-Pb ages of zircon and monazite grains extracted from migmatitic metapelites across the amphibolite to granulite facies metamorphic gradient exposed in the Ivrea-Verbano and Strona-Ceneri Zones (Italy). This study documents the behaviour of these accessory minerals in the presence of melt. The absence of relict monazite grains in the metasediments and the gradual decrease in the size of inherited zircon grains from amphibolite to granulite facies cores indicate partial to total dissolution of accessory minerals during the prograde path and partial melting. The retrograde path is marked by (i) growth of new zircon rims (R1 and R2) around inherited cores in the mesosome, (ii) crystallisation of stubby zircon grains in the leucosome, especially at granulite facies, and (iii) crystallisation of new monazite in the mesosome. Stubby zircon grains have a distinctive fir-tree zoning and a constant Th/U ratio of 0.20. Together, these features reflect growth in the melt; conversely, the new zircon grains with R1 rims have dark prismatic habits and Th/U ratios < 0.1, pointing to growth in solid residues. U-Pb ages obtained on both types are similar, indicating contemporaneous growth of stubby zircon and rims around unresorbed zircon grains, reflecting the heterogeneous distribution of the melt at the grain scale. In the Ivrea-Verbano Zone the interquartile range (IQR) of U-Pb ages on zircon and monazite are interpreted to represent the length of zircon and monazite crystallisation in the presence of melt. Accordingly, they provide an indication on the minimum duration for high-temperature metamorphism and partial melting of the lower crust: 20 Ma and 30 Ma in amphibolite and granulite facies, respectively. In amphibolite facies, zircon crystallisation between 310 and 294 Ma (IQR) is interpreted to reflect metamorphic peak condition and earlier retrograde history; conversely, monazite crystallisation between 297 and 271 Ma (IQR) reflects cooling under 750 °C to a temperature close to the solidus. In granulite facies, zircon crystallisation between 295 and 265 Ma (IQR) is interpreted to reflect high-temperature conditions, which were attained after peak of metamorphism during isothermal decompression and subsequent cooling under 850-950 °C. The observed decrease of U-Pb ages in metamorphic zircon and monazite from amphibolite to granulite facies (i.e. from the middle to the lower crust) is interpreted to record slow cooling and crystallisation of the Variscan orogenic root at the transition from orogenic collapse to opening of the Tethys Ocean.

  20. Multiple Basinal Fluid Events in the Lower Belt Supergroup, Montana: Constraints From CHIME Ages and REE Patterns of Monazites

    NASA Astrophysics Data System (ADS)

    Gonzalez-Alvarez, I.; Kusiak, M. A.

    2004-05-01

    Chemical dates (CHIME) on 105 spots and REE patterns of monazites were obtained from coarse sandstones and siltstones in the Mesoproterozoic siliciclastic Appekunny and Grinnell formations, lower Belt Supergroup, Montana, by EMPA. At least three post-depositional events induced by basinal fluids can be recognized: (a) red coloration accompanied by a major K-addition; (b) a green overprint of red siltstones; and (c) dolomitization. Fluid advection in the unmineralized lower Belt is pervasive and may have been alkaline and oxidizing. These three events progressively modified the primary geochemical characteristics of the siliciclastic rocks. Calculated ages show similar ranges in the fine and coarse-grained facies. For siltstones there are two age clusters: (1) at 1,801 ± 21 to 1,968 ± 26 Ma, as well as (2) at 854 ± 7 to 962 ± 13 Ma. Coarse sandstones show similar age clusters (3) at 1,831 ± 14 to 1,982 ± 12 Ma, and (4) at 803 ± 6 to 944 ± 9 Ma. A wide range of dates plots between the clusters for both facies. Clusters (1) and (3) are interpreted as the result of detrital monazites from a source area ~1.8 to 1.9 Ga old. Mineralogical variations and trace element systematic reveal basinal brines, which mobilized MREE and HREE, locally generating secondary monazites, influencing large domains of the lower Belt. The lower Belt Supergroup is estimated to have been deposited between 1.47 Ga and 1.45 Ga; consequently, the second age cluster for sandstones and siltstones is viewed as constraining the timeframe of a major basinal fluid event at ~0.80 to 0.96 Ga. That event is clearly distinct from the hydrothermal system associated with the Sullivan sedex base metal deposit at the base of the Belt. Ages between the clusters are interpreted either as secondary, formed during additional basinal fluid events or as reset of detrital monazites. Accordingly, the Belt basin was intermittently an open system to fluids from ~1.47 to ~0.80 Ga. Chondrite-normalized REE patterns for both facies display three unusual features: (A) on a linear scale for both facies for clusters (1) and (3) monazites reveal a straight line from La to Sm. For clusters (2) and (4) the profiles between La and Sm are concave or convex; concave profiles are produced mainly because of the Ce values. All reset monazites have convex or concave La-Sm profiles; (B) LREE/HREE and La/Y ratios average values for both facies in clusters (1) and (3) exhibit distinctively lower values than in clusters (2) and (4); (C) on log scale, charts show an unusually heterogeneous MREE and HREE profile for all monazites.

  1. Using Eu(3+) as an atomic probe to investigate the local environment in LaPO4-GdPO4 monazite end-members.

    PubMed

    Huittinen, Nina; Arinicheva, Yulia; Schmidt, Moritz; Neumeier, Stefan; Stumpf, Thorsten

    2016-12-01

    In the present study, we have investigated the luminescent properties of Eu(3+) as a dopant in a series of synthetic lanthanide phosphates from the monazite group. Systematic trends in the spectroscopic properties of Eu(3+) depending on the size of the host cation and the dopant to ligand distance have been observed. Our results show that the increasing match between host and dopant radii when going from Eu(3+)-doped LaPO4 toward the smaller GdPO4 monazite decreases both the full width at half maximum of the Eu(3+) excitation peak, as well as the (7)F2/(7)F1 emission band intensity ratio. The decreasing Ln⋯O bond distance within the LnPO4 series causes a systematic bathochromic shift of the Eu(3+) excitation peak, showing a linear dependence of both the host cation size and the Ln⋯O distance. The linear relationship can be used to predict the energy band gap for Eu(3+)-doped monazites for which no Eu(3+) luminescent data is available. Finally, mechanisms for metal-metal energy transfer between host and dopant lanthanides have been explored based on recorded luminescence lifetime data. Luminescence lifetime data for Eu(3+) incorporated in the various monazite hosts clearly indicated that the energy band gap between the guest ion emission transition and the host ion absorption transition can be correlated to the degree of quenching observed in these materials with otherwise identical geometries and chemistries. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Metamorphic conditions and CHIME monazite ages of Late Eocene to Late Oligocene high-temperature Mogok metamorphic rocks in central Myanmar

    NASA Astrophysics Data System (ADS)

    Maw Maw Win; Enami, Masaki; Kato, Takenori

    2016-03-01

    The high temperature (T)/pressure (P) regional Mogok metamorphic belt is situated in central Myanmar, and is mainly composed of pelitic gneisses, amphibolites, marbles, and calc-silicate rocks. The garnet-biotite-plagioclase-sillimanite-quartz assemblage and its partial system suggest equilibrium P/T conditions of 0.6-1.0 GPa/780-850 °C for the peak metamorphic stage, and 0.3-0.5 GPa/600-680 °C for the exhumation and hydration stage. Monazite grains show complex compositional zoning consisting of three segments-I, II, and III. Taking into consideration the monazite zoning and relative misfit curves, the calculated chemical Th-U-total Pb isochron method (CHIME) monazite age data (284 spot analyses) indicated four age components: 49.3 ± 2.6-49.9 ± 7.9, 37.8 ± 1.0-38.1 ± 1.7, 28.0 ± 0.8-28.8 ± 1.6, and 23.7 ± 1.3 Ma (2σ level). The ages of the Late Eocene and Late Oligocene epochs were interpreted as the peak metamorphic stage of upper-amphibolite and/or granulite facies and the postdated hydration stage, respectively.

  3. Thorium: Issues and prospects in Malaysia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    AL-Areqi, Wadeeah M.; Majid, Amran Ab.; Sarmani, Sukiman

    2015-04-29

    In Malaysia, thorium exists in minerals and rare earth elements production residue. The average range of thorium content in Malaysian monazite and xenotime minerals was found about 70,000 and 15,000 ppm respectively. About 2,636 tonnes of Malaysian monazite was produced for a period of 5 years (2006-2010) and based on the above data, it can be estimated that Malaysian monazite contains about 184.5 tonnes of thorium. Although thorium can become a major radiological problem to our environment, but with the significant deposit of thorium in Malaysian monazite, it has a prospect as a future alternative fuel in nuclear technology. This papermore » will discuss the thorium issues in Malaysia especially its long term radiological risks to public health and environment at storage and disposal stages, the prospect of exploring and producing high purity thorium from our rare earth elements minerals for future thorium based reactor. This paper also highlights the holistic approach in thorium recovery from Malaysian rare earth element production residue to reduce its radioactivity and extraction of thorium and rare earth elements from the minerals with minimum radiological impact to health and environment.« less

  4. Constraints on Subduction Zone Temperatures and Chemical Fluxes from Accessory Phase Saturation in Subducted Sediments (Invited)

    NASA Astrophysics Data System (ADS)

    Blundy, J.; Skora, S.

    2009-12-01

    A global correlation between the incompatible trace element chemistry of subducted sediments and that of magmas erupted through the overlying plate testifies to the important role that sediments play in controlling magmagenesis. We report new experimental data on the high pressure (3 GPa) and temperature (700-1300 °C) phase relations of hydrous red clay to evaluate the role of residual accessory phases in controlling the incompatible trace element chemistry of sediment-derived fluids. A particular focus is monazite, which preferentially incorporates LREE and Th, exerting a powerful control on the fluid Th/LREE ratio. Given that arc magmas appear to inherit the Th/LREE ratio of the associated subducting sediment, understanding monazite solubility and stability has the potential to provide new constraints on temperature at the slab surface, a parameter that is notoriously hard to pin down by other means. Experiments on red clay with H2O structurally bound in hydrous minerals (<2 wt%) produced negligible melt fractions for any reasonable temperatures. Experiments with 7-15 wt% added H2O produced copious melting at temperatures only 50-100°C above the solidus (c. 720 °C), e.g. with 15 wt% added H2O, the red clay is >50% molten at 800 °C. Irrespective of the amount of added H2O the residual assemblage comprised garnet and kyanite up to the liquidus (1250 °C with 7 wt% H2O). Phengite is present ≤800 °C; ilmenite and rutile persist to c. 1000 °C; quartz/coesite-out temperature decreases from 1000 °C with 7 wt% H2O to 800 °C with 15%. Monazite was stable to 950 °C in the Th- and LREE-doped starting materials that we used. The trace element contents of the residual melts in equilibrium with monazite-thorite solid solutions were used, in conjunction with published data, to develop a thermodynamic model of LREE and Th solubility in sediment-derived fluids. These models were used to calculate the stability of monazite in a red clay with natural LREE and Th levels. For the case of 7 wt% added H2O, monazite is exhausted at 825 °C; it disappears at 780 °C with 15 wt% added H2O. In our experiments monazite fractionates LREE from Th, such that fluids preserving the original sedimentary ratio must be generated at or above monazite-out temperatures in subducted slabs where red clay is the dominant sedimentary lithology. We propose that the subducted sedimentary signature is imparted by fluxing of H2O derived from hydrated (e.g. serpentinised) portions of the deeper subducting slab, triggering copious “flash melting” of the sediment at the point were its temperature exceeds ~800 °C. Without the addition of H2O sediment melting is too restricted to allow any appreciable fluid release into the overlying mantle. Moreover, under such conditions the Th/LREE ratio is strongly fractionated due to the abundance of residual monazite. The availability of H2O in hydrated portions of subducted slabs, e.g. in the vicinity of fracture zones, may exercise an important control on the spatial distribution of subduction zone magmatism.

  5. Tectono-metamorphic evolution of the Jomolhari massif: Variations in timing of syn-collisional metamorphism across western Bhutan

    NASA Astrophysics Data System (ADS)

    Regis, Daniele; Warren, Clare J.; Young, David; Roberts, Nick M. W.

    2014-03-01

    Our current understanding of the rates and timescales of mountain-building processes is largely based on information recorded in U-bearing accessory minerals such as monazite, which is found in low abundance but which hosts the majority of the trace element budget. Monazite petrochronology was used to investigate the timing of crustal melting in migmatitic metasedimentary rocks from the Jomolhari massif (NW Bhutan). The samples were metamorphosed at upper amphibolite to granulite facies conditions (~ 0.85 GPa, ~ 800 °C), after an earlier High-Pressure stage (P > 1.4 GPa), and underwent partial melting through dehydration melting reactions involving muscovite and biotite. In order to link the timing of monazite growth/dissolution to the pressure-temperature (P-T) evolution of the samples, we identified 'chemical fingerprints' in major and accessory phases that were used to back-trace specific metamorphic reactions. Variations in Eu anomaly and Ti in garnet were linked to the growth and dissolution of major phases (e.g. growth of K-feldspar and dehydration melting of muscovite/biotite). Differences in M/HREE and Y from garnet core to rim were instead related to apatite breakdown and monazite-forming reactions. Chemically zoned monazite crystals reacted multiple times during the metamorphic evolution suggesting that the Jomolhari massif experienced a prolonged high-temperature metamorphic evolution from 36 Ma to 18 Ma, significantly different from the P-T-time path recorded in other portions of the Greater Himalayan Sequence (GHS) in Bhutan. Our data demonstrate unequivocally that the GHS in Bhutan consists of units that experienced independent high-grade histories and that were juxtaposed across different tectonic structures during exhumation. The GHS may have been exhumed in response to (pulsed) mid-crustal flow but cannot be considered a coherent block.

  6. Proterozoic polymetamorphism in the Quanji Block, northwestern China: Evidence from microtextures, garnet compositions and monazite CHIME ages

    NASA Astrophysics Data System (ADS)

    Wang, Qinyan; Pan, Yuanming; Chen, Nengsong; Li, Xiaoyan; Chen, Haihong

    2009-05-01

    The Quanji Block, situated close to the triple junction of three major Precambrian terranes in China (i.e., the North China Craton, the Yangtze Block and the Tarim Block), is composed of Precambrian metamorphic crystalline basement and an unmetamorphosed Mesozoic-Paleozoic sedimentary cover; it has been interpreted as a remnant continental fragment. Microtextural relationships, garnet trace element compositions, and monazite CHIME ages in paragneisses, schists and granitic leucosomes show two episodes of regional metamorphism in the Quanji Block basement. The first regional metamorphism and accompaning anatexis took place at ˜1.93 Ga; the second regional metamorphism occurred between ˜1.75 and ˜1.71 Ga. Mineral compositions of the first metamorphism, including those of monazite, were significantly disturbed by the second event. These two regional metamorphic episodes were most likely linked to assembly and breakup of the supercontinent Columbia, respectively.

  7. Precipitation Coating of Monazite on Woven Ceramic Fibers: 1. Feasibility (Postprint)

    DTIC Science & Technology

    2007-02-01

    08 Aug 2006. Paper contains color . 14. ABSTRACT Monazite coatings were deposited on woven cloths and tows of NextelTM 610 fibers by heterogeneous...by dissolving concentrated phosphoric acid ( Fish - er Scientific Co., Pittsburgh, PA) or a combination of lantha- num nitrate (Aldrich Chemical Co...Boccaccini, P. Karapappas, J. M. Marijuan, and C. Kaya, ‘‘ TiO2 Coat- ings on Silicon Carbide Fiber Substrates by Electrophoretic Deposition,’’ J.Mater. Sci

  8. Phase relation of CaSO4 at high pressure and temperature up to 90 GPa and 2300 K

    NASA Astrophysics Data System (ADS)

    Fujii, Taku; Ohfuji, Hiroaki; Inoue, Toru

    2016-05-01

    Calcium sulfate (CaSO4), one of the major sulfate minerals in the Earth's crust, is expected to play a major role in sulfur recycling into the deep mantle. Here, we investigated the crystal structure and phase relation of CaSO4 up to ~90 GPa and 2300 K through a series of high-pressure experiments combined with in situ X-ray diffraction. CaSO4 forms three thermodynamically stable polymorphs: anhydrite (stable below 3 GPa), monazite-type phase (stable between 3 and ~13 GPa) and barite-type phase (stable up to at least 93 GPa). Anhydrite to monazite-type phase transition is induced by pressure even at room temperature, while monazite- to barite-type transition requires heating at least to 1500 K at ~20 GPa. The barite-type phase cannot always be quenched from high temperature and is distorted to metastable AgMnO4-type structure or another modified barite structure depending on pressure. We obtained the pressure-volume data and density of anhydrite, monazite- and barite-type phases and found that their densities are lower than those calculated from the PREM model in the studied P-T conditions. This suggests that CaSO4 is gravitationally unstable in the mantle and fluid/melt phase into which sulfur dissolves and/or sulfate-sulfide speciation may play a major role in the sulfur recycling into the deep Earth.

  9. The Triassic reworking of the Yunkai massif (South China): EMP monazite and U-Pb zircon geochronologic evidence

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Hong; Liu, Yung-Hsin; Lee, Chi-Yu; Sano, Yuji; Zhou, Han-Wen; Xiang, Hua; Takahata, Naoto

    2017-01-01

    Geohistory of the Yunkai massif in South China Block is important in understanding the geodynamics for the build-up of this block during the Phanerozoic orogenies. To investigate this massif, we conduct EMP monazite and U-Pb zircon geochronological determinations on mineral inclusions and separate for seventeen samples in four groups, representing metamorphic rocks from core domain, the Gaozhou Complex (amphibolite facies, NE-striking) and the Yunkai Group (greenschist facies, NW-striking) of this massif and adjacent undeformed granites. Some EMP monazite ages are consistent with the NanoSIMS results. Monazite inclusions, mostly with long axis parallel to the cleavage of platy and elongated hosts, give distinguishable age results for NW- and NE-trending deformations at 244-236 Ma and 236-233 Ma, respectively. They also yield ages of 233-230 Ma for core domain gneissic granites and 232-229 Ma for undefomed granites. Combining U-Pb zircon ages of the same group, 245 Ma and 230 Ma are suggested to constrain the time of two phases of deformation. Aside from ubiquity of Triassic ages in studied rocks, ages of detrital monazite in the meta-sandstone match the major U-Pb zircon age clusters of the metamorphic rock that are largely concentrated at Neoproterozoic (1.0-0.9 Ga) and Early Paleozoic (444-431 Ma). Based on these geochronological data, Triassic is interpreted as representing the time for recrystallization of these host minerals on the Early Paleozoic protolith, and the also popular Neoproterozoic age is probably inherited. With this context, Yunkai massif is regarded as a strongly reactivated Triassic metamorphic terrain on an Early Paleozoic basement which had incorporated sediments with Neoproterozoic provenances. Triassic tectonic evolution of the Yunkai massif is suggested to have been controlled by converging geodynamics of the South China and Indochina Blocks as well as mafic magma emplacement related to the Emeishan large igneous province (E-LIP).

  10. Mechanical, Chemical and Microstructural Characterization of Monazite-Coated Silicon Carbide Fibers

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.; Wheeler, D. R.; Chen, Y. L.

    2000-01-01

    Tensile strengths of as-received Hi-Nicalon and Sylramic fibers and those having monazite surface coatings, deposited by atmospheric pressure chemical vapor deposition, were measured at room temperature and the Weibull statistical parameters determined. The average tensile strengths of uncoated Hi-Nicalon and Sylramic fibers were 3.19 +/- 0.73 and 2.78 +/- 0.53 GPa with a Weibull modulus of 5.41 and 5.52, respectively. The monazite-coated Hi-Nicalon and Sylramic fibers showed strength loss of approx. 10 and 15 percent, respectively, compared with the as-received fibers. The elemental compositions of the fibers and the coatings were analyzed using scanning Auger microprobe and energy dispersive X-ray spectroscopy. The LaPO4 coating on Hi-Nicalon fibers was approximately stoichiometric and about 50 nm thick. The coating on the Sylramic fibers extended to a depth of about 100 to 150 nm. The coating may have been stoichiometric LaPO4 in the first 30 to 40 nm of the layer. However, the surface roughness of Sylramic fiber made this profile somewhat difficult to interpret. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction. Hi-Nicalon fiber consists of fine beta-SiC nanocrystals ranging in size from 1 to 30 mn embedded in an amorphous matrix. Sylramic is a polycrystalline stoichiometric silicon carbide fiber consisting of submicron beta-SiC crystallites ranging from 100 to 300 nm. Small amount of TiB2 nanocrystallites (approx. 50 nm) are also present. The LaPO4 coating on Hi-Nicalon fibers consisted of a chain of peanut shape particles having monazite-(La) structure. The coating on Sylramic fibers consisted of two layers. The inner layer was a chain of peanut shape particles having monazite-(La) structure. The outer layer was comprised of much smaller particles with a microcrystalline structure.

  11. Irradiation effects in monazite-(Ce) and zircon: Raman and photoluminescence study of Au-irradiated FIB foils

    NASA Astrophysics Data System (ADS)

    Nasdala, Lutz; Akhmadaliev, Shavkat; Artac, Andreas; Chanmuang N., Chutimun; Habler, Gerlinde; Lenz, Christoph

    2018-05-01

    Lamellae of 1.5 µm thickness, prepared from well-crystallised monazite-(Ce) and zircon samples using the focused-ion-beam technique, were subjected to triple irradiation with 1 MeV Au+ ions (15.6% of the respective total fluence), 4 MeV Au2+ ions (21.9%) and 10 MeV Au3+ ions (62.5%). Total irradiation fluences were varied in the range 4.5 × 1012 - 1.2 × 1014 ions/cm2. The highest fluence resulted in amorphisation of both minerals; all other irradiations (i.e. up to 4.5 × 1013 ions/cm2) resulted in moderate to severe damage. Lamellae were subjected to Raman and laser-induced photoluminescence analysis, in order to provide a means of quantifying irradiation effects using these two micro-spectroscopy techniques. Based on extensive Monte Carlo calculations and subsequent defect-density estimates, irradiation-induced spectroscopic changes are compared with those of naturally self-irradiated samples. The finding that ion irradiation of monazite-(Ce) may cause severe damage or even amorphisation, is in apparent contrast to the general observation that naturally self-irradiated monazite-(Ce) does not become metamict (i.e. irradiation-amorphised), in spite of high self-irradiation doses. This is predominantly assigned to the continuous low-temperature damage annealing undergone by this mineral; other possible causes are discussed. According to cautious estimates, monazite-(Ce) samples of Mesoproterozoic to Cretaceous ages have stored only about 1% of the total damage experienced. In contrast, damage in ion-irradiated and naturally self-irradiated zircon is on the same order; reasons for the observed slight differences are discussed. We may assess that in zircon, alpha decays create significantly less than 103 Frenkel-type defect pairs per event, which is much lower than previous estimates. Amorphisation occurs at defect densities of about 0.10 dpa (displacements per lattice atom).

  12. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite

    USGS Publications Warehouse

    Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H.

    2006-01-01

    High-grade rocks of the Wilmington Complex, northern Delaware and adjacent Maryland and Pennsylvania, contain morphologically complex zircons that formed through both igneous and metamorphic processes during the development of an island-arc complex and suturing of the arc to Laurentia. The arc complex has been divided into several members, the protoliths of which include both intrusive and extrusive rocks. Metasedimentary rocks are interlayered with the complex and are believed to be the infrastructure upon which the arc was built. In the Wilmingto n Complex rocks, both igneous and metamorphic zircons occur as elongate and equant forms. Chemical zoning, shown by cathodoluminescence (CL), includes both concentric, oscillatory patterns, indicative of igneous origin, and patchwork and sector patterns, suggestive of metamorphic growth. Metamorphic monazites are chemically homogeneous, or show oscillatory or spotted chemical zoning in backscattered electron images. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date complexly zoned zircon and monazite. All but one member of the Wilmington Complex crystallized in the Ordovician between ca. 475 and 485 Ma; these rocks were intruded by a suite of gabbro-to-granite plutonic rocks at 434 ?? Ma. Detrital zircons in metavolcanic and metasedimentary units were derived predominantly from 0.9 to 1.4 Ga (Grenvillian) basement, presumably of Laurentian origin. Amphibolite to granulite facies metamorphism of the Wilmington Complex, recorded by ages of metamorphic zircon (428 ?? 4 and 432 ?? 6 Ma) and monazite (429 ?? 2 and 426 ?? 3 Ma), occurred contemporaneously with emplacement of the younger plutonic rocks. On the basis of varying CL zoning patterns and external morphologies, metamorphic zircons formed by different processes (presumably controlled by rock chemistry) at slightly different times and temperatures during prograde metamorphism. In addition, at least three other thermal episodes are recorded by monazite growth at 447 ?? 4, 411 ?? 3, and 398 ?? 3 Ma. ?? 2006 Geological Society of America.

  13. Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP-MS

    NASA Astrophysics Data System (ADS)

    Willigers, B. J. A.; Baker, J. A.; Krogstad, E. J.; Peate, D. W.

    2002-03-01

    To evaluate in situ Pb dating by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), we analysed apatite, sphene, and monazite from Paleoproterozoic metamorphic rocks from West Greenland. Pb isotope ratios were also determined in the National Institute of Standards and Technology (NIST) 610 glass standard and were corrected for mass fractionation by reference to the measured thallium isotope ratio. The NIST 610 glass was used to monitor Pb isotope mass fractionation in the low Tl/Pb accessory minerals. Replicate analyses of the glass (1 to 2 min) yielded ratios with an external reproducibility comparable to conventional analyses of standard reference material 981 by thermal ionisation mass spectrometry (TIMS). Mineral grains were generally analysed with a 100-μm laser beam, although some monazite crystals were analysed at smaller spot sizes (10 and 25 μm). The common Pb isotope ratios required for age calculations were either measured on coexisting plagioclase by LA-MC-ICP-MS or could be ignored, as individual crystals exhibit sufficient Pb isotopic heterogeneity to perform isochron calculations on replicate analyses of single crystals. Mean mineral ages with the 204Pb ion beam measured in the multiplier were as follows: apatite, 1715 ± 23 m.y.; sphene, 1789 ± 11 m.y.; and monazite, 1783 to 1888 m.y., with relative uncertainties on individual monazite ages of <0.2% but highly reproducible age determinations on single monazite crystals (≪1%). Isochron ages calculated from several mineral analyses without assumption of common Pb also yield precise age determinations. Apatite and monazite Pb ages determined by in situ Pb isotope analysis are identical to those determined by conventional TIMS analysis of bulk mineral separates, and the analytical uncertainties of these short laser analyses with no prior mechanical or chemical separation are comparable to those obtained by TIMS. Detailed examination of the sphene in situ age data does, however, show a small discrepancy between the LA-MC-ICP-MS and TIMS ages (˜1% younger). High-resolution mass scans of the sphene during ablation clearly showed several small and as yet unidentified isobaric interferences that overlap with the 207Pb peak at the resolution conditions for measurement of isotope ratios. These might account for the age discrepancy between the LA-MC-ICP-MS and TIMS sphene ages. LA-MC-ICP-MS is a rapid, accurate, and precise method for in situ determination of Pb isotope ratios that can be used for geochronological studies in a manner similar to an ion microprobe, albeit currently at a somewhat degraded spatial resolution. Further modifications to the LA-MC-ICP-MS system, such as improved sensitivity, ion transmission, and LA methodology, may lead to this type of instrument becoming the method of choice for many types of in situ Pb isotope dating.

  14. Paleo- and Neoproterozoic magmatic and tectonometamorphic evolution of the Isla Cristalina de Rivera (Nico Pérez Terrane, Uruguay)

    NASA Astrophysics Data System (ADS)

    Oyhantçabal, Pedro; Wagner-Eimer, Martin; Wemmer, Klaus; Schulz, Bernhard; Frei, Robert; Siegesmund, Siegfried

    2012-10-01

    The Isla Cristalina de Rivera crystalline complex in northeastern Uruguay underwent a multistage magmatic and metamorphic evolution. Based on SHRIMP U-Pb zircon, Th-U-Pb monazite (CHIME-EPMA method) and K-Ar age data from key units several events can be recognized: (1) multistage magmatism at 2,171-2,114 Ma, recorded on zircon of the granulitic orthogneisses and their 2,093-2,077 Ma overgrowths; (2) a distinct amphibolite facies metamorphism at ~1,980 Ma, recorded by monazite; (3) greenschist facies reworking and shearing at ca. 606 Ma (monazite and K-Ar on muscovite) along the Rivera Shear Zone, and finally (4) intrusion of the post-tectonic Sobresaliente and Las Flores granites at around 585 Ma. Lithological similarities, geographic proximity and coeval magmatic and metamorphic events indicate a similar tectonometamorphic evolution for the Isla Cristalina de Rivera, the Valentines Block in Uruguay and the Santa María Chico Granulitic Complex in southern Brazil, since at least 2.1 Ga.

  15. U-Pb-Th geochronology of monazite and zircon in albitite metasomatites of the Rožňava-Nadabula ore field (Western Carpathians, Slovakia): implications for the origin of hydrothermal polymetallic siderite veins

    NASA Astrophysics Data System (ADS)

    Hurai, V.; Paquette, J.-L.; Lexa, O.; Konečný, P.; Dianiška, I.

    2015-10-01

    Sodic metasomatites (albitites) occur around and within siderite veins in the southern part of the Gemeric tectonic unit of the Western Carpathians. Accessory minerals of the metasomatites represented by monazite, zircon, apatite, rutile, tourmaline and siderite are basically identical with the quartz-tourmaline stage of other siderite and stibnite veins of the tectonic unit. Statistical analysis of chemical Th-U(total)-Pb isochron method (CHIME) of monazite dating yielded Jurassic-Cretaceous ages subdivided into 3-4 modes, spreading over time interval between 78 and 185 Ma. In contrast, LA-ICPMS 206Pb/238U dating carried out on the same monazite grains revealed a narrow crystallization interval, showing ages of Th-poor cores with phengite inclusions identical within the error limit with Th-rich rims with cauliflower-like structure. The determined lower intercept at 139 ± 1 Ma overlapped the Vallanginian-Berriasian boundary, thus corroborating the model of formation of hydrothermal vein structures within an arcuate deformation front built up in the Variscan basement as a response to Early Cretaceous compression, folding and thrusting. In contrast, associated zircons are considerably older than the surrounding Early-Palaeozoic volcano-sedimentary rocks, showing Neoproterozoic ages. The zircon grains in albitite metasomatites are thus interpreted as fragments of Pan-African magmatic detritus incorporated in the vein structures by buoyant hydrothermal fluids.

  16. Determination of the elemental concentration of uranium and thorium in the products and by-products of amang tin tailings process

    NASA Astrophysics Data System (ADS)

    Alnour, I. A.; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Elias, M. S.

    2017-01-01

    Amang or tin tailing is processed into concentrated ores and other economical valuable minerals such as monazite, zircon, xenotime, ilmenite etc. Besides that, the tailings from these ores may have a significant potential source of radiation exposure to amang plants' workers. This study was conducted to determine the elemental concentration of uranium and thorium in mineral samples collected from five amang tailing factories. The concentration of uranium and thorium was carried out by using instrumental neutron activation analysis (INAA) relative technique. The concentration of uranium and thorium in ppm obtained in this study are as follows: raw (189-1064) and (622-4965); monazite (1076-1988) and (3467-33578); xenotime 4053 and 5540; zircon (309-3090) and (387-6339); ilmenite (104-583) and (88-1205); rutile (212-889) and (44-1119); pyrite (7-43) and (9-132); and waste (5-338) and (9-1218) respectively. The analysis results shows that the monazite, xenotime and zircon have high content of uranium and thorium, whereas ilmenite, rutile, pyrite and waste have lower concentration compare with raw materials after tailing process. The highest values of uranium and thorium concentrations (4053 ± 428 ppm and 33578 ± 873 ppm, respectively) were observed in xenotime and monazite; whereas the lowest value was 5.48 ± 0.86 ppm of uranium recorded in waste (sand) and 9 ± 0.32 ppm of thorium for waste (sand) and pyrite.

  17. Prospects for dating monazite via single-collector HR-ICP-MS

    NASA Astrophysics Data System (ADS)

    Kohn, M. J.; Vervoort, J. D.

    2006-12-01

    ICP-MS analysis permits rapid and precise dating of minerals with high U and Th contents. Here we describe a new method for in situ determination of 206Pb/238U, 207Pb/^{235}U, ^{208}Pb/232Th, and 207Pb/206Pb ages in monazite via laser ablation (New Wave Research UP-213 laser system), single-collector, magnetic sector ICP-MS (ThermoFinnigan Element2), using spot sizes of 8-30 μm, a repetition rate of 5 Hz, and a fluence of 10 J/cm2. Based on analysis of 9 monazite samples of known ages ranging from 280 to 1800 Ma, analytical precision (single sample) is ±2-3% (2σ), and reproducibility (single sample) is ±2-4% (2σ), yielding age precisions of ±3- 5% (2σ) for single points, or ±1-2% (2 s.e.) for pooled multiple analyses (n > 4). Issues of accuracy are paramount. 207Pb/206Pb ages are consistently the most accurate and agree to ±2% with accepted TIMS ages. In contrast, 206Pb/238U, 207Pb/^{235}U, and ^{208}Pb/232Th ages can differ by as much as ±5% (2σ), a problem that has also been observed for SIMS Th-Pb dating. The sources of the interelement standardization disparities among monazites remain enigmatic, but do not result from molecular interferences on Pb, U, or Th peaks. Unresolvable mass interference between 204Pb and trace contaminant 204Hg in commercial Ar gas precludes precise common Pb corrections. Instead common Pb corrections are made assuming concordancy between 207Pb/^{235}U and either 206Pb/238U or ^{208}Pb/232Th ages. The new method offers rapid analysis (~1 minute), minimal sample preparation (polished thin section), and high sensitivity. Comparatively large errors on the 206Pb/238U, 207Pb/^{235}U, and ^{208}Pb/232Th ages will likely restrict analysis of younger monazite grains (<250 Ma) to applications where 5% accuracy is sufficient. Older grains (c. 500 Ma and older) can be dated more precisely and accurately using 207Pb/206Pb. One application to young materials involves dating a large vein monazite from the Llallagua tin district of Bolivia, which resolves a ~2 Myr history of mineralization at 20-22 Ma. These data support mineralization age estimates of 21 Ma (K-Ar on wallrock minerals) rather than 44 Ma (Sm-Nd on apatite).

  18. Linking microstructures, petrology and in situ U-(Th)-Pb geochronology to constrain P-T-t-D evolution of the Greather Himalyan Sequences in Western Nepal (Central Himalaya)

    NASA Astrophysics Data System (ADS)

    Iaccarino, Salvatore; Montomoli, Chiara; Carosi, Rodolfo; Langone, Antonio

    2013-04-01

    Last advances in forward modelling of metamorphic rocks and into the understanding of accessories minerals behaviour, suitable for geochronology (e.g. zircon and monazite), during metamorphism, bring new insights for understanding the evolution of metamorphic tectonites during orogenic cycles (Williams and Jercinovic, 2012 and reference therein). One of the best exposure of high- to medium grade- metamorphic rocks, is represented by the Greater Himalayan Sequence (GHS) in the Himalayan Belt, one of the most classic example of collisional orogen. Recent field work in Mugu Karnali valley, Western Nepal (Central Himalaya), identified a compressional top to the South ductile shear zone within the core of the GHS, named Magri Shear Zone (MSZ), developed in a high temperature regime as testified by quartz microstructures and syn-kinematic growth of sillimanite. In order to infer the tectono-metamorphic meaning of MSZ, a microstructural study coupled with pseudosection modelling and in situ U-(Th)-Pb monazite geochronology was performed on selected samples from different structural positions. Footwall sample constituted by (Grt + St ± Ky) micaschist shows a prograde garnet growth (cores to inner rims zoning), from ~500°C, ~0.60GPa (close to garnet-in curve) to ~580°C, ~1.2 GPa temporal constrained between 21-18 Ma, by medium Y cores to very low Y mantles monazite micro-chemical/ages domain . In this sample garnet was still growing during decompression and heating at ~640°C, ~0.75 GPa (rims), and later starts to be consumed, in conjunction with staurolite growth at 15-13 Ma, as revealed by high Y rims monazite micro-chemical/ages domain. Hanging-wall mylonitic samples have a porphyroclastic texture, with garnet preserve little memory of prograde path. Garnet near rim isoplets and matrix minerals intersect at ~700°C and ~0.70 GPa. A previous higher P stage, at ~1.10 GPa ~600°C, is testified by cores of larger white mica porhyroclasts. Prograde zoned allanite (Janots et al., 2008) is rarely found within garnet crystal, while monazite found only along mylonitic foliation helps to constrain the age of shearing and hanging-wall rocks exhumation, between 25 Ma (low Y cores interpretd as Aln out product, close to P peak) and 18 Ma (high Y rims interpreted as Grt breakdown/melt crystallization product during decompression). The present results point out the occurence of a high-temperature shear zone, in the core of the GHS, active before the onset of the Main Central Thrust, responsible of at least a part of the exhumation of the metamorphic rocks. References Janots, E., Engi, M., Berger, J., Allaz, J., Schwarz, O., Spandler, C., (2008): Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite monazite-xenotime phase relations from 250 to 610°C. Journal of Metamorphic Geology 26, 509-526. Williams, M.L., Jercinovic, M.J., (2012): Tectonic interpretation of metamorphic tectonites: integrating compositional mapping, microstructrual analyses and in situ monazite dating. Journal of Metamorphic Geology 30, 739-752.

  19. Glass formation and crystallization in the alumina-silica-lanthanum phosphate system for ceramics composites

    NASA Astrophysics Data System (ADS)

    Guo, Shuling

    The formation, structure, and dynamics of glasses in the alumina-silica-lanthanum phosphate system and their crystallization were investigated as a function of composition. These are of interest because of their potential as precursors for synthesizing ceramic-matrix-composites via co-crystallization of lanthanum monazite and either mullite or alumina into finely mixed microstructures. The glasses were characterized by X-Ray Diffraction (XRD), Raman spectroscopy, Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Electron Energy Loss Spectrometry (EELS). Glass formation from rapidly quenched liquids was easiest and most consistent for compositions containing silica, such as for mullitemonazite compositions, and more difficult for alumina-monazite compositions. For mullite-monazite glasses, the glass transition temperatures increased linearly from 845°C to 906°C with increasing mullite content. An analysis of the glass structure indicated a network consisting of corner-linked aluminate, silicate and phosphate tetrahedra where aluminum played a central role of separating silicon and phosphorous. It was hypothesized that the glass network consisted of domains of aluminum silicate network edged by phosphate tetrahedra. A maximum in the crystallization temperature was attributed to the complexity of the glass network. At relatively mullite-rich compositions, simultaneous and cooperative crystallization of lanthanum phosphate and mullite correlated with the highest crystallization temperatures, and the lowest activation energies of crystallization. This was preceded by amorphous phase segregation in the glass at lower temperatures. An intermediate phase of lanthanum phosphate was discovered with an orthorhombic unit cell. For compositions of high phosphate contents, lanthanum phosphate precipitated first at about 900°C leaving an essentially pure mullite glass. Mullite crystallized at about 1000°C, matching the conditions for crystallizing pure mullite glass. The phosphate phase transformed to monazite at even higher temperatures. No amorphous phase segregation was observed in these cases. Microstructures were correlated with nucleation and growth conditions such that the continuous and isolated phases could be manipulated. Optimum nucleation temperatures were close to the glass transition temperature. Conditions were identified for forming a continuous boundary phase of monazite that isolated mullite grains, which is desired for fabricating ceramic-matrix-composites.

  20. Nd Isotope and U-Th-Pb Age Mapping of Single Monazite Grains by Laser Ablation Split Stream Analysis

    NASA Astrophysics Data System (ADS)

    Fisher, C. M.; Hanchar, J. M.; Miller, C. F.; Phillips, S.; Vervoort, J. D.; Martin, W.

    2015-12-01

    Monazite is a common accessory mineral that occurs in medium to high grade metamorphic and Ca-poor felsic igneous rocks, and often controls the LREE budget (including Sm and Nd) of the host rock in which it crystallizes. Moreover, it contains appreciable U and Th, making it an ideal mineral for determining U-Th-Pb ages and Sm-Nd isotopic compositions, both of which are readily determined using in situ techniques with very high spatial resolution like LA-MC-ICPMS. Here, we present the results of laser ablation split stream analyses (LASS), which allows for simultaneous determination of the age and initial Nd isotopic composition in a single analysis. Analyses were done using a 20mm laser spot that allowed for detailed Nd isotope mapping of monazite grains (~30 analyses per ~250mm sized grain). Combined with LREE ratios (e.g., Sm/Nd, Ce/Gd, and Eu anomalies) these results yield important petrogenetic constraints on the evolution of peraluminous granites from the Old Woman-Piute batholith in southeastern California. Our findings also allow an improved understanding of the causes of isotope heterogeneity in granitic rocks. U-Th-Pb age mapping across the crystals reveals a single Cretaceous age for all grains with precision and accuracy typical of laser ablation analyses (~2%). In contrast, the concurrent Nd isotope mapping yields homogeneous initial Nd isotope compositions for some grains and large initial intra-grain variations of up to 8 epsilon units in others. The grains that yield homogeneous Nd isotope compositions have REE ratios suggesting that they crystallized in a fractionally crystallizing magma. Conversely, other grains, which also record fractional crystallization of both feldspar and LREE rich minerals, demonstrate a change in the Nd isotope composition of the magma during crystallization of monazite. Comparison of inter- and intra-grain Nd isotope compositions reveals further details on the potential mechanisms responsible for isotope heterogeneity present in single rock samples. This method highlights the potential of single grain isotope mapping of LREE phases such as monazite, allanite, and titanite for understanding both igneous and metamorphic petrogenesis.

  1. Multi-stage evolution of xenotime-(Y) from Písek pegmatites, Czech Republic: an electron probe micro-analysis and Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Švecová, E.; Čopjaková, R.; Losos, Z.; Škoda, R.; Nasdala, L.; Cícha, J.

    2016-12-01

    The chemical variability, degree of radiation damage, and alteration of xenotime from the Písek granitic pegmatites (Czech Republic) were investigated by micro-chemical analysis and Raman spectroscopy. Dominant large xenotime-(Y) grains enriched in U, Th and Zr crystallized from a melt almost simultaneously with zircon, monazite and tourmaline. Xenotime is well to poorly crystalline depending on its U and Th contents. It shows complex secondary textures cutting magmatic growth zones as a result of its interaction with F,Ca,alkali-rich fluids during the hydrothermal stage of the pegmatite evolution. The magmatic xenotime underwent intense secondary alteration, from rims inwards, resulting in the formation of inclusion-rich well crystalline xenotime domains of near end-member composition. Two types of recrystallization were distinguished in relation to the type of inclusions: i) xenotime with coffinite-thorite, cheralite and monazite inclusions and ii) xenotime with zirconcheralite and zircon inclusions. Additionally, inner poorly crystalline U,Th-rich xenotime domains were locally altered, hydrated, depleted in P, Y, HREE, U, Si and radiogenic Pb, and enriched in fluid-borne cations (mainly Ca, F, Th, Zr, Fe). Interaction of radiation-damaged xenotime with hydrothermal fluids resulted in the disturbance of the U-Th-Pb system. Alteration of radiation-damaged xenotime was followed by intensive recrystallization indicating the presence of fluids >200 °C. Subsequently other types of xenotime formed as a consequence of fluid-driven alteration of magmatic monazite, and Y,REE,Ti,Nb-oxides or crystallized from hydrothermal fluids along cracks in magmatic monazite and xenotime.

  2. Sm-Nd isotopic compositions of LREE minerals for use as reference materials for in situ analysis by LA-MC-ICPMS

    NASA Astrophysics Data System (ADS)

    Fisher, C. M.; McFarlane, C. R.; Sylvester, P.; Hanchar, J. M.; Lam, R.; Schmitz, M. D.

    2009-12-01

    Recent work has demonstrated the possibility of obtaining both accurate and precise in situ Sm-Nd isotopic data in light rare earth enriched (LREE) accessory minerals including apatite, titanite, and monazite, using laser ablation-multicollector-inductively coupled plasma mass spectrometry (LA-MC-ICPMS). A distinct advantage of using LA-MC-ICPMS is that Sm-Nd isotopic data from these minerals can be determined in sub-grain domains potentially avoiding problems of isotopic mixing from inherited or xenocrystic components and allowing both valuable tracer isotope and geochronologic data to be obtained. However, a number of analytical obstacles complicate accurate Sm-Nd determination by LA-MC-ICPMS including mass bias corrections, the 144Sm isobaric interference on 144Nd, and potential offset (ca. 20-40 ppm) from thermal ionization mass spectrometry (TIMS) determination of similar materials. Thus, in order to verify Sm-Nd isotopic determination from unknowns, matrix-matched quality control standards (i.e., reference materials) must be developed to test the data handling protocol. This talk will present new Sm-Nd isotopic data determined by both TIMS as well as LA-MC-ICPMS of a number of natural potential reference minerals including Durango apatite, Fish Canyon titanite, Daibosatsu allanite, Trebilcock monazite, as well as a monazite from the Doi Inthanon core complex in northern Thailand. Our preliminary LA-MC-ICPMS results demonstrate that Durango apatite, Fish Canyon titanite, and Thailand monazite show both inter- and intra-grain homogeneity at current levels of precision (ca. 0.3-0.5 ɛNd) and close agreement with our TIMS data.

  3. Developments in Laser-Ablation Split-Stream Petrochronology

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, Andrew R.

    2017-04-01

    One of the biggest challenges in assessing the timing and rates of petrogenesis and deformation is having the ability to match the age of a dated mineral to the conditions at which that mineral grew. This is especially challenging for high-temperature chonometers that can grow and remain stable over a wide range of pressures and temperatures. The development of the laser-ablation split-stream method has afforded the ability to rapidly aquire chemical and chronologic data that are directly linked; as such, timing and rates of processes are better constrained than before. Several examples are given within: 1) Zircon and monazite from a single, coesite-bearing sample from the Western Gneiss Region in western Norway record the entire 30+ Myr history of metamorphism during Caledonian orogenesis, from intial burial, through ultrahigh-pressure (UHP) conditions, and back to crustal levels. Early monazite ( 425 Ma) contains low concentrations of Sr and HREE, consistent with plagioclase and garnet stability during prograde metamorphism. 420-400 Ma ages from monazite (high Sr, increased Eu/Eu*, low HREE) and zircon (increased Eu/Eu*, low HREE) indicate the timing of HP conditions, and monazite with low Sr and high HREE indicates the breakdown of omphacite and garnet at 390 Ma. 2) Titanite is becoming more widely used as chronometer, primarly because laser ablation has made analysis more feasible. Nevertheless, dates produced from titanite can be difficult to interpret because titanite may alter more easily than zircon and monazite. LASS analyses of titanite, combined with X-ray maps and backscattered electron images provide insight into processes involved in growth, recrystallization and dissolution/reprecipitation, and allow us to better interpret ages and the geologic process that they represent. This study presents recrystallized titanite from metamorphic terranes as well as ocillatory-zoned titanite from igneous rocks, and suggests some possible processes that explain the TE/age trends. 3) Detrital zircons have long been used to investigate the location and geology of landforms in the past. By adding chemical information to the age data, a clearer history can be produced. Recent LASS data from Mesozoic sedimentary rocks indicate changes in chemistry of the Sierra Nevada-Peninsular Ranges batholith, as well and the exposure and erosion of distinct units (e.g., ophiolites) over discrete time periods. 4) Isotopic data retrieved in combination with age data across an orogeny or batholith can aid in the understanding of the areal and temporal evolution of both deformation and source rocks over time. This can be done with a number of petrochronometers: Hf in zircon, Nd in titanite and monazite, This study presents examples that show how significant advances can be made in understanding lithosphere evolution using this quick and efficient analytical technique.

  4. Crustal evolution at mantle depths constrained from Pamir xenoliths

    NASA Astrophysics Data System (ADS)

    Kooijman, E.; Hacker, B. R.; Smit, M. A.; Kylander-Clark, A. R.; Ratschbacher, L.

    2012-12-01

    Lower crustal xenoliths erupted in the Pamir at ~11 Ma provide an exclusive opportunity to study the evolution of crust at mantle depths during a continent-continent collision. To investigate, and constrain the timing of, the petrologic processes that occurred during burial to the peak conditions (2.5-2.8 GPa, 1000-1100 °C; [1]), we performed chemical- and isotope analyses of accessory minerals in 10 xenoliths, ranging from eclogites to grt-ky-qtz granulites. In situ laser ablation split-stream ICPMS yielded 1) U-Pb ages, Ti concentrations and REE in zircon, 2) U/Th-Pb ages and REE in monazite, and 3) U-Pb ages and trace elements in rutile. In addition, garnet, and biotite and K-feldspar were dated using Lu-Hf and 40Ar/39Ar geochronology, respectively. Zircon and monazite U-(Th-)Pb ages are 101.9±1.8, 53.7±1.0, 39.1±0.8, 21.7±0.4, 18.2±0.5, 16.9±0.8, 15.1±0.3 (2σ) and 12.5-11.1 Ma; most samples showed several or all of these populations. The 53.7 Ma and older ages are xenocrystic or detrital. For younger ages, zircon and monazite in individual samples recorded different ages-although zircon in one rock and monazite in another can be the same age. The 39.1 Ma zircon and monazite mostly occur as inclusions in minerals of the garnet-bearing assemblage that represents the early, low-P stages of burial. Garnet Lu-Hf ages of 37.8±0.3 Ma support garnet growth at this time. Spinifex-like textures containing 21.7-11.1 Ma zircon and monazite record short-lived partial melting events during burial. Aligned kyanite near these patches indicates associated deformation. Zircons yielding ≤12.5 Ma exhibit increased Eu/Eu* and markedly decreased HREE concentrations, interpreted to record feldspar breakdown and omphacite growth during increasing pressure. Rutile U-Pb cooling ages are 10.8±0.3 Ma in all samples. This agrees with the weighted mean 40Ar/39Ar age of eight biotite, K-feldspar and whole rock separates of 11.00+0.16/-0.09 Ma. Rutile in eclogites provides Zr/Hf and Nb/Ta trends that indicate clinopyroxene fractionation. This is consistent with the occurrence of rutile in omphacite-rich parts of the rocks and supports their HP petrogenesis. In the felsic granulites rutile is associated with the amphibolite-facies garnet-bearing assemblage and its Nb/Ta and Zr/Hf primarily reflect fractionation by rutile. Zirconium-in-rutile temperatures are 800-835 °C for the felsic granulites and 860-895 °C for the eclogites. Titanium-in-zircon temperatures increase from ~735 °C (0.7-1.0 GPa) at 39.1 Ma to ~900 °C (>2.5 GPa) at 11.5 Ma; a further, abrupt increase toward 1000 °C at 11.1 Ma marks melting at the onset of eruption. The analytical uncertainty on the Miocene ages is small compared to the 28-Myr burial record, enabling precise dating of individual reaction and deformation events. These events are at least an order of magnitude shorter than the duration of burial, and evidently occurred in pulses recorded by the (re)crystallization of zircon or monazite. Reference: [1] Hacker et al. (2005) J Petrol 46 (8): 1661-1687.

  5. Contrasting accessory mineral behavior in minimum-temperature melts: Empirical constraints from the Himalayan metamorphic core

    NASA Astrophysics Data System (ADS)

    Cottle, John M.; Larson, Kyle P.; Yakymchuk, Chris

    2018-07-01

    Medium-grained leucogranite in the Tama Kosi region of the Nepalese Himalayan Metamorphic Core yields a relatively narrow range of monazite 208Pb/232Th dates with a dominant population at 21.0 Ma inferred to represent crystallization of an early plutonic phase. In contrast, the pegmatitic portion of the same intrusive complex, that cross-cuts the medium-grained leucogranite, contains zircon, monazite and xenotime that each display near-identical age spectra, recording semi-continuous (re-)crystallization from 27.5 Ma to 21.0 Ma, followed by a 2 m.y. hiatus then further (re-)crystallization between 19.4 and 18.6 Ma. The "gap" in pegmatite dates corresponds well to the crystallization age of the older leucogranite, whereas the end of accessory phase growth in the pegmatite coincides with the onset of regional-scale cooling. Detailed textural, trace element and thermochronologic data indicate that the range of zircon, monazite and xenotime dates recorded in the pegmatite reflect inherited components that underwent semi-continuous (re-)crystallization during metamorphism and/or anatexis in the source region(s), whereas dates younger than the hiatus indicate accessory phase recrystallization, related to both fluid influx and a concomitant increase in temperature. In contrast, the lack of an inherited component(s) in the medium-grained leucogranite phase is inferred to be a result of complete dissolution during partial melting. A model is proposed in which influx of heat and H2O-rich fluids associated with early leucogranite emplacement temporarily delayed zircon and monazite and xenotime crystallization, respectively. These data highlight the importance of measuring spatially resolved dates, trace elements and textural patterns from multiple accessory minerals combined with model constraints to better understand the often-complex crystallization history of anatectic melts in collisional orogens.

  6. Timing and conditions of peak metamorphism and cooling across the Zimithang Thrust, Arunachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Warren, Clare J.; Singh, Athokpam K.; Roberts, Nick M. W.; Regis, Daniele; Halton, Alison M.; Singh, Rajkumar B.

    2014-07-01

    The Zimithang Thrust juxtaposes two lithotectonic units of the Greater Himalayan Sequence in Arunachal Pradesh, NE India. Monazite U-Pb, muscovite 40Ar/39Ar and thermobarometric data from rocks in the hanging and footwall constrain the timing and conditions of their juxtaposition across the structure, and their subsequent cooling. Monazite grains in biotite-sillimanite gneiss in the hanging wall yield LA-ICP-MS U-Pb ages of 16 ± 0.2 to 12.7 ± 0.4 Ma. A schistose gneiss within the high strain zone yields overlapping-to-younger monazite ages of 14.9 ± 0.3 to 11.5 ± 0.3 Ma. Garnet-staurolite-mica schists in the immediate footwall yield older monazite ages of 27.3 ± 0.6 to 17.1 ± 0.2 Ma. Temperature estimates from Ti-in-biotite and garnet-biotite thermometry suggest similar peak temperatures were achieved in the hanging and footwalls (~ 525-650 °C). Elevated temperatures of ~ 700 °C appear to have been reached in the high strain zone itself and in the footwall further from the thrust. Single grain fusion 40Ar/39Ar muscovite data from samples either side of the thrust yield ages of ~ 7 Ma, suggesting that movement along the thrust juxtaposed the two units by the time the closure temperature of Ar diffusion in muscovite had been reached. These data confirm previous suggestions that major orogen-parallel out-of-sequence structures disrupt the Greater Himalayan Sequence at different times during Himalayan evolution, and highlight an eastwards-younging trend in 40Ar/39Ar muscovite cooling ages at equivalent structural levels along Himalayan strike.

  7. Toxicity of monazite particulates and its attenuation with a complex of bio-protectors.

    PubMed

    Katsnelson, B A; Yeremenko, Olga S; Privalova, Larissa I; Makeyev, O H; Degtyareva, Tamara D; Beresneva, Olga Yu; Valamina, Irene E; Minihaliyeva, Ilzira A; Sutunkova, Marina P; Kireyeva, Ekaterina P; Bukhantsev, V A; Dovzenko, E I; Minin, V V; Kulikov, E S; Kostykova, Svetlana V; Nazukin, A S

    2009-01-01

    Workers employed on mining, processing and storage of monazite are at risk of exposure to dust with expected adverse health effects. To study the adverse health effects of monazite particles in experiments on rats and to test the possibility of attenuating these effects. Outbred white rats were injected intratracheally with a suspension of ground monazite concentrate (MC) in order to investigate the cellular response of the lower airways 24 hours later and the organism's status 6 months after the injection. The bio-protective complex (BPC) tested in these experiments consisted of glutamate, an iodine preparation, methionine, a polyvitamin-polymineral composition, and/or "Eicosavitol" (fish oil preparation rich in PUFA, predominantly of the omega 3-group). Bio-protectors were administered together with the rat food and drink daily for one month before the MC injection in the short-term experiment, or over 6 months after such injection in the long-term experiment. MC induced manifestations of its cytotoxicity, fibrogenicity and systemic toxicity as well as genotoxicity. The tested BPC attenuated virtually all these effects. Although a similar protective potential of "Eicosavitol" against almost all of them was lower compared with that of BPC, combining BPC with "Eicosavitol" provided, as a rule, the greatest protective effect. It may be assumed that the many-sided adverse effects of MC on the organism is due, at least partially, to the presence in its composition of not only rare earth elements but also of natural radioisotopes of the thorium and uranium families. The combination of the bio-protectors tested was highly effective and may be recommended for administering in periodic preventive programmes to exposed workers.

  8. Systematic variation of rare earths in monazite

    USGS Publications Warehouse

    Murata, K.J.; Rose, H.J.; Carron, M.K.

    1953-01-01

    Ten monazites from widely scattered localities have been analyzed for La, Ce, Pr, Nd, Sm, Gd, Y and Th by means of a combined chemical and emission spectrographic method. The analytical results, calculated to atomic percent of total rare earths (thorium excluded), show a considerable variation in the proportions of every element except praseodymium, which is relatively constant. The general variation trends of the elements may be calculated by assuming that the monazites represent different stages in a fractional precipitation process, and by assuming that there is a gradational increase in the precipitability of rare earth elements with decreasing ionic radius. Fractional precipitation brings about an increase in lanthanum and cerium, little change in praseodymium, and a decrease in neodymium, samarium, gadolinium, and yttrium. Deviations from the calculated lines of variation consist of a simultaneous, abnormal increase or decrease in the proportions of cerium, praseodymium, and neodymium with antipathetic decrease or increase in the proportions of the other elements. These deviations are ascribed to abnormally high or low temperatures that affect the precipitability of the central trio of elements (Ce, Pr, Nd) relatively more than that of the other elements. The following semiquantitative rules have been found useful in describing the composition of rare earths from monazite: 1. 1. The sum of lanthanum and neodymium is very nearly a constant at 42 ?? 2 atomic percent. 2. 2. Praseodymium is very nearly constant at 5 ?? 1 atomic percent. 3. 3. The sum of Ce, Sm, Gd, and Y is very nearly a constant at 53 ?? 3 atomic percent. No correlation could be established between the content of Th and that of any of the rare earth elements. ?? 1953.

  9. Monazite-type SrCr O 4 under compression

    DOE PAGES

    Gleissner, J.; Errandonea, Daniel; Segura, A.; ...

    2016-10-20

    We report a high-pressure study of monoclinic monazite-type SrCrO 4 up to 26 GPa. Therein we combined x-ray diffraction, Raman, and optical-absorption measurements with ab initio calculations, to find a pressure-induced structural phase transition of SrCrO 4 near 8-9 GPa. Evidence of a second phase transition was observed at 10-13 GPa. The crystal structures of the high-pressure phases were assigned to the tetragonal scheelite-type and monoclinic AgMnO 4-type structures. Both transitions produce drastic changes in the electronic band gap and phonon spectrum of SrCrO 4. We determined the pressure evolution of the band gap for the low- and high-pressure phasesmore » as well as the frequencies and pressure dependencies of the Raman-active modes. In all three phases most Raman modes harden under compression, however the presence of low-frequency modes which gradually soften is also detected. In monazite-type SrCrO 4, the band gap blueshifts under compression, but the transition to the scheelite phase causes an abrupt decrease of the band gap in SrCrO 4. Calculations showed good agreement with experiments and were used to better understand the experimental results. From x-ray-diffraction studies and calculations we determined the pressure dependence of the unit-cell parameters of the different phases and their ambient-temperature equations of state. The results are compared with the high-pressure behavior of other monazites, in particular PbCrO 4. A comparison of the high-pressure behavior of the electronic properties of SrCrO 4 (SrWO 4) and PbCrO 4 (PbWO 4) will also be made. Lastly, the possible occurrence of a third structural phase transition is discussed.« less

  10. Differing responses of zircon, chevkinite-(Ce), monazite-(Ce) and fergusonite-(Y) to hydrothermal alteration: Evidence from the Keivy alkaline province, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Macdonald, Ray; Bagiński, Bogusław; Zozulya, Dmitry

    2017-09-01

    A quartzolite from the Rova occurrence, Keivy alkali granite province, Kola Peninsula, Russia, is used to examine the differing responses of certain rare-metal minerals during interaction with hydrothermal fluids. The minerals are two silicates [chevkinite-(Ce) and zircon], a phosphate [monazite-(Ce)] and an oxide [fergusonite-(Y)]. Textural evidence is taken to show that the dominant alteration mechanism was interface-coupled dissolution-reprecipitation. Zircon was the most pervasively altered, possibly by broadening of cleavage planes or fractures; the other minerals were altered mainly on their rims and along cracks. The importance of cracks in promoting fluid access is stressed. The compositional effects of the alteration of each phase are documented. The hydrothermal fluids carried few ligands capable of transporting significant amounts of rare-earth elements (REE), high field strength elements (HFSE) and actinides; alteration is inferred to have been promoted by mildly alkaline, Ca-bearing fluids. Expansion cracks emanating from fergusonite-(Y) are filled with unidentified material containing up to 35 wt% UO2 and 25 wt% REE2O3, indicating late-stage, short-distance mobility of these elements. Electron microprobe chemical dating of monazite yielded an age of 1665 ± 22 Ma, much younger than the formation age of the Keivy province (2.65-2.67 Ga) but comparable to that of the Svecofennian metamorphic event which affected the area (1.9-1.7 Ga) or during fluid-thermal activation of the region during rapakivi granite magmatism (1.66-1.56 Ga). Dates for altered monazite range from 2592 ± 244 Ma to 773 ± 88 Ma and reflect disturbance of the U-Th-Pb system during alteration.

  11. Radiation-induced microcrystal shape change as a mechanism of wasteform degradation

    NASA Astrophysics Data System (ADS)

    Ojovan, Michael I.; Burakov, Boris E.; Lee, William E.

    2018-04-01

    Experiments with actinide-containing insulating wasteforms such as devitrified glasses containing 244Cm, Ti-pyrochlore, single-phase La-monazite, Pu-monazite ceramics, Eu-monazite and zircon single crystals containing 238Pu indicate that mechanical self-irradiation-induced destruction may not reveal itself for many years (even decades). The mechanisms causing these slowly-occurring changes remain unknown therefore in addition to known mechanisms of wasteform degradation such as matrix swelling and loss of solid solution we have modelled the damaging effects of electrical fields induced by the decay of radionuclides in clusters embedded in a non-conducting matrix. Three effects were important: (i) electric breakdown; (ii) cluster shape change due to dipole interaction, and (iii) cluster shape change due to polarisation interaction. We reveal a critical size of radioactive clusters in non-conducting matrices so that the matrix material can be damaged if clusters are larger than this critical size. The most important parameters that control the matrix integrity are the radioactive cluster (inhomogeneity) size, specific radioactivity, and effective matrix electrical conductivity. We conclude that the wasteform should be as homogeneous as possible and even electrically conductive to avoid potential damage caused by electrical charges induced by radioactive decay.

  12. Inter-atomic potentials for radiation damage studies in CePO4 monazite

    NASA Astrophysics Data System (ADS)

    Jolley, Kenny; Asuvathraman, Rajaram; Smith, Roger

    2017-02-01

    An original empirical potential used for modelling phosphate glasses is adapted to be suitable for use with monazite (CePO4) so as to have a consistent formulation for radiation damage studies of phosphates. This is done by adding a parameterisation for the Ce-O interaction to the existing potential set. The thermal and structural properties of the resulting computer model are compared to experimental results. The parameter set gives a stable monazite structure where the volume of the unit cell is almost identical to that measured experimentally, but with some shrinkage in the a and b lengths and a small expansion in the c direction compared to experiment. The thermal expansion, specific heat capacity and estimates of the melting point are also determined. The estimate of the melting temperature of 2500 K is comparable to the experimental value of 2318 ± 20 K, but the simulated thermal expansion of 49 ×10-6 K-1 is larger than the usually reported value. The simulated specific heat capacity at constant pressure was found to be approximately constant at 657 J kg-1 K-1 in the range 300-1000 K, however, this is not observed experimentally or in more detailed ab initio calculations.

  13. The importance of intracrustal magmatic heat advection in large hot orogens: the Ediacaran-Cambrian ultrahigh-temperature domain of southern Madagascar.

    NASA Astrophysics Data System (ADS)

    Holder, R. M.; Hacker, B. R.

    2016-12-01

    Ultrahigh temperature metamorphism (UHTM) represents the thermal extremes of crustal metamorphism and is integral to our understanding of orogenic systems and continental evolution. The relative importance of advective and radiogenic heating in UHTM is often unclear, however, due to retrogression of UHT mineral assemblages and lack of robust chronology. We report the first observation of osumilite, pseudosections, feldspar thermometry, and monazite LASS U-Th-Pb chronology from the Ediacaran-Cambrian Anosyen domain of southern Madagascar to evaluate P-T-time paths and assess the relative importance of advective and radiogenic heating. Pseudosections of an osumilite-bearing assemblage, a garnet-orthopyroxene gneiss, and a garnet-spinel leucogneiss indicate peak conditions of 930-1010 C, 4-6 kbar; 900-950 C, 6-7 kbar; and 970-1000 C, 4.5-5.5 kbar, respectively. Feldspar thermometry indicates T > 915 ± 30 C. These conditions were reached along a low-P prograde path, as implied by cordierite and sillimanite inclusions in garnet. Monazite and zircon U/Th-Pb dating indicates that prograde metamorphism began 625 Ma and lasted 60 Myr. The timing of peak metamorphism is constrained to a 16 ± 2.5 Myr period between 566 ± 2 and 550 ± 1.5 Ma, by monazite inclusions in pseudomorphs after osumilite and monazite from a leucosome in the same outcrop. Peak T was achieved immediately following emplacement of voluminous charnockites (emplaced 1000-1100 C) and related magmas of the Anosyen Batholith. Crystallization of pegmatite dikes, leucosomes, and smaller plutons during cooling lasted from 550 to 510 Ma. This broad thermal history is also recorded by metamorphic monazite Eu/Eu*, which indicate progressive melt generation and extraction prior to 550 Ma followed by melt accumulation and crystallization after 550 Ma. Although the duration of prograde metamorphism is consistent with radiogenic heating models of large hot orogens, peak T was 100-200 C higher in southern Madagascar than in models, implying that UHTM in southern Madagascar cannot be explained by radiogenic heating alone. We attribute this thermal discrepancy to heat advected by the Anosyen Batholith. Published Nd isotope data (ɛNd = -22) indicate that these magmas were primarily sourced from the even hotter (>1000 C) lower crust of the orogen.

  14. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    USGS Publications Warehouse

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.

    2012-01-01

    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains. Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss. Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade metamorphism that was initiated at about 1035 Ma. This rock was then subjected to repeated episodes of dissolution/reprecipitation for about 150 m.y. during regional cooling of the Hudson Highlands.

  15. Origin of an unusual monazite-xenotime gneiss, Hudson Highlands, New York: SHRIMP U-Pb geochronology and trace element geochemistry

    USGS Publications Warehouse

    Aleinikoff, John N.; Grauch, Richard I.; Mazdab, Frank K.; Kwak, Loretta; Fanning, C. Mark; Kamo, Sandra L.

    2012-01-01

    A pod of monazite-xenotime gneiss (MXG) occurs within Mesoproterozoic paragneiss, Hudson Highlands, New York. This outcrop also contains granite of the Crystal Lake pluton, which migmatized the paragneiss. Previously, monazite, xenotime, and zircon from MXG, plus detrital zircon from the paragneiss, and igneous zircon from the granite, were dated using multi-grain thermal ionization mass spectrometry (TIMS). New SEM imagery of dated samples reveals that all minerals contain cores and rims. Thus TIMS analyses comprise mixtures of age components and are geologically meaningless. New spot analyses by sensitive high resolution ion microprobe (SHRIMP) of small homogeneous areas on individual grains allows deconvolution of ages within complexly zoned grains.Xenotime cores from MXG formed during two episodes (1034 ± 10 and 1014 ± 3 Ma), whereas three episodes of rim formation are recorded (999 ± 7, 961 ± 11, and 874 ± 11 Ma). Monazite cores from MXG mostly formed at 1004 ± 4 Ma; rims formed at 994 ± 4, 913 ± 7, and 890 ± 7 Ma. Zircon from MXG is composed of oscillatory-zoned detrital cores (2000-1170 Ma), plus metamorphic rims (1008 ± 7, 985 ± 5, and ∼950 Ma). In addition, MXG contains an unusual zircon population composed of irregularly-zoned elongate cores dated at 1036 ± 5 Ma, considered to be the time of formation of MXG. The time of granite emplacement is dated by oscillatory-zoned igneous cores at 1058 ± 4 Ma, which provides a minimum age constraint for the time of deposition of the paragneiss.Selected trace elements, including all REE plus U and Th, provide geochemical evidence for the origin of MXG. MREE-enriched xenotime from MXG are dissimilar from typical HREE-enriched patterns of igneous xenotime. The presence of large negative Eu anomalies and high U and Th in monazite and xenotime are uncharacteristic of typical ore-forming hydrothermal processes. We conclude that MXG is the result of unusual metasomatic processes during high grade metamorphism that was initiated at about 1035 Ma. This rock was then subjected to repeated episodes of dissolution/reprecipitation for about 150 m.y. during regional cooling of the Hudson Highlands.

  16. Constraints on the timing of Co-Cu ± Au mineralization in the Blackbird district, Idaho, using SHRIMP U-Pb ages of monazite and xenotime plus zircon ages of related Mesoproterozoic orthogneisses and metasedimentary rocks

    USGS Publications Warehouse

    Aleinikoff, John N.; Slack, John F.; Lund, Karen; Evans, Karl V.; Fanning, C. Mark; Mazdab, Frank K.; Wooden, Joseph L.; Pillers, Renee M.

    2012-01-01

    The Blackbird district, east-central Idaho, contains the largest known Co reserves in the United States. The origin of strata-hosted Co-Cu ± Au mineralization at Blackbird has been a matter of controversy for decades. In order to differentiate among possible genetic models for the deposits, including various combinations of volcanic, sedimentary, magmatic, and metamorphic processes, we used U-Pb geochronology of xenotime, monazite, and zircon to establish time constraints for ore formation. New age data reported here were obtained using sensitive high resolution ion microprobe (SHRIMP) microanalysis of (1) detrital zircons from a sample of Mesoproterozoic siliciclastic metasedimentary country rock in the Blackbird district, (2) igneous zircons from Mesoproterozoic intrusions, and (3) xenotime and monazite from the Merle and Sunshine prospects at Blackbird. Detrital zircon from metasandstone of the biotite phyllite-schist unit has ages mostly in the range of 1900 to 1600 Ma, plus a few Neoarchean and Paleoproterozoic grains. Age data for the six youngest grains form a coherent group at 1409 ± 10 Ma, regarded as the maximum age of deposition of metasedimentary country rocks of the central structural domain. Igneous zircons from nine samples of megacrystic granite, granite augen gneiss, and granodiorite augen gneiss that crop out north and east of the Blackbird district yield ages between 1383 ± 4 and 1359 ± 7 Ma. Emplacement of the Big Deer Creek megacrystic granite (1377 ± 4 Ma), structurally juxtaposed with host rocks in the Late Cretaceous ca. 5 km north of Blackbird, may have been involved in initial deposition of rare earth elements (REE) minerals and, possibly, sulfides. In situ SHRIMP ages of xenotime and monazite in Co-rich samples from the Merle and Sunshine prospects, plus backscattered electron imagery and SHRIMP analyses of trace elements, indicate a complex sequence of Mesoproterozoic and Cretaceous events. On the basis of textural relationships observed in thin section, xeno-time and cobaltite formed during multiple episodes. The oldest age for xenotime (1370 ± 4 Ma), determined on oscillatory-zoned cores, may date the time of initial cobaltite formation, and provides a minimum age for the host metasedimentary rocks. Additional Proterozoic xenotime growth events occurred at 1315 to 1270 Ma and ca. 1050 Ma. Other xenotime grains and rims grew in conjunction with cobaltite during Cretaceous metamorphism. However, ages of these growth episodes cannot be precisely determined due to matrix effects on 206Pb/238U data for xenotime. Monazite, some of which encloses cobaltite, uniformly has Cretaceous ages that mainly are 110 ± 3 and 92 ± 5 Ma. These data indicate that xenotime, monazite, and cobaltite were extensively mobilized and precipitated during Middle to Late Cretaceous metamorphic events.

  17. Concomitant Leaching and Electrochemical Extraction of Rare Earth Elements from Monazite.

    PubMed

    Maes, Synthia; Zhuang, Wei-Qin; Rabaey, Korneel; Alvarez-Cohen, Lisa; Hennebel, Tom

    2017-02-07

    Rare earth elements (REEs) have become increasingly important in modern day technologies. Unfortunately, their recycling is currently limited, and the conventional technologies for their extraction and purification are exceedingly energy and chemical intensive. New sustainable technologies for REE extraction from both primary and secondary resources would be extremely beneficial. This research investigated a two-stage recovery strategy focused on the recovery of neodymium (Nd) and lanthanum (La) from monazite ore that combines microbially based leaching (using citric acid and spent fungal supernatant) with electrochemical extraction. Pretreating the phosphate-based monazite rock (via roasting) dramatically increased the microbial REE leaching efficiency. Batch experiments demonstrated the effective and continued leaching of REEs by recycled citric acid, with up to 392 mg of Nd L -1 and 281 mg of La L -1 leached during seven consecutive 24 h cycles. Neodymium was further extracted in the catholyte of a three-compartment electrochemical system, with up to 880 mg of Nd L -1 achieved within 4 days (at 40 A m -2 ). Meanwhile, the radioactive element thorium and counterions phosphate and citrate were separated effectively from the REEs in the anolyte, favoring REE extraction and allowing sustainable reuse of the leaching agent. This study shows a promising technology that is suitable for primary ores and can further be optimized for secondary resources.

  18. Late Proterozoic charnockites in Orissa, India: A U-Pb and Rb-Sr isotopic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aftalion, M.; Bowes, D.R.; Dash, B.

    1988-11-01

    Charnockite formation in the Angul district of Orissa took place between 1088 + 26/ -17 Ma, the U-Pb zircon upper intercept crystallization age of a leptynite neosome, and 957 +8/ -4-956 {plus minus} 4 Ma, the U-Pb zircon-monazite upper intercept and U-Pb monazite crystallization ages of a granite. Confirmation of the Proterozoic age of the charnockites is given by (1) a U-Pb zircon upper intercept 1159 + 59/ -30 Ma age and a Rb-Sr whole-rock 1080 {plus minus} 65 Ma age for an augen gneiss which pre-dates the leptynite, and (2) U-Pb monazite ages of 973 {plus minus} 5,964 {plusmore » minus} 4, and 953 {plus minus} 4 Ma for a gray quartzofeldspathic gneiss, the augen gneiss, and the leptynite, respectively: these late Proterozoic dates are interpreted as representing ages recorded during charnockitization. The ca. 950-980 Ma charnockite- and granite-forming events are related to the evolution of mantle-derived, CO{sub 2}-bearing basic magma emplaced into the deeper levels of an extensional tectonic-transcurrent fault regime. The ca. 1100-1150 Ma tectonothermal and igneous events represent compressional tectonism in reactivated crystalline basement in the late mid-Proterozoic Eastern Ghats orogenic belt.« less

  19. Analysis of the effects of stirring condition of separation of thorium in the elution process of monazite partial solution by solvent impregnated resin method

    NASA Astrophysics Data System (ADS)

    Prassanti, R.; Putra, D. S.; Kusuma, B. P.; Nawawi, F. W.

    2018-01-01

    Monazite is a natural mineral which contains abundant valuable element such as Radioactive Element and Rare Earth Element(REE). In this experiment, it is proven that solution of residual Thorium Sulfate from Monazite mineral process, can be seperated selectively by using extracting method of Solvent Impregnated Resin(SIR), with the elutant solution HNO3. In the earlier process, Thorium solution is conditioned at PH 1 by using H2SO4. Then REE, Thorium and Uranium elements are seperated. This seperation is conducted by using adsorption method by Amberlite XAD-16 Resin, which has been impregnated by Tributhyl Phosphate extractant. It is continued with elution process, which is aimed to obtain Thorium solution of a higher level of concentration. This elution process is conducted by using HNO3, with the elution variables of the lenght of mixing and amount concentration elutant. Based on this experiment, SIR extracting method is able to dissolve Thorium solution until 63,2%grade and a higher level of %grade about 92,40%. It can be concluded that this SIR method can extracted Thorium elements selectively, improve extracting process recovery, and determine optimum stripping condition in the 45th minutes with elutant concentration of 1,0M HNO3.

  20. Late Permian volcanic dykes in the crystalline basement of the Považský Inovec Mts. (Western Carpathians): U-Th-Pb zircon SHRIMP and monazite chemical dating

    NASA Astrophysics Data System (ADS)

    Pelech, Ondrej; Vozárová, Anna; Uher, Pavel; Petrík, Igor; Plašienka, Dušan; Šarinová, Katarína; Rodionov, Nikolay

    2017-08-01

    This paper presents geochronological data for the volcanic dykes located in the northern Považský Inovec Mts. The dykes are up to 5 m thick and tens to hundreds of metres long. They comprise variously inclined and oriented lenses, composed of strongly altered grey-green alkali basalts. Their age was variously interpreted and discussed in the past. Dykes were emplaced into the Tatricum metamorphic rocks, mostly consisting of mica schists and gneisses of the Variscan (early Carboniferous) age. Two different methods, zircon SHRIMP and monazite chemical dating, were applied to determine the age of these dykes. U-Pb SHRIMP dating of magmatic zircons yielded the concordia age of 260.2 ± 1.4 Ma. The Th-U-Pb monazite dating of the same dyke gave the CHIME age of 259 ± 3Ma. Both ages confirm the magmatic crystallization at the boundary of the latest Middle Permian to the Late Permian. Dyke emplacement was coeval with development of the Late Paleozoic sedimentary basin known in the northern Považský Inovec Mts. and could be correlated with other pre-Mesozoic Tethyan regions especially in the Southern Alps.

  1. In detail monazite characterization in a carbonatite weathering profile - a new tool for landscape geochronology

    NASA Astrophysics Data System (ADS)

    Renno, A. D.; Le Bras, L.; Ziegenrücker, R.; Couffignal, F.; Wiedenbeck, M.; Haser, S.; Hlawacek, G.

    2016-12-01

    The Post-Gondwana geology of South Africa is marked by two prominent planation surfaces, the result of two distinct phases of uplift and erosion. The first of these took place during the mid- to late Cretaceous (the so-called "African planation"), whilst the second is tentatively placed into the Miocene or Oligocene (the "Post-African I planation"). Humid and warm climatic conditions are recorded by deep lateritic weathering columns of suitable lithologies. The present study tests the suitability of U-Th-Pb dating on supergene monazite as a geochronometer for landscape formation and the downward progression of the chemical weathering process. We investigated material from the Zandkopsdrift carbonatite, Namaqualand, South Africa, a pipe-shaped intrusion located in the Northern Cape Province of South Africa. The age of carbonatite intrusion has been determined to be Eocene (54-56 Ma). This carbonatite has a well-developed lateritic cap that is more than 80 m thick in places and that is highly enriched in REE's hosted mostly by very fine crystalline monazite of presumably supergene origin. Due to the fact that the age of intrusion postdates the African planation surface, the lateritic cap almost certainly marks the Post-African I erosion surface. Both the onset and duration of the Post-African I cycle of erosion remain uncertain. This study addresses the duration of the Post-African I event through the dating of supergene monazite from the Zandkopsdrift laterite cap. A detailed description of the petrographic and mineralogical properties has identified the most promising samples for dating using secondary ion mass spectrometry (SIMS). A detailed description of the internal structure, microporosity and inclusions as well as intergrowths and pseudomorphic mineral formations has helped greatly toward understand the origins of the Zandkopsdrift sequence and the genesis of the REE within this profile. These data establish important anchor points for the reconstruction of the landscape evolution in South Africa.

  2. Preliminary report on the geology and deposits of monazite, thorite and niobium-bearing rutile of the Mineral Hill district, Lemhi County, Idaho

    USGS Publications Warehouse

    Kaiser, Edward Peck

    1956-01-01

    Deposits of minerals containing niobium (columbium), thorium, and rare earths occur in the Mineral Hill district, 30 miles northwest of Salmon, Lemhi County, Idaho. Monazite, thorite, allanite, and niobium-bearing rutile form deposits in metamorphic limestone layers less than 8 feet thick. The known deposits are small, irregular, and typically located in or near small folds. Minor faults are common. Monazite generally is coarsely crystalline and contains less than one percent thorium. Rutile forms massive lumps up to 3 inches across; it contains between 5 and 10 percent niobium. Rutile occurs in the northwestern half of the district, thorite in the central and southeastern parts. Monazite occurs in all deposits. Allanite is locally abundant and contains several percent thorium. Magnetite and ilmenite are also locally abundant. A major thrust fault trending northwest across the map-area separates moderately folded quartzite and phyllitic rocks of Belt age, on the northeast, from more intensely metamorphosed and folded rocks on the southwest. The more metamorphosed rocks include amphibolite, porphyroblastic feldspar gneiss, quartzite, and limestone, all probably of sedimentary origin, and probably also of Belt (late Precambrian) age. The only rocks of definite igneous origin are rhyolite dikes of probable Tertiary age. The more metamorphosed rocks were formed by metasomatic metamorphism acting on clastic sediments, probably of Belt age, although they may be older than Belt. Metamorphism doubtless was part of the episode of emplacement of the Idaho batholith, but the history of that episode is not well understood. The rare-element deposits show no evidence of fracture-controlled hydrothermal introduction, such as special fracture systems, veining, and gangue material. They may, however, be of hydrothermal type. More likely they are metamorphic segregations or secretions, deposited in favorable stratigraphic and structural positions during regional metamorphism.

  3. Exploring the high-pressure behavior of the three known polymorphs of BiPO{sub 4}: Discovery of a new polymorph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Errandonea, D., E-mail: daniel.errandonea@uv.es; García-Domene, B.; Gomis, O.

    We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2–0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous applicationmore » of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO{sub 4}. Room-temperature pressure-volume equations of state are reported. BiPO{sub 4} was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO{sub 4}. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO{sub 4}. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (0 1 0) plane at approximately 15° (21°) to the a axis for the case of our experimental (theoretical) study.« less

  4. Pan-African metamorphic evolution in the southern Yaounde Group (Oubanguide Complex, Cameroon) as revealed by EMP-monazite dating and thermobarometry of garnet metapelites

    NASA Astrophysics Data System (ADS)

    Owona, Sebastien; Schulz, Bernhard; Ratschbacher, Lothar; Mvondo Ondoa, Joseph; Ekodeck, Georges E.; Tchoua, Félix M.; Affaton, Pascal

    2011-01-01

    Garnet-bearing micaschists and paragneisses of the Yaounde Group in the Pan-African Central African Orogenic Belt in Cameroon underwent a polyphase structural evolution with the deformation stages D 1-D 2, D 3 and D 4. The garnet-bearing assemblages crystallized in course of the deformation stage D 1-D 2 which led to the formation of the regional main foliation S 2. In XCa- XMg coordinates one can distinguish several zonation trends in the garnet porphyroblasts. Zonation trends with increasing XMg and variably decreasing XCa signalize a garnet growth during prograde metamorphism. Intermineral microstructures provided criteria for local equilibria and a structurally controlled application of geothermobarometers based on cation exchange and net transfer reactions. The syndeformational P- T path sections calculated from cores and rims of garnets in individual samples partly overlap and align along clockwise P- T trends. The P- T evolution started at ˜450 °C/7 kbar, passed high-pressure conditions at 11-12 kbar at variable temperatures (600-700 °C) and involved a marked decompression toward 6-7 kbar at high temperatures (700-750 °C). Th-U-Pb dating of metamorphic monazite by electron microprobe (EMP-CHIME method) in eight samples revealed a single period of crystallization between 613 ± 33 Ma and 586 ± 15 Ma. The EMP-monazite age populations between 613 ± 33 Ma enclosed in garnet and 605 ± 12 Ma in the matrix apparently bracket the high temperature-intermediate pressure stage at the end of the prograde P- T path. The younger monazites crystallized still at amphibolite-facies conditions during subsequent retrogression. The Pan-African overall clockwise P- T evolution in the Yaounde Group with its syndeformational high pressure stages and marked pressure variations is typical of the parts of orogens which underwent contractional crustal thickening by stacking of nappe units during continental collision and/or during subduction-related accretionary processes.

  5. Prolonged episodic Paleoproterozoic metamorphism in the Thelon Tectonic Zone, Canada: an in-situ SHRIMP/EPMA monazite geochronology study

    NASA Astrophysics Data System (ADS)

    Mitchell, Rhea; William, Davis; Robert, Berman; Sharon, Carr; Michael, Jercinovic

    2017-04-01

    The Thelon Tectonic zone (TTZ), Nunavut, Canada, is a >500km long geophysically, lithologically and structurally distinct N-NNE striking Paleoproterozoic boundary zone between the Slave and Rae Archean provinces. The TTZ has been interpreted as a ca. 2.0 Ga continental arc on the western edge of the Rae craton, that was deformed during collision with the Slave craton ca. 1.97 Ga. Alternatively, the Slave-Rae collision is interpreted as occurring during the 2.35 Ga Arrowsmith orogeny while the 1.9-2.0 Ga TTZ represents an intra-continental orogenic belt formed in previously thinned continental crust, postdating the Slave-Rae collision. The central part of the TTZ comprises three >100 km long, 10-20 km wide belts of ca. 2.0 Ga, mainly charnockitic plutonic rocks, and a ca. 1910 Ma garnet-leucogranite belt. Metamorphism throughout these domains is upper-amphibolite to granulite-facies, with metasedimentary rocks occurring as volumetrically minor enclaves and strands of migmatites. The Ellice River domain occurs between the western and central plutonic belts. It contains ca. 1950 Ma ultramafic to dacitic volcanic rocks and foliated Paleoproterozoic psammitic metasedimentary rocks at relatively lower grade with lower to middle amphibolite-facies metamorphic assemblages. In-situ U-Pb analyses of monazite using a combination of Sensitive High-Resolution Ion Microprobe (SHRIMP) and Electron Probe Microanalyzer (EPMA) were carried out on high-grade metasedimentary rocks from seventeen samples representing the eastern margin of the Slave Province and all major lithological domains of the TTZ. 207Pb/206Pb monazite ages from SHRIMP analysis form the foundation of this dataset, while EPMA ages are supplementary. The smaller <6µm spot size of EPMA allowed for further constraint on ages of micro-scale intra-crystalline domains in some samples. Monazite ages define four distinct Paleoproterozoic metamorphic events and one Archean metamorphic event at ca. 2580 Ma. The latter is recorded exclusively along the eastern margin of the Slave Province. Metamorphism ca. 1996 Ma, recorded in one high-grade gneiss from the central plutonic belt appears to reflect a regional contact metamorphism associated with intrusion of 2000 Ma plutons. Throughout the TTZ, a selection of monazite grains included in garnet porphyroblasts define a metamorphic event ca. 1962 Ma. One sample from the eastern margin of the Slave Province similarly records metamorphism at 1961 Ma in monazite grains in the matrix. This sample interestingly does not record the ca. 2580 Ma metamorphism typical of the Slave Province. The longest lived and most wide spread metamorphic event in the TTZ occurred ca. 1922 to 1883 Ma. This event is interpreted as the main compressional/collisional and anatectic event, with partial melting forming the extensive ca. 1910 Ma garnet-leucogranite belts. Three samples, located in the eastern margin of the Slave province, the Ellice River domain and the eastern plutonic belt, record younger metamorphism at ca. 1814 Ma. These events may represent post-collisional transpression coeval with movement along nearby regional-scale faults.

  6. PROCESSING OF MONAZITE SAND

    DOEpatents

    Calkins, G.D.; Bohlmann, E.G.

    1957-12-01

    A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.

  7. U-Pb geochronology of zircon and monazite from Mesoproterozoic granitic gneisses of the northern Blue Ridge, Virginia and Maryland, USA

    USGS Publications Warehouse

    Aleinikoff, J.N.; Burton, W.C.; Lyttle, P.T.; Nelson, A.E.; Southworth, C.S.

    2000-01-01

    Mesoproterozoic granitic gneisses comprise most of the basement of the northern Blue Ridge geologic province in Virginia and Maryland. Lithology, structure, and U-Pb geochronology have been used to subdivide the gneisses into three groups. The oldest rocks, Group 1, are layered granitic gneiss (1153 ?? 6 Ma), hornblende monzonite gneiss (1149 ?? 19 Ma), porphyroblastic granite gneiss (1144 ?? 2 Ma), coarse-grained metagranite (about 1140 Ma), and charnockite (>1145 Ma?). These gneisses contain three Proterozoic deformational fabrics. Because of complex U-Pb systematics due to extensive overgrowths on magmatic cores, zircons from hornblende monzonite gneiss were dated using the sensitive high-resolution ion microprobe (SHRIMP), whereas all other ages are based on conventional U-Pb geochronology. Group 2 rocks are leucocratic and biotic varieties of Marshall Metagranite, dated at 1112??3 Ma and 1111 ?? 2 Ma respectively. Group 3 rocks are subdivided into two age groups: (1) garnetiferous metagranite (1077 ?? 4 Ma) and quartz-plagioclase gneiss (1077 ?? 4 Ma); (2) white leucocratic metagranite (1060 ?? 2 Ma), pink leucocratic metagranite (1059 ?? 2), biotite granite gneiss (1055 ?? 4 Ma), and megacrystic metagranite (1055 ?? 2 Ma). Groups 2 and 3 gneisses contain only the two younger Proterozoic deformational fabrics. Ages of monazite, seprated from seven samples, indicate growth during both igneous and metamorphic (thermal) events. However, ages obtained from individual grains may be mixtures of different age components, as suggested by backscatter electron (BSE) imaging of complexly zoned grains. Analyses of unzoned monazite (imaged by BSE and thought to contain only one age component) from porphyroblastic granite gneiss yield ages of 1070, 1060, and 1050 Ma. The range of ages of monazite (not reset to a uniform date) indicates that the Grenville granulite event at about 1035 Ma did not exceed about 750??C. Lack of evidence for 1110 Ma growth of monazite in porphyroblastic granite gneiss suggests that the Short Hill fault might be a Grenvillian structure that was reactivated in the Paleozoic. The timing of Proterozoic deformations is constrained by crystallization ages of the gneissic rocks. D1 occurred between about 1145 and 1075 Ma (or possibly between about 1145 and 1128 Ma). D2 and D3 must be younger than about 1050 Ma. Ages of Mesoproterozoic granitic rocks of the northern Blue Ridge are similar to rocks in other Grenville terranes of the eastern USA, including the Adirondacks and Hudson Highlands. However, comparisons with conventional U-Pb ages of granulite-grade rocks from the central and southern Appalachians may be specious because these ages may actually be mixtures of ages of cores and overgrowths.

  8. Ediacaran ( 620 Ma) high grade regional metamorphism in the northern Arabian Nubian Shield: U/Th-Pb monazite ages of the Elat schist

    NASA Astrophysics Data System (ADS)

    Elisha, Bar; Katzir, Yaron; Kylander-Clark, Andrew

    2017-04-01

    Ediacaran times witnessed a hemisphere-scale orogenesis forming the extensive Pan-African mountain ranges and resulting in the final assembly of Gondwana supercontinent. The Elat metamorphic basement (S Israel) located at the northernmost tip of a major Pan-African orogenic suture, the Arabian Nubian Shield (ANS), comprises amphibolite facies schists and gneisses and was most likely shaped by this major continental collision. However the timing, number and duration of metamorphic events in Elat and elsewhere in the ANS are non-conclusive and a major emphasis was given to pre-Ediacaran island-arc related tectonics. This is mostly because U-Pb dating of zircon, widely used in Elat and elsewhere, is very successful in constraining the ages of the igneous and sedimentary protoliths, but is 'blind' to metamorphism at grades lower than granulite. Here U/Th-Pb dating of monazite, a precise chronometer of metamorphic mineral growth, is systematically applied to the Elat schist and unveils the tectono-metamorphic evolution of the Elat basement. Previous U-Pb dating of detrital zircon has shown that the sedimentary protoliths of the Elat schist are the oldest basement components (≥800 Ma), and detailed structural observations of the schists portrayed a complex deformation history including four successive phases (Shimron, 1972). The earliest three phases were defined as ductile and penetrative, but some of the available geochronological data apparently contradict field relations. In-situ analysis of metamorphic monazites by LASS (Laser Ablation Split Stream) involves simultaneous measurement of U/Th-Pb isotope ratios and REE contents in a single 10 μm sized grain or domain, thus allowing determining the age of specific texture and metamorphic assemblage. Monazite dating of the Elat schist yielded two concordant age clusters at 712±6 and 613±5 Ma. The corresponding REE patterns of the dated monazite grains indicate that porphyroblast growth, either garnet or staurolite, took place only during the younger event (M2). Likewise the regional south dipping penetrative foliation, common to the Elat schist and to all of the rocks of the Elat association, formed during the Ediacaran event (M2). This profound event started at 630 Ma and reached peak conditions of mid amphibolite facies at 620 Ma. Retrogression and stress relaxation shortly followed, involving overprint of staurolite schists by a cordierite-bearing assemblage at 613 Ma (M3), and was contemporaneous with the intrusion of andesitic dykes that were immediately metamorphosed to low-amphibolite. This metamorphic P-T-t path corresponds to the collision of East- and West-Gondwana as constrained by large goechronological database of post collision batholiths from all around the Arabian-Nubian Shield.

  9. U-Pb zircon and CHIME monazite dating of granitoids and high-grade metamorphic rocks from the Eastern and Peninsular Thailand - A new report of Early Paleozoic granite

    NASA Astrophysics Data System (ADS)

    Kawakami, T.; Nakano, N.; Higashino, F.; Hokada, T.; Osanai, Y.; Yuhara, M.; Charusiri, P.; Kamikubo, H.; Yonemura, K.; Hirata, T.

    2014-07-01

    In order to understand the age and tectonic framework of Eastern to Peninsular Thailand from the viewpoint of basement (metamorphic and plutonic) geology, the LA-ICP-MS U-Pb zircon dating and the chemical Th-U-total Pb isochron method (CHIME) monazite dating were performed in the Khao Chao, Hub-Kapong to Pran Buri, and Khanom areas in Eastern to Peninsular Thailand. The LA-ICP-MS U-Pb zircon dating of the garnet-hornblende gneiss from the Khao Chao area gave 229 ± 3 Ma representing the crystallization age of the gabbro, and that of the garnet-biotite gneisses gave 193 ± 4 Ma representing the timing of an upper amphibolite facies metamorphism. The CHIME monazite dating of pelitic gneiss from the Khao Chao gneiss gave scattered result of 68 ± 22 Ma, due to low PbO content and rejuvenation of older monazite grains during another metamorphism in the Late Cretaceous to Tertiary time. The U-Pb ages of zircon from the Hua Hin gneissic granite in the Hub-Kapong to Pran Buri area scatter from 250 Ma to 170 Ma on the concordia. Granite crystallization was at 219 ± 2 Ma, followed by the sillimanite-grade regional metamorphism at 185 ± 2 Ma. Monazite in the pelitic gneiss from this area also preserves Early to Middle Jurassic metamorphism and rejuvenation by later contact metamorphism by non-foliated granite or by another fluid infiltration event in the Late Cretaceous to Tertiary time. The Khao Dat Fa granite from the Khanom area of Peninsular Thailand gave a U-Pb zircon age of 477 ± 7 Ma. This is the second oldest granite pluton ever reported from Thailand, and is a clear evidence for the Sibumasu block having a crystalline basement that was formed during the Pan-African Orogeny. The Khao Pret granite gives U-Pb zircon concordia age of 67.5 ± 1.3 Ma, which represents the timing of zircon crystallization from the granitic melt and accompanied sillimanite-grade contact metamorphism against surrounding metapelites and gneisses. Metamorphic rocks in the Doi Inthanon area also share the similar plutono-metamorphic history with the Khanom and the Hub-Kapong to Pran Buri areas. This suggests that these three areas belong to the Sibumasu block, and the Sibumasu block records similar plutono-metamorphic history from Northern to Peninsular Thailand. Relative abundance of oceanic components in the Khao Chao gneiss, their Late Triassic magmatic ages, and the Early Jurassic metamorphic ages prefer the interpretation that the Khao Chao gneiss belongs to the Sukhothai Arc.

  10. In-situ measurements of U-series nuclides by electron microprobe on zircons and monazites from Gandak river sediments

    NASA Astrophysics Data System (ADS)

    Bosia, C.; Deloule, E.; France-Lanord, C.; Chabaux, F.

    2015-12-01

    Determination of sediment transfer time during transport in the alluvial plains is a critical issue to correctly understand the relationship between climate, tectonics and Earth surface evolution. The residence time of river sediments may be constrained by analyzing the U series nuclides fractionations (e.g. [1] and [2]), which are created during water rock interactions by the ejection of the daughter nuclides of the grain (α-recoil) and the preferential mobilization of nuclides in decay damaged crystal structure. However, recent studies on sediments from the Gandak river, one of the main Ganga tributary, highlighted the difficulties to obtain reproducible data on bulk sediments, due to the nuggets distribution of U-Th enriched minor minerals in the samples (Bosia et al., unpublished data). We therefore decided to analyze the U and Th isotopic systematic at a grain-scale for Himalayan sediments from the Gandak river. This has been tested by performing in situ depth profiles of 238U-234U-230Th and 232Th on zircons and monazites (50-250 μm) by Secondary Ion Mass Spectrometry (SIMS) at the CRPG, Nancy, France. The first results point the occurrence of 238U-234U-230Th disequilibria in the outermost parts of both monazite and zircon minerals with a return to the equilibrium state in the core of the grains. The relative U and Th enrichment is however slightly different depending on considered minerals, suggesting possible adsorption processes of 230-Th. Coupled to a simple model of U and Th mobility during water-mineral interactions, these data should help to constrain the origin of 238U-234U-230Th disequilibria in these minerals. Moreover, the results of the study should be relevant to discuss the potential of this approach to constrain the residence time of zircons and monazites in the Gandak alluvial plain. [1] Chabaux et al., 2012, C. R. Geoscience, 344 (11-12): 688-703; [2] Granet et al., 2007, Earth and Planet. Sci. Lett., 261 (3-4): 389-406.

  11. Petrology, chronology and sequence of vein systems: Systematic magmatic and hydrothermal history of a major intracontinental shear zone, Canadian Appalachians

    NASA Astrophysics Data System (ADS)

    Pe-Piper, Georgia; Piper, David J. W.; McFarlane, Chris R. M.; Sangster, Chris; Zhang, Yuanyuan; Boucher, Brandon

    2018-04-01

    Intra-continental shear zones developed during continental collision may experience prolonged magmatism and mineralization. The Cobequid Shear Zone formed part of a NE-SW-trending, orogen-parallel shear system in the late Devonian-early Carboniferous, where syn-tectonic granite-gabbro plutons and volcanic rocks 4 km thick were progressively deformed. In late Carboniferous to Permian, Alleghanian collision of Africa with Laurentia formed the E-W trending Minas Fault Zone, reactivating parts of the Cobequid Shear Zone. The 50 Ma history of hydrothermal mineralization following pluton emplacement is difficult to resolve from field relationships of veins, but SEM study of thin sections provides clear detail on the sequence of mineralization. The general paragenesis is: albite ± quartz ± chlorite ± monazite → biotite → calcite, allanite, pyrite → Fe-carbonates, Fe-oxides, minor sulfides, calcite and synchysite. Chronology was determined from literature reports and new U-Pb LA-ICPMS dating of monazite and allanite in veins. Vein mineralization was closely linked to magmatic events. Vein emplacement occurred preferentially during fault movement recognised from basin-margin inversion, as a result of fractures opening in the damage zone of master faults. The sequence of mineralization, from ca. 355 Ma riebeckite and albite veins to ca. 327 (-305?) Ma siderite-magnetite and sulfide mineralization, resembles Precambrian iron-oxide-copper-gold (IOCG) systems in the literature. The abundant magmatic Na, halogens and CO2 in veins and some magmatic bodies, characteristic of IOCG systems, were derived from the deeply subducted Rheic Ocean slab with little terrigenous sediment. Regional extension of the Magdalen Basin caused asthenospheric upwelling and melting of the previously metasomatized sub-continental lithospheric mantle. Crustal scale strike-slip faulting facilitated the rise of magmas, resulting in high heat flow driving an active hydrothermal system. Table S2 Location of all illustrated samples. Table S3 Monazite geochronology lab data. Table S4 Allanite geochronology lab data. Fig. S1 Monazite geochronology analytical spots. Fig. S2 Allanite geochronology analytical spots.

  12. Characterization of Minerals of Geochronological Interest by EPMA and Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Snoeyenbos, D.; Jercinovic, M. J.; Reinhard, D. A.; Hombourger, C.

    2012-12-01

    Isotopic and chemical dating techniques for zircon and monazite rely on several assumptions: that initial common Pb is low to nonexistent, that the analyzed domain is chronologically homogeneous, and that any relative migration of radiogenic Pb and its parent isotopes has not exceeded the analyzed domain. Yet, both zircon and monazite commonly contain significant submicron heterogeneities that may challenge these assumptions and can complicate the interpretation of chemical and isotopic data. Compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA have been found to be useful techniques both for the characterization of these heterogeneities, and for quantitative geochronological determinations within the analytical limits of these techniques and the statistics of submicron sampling. Complementary to high-resolution EPMA techniques is Atom Probe Tomography (APT), wherein a specimen with dimensions of a few hundreds of nanometers is field evaporated atom by atom. The original position of each atom is identified, along with its atomic species and isotope. The result is a reconstruction allowing quantitative three-dimensional study of the specimen at the atomic scale, with low detection limits and high mass resolution. With the introduction of laser-induced thermal pulsing to achieve field evaporation, the technique is no longer limited to conductive specimens. There exists the capability to explore the compositional and isotopic structure of insulating materials at sub-nanometer resolution. Minerals of geochronological interest have been studied by an analytical method involving first compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA, and subsequent use of these data to select specific sites for APT specimen extraction by FIB. Examples presented include 1) zircon from the Taconian of New England, USA, containing a fossil resorption front included between an unmodified igneous core, and a subsequent metamorphic overgrowth, with significant redistribution of U, Th, P and Y along microfracture arrays extending into the overgrowth, and 2) Paleoproterozoic monazite in thin bands <1μm wide along cleavage planes within much older (Neoarchean) monazite from the Boothia mainland of the Western Churchill Province, Canada.

  13. Timing of the Acadian Orogeny in Northern New Hampshire.

    PubMed

    Eusden Jr; Guzofski; Robinson; Tucker

    2000-03-01

    New U-Pb geochronology constrains the timing of the Acadian orogeny in the Central Maine Terrane of northern New Hampshire. Sixteen fractions of one to six grains each of zircon or monazite have been analyzed from six samples: (1) an early syntectonic diorite that records the onset of the Acadian; (2) a schist, a migmatite, and two granites that together record the peak of the Acadian; and (3) a postkinematic pluton that records the end of the Acadian. Zircon from the syntectonic Wamsutta Diorite gives a 207Pb/206Pb age of circa 408 Ma, the time at which the boundary between the deforming orogenic wedge and the foreland basin was in the vicinity of the Presidential Range. This age agrees well with the Emsian position of the northwest migrating Acadian orogenic front and records the beginning of the Acadian in this part of the Central Maine Terrane. We propose a possible Acadian tectonic model that incorporates the geochronologic, structural, and stratigraphic data. Monazite from the schist, migmatite, Bigelow Lawn Granite, and Slide Peak Granite gives 207Pb/206U ages, suggesting the peak of Acadian metamorphism and intrusion of two-mica granites occurred at circa 402-405 Ma, the main pulse of Acadian orogenesis. Previously reported monazite ages from schists that likely record the peak metamorphism in the Central Maine Terrane of New Hampshire and western Maine range from circa 406-384 Ma, with younger ages in southeastern New Hampshire and progressively older ages to the west, north, and northeast. Acadian orogenesis in the Presidential Range had ended by circa 355 Ma, the 207Pb/235U age of monazite from the Peabody River Granite. From 408 to perhaps at least 394 Ma, Acadian orogenesis in the Presidential Range was typical of the tectonic style, dominated by synkinematic metamorphism, seen in central and southern New Hampshire, Massachusetts, and Connecticut. From no earlier than 394 Ma to as late as 355 Ma, the orogenesis was typical of the style in parts of Maine dominated by postkinematic metamorphism.

  14. Timing of the Acadian Orogeny in northern New Hampshire

    USGS Publications Warehouse

    Eusden, J.D.; Guzofski, C.A.; Robinson, A.C.; Tucker, R.D.

    2000-01-01

    New U-Pb geochronology constrains the timing of the Acadian orogeny in the Central Maine Terrane of northern New Hampshire. Sixteen fractions of one to six grains each of zircon or monazite have been analyzed from six samples: (1) an early syntectonic diorite that records the onset of the Acadian, (2) a schist, a migmatite, and two granites that together record the peak of the Acadian; and (3) a postkinematic pluton that records the end of the Acadian. Zircon from the syntectonic Wamsutta Diorite gives a 207Pb/206Pb age of circa 408 Ma, the time at which the boundary between the deforming orogenic wedge and the foreland basin was in the vicinity of the Presidential Range. This age agrees well with the Emsian position of the northwest migrating Acadian orogenic front and records the beginning of the Acadian in this part of the Central Maine Terrane. We propose a possible Acadian tectonic model that incorporates the geochronologic, structural, and stratigraphic data. Monazite from the schist, migmatite, Bigelow Lawn Granite, and Slide Peak Granite gives 207Pb/206U ages, suggesting the peak of Acadian metamorphism and intrusion of two-mica granites occurred at circa 402-405 Ma, the main pulse of Acadian orogenesis. Previously reported monazite ages from schists that likely record the peak metamorphism in the Central Maine Terrane of New Hampshire and western Maine range from circa 406-384 Ma, with younger ages in southeastern New Hampshire and progressively older ages to the west, north, and northeast. Acadian orogenesis in the Presidential Range had ended by circa 355 Ma, the 207Pb/235U age of monazite from the Peabody River Granite. From 408 to perhaps at least 394 Ma, Acadian orogenesis in the Presidential Range was typical of the tectonic style, dominated by synkinematic metamorphism, seen in central and southern New Hampshire, Massachusetts, and Connecticut. From no earlier than 394 Ma to as late as 355 Ma, the orogenesis was typical of the style in parts of Maine dominated by postkinematic metamorphism.

  15. Separation of Ce and La from Synthetic Chloride Leach Solution of Monazite Sand by Precipitation and Solvent Extraction

    NASA Astrophysics Data System (ADS)

    Banda, Raju; Jeon, Ho Seok; Lee, Man Seung

    2014-12-01

    Precipitation and solvent extraction experiments have been performed to recover light rare earths from simulated monazite sand chloride leach solutions. Precipitation conditions were obtained to recover Ce by adding NaClO as an oxidant. Among some cationic extractants (PC 88A, D2EHPA, Cyanex 272, LIX 63), PC 88A showed the best performance to separate La from the resulting chloride solution. Furthermore, the mixture of PC 88A with other solvating (TBP, TOPO) and amine extractants (Alamine 336, Aliquat 336) was tested to increase the separation factor of La from Pr and Nd. The use of mixed extractants greatly enhanced the separation of La from the two other metals. McCabe-Thiele diagrams for the extraction of Pr and Nd with the PC 88A/Alamine 336 mixture were constructed.

  16. Mineral potential tracts for shoreline Ti-Zr placer deposits (phase V, deliverable 85): Chapter P in Second projet de renforcement institutionnel du secteur minier de la République Islamique de Mauritanie (PRISM-II)

    USGS Publications Warehouse

    Beaudoin, Georges

    2015-01-01

    Shoreline placer Ti deposits are composed of ilmenite, rutile, zircon, monazite, and magnetite in well-sorted, fine- to medium-grained sand in coastal dunes, beaches and inlets. In addition to titanium, zirconium, in particular, and rare earth elements (REE) have become a major source of value in shoreline placer deposits. Shoreline placer deposits form mostly on tropical beaches around the world (fig. 1), and consist of dark sand layers rich in heavy minerals that are resistant to mechanical abrasion and chemical weathering. According to Hamilton (1995), shoreline placer deposits supply approximately 80 percent of the world’s rutile production, 25 percent of ilmenite, 100 percent of zircon, and 50 percent of both monazite and xenotime.

  17. The carbonatite-marble dykes of Abyan Province, Yemen Republic: the mixing of mantle and crustal carbonate materials revealed by isotope and trace element analysis

    NASA Astrophysics Data System (ADS)

    Le Bas, M. J.; Ba-Bttat, M. A. O.; Taylor, R. N.; Milton, J. A.; Windley, B. F.; Evins, P. M.

    2004-09-01

    Dykes of carbonate rocks, that cut gneisses in the Lowder-Mudiah area of southern Yemen, consist of dolomite and/or calcite with or without apatite, barite and monazite. Petrographic observations, mineralogical, XRF and ICP-MS analyses reveal that some of the carbonate rocks are derived from sedimentary protoliths, whereas others are magmatic calcio- and magnesio-carbonatites some of which are mineralized with barite-monazite. The interbanded occurrence and apparent contemporary emplacement of these different rock types within individual dykes, backed by Sr Nd isotope evidence, are interpreted to show that intrusion of mantle-derived carbonatite magma was accompanied by mobilization of crustal marbles. That took place some 840 Ma ago but the REE-mineralization is dated at ca. 400 Ma.

  18. Lanthanide (Nd, Gd) compounds with garnet and monazite structures. Powders synthesis by "wet" chemistry to sintering ceramics by Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Potanina, Ekaterina; Golovkina, Ludmila; Orlova, Albina; Nokhrin, Aleksey; Boldin, Maksim; Sakharov, Nikita

    2016-05-01

    Complex oxide Y2.5Nd0.5Al5O12 with garnet structure and phosphates NdPO4 and GdPO4 with monazite structure were obtained by using precipitation methods. Ceramics Y2.5Nd0.5Al5O12 and NdPO4 were processed by Spark Plasma Sintering (SPS). Relative density more 98%, sintering time did not exceed 8 min, sintering temperature 1330-1390 °C. Leaching rates of elements from ceramics were 10-6-10-7 g/(cm2 d). The process of ceramics sintering has two-stage character: the first step of sintering-compaction process is related to the plastic flow of the material, the second step-to the process of grain boundary diffusion and grain growth.

  19. Testing ore deposit models using in situ U-Pb geochronology of hydrothermal monazite: Paleoproterozoic gold mineralization in northern Australia

    NASA Astrophysics Data System (ADS)

    Rasmussen, Birger; Sheppard, Stephen; Fletcher, Ian R.

    2006-02-01

    The inability to establish absolute ages for gold deposition in the Pine Creek orogen of northern Australia has led to conflicting ore deposit models, ranging from intrusion related, which predict that gold mineralization was synchronous with granite magmatism (ca. 1835 1820 Ma), to orogenic, which place ore deposition nearly 100 m.y. later. Here we present ion microprobe U-Pb geochronology for a mineralized quartz reef from Tom's Gully mine, Mount Bundey, Northern Territory, Australia, and nearby granitic rocks and associated contact aureoles. Isotopic dating of zircon and monazite indicates that intrusion and contact metamorphism occurred ca. 1825 Ma, whereas hydrothermal monazite from the auriferous quartz reef gives a mean 207Pb/206Pb age of 1780 ± 10 Ma, interpreted as the time of gold mineralization. Mineralization therefore postdated intrusion by ˜45 m.y. and preceded a postulated ca. 1740 1730 Ma cratonwide orogenic gold event by ˜50 m.y. Hence, neither the intrusion-related model nor the recently proposed orogenic model is applicable. Combined with a reevaluation of age data from the nearby Goodall gold deposit, our data suggest that mineralization coincides with, and may be related to, an episode of regional low-grade metamorphism, deformation, and fluid circulation (Shoobridge event). Our results demonstrate the importance of high-precision in situ geochronology and detailed petrography for deciphering age relationships in ore deposits, and of testing the veracity of models for ore formation.

  20. Hydroxamic acid interactions with solvated cerium hydroxides in the flotation of monazite and bastnäsite-Experiments and DFT study

    NASA Astrophysics Data System (ADS)

    Sarvaramini, A.; Azizi, D.; Larachi, F.

    2016-11-01

    Density functional theory (DFT) simulations and experiments were performed to clarify the interaction mechanisms between hydroxamic acid collectors and cerium hydroxides during the flotation of bastnäsite and monazite minerals. These minerals showed considerable floatability at moderately alkaline pH which was related to the adsorption of hydroxamic acids on their surfaces as confirmed by vibrational spectroscopic and zeta potential measurements. DFT simulations showed that at moderately alkaline pH, the interactions between solvated Ce(OH)2+ and Ce(OH)2+ and heptyl-hydroxamic acid (HHA) anions resulted in the formation of, respectively, [Ce(OH)(HHA)x(H2O)y]2-x (x[y = ] = 1[6],2[3],3[1]) and [Ce(OH)2(HHA)x(H2O)y]1-x (x[y = ] = 1[5],2[1],3[0]) complexes. The collector anions were found to interact directly through formation of two covalent bonds between their two polar-head oxygen atoms and cerium in the hydroxide complexes. However, formation of such new bonds resulted in breakage of a few covalent/electrostatic bonds between cerium and water molecules initially present in the first hydration shell of the rare-earth metal cation. Building up in the electric double layer of the semi-soluble minerals, these complexes, and by extension, those from other rare-earth elements belonging to monazite and bastnäsite, are speculated to play a role in the interactions between rare-earth minerals and hydroxamic acid collectors.

  1. Fractionation of rare-earth elements in allanite and monazite as related to geology of the Mt. Wheeler mine area, Nevada

    USGS Publications Warehouse

    Lee, D.E.; Bastron, H.

    1967-01-01

    Rare-earth contents of 20 allanites and 13 monazites, accessory minerals from a restricted outcrop area of intrusive granitic rocks, are reported. A quantity called sigma (??), which is the sum of the atomic percentages of La, Ce and Pr, is used as an index of composition with respect to the rare-earth elements. Values of sigma vary from 61.3 to 80.9 at.% for these allanites and monazites, representing an appreciable range of composition in terms of the rare-earth elements. Degree of fractionation of rare earths varies directly with CaO content of the granitic rocks, which in turn depends largely on proximity of limestone. Four xenoliths included in the study suggest that spotty mosaic equilibria are superimposed on the regional gradients and that locally the degree of fractionation of rare earths responds to whole rock composition over distances of a few yards or less. The chemistry of the granitic rocks under study appears to be similar in some respects to that of alkalio rocks and carbonatites. Allanites from the most calcium-rich rocks show a pronounced concentration of the most basic rare earths, and whole-rock concentrations of such rare constituents as total cerium earths, Zr, F, Ti, Ba and Sr increase sympathetically with whole-rock calcium. The explanation for the concentration gradients observed in this chemical system must involve assimilation more than magmatic differentiation. ?? 1967.

  2. Rare earth minerals in a “no tonstein” section of the Dean (Fire Clay) coal, Knox County, Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hower, James C.; Berti, Debora; Hochella, Michael F.

    The Dean (Fire Clay) coal in Knox County, Kentucky, does not contain the megascopically-visible ash-fall tonstein present in most other sections of the coal bed. Like the Fire Clay tonstein, a low-ash portion of the coal is enriched in rare earth elements (>2400 ppm, on ash basis). In addition to kaolinite produced in the diagenesis of volcanic glass, transmission electron microscopy studies indicate the coal contains primary kaolinite, LaCeNdTh monazite, barium niobate, native gold, and FeNiCr spinels. The mineral assemblages, particularly the kaolinite-monazite association and its similarity to the tonsteins in coal to the east, demonstrate the coal was subjectmore » to the REE-enriched volcanic ash fall, apparently just at a more dilute level than at locations where the tonstein is present.« less

  3. Atomistic modeling and experimental studies of radiation damage in monazite-type LaPO4 ceramics

    NASA Astrophysics Data System (ADS)

    Ji, Yaqi; Kowalski, Piotr M.; Neumeier, Stefan; Deissmann, Guido; Kulriya, Pawan K.; Gale, Julian D.

    2017-02-01

    We simulated the threshold displacement energies (Ed), the related displacement and defect formation probabilities, and the energy barriers in LaPO4 monazite-type ceramics. The obtained Ed values for La, P, O primary knock-on atoms (PKA) are 56 eV, 75 eV and 8 eV, respectively. We found that these energies can be correlated with the energy barriers that separate the defect from the initial states. The Ed values are about twice the values of energy barriers, which is explained through an efficient dissipation of the PKA kinetic energy in the considered system. The computed Ed were used in simulations of the extent of radiation damage in La0.2Gd0.8PO4 solid solution, investigated experimentally. We found that this lanthanide phosphate fully amorphises in the ion beam experiments for fluences higher than ∼1013 ions/cm2.

  4. Characterization of PAH matrix with monazite stream containing uranium, gadolinium and iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pal, Sangita, E-mail: sangpal@barc.gov.in; Goswami, D.; Meena, Sher Singh

    2016-05-23

    Uranium (U) gadolinium (Gd) and iron (Fe) containing alkaline waste simulated effluent (relevant to alkaline effluent of monazite ore) has been treated with a novel amphoteric resin viz, Polyamidehydroxamate (PAH) containing amide and hydroxamic acid groups. The resin has been synthesized in an eco-friendly manner by polymerization nad conversion to functional groups characterized by FT-IR spectra and architectural overview by SEM. Coloration of the loaded matrix and de-coloration after extraction of uranium is the special characteristic of the matrix. Effluent streams have been analyzed by ICP-AES, U loaded PAH has been characterized by FT-IR, EXAFS, Gd and Fe by X-raymore » energy values of EDXRF at 6.053 KeVand 6.405 KeV respectively. The remarkable change has been observed in Mössbauer spectrum of Fe-loaded PAH samples.« less

  5. Rare earth minerals in a “no tonstein” section of the Dean (Fire Clay) coal, Knox County, Kentucky

    DOE PAGES

    Hower, James C.; Berti, Debora; Hochella, Michael F.; ...

    2018-05-03

    The Dean (Fire Clay) coal in Knox County, Kentucky, does not contain the megascopically-visible ash-fall tonstein present in most other sections of the coal bed. Like the Fire Clay tonstein, a low-ash portion of the coal is enriched in rare earth elements (>2400 ppm, on ash basis). In addition to kaolinite produced in the diagenesis of volcanic glass, transmission electron microscopy studies indicate the coal contains primary kaolinite, LaCeNdTh monazite, barium niobate, native gold, and FeNiCr spinels. The mineral assemblages, particularly the kaolinite-monazite association and its similarity to the tonsteins in coal to the east, demonstrate the coal was subjectmore » to the REE-enriched volcanic ash fall, apparently just at a more dilute level than at locations where the tonstein is present.« less

  6. Insights into the Timing, Origin, and Deformation of the Highland Mountains Gneiss Dome in Southwestern Montana, USA

    NASA Astrophysics Data System (ADS)

    Boyer, Lane Markes

    The Highland Mountains of southwestern Montana offer a unique view of the Archean igneous and metamorphic rocks within the Great Falls tectonic zone (GFTZ). A Paleoproterozoic structural gneiss dome has been interpreted in the southern extent of the Highland Mountains. The ˜ 130km2 of exhumed metamorphic rocks and gneiss dome exposed in the Highland Mountains are the primary focus of this research. The formation of the Highland Mountains gneiss dome is proposed to be directly related to a northwest-side down detachment (the Steels Pass shear zone) that formed during terrane collision along the GFTZ. The field investigation determined foliation and lineation orientation measurements taken at 65 stations. Twenty-two field oriented samples were obtained from a variety of rock types distributed across the ˜ 24 km2 field area. Three field-based domains were established from the lithology, foliation, and lineation observations. Full-section X-ray maps of three sample thin-sections were collected via EPMA to identify all monazite grains. Twenty-eight grains were mapped at high-spatial resolution (0.3--6.0 mum). Thin section micro-structures observed show effects of a multistage deformation history with both dynamic and static recrystallization processes. Monazite geochronology of one thin section revealed two distinct populations of monazite grains; Archean (˜ 2.5 Ga) and Mesoproterozoic (˜ 1.5 Ga). The older population represents the crystallization age of either, or both the Medicine Hat block and the Wyoming province terranes. The younger population is hypothesized to have grown during deformation/alteration associated with the formation of the Belt-Purcell Rift Basin.

  7. Advanced Characterization of Rare Earth Elements in Coal Utilization Byproducts

    NASA Astrophysics Data System (ADS)

    Verba, C.; Scott, M.; Dieterich, M.; Poston, J.; Collins, K.

    2016-12-01

    Rare earth elements (REE) in various forms (e.g., crystalline mineral phases; adsorbed/absorbed state on and into organic macerals, neoformed glass from flyash or bottom ash) from domestic feedstocks such as coal deposits to coal utilization byproducts (CUB) have the potential to reduce foreign REE dependence and increase domestic resource security. Characterization is critical for understanding environmental risks related to their fate and transport as well as determining the most practical and economical techniques for concentrating the REE and converting them into chemical stocks for manufacturing. Several complementary electron microscopy (SEM-EDS, EPMA-WDS, FIB-SEM, cathodoluminescence, and XRD) and post image processing techniques were used to understand REE transition from coal to CUB. Sites of interest were identified and imaged and respective elemental x-ray maps acquired and montaged. Pixel classification of SEM imagers was completed using image analysis techniques to quantify the distribution of REE associated features. Quantitative elemental analysis of phases were completed using EMPA-WDS followed by FIB-SEM. The FIB-SEM results were reconstructed into 3D volumes and features of interest (e.g. monazite) were analyzed to determine the structure and volumetric estimation of REEs and thus predict detrital REE phases to ICP-MS results. Trace minerals were identified as pyrite, zircon, REE-phosphates' (monazite, xenotime), and barite within the coal tailings. In CUB, amorphous aluminosilicates, iron oxide cenospheres, and calcium oxides were present; monazite appear to be unaltered and unaffected by the combustion process in these samples. Thermal decomposition may have occurred due to presence of detrital zircon and xenotime and subsequent thin Ca-oxide coating enriched in trace REEs.

  8. The Wall-Rock Record of Incremental Emplacement in the Little Cottonwood-Alta Magmatic and Hydrothermal System, Wasatch Mountains, Utah, U.S.A.

    NASA Astrophysics Data System (ADS)

    Stearns, M.; Callis, S.; Beno, C.; Bowman, J. R.; Bartley, J. M.

    2017-12-01

    Contact aureoles record the cumulative effects on wall rocks of magma emplacement. Like the plutons they surround, contact aureoles have long been regarded to form geologically instantaneously. Protracted incremental emplacement of plutons must be reconciled with the wall-rock record of heat and mass transfer. Fundamental questions include how heat and material move from intrusions into their aureoles and how long that process takes. The Little Cottonwood stock is surrounded by a 2 km-wide contact aureole that contains prograde AFM mineral assemblages in the pelitic layers of the Proterozoic Big Cottonwood Formation. The Alta stock is surrounded by a well characterized 1 km-wide contact aureole containing both prograde AFM and CMS mineral assemblages in Ophir Shale and Mississippian dolostones, respectively. Understanding the petrogenesis of these aureoles requires the timing of magmatism and wall-rock metamorphism to be independently determined. Preliminary petrochronology (U/Th-Pb dates and trace element concentrations collected by LASS-ICP-MS) from the inner aureoles of both intrusions establishes a protracted history of monazite (re)crystallization from 35-25 Ma in the Little Cottonwood aureole and 35 Ma in the Alta aureole. Little Cottonwood aureole monazites are characterized by a positive age correlation with heavy rare earth elements (HREE) and a negative correlation with Eu/Eu*. Alta aureole monazites have a similar range of the HREE concentrations and Eu/Eu* variation. Zircon growth interpreted to record emplacement-level magmatic crystallization of the western Little Cottonwood stock ranges from 33-28 Ma near the contact. Multi-grain U-Pb zircon TIMS dates from the Alta stock range from 35-33 Ma and are interpreted to suggest the full range of emplacement-level magmatism in the Alta stock. Additionally, in situ U-Pb titanite dates from the Alta stock record intermittent high temperature hydrothermal activity in the stock margin from 35-24 Ma. These new data suggest that the Little Cottonwood aureole developed over several million years and overlapped in time with hydrothermal (re)crystallization of titanite within the Alta Stock. Both systems continued to develop after monazite (re)crystallization within Ophir Shale, which was concurrent with emplacement of the Alta Stock.

  9. New geochronological history of the Mbuji-Mayi Supergroup (Proterozoic, DRC) through U-Pb and Sm-Nd dating

    NASA Astrophysics Data System (ADS)

    François, Camille; Baludikay, Blaise K.; Storme, Jean-Yves; Baudet, Daniel; Paquette, Jean-Louis; Fialin, Michel; Debaille, Vinciane; Javaux, Emmanuelle J.

    2016-04-01

    The Mbuji-Mayi Supergroup, DRC is located between the Archean-Paleoproterozoic Kasai Craton and the Mesoproterozoic Kibaran Belt. This sedimentary sequence, unaffected by regional metamorphism, preserves a large diversity of well-preserved acritarchs (organic-walled microfossils), evidencing the diversification of complex life (early eukaryotes) for the first time in mid-Proterozoic redox stratified oceans of Central Africa (Baludikay et al., in review). This Supergroup is composed of two distinct lithostratigraphic successions (i) BI Group: a lower siliciclastic sequence (ca. 1175 Myr to ca. 882 Myr or ca. 1050 Myr (Cahen, 1954; Holmes & Cahen, 1955; Delpomdor et al., 2013) unconformably overlying the ca. 2.82-2.56 Gyr granitoid Dibaya Complex to the North (Cahen & Snelling; recent notice on DRC geological map); and (ii) BII Group: a poorly age-constrained upper carbonate sequence with sparse shales . Basaltic lavas (including pillow lavas) overlying the Mbuji-Mayi Supergroup were dated around 950 Myr (Cahen et al., 1974; Cahen et al., 1984). To better constraint the age of this Supergroup in the Meso-Neoproterozoic limit, we combine different geochronological methods, in particular on diagenetic minerals such as monazite (Montel et al., 1996; Rasmussen & Muhling, 2007) and xenotime (McNaughton et al., 1999) but also on detrital zircons. For the BI Group, results of in situ U-Pb dating with LA-ICP-MS on monazite, xenotime and zircon (Laboratoire Magmas et Volcans, Clermont-Ferrand) provide ages between 2.9 and 1.2 Gyr for zircons and between 1.4 and 1.03 Gyr for monazites and xenotimes. New results of in situ U-Th-Pb dating of well-crystallized monazites and xenotimes with Electron MicroProbe (Camparis, UPMC, Paris), highlight that some crystals display zonations with an inherited core older than 1125 Myr and diagenetic rims around 1050-1075 Myr. This suggests that the diagenesis of BI Group is younger than 1175 Myr (Delpomdor et al., 2013) and probably around 1030-1075 Myr, coherent with an age on 2 syngenetic galenas around 1055 Myr for the top of BI Group (Cahen, 1954; Holmes & Cahen, 1955). Sm-Nd datings on basaltic pillow lavas overlying the Mbuji-Mayi Supergroup (previously dated around 950 Myr (Cahen et al., 1974; Cahen et al., 1984) are in progress (Laboratoire G-Time, ULB, Bruxelles) to precisely limit in time the end of deposition of this Supergroup.

  10. Monazite, iron oxide and barite exsolutions in apatite aggregates from CCSD drillhole eclogites and their geological implications

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoming; Tang, Qian; Sun, Weidong; Xu, Li; Zhai, Wei; Liang, Jinlong; Liang, Yeheng; Shen, Kun; Zhang, Zeming; Zhou, Bing; Wang, Fangyue

    2007-06-01

    We have identified abundant exsolutions in apatite aggregates from eclogitic drillhole samples of the Chinese Continental Scientific Drilling (CCSD) project. Electron microscope and laser Raman spectroscopy analyses show that the apatite is fluorapatite, whereas exsolutions that can be classified into four types: (A) platy to rhombic monazite exsolutions; (B) needle-like hematite exsolutions; (C) irregular magnetite and hematite intergrowths; and (D) needle-like strontian barite exsolutions. The widths and lengths of type A monazite exsolutions range from about 6-10 μm (mostly 6 μm) and about 50-75 μm, respectively. Type B exsolutions are parallel with the C axis of apatite, with widths ranging from 0.5 to 2 μm, with most around 1.5 μm, and lengths that vary dramatically from 6 to 50 μm. Type C exsolutions are also parallel with the C axis of apatite, with lengths of ˜30-150 μm and widths of ˜10 to 50 μm. Type D strontian barite exsolutions coexist mostly with type B hematite exsolutions, with widths of about 9 μm and lengths of about 60-70 μm. Exsolutions of types B, C and D have never been reported in apatites before. Most of the exsolutions are parallel with the C axis of apatite, implying that they were probably exsolved at roughly the same time. Dating by the chemical Th-U-total Pb isochron method (CHIME) yields an U-Pb isochron age of 202 ± 28 Ma for monazite exsolutions, suggesting that these exsolutions were formed during recrystallization and retrograde metamorphism of the exhumed ultrahigh pressure (UHP) rocks. Quartz veins hosting apatite aggregates were probably formed slightly earlier than 202 Ma. Abundant hematite exsolutions, as well as coexistence of magnetite/hematite and barite/hematite in the apatite, suggest that the oxygen fugacity of apatite aggregates is well above the sulfide-sulfur oxide buffer (SSO). Given that quartz veins host these apatite aggregates, they were probably deposited from SiO 2-rich hydrous fluids formed during retrogression of the subducted slab. Such SiO 2-rich hydrous fluids may act as an oxidizing agent, a feasible explanation for the high oxygen fugacity in convergent margin systems.

  11. P-T-t metamorphic evolution of highly deformed metapelites from the Pinkie unit of western Svalbard using quartz-in-garnet barometry, trace element thermometry, P-T-X-M diagrams and monazite in-situ dating

    NASA Astrophysics Data System (ADS)

    Kośmińska, Karolina; Spear, Frank; Majka, Jarosław

    2017-04-01

    We present the results of quartz-in-garnet (QuiG) Raman barometry coupled with P-T-X-M diagrams, trace element thermometry, and monazite dating from metapelites of the Pinkie unit on Prins Karls Forland, western Svalbard. This unconventional approach, which combines traditional and novel thermobarometry techniques as well as dating results, provides the opportunity to decipher the pressure-temperature-time (P-T-t) metamorphic evolution of these highly deformed rocks, for which the P-T conditions could not have been obtained using traditional techniques. The Pinkie unit is comprised of Barrovian-type zones expressed by the following three mineral assemblages: Grt+St+Ms+Bt+Pl+Q, Grt+St+Ky+Ms+Bt+Pl+Q and Grt+Ky+Ms+Bt+Pl+Q. The metamorphic assemblages have been strongly affected by pervasive mylonitization. Two generations of garnet are present. Early garnet-I forms large (up to 2 mm) anhedral and inclusion-rich porphyroblasts that are strongly deformed with resorbed rims. Its composition varies from Alm81Grs5Prp11Sps3 in the core to Alm84Grs4Prp10Sps2 in the rim for a St-bearing sample. St-Ky bearing metapelites contain garnet-I, which is characterized by Alm88Grs2Prp8Sps2 in the core and Alm89Grs2Prp8Sps1 in the rim. In the Ky-bearing sample garnet-I composition is varying from Alm77Grs4Prp11Sps8 in the core to Alm83Grs4Prp9Sps4 in the rim. Garnet-II is characterized by small (up to 0.5 mm) euhedral grains that locally overgrows garnet-I. It contains very scarce inclusions, mostly quartz. Grt-II composition is very similar in all Pinkie unit samples and is characterized by Alm80Grs11Prp8Sps1(0). The measured maximum shift of the 464 cm-1 Raman band for quartz in garnet-I is 1.05 cm-1 for St-bearing samples, 1.80 cm-1 for St-Ky bearing rocks, and 2.10 cm-1 for Ky-bearing samples, respectively. The highest shift obtained for inclusions in garnet-II is 2.7 cm-1. Monazite-in-garnet thermometry combined with the QuiG yielded P-T conditions of garnet-I nucleation as follows: ca. 590 C at 7.5 kbar for St-bearing metapelites, 570C at 8.5 kbar for St-Ky-bearing rocks, and 630 C at 10 kbar for Ky-bearing samples. The P-T-X-M diagrams calculated using the Fortran program GIBBS were used to examine how the garnet composition varies as a function of pressure and temperature. These diagrams suggest that a decrease in temperature and increase in pressure after garnet-I growth is needed to produce garnet-II. These results together with the QuiG results for garnet-II are consistent with late garnet nucleating and growing during mylonitization at 450-500 C and 10-12 kbar; thus an anti-clockwise P-T path is proposed for the Pinkie metapelites. Three monazite populations have been distinguished based on the textural observations and chemical investigations. The first population (high Th) gives an age of 373 Ma, which represents initial monazite growth during diagenesis or under low grade conditions. The second population (highest Y) yields an age of 359 Ma, and the third population (lower Y) gives an age of 355Ma. Monazite dating results coupled with the above P-T data provide constrain the amphibolite facies metamorphism to have occurred between 359-355 Ma. This study is supported by the Fulbright Junior Advanced Research Award (to KK), NCN project No 2013/11/N/ST10/00357 and AGH grant No 11.11.140.319.

  12. Automated Quantitative Rare Earth Elements Mineralogy by Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Sindern, Sven; Meyer, F. Michael

    2016-09-01

    Increasing industrial demand of rare earth elements (REEs) stems from the central role they play for advanced technologies and the accelerating move away from carbon-based fuels. However, REE production is often hampered by the chemical, mineralogical as well as textural complexity of the ores with a need for better understanding of their salient properties. This is not only essential for in-depth genetic interpretations but also for a robust assessment of ore quality and economic viability. The design of energy and cost-efficient processing of REE ores depends heavily on information about REE element deportment that can be made available employing automated quantitative process mineralogy. Quantitative mineralogy assigns numeric values to compositional and textural properties of mineral matter. Scanning electron microscopy (SEM) combined with a suitable software package for acquisition of backscatter electron and X-ray signals, phase assignment and image analysis is one of the most efficient tools for quantitative mineralogy. The four different SEM-based automated quantitative mineralogy systems, i.e. FEI QEMSCAN and MLA, Tescan TIMA and Zeiss Mineralogic Mining, which are commercially available, are briefly characterized. Using examples of quantitative REE mineralogy, this chapter illustrates capabilities and limitations of automated SEM-based systems. Chemical variability of REE minerals and analytical uncertainty can reduce performance of phase assignment. This is shown for the REE phases parisite and synchysite. In another example from a monazite REE deposit, the quantitative mineralogical parameters surface roughness and mineral association derived from image analysis are applied for automated discrimination of apatite formed in a breakdown reaction of monazite and apatite formed by metamorphism prior to monazite breakdown. SEM-based automated mineralogy fulfils all requirements for characterization of complex unconventional REE ores that will become increasingly important for supply of REEs in the future.

  13. Mapping age and trace elements using laser ablation split-stream (LASS) ICPMS

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Hacker, B. R.; Cottle, J. M.

    2012-12-01

    One of the biggest challenges in the determination of the timing and rates of metamorphic processes is tying the age of a particular mineral to the conditions (i.e., pressure, temperature, fluid composition) at which that phase grew. Conventional microbeam techniques increase our understanding of crustal evolution by enabling this linkage; e.g., x-ray maps of monazite allow us to pinpoint grain segments that grew under a different set of conditions, cathodoluminescence images of zircon reveal zoning patterns and hence targets for dating different metamorphic and/or igneous events, and rare-earth element (REE) transects across garnet reveal the budget of a variety of trace elements during a metamorphic episode, to name but a few. More recent advances in LA-ICPMS and SIMS have allowed the ability to produce age maps or trace element maps—thus further our understanding of crystallization processes—but not both. Here we employ laser ablation split-stream (LASS) to quantitatively image the age, and trace element signature of datable phases such as zircon, monazite, titanite, and rutile in metamorphic rocks on the micron scale. By mapping the age and TE signature of a metamorphic phase, we can better interpret the metamorphic stage at which all portions of that phase grew, and relate it to other phases/portions of phases within that rock, such as garnet. For example, zircons and monazites from from eclogites reveal complex zoning in REEs indicating growth prior to, during, and post eclogite-facies metamorphism; those zones correspond to distinct age domains. Metamorphosed titanite reveals differences in diffusivities of TEs in inherited portions of the grain; e.g., Pb-loss is more prominent than diffusion of REEs, which in turn diffuse faster than higher charged ions, such as Th.

  14. Crustal melting and recycling: geochronology and sources of Variscan syn-kinematic anatectic granitoids of the Tormes Dome (Central Iberian Zone). A U-Pb LA-ICP-MS study

    NASA Astrophysics Data System (ADS)

    López-Moro, F. J.; López-Plaza, M.; Gutiérrez-Alonso, G.; Fernández-Suárez, J.; López-Carmona, A.; Hofmann, M.; Romer, R. L.

    2018-04-01

    In this study, we report U-Pb Laser Ablation ICP-MS zircon and ID-TIMS monazite ages for peraluminous granitoid plutons (biotite ± muscovite ± cordierite ± sillimanite) in the Tormes Dome, one of the gneiss-cored domes located in the Central Iberian Zone of the Variscan belt of northern Spain. Textural domains in zircon, interpreted to represent the magmatic crystallization of the granitoids (and one monazite fraction in the Ledesma pluton) yielded ages around 320 Ma, in agreement with other geochronological studies in the region. This age is interpreted to date the timing of decompression crustal melting driven by the extensional collapse of the orogenic belt in this domain of the Variscan chain of western Europe. In addition, there are several populations of inherited (xenocrystic) zircon: (1) Carboniferous zircon crystals (ca. 345 Ma) as well as one of the monazite fractions in the coarse-grained facies of the Ledesma pluton that also yielded an age of ca. 343 Ma. (2) Devonian-Silurian zircon xenocrysts with scattered ages between ca. 390 and 432 Ma. (3) Middle Cambrian-Ordovician (ca. 450-511 Ma). (4) Ediacaran-Cryogenian zircon ages (ca. 540-840 Ma). (5) Mesoproterozoic to Archaean zircon (900-2700 Ma). The abundance of Carboniferous-inherited zircon shows that crustal recycling/cannibalization may often happen at a fast pace in orogenic scenarios with only short lapses of quiescence. In our case study, it seems plausible that a "crustal layer" of ca. 340 Ma granitoids/migmatites was recycled, partially or totally, only 15-20 My after its emplacement.

  15. Oligo-Miocene thinning of the Beni Bousera peridotites and their Variscan crustal host rocks, Internal Rif, Morocco

    NASA Astrophysics Data System (ADS)

    Gueydan, Frédéric; Pitra, Pavel; Afiri, Abdelkhaleq; Poujol, Marc; Essaifi, Abderrahim; Paquette, Jean-Louis

    2015-06-01

    Deciphering Variscan versus Alpine history in the Internal Rif system is a key to constrain the tectonic evolution of the Alboran domain and hence the geodynamics of the western Mediterranean system during the Cenozoic. This study focuses on the evolution of the metamorphic envelope of the Beni Bousera massif and its relation to the underlying peridotites. Combining structural geology, metamorphic petrology, and laser ablation inductively coupled plasma mass spectrometry U-Th-Pb dating of monazite, this study contributes to the understanding of the tectonic history of the western Internal Rif. The regional foliation (S2) is characterized by low pressure-high temperature (LP-HT) mineral assemblages and obliterates a former foliation (S1) developed along a Barrovian (medium pressure-medium temperature, MP-MT) metamorphic gradient. The dating of some metamorphic monazite grains from a micaschist and a migmatitic gneiss demonstrates that the crustal envelope of the peridotite recorded two distinct tectonometamorphic episodes. Data from monazite inclusions in S1 garnet suggest that the first event, D1, is older than 250-170 Ma and likely related to the Variscan collision, in agreement with the Barrovian type of the metamorphic gradient. The second event, D2, is Alpine in age (at circa 21 Ma) and corresponds to a strong lithosphere thinning allowing subsequent subcontinental mantle exhumation. Such a tectonic context provides an explanation for the LP-HT metamorphic gradient that is recorded in the regional foliation of the western Betic-Rif system. This extension is probably related to a subduction slab rollback in the western end of the Mediterranean realm during the Oligo-Miocene times. No evidence for a Tertiary high pressure/low temperature metamorphism has been identified in the studied area.

  16. The White Nile as a source for Nile sediments: Assessment using U-Pb geochronology of detrital rutile and monazite

    NASA Astrophysics Data System (ADS)

    Be'eri-Shlevin, Yaron; Avigad, Dov; Gerdes, Axel

    2018-04-01

    Basement terranes exposed at the headwaters of the White Nile include Archean-Paleoproterozoic rocks of the Congo Craton, whose northern sectors were severely reworked during Neoproterozoic orogeny. New U-Pb analyses of detrital rutile and monazite from early Quaternary to Recent coastal quartz sands of Israel, at the northeast extension of the Nile sedimentary system, yield mostly late Neoproterozoic ages, with a dominant peak at ca. 600 Ma. While derivation from the reworked sectors of the Craton cannot be negated, the absence of pre-Neoproterozoic rutile and monazite indicates that the detrital contribution from the Congo cratonic nuclei into the main Nile was insignificant. The near absence of White Nile basement-derived heavy minerals from the Nile sands arriving at the Eastern Mediterranean may be explained by a number of factors such as relatively minor erosion of the Cratonic basement nuclei during the Quaternary, late connection of the White Nile to the main Nile system with a possibility that northern segments connected prior to more southerly ones, and a long-term effective sediment blockage mechanism at the mouth of White Nile. Likewise, our previous study demonstrated that Nile sands display a detrital zircon U-Pb-Hf pattern consistent with significant recycling of NE African Paleozoic sediments. It is thus plausible that any detrital contribution from White Nile basement rocks was thoroughly diluted by eroded Paleozoic sediments, or their recycled products, which were likely the greatest sand reservoir in the region. This study adds to previous studies showing the advantage of a multi mineral U-Pb geochronology strategy in constraining sediment provenance patterns.

  17. ­Oligo-Miocene Monazite Ages in the Lesser Himalaya Sequence, Arunachal Pradesh, India; Geological Content of Age Variations

    NASA Astrophysics Data System (ADS)

    Clarke, G. L.; Bhowmik, S. K.; Ireland, T. R.; Aitchison, J. C.; Chapman, S. L.; Kent, L.

    2016-12-01

    A telescoped and inverted greenschist-upper amphibolite facies sequence in the in the Siyom Valley of eastern Arunachal Pradesh is tectonically overlain by an upright (grade decreasing upward) granulite to lower amphibolite facies sequence. Such grade relationships would normally attribute the boundary to a Main Central Thrust (MCT) structure, and predict a change from underlying Lesser Himalaya Sequence (LHS) to Greater Himalaya Sequence rocks across the boundary. However, all pelitic and psammitic samples have similar detrital zircon age spectra, involving c. 2500, 1750-1500, 1200 and 1000 Ma Gondwanan populations correlated with the LHS. Isograds are broadly parallel to a penetrative NW-dipping S2 foliation, developed contemporaneously with the inversion. Garnet growth in garnet, staurolite and kyanite zone schists beneath the thrust commenced at P>8 kbar and T≈550°C, before syn- to post-S2 heating of staurolite and kyanite zone rocks to T≈640°C at P≈8.5 kbar, most probably at c. 18.5 Ma. Kyanite-rutile-garnet migmatite immediately above the thrust records peak conditions of P≈10 kbar and T≈750°C and c. 21.5 Ma monazite ages. Complexity in c. 21-1000 Ma monazite ages in overlying amphibolite facies schists reflects the patchy recrystallization of detrital grains, intra-grain complexity being dependent on whole rock composition, metamorphic grade and evolition. Slip on a SE-propagating thrust was likely contemporaneous with early Miocene metamorphism, based on the distribution of structure, metamorphic textures, and overlap of age relationships. It is inferred to have initially controlled the uplift of granulite to mid-crustal levels between 22 and 19 Ma, thermal relaxation within a disrupted LHS metamorphic profile inducing a post-S2 thermal peak in lower grade footwall rocks.

  18. Background radiation and individual dosimetry in the costal area of Tamil Nadu, India.

    PubMed

    Matsuda, Naoki; Brahmanandhan, G M; Yoshida, Masahiro; Takamura, Noboru; Suyama, Akihiko; Koguchi, Yasuhiro; Juto, Norimichi; Raj, Y Lenin; Winsley, Godwin; Selvasekarapandian, S

    2011-07-01

    South coast of India is known as the high-level background radiation area (HBRA) mainly due to beach sands that contain natural radionuclides as components of the mineral monazite. The rich deposit of monazite is unevenly distributed along the coastal belt of Tamil Nadu and Kerala. An HBRA site that laid in 2×7 m along the sea was found in the beach of Chinnavillai, Tamil Nadu, where the maximum ambient dose equivalent reached as high as 162.7 mSv y(-1). From the sands collected at the HBRA spot, the high-purity germanium semi-conductor detector identified six nuclides of thorium series, four nuclides of uranium series and two nuclides belonging to actinium series. The highest radioactivity observed was 43.7 Bq g(-1) of Th-228. The individual dose of five inhabitants in Chinnavillai, as measured by the radiophotoluminescence glass dosimetry system, demonstrated the average dose of 7.17 mSv y(-1) ranging from 2.79 to 14.17 mSv y(-1).

  19. Cooling, exhumation, and kinematics of the Kanchenjunga Himal, far east Nepal

    NASA Astrophysics Data System (ADS)

    Larson, Kyle P.; Camacho, Alfredo; Cottle, John M.; Coutand, Isabelle; Buckingham, Heather M.; Ambrose, Tyler K.; Rai, Santa Man

    2017-06-01

    New single crystal 40Ar/39Ar and apatite fission track ages from the Kanchenjunga region of far east Nepal yield insight into the timing of assembly of the Himalayan midcrust and the mechanisms that controlled its exhumation. The 40Ar/39Ar data are compared with new U(Th)/Pb zircon and monazite intrusive crystallization ages and existing metamorphic monazite ages from across the study area to test for internal consistency and potential excess Ar contributions. This new data set, which significantly enhances the density and spatial coverage available from the region, shows that inferred thrust-sense discontinuities within the now-exhumed former midcrustal rocks exposed therein must have ceased motion by 12 Ma. Furthermore, the spatial distribution of ages across the Kanchenjunga region, older ages ( 12-16 Ma) to the south and north and younger ages ( 8 Ma) in the middle portion of the transect, is compatible with simulations of tectonic-enhanced exhumation above a developing duplex system in nearby Bhutan.

  20. Topical report to Morgantown Energy Technology Center for the interfacial coatings for ceramic-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-01-09

    This report summarizes the task conducted to examine various activities on interface development for ceramic-matrix composites (CMCs) intended for high-temperature applications. While several articles have been published on the subject of CMC interfaces, the purpose of this report is to describe the various ongoing efforts on interface concepts, material selection, and issues related to processing methods employed for developing interface coatings. The most exciting and new development in the field is the discovery of monazite as a potential interface material for mullite- and alumina-based composites. Monazite offers two critical properties to the CMC system; a weakly bonded layer due tomore » its non-wetting behavior and chemical compatibility with both alumina and mullite up to very high temperatures (> 1,600 C). A description of the Department of Energy-related activities and some thoughts on processing issues, interface testing, and effects of processing on fiber strength are given.« less

  1. Crystal Structure and Crystal Chemistry of Some Common REE Minerals and Nanpingite

    NASA Astrophysics Data System (ADS)

    Ni, Yunxiang

    1995-01-01

    Part I. Crystal structure and crystal chemistry of fluorocarbonate minerals. The crystal structure of bastnasite-(Ce) have been solved in P-62c and refined to R = 0.018. The structure is composed of (001) (CeF) layers interspersed with (CO_3) layers in a 1:1 ratio. The Ce atom is coordinated in rm CeO_6F_3 polyhedra. The atomic arrangement of synchysite-(Ce) has been solved and refined to R = 0.036 with a monoclinic space group C2/c. It possesses a (001) layer structure, with layers of (Ca) and (CeF) separated by layers of carbonate groups. The layers stack in a manner analogous to C2/c muscovite. Polytypism similar to the micas may exist in synchysite. The crystal structures of cordylite-(Ce) have been solved in P6 _3/mmc and refined to R = 0.023. The structure and chemical formula are different from those deduced by Oftedal. The formula is rm MBaCe_2(CO _3)_4F, where M is rm Na^+, Ca^{2+}_{1/2 }+ O_{1/2}, or any solution. The presence of (NaF) layer in the structure is the key difference from the Oftedal's structure. This redefinition of the chemical formula and crystal structure of cordylite will be proposed to IMA-CNMMN. Part II. Crystal structure and crystal chemistry of monazite-xenotime series. Monazite is monoclinic, P2 _1/n, and xenotime is isostructural with zircon (I4_1/amd). Both atomic arrangements are based on (001) chains of intervening phosphate tetrahedra and RE polyhedra, with a REO_8 polyhedron in xenotime that accommodates HRE (Tb - Lu) and a REO_9 polyhedron in monazite that preferentially incorporates LRE (La - Gd). As the structure "transforms" from xenotime to monazite, the crystallographic properties are comparable along the (001) chains, with structural adjustments of 2.2 A along (010) to accommodate the different size RE atoms. Part III. Crystal structure of nanpingite-2M _2, the Cs end-member of muscovite. The crystal structure of nanpingite has been refined to R = 0.058. Compared to K^+ in muscovite, the largest interlayer Cs^+ in nanpingite increases (001) separation between adjacent 2:1 layers, but has little effect on the dimensions in (001). The existence of rare 2M_2 polytype in nanpingite is attributed to this large layer separation, which minimizes the repulsion of the superimposed (along (001)) basal oxygens in neighboring tetrahedral layers.

  2. Developing an inverted Barrovian sequence; insights from monazite petrochronology

    NASA Astrophysics Data System (ADS)

    Mottram, Catherine M.; Warren, Clare J.; Regis, Daniele; Roberts, Nick M. W.; Harris, Nigel B. W.; Argles, Tom W.; Parrish, Randall R.

    2014-10-01

    In the Himalayan region of Sikkim, the well-developed inverted metamorphic sequence of the Main Central Thrust (MCT) zone is folded, thus exposing several transects through the structure that reached similar metamorphic grades at different times. In-situ LA-ICP-MS U-Th-Pb monazite ages, linked to pressure-temperature conditions via trace-element reaction fingerprints, allow key aspects of the evolution of the thrust zone to be understood for the first time. The ages show that peak metamorphic conditions were reached earliest in the structurally highest part of the inverted metamorphic sequence, in the Greater Himalayan Sequence (GHS) in the hanging wall of the MCT. Monazite in this unit grew over a prolonged period between ∼37 and 16 Ma in the southerly leading-edge of the thrust zone and between ∼37 and 14.5 Ma in the northern rear-edge of the thrust zone, at peak metamorphic conditions of ∼790 °C and 10 kbar. Monazite ages in Lesser Himalayan Sequence (LHS) footwall rocks show that identical metamorphic conditions were reached ∼4-6 Ma apart along the ∼60 km separating samples along the MCT transport direction. Upper LHS footwall rocks reached peak metamorphic conditions of ∼655 °C and 9 kbar between ∼21 and 16 Ma in the more southerly-exposed transect and ∼14.5-12 Ma in the northern transect. Similarly, lower LHS footwall rocks reached peak metamorphic conditions of ∼580 °C and 8.5 kbar at ∼16 Ma in the south, and 9-10 Ma in the north. In the southern transect, the timing of partial melting in the GHS hanging wall (∼23-19.5 Ma) overlaps with the timing of prograde metamorphism (∼21 Ma) in the LHS footwall, confirming that the hanging wall may have provided the heat necessary for the metamorphism of the footwall. Overall, the data provide robust evidence for progressively downwards-penetrating deformation and accretion of original LHS footwall material to the GHS hanging wall over a period of ∼5 Ma. These processes appear to have occurred several times during the prolonged ductile evolution of the thrust. The preserved inverted metamorphic sequence therefore documents the formation of sequential 'paleo-thrusts' through time, cutting down from the original locus of MCT movement at the LHS-GHS protolith boundary and forming at successively lower pressure and temperature conditions. The petrochronologic methods applied here constrain a complex temporal and thermal deformation history, and demonstrate that inverted metamorphic sequences can preserve a rich record of the duration of progressive ductile thrusting.

  3. Constraining Metamorphic Timing and Processes by Dating Garnet, Zircon, Titanite and Monazite in UHP and HP Rocks from Weihai, Sulu UHP Terrane, Eastern China

    NASA Astrophysics Data System (ADS)

    Wang, D.; Vervoort, J. D.; Fisher, C. M.; Cao, H.

    2016-12-01

    The Sulu UHP terrane is the extension of the Dabie orogenic belt to the east, offset 500 km to the northeast by the Tanlu fault [1]. The focus of this study, the Weihai area, is located at the northernmost part of the Sulu UHP terrane, and consists mainly of gneisses overprinted by amphibolite-facies assemblages, in addition to minor eclogite, granulite, and some ultramafic rocks [1]. Time constrains are critical to our understanding of the processes of UHP metamorphism, as well as the tectonic evolution of the region. In the last decade, U-Pb dating of metamorphic domains of zircons has been widely applied to determine the history of the UHP metamorphism (240 - 220 Ma) [1]. Recent garnet Lu-Hf dating from the Dabie terrane (240 - 220Ma) suggests the initiation of prograde metamorphism to be prior to ca. 240 Ma [2]. In-situ U-Pb dating of accessary minerals using LA-ICPMS (i.e. monazite, titanite, rutile, etc.), can provide important information to augment and complement the zircon U-Pb metamorphic dates. In this study, we collected samples throughout the Weihai area. Protolith ages of these samples range from Paleoproterozoic to Neoproterozoic ( 1850 - 700 Ma) as indicated by U-Pb dating of zircon cores. Zircon metamorphic rims yield U-Pb ages of 240 - 220 Ma, likely indicating the UHP stage of the Sulu terrane [3]. Four eclogites yield Lu-Hf garnet isochrons with dates between 239 and 224 Ma, consistent with garnet Lu-Hf dates from Dabie UHP terrane [2]. Sm-Nd isochrons indicate systematic younger dates (220 - 210 Ma) interpreted as cooling ages. Titanites extracted from four samples give U-Pb ages ranging from 220 to 200 Ma, in agreement with the titanite dates from the southern Sulu terrane [4]. Monazites from three samples give precise dates between 214 and 211 Ma. Collectively, monazite and titanite U-Pb ages are broadly consistent with the garnet Sm-Nd isochrons, and thus we interpret these as cooling ages. Based on the dates of different systems/minerals presented above, we suggest the prograde metamorphism of Weihai UHP terrane likely took place prior to 240 Ma, and the peak of the UHP stage is likely between 240 and 220 Ma. [1] Zhang et al., Gondwana Res., 16 (2009) 1-26 [2] Cheng et al., J. Metamorphic Geol., 26 (2008), 741-758 [3] Liou et al., J. Asian Earth Sci., 35 (2009), 199-231 [4] Chen and Zheng, GCA, 150(2015), 53-73

  4. Uranium-lead dating of hydrothermal zircon and monazite from the Sin Quyen Fe-Cu-REE-Au-(U) deposit, northwestern Vietnam

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Chun; Zhou, Mei-Fu; Chen, Wei Terry; Zhao, Xin-Fu; Tran, MyDung

    2018-03-01

    The Sin Quyen deposit in northwestern Vietnam contains economic concentrations of Cu, Au and LREE, and sub-economic concentration of U. In this deposit, massive and banded replacement ores are hosted in Neoproterozoic metapelite. The paragenetic sequence includes sodic alteration (stage I), calcic-potassic alteration and associated Fe-REE-(U) mineralization (stage II), Cu-Au mineralization (stage III), and sulfide-(quartz-carbonate) veins (stage IV). The Sin Quyen deposit experienced an extensive post-ore metamorphic overprint, which makes it difficult to precisely determine the mineralization age. In this study, zircon and monazite U-Pb geochronometers and the Rb-Sr isochron method are used to constrain the timing of mineralization. Zircon grains in the ore are closely intergrown or texturally associated with hydrothermal minerals of stage II (e.g., garnet, allanite, and hedenbergite). They may contain primary fluid inclusions and display irregular zoning in cathodoluminescence (CL) images. Zircon grains are rich in U (688 to 2902 ppm) and poor in Th (0.2 to 2.9 ppm). Their δ18OV-SMOW values range from 11.9 to 14.0‰, higher than those of typical magmatic zircon. These textural and compositional features imply that zircon precipitated from 18O- and U-rich hydrothermal fluids, coeval with the minerals of stage II. Monazite occurs in close association with stage II magnetite and allanite and has low contents of Th (<2700 ppm), indicative of a hydrothermal origin. Hydrothermal zircon and monazite have indistinguishable U-Pb ages of 841 ± 12 and 836 ± 18 Ma, respectively, representing the timing of Fe-REE mineralization. There is no direct isotopic constraint on the timing of the Cu-Au mineralization, but geological observations suggest that the Cu-Au and Fe-REE ores most likely formed within a single evolved hydrothermal process. In the plot of 87Rb/86Sr vs. 87Sr/86Sr, the composition of bulk-ore and biotite separates from ore lie along a reference line for 30 Ma, which is consistent with the timing of metamorphism in the region. The mineralization age of the Sin Quyen deposit falls within the overall age range (740 to 860 Ma) of the regional Neoproterozoic igneous rocks. This temporal linkage, in combination with the magmatic-like sulfur isotopes of sulfide minerals (δ34SV-CDT = -0.8 to 3.1), indicates that the mineralization may have a close genetic association with the Neoproterozoic igneous activity.

  5. Timing and conditions of regional metamorphism and crustal shearing in the granulite facies basement of south Namibia: Implications for the crustal evolution of the Namaqualand metamorphic basement in the Mesoproterozoic

    NASA Astrophysics Data System (ADS)

    Bial, Julia; Büttner, Steffen; Appel, Peter

    2016-11-01

    Granulite facies basement gneisses from the Grünau area in the Kakamas Domain of the Namaqua-Natal Metamorphic Province in south Namibia show high-grade mineral assemblages, most commonly consisting of garnet, cordierite, sillimanite, alkali feldspar and quartz. Cordierite + hercynitic spinel, and in some places quartz + hercynitic spinel, indicate granulite facies P-T conditions. The peak assemblage equilibrated at 800-850 °C at 4.0-4.5 kbar. Sillimanite pseudomorphs after kyanite1 and late-stage staurolite and kyanite2 indicate that the metamorphic record started and ended within the stability field of kyanite. Monazite in the metamorphic basement gneisses shows a single-phase growth history dated as 1210-1180 Ma, which we interpret as the most likely age of the regional metamorphic peak. This time coincides with the emplacement of granitic plutons in the Grünau region. The ∼10 km wide, NW-SE striking Grünau shear zone crosscuts the metamorphic basement and overprints high-temperature fabrics. In sheared metapelites, the regional metamorphic peak assemblage is largely obliterated, and is replaced by synkinematic biotite2, quartz, alkali feldspar, sillimanite and cordierite or muscovite. In places, gedrite, staurolite, sillimanite and green biotite3 may have formed late- or post-kinematically. The mylonitic mineral assemblage equilibrated at 590-650 °C at 3.5-5.0 kbar, which is similar to a retrograde metamorphic stage in the basement away from the shear zone. Monazite cores in two mylonite samples are similar in texture and age (∼1200 Ma) to monazite in metapelites away from the shear zone. Chemically distinct monazite rims indicate a second growth episode at ∼1130-1120 Ma. This age is interpreted to date the main deformation episode along the Grünau shear zone and the retrograde metamorphic stage seen in the basement. The main episode of ductile shearing along the Grünau shear zone took place 70-80 million years after the thermal peak metamorphism and granite emplacement, and after substantial isobaric cooling of the basement. Metamorphism and regional shearing in the Grünau area can be correlated with the crustal evolution in the Kakamas Domain in South Africa, but not with the timing of metamorphism in the Aus area, 230 km to the NW of Grünau, which is significantly younger.

  6. First evidence of the Ellesmerian metamorphism on Svalbard

    NASA Astrophysics Data System (ADS)

    Kośmińska, Karolina; Majka, Jarosław; Manecki, Maciej; Schneider, David A.

    2016-04-01

    The Ellesmerian fold-and-thrust belt is exposed in the High Arctic from Ellesmere Island in the east, through North Greenland, to Svalbard in the west (e.g. Piepjohn et al., 2015). It developed during Late Devonian - Early Carboniferous, and overprinted older (mainly Caledonian) structures. It is thought that this fold-and-thrust belt was formed due to collision of the Pearya Terrane and Svalbard with the Franklinian Basin of Laurentia. Traditionally, the Ellesmerian fold-and-thrust belt comprises a passive continental margin affected by foreland deformation processes, but the exact larger scale tectonic context of this belt is disputable. It is partly because the Eocene Eurekan deformation superimposed significantly the Ellesmerian structures, thus making the reconstruction of the pre-Eurekan history very difficult. Here we present for the first time evidence for Ellesmerian metamorphism within the crystalline basement of Svalbard. These rocks are exposed in the Pinkie unit on Prins Karls Forland (W-Svalbard), which exhibits tectonic contacts with the overlying sequences. The Pinkie unit is mainly composed of strongly deformed lithologies such as laminated quartzites, siliciclastic rocks and garnet-bearing mica schists. Detrital zircon dating yielded ages as young as Neoproterozoic (0.95-1.05 Ga), thus the Pinkie unit is considered to be Neoproterozoic (Kośmińska et al., 2015a). The M1 assemblages and D1 structures are affected by D2 mylonitization (cf. Faehnrich et al., 2016, this meeting). Petrological characterization and Th-U-total Pb chemical monazite dating have been performed on the Pinkie metapelites. These rocks exhibit an apparent inverted Barrovian metamorphic sequence, within which three metamorphic zones have been distinguished: garnet+staurolite+muscovite+biotite, garnet+staurolite+kyanite+muscovite+biotite, garnet+kyanite+muscovite+biotite. The P-T estimates using the QuiG barometry coupled with thermodynamic modelling revealed that the metapelites were formed under amphibolite facies conditions at c. 7-9 kbar and 550-650 °C (Kośmińska et al., 2015b). Monazite dating was performed on samples from these three metamorphic zones. The chemical zonation of monazite allows the identification of several monazite populations, which likely developed during different stages of Barrovian metamorphism. The geochronology demonstrate protracted monazite growth from the early prograde stage at c. 370 Ma to the peak conditions at c. 355 Ma. Thus it is evident that the Ellesmerian event was not limited to the relatively cold deformation as previously thought. The amphibolite facies metamorphism of c. 370-355 Ma that was documented in our study sheds new light on understanding of the character of this tectonothermal event. This project is financed by NCN research project No 2013/11/N/ST10/00357 and partially funded by AGH research grant no 11.11.140.319. References: Faehnrich et al., 2016. A tectonic window into the crystalline basement of Prins Karls Forland, Spitsbergen. EGU General Assembly 2016. Kośmińska et al., 2015b. Metamorphic evolution of the Pinkie unit metapelites from Svalbard (High Arctic): P-T-t study including Quartz-in-garnet barometry (QuiG). GSA 2015: Annual Meeting, Baltimore. Kośmińska et al., 2015a. Detrital zircon U-Pb geochronology of metasediments from southwestern Svalbard's Caledonian Province. EGU General Assembly 2015. Piepjohn et al., 2015. Tectonic map of the Ellesmerian and Eurekan deformation belts on Svalbard, North Greenland, and the Queen Elizabeth Islands (Canadian Arctic). Arktos, DOI 10.1007/s41063-015-0015-7.

  7. Monazite chemical age and composition correlations, an insight in the Palaeozoic evolution of the Leaota Massif, South Carpathians

    NASA Astrophysics Data System (ADS)

    Săbău, Gavril; Negulescu, Elena

    2015-04-01

    Notwithstanding remarkable advantages of monazite microprobe U-Th-PbT geochronology of metamorphic formations, such as the direct investigation of a metamorphic mineral in a truly in situ setting, unequalled spatial resolution, and cost-effective analyses, it essentially remains affected by indeterminations as regards the accuracy and the representativity of the results. Besides the experimental hurdles related to trace element analyses with the microprobe (sensitivity, background and overlap effects) the method faces two main biases, firstly its inherently blind status emerging from the aprioric assumption of isotopic equilibrium, and secondly the marked susceptibility of monazite to fluid-stimulated chemical recrystallization and compositional resetting (e. g. Kelly et al. 2012). Age spectra obtained from individual sampled habitually display a significant scatter of calculated age data, in such a way that the separation of coherent and geologically relevant populations may often represent a substantial challenge. The interpretation of the results greatly benefits from the qualitative analysis of the textural and paragenetic setting or a trial-and error quantitative statistical assessment of distinct age clusters (Montel et al., 1996), though still maintaining a variable degree of subjectivity, as in any interpretative process not fully sustained by quantitative analysis. Additional dependable support can be gained from further qualitative parameters characterizing, besides the distribution of individual age data, also the global chemical composition of the analysed monazite grains, as well as the relationship to the corresponding metamorphic assemblages (Săbău & Negulescu, 2013). The quantitative assessment of the age patterns of individual samples can be achieved by plotting the normalized age gradient from the sorted age pattern, allowing distinction of quasi-gaussian distribution domains likely to correspond to coherent age clusters of geologic significance. On the other hand, the chemical variability of the monazite grains enables separation of discrete populations, which cluster in ternary chemical plots (LREE - Y+Nd+MREE - U+Th+Ca, LREE - Nd+MREE - Y) and display similar chondrite-normalized lanthanide patterns, quantitatively evaluated by ratios such as (La/Nd)CN, (Nd/Gd)CN, (Gd/Y)CN, (U/Th)CN, (Y/Y*)CN, and (Eu/Eu*)CN. The correspondence between age and chemical clusters endorses their geological relevance and make a case for geunuine tectonothermal events. Distinct compositional domains corresponding to well-defined age clusters have been identified in gneissic rocks of the Leaota Massif, South Carpathians, highlighting the lower Paleozoic evolution of a crustal fragment detached during the Cambrian from northern Gondwana. Relict ages of Panafrican affinity of around 530 Ma are heavily overprinted by Lower Ordovician crustal thickening followed by tectonic relaxation coeval with granitization (around 470 Ma), followed in turn by high-pressure metamorphism at the Ordovician-Silurian boundary (Negulescu et al., 2015) and final tectonic stacking associated to Variscan docking to Laurussia + Avalonia, reflected in a high-pressure overprint at 350-325 Ma. References Kelly N. M., Harley S. L., Möller A. et al. (2012) Chemical Geology 322-323, 192-208 Montel J.-M., Foret S., Veschambre M., Nicollet C., Provost A. (1996) Chemical Geology 131, 37-53 Săbău G., Negulescu E. (2013) GSTF International Journal of Geological Sciences 1/ 1, 20-29 Negulescu E., Săbău G., Massonne H.-J. (2015) EGU2015-6663

  8. JPRS Report, Proliferation Issues

    DTIC Science & Technology

    1992-06-25

    control of INGTON POST saying: "Secretary of Defense Richard Nuclemon Minero Quimica Ltda. [Nuclebras Monazite and Cheney approved the Pentagon’s plan ... Planned [Alm a-Ata Radio] .................................................................................................. 26 Krasnoyarsk Search for...34 [Article by political staff: "Space plan defended"] He said the aim of the investigation was to determine the market opportunities, risks and

  9. Multiple age components in individual molybdenite grains

    USGS Publications Warehouse

    Aleinikoff, John N.; Creaser, Robert A.; Lowers, Heather; Magee, Charles W.; Grauch, Richard I.

    2012-01-01

    Re–Os geochronology of fractions composed of unsized, coarse, and fine molybdenite from a pod of unusual monazite–xenotime gneiss within a granulite facies paragneiss, Hudson Highlands, NY, yielded dates of 950.5 ± 2.5, 953.8 ± 2.6, and 941.2 ± 2.6 Ma, respectively. These dates are not recorded by co-existing zircon, monazite, or xenotime. SEM–BSE imagery of thin sections and separated grains reveals that most molybdenite grains are composed of core and rim plates that are approximately perpendicular. Rim material invaded cores, forming irregular contacts, probably reflecting dissolution/reprecipitation. EPMA and LA-ICP-MS analyses show that cores and rims have different trace element concentrations (for example, cores are relatively enriched in W). On the basis of inclusions of zircon with metamorphic overgrowths, we conclude that molybdenite cores and rims formed after high-grade regional metamorphism. The discovery of cores and rims in individual molybdenite grains is analogous to multi-component U-Pb geochronometers such as zircon, monazite, and titanite; thus, molybdenite should be carefully examined before dating to ensure that the requirement of age homogeneity is fulfilled.

  10. Assessment of natural radioactivity and gamma-ray dose in monazite rich black Sand Beach of Penang Island, Malaysia.

    PubMed

    Shuaibu, Hauwau Kulu; Khandaker, Mayeen Uddin; Alrefae, Tareq; Bradley, D A

    2017-06-15

    Activity concentrations of primordial radionuclides in sand samples collected from the coastal beaches surrounding Penang Island have been measured using conventional γ-ray spectrometry, while in-situ γ-ray doses have been measured through use of a portable radiation survey meter. The mean activity concentrations for 226 Ra, 232 Th and 40 K at different locations were found to be less than the world average values, while the Miami Bay values for 226 Ra and 232 Th were found to be greater, at 1023±47 and 2086±96Bqkg ̶ 1 respectively. The main contributor to radionuclide enrichment in Miami Bay is the presence of monazite-rich black sands. The measured data were compared against literature values and also recommended limits set by the relevant international bodies. With the exception of Miami Bay, considered an elevated background radiation area that would benefit from regular monitoring, Penang island beach sands typically pose no significant radiological risk to the local populace and tourists visiting the leisure beaches. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Kyanite-garnet gneisses of the Kåfjord Nappe - North Norwegian Caledonides: P-T conditions and monazite Th-U-Pb dating

    NASA Astrophysics Data System (ADS)

    Ziemniak, Grzegorz; Kośmińska, Karolina; Majka, Jarosław; Janák, Marian; Manecki, Maciej

    2016-04-01

    The Kåfjord Nappe is the part of the Skibotn Nappe Complex traditionally ascribed to the Upper Allochthon of the North Norwegian Caledonides. Pressure-temperature (P-T) conditions and metamorphic age of the Kåfjord Nappe are not well constrained, geochronological data are limited to a single Rb-Sr age of c. 440 Ma (Dangla et al. 1978). Metamorphic evolution of kyanite-garnet gneisses of the Kåfjord Nappe is presented here. The kyanite-garnet gneisses are associated with a few meters thick amphibolite lenses. The gneisses mainly consist of quartz, plagioclase, biotite, muscovite, garnet, kyanite, and rutile. Retrograde minerals are represented by sillimanite and chlorite. Garnet occurs as two textural types. Garnet-I forms euhedral porphyroblasts with multiple small inclusions. Profiles through garnet-I show chemical zonation in all components. The composition varies from Alm64-68Prp11-16Grs13-18Sps2-8 in the core to Alm68-70Prp17-18Grs10-13Sps1-3 in the rim. Garnet-II is subhedral to anhedral, its core is inclusion-rich, whereas rim contains only single inclusions. Chemical composition of garnet-II is similar to that of the garnet-I rim. P-T conditions have been estimated using the garnet-biotite-muscovite-plagioclase (GBPM) geothermobarometer (Holdaway, 2001; Wu, 2014). Calculated peak P-T metamorphic conditions are 610-625 °C and 7.6-8.2 kbar corresponding to the amphibolite facies conditions. Phase equilibrium modelling in the NCKFMMnASH system yields peak metamorphic conditions of c. 620 °C at 8 kbar. Growth conditions of garnet-I core modelled in the NCKFMMnASH system are c. 570 °C at 9.7 kbar. Chemical Th-U-total Pb monazite dating has been performed. Preliminary dating results from the kyanite-garnet gneiss of the Kåfjord Nappe yield an array of dates from 468 Ma to 404 Ma. There is a correlation between an increase of yttrium content and decrease of monazite single dates. Compositional maps confirm an increase of yttrium towards the rim of the monazite. This work is partially funded by AGH research grant no 11.11.140.319. References: Dangla, P., Damange, J. C., Ploquin, A., Quarnadel, J. M., Sonet, J., 1978. Donn'es geochronlogiques sur les Caledonides Scandinaves septentrionates (Troms, Norway du Nord). C. r. Acad. Sci. Paris, 286 D, 1653-1656. Holdaway, M. J., 2001. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86(10), 1117-1129. Wu, C. M., 2015. Revised empirical garnet-biotite-muscovite-plagioclase geobarometer in metapelites. Journal of Metamorphic Geology, 33(2), 167-176.

  12. Characteristics and genesis of Rare Earth Element (REE) in western Indonesia

    NASA Astrophysics Data System (ADS)

    Handoko, A. D.; Sanjaya, E.

    2018-02-01

    Rare Earth Element (REE) has unique properties that have been used in many hightech applications. The demand of REE increased recently in the world due to its special properties. Although REE concentration in the crust is higher than gold, economically viable deposits are still rare. Reduction of REE exports by China cause increased prices of REE. Due to this condition, exploration of potential REE mines emerged. Indonesia also participates in this phenomenon, and explore the possibility of REE mines in its area. This review will discuss the characteristics and genesis of REE and its occurrence in western Indonesia; focused in Sumatera, Tin Island, and Kalimantan. The review is done based on literature research from several resources about characteristics of rare earth element in general and in the given area. The research shows that the potential REE mines can be found in several different locations in Indonesia, such as Tin Island, Sumatera, and Kalimantan. Most of them are composed of monazite, zircon, and xenotime as rare earth minerals. Monazite iss known for its elevated number of radioactive elements, so study about radioactive content and more environment friendly ore processing becomes compulsory.

  13. Metamorphism and magmatism in the western East European Craton: implications for 1.84 to 1.45 Ga evolution in Lithuania

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Baginski, Boguslaw; Bogdanova, Svetlana; Whitehouse, Martin

    2010-05-01

    The western East European Craton (EEC) was formed by the accretion of distinct terrains at c. 1.8 Ga. Some boundaries between particular terrains and their continuation across the Baltic Sea from Lithuania to Sweden have to be justified. Recently obtained numerous U-Pb zircon ages from the Siupariai 3 (Sp3), Palukne 1 (Pl1) charnockites, Rukai 1 (Rk1), Geluva 99 (Gl99) granitoids, Bliudziai 150 (Bl150), Lauksargiai (Lk2, 5) and Pociai 3(Pc3) granulites determined using a Cameca ims1270 instrument of the Nordic high-resolution ion-microprobe facility (NORDSIM), as well as monazites of the Sp3, Pl1, Vydmantai 1 (Vd1) charnockites, Lk2, 5, Bl150 granulites dated by Cameca SX-100 electron microprobe (EPMA dating) at University of Warsaw allowed to reconstruct terrain boundaries from north to south in western Lithuania and a sequence of crust-forming events. In the north, the slightly deformed, coarse-grained Sp3, Pl1 and Vd1 (Claesson et al., 2001) charnockitoids crystallized in the time span of c. 1.84-1.81 Ga. The magmatic zircons contain a few c. 2.4-2.0 Ga inherited cores. The rocks were deformed and thermally reworked immediately after their crystallization as indicated by c. 1.79-1.74 Ga zircons and c. 1.85-1.76 Ga high-Y monazites, but the major metamorphism they underwent not earlier than c. 1.70 Ga. Thick zircon rims and rounded sector-zoned metamorphic zircons of c. 1.70 Ga likely grew together with peak garnet at 800o C, 7 kbar (Sp3) or 760o C and 6.5 kbar (Pl1). Numerous 1.62-1.56 Ga monazites recorded decompression to 2 kbar and cooling to 500o C in Sp3, mostly cooling to 450o C (at 4 kbar) in Pl1, and isothermal decompression from 650o C at 7 kbar to 500o C at 3 kbar in Vd1. In the south, the Bl150, Lk2, 5 and Pc 3 metasedimentary granulites containing a wide age range (3.0 to 1.85 Ga) of detrital zircons were deposited not earlier than 1.89 Ga. An incipient metamorphism started with the growth of relatively high-Y monazite (Y>3%) at 1.84-1.83 Ga, however a peak of 850o C at 9-10 kbar was likely achieved c. 1.80 Ga ago as indicated by metamorphic zircon (Lk2), and confirmed with 1.81-1.79 Ga monazite. Two isobaric cooling steps after the peak may be attributed to the two episodes of monazite growth at 1.72-1.70 and 1.63-1.62 Ga (Bl150) or at 1.70-1.64 Ga (Lk2, 5). The Rusne 1 tonalites intruded the metasedimentary granulites at c. 1.81 Ga (Claesson et al., 2001). To sum up, the 1.84-1.81 charnockitic magmatism in northwestern Lithuania can be correlated with TIB 0 magmatism in south-central Sweden and may be attributed to an active continental margin as well. This indicates a terrane boundary in west Lithuania earlier not recognized. The c. 1.81 Ga granitic magmatism and c. 1.81 -1.76 Ga metamorphism are related to major accretion of the western EEC when a volcanic island arc, which is identified in NE Poland, southern and central Lithuania in the present south (Wiszniewska et al., 2005), possibly collided with the continental margin in the north. The 1.70-1.60 Ga metamorphic events can reflect a distal influence of the 1.7-1.6 Ga Gothian orogeny in SW Fennoscandia (e.g. Ahall and Connelly, 2008). The 1.55-1.45 Ga AMCG magmatism, c. 1.56 Ga metamorphism and deformation of charnockites can be manifestations of the Danopolonian orogeny, particularly prominent around the South Baltic Sea. This is a contribution to the project "The Precambrian structure of Baltica as a control of its recent environment and evolution" of the Visby Programme (the Swedish Institute), Lithuanian Science and Study Foundation and SYNTHESYS project SE-TAF-1535. References Ahall, K.I. and Connelly, J.N., 2008. Precambrian Research, 161(3-4): 452-474. Claesson, S., et al., Tectonophysics, 339 (1-2), 1-18. Wiszniewska et al., 2005, 104-108, Scientific Communications, Warsaw.

  14. Over 400 m.y. metamorphic history of the Fennoscandian lithospheric segment in the Proterozoic (the East European Craton)

    NASA Astrophysics Data System (ADS)

    Skridlaite, G.; Bogdanova, S.; Taran, L.; Baginski, B.; Krzeminska, E.; Wiszniewska, J.; Whitehouse, M.

    2009-04-01

    Several Palaeoproterozoic terranes in the Fennoscandian lithospheric segment of the East European Craton (EEC) evolved differently prior to their final amalgamation at c. 1.8 Ga. South-westward younging of the major tectono-thermal events characterizes the Baltic -Belarus region between the Baltic and Ukrainian Shields of the EEC. While at c.1.89-1.87 Ga and 1.85-1.84 Ga rocks of some northern and eastern terranes (Estonia, Belarus and eastern Lithuania) experienced syncollisional, moderate P metamorphism, subduction-related volcanic island arc magmatism still dominated southwestern terranes in Lithuania and Poland. The available age determinations of metamorphic zircon (SIMS/NORDSIM and TIMS methods, Stockholm, SHRIMP method, RSES, ANU, Canberra) and metamorphic monazite (TIMS, Stockholm and EPMA method, Warsaw University) allow to distinguish several metamorphic events related to major orogenic processes: - 1.90-1.87 Ga amphibolite-facies H/MP metamorphism occurred along with emplacements of juvenile TTG-type granitoids in the North Estonian and Lithuanian-Belarus terranes. They are coeval with the main accretionary growth of the crust in the Svecofennian Domain in the Baltic Shield (e.g. Lahtinen et al., 2005). - 1.84-1.79 Ga high-grade metamorphism affected sedimentary and igneous rocks in almost all the terranes and is assumed to have been related to the major aggregation of the EEC (Bogdanova et al, 2006, 2008). In the metasedimentary granulites of western Lithuania, a prograde metamorphism commenced with monazite growth prior garnet at 1.84-1.83 Ga. The sediments and mafic igneous rocks in Lithuania, felsic igneous rocks in NE Poland underwent peak metamorphism and deformation at 1.81-1.79 Ga (zircon and monazite ages). The 1.83-1.79 Ga metamorphism has the same age as a metamorphic imprint and strong shearing of the crust in central Sweden (Andersson et al., 2004). The postcollisional granulite metamorphism of mafic intrusions at 1.80-1.79 Ga in Belarus indicates that the NW-SE collision can have triggered the crustal/mantle disturbance along the Fennoscandia-Sarmatia suture zone. - c. 1.7-1.6 Ga moderate PT metamorphic overprint and deformation of 1.83-1.82 Ga magmatic charnockites and c. 1.8 Ga metamorphic granulites in western Lithuania was recorded by the growth of a new garnet, zircon and monazite. The dated charnockites and metasediments contain metamorphic monazite of both 1.60-1.59 Ga and 1.7-1.65 Ga ages. These metamorphic events can reflect a distal influence of the 1.7-1.6 Ga Gothian orogeny in SW Fennoscandia (e.g. Ahall and Connelly, 2008). - 1.55-1.50 and 1.50-1.45 Ga events. In southern Lithuania, the 1.53-1.50 Ga AMCG magmatism was accompanied by high-grade metamorphism. Deformation and amphibolite facies metamorphism are marked by the 1.55-1.45 Ga 40Ar/39Ar ages of hornblende along EW-trending lineaments in central and southeastern Lithuania and Belarus. There are also indications of shearing and low grade, c. 1.50 Ga, metamorphism of metasedimentary rocks and charnockites in NW Lithuania and NE Poland. Altogether, the coeval AMCG magmatism, local high-grade and widespread low-grade metamorphism, and deformation can be manifestations of the Danopolonian orogeny, particularly prominent around the South Baltic Sea. This is a contribution to the project "The Precambrian structure of Baltica as a control of its recent environment and evolution" of the Visby Programme (the Swedish Institute) and SYNTHESYS project SE-TAF-1535. References Ahall, K.I. and Connelly, J.N., 2008. Precambrian Research, 161(3-4): 452-474. Andersson, U.B. et al., 2004, GFF 126, 16-17. Bogdanova, S. et al., 2006, Geological Society, London Memoirs, 32, pp. 599-628 Bogdanova, S. et al., 2008, Precambrian Research 160, 23-45. Lahtinen, R., et al., 2005. In: Precambrian Geology of Finland - Key to the Evolution of the Fennoscandian Shield. Elsevier, Amsterdam, 481-532

  15. In situ U-Th-Pb ages of the Miaoya carbonatite complex in the South Qinling orogenic belt, central China

    NASA Astrophysics Data System (ADS)

    Ying, Yuancan; Chen, Wei; Lu, Jue; Jiang, Shao-Yong; Yang, Yueheng

    2017-10-01

    The Miaoya carbonatite complex in the South Qinling orogenic belt hosts one of the largest rare earth element (REE)-Nb deposits in China that is composed of carbonatite and syenite. The emplacement age of the complex and the geochronological relationship between the carbonatite and syenite have long been debated. In this study, in situ U-Th-Pb ages have been obtained for the constituent minerals zircon, monazite and columbite from carbonatite and syenite of the Miaoya complex, together with their chemical and isotopic compositions. In situ trace element compositions for zircon from carbonatite and syenite are highly variable. The zircon displays slightly heavy REE (HREE)-enriched chondrite-normalized patterns with no Eu anomaly and various light REE (LREE) contents. In situ Th-Pb dating for zircon from the Miaoya complex by laser ablation ICP-MS yields ages of 442.6 ± 4.0 Ma (n = 53) for syenite and 426.5 ± 8.0 Ma (n = 23) for carbonatite. Monazite from carbonatite and syenite shows similar chondrite-normalized REE patterns and yields a consistent Th-Pb age of 240 Ma. Based on petrographic and chemical composition, columbite from the carbonatite can be identified into two groups. The columbite dispersed within carbonatite is characterized by slightly LREE-enriched chondrite-normalized REE patterns, whereas columbite associated with apatite is characterized by LREE-depleted trends. Columbite has been further determined to have a weighted mean 206Pb/238U age of 232.8 ± 4.5 Ma (n = 9) using LA-ICP-MS. Detailed geochronological and chemical investigations suggest that there were two major episodes of magmatic/metasomatic activities in the formational history of the Miaoya carbonatite complex. The early alkaline magmatism emplaced in the Silurian was related to the opening of the Mianlue Ocean, whereas the late metasomatism or hydrothermal overprint occurred during the Triassic South Qinling orogeny. The latter serves as the major ore formation period for both REE (e.g., monazite) and Nb (e.g., columbite).

  16. A Raman and Infrared Spectroscopic Study of Anglesite at High Pressures

    NASA Astrophysics Data System (ADS)

    Sawchuk, K. L. S.; Vennari, C.; O'Bannon, E. F., III; Williams, Q.

    2016-12-01

    Raman and infrared spectra of the barite-structured lead sulfate, anglesite (PbSO4), were collected to 40 GPa and 300 K. Our particular interest in this compound is oriented towards determining what post-barite structures sulfates in the deep earth sulfur cycle might ultimately convert to at high pressures. Additionally, the study of ABX4 materials has applications to materials science that include their usage as scintillation detectors, and PbSO4 has been demonstrated to have non-linear optical properties. Measurements were made of the internal modes of the SO4 group that lie between 400 and 1200 cm-1 and lattice vibrations that occur between 50 and 250 cm-1. In accord with previous Raman work of Lee et al. (WJCMP, 2012), two phase transitions initiate at 13 and 23 GPa which are reversible on decompression. The 13 GPa transition is subtle and involves splitting of a few modes, particularly the SO4 tetragonal stretching and bending-derived Raman and associated infrared modes. This transition likely goes to a structure with a greater degree of Davydov splitting between corresponding Raman- and infrared-active vibrations, which may indicate a greater distortion of the SO4 tetrahedra. The transition at 23 GPa is a major, sluggish, transition that causes splitting and/or shifting in all observed Raman and infrared modes. These new peaks are lower in frequency and become the sole spectral features by 42 GPa suggesting a higher symmetry structure than previously inferred. It appears that this transition involves a coexistence of phases until the transition is ultimately complete around 42 GPa. Based on the structural systematics of ABX4 phases and factor group analysis, it is likely the structure goes to the monazite structure at high pressures, but that this transition required marked overpressurization to occur at 300K. The accessing of this monazite-like phase is in general accord with systematics of high-pressure transitions in ABX4 phases, and indicates that monazite-structured polymorphs may be anticipated within subducted high-pressure sulfates within Earth's mantle.

  17. Did Oligocene crustal thickening precede basin development in northern Thailand? A geochronological reassessment of Doi Inthanon and Doi Suthep

    NASA Astrophysics Data System (ADS)

    Gardiner, Nicholas J.; Roberts, Nick M. W.; Morley, Christopher K.; Searle, Michael P.; Whitehouse, Martin J.

    2016-01-01

    The Doi Inthanon and Doi Suthep metamorphic core complexes in northern Thailand are comprised of amphibolite-grade migmatitic gneisses mantled by lower-grade mylonites and metasedimentary sequences, thought to represent Cordilleran-style core complexes exhumed through the mobilization of a low-angle detachment fault. Previous studies have interpreted two metamorphic events (Late Triassic and Late Cretaceous), followed by ductile extension between the late Eocene and late Oligocene, a model which infers movement on the detachment at ca. 40 Ma, and which culminates in a rapid unroofing of the complexes in the early Miocene. The Chiang Mai Basin, the largest such Cenozoic Basin in the region, lies immediately to the east. Its development is related to the extension observed at Doi Inthanon and Doi Suthep, however it is not definitively dated, and models for its development have difficulty reconciling Miocene cooling ages with Eocene detachment movement. Here we present new in-situ LA-ICP-MS and SIMS U-Pb age data of zircon and monazite grains from gneiss and leucogranite samples taken from Doi Inthanon and Doi Suthep. Our new zircon data exhibit an older age range of 221-210 Ma, with younger ages of ca. 72 Ma, and 32-26 Ma. Our monazite data imply an older age cluster at 83-67 Ma, and a younger age cluster of 34-24 Ma. While our data support the view of Indosinian basement being reworked in the Cretaceous, they also indicate a late Eocene-Oligocene tectonothermal event, resulting in prograde metamorphism and anatexis. We suggest that this later event is related to localized transpressional thickening associated with sinistral movement on the Mae Ping Fault, coupled with thickening at the restraining bend of the Mae Yuan Fault to the immediate west of Doi Inthanon. Further, this upper Oligocene age limit from our zircon and monazite data would imply a younger Miocene constraint on movement of the detachment, which, when combined with the previously recorded Miocene cooling ages, has implications for a model for the onset of extension and subsequent development of the Chiang Mai Basin in the early mid-Miocene.

  18. Exhumation rates in the Gran Paradiso Massif (Western Alps) constrained by in situ U-Th-Pb dating of accessory phases (monazite, allanite and xenotime)

    NASA Astrophysics Data System (ADS)

    Manzotti, Paola; Bosse, Valérie; Pitra, Pavel; Robyr, Martin; Schiavi, Federica; Ballèvre, Michel

    2018-03-01

    Exhumation rates for high-pressure metamorphic rocks need to be carefully estimated to decipher tectonic processes in subduction/collision belts. In the Gran Paradiso Massif (Western Alps), the Money Unit crops out as a tectonic window below the Gran Paradiso Unit. According to previous studies, the Gran Paradiso and Money Units reached peak pressure conditions at 18 to 20 kbar, 480-520 °C and 17 to 18 kbar, 500-550 °C, respectively. This yields a maximum difference of 9 to 10 km in the subduction depth reached by these two units during the Alpine history. Thrusting of the Gran Paradiso Unit over the Money Unit led to the simultaneous development of the main foliation under the same metamorphic conditions ( 12.5 to 14.5 kbar and 530-560 °C) in both units. The thrust contact was subsequently folded and then both units were exhumed together. The relative timing of the growth and dissolution of the accessory phases was assessed by combining thermodynamic modelling with inclusion, textural and chemical (major and trace element) data from both major and accessory phases. The age of monazite constrained the high-pressure metamorphism in both the Gran Paradiso Unit and the Money Unit at 41.5 ± 0.3 and 42.0 ± 0.6 Ma, respectively. Allanite replacing monazite in the matrix has been dated at 32.7 ± 4.2 Ma. The late growth of xenotime associated with the crystallization of biotite pseudomorphs at the expense of garnet (at about 10 kbar) was dated at 32.3 ± 1.0 Ma. Our petrochronological data indicate about 10 m.y. between the peak pressure conditions and the crystallization of xenotime leading to an exhumation rate of the order of 2.2-5 mm/year. The new ages allow to better constrain the timing of the displacement of the thrust defining the lower boundary of the extruding wedge of eclogite-facies rocks.

  19. High spatial resolution U-Pb geochronology and Pb isotope geochemistry of magnetite-apatite ore from the Pea Ridge iron oxide-apatite deposit, St. Francois Mountains, southeast Missouri, USA

    USGS Publications Warehouse

    Neymark, Leonid; Holm-Denoma, Christopher S.; Pietruszka, Aaron; Aleinikoff, John N.; Fanning, C. Mark; Pillers, Renee M.; Moscati, Richard J.

    2016-01-01

    The Pea Ridge iron oxide-apatite (IOA) deposit is one of the major rhyolite-hosted magnetite deposits of the St. Francois Mountains terrane, which is located within the Mesoproterozoic (1.5–1.3 Ga) Granite-Rhyolite province in the U.S. Midcontinent. Precise and accurate determination of the timing and duration of oreforming processes in this deposit is crucial for understanding its origin and placing it within a deposit-scale and regional geologic context. Apatite and monazite, well-established U-Pb mineral geochronometers, are abundant in the Pea Ridge orebody. However, the potential presence of multiple generations of dateable minerals, processes of dissolution-reprecipitation, and occurrence of micrometer-sized intergrowths and inclusions complicate measurements and interpretations of the geochronological results. Here, we employ a combination of several techniques, including ID-TIMS and high spatial resolution geochronology of apatite and monazite using LA-SC-ICPMS and SHRIMP, and Pb isotope geochemistry of pyrite and magnetite to obtain the first direct age constraints on the formation and alteration history of the Pea Ridge IOA deposit. The oldest apatite TIMS 207Pb*/206Pb* dates are 1471 ± 1 and 1468 ± 1 Ma, slightly younger than (but within error of) the ~1474 to ~1473 Ma U-Pb zircon ages of the host rhyolites. Dating of apatite and monazite inclusions within apatite provides evidence for at least one younger metasomatic event at ~1.44 Ga, and possibly multiple superimposed metasomatic events between 1.47 and 1.44 Ga. Lead isotop analyses of pyrite show extremely radiogenic 206Pb/204Pb ratios up to ~80 unsupported by in situ U decay. This excess radiogenic Pb in pyrite may have been derived from the spatially associated apatite as apatite recrystallized several tens of million years after its formation. The low initial 206Pb/204Pb ratio of ~16.5 and 207Pb/204Pb ratio of ~15.4 for individual magnetite grains indicate closed U-Pb system behavior in this mineral and are consistent with derivation of the Pb from a mantle-like source.

  20. Th-U-total Pb Geochronology of Authigenic Monazite Near the top of the Sturtian-Marinoan Interglacial, Adelaide Rift Complex, South Australia

    NASA Astrophysics Data System (ADS)

    Mahan, K. H.; Wernicke, B. P.; Jercinovic, M. J.

    2007-12-01

    The Adelaide Rift Complex in South Australia contains the type sections for Sturtian and Marinoan glacial deposits. The litho- and chemostratigraphy of these deposits play a central role in evaluating global Neoproterozoic ice age hypotheses ("snowball Earth") and Rodinia supercontinent reconstructions, but precise ages on igneous units do not yet exist. We report preliminary results of in situ Th-U-total Pb electron microprobe dating of monazite in sandstones within the Holowilena Ironstone ("older" Sturtian glacial at Enorama Creek) and at the top of the Enorama Shale (youngest pre-Marinoan, interglacial clastics at Elatina Creek). Several distinct populations are recognized. First, rounded cores with high Th, U, and Y + HREE abundances are interpreted as igneous or metamorphic detrital grains and yield ca. 1590 Ma, ca. 1280-1300 Ma, and ca. 1040 Ma dates related to well-known orogenic events in surrounding cratonic regions. A second group also occurs as "cores" but contains significantly lower U and Y + HREE, characteristics that may be indicative of an authigenic origin. Some rounded domains may represent "recycled" authigenic grains and yield dates of ca. 880 Ma and ca. 760 Ma. However, a subset observed in the Enorama sample occurs as very small (~2 x 10 microns), euhedral lathes that are unlikely to have survived a detrital history and yield a date of 680 +/-23 Ma. The youngest population forms very low Th and U, inclusion-rich overgrowths with ca. 500 Ma dates (Delamerian Orogeny) that probably grew hydrothermally. The recognition of "recycled" authigenic monazite further emphasizes the detail in textural and petrological documentation that is required for accurate geochronological interpretations. The date of 680 +/-23 Ma (1) provides an estimate for the age of the base of the Trezona carbon isotopic anomaly just beneath the Marinoan glacial deposits, (2) provides an absolute minimum age constraint on the underlying Sturtian glacial deposits, and (3) is confirming of proposed correlations between type Marinoan deposits and precisely dated glacial deposits in Namibia and China.

  1. Les minéraux accessoires des granitoïdes de la suite taourirt, Hoggar (Algérie): conséquences pétrogénétiques

    NASA Astrophysics Data System (ADS)

    Azzouni-Sekkal, Abla; Bonin, Bernard

    1998-01-01

    The post-Pan-African 'taourirt' suite of Hoggar (Algeria) is made up by themagmatic suite: G I monzogranite, G IIa monzogranite+syenogranite, G IIb subsolvus alkali feldspar granite (alaskite), GIII hypersolvus alkali feldspar syenite + granite. Silicates (zircon, thorite, allanite, chevkinite, titanite), oxides (magnetite, ilmenite, fergusonite) and phosphates (apatite, monazite), often abundant, constitute various accessory mineral associations. Crystal morphology, place in the sequence of crystallisation and mineral chemistry change as a function of parageneses. The constant titanite + magnetite + ilmenite assemblage in G I and G II rocks illustrates more oxidising conditions than in G III group, where hedenbergite + magnetite + ilmenite coexist. Two groups of accessory minerals are distinguished: (1) LREE rich (3×10 4 to 3×10 5 × chondrites) and Y rich (50 to 10 4 × chondrites), such as allanite, chevkinite and monazite, (2) LREE poor (100 to 10 4 × chondrites) and Y rich (1000 to 10 5 × chondrites), such as zircon, thorite, titanite and fergusonite. Shapes of chondrite-normalised patterns and evolutionary trends of REE, as well as of other HFSE, such as Nb, Zr, U and Th, in bulk rocks are dependent on relative abundances of the different accessory minerals.

  2. Age of metamorphic events : petrochronology and hygrochronology

    NASA Astrophysics Data System (ADS)

    Bosse, Valerie; Villa, Igor M.

    2017-04-01

    Geodynamic models of the lithosphere require quantitative data from natural samples. Time is a key parameter: it allows to calculate rates and duration of geological processes and provides informations about the involved physical processes (Vance et al. 2003). Large-scale orogenic models require linking geochronological data with other parameters: structures, kinematics, magmatic and metamorphic petrology (P-T-A-X conditions), thermobarometric evolution of the lithosphere, chemical dynamics (Muller, 2003). This requires geochronometers that are both powerful chemical and petrological tracers. In-situ techniques allow dating a mineral in its petrological-microstructural environment. Getting a "date" has become quite easy... But what do we date in the end ? What is the link between the numbers obtained from the mass spectrometer and the age of the metamorphic event we are trying to date ? How can we transform the date into a geological meaningful age ? What do we learn about the behavior of the geochronometer minerals? Now that we can perform precise dating on very small samples directly in the studied rock, it is important to improve the way we interpret the ages to give them more pertinence in the geodynamic context. We propose to discuss the Th/U/Pb system isotopic closure in various metamorphic contexts using our published examples of in situ dating on monazite and zircon (Bosse et al. 2009; Didier et al. 2014, 2015). The studied examples show that (i) fluid assisted dissolution-precipitation processes rather than temperature-dependent solid diffusion predominantly govern the closure of the Th/U/Pb system (ii) monazite and zircon are sensitive to the interaction with fluids of specific composition (F, CO2, K ...), even at low temperature (iii) in the absence of fluids, monazite is able to record HT events and to retain this information in poly-orogenic contexts or during partial melting events (iv) complex chemical and isotopic zonations, well known in monazite, reflect the interaction with the surrounding mineral assemblages. An often neglected observation is that the K-Ar chronometer minerals show similar patterns of isotopic inheritance closely tied to relict patches and heterochemical retrogression phases (Villa and Williams 2013). Isotopic closure in the U-Pb and K-Ar systems follows the same principle: thermal diffusion is very slow, dissolution and reprecipitation are several orders of magnitude faster. This means that both U-Pb and K-Ar mineral chronometers are hygrochronometers. The interpretation of the ages of the different domains cannot be decoupled from the geochemical and petrological context. The focus on petrology also requires, following Villa (1998, 2016), that the ages measured in metamorphic rocks no longer can be used in geodynamic models according to the "closure temperature" concept as originally defined by Dodson (1973). Bosse et al. (2009) Chem Geol 261: 286 Didier et al. (2014) Chem Geol 381: 206 Didier et al. (2015) Contrib Mineral Petrol 170: 45 Dodson (1973) Contrib Mineral Petrol 40: 259 Muller (2003) EPSL, 206: 237 Villa (1998) Terra Nova 10: 42 Villa (2016) Chem Geol 420: 1 Villa & Williams (2013) In: Harlov & Austrheim (eds.), Metasomatism and the Chemical Transformation of Rock. Springer, p171

  3. U-Th-PbT Monazite Gechronology in the South Carpathian Basement: Variscan Syn-Metamorphic Tectonic Stacking and Long-Lasting Post-Peak Decompressional Overprints

    NASA Astrophysics Data System (ADS)

    Săbău, G.; Negulescu, E.

    2012-12-01

    Dating metamorphic events appears to be unsatisfactorily addressed by most of the widely-employed and otherwise accurate and productive isotopic techniques, because the phases and systems investigated do not directly relate to the metamorphic events themselves. An adequate answer to this challenge is instead provided by microprobe-assisted chemical U-Th-PbT monazite geochronology, by its spatial resolution, truly in situ character and the possibility to reference analyses against well-defined textural environments and features, as well as a qualitative timeframe derived therefrom. Though chemical U-Th-PbT monazite geochronology is increasingly applied to seek answers ranging form a general characterization to fine details of the thermotectonic evolution of magmatic and metamorphic rocks, there are so far, unlike in the case of isotopic geochronological methods, no clearly defined standard analytical and data processing protocols. Two main reasons for this have to be mentioned, namely that chemical U-Th-PbT chronology is actually a proxy for isotopic geochronology, and the quantification of the errors and their propagation cannot be directly assessed because apparent ages are related to the measured element concentrations by an implicit function, the law of radioactive decay. Current approaches rely on treating calculated individual age values as primary data, a priori grouping of analyses supposed (and subsequently tested) to be coeval, and their statistical processing in order to obtain age values. An alternative approach we applied in basement units of the South Carpathians consists in an explicit approximation of the age formula and associated errors propagated from element concentrations to age values, and individual treatment of each age datum. The separation of the age clusters from the overall age spectrum of each sample was operated by tracing the variations of the normalized age gradient on the age spectrum sorted by increasing age values, and fine-tuned by comparison with the general probability function calculated from all individual age and error values. Monazite chemical compositions and variations, in connection with the textural and zonal setting of the analyzed spots, were used to estimate the geological relevance of the derived age clusters, along with inter-sample comparisons anchored on granitoid samples displaying well-expressed age plateaus, conspicuously related to consolidation and emplacement ages. The resultant ages are consistent with sandwiching of juvenile Variscan metamorphic units and slivers of reworked older basement fragments in structurally coherent sequences, formed by syn/late-metamorphic tectonic stacking. Differential exhumation and ensuing areal or local lower pressure overprinting initiated in early Permian lasted up until the Late Jurassic. The age distribution of the pervasive metamorphic overprints, in consistency with the variation of the metamorphic conditions recorded, requires a partial revision and an iterative adjustment between determined ages and metamorphic features, and the lithostratigraphic separations operated in several basement units of the South Carpathians. Acknowledgements Grant PN-II-ID-PCE-2011-3-0030 by the Romanian Executive Unit for Financing Higher Education, Research, Development and Innovation (UEFISCDI)

  4. A mineral separation procedure using hot Clerici solution

    USGS Publications Warehouse

    Rosenblum, Sam

    1974-01-01

    Careful boiling of Clerici solution in a Pyrex test tube in an oil bath is used to float minerals with densities up to 5.0 in order to obtain purified concentrates of monazite (density 5.1) for analysis. The "sink" and "float" fractions are trapped in solidified Clerici salts on rapid chilling, and the fractions are washed into separate filter papers with warm water. The hazardous nature of Clerici solution requires unusual care in handling.

  5. REE Mineralization in Kiruna-type Magnetite-Apatite Ore Deposits: Magmatism and Metasomatism

    NASA Astrophysics Data System (ADS)

    Harlov, D. E.

    2015-12-01

    Magnetite-apatite ore bodies of the Kiruna type occur worldwide and are generally associated with volcanic rocks or volcanism. They also show strong evidence of extensive metasomatism over a wide P-T range. Notable examples include the Kiirunavaara ore body, northern Sweden (Harlov et al., 2002, Chem. Geol., 191, 47-72); the Grängesberg ore body, central Sweden (Jonsson et al., 2010, NGF abstracts, vol 1, 88-89); the Mineville ore body, Adirondacks, New York, USA (McKeown and Klemc, 1956, U.S. Geol Sur Bull (1956), pp. 9-23); the Pea Ridge ore body, SE Missouri, USA (Kerr, 1998, MS Thesis, Univ. Windsor, Windsor, Ontario, Canada 113 pp); the Jurassic Marcona ore body in south-central Peru (Chen et al., 2010, Econ Geol, 105, 1441-1456); and a collection of ore bodies from the Bafq Region, central Iran (Daliran et al., 2010, Geol. Assoc. Canada, Short Course Notes, v. 20, p.147-159). In these ore bodies, low Th and U monazite, xenotime, allanite, REE carbonates, and/or REE fluorides are commonly associated with the apatite as inclusions, rim grains, or as independent grains in the surrounding mineral matrix. High contrast BSE imaging, coupled with EMPA and LA-ICPMS, indicates that the apatite has experienced fluid-induced alteration in the form of (Y+REE) + Na + Si + Cl depletion implying that it served as the source for the (Y+REE) (e.g. Kiirunavaara, northern Sweden; Harlov et al., 2002). Formation of monazite and xenotime associated with fluorapatite, as inclusions or rim grains, has experimentally been demonstrated to originate from the fluorapatite as the result of fluid-aided, coupled dissolution-reprecipitation processes (Harlov et al., 2005, Contrib. Mineral. Petrol. 150, 268-286). This is explains the low Th and U content of the monazite and xenotime. Fluid sources could range from 700-900 °C, residual, acidic (HCl, H2HSO4) grain boundary fluids, remaining after the last stages of ore body crystallization, to later stage, cooler (< 600 °C) (H2O-CO2-(Na,K)Cl) fluids originating in the surrounding country rock or as fluids associated with metamorphic events such as regional albitization or actinolization. The abundance of (Y+REE)-bearing minerals in these deposits suggests that in addition to being mined for their Fe ore, they could also be economically mined for (Y+REE) as well.

  6. International strategic minerals inventory summary report; rare-earth oxides

    USGS Publications Warehouse

    Jackson, W.D.; Christiansen, Grey

    1993-01-01

    Bastnaesite, monazite, and xenotime are currently the most important rare-earth minerals. Bastnaesite occurs as a primary mineral in carbonatites. Monazite and xenotime also can be found in primary deposits but are recovered principally from heavy-mineral placers that are mined for titanium or tin. Each of these minerals has a different composition of the 15 rare-earth elements. World resources of economically exploitable rare-earth oxides (REO) are estimated at 93.4 million metric tons in place, composed of 93 percent in primary deposits and 7 percent in placers. The average mineral composition is 83 percent bastnaesite, 13 percent monazite, and 4 percent of 10 other minerals. Annual global production is about 67,000 metric tons of which 41 percent is from placers and 59 percent is from primary deposits; mining methods consist of open pits (94 percent) and dredging (6 percent). This output could be doubled if the operations that do not currently recover rare earths would do so. Resources are more than sufficient to meet the demand for the predictable future. About 52 percent of the world's REO resources are located in China. Ranking of other countries is as follows: Namibia (22 percent), the United States (15 percent), Australia (6 percent), and India (3 percent); the remainder is in several other countries. Conversely, 38 percent of the production is in China, 33 percent in the United States, 12 percent in Australia, and 5 percent each in Malaysia and India. Several other countries, including Brazil, Canada, South Africa, Sri Lanka, and Thailand, make up the remainder. Markets for rare earths are mainly in the metallurgical, magnet, ceramic, electronic, chemical, and optical industries. Rare earths improve the physical and rolling properties of iron and steel and add corrosion resistance and strength to structural members at high temperatures. Samarium and neodymium are used in lightweight, powerful magnets for electric motors. Cerium and yttrium increase the density and heat resistance of sintered ceramics. Yttrium and gadolinium contribute to the efficiency of electronic switches and sensors. Cerium improves the effectiveness of catalysts in the petroleum and automotive industries. Cerium oxides speed glass melting and are used to polish glass by chemical, rather than mechanical, means. Cerium, europium, terbium, and yttrium, as phosphoric compounds, promote the vivid colors of television screens. Consumption of rare earths is expected to grow by about 2.6 percent per year.

  7. REE mobility during the alteration of Carbonatite and their economic potential.

    NASA Astrophysics Data System (ADS)

    Marien, Christian; Dijkstra, Arjan; Wilkins, Colin

    2016-04-01

    The supply risk of Rare Earth Elements is an unpredictable economic factor for the future application and development of modern technology for the EU. Therefore a better understanding of REE mobilisation during hydrothermal alteration of Carbonatites is essential for a safer supply of REE in general. The hydrothermal alteration of Carbonatite within the Fen Complex (Norway) forms a fine grained red hematized rock type, called Rødbergite, which is partially enriched in REE. The variation of REE within the Rødbergite is poorly understood and problematic for any future REE exploitation from Rødbergite. A genetic model of the formation of Rødbergite will provide more information about the economic potential of Rødbergite. The gradual transformation of carbonatite to Rødbergite is not easily observable due to sparse outcrop in the Fen Complex. A fresh road cut near the Bjørndallen farm (Fen Complex) provides a unique insight to the progressive hydrothermal alteration from carbonatite to Rødbergite and is therefore crucial for a genetic model of the formation of Rødbergite. 14 Samples were taken along the profile. The mineralogical, geochemical and textural characterization of the samples using the SEM as well as major-, trace- and isotopic elemental data revealed the breakdown of the primary minerals due to the infiltration of an oxidizing fluid along grain boundaries. The primary REE-minerals in unaltered Carbonatite are REE fluorocarbonates. With the increasing alteration to Rødbergite REE fluorocarbonates are progressively replaced by hematite. In contrast, monazite - a REE-phosphate - is the dominant REE mineral species in the Rødbergite. A transitional Rødbergite sample shows apatite aggregates with a strong preferential concentration of monazite along the rim of the apatite aggregates. This observation provides strong evidence for the solution of REE in the primary rock (carbonatite) by fluids and later precipitation of REE along phosphate bearing minerals (e.g. apatite) in order to form monazite. The latest results of the mineralogical investigation on the structural control of the REE mineralization, different generations of REE minerals and the potential concentration of REE in distinct zones in the profile, will also be presented. Future work will contribute to a better understanding of the REE mineralization process and therefore help to identify economically promising areas for a potential REE exploitation within the Fen Complex.

  8. Structurally bound sulfide and sulfate in apatite from the Philips Mine iron oxide - apatite deposit, New York, USA: A tracer of redox changes

    NASA Astrophysics Data System (ADS)

    Sadove, G.; Konecke, B.; Fiege, A.; Simon, A. C.

    2017-12-01

    Multiple competing hypotheses attempt to explain the genesis of iron oxide-apatite (IOA) ore deposits. Many studies have investigated the chemistry of apatite because the abundances of F and Cl can distinguish magmatic vs. hydrothermal processes. Recent experiments demonstrate that apatite incorporates S6+, S4+, and S2-, and that total sulfur (∑S) as well as the S6+/∑S ratio in apatite vary systematically as a function of oxygen fugacity [1], providing information about sulfur budget and redox. Here, we present results from X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge, electron microprobe analyses, cathodoluminescence (CL) imaging, and element mapping of apatite from the Philip's Mine IOA deposit, southern Adirondack Mountains, USA. The Philip's Mine apatite contains inclusions of pyrite and pyrrhotite, where the latter includes iron oxide and Ni-rich domains. The apatite also contains inclusions of monazite, and exhibits complex CL zonation coincident with variations in the abundances of REE and S. The presence of monazite fingerprints fluid-mediated dissolution-reprecipitation of originally REE-enriched apatite [2]. The S XANES spectra reveal varying proportions of structurally bound S6+ and S2-, as the S6+/∑S ratio ranges from sulfide-only to sulfate-only. Notably, sulfide-dominated domains contain higher S contents than sulfate-dominated regions. These observations are consistent with co-crystallization of apatite and monosulfide solid solution (MSS) at reducing conditions, followed by decomposition of MSS to pyrrhotite, pyrite and intermediate solid solution (ISS, which is not preserved; [3]). Metasomatism of that assemblage by an oxidized fluid resulted in formation of monazite in apatite and iron oxide domains in pyrrhotite. We conclude that the deposit formed by a H2S-Fe-rich volatile phase, possibly evolved from a rather primitive magmatic source, which is consistent with the low Ti content of magnetite. The deposit was subsequently altered by a rather oxidized SO2-poor volatile phase more typical of evolved felsic source regions. [1] Konecke et al. (2017) American Mineralogist 102-3, 548-557; [2] Harlov (2015) Elements 11-3, 171-176; [3] Edmonds & Mather (2017) Elements 13-2, 105-110.

  9. High Temperature Studies of La-Monazite

    DTIC Science & Technology

    2004-07-01

    Hay, E. Boakeye, M. D. Petry, Y. Berta, K. Von Lehmden, and J. Welch, " 5 A. Meldrum , L. A. Boatner, and R. C. Ewing, "Electron-Irradiation-Induced... Meldrum , L. A. Boatner, and R. C. Ewing, "A Comparison of Radiation Alumina-based Fiber for High Temperature Composite Reinforcement," Ceram. Eng... acid . The processing included procedures that allowed the La/P ratio to be controlled to be very close to the stoichiometric value of unity (within less

  10. Design of LaPO4:Nd3+ materials by using ionic liquids

    NASA Astrophysics Data System (ADS)

    Cybinska, J.; Guzik, M.; Lorbeer, C.; Zych, E.; Guyot, Y.; Boulon, G.; Mudring, A.-V.

    2017-01-01

    Monoclinic monazite-type Nd3+-doped lanthanum orthophosphate (LaPO4:Nd3+) nanoparticles were prepared by microwave treatment of simple lanthanide precursors such as Nd(OAc)3•xH2O, OAc = acetate) with task-specific dihydrogen phosphate ionic liquids (ILs) 1-butyl-1-methylpyrrolidinium dihydrogenphosphate- BmPyrH2PO4 (IL1) and 2-hydroxyethyl-N,N,N-trimethylammonium, [choline][H2PO4] (IL2) as the reaction medium, reactant and in-situ nanoparticle stabilizer. This synthesis route possesses many advantages as it is a fast and facile preparation method of the desired phosphate nanomaterials without the necessity for post-reaction heat treatment to obtain the anhydrous high temperature monazite phosphate phase. The nano-sized phosphors Nd3+:LaPO4 were carefully analyzed by the powder X-ray diffraction, electron microscopy and spectroscopic techniques taking advantage of the Nd3+ spectroscopic probe to analyze in detail the structural properties. Applied high resolution low temperature absorption and emission techniques allowed to complete the structural information unavailable from the XRD powder patterns. A clear influence of the used task-specific dihydrogen phosphate ILs on the structure, morphology, luminescence intensity and lifetimes of the obtained Nd3+:LaPO4 was found. It is worth noting that the Nd3+ luminescence in LaPO4 has never been reported up to now.

  11. Towards the challenging REE exploration in Indonesia

    NASA Astrophysics Data System (ADS)

    Setiawan, Iwan

    2018-02-01

    Rare earth elements (REE) are the seventeen elements, including fifteen from 57La to 71Lu, in addition to 21Sc and 39Y. In rock-forming minerals, rare earth elements typically occur in compounds as trivalent cations in carbonates, oxides, phosphates, and silicates. The REE occur in a wide range of rock types: igneous, sedimentary and metamorphic rocks. REE are one of the critical metals in the world. Their occurrences are important to supply the world needs on high technology materials. Indonesia has a lot of potential sources of REE that are mainly from residual tin mining processes in Bangka islands, which are associated with radioactive minerals e.g. monazite and xenotime. However, the REE from monazite and xenotime are difficult to extract and contain high radioactivity. Granitoids are widely distributed in Sumatra, Sulawesi, Kalimantan and Papua. They also have a very thick weathering crusts. Important REE-bearing minerals are allanite and titanite. Their low susceptibilities during weathering result an economically potential REE concentration. I-/A- type granitoids and their weathered crusts are important REE sources in Indonesia. Unfortunately, their distribution and genesis have not been deeply studied. Future REE explorations challenge are mainly of the granitoids their weathered crusts. Geochemical and mineralogical characterization of type of granitoids and their weathered crusts, the hydrothermally altered rocks, and clear REE regulation will help discover REE deposits in Indonesia.

  12. Two Tertiary metamorphic events recognized in metapelites of the Nevado-Filabride Complex (Betic Cordillera, S Spain)

    NASA Astrophysics Data System (ADS)

    Li, Botao; Massonne, Hans-Joachim

    2017-04-01

    The orogenic belt of the Betic Cordillera in southern Spain resulted from the collision of the African plate with the southwestern edge of the Eurasian plate in Alpine times. This belt can be considered as a large nappe stack with the Nevado-Filabride Complex in the eastern Betic Cordillera representing the lowest nappe, in which high-pressure (HP > 10 kbar) rocks such as eclogites occur. We have studied two metapelites from the Ragua (former Veleta) unit, which is the lowest unit of the Nevado-Filabride Complex. These rocks were sampled at Cerro de los Machos (sample 23085) and c. 3 km east of this locality at the Laguna de la Caldera (sample 23098) and contain quartz, potassic white-mica, paragonite, chlorite, garnet, biotite, tourmaline, epidote, rutile, ilmenite, apatite, zircon and monazite and titanite (23085) or calcite and albite (23098). Garnet in both rocks is similarly zoned. An inclusion-rich core shows a prograde metamorphic zonation with high and low Mn contents in the center (e.g. for 23085: Alm64.5Grs27Py2.5Sps6) and at the rim (Alm84Grs8Py6Sps2), respectively, of the core domain. After corrosion of this domain a garnet mantle formed with an inner zone being again relatively rich in Mn and an outermost rim being poor in Mn. This mantle is significantly richer in Mg and poorer in Ca compared to the core domain. Potassic white-mica in the samples also shows a considerable compositional spread (Si = 3.05-3.20 in 23085 and 3.13-3.33 in 23098) with the highest Si contents in the core of potassic white-mica grains. To elucidate the metamorphic evolution of the rocks we calculated various P-T pseudosections for different H2O-CO2 contents and Fe3+/Fe2+ ratios with PERPLE_X. On the basis of the compositions of the garnet inner core and the highest Si content in potassic white mica contrasting peak pressures at c. 535˚ C resulted for the rocks (23085: 12.8 kbar, 23098: 18.3 kbar). A subsequent pressure release to about 8 (23085) or 5 kbar (23098) at slightly enhanced temperatures followed. A second P-T loop was derived from the garnet mantle compositions reaching peak temperatures close to 600˚ C, supported by Zr-in-rutile thermometry, at pressures of about 10 kbar. Nearly 100 electron microprobe analyses of small relics of corroded monazite yielded ages between 50 and 11 Ma. Y2O3 contents in monazite were between 0 and 1 wt.%. Monazite relics included in the garnet mantle gave an average age of 24.2 ± 3.2 Ma. We suppose that the peak pressures in the HP range of the early metamorphic loop were attained already in Eocene times, whereas the rocks experienced peak temperatures in the Late Oligocene. The exhumation of the rocks in the Eocene might have happened in an exhumation channel being located between the colliding continental plates. The material in the exhumation channel consisted mainly of previously subducted oceanic crust (eclogite) and sediments deposited at the margin of the plates. The Late Oligocene event is related to nappe stacking forming the Betic Cordillera.

  13. The Fast and the Slow, the High and the Low - Investigations of Pb and He Diffusion in Accessory Minerals and Implications for Geochronology (Invited)

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.

    2009-12-01

    We have measured Pb diffusion in a range of accessory minerals over the past few decades, and have recently begun investigations of helium diffusion with a study of diffusion in apatite and zircon (Cherniak et al., 2009). In this work, we obtained the following Arrhenius relation for He diffusion in Durango fluorapatite: D = 2.10x10-6 exp( - 117 ± 6 kJ mol-1/RT) m2sec-1 In contrast to apatite, He diffusion in zircon exhibits marked anisotropy, with diffusion normal to c about two orders of magnitude slower than diffusion parallel to c. For He diffusion in zircon we determined these Arrhenius relations for diffusion normal and parallel to c: D⊥c = 2.3x10-7 exp(-146± 11 kJ mol-1/RT) 2sec-1 D∥c = 1.7x10-5 exp(-148± 17 kJ mol-1/RT)m2sec-1 As a continuation of these efforts, we have characterized diffusion of helium in natural monazite and titanite. Polished slabs of these minerals were implanted with 100 keV 3He at a dose of 5x1015 3He/cm2. Implanted monazite and titanite were annealed in Pt capsules in 1-atm furnaces for times ranging from 15 minutes to 6 weeks at temperatures from 252-600°C. 3He distributions in the minerals were measured with Nuclear Reaction Analysis using the reaction 3He(d,p)4He. For diffusion normal to (100) we obtain the following Arrhenius relation for He diffusion in monazite: D = 1.6x10-7 exp(-150 ± 11 kJ mol-1/RT) m2sec-1. Over the investigated temperature range, diffusivities are similar to those measured by Boyce et al. (2005), and fall between the values measured by Farley (2007) for diffusion in synthetic CePO4, NdPO4, SmPO4, and GdPO4. He diffusion in monazite is similar to He diffusion in zircon normal to c, and about 4 orders of magnitude slower than He diffusion in apatite (Cherniak et al., 2009). For diffusion in titanite, we obtain the Arrhenius relation: D = 8.7x10-7 exp(-143 ± 7 kJ mol-1/RT) m2sec-1. He diffusivities for titanites from two different localities are comparable, and similar to those measured in the outgassing experiments of Shuster et al. (2003). He diffusion in titanite is intermediate between He diffusion parallel and normal to c in zircon, and about 3 orders of magnitude slower than He diffusion in apatite (Cherniak et al., 2009). In this presentation, we will consider these findings in light of other determinations of He diffusion and Pb diffusion in various accessory phases, and discuss the implications of these diffusivities in interpreting thermal histories. Since He diffusion is many orders of magnitude faster than Pb diffusion, geologic conditions under which these species will be retained or lost span a broad and disparate range, with applications from surface processes to those deep in the crust. Boyce, J.W., Hodges, K.V., Olszewski, W.J., Jercinovic, M.J.(2005) G3, 6, Q12004; Cherniak, D.J., Watson, E.B., Thomas, J.B. (2009) Chem. Geol. (submitted); Farley, K.A. (2007) GCA 71, 4015-4024, Shuster, D.L., Farley, K.A., Sisterson, J.M., Burnett, D.S.(2003) EPSL 217, 19-32.

  14. Creep Behavior of Oxide/Oxide Composites with Monazite Fiber Coating at 1100 deg C in Air and in Steam Environments

    DTIC Science & Technology

    2008-09-01

    monolithic ceramics initiates at small defects formed during processing. Minimization of such defects may improve performance, but thermal shock and cyclic...fiber tows are used in CMCs, where the use of small -diameter fibers causes a reduction in scale of microstructural defects associated with the fibers [7... Small Diameter · Improves matrix strength and facilitates fab- rication of thin and complex-shaped CMCs. · Low Density · Improves CMC specific properties

  15. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1990-01-01

    This paper discusses the compositional and phase relationships among minerals in which rare earth elements (REE) occur as essential constituents (e.g., bastnaesite, monazite, xenotime, aeschynite, allanite). Particular consideration is given to the vector representation of complex coupled substitutions in selected REE-bearing minerals and to the REE partitioning between minerals as related to the acid-base tendencies and mineral stabilities. It is shown that the treatment of coupled substitutions as vector quantities facilitates graphical representation of mineral composition spaces.

  16. Advanced methods for processing ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, W.B.

    1997-04-01

    Combustion chemical vapor deposition (combustion CVD) is being developed for the deposition of high temperature oxide coatings. The process is being evaluated as an alternative to more capital intensive conventional coating processes. The thrusts during this reporting period were the development of the combustion CVD process for depositing lanthanum monazite, the determination of the influence of aerosol size on coating morphology, the incorporation of combustion CVD coatings into thermal barrier coatings (TBCs) and related oxidation research, and continued work on the deposition of zirconia-yttria coatings.

  17. Sm-Nd and U-Pb isotopic constraints for crustal evolution during Late Neoproterozic from rocks of the Schirmacher Oasis, East Antarctica: geodynamic development coeval with the East African Orogeny

    USGS Publications Warehouse

    Ravikant, V.; Laux, J.H.; Pimentel, M.M.

    2007-01-01

    Recent post-750 Ma continental reconstructions constrain models for East African Orogeny formation and also the scattered remnants of ~640 Ma granulites, whose genesis is controversial. One such Neoproterozoic granulite belt is the Schirmacher Oasis in East Antarctica, isolated from the distinctly younger Pan-African orogen to the south in the central Droning Maud Land. To ascertain the duration of granulite-facies events in these remnants, garnet Sm-Nd and monazite and titanite U-Pb IDTIMS geochronology was carried out on a range of metamorphic rocks. Garnet formation ages from a websterite enclave and gabbro were 660±48 Ma and 587±9 Ma respectively, and those from Stype granites were 598±4 Ma and 577±4 Ma. Monazites from metapelite and metaquartzite yielded lower intercept UPb ages of 629±3 Ma and 639±5 Ma, respectively. U-Pb titanite age from calcsilicate gneiss was 580±5 Ma. These indicate peak metamorphism to have occurred between 640 and 630 Ma, followed by near isobaric cooling to ~580 Ma. Though an origin as an exotic terrane from the East African Orogen cannot be discounted, from the present data there is a greater likelihood that Mesoproterozoic microplate collision between Maud orogen and a northerly Lurio-Nampula block resulted in formation of these granulite belt(s).

  18. Conventional U-Pb dating versus SHRIMP of the Santa Barbara Granite Massif, Rondonia, Brazil

    USGS Publications Warehouse

    Sparrenberger, I.; Bettencourt, Jorge S.; Tosdal, R.M.; Wooden, J.L.

    2002-01-01

    The Santa Ba??rbara Granite Massif is part of the Younger Granites of Rondo??nia (998 - 974 Ma) and is included in the Rondo??nia Tin Province (SW Amazonian Craton). It comprises three highly fractionated metaluminous to peraluminous within-plate A-type granite units emplaced in older medium-grade metamorphic rocks. Sn-mineralization is closely associated with the late-stage unit. U-Pb monazite conventional dating of the early-stage Serra do Cicero facies and late-stage Serra Azul facies yielded ages of 993 ?? 5 Ma and 989 ?? 13 Ma, respectively. Conventional multigrain U-Pb isotope analyses of zircon demonstrate isotopic disturbance (discordance) and the preservation of inherited older zircons of several different ages and thus yield little about the ages of Sn-granite magmatism. SHRIMP U-Pb ages for the Santa Ba??rbara facies association yielded a 207Pb/206Pb weighted-mean age of 978 ?? 13 Ma. The textural complexity of the zircon crystals of the Santa Ba??rbara facies association, the variable concentrations of U, Th and Pb, as well as the mixed inheritance of zircon populations are major obstacles to using conventional multigrain U-Pb isotopic analyses. Sm-Nd model ages and ??Nd (T) values reveal anomalous isotopic data, attesting to the complex isotopic behaviour within these highly fractionated granites. Thus, SHRIMP U-Pb zircon and conventional U-Pb monazite dating methods are the most appropriate to constrain the crystallization age of the Sn-bearing granite systems in the Rondo??nia Tin Province.

  19. Fast and simultaneously determination of light and heavy rare earth elements in monazite using combination of ultraviolet-visible spectrophotometry and multivariate analysis

    NASA Astrophysics Data System (ADS)

    Anggraeni, Anni; Arianto, Fernando; Mutalib, Abdul; Pratomo, Uji; Bahti, Husein H.

    2017-05-01

    Rare Earth Elements (REE) are elements that a lot of function for life, such as metallurgy, optical devices, and manufacture of electronic devices. Sources of REE is present in the mineral, in which each element has similar properties. Currently, to determining the content of REE is used instruments such as ICP-OES, ICP-MS, XRF, and HPLC. But in each instruments, there are still have some weaknesses. Therefore we need an alternative analytical method for the determination of rare earth metal content, one of them is by a combination of UV-Visible spectrophotometry and multivariate analysis, including Principal Component Analysis (PCA), Principal Component Regression (PCR), and Partial Least Square Regression (PLS). The purpose of this experiment is to determine the content of light and medium rare earth elements in the mineral monazite without chemical separation by using a combination of multivariate analysis and UV-Visible spectrophotometric methods. Training set created 22 variations of concentration and absorbance was measured using a UV-Vis spectrophotometer, then the data is processed by PCA, PCR, and PLSR. The results were compared and validated to obtain the mathematical equation with the smallest percent error. From this experiment, mathematical equation used PLS methods was better than PCR after validated, which has RMSE value for La, Ce, Pr, Nd, Gd, Sm, Eu, and Tb respectively 0.095; 0.573; 0.538; 0.440; 3.387; 1.240; 1.870; and 0.639.

  20. The Impact of Chemical Substitutions on Interfacial Properties of REE Orthophosphates (Monazite, Xenotime)

    NASA Astrophysics Data System (ADS)

    Gamage McEvoy, J.; Thibault, Y.

    2016-12-01

    Mineral surface properties strongly influence liquid-solid interface behaviour in the presence of various ligands, and can significantly affect processes of natural (ex. fluids, melts) and industrial (ex. oil recovery) relevance. Many Rare Earth Element (REE)-bearing minerals display extensive solid solutions resulting in significant chemical variations which influence their crystal and surface properties and, can consequently impact the interfacial features of their interaction with substances such as organic molecules (i.e. reactivity and sorption). For example, the surface charge properties of some REE orthophosphates show an uncharacteristically wide variation in reported values, where large differences in literature are commonly attributed to compositional differences between samples. However the impact of these chemical substitutions remains largely unknown. As such, the aim of this research was to systematically investigate the influence of mineralogical variation within the compositional space of the REE orthophosphates on their surface chemistry and resulting interaction with organic molecules. To better isolate the chemical, structural, and morphological variables, the synthesis of REE orthophosphate crystals along a number of defined substitutions was conducted, and their surface chemistry characteristics benchmarked against well-characterized natural monazite and xenotime from various localities. The interaction of these crystal surfaces with model organic molecules (long chain carboxylic acids and alkyl hydroxamic acids, respectively) was then studied and characterized via surface (X-ray photoelectron) and near-surface (vibrational) spectroscopic techniques. The implications of crystal surface-organic molecule interactions to mineral processing through flotation were also experimentally investigated.

  1. Ab initio calculation of excess properties of La{sub 1−x}(Ln,An){sub x}PO{sub 4} solid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yan; JARA High-Performance Computing, Schinkelstrasse 2, 52062 Aachen; Kowalski, Piotr M., E-mail: p.kowalski@fz-juelich.de

    2014-12-15

    We used ab initio computational approach to predict the excess enthalpy of mixing and the corresponding regular/subregular model parameters for La{sub 1−x}Ln{sub x}PO{sub 4} (Ln=Ce,…, Tb) and La{sub 1−x}An{sub x}PO{sub 4} (An=Pu, Am and Cm) monazite-type solid solutions. We found that the regular model interaction parameter W computed for La{sub 1−x}Ln{sub x}PO{sub 4} solid solutions matches the few existing experimental data. Within the lanthanide series W increases quadratically with the volume mismatch between LaPO{sub 4} and LnPO{sub 4} endmembers (ΔV=V{sub LaPO{sub 4}}−V{sub LnPO{sub 4}}), so that W(kJ/mol)=0.618(ΔV(cm{sup 3}/mol)){sup 2}. We demonstrate that this relationship also fits the interaction parameters computedmore » for La{sub 1−x}An{sub x}PO{sub 4} solid solutions. This shows that lanthanides can be used as surrogates for investigation of the thermodynamic mixing properties of actinide-bearing solid solutions. - Highlights: • The excess enthalpies of mixing for monazite-type solid solutions are computed. • The excess enthalpies increase with the endmembers volume mismatch. • The relationship derived for lanthanides is transferable to La{sub 1−x}An{sub x}PO{sub 4} systems.« less

  2. Direct dating and characterization of the Pope's Hill REE Deposit, Labrador

    NASA Astrophysics Data System (ADS)

    Chafe, A. N.; Hanchar, J. M.; Fisher, C.; Piccoli, P. M.; Crowley, J. L.; Dimmell, P. M.

    2012-12-01

    The Pope's Hill rare earth element (REE) trend (PHT) is located approximately 100 km southwest of Happy Valley-Goose Bay, along the Trans Labrador Highway, in central Labrador. Whole-rock geochemical analyses of the main REE-bearing unit indicate total rare earth element contents ranging from 1 to 22 weight percent (wt%) REE3+. The REE-enriched unit is hosted within a hydrothermally altered syenite, trending northeast and traceable for approximately 2.8km. Samples of ore, host rock, and country rock, were collected from throughout the trend in order to: 1) quantify which phases concentrate the REE and their abundances and distribution in the ore; and 2) use in situ LA-ICPMS and ID-TIMS U-Pb geochronology and in situ Sm-Nd isotopes using LA-MC-ICPMS in monazite from the ore and host rock to constrain the timing of mineralization and determine the source of the REE. These data will help develop predictive models for this type of mineral deposit elsewhere. The PHT is defined as the host syenite and REE-enriched segregations; two contrasting lithologies. The rare earth element minerals (REE) occur in millimeter- to centimeter-scale pods that are locally discontinuous. The REE are hosted in a variety of silicate, phosphate, carbonate, and niobate phases; with a majority hosted in allanite(-Ce), titanite(-Ce), monazite(-Ce), britholite(-Ce); and a minor percentage in REE-carbonates and fergusonite(-Nd). Both apatite and titanite occur in two different compositional forms that range in chemistry from end-member stoichiometric apatite and titanite to highly REE-enriched - apatite-britholite and titanite(-Ce), where chemical substitutions, such as Si4+ + REE3+ substitute for Ca2+ + P5+ in apatite and REE3+ + Fe3+ substitute for Ca2+ + Ti4+ in titanite in order to incorporate up to ~40 wt% REE2O3 in both minerals. The U-Pb geochronology indicate that allanite, titanite(-Ce), monazite and fergusonite crystallized from ~1060 to ~940 Ma, a period spanning ~120 Ma. Sm-Nd tracer isotope data from the same minerals indicate that the syenite and ore have initial Nd within a single ɛNd unit. This combined with their field relationship to the foliation and the microtextures observed in thin section suggests that the REE minerals experienced syndeformational growth from a hydrothermal fluid, acting on both host and ore, where REEs in aqueous hard ligand complexes became saturated in silicate, phosphate, carbonate, and niobate minerals through the changing T, P and chemical conditions brought on by deformation.

  3. Ages of Some Uranium and Thorium Minerals from East and Central Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darnley, A. G.

    1961-01-01

    method were accepted for minerals from a number of localities: uraninite, Nkana, Northern Rhodesia, 522 plus or minus 15 million years (m.y.); brannerite, Kansanshi, Northern Rhodesia, 503 plus or minus 15 m.y.; uraninite, Shinkolobwe, Katanga, 642 plus or minus 20 m.y.; davidite, Mavuzi, Mozambique, 578 plus or minus 15 m.y.;, monazite, Monkey Bay, Nyasaland, 597 plus or minus 25 m.y.; and samarskite, north-west Kenya, 635 plus or minus 25 m.y. The significance of the results is considered.

  4. From micron to mountain-scale, using accessory phase petrochronology to quantify the rates of deformation in the Himalaya and beyond

    NASA Astrophysics Data System (ADS)

    Mottram, C. M.

    2016-12-01

    Mountains form where the Earth's plates collide; during this upheaval rocks are deformed by massive forces. The rates and timescales over which these deformational processes occur are determined from tiny accessory minerals that record geological time through radioactive decay. However, there remain major unresolved challenges in using chemical and microstructural markers to link the dates yielded from these accessory phases to specific deformation events and discerning the effects of deformation on the isotopic and elemental tracers in these phases. Here, the chemical signatures and deformation textures from micron-scale accessory phases are used to decode the record of mountain belt-scale deformational processes encrypted in the rocks. The Himalayan orogen is used as an ideal natural laboratory to understand the chemical processes that have modified the Earth's crust during orogenesis. Combined laser ablation split-stream U-Th-Pb and REE analysis of deformed monazite and titanite, along with Electron BackScatter Diffraction (EBSD) imaging and Pressure-Temperature (P-T) phase equilibria modelling are used to: (1) link accessory phase `age' to `metamorphic stage'; (2) to quantify the influence of deformation on monazite (re)crystallisation mechanisms and its subsequent effect on the crystallographic structure, ages and trace-element distribution in individual grains; and (3) understand how deformation is accommodated through different chemical and structural processes that operate at varying scales through time. This study highlights the importance of fully integrating the pressure-temperature-time-deformation history of multiple accessory phases to better interpret the deformational history of the cores of evolving mountain belts.

  5. Two-stage Uplift of Granite-Gneiss-Migmatite Complex (GGMC) of Çataldaǧ Core Complex (Western Anatolia, Turkey): the role of detachment faults on uplift processes

    NASA Astrophysics Data System (ADS)

    Kamaci, Omer; Altunkaynak, Safak

    2016-04-01

    The most recently identified core complex of western Anatolia (Turkey), the Çataldaǧ Core Complex (ÇCC) consists of a granite-gneiss-migmatite complex (GGMC) representing deep crustal rocks of NW Turkey and a shallow level granodioritic body (ÇG: Çataldaǧ granodiorite). The GGMC is Latest Eocene-Early Oligocene and ÇG is Early Miocene in age, and both were exhumed in the footwall of the Çataldaǧ Detachment Fault Zone (ÇDFZ) in the Early Miocene. On the basis of correlation of age data and the closure temperatures of zircon, monazite, muscovite, biotite and K-feldspar, the T-time history of GGMC reveals that GGMC has experienced at least two stages of cooling and uplift, from 33.8 to 30.1 Ma and 21.3 to 20.7 Ma. In stage I, from 33.8 to 30.1 Ma, the cooling rate of GGMC was relatively slow (35°C/my) however cooling rate increase dramatically to ≥500°C/my in stage II between 21.3 and 20.7 Ma. T-time history also indicate that GGMC was elevated to the final location in at least 8-13 My according to the monazite and zircon and mica ages obtained from the same rock. Rapid slab rollback at the Hellenic trench at ca. 23 Ma may have increased extension rates leading to the development of detachment faults (i.e. ÇDFZ), core complexes and associated syn-extensional granitoids in Western Anatolia and the Aegean extensional province.

  6. Inheritance, Variscan tectonometamorphic evolution and Permian to Mesozoic rejuvenations in the metamorphic basement complexes of the Romanian Carpathians revealed by monazite microprobe geochronology

    NASA Astrophysics Data System (ADS)

    Săbău, Gavril; Negulescu, Elena

    2014-05-01

    Monazite U-Th-Pb chemical dating reaches an acceptable compromise between precision and accuracy on one side, and spatial resolution and textural constraints on the other side. Thus it has a powerful potential in testing the coherence of individual metamorphic basement units, and enabling correlations among them. Yet, sensitivity and specificity issues in monazite response to thermotectonic events, especially in the case of superposed effects, remain still unclear. Monazite dating at informative to detailed scale in the main metamorphic basement units of the Carpathians resulted in complex age spectra. In the main, the spectra are dominated by the most pervasive thermal and structural overprint, as checked against independent geochronological data. Post-peak age resetting is mostly present, but statistically subordinate. Resetting in case of superposed events is correlated with the degree of textural and paragenetic overprinting, inheritances being always indicated by more or less well-defined age clusters. The lack of relict ages correlating with prograde structural and porphyroblast zonation patterns is indicative for juvenile formations. Age data distribution in the Carpathians allowed distinction of pre-Variscan events, syn-metamorphic Variscan tectonic stacking of juvenile and reworked basement, post-Variscan differential tectonic uplift, as well as prograde metamorphic units ranging down to Upper Cretaceous ages. In the South Carpathians, the Alpine Danubian domain consists of several Variscan and Alpine thrust sheets containing a metamorphic complex dominated by Upper Proterozoic to Lower Cambrian metamorphic and magmatic ages (Lainici-Păiuş), and several complexes with metamorphic overprints ranging from Carboniferous to Lower Permian. Any correlation among these units, as well as geotectonic models placing a Lower Paleozoic oceanic domain between pre-existing Lainici-Păiuş and Drăgşan terranes are precluded by the age data. Other basement of the South Carpathians contain lower Paleozoic or older units intruded by Ordovician granitoids, imbricated with juvenile Variscan slivers, the structural sequence differing in individual basement complexes. So, in the Leaota Massif the lowermost term of the sequence is prograde Variscan, tectonically overlain by reworked lower Paleozoic gneisses, supporting thrust sheets with very low- to low-grade Variscan schists. In the Făgăraş Massif a lower Paleozoic (Cumpăna) complex bearing a strong Variscan overprint, straddles Variscan juvenile rocks, and the lowermost visible structural level is assumed by upper Carboniferous to Permian juvenile medium-grade metamorphic schists. In the Lotru Metamorphic Suite of the Alpine Getic Nappe, the Variscan stacking is overprinted by post-orogenic differential uplift, documented by the correlation among younging ages, structural and metamorphic low-pressure overprints, recording often higher metamorphic temperatures. The most spectacular structure is Upper Jurassic in age, contains high-grade metamorphic rocks and peraluminous anatectic granitoids, is outlined by a deformed boundary evolving from ductile to brittle regime during cooling, and induces a thermal overprint in the neighbouring rocks. In the basement units thrust over the Getic Nappe, the Sibişel unit yielded Permian prograde peak metamorphic ages and Triassic post-peak overprints, while an adjacent gneissic unit (Laz) delivered an exclusively Cretaceous age pattern. Unexpectedly young metamorphic ages resulted also for the East Carpathians and the Apuseni Mountains. While most of the ages obtained so far correspond to Variscan retrogression of older basement units, the lowermost structural unit of the infra-Bucovinian nappe system in the East Carpathians yielded Upper Cretaceous metamorphic ages in apparently monometamorphic medium-grade schists. In the Apuseni Mountains, schists of the Baia de Arieş Unit display an Upper Jurassic age spectrum, corresponding to a clearly prograde medium-grade event. The ages recorded not only question some of the currently accepted correlations among basement units, but urge to reconsideration of the way in which the basement-cover relationships are interpreted and extrapolated.

  7. Thermochronological modeling of the age of Vologda crystalline basement of the Russian platform

    NASA Astrophysics Data System (ADS)

    Gerasimov, V. Yu.; Petrov, D. B.; Lebedev, V. A.

    2010-05-01

    The results of the complex petrological and isotope-geochronological study of the crystalline rock from the deep drilling hall of the south of Vologda segment are presented in this work. The crystalline basement of the platform in Vologda region lie in a depth 2.5 km and represented by high alumina mica schist. The thick sedimentary cover consists of vendian and phanerozoic sediments. Upper level covered by quaternary glacial deposits up to 50 m. A core sample from the borehole of Fedotovo village was obtained from the depth 2600 m. It is fine-medium grained metamorphic mica schist with sillimanite. The mineral assemblage represented by association: Pl-Bt-Ms-Sil-Qtz-Mag +Zrn +Mnz. The metamorphic schist of the crystalline basement contains several radio isotope sensors. There are two rock forming potassium reach mica, - biotite (Bt) and muscovite (Ms) and accessories monazite (Mnz), - the phosphate of REE enriched by Th and U. It was a reason why traditional K-Ar isotope dating method in the combination with electron microprobe U-Th-Pb dating method CHIME [Suzuki et al. 1991] was used for Vologda metapelite rocks dating. In addition to geochronology, the detailed petrological investigation using electron microprobe allowed also to determine thermodynamic parameters of metamorphic system with a help of the mineral thermobarometry and finally estimate the age of the metamorphic thermal event using experimental diffusion data of Ar and Pb in minerals [Gerasimov et al. 2004]. The temperature of the regional metamorphism was estimated using Bt+Mag+Qtz and Bt+Ms geothermometers [Glassley 1983, Hoisch 1989]. Taking into account the field of the sillimanite P-T stability it is possible to conclude that the peak of metamorphism was reached at temperature about ТоС=550+/-30° C and pressure Р=4+/-1 kbar. Isotope thermochronology of the sample demonstrate nearly Svecofenian age 1.7-1.8 Ga of Vologda crystalline basement. K-Ar isotope dating of black and white mica demonstrates regular progression of ages in a concordance with closure temperature of each mineral. The apparent Bt age is about 1670 Ma and Ms age is 1710 Ma. The estimation of closure temperature (Tc) for each of the minerals using Dodsn's theory [Dodson 1973] and DCT computer program with concordance procedure of cooling rate simulation for the two coexisting minerals demonstrate value 340° C and и 460° C for Bt and Ms respectively. The rate of cooling in this temperature range is about 3° C/Ma and time span between closure temperatures of the two micas is about 40 Ma. The value of the cooling rate is a very typical for regional metamorphism conditions. The linear extrapolation of the simulated time-temperature trend to the thermal peak of the regional metamorphism (estimated by mineral equilibriums at 550° C) demonstrates that cooling of the metamorphic system from the thermal peak to 460° C(closure temperature of Ms) takes about 30-40 Ma. It is a value of systematic thermochronological correction to the muscovite apparent K-Ar age which has to be added to estimate the age of regional metamorphism, after that we finally receive the age 1750+/-40 Ma. U-Th-Pb system of monazite grains was tested by electron microprobe JEOL 8200 in IGEM RAS using CHIME method. The analysis of 8 grains demonstrated averaged value of age 1790+/-55 Ma. It is in a very good agreement with K-Ar isotope dating results. Moreover, the estimation of monazite closure temperature using experimental data of Pb diffusion [Smith & Giletti 1997] shows the value Tc=540-560° C which almost exactly corresponds to the peak temperature of regional metamorphism. It is also an explanation of the very close results of dating in different isotope systems (conservative U-Th-Pb system of monazite and flexible K-Ar system) in the condition of slow cooling and demonstrates the thermochronological modeling effectiveness.

  8. Compositional and phase relations among rare earth element minerals

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    A review is presented that mainly treats minerals in which the rare-earth elements are essential constituents, e.g., bastnaesite, monazite, xenotime, aeschynite, allanite. The chemical mechanisms and limits of REE substitution in some rock-forming minerals (zircon, apatite, titanite, garnet) are also derived. Vector representation of complex coupled substitutions in selected REE-bearing minerals is examined and some comments on REE-partitioning between minerals as related to acid-based tendencies and mineral stabilities are presented. As the same or analogous coupled substitutions involving the REE occur in a wide variety of mineral structures, they are discussed together.

  9. Geology of the Quartz Creek Pegmatite District, Gunnison County Colorado

    USGS Publications Warehouse

    Staatz, Mortimer H.; Trites, A.F.

    1952-01-01

    Inferred reserves of the district are estimated for beryl, scrap mica, both hand-cobbing and milling feldspar, lepidolite, columbite-tantalite, topaz, monazite, and microlite. No sheet mica was found. Reserves are small and transportation costs are high so substantial production of low-priced feldspar and scrap mica will depend on the adoption of economica milling techniques for recovering the large quantities of feldspar available.  Beryl is irregularly distributed and its recovery as a byproduct will depend on the establishment of a stable market for feldspar and scrap mica.  Lepidolite reserves are small low grade.

  10. Thoron-tartaric acid systems for spectrophotometric determination of thorium

    USGS Publications Warehouse

    Grimaldi, F.S.; Fletcher, M.H.

    1956-01-01

    Thoron is commonly used for the spectrophotometric determination of thorium. An undesirable feature of its use is its high sensitivity to zirconium. This study describes the use of tartaric acid as a masking reagent for zirconium. Three tartaric acid-thoron systems, developed for the determination of thorium, differ with respect to the concentrations of thoron and tartaric acid. Mesotartaric acid, used in one of the systems, is most effective in masking zirconium. The behavior of rarer elements, usually associated with thorium ores, is determined in two systems, and a dilution method is described for the direct determination of thorium in monazite concentrates.

  11. Advances and limitations on interpreting the erosional record from isotopic analysis of single detrital mineral grains

    NASA Astrophysics Data System (ADS)

    Parrish, Randall

    2010-05-01

    The analysis of provenance of clastic sediments is useful for reconstructing the characteristics and rates of exhumation of source areas, and sometimes placing minimum age constraints on depositional age. Due largely to increased availability and ease of access to LA-ICP-MS instrumentation, the analysis of provenance using single detrital accessory minerals has grown very rapidly over recent years. With this however is a culture of casual users who may not fully appreciate subtleties of measurement and isotope interpretation. The isotopic provenance literature is dominated by zircon-centric studies that use U-Pb dating and Hf isotope measurements of single zircons, but unfortunately an increasing number of these studies appear to lack sufficient understanding of U-Pb and Hf systematics; misleading interpretations are increasingly common. The inherent information contained in detrital accessory minerals is potentially immense, scientifically, but comprehensive interpretations attempting to reconstruct the geological make-up and evolution of sources require dating of multiple types of accessory minerals (i.e. zircon, titanite, monazite, garnet inclusions, micas, allanite, rutile, apatite) by various methods (U-Pb, fission track, Ar-Ar…) at times accompanied by isotope geochemical data (Lu-Hf, Sm-Nd, Rb-Sr) of phases where Sr, Hf, or REE comprise a major element (≥0.5%). Many approaches have been demonstrated but the mix of methodologies needs to be tailored to the problem, in view of the variable effort and expense needed to acquire good datasets. To date there are few comprehensive multi-mineral, multi-isotope system applications, and too many studies that follow a prescriptive cookbook that lacks innovation and fails to address a problem. The field needs to focus effort on the approaches that can solve a problem well rather than doing either just the easy methods or too many methods only moderately well. Zircon studies require strategies that reduce or eliminate discordance, collect sufficient data on each grain to make a robust age interpretation, improve accuracy of data by more attention to standards and uncertainties, can analyze thin overgrowths that reveal the magmatic or metamorphic age, and minimize sample consumption, not an easy task for the vast majority of laboratories doing provenance applications. Detrital monazite, monazite-in garnet, titanite and rutile can reveal much of the higher temperature metamorphic time-temperature path, and coupled U-Pb and fission track studies of single zircon and apatite grains can be useful for determining lower temperature exhumation rates. Isotope geochemistry (Hf-Nd-Sr-O) is more time consuming but can be pivotal to distinguish subtle differences in sources and to test specific hypotheses. Examples of improved methods and applications will be presented to illustrate the presentation.

  12. Rare earth mineral potential in the southeastern U.S. Coastal Plain from integrated geophysical, geochemical, and geological approaches

    USGS Publications Warehouse

    Shah, Anjana K.; Bern, Carleton R.; Van Gosen, Bradley S.; Daniels, David L.; Benzel, William M.; Budahn, James R.; Ellefsen, Karl J.; Karst, Adam; Davis, Richard

    2017-01-01

    We combined geophysical, geochemical, mineralogical, and geological data to evaluate the regional presence of rare earth element (REE)−bearing minerals in heavy mineral sand deposits of the southeastern U.S. Coastal Plain. We also analyzed regional differences in these data to determine probable sedimentary provenance. Analyses of heavy mineral separates covering the region show strong correlations between thorium, monazite, and xenotime, suggesting that radiometric equivalent thorium (eTh) can be used as a geophysical proxy for those REE-bearing minerals. Airborne radiometric data collected during the National Uranium Resource Evaluation (NURE) program cover the southeastern United States with line spacing varying from ∼2 to 10 km. These data show eTh highs over Cretaceous and Tertiary Coastal Plain sediments from the Cape Fear arch in North Carolina to eastern Alabama; these highs decrease with distance from the Piedmont. Quaternary sediments along the modern coasts show weaker eTh anomalies, except near coast-parallel ridges from South Carolina to northern Florida. Prominent eTh anomalies are also observed over large riverbeds and their floodplains, even north of the Cape Fear arch where surrounding areas are relatively low. These variations were verified using ground geophysical measurements and sample analyses, indicating that radiometric methods are a useful exploration tool at varying scales. Further analyses of heavy mineral separates showed regional differences, not only in concentrations of monazite, but also of rutile and staurolite, and in magnetic susceptibility. The combined properties suggest the presence of subregions where heavy mineral sediments are primarily sourced from high-grade metamorphic, low-grade metamorphic, or igneous terrains, or where they represent a mixing of these sources. Comparisons between interpreted sources of heavy mineral sands near the Fall Line and igneous and metamorphic Piedmont and Blue Ridge units showed a strong correspondence with rocks closest to the Fall Line and poor correspondence with rocks farther inland. This strongly suggests that the primary source of those heavy minerals, especially monazite, is the rocks that formed the rocky coast that was present during opening of the Atlantic Ocean, which in turn indicates the importance of coastal processes in forming heavy mineral sand concentrations. Furthermore, narrow radiometric eTh and K anomalies are associated with major rivers, indicating limited spatial influence of fluvial processes. Later coastal plain sediment deposition appears to have involved reworking of sediments, providing an “inheritance” of the rocky coast composition that persists for some distance from the Fall Line. However, this inheritance is reduced with distance, and sediments within ∼100 km of the coast in Georgia and Florida exhibit properties indicative of mixing from multiple sources.

  13. Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky

    DOE PAGES

    Hower, James C.; Berti, Debora; Hochella, Michael F.; ...

    2018-04-16

    Transmission electron microscopy accompanied by energy-dispersive spectroscopy and selected area electron diffraction of density-gradient separates from two lithotypes of the low-ash, low-sulfur Blue Gem coal, eastern Kentucky, revealed an array of previously unrecognized (in this coal, and arguable in most others) sub-micron minerals, some <10 nm in size. The first sample representing the 1.22–1.24 specific gravity fraction of the middle bench contains a mineral identified as a La-, Ce-, Nd-bearing monazite; other minerals with CrFe, CuFeS, FeZn-S, and Pb; and areas, probably comprising agglomerates of several grains, if not several minerals, with concentrations of Mg, Ca, Ti, Fe, Zn, Zr,more » and Mo. The second sample representing the 1.30–1.31 specific gravity fraction of the basal lithotype has aggregates of particles enriched in Mg, Ca, Ti, and Fe. Individual grains not specifically quantified include CrNiMnCuFeS, AgS, and CuS. Detailed investigation of one area (most of the variation within a <4 μm 2 region) demonstrates the presence of greenockite (CdS); minute phases containing NiCoGe and AgCdBi, the latter with a more evident S association than the former; metallic Bi; nisnite (Ni 3Sn); silver cadmium; manganosite (MnO); and siderite. Some minerals, such as the monazite, are most likely of detrital or tuffaceous origin. Many of the other assemblages could be of hydrothermal origin, a hypothesis supported by known regional geochemical and coal rank trends, but not previously demonstrated in mineral assemblages at the 10's of nm scale in this region.« less

  14. Submicron-scale mineralogy of lithotypes and the implications for trace element associations: Blue Gem coal, Knox County, Kentucky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hower, James C.; Berti, Debora; Hochella, Michael F.

    Transmission electron microscopy accompanied by energy-dispersive spectroscopy and selected area electron diffraction of density-gradient separates from two lithotypes of the low-ash, low-sulfur Blue Gem coal, eastern Kentucky, revealed an array of previously unrecognized (in this coal, and arguable in most others) sub-micron minerals, some <10 nm in size. The first sample representing the 1.22–1.24 specific gravity fraction of the middle bench contains a mineral identified as a La-, Ce-, Nd-bearing monazite; other minerals with CrFe, CuFeS, FeZn-S, and Pb; and areas, probably comprising agglomerates of several grains, if not several minerals, with concentrations of Mg, Ca, Ti, Fe, Zn, Zr,more » and Mo. The second sample representing the 1.30–1.31 specific gravity fraction of the basal lithotype has aggregates of particles enriched in Mg, Ca, Ti, and Fe. Individual grains not specifically quantified include CrNiMnCuFeS, AgS, and CuS. Detailed investigation of one area (most of the variation within a <4 μm 2 region) demonstrates the presence of greenockite (CdS); minute phases containing NiCoGe and AgCdBi, the latter with a more evident S association than the former; metallic Bi; nisnite (Ni 3Sn); silver cadmium; manganosite (MnO); and siderite. Some minerals, such as the monazite, are most likely of detrital or tuffaceous origin. Many of the other assemblages could be of hydrothermal origin, a hypothesis supported by known regional geochemical and coal rank trends, but not previously demonstrated in mineral assemblages at the 10's of nm scale in this region.« less

  15. [sup 40]Ar/[sup 39]Ar evidence for delayed post-Acadian cooling in the southernmost Connecticut Valley Synclinorium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moecher, D.P.; Cosca, M.A.

    1992-01-01

    Available Ar-40/Ar-39 data for the Connecticut Valley Synclinorium (CVS) of the New England segment of the Appalachian Orogen indicate rapid post-Acadian cooling. However, new data indicate this pattern does not extend the entire length of the CVS. Ar-40/Ar-39 ages obtained from hornblende and muscovite in The Straits Schist indicate delayed cooling and a more complex post-Acadian thermal history. Data for the Seymour area are consistent with the studies above for the vicinity of the Waterbury Dome. The data farther south indicate one or more of the following: (1) slow (2--3C/Ma) post-Acadian cooling and uplift through the Permian; (2) post-Acadian coolingmore » through Hbl closure in the Mississippian with a subsequent Alleghanian metamorphism that did not exceed 500 C; or (3) post-Acadian cooling with subsequent metamorphism that approached 500 C or involved ductile recrystallization, partly resetting hornblende and totally resetting muscovite south of Derby. Petrologic evidence supporting (2) or (3) consists of widespread but not pervasive greenschist facies retrogression of Hbl + Pl + Sph assemblages in amphibolites to Act + Ep, and Grt + Ky + St assemblages in metapelites to Chl + Bt + Qz. The present data cannot resolve between (2) or (3). However, both are consistent with results of a study in the Bridgeport Synform that yield (1) a U-Pb monazite age of 296 [+-] 2 Ma from the Ansonia Leucogranite, implying the occurrence of an Alleghanian thermal event that promoted monazite growth; and, (2) a U-Pb cooling age of 360 Ma from sphene in the Pumpkin Ground Granodiorite, indicating that Alleghanian events did not exceed ca. 550 C.« less

  16. Neoproterozoic transpression and granite magmatism in the Gavilgarh-Tan Shear Zone, central India: Tectonic significance of U-Pb zircon and U-Th-total Pb monazite ages

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Anupam; Chatterjee, Amitava; Das, Kaushik; Sarkar, Arindam

    2017-10-01

    The Gavilgarh-Tan Shear Zone (GTSZ) is a crustal-scale shear/fault zone that dissects the unclassified basement gneisses separating two major supracrustal belts, viz. the Paleo- to Mesoproterozoic (≥1.5 Ga) Betul Belt and the Neoproterozoic (∼1.0 Ga) Sausar Belt, of the Central Indian Tectonic Zone (CITZ). The GTSZ extends for more than 300 km strike length, partly covered by the Deccan Trap flows. Granitoid rocks ranging from syenogranite to granodiorite in composition, sheared at temperatures corresponding to the amphibolite facies metamorphic condition, define the GTSZ in the Kanhan River Valley. Earlier geological studies have suggested that the GTSZ underwent a sinistral-sense partitioned transpression in response to an oblique collision between two continental fragments, possibly related to crustal thickening and high-pressure granulite metamorphism (the Ramakona-Katangi granulite: RKG) in the northern part of the Sausar Belt. LA-ICP-MS U-Pb dating of zircon and EPMA U-Th-total Pb dating of monazite grains from four different types of syn-tectonic granitoids of the GTSZ carried out in the present study show that granitoids intruded the basement gneisses between 1.2 Ga and 0.95 Ga, given the error limit of the calculated ages. The age of transpression and mylonitization is more definitely bracketed between 1.0 Ga and 0.95 Ga, which correlates well with the published ages of deformation and metamorphism in the Sausar Belt. This age data strongly supports the suggested collisional tectonic model involving the GTSZ and the RKG granulites of the Sausar Belt and underlines a Grenvillian-age tectonic history for the southern part of the Central Indian Tectonic Zone (CITZ), which possibly culminated in the crustal assembly of the Neoproterozoic supercontinent Rodinia.

  17. Using U-Th-Pb petrochronology to determine rates of ductile thrusting: Time windows into the Main Central Thrust, Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Mottram, Catherine M.; Parrish, Randall R.; Regis, Daniele; Warren, Clare J.; Argles, Tom W.; Harris, Nigel B. W.; Roberts, Nick M. W.

    2015-07-01

    Quantitative constraints on the rates of tectonic processes underpin our understanding of the mechanisms that form mountains. In the Sikkim Himalaya, late structural doming has revealed time-transgressive evidence of metamorphism and thrusting that permit calculation of the minimum rate of movement on a major ductile fault zone, the Main Central Thrust (MCT), by a novel methodology. U-Th-Pb monazite ages, compositions, and metamorphic pressure-temperature determinations from rocks directly beneath the MCT reveal that samples from 50 km along the transport direction of the thrust experienced similar prograde, peak, and retrograde metamorphic conditions at different times. In the southern, frontal edge of the thrust zone, the rocks were buried to conditions of 550°C and 0.8 GPa between 21 and 18 Ma along the prograde path. Peak metamorphic conditions of 650°C and 0.8-1.0 GPa were subsequently reached as this footwall material was underplated to the hanging wall at 17-14 Ma. This same process occurred at analogous metamorphic conditions between 18-16 Ma and 14.5-13 Ma in the midsection of the thrust zone and between 13 Ma and 12 Ma in the northern, rear edge of the thrust zone. Northward younging muscovite 40Ar/39Ar ages are consistently 4 Ma younger than the youngest monazite ages for equivalent samples. By combining the geochronological data with the >50 km minimum distance separating samples along the transport axis, a minimum average thrusting rate of 10 ± 3 mm yr-1 can be calculated. This provides a minimum constraint on the amount of Miocene India-Asia convergence that was accommodated along the MCT.

  18. Geochemical prospecting for rare earth elements using termite mound materials

    NASA Astrophysics Data System (ADS)

    Horiuchi, Yu; Ohno, Tetsuji; Hoshino, Mihoko; Shin, Ki-Cheol; Murakami, Hiroyasu; Tsunematsu, Maiko; Watanabe, Yasushi

    2014-12-01

    The Blockspruit fluorite prospect, located in North West State of the Republic of South Africa, occurs within an actinolite rock zone that was emplaced into the Kenkelbos-type granite of Proterozoic age. There are a large number of termite mounds in the prospect. For geochemical prospecting for rare earth elements (REEs), in total, 200 samples of termite mound material were collected from actinolite rock and granite zones in the prospect. Geochemical analyses of these termite mound materials were conducted by two methods: portable X-ray fluorescence (XRF) spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). Comparison of the two methods broadly indicates positive correlations of REEs (La, Ce, Pr, Nd, and Y), in particular Y and La having a strong correlation. As the result of modal abundance analyses, the actinolite rock at surface mainly consists of ferro-actinolite (89.89 wt%) and includes xenotime (0.26 wt%) and monazite (0.21 wt%) grains as REE minerals. Termite mound materials from actinolite rock also contain xenotime (0.27 wt%) and monazite (0.41 wt%) grains. In addition, termite mound materials from the actinolite rock zone have high hematite and Fe silicate contents compared to those from granite zone. These relationships suggest that REE minerals in termite mound materials originate form actinolite rock. Geochemical anomaly maps of Y, La, and Fe concentrations drawn based on the result of the portable XRF analyses show that high concentrations of these elements trend from SW to NE which broadly correspond to occurrences of actinolite body. These results indicate that termite mounds are an effective tool for REE geochemical prospection in the study area for both light REEs and Y, but a more detailed survey is required to establish the distribution of the actinolite rock body.

  19. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe-oxide (Fe-P-REE) systems

    NASA Astrophysics Data System (ADS)

    Gleason, James D.; Marikos, Mark A.; Barton, Mark D.; Johnson, David A.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium isotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, ɛ Nd for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of the same age (ɛ Nd = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, ɛ Nd for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks (-1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks (ɛ Nd = -2.0 to -4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar ɛ Nd (-1.7 to -2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with ɛ Nd = -2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.

  20. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleason, J.D.; Marikos, M.A.; Barton, M.D.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium iosotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, {epsilon}{sub Nd} for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of themore » same age ({epsilon}{sub Nd} = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, {epsilon}{sub Nd} for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks ({minus}1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks ({epsilon}{sub Nd} = {minus}2.0 to {minus}4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar {epsilon}{sub Nd}({minus}1.7 to {minus}2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with {epsilon}{sub Nd} = {minus}2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.« less

  1. The timing of metamorphism in the Odenwald-Spessart basement, Mid-German Crystalline Zone

    NASA Astrophysics Data System (ADS)

    Will, T. M.; Schulz, B.; Schmädicke, E.

    2017-07-01

    New in situ electron microprobe monazite and white mica 40Ar/39Ar step heating ages support the proposition that the Odenwald-Spessart basement, Mid-German Crystalline Zone, consists of at least two distinct crustal terranes that experienced different geological histories prior to their juxtaposition. The monazite ages constrain tectonothermal events at 430 ± 43 Ma, 349 ± 14 Ma, 331 ± 16 Ma and 317 ± 12 Ma/316 ± 4 Ma, and the 40Ar/39Ar analyses provide white mica ages of 322 ± 3 Ma and 324 ± 3 Ma. Granulite-facies metamorphism occurred in the western Odenwald at c. 430 and 349 Ma, and amphibolite-facies metamorphism affected the eastern Odenwald and the central Spessart basements between c. 324 and 316 Ma. We interpret these data to indicate that the Otzberg-Michelbach Fault Zone, which separates the eastern Odenwald-Spessart basement from the Western Odenwald basement, is part of the Rheic Suture, which marks the position of a major Variscan plate boundary separating Gondwana- and Avalonia-derived crustal terranes. The age of the Carboniferous granulite-facies event in the western Odenwald overlaps with the minimum age of eclogite-facies metamorphism in the adjacent eastern Odenwald. The granulite- and eclogite-facies rocks experienced contrasting pressure-temperature paths but occur in close spatial proximity, being separated by the Rheic Suture. As high-pressure and high-temperature metamorphisms are of similar age, we interpret the Odenwald-Spessart basement as a paired metamorphic belt and propose that the adjacent high-pressure and high-temperature rocks were metamorphosed in the same subduction zone system. Juxtaposition of these rocks occurred during the final stages of the Variscan orogeny along the Rheic Suture.

  2. Data Reduction of Laser Ablation Split-Stream (LASS) Analyses Using Newly Developed Features Within Iolite: With Applications to Lu-Hf + U-Pb in Detrital Zircon and Sm-Nd +U-Pb in Igneous Monazite

    NASA Astrophysics Data System (ADS)

    Fisher, Christopher M.; Paton, Chad; Pearson, D. Graham; Sarkar, Chiranjeeb; Luo, Yan; Tersmette, Daniel B.; Chacko, Thomas

    2017-12-01

    A robust platform to view and integrate multiple data sets collected simultaneously is required to realize the utility and potential of the Laser Ablation Split-Stream (LASS) method. This capability, until now, has been unavailable and practitioners have had to laboriously process each data set separately, making it challenging to take full advantage of the benefits of LASS. We describe a new program for handling multiple mass spectrometric data sets collected simultaneously, designed specifically for the LASS technique, by which a laser aerosol is been split into two or more separate "streams" to be measured on separate mass spectrometers. New features within Iolite (https://iolite-software.com) enable the capability of loading, synchronizing, viewing, and reducing two or more data sets acquired simultaneously, as multiple DRSs (data reduction schemes) can be run concurrently. While this version of Iolite accommodates any combination of simultaneously collected mass spectrometer data, we demonstrate the utility using case studies where U-Pb and Lu-Hf isotope composition of zircon, and U-Pb and Sm-Nd isotope composition of monazite were analyzed simultaneously, in crystals showing complex isotopic zonation. These studies demonstrate the importance of being able to view and integrate simultaneously acquired data sets, especially for samples with complicated zoning and decoupled isotope systematics, in order to extract accurate and geologically meaningful isotopic and compositional data. This contribution provides instructions and examples for handling simultaneously collected laser ablation data. An instructional video is also provided. The updated Iolite software will help to fully develop the applications of both LASS and multi-instrument mass spectrometric measurement capabilities.

  3. Cathodoluminescence response of natural and synthetic lanthanide-rich phosphates (Ln3+: Ce, Nd)

    NASA Astrophysics Data System (ADS)

    Barrera-Villatoro, A.; Boronat, C.; Rivera-Montalvo, T.; Correcher, V.; Garcia-Guinea, J.; Zarate-Medina, J.

    2017-12-01

    This paper reports on the cathodoluminescence (CL) emission of both natural and synthetic lanthanide-rich phosphates (Ln3+: Ce, Nd) previously characterized by X-ray Diffraction (XRD), Environmental Scanning Electronic Microscopy (ESEM) and Energy Dispersive Spectroscopy. The thermal treatment at 700 °C performed on the synthetic sample obtained by chemical precipitation, promotes increasing of the crystallinity degree giving rise to a phase transition from the hexagonal (comprising monazite and rabdophane) into the monoclinic (cerianite and monazite) structures detected by XRD. Despite the size and the morphology of the grains are similar under ESEM, it could be appreciated significant differences among CL signals attending to the shape (with well-defined peaks for the annealed sample) and intensity (with lower emission for the non-thermally pretreated synthetic phosphate). The main wavebands centered at (i) 360, 380 and 490 nm are associated respectively with 5D3/2 → 2F5/2 and 5D3/2 → 2F7/2 transitions as well as a redox reaction assigned to the presence of Ce3+, (ii) 276, 424, 516 and 531 nm are linked respectively to 2G9/2→4I9/2, 2P1/2→4I9/2, 4G9/2→4I9/2 and 4G7/2→4I9/2 Nd3+ transitions and (iii) 400-490 nm is due to non-bridging oxygen hole centers related to the tetrahedral PO43- groups or structural defects for the heated synthetic samples. The natural sample from Madagascar, with a very complex CL spectrum, displays a characteristic band emission in the green-yellow and red regions corresponding to [UO2]2+ groups and Sm3+ respectively.

  4. SEPARATION PROCESS FOR THORIUM SALTS

    DOEpatents

    Bridger, G.L.; Whatley, M.E.; Shaw, K.G.

    1957-12-01

    A process is described for the separation of uranium, thorium, and rare earths extracted from monazite by digesting with sulfuric acid. By carefully increasing the pH of the solution, stepwise, over the range 0.8 to 5.5, a series of selective precipitations will be achieved, with the thorium values coming out at lower pH, the rare earths at intermediate pH and the uranium last. Some mixed precipitates will be obtained, and these may be treated by dissolving in HNO/sub 3/ and contacting with dibutyl phosphate, whereby thorium or uranium are taken up by the organic phase while the rare earths preferentially remain in the aqueous solution.

  5. High-pressure and high-temperature study of the phase transition in anhydrite

    NASA Astrophysics Data System (ADS)

    Ma, Y. M.; Zhou, Q.; He, Z.; Li, F. F.; Yang, K. F.; Cui, Q. L.; Zou, G. T.

    2007-10-01

    The high-pressure and high-temperature behaviors of anhydrite (CaSO4) are studied up to 53.5 GPa and 1800 K using double-sided laser heating Raman spectroscopy and x-ray diffraction in diamond anvil cells. The evidence of phase transition from an anhydrite structure to the monazite type was observed at about 2 GPa under cold compression. Another phase transition and a change in color of the sample from transparent to black have been also observed at a pressure of 33.2 GPa after laser heating. The new phase after laser heating persists to 53.5 GPa and 1800 K.

  6. Métamorphisme miocène de granites panafricains dans le massif de l'Edough (Nord-Est de l'Algérie)

    NASA Astrophysics Data System (ADS)

    Hammor, Dalila; Lancelot, Joël

    1998-09-01

    The Edough Massif is the easternmost crystalline core of the Maghrebides that represents the African segment of the west Mediterranean Alpine belt. U-Pb zircon dating provides upper intercept ages of 595 ± 51 My and 606 ± 55 My for an orthogneiss of the lower unit and a deformed leucogranite of the upper pelitic unit, respectively. These ages suggest emplacement of the two granitoids during the Pan-African orogeny. Monazites from a paragneiss sample gave a 18 ± 5 My U-Pb age that points to a Miocene age of the high-temperature metamorphism.

  7. A view into crustal evolution at mantle depths

    NASA Astrophysics Data System (ADS)

    Kooijman, Ellen; Smit, Matthijs A.; Ratschbacher, Lothar; Kylander-Clark, Andrew R. C.

    2017-05-01

    Crustal foundering is an important mechanism in the differentiation and recycling of continental crust. Nevertheless, little is known about the dynamics of the lower crust, the temporal scale of foundering and its role in the dynamics of active margins and orogens. This particularly applies to active settings where the lower crust is typically still buried and direct access is not possible. Crustal xenoliths derived from mantle depth in the Pamir provide a unique exception to this. The rocks are well-preserved and comprise a diverse set of lithologies, many of which re-equilibrated at high-pressure conditions before being erupted in their ultrapotassic host lavas. In this study, we explore the petrological and chronological record of eclogite and felsic granulite xenoliths. We utilized accessory minerals - zircon, monazite and rutile - for coupled in-situ trace-element analysis and U-(Th-)Pb chronology by laser-ablation (split-stream) inductively coupled plasma mass spectrometry. Each integrated analysis was done on single mineral zones and was performed in-situ in thin section to maintain textural context and the ability to interpret the data in this framework. Rutile thermo-chronology exclusively reflects eruption (11.17 ± 0.06Ma), which demonstrates the reliability of the U-Pb rutile thermo-chronometer and its ability to date magmatic processes. Conversely, zircon and monazite reveal a series of discrete age clusters between 55-11 Ma, with the youngest being identical to the age of eruption. Matching age populations between samples, despite a lack of overlapping ages for different chronometers within samples, exhibit the effectiveness of our multi-mineral approach. The REE systematics and age data for zircon and monazite, and Ti-in-zircon data together track the history of the rocks at a million-year resolution. The data reveal that the rocks resided at 30-40 km depth along a stable continental geotherm at 720-750 °C until 24-20 Ma, and were subsequently melted, densified, and buried to 80-90 km depth - 20 km deeper than the present-day Moho - at 930 ± 35°C. The material descended rapidly, accelerating from 0.9-1.7 mm yr-1 to 4.7-5.8 mm yr-1 within 10-12 Myr, and continued descending after reaching mantle depth at 14-13 Ma. The data reflect the foundering of differentiated deep-crustal fragments (2.9-3.5 g cm-3) into a metasomatized and less dense mantle wedge. Through our new approach in constraining the burial history of rocks, we provided the first time-resolved record of this crustal-recycling process. Foundering introduced vestiges of old evolved crust into the mantle wedge over a relatively short period (c. 10 Myr). The recycling process could explain the variability in the degree of crustal contamination of mantle-derived magmatic rocks in the Pamir and neighboring Tibet during the Cenozoic without requiring a change in plate dynamics or source region.

  8. The unusual mineralogy of the Hayes River rhyolite, Hayes Volcano, Cook Inlet, Alaska

    NASA Astrophysics Data System (ADS)

    Hayden, L. A.; Coombs, M. L.; McHugh, K.

    2013-12-01

    Hayes Volcano is an ice-covered volcanic massif located in the northern Cook Inlet region approximately 135 miles northwest of Anchorage, Alaska. The last major eruptive episode of Hayes, and the only known in any detail, occurred ~3,700 yr B.P. and produced the Hayes Tephra Set H, a series of dacitic fall deposits widespread throughout southcentral Alaska (Riehle et al., 1994, Quat. Res. 33, p. 91-108). An undated, early Holocene pyroclastic-flow deposit exposed beneath Tephra Set H in the Hayes River valley is unusual in the Aleutian-Alaska subduction zone in whole-rock composition and mineralogy. The deposit comprises rhyolite pumice (~75 wt% SiO2) that contain phenocrysts of plagioclase, sanidine, quartz, and biotite in vesicular, clear matrix glass, and <1% dense, white cognate inclusions with the same whole-rock composition and phenocryst assemblage as the pumice, but a crystalline matrix. Holocrystalline inclusions may represent portions of the magma body that rapidly quenched in the shallow subsurface as dikes or chamber rinds and were then excavated during explosive eruption. Rhyolite and inclusions are peraluminous (2-3 % normative corundum), high-K, enriched in incompatible elements, and depleted in Sr and Eu. In accord with its evolved and enriched composition the rhyolite pumice and inclusions contain an abundance of accessory phases, including apatite, monazite, xenotime, and zircon. Monazite are euhedral, as large as 500 um, ThO2-rich (up to 4 wt%) and contain significant amounts of Ag (200-500 ppm). Xenotime are generally smaller than the monazite and occur frequently as small blebs. Rhyolite pumices also contain Fe-sulfides, Cu, Sn, Ni, and barite. Sanidine phenocrysts in the pumice and inclusions are sharply zoned and highly enriched in the celsian component (up to 5 wt% BaO) and also show LREE enrichment. Inclusions contain abundant Mn-rich cordierite (~3 wt% Mn2O3) in the san-plag-qtz matrix, as well as Fe-Ti oxides that are relatively high in Mn2O3 (>1 wt%) and REE-enriched. Zircon saturation temperatures (716° C) and two-feldspar thermometry (630-700° C for phenocryst rims; 660° C for inclusion matrix microphenocrysts) suggest a cool magma that must have been volatile-rich given its relatively low phenocryst content (~25 %). A lack of crustal xenocrysts, and Pb, Sr, and Nd isotopes similar to other Cook Inlet volcanoes (McHugh et al., 2012 Fall AGU, V31A-2760) suggest that the rhyolite is not a crustal melt, and we suggest that it formed by low degrees of melting or high degree of crystallization of mafic arc-related rocks. At Hayes, concentrations of REE and metals resulted from extreme fractionation process(es), which active over extended time period may lead to the formation of mineral deposits.

  9. Indentation recovery in GdPO 4 and observation of deformation twinning

    DOE PAGES

    Wilkinson, Taylor M.; Musselman, Matthew A.; Boatner, Lynn A.; ...

    2016-09-30

    A series of nanoindentation tests on both single and polycrystalline specimens of a monazite rare-earth orthophosphate, GdPO 4, revealed frequent observation of anomalous unloading behavior with a large degree of recovery, where previously this behavior had only been observed in xenotime-structure rare-earth orthophosphates. An indentation site in the polycrystalline sample was examined using TEM to identify the deformation mechanism responsible for recovery. Finally, the presence of a twin along the (100) orientation, along with a series of stacking faults contained within the deformation site, provide evidence that the mechanism of recovery in GdPO 4 is the collapse of deformation twinsmore » during unloading.« less

  10. Selective uptake of uranium and thorium by some vegetables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, A.M.; Ghazali, Z.; Rahman, S.A.

    1996-12-31

    Uranium and thorium are trace elements in the actinide series found naturally in the atmosphere and can enter the human body through ingestion of food or by drinking. To establish baseline information for current and future environmental assessment due to pollution, especially in foodstuff, by heavy and trace metals, biological samples such as locally grown vegetables were analyzed for uranium and thorium contents. The terrain in most parts of the Malaysian peninsula consists of monazite-bearing rocks or soil that can be found extensively in areas related to tin-mining operations. Abandoned mining areas provide suitable sites for vegetable cultivation where mostmore » vegetables in the lowlands are grown.« less

  11. Indentation recovery in GdPO 4 and observation of deformation twinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, Taylor M.; Musselman, Matthew A.; Boatner, Lynn A.

    A series of nanoindentation tests on both single and polycrystalline specimens of a monazite rare-earth orthophosphate, GdPO 4, revealed frequent observation of anomalous unloading behavior with a large degree of recovery, where previously this behavior had only been observed in xenotime-structure rare-earth orthophosphates. An indentation site in the polycrystalline sample was examined using TEM to identify the deformation mechanism responsible for recovery. Finally, the presence of a twin along the (100) orientation, along with a series of stacking faults contained within the deformation site, provide evidence that the mechanism of recovery in GdPO 4 is the collapse of deformation twinsmore » during unloading.« less

  12. The thoron-tartaric acid systems for the spectrophotometric determination of thorium

    USGS Publications Warehouse

    Grimaldi, F.S.; Fletcher, Mary H.

    1955-01-01

    Thoron is popularly used for the spectrophotometric determination of thorium.  An undesirable feature of its use is the high sensitivity of the reagent toward zirconium. This study describes the use of tartaric acid as a masking reagent for zirconium. Three tartaric acid-thoron systems, developed for the determination of thorium, differ with respect to the concentrations of thoron and tartaric acid. Mesotataric acid, used in one of the systems, is found to be most effective in masking zirconium. The behavior of various rarer elements, usually found associated with thorium ores, is determined in two of the systems, and a dilution method is described for the direct determination of thorium in monazite concentrates.

  13. "SHRIMP geochronology for the 1450 Ma Lakhna dyke swarm: Its implication for the presence of Eoarchaean crust in the Bastar Craton and 1450-517 Ma depositional age for Purana basin (Khariar), Eastern Indian Peninsula": Comment

    NASA Astrophysics Data System (ADS)

    Basu, Abhijit; Bickford, M. E.

    2011-11-01

    As critical comments to the recent paper by Ratre et al. (2010, Journal of Asian Earth Sciences 39, 565-577) we cite U-Pb SHRIMP and CHIME ages of magmatic and detrital zircon and monazite from the Chhattisgarh and the Khariar basins in the Bastar craton to argue that these basins closed ca. 1000 Ma. We further argue that geochronologic data, geological evidence, and geological logic strongly indicate that sedimentation in the Khariar basin did not continue up to or beyond 517 Ma, as stated by Ratre et al. (op. cit).

  14. Radioactive rare-earth deposit at Scrub Oaks mine, Morris County, New Jersey

    USGS Publications Warehouse

    Klemic, Harry; Heyl, A.V.; Taylor, Audrey R.; Stone, Jerome

    1959-01-01

    A deposit of rare-earth minerals in the Scrub Oaks iron mine, Morris County, N. J., was mapped and sampled in 1955. The rare-earth minerals are mainly in coarse-grained magnetite ore and in pegmatite adjacent to it. Discrete bodies of rare-earth-bearing magnetite ore apparently follow the plunge of the main magnetite ore body at the north end of the mine. Radioactivity of the ore containing rare earths is about 0.2 to 0.6 mllliroentgens per hour. The principal minerals of the deposit are quartz, magnetite, hematite, albiteoligoclase, perthite and antiperthite. Xenotime and doverite aggregates and bastnaesite with intermixed leucoxene are the most abundant rare-earth minerals, and zircon, sphene, chevkinite, apatite, and monazite are of minor abundance in the ore. The rare-earth elements are partly differentiated into cerium-rich bastnaesite, chevkinite, and monazite, and yttrium-rich xenotime and doverite. Apatite, zircon, and sphene contain both cerium and yttrium group earths. Eleven samples of radioactive ore and rock average 0.009 percent uranium, 0.062 percent thorium, 1.51 percent combined rare-earth oxides including yttrium oxide and 24.8 percent iron. Scatter diagrams of sample data show a direct correlation between equivalent uranium, uranium, thorium, and combined rare^ earth oxides. Both cerium- and yttrium-group earths are abundant in the rare-earth minerals. Radioactive magnetite ore containing rare-earth minerals probably formed as a variant of the magnetite mineralization that produced the main iron ore of the Scrub Oaks deposit. The rare-earth minerals and the iron ore were deposited contemporaneously. Zircon crystals, probably deposited at the same time, have been determined by the Larsen method to be about 550 to 600 million years old (late Precambrian age). Uranium, thorium, and rare-earth elements are potential byproducts of iron in the coarse-grained magnetite ore.

  15. Geochronology and thermobarometry of the granitoid rocks within the Vaasa granite-migmatite complex, western Finland

    NASA Astrophysics Data System (ADS)

    Kurhila, Matti; Kotilainen, Anna; Tiljander, Mia; Hölttä, Pentti; Korja, Annakaisa

    2015-04-01

    The Vaasa granite-migmatite dome in west-central Finland has been formed in the Svecofennian orogeny, after the main collisional stage at ~1.9 Ga. The structure consists of a granite-migmatite core surrounded by metasedimentary rocks with outward decreasing metamorphic grade. The core comprises anatectic garnet-bearing granites, diatexites, pyroxene granites, and minor intrusive granodiorites. Geochemically, all of the rocks are peraluminous and magnesian. The Vaasa granites have close to average upper crustal compositions, and they show signs of titanite and plagioclase fractionation. The heavy REEs vary strongly according to garnet retention. Zircon U-Pb ages for these rock types indicate crystallization at 1875 Ma for the diatexites and garnet-bearing granites and at 1870 Ma for the pyroxene granites. Melt-forming temperatures are estimated by zircon and monazite saturation temperatures, and by Al/Ti ratios. No clear difference in the melting temperatures of the various rock types could be detected. However, while the monazite and zircon saturation temperatures point to temperatures around 800 ° C, the Al-Ti thermometer gives consistently about 100 ° C degrees higher results. Given the anatectic and felsic nature of the rocks, the lower temperature estimates seem more probable. Crystallization temperatures and pressures were calculated with the help of mineral chemical analyses. Garnet-biotite-plagioclase-quartz thermobarometry, and Al-in-hornblende barometry indicate pressures of 5.5-6 kbars for the diatexites, the pyroxene granites and an intrusive granodiorite. Significantly lower pressures of 2-4 kbars are recorded for the garnet-bearing granites. The garnet-biotite thermometer implies crystallization temperatures between 650 - 700 ° C for the pyroxene granites and the diatexites, and upto 600 ° C for the garnet-bearing granites. These results are markedly lower than those indicated by the whole-rock saturation temperatures of the same rocks. This may suggest that the melting has been non-saturated or that the post-crystallization leaching has affected the mineral compositions.

  16. The origin of secondary heavy rare earth element enrichment in carbonatites: Constraints from the evolution of the Huanglongpu district, China

    NASA Astrophysics Data System (ADS)

    Smith, M.; Kynicky, J.; Xu, Cheng; Song, Wenlei; Spratt, J.; Jeffries, T.; Brtnicky, M.; Kopriva, A.; Cangelosi, D.

    2018-05-01

    The silico‑carbonatite dykes of the Huanglongpu area, Lesser Qinling, China, are unusual in that they are quartz-bearing, Mo-mineralised and enriched in the heavy rare earth elements (HREE) relative to typical carbonatites. The textures of REE minerals indicate crystallisation of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce) and aeschynite-(Ce) as magmatic phases. Burbankite was also potentially an early crystallising phase. Monazite-(Ce) was subsequently altered to produce a second generation of apatite, which was in turn replaced and overgrown by britholite-(Ce), accompanied by the formation of allanite-(Ce). Bastnäsite and parisite where replaced by synchysite-(Ce) and röntgenite-(Ce). Aeschynite-(Ce) was altered to uranopyrochlore and then pyrochlore with uraninite inclusions. The mineralogical evolution reflects the evolution from magmatic carbonatite, to more silica-rich conditions during early hydrothermal processes, to fully hydrothermal conditions accompanied by the formation of sulphate minerals. Each alteration stage resulted in the preferential leaching of the LREE and enrichment in the HREE. Mass balance considerations indicate hydrothermal fluids must have contributed HREE to the mineralisation. The evolution of the fluorcarbonate mineral assemblage requires an increase in aCa2+ and aCO32- in the metasomatic fluid (where a is activity), and breakdown of HREE-enriched calcite may have been the HREE source. Leaching in the presence of strong, LREE-selective ligands (Cl-) may account for the depletion in late stage minerals in the LREE, but cannot account for subsequent preferential HREE addition. Fluid inclusion data indicate the presence of sulphate-rich brines during alteration, and hence sulphate complexation may have been important for preferential HREE transport. Alongside HREE-enriched magmatic sources, and enrichment during magmatic processes, late stage alteration with non-LREE-selective ligands may be critical in forming HREE-enriched carbonatites.

  17. Age constraints on felsic intrusions, metamorphism and gold mineralisation in the Palaeoproterozoic Rio Itapicuru greenstone belt, NE Bahia State, Brazil

    USGS Publications Warehouse

    Mello, E.F.; Xavier, R.P.; McNaughton, N.J.; Hagemann, S.G.; Fletcher, I.; Snee, L.

    2006-01-01

    U-Pb sensitive high resolution ion microprobe mass spectrometer (SHRIMP) ages of zircon, monazite and xenotime crystals from felsic intrusive rocks from the Rio Itapicuru greenstone belt show two development stages between 2,152 and 2,130 Ma, and between 2,130 and 2,080 Ma. The older intrusions yielded ages of 2,152??6 Ma in monazite crystals and 2,155??9 Ma in zircon crystals derived from the Trilhado granodiorite, and ages of 2,130??7 Ma and 2,128??8 Ma in zircon crystals derived from the Teofila??ndia tonalite. The emplacement age of the syntectonic Ambro??sio dome as indicated by a 2,080??2-Ma xenotime age for a granite dyke probably marks the end of the felsic magmatism. This age shows good agreement with the Ar-Ar plateau age of 2,080??5 Ma obtained in hornblendes from an amphibolite and with a U-Pb SHRIMP age of 2,076??10 Ma in detrital zircon crystals from a quartzite, interpreted as the age of the peak of the metamorphism. The predominance of inherited zircons in the syntectonic Ambro??sio dome suggests that the basement of the supracrustal rocks was composed of Archaean continental crust with components of 2,937??16, 3,111??13 and 3,162??13 Ma. Ar-Ar plateau ages of 2,050??4 Ma and 2,054??2 Ma on hydrothermal muscovite samples from the Fazenda Brasileiro gold deposit are interpreted as minimum ages for gold mineralisation and close to the true age of gold deposition. The Ar-Ar data indicate that the mineralisation must have occurred less than 30 million years after the peak of the metamorphism, or episodically between 2,080 Ma and 2,050 Ma, during uplift and exhumation of the orogen. ?? Springer-Verlag 2006.

  18. 238U/235U determinations of some commonly used reference materials and U-bearing accessory minerals (Invited)

    NASA Astrophysics Data System (ADS)

    Condon, D.; Noble, S.; McLean, N.; Bowring, S. A.

    2009-12-01

    We have determined 238U/235U ratios for a suite of commonly used natural (CRM 112a, SRM 950a, HU-1) and synthetic (IRMM 184 and CRM U500) uranium reference materials in addition to several U-bearing accessory phases (zircon and monazite) by thermal ionisation mass-spectrometry (TIMS) using the IRMM 3636 233U-236U double spike to accurately correct for mass fractionation. The 238U/235U values for the natural uranium reference materials differ, by up to 0.1%, from the widely used ‘consensus’ value (137.88) with all having 238U/235U values less than 137.88. Similarly, initial 238U/235U data from zircon and monazite yield 238U/235U values that are lower than the ‘consensus’ value. The data obtained from U-bearing minerals is used to assess how the uncertainty in the 238U/235U ratio contributes to the systematic discordance observed in 238U/206Pb and 235U/207Pb dates (Mattinson, 2000; Schoene et al., 2006) which has traditionally been wholly attributed to error in the U decay constants. The 238U/235U determinations made on the synthetic reference materials yield results that are considerably more precise and accurate than the certified values (0.02% vs. 0.1% for CRM U500). The calibration of isotopic tracers used for U-daughter geochronology that are partially based upon these reference materials, and the resultant age determinations, will benefit from increased accuracy and precision. Mattinson, J.M., 2000. Revising the “gold standard”—the uranium decay constants of Jaffey et al., 1971. Eos Trans. AGU, Spring Meet. Suppl., Abstract V61A-02. Schoene B., Crowley J.L., Condon D.C., Schmitz M.D., Bowring S.A., 2006, Reassessing the uranium decay constants for geochronology using ID-TIMS U-Pb data. Geochimica et Cosmochimica Acta 70: 426-445

  19. Timing of metamorphism of the Lansang gneiss and implications for left-lateral motion along the Mae Ping (Wang Chao) strike-slip fault, Thailand

    NASA Astrophysics Data System (ADS)

    Palin, R. M.; Searle, M. P.; Morley, C. K.; Charusiri, P.; Horstwood, M. S. A.; Roberts, N. M. W.

    2013-10-01

    The Mae Ping fault (MPF), western Thailand, exhibits dominantly left-lateral strike-slip motion and stretches for >600 km, reportedly branching off the right-lateral Sagaing fault in Myanmar and extending southeast towards Cambodia. Previous studies have suggested that the fault assisted the large-scale extrusion of Sundaland that occurred during the Late Eocene-Early Oligocene, with a geological offset of ˜120-150 km estimated from displaced high-grade gneisses and granites of the Chiang Mai-Lincang belt. Exposures of high-grade orthogneiss in the Lansang National Park, part of this belt, locally contain strong mylonitic textures and are bounded by strike-slip ductile shear zones and brittle faults. Geochronological analysis of monazite from a sample of sheared biotite-K-feldspar orthogneiss suggests two episodes of crystallization, with core regions documenting Th-Pb ages between c. 123 and c. 114 Ma and rim regions documenting a significantly younger age range between c. 45-37 Ma. These data are interpreted to represent possible magmatic protolith emplacement for the Lansang orthogneiss during the Early Cretaceous, with a later episode of metamorphism occurring during the Eocene. Textural relationships provided by in situ analysis suggest that ductile shearing along the MPF occurred during the latter stages of, or after, this metamorphic event. In addition, monazite analyzed from an undeformed garnet-two-mica granite dyke intruding metamorphic units at Bhumipol Lake outside of the Mae Ping shear zone produced a Th-Pb age of 66.2 ± 1.6 Ma. This age is interpreted to date the timing of dyke emplacement, implying that the MPF cuts through earlier formed magmatic and high-grade metamorphic rocks. These new data, when combined with regional mapping and earlier geochronological work, show that neither metamorphism, nor regional cooling, was directly related to strike-slip motion.

  20. Duration of convergence at the Pacific-Gondwana plate margin: insights from accessory phase petrochronology of the Alpine Schist, New Zealand

    NASA Astrophysics Data System (ADS)

    Briggs, S. I.; Cottle, J. M.; Smit, M. A.; Arnush, N. F.

    2016-12-01

    The timing, duration and along-strike synchroneity of metamorphism and anataxis in the Alpine Schist of New Zealand is a matter of considerable debate. Our preliminary data indicate that metamorphism resulting in garnet growth occurred from 97 - 75 Ma, and anatectic melting occurred from 80 - 51 Ma. These events are contemporaneous with rifting of Zealandia from East Gondwana, and Tasman Sea spreading from 83 - 52 Ma. An important implication of these results is that Late Cretaceous convergence along the Zealandia segment of the Pacific-Gondwana plate margin may have persisted much later than previously thought, and that convergence and extension occurred coevally in adjacent areas. This poses the question: for how long did convergence continue along the Pacific-Gondwana plate margin during East Gondwana breakup? To fully decipher the multiple stages of the complex metamorphic history recorded in the Alpine Schist, we combine Lu-Hf garnet geochronology with U-Th/Pb and REE analyses of zircon and monazite. We use the newly developed `single-shot laser ablation split stream' (SS-LASS) analysis method to obtain depth profiles through 5-10 µm metamorphic zircon overgrowths at 100 nm depth resolution to constrain both the timing and petrological context of discrete metamorphic zircon (re-)crystallization events recorded in the Alpine Schist. We also employ high spatial resolution LASS analysis to target rare 5 - 20 µm monazite in thin section to augment garnet and zircon data. Our multi-accessory phase petrochronology approach is capable of resolving discrete short-duration thermal events, strengthening the geological interpretation of `mean' Lu-Hf garnet ages and discerning between an episodic versus a prolonged history of metamorphism. In addition, comparison with geochronology from anatectic pegmatites clarifies the temporal relationship between metamorphism and melting in the Alpine Schist, while providing direct constraints on the timing and duration of convergence along the Zealandia segment of the Pacific-Gondwana margin.

  1. New geochronological evidence for the timing of early Tertiary ridge subduction in southern Alaska: A section in Geologic studies in Alaska by the U.S. Geological Survey, 1998

    USGS Publications Warehouse

    Bradley, Dwight C.; Parrish, Randall; Clendenen, William; Lux, Daniel R.; Layer, Paul W.; Heizler, Matthew; Donley, D. Thomas

    2000-01-01

    We present new U/Pb (monazite, zircon) and 40Ar/39Ar (biotite, amphibole) ages for 10 Tertiary plutons and dikes that intrude the Chugach–Prince William accretionary complex of southern Alaska. The Sanak pluton of Sanak Island yielded ages of 61.1±0.5 Ma (zircon) and 62.7±0.35 (biotite). The Shumagin pluton of Big Koniuji Island yielded a U/Pb zircon age of 61.1±0.3 Ma. Two biotite ages from the Kodiak batholith of Kodiak Island are nearly identical at 58.3±0.2 and 57.3±2.5 Ma. Amphibole from a dike at Malina Bay, Afognak Island, is 59.3±2.2 Ma; amphibole from a dike in Seldovia Bay, Kenai Peninsula, is 57.0±0.2 Ma. The Nuka pluton, Kenai Peninsula, yielded ages of 56.0±0.5 Ma (monazite) and 54.2±0.1 (biotite). Biotite plateau ages are reported for the Aialik (52.2±0.9 Ma), Tustumena (53.2±1.1 Ma), Chernof (54.2±1.1 Ma), and Hive Island (53.4±0.4 Ma) plutons of the Kenai Peninsula. Together, these new results confirm, but refine, the previously documented along-strike diachronous age trend of near-trench magmatism during the early Tertiary. We suggest that this event began at 61 Ma at Sanak Island, 2-4 m.y. later than previously supposed. An intermediate dike near Tutka Bay, Kenai Peninsula, yielded a hornblende age of 115±2 Ma. This represents a near-trench magmatic event that had heretofore gone unrecognized on the Kenai Peninsula; correlative Early Cretaceous near-trench plutons are known from the western Chugach Mountains near Palmer.

  2. Solvent Selection for Extraction of Neodymium Concentrates of Monazite Sand Processed Product

    NASA Astrophysics Data System (ADS)

    Setyadji, Moch; Purwani, MV

    2018-02-01

    The extraction of neodymium concentrates of monazite sand processed product has been done. The objective of this investigation was to determine the best solvent to separate Nd from Nd concentrate. As an aqueous phase was Nd(OH)3 concentrated in HNO3 and as solvent or the organic phase was trioctylamine (TOA). tryibuthyl phosphate (TBP). trioctylphosphine oxyde (TOPO) and di-ethyl hexyl phosphoric acid (D2EHPA) in kerosene. The investigated variables were HNO3 concentration. feed concentration. solvent concentration or solvent in kerosene. time and stirring speeds. From the investigation on the selection of solvent for the extraction of Nd(OH)3 concentrate with various solvents. it was concluded that the extraction of Nd could be carried out by using TBP or TOA. Extraction of Nd using TOA at the optimum HNO3 concentration of 2M. feed concentration of 5 gram/10 mL. TOA in kerosene concentration of 6 %. stirring time of 15 minutes. stirring speed of 200 rpm was chosen if the Y concentration in Nd concentrate is small. In these condition DNd obtained was 0.65; extraction efficiency of Nd (ENd)=37.10%. the concentrations of Nd2(C2O4)3 = 67.14%. Ce2(C2O4)3 = 1.79%. La2(C2O4)3 = 1.37% and Y2(C2O4)3 = 24.70%. Extraction of Nd using TBP at the optimum HNO3 concentration of 1M. feed concentration of 5 gram/10 m. the TBP concentration in kerosene of 15%. stirring time of 15 minutes and stirring speed of 200 rpm was chosen if the Ce concentration in Nd concentrate is small. In these condition DNd obtained was 0.20. extraction efficiency of Nd (ENd)=17%. concentration of Nd2(C2O4)3 = 70.84%. Ce2(C2O4)3=15.53%. La2(C2O4)3 = 0.00% and Y2(C2O4)3 = 8.63%.

  3. Origin of heavy REE mineralisation in carbonatites: Constraints form the Huanglongpu Mo-HREE deposit, Qinling, China.

    NASA Astrophysics Data System (ADS)

    Smith, Martin; Cheng, Xu; Kynicky, Jindrich; Cangelosi, Delia; Wenlei, Song

    2017-04-01

    The carbonatite dykes of the Huanglongpu area, Lesser Qinling, China, are unusual in that they are quartz-bearing, Mo-mineralised and enriched in the heavy rare earth elements (HREE) relative to typical carbonatites. Carbonatite monazite (208.9±4.6 Ma to 213.6±4.0; Song et al., 2016) gives a comparable U-Pb radiometric age to molybdenite (220Ma; Stein et al., 1997), confirming interpretations that Mo is derived from the carbonatite, and not a subsequent overprint from regional porphyry-style mineralisation ( 141Ma). The sulphides in the carbonatites have mantle-like 34S ( 1‰) and low δ26Mg values (-1.89 to -1.07‰), similar to sedimentary carbonates, suggesting a recycled sediment contribution in their mantle sources that may be responsible for the Mo and HREE enrichment (Song et al., 2016). The textures of REE minerals indicate crystallisation of monazite-(Ce), bastnäsite-(Ce), parisite-(Ce) and aeschynite-(Ce) as magmatic phases. Monazite-(Ce) was subsequently altered to produce apatite, which was in turn replaced by britholite-(Ce), accompanied by the formation of allanite-(Ce). The REE-fluorcarbonates where replaced by synchysite-(Ce) and röntgenite-(Ce). Aeschynite-(Ce) was altered initially to uranopyrochlore and then pyrochlore with uraninite inclusions. The mineralogical evolution reflects the evolution from magmatic carbonatite, through to more silica-rich conditions during the magmatic-hydrothermal transition, to fully hydrothermal conditions accompanied by the formation of sulphate minerals. Each alteration stage resulted in the preferential leaching of the LREE and enrichment in the HREE. Mass balance considerations indicate that the HREE enrichment could not be a passive process, and that hydrothermal fluids must have contributed HREE to the system. The evolution of the fluorcarbonate mineral assemblage requires an increase in aCa2+ and aCO32- in the metasomatic fluid, and so breakdown of HREE-enriched calcite may have been the HREE source. Solubility products are lower for LREE minerals compared to HREE minerals, so leaching in the presence of strong, LREE-selective ligands (Cl-, CO32-) may account for the depletion in late stage minerals in the LREE, but cannot account for subsequent preferential HREE addition. Fluid inclusion data indicate the presence of sulphate-rich brines during late stage alteration, and hence sulphate complexation may have been important for preferential HREE transport, as sulphate has been shown to be non-LREE selective during the formation of complex ions. The combination of mantle source with a recycled oceanic sediment component, and REE enrichment during magmatic processes, and late stage alteration with non-LREE selective ligands such as sulphate may be critical in forming HREE-enriched carbonatites. Song et al., (2016) Origin of unusual HREE-Mo-rich carbonatites in the Qinling orogen, China. Scientific Reports, 6:37377 | DOI: 10.1038/srep37377. Stein et al. (1997) Highly precise and accurate Re-Os ages for molybdenite from the East Qinling-Dabie molybdenum belt, Shaanxi province, China. Econ. Geol. 92, 827-835 (1997)

  4. Did the Kiruna iron ores form as a result of a metasomatic or igneous process? New U-Pb and Nd data for the iron oxide apatite ores and their host rocks in the Norrbotten region of northern Sweden

    NASA Astrophysics Data System (ADS)

    Westhues, A.; Hanchar, J. M.; Whitehouse, M. J.; Fisher, C. M.

    2012-12-01

    A number of iron deposits near Kiruna in the Norrbotten region of northern Sweden are of the iron oxide apatite (IOA) type of deposits; also referred to as Kiruna-type deposits. They are commonly considered a subgroup or end-member of iron oxide copper gold (IOCG) deposits, containing no economic grades of copper or gold. Both IOCG and IOA deposits are characterized by abundant low-Ti Fe oxides, an enrichment in REE, and intense sodium and potassium wall-rock alteration adjacent to the ores. Deposits of these types are of a great economic importance, not only for iron, but also for other elements such as rare earth elements (REE) or uranium. Kiruna, the type locality of the IOA type of mineral deposits, is the focus of this study. Despite a century-long mining history and 2500 Mt of iron ore produced in the region to date (with grades of 30 to 70 wt.% Fe), the genesis of these deposits is poorly understood: theories of a magmatic vs. a hydrothermal or metasomatic origin have been debated, and the timing of mineralization of the ores in the Norbotten region has never been directly dated. The results anticipated from this study will provide a better understanding of the nature of the IOA type of mineral deposits and their relation to IOCG deposits such as Olympic Dam in Australia. An array of geochemical methods is used in order to gain insights on the emplacement history of the host rocks, their subsequent alteration, and the ore genesis of these deposits. This includes in situ U/Pb geochronology of zircon, monazite, and titanite to constrain the timing between host rock emplacement, alteration and mineralization. Isotopic data from whole rocks and in situ at mineral scale will provide constraints on the involvement of hydrothermal fluids and their possible sources, as well as on the sources of Fe, U, and the REE. Newly obtained Sm-Nd isotopic data points to distinct source differences between host rocks, ore and alteration related samples. Preliminary in situ U-Pb dating of zircon from both host rock and ore samples confirms a previously documented event around 1880 - 1900 Ma in the Norrbotten region. However, U-Pb in monazite from an ore sample suggests a further event at ca. 1650 Ma, a period of known activity in Fennoscandia. Further investigation and more U-Pb data are needed to confirm those dates and how the iron mineralization is related to those two events. The combination of U-Th-Pb ages, tracer isotopes and trace element abundances at mineral scale (e.g., Lu-Hf in zircon, and Sm-Nd in monazite, apatite, titanite), along with the O isotopic composition of zircon, will be used to decipher whether the Kiruna iron ore deposits are of metasomatic or igneous origin. Overall, the study also intends to develop a predictive model for exploration of similar iron oxide apatite deposits worldwide.

  5. Two cryptic anatectic events within a syn-collisional granitoid from the Araçuaí orogen (southeastern Brazil): Evidence from the polymetamorphic Carlos Chagas batholith

    NASA Astrophysics Data System (ADS)

    Melo, M. G.; Stevens, G.; Lana, C.; Pedrosa-Soares, A. C.; Frei, D.; Alkmim, F. F.; Alkmin, L. A.

    2017-04-01

    From the earliest (ca. 630 Ma) pre-collisional plutons to the latest (ca. 480 Ma) post-collisional intrusions, the Araçuaí orogen (SE Brazil) records an outstanding succession of granite production events in space and time. The Carlos Chagas batholith (CCB) is the largest ( 14,000 km2) granitic body ascribed to the collisional plutonism (G2 supersuite) in the back-arc region of the Araçuaí orogen, to the east of the Rio Doce magmatic arc. A wide range of monazite and zircon ages (> 725 Ma to ca. 490 Ma) have been found in CCB granites, recording a rich history of crustal recycling and inheritance, magmatic crystallization and anatexis. The CCB includes a dominant granite richer in garnet than in biotite, in which three mineral assemblages can be identified: 1) Qz + Pl + Kfs + Bt + Grt + Ilm ± Rt; 2) Qz + Pl + Kfs + Bt + Grt + Ilm + Sil; and 3) Qz + Pl + Kfs + Bt + Grt + Ilm + Sil + Spl. Rocks which contain mineral assemblage 2 and 3 all contain two generations of garnet. Textural evidence for the presence of former melt, recognized in all studied CCB samples, includes: silicate melt inclusions in poikiloblastic garnet, pseudomorphed thin films of melt surrounding both generations of garnet, pseudomorphed melt pools adjacent to garnet and biotite, and plagioclase and quartz with cuspate-lobate shapes occurring among matrix grains. Both generations of garnet crystals (Grt1 and Grt2) are unzoned in terms of major element concentration, contain small rounded inclusions of Ti-rich biotite and, in addition, the Grt2 crystals also contain inclusions of remnant sillimanite needles. Microstructural evidence, in combination with mineral chemistry, indicates that the garnet crystals grew during two distinct metamorphic-anatectic events, as the peritectic products of fluid-absent melting reactions which consumed biotite, quartz and plagioclase, in the case of Grt1, and which consumed biotite, quartz, plagioclase and sillimanite in the case of Grt2. P-T pseudosections calculated via Theriak-Domino, in combination with in situ U-Pb monazite and zircon dating, provide new constraints on the thermal evolution of the back-arc region of the Araçuaí orogen. Data from assemblage 1 suggests P-T conditions for the first granulite-facies metamorphic event (M1) at 790-820 °C and 9.5-10.5 kbar, while the assemblage 2 records P-T conditions for a second granulite-facies metamorphism (M2) of around 770 °C and 6.6 kbar. Monazite and zircon within garnets from the different assemblages give age peaks at 570-550 Ma (M1) and 535-515 Ma (M2), recording two anatectic events in the CCB during a single orogenic cycle. The PT conditions for these metamorphic events can be related to: i) M1, striking crustal thickening, probably involving thrusting of the magmatic arc onto the back-arc region; and ii) M2, decompression related to the gravitational collapse of the Araçuaí orogen.

  6. Minerals and design of new waste forms for conditioning nuclear waste

    NASA Astrophysics Data System (ADS)

    Montel, Jean-Marc

    2011-02-01

    Safe storage of radioactive waste is a major challenge for the nuclear industry. Mineralogy is a good basis for designing ceramics, which could eventually replace nuclear glasses. This requires a new storage concept: separation-conditioning. Basic rules of crystal chemistry allow one to select the most suitable structures and natural occurrences allow assessing the long-term performance of ceramics in a geological environment. Three criteria are of special interest: compatibility with geological environment, resistance to natural fluids, and effects of self-irradiation. If mineralogical information is efficient for predicting the behaviour of common, well-known minerals, such as zircon, monazite or apatite, more research is needed to rationalize the long-term behaviour of uncommon waste form analogs.

  7. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOEpatents

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  8. Selective Precipitation of Thorium lodate from a Tartaric Acid-Hydrogen Peroxide Medium Application to Rapid Spectrophotometric Determination of Thorium in Silicate Rocks and in Ores

    USGS Publications Warehouse

    Grimaldi, F.S.

    1957-01-01

    This paper presents a selective iodate separation of thorium from nitric acid medium containing d-tartaric acid and hydrogen peroxide. The catalytic decomposition of hydrogen peroxide is prevented by the use of 8quinolinol. A few micrograms of thorium are separated sufficiently clean from 30 mg. of such oxides as cerium, zirconium, titanium, niobium, tantalum, scandium, or iron with one iodate precipitation to allow an accurate determination of thorium with the thoronmesotartaric acid spectrophotometric method. The method is successful for the determination of 0.001% or more of thorium dioxide in silicate rocks and for 0.01% or more in black sand, monazite, thorite, thorianite, eschynite, euxenite, and zircon.

  9. Ceramics: Durability and radiation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ewing, R.C.; Lutze, W.; Weber, W.J.

    1996-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (1) incorporation, partial burn-up and direct disposal of MOX-fuel; (2) vitrification with defense waste and disposal as glass {open_quotes}logs{close_quotes}; (3) deep borehole disposal. The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramicsmore » apatite, pyrochlore, zirconolite, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium.« less

  10. Mineralogy of parent rock and peaty-podzolic soil of Iremel Ridge, Southern Urals

    NASA Astrophysics Data System (ADS)

    Khalitov, R. M.; Perova, E. N.; Abakumov, E. V.; Suleimanov, R. R.

    2017-08-01

    The mineralogy of soils and parent rocks of the Iremel Ridge has been studied by the methods of micromorphology, laser diffraction, computed X-ray microtomography, and X-ray fluorescence analysis. In hard rock and soil, the major minerals have been identified: quartz, illite, and a chlorite-group mineral (Fe analogue of sudoite), as well as accessory minerals: monazite, xenotime, rutile, zircon, and florencite. It has been found that chlorite, illite, and quartz are present in all horizons of the studied peaty-podzolic soil. Insignificant amounts of mixed-layered mineral and kaolinite could be suggested in the T and EL horizons of peaty-podzolic soil. The mixed-layered mineral is most probably of soil origin, which is related to the transformation of illites inherited from the parent rock under acidic conditions.

  11. Metallogeny of Mesoproterozoic Sedimentary Rocks in Idaho and Montana - Studies by the Mineral Resources Program, U.S. Geological Survey, 2004-2007

    USGS Publications Warehouse

    O'Neill, J. Michael

    2007-01-01

    Preface By J.Michael O'Neill The major emphasis of this project was to extend and refine the known Mesoproterozoic geologic and metallogenic framework of the region along and adjacent to the Idaho-Montana boundary north of the Snake River Plain. The Mesoproterozoic metasedimentary rocks in this part of east-central Idaho host important Cu-Co-Au stratabound mineral resources as well as younger, epigenetic hydrothermal, sulfide base-metal mineral deposits. Two tasks of this study were to more accurately understand and portray the character and origin of cobalt-copper-gold deposits that compose the Idaho cobalt belt and specifically to analyze ore mineralogy and metallogenesis within the Blackbird mining district in the central part of the belt. Inasmuch as the cobalt belt is confined to the Mesoproterozoic Lemhi Group strata of east-central Idaho, geologic investigations were also undertaken to determine the relationship between strata of the Lemhi Group and the more extensive, noncobalt-bearing, Belt-Purcell Supergroup strata to the north and northwest. Abrupt lateral differences in the character and thickness of stratigraphic units in the Mesoproterozoic Lemhi Basin may indicate differential sedimentation in contemporaneous fault-bounded subbasins. It is suggested that northeast-trending basement faults of the Great Falls tectonic zone controlled development of the subbasins. O'Neill and others (chapter A, this volume) document a second major basement fault in this area, the newly recognized northwest-striking Great Divide megashear, a zone 1-2 km wide of left-lateral strike-slip faults active during Mesoproterozoic sedimentation and bounding the Cu-Co belt on the northwest. The megashear is a crustal-scale tectonic feature that separates Lemhi Group strata from roughly coeval Belt-Purcell strata to the north and northwest in Montana and northern Idaho. The results of numerous geologic investigations of the Cu- and Co-bearing Mesoproterozoic rocks of east-central Idaho are integrated and summarized by Bookstrom and others (chapter B, this volume). In particular, their field investigations and analysis of evidence and previous arguments for synsedimentary versus epigenetic mineral deposit types, both of which have been postulated by earlier workers, led them to conclude that both processes were likely instrumental in forming the ore deposits of the Blackbird district. Finally, this report supplies new data on isotopic ratios of sulfur, oxygen, carbon, and helium in minerals associated with cobalt-bearing ores of the cobalt belt. Slack (chapter C, this volume) identified several previously unrecognized rare-earth-element minerals in Blackbird ores: monazite (Ce,La,Y,Th)PO4, xenotime (YPO4), allanite (CaCe)2(Al,Fe)3Si3O12(OH), and gadolinite (Be2FeY2Si2O10). Light rare-earth elements reside mostly in monazite, whereas yttrium and heavy rare-earth minerals reside mostly in xenotime. Dated monazite, which in the Blackbird district is interstitial to cobaltite, is Cretaceous. This date brings into question the otherwise geologically convincing interpretation of Blackbird ores as being of Mesoproterozoic age and synsedimentary origin. This volume consists of three summary articles: A. Great Divide megashear, Montana, Idaho, and Washington: An intraplate crustal-scale shear zone recurrently active since the Mesoproterozoic by J. Michael O'Neill, Edward T. Ruppel, and David A. Lopez B. Blackbird Fe-Cu-Co-Au-REE deposits by Arthur A. Bookstrom, Craig A. Johnson, Gary P. Landis, and Thomas P. Frost C. Geochemical and mineralogical studies of sulfide and iron oxide deposits in the Idaho cobalt belt by John F. Slack

  12. SHRIMP U–Pb and REE data pertaining to the origins of xenotime in Belt Supergroup rocks: evidence for ages of deposition, hydrothermal alteration, and metamorphism

    USGS Publications Warehouse

    Aleinikoff, John N.; Lund, Karen; Fanning, C. Mark

    2015-01-01

    The Belt–Purcell Supergroup, northern Idaho, western Montana, and southern British Columbia, is a thick succession of Mesoproterozoic sedimentary rocks with an age range of about 1470–1400 Ma. Stratigraphic layers within several sedimentary units were sampled to apply the new technique of U–Pb dating of xenotime that sometimes forms as rims on detrital zircon during burial diagenesis; xenotime also can form epitaxial overgrowths on zircon during hydrothermal and metamorphic events. Belt Supergroup units sampled are the Prichard and Revett Formations in the lower Belt, and the McNamara and Garnet Range Formations and Pilcher Quartzite in the upper Belt. Additionally, all samples that yielded xenotime were also processed for detrital zircon to provide maximum age constraints for the time of deposition and information about provenances; the sample of Prichard Formation yielded monazite that was also analyzed. Ten xenotime overgrowths from the Prichard Formation yielded a U–Pb age of 1458 ± 4 Ma. However, because scanning electron microscope – backscattered electrons (SEM–BSE) imagery suggests complications due to possible analysis of multiple age zones, we prefer a slightly older age of 1462 ± 6 Ma derived from the three oldest samples, within error of a previous U–Pb zircon age on the syn-sedimentary Plains sill. We interpret the Prichard xenotime as diagenetic in origin. Monazite from the Prichard Formation, originally thought to be detrital, yielded Cretaceous metamorphic ages. Xenotime from the McNamara and Garnet Range Formations and Pilcher Quartzite formed at about 1160– 1050 Ma, several hundred million years after deposition, and probably also experienced Early Cretaceous growth. These xenotime overgrowths are interpreted as metamorphic–diagenetic in origin (i.e., derived during greenschist facies metamorphism elsewhere in the basin, but deposited in sub-greenschist facies rocks). Several xenotime grains are older detrital grains of igneous derivation. A previous study on the Revett Formation at the Spar Lake Ag–Cu deposit provides data for xenotime overgrowths in several ore zones formed by hydrothermal processes; herein, those results are compared with data from newly analyzed diagenetic, metamorphic, and magmatic xenotime overgrowths. The origin of a xenotime overgrowth is reflected in its rareearth element (REE) pattern. Detrital (i.e., igneous) xenotime has a large negative Eu anomaly and is heavy rare-earth element (HREE)-enriched (similar to REE in igneous zircon). Diagenetic xenotime has a small negative Eu anomaly and flat HREE (Tb to Lu). Hydrothermal xenotime is depleted in light rare-earth element (LREE), has a small negative Eu anomaly, and decreasing HREE. Metamorphic xenotime is very LREE-depleted, has a very small negative Eu anomaly, and is strongly depleted in HREE (from Gd to Lu). Because these characteristics seem to be process related, they may be useful for interpretation of xenotime of unknown origin. The occurrence of 1.16–1.05 Ga metamorphic xenotime, in the apparent absence of pervasive deformation structures, suggests that the heating may be related to poorly understood regional heating due to broad regional underplating of mafic magma. These results may be additional evidence (together with published ages from metamorphic titanite, zircon, monazite, and garnet) for an enigmatic, Grenville-age metamorphic event that is more widely recognized in the southwestern and eastern United States

  13. SHRIMP U-Pb evidence for a Late Silurian age of metasedimentary rocks in the Merrimack and Putnam-Nashoba terranes, eastern New England

    USGS Publications Warehouse

    Wintsch, R.P.; Aleinikoff, J.N.; Walsh, G.J.; Bothner, Wallace A.; Hussey, A.M.; Fanning, C.M.

    2007-01-01

    U-Pb ages of detrital, metamorphic, and magmatic zircon and metamorphic monazite and titanite provide evidence for the ages of deposition and metamorphism of metasedimentary rocks from the Merrimack and Putnam-Nashoba terranes of eastern New England. Rocks from these terranes are interpreted here as having been deposited in the middle Paleozoic above Neoproterozoic basement of the Gander terrane and juxtaposed by Late Paleozoic thrusting in thin, fault-bounded slices. The correlative Hebron and Berwick formations (Merrimack terrane) and Tatnic Hill Formation (Putnam-Nashoba terrane), contain detrital zircons with Mesoproterozoic, Ordovician, and Silurian age populations. On the basis of the age of the youngest detrital zircon population (???425 Ma), the Hebron, Berwick and Tatnic Hill formations are no older than Late Silurian (Wenlockian). The minimum deposition ages of the Hebron and Berwick are constrained by ages of cross-cutting plutons (414 ?? 3 and 418 ?? 2 Ma, respectively). The Tatnic Hill Formation must be older than the oldest metamorphic monazite and zircon (???407 Ma). Thus, all three of these units were deposited between ???425 and 418 Ma, probably in the Ludlovian. Age populations of detrital zircons suggest Laurentian and Ordovician arc provenance to the west. High grade metamorphism of the Tatnic Hill Formation soon after deposition probably requires that sedimentation and burial occurred in a fore-arc environment, whereas time-equivalent calcareous sediments of the Hebron and Berwick formations probably originated in a back-arc setting. In contrast to age data from the Berwick Formation, the Kittery Formation contains primarily Mesoproterozoic detrital zircons; only 2 younger grains were identified. The absence of a significant Ordovician population, in addition to paleocurrent directions from the east and structural data indicating thrusting, suggest that the Kittery was derived from peri-Gondwanan sources and deposited in the Fredericton Sea. Thus, the Kittery should not be considered part of the Laurentian-derived Merrimack terrane; it more likely correlates with the early Silurian Fredericton terrane of northeastern New England and Maritime Canada.

  14. Detrital shocked minerals: microstructural provenance indicators of impact craters

    NASA Astrophysics Data System (ADS)

    Cavosie, A. J.

    2014-12-01

    The study of detrital shocked minerals (DSMs) merges planetary science, sedimentology, mineralogy/crystallography, accessory mineral geochemistry, and geochronology, with the goal of identifying and determining provenance of shock metamorphosed sand grains. Diagnostic high-pressure impact-generated microstructures (planar fractures, planar deformation features) are readily identified on external grain surfaces using standard SEM imaging methods (BSE), and when found, unambiguously confirm an impact origin for a given sand grain. DSMs, including quartz, zircon, monazite, and apatite, have thus far been documented at the Vredefort Dome [1,2,3], Sudbury [4], Rock Elm [5], and Santa Fe [6,7] impact structures. DSMs have been identified in alluvium, colluvium, beach sand, and glacial deposits. Two main processes are recognized that imply the global siliciclastic record contains DSMs: they survive extreme distal transport, and they survive 'deep time' lithification. Distal transport: In South Africa, shocked minerals are preserved in alluvium from the Vaal River >750 km downstream from the Vredefort impact; SHRIMP U-Pb geochronology has confirmed the origin of detrital shocked zircon and monazite from shocked Vredefort bedrock [2]. Vredefort-derived shocked zircons have also been found at the mouth of the Orange River on the Atlantic coast, having travelled ~2000 km downriver from Vredefort [8]. Deep time preservation: Vredefort-derived shocked zircon and quartz has been documented in glacial diamictite from the 300 Myr-old Dwyka Group in South Africa. Shocked minerals were thus entrained and transported in Paleozoic ice sheets that passed over Vredefort [9]. An impact crater can thus be viewed as a unique 'point source', in some cases for billions of years [2,4]; DSMs thus have applications in studying eroded impact craters, sedimentary provenance, landscape evolution, and long-term sediment transport processes throughout the geologic record. This work was supported by NSF (EAR-1145118) and NASA Astrobiology [1] Cavosie et al. 2010 GSA Bulletin. [2] Erickson et al. 2013 GCA. [3] Erickson et al. 2013 Am. Min. [4] Thomson et al. 2014 GSA Bulletin. [5] Roig et al. 2013 LPSC. [6] Lugo and Cavosie 2014 LPSC. [7] Cavosie and Lugo, 2014 LPSC. [8] Montalvo and Cavosie, 2014 GSA. [9] Pincus et al. 2014 GSA.

  15. Re-thinking the Laramide: Investigating the role of fluids in producing surface uplift using xenolith mineralogy and geochronology

    NASA Astrophysics Data System (ADS)

    Butcher, Lesley Ann

    High-temperature, high-pressure mineral assemblages preserved in much of the North American lithosphere owe their origins to Archean and Proterozoic tectonic processes. Whether subsequent mechanical, thermal, or chemical modification of ancient lithosphere affects overlying crust and the extent to which such processes contribute to anomalous deformation and topography is the interior of continents is poorly understood. This study addresses the occurrence and effects of hydration on continental crust in producing regionally elevated topography in the Colorado Plateau since the Late Cretaceous. Mineralogical characteristics of two deep crustal xenoliths (GR-11 and RM-21) from the Four Corners Volcanic field record varying degrees of hydrous alteration including extensive replacement of garnet by hornblende, secondary albite and phengite growth at the expense of primary plagioclase, and secondary monazite growth in association with fluid-related allanite and plagioclase breakdown. Results from forward petrological modeling for both deep crustal xenoliths are consistent with hydration at greater than 20 km depth prior to exhumation in the ~20 Ma volcanic host. In situ Th/Pb dating provides evidence for a finite period of fluid-related monazite crystallization in xenolith RM-21 from 91 +/- 2.8 Ma to 58 +/- 4 Ma, concurrent with timing estimates of low-angle subduction of the Farallon slab. Hydration-related reactions at depth lead to a net density decrease as low-density hydrous phases (hbl+/-ab+/-phg) grow at the expense of high-density, anhydrous minerals (gt+/-pl) abundant in unaltered Proterozoic crust. If these reactions are sufficiently pervasive and widespread, reductions in lower crustal density would provide a significant and quantifiable source of lithospheric buoyancy. Calculations for density decreases associated with extensive hydration recorded in xenolith GR-11 for an ~25 km thick crustal layer yield uplift estimates on the order of hundreds of meters associated with phase changes at depth. The results of this study substantiate the hypothesis that chemical alteration of lower continental crust by slab-derived fluids played a role in producing Laramide-related surface uplift of the Colorado Plateau and establishes chemical modification of continental lithosphere as a credible possibility for producing elevated regional topography in continental interiors.

  16. New evidence for an old idea: Geochronological constraints for a paired metamorphic belt in the central European Variscides

    NASA Astrophysics Data System (ADS)

    Will, T. M.; Schmädicke, E.; Ling, X.-X.; Li, X.-H.; Li, Q.-L.

    2018-03-01

    New geochronological data reveal a prolonged tectonothermal evolution of the Variscan Odenwald-Spessart basement, being part of the Mid-German Crystalline Zone in central Europe. We report the results from (i) secondary ion mass spectrometry (SIMS) U-Pb dating of zircon, rutile and monazite, (ii) SIMS zircon oxygen isotope analyses, (iii) laser ablation-multicollector-inductively coupled plasma mass spectrometry (LA-MC-ICPMS) zircon Lu-Hf isotope analyses and, (iv) LA-ICPMS zircon and rutile trace element data for a suite of metamorphic rocks (five amphibolite- and eclogite-facies mafic meta-igneous rocks and one granulite-facies paragneiss). The protoliths of the mafic rocks formed from juvenile as well as depleted mantle sources in distinct tectonic environments at different times. Magmatism took place at a divergent oceanic margin (possibly in a back-arc setting) at 460 Ma, in an intraoceanic basin at ca. 445 Ma and at a continental margin at 329 Ma. Regardless of lithology, zircon in eclogite, amphibolite and high-temperature paragneiss provide almost identical Carboniferous ages of 333.7 ± 4.1 Ma (eclogite), 329.1 ± 1.8 to 328.4 ± 8.9 Ma (amphibolite), and 334.0 ± 2.0 Ma (paragneiss), respectively. Rutile yielded ages of 328.6 ± 4.7 and 321.4 ± 7.0 Ma in eclogite and amphibolite, and monazite in high-temperature paragneiss grew at 330.1 ± 2.4 Ma (all ages are quoted at the 2σ level). The data constrain coeval high-pressure eclogite- and high-temperature granulite-facies metamorphism of the Odenwald-Spessart basement at ca. 330 Ma. Amphibolite-facies conditions were attained shortly afterwards. The lower plate eclogite formed in a fossil subduction zone and the upper plate high-temperature, low-pressure rocks are the remains of an eroded Carboniferous magmatic arc. The close proximity of tectonically juxtaposed units of such radically different metamorphic conditions and thermal gradients is characteristic for a paired metamorphic belt sensu Miyashiro (1961). Thus, the Odenwald-Spessart basement represents the first recognised paired metamorphic belt in the European Variscides.

  17. Late Cretaceous to Paleocene metamorphism and magmatism in the Funeral Mountains metamorphic core complex, Death Valley, California

    USGS Publications Warehouse

    Mattinson, C.G.; Colgan, J.P.; Metcalf, J.R.; Miller, E.L.; Wooden, J.L.

    2007-01-01

    Amphibolite-facies Proterozoic metasedimentary rocks below the low-angle Ceno-zoic Boundary Canyon Detachment record deep crustal processes related to Meso-zoic crustal thickening and subsequent extension. A 91.5 ?? 1.4 Ma Th-Pb SHRIMP-RG (sensitive high-resolution ion microprobe-reverse geometry) monazite age from garnet-kyanite-staurolite schist constrains the age of prograde metamorphism in the lower plate. Between the Boundary Canyon Detachment and the structurally deeper, subparallel Monarch Spring fault, prograde metamorphic fabrics are overprinted by a pervasive greenschist-facies retrogression, high-strain subhorizontal mylonitic foliation, and a prominent WNW-ESE stretching lineation parallel to corrugations on the Boundary Canyon Detachment. Granitic pegmatite dikes are deformed, rotated into parallelism, and boudinaged within the mylonitic foliation. High-U zircons from one muscovite granite dike yield an 85.8 ?? 1.4 Ma age. Below the Monarch Spring fault, retrogression is minor, and amphibolite-facies mineral elongation lineations plunge gently north to northeast. Multiple generations of variably deformed dikes, sills, and leucosomal segregations indicate a more complex history of partial melting and intrusion compared to that above the Monarch Spring fault, but thermobarometry on garnet amphibolites above and below the Monarch Spring fault record similar peak conditions of 620-680 ??C and 7-9 kbar, indicating minor (<3-5 km) structural omission across the Monarch Spring fault. Discordant SHRIMP-RG U-Pb zircon ages and 75-88 Ma Th-Pb monazite ages from leucosomal segregations in paragneisses suggest that partial melting of Proterozoic sedimentary protoliths was a source for the structurally higher 86 Ma pegmatites. Two weakly deformed two-mica leucogranite dikes that cut the high-grademetamorphic fabrics below the Monarch Spring fault yield 62.3 ?? 2.6 and 61.7 ?? 4.7 Ma U-Pb zircon ages, and contain 1.5-1.7 Ga cores. The similarity of metamorphic, leuco-some, and pegmatite ages to the period of Sevier belt thrusting and the period of most voluminous Sierran arc magmatism suggests that both burial by thrusting and regional magmatic heating contributed to metamorphism and subsequent partial melting. ??2007 Geological Society of America. All rights reserved.

  18. P- T- t constraints on the development of the Doi Inthanon metamorphic core complex domain and implications for the evolution of the western gneiss belt, northern Thailand

    NASA Astrophysics Data System (ADS)

    Macdonald, A. S.; Barr, S. M.; Miller, B. V.; Reynolds, P. H.; Rhodes, B. P.; Yokart, B.

    2010-01-01

    The western gneiss belt in northern Thailand is exposed within two overlapping Cenozoic structural domains: the extensional Doi Inthanon metamorphic core complex domain located west of the Chiang Mai basin, and the Mae Ping strike-slip fault domain located west of the Tak batholith. New P- T estimates and U-Pb and 40Ar/ 39Ar age determinations from the Doi Inthanon domain show that the gneiss there records a complex multi-stage history that can be represented by a clockwise P- T- t path. U-Pb zircon and titanite dating of mylonitic calc-silicate gneiss from the Mae Wang area of the complex indicates that the paragneissic sequence experienced high-grade, medium-pressure metamorphism (M1) in the Late Triassic - Early Jurassic (ca. 210 Ma), in good agreement with previously determined zircon ages from the underlying core orthogneiss exposed on Doi Inthanon. Late Cretaceous monazite ages of 84 and 72 Ma reported previously from the core orthogneiss are attributed to a thermal overprint (M2) to upper-amphibolite facies in the sillimanite field. U-Pb zircon and monazite dating of granitic mylonite from the Doi Suthep area of the complex provides an upper age limit of 40 Ma (Late Eocene) for the early stage(s) of development of the actual core complex, by initially ductile, low-angle extensional shearing under lower amphibolite-facies conditions (M3), accompanied by near-isothermal diapiric rise and decompression melting. 40Ar/ 39Ar laserprobe dating of muscovite from both Doi Suthep and Doi Inthanon provided Miocene ages of ca. 26-15 Ma, representing cooling through the ca. 350 °C isotherm and marking late-stage development of the core complex by detachment faulting of the cover rocks and isostatic uplift of the sheared core zone and mantling gneisses in the footwall. Similarities in the thermochronology of high-grade gneisses exposed in the core complex and shear zone domains in the western gneiss belt of northern Thailand (and also in northern Vietnam, Laos, Yunnan, and central Myanmar) suggest a complex regional response to indentation of Southeast Asia by India.

  19. Miocene crustal extension following thrust tectonic in the Lower Sebtides units (internal Rif, Ceuta Peninsula, Spain): Implication for the geodynamic evolution of the Alboran domain

    NASA Astrophysics Data System (ADS)

    Homonnay, Emmanuelle; Corsini, Michel; Lardeaux, Jean-Marc; Romagny, Adrien; Münch, Philippe; Bosch, Delphine; Cenki-Tok, Bénédicte; Ouazzani-Touhami, Mohamed

    2018-01-01

    In Western Mediterranean, the Rif belt in Morocco is part of the Gibraltar Arc built during the Tertiary in the framework of Eurasia-Africa convergence. The structural and metamorphic evolution of the internal units of this belt as well as their timing, crucial to constrain the geodynamic evolution of the Alboran Sea, is still largely debated. Our study on the Ceuta Peninsula (Northern Rif) provides new structural, petrological and geochronological data (U-Th-Pb, Ar-Ar), which allow to precise the tectono-metamorphic evolution of the Lower Sebtides metamorphic units with: (1) a syn-metamorphic thrusting event developed under granulite facies conditions (7-10 kbar and 780-820 °C). A major thrust zone, the Ceuta Shear Zone, drove the emplacement of metapelites and peridotitic lenses from the Ceuta Upper Unit over the orthogneisses of the Monte Hacho Lower Unit. This compressional event ended during the Upper Oligocene. (2) an extensional event developed at the boundary between amphibolite and greenschist facies conditions (400-550 °C and 1-3 kbar). During this event, the Ceuta Shear Zone has been reactivated as a normal fault. Normal ductile shear zones contributed to the final exhumation of the metamorphic units during the Early Miocene. We propose that the compressional event is related to the formation of an orogenic wedge located in the upper plate, in a backward position, of the subduction zone driving the geodynamic evolution of the Alboran domain. In this context, the episode of lithospheric thinning could be related to the opening of the Alboran basin in a back-arc position. Furthermore, unlike the previous models proposed for the Rif belt, the tectonic coupling between mantle peridotites and crustal metamorphic rocks occurred in Ceuta Peninsula at a depth of 20-30 km under high temperature conditions, before the extensional event, and thus cannot be related to the back-arc extension. 1, BSE image of monazite. 2, CL image of monazite showing a thin rim zonation. 3, BSE image of zircon. 4, CL image of zircon showing zonation.

  20. Preparation, structural and dielectric characteristics of Y0.5La0.95PO4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Raina, Bindu; Verma, Seema; Gupta, Vandana; Bamzai, K. K.

    2018-05-01

    Nanoparticles of yttrium substituted lanthanum phosphate having formulae Y0.5La0.95PO4 were successfully prepared through co-precipitation method. The phase, purity and crystallinity of 5% yttrium substituted lanthanum phosphate (Y: LaP 5%) powder was characterized by X-ray diffraction technique which suggests the sample belonging to monoclinic monazite crystal system. The spherical morphology with partial agglomeration having grain size in the nano scale range was observed with transmission electron microscopy. FTIR analysis depicts the presence of water molecule along with the phosphate group. The electrical properties of the grown composition show dependence of dielectric constant and dielectric loss on frequency and temperature. The continuous decrease in dielectric constant with increase in frequency suggests that the conduction mechanism is due to hopping of the charge carriers from one site to another.

  1. Influence of Ca2+ doped on structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds

    NASA Astrophysics Data System (ADS)

    Lemdek, El Mokhtar; Benkhouja, Khalil; Touhtouh, Samira; Sbiaai, Khalid; Arbaoui, Abdezzahid; Bakasse, Mina; Hajjaji, Abdelowahed; Boughaleb, Yahia; Saez-Puche, Regino

    2013-11-01

    This paper investigates the effect of doping by Ca2+ ions on the structural and optical properties of RPO4 (R = Ce3+, Nd3+ and Pr3+) compounds. A simple ceramic method in air at 900 °C was used to prepare all compounds. The structural characterization of compounds was carried out by using X-ray powder diffraction (XRD) and IR spectroscopy. Optical properties were characterized by reflectance spectral data and by colorimeter. The results reveal a single monazite phase for x values up to 0.4. The lattice parameters of the synthesized samples decrease linearly with the reduction of ionic radius of the Ce3+. These rare earth phosphates based materials have a potential to be adopted for the eco-friendly colorants for paints and plastics.

  2. Coastal deposits of heavy mineral sands; Global significance and US resources

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Bleiwas, Donald I.; Bedinger, George M.; Ellefsen, Karl J.; Shah, Anjana K.

    2016-01-01

    Ancient and modern coastal deposits of heavy mineral sands (HMS) are the principal source of several heavy industrial minerals, with mining and processing operations on every continent except Antarctica. For example, HMS deposits are the main source of titanium feedstock for the titanium dioxide (TiO2) pigments industry, obtained from the minerals ilmenite (Fe2+TiO3), rutile (TiO2) and leucoxene (an alteration product of ilmenite). HMS deposits are also the principal source of zircon (ZrSiO4), from which zirconium dioxide (ZrO2) is obtained for uses mostly in refractory products. Sometimes monazite [(Ce,La,Nd,Th)PO4] is recovered as a byproduct mineral, sought for its rare earth elements and thorium (Ault and others, 2016; Sengupta and Van Gosen, 2016; Van Gosen and Tulsidas, 2016). 

  3. RECOVERY OF THORIUM AND URANIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Calkins, G.D.

    1958-02-18

    This patent deals with the separation and recovery of uranium from monazite sand. After initial treatment of the sand with sodium hydroxide, a precipitate is obtuined which contains the uranium, thorium, rare earths and some phosphorus. This precipitate is then dissolved in nitric acid. The bulk of the rare earths are removed from thls soiution by adding aa excess of alkali carbonate, causing precipitation of the rare earths together with part of the thorium present. The solution still contains a considerable amount of thorium, some rare earths, and practically all of the uranium originally present. Thorium and rare earth values are readily precipitated from such solution, and the uranium values thus isolated, by the addition of an excess hydrogen peroxide. The pH value of the solution is preferably adjusted to at least 9 prior to the addition of the peroxide.

  4. Archean inheritance in zircon from late Paleozoic granites from the Avalon zone of southeastern New England: an African connection

    USGS Publications Warehouse

    Zartman, R.E.; Don, Hermes O.

    1987-01-01

    In southeastern New England the Narragansett Pier Granite locally intrudes Carboniferous metasedimentary rocks of the Narragansett basin, and yields a monazite UPb Permian emplacement age of 273 ?? 2 Ma. Zircon from the Narragansett Pier Granite contains a minor but detectable amount of an older, inherited component, and shows modern loss of lead. Zircon from the late-stage, aplitic Westerly Granite exhibits a more pronounced lead inheritance -permitting the inherited component to be identified as Late Archean. Such old relict zircon has not been previously recognized in Proterozoic to Paleozoic igneous rocks in New England, and may be restricted to late Paleozoic rocks of the Avalon zone. We suggest that the Archean crustal component reflects an African connection, in which old Archean crust was underplated to the Avalon zone microplate in the late Paleozoic during collision of Gondwanaland with Avalonia. ?? 1987.

  5. Zircon-quartz-calcite segregations in carbonate-alkaline metasomatic rocks of the western Baikal region and their petrogenetic implications

    NASA Astrophysics Data System (ADS)

    Savelyeva, V. B.; Bazarova, E. P.; Sharygin, V. V.; Karmanov, N. S.

    2015-12-01

    Fine-grained segregations up to 5 mm in size composed of graphic intergrowths of zircon, quartz, calcite and containing up to 0.8 wt % SrO have been found in albite-riebeckite and dolomite-biotite metasomatic rocks formed after alaskite granite. They contain magnetite, titanomagnetite (25.4 wt % TiO2), cerite-(Ce,Nd), rutile (up to 1.2 wt % Nb2O5), as well as rare micrograins of monazite-(Ce), bastnaesite-(Ce), and barite (up to 5.7 wt % SrO). The fine-grained structure of mineral aggregates suggests a metacolloidal nature. It is assumed that the zircon-quartz-calcite assemblage was formed due to exchange decomposition reaction between the salt phase of hydrothermal solution with predominant Na2CO3, elevated Zr and, to a lesser extent, Fe, Ti, LREE, Nb contents and dissolved calcium and silica compounds of a Na2SiO3 type.

  6. RECOVERY OF URANIUM AND THORIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Calkins, G.D.

    1958-06-10

    >A process is described for the recovery of uranium and thorium from monazite sand, which is frequently processed by treating it with a hot sodium hydroxide solution whereby a precipitate forms consisting mainly of oxides or hydroxides of the rare earths, thorium and uranium. The precipitate is dissolved in mineral acid, and the acid solution is then neutralized to a pH value of between 5.2 and 6.2 whereby both the uranium and thorium precipitate as the hydroxides, while substantially all the rare earth metal values present remain in the solution. The uranium and thoriunn can then be separated by dissolving the precipitate in a solution containing a mixture of alkali carbonate and alkali bicarbonate: and contacting the carbonate solution with a strong-base anion exchange resin whereby the uranium values are adsorbed on the resin while the thorium remains in solution.

  7. Simulation of ceramic materials relevant for nuclear waste management: Case of La1-xEuxPO4 solid solution

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr M.; Ji, Yaqi; Li, Yan; Arinicheva, Yulia; Beridze, George; Neumeier, Stefan; Bukaemskiy, Andrey; Bosbach, Dirk

    2017-02-01

    Using powerful computational resources and state-of-the-art methods of computational chemistry we contribute to the research on novel nuclear waste forms by providing atomic scale description of processes that govern the structural incorporation and the interactions of radionuclides in host materials. Here we present various results of combined computational and experimental studies on La1-xEuxPO4 monazite-type solid solution. We discuss the performance of DFT + U method with the Hubbard U parameter value derived ab initio, and the derivation of various structural, thermodynamic and radiation-damage related properties. We show a correlation between the cation displacement probabilities and the solubility data, indicating that the binding of cations is the driving factor behind both processes. The combined atomistic modeling and experimental studies result in a superior characterization of the investigated material.

  8. Adsorption and mineralization of REE-lanthanum onto bacterial cell surface.

    PubMed

    Cheng, Yangjian; Zhang, Li; Bian, Xiaojing; Zuo, Hongyang; Dong, Hailiang

    2017-07-11

    A large number of rare earth element mining and application resulted in a series of problems of soil and water pollution. Environmental remediation of these REE-contaminated sites has become a top priority. This paper explores the use of Bacillus licheniformis to adsorb lanthanum and subsequent mineralization process in contaminated water. The maximum adsorption capacity of lanthanum on bacteria was 113.98 mg/g (dry weight) biomass. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data indicated that adsorbed lanthanum on bacterial cell surface occurred in an amorphous form at the initial stage. Scanning electron microscopy with X-ray energy-dispersive spectroscopy (SEM/EDS) results indicated that lanthanum adsorption was correlated with phosphate. The amorphous material was converted into scorpion-like monazite (LaPO 4 nanoparticles) in a month. The above results provide a method of using bacterial surface as adsorption and nucleation sites to treat REE-contaminated water.

  9. Trans-Amazonian U-Th-Pb monazite ages and P-T-d exhumation paths of garnet-bearing leucogranite and migmatitic country rock of the southeastern Tandilia belt, Rio de la Plata craton in Argentina

    NASA Astrophysics Data System (ADS)

    Martínez, Juan Cruz; Massonne, Hans-Joachim; Frisicale, María Cristina; Dristas, Jorge A.

    2017-03-01

    A garnet-bearing leucogranite and two country rocks from the Transamazonian Tandilia belt of the Rio de la Plata craton were studied in detail. The leucogranite contains garnet with homogeneous composition of pyr6(gros + andr)2spes5alm87. In a garnet-biotite migmatite, the core and rim compositions of garnet are pyr1.7(gros + andr)5spes5.6alm87.7 and pyr1.2(gros + andr)5.5spes6.7alm86.6, respectively. These compositions in a sillimanite-garnet-muscovite migmatite are pyr4(gros + andr)2.7spes2.7alm90.6 and pyr2.7(gros + andr)4spes3.2alm90.1, respectively. We used this information to decipher the P-T evolution of the rocks applying P-T and T-H2O pseudosections with the PERPLE_X computer software package taking into consideration deformational microstructures. The leucogranite records an isothermal decompression from 5.3 to 3.8 kbar at 665 °C. The garnet-biotite migmatite was exhumed from 5.5 kbar at 630 °C to 4.3 kbar at 615 °C and the sillimanite-garnet-muscovite migmatite from supersolidus conditions of 670 °C and 3.6 kbar to 625 °C at 2.4 kbar. Late andalusite formed in this rock. Seventy four analyses of 28 monazite grains of the country rocks yielded three groups of U-Th-Pb ages which were related to a collisional event (I: ca. 2.13-2.14 Ga.), a postcollisional thermal overprint (II: ca. 2.01 Ga) and slow cooling of the orogen (III: 1.80-1.90 Ga). Inherited ages of 2.28 and 2.25 Ga could refer to an early accretionary stage of the orogen. An age of 2.41 Ga indicates the presence of recycled Siderian continental crust. Synkinematic crystallization of melts and the subsolidus development of an S2-foliation, demonstrated by deformational microstructures, occurred during the exhumation of the studied area from depths of 18 km to 8 km in the time interval 2.01-1.90 Ga.

  10. Records of near-isothermal decompression and clockwise P-T history from the Paleoproterozoic Mahakoshal Belt, Central Indian Tectonic Zone: Constraints from pseudosection modelling and monazite geochronology

    NASA Astrophysics Data System (ADS)

    Deshmukh, Tanzil; Naraga, Prabhakar; Bhattacharya, Abhijit; Kaliappan, Madhavan

    2017-04-01

    The Mahakoshal Belt (MB) is regarded as the oldest subunit along the northern collar of the Central Indian Tectonic Zone (CITZ) arguably representing the zone of accretion between the North India Block and the South India Block. The following study focuses on deciphering the structural and metamorphic P-T-t history of the schists/phyllites from the eastern part of the belt, and provides insights into the Paleoproterozoic tectonic development in the CITZ. The schists comprise phengite, quartz, andalusite, biotite, muscovite and margarite, and are associated with veins of rare andalusite + corundum + quartz assemblage. The field relations combined with deformation microtextures in the MB schists suggests three episodes of metamorphism, M1, M2 and M3, corresponding with D1, D2 and D3 deformation events respectively. Inclusion trails (S1) of phengite + biotite + quartz ± chlorite in syn/post-S2 andalusite porphyroblasts constrain the M1 metamorphic event in pelitic schists. The application of pseudosection modelling estimated peak metamorphic conditions at ˜8 kbar and 520 ˚ C. Near isothermal decompression (<4 kbar) resulted in the formation of the andalusite + muscovite bearing retrograde assemblage that stabilized at the expense of phengite-bearing assemblage. Further, andalusite porphyroblasts are replaced by margarite + muscovite + chlorite pseudomorphs (2-3 kbar) during syn/post-S3 fluid-aided metamorphism. Th-U-total Pb dating of monazite grains yield core populations at 1.8-1.9 Ga, and rim populations at 1.7-1.8 Ga and 1.5-1.6 Ga. Thus, the peak metamorphism in MB schists was Paleoproterozoic in age, 1.8-1.9 Ga, and the clockwise P-T path was recorded at 1.7-1.8 Ga, which overlaps with the emplacement of blastoporphyritic granitoids along southern margin of the MB. The results obtained in this study combined with the existing structural-metamorphic-chronological information demonstrate the CITZ to be a composite of desperately-evolved crustal domains. With some major omissions, the tectono-thermal events identified in the CITZ partly overlap with those observed in the Capricorn Orogen (Western Australia) and the Trans North China Orogen. Therefore, these global correlations possibly corroborate new configurations on the assembly and fragmentation of Columbia Supercontinent, but await further studies and robust age determinations in the various parts of CITZ.

  11. High-temperature metamorphism and its relation with magmatism (Svecofennian Belt, the Ladoga region, Russia)

    NASA Astrophysics Data System (ADS)

    Baltybaev, Shauket

    2010-05-01

    The Ladoga region, situated in the south-eastern part of the Fennoscandian shield, is subdivided into the Archean (ARD) and the Proterozoic (PRD) domains. The boundary between them is a wide shear-zone. The ARD consists mostly of AR-PR middle-low temperature gneisses and the PRD consists of turbidites, pelites, volcanics metamorphosed under HT-conditions (granulite facies). Metamorphism within the PRD is culminated at T= 800-900C and P=5-6 kbar. The peak of metamorphism of granulite facies is dated at 1881 Ma by Pb-Pb stepwise leaching method of rock-forming minerals of the granulites. Pb-Pb results are within error limits coeval with the U-Pb ages of metamorphic monazites. The same (1881Ma) age has gabbro-enderbites. Next stage of metamorphism lasts from 1881 to 1860 Ma under conditions of amphibolite facies. It was restricted with U-Pb, Pb-Pb, Sm-Nd data based on the closure temperature of zircon, monazite, garnet, sillimanite from gneisses, leucosomes of migmatites and synmetamorphic diorites and tonalites. The lowermost point of the trend shows P-T: ~3-4 kbar, 600C. By the time 1860 Ma K-rich granites were emplaced and the uppermost limit for granulite metamorphism comes from the ages of the aplitic/pegmatitic veins (1860-1850 Ma), which cut the K-rich granites. Thermal and tectonic settings can be described based on spatial and temporal changes during magma emplacement. The granulites of the PRD were produced by the emplacement of the extensive basic intrusion (gabbro-enderbites) into the lower-middle crust. A prolonged thermal flux over all area was supported by new generated dioritic and tonalitic melts, which were intruded into the middle crust. The final stage of tectono-metamorphic evolution was marked by emplacement of the K-rich granites. Numerical simulation of the process of magma emplacement (sequences: gabbro-enderbites, diorites and tonalites) and related heat production shows good correlation between intrusive activity and metamorphism of the surrounding rocks. Baltybaev Sh. K., Levchenkov O. A., Levsky L. K., Eklund O., Kilpeläinen T. 2006. Two metamorphic stages in the Svecofennian Domain: evidence from the isotopic geochronological study of the Ladoga and Sulkava metamorphic complexes. Petrology, 14(3), 247-261.

  12. Geologic map of the Big Delta B-2 quadrangle, east-central Alaska

    USGS Publications Warehouse

    Day, Warren C.; Aleinikoff, John N.; Roberts, Paul; Smith, Moira; Gamble, Bruce M.; Henning, Mitchell W.; Gough, Larry P.; Morath, Laurie C.

    2003-01-01

    New 1:63,360-scale geologic mapping of the Big Delta B-2 quadrangle provides important data on the structural setting and age of geologic units, as well as on the timing of gold mineralization plutonism within the Yukon-Tanana Upland of east-central Alaska. Gold exploration has remained active throughout the region in response to the discovery of the Pogo gold deposit, which lies within the northwestern part of the quadrangle near the south bank of the Goodpaster River. Geologic mapping and associated geochronological and geochemical studies by the U.S. Geological Survey (USGS) and the Alaska Department of Natural Resources, Division of Mining and Water Management, provide baseline data to help understand the regional geologic framework. Teck Cominco Limited geologists have provided the geologic mapping for the area that overlies the Pogo gold deposit as well as logistical support, which has lead to a much improved and informative product. The Yukon-Tanana Upland lies within the Tintina province in Alaska and consists of Paleozoic and possibly older(?) supracrustal rocks intruded by Paleozoic (Devonian to Mississippian) and Cretaceous plutons. The oldest rocks in the Big Delta B-2 quadrangle are Paleozoic gneisses of both plutonic and sedimentary origin. Paleozoic deformation, potentially associated with plutonism, was obscured by intense Mesozoic deformation and metamorphism. At least some of the rocks in the quadrangle underwent tectonism during the Middle Jurassic (about 188 Ma), and were subsequently deformed in an Early Cretaceous contractional event between about 130 and 116 Ma. New U-Pb SHRIMP data presented here on zircons from the Paleozoic biotite gneisses record inherited cores that range from 363 Ma to about 2,130 Ma and have rims of euhedral Early Cretaceous metamorphic overgrowths (116 +/- 4 Ma), interpreted to record recrystallization during Cretaceous west-northwest-directed thrusting and folding. U-Pb SHRIMP dating of monazite from a Paleozoic gneiss sample yields an age of 112 +/- 2 Ma; the monazite presumably grew during the waning stages of the intense regional Cretaceous ductile deformation. The Cretaceous ductile deformation was followed closely by granite plutonism and gold mineralization. The main pulse of gold mineralization is temporally and spatially associated with the Cretaceous granitic dikes and plutons and occurred during regional uplift and extension.

  13. Matrix effects for elemental fractionation within ICPMS: applications for U-Th-Pb geochronology

    NASA Astrophysics Data System (ADS)

    Chen, W.

    2016-12-01

    Recent development in instruments provides significant technical supports for daily, quick, money saving geochemical analyses. Laser ablation ICPMS stands out due to these reasons, especially for the U-Th-Pb isotopic dating. Matrix-matched external standardization is by far the most common approach used in U-Th-Pb dating via LA-ICPMS. However, matrix-effects between standard and sample for in-situ dating have shown to be both significant and insignificant. It remains mysterious whether a well matrix-matched standard is needed for U-Th-Pb dating by LA-ICPMS. This study provides an experimental framework for the understanding of matrix effects induced elemental fractionation for U-Th-Pb associated with ICPMS. A preliminary study on the influence of varied U, Th and Pb amounts on their fractionations has been carried out. Experimental data show that different U, Th and Pb contents result in varied 238U/206Pb and 232Th/208Pb ratios. The fractionations of U/Pb and Th/Pb increase with the increasing contents (1 ppb to 100 ppb) with a strong positive anomaly at 10 ppb. Matrixes representing minerals frequently used in dating have been investigated for the influences on U/Pb and Th/Pb fractionations, which suggest a complicated effect. Little fractionations observed between mineral pairs (e.g., monazite and apatite; zircon and perovskite; rutile and perovskite; xenotime and baddeleyite), whereas large fractionations identified for other minerals (e.g., zircon and baddeleyite; monazite and sphene; rutile and baddeleyite). Single element matrix (i.e., Si, P, Ca, Zr, Ti) has been studied to identify their effects on the fractionations. U/Pb ratio increases with the increasing Si and P contents, whereas it decreases for Zr, Ca and Ti. Th/Pb ratio increases with increasing Si contents, decreases for P and Zr, and increases first then decreases for Ca and Ti. Above all, different matrix and U, Th and Pb amounts show distinct U/Pb and Th/Pb fractionations within ICPMS. The minerals with matrix indicating similar fractionations in ICPMS can be used as suitable reference standards for each other with proper laser ablation settings via LA-ICPMS. Moreover, matched U, Th and Pb contents should be considered when using a matrix-matched standard in laser ablation analysis.

  14. Quantifying the timescales of Archean UHT metamorphism through U-Pb monazite and zircon petrochronology

    NASA Astrophysics Data System (ADS)

    Guevara, V.; MacLennan, S. A.; Schoene, B.; Dragovic, B.; Caddick, M. J.; Kylander-Clark, A. R.; Couëslan, C. G.

    2016-12-01

    Unraveling the timescales of metamorphism is crucial to understanding the mechanisms behind mass/heat transfer through Earth's crust. Though such mechanisms and their durations are becoming well constrained in modern (Phanerozoic) settings, the drivers of metamorphism in the ancient geologic record remain more enigmatic. The development of accessory phase petrochronology has allowed metamorphic evolution to be closely linked to isotopic dates, ultimately improving quantification of metamorphic durations. While in-situ petrochronological methods preserve textural and spatial context, they often lack the temporal resolution required to accurately quantify metamorphic duration in Archean terranes. Here we combine in-situ U-Pb monazite (mnz) and zircon (zrn) laser ablation split-stream (LASS) and high-precision ID-TIMS-TEA petrochronology of distinct grain domains to resolve the timescales of ultrahigh temperature (UHT) metamorphism in the Archean Pikwitonei granulite domain (PGD). The PGD encompasses >1.5x105 km2 of granulite-facies rocks on the NW edge of the Superior Province. Themodynamic modelling of a pelite from the western part of the PGD suggests peak P-T conditions of >8 kbar, 900-940 °C and UHT decompression to 8 kbar followed by cooling. LASS analysis of zrn inclusions in garnet (grt) yields a date of 2701 Ma, with Ti in zrn thermometry yielding T of 800-900 °C. LASS analysis of mnz yields dates of 2720-2680 Ma for low HREE domains with no to shallow negative Eu anomalies, suggestive of growth during plagioclase (plg) breakdown and grt stability. ID-TIMS analysis of a mnz fragment with a strong negative Eu anomaly, suggestive of growth during plg stability, gives a concordant 207Pb/206Pb date of 2666 Ma, consistent with LASS results of 2660-2640 Ma for chemically similar domains. ID-TIMS analyses of zrn rims yield a range of 207Pb/206Pb dates from 2671 to 2656 Ma (±<1 Ma). Ti in zrn yields 800 °C for these rims, indicating they grew at similar T. Together, these data indicate a metamorphic cycle in the PGD to/from UHT over a minimum of 35 Ma, with at least 12 Ma of slow cooling near 800 °C in the lower crust following UHT decompression. This evolution is inconsistent with punctuated thermal pulses due to focused fluid flow or magmatism, instead requiring a long-lived source of crustal heating.

  15. Petrography, geochemistry, and U-Pb geochronology of pegmatites and aplites associated with the Alvand intrusive complex in the Hamedan region, Sanandaj-Sirjan zone, Zagros orogen (Iran)

    NASA Astrophysics Data System (ADS)

    Sepahi, Ali Asghar; Salami, Sedigheh; Lentz, David; McFarlane, Christopher; Maanijou, Mohammad

    2018-04-01

    The Alvand intrusive complex in the Hamedan area in Iran is in the Sanandaj-Sirjan zone of the Zagros orogen. It consists of a wide range of plutonic rocks, mainly gabbro, diorite, granodiorite, granite, and leucogranites that were intruded by aplitic and pegmatitic dykes. At least three successive magmatic episodes generated an older gabbro-diorite-tonalite assemblage, followed by a voluminous granodiorite-granite association, which was then followed by minor leucocratic granitoids. Aplitic and pegmatitic dykes and bodies have truncated both plutonic rocks of the Alvand intrusive complex and its metamorphic aureole. Chemically they belong to peraluminous LCT (Li-, Cs-, and Ta-bearing) family of pegmatites. Mineralogically, they resemble Muscovite (MS) and Muscovite Rare Element (MSREL) classes of pegmatites. High amounts of some elements, such as Sn (up to 10,000 ppm), Rb (up to 936 ppm), Ba (up to 706 ppm), and LREE (up to 404 ppm) indicate the highly fractionated nature of some of these aplites and pegmatites. U-Pb dating of monazite, zircon, and allanite by LA-ICPMS indicate the following ages: monazite-bearing aplites of Heydareh-e-Poshteshahr and Barfejin areas, southwest of Hamedan, give an age range of 162-172 Ma; zircon in Heydareh-e-Poshteshar gives an average age of 165 Ma and for allanite-bearing pegmatites of Artiman area, north of Tuyserkan, an age of 154.1 ± 3.7 Ma was determined. These overlap with previously reported ages (ca. 167-153 Ma) for the plutonic rocks of the Alvand complex. Therefore, these data reveal that the Jurassic was a period of magmatism in the Hamedan region and adjacent areas in the Sanandaj-Sirjan zone, which was situated at the southern edge of the central Iranian micro-plate (southern Eurasian plate) at this time. Our results also suggest that advective heating in a continental arc setting has caused melting of fertile supracrustal lithologies, such as meta-pelites. These partial melts were then emplaced at much higher crustal levels, but within a thermally anomalous environment, which, therefore, leads to formation of evolved felsic rocks, such as the studied LCT aplite-pegmatite suite and their parental granitic rocks. This is a new result that indicates the role of syn-subduction crustal partial melting in the region as part of Zagros orogeny.

  16. Sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China; a cornerstone example for giant polymetallic ore deposits of hydrothermal origin

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Tatsumoto, M.; Junwen, Wang; Conrad, J.E.; McKee, E.H.; Zonglin, Hou; Qingrun, Meng; Shengguang, Huang

    1997-01-01

    Detailed, integrative field and laboratory studies of the textures, structures, chemical characteristics, and isotopically determined ages and signatures of mineralization of the Bayan Obo deposit provided evidence for the origin and characteristics favorable for its formation and parameters necessary for defining giant polymetallic deposits of hydrothermal origin. Bayan Obo is an epigenetic, metasomatic, hydrothermal rare earth element (REE)-Fe-Nb ore deposit that is hosted in the metasedimentary H8 dolostone marble of the Middle Proterozoic Bayan Obo Group. The metasedimentary sequence was deposited on the northern continental slope of the North China craton. The mine area is about 100 km south of the suture marking Caledonian subduction of the Mongolian oceanic plate from the north beneath the North China craton. The mineralogy of the deposit is very complex, consisting of more than 120 different minerals, some of which are epigenetic minerals introduced by hydrothermal solutions, and some of which are primary and secondary metamorphic minerals. The major REE minerals are monazite and bastnaesite, whereas magnetite and hematite are the dominant Fe-ore minerals, and columbite is the most abundant Nb mineral. Dolomite, alkali amphibole, fluorite, barite, aegirine augite, apatite, phlogopite, albite, and microcline are the most widespread gangue minerals. Three general types of ores occur at Bayan Obo: disseminated, banded, and massive ores. Broad zoning of these ore types occurs in the Main and East Orebodies. Disseminated ores are in the outermost zone, banded ores are in the intermediate zone, and massive ores are in the cores of the orebodies. On the basis of field relations, host rocks, textures, structures, and mineral assemblages, many varieties of these three types of ores have been recognized and mapped. Isotopic dating of monazite, bastnaesite, aeschynite, and metamorphic and metasomatic alkali amphiboles associated with the deposit provides constraints on the ages of mineralization and the history of the deposit. Textural relations, differences in chemical composition, and 232Th/208Pb internal isochron ages of monazite and bastnaesite samples indicate that many episodes of REE mineralization occurred at Bayan Obo, ranging from about 555 Ma to about 398 Ma. Initial 208Pb/204Pb ratios suggest different sources of REE's for different generations of REE minerals. Relative ages of Fe mineralization were deduced from textural relationships of Fe minerals with other, dated mineral phases in the deposit. Most Nb mineralization was in the area of the West Orebodies and resulted in disseminated ore. Aeschynite, an early stage of Nb mineralization (438+-25.1 Ma), occurs with huanghoite and alkali amphiboles in veins. The 40Ar/39Ar ages of amphiboles, as well as petrographic textures, were used to distinguish three periods of regional metamorphism in the Bayan Obo mine area: (1) Late Proterozoic, about 890 Ma, which recrystallized H8 carbonate to marble and crystallized lineated alkali amphiboles along foliation planes in the marble; (2) Caledonian, about 425-395 Ma, which resulted in metamorphic and metasomatic-metamorphic alkali amphiboles; and (3) Hercynian, about 300 Ma, based on biotite 40Ar/39Ar analyses from biotite schist and folded banded ores. The 40Ar/39Ar ages of metasomatic alkali amphiboles also place time constraints on the hydrothermal history of the ore deposit. Metasomatic amphiboles represent periods of intense hydrothermal activity, which began as early as 1.26 Ga; that date is based on the age of amphibole from a vein that crosscuts the H6 quartzite that underlies the H8 dolostone marble. Although much of the metasomatic amphibole formed during periods that overlapped the peak period of REE mineralization of banded ores, REE and alkali amphibole phases generally occur in different mineral assemblages or are of very different ages in the same assemblage and, therefore, may have been derived from

  17. Rare-earth elements

    USGS Publications Warehouse

    Van Gosen, Bradley S.; Verplanck, Philip L.; Seal, Robert R.; Long, Keith R.; Gambogi, Joseph; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    The rare-earth elements (REEs) are 15 elements that range in atomic number from 57 (lanthanum) to 71 (lutetium); they are commonly referred to as the “lanthanides.” Yttrium (atomic number 39) is also commonly regarded as an REE because it shares chemical and physical similarities and has affinities with the lanthanides. Although REEs are not rare in terms of average crustal abundance, the concentrated deposits of REEs are limited in number.Because of their unusual physical and chemical properties, the REEs have diverse defense, energy, industrial, and military technology applications. The glass industry is the leading consumer of REE raw materials, which are used for glass polishing and as additives that provide color and special optical properties to the glass. Lanthanum-based catalysts are used in petroleum refining, and cerium-based catalysts are used in automotive catalytic converters. The use of REEs in magnets is a rapidly increasing application. Neodymium-iron-boron magnets, which are the strongest known type of magnets, are used when space and weight are restrictions. Nickel-metal hydride batteries use anodes made of a lanthanum-based alloys.China, which has led the world production of REEs for decades, accounted for more than 90 percent of global production and supply, on average, during the past decade. Citing a need to retain its limited REE resources to meet domestic requirements as well as concerns about the environmental effects of mining, China began placing restrictions on the supply of REEs in 2010 through the imposition of quotas, licenses, and taxes. As a result, the global rare-earth industry has increased its stockpiling of REEs; explored for deposits outside of China; and promoted new efforts to conserve, recycle, and substitute for REEs. New mine production began at Mount Weld in Western Australia, and numerous other exploration and development projects noted in this chapter are ongoing throughout the world.The REE-bearing minerals are diverse and often complex in composition. At least 245 individual REE-bearing minerals are recognized; they are mainly carbonates, fluorocarbonates, and hydroxylcarbonates (n = 42); oxides (n = 59); silicates (n = 85); and phosphates (n = 26).Many of the world’s significant REE deposits occur in carbonatites, which are carbonate igneous rocks. The REEs also have a strong genetic association with alkaline magmatism. The systematic geologic and chemical processes that explain these observations are not well understood. Economic or potentially economic REE deposits have been found in (a) carbonatites, (b) peralkaline igneous systems, (c) magmatic magnetite-hematite bodies, (d) iron oxide-copper-gold (IOCG) deposits, (e) xenotime-monazite accumulations in mafic gneiss, (f) ion-absorption clay deposits, and (g) monazite-xenotime-bearing placer deposits. Carbonatites have been the world’s main source for the light REEs since the 1960s. Ion-adsorption clay deposits in southern China are the world’s primary source of the heavy REEs. Monazite-bearing placer deposits were important sources of REEs before the mid-1960s and may be again in the future. In recent years, REEs have been produced from large carbonatite bodies mined at the Mountain Pass deposit in California and, in China, at the Bayan Obo deposit in Nei Mongol Autonomous Region, the Maoniuping deposit in Sichuan Province, the Daluxiang deposit in Sichuan Province, and the Weishan deposit in Anhui Province. Alkaline igneous complexes have recently been targeted for exploration because of their enrichments in the heavy REEs.Information relevant to the environmental aspects of REE mining is limited. Little is known about the aquatic toxicity of REEs. The United States lacks drinking water standards for REEs. The concentrations of REEs in environmental media are influenced by their low abundances in crustal rocks and their limited solubility in most groundwaters and surface waters. The scarcity of sulfide minerals, including pyrite, minimizes or eliminates concerns about acid-mine drainage for carbonatite-hosted deposits and alkaline-intrusion-related REE deposits. For now, insights into environmental responses of REE mine wastes must rely on predictive models.

  18. The Conterminous United States Mineral Assessment Program; background information to accompany folio of geologic, geophysical, geochemical, mineral-occurrence, mineral-resource potential, and mineral-production maps of the Charlotte 1 degree x 2 degrees Quadrangle, North Carolina and South Carolina

    USGS Publications Warehouse

    Gair, Jacob Eugene; Goldsmith, Richard; Daniels, D.L.; Griffitts, W.R.; DeYoung, J.H.; Lee, M.P.

    1986-01-01

    This Circular and the folio of separately published maps described herein are part of a series of reports compiled under the Conterminous United States Mineral Assessment Program ICUSMAP). The folio on the Charlotte 1 degree ? 2 degree quadrangle, North Carolina and South Carolina, includes (1) a geologic map; (2) four geophysical maps; (3) geochemical maps for metamorphic heavy minerals, copper, lead and artifacts, zinc, gold, tin, beryllium, niobium, tungsten, molybdenum, titanium, cobalt, lithium, barium, antimony-arsenic-bismuth-cadmium, thorium-cerium-monazite, and limonite; (4) mineral-occurrence maps for kyanite-sillimanite-lithium-mica-feldspar-copper-lead-zinc, gold-quartz-barite-fluorite, iron-thorium-tin-niobium, and construction materials-gemstones; (5) mineral-resource potential maps for copper-lead-zinc-combined base metals, gold, tin-tungsten, beryllium-molybdenum-niobium, lithium-kyanite- sillimanitebarite, thorium (monazite)-uranium, and construction materials; and (6) mineral-production maps. The Charlotte quadrangle is mainly within the Piedmont physiographic province and extends from near the Coastal Plain on the southeast into the Blue Ridge province on the northwest for a short distance. Parts of six lithotectonic belts are present--the Blue Ridge, the Inner Piedmont, the Kings Mountain belt, the Charlotte belt, the Carolina slate belt, and the Wadesboro basin. Igneous, metamorphic, and sedimentary rocks are present and range in age from Proterozoic to Mesozoic; alluvial sediments of Quaternary age occur along rivers and larger streams. Rocks of the Blue Ridge include Middle Proterozoic granitoid gneiss intruded by Late Proterozoic granite; Late Proterozoic paragneiss, schist, and other metasedimentary and metavolcaniclastic rocks (Ashe and Grandfather Mountain Formations); Late Proterozoic and Early Cambrian metasedimentary rocks (Chilhowee Group); and Early Cambrian sedimentary rocks (Shady Dolomite). Paleozoic granites intrude the Proterozoic rocks. The Inner Piedmont contains noncarbonate metasedimentary rocks and amphibolite of medium to high metamorphic grades. These rocks are intruded by the Toluca Granite and Henderson Gneiss of Cambrian and Ordovician(?) age. The Charlotte belt consists largely of Late Proterozoic to Late Paleozoic granitic and gabbroic plutonic rocks and intervening enclaves of metasedimentary and metavolcanic rocks. The narrow Kings Mountain belt is located between the Charlotte and the Inner Piedmont belts and contains mainly Late Proterozoic metasedimentary rocks and plutonic rocks similar to those of the Charlotte belt. The Carolina slate belt, flanking the Charlotte belt on the east, contains weakly metamorphosed volcanic and sedimentary rocks. East of this belt, at the southeast corner of the quadrangle, is the Wadesboro basin, which has continental sedimentary rocks of Triassic age. Layered rocks westward from and in the Charlotte belt are complexly folded, are steeply dipping, and in the Blue Ridge and Inner Piedmont are contained within major thrust slices. Rocks of the Carolina slate belt are gently folded. Rocks of the Wadesboro basin occur in downfaulted blocks. The geophysical surveys of the Charlotte quadrangle consisted of Bouguer gravity, aeromagnetic, and aeroradioactivity surveys and used both newly obtained data and information from prior work. The gravity survey disclosed a distinct northeast-trending, northwest-decreasing gradient, which is part of the major gravity gradient that extends the length of the Appalachian Mountains. Granitic plutons of the Charlotte belt, in particular, are marked by gravity lows, and gabbro plutons, by highs. Several of the geologic belts display distinct magnetic character. The aeroradioactivity surveys showed a swath of consistently high gamma-ray intensities along the central part of the Inner Piedmont belt; these high intensities correspond to the so-called monazite belt. Oval patterns of high gamma-ray readi

  19. Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho Cobalt Belt: Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system

    USGS Publications Warehouse

    Slack, John F.

    2012-01-01

    Mineralogical and geochemical studies of strata-bound Fe-Co-Cu-Au-Bi-Y-rare-earth element (REE) deposits of the Idaho cobalt belt in east-central Idaho provide evidence of multistage epigenetic mineralization by magmatic-hydrothermal processes in an iron oxide copper-gold (IOCG) system. Deposits of the Idaho cobalt belt comprise three types: (1) strata-bound sulfide lenses in the Blackbird district, which are cobaltite and, less commonly, chalcopyrite rich with locally abundant gold, native bismuth, bismuthinite, xenotime, allanite, monazite, and the Be-rich silicate gadolinite-(Y), with sparse uraninite, stannite, and Bi tellurides, in a gangue of quartz, chlorite, biotite, muscovite, garnet, tourmaline, chloritoid, and/or siderite, with locally abundant fluorapatite or magnetite; (2) discordant tourmalinized breccias in the Blackbird district that in places have concentrations of cobaltite, chalcopyrite, gold, and xenotime; and (3) strata-bound magnetite-rich lenses in the Iron Creek area, which contain cobaltiferous pyrite and locally sparse chalcopyrite or xenotime. Most sulfide-rich deposits in the Blackbird district are enclosed by strata-bound lenses composed mainly of Cl-rich Fe biotite; some deposits have quartz-rich envelopes.Whole-rock analyses of 48 Co- and/or Cu-rich samples show high concentrations of Au (up to 26.8 ppm), Bi (up to 9.16 wt %), Y (up to 0.83 wt %), ∑REEs (up to 2.56 wt %), Ni (up to 6,780 ppm), and Be (up to 1,180 ppm), with locally elevated U (up to 124 ppm) and Sn (up to 133 ppm); Zn and Pb contents are uniformly low (≤821 and ≤61 ppm, respectively). Varimax factor analysis of bulk compositions of these samples reveals geochemically distinct element groupings that reflect statistical associations of monazite, allanite, and xenotime; biotite and gold; detrital minerals; chalcopyrite and sparse stannite; quartz; and cobaltite with sparse selenides and tellurides. Significantly, Cu is statistically separate from Co and As, consistent with the general lack of abundant chalcopyrite in cobaltite-rich samples.Paragenetic relations determined by scanning electron microscopy indicate that the earliest Y-REE-Be mineralization preceded deposition of Co, Cu, Au, and Bi. Allanite, xenotime, and gadolinite-(Y) commonly occur as intergrowths with and inclusions in cobaltite; the opposite texture is rare. Monazite, in contrast, forms a poikiloblastic matrix to cobaltite and thin rims on allanite and xenotime, reflecting a later metamorphic paragenesis. Allanite and xenotime also show evidence of late dissolution and reprecipitation, forming discordant rims on older anhedral allanite and xenotime and separate euhedral crystals of each mineral. Textural data suggest extensive deformation of the deposits by folding and shearing, and by pervasive recrystallization, all during Cretaceous metamorphism. Sensitive high resolution ion microprobe U-Pb geochronology by Aleinikoff et al. (2012) supports these paragenetic interpretations, documenting contemporaneous Mesoproterozoic growth of early xenotime and crystallization of megacrystic A-type granite on the northern border of the district. These ages are used together with mineralogical and geochemical data from the present study to support an epigenetic, IOCG model for Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho cobalt belt. A sulfide facies variant of IOCG deposits is proposed for the Blackbird district, in which reducing hydrothermal conditions favored deposition of sulfide minerals over iron oxides. This new model includes Mesoproterozoic vein mineralization and related Fe-Cl metasomatism that formed the biotite-rich lenses, a predominantly felsic magmatic source for metals in the deposits, given their local abundance of Y, REEs, and Be, and a major sedimentary component in the hydrothermal fluids based on independent sulfur isotope and boron isotope data for sulfides and ore-related tourmaline, respectively.

  20. An open-water electrical geophysical tool for mapping sub-seafloor heavy placer minerals in 3D and migrating hydrocarbon plumes in 4D

    USGS Publications Warehouse

    Wynn, J.; Williamson, M.; Urquhart, S.; Fleming, J.

    2011-01-01

    A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium-and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. ?? 2011 MTS.

  1. Separation of Pr and Nd from La in chloride solution by extraction with a mixture of Cyanex 272 and Alamine 336

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Jeon, Ho Seok; Lee, Man Seung

    2015-09-01

    The possibility of separation of Pr and Nd from La in a chloride leaching solution of monazite sand has been investigated by using a binary mixture of Cyanex 272 (bis(2,4,4-trimethylpentyl) phosphinic acid) and Alamine 336 (tri-octyl/decyl amine). The binary mixture showed synergism on the extraction of the three metals and led to an increase in the separation factor between Pr/Nd and La compared to Cyanex 272 alone. Although the addition of chloride ion into aqueous increased the extraction of the metals, this addition had negative effect on the separation of Nd/Pr and La. McCabe-Thiele diagrams for the extraction of Pr and Nd with the binary mixture were constructed. Stripping of metals from the loaded organic phase was achieved with 0.7 M HCl. The difference in the solvent extraction of the rare earth elements from chloride solution between the binary mixture and saponified extractants was also discussed.

  2. High REE and Y concentrations in Co-Cu-Au ores of the Blackbird district, Idaho

    USGS Publications Warehouse

    Slack, J.F.

    2006-01-01

    Analysis of 11 samples of strata-bound Co-Cu-Au ore from the Blackbird district in Idaho shows previously unknown high concentrations of rare earth elements (REE) and Y, averaging 0.53 wt percent ???REE + Y oxides. Scanning electron microscopy indicates REE and Y residence in monazite, xenotime, and allanite that form complex intergrowths with cobaltite, suggesting coeval Co and REE + Y mineralization during the Mesoproterozoic. Occurrence of high REE and Y concentrations in the Blackbird ores, together with previously documented saline-rich fluid inclusions and Cl-rich biotite, suggest that these are not volcanogenic massive sulfide or sedimentary exhalative deposits but instead are iron oxide-copper-gold (IOCG) deposits. Other strata-bound Co deposits of Proterozoic age in the North American Cordillera and elsewhere in the world may have potential for REE and Y resources. IOCG deposits with abundant light REE should also be evaluated for possible unrecognized heavy REE and Y mineralization. ?? 2006 by Economic Geology.

  3. Magnetite-apatite-dolomitic rocks of Ust-Chulman (Aldan shield, Russia): Seligdar-type carbonatites?

    NASA Astrophysics Data System (ADS)

    Prokopyev, Ilya R.; Doroshkevich, Anna G.; Redina, Anna A.; Obukhov, Andrey V.

    2018-04-01

    The Ust-Chulman apatite ore body is situated within the Nimnyrskaya apatite zone at the Aldan shield in Russia. The latest data confirm the carbonatitic origin of the Seligdar apatite deposit (Prokopyev et al. in Ore Geol Rev 81:296-308, 2017). The results of our investigations demonstrate that the magnetite-apatite-dolomitic rocks of the Ust-Chulman are highly similar to Seligdar-type dolomitic carbonatites in terms of the mineralogy and the fluid regime of formation. The ilmenite and spinel mineral phases occur as solid solutions with magnetite, and support the magmatic origin of the Ust-Chulman ores. The chemical composition of REE- and SO3-bearing apatite crystals and, specifically, monazite-(Ce) mineralisation and the formation of Nb-rutile, late hydrothermal sulphate minerals (barite, anhydrite) and haematite are typical for carbonatite complexes. The fluid inclusions study revealed similarities to the evolutionary trend of the Seligdar carbonatites that included changes of the hydrothermal solutions from highly concentrated chloride to medium-low concentrated chloride-sulphate and oxidized carbonate-ferrous.

  4. Nature and distribution of potential heavy-mineral resources offshore of the Atlantic Coast of the United States.

    USGS Publications Warehouse

    Grosz, A.E.

    1987-01-01

    The US is dependent on foreign imports of placer heavy minerals for a majority of its ilmenite and rutile, and virtually all of its monazite requirements. Although sand deposits in the SE US are important domestic sources of these heavy minerals (HM) and a number of other less well-known heavy-mineral species, global onshore reserves of placer minerals may fall short of demand in as few as 20 years. Insofar as they are important commodities for the future, offshore HM placers will become more important, but much research on them remains to be done. Results of recent offshore studies, based on surficial grab samples, indicate an average of about 2 weight percent HM in surficial Atlantic Continental Shelf (ACS) sediments, in strong contrast with previous estimates of an average of 0.16% HM. Although provocative, the information from these grab samples does not include the thickness of the HM deposits and thus their volume and tonnage cannot be estimated.-from Author

  5. Influence of relative sea-level variations on the genesis of palaeoplacers, the examples of Sarrabus (Sardinia, Italy) and the Armorican Massif (western France)

    NASA Astrophysics Data System (ADS)

    Pistis, Marco; Loi, Alfredo; Dabard, Marie-Pierre

    2016-02-01

    The aim of this work is to analyse the role of allocyclic processes in the genesis of marine Ordovician palaeoplacers laid down on a terrigenous shelf dominated by storm waves. Sedimentological (facies, sequence stratigraphy) and petrographic analyses combined with natural radioactivity measurement (gamma ray) are carried out. Two facies containing heavy minerals are identified: a shoreface facies and a proximal upper offshore facies. Heavy minerals (mainly titaniferous minerals, zircon and monazite) are concentrated in laminae that can amalgamate to form placers that are several decimetres thick. Their occurrence is highlighted by an increase in the total radioactivity (up to 140,000 cpm) and in the U and Th contents (up to 130 ppm and 800 ppm, respectively). The palaeoplacers are the result of a combination of autocyclic and allocyclic factors. In the stratigraphic record, the palaeoplacers are located in the retrogradation phases and express condensation processes in the nearshore environments.

  6. Immobile Trace Element Discrimination of Near-cogenetic Eruptions

    NASA Astrophysics Data System (ADS)

    Villa, I. M.

    2015-12-01

    A chemical diagram to discriminate individual magma batches in composite plutonic/volcanic complexes is proposed here: x = Y/Al, y = Zr/Ti. Both ratios are stable during weathering and low-grade metamorphism. Y/Al only depends on fractional crystallization of garnet, xenotime and monazite during magmatogenesis and the degree of partial melting. This already distinguishes individual magmas. Zr/Ti is modified by other phases (rutile, titanite, zircon, ilmenite, biotite, etc) that neither accommodate nor fractionate trivalent cations and provides a totally independent perspective on magmatogenesis. The Y/Al-Zr/Ti plot has no relation to tectonic setting (convergent, rift, intraplate, etc) and is not designed to distinguish lines of descent (calc-alkaline, transitional, etc). Instead, it can discriminate at a very fine scale lavas that share a common regional origin and are therefore confused in classic tectonic discrimination plots. Disentangling individual magma batches is inaccessible to global modeling but important to chronostratigraphers. Application to two well studied examples, Adamello (Alps) and North Anatolia, reproduces known consanguinity and rejects a few dubious ones.

  7. Tectonic and metamorphic discontinuities in the Greater Himalayan Sequence in Central Himalaya: in-sequence shearing by accretion from the Indian plate

    NASA Astrophysics Data System (ADS)

    Carosi, Rodolfo

    2016-04-01

    The Greater Himalayan Sequence (GHS) is the main metamorphic unit of the Himalayas, stretching for over 2400 km, bounded to the South by the Main Central Thrust (MCT) and to the North by the South Tibetan Detachment (STD) whose contemporanous activity controlled its exhumation between 23 and 17 Ma (Godin et al., 2006). Several shear zones and/or faults have been recognized within the GHS, usually regarded as out of sequence thrusts. Recent investigations, using a multitechnique approach, allowed to recognize a tectonic and metamorphic discontinuity, localized in the mid GHS, with a top-to-the SW sense of shear (Higher Himalayan Discontinuity: HHD) (Carosi et al., 2010; Montomoli et al., 2013). U-(Th)-Pb in situ monazite ages provide temporal constraint of the acitivity of the HHD from ~ 27-25 Ma to 18-17 Ma. Data on the P and T evolution testify that this shear zone affected the tectono-metamorphic evolution of the belt and different P and T conditions have been recorded in the hanging-wall and footwall of the HHD. The HHD is a regional tectonic feature running for more than 700 km, dividing the GHS in two different portions (Iaccarino et al., 2015; Montomoli et al., 2015). The occurrence of even more structurally higher contractional shear zone in the GHS (above the HHD): the Kalopani shear zone (Kali Gandaki valley, Central Nepal), active from ~ 41 to 30 Ma (U-Th-Pb on monazite) points out to a more complex deformation pattern in the GHS characterized by in sequence shearing. The actual proposed models of exhumation of the GHS, based exclusively on the MCT and STD activities, are not able to explain the occurrence of the HHD and other in-sequence shear zones. Any model of the tectonic and metamorphic evolution of the GHS should account for the occurrence of the tectonic and metamorphic discontinuities within the GHS and its consequences on the metamorphic paths and on the assembly of Himalayan belt. References Godin L., Grujic D., Law, R. D. & Searle, M. P. 2006. Geol. Soc. London Sp. Publ., 268, 1-23. Carosi R., Montomoli C., Rubatto D. & Visonà D. 2010. Tectonics, 29, TC4029. Iaccarino S., Montomoli C., Carosi R., Massonne H-J., Langone A., Visonà D. 2015. Lithos, 231, 103-121. Montomoli C., Iaccarino S., Carosi R., Langone A. & Visonà D. 2013. Tectonophysics 608, 1349-1370, doi:10.1016/j.tecto.2013.06.006. Montomoli C., Carosi R., Iaccarino S. 2015. Geol. Soc. London Sp. Publ., 412, 25-41.

  8. The Gifford Creek Ferrocarbonatite Complex, Gascoyne Province, Western Australia: Associated fenitic alteration and a putative link with the ~ 1075 Ma Warakurna LIP

    NASA Astrophysics Data System (ADS)

    Pirajno, Franco; González-Álvarez, Ignacio; Chen, Wei; Kyser, Kurt T.; Simonetti, Antonio; Leduc, Evelyne; leGras, Monica

    2014-08-01

    The Gifford Creek Ferrocarbonatite Complex (GFC), located in the Neoarchean-Palaeoproterozoic Gascoyne Province, Western Australia, comprises sills, dykes, and veins of ferrocarbonatite intruding the Pimbyana Granite and Yangibana Granite of the Durlacher Supersuite and metasedimentary rocks of the Pooranoo Metamorphics. The ferrocarbonatites are associated with complex and irregularly distributed zones of fenitic alteration. These ferrocarbonatites and fenites are also associated with a swarm of ironstone veins, containing magnetite, hematite and goethite. The GFC and associated fenite outcrops are distributed within a ~ 700 km2 area, north of the Lyons River Fault. Ferrocarbonatite sills and dykes are predominant in a northwest-trending belt, along the southern margin of the complex; whereas ferrocarbonatite veins tend to be distributed in a series of sub-parallel west-northwest-trending linear belts, generally associated with the Fe oxide veins with sinuous trends. These veins have margins of Fe-rich carbonates associated with zones of alteration that have a fenitic character. The fenitic haloes are characterised by the presence of Na-K-feldspars and/or Na-amphiboles and magnetite. In some cases monomineralic feldspar zones (orthoclasite) are present. Fenitic alteration is spatially associated with the carbonatites, but it can also form discrete veins and veinlets in basement granitic rocks (Pimbyana and Yangibana Granites). Petrographic, XRD and SEM analyses show that the ferrocarbonatites are dominantly composed of ankerite-dolomite, magnetite, arfvedsonite-riebeckite, and lesser calcite. Alkali amphibole has compositions ranging from potassian magnesio-arfvedsonite to magnesio-riebeckite. Sills and dykes north of the Lyons River, are characterised by a carbonate-rich matrix, containing > 50 vol.% ankerite-dolomite, with accessory quantities of apatite, barite, monazite, and phlogopite. In-situ U-Pb age determination of apatite grains by LA-ICP-MS on a sample of ferrocarbonatite was performed and an average age of 1075 ± 35 Ma was obtained. This age is within the range of ages (~ 1078-1070 Ma) of the Warakurna Large Igneous Province (WLIP) and we suggest that the GFC is related to the mantle plume event that generated the WLIP. This is a significant outcome, because it may lead to the recognition or discovery of other carbonatites within the area covered by the WLIP. In addition, monazite from fenitic rocks associated with the ironstones yielded an age of 1050 ± 25 Ma, suggesting that a second phase of carbonatite magmatism occurred, resulting in the emplacement of the carbonatite-ironstone veins swarm. A model is proposed to explain the formation of the GFC system.

  9. Role of Phosphorus Minerals in the Origin of Life on Earth

    NASA Astrophysics Data System (ADS)

    Gull, M.; Pasek, M. A.

    2013-12-01

    In the origin of life, phosphorus (P) plays a vital role as it is a key biologic element (1). However, a big question still remains as to how P was incorporated into the first biomolecules as the availability of dissolved P in water is low. Orthophosphate minerals such as apatite, whitelockite and monetite are the major carriers of phosphate on Earth, but these are poorly soluble in water and are inert. The recent discovery of phosphite in Archean rocks (2) suggests that it is likely that some other source of P was present on the early Earth which could very well mix with Hadean Ocean to generate biomolecules. The meteoritic mineral schreibersite (SC thereafter) may have provided reduced P that would corrode into water and generate reactive inorganic P. In this study we present the significance of some important P minerals including apatite, whitelockite, monazite, struvite, monetite and meteoritic mineral SC (or its synthetic analogue Fe3P). Two major aspects of these P minerals were studied; first the release of P into water and second whether phosphorylation of organic compound (glycerol) could be carried out. It was seen all the phosphate minerals such as apatite, whitelockite, monazite and monetite when heated (65-75oC for 8-10 days) with an aqueous solution of 0.5 M glycerol gave no prominent phosphorylated products (P31NMR & mass spectrometry) and released very little amount of phosphate into water and remained inert. Struvite on heating with glycerol gave around 8-10 % of glycerol monophosphates along with phosphate release in the water. When SC (or Fe3P) was heated in an aqueous solution of glycerol it not only yielded 3-6 % glycerol monophosphates but also some glycerol-di-phosphate along with rich species of inorganic P compounds. SC from the meteorite Seymchan also demonstrated phosphorylation of glycerol. Since the prebiotic role of struvite mineral as a prebiotic P mineral is not clearly known (3), this suggests SC was a potential prebiotic P source (4). The beauty of these bio-geologic reactions is the one-pot synthesis of glycerol-1-phosphate, glycerol-2-phosphate along with glycerol-di-phosphate and many inorganic P species (orthophosphate, pyrophosphate, triphosphate, phosphite). This one-pot synthetic route could possibly be one of the most important steps in the emergence of life. The study focuses on the significance of meteoritic based origin of life and how meteorites would have played a significant role in the origin of biological phosphate esters/life on the early earth. Phosphorylation of organic compounds by meteoritic sources

  10. Percolation of diagenetic fluids in the Archaean basement of the Franceville basin

    NASA Astrophysics Data System (ADS)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; Albani, Abderrazak El; Cuney, Michel; Boiron, Marie-Christine; Gauthier-Lafaye, François

    2014-01-01

    The Palaeoproterozoic Franceville basin, Gabon, is mainly known for its high-grade uranium deposits, which are the only ones known to act as natural nuclear fission reactors. Previous work in the Kiéné region investigated the nature of the fluids responsible for these natural nuclear reactors. The present work focuses on the top of the Archaean granitic basement, specifically, to identify and date the successive alteration events that affected this basement just below the unconformity separating it from the Palaeoproterozoic basin. Core from four drill holes crosscutting the basin-basement unconformity have been studied. Dating is based on U-Pb isotopic analyses performed on monazite. The origin of fluids is discussed from the study of fluid inclusion planes (FIP) in quartz from basement granitoids. From the deepest part of the drill holes to the unconformable boundary with the basin, propylitic alteration assemblages are progressively replaced by illite and locally by a phengite + Fe chlorite ± Fe oxide assemblage. Illitic alteration is particularly strong along the sediment-granitoid contact and is associated with quartz dissolution. It was followed by calcite and anhydrite precipitation as fracture fillings. U-Pb isotopic dating outlines three successive events: a 3.0-2.9-Ga primary magmatic event, a 2.6-Ga propylitic alteration and a late 1.9-Ga diagenetic event. Fluid inclusion microthermometry suggests the circulation of three types of fluids: (1) a Na-Ca-rich diagenetic brine, (2) a moderately saline (diagenetic + meteoric) fluid, and (3) a low-salinity fluid of probable meteoric origin. These fluids are similar to those previously identified within the overlying sedimentary rocks of the Franceville basin. Overall, the data collected in this study show that the Proterozoic-Archaean unconformity has operated as a major flow corridor for fluids circulation, around 1.9 Ga. highly saline diagenetic brines; hydrocarbon-rich fluids derived from organic matter-rich formations; a low-salinity fluid likely of meteoric origin migrating through the granitic basement; mineralizing fluids resulting from the mixing of fluids 1 and 3; high-temperature fluids resulting from the natural nuclear reactor environment (Mathieu et al., 2000). The present paper attempts to characterize the succession of alteration events that have affected the top of the basement below the Palaeoproterozoic sediment unconformity. Are these alterations related to early post-magmatic to hydrothermal events, to palaeoweathering, or to late infiltration of diagenetic brines from the overlying basin? Our study, carried out on drill core samples from Kiéné, is supported by petrographic investigation, new fluid inclusion data and U-Pb geochronology on monazite.

  11. 2.9-1.9 Ga paleoalterations of Archean granitic basement of the Franceville basin (Gabon)

    NASA Astrophysics Data System (ADS)

    Mouélé, Idalina Moubiya; Dudoignon, Patrick; El Albani, Abderrazak; Meunier, Alain; Boulvais, Philippe; Gauthier-Lafaye, François; Paquette, Jean-Louis; Martin, Hervé; Cuney, Michel

    2014-09-01

    The Archean granitoids in the Kiéné area, Gabon, are overlained by the Paleoproterozoic sediments of the Franceville basin (2.1 Ga). The basin is known for its high-grade uranium deposits among which some have been forming natural nuclear fission reactors. Most of the studies were dedicated to the FA-FB Paleoproterozoic sediments hosting these uranium deposits. Little is known on the Archean basement itself and specifically on the hydrous alteration events it experienced before and after the sediment deposition. The present work is focused on their petrographical, mineralogical and geochemical characterization. Dating the successive alteration events has been attempted on altered monazite crystals. Rocks in different alteration states have been sampled from eight drill cores crosscutting the Archean - Paleoproterozoic unconformity. The Archean granitoids observed in the deepest levels exhibit typical petrographical features of a propylitic alteration while they are intensely illitized up to the unconformity. The propylitic alteration is mainly pervasive but the original texture of the granitoïds is conserved in spite of the formation of new minerals: Mg-chlorite, allanite and epidote forming a typical paragenesis. The illitic alteration is much more invasive near the unconformity. The illitization process leads to the replacement of feldspars and the corrosion of quartz crysals by an illitic matrix while the ferromagnesian minerals are pseudomorphosed by a Fe-chlorite + phengite + hematite assemblage. The final fluid-rock interaction step is marked by fissural deposits of calcite and anhydrite. The δ13C isotopic data show that the fissural carbonates precipitated from diagenetic fluids enriched carbon products deriving from the maturation of organic matter. The U-Pb isotopic analyzes performed on monazite crystals have dated three distinct events: 3.0-2.9 Ga (magmatic), 2.6 Ga (propylitic alteration) and 1.9 Ga (diagenetic illitization). The calculation of geochemical mass balances suggests that the water-rock ratio during the propylitic alteration event was weak. On the contrary, it was much higher during the overprinted illitization which is characterized by an intense leaching of Na, Ca, Mg, Sr, REE and an enrichment in K, Rb,Cs. Neither the petrographic features nor the geochemical data militate for an Archean weathering event (paleosol). In the present case, diagenetic fluids have percolated from the unconformity into the basement where they overprinted the illitization processes upon the previously propylitized rocks. These fluids were probably oxidant as they are also responsible of the U mobilization which led to the formation of the ore deposits close to the FA-FB interface.

  12. Re-evaluation of P-T paths across the Himalayan Main Central Thrust

    NASA Astrophysics Data System (ADS)

    Catlos, E. J.; Harrison, M.; Kelly, E. D.; Ashley, K.; Lovera, O. M.; Etzel, T.; Lizzadro-McPherson, D. J.

    2016-12-01

    The Main Central Thrust (MCT) is the dominant crustal thickening structure in the Himalayas, juxtaposing high-grade Greater Himalayan Crystalline rocks over the lower-grade Lesser Himalaya Formations. The fault is underlain by a 2 to 12-km-thick sequence of deformed rocks characterized by an apparent inverted metamorphic gradient, termed the MCT shear zone. Garnet-bearing rocks sampled from across the MCT along the Marysandi River in central Nepal contain monazite that decrease in age from Early Miocene (ca. 20 Ma) in the hanging wall to Late Miocene-Pliocene (ca. 7 Ma and 3 Ma) towards structurally lower levels in the shear zone. We obtained high-resolution garnet-zoning pressure-temperature (P-T) paths from 11 of the same rocks used for monazite geochronology using a recently-developed semi-automated Gibbs-free-energy-minimization technique. Quartz-in-garnet Raman barometry refined the locations of the paths. Diffusional re-equilibration of garnet zoning in hanging wall samples prevented accurate path determinations from most Greater Himalayan Crystalline samples, but one that shows a bell-shaped Mn zoning profile shows a slight decrease in P (from 8.2 to 7.6kbar) with increase in T (from 590 to 640ºC). Three MCT shear zone samples were modeled: one yields a simple path increasing in both P and T (6 to 7kbar, 540 to 580ºC); the others yield N-shaped paths that occupy similar P-T space (4 to 5.5 kbar, 500 to 560ºC). Five lower lesser Himalaya garnet-bearing rocks were modeled. One yields a path increasing in both P-T (6 to 7 kbar, 525 to 550ºC) but others show either sharp compression/decompression or N-shape paths (within 4.5-6 kbar and 530-580ºC). The lowermost sample decreases in P (5.5 to 5 kbar) over increasing T (540 to 580°C). No progressive change is seen from one type of path to another within the Lesser Himalayan Formations to the MCT zone. The results using the modeling approach yield lower P-T conditions compared to the Gibbs method and lower core/rim P-T conditions compared to traditional thermometers and barometers. Inclusion barometry suggests that baric estimates from the modeling may be underestimated by 2-4 kbar. Despite uncertainty, path shapes are consistent with a model in which the MCT shear zone experienced a progressive accretion of footwall slivers.

  13. Principal thorium resources in the United States

    USGS Publications Warehouse

    Staatz, Mortimer Hay; Armbrustmacher, T.J.; Olson, J.C.; Brownfield, I.K.; Brock, M.R.; Lemons, J.F.; Coppa, L.V.; Clingan, B.V.

    1979-01-01

    Resources were assessed for thorium in the higher grade and better known deposits in the United States in: (1) veins, (2) massive carbonatites, (3) stream placers of North and South Carolina, and (4) disseminated deposits. Thorium resources for the first three categories were divided into reserves and probable potential resources. Each of these then were separated into the following cost categories: (1) the amount of ThO2 producible at less than $15 per pound, (2) the amount producible at between $15 and $30 per pound, and (3) the amount producible at more than $50 per pound. The type of mining and milling needed at each deposit determines the capital, operating, and fixed costs of both mining and milling. Costs start with the clearing of land and are carried through to the final product, which for all deposits is ThO2. Capital costs of mining are affected most by the type of mining and the size of the mine. Those of milling are affected most by the kind of mill, its size, and whether or not extra circuits are needed for the separation of rare earths or some other byproduct. Veins, massive carbonatites, and stream placers of North and South Carolina have reserves of 188,000 short tons of ThO2 and probable potential resources of 505,000 tons of ThO2. Approximately half of the reserves and probable potential resources can be produced at less than $30 per pound of ThO2. Veins are the highest grade source in the United States and have total reserves of 142,000 tons of ThO2 and probable potential resources of 343,000 tons. About 90 percent of the reserves and 91 percent of the probable potential resources can be produced at less than $15 per pound of ThO2. Seven vein districts were evaluated: (1) Lemhi Pass, Mont.-Idaho, (2) Wet Mountains, Colo., (3) Powderhorn, Colo., (4) Hall Mountain, Idaho, (5) Diamond Creek, Idaho, (6) Bear Lodge Mountains, Wyo. and (7) Mountain Pass, Calif. Eighty-seven percent of the total reserves and probable potential resources are in the Lemhi Pass and Wet Mountains Districts. The first district has reserves of 68,000 tons of ThO2 and probable potential resources of 124,000 tons that can be produced at less than $15 per pound; the second district has 54,000 tons of reserves and 141,000 tons of probable potential resources producible at less than $15 per pound. Rare earths are a common byproduct, and in many veins they are from one-half to several times as abundant as thorium. Massive carbonatite bodies are large-tonnage low-grade deposits. Thorium in these deposits would be a byproduct either of rare earth or of niobium mining. The Iron Hill carbonatite body in the Powderhorn district, Colorado, and the Sulfide Queen carbonatite body in the Mountain Pass district, California, were evaluated. These two deposits contain 40,800 tons of ThO2 in reserves and 125,000 tons of ThO2 in probable potential resources. More than 80 percent of this total is in the Iron Hill carbonatite. This thorium is entirely a byproduct and is producible at less than $15 per pound of ThO2. The Sulphide Queen massive carbonatite deposit was being mined in 1977 for rare earths, and thorium could be recovered by adding an extra circuit to the existing mill. Stream placers in North and South Carolina occur both in the Piedmont and just east of the Fall Line. The reserves of these deposits total 5,270 tons of ThO2, and the probable potential resources are 36,800 tons of ThO2. The Piedmont placers are all too small to produce ThO2 at a cost of less than $50 per pound. One placer on Hollow Creek, S.C., just east of the Fall Line had reserves of 2,040 tons of ThO2 that is producible at between $15 and $30 per pound. Thorium occurs in monazite in these placers. Other heavy minerals that would be recovered with the monazite include rutile, zircon, and ilmenite. In addition to thorium, monazite contains large amounts of rare earths and small amounts of uranium; both can be recovered during the process that separates thorium fr

  14. U-Th-Pb geochronology of the Massabesic Gneiss and the granite near Milford, South-Central New Hampshire: New evidence for avalonian basement and taconic and alleghenian disturbances in Eastern New England

    USGS Publications Warehouse

    Aleinikoff, J.N.; Zartman, R.E.; Lyons, J.B.

    1979-01-01

    U-Th-Pb systematics for zircon and monazite from Massabesic Gneiss (paragneiss and orthogneiss) and the granite near Milford, New Hampshire, were determined. Zircon morphology suggests that the paragneiss may be volcaniclastic (igneous) in origin, and thus the age data probably record the date (minimum of 646 m.y.) at which the rock was extruded. A two-stage lead-loss model is proposed to explain the present array of data points on a concordia diagram. Orthogneiss ages range only narrowly and are clustered around 475 m.y. Data for the granite of Milford, New Hampshire, are scattered, but may be interpreted in terms of inheritance and modern lead loss, yielding a crystallization age of 275 m.y. This is the only known occurrence of Avalonian-type basement in New Hampshire and as such provides evidence for the location of the paleo-Africa-paleo- North America suture. The geochronology also further documents the occurrence of disturbances during the Ordovician and Permian. ?? 1979 Springer-Verlag.

  15. Hexamethylenetetramine assisted hydrothermal synthesis of BiPO4 and its electrochemical properties for supercapacitors

    NASA Astrophysics Data System (ADS)

    Nithya, V. D.; Kalai Selvan, R.; Vasylechko, Leonid

    2015-11-01

    The well defined microstructures of BiPO4 were successfully synthesized by the facile hexamethylenetetramine (HMT) assisted hydrothermal method. The low temperature monoclinic BiPO4 structure with space group P21/n, were obtained from X-ray diffraction (XRD) for the pristine and HMT-assisted BiPO4 with 1, 3, 5 and 10 mmole concentration. A transformation from low temperature monazite-type phase to the high temperature SbPO4-type phase of BiPO4 was observed at the 10 mmole concentration. There was a variation in the morphology from polyhedron to octahedra-like and finally into cube shape upon an increase in concentration of HMT. The role of reaction time in the morphology of BiPO4 particles was investigated. The selected area electron diffraction (SAED) pattern elucidated the ordered dot pattern and the calculated d-spacing revealed the formation of BiPO4. An increased specific capacitance of HMT assisted materials (202 F/g) compared with pristine BiPO4 (89 F/g) at 5 mA/cm2 was observed upon morphological variation due to HMT addition.

  16. Insight into the geology of the East Antarctic hinterland: a study of sediment inclusions from ice cores of the Lake Vostok borehole

    USGS Publications Warehouse

    Leitchenkov, G.L.; Belyatsky, B.V.; Rodionov, N.V.; Sergeev, S.A.

    2007-01-01

    refrozen from the lake water. This ice layer contains random sediment inclusions, eight of which have been studied using state-of the-art analytical techniques. Six inclusions comprise soft aggregates consisting mainly of clay-mica minerals and micron-sized quartz grains while two others are solid clasts of fine-grained cemented rocks. The largest rock clast consists of poorly-rounded quartz and minor amounts of accessory minerals and is classified as quartzose siltstone. More than twenty grains of zircon and monazite have been identified in this siltstone and dated by SIMS SHRIMP-II. Two age clusters have been recognized for these detrital grains, in the ranges 0.8−1.2 Ga and 1.6−1.8 Ga. The compositions of the rock clasts suggest that the bedrock situated to the west of Lake Vostok is sedimentary. The age data on the detrital accessory minerals suggest that the provenance of these sedimentary rocks − the Gamburtsev Mountains and Vostok Subglacial Highlands, is mainly represented by Paleoproterozoic and MesoproterozoicNeoproterozoic crustal provinces

  17. RADIOACTIVITY DOSAGE OF ORNAMENTAL GRANITIC ROCKS BASED ON CHEMICAL, MINERALOGICAL AND LITHOLOGICAL DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salas, H.T.; Nalini, H.A. Jr.; Mendes, J.C.

    2004-10-03

    One hundred samples of granitic rock were collected from granite traders in Belo Horizonte. Autoradiography, optical microscopy, diffractometry, and chemical analysis (X-ray spectrometry, X-ray fluorescence, neutron activation, gravimetry and electron probe microanalysis) were used to determine the mineral assemblages and lithotypes. Autoradiographic results for several samples showed the presence of monazite, allanite and zircon. Chemical analysis revealed concentrations of uranium of {le} 30ppm, and thorium {le} 130ppm. Higher concentrations generally correlated with high concentrations of light rare earths in silica-rich rocks of granitic composition. Calculations were made of radioactive doses for floor tiles in a standard room for samples withmore » total concentration of uranium and thorium greater than 60ppm. On the basis of calculations of {sup 232}Th, {sup 40}K and {sup 226}Ra from Th, K and U analysis, the doses calculated were between 0.11 and 0.34 mSv/year, which are much lower than the acceptable international exposure standard of 1.0 mSv/year.« less

  18. Fired glaciofluvial sediment in the northwestern Andes: Biotic aspects of the Black Mat

    NASA Astrophysics Data System (ADS)

    Mahaney, William C.; Krinsley, David; Langworthy, Kurt; Kalm, Volli; Havics, Tony; Hart, Kris M.; Kelleher, Brian P.; Schwartz, Stephane; Tricart, Pierre; Beukens, Roelf

    2011-05-01

    Fired glaciofluvial beds in outwash considered to date from the onset of the Younger Dryas Event (~ 12.9 ka) in the northwestern Venezuelan Andes are considered equivalent to the Black Mat deposits described in other areas of North and South America and Europe. It may be equivalent to sediment recovered from other sites containing beds with spikes of cosmic nuclides and charcoal indicating the presence of widespread fire, one of the signatures of the Black Mat conflagration that followed the proposed breakup of Comet Encke or an unknown asteroid over the Laurentide Icesheet at 12.9 ka. In the northern Andes at Site MUM7B, sediment considered coeval with the Black Mat contains glassy carbon spherules, tri-coatings of C welded onto quartz and feldspar covered with Fe and Mn. Monazite with excessive concentrations of REEs, platinum metals including Ru and Rh, possible pdf's, and disrupted/brecciated and microfractured quartz and feldspar from impacting ejecta and excessive heating summarize the data obtained so far. The purpose of this paper is to document the physical character, mineralogy and biotic composition of the Black Mat.

  19. Structural investigations of Pu{sup III} phosphate by X-ray diffraction, MAS-NMR and XANES spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popa, Karin; Raison, Philippe E., E-mail: philippe.raison@ec.europa.eu; Martel, Laura

    2015-10-15

    PuPO{sub 4} was prepared by a solid state reaction method and its crystal structure at room temperature was solved by powder X-ray diffraction combined with Rietveld refinement. High resolution XANES measurements confirm the +III valence state of plutonium, in agreement with valence bond derivation. The presence of the americium (as β{sup −} decay product of plutonium) in the +III oxidation state was determined based on XANES spectroscopy. High resolution solid state {sup 31}P NMR agrees with the XANES results and the presence of a solid-solution. - Graphical abstract: A full structural analysis of PuPO{sub 4} based on Rietveld analysis ofmore » room temperature X-ray diffraction data, XANES and MAS NMR measurements was performed. - Highlights: • The crystal structure of PuPO{sub 4} monazite is solved. • In PuPO{sub 4} plutonium is strictly trivalent. • The presence of a minute amount of Am{sup III} is highlighted. • We propose PuPO{sub 4} as a potential reference material for spectroscopic and microscopic studies.« less

  20. ISOTOPIC EVIDENCE ON THE ORIGIN AND AGE OF THE BLIND RIVER URANIUM DEPOSITS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mair, J.A.; Maynes, A.D.; Patchett, J.E.

    Isotopic analyses of lead extracted from a variety of minerals from Blind River. Ontario, are repeated. The detrital minerals monazite and zircon both give leadratio ages of 2500 million years. The uraainite ore gives a lead- ratio age of 1700 m a. Other isotopic evidence is quoted to suggest that the age of the sediment in which the uranium is found may also be approximately 1700 m y, or older. The lead found in pyrite, pyrrhotite, sericite, and feldspar has anomalous isotopic ratios which can be explained by the hypothesis that they received additions of radiogenic lead from the uraninitesmore » (presumed to be 1700 m y old) 1200 to 1300 m y ago. In any case the age of these minerals, in the sense of time of last chemical alteration, is not greater than 1450 plus or minus 150 m y. All our measurements can be interpreted without asauming a major period of mineralization more recent than 1000 m y ago, although we are unable to rule out such a possibility from our evidence. (auth)« less

  1. The effects of crystallization and residual glass on the chemical durability of iron phosphate waste forms containing 40 wt% of a high MoO3 Collins-CLT waste

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Bai, Jincheng; Kim, Cheol-Woon; Brow, Richard K.; Szabo, Joe; Zervos, Adam

    2018-03-01

    The effects of cooling rate on the chemical durability of iron phosphate waste forms containing up to 40 wt% of a high MoO3 Collins-CLT waste simulant were determined at 90 °C using the product consistency test (PCT). The waste form, designated 40wt%-5, meets appropriate Department of Energy (DOE) standards when rapidly quenched from the melt (as-cast) and after slow cooling following the CCC (canister centerline cooling)-protocol, although the quenched glass is more durable. The analysis of samples from the vapor hydration test (VHT) and the aqueous corrosion test (differential recession test) reveals that rare earth orthophosphate (monazite) and Zr-pyrophosphate crystals that form on cooling are more durable than the residual glass in the 40wt%-5 waste form. The residual glass in the CCC-treated samples has a greater average phosphate chain length and a lower Fe/P ratio, and those contribute to its faster corrosion kinetics.

  2. Th-REE- and Nb-Ta-accessory minerals in post-collisional Ediacaran felsic rocks from the Katerina Ring Complex (S. Sinai, Egypt): An assessment for the fractionation of Y/Nb, Th/Nb, La/Nb and Ce/Pb in highly evolved A-type granites

    NASA Astrophysics Data System (ADS)

    Moreno, J. A.; Molina, J. F.; Bea, F.; Abu Anbar, M.; Montero, P.

    2016-08-01

    The relationships of Y/Nb, Th/Nb, La/Nb and Ce/Pb ratios in A-type felsic rocks from the Ediacaran Katerina Ring Complex, northernmost Arabian-Nubian Shield (ANS; S. Sinai, Egypt), are investigated in this work to understand their behavior during generation of highly evolved granitic magmas and to explore the nature of magma sources. Textural and compositional relationships of cognate Th-REE- and Nb-Ta-accessory minerals in Katerina felsic rocks show that chevkinite-group minerals (CGM), monazite, thorite, allanite and xenotime formed from residual liquids in quartz syenite porphyries, quartz monzonites and peralkaline granites, whereas in aluminous granites, allanite and monazite crystallized early, and thorite and columbite formed from residual liquids. Relationships of Y/Nb, Th/Nb, La/Nb and Ce/Pb ratios with Zr/Hf ratios in the aluminous granites and with Be abundances in the peralkaline granites suggest a decrease in La/Nb and Ce/Pb ratios in the former, and in Y/Nb and La/Nb ratios in the latter with crystallization progress. This contrasts with absence of systematic variations of Th/Nb and Ce/Pb ratios in the peralkaline compositions and of Y/Nb ratio in the aluminous ones. In this latter, Th/Nb ratio can present a significant decrease only in highly evolved compositions. An analysis of Y/Nb, Th/Nb, La/Nb and Ce/Pb relationships in worldwide OIB and subduction-related magmatic suites reveals that A-type felsic rocks with (Th/Nb)N < 1.3, (La/Nb)N < 1.3, and (Ce/Pb)N > 1 may have A1-type affinity, and those with (Th/Nb)N > 2, (La/Nb)N > 2, and (Ce/Pb)N < 1 tend to present A2-type affinity. The crystal fractionation of Th-LREE- and Nb-Ta-accessory minerals and mixing of components derived from the two granite groups may cause deviations from these compositional limits that can be evaluated using constraints imposed by Th/Nb-La/Nb, Ce/Pb-Th/Nb and Ce/Pb-La/Nb relationships in OIB and subduction-related magmatic suites. Three mantle sources might have been involved in the Ediacaran alkaline magmatism from northernmost ANS that are chemically similar to those of (1) OIB suites, (2) subduction-related magmatic suites, and (3) carbonatite-metasomatized peridotites. In addition, compositions characterized by (Y/Nb)N > 0.18, (Th/Nb)N > 2, (La/Nb)N > 2, (Ce/Pb)N < 1, and crustal-like Nb/Ta ratios may point to a significant contribution of crustal sources.

  3. Magmatic evolution and controls on rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Québec-Labrador

    NASA Astrophysics Data System (ADS)

    Siegel, Karin; Vasyukova, Olga V.; Williams-Jones, Anthony E.

    2018-05-01

    Although it is well known that A-type granites are enriched in the rare earth elements (REE) and other high field strength elements (HFSE), the magmatic processes that concentrate these elements are still poorly understood. The 1.24 Ga Strange Lake pluton in northern Québec-Labrador provides an extraordinary example of hyper-enrichment in the REE, Zr, and Nb in a peralkaline A-type granite. The pluton consists of two hypersolvus granite units (southern and northern) and a transsolvus granite, all of which contain perthitic alkali feldspar as the earliest major mineral; the transsolvus granite also contains separate albite and microcline crystals. Arfvedsonite, a sodic amphibole, occurs exclusively as phenocrysts in the transsolvus granite, whereas in the hypersolvus granite it is present as a late, interstitial phase. The primary HFSE minerals are zircon, monazite-(Ce), gagarinite-(Ce) and the pyrochlore group minerals. Magma evolution was monitored by the alumina content in the bulk rock, which decreases from the southern to the northern hypersolvus granite and is lowest in the transsolvus granite. Alkalinity indices and bulk Si, Fe, Rb, REE, Zr, Nb concentrations show the opposite trend. Alkali feldspar compositions mirror the trend shown by the bulk rock, i.e., decreasing Al contents are accompanied by increasing Si, Fe3+, REE, Zr and Nb contents. The major driving forces for the evolution of the hypersolvus magma prior to emplacement were the early separation of a fluoride melt from the silicate melt and the crystallization of alkali feldspar and HFSE-rich phases (zircon, monazite-(Ce), pyrochlore group). An alkali feldspar-rich crystal-mush containing LREE-fluoride melt droplets was emplaced as the least evolved southern hypersolvus granite. Massive fractionation of alkali feldspar led to a sharp increase in ƒH2O and F- activity in the magma chamber that triggered the crystallization of arfvedsonite and was followed by emplacement of the northern hypersolvus granite, which contained a higher proportion of LREE-fluoride melt droplets. Further evolution in the magma chamber led to a transition from a miaskitic to an agpaitic composition. The transsolvus granite was intruded in the form of a low viscosity crystal mush of alkali feldspar, quartz, arfvedsonite (after appreciable crystallization of arfvedsonite) and LREE-fluoride melt droplets. Upon emplacement, arfvedsonite (and gagarinite-(Ce)) crystals segregated as cumulates in response to a combination of flow differentiation and gravity settling. The immiscible fluoride melt accumulated in a volatile-rich residual silicate magma, which migrated to the top of the pluton where it formed the F-REE-rich cores of highly mineralized pegmatites.

  4. Comparative chronology of Archean HT/UHT crustal metamorphism

    NASA Astrophysics Data System (ADS)

    Caddick, Mark; Dragovic, Besim; Guevara, Victor

    2017-04-01

    Attainment of high crustal heat fluxes and consequent partial melting is critical to the stabilization of continental roots. Understanding the processes and timescales behind partial melting of continental crust in the Archean is thus paramount for understanding Archean tectonic modes and how stable cratons formed. High-temperature (HT) to ultrahigh-temperature (UHT) metamorphic rocks can record evidence for dynamic processes that result in advective heat fluxes and a substantial deviation from normal crustal geothermal gradients. Examination of the pressure-temperature conditions and timescales of HT/UHT metamorphism is thus essential to understanding the tectonic processes behind extreme crust heat fluxes and the formation of stable cratonic crust. Here, utilizing both traditional and nontraditional petrologic and geochronologic techniques, we compare the pressure-temperature-time paths of two Neoarchean terranes: the eastern Beartooth Mountains of the Wyoming Craton and the Pikwitonei Granulite Domain of the Superior Province. The Beartooth Mountains of Montana, USA, expose Archean rocks of the Wyoming Craton that are dominated by an ˜2.8 Ga calc-alkaline granitoid batholith known as the Long Lake Magmatic Complex (LLMC). The LLMC contains widespread, up to km-scale metasedimentary roof pendants, with ID-TIMS Sm-Nd garnet geochronology and laser ablation split stream (LASS) monazite geochronology suggesting that metamorphism occurred almost 100 Ma after entrainment by the LLMC [1]. Phase equilibria modeling and Zr-in-rutile thermometry constrain peak pressures and temperatures of ˜6-7 kbar and ˜780-800˚ C. Major element diffusion modeling of garnet suggest that granulite-facies temperatures were only maintained for a short duration, < 2 Ma. In contrast, the Pikwitonei Granulite Domain consists of >150,000 km2 of high-grade metamorphic rocks situated in the NW Superior Province. Phase equilibria modeling and trace element thermometry constrain peak temperatures in the southernmost part of the PGD to ˜760˚ C, while across the vast central and western parts of the PGD, peak temperatures range from 900-1000°C. LASS monazite and zircon ages, combined with ID-TIMS zircon and Sm-Nd garnet ages range from ˜2720 Ma to ˜2600 Ma, and combined with the thermometry, suggest that temperatures of >700˚ C were maintained region-wide for over 100 Ma, and that this was punctuated by thermal perturbations exceeding 900-950˚ C and occurring over substantially shorter timescales. The depths, temperatures and timescales inferred here suggest that although these regions were experiencing metamorphism within ˜100 Ma of each other, the primary driver for this metamorphism was different in each case. Timescale of metamorphism might be the most important constrained parameter here, highlighting the benefit of high resolution isotopic and geospeedometry approaches. [1] Dragovic et al., 2016. Precamb. Res., 283, 24-49. [2] Guevara et al., 2016. AGU abstracts with programs.

  5. In situ Pb-Pb dating of rutile from slowly cooled granulites by LA-MC-ICP-MS: confirmation of the high closure temperature (>=600°C) for Pb diffusion in rutile

    NASA Astrophysics Data System (ADS)

    Vry, J.; Baker, J.; Waight, T.

    2003-04-01

    We have analysed Pb isotopes in natural rutile crystals by laser ablation MC-ICP-MS to assess the potential of rapid Pb-Pb dating of rutile with this method. The rutile samples are from granulite-facies Mg- and Al-rich rocks from the Reynolds Range, Northern Territory, Australia. This metamorphic terrane has a well-constrained high-T cooling history (ca. 3^oC/Myr) defined by previous U-Pb dating of monazite and zircon (peak metamorphism at 1584 Ma), which we have supplemented with additional Rb-Sr dates of phlogopite, biotite and muscovite. The dated rutiles vary in size from 3 to 0.05 mm, have Pb concentrations of ca. 20 ppm, and were analysed with a 266 nm laser coupled to an AXIOM MC-ICP-MS (spot size of 200-50 μm). Individual larger crystals (>= 200 μm) exhibit sufficient Pb isotopic heterogeneity (206Pb/204Pb = 10000-80000) to perform isochron calculations on several short analyses of a single grain (30-60 s). The largest rutiles yielded Pb-Pb isochron ages of 1540-1555 Ma with typical uncertainties of ± 1 to 10 Ma. 207Pb/206Pb ages are typically within 1% of the Pb-Pb isochron ages testifying to the radiogenic nature of Pb in the rutile. A mean age for all the analysed rutiles was 1548.4 ± 9.1 Ma (n = 33). Comparable 207Pb/206Pb ages were also obtained from individual smaller crystals (50 μm) where the 204Pb ion beam could not be measured precisely. The results demonstrate that even small rutile crystals are extremely resistant to isotopic resetting, and that this mineral is a high-T chronometer. Phlogopite and muscovite Rb-Sr ages are <1454 and 1400-1480 Ma, respectively, with some of the phlogopite and biotite micas having been partially reset by later thermal events younger than 400 Ma. All the mica ages are considerably younger (100-70 My) than the rutile ages, which approach U-Pb ages for monazite and zircon overgrowths, even though the mica closure temperatures (350-500^oC) are comparable or slightly higher than earlier geological estimates [1] of the rutile closure temperature. Thus, our results confirm a recent experimental study [2] that suggested the closure temperature for Pb diffusion in rutile (e.g. 100 μm) is much higher (200^oC) than previously thought [1]. [1] Mezger et al., 1989. High precision U-Pb ages of metamorphic rutile: applications to the cooling history of high-grade terranes. EPSL 96, 106-118. [2] Cherniak, 2000. Pb diffusion in rutile. Contrib. Mineral. Petrol., 139, 198-207.

  6. Charged particle induced delayed X-rays (DEX) for the analysis of intermediate and heavy elements

    NASA Astrophysics Data System (ADS)

    Pillay, A. E.; Erasmus, C. S.; Andeweg, A. H.; Sellschop, J. P. F.; Annegarn, H. J.; Dunn, J.

    1988-12-01

    The emission of K X-rays from proton-rich and metastable radionuclides, following proton activation of the stable isotopes of the elements of interest, has not been widely used as a means of analysis. The thrust of this paper proposes a nuclear technique using delayed X-rays for the analysis of low concentrations of intermediate and heavy elements. The method is similar to the delayed gamma-ray technique. Proton bombardment induces mainly (p, n) reactions whereas the delayed X-rays originate largely from e --capture and isomeric transition. Samples of rare earth and platinum group elements (PGE), in the form of compacted powders, were irradiated with an 11 MeV proton beam and delayed X-rays detected with a 100 mm 2 Ge detector. Single element spectra for a range of rare earths and PGEs are presented. Analytical conditions are demonstrated for Pd in the range 0.1-5%. Spectra from actual geological samples of a PGE ore, preconcentrated by fire-assay, and monazite are presented. All six platinum group elements are visible and interference-free in a single spectrum, a marked advance on other nuclear techniques for these elements, including PIXE and neutron activation analysis (NAA).

  7. Petrogenesis of the Bosworgey granitic cusp in the SW England tin province and its implications for ore mineral genesis

    NASA Astrophysics Data System (ADS)

    Ball, T. K.; Basham, I. R.

    1984-01-01

    The Bosworgey granite cusp forms an apical portion of the concealed northern extension of the Tregonning-Godolphin granite ridge. It is characterised by unusually high values of B, P, Mn, Fe, As, Cu, Nb, Ta, Bi, Sn, W, U and S which are present largely as tourmaline, apatite, pyrite, arsenopyrite, chalcopyrite, bismuth, columbite, cassiterite, wolframite and uraninite; and low levels of Zr, Hf, Ti and REE present in zircon, ilmenite and monazite. The granite is classified as Sn and W “specialised” (Tischendorf, 1974) and it belongs to the ilmenite series of Japanese workers. The classification of Chappell and White (1974) (“S” and “I” type granites) is shown to be inapplicable to Cornubian rocks although the Bosworgey samples show characteristics of “S” type granites. The accessory mineral assemblages are typical of high temperature lodes (cassiterite, wolframite, arsenopyrite, chalcopyrite) and the assamblage is concluded to be the cusp analogue of hypothermal lodes produced by extreme differentiation and concentration of volatiles. It is speculated that such granites could provide the parent material for the mesothermal crosscourse mineralisation (pitchblende, bismuth, pyrite, galena, sphalerite).

  8. Single and multiphase inclusions in metapelitic garnets of the Rhodope Metamorphic Province, NE Greece.

    PubMed

    Mposkos, Evripidis; Perraki, Maria; Palikari, Sarra

    2009-08-01

    Single and multiphase inclusions in garnet porphyroblasts from the diamond-bearing pelitic gneisses were studied by means of combined Raman Spectroscopy and Electron Scanning Microscopy (SEM/EDX). They are either randomly distributed or with preferred orientation within the garnet host and their dimensions vary from less than 5 up to 60 microm. In the single-phase inclusions quartz, rutile, kyanite and graphite dominate. Biotite, zircon, apatite, monazite and allanite are also common. Two types of multiphase inclusions were recognized, hydrous silicate (Type I) and silicate-carbonate (Type II) ones. The carbon-bearing multiphase inclusions predominantly consist of Mg-siderite+graphite+CO(2)+muscovite+quartz formed by a high density carboniferous fluid rich in Fe, Mg, Si and less Ca, Mn, Al and K trapped in the growing garnet in a prograde stage of metamorphism at high-pressure (HP) conditions. The carbon-free multiphase inclusions predominantly consist of biotite+quartz+rutile+/-kyanite+muscovite formed through decompression-dehydration/melting reactions of pre-existing phengite. Single and multiphase inclusions are characterized by polygonal to negative crystal shape formed by dissolution-reprecipitation mechanism between the garnet host and the inclusions during the long lasting cooling period (>100 Ma) of the Kimi Complex.

  9. Potential Treatment of Inflammatory and Proliferative Diseases by Ultra-Low Doses of Ionizing Radiations

    PubMed Central

    Sanders, Charles L.

    2012-01-01

    Ultra-low doses and dose- rates of ionizing radiation are effective in preventing disease which suggests that they also may be effective in treating disease. Limited experimental and anecdotal evidence indicates that low radiation doses from radon in mines and spas, thorium-bearing monazite sands and enhanced radioactive uranium ore obtained from a natural geological reactor may be useful in treating many inflammatory conditions and proliferative disorders, including cancer. Optimal therapeutic applications were identified via a literature survey as dose-rates ranging from 7 to 11μGy/hr or 28 to 44 times world average background rates. Rocks from an abandoned uranium mine in Utah were considered for therapeutic application and were examined by γ-ray and laser-induced breakdown fluorescence spectroscopy. The rocks showed the presence of transuranics and fission products with a γ-ray energy profile similar to aged spent uranium nuclear fuel (93% dose due to β particles and 7% due to γ rays). Mud packs of pulverized uranium ore rock dust in sealed plastic bags delivering bag surface β,γ dose-rates of 10–450 μGy/h were used with apparent success to treat several inflammatory and proliferative conditions in humans. PMID:23304108

  10. Application of relativistic electrons for the quantitative analysis of trace elements

    NASA Astrophysics Data System (ADS)

    Hoffmann, D. H. H.; Brendel, C.; Genz, H.; Löw, W.; Richter, A.

    1984-04-01

    Particle induced X-ray emission methods (PIXE) have been extended to relativistic electrons to induce X-ray emission (REIXE) for quantitative trace-element analysis. The electron beam (20 ≤ E0≤ 70 MeV) was supplied by the Darmstadt electron linear accelerator DALINAC. Systematic measurements of absolute K-, L- and M-shell ionization cross sections revealed a scaling behaviour of inner-shell ionization cross sections from which X-ray production cross sections can be deduced for any element of interest for a quantitative sample investigation. Using a multielemental mineral monazite sample from Malaysia the sensitivity of REIXE is compared to well established methods of trace-element analysis like proton- and X-ray-induced X-ray fluorescence analysis. The achievable detection limit for very heavy elements amounts to about 100 ppm for the REIXE method. As an example of an application the investigation of a sample prepared from manganese nodules — picked up from the Pacific deep sea — is discussed, which showed the expected high mineral content of Fe, Ni, Cu and Ti, although the search for aliquots of Pt did not show any measurable content within an upper limit of 250 ppm.

  11. Thorium resources of selected regions in the United States

    USGS Publications Warehouse

    Staatz, Mortimer Hay; Hall, R.B.; Macke, D.L.; Armbrustmacher, T.J.; Brownfield, I.K.

    1980-01-01

    Thorium resources have been assessed in a previous report entitled 'Principal thorium resources in the United States' (Staatz and others, 1979) for (1) veins in the larger districts, {2) massive carbonatites, {3) disseminated deposits, and {4) stream placers of North and South Carolina. This report is a sequel to that report and assesses thorium resources in {1) Florida beach placers, (2) Idaho stream placers, (3) veins and pipes in the Bokan Mountain district, Alaska, (4) carbonatite dikes, and {5) apatite-bearing iron deposits near Mineville, New York. Thorium resources for each of these categories are divided into reserves and probable potential resources. When data are available, each of these is then divided into the following cost categories: (1) the amount of ThO2 producible at a cost of less than $15/lb (per pound), (2) the amount producible at a cost of between $15 and $30/lb, and (3) the amount producible at a cost of between $30 and $50/1b. Beach placers of northern Florida have reserves of 16,200 short tons of ThO2 and probable potential resources of 5,120 tons of ThO2. These deposits are heavy-mineral placers that are mined for a variety of minerals--principally titanium minerals and zircon. The thorium-bearing mineral in these placers, monazite, makes up only a minor part of the heavy minerals. Therefore, production of ThO2 from these placers is dependent on the markets for other heavy minerals. Assuming the market for other heavy minerals to be the same as in 1978, then 98 percent of the ThO2 could be produced for less than $15/lb. If, however, no other coproducts were produced, then the cost of producing ThO2 would be greater than $50/1b. Stream placers containing thorium are found along many streams that drain the Idaho batholith, but most are too small to add significantly to the thorium resources. The resources of the five largest districts, each of which consists of at least several individual placers, have been tabulated. These districts are (1) Long Valley, (2) Bear Valley, (3) Burgdorf-Warren area, (4) Boise Basin, and (5) Ell City-Newsome area. These five areas have reserves of 10,100 short tons of ThO2 and probable potential resources of 10,300 tons. Long Valley contains about half the reserves--5,680 tons of ThO2--and all the probable potential resources. Monazite is the most important heavy mineral in all except the Bear Valley deposit. Here euxenite, although not quite as abundant as monazite, is a more important mineral, because it contains approximately 14.5 percent U3O8 in addition to 5 percent ThO2. Reserves in this placer amount to 1,605 short tons of ThO2 and 1,475 tons of U3O8. Eighty-two percent of the reserves and all of the probable potential resources can be produced at less than $30/1b of ThO2. The lower cost reserves are concentrated in the Long and Bear Valley areas. Here 64 percent of the ThO2 can be produced for less than $15/1b and another 29 percent of the ThO2 at between $15 and $30/lb. Sixteen veins and pipelike bodies are evaluated in the Bokan Mountain area of southeastern Alaska. The district contains other deposits that are too poorly exposed to make meaningful resource estimates. Reserves estimated in this district are 1,440 short tons of ThO2; probable potential resources amount to 2,320 tons of ThO2. About 99 percent of these resources are in deposits whose grade is at least 0.2 percent ThO2. In addition, these deposits contain reserves of 420 tons of U3O8 and probable potential resources of 820 tons of U3O8. Eighty-two percent of the reserves and probable potential resources can be produced at less than $15/lb. The average grade of this ore is 0.54 percent ThO2 and 0 15 percent U3O8. Some carbonatite dikes, although generally not as high grade as the veins, contain resources of thorium. Carbonatite dikes in the following six districts were investigated: (1) Wet Mountains, Colo.; (2) Powderhorn district, Colorado; (3) Mountain Pass area, California; (4) Bearpaw

  12. Thermal history of low metamorphic grade Paleoproterozoic sedimentary rocks of the Penokean orogen, Lake Superior region: Evidence for a widespread 1786 Ma overprint based on xenotime geochronology

    USGS Publications Warehouse

    Vallini, D.A.; Cannon, W.F.; Schulz, K.J.; McNaughton, N.J.

    2007-01-01

    Paleoproterozoic strata in northern Michigan, Wisconsin, and Minnesota were deposited between 2.3 and 1.75 Ga within the rifted margin and subsequent foreland basin of the Penokean orogen. These strata show evidence for multiple regional metamorphic events previously attributed entirely to the Penokean orogeny (1875-1835 Ma). Metasandstones from the Marquette Range Supergroup and the Animikie, Mille Lacs, and North Range Groups were sampled at multiple localities across Minnesota, Wisconsin and Michigan for metamorphic xenotime suitable for in situ SHRIMP U-Pb geochronology. All samples are from the northern Penokean foreland basin where the metamorphic grade is greenschist to sub-greenschist and the strata are virtually undeformed. Xenotime U-Pb ages in these samples have a bimodal population with means of 1786 ?? 4 Ma (n = 32) and 1861 ?? 10 Ma (n = 9). Xenotime of both ages are contained in metasandstones from the basal Chocolay Group in Michigan and Wisconsin and the Mille Lacs Group and North Range Groups in Minnesota. The older age records a regional low-temperature thermal event that is slightly older than the overlying Menominee Group in Michigan and the Animikie Group in Minnesota and Ontario. This 1861 Ma event coincides with regional uplift that led to the formation of the unconformity between the Menominee Group and the overlying Baraga Group in Michigan; hence xenotime growth must have occurred at shallow burial depths. Younger units from the Menominee and Baraga Groups in Michigan and the Animikie Group in Minnesota, record only the 1786 Ma event. A dominant 1800-1790 Ma metamorphic monazite population that overprints Penokean-interval monazite has been documented within amphibolite- to granulite-facies rocks immediately north of the Niagara Fault Zone within the vicinity of gneiss domes and granitic plutons. In contrast, the 1786 Ma xenotime ages are from low-grade, virtually undeformed rocks 50-150 km from the high-grade zones and thus do not appear to reflect a local thermal imprint. Rather, the geographic extent of the 1786 Ma xenotime growth event suggests that it reflects a basin-wide, subtle thermal pulse. It is proposed that the xenotime ages record widespread subtle heating triggered by renewed subduction along the orogen due to Yavapai-interval convergence. The 1800-1700 Ma Yavapai terrane forms an accretionary belt throughout the central and southwestern U.S. and truncates the southern part of the Penokean orogen in central Wisconsin and southeastern Minnesota, about 200 km south of the sample sites. Alternatively, an 1800-1765 Ma interval of gravitational collapse of overthickened crust of the Penokean orogen immediately north of the Niagara Fault Zone may have driven a northward flow of hydrothermal fluids which subtly but pervasively altered the northern parts of the Penokean foreland and resulted in xenotime growth. ?? 2007 Elsevier B.V. All rights reserved.

  13. Neoarchean metamorphism recorded in high-precision Sm-Nd isotope systematics of garnets from the Jack Hills (Western Australia)

    NASA Astrophysics Data System (ADS)

    Eccles, K. A.; Baxter, E. F.; Mojzsis, S. J.; Marschall, H.; Williams, M. L.; Jercinovic, M. J.

    2013-12-01

    Studies of metasedimentary rocks from the Jack Hills, which host Earth's oldest known detrital minerals, have focused on zircon and occasionally monazite or xenotime, but no attention has been directed toward one of the most common mineral markers of metamorphism: garnet. Garnet can provide a record of the post-depositional, prograde metamorphic history of Archean metasedimentary rocks. Additionally, the use of a newly developed detrital garnet dating technique [1,2] may reveal information about pre-depositional metamorphism that could address lingering questions about the nature and timing of Earth's earliest tectonometamorphic events. Here we investigate garnet from the Jack Hills metasedimentary rocks to test whether they record in situ metamorphism or are a detrital relict of even older metamorphic events. We identified garnet in two bulk quartz-pebble conglomerate samples collected from the 'discovery' outcrop at Eranondoo Hill in the Jack Hills of Western Australia. Electron microprobe analyses of polished grains and SEM measurements of unpolished grain surfaces are consistent, revealing garnet composition indicative of a single generation/population of predominantly almandine-spessartine solid solution (~10-35% mole fraction spessartine). Compositional maps of garnet grains reveal little zoning and no discontinuities, most consistent with a single growth event. Dating Jack Hills' garnet via the Sm-Nd system is possible due to continued development of small sample analysis techniques, including running NdO+ TIMS analyses with Ta2O5 activator [3] permitting <50 ppm 2 sigma analytical precision on a 400pg in-house standard and continued improvement in blanks (<15pg full procedural blanks). Additionally, employing a nondestructive chemical prescreening technique (tabletop SEM) allows for grouping of multiple grains based on chemical similarity. Final Nd loads in the 450-750pg range routinely yield dates with precisions <×10Ma for two point isochrons between clean garnet (Sm/Nd ≥ 1.0) and their leached inclusion populations [2]. Four grouped garnet grain separates from one sample yield preliminary dates of 2703.6×6.0Ma, 2612.4×6.0Ma, 2605.0×5.5Ma, and 2567.3×8.3Ma, while the second sample yielded a date of 2579.6×4.6 Ma (2σ). Compositional and geochronologic data indicate likely in situ garnet growth during a late Archean greenschist facies metamorphic event. These dates are generally consistent with published monazite ages placing a metamorphic event at ~ca.2.65Ga [4,5]. It remains possible that an as yet unidentified detrital garnet component is present and may explain some of the scatter in absolute age. [1] Baxter EF, Jordan MK & Inglis JD, 2010, Goldschmidt [2] Baxter EF, Eccles KA & Sullivan N, 2012, Goldschmidt [3] Harvey J & Baxter EF, 2009, Chem Geol, 258, 251-257 [4] Rasmussen B, et al, 2010, Precambrian Res, 180, 26-46 [5] Iizuka T, et al, 2010, Contrib Mineral Petr, 160, 803-823

  14. Zircon (Hf, O isotopes) as melt indicator: Melt infiltration and abundant new zircon growth within melt rich layers of granulite-facies lenses versus solid-state recrystallization in hosting amphibolite-facies gneisses (central Erzgebirge, Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Tichomirowa, Marion; Whitehouse, Martin; Gerdes, Axel; Schulz, Bernhard

    2018-03-01

    In the central Erzgebirge within the Bohemian Massif, lenses of high pressure and ultrahigh pressure felsic granulites occur within meta-sedimentary and meta-igneous amphibolite-facies felsic rocks. In the felsic granulite, melt rich parts and restite form alternating layers, and were identified by petrology and bulk rock geochemistry. Mineral assemblages representing the peak P-T conditions were best preserved in melanocratic restite layers. In contrast, in the melt rich leucocratic layers, garnet and related HP minerals as kyanite are almost completely resorbed. Both layers display differences in accessory minerals: melanosomes have frequent and large monazite and Fe-Ti-minerals but lack xenotime and apatite; leucosomes have abundant apatite and xenotime while monazite is rare. Here we present a detailed petrographic study of zircon grains (abundance, size, morphology, inclusions) in granulite-facies and amphibolite-facies felsic gneisses, along with their oxygen and hafnium isotope compositions. Our data complement earlier Usbnd Pb ages and trace element data (REE, Y, Hf, U) on zircons from the same rocks (Tichomirowa et al., 2005). Our results show that the degree of melting determines the behaviour of zircon in different layers of the granulites and associated amphibolite-facies rocks. In restite layers of the granulite lenses, small, inherited, and resorbed zircon grains are preserved and new zircon formation is very limited. In contrast, new zircons abundantly grew in the melt rich leucocratic layers. In these layers, the new zircons (Usbnd Pb age, trace elements, Hf, O isotopes) best preserve the information on peak metamorphic conditions due to intense corrosion of other metamorphic minerals. The new zircons often contain inherited cores. Compared to cores, the new zircons and rims show similar or slightly lower Hf isotope values, slightly higher Hf model ages, and decreased oxygen isotope ratios. The isotope compositions (Hf, O) of new zircons indicate partial Hf isotope homogenization in the melt, and melt infiltration from an external source. New zircon was most likely formed by a peritectic reaction with melt above the wet solidus (peritectic zircon). Conversely, the amphibolite-facies host gneisses lack indications of significant melt production. Pre-metamorphic zircons experienced mainly solid-state recrystallization and variable Pb loss with only minor new zircon formation. However, subtle changes in cathodoluminescence pattern, in the Hf and O isotopes, and in the Lu/Hf, Yb/Hf ratios of zircons suggest that small volumes of melt were locally present. In difference to granulites, melt was internally produced. The detection of low degree melts (inferred from zircon geochemistry) is extremely important for the rheology because these amphibolite-facies rocks could act as large scale ductile shear zones. The new zircon data support a different P-T path for closely spaced amphibolite- and granulite-facies rocks.

  15. Progress toward accurate high spatial resolution actinide analysis by EPMA

    NASA Astrophysics Data System (ADS)

    Jercinovic, M. J.; Allaz, J. M.; Williams, M. L.

    2010-12-01

    High precision, high spatial resolution EPMA of actinides is a significant issue for geochronology, resource geochemistry, and studies involving the nuclear fuel cycle. Particular interest focuses on understanding of the behavior of Th and U in the growth and breakdown reactions relevant to actinide-bearing phases (monazite, zircon, thorite, allanite, etc.), and geochemical fractionation processes involving Th and U in fluid interactions. Unfortunately, the measurement of minor and trace concentrations of U in the presence of major concentrations of Th and/or REEs is particularly problematic, especially in complexly zoned phases with large compositional variation on the micro or nanoscale - spatial resolutions now accessible with modern instruments. Sub-micron, high precision compositional analysis of minor components is feasible in very high Z phases where scattering is limited at lower kV (15kV or less) and where the beam diameter can be kept below 400nm at high current (e.g. 200-500nA). High collection efficiency spectrometers and high performance electron optics in EPMA now allow the use of lower overvoltage through an exceptional range in beam current, facilitating higher spatial resolution quantitative analysis. The U LIII edge at 17.2 kV precludes L-series analysis at low kV (high spatial resolution), requiring careful measurements of the actinide M series. Also, U-La detection (wavelength = 0.9A) requires the use of LiF (220) or (420), not generally available on most instruments. Strong peak overlaps of Th on U make highly accurate interference correction mandatory, with problems compounded by the ThMIV and ThMV absorption edges affecting peak, background, and interference calibration measurements (especially the interference of the Th M line family on UMb). Complex REE bearing phases such as monazite, zircon, and allanite have particularly complex interference issues due to multiple peak and background overlaps from elements present in the activation volume, as well as interferences from fluorescence at a distance from adjacent phases or distinct compositional domains in the same phase. Interference corrections for elements detected during boundary fluorescence are further complicated by X-ray focusing geometry considerations. Additional complications arise from the high current densities required for high spatial resolution and high count precision, such as fluctuations in internal charge distribution and peak shape changes as satellite production efficiency varies from calibration to analysis. No flawless method has yet emerged. Extreme care in interference corrections, especially where multiple and sometime mutual overlaps are present, and maximum care (and precision) in background characterization to account for interferences and curvature (e.g., WDS scan or multipoint regression), are crucial developments. Calibration curves from multiple peak and interference calibration measurements at different concentrations, and iterative software methodologies for incorporating absorption edge effects, and non-linearities in interference corrections due to peak shape changes and off-axis X-ray defocussing during boundary fluorescence at a distance, are directions with significant potential.

  16. Geochronologic constraints on syntaxial development in the Nanga Parbat region, Pakistan

    NASA Astrophysics Data System (ADS)

    Winslow, David M.; Zeitler, Peter K.; Chamberlain, C. Page; Williams, Ian S.

    1996-12-01

    40Ar/39Ar data (hornblende, biotite, muscovite, and K-feldspar) and U/Pb data (zircons) were obtained from the Nanga Parbat-Haramosh Massif (NPHM), NW Pakistan, along three transects in the southern regions of the NPHM. We have based our interpretations on our new data as well as geochronologic dates from previous studies in the northern regions of the massif. Geochronologic data show that the NPHM has experienced exceptionally high denudation and cooling rates over the past 10 m.y. U/Pb ages determined through sensitive high-resolution ion microprobe (SHRIMP) "depth-profiling" experiments on metamorphic zircons and conventional U/Pb monazite dates suggest that the timing of metamorphism varied across the massif. In addition, we have documented that the massif has experienced postmetamorphic, differential cooling both along and across strike. Thermochronologic data on currently exposed surface rocks suggest that cooling occurred more recently and at greater rates in the south-central regions of the massif (representing deeper crustal levels) than along the margins and northern regions of the massif. Within the Tato region, cooling following peak metamorphic temperatures of 600°-700 °C was as high as 140 °C/m.y. following partial melting of pelitic units. Biotites from this area record plateau ages of 0.9 ± 0.1 Ma. Along the Astor and Indus gorges, cooling was less rapid (approximately 70°-80°C/m.y.) following peak metamorphism as indicated by U/Pb monazite ages of 6-8 Ma and 40Ar/39Ar muscovite cooling ages of 2.2-3.4 Ma. Cooling over the last 3 m.y. occurred at rates of 100°-140 °C/m.y. The overall cooling age pattern within the massif is interpreted syntaxial growth through the development of north plunging antiforms prior to 3 Ma, followed by reverse faulting along east dipping fault zones. Along the Raikot River transect the biotite cooling age pattern is consistent with the folding of isotherms during folding of the foliation surfaces. The age pattern was disrupted at 1 Ma due to faulting along the Raikot and Tato faults. An electronic supplement of Tables A1, A2, and A3 may be obtained on a diskette or Anonymous FTP from KOSMOS.AGU.ORG (LOGIN to AGU's FTP account using ANONYMOUS as the username and GUEST as the password. Go to the right directory by typing CD APEND. Type LS to see what files are available. Type GUEST and the name of the file to get it. Finally, type EXIT to leave the system.) (Paper 95TC00032, Geochronologic constraints on syntaxial development in the Nanga Parbat region, Pakistan, David M. Winslow, Peter K. Zeitler, C. Page Chamberlain, and Ian S. Williams). Diskette may be ordered from American Geophysical Union, 2000 Florida Avenue, N. W., Washington, DC 20009; $$15.00. Payment must accompany order.

  17. From an active continental plate margin to continental collision: New constraints from the petrological, structural and geochronological record of the (ultra) high-P metamorphic Rhodope domain (N-Greece)

    NASA Astrophysics Data System (ADS)

    Mposkos, E.; Krohe, A.; Wawrzenitz, N.; Romer, R. L.

    2012-04-01

    The Rhodope domain occupies a key area along the suture between the European and the Apulian/Adriatic plate (Schmid et al., 2008), which collided in the early Tertiary (closure of the Vardar/Axios ocean, cf. Mposkos & Krohe, 2006). An integrated study of the geochronological, tectonic and petrological data of the Rhodope domain provides the unique opportunity resolving a 160 my lasting metamorphic evolution (Jurassic to Miocene) of an active plate margin to a high degree. The Greek Rhodope consists of several composite metamorphic complexes bounded by the Nestos thrust and several normal detachment systems. The PT- and structural records of the complexes constrain metamorphic, magmatic and tectonic processes, associated with subduction along a convergent plate margin including UHP metamorphism, MP to HP metamorphism associated with continental collision, and core complex formation linked to Aegean back arc extension. We focus on the Sidironero Complex that shows a polymetamorphic history. This is documented by SHRIMP and LA-ICP-MS U-Pb zircon ages of ca. 150 Ma from garnet-kyanite gneisses that are interpreted to record the HP/UHP metamorphism (Liati, 2005; Krenn et al., 2010). SHRIMP zircon ages of ca. 51 Ma from an amphibolitized eclogite is interpreted by Liati (2005) to record a second Eocene HP metamorphic event. We present new data from an integrated petrological, geochronological and tectonic study. Granulite facies and upper amphibolite facies metamorphic conditions are recorded by the mineral assemblage Grt-Ky-Bt-Pl-Kfs-Qtz-Rt and Grt-Ky-Bt-Ms-Pl-Qtz-Rt, respectively, in deformed migmatitic metapelites. Deformation occurred under granulite facies conditions. Monazites from the matrix, that formed during the granulite facies deformation, lack core/rim structures and are only locally patchy zoned. Monazite chemical compositions are related to varying reaction partners. Single grains and fractions of few grains yield ID-TIMS U-Pb ages that plot along the concordia between 64 to 60 Ma. One date of 55 Ma might represent Pb-loss during later fluid-induced dissolution-reprecipitation. We discuss the following questions: What is the history of the high-P metamorphic rocks in the Sidironero Complex? Were high-P rocks that have been already exhumed again dragged into the subduction channel? Which rocks from the upper plate are affected by high-P metamorphism evincing that subduction erosion is an important mechanism? We reconsider the significance of the P-T-t evolution in the light of the tectonic processes that took place along the depth extension of a convergent plate interface and during subsequent continental collision along the European/Apulian Suture zone. Krenn et al., 2010. Tectonics 29, TC4001. Liati, A., 2005. Contribution to Mineralogy and Petrology 150, 608-630. Mposkos, E. & Krohe, A. 2006. Canadian Journal of Earth Sciences 43, 1755-1776. Schmid S.M., et al. 2008. Swiss Journal of Geoscience 101, 139-183.

  18. Reconnaissance for uranium and thorium in Alaska, 1954

    USGS Publications Warehouse

    Matzko, John J.; Bates, Robert G.

    1957-01-01

    During 1954 reconnaissance investigations to locate minable deposits of uranium and thorium in Alaska were unsuccessful. Areas examined, from which prospectors had submitted radioactive samples, include Cap Yakataga, Kodiak Island, and Shirley Lake. Unconcentrated gravels from the beach at Cape Yakataga average about 0.001 percent equivalent uranium. Uranothorianite has been identified by X-ray diffraction data and is the principal source of radioactivity in the Cape Yakataga beach sands studied; but the zircon, monazite, and uranothorite are also radioactive. The black, opaque uranothorianite generally occurs as minute euhedral cubs, the majority of which will pass through a 100-mesh screen. The bedrock source of the radioactive samples from Kodiak Island was not found; the maximum radioactivity of samples from the Shirley Lake area was equivalent to about 0.02 percent uranium. Radiometric traverses of the 460-foot level of the Garnet shaft of the Nixon Fork mine in the Nixon Fork mining district indicated a maximum of 0.15 mr/hr. In the Hot Springs district, drill hole concentrates of gravels examined contained a maximum of 0.03 percent equivalent uranium. A radioactivity anomaly noted during the Survey's airborne reconnaissance of portions of the Territory during 1954 is located in the Fairhaven district. A ground check disclosed that the radioactivity was due to accessory minerals in the granitic rock.

  19. Petrochemical and Mineralogical Constraints on the Source and Processes of Uranium Mineralisation in the Granitoids of Zing-Monkin Area, Adamawa Massif, NE Nigeria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haruna, I. V., E-mail: vela_hi@yahoo.co.uk; Orazulike, D. M.; Ofulume, A. B.

    Zing-Monkin area, located in the northern part of Adamawa Massif, is underlain by extensive exposures of moderately radioactive granodiorites, anatectic migmatites, equigranular granites, porphyritic granites and highly radioactive fine-grained granites with minor pegmatites. Selected major and trace element petrochemical investigations of the rocks show that a progression from granodiorite through migmatite to granites is characterised by depletion of MgO, CaO, Fe{sub 2}O{sub 3,} Sr, Ba, and Zr, and enrichment of SiO{sub 2} and Rb. This trend is associated with uranium enrichment and shows a chemical gradation from the more primitive granodiorite to the more evolved granites. Electron microprobe analysis showsmore » that the uranium is content in uranothorite and in accessories, such as monazite, titanite, apatite, epidote and zircon. Based on petrochemical and mineralogical data, the more differentiated granitoids (e.g., fine-grained granite) bordering the Benue Trough are the immediate source of the uranium prospect in Bima Sandstone within the Trough. Uranium was derived from the granitoids by weathering and erosion. Transportation and subsequent interaction with organic matter within the Bima Sandstone led to precipitation of insoluble secondary uranium minerals in the Benue Trough.« less

  20. Zirconium and hafnium in the southeastern Atlantic States

    USGS Publications Warehouse

    Mertie, J.B.

    1958-01-01

    The principal source of zirconium and hafnium is zircon, though a minor source is baddeleyite, mined only in Brazil. Zircon is an accessory mineral in igneous, metamorphic, and sedimentary rocks, but rarely occurs in hardrock in minable quantities. The principal sources of zircon are therefore alluvial deposits, which are mined in many countries of five continents. The principal commercial deposits in the United States are in Florida, though others exist elsewhere in the southeastern Coastal Plain. The evidence indicates that conditions for the accumulation of workable deposits of heavy minerals were more favorable during the interglacial stages of the Pleistocene epoch than during Recent time. Therefore detrital ores of large volume and high tenor are more likely to be found in the terrace deposits than along the present beaches. Other concentrations of heavy minerals, however, are possible at favored sites close to the Fall Line where the Tuscaloosa formation rests upon the crystalline rocks of the Piedmont province. A score of heavy and semiheavy minerals occur in the detrital deposits of Florida, but the principal salable minerals are ilmenite, leucoxene, rutile, and zircon, though monazite and staurolite are saved at some mining plants. Commercial deposits of heavy minerals are generally required to have a tenor of 4 percent, though ores with a lower tenor can be mined at a profit if the content of monazite is notably high. The percentages of zircon in the concentrates ranges from 10 to 16 percent, and in eastern Florida from 13 to 15 percent. Thus the tenor in zircon of the ore-bearing sands ranges from 0.4 to 0.6 percent. The content of hafnium in zircon is immaterial for many uses, but for some purposes very high or very low tenors in hafnium are required. Alluvial zircon cannot be separated into such varieties, which, if needed, must be obtained from sources in bedrock. It thus becomes necessary to determine the Hf : Zr ratios in zircon from many kinds of bedrock.Granitic rocks are the principal sources of zircon, though not the best sources of zircon with a high tenor in hafnium. A general study by the Geological Survey of the granitic rocks of the Southeastern Atlantic States has been in progress for 10 years, and hundreds of samples of granitic accessory minerals have been acquired. Thirty samples of zircon from these collections were selected for spectrographic and X-ray determinations of their tenors in hafnium. Nine other samples of alluvial zircon were included, of which three are from Florida and six from foreign countries. No domestic zircon was discovered with very high or very low tenors in hafnium.The volume of zircon in the southeastern Coastal Plain is enormous, but most of it is not recoverable. The minable reserves of heavy minerals, however, are very large, and from these it is estimated conservatively that 10 million short tons of zircon can be obtained. The corresponding amounts of zirconium and hafnium, using the mean Hf:Zr ratio of the deposits in Florida, are 4,868,000 and 112,000 tons, respectively. These reserves could be delivered, if needed, at the rate of 100,000 tons a year.

  1. Radiological risk assessment of environmental radon

    NASA Astrophysics Data System (ADS)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan; Yasir, Muhammad Samudi

    2013-11-01

    Measurements of radon gas (222Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the 226Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based on the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m-3 to 571.1 ± 251.4 Bq m-3, 101.0 ± 41.0 Bq m-3 to 245.3 ± 100.2 Bq m-3, 53.1 ± 7.5 Bq m-3 to 181.8 ± 9.7 Bq m-3, 256.1 ± 59.3 Bq m-3 to 652.2 ± 222.2 Bq m-3 and 164.5 ± 75.9 Bq m-3 to 653.3 ± 240.0 Bq m-3, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m-3, 192.1 ± 75.4 Bq m-3, 176.1 ± 85.9 Bq m-3 and 28.4 ± 5.7 Bq m-3, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the action level for radon gas of 148 Bq m-3 proposed by EPA except monazite 0.15 kg, struverite 0.15 kg and 0.25 kg. Whereas, all building material samples have exceeded the radon concentration in concrete and building materials of 3 to 7 Bq m-3 estimated by ICRP. The annual effective dose, effective dose equivalent, and radon exhalation rates in tin tailings were calculated to be in the range of 2.47 to 11.46 mSv, 5.94 to 1090.56 mSv y-1, and 0.23 to 1.18 mBq kg-1 h-1. For building materials, the calculated risk assessment of the annual effective dose, effective dose equivalent, radon exhalation rates and fatal cancer risk were 0.72 to 10.00 mSv, 1.73 to 24.00 mSv y-1, 0.010 to 0.06 mBq kg-1 h-1 and 40 to 550 chances of persons will suffer the cancer per million (1 × 106), respectively.

  2. REE in karst bauxites: the Campania example (southern Italy)

    NASA Astrophysics Data System (ADS)

    Mondillo, N.; Boni, M.; Balassone, G.; Rollinson, G.

    2012-04-01

    Global production of Rare Earth Element (REE) has dramatically increased in the last years, hence the strong interest to identify new deposits and to understand the processes responsible for their formation. Among REE concentrations related to weathering, the current targets are represented by the ion-adsorption deposit-types, occurring in China, in which REEs are adsorbed onto the surface of clays. Laterites have been also intensively investigated since the discovery of the secondary deposit of Mount Weld (Australia). Most REEs behave as immobile elements in laterites, and tend to be enriched compared to the underlying parent rocks. Many authors debate on a possible REE fractionation along the laterite profiles, resulting in the formation of supergene LREE-minerals. Bauxites are economic Al accumulations, derived from the weathering of alumosilicate-rich parent rocks resulting in the development of laterite profiles. Components as Ca, Mg, K, Si are leached and residual Fe, Al and Ti precipitate in form of hematite>>goethite, gibbsite [Al(OH)3] or amorphous Al hydroxides and anatase. Metabauxites can contain boehmite or diaspore [AlO(OH)]. Chemical composition (including REEs content) of lateritic bauxites generally mirrors the original composition of the parent rock. Geochemistry of REEs in karst bauxites, which lay on carbonate bedrocks and may be also allochthonous to them, is not so straightforward. Cretaceous karst bauxite deposits in the Apennine chain (Southern Italy) are presently uneconomic. A full mineralogical and geochemical study has been performed on several deposits of the Campania district, and three representative profiles have been sampled. In all deposits the bauxite ore has an oolitic-pisolitic texture, but contains also detrital intervals. The mineral association consists of boehmite, kaolinite and hematite, with less goethite and anatase. The main REE-bearing mineral is detrital monazite. In detail, we could detect (SEM) other LREE-phosphates (florencite type minerals) in the Regia Piana deposit and possibly LREE-enriched goethite at Dragoni. QEMSCAN® analysis allowed the identification and location of discrete particles of monazite and xenotime, but because of their very small dimensions (typically <10 microns) it was difficult to determine the exact chemical composition without further investigation. Chemical analyses have shown a total REEs content of 620 ppm on average in all bauxite deposits, with a maximum value of 1454 ppm of total REEs at the top of the Regia Piana profile. The LREE (La-Eu) contents in the samples vary between 200 and 1400 ppm, with positive Ce and La anomalies. The HREE (Gd-Lu) contents are always around 40-60 ppm. The relationship between REEs and the Al and/or Fe values is not clear, probably because the REE content may be slightly biased by the detrital characteristics of the bauxite. The higher Ce and other LREE values, detected at the top of several deposits rather than at the bottom, can be related to LREE supergene minerals occurrence in the higher parts of profile. The Campania deposits represent an interesting case study for REE concentration in karst bauxites. A similar LREE fractionation process could be applied to other bauxite deposits, though related to more favorable parent rocks with sub-economic REE-grades.

  3. Analysis of rare earth elements in coal fly ash using laser ablation inductively coupled plasma mass spectrometry and scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Thompson, Robert L.; Bank, Tracy; Montross, Scott; Roth, Elliot; Howard, Bret; Verba, Circe; Granite, Evan

    2018-05-01

    Reference standard NIST SRM 1633b and FA 345, a fly ash sample from an eastern U.S. coal power plant, were analyzed to determine and quantify the mineralogical association of rare earth elements (REE). These analyses were completed using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and a scanning electron microscope, equipped with an energy-dispersive X-ray spectrometer (SEM-EDS). Internal standardization was avoided by quantifying elemental concentrations by normalizing to 100% oxides. Mineral grains containing elevated REE concentrations were found in diverse chemical environments, but were most commonly found in regions where Al and Si were predominant. Dividing the spot analyses into time segments yielded plots that showed the REE content changing over time as individual mineral grains were being ablated. SEM-EDS images of FA 345 confirmed the trends that were found in the LA-ICP-MS results. Small grains of apatite, monazite, or zircon were frequently observed as free mineral grains or embedded in amorphous aluminosilicate glass and were not associated with ferrous particles. This finding is consistent with previous reports that magnetic enrichment may be an effective way of concentrating non-magnetic REE phases. Furthermore, aggressive mechanical and chemical-based separation schemes will be required to separate and recover REE from aluminosilicate glass.

  4. Synthesis and characterization of cerium containing iron phosphate based glass-ceramics

    NASA Astrophysics Data System (ADS)

    Deng, Yi; Liao, Qilong; Wang, Fu; Zhu, Hanzhen

    2018-02-01

    The structure and properties of xCeO2-(100-x)(40Fe2O3-60P2O5), where x = 0, 2, 4, 6 and 8 mol%, glass-ceramics prepared by melting and slow cooling method have been investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), differential thermal analysis (DTA) and the Product Consistency Test (PCT). The results show that the 40Fe2O3-60P2O5 sample is homogeneously amorphous and the sample containing 2 mol% CeO2 has a small amount of FePO4 phase embedded. For the sample containing up to 4 mol% CeO2, monazite CePO4 and a small amount of FePO4 appear. Spectra analysis show that the structure networks of the glass-ceramics mainly consist of orthophosphate, along with pyrophosphate and a small amount of metaphosphate units. Moreover, the leaching rates of Fe and Ce are about 3.5 × 10-5 g m-2 d-1 and 5.0 × 10-5 g m-2 d-1 respectively after immersion in deionized water at 90 °C for 56 days, indicating their good chemical durability. The conclusions imply that the prepared method may be a promising process to immobilize nuclear waste into glass-ceramic matrix.

  5. Incorporation of thorium in the rhabdophane structure: Synthesis and characterization of Pr1-2xCaxThxPO4·nH2O solid solutions

    NASA Astrophysics Data System (ADS)

    Qin, Danwen; Mesbah, Adel; Gausse, Clémence; Szenknect, Stéphanie; Dacheux, Nicolas; Clavier, Nicolas

    2017-08-01

    Thorium incorporation in the rhabdophane structure as Pr1-2xCaxThxPO4·nH2O solid solutions was successfully achieved and resulted in the preparation of a low temperature precursor of the monazite-cheralite type Pr1-2xCaxThxPO4. The rhabdophane compounds are considered as potential neoformed phases in case of release of actinides from the phosphate-based ceramic wasteforms envisaged to host radionuclides in the back-end of the nuclear fuel cycle. A multiparametric study was thus undertaken to specify the wet chemistry conditions (starting stoichiometry, temperature, heating time) leading to single phase Pr1-2xCaxThxPO4·nH2O powdered samples. The excess of calcium appeared to be a prevailing factor with a suggested initial Ca:Th ratio being equal to 10. Similarly, the recommended heating time should exceed 4 days while the optimal temperature of synthesis is 110 °C. Under these conditions, the stability domain of Pr1-2xCaxThxPO4·nH2O ranged from x = 0.00 to x = 0.15. After heating at 1100 °C under air during 6 h, rhabdophane-type samples were fully converted into the highly durable Pr1-2xCaxThxPO4 cheralite ceramic wasteform.

  6. Application of Scanning Electron Microscopy/Energy-Dispersive X-Ray Spectroscopy for Characterization of Detrital Minerals in Karst Cave Speleothems.

    PubMed

    Zupančič, Nina; Miler, Miloš; Šebela, Stanka; Jarc, Simona

    2016-02-01

    Micro-scale observations in karst caves help to identify different processes that shaped local morphology. Scanning electron microscopy/energy-dispersive X-ray spectroscopy inspection of speleothems from two karst caves in Slovenia, Predjama and Črna Jama, confirmed the presence of sub-angular to sub-rounded detrital fragments of clay minerals, feldspars, quartz, Fe-oxides/hydroxides, rutile and Nb-rutile, xenotime, kassite, allanite, fluorapatite, epidote, ilmenite, monazite, sphene, and zircon, between 2 and 50 μm across. These occur in porous layers separating calcite laminae in the clayey coating on the layer below the surface of the speleothems, and are also incorporated within actual crystals. It is likely that they are derived from the weathered rocks of the Eocene flysch. Probably they were first transported into the caves by floodwaters forming cave sediments. Later, depending upon the climate conditions, they were moved by air currents or by water to the surface of active speleothems. They might also be redeposited from overlying soils enriched with wind-transported minerals from the flysch, or from higher passages filled with weathered flysch sediment, by drip water percolating through the fissured limestone. As some of the identified minerals are carriers of rare earth elements, Ti and Zr, their presence could affect any palaeoclimatic interpretations that are based upon the geochemical composition of the speleothems.

  7. Reconnaissance for radioactive deposits in eastern Alaska, 1952

    USGS Publications Warehouse

    Nelson, Arthur Edward; West, Walter S.; Matzko, John J.

    1954-01-01

    Reconnaissance for radioactive deposits was conducted in selected areas of eastern Alaska during 1952. Examination of copper, silver, and molybdenum occurrences and of a reported nickel prospect in the Slana-Nabesna and Chisana districts in the eastern Alaska Range revealed a maximum radioactivity of about 0.003 percent equivalent uranium. No appreciable radioactivity anomolies were indicated by aerial and foot traverses in the area. Reconnaissance for possible lode concentrations of uranium minerals in the vicinity of reported fluoride occurrences in the Hope Creek and Miller House-Circle Hot Springs areas of the Circle quadrangle and in the Fortymile district found a maximum of 0.055 percent equivalent uranium in a float fragment of ferruginous breccia in the Hope Creek area; analysis of samples obtained in the vicinity of the other fluoride occurrences showed a maximum of only 0.005 percent equivalent uranium. No uraniferous loads were discovered in the Koyukuk-Chandalar region, nor was the source of the monazite, previously reported in the placer concentrates from the Chandalar mining district, located. The source of the uranotheorianite in the placers at Gold Bench on the South Fork of the Koyukuk River was not found during a brief reconaissance, but a placer concentrate was obtained that contains 0.18 percent equivalent uranium. This concentrate is about ten times more radioactive than concentrates previously available from the area.

  8. Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.

    PubMed

    Brown, Steven H; Chambers, Douglas B

    2017-07-01

    All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.

  9. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods.

    PubMed

    Santos, A J G; Mazzilli, B P; Fávaro, D I T; Silva, P S C

    2006-01-01

    Phosphogypsum is a waste produced by the phosphate fertilizer industry. Although phosphogypsum is mainly calcium sulphate dihydrate, it contains elevated levels of impurities, which originate from the source phosphate rock used in the phosphoric acid production. Among these impurities, radionuclides from 238U and 232Th decay series are of most concern due to their radiotoxicity. Other elements, such as rare earth elements (REE) and Ba are also enriched in the phosphogypsum. The bioavailability of radionuclides (226Ra, 210Pb and 232Th), rare earth elements and Ba to the surrounding aquatic system was evaluated by the application of sequential leaching of the phosphogypsum samples from the Brazilian phosphoric acid producers. The sequential extraction results show that most of the radium and lead are located in the "iron oxide" (non-CaSO4) fraction, and that only 13-18% of these radionuclides are distributed in the most labile fraction. Th, REE and Ba were found predominantly in the residual phase, which corresponds to a small fraction of the phosphate rock or monazite that did not react and to insoluble compounds such as sulphates, phosphates and silicates. It can be concluded that although all these elements are enriched in the phosphogypsum samples they are not associated with CaSO4 itself and therefore do not represent a threat to the surrounding aquatic environment.

  10. A Review of Tectonic Models and Analytical Data from Almora-Dadeldhura Klippe, Northwest India and Far Western Nepal.

    NASA Astrophysics Data System (ADS)

    Bosu, S.; Robinson, D.; Saha, A.

    2017-12-01

    Tectonic models developed from the Himalayan thrust belt constitute three models- critical taper, channel flow and wedge extrusion. Their differences are manifested in predicted minimum shortening, deformation propagation style and tectonic architecture across the thrust belt. Recent studies from isolated synformal klippen composed of Greater and Tethyan Himalayan rock within the Himalayan thrust belt disagree over the tectonic history, especially in the Almora-Dadeldhura klippe, which is the largest klippe in the thrust belt. These recent studies are limited to one transect each, and two or fewer types of analytical data to justify their models. Due to the limited spatial coverage, these studies often reflect a narrow perspective in their tectonic models; thus, combining the data from these studies provides a holistic view of the regional tectonic history. This study compiled the available data across the 350 km wide Almora-Dadeldhura klippe, using petrology, stratigraphy, metamorphic history, microstructure, U-Pb ages of intrusive granite, monazite and muscovite ages of the shear zones, and exhumation ages from apatite fission track, along with original field observations, microstructure and microtexture data from 5 different transects in northwest India and far western Nepal. The review of the compiled data suggests that the Himalayan thrust belt in northwest India and far western Nepal is a forward propagating thrust system, and that the analytical data support the critical taper model.

  11. Age and Origin of Eclogite Xenoliths from Navajo Diatremes on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Schulze, D. J.; Malik, L.; Davis, D. W.; Helmstaedt, H. H.

    2017-12-01

    Six eclogite xenoliths from the Moses Rock and Mule Ear diatremes of the Navajo Volcanic Field on the Colorado Plateau were studied to determine their age(s) and shed light on their origin. Laser ablation inductively-coupled plasma mass spectrometry was used to date zircons in situ by the U-Pb method. In all samples, most of the zircons have low Th/U ratios (<0.1) characteristic of metamorphic zircon and plot on or very near concordia with ages between 27 and 40 Ma, with a few outliers as old as 80 Ma. Some grains with higher Th/U, typically characteristic of magmatic zircon, yield older ages, as old as 1717 ± 25 Ma. In two samples, five zircon yielded data that fall on a discordia between 40 ± 20 and 1717 ± 25 Ma. This suggests that simple derivation from metamorphosed Mesozoic oceanic crust of the shallowly subducted Farallon Plate is not a viable hypothesis for the origin of these eclogites. Instead, the Proterozoic component may indicate that the Farallon Plate also transported material scraped from the overlying Proterozoic mantle during late Mesozoic to Cenozoic subduction. The relationship between the causes of zircon growth in Cenozoic time and the growth of monazite at 28-30 Ma in eclogites of the same suite is unclear, but both may be related to fluxing by water derived from dehydration of serpentinites of the Farallon Plate.

  12. Radiological protection in North American naturally occurring radioactive material industries.

    PubMed

    Chambers, D B

    2015-06-01

    All soils and rocks contain naturally occurring radioactive material (NORM). Many ores and raw materials contain relatively high levels of natural radionuclides, and processing such materials can further increase the concentrations of natural radionuclides, sometimes referred to as 'technologically enhanced naturally occurring radioactive material' (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertiliser. Such activities have the potential to result in above background radiation exposure to workers and the public. The objective of this paper is to review the sources and exposure from NORM in North American industries, and provide a perspective on the potential radiological hazards to workers and the environment. Proper consideration of NORM issues is important and needs to be integrated in the assessment of these projects. Concerns over radioactivity and radiation amongst non-governmental organisations and the local public have resulted in the cancellation of NORM mining and mineral extraction projects, as well as inhibition of the safe use of by-product materials from various NORM industries. This paper also briefly comments on the current regulatory framework for NORM (TENORM) in Canada and the USA, as well as the potential implications of the recent activities of the International Commission on Radiological Protection for NORM industries. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  13. Geology and mineralization of the Jabal Umm Al Suqian albitized apogranite, southern Najd region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Bokhari, M. Madani; Jackson, Norman J.; Al Oweidi, Khalid

    A porphyritic muscovite—albite—microcline microgranite crops out at Jabal Umm Al Suqian, 80 km NE of Bishah. It intrudes alkali-feldspar granite, quartz diorite and a conglomerate composed of dioritic clasts, and is enveloped by a shell of hydrothermally altered, albitized, greisenized and microclinized country rocks. The principal chemical features of the microgranite are: 5-7% Na 2O, Na 2O/K 2O = 1.7, Rb 978 ppm, Sn 94 ppm, and low Ba, Ce, Sr and Zr. Albitized microgranite is highly enriched in F, Nb and Y, and the greisenized assemblages are enriched in F, Li, Rb, Sn and Zn. Mineralization consists of small veins and lenses of fluorite and disseminated minerals such as ixiolite, monazite, bastnaesite, betafite and fluorite, but is not economically significant. The microgranite is probably an apogranite cupola in the roof of an alkali-feldspar granite. Crystallization at about 1 kb total volatile pressure was controlled by (1) variable (0-3 wt. %) F contents which significantly reduced the freezing temperature of the melt and resulted in an albite-rich residue; and (2) progressive decrease in K, which also produced a sodic residuum. K- and F-rich hydrothermal fluids produced the envelope of phyllic alteration. Repetitive increase and decrease in volatile pressure produced rhythmic banding of quartz and alkali feldspar in the upper part of the cupola.

  14. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Canakkale), Western Anatolia, Turkey.

    PubMed

    Orgün, Y; Altinsoy, N; Sahin, S Y; Güngör, Y; Gültekin, A H; Karahan, G; Karacik, Z

    2007-06-01

    This paper represents the first reports on the natural and anthropogenic radionuclides in Kestanbol granitic pluton and surrounding rocks, and coastal region of the Ezine town. To assess the radiological hazard of the natural radioactivity, the radium equivalent activity, the absorbed dose rate and the external hazard index were calculated, and in situ gamma dose rates were measured. The high-activity concentrations were measured in the pluton and sands, which was originated mainly from the pluton, due to the presence of zircon, allanite, monazite, thorite, uranothorite and apatite. The average activity concentrations of (238)U, (232)Th and (40)K are 174.78, 204.69 and 1171.95 Bq kg(-1) for pluton, and 290.36, 532.04 and 1160.75 Bq kg(-1) for sands, respectively. (137)Cs in Ezine region ranged from 0-6.57 Bq kg(-1). The average absorbed dose rate for the granitic and sand samples were calculated to be 251.6 and 527.92 nGy h(-1), respectively. The maximum contribution to the total absorbed gamma dose rate in air was due to the (232)Th (52.3% for pluton and 67.1% for sands). The Raeq activities of the pluton and sands are higher than the recommended maximum value of 370 Bq kg(-1) criterion limit of Raeq activity for building materials.

  15. Facile and Efficient Decontamination of Thorium from Rare Earths Based on Selective Selenite Crystallization.

    PubMed

    Wang, Yaxing; Lu, Huangjie; Dai, Xing; Duan, Tao; Bai, Xiaojing; Cai, Yawen; Yin, Xuemiao; Chen, Lanhua; Diwu, Juan; Du, Shiyu; Zhou, Ruhong; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Liu, Ning; Wang, Shuao

    2018-02-19

    The coexistence of radioactive contaminants (e.g., thorium, uranium, and their daughters) in rare earth minerals introduces significant environmental, economic, and technological hurdles in modern rare earth production. Efficient, low cost, and green decontamination strategies are therefore desired to ameliorate this problem. We report here a single-step and quantitative decontamination strategy of thorium from rare earths based on a unique periodic trend in the formation of crystalline selenite compounds across the lanthanide series, where Ce(III) is fully oxidized in situ to Ce(IV). This gives rise to a crystallization system that is highly selective to trap tetravalent f-blocks while all other trivalent lanthanides completely remain in solution when coexist. These results are bolstered by first-principles calculations of lattice energies and an examination of bonding in these compounds. This system is contrasted with typical natural and synthetic systems, where trivalent and tetravalent f-block elements often cocrystallize. The separation factors after one round of crystallization were determined from binary systems of Th(IV)/La(III), Th(IV)/Eu(III), and Th(IV)/Yb(III) to reach 2.1 × 10 5 , 1.2 × 10 5 , and 9 × 10 4 , respectively. Selective crystallization of thorium from a simulated monazite composite yields a separation factor of 1.9 × 10 3 with nearly quantitative removal of thorium.

  16. Structural and optical effects induced by gamma irradiation on NdPO{sub 4}: X-ray diffraction, spectroscopic and luminescence study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadhasivam, S.; Rajesh, N.P., E-mail: rajeshnp@hotmail.com

    2016-02-15

    Highlights: • Inorganic NdPO{sub 4} crystal was grown first time using potassium polyphosphate (K{sub 6}P{sub 4}O{sub 13}) flux. • NdPO{sub 4} crystal is insoluble in water, non-hygroscopic and high radiation resistance favoring for actinides host. • Actinide immobilization can be made at 1273 K. • High yield of 1061 nm photon emission. - Abstract: Rare earth orthophosphate (NdPO{sub 4}) monazite single crystals were grown using high temperature flux growth method employing K{sub 6}P{sub 4}O{sub 13} (K{sub 6}) as molten solvent. Their structural parameters were studied using single crystal X-ray diffraction (XRD) method. The grown crystals were examined by SEM andmore » EDX techniques for their homogeniousity and inclusion in the crystals. The influence of gamma irradiation in structural and optical absorption properties were studied by the powder XRD, FTIR and reflectance spectroscopy. The effect of gamma irradiation on luminescence properties was recorded. No significant structural change is observed up to 150 kGy gamma dose. The gamma ray induced charge trap in the crystal was saturated to 40 kGy dose. The luminescence intensity decreases with an increase in the irradiation. The emission of luminescence intensity stabilizes above 40 kGy gamma dose.« less

  17. Wayne Interim Storage Site environmental report for calendar year 1992, 868 Black Oak Ridge Road, Wayne, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-05-01

    This report describes the environmental surveillance program at the Wayne Interim Storage Site (WISS) and provides the results for 1992. The fenced, site, 32 km (20 mi) northwest of Newark, New Jersey, was used between 1948 and 1971 for commercial processing of monazite sand to separate natural radioisotopes - predominantly thorium. Environmental surveillance of WISS began in 1984 in accordance with Department of Energy (DOE) Order 5400.1 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program (FUSRAP). The environmental surveillance program at WISS includes sampling networks for radon and thoron in air; external gamma radiation exposure;more » radium-226, radium-228, thorium-230, thorium-232, total uranium, and several chemicals in surface water and sediment; and total uranium, radium-226, radium-228, thorium-230, thorium-232, and organic and inorganic chemicals in groundwater. Monitoring results are compared with applicable Environmental Protection Agency (EPA) and state standards, DOE derived concentration guides (DCGs), dose limits, and other DOE requirements. This monitoring program assists in fulfilling the DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses. Results for environmental surveillance in 1992 show that the concentrations of all radioactive and most chemical contaminants were below applicable standards.« less

  18. Preliminary summary review of thorium-bearing mineral occurrences in Alaska

    USGS Publications Warehouse

    Bates, Robert G.; Wedow, Helmuth

    1952-01-01

    Thorium-bearing minerals are known at 47 localities in Alaska. At these localities the thorium occurs as a major constituent or in minor amounts as an impurity in one or more of the following 12 minerals: allanite, columbite, ellsworthite, eschynite, gummite, monazite, orangite, parisite, thorianite, thorite, xenotime, and zircon. In addition other minerals, such as biotite and sphene, are radioactive and may contain thorium. Several unidentified columbate minerals with uranium or thorium and uranium as major constituents have been recognized at some localities. The distribution, by type of deposit, of the 57 thorium occurrences is as follows: lode - 3, lode and placer - 1, granitic rock - 3, granitic rock and related placer - 14, and placer - 26. Of the four lode occurrences only the radioactive veins at Salmon Bay in southeastern Alaska and the contact metamorphic deposit in the Nixon Fork area of central Alaska warrant further consideration, although insufficient data are available to determine whether these two deposits have commercial possibilities. The remaining occurrences of thorium-bearing minerals in Alaska are limited to placer deposits and disseminations of accessory minerals in granitic rocks. In most of these occurrences the thorium-bearing minerals occur in only trace amounts and consequently warrent little further consideration. More data are needed to determine the possibilities of byproduct recovery of thorium-bearing minerals from several of the gold and tin placers.

  19. Radiological risk assessment of environmental radon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalid, Norafatin; Majid, Amran Ab; Yahaya, Redzuwan

    Measurements of radon gas ({sup 222}Rn) in the environmental are important to assess indoor air quality and to study the potential risk to human health. Generally known that exposure to radon is considered the second leading cause of lung cancer after smoking. The environmental radon concentration depends on the {sup 226}Ra concentration, indoor atmosphere, cracking on rocks and building materials. This study was carried out to determine the indoor radon concentration from selected samples of tin tailings (amang) and building materials in an airtight sealed homemade radon chamber. The radiological risk assessment for radon gas was also calculated based onmore » the annual exposure dose, effective dose equivalent, radon exhalation rates and fatal cancer risk. The continuous radon monitor Sun Nuclear model 1029 was used to measure the radon concentration emanates from selected samples for 96 hours. Five types of tin tailings collected from Kampar, Perak and four samples of building materials commonly used in Malaysia dwellings or building constructions were analysed for radon concentration. The indoor radon concentration determined in ilmenite, monazite, struverite, xenotime and zircon samples varies from 219.6 ± 76.8 Bq m{sup −3} to 571.1 ± 251.4 Bq m{sup −3}, 101.0 ± 41.0 Bq m{sup −3} to 245.3 ± 100.2 Bq m{sup −3}, 53.1 ± 7.5 Bq m{sup −3} to 181.8 ± 9.7 Bq m{sup −3}, 256.1 ± 59.3 Bq m{sup −3} to 652.2 ± 222.2 Bq m{sup −3} and 164.5 ± 75.9 Bq m{sup −3} to 653.3 ± 240.0 Bq m{sup −3}, respectively. Whereas, in the building materials, the radon concentration from cement brick, red-clay brick, gravel aggregate and cement showed 396.3 ± 194.3 Bq m{sup −3}, 192.1 ± 75.4 Bq m{sup −3}, 176.1 ± 85.9 Bq m{sup −3} and 28.4 ± 5.7 Bq m{sup −3}, respectively. The radon concentration in tin tailings and building materials were found to be much higher in xenotime and cement brick samples than others. All samples in tin tailings were exceeded the action level for radon gas of 148 Bq m{sup −3} proposed by EPA except monazite 0.15 kg, struverite 0.15 kg and 0.25 kg. Whereas, all building material samples have exceeded the radon concentration in concrete and building materials of 3 to 7 Bq m{sup −3} estimated by ICRP. The annual effective dose, effective dose equivalent, and radon exhalation rates in tin tailings were calculated to be in the range of 2.47 to 11.46 mSv, 5.94 to 1090.56 mSv y{sup −1}, and 0.23 to 1.18 mBq kg{sup −1} h{sup −1}. For building materials, the calculated risk assessment of the annual effective dose, effective dose equivalent, radon exhalation rates and fatal cancer risk were 0.72 to 10.00 mSv, 1.73 to 24.00 mSv y{sup −1}, 0.010 to 0.06 mBq kg{sup −1} h{sup −1} and 40 to 550 chances of persons will suffer the cancer per million (1 × 10{sup 6}), respectively.« less

  20. Data Analysis and Statistical Methods for the Assessment and Interpretation of Geochronologic Data

    NASA Astrophysics Data System (ADS)

    Reno, B. L.; Brown, M.; Piccoli, P. M.

    2007-12-01

    Ages are traditionally reported as a weighted mean with an uncertainty based on least squares analysis of analytical error on individual dates. This method does not take into account geological uncertainties, and cannot accommodate asymmetries in the data. In most instances, this method will understate uncertainty on a given age, which may lead to over interpretation of age data. Geologic uncertainty is difficult to quantify, but is typically greater than analytical uncertainty. These factors make traditional statistical approaches inadequate to fully evaluate geochronologic data. We propose a protocol to assess populations within multi-event datasets and to calculate age and uncertainty from each population of dates interpreted to represent a single geologic event using robust and resistant statistical methods. To assess whether populations thought to represent different events are statistically separate exploratory data analysis is undertaken using a box plot, where the range of the data is represented by a 'box' of length given by the interquartile range, divided at the median of the data, with 'whiskers' that extend to the furthest datapoint that lies within 1.5 times the interquartile range beyond the box. If the boxes representing the populations do not overlap, they are interpreted to represent statistically different sets of dates. Ages are calculated from statistically distinct populations using a robust tool such as the tanh method of Kelsey et al. (2003, CMP, 146, 326-340), which is insensitive to any assumptions about the underlying probability distribution from which the data are drawn. Therefore, this method takes into account the full range of data, and is not drastically affected by outliers. The interquartile range of each population of dates (the interquartile range) gives a first pass at expressing uncertainty, which accommodates asymmetry in the dataset; outliers have a minor affect on the uncertainty. To better quantify the uncertainty, a resistant tool that is insensitive to local misbehavior of data is preferred, such as the normalized median absolute deviations proposed by Powell et al. (2002, Chem Geol, 185, 191-204). We illustrate the method using a dataset of 152 monazite dates determined using EPMA chemical data from a single sample from the Neoproterozoic Brasília Belt, Brazil. Results are compared with ages and uncertainties calculated using traditional methods to demonstrate the differences. The dataset was manually culled into three populations representing discrete compositional domains within chemically-zoned monazite grains. The weighted mean ages and least squares uncertainties for these populations are 633±6 (2σ) Ma for a core domain, 614±5 (2σ) Ma for an intermediate domain and 595±6 (2σ) Ma for a rim domain. Probability distribution plots indicate asymmetric distributions of all populations, which cannot be accounted for with traditional statistical tools. These three domains record distinct ages outside the interquartile range for each population of dates, with the core domain lying in the subrange 642-624 Ma, the intermediate domain 617-609 Ma and the rim domain 606-589 Ma. The tanh estimator yields ages of 631±7 (2σ) for the core domain, 616±7 (2σ) for the intermediate domain and 601±8 (2σ) for the rim domain. Whereas the uncertainties derived using a resistant statistical tool are larger than those derived from traditional statistical tools, the method yields more realistic uncertainties that better address the spread in the dataset and account for asymmetry in the data.

  1. Microtectonic-assisted P-T determination on low-grade Alpine metamorphic rocks from the "Tisia Mega-Unit" of the Slavonian Mountains in Croatia

    NASA Astrophysics Data System (ADS)

    Balen, Dražen; Lihter, Iva; Massonne, Hans-Joachim

    2016-04-01

    The internal structure of the Tisia (Tisza) Mega-Unit in the Alpine-Carpathian-Dinaridic orogenic system encompasses large Alpine nappe systems brought to its present-day position by complex regional-scale movements. The Slavonian Mountains are part of the Bihor nappe system which is below the Codru and above the Mecsek nappe systems. The low-grade metamorphic schist unit of the Slavonian Mountains includes numerous rocks which were previously related to Precambrian and/or Lower Paleozoic orogeneses. However, recent studies (e.g. Balen, 2014, European Geosciences Union General Assembly, EGU 2014-6122) show that the metapelites of this unit should be attributed to the Alpine orogeny and the poorly known P-T conditions, which they experienced, should be refined. Although metapelites can be sensitive to changes of metamorphic conditions and, therefore, be suitable for the P-T estimation of metamorphic event(s), the extraction of mineral assemblages, being in equilibrium, and associated microtectonic data for particular low-grade metamorphic rocks is not straightforward. On the contrary, due to lack of suitable minerals and complex mictotectonic features, one can be faced with a severe problem concerning (dis)equilibrium. To avoid this, the observation scale in the research was set to the sub-mm level taking into account microtectonic positions of minerals. The investigated samples from the Slavonian Mountains are fine-grained schists consisting of chlorite (15-30 vol. %), white mica (15-25 vol. %), quartz (10-25 vol. %), feldspars (albite 10-15 vol. %; some K-feldspar), biotite (<5 vol. %), opaques (<5 vol. %), and accessory minerals (zircon, monazite, xenotime, apatite, chalcopyrite, pyrite, barite, parisite-(Ce), rutile). The schists show complex microtectonic fabric including well-developed foliations, pervasive folding, crenulation and cleavage. Foliations are defined by the preferred orientation of phyllosilicates and thin quartz and feldspar ribbons. Chlorite and white mica oriented along the S1 foliation are up to 50 μm long grains whereas those oriented along the S2 foliation are as large as 500 μm. Chlorite is ripidolite; potassic white mica is muscovite to phengite. Both minerals show a systematic variation in chemical composition such as higher Si contents in white mica and lower XFe in chlorite of the S1 assemblage compared to the S2 assemblage. The application of classical chlorite thermometers, based on Si, Al, Fe, and Mg contents of chlorite, and phengite gave P-T conditions of 325-350 °C around 4.6 kbar and 315-330 °C around 3.8 kbar for the S1 and S2 minerals, respectively. Constructions of pseudosections in the system MnNCKFMASHTO with PERPLEX confirmed these P-T ranges yielding 3.1-4.7 kbar and 300-360 °C based on intersections of XFe (chlorite) and Si (phengite) isopleths. The P-T range is in accordance with the critical reaction chlorite + K-feldspar = biotite + K-white mica in the presence of quartz and H2O. The presented refinement of the P-T data for the studied metapelites combined with two sets of known monazite ages (113±20 and 82±23 Ma; Balen, 2014) has a significance in clarifying details of the geodynamic evolution during the Alpine orogeny. Financial support by the Croatian Science Foundation (IP-2014-09-9541) and T. Theye's help during microprobe work is greatly acknowledged.

  2. Protracted or multiple subduction of metapelites (Rhodope UHP domain, Greece)?

    NASA Astrophysics Data System (ADS)

    Krohe, A.; Wawrzenitz, N. H.; Mposkos, E.; Romer, R. L.

    2012-12-01

    The Rhodope domain formed along the suture between the European and the Apulian/Adriatic plate, which collided in the early Tertiary (closure of the Vardar/Axios ocean). Its metamorphic history includes UHP metamorphism documented by diamond inclusions in garnet (Mposkos & Kostopoulos 2001, Perraki et al. 2006, Schmidt et al. 2010), presumably of Jurassic age, and Eocene stages of MP and HP metamorphism. The age of UHPM is still a matter of debate: U-Pb SHRIMP ages extend from 184-172 Ma (monazite in metapelites) to ca. 42 Ma with clusters at 170-160, 150-140, 80-60, 50, 42 Ma, (U-Pb SHRIMP dating of zircon from amphibolitized eclogites and metapelites). These ages are interpreted to date subsequent stages of (U)HP metamorphism and decompression (Liati et al., 2005, Hoinkes et al. 2008, Bauer et al. 2006, Krenn et al 2010). However, these ages are obviously difficult to link with the metamorphic reactions. The metamorphic history has been interpreted in different ways, reflecting: (i) successive accretion of small terranes with rapid subduction and uplift histories (e.g. Liati et al. 2005); (ii) a composite of different tectonic units varying in earlier P-T histories, assembled by shear zones that reflect tectonic erosion and differential exhumation along the plate interface and that are now erased and overprinted (Krohe and Mposkos, 2002, Mposkos et al., 2010). These interpretations imply a different kinematics of the tectonic movements at depths, mechanical processes and process rates. Additionally, a protracted polymetamorphic history of larger volumes of the Rhodope UHP domain may be considered; e.g. the Kimi complex stayed in the lower crust for ca. 50-60 Ma after exhumation of the UHP rocks to this lower crustal level (Mposkos and Krohe, 2006). To constrain a precise age of the HP granulite facies and a minimum age of UHP metamorphism, we conduct an integrated structural, petrologic and geochronological study in a metapelite from the Sidronero Complex. The mineral assemblages Grt-Ky-Bt-Pl-Kfs-Qtz-Rt and Grt-Ky-Bt-Ms-Pl-Qtz-Rt, record a HP granulite facies metamorphism followed by upper amphibolite facies. The rock is particularly well suited for studying the granulite facies metamorphism, as it contains domains that are only weakly overprinted by later metamorphic episodes. ID-TIMS U-Pb ages of single monazite grains and fractions of few grains, that are only locally patchy-zoned and associated with garnet and kyanite, plot along the concordia between 64 to 60 Ma. One date of 55 Ma might represent Pb-loss during later fluid-induced dissolution-reprecipitation, probably related to biotite growth during the amphibolite facies overprint. On the base of these data, a model is discussed, in which rocks from the upper plate and HP-rocks that have been already exhumed, were dragged again into the subduction channel by subduction erosion Bauer et al. 2006, Lithos, 29, 207-228; Hoinkes et al. 2008, 3rd IGC Oslo, UHP-4; Krenn et al 2010, Tectonics, 29, TC4001; Krohe & Mposkos, 2002, Geol. Soc. Sp. Pub. 204, 151-178; Liati, A., 2005, Contrib. Mineral. Petrol., 150, 608-630; Mposkos, & Kostopoulos, 2001, EPSL, 192, 497-506; Mposkos & Krohe, 2006. Can. J. Earth Sci., 43, 1755-1776; Mposkos et al., 2010 Proc. XIX CBGA Congress, 100, 173-178; Perraki et al., 2006, EPSL, 241, 672-685; Schmidt et al., 2010, EJM, 22, 189-198.

  3. Geotectonic setting of the Suwałki Anorthosite Massif (NE-Poland) - constraints for 3D geological modelling

    NASA Astrophysics Data System (ADS)

    Wiszniewska, Janina; Petecki, Zdzislaw; Rosowiecka, Olga; Krzemińska, Ewa

    2017-04-01

    Suwałki Anorthosite Massif (SAM) is located within 200 km long Mesoproterozoic magmatic terrane called Mazury Complex (NE Poland) (Wiszniewska et al. 2002). This is a belt of granitoids and associated mafic and intermediate igneous rocks followed an E-W trending lineament extending from the Baltic Sea through northern Poland and southern Lithuania to western Belarus. Crystalline basement of the Suwałki region is covered by a thick pile (550-1300m) of Phanerozoic sedimentary rocks, which are dipping towards the SW East European Craton`s border. SAM is a complex structure composed primarily of magmatic massif type anorthosites, surrounded by a rim of norite-gabbronorite and diorite rocks. SAM is characterized by magnetic and gravimetric negative anomalies. The gravimetric one is related to anorthosite massif. It is surrounded by a few positive anomalies, which reflect occurrences of denser rocks such as granite, monzodiorite and granodiorite. The large magnetic anomaly is supposed to reflect an effect of an negative inclination of remanent magnetization of anorthosite rocks. This hypothesis was confirmed by magnetic modelling along DSS POLONAISE'97 profile P4 (Petecki, 2006). Existing measurements however do not show prevailing negative inclinations, even though they prove very high remanent magnetization of anorthosites. A pronounced residual magnetic anomalies of Udryń and Krzemianka are related to Fe-Ti-(V) ore deposits recognized by deep boreholes. Based on potential field data it was suggested that anorthosite bottom reaches 2,5-4,5 km depth. Thus it is evident that the geological architecture of SAM and its surrounding area is not fully recognized. The problem is supposed to be resolved using modern methods of geophysical transformations and 3D modelling using GeoModeller software. The final result of the research will be to recognize spatial structure of the SAM and its surrounding. Petrological, mineralogical, geochronological (U-Pb SHRIMP method on zircons and titanite) and tectonic testing from SAM were carried out. Structural analysis were also performed on a basis of the identified tectonic structures on selected cores. Recognition of possible connections of tectonic structures with magmatic processes and pegmatite, aplite, quartz veins including their mineral composition have been checked. For pegmatite, aplite, hydrothermal and quartz veins age determinations, U-Pb SHRIMP IIe method on zircon, monazite and titanite have been done. The primary age measurements of zircons from microgranite veins within anorthosite have shown consistent Paleoproterozoic ages of protolith ( 1844±11 Ma for Krzemianka 73) with Mezoproterozoic ages ( 1.5 Ga) of metamorphic rims, similar to monazite ages ( 1469±16 Ma). The microgranite veins are probably derived from the older Paleoproterozoic crust, carrying a relic zircons of 1.84 Ga ages but also some inherited older ages as 2.0 to 2.3 Ga. The future planned works will concern the genesis and evolution of igneous AMCG rocks suite and related ore mineralization of the SAM. Petecki Z., 2006: Integrated gravity and magnetic modelling along P4 seismic profile (in Polish). Pr. Państw. Inst. Geol. CLXI., 193p. Wiszniewska J., Claesson S., Stein H., Vander Auwera J., Duchense J-C., 2002: The north-eastern Polish anorthosite massifs: petrological, geochemical and isotopic evidence for a crustal derivation. Terra Nova 14, p.451-460 This is a contribution to the project " Determination of architecture and geological evolution of the Suwałki Anothosite Massif by 3D geological and geophysical data modelling method" NCN grant 51.2115.1601.09.0

  4. Voluminous low-T granite: fluid present partial melting of the crust?

    NASA Astrophysics Data System (ADS)

    Hand, Martin; Barovich, Karin; Morrissey, Laura; Bockmann, Kiara; Kelsey, David; Williams, Megan

    2017-04-01

    Voluminous low-T granite: fluid present partial melting of the crust? Martin Hand(1), Karin Barovich(1), Laura Morrissey(1), Vicki Lau(1), Kiara Bockmann(1), David Kelsey(1), Megan Williams(1) (1) Department of Earth Sciences, University of Adelaide, Adelaide, Australia Two general schools of thought exist for the formation of granites from predominantly crustal sources. One is that large-scale anatexis occurs via fluid-absent partial melting. This essentially thermal argument is based on the reasonable premise that the lower crust is typically fluid depleted, and experimental evidence which indicates that fluid-absent partial melting can produce significant volumes of melt, creating compositionally depleted residua that many believe are recorded by granulite facies terranes. The other school of thought is that large-scale anatexis can occur via fluid-fluxed melting. This essentially compositional-based contention is also supported by experimental evidence which shows that fluid-fluxed melting is efficient, including at temperatures not much above the solidus. However, generating significant volumes of melt at low temperatures requires a large reservoir of fluid. If fluid-fluxed melting is a realistic model, the resultant granites should be comparatively low temperature compared to those derived from predominantly fluid-absent partial melting. Using a voluminous suite of aluminous granites in the Aileron Province in the North Australian Craton together with metasedimentary granulites as models for source behaviour, we evaluate fluid-absent verse fluid-present regimes for generating large volumes of crustally-derived melt. The central Aileron Province granites occupy 32,500km2, and in places are in excess of 8 km thick. They are characterised by abundant zircon inheritance that can be matched with metasedimentary successions in the region, suggesting they were derived in large part from melting of crust similar to that presently exposed. A notable feature of many of the granites is their enriched Th concentrations compared to typical Aileron Province sub solidus metapelitic successions. However, based on continuous transects within metasedimentary rocks from a number of different regions that record transitions from sub-solidus assemblages to supra-solidus rocks petrologically characterised by typical fluid-absent peritectic assemblages (central Aileron Province, Broken Hill Zone, Ivrea-Verbano Zone), fluid-absent partial melting does not deplete Th concentrations in the residuum with respect to their sub-solidus protoliths. If these compositional transects are used as a guide to the general behaviour of Th during fluid-absent partial melting, the voluminous Th-enriched granites in the Aileron Province are unlikely to be the products of fluid-absent partial melting. This contention is supported by phase equilibria modelling of sub-solidus metasedimentary units whose detrital zircons match in age the granite-hosted xenocrysts, which indicate that temperatures in excess of 840°C are required to generate significant volumes (ie ≥ 30%) of melt under fluid-absent conditions. However, zircon saturation temperatures for the granites have a weighted mean of 776 ± 4 °C (n = 220). Because the granites contain abundant inheritance, this is an upper-T limit that also suggests fluid-absent partial melting was not the primary mechanism for granite formation. We suggest that voluminous granite formation in the Aileron Province occurred in a fluid-rich regime that was particularly effective at destabilising monazite and liberating Th into melt. Because of the propensity of monazite to destabilise in the presence of fluid, we suggest that high-grade metasedimentary terrains that are notably depleted in Th may be residuum associated with fluid-fluxed melt loss.

  5. A Transect Across the Greater Himalayan Sequence of Bhutan: Evidence for a Minimum of 10 Ma of Ductile Flow Between the Outer South Tibetan Detachment and the Main Central Thrust

    NASA Astrophysics Data System (ADS)

    Daniel, C. G.; Kim, Y.; Grujic, D.; Hollister, L. S.

    2011-12-01

    Unique features of the Bhutan Himalaya are klippen of Tethyan sediments that overlie sillimanite and kyanite gneisses of the Greater Himalayan Sequence (GHS). The contact is strongly sheared, and referred to as the Outer South Tibetan Detachment (O-STD). Five such klippen are preserved in Bhutan and give insight into the Miocene displacement (ca. 24-11 Ma) of the STD system and on the evolution of the uppermost GHS. The base of the klippen are characterized by strongly sheared Grt-Bt±St±Sil schists of the Chekha Formation that appear to grade continuously upward into the black slates and weakly- to unmetamorphosed rocks of the Tethyan Sedimentary Sequence (TSS). Leucogranites intrude the Chekha Fm and the GHS in the vicinity of the contact, but not the TSS. New metamorphic, structural and geochronologic data from the western side of the Tang Chu klippe show that deformation and metamorphism within the Chekha Fm. were underway prior to 17.6 Ma, and that ductile shearing clearly overprints peak metamorphic mineral assemblages and continued until after 14 Ma. These data, when combined with previously reported data from adjacent klippen and the Main Central Thrust Zone to the south, provide a record of fairly continuous ductile flow of the GHS between 25-23 Ma and 13-11 Ma, at which point displacement transfers north of the klippen, to the Kakhtang thrust and the Inner-STD. Samples for this study were collected along a 10 km traverse and include four samples of Chekha Fm. and two samples of GHS collected across an ~ 80 m structural section that straddles the O-STD. The top of the interval starts in the Chekha Fm. and is characterized by the assemblage Grt-Bt-St, with a peak temperature near 600 °C. The base of the Chekha Fm. preserves Grt-Bt-Ms, with minor Sil, and peak temperatures near 650 °C; no evidence of partial melting is observed. The GHS samples are characterized by Grt-Bt-Ms-Sil and were partially melted. Peak metamorphic temperatures are estimated to be 650-750 °C. No pressure break is observed across the O-STD, and all peak temperatures correspond to a pressure of 6-7 kbar. In-situ, monazite SHRIMP U-Pb ages for the Chekha Fm. range from about 16.58 Ma ± 0.22 Ma (2σ) at the top of the interval to about 17.58 Ma ± 0.47 Ma (2σ) near its base. Apparent ages from monazite in the GHS range from 21.0 Ma ± 0.7 Ma (1σ) to 13.9 Ma ± 0.4 Ma (1σ). Deformation outlasts metamorphism, as indicated by pre- to syn-kinematic porphyroblasts overprinted by shear bands. Samples from the Chekha Fm. show top-to-north extensional displacement at the top of the interval and conjugate top-to-north and top-to-south shearing indicative of flattening at the base. The GHS samples show dominantly top-to-south shearing overprinted by minor top-to-north shearing. The simultaneous displacement across the GHS and O-STD, the compression of isotherms, and the absence of a discrete pressure break across the O-STD are consistent with a model of ductile flow and extrusion.

  6. Hyperspectral Imaging at the Micro- and Nanoscale using Energy-dispersive Spectroscopy (EDS) with Silicon Drift Detector (SDD) and EBSD Analysis

    NASA Astrophysics Data System (ADS)

    Salge, T.; Goran, D.

    2010-12-01

    SDD systems have become state of the art technology in the field of EDS. The main characteristic of the SDDs is their extremely high pulse load capacity of up to 750,000 counts per second at good energy resolution (<123 eV Mn-Kα, <46 eV C-Kα at 100,000 counts per seconds). These properties in conjunction with electron backscatter diffraction (EBSD) technique and modern data processing allows not only high speed mapping but also hyperspectral analysis. Here, a database is created that contains an EDS spectrum and/or EBSD pattern for each pixel of the SEM image setting the stage for innovative analysis options: The Maximum Pixel Spectrum function [1] synthesizes a spectrum out of the EDS database, consisting of the highest count level found in each spectrum channel. Here, (trace) elements which occur in only one pixel can be detected qualitatively. Areas of similar EDS composition can be made visible with Autophase, a spectroscopic phase detection system. In cases where the crystallographic phase assessment by EBSD is problematic due to pattern similarity, the EDS signal can be used as additional information for phase separation. This paper presents geoscience applications with the QUANTAX system with EDS SDD and EBSD detector using the options described above: (1) Drill core analysis of a Chicxulub impact ejecta sequence from the K/Pg boundary at ODP leg 207 [2] using fast, high resolution element maps. (2) Detection of monazite in granite by the Maximum Pixel Spectrum function. (3) Distribution of elements with overlapping peaks by deconvolution at the example of rare earth elements in zoned monazite. (4) Spectroscopic phase analysis of a sulfate-carbonate-dominated impact matrix at borehole UNAM-7 from the Chicxulub impact crater [3]. (5) EBSD studies with examples of iron meteorites and impact-induced, recrystallized carbonate melts [4]. In addition, continuing technological advances require the elemental analysis of increasingly smaller structures in many fields, including geosciences. It will be demonstrated that using low accelerating voltages, the element distribution of structures at the nanoscale in bulk samples can be displayed in a short time due to optimized signal processing and solid angle. Peaks composed of contributions from several overlapping elements e.g. N-K (392 eV) and Ti-Ll (395 eV) can be deconvolved [6] using an improved atomic database with 250 additional L, M and N lines below 4 keV. Improved light element quantification allows the standardless quantification of features at the nanoscale such as rutile grains 200-500 nm in size. References: [1] Bright D S. & Newbury D. E. (2004) Journal of Microscopy 216:186-193. [2] Schulte P. et al. (2010) Science 327: 1214-1218. [3] Salge T. (2007) PhD thesis: 130p. http://edoc.huberlin.de/docviews/abstract.php?lang=ger&id=27753. [4] Deutsch A. et al. MAPS 45: A45. [6] Tunckan O. (2010) Joining ceramics using capacitor discharge technique and determination of metal ceramic interface reactions, PhD thesis, Anadolu University, Eskisehir, Turkey. Acknowledgements: We thank P. Schulte, A. Deutsch, ODP, L. Hecht, A. Kearsley, J. Urrutria-Fucugauchi, O. Tunckan and S. Turan for generously providing the samples.

  7. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky

    USGS Publications Warehouse

    Hower, J.C.; Ruppert, L.F.; Eble, C.F.

    1999-01-01

    The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, ??-quartz, anatase and euhedral zircon, thhat constitutes strong evidence for a volcanic origin of the parting. For this study, five samples of the tonstein and four sets of coal samples underlying the tonstein were collected from five sites in eastern Kentucky. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis of the tonstein and underlying coal collected from four sites in eastern Kentucky show that although Zr concentrations are high in the tonstein (570-1820 ppm on a coal-ash basis (cab)), they are highest in the coal directly underlying the tonstein (2870-4540 ppm (cab)). A similar enrichment pattern is observed in the concentration of Y plus the sum of the rare earth elements (Y + ??REE): total Y + ??REE concentrations in the five tonstein samples range from 511 to 565 ppm (cab). However, Y + ??REE contents are highest in the coals directly underlying the tonsteins: values range from 1965 to 4198 ppm (cab). Scanning electron microscopy of samples from coal which directly underlies two of the tonstein samples show that REE-rich phosphate, tentatively identified as monazite, commonly infills cracks in clays and cells in clarain and vitrain. Zircon is rare and commonly subhedral. On the basis of coal chemistry and grain morphology, we suggest that volcanic components in the tonstein were leached by ground water. The leachate, rich in Y and REE precipitated as authigenic mineral phases in the underlying coal.The Fire Clay coal bed in the Central Appalachian basin region contains a laterally-persistent tonstein that is found in the coal throughout most of its areal extent. The tonstein contains an array of minerals, including sanidine, ??-quartz, anatase and euhedral zircon, that constitutes strong evidence for a volcanic origin of the parting. For this study, five samples of the tonstein and four sets of coal samples underlying the tonstein were collected from five sites in eastern Kentucky. Inductively coupled plasma-mass spectroscopy (ICP-MS) analysis of the tonstein and underlying coal collected from four sites in eastern Kentucky show that although Zr concentrations are high in the tonstein (570-1820 ppm on a coal-ash basis (cab)), they are highest in the coal directly underlying the tonstein (2870-4540 ppm (cab)). A similar enrichment pattern is observed in the concentration of Y plus the sum of the rare earth elements (Y+???REE): total Y+???REE concentrations in the five tonstein samples range from 511 to 565 ppm (cab). However, Y+???REE contents are highest in the coals directly underlying the tonsteins: values range from 1965 to 4198 ppm (cab). Scanning electron microscopy of samples from coal which directly underlies two of the tonstein samples show that REE-rich phosphate, tentatively identified as monazite, commonly infills cracks in clays and cells in clarain and vitrain. Zircon is rare and commonly subhedral. On the basis of coal chemistry and grain morphology, we suggest that volcanic components in the tonstein were leached by ground water. The leachate, rich in Y and REE precipitated as authigenic mineral phases in the underlying coal.

  8. Summary of reconnaissance for radioactive deposits in Alaska, 1945-1954, and an appraisal of Alaskan uranium possibilities

    USGS Publications Warehouse

    Wedow, Helmuth

    1956-01-01

    In the period 1945-1954 over 100 investigations for radioactive source materials were made in Alaska. The nature of these investigations ranged from field examinations of individual prospects or the laboratory analysis of significantly radioactive samples submitted by prospectors to reconnaissance studies of large districts. In this period no deposits of uranium or thorium that would warrant commercial exploitation were discovered. The investigations, however, disclosed that radioactive materials occur in widely scattered areas of Alaska and in widely diverse environments. Many igneous rocks throughout Alaska are weakly radioactive because of uranium- and thorium-bearing accessory minerals, such as allanite, apatite, monazite, sphene, xenotime, and zircon; more rarely the radioactivity of these rocks is due to thorianite or thorite and their uranoan varieties. The felsic rocks, for example, granites and syenites, are generally more radioactive than the mafic igneous rocks. Pegmatites, locally, have also proved to be radioactive, but they have little commercial significance. No primary uranium oxide minerals have been found yet in Alaskan vein deposits, except, perhaps, for a mineral tentatively identified as pitchblende in the Hyder district of southeastern Alaska. However, certain occurrences of secondary uranium minerals, chiefly those of the uranite group, on the Seward Peninsula, in the Russian Mountains, and in the vicinity of Kodiak suggest that pitchblende-type ores may occur at depth beneath zones of alteration. Thorite-bearing veins have been discovered on Prince of Wales Island in southeastern Alaska. Although no deposits or carnotite-type minerals have been found in Alaska, several samples containing such minerals have been submitted by Alaskan prospectors. Efforts to locate the deposits from which these minerals were obtained have been unsuccessful, but review of available geologic data suggests that several Alaskan areas are potentially favorable for carnotite-type deposits. The chief of these areas is the Alaska Peninsula-Cook Inlet area which encompasses most of the reported occurrences of the prospectors' carnotite-type samples. Alaska is also potentially favorable for the occurrence of large bodies of the very low-grade uraniferous sedimentary rocks, such as phosphorites and black shales. This type of deposit, however, has not received much study because of the emphasis on the search for bonanza-type high-grade ores. Uraniferous phosphorites similar to those of Idaho, Montana, and Wyoming occur in northern Alaska on the north flank of the Brooks Range; black shales comparable to the uraniferous shales of the Chattanooga formation of southeastern United States have been noted along the Yukon River near the international boundary. Placer deposits in Alaska have some small potential for the production of the radioactive elements as byproducts of gold- and tin-placer mining. the placer area believed to have the relatively greatest potential in Alaska lies in the Kahiltna River valley where concentrates are known to contain such commercial minerals as ilmenite, cassiterite, platinum, and gold in addition to uranothorianite and monazite. The possibilities of the natural fluids--water and petroleum--have not yet been tested in Alaska to any great extent. Studies of fluids are in progress to determine whether they may be used to discover and define areas potentially favorable for the occurrence of uraniferous lodes.

  9. Identifying the complex melting reaction from 20 Ma to 14 Ma in Tsona leucogranite in Southern Tibet: geochemistry, zircon U-Pb chronology and Hf isotopes evidence

    NASA Astrophysics Data System (ADS)

    Shi, Qingshang; Zhao, Zhidan; Liu, Dong; Zhu, Di-Cheng

    2017-04-01

    The Miocene leucogranites, the record of the evolution of the Himalayan-Tibetan Orogen, extensively intruded the Greater Himalayan Sequence (GHS), and distributed along the South Tibetan Detachment System (STDS) (Guo and Wilson, 2012). Here we present a study of geochemistry, zircon U-Pb chronology and Hf isotopes on the Yamarong leucogranites from Tsona area, Eastern Himalaya, to explore the petrogenesis of the rocks, including melting condition and mechanism, and source of fluid within the magmatism through time. Our new results include: (1) The age of the Yamarong leucogranites range from 14 Ma to 20 Ma (YM1510-1 = 19.7 ± 0.1 Ma, n = 13; YM1502-1 = 17.5 ± 0.1 Ma, n = 12; YM1412 =14.2 ± 0.1 Ma, n = 18), which suggest that the anataxis processes have lasted for more than 6 Ma. (2) The geochemical features are different between the rocks with changing ages, especially between 20 Ma and 17 Ma. The Rb/Sr value of 20 Ma leucogranites (4.1-6.84) is lower than that of 17 Ma samples (5.12-19.02). The 20 Ma leucogranites have higher Ba contents (188-337 ppm) than that of 17 Ma rocks (50-158ppm), which exhibit different trends in the Rb/Sr versus Ba plot, and reveal different melting reaction from 20 Ma to 17 Ma. (Inger and Harris, 1993) (3) The ɛHf(t) isotopes of 20 Ma leucogranites are lower (average ɛHf(t) = -12.5) than that of 17 Ma ones (average ɛHf(t) = -10), which implies differential dissolution of inherited zircon during two partial melting events possibly due to different fluid contribution (Gao et al., 2017); (4) The positive linear relationship of LREEs versus Th in the rocks, with relatively higher contents of Th and LREEs in the 20 Ma, and lower in the 17 Ma leucogranites, which suggests the relationship were mostly controlled by monazite. And this further indicates more monazite was dissolved from the source region in the early stage (˜20Ma) than the later (17Ma) (Gao et al., 2017). In summary, our study provides new evidence for the complex melting mechanism, from fluid-fluxed melting at ˜20 Ma to later fluid-absent melting at ˜17 Ma of muscovite in the metasedimentary sources. The ˜20 Ma magmatism in Tsona area may represent the early stage of exhumation, with more fluid possibly came from either the Lesser Himalayan sequence (LHS) or the Cretaceous - Paleogene molasses beneath the along - stike extrapolation of the Yamarong leucogranties source (Harrison and Wielicki, 2016). Reference: Gao L-E, Zeng L, Asimow PD, 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45(1):39-42. Guo Z, Wilson M, 2012. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Research, 22(2): 360-376. Harrison TM, Wielicki MM, 2016. From the Hadean to the Himalaya: 4.4 Ga of felsic terrestrial magmatism. American Mineralogist, 101(6): 1348-1359. Inger S, Harris N, 1993. Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya. Journal of Petrology, 34(2): 345-368.

  10. Human response to high-background radiation environments on Earth and in space

    NASA Astrophysics Data System (ADS)

    Durante, M.; Manti, L.

    The main long-term goal of the space exploration program is the colonization of the planets of the Solar System The high cosmic radiation equivalent dose rate represents a major problem for a stable and safe colonization of the planets The dose rate on Mars ranges between 60 and 150 mSv year depending on the Solar cycle and altitude and can reach values as high as 360 mSv year on the Moon The average dose rate on the Earth is about 3 mSv year reduced to about 1 mSv year excluding the internal exposure to Rn daughters However some areas of the Earth have anomalously high levels of background radiation Values 200-400 times higher than the world average are found in regions where monazite sand deposits are abundant Population in Tibet experience a high cosmic radiation background Epidemiological studies did not detect any adverse health effects in the populations living in those high-background radiation areas on Earth Chromosomal aberrations in the peripheral blood lymphocytes from the population living in the high-background radiation areas have been measured in several studies because the chromosomal damage represents an early biomarker of cancer risk Similar cytogenetic studies have been recently performed in cohort of astronauts involved in single or repeated space flights over many years A comparison of the cytogenetic findings in populations exposed at high dose rate on Earth or in space will be described

  11. Accessory mineral records of tectonic environments? (Invited)

    NASA Astrophysics Data System (ADS)

    Storey, C.; Marschall, H. R.; Enea, F.; Taylor, J.; Jennings, E. S.

    2010-12-01

    Accessory mineral research continues to gather momentum as we seek to unleash their full potential. It is now widely recognised that robust accessory minerals, such as zircon, rutile, titanite, allanite and monazite, are archives of important trace elements that can help deduce metamorphic reaction history in metapelites, metabasites and other rock types. Moreover, they are important carriers of certain trace elements and govern or influence the products of partial melting and of fluid-rock interaction (e.g. magmas and mineralisation) in settings like subduction zones and hydrothermal systems. Perhaps most importantly, they can often be dated using the U-Th-Pb system. More recently, radiogenic (Lu-Hf, Sm-Nd, Rb-Sr) and stable (O) isotope systems have been applied and have further pushed the utility of accessory mineral research. In this talk I will discuss some of these advances towards one particular aim: the use of detrital accessory minerals for fingerprinting tectonic environments. This is a particularly laudable aim in Precambrian rocks, for which the preservation potential of orogenic belts and fossil subduction zones and their diagnostic metamorphic rocks is low. The implication is that our understanding of plate tectonics, particularly in the Archaean, is biased by the preserved in-tact rock record. An analogy is that Jack Hills zircons record evidence of Earth’s crust some 400 Ma before the preserved rock record begins. I will focus on some recent advances and new data from rutile and also the mineral inclusion record within zircon, which shows great promise for petrologic interpretation.

  12. Effects of heating on the emanation rates of radon-222 from a suite of natural minerals.

    PubMed

    Garver, E; Baskaran, M

    2004-12-01

    The emanating power of radon provides information on the internal structure of a mineral and the radiation damage caused by the decay of 238U, 235U and 232Th (and their daughters) that are present in the mineral. The concentration of 222Rn in groundwater is primarily controlled by the concentration of U and Th in the underlying rocks, as well as the emanation coefficient for that particular rock. The variations in the emanation coefficient for 222Rn caused when subsurface rocks are subjected to tectonic forces results in changes in 222Rn in groundwater. Increased emanation rates of radon from a mineral grain can potentially alter the 238U-206Pb, 235U-207Pb and 232Th-208Pb chronological clocks. We have measured radon emanation coefficients on a suite of minerals comprised of one oxide (uraninite), three silicates (thorite, zircon, and cerite) and one phosphate (monazite) at room temperature and after heating at 200 degrees C and 600 degrees C. Annealing of some of the nuclear tracks within a mineral significantly reduces the emanation rates of radon in these minerals, suggesting that the tracks created by decay events serve as conduit pathways for the release of 222Rn. Higher emanation rates of 222Rn from mineral grains that are surrounded by liquid as compared to air indicate that a major portion of the escaping 222Rn in air gets embedded into adjacent mineral grains and/or opposite walls of a pore.

  13. Characterization of Rare Earth Elements in in Clay Deposits Associated with Central Appalachian Coal Seams

    NASA Astrophysics Data System (ADS)

    Scott, M.; Verba, C.; Falcon, A.; Poston, J.; McKoy, M.

    2017-12-01

    Because of their multiple uses in clean energy technologies, rare earth elements (REE) are critical for national economic and energy security. With no current domestic source, supply remains a major concern for domestic security. Underclay - specifically the layer of stratum beneath a coal bed - is a potentially rich source of REE. This study focuses on the characterization and ion exchange recovery of REE from underclay samples from the Lower Freeport, Middle Kittanning, and Pittsburgh coal seams in West Virginia. Multimodal techniques provided quantitative assessments of REE-bearing mineral phases in select underclays and the influence of organic acid rock treatment on the recovery of REE from both exchangeable and crystalline mineral phases present. All samples are from extensively weathered horizons that contain abundant kaolinite and illite. Total REE concentrations range from 250-450 ppm and all samples have a HREE/LEEE ratio >20%. Rare earth element bearing minerals identified in the clay are monazite, xenotime, florencite, and crandallite. Our selective recovery approach is designed to isolate and recover REE through partial dissolution of the clay matrix and ion exchange rather than dissolution/recovery of phosphate or aluminosilicate bound REE. These results provide a better understanding of coal seam underclay, the affinity of REEs for specific ligands and colloids, and how the rock and ligands respond to different chemical treatments. These processes are important to the development and commercialization of efficient and cost effective methods to extract REE from domestic geologic deposits and recover into salable forms.

  14. New data on carbonatites of the Il'mensky-Vishnevogorsky alkaline complex, the southern Urals, Russia

    NASA Astrophysics Data System (ADS)

    Nedosekova, I. L.

    2007-04-01

    Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575-300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300-200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044-0.7045 and ɛNd ranging from 0.65 to -3.3 testify to their derivation from a deep mantle source of EM1 type.

  15. Assembling and disassembling california: A zircon and monazite geochronologic framework for proterozoic crustal evolution in southern California

    USGS Publications Warehouse

    Barth, A.P.; Wooden, J.L.; Coleman, D.S.; Vogel, M.B.

    2009-01-01

    The Mojave province in southern California preserves a comparatively complete record of assembly, postorogenic sedimentation, and rifting along the southwestern North American continental margin. The oldest exposed rocks are metasedimentary gneisses and amphibolite, enclosing intrusive suites that range from tonalite and quartz mon-zodiorite to granite with minor trondhjemite. Discrete magmatic episodes occurred at approximately 1790-1730 and 1690-1640 Ma. Evidence from detrital and premagmatic zircons indicates that recycling of 1900-1790 Ma Paleopro-terozoic crust formed the unique isotopic character of the Mojave province. Peak metamorphic conditions in the Mojave province reached middle amphibolite to granulite facies; metamorphism occurred locally from 1795 to 1640 Ma, with widespread evidence for metamorphism at 1711-1689 and 1670-1650 Ma. Structures record early, tight to isoclinal folding and penetrative west-vergent shear during the final metamorphic event in the west Mojave province. Proterozoic basement rocks are overlain by siliciclastic-carbonate sequences of Mesoproterozoic, Neoproterozoic, and Cambrian age, recording environmental change over the course of the transition from stable Mojave crust to the rifted Cordilleran margin. Neoproterozoic quartzites have diverse zircon populations inconsistent with a southwest North American source, which we infer were derived from the western conjugate rift pair within Rodinia, before establishment of the miogeocline. Neoproterozoic-Cambrian miogeoclinal clastic rocks record an end to rifting and establishment of the Cordilleran miogeocline in southern California by latest Neoproterozoic to Early Cambrian time. ?? 2009 by The University of Chicago.

  16. Rare earth element compositions of core sediments from the shelf of the South Sea, Korea: Their controls and origins

    NASA Astrophysics Data System (ADS)

    Jung, Hoi-Soo; Lim, Dhongil; Choi, Jin-Yong; Yoo, Hae-Soo; Rho, Kyung-Chan; Lee, Hyun-Bok

    2012-10-01

    Rare earth elements (REEs) of bulk sediments and heavy mineral samples of core sediments from the South Sea shelf, Korea, were analyzed to determine the constraints on REE concentrations and distribution patterns as well as to investigate their potential applicability for discriminating sediment provenance. Bulk sediment REEs showed large variation in concentrations and distribution patterns primarily due to grain size and carbonate dilution effects, as well as due to an abundance of heavy minerals. In the fine sandy sediments (cores EZ02-15 and 19), in particular, heavy minerals (primarily monazite and titanite/sphene) largely influenced REE compositions. Upper continental crust-normalized REE patterns of these sand-dominated sediments are characterized by enriched light REEs (LREEs), because of inclusion of heavy minerals with very high concentrations in LREEs. Notably, such a strong LREE enrichment is also observed in Korean river sediments. So, a great care must be taken when using the REE concentrations and distribution patterns of sandy and coarse silty shelf sediments as a proxy for discriminating sediment provenance. In the fine-grained muddy sediments with low heavy mineral abundance, in contrast, REE fractionation ratios and their UCC-normalized patterns seem to be reliable proxies for assessing sediment provenance. The resultant sediment origin suggested a long lateral transportation of some fine-grained Chinese river sediments (probably the Changjiang River) to the South Sea of Korea across the shelf of the northern East China Sea.

  17. Occurrence and multivariate exploratory analysis of the natural radioactivity anomaly in the south coastal region of Kenya

    NASA Astrophysics Data System (ADS)

    Kaniu, M. I.; Angeyo, K. H.; Darby, I. G.

    2018-05-01

    Characterized by a variety of rock formations, namely alkaline, igneous and sedimentary that contain significant deposits of monazite and pyrochlore ores, the south coastal region of Kenya may be regarded as highly heterogeneous with regard to its geochemistry, mineralogy as well as geological morphology. The region is one of the several alkaline carbonatite complexes of Kenya that are associated with high natural background radiation and therefore radioactivity anomaly. However, this high background radiation (HBR) anomaly has hardly been systematically assessed and delineated with regard to the spatial, geological, geochemical as well as anthropogenic variability and co-dependencies. We conducted wide-ranging in-situ gamma-ray spectrometric measurements in this area. The goal of the study was to assess the radiation exposure as well as determine the underlying natural radioactivity levels in the region. In this paper we report the occurrence, exploratory analysis and modeling to assess the multivariate geo-dependence and spatial variability of the radioactivity and associated radiation exposure. Unsupervised principal component analysis and ternary plots were utilized in the study. It was observed that areas which exhibit HBR anomalies are located along the south coast paved road and in the Mrima-Kiruku complex. These areas showed a trend towards enhanced levels of 232Th and 238U and low 40K. The spatial variability of the radioactivity anomaly was found to be mainly constrained by anthropogenic activities, underlying geology and geochemical processes in the terrestrial environment.

  18. Status of plutonium ceramic immobilization processes and immobilization forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebbinghaus, B.B.; Van Konynenburg, R.A.; Vance, E.R.

    1996-05-01

    Immobilization in a ceramic followed by permanent emplacement in a repository or borehole is one of the alternatives currently being considered by the Fissile Materials Disposition Program for the ultimate disposal of excess weapons-grade plutonium. To make Pu recovery more difficult, radioactive cesium may also be incorporated into the immobilization form. Valuable data are already available for ceramics form R&D efforts to immobilize high-level and mixed wastes. Ceramics have a high capacity for actinides, cesium, and some neutron absorbers. A unique characteristic of ceramics is the existence of mineral analogues found in nature that have demonstrated actinide immobilization over geologicmore » time periods. The ceramic form currently being considered for plutonium disposition is a synthetic rock (SYNROC) material composed primarily of zirconolite (CaZrTi{sub 2}O{sub 7}), the desired actinide host phase, with lesser amounts of hollandite (BaAl{sub 2}Ti{sub 6}O{sub 16}) and rutile (TiO{sub 2}). Alternative actinide host phases are also being considered. These include pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}), zircon (ZrSiO{sub 4}), and monazite (CePO{sub 4}), to name a few of the most promising. R&D activities to address important technical issues are discussed. Primarily these include moderate scale hot press fabrications with plutonium, direct loading of PuO{sub 2} powder, cold press and sinter fabrication methods, and immobilization form formulation issues.« less

  19. Evidence for polymetamorphic garnet growth in the Çine (southern Menderes) Massif, Western Turkey

    NASA Astrophysics Data System (ADS)

    Baker, C. B.; Catlos, E. J.; Sorensen, S. S.; Çemen, I.; Hancer, M.

    2008-07-01

    Garnet-based thermobarometry is often used to develop models for the evolution of the Menderes Massif, a key Aegean metamorphic core complex. Here we present X-ray element maps and high-contrast backscattered electron (BSE) and cathodoluminescence (CL) images from a garnet-bearing rock from the Çine (southern Menderes) Massif. The images document a polymetamorphic history as plagioclase and garnet grains show distinct cores and rims. The sample contains matrix monazite in reaction with allanite. The garnet in the sample is likely not in equilibrium with its matrix minerals. This is evidenced by BSE images that document compositional variability in both core and rim zoning and tracks of bright streaks extending from rim to core. We propose that some garnet that is now present in the Menderes Massif formed due to collision during Cambro-Ordovician and may have recrystallized during subsequent collisional and extensional events. These processes led to non-equilibrium compositions and can result in spurious pressure-temperature (P-T) calculations. To establish the feasibility of the P-T estimates of rocks from the Çine Massif for input into tectonic models for the region, more than one sample from single outcrops should be analyzed. Rocks within the Çine Massif have been suggested to display inverted metamorphism, an increase in T towards structurally higher levels. Based on the garnet documented here, we propose that the inverted metamorphism may be a consequence of apparent P-T rather than a real phenomenon.

  20. Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf.

    PubMed

    Huang, Yaoyao; Hu, Yang; Chen, Lvcun; Yang, Tao; Huang, Hanfang; Shi, Runping; Lu, Peng; Zhong, Chenghua

    2018-01-01

    Low-cost biosorbents (ginkgo leaf, osmanthus leaf, banyan leaf, magnolia leaf, holly leaf, walnut shell, and grapefruit peel) were evaluated in the simultaneous removal of La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Yb3+, Lu3+, UO22+, Th4+, Y3+, Co2+, Zn2+, Ni2+, and Sr2+ from aqueous solutions. In single metal systems, all adsorbents exhibited good to excellent adsorption capacities toward lanthanides and actinides. In a simulated multicomponent mixed solution study, higher selectivity and efficiency were observed for Th4+ over other metal cations, with ginkgo leaves providing the highest adsorptivity (81.2%) among the seven biosorbents. Through optimization studies, the selectivity of Th4+ biosorption on ginkgo leaf was found to be highly pH-dependent, with optimum Th4+ removal observed at pH 4. Th4+ adsorption was found to proceed rapidly with an equilibrium time of 120 min and conform to pseudo-second-order kinetics. The Langmuir isotherm model best described Th4+ biosorption, with a maximum monolayer adsorption capacity of 103.8 mg g-1. Thermodynamic calculations indicated that Th4+ biosorption was spontaneous and endothermic. Furthermore, the physical and chemical properties of the adsorbent were determined by scanning electron microscopy, Brunauer-Emmett-Teller, X-ray powder diffraction, and Fourier transform infrared analysis. The biosorption of Th from a real sample (monazite mineral) was studied and an efficiency of 90.4% was achieved from nitric acid at pH 4 using ginkgo leaves.

  1. An integrated study of geochemistry and mineralogy of the Upper Tukau Formation, Borneo Island (East Malaysia): Sediment provenance, depositional setting and tectonic implications

    NASA Astrophysics Data System (ADS)

    Nagarajan, Ramasamy; Roy, Priyadarsi D.; Kessler, Franz L.; Jong, John; Dayong, Vivian; Jonathan, M. P.

    2017-08-01

    An integrated study using bulk chemical composition, mineralogy and mineral chemistry of sedimentary rocks from the Tukau Formation of Borneo Island (Sarawak, Malaysia) is presented in order to understand the depositional and tectonic settings during the Neogene. Sedimentary rocks are chemically classified as shale, wacke, arkose, litharenite and quartz arenite and consist of quartz, illite, feldspar, rutile and anatase, zircon, tourmaline, chromite and monazite. All of them are highly matured and were derived from a moderate to intensively weathered source. Bulk and mineral chemistries suggest that these rocks were recycled from sedimentary to metasedimentary source regions with some input from granitoids and mafic-ultramafic rocks. The chondrite normalized REE signature indicates the presence of felsic rocks in the source region. Zircon geochronology shows that the samples were of Cretaceous and Triassic age. Comparable ages of zircon from the Tukau Formation sedimentary rocks, granitoids of the Schwaner Mountains (southern Borneo) and Tin Belt of the Malaysia Peninsular suggest that the principal provenance for the Rajang Group were further uplifted and eroded during the Neogene. Additionally, presence of chromian spinels and their chemistry indicate a minor influence of mafic and ultramafic rocks present in the Rajang Group. From a tectonic standpoint, the Tukau Formation sedimentary rocks were deposited in a passive margin with passive collisional and rift settings. Our key geochemical observation on tectonic setting is comparable to the regional geological setting of northwestern Borneo as described in the literature.

  2. Euramerican tonsteins: overview, magmatic origin, and depositional-tectonic implications

    USGS Publications Warehouse

    Lyons, P.C.; Spears, D.A.; Outerbridge, W.F.; Congdon, R.D.; Evans, H.T.

    1994-01-01

    Carboniferous tonsteins (kaolinized volcanic-ash beds) of wide geographic distribution are known in both Europe and North America. Relict volcanic minerals common in these Euramerican tonsteins are volcanic quartz (including beta-quartz paramorphs), zircon and ilmenite; less common are magnetite, fayalite, rutile, monazite, xenotime, apatite and sanidine. Data for two relatively thick (3-13 cm) and widespread (>400 km) European tonsteins (Erda and Sub-Worsley Four-foot) indicate an increase in detrital quartz near the top of the beds which indicates mixing with normal clastic sediments, including the introduction of heavy detrital minerals (e.g., tourmaline and garnet). These thick tonsteins show multiple horizontal bedding, normal graded bedding, disturbed bedding, and centimeter-scale scour surfaces. The Fire Clay tonstein in North America represents from one to five separate volcanic air-fall ash deposits as determined by normal graded bedding and mineralogical analysis. These features indicate several episodes of volcanic-ash deposition and very localized subsequent erosion and bioturbation. Electron microprobe data from glass inclusions in volcanic quartz in Euramerican tonsteins indicate a rhyolitic origin for these tonsteins and reveal chemical "fingerprints" valuable for intra- and inter-basinal correlations. However, the tectonic framework for European and North American tonsteins was quite different. In Europe, volcanic-ash beds were associated with Variscan collisional tectonics, whereas in North America, volcanic ash was associated with Ouachita tectonic activity, explosive volcanism from the Yucatan block, collision between the South American and North American plates, and the formation of Pangea. ?? 1994.

  3. Observations and controls on the occurrence of inherited zircon in Concord-type granitoids, New Hampshire

    USGS Publications Warehouse

    Harrison, T.M.; Aleinikoff, J.N.; Compston, W.

    1987-01-01

    U-Pb analyses of zircons separated from two Concord-type plutons near Sunapee and Dixville Notch, New Hampshire, reveal differences in the pattern and magnitude of zircon inheritance which are related to differences in melt chemistry. The Sunapee pluton contains only slightly more Zr than required to saturate the melt at the peak temperature of 700 ?? 30??C. Traces of inherited zircon in this separate are inferred to be present as small, largely resorbed grains. In contrast, the Long Mountain pluton, near Dixville Notch, contains about 240% more Zr than required to saturate the melt. Thus, more than half of the Zr existed as stable, inherited zircon crystals during the partial fusion event, consistent with the observation of substantial inheritance in all grain size fractions. Ion probe intra-grain analyses of zircon from the Long Mountain pluton indicate a complex pattern of inheritance with contributions from at least two Proterozoic terrenes and caution against simple interpretations of upper and lower intercepts of chords containing an inherited component. Ion probe analyses of zircons from the Sunapee pluton reveal clear evidence of U loss which results in incorrect apparent conventional U-Pb ages. Ages of crystallization for the Long Mountain and Sunapee pluton are ~350 and 354 ?? 5 Ma, respectively. A Sm/Nd measurement for the Long Mountain pluton yields a depleted mantle model age of 1.5 Ga, consistent with the observed inheritance pattern. In contrast, a Sm/Nd model age for the Sunapee pluton is improbably old due to minor monazite fractionation. ?? 1987.

  4. Petrogenesis and tectonic implications of the Yadong leucogranites, southern Himalaya

    NASA Astrophysics Data System (ADS)

    Gou, Zhengbin; Zhang, Zeming; Dong, Xin; Xiang, Hua; Ding, Huixia; Tian, Zuolin; Lei, Hengcong

    2016-07-01

    The leucogranites in the Higher Himalayan Sequence (HHS) provide a probe to elucidate the crustal melting of continental collisional orogen. An integrated geochemical and geochronological study of the Yadong leucogranites, southern Himalaya, shows that these rocks have relatively high SiO2 contents of 69.77 to 75.32 wt.% and alumina saturation index (A/CNK) of 1.09-1.40, typical of peraluminous granites. They show moderately fractionated REE patterns with negative Eu anomalies, and are characterized by enriched LILE (Rb and Cs) and depleted HFSE (Zr, Hf, Nb and Ta). LA-ICP-MS U-Pb zircon dating of ten samples yields crystallization ages ranging from 21.0 to 11.7 Ma. The zircons have variable εHf(t) values of - 26.3 to - 3.5 and corresponding Hf two-stage model ages of 2.77-1.33 Ga. The present study reveals that the muscovite-biotite leucogranites (2ML) have higher TiO2, MgO, CaO, Sr, Ba and Zr contents, lower Rb/Sr ratios than the tourmaline-muscovite leucogranites (TML). Zircon and monazite saturation thermometry results show that the melt temperatures (681-784 °C) of the 2ML are 20-80 °C higher than those (663-705 °C) of the TML. Combining with previous results, we propose that the TML were derived from the muscovite-dehydration melting, whereas the 2ML dominantly resulted from the biotite-dehydration melting during the prograde metamorphism of the pelitic and felsic granulites of the HHS. Therefore, the Himalayan leucogranites were probably formed during the subduction of the Indian crust following the India and Asia collision.

  5. Characterisation of heavy metal-bearing phases in stream sediments of the Meža River Valley, Slovenia, by means of SEM/EDS analysis

    NASA Astrophysics Data System (ADS)

    Miler, M.; Gosar, M.

    2010-02-01

    Stream sediment reflects the rock structure of the catchment area, its geochemical characteristics and possible recent contamination upstream of the sampling point and thus, it is most frequently used in geochemical researches of heavy metal pollution. Stream sediment samples were collected along the Meža River and its tributaries and the Drava River, located in the NNE part of Slovenia. Previous geochemical studies have shown that these sediments are heavily polluted with heavy metals as a consequence of past mining of Pb-Zn ore and steelworks activities. Conventional geochemical analyses (ICP-MS, AAS, etc.) provided limited information on mineralogy, morphology and sources of heavy metal-bearing phases therefore SEM/EDS was utilized. Several problems were confronted with during EDS analysis, which are related to identification and quantification of light elements, identification of elements due to peak overlaps and quantification of spectra from unpolished samples. These problems were successfully dealt with. SEM/EDS enabled successful identification of heavy metal-bearing phases in stream sediments. Ore mineral phases, such as cerussite, sphalerite, smithsonite and galena, different heavy metal-bearing Fe-alloys, Fe-oxides and spherical particles and common rock-forming and accessory mineral phases, such as barite, rutile, ilmenite, zircon and monazite, were identified using solely SEM/EDS. These results were used for subsequent geochemical interpretation and source apportionment of heavy metals, according to associations of different heavy metal-bearing phases. Heavy metal-bearing phases were arranged by their source and genesis into three groups, denoted as geogenic/technogenic, technogenic and geogenic.

  6. Apatite Mineral Chemistry From IOA Deposits in Northern Chile

    NASA Astrophysics Data System (ADS)

    Palma, G.; Barra, F.; Reich, M.; Valencia, V.; Simon, A. C.; Vervoort, J. D.

    2017-12-01

    The Carmen, Fresia and Mariela iron-oxide apatite (IOA) deposits of Cretaceous age, located in the Coastal Cordillera of northern Chile, comprise massive bodies of magnetite with minor apatite and actinolite crystals spatially related to diorite intrusions. In order to provide new insights on the origin of Andean IOA deposits, we provide geochemical data of apatite grains collected from these three deposits. All studied apatite grains are zoned with respect to Cl and F, and show a decoupled behaviour between fluorapatite and chlorapatite. Carmen apatite grains are mostly F-rich, whereas in Mariela apatite grains are Cl-rich. Fresia apatite grains show a variable composition between fluorapatite and chlorapatite. Carmen apatite grains show a high REE content reaching up to 7000 ppm, and both Fresia and Mariela have lower REE content (<1400 ppm). REE patterns for all analyzed apatite grains show the typical LREE enrichment relative to the HREE and pronounced negative Eu anomaly, which indicates crystallization of plagioclase in the source magmas [1]. Chlorapatite zones are characterized by high S, Na, Sr and Fe content relative to fluorapatite zones. Notably S and Na show a coupled behaviour with Cl. Conversely LREE are depleted in chlorapatite zones, which is compatible with metasomatism through dissolution-reprecipitation mechanism and formation of monazite inclusions [2]. These results indicate a magmatic origin for fluorapatite in these Andean IOA deposits followed by variable degrees of hydrothermal overprint which resulted in the formation of Cl-rich apatites.[1] Frietsch & Perdahl (1995) Ore Geology Rev. 9 489-510. [2]Harlov et al. (2005) Contrib Mineral Petrol 150: 268-286

  7. Geochemistry of rare earth elements within waste rocks from the Montviel carbonatite deposit, Québec, Canada.

    PubMed

    Edahbi, Mohamed; Plante, Benoît; Benzaazoua, Mostafa; Pelletier, Mia

    2018-04-01

    Several rare earth element (REE) mine projects around the world are currently at the feasibility stage. Unfortunately, few studies have evaluated the contamination potential of REE and their effects on the environment. In this project, the waste rocks from the carbonatites within the Montviel proterozoic alkaline intrusion (near Lebel-sur-Quévillon, Quebec, Canada) are assessed in this research. The mineralization is mainly constituted by light REE (LREE) fluorocarbonates (qaqarssukite-Ce, kukharenkoite-Ce), LREE carbonates (burbankite, Sr-Ba-Ca-REE, barytocalcite, strontianite, Ba-REE-carbonates), and phosphates (apatite, monazite). The gangue minerals are biotites, chlorite, albite, ankerite, siderite, and calcite. The SEM-EDS analyses show that (i) the majority of REE are associated with the fine fraction (< 106 μm), (ii) REE are mainly associated with carbonates, (iii) all analyzed minerals preferably contain LREE (La, Ce, Pr, Nd, Sm, Eu), (iv) the sum of LREE in each analyzed mineral varies between ~ 3 and 10 wt%, (v) the heavy REE (HREE) identified are Gd and Yb at < 0.4 wt%, and (vi) three groups of carbonate minerals were observed containing variable concentrations of Ca, Na, and F. Furthermore, the mineralogical composition of REE-bearing minerals, REE mobility, and REE speciation was investigated. The leachability and geochemical behavior of these REE-bearing mine wastes were tested using normalized kinetic testing (humidity cells). Leachate results displayed higher LREE concentrations, with decreasing shale-normalized patterns. Thermodynamical equilibrium calculations suggest that the precipitation of secondary REE minerals may control the REE mobility.

  8. Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts

    USGS Publications Warehouse

    Bacon, C.R.

    1989-01-01

    Accessory minerals commonly occur attached to or included in the major crystalline phases of felsic and some intermediate igneous rocks. Apatite is particularly common as inclusions, but Fe-Ti oxides, pyrrhotite, zircon, monazite, chevkinite and xenotime are also known from silicic rocks. Accessories may nucleate near the host crystal/ liquid interface as a result of local saturation owing to formation of a differentiated chemical boundary layer in which accessory mineral solubility would be lower than in the surrounding liquid. Differentiation of this boundary layer would be greatest adjacent to ferromagnesian phenocrysts, especially Fe-Ti oxides; it is with oxides that accessories are most commonly associated in rocks. A boundary layer may develop if the crystal grows more rapidly than diffusion can transport incorporated and rejected elements to and from the phenocryst. Diffusion must dominate over convection as a mode of mass transfer near the advancing crystal/liquid interface in order for a boundary layer to exist. Accumulation of essential structural constituent elements of accessory minerals owing to their slow diffusion in evolved silicate melt also may force local saturation, but this is not a process that applies to all cases. Local saturation is an attractive mechanism for enhancing fractionation during crystallization differentiation. If accessory minerals attached to or included in phenocrysts formed because of local saturation, their host phenocrysts must have grown rapidly when accessories nucleated in comparison to lifetimes of magma reservoirs. Some inconsistencies remain in a local saturation origin for accessory phases that cannot be evaluated without additional information. ?? 1989.

  9. Ingestion dose from 238U, 232Th, 226Ra, 40K and 137Cs in cereals, pulses and drinking water to adult population in a high background radiation area, Odisha, India.

    PubMed

    Lenka, Pradyumna; Sahoo, S K; Mohapatra, S; Patra, A C; Dubey, J S; Vidyasagar, D; Tripathi, R M; Puranik, V D

    2013-03-01

    A natural high background radiation area is located in Chhatrapur, Odisha in the eastern part of India. The inhabitants of this area are exposed to external radiation levels higher than the global average background values, due to the presence of uranium, thorium and its decay products in the monazite sands bearing placer deposits in its beaches. The concentrations of (232)Th, (238)U, (226)Ra, (40)K and (137)Cs were determined in cereals (rice and wheat), pulses and drinking water consumed by the population residing around this region and the corresponding annual ingestion dose was calculated. The annual ingestion doses from cereals, pulses and drinking water varied in the range of 109.4-936.8, 10.2-307.5 and 0.5-2.8 µSv y(-1), respectively. The estimated total annual average effective dose due to the ingestion of these radionuclides in cereals, pulses and drinking water was 530 µSv y(-1). The ingestion dose from cereals was the highest mainly due to a high consumption rate. The highest contribution of dose was found to be from (226)Ra for cereals and drinking water and (40)K was the major dose contributor from the intake of pulses. The contribution of man-made radionuclide (137)Cs to the total dose was found to be minimum. (226)Ra was found to be the largest contributor to ingestion dose from all sources.

  10. Selective biosorption of thorium (IV) from aqueous solutions by ginkgo leaf

    PubMed Central

    Huang, Yaoyao; Hu, Yang; Chen, Lvcun; Yang, Tao; Huang, Hanfang; Shi, Runping; Lu, Peng

    2018-01-01

    Low–cost biosorbents (ginkgo leaf, osmanthus leaf, banyan leaf, magnolia leaf, holly leaf, walnut shell, and grapefruit peel) were evaluated in the simultaneous removal of La3+, Ce3+, Pr3+, Nd3+, Sm3+, Eu3+, Gd3+, Yb3+, Lu3+, UO22+, Th4+, Y3+, Co2+, Zn2+, Ni2+, and Sr2+ from aqueous solutions. In single metal systems, all adsorbents exhibited good to excellent adsorption capacities toward lanthanides and actinides. In a simulated multicomponent mixed solution study, higher selectivity and efficiency were observed for Th4+ over other metal cations, with ginkgo leaves providing the highest adsorptivity (81.2%) among the seven biosorbents. Through optimization studies, the selectivity of Th4+ biosorption on ginkgo leaf was found to be highly pH–dependent, with optimum Th4+ removal observed at pH 4. Th4+ adsorption was found to proceed rapidly with an equilibrium time of 120 min and conform to pseudo–second–order kinetics. The Langmuir isotherm model best described Th4+ biosorption, with a maximum monolayer adsorption capacity of 103.8 mg g–1. Thermodynamic calculations indicated that Th4+ biosorption was spontaneous and endothermic. Furthermore, the physical and chemical properties of the adsorbent were determined by scanning electron microscopy, Brunauer–Emmett–Teller, X-ray powder diffraction, and Fourier transform infrared analysis. The biosorption of Th from a real sample (monazite mineral) was studied and an efficiency of 90.4% was achieved from nitric acid at pH 4 using ginkgo leaves. PMID:29509801

  11. Early Miocene rapid exhumation in southern Tibet: Insights from P-T-t-D-magmatism path of Yardoi dome

    NASA Astrophysics Data System (ADS)

    Wang, Jia-Min; Wu, Fu-Yuan; Rubatto, Daniela; Liu, Kai; Zhang, Jin-Jiang; Liu, Xiao-Chi

    2018-04-01

    Reconstructing the evolution of Gneiss domes within orogenic belts poses challenges because domes can form in a variety of geodynamic settings and by multiple doming mechanisms. For the North Himalayan gneiss domes (NHGD), it is debated whether they formed during shortening, extension or collapse of the plateau, and what is the spatial and temporal relationship of magmatism, metamorphism and deformation. This study investigates the Yardoi dome in southern Tibet using field mapping, petrography, phase equilibria modelling and new monazite ages. The resulting P-T-time-deformation-magmatism path for the first time reveals the spatial and temporal relationship of metamorphism, deformation and magmatism in the Yardoi dome: a) the dome mantle recorded prograde loading to kyanite-grade Barrovian metamorphic conditions of 650 ± 30 °C and 9 ± 1 kbar (M2) in the Early Miocene (18-17 Ma); b) the main top-to-the-north deformation fabric (D2) formed syn- to post-peak-metamorphism; c) the emplacement of leucorgranites related to doming is syn-metamorphism at 19-17 Ma. The link between the detachment shear zone in the Yardoi dome and the South Tibetan detachment system (STDS) is confirmed. By comparing with orogen-scale tectonic processes in the Himalaya, we suggest that north-south extension in a convergent geodynamic setting during Early Miocene accounts for formation of the Yardoi dome. In a wider tectonic context, the Early Miocene rapid exhumation of deep crustal rocks was contemporaneous with the rapid uplift of southern Tibet and the Himalayan orogen.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heffernan, Karina M.; Ross, Nancy L., E-mail: nross@vt.edu; Spencer, Elinor C.

    Accurate elastic constants for gadolinium phosphate (GdPO{sub 4}) have been measured by single-crystal high-pressure diffraction methods. The bulk modulus of GdPO{sub 4} determined under hydrostatic conditions, 128.1(8) GPa (K′=5.8(2)), is markedly different from that obtained with GdPO{sub 4} under non-hydrostatic conditions (160(2) GPa), which indicates the importance of shear stresses on the elastic response of this phosphate. High pressure Raman and diffraction analysis indicate that the PO{sub 4} tetrahedra behave as rigid units in response to pressure and that contraction of the GdPO{sub 4} structure is facilitated by bending/twisting of the Gd–O–P links that result in increased distortion in themore » GdO{sub 9} polyhedra. - Graphical abstract: A high-pressure single crystal diffraction study of GdPO{sub 4} with the monazite structure is presented. The elastic behaviour of rare-earth phosphates are believed to be sensitive to shear forces. The bulk modulus of GdPO{sub 4} measured under hydrostatic conditions is 128.1(8) GPa. Compression of the structure is facilitated by bending/twisting of the Gd−O−P links that result in increased distortion in the GdO{sub 9} polyhedra. Display Omitted - Highlights: • The elastic responses of rare-earth phosphates are sensitive to shear forces. • The bulk modulus of GdPO{sub 4} measured under hydrostatic conditions is 128.1(8) GPa. • Twisting of the inter-polyhedral links allows compression of the GdPO{sub 4} structure. • Changes to the GdO{sub 9} polyhedra occur in response to pressure (<7.0 GPa).« less

  13. Fluorbritholite-(Y) and yttrialite-(Y) from silexites of the Keivy alkali granites, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Lyalina, L. M.; Zozulya, D. R.; Savchenko, Ye. E.; Tarasov, M. P.; Selivanova, E. A.; Tarasova, E.

    2014-12-01

    Investigation of the morphology, anatomy, and chemical composition of fluorbritholite-(Y) and yttrialite-(Y) from silexites of the Keivy alkali granites in Kola Peninsula has shown that these minerals are the main REE concentrators in this area and that their content reaches 10-15 vol %. Britholite and yttrialite are associated with zircon, aeschynite-(Y), chevkinite-(Ce), fergusonite-(Y), thorite, monazite-(Ce), xenotime-(Y) and bastnaesite-(Ce). Three morphological types of fluorbritholite-(Y) have been identified: (I) subhedral crystals and grains, (II) anhedral grains intergrown with yttrialite-(Y), and (III) poikilitic crystals and skeletal aggregates. These morphological types of fluorbritholite-(Y) are characterized by successive (I to III type) decreases in P content down to the pure silicate fluorbritholite-(Y). Crystals of the first type are heterogenous: the P content decreases and the HREE content increases from core to rim. The total REE content increases insignificantly from types I to II and drastically decreases in fluorbritholite-(Y) of type III. The successive prevalence of HREE over LREE indicates the hydrothermal conditions of mineral crystallization. The chemical composition of yttrialite-(Y) is distinguished by the relatively high Th content and depletion in Al. The compositional trend (from core to rim) in heterogeneous grains of yttrialite-(Y) testifies that their heterogeneity was caused by metasomatic alteration of the mineral. The interrelation of fluorbritholite-(Y) and yttrialite-(Y) indicate that fluorbritholite-(Y) of types II and III were formed later than yttrialite-(Y). Evidence for fluorbritholite-(Y) and yttrialite-(Y) formation suggests the significant role of hydrothermal processes in the genesis of silexites.

  14. Characterization of Rare Earth Element Minerals in Coal Utilization Byproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montross, Scott N.; Verba, Circe A.; Collins, Keith

    The United States currently produces over 100 million tons of coal utilization byproducts (CUB) per year in the form of fly ash, bottom ash, slag, and flue gas (American Coal Ash Association (ACCA), 2015). But this “waste material” also contains potentially useful levels of rare earth elements (REE). Rare earth elements are crucial for many existing and emerging technologies, but the U.S. lacks a domestic, sustainable REE source. Our project explored the possibility of developing a supply of REEs for U.S. technologies by extracting REEs from CUBs. This work offers the potential to reduce our dependence on other countries formore » supply of these critical elements (NETL, REE 2016 Project Portfolio). Geologic and diagenetic history, industrial preparation methods, and the specific combustion process all play major roles in the composition of CUB. During combustion, inorganic mineral phases of coal particles are fluidized at temperatures higher than 1400oC, so inorganic mineral materials are oxidized, fused, disintegrated, or agglomerated into larger spherical and amorphous (non-crystalline) particles. The original mineralogy of the coal-containing rock and heating/cooling of the material significantly affects the composition and morphology of the particles in the combustion byproduct (Kutchko and Kim, 2006). Thus, different types of coal/refuse/ash must be characterized to better understand mineral evolution during the combustion process. Our research focused on developing a working model to address how REE minerals behave during the combustion process: this research should help determine the most effective engineering methods for extracting REEs from CUBs. We used multimodal imaging and image processing techniques to characterize six rock and ash samples from different coal power plants with respect to morphology, grain size, presence of mineral phases, and elemental composition. The results of these characterization activities provided thresholds for realizing the occurrence of REE mineral phases in CUB and allowed us to calculate structural and volumetric estimates of REE. Collectively, the rock and coal ash samples contained minerals such as quartz, kaolinite, muscovite/illite, iron oxide (as hematite or magnetite), mullite, and clinochlore. Trace minerals included pyrite, zircon, siderite, rutile, diopside, foresterite, gypsum, and barite. We identified REE phosphate minerals monazite (Ce,La,Nd,Th)(PO 4,SiO 4), xenotime (YPO 4,SiO 4), and apatite (Ca 5(PO 4) 3(F,Cl,OH) via SEM and electron microprobe analysis: these materials generally occurred as 1-10 μm-long crystals in the rock and ash samples. As has been shown in other studies, amorphous material-aluminosilicate glass or iron oxyhydroxide-are the major components of coal fly and bottom ash. Trace amounts of amorphous calcium oxide and mixed element (e.g., Al-Si-Ca-Fe) slag are also present. Quartz, mullite, hematite, and magnetite are the crystalline phases present. We found that REEs are present as monomineralic grains dispersed within the ash, as well as fused to or encapsulated by amorphous aluminosilicate glass particles. Monazite and xenotime have relatively high melting points (>1800 °C) compared to typical combustion temperatures; our observations indicate that the REE-phosphates, which presumably contribute a large percentage of REE to the bulk ash REE pool, as measured by mass spectroscopy, are largely unaltered by the combustion. Our study shows that conventional coal combustion processes sequester REE minerals into aluminosilicate glass phases, which presents a new engineering challenge for extracting REE from coal ash. The characterization work summarized in this report provides a semi-quantitative assessments of REE in coal-containing rock and CUB. The data we obtained from 2- and 3-D imaging, elemental mapping, volumetric estimates, and advanced high-resolution pixel classification successfully identified the different mineral phases present in CUB. Further, our characterization results can guide techniques for extracting REEs from CUB, or other geologic and engineered materials. Whilst, interpretations will inform future REE separation and extraction techniques and technologies practical for commercial utilization of combustion byproducts generated by power plants.« less

  15. Formerly Used Sites Remedial Action Program (FUSRAP) W. R. Grace Building 23 Remedial Action-Challenges and Successes - 12247

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, Brenda; Honerlah, Hans; O'Neill, Mike

    2012-07-01

    Monazite sand processing was conducted at the W. R. Grace Curtis Bay Facility (Baltimore, Maryland) from mid-May 1956 through the spring of 1957 under license to the Atomic Energy Commission (AEC), for the extraction of source material in the form of thorium, as well as rare earth elements. The processing was conducted in the southwest quadrant of a ca. 100 year old, five-story, building (Building 23) in the active manufacturing portion of the facility. Building components and equipment in the southwest quadrant of Building 23 exhibited residual radiological activity remaining from the monazite sand processing. U.S. Army Corps of Engineersmore » (USACE) conducted a remedial investigation (RI) and feasibility study (FS) and prepared a Record of Decision (ROD) to address residual radioactivity on building components and equipment in the southwest quadrant of Building 23. The remedy selected for the southwest quadrant of Building 23, which was documented in the ROD (dated May 2005), was identified as 'Alternative 2: Decontamination With Removal to Industrial Use Levels'. The selected remedy provided for either decontaminating or removing areas of radioactivity to meet the RGs. Demonstration of compliance with the selected ARAR was performed using the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) and other appropriate guidance, as well as appropriate dose modeling codes where necessary. USACE-Baltimore District along with its private industry partner worked together under the terms of a 2008 Settlement Agreement to implement the remedial action (RA) for the southwest quadrant of Building 23. The RA was conducted in two phases: Phase 1 was completed to improve the building condition for support of subsequent remedial action and decrease scope uncertainty of the remedial action, and Phase 2 included decontamination and removal activities to meet the RGs and demonstration of compliance with the selected ARAR. Challenges encountered during the RA include: coordination with stakeholders, coordination between multiple RA contractors, addressing unique structural challenges for Building 23, nonradiological hazards associated with the RA, weather issues, and complex final status survey (FSS) coordination. The challenges during the Phase 1 RA were handled successfully. The challenges for the Phase 2 RA, which is anticipated to be complete by late-summer of 2012, have been handled successfully so far. By fall of 2012, USACE is expecting to finalize a robust RA Closure Report, including the Final Status Survey Report, which summarizes the RA activities and documents compliance with the ROD. During the ongoing RA at Building 23, there have been and still are many challenges both technically and from a project management perspective, due in part to the nature and extent of impact at the site (residual radioactivity within an active processing building), dual oversight by the property owner and USACE, and site-specific challenges associated with a complex RA and multiple contractors. Currently, USACE and its industry partner are overseeing the completion of RA field activities. RA closure documentation for the remediation of Building 23 to address residual contamination in building materials will be reviewed/approved by USACE and its industry partner upon completion of the field activities. USACE and its industry partner are working well together, through the Settlement Agreement, to conduct a cost-efficient and effective remedial action to address the legacy issues at Building 23. This cooperative effort has set a firm foundation for achieving a successful RA at the RWDA using a 'forward think' approach, and it is a case study for other sites where an industry partner is involved. The collaborative effort led to implementation of an RA which is acceptable to the site owner, the regulators, and the public, thus allowing USACE to move this project forward successfully in the FUSRAP program. (authors)« less

  16. Nature and probable age of metamorphism in northern New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grambling, J.A.; Daniel, C.D.; Dallmeyer, R.D.

    1993-02-01

    Metamorphic conditions near the Al[sub 2]SiO[sub 5] triple point are unusually common in northern New Mexico. This observation is supported by mineralogy (Ky + And + Sil, Cld + Sil, Sil + Pg + Qz) and Grt-Bt-Pl-Ms thermobarometry (4--5 kb and 500--550 C). Isograds cut across tight folds (overturned to the north) in the Pecos, Rio Mora, Truchas and Picuris areas. Some deformation also accompanied or preceded metamorphism in the Rincon and Cimarron ranges. P-T paths derived from zoning in Grt and Pl, in Mn-andalusite, and the textural transition Ky to Sil to And reflect up to 2 kb ofmore » decompression, at constant temperature in the more southerly ranges but during cooling toward the north. These 500--550 C rocks are in direct contact with gneisses in the Rincon and Cimarron Ranges. Metaplutonic gneisses record hornblende pressures of 6--8 kb. Metasedimentary gneisses are migmatitic. Assemblages include Sil + Kfs, Hc + Qz and Alm + Bt + Sil, whereas Grt-Sil-Pl-Bt yields 6.5--7 kb and 700--725 C. Pressures increase northward from the Cimarrron Mountains. The gneisses display retrograde P-T paths with 2.5--3 kb of decompression and cooling through the Al[sub 2]SiO[sub 5] triple point. Geometric relationships between gneisses and 500--550 C rocks are best constrained in the Cimarron Mountains, where a folded but initially low-angle contact separates the two metamorphic grades. Gneisses are structurally beneath this contact. Other regions may display a similar geometry. The structurally-highest gneisses are locally mylonitic, suggesting that contacts between gneisses and 500--550 C rocks are ductile shear zones. Monazite U-Pb ages from gneisses of the Cimarron Range are 1420-1425 Ma, whereas hornblende argon ages are 1,395--1,397 Ma.« less

  17. The timing of high-temperature retrogression in the Reynolds Range, central Australia: constraints from garnet and epidote Pb-Pb dating

    NASA Astrophysics Data System (ADS)

    Buick, Ian S.; Frei, Robert; Cartwright, Ian

    Lower Calcsilicate Unit metasediments and underlying migmatitic Napperby Gneiss metagranite at Conical Hill in the Reynolds Range, central Australia, underwent regional high-grade ( 680 to 720°C), low-pressure/high-temperature metamorphism at 1594+/- 6Ma. The Lower Calcsilicate Unit is extensively quartz veined and epidotised, and discordant grandite garnet+epidote quartz veins may be traced over tens of metres depth into pegmatites that pooled at the Lower Calcsilicate Unit-Napperby Gneiss contact. The quartz veins were probably precipitated by water-rich fluids that exsolved from partial melts derived from the Napperby Gneiss during cooling from the peak of regional metamorphism to the wet granite solidus. Pb stepwise leaching (PbSL) on garnet from three discordant quartz veins yielded comparable single mineral isochrons of 1566+/-32Ma, 1576+/-3Ma and 1577+/-5Ma, which are interpreted as the age of garnet growth in the veins. These dates are in good agreement with previous Sensitive High Resolution Ion Microprobe (SHRIMP) ages of zircon and monazite formed during high-temperature retrogression (1586+/-5 to 1568+/-4Ma) elsewhere in the Reynolds Range. The relatively small age difference between peak metamorphism and retrograde veining suggests that partial melting and melt crystallisation controlled fluid recycling in the high-grade rocks. However, PbSL experiments on epidote intergrown with, and partially replacing, garnet in two of the veins yielded isochrons of 1454+/-34 and 1469+/- 26Ma. The 100-120Ma age difference between intergrown garnet and late epidote from the same vein suggests that the vein systems may have experienced multiple episodes of fluid flow.

  18. The mineralogical and chronological evidences of subducted continent material in deep mantle: diamond, zircon and rutile separated from the Horoman peridotite of Japan

    NASA Astrophysics Data System (ADS)

    Li, Y.; Yang, J.; Nida, K.; Yamamoto, S.; Lin, Y.; Li, Q.; Tian, M.; Kon, Y.; Komiya, T.; Maruyama, S.

    2017-12-01

    The Horoman peridotite complex is an Alpine-type orogenic lherzolite massif of upper-mantle in the Hidaka metamorphic belt, Hokkaido, Japan. The peridotite complex is composed of dunite, harzburgite, spinel lherzolite and plagioclase lherzolite, exhibits a conspicuous layered structure, which is a product of a Cretaceous to early Paleogene arc-trench system formed by westward subduction of an oceanic plate between the paleo-Eurasian and paleo-North American Plates. Various combinations of diamond, corundum, moissanite, zircon, monazite, rutile, and kyanite have been separated from spinel harzburgite (700 kg) and lherzolite (500 kg), respectively. The carbon isotopes analyses of diamond grains by Nano-SIMS yielded significant light carbon isotopes feature as δ13 CPDB values ranging from -29.2 ‰ to -17.2 ‰, with an average of -22.8±0.32 ‰. Zircon grains occur as sub-angular to round in morphological characteristics, similar to zircons of crustal sedimentary rocks. Many zircons contain small inclusions, comprise of quartz, apatite, rutile and muscovite. The U-Pb age of zircon grains analyzed using LA-ICP-MS and SIMS gave a wide age range, from the Jurassic to Archean (ca 159 - 3131 Ma). In the zircon age histogram, four age groups were identified; the age peaks are 2385 Ma, 1890 Ma, 1618 Ma and 1212 Ma, respectively. On the other hand, U-Pb ages of rutile grains analyzed using SIMS gave a peak of 370 Ma in age histogram. The mineralogical and chronological evidences of numerous crustal minerals in peridotite of Horoman suggest that the ancient continent material was subducted in deep mantle and recycled through the upper mantle by multicycle subduction processes.

  19. Uranium potential of precambrian rocks in the Raft River area of northwestern Utah and south-central Idaho. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, B.A.

    1980-09-01

    A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leadsmore » to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits.« less

  20. Host-rock controlled epigenetic, hydrothermal metasomatic origin of the Bayan Obo REEFe-Nb ore deposit, Inner Mongolia, P.R.C.

    USGS Publications Warehouse

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Yinchen, R.

    1992-01-01

    Bayan Obo, a complex rare earth element (REE)FeNb ore deposit, located in Inner Mongolia, P.R.C. is the world's largest known REE deposit. The deposit is chiefly in a marble unit (H8), but extends into an overlying unit of black shale, slate and schist unit (H9), both of which are in the upper part of the Middle Proterozoic Bayan Obo Group. Based on sedimentary structures, the presence of detrital quartz and algal fossil remains, and the 16-km long geographic extent, the H8 marble is a sedimentary deposit, and not a carbonatite of magmatic origin, as proposed by some previous investigators. The unit was weakly regionally metamorphosed (most probably the lower part of the green schist facies) into marble and quartzite prior to mineralization. Tectonically, the deposit is located on the northern flank of the Sino-Korean craton. Many hypotheses have been proposed for the origin of the Bayan Obo deposit; the studies reported here support an epigenetic, hydrothermal, metasomatic origin. Such an origin is supported by field and laboratory textural evidence; 232Th/208Pb internal isochron mineral ages of selected monazite and bastnaesite samples; 40Ar/39Ar incremental heating minimum mineral ages of selected alkali amphiboles; chemical compositions of different generations of both REE ore minerals and alkali amphiboles; and evidence of host-rock influence on the various types of Bayan Obo ores. The internal isochron ages of the REE minerals indicate Caledonian ages for various episodes of REE and Fe mineralization. No evidence was found to indicate a genetic relation between the extensive biotite granitic rocks of Hercynian age in the mine region and the Bayan Obo are deposit, as suggested by previous workers. ?? 1992.

  1. The origin of the 1.73-1.70 Ga anorogenic Ulkan volcano-plutonic complex, Siberian platform, Russia: inferences from geochronological, geochemical and Nd-Sr-Pb isotopic data

    USGS Publications Warehouse

    Larin, A.M.; Amelin, Yu. V.; Neymark, L.A.; Krymsky, R. Sh

    1997-01-01

    The Ulkan volcano-plutonic complex, a part of a 750 km Bilyakchian-Ulkan anorogenic belt, is located in the eastern part of the Archean-Paleoproterozoic Aldan shield. The tectonic position and geochemistry indicate that the Ulkan Complex is a typical A-type or intraplate magmatic association. The felsic volcanics of the Uian Group and granitoids of the North Uchur Massif, the major igneous components of the Ulkan Complex, have U-Pb zircon and monazite ages between 1721±1 Ma and 1703±18 Ma. Together with the spatially associated 1736±6 Ma Dzhugdzhur anorthosite massif, the Ulkan Complex forms a typical Proterozoic anorthosite-granite-volcanic association with the minimum duration of formation of 12 m.y. Initial εNd values between 0 and 1.1, similar for the Uian felsic volcanics, early granitoid phases of the North Uchur Massif and high-grade metamorphic basement rocks, indicate, along with geochemical data, that the crustal source of the Ulkan parental magmas may be similar to the basement rocks. The higher εNd(T) values of -0.3 to +1.9 in the later North Uchur granitoids and associated ore-bearing metasomatites, and relatively low time-integrated Rb/Sr, U/Pb, and Th/U estimated for their sources, may demonstrate involvement of variable amounts of a depleted mantle-derived component in the generation of later phases of the North Uchur Massif. The preferred model of formation of magmas parental to the Ulkan Complex involves thermal interaction of an uprising mantle diapir with Paleoproterozoic lower crust, which was accompanied by chemical interaction between a fluid derived from the diapir, with the lower crustal rocks.

  2. Deportment of PGE and semimetals in the Volspruit deposit: the most ultramafic PGE horizon of the Bushveld Complex

    NASA Astrophysics Data System (ADS)

    Tanner, D.; McDonald, I.; Harmer, R. E. J.; Hughes, H. S. R.; Muir, D. D.

    2017-12-01

    The Volspruit deposit is a zone of disseminated magmatic sulphides carrying Ni-PGE (platinum-group element) mineralization in the Northern Limb of the Bushveld Complex, South Africa. It is one of the few known PGE prospects hosted by the lower ultramafic portion of a layered intrusion and the only known example in the Bushveld Complex. Volspruit therefore provides a unique insight into the processes governing mineralisation early in the Bushveld magmatic system. This study presents a detailed analysis from the northern portion of the Volspruit orebody combining mineralogical and textural observations with sulphide mineral trace element compositions. Electron microscopy reveals a diverse assemblage of Pt-, Pd- and Rh- dominant platinum-group minerals (PGM), electrum, Ag tellurides, Pb-chlorides, Pb-sulphides, U-oxide and monazite. Laser ablation ICP-MS has demonstrated that the Volspruit base metal sulphides have elevated PGE tenors but a range of S/Se values 1414-19319 - greater than other magmatic sulphide deposits in the northern Bushveld. The S/Se values are typical of crustal S and in agreement with previous S isotope data. These data imply a magma with initially high tenor sulphide liquid experienced local contamination from sedimentary S, leading to reduced tenors and elevated S/Se in sulphides coupled with a propensity of Pb- and Zn-bearing minerals (e.g., Pb-sulphide, Pb-chloride and sphalerite) in association with archetypal orthomagmatic sulphide assemblages. Our data demonstrate that assimilation of sedimentary rocks can modify sulphide melt evolution through the addition of metals such as Pb and Zn, not just contamination by sulphur. The Volspruit deposit illustrates the complexity of multi-stage processes governing mineralisation in the ultramafic portions of layered mafic intrusions.

  3. Deformation behavior of migmatites: insights from microstructural analysis of a garnet-sillimanite-mullite-quartz-feldspar-bearing anatectic migmatite at Rampura-Agucha, Aravalli-Delhi Fold Belt, NW India

    NASA Astrophysics Data System (ADS)

    Prakash, Abhishek; Piazolo, Sandra; Saha, Lopamudra; Bhattacharya, Abhijit; Pal, Durgesh Kumar; Sarkar, Saheli

    2018-03-01

    In the present study we investigate the microstructural development in mullite, quartz and garnet in an anatectic migmatite hosted within a Grenvillian-age shear zone in the Aravalli-Delhi Fold Belt. The migmatite exhibits three main deformation structures and fabrics (S1, S2, S3). Elongated garnet porphyroblasts are aligned parallel to the metatexite S2 layers and contain crenulation hinges defined by biotite-sillimanite-mullite-quartz (with S1 axial planar foliation). Microstructural evidence and phase equilibrium relations establish the garnet as a peritectic phase of incongruent melting by breakdown of biotite, sillimanite ± mullite and quartz at peak P-T of 8 kbar, 730 °C along a tight-loop, clockwise P-T path. Monazite dating establishes that the partial melting occurred between 1000 and 870 Ma. The absence of subgrains and systematic crystal lattice distortions in these garnets despite their elongation suggests growth pseudomorphing pre-existing 3-D networks of S1 biotite aggregates rather than high-temperature crystal plastic deformation which is noted in the S1 quartz grains that exhibit strong crystallographic preferred orientation (CPO), undulatory extinction and subgrains. Mode-I fractures in these garnet porphyroblasts induced by high melt pressure during late stage of partial melt crystallization are filled by retrograde biotite-sillimanite. Weak CPO and non-systematic crystal lattice distortions in the coarse quartz grains within the S2 leucosome domains indicate these crystallized during melt solidification without later crystal plastic deformation overprint. In the later stages of deformation (D3), strain was mostly accommodated in the mullite-biotite-sillimanite-rich restite domains forming S3 which warps around garnet and leucosome domains; consequently, fine-grained S3 quartz does not exhibit strong CPOs.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trofanenko, J.; Williams-Jones, A. E.; Simandl, G. J.

    The Wicheeda carbonatite is a deformed plug or sill that hosts relatively high grade light rare earth elements (LREE) mineralization in the British Columbia alkaline province. It was emplaced within metasedimentary rocks belonging to the Kechika Group, which have been altered to potassic fenite near the intrusion and sodic fenite at greater distances from it. The intrusion comprises a ferroan dolomite carbonatite core, which passes gradationally outward into calcite carbonatite. The potentially economic REE mineralization is hosted by the dolomite carbonatite. We recognized three types of dolomite. Dolomite constitutes the bulk of the dolomite carbonatite, dolomite replaced dolomite near veinsmore » and vugs, and dolomite occurs in veins and vugs together with the REE mineralization. Carbon and oxygen isotope ratios indicate that the calcite carbonatite crystallized from a magma of mantle origin, that dolomite is of primary igneous origin, that dolomite has a largely igneous signature with a small hydrothermal component, and that dolomite is of hydrothermal origin. Furthermore, the REE minerals comprise REE fluorocarbonates, ancylite-(Ce), and monazite-(Ce). In addition to dolomite, they occur with barite, molybdenite, pyrite, and thorite. Minor concentrations of niobium are present as magmatic pyrochlore in the calcite carbonatite. model is proposed in which crystallization of calcite carbonatite preceded that of dolomite carbonatite. During crystallization of the latter, an aqueous-carbonic fluid was exsolved, which mobilized the REE as chloride complexes into vugs and fractures in the dolomite carbonatite, where they precipitated mainly in response to the increase in pH that accompanied fluid-rock interaction and, in the case of the REE fluorocarbonates, decreasing temperature. These fluids altered the host metasedimentary rock to potassic fenite adjacent to the carbonatite and, distal to it, they mixed with formational waters to produce sodic fenite.« less

  5. Late Jurassic rhyolites from the Wuchagou region in the central Great Xing'an Range, NE China: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Ji, Zheng; Ge, Wen-Chun; Yang, Hao; Wang, Qing-hai; Zhang, Yan-long; Wang, Zhi-hui; Bi, Jun-Hui

    2018-06-01

    We report geochronological, whole-rock geochemical, and zircon Hf isotopic data for Late Jurassic rhyolites in the central Great Xing'an Range of northeastern China, to determine their petrogenesis, source, and tectonic setting. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) zircon U-Pb ages indicate that the rhyolites previously mapped as the lower Permian Dashizhai Formation in the Wuchagou region formed during the Late Jurassic (162-154 Ma). Geochemically, these rhyolites belong to the mid- to high-K calc-alkaline series and show peraluminous characteristics and consistent correlations between major elements and SiO2. They are characterized by enrichments in large ion lithophile elements (LILEs; e.g., Rb and K) and light rare earth elements (LREEs), and depletions in high field strength elements (HFSEs; e.g., Nb, Ta, and Ti) and heavy rare earth elements (HREEs). In situ Hf isotopic analyses of zircons from the rhyolites reveal relatively homogeneous Hf isotopic compositions, with εHf(t) values of +4.84 to +9.44, and two-stage model ages of 606-895 Ma. Based on their eruption ages, geochemical characteristics, and Hf isotopic compositions, we conclude that the magmas that formed the Late Jurassic rhyolites were produced during partial melting of a Neoproterozoic quartz-bearing amphibolite-facies mafic crust. These magmas subsequently underwent extensive fractional crystallization of plagioclase, hornblende, Ti-bearing phases, monazite, and apatite. Combined with previous data, our results demonstrate that the Late Jurassic volcanic rocks in the Great Xing'an Range were formed in a post-collisional extensional setting. The gravitational collapse of the orogenically thickened crust was caused by break-off of the subducted oceanic slab and upwelling of asthenosphere after closure of the Mongol-Okhotsk Ocean.

  6. Pressure-temperature-time-deformation path of kyanite-bearing migmatitic paragneiss in the Kali Gandaki valley (Central Nepal): Investigation of Late Eocene-Early Oligocene melting processes

    NASA Astrophysics Data System (ADS)

    Iaccarino, Salvatore; Montomoli, Chiara; Carosi, Rodolfo; Massonne, Hans-Joachim; Langone, Antonio; Visonà, Dario

    2015-08-01

    Kyanite-bearing migmatitic paragneiss of the lower Greater Himalayan Sequence (GHS) in the Kali Gandaki transect (Central Himalaya) was investigated. In spite of the intense shearing, it was still possible to obtain many fundamental information for understanding the processes active during orogenesis. Using a multidisciplinary approach, including careful meso- and microstructural observations, pseudosection modelling (with PERPLE_X), trace element thermobarometry and in situ monazite U-Th-Pb geochronology, we constrained the pressure-temperature-time-deformation path of the studied rock, located in a structural key position. The migmatitic gneiss has experienced protracted prograde metamorphism after the India-Asia collision (50-55 Ma) from ~ 43 Ma to 28 Ma. During the late phase (36-28 Ma) of this metamorphism, the gneiss underwent high-pressure melting at "near peak" conditions (710-720 °C/1.0-1.1 GPa) leading to kyanite-bearing leucosome formation. In the time span of 25-18 Ma, the rock experienced decompression and cooling associated with pervasive shearing reaching P-T conditions of 650-670 °C and 0.7-0.8 GPa, near the sillimanite-kyanite transition. This time span is somewhat older than previously reported for this event in the study area. During this stage, additional, but very little melt was produced. Taking the migmatitic gneiss as representative of the GHS, these data demonstrate that this unit underwent crustal melting at about 1 GPa in the Eocene-Early Oligocene, well before the widely accepted Miocene decompressional melting related to its extrusion. In general, kyanite-bearing migmatite, as reported here, could be linked to the production of the high-Ca granitic melts found along the Himalayan belt.

  7. Combined external-beam PIXE and /μ-Raman characterisation of garnets used in Merovingian jewellery

    NASA Astrophysics Data System (ADS)

    Calligaro, T.; Colinart, S.; Poirot, J.-P.; Sudres, C.

    2002-04-01

    Red garnets were the dominant gemstones used for jewels in Europe during the Early Middle Ages. We have studied over 350 garnets set on 12 jewels unearthed in the royal necropolis of the Saint-Denis Basilica, close to Paris. This famous collection of "cloisonné" style artefacts dates from the Merovingian period (late fifth century AD to early seventh century AD). The archaeological issue addressed is the identification of the geographical origin of these garnets, in view to establish the gem trading routes during the Dark Ages. External beam PIXE was used to determine the major constituents (Mg, Al, Si, Ca, Mn, Fe), specifying the garnet type (composition in various mineralogical end-members, e.g. almandine, pyrope, spessartite, …), and the trace element content (Cr, Y). Three sorts of garnets were identified. Ten jewels are adorned with almandine garnets (Fe-rich). One jewel has intermediate almandine-pyrope garnets ("rhodolite"). The last and most recent jewel is inlaid with pyrope (Mg-rich) garnets. Trace element content and slight differences in major composition allowed to distinguish five different sources: two sources for pyrope garnets (with and without chromium), and two sources for almandine garnets (distinctive calcium, magnesium and yttrium contents). A preliminary comparison with literature data suggested that almandine garnets may have been mined from India while the "rhodolite" garnets may have been imported from Sri Lanka. The sources of pyrope garnets could be the Bohemian deposits (Czech republic). In addition, μ-Raman spectrometry was used to identify most of the mineral inclusions (apatite, zircon, ilmenite, monazite, calcite, quartz) present in almandine garnets. Even if two specific types of inclusions were not identified, due to the lack of corresponding reference spectra in our database, the Raman spectra collected provided an interesting inclusion fingerprint.

  8. Mineralogy and Geochemistry of Granitic rocks within Lichen Hills, Outback Nunatak, Northern Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    KIM, T.; KIM, Y.; Lee, I.; Lee, J.; Woo, J.

    2015-12-01

    The study areas, Lichen Hills and Outback Nunatak are located in the Northern Victoria Land which is close to Pacific Ocean side of Transantarctic Mountain (TAM), Antarctica. According to the study of Zeller and Dreschoff (1990), the radioactivity values of Lichen hills and Frontier Mt. area in the Victoria Land were very high. To identify the geochemical characteristics of granitic rocks in these areas, 13 samples of Lichen Hills rocks and 4 samples of Outback Nunatak rocks are analyzed. For mineralogical study, samples were observed in macroscale as well as microscale including microscope electron probe analysis. Rock samples of Lichen Hills, Outback Nunatak are mainly leucogranite and granitic pegmatite. These rock samples are composed of quartz, k-feldspar, plagioclase, muscovite, garnet, tourmaline like granite. In SEM-EDS analysis, the observed light colored minerals show relatively high Th, U, Dy, Ce, Nb concentration. This suggests that rock samples may contain minerals such as fergusonite, monazite, thorite, allanite, karnasurtite which are considered to be REE-bearing minerals. Samples of related rocks have been analyzed in terms of major, trace and rare earth element (REE) concentrations using X-ray fluorescence (XRF) spectrometer and Inductively Coupled Plasma Mass Spectrometer (ICP-MS). As concentration of SiO2 increase, Al2O3, TiO2, Fe2O3, MgO, P2O5 concentration decrease and Na2O, K2O, MnO concentration increase. Analyzed trace elements and REE are normalized using CI Chondrite, Primitive mantle. The normalized data show that LREE are enriched compared to HREE. The distinct negative anomalies of Eu, Sr are observed, indicating that rock-forming melts are fairly processed state of fractional crystallization. It means that Th, U, Nb, Ta are much enriched in the melts.

  9. The Nature and Origin of the REE Mineralization in the Wicheeda Carbonatite, British Columbia, Canada

    DOE PAGES

    Trofanenko, J.; Williams-Jones, A. E.; Simandl, G. J.; ...

    2016-01-01

    The Wicheeda carbonatite is a deformed plug or sill that hosts relatively high grade light rare earth elements (LREE) mineralization in the British Columbia alkaline province. It was emplaced within metasedimentary rocks belonging to the Kechika Group, which have been altered to potassic fenite near the intrusion and sodic fenite at greater distances from it. The intrusion comprises a ferroan dolomite carbonatite core, which passes gradationally outward into calcite carbonatite. The potentially economic REE mineralization is hosted by the dolomite carbonatite. We recognized three types of dolomite. Dolomite constitutes the bulk of the dolomite carbonatite, dolomite replaced dolomite near veinsmore » and vugs, and dolomite occurs in veins and vugs together with the REE mineralization. Carbon and oxygen isotope ratios indicate that the calcite carbonatite crystallized from a magma of mantle origin, that dolomite is of primary igneous origin, that dolomite has a largely igneous signature with a small hydrothermal component, and that dolomite is of hydrothermal origin. Furthermore, the REE minerals comprise REE fluorocarbonates, ancylite-(Ce), and monazite-(Ce). In addition to dolomite, they occur with barite, molybdenite, pyrite, and thorite. Minor concentrations of niobium are present as magmatic pyrochlore in the calcite carbonatite. model is proposed in which crystallization of calcite carbonatite preceded that of dolomite carbonatite. During crystallization of the latter, an aqueous-carbonic fluid was exsolved, which mobilized the REE as chloride complexes into vugs and fractures in the dolomite carbonatite, where they precipitated mainly in response to the increase in pH that accompanied fluid-rock interaction and, in the case of the REE fluorocarbonates, decreasing temperature. These fluids altered the host metasedimentary rock to potassic fenite adjacent to the carbonatite and, distal to it, they mixed with formational waters to produce sodic fenite.« less

  10. Evidence for a cosmogenic origin of fired glaciofluvial beds in the northwestern Andes: Correlation with experimentally heated quartz and feldspar

    NASA Astrophysics Data System (ADS)

    Mahaney, William C.; Krinsley, David; Kalm, Volli

    2010-11-01

    Fired sediment, considered equivalent to the 'Black Mat' impact of 12.9 ka, has been located and analyzed in the Andes of northwestern Venezuela. The 'Black Mat' refers to possible fallout from the Encke Comet airburst presumed to have occurred over the Laurentide Ice Sheet, the impact spreading ejecta over large portions of North America and Europe, making it an interhemispheric event of considerable magnitude. These possible equivalent beds in the northern Andes, first considered to result from a lightning-induced conflagration adjacent to the retreating Late Wisconsinan (Mérida Glaciation) ice, are now known to have undergone intense heating upon impact to a temperature much higher than what would occur in a wet, first-stage, successional tundra. Analyses carried out by SEM and FESEM, in SE and BSE modes, show massive micro-disruption on grain surfaces, fractures diminishing with depth toward grain interiors and C welded onto quartz and plagioclase minerals. Bubbles on some grains, possibly the result of exclusion of water-of-crystallization, are seen on some samples, principally quartz. The presence of copious monazite in the carbonaceous coatings is considered part of the incoming ejecta, as it is not a common indicator mineral in the local lithology. Analysis by SEM and FESEM of quartz and plagioclase subjected experimentally to temperatures ranging from 500 to 900 °C shows that intense heating affects resident mineralogies to differing extents, with grain disruption more prevalent along cleavage planes deep into grain interiors. The intergrowth of carbonaceous "black mat" material with thermally disrupted and fragmented quartz and feldspar, a "welded" patina of 100-400 nm thickness could only occur with temperatures in excess of 900 °C, the event interpreted here to be of cosmogenic origin.

  11. High-precision U-Pb geochronology in the Minnesota River Valley subprovince and its bearing on the Neoarchean to Paleoproterozoic evolution of the southern Superior Province

    USGS Publications Warehouse

    Schmitz, M.D.; Bowring, S.A.; Southwick, D.L.; Boerboom, Terrence; Wirth, K.R.

    2006-01-01

    High-precision U-Pb ages have been obtained for high-grade gneisses, late-kinematic to postkinematic granitic plutons, and a crosscutting mafic dike of the Archean Minnesota River Valley tectonic subprovince, at the southern ramparts of the Superior craton of North America. The antiquity of the Minnesota River Valley terranes is confirmed by a high-precision U-Pb zircon age of 3422 ?? 2 Ma for a tonalitic phase of the Morton Gneiss. Voluminous, late-kinematic monzogranites of the Benson (Ortonville granite) and Morton (Sacred Heart granite) blocks yield identical crystallization ages of 2603 ?? 1 Ma, illustrating the synchrony and rapidity of deep crustal melting and plutonism throughout the Minnesota River Valley terranes. Postkinematic, 2591 ?? 2 Ma syenogranites and aplitic dikes in both blocks effectively constrain the final penetrative deformation of the Minnesota River Valley subprovince. Monazite growth from 2609 to 2595 Ma in granulitic paragneisses of the Benson and Montevideo blocks is interpreted to record prograde to peak granulite facies metamorphic conditions associated with crustal thickening and magmatism. Neoarchean metamorphism and plutonism are interpreted to record the timing of collisional accretion and terminal suturing of the Mesoarchean continental Minnesota River Valley terranes to the southern margin of the Superior Province, along the western Great Lakes tectonic zone. Subsequent Paleoproterozoic rifting of this margin is recorded by voluminous basaltic dike intrusion, expressed in the Minnesota River Valley by major WNW-trending tholeiitic diabase dikes dated at 2067 ?? 1 Ma, only slightly younger than the structurally and geochemically similar 2077 ?? 4 Ma Fort Frances (Kenora-Kabetogama) dike swarm of northern Minnesota and adjoining Canada. ?? 2006 Geological Society of America.

  12. Geology and market-dependent significance of rare earth element resources

    NASA Astrophysics Data System (ADS)

    Simandl, G. J.

    2014-12-01

    China started to produce rare earth elements (REEs) in the 1980s, and since the mid-1990s, it has become the dominant producer. Rare earth element export quotas first introduced by the Chinese government in the early 2000s were severely reduced in 2010 and 2011. This led to strong government-created disparity between prices within China and the rest of the world. Industrialized countries identified several REEs as strategic metals. Because of rapid price increases of REE outside of China, we have witnessed a world-scale REE exploration rush. The REE resources are concentrated in carbonatite-related deposits, peralkaline igneous rocks, pegmatites, monazite ± apatite veins, ion adsorption clays, placers, and some deep ocean sediments. REE could also be derived as a by-product of phosphate fertilizer production, U processing, mining of Ti-Zr-bearing placers, and exploitation of Olympic Dam subtype iron oxide copper gold (IOCG) deposits. Currently, REEs are produced mostly from carbonatite-related deposits, but ion adsorption clay deposits are an important source of heavy REE (HREE). Small quantities of REE are derived from placer deposits and one peralkaline intrusion-related deposit. The ideal REE development targets would be located in a politically stable jurisdiction with a pro-mining disposition such as Canada and Australia. REE grade, HREE/light REE (LREE) ratio of the mineralization, tonnage, mineralogy, and permissive metallurgy are some of the key technical factors that could be used to screen potential development projects. As REEs are considered strategic metals from economic, national security, and environmental points of view, technical and economic parameters alone are unlikely to be used in REE project development decision-making. Recycling of REE is in its infancy and unless legislated, in the short term, it is not expected to contribute significantly to the supply of REE.

  13. Direct dating of left-lateral deformation along the Red River shear zone, China and Vietnam

    NASA Astrophysics Data System (ADS)

    Gilley, Lisa D.; Harrison, T. Mark; Leloup, P. H.; Ryerson, F. J.; Lovera, Oscar M.; Wang, Jiang-Hai

    2003-02-01

    Exposures of high-grade, midcrustal rocks within the Red River shear zone (RRSZ), which separates the Indochina and South China blocks, exhibit clear evidence of left-lateral, ductile deformation. Assuming that the South China Sea represents a pull-apart basin formed at the southeastern termination of the RRSZ, it has been argued that seafloor magnetic anomalies constrain the timing of sinistral slip accommodated by the RRSZ between ˜32 and 17 Ma at a rate of ˜4 cm/yr. While 40Ar/39Ar thermochronometry indicates that left-lateral slip occurred along the RRSZ between 25 and 17 Ma, the timing of earlier high-temperature deformation has not been directly constrained. In situ Th-Pb ion microprobe dating of monazite inclusions in garnets allows direct assessment of the timing of amphibolite-grade metamorphism and synchronous left-lateral shearing. Results from northern segments of the RRSZ in Yunnan, China, indicate that synkinematic garnet growth occurred between 34 and 21 Ma and are the first to document late Oligocene metamorphism and left-lateral shearing. Data from the southern RRSZ within Vietnam are complicated by Tertiary overprinting of rocks that experienced amphibolite facies metamorphism during the Indosinian orogeny (˜220 Ma). The period during which sinistral deformation is now constrained to have occurred along the RRSZ (i.e., 34-17 Ma) is essentially coincident with spreading of the South China seafloor (32-17 Ma). This temporal and kinematic link between left-lateral shearing along the RRSZ and opening of the South China Sea supports the view that Indochina was extruded from Asia as a block along lithospheric-scale strike-slip faults.

  14. Evidence from the northwestern Venezuelan Andes for extraterrestrial impact: The black mat enigma

    NASA Astrophysics Data System (ADS)

    Mahaney, W. C.; Kalm, V.; Krinsley, D. H.; Tricart, P.; Schwartz, S.; Dohm, J.; Kim, K. J.; Kapran, B.; Milner, M. W.; Beukens, R.; Boccia, S.; Hancock, R. G. V.; Hart, K. M.; Kelleher, B.

    2010-03-01

    A carbon-rich black layer encrusted on a sandy pebbly bed of outwash in the northern Venezuelan Andes, previously considered the result of an alpine grass fire, is now recognized as a 'black mat' candidate correlative with Clovis Age sites in North America, falling within the range of 'black mat' dated sites (~ 12.9 ka cal BP). As such, the bed at site MUM7B, which dates to < 11.8 ka 14C years BP (raw dates) and appears to be contemporaneous with the Younger Dryas (YD) cooling event, marks a possibly much more extensive occurrence than previously identified. No fossils (megafauna) or tool assemblages were observed at this newly identified candidate site (3800 a.m.s.l.), as in the case of the North American sites. Here, evidence is presented for an extraterrestrial impact event at ~ 12.9 ka. The impact-related Andean bed, located ~ 20 cm above 13.7-13.3 ka cal BP alluvial and glaciolacustrine deposits, falls within the sediment characteristics and age range of 'black mat' dated sites (~ 12.9 ka cal BP) in North America. Site sediment characteristics include: carbon, glassy spherules, magnetic microspherules, carbon mat 'welded' onto coarse granular material, occasional presence of platinum group metals (Rh and Ru), planar deformation features (pdfs) in fine silt-size fragmental grains of quartz, as well as orthoclase, and monazite (with an abundance of Rare Earth Elements—REEs). If the candidate site is 'black mat', correlative with the 'black mat' sites of North America, such an extensive occurrence may support the hypothesized airburst/impact over the Laurentide Glacier, which led to a reversal of Allerød warming and the onset of YD cooling and readvance of glaciers. While this finding does not confirm such, it merits further investigation, which includes the reconnaissance for additional sites in South America. Furthermore, if confirmed, such an extensive occurrence may corroborate an impact origin.

  15. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    NASA Astrophysics Data System (ADS)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to extreme localization, and potentially earthquakes in quartz-absent hardened lithologies. Cora Lake shearing represents the culmination of a deformation trend of increasing strength, strain partitioning, and localization within a polydeformed, strengthened lower continental crust.

  16. Mineralogy and geochemistry of triassic carbonatites in the Matcha alkaline intrusive complex (Turkestan-Alai Ridge, Kyrgyz Southern Tien Shan), SW Central Asian orogenic belt

    NASA Astrophysics Data System (ADS)

    Vrublevskii, V. V.; Morova, A. A.; Bukharova, O. V.; Konovalenko, S. I.

    2018-03-01

    Postorogenic intrusions of essexites and alkaline and nepheline syenites in the Turkestan-Alai segment of the Kyrgyz Southern Tien Shan coexist with dikes and veins of carbonatites dated at ∼220 Ma by the Ar-Ar and Rb-Sr age methods. They are mainly composed of calcite and dolomite (60-85%), as well as sodic amphibole, phlogopite, clinopyroxene, microcline, albite, apatite, and magnetite, with accessory niobate, ilmenite, Nb-rutile, titanite, zircon, baddeleyite, monazite-(Ce), barite, and sulfides. The rocks share mineralogical and geochemical similarity with carbonatites that originated by liquid immiscibility at high temperatures above 500 °C. Alkaline silicate and salt-carbonate melts are derived from sources with mainly negative bulk εNd(t) ∼ from -11 to 0 and high initial 87Sr/86Sr ratios (∼0.7061-0.7095) which may be due to mixing of PREMA and EM-type mantle material. Pb isotopic ratios in accessory pyrrhotite (206Pb/204Pb = 18.38; 207Pb/204Pb = 15.64; 208Pb/204Pb = 38.41) exhibit an EM2 trend. The intrusions bear signatures of significant crustal contamination as a result of magma genesis by syntexis and hybridism. Concordant isotope composition changes of δ13C (-6.5 to -1.9‰), δ18O (9.2-23‰), δD (-58 to -41‰), and δ34S (12.6-12.8‰) in minerals and rocks indicate inputs of crustal material at the stage of melting and effect of hot fluids released during dehydration of metamorphosed oceanic basalts or sediments. The observed HFSE patterns of the oldest alkaline gabbro may be due to interaction of the primary mafic magma with IAB-type material. The isotope similarity of alkaline rocks with spatially proximal basalts of the Tarim large igneous province does not contradict the evolution of the Turkestan-Alai Triassic magmatism as the "last echo" of the Tarim mantle plume.

  17. Origin of carbonatites of the Matcha alkaline pluton from Turkestan-Alai ridge, Kyrgyz Southern Tien Shan

    NASA Astrophysics Data System (ADS)

    Vrublevskii, V. V.

    2017-12-01

    Postorogenic alkaline intrusions in the Turkestan-Alai segment of the Southern Tien Shan coexist with dikes and veins of carbonatites dated at ˜220 Ma. They are primarily composed of calcite and dolomite (60-85 %), as well as sodic amphibole, phlogopite, clinopyroxene, microcline, albite, apatite, and magnetite, with accessory niobate, ilmenite, Nb-rutile, titanite, zircon, baddeleyite, monazite-(Ce), barite, and sulfides. The rocks share mineralogical and geochemical similarity with carbonatites that originated by liquid immiscibility at high temperatures above 500°C. Silicate and salt-carbonate melts are derived from sources with mainly negative bulk ɛND(t) ˜ from -11 to 0 and high initial 87Sr/86Sr ratios (˜ 0.7061-0.7095) which may be due to mixing of PREMA and EM-type mantle material. Pb isotopic ratios in accessory pyrrhotite (206Pb/204Pb = 18.38; 207Pb/204Pb = 15.64; 208Pb/204Pb = 38.41) exhibit an EM 2 trend. The intrusions bear signatures of significant crustal contamination as a result of magma genesis by syntexis and hybridism. Concordant isotope composition changes of δ 13C (-6.5 to -1.9 ‰), δ 18O (9.2-23 %„), δD (-58 to -41 %„), and δ 34S (12.6-12.8 ‰) in minerals and rocks indicate inputs of crustal material at the stage of melting and effect of hot fluids released during dehydration of metamorphosed oceanic basalts or sediments. The observed HFSE patterns of the oldest alkaline gabbro may be due to interaction of the primary mafic magma with IAB-type material. The isotope similarity of alkaline rocks with spatially proximal basalts of the Tarim large igneous province does not contradict the evolution of the Turkestan-Alai Triassic magmatism as the «last echo» of the Tarim mantle plume.

  18. Human response to high-background radiation environments on Earth and in space

    NASA Astrophysics Data System (ADS)

    Durante, M.; Manti, L.

    2008-09-01

    The main long-term objective of the space exploration program is the colonization of the planets of the Solar System. The high cosmic radiation equivalent dose rate represents an inescapable problem for the safe establishment of permanent human settlements on these planets. The unshielded equivalent dose rate on Mars ranges between 100 and 200 mSv/year, depending on the Solar cycle and altitude, and can reach values as high as 360 mSv/year on the Moon. The average annual effective dose on Earth is about 3 mSv, nearly 85% of which comes from natural background radiation, reduced to less than 1 mSv if man-made sources and the internal exposure to Rn daughters are excluded. However, some areas on Earth display anomalously high levels of background radiation, as is the case with thorium-rich monazite bearing sand deposits where values 200 400 times higher than the world average can be found. About 2% of the world’s population live above 3 km and receive a disproportionate 10% of the annual effective collective dose due to cosmic radiation, with a net contribution to effective dose by the neutron component which is 3 4 fold that at sea level. Thus far, epidemiological studies have failed to show any adverse health effects in the populations living in these terrestrial high-background radiation areas (HBRA), which provide an unique opportunity to study the health implications of an environment that, as closely as possibly achievable on Earth, resembles the chronic exposure of future space colonists to higher-than-normal levels of ionizing radiation. Chromosomal aberrations in the peripheral blood lymphocytes from the HBRA residents have been measured in several studies because chromosomal damage represents an early biomarker of cancer risk. Similar cytogenetic studies have been recently performed in a cohort of astronauts involved in single or repeated space flights over many years. The cytogenetic findings in populations exposed to high dose-rate background radiation on Earth or in space will be discussed.

  19. Generation and emplacement of shear-related highly mobile crustal melts: the synkinematic leucogranites from the Variscan Tormes Dome, Western Spain

    NASA Astrophysics Data System (ADS)

    López-Moro, Francisco Javier; López-Plaza, Miguel; Romer, Rolf L.

    2012-07-01

    The Tormes dome consists of S-type granites that intruded into Ordovician augen gneisses and Neoproterozoic-Lower Cambrian metapelites/metagreywackes at different extents of migmatization. S-type granites are mainly equigranular two-mica granites, occurring as: (1) enclave-laden subvertical feeder dykes, (2) small external sill-like bodies with size and shape relations indicative for self-similar pluton growth, and (3) as large pluton bodies, emplaced at higher levels than the external ones. These magmas were highly mobile as it is inferred from the high contents of fluxing components, the disintegration and alignment of pelitic xenoliths in feeder dykes and at the bottom of some sill-like bodies. Field relations relate this 311 Ma magmatism (U-Pb monazite) to the regional shearing of the D3 Variscan event. Partial melting modeling and the relatively high estimated liquidus temperatures indicate biotite-dehydration partial melting (800-840°C and 400-650 MPa) rather than water-fluxed melting, implying that there was no partial melting triggered by externally derived fluids in the shear zones. Instead, the subvertical shear zones favored extraction of melts that formed during the regional migmatization event around 320 Ma. Nd isotope variation among the granites might reflect disequilibrium partial melting or different protoliths. Mass-balance and trace element partial melting modeling strongly suggest two kinds of fertile crustal protoliths: augen gneisses and metapelites. Slight compositional variation among the leucogranites does not reflect different extent of protolith melting but is related to a small amount of fractional crystallization (<13% for the equigranular granites), which is generally more pronounced in shallower batholitic leucogranites than in the small and homogeneous sill-like bodies. The lower extent of fractional crystallization and the higher-pressure emplacement conditions of the sill-like bodies support a more restricted movement through the crust than for batholitic leucogranites.

  20. Silicate-Oxide Equilibria in the Wilson Lake Terrane, Labrador - Evidence for a Pre- Metamorphic Oxidizing Event

    NASA Astrophysics Data System (ADS)

    Korhonen, F. J.; Stout, J. H.

    2006-05-01

    The presence of Fe3+ and Ti in silicates and their presumed equilibration with Fe2+-Fe3+-Ti oxide minerals has long been recognized as an important factor in metamorphic phase equilibria. The Red Wine Mountains massif is a granulite facies unit in the Wilson Lake terrane of central Labrador, where this equilibration is especially important for estimating both temperature and fO2 during peak metamorphism. Peak assemblages are sapphirine + quartz, and orthopyroxene + sillimanite + quartz. The coexisting oxides, which are largely responsible for the pronounced aeromagnetic high of the massif, consist of nearly pure magnetite and an exsolved titanohematite. Estimates of fO2 based on magnetite + integrated titanohematite compositions are slightly below that defined by the pure magnetite-hematite buffer. This assemblage is also responsible for the magnetic signature of metagabbro and metanorite dikes, a fact which challenges the conventional wisdom that the high Fe3+ content of the host paragneisses was inherited from a highly oxidized ferruginous shale. We suggest here that prior to granulite facies metamorphism, an oxidizing hydrothermal event either coeval or following the emplacement of mafic dikes into the paragneiss host was responsible for the highly oxidized nature of the massif as a whole. Subsequent metamorphism then produced the observed assemblages. This scenario is supported by recent U-Pb zircon and monazite ages of ca. 1626 ± 10 Ma, which indicate that both metagabbro dikes and host paragneiss were metamorphosed at the same time. Dike emplacement and the oxidizing event must have preceded 1626 Ma. The implications of this pre-metamorphic oxidizing event is that Fe3+ becomes an inherent and fixed component in the chemical system during metamorphism. Phase relationships, preliminary thermodynamic modeling, and geothermobarometric constraints indicate that peak temperatures are lower than those previously determined for Fe3+-absent systems. More appropriate modeling of these rocks would benefit from a sapphirine mixing model involving Fe3+.

  1. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    NASA Astrophysics Data System (ADS)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  2. Actinides and Life's Origins.

    PubMed

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uraniumand thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3(rd) by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus release, and possible abiotic production of sugars, amino acids, activated phosphorus, prototypical organometallic enzymes, and oligomer catalysts at a single putative beach site.

  3. The mineralogy and geochemistry of quartz-tourmaline schlieren in the granites of the Primorsky Complex, Western Baikal Region

    NASA Astrophysics Data System (ADS)

    Savel'eva, V. B.; Bazarova, E. P.; Kanakin, S. V.

    2014-12-01

    Quartz-tourmaline schlieren have been found within rapakivi-like granites of the Early Proterozoic Primorsky Complex in the Western Baikal Region. These rocks are biotite leucogranites with normal alkalinity (A/CNK = 1.00-1.04); a high iron mole fraction (92-95%); a K2O/Na2O value of about 2.0; relatively high F, Li, Rb, Cs, Sn, Pb, Th, and U contents; and low Ba, Sr, Eu, Zn, Sc, and V contents. The schlieren composed of quartz and tourmaline with relics of feldspar also contain fluorite, rare muscovite, chlorite, and accessory rutile, ilmenite, zircon, monazite, xenotime, and bastnäsite. B2O3 and F contents in the schlieren are 2.29-2.63 and 0.30-0.47 wt %, respectively. Fe2O3 (4.8-5.4 wt %), F, and H2O contents are higher in these schlieren than in the host granite, while SiO2, CaO, Na2O, K2O, and P2O5 contents are lower than in host rocks. K2O/Na2O values decrease in the schlieren down to 0.4. Enrichment of the schlieren in Fe and other ore elements (Zn, Co, Cu, Sn, etc.), together with B, F, H2O, and Na, suggests that they crystallized from fluid-saturated melt segregated from aluminosilicate melt in the apical part of a shallow-seated intrusion. The formation of tourmaline may be related to the interaction of the fluid with feldspars in the crystallizing granites; it was accompanied by a separation of fluid F-CO2. Quartz precipitated at the next stage, due to the acidic character of the aqueous fluid. In general, the relationships of minerals in the schlieren indicate distinct fractionation of LREE, HREE, and Y in the fluid-saturated melt.

  4. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiguo; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Chen, Lili; Ke, Shan; Xu, Lijuan

    2017-04-01

    The Tarim Large Igneous Province in NW China hosts numerous magmatic carbonatite dikes along its northern margin. The carbonatites are composed mainly of dolomite (90 vol.%) and minor calcite (5 vol.%), with apatite, barite, celestine, aegirine, monazite and bastnaesite as accessory minerals. The rocks correspond to magnesiocarbonatites with a compositional range of 13.73-19.59 wt.% MgO, and 20.03-30.11 wt.% CaO, along with 1.65-3.31 wt.% total Fe2O3, 0.02-2.39 wt.% SiO2 and other minor elements, such as P2O5, Na2O and K2O. These magnesiocarbonatites are characterized by extreme enrichment in incompatible elements with high total rare earth element (REE) contents of 372-36965 ppm. The strontium [(87Sr/86Sr)i = 0.70378-0.70386], neodymium [εNd(t) = +2.51 - +3.59] and oxygen (δ18OV-SMOW = 5.9‰-8.0‰) isotope values of these rocks are consistent with a mantle origin, whereas the magnesium (δ26Mg = -1.09‰ to -0.85‰) and carbon (δ13CV-PDB = -4.1‰ to -5.9‰) isotopes are decoupled from mantle values and reflect signature of recycled sedimentary carbonates. Global plate tectonic models predict that sedimentary carbonates in convergent margins are subducted to deep domains in the mantle, with phase transitions from calcite/dolomite to magnesite, and eventually to periclase/perovskite. The involvement of a mantle plume enhances the normal mantle geotherms and promotes decomposition reactions of magnesite. The decoupling of Mg-C and Sr-Nd-O isotopes in the mangesiocarbonatites provides insights on the origin of carbonatites, and also illustrates a case of interaction between mantle plume and subduction-related components.

  5. Effects of Arabia-Eurasia Collision on Strike-slip Faults in Central Anatolia?

    NASA Astrophysics Data System (ADS)

    Whitney, D. L.; Lefebvre, C.; Thomson, S. N.; Idleman, L.; Cosca, M. A.; Kaymakci, N.; Teyssier, C. P.; Umhoefer, P. J.

    2013-12-01

    The North and East Anatolian faults accommodate much of the tectonic escape of Anatolia in response to Arabia-Eurasia collision and building of the Turkish-Iranian plateau, but these structures formed <10 m.y. ago, at least 25 m.y. after the onset of collision at ~35 Ma. Some of the major strike-slip fault zones located between the North and East Anatolian faults have had long and complex histories of displacement. These faults have deformed, and in some cases exhumed, metamorphic massifs located between fault strands. One example is the Nigde Massif, which was initially exhumed in the Late Cretaceous, then reburied and reheated, along with its overlying sedimentary basin, to a depth of ~10 km at 30 × 5 Ma. Final exhumation and cooling occurred by ~15-17 Ma (massif margin) to ~12 Ma (structurally deepest levels). This depth-temperature-time-deformation history is tracked by a combination of thermobarometric methods, structural and stratigraphic analysis, and geo/thermochronometry (U-Pb zircon, monazite; 40Ar/39Ar hornblende, muscovite, biotite, K-feldspar; zircon and apatite fission-track in metamorphic rocks and basin deposits; and apatite (U-Th)/He). Recent mapping shows the presence of at least two oblique-thrust slices; the structurally higher one accounts for the resetting of detrital apatite fission track and AHe ages in the basin rocks as well as metamorphic apatite near the margin of the massif. The structurally deeper one cuts through the metamorphic basement and explains why mineral lineations and metamorphic assemblages are different along the eastern margin relative to those in the core of the massif. Although the timing of displacement has not been dated directly, low-T thermochronology age and modeling results document a perturbation at ~30 Ma, consistent with the idea that the Ecemis Fault of the Central Anatolian Fault Zone, and probably other pre-existing strike-slip faults in central Anatolia, experienced Late Eocene-Oligocene displacement in response to Arabia-Eurasia collision to the south and SE.

  6. Episodic growth of a Late Cretaceous and Paleogene intrusive complex of pegmatitic leucogranite, Ruby Mountains core complex, Nevada, USA

    USGS Publications Warehouse

    Howard, Keith A.; Wooden, J.L.; Barnes, C.G.; Premo, W.R.; Snoke, A.W.; Lee, S.-Y.

    2011-01-01

    Gneissic pegmatitic leucogranite forms a dominant component (>600 km3) of the midcrustal infrastructure of the Ruby Mountains–East Humboldt Range core complex (Nevada, USA), and was assembled and modified episodically into a batholithic volume by myriad small intrusions from ca. 92 to 29 Ma. This injection complex consists of deformed sheets and other bodies emplaced syntectonically into a stratigraphic framework of marble, calc-silicate rocks, quartzite, schist, and other granitoids. Bodies of pegmatitic granite coalesce around host-rock remnants, which preserve relict or ghost stratigraphy, thrusts, and fold nappes. Intrusion inflated but did not disrupt the host-rock structure. The pegmatitic granite increases proportionally downward from structurally high positions to the bottoms of 1-km-deep canyons where it constitutes 95%–100% of the rock. Zircon and monazite dated by U-Pb (sensitive high-resolution ion microprobe, SHRIMP) for this rock type cluster diffusely at ages near 92, 82(?), 69, 38, and 29 Ma, and indicate successive or rejuvenated igneous crystallization multiple times over long periods of the Late Cretaceous and the Paleogene. Initial partial melting of unexposed pelites may have generated granite forerunners, which were remobilized several times in partial melting events. Sources for the pegmatitic granite differed isotopically from sources of similar-aged interleaved equigranular granites. Dominant Late Cretaceous and fewer Paleogene ages recorded from some pegmatitic granite samples, and Paleogene-only ages from the two structurally deepest samples, together with varying zircon trace element contents, suggest several disparate ages of final emplacement or remobilization of various small bodies. Folded sills that merge with dikes that cut the same folds suggest that there may have been in situ partial remobilization. The pegmatitic granite intrusions represent prolonged and recurrent generation, assembly, and partial melting modification of a batholithic volume even while the regional tectonic environment varied dramatically from contractile thickening to extension and mafic underplating.

  7. SHRIMP U-Pb ages of xenotime and monazite from the Spar Lake red bed-associated Cu-Ag deposit, western Montana: Implications for ore genesis

    USGS Publications Warehouse

    Aleinikoff, John N.; Hayes, Timothy S.; Evans, Karl V.; Mazdab, Frank K.; Pillers, Renee M.; Fanning, C. Mark

    2012-01-01

    Xenotime occurs as epitaxial overgrowths on detrital zircons in the Mesoproterozoic Revett Formation (Belt Supergroup) at the Spar Lake red bed-associated Cu-Ag deposit, western Montana. The deposit formed during diagenesis of Revett strata, where oxidizing metal-bearing hydrothermal fluids encountered a reducing zone. Samples for geochronology were collected from several mineral zones. Xenotime overgrowths (1–30 μm wide) were found in polished thin sections from five ore and near-ore zones (chalcocite-chlorite, bornite-calcite, galena-calcite, chalcopyrite-ankerite, and pyrite-calcite), but not in more distant zones across the region. Thirty-two in situ SHRIMP U-Pb analyses on xenotime overgrowths yield a weighted average of 207Pb/206Pb ages of 1409 ± 8 Ma, interpreted as the time of mineralization. This age is about 40 to 60 m.y. after deposition of the Revett Formation. Six other xenotime overgrowths formed during a younger event at 1304 ± 19 Ma. Several isolated grains of xenotime have 207Pb/206Pb ages in the range of 1.67 to 1.51 Ga, and thus are considered detrital in origin. Trace element data can distinguish Spar Lake xenotimes of different origins. Based on in situ SHRIMP analysis, detrital xenotime has heavy rare earth elements-enriched patterns similar to those of igneous xenotime, whereas xenotime overgrowths of inferred hydrothermal origin have hump-shaped (i.e., middle rare earth elements-enriched) patterns. The two ages of hydrothermal xenotime can be distinguished by slightly different rare earth elements patterns. In addition, 1409 Ma xenotime overgrowths have higher Eu and Gd contents than the 1304 Ma overgrowths. Most xenotime overgrowths from the Spar Lake deposit have elevated As concentrations, further suggesting a genetic relationship between the xenotime formation and Cu-Ag mineralization.

  8. Mineralized aplite—pegmatite at Jabal Sa'id, Hijaz region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Hackett, Damien

    The Jabal Sa'id aplite—pegmatite, located at 23°49'03″N, 40°56'30″E, is part of the Jabal Hadb ash Sharar granite complex and resulted from emplacement of a residual volatile-rich fraction of alkali granite magma dominantly above a chilled carapace. Mineralization is layered, with four peak grades in layers 20-25 m wide, one of which may represent a mineral resource with greater potential than the aplite—pegmatite as a whole. The grades of all elements, except Zr, increase towards the upper part of the body. Chemical composition is extremely variable. Major-oxide data confirm previously determined geochemical characteristics and genetic relationships that suggested this body is an apogranite. However, the abundant new data also show that differences between the aplite—pegmatite and cognate alkali microgranite are not as great as previously reported, except for Na 2O which is extremely depleted in the apogranite. REE data support suggested genetic relationships and indicate that feldspar fractionation was important during crystallization. They also show that the content of HREE is comparatively constant throughout the aplite—pegmatite, and that variations in total REE content are caused by variations in the content of LREE. Bastnaesite and synchysite-(Y) are the principal rare-earth-element minerals, and are accompanied by monazite and synchesite; pyrochlore and thorite are also important ore minerals. Other elements concentrated in the aplite—pegmatite, such as Ta, Sn and U, occur only in solid solution in these minerals. The grain size of the ore minerals is commonly in the range 0.02-0.2 mm, and the grain size of gangue minerals, quartz, microcline and lesser amounts of aegirine and arfvedsonite, is typically in the range 1.0-4.0 mm. The ore minerals occur typically along gangue mineral boundaries. Zoning within the body permits calculation of high- and low-grade reserves which correspond to the upper and lower part of the apogranite.

  9. Defining conditions of garnet growth across the central and southern Menderes Massif, western Turkey

    NASA Astrophysics Data System (ADS)

    Etzel, T. M.; Catlos, E. J.; Kelly, E. D.; Cemen, I.; Ozerdem, C.; Atakturk, K. R.

    2017-12-01

    Here we apply thermodynamic modeling using Theriak-Domino to garnet-bearing rocks from the central and southern portions of the Menderes Massif to gain insight into the dynamics of western Turkey as the region experienced a transition from collisional to extensional tectonics. To this end, we report new pressure-temperature (P-T) paths from garnet-bearing rocks collected along the Alasehir detachment fault, a prominent exhumation structure in the central portion of the Menderes Massif in western Turkey, constituting the southern margin of the Alasehir Graben. These paths are compared to those from the Selimiye shear zone in the Southern (Cine) Massif. Two Alasehir garnets collected from the same outcrop record two P-T paths: 1) a prograde path beginning at 565oC and 6.4 kbar increasing to 592 oC and 7.5 kbar; and 2) near isobaric growth initiating at 531oC and 7.1 kbar and terminating at 571oC and 7.3 kbar. High-resolution P-T paths could not be modeled for the majority of Alasehir samples due to diffusional modification of garnet. However, conditions were estimated by garnet isopleth thermobarometry at the point of highest spessartine content for each crystal. Calculated P-T values for this subset of samples range between 566-651oC and 6.2-6.8 kbar. Despite this broad range, these P-T conditions are consistent with what is observed in the modeled paths. Th-Pb ages of matrix monazite range from 35.8±3.0 to 20.6±2.4 Ma, suggesting metamorphism in the central Menderes Massif occurred over a 15 m.y. period. Selimiye shear zone rocks show distinct N-shaped P-T paths, suggesting garnets in the central and southern portion of the Menderes Massif record distinctly different tectonic histories.

  10. Himalayan gneiss dome formation in the middle crust and exhumation by normal faulting: New geochronology of Gianbul dome, northwestern India

    USGS Publications Warehouse

    Horton, Forrest; Lee, Jeffrey; Hacker, Bradley; Bowman-Kamaha'o, Meilani; Cosca, Michael A.

    2015-01-01

    A general lack of consensus about the origin of Himalayan gneiss domes hinders accurate thermomechanical modeling of the orogen. To test whether doming resulted from tectonic contraction (e.g., thrust duplex formation, antiformal bending above a thrust ramp, etc.), channel flow, or via the buoyant rise of anatectic melts, this study investigates the depth and timing of doming processes for Gianbul dome in the western Himalaya. The dome is composed of Greater Himalayan Sequence migmatite, Paleozoic orthogneiss, and metasedimentary rock cut by multiple generations of leucogranite dikes. These rocks record a major penetrative D2 deformational event characterized by a domed foliation and associated NE-SW–trending stretching lineation, and they are flanked by the top-down-to-the-SW (normal-sense) Khanjar shear zone and the top-down-to-the-NE (normal sense) Zanskar shear zone (the western equivalent of the South Tibetan detachment system). Monazite U/Th-Pb geochronology records (1) Paleozoic emplacement of the Kade orthogneiss and associated granite dikes; (2) prograde Barrovian metamorphism from 37 to 33 Ma; (3) doming driven by upper-crustal extension and positive buoyancy of decompression melts between 26 and 22 Ma; and (4) the injection of anatectic melts into the upper levels of the dome—neutralizing the effects of melt buoyancy and potentially adding strength to the host rock—by ca. 22.6 Ma on the southwestern flank and ca. 21 Ma on the northeastern flank. As shown by a northeastward decrease in 40Ar/39Ar muscovite dates from 22.4 to 20.2 Ma, ductile normal-sense displacement within the Zanskar shear zone ended by ca. 22 Ma, after which the Gianbul dome was exhumed as part of a rigid footwall block below the brittle Zanskar normal fault, tilting an estimated 5°–10°SW into its present orientation.

  11. U-Pb Geochronology of Devonian Granites in the Meguma Terrane of Nova Scotia, Canada: Evidence for Hotspot Melting of a Neoproterozoic Source.

    PubMed

    Keppie; Krogh

    1999-09-01

    U-Pb isotopic analyses of monazite and zircon from six granitic plutons in the Meguma Terrane yield nearly concordant ages of 373+/-3 Ma, interpreted as the time of intrusion. U-Pb analyses of euhedral zircons with thick rims overgrowing cores, which were abraded to remove all or most of the rim, plot on chords between 370+/-3 and 628+/-33 Ma (Larrys River and Halfway Cove plutons), 372+/-3 and approximately 660 Ma (Shelburne pluton), and 373+/-2 and approximately 732 Ma (Barrington Passage pluton). The upper intercepts are interpreted as the age of magma source, correlatives of which are present in the Avalon Composite Terrane to the north. This basement may be either in depositional or tectonic contact with the overlying Cambro-Ordovician Meguma Group. Other zircons in the granites are generally irregular-euhedral with thin rims, and most U-Pb isotopic analyses fall between two chords from 373-2040 and 373-2300 Ma, with a few lying outside this field. These zircons are probably derived from the country rock (Goldenville Formation), which a previous study has shown contains detrital zircons with concordant U-Pb ages of 3000, 2000, and 600 Ma, and numerous intermediate discordant ages. These new ages, along with published data, document a relatively short (5-10 m.yr.) but voluminous period of magmatism. This age is approximately synchronous with intrusion of mafic rocks and lamprophyre dikes and regional low-pressure metamorphism and was followed by rapid denudation of 5-12 km. These observations may be interpreted in terms of shallowly dipping subduction and overriding of a mantle plume that eventually penetrates through the subducting plate to melt the overriding continental plate. Subsequent northward migration of the plume could explain both the approximately 360 Ma magmatism in the Cobequid Highlands (Avalon Composite Terrane) and the mid-Carboniferous plume-related intrusions around the Magdalen Basin.

  12. Magmatic-hydrothermal fluid interaction and mineralization in alkali-syenite nodules from the Breccia Museo pyroclastic deposit, Naples, Italy: Chapter 7 in Volcanism in the Campania Plain — Vesuvius, Campi Flegrei and Ignimbrites

    USGS Publications Warehouse

    Fedele, Luca; Tarzia, Maurizio; Belkin, Harvey E.; De Vivo, Benedetto; Lima, Annamaria; Lowenstern, Jacob

    2007-01-01

    The Breccia Museo, a pyroclastic flow that crops out in the Campi Flegrei volcanic complex (Naples, Italy), contains alkali-syenite (trachyte) nodules with enrichment in Cl and incompatible elements (e.g., U, Zr, Th, and rare-earth elements). Zircon was dated at ≈52 ka, by U-Th isotope systematics using a SHRIMP. Scanning electron microscope and electron microprobe analysis of the constituent phases have documented the mineralogical and textural evolution of the nodules of feldspar and mafic accumulations on the magma chamber margins. Detailed electron microprobe data are given for alkali and plagioclase feldspar, salite to ferrosalite clinopyroxene, pargasite, ferrogargasite, magnesio-hastingsite hornblende amphibole, biotite mica, Cl-rich scapolite, and a member (probable davyne-type) of the cancrinite group. Detailed whole rock, major and minor element data are also presented for selected nodules. A wide variety of common and uncommon accessory minerals were identified such as zircon, baddeleyite, zirconolite, pollucite, sodalite, titanite, monazite, cheralite, apatite, titanomagnetite and its alteration products, scheelite, ferberite, uraninite/thorianite, uranpyrochlore, thorite, pyrite, chalcopyrite, and galena. Scanning electron microscope analysis of opened fluid inclusions identified halite, sylvite, anhydrite, tungstates, carbonates, silicates, sulfides, and phosphates; most are probably daughter minerals. Microthermometric determinations on secondary fluid inclusions hosted by alkali feldspar define a temperature regime dominated by hypersaline aqueous fluids. Fluid-inclusion temperature data and mineral-pair geothermometers for coexisting feldspars and hornblende and plagioclase were used to construct a pressure-temperature scenario for the development and evolution of the nodules. We have compared the environment of porphyry copper formation and the petrogenetic environment constructed for the studied nodules. The suite of ore minerals observed in the nodules supports a potential for mineralization, which is similar to that observed in the alkaline volcanic systems of southern Italy (Pantelleria, Pontine Archipelago, Mt. Somma-Vesuvius).

  13. Ion-adsorption REEs in regolith of the Liberty Hill pluton, South Carolina, USA: An effect of hydrothermal alteration

    USGS Publications Warehouse

    Bern, Carleton R.; Yesavage, Tiffany; Foley, Nora K.

    2017-01-01

    Ion-adsorbed rare earth element (REE) deposits supply the majority of world heavy REE production and substantial light REE production, but relatively little is known of their occurrence outside Southeast Asia. We examined the distribution and forms of REEs on a North American pluton located in the highly weathered and slowly eroding South Carolina Piedmont. The Hercynian Liberty Hill pluton experiences a modern climate that includes ~ 1500 mm annual rainfall and a mean annual temperature of 17 °C. The pluton is medium- to coarse-grained biotite-amphibole granite with minor biotite granite facies. REE-bearing phases are diverse and include monazite, zircon, titanite, allanite, apatite and bastnäsite. Weathered profiles were sampled up to 7 m-deep across the ~ 400 km2 pluton. In one profile, ion-adsorbed REEs plus yttrium (REE + Y) ranged up to 581 mg/kg and accounted for up to 77% of total REE + Y in saprolite. In other profiles, ion-adsorbed REE + Y ranged 12–194 mg/kg and only accounted for 3–37% of totals. The profile most enriched in ion-adsorbed REEs was located along the mapped boundary of two granite facies and contained trioctahedral smectite in the saprolite, evidence suggestive of hydrothermal alteration of biotite at that location. Post-emplacement deuteric alteration can generate easily weathered REE phases, particularly fluorocarbonates. In the case of Liberty Hill, hydrothermal alteration may have converted less soluble to more soluble REE minerals. Additionally, regolith P content was inversely correlated with the fraction ion-adsorbed REEs, and weathering related secondary REE-phosphates were found in some regolith profiles. Both patterns illustrate how low P content aids in the accumulation of ion-adsorbed REEs. The localized occurrence at Liberty Hill sheds light on conditions and processes that generate ion-adsorbed REEs.

  14. An early extensional event of the South China Block during the Late Mesozoic recorded by the emplacement of the Late Jurassic syntectonic Hengshan Composite Granitic Massif (Hunan, SE China)

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Chen, Yan; Faure, Michel; Martelet, Guillaume; Lin, Wei; Wang, Qingchen; Yan, Quanren; Hou, Quanlin

    2016-03-01

    Continental scaled extension is the major Late Mesozoic (Jurassic and Cretaceous) tectonic event in East Asia, characterized by faulting, magmatic intrusions and half-grabens in an area with a length of > 5000 km and a width of > 1000 km. Numerous studies have been conducted on this topic in the South China Block (SCB), However, the space and time ranges of the compressional or extensional regimes of the SCB during the Jurassic are still unclear, partly due to the lack of structural data. The emplacement fabrics of granitic plutons can help determine the regional tectonic background. In this study, a multidisciplinary approach, including Anisotropy of Magnetic Susceptibility (AMS), macro and microstructural analyses, quartz c-axis preferred orientation, gravity modeling and monazite EPMA dating, was conducted on the Hengshan composite granitic massif in SCB that consists of the Triassic Nanyue biotite granitic pluton and the Late Jurassic Baishifeng two-mica granitic pluton. The magnetic fabrics are characterized by a consistent NW-SE oriented lineation and weakly inclined foliation. A dominant high temperature deformation with a top-to-the-NW shear sense is identified for both plutons. The deformation increasing from the center of the Baishifeng pluton to its western border is associated to the development of the West Hengshan Boundary Fault (WHBF). The gravity modeling shows a ;saw tooth-shaped; NE-SW oriented structure of the Baishifeng pluton, which may be considered as NE-SW oriented tension-gashes formed due to the NW-SE extension. All results show that the Triassic Nanyue pluton was deformed under post-solidus conditions by the WHBF coeval with the emplacement of the Late Jurassic Baishifeng pluton. All these observations comply with the NW-SE extensional tectonics coeval with the emplacement of the Baishifeng pluton, which argues that the NW-SE crustal stretching started since the Late Jurassic, at least in this part of the SCB.

  15. Pseudo- and real-inverted metamorphism caused by the superposition and extrusion of a stack of nappes: a case study of the Southern Brasília Orogen, Brazil

    NASA Astrophysics Data System (ADS)

    da Motta, Rafael Gonçalves; Moraes, Renato

    2017-10-01

    The Southern Brasília Orogen is a Neoproterozoic belt that occurs along the southernmost border of the São Francisco Craton where the Andrelândia Nappe System represents the subducted sedimentary domain and is divided into three allochthonous groups, of which the ages and P-T conditions of metamorphism are studied here. The basal unit, the Andrelândia Nappe, exhibits an inverted metamorphic pattern. The base of the structure, composed of staurolite, garnet, biotite, kyanite, quartz, and muscovite, marks the metamorphic peak, whereas at the top, the association of the metamorphic peak does not contain staurolite. The Liberdade Nappe, the middle unit, presents a normal metamorphic pattern; its base, close to the Andrelândia Nappe, shows paragneiss with evidence of in situ partial melting, and towards the top, coarse-grained staurolite schist is found. The staurolite-out and melt-in isograds are coincident and parallel to the main foliation. Thus, the shear zone that limits the nappes is syn-metamorphic, reheating the underlying Andrelândia Nappe and influencing the establishment of metamorphic inversion. This suggestion is supported by the monazite chemical ages, which indicates that the Andrelândia Nappe metamorphic peak (586 ± 15 Ma) is younger than that of the Liberdade Nappe (622.3 ± 7.6 Ma). The upper unit, the Serra da Natureza Klippe, bears a typical high-pressure granulite mineral assemblage that is composed of kyanite, garnet, K-feldspar, rutile, and leucosome, as well as a metamorphic peak at 604.5 ± 6.1 Ma. This tectonic assembly, with inverted and non-inverted metamorphic patterns and generation of klippen structures, is consistent with exhumation models and a strong indentor located in the lower continental crust.

  16. Listwaenite in the Sartohay ophiolitic mélange (Xinjiang, China): A genetic model based on petrology, U-Pb chronology and trace element geochemistry

    NASA Astrophysics Data System (ADS)

    Qiu, Tian; Zhu, Yongfeng

    2018-03-01

    Listwaenite lenses in the Sartohay ophiolitic mélange (Xinjiang, China) were formed via reactions between serpentinite and metasomatic fluids. First, serpentinite changed into talc schist via the reaction of serpentine + CO2 → talc + magnesite + H2O. Second, talc schist changed into listwaenite via the reaction of talc + CO2 → magnesite + quartz + H2O. Magnetite was progressively destroyed during transformation from serpentinite to talc schist, and completely consumed in listwaenite. Zircon crystals 30-100 μm long, disseminating in talc schist, undeformed listwaenite and mylonitized listwaenite, coexist with talc, quartz and magnesite, while micron-sized zircon grains (<5 μm in length) occur along the shearing foliation in the weakly deformed listwaenite and mylonitized listwaenite. We postulate that these micron-sized zircon crystals may have grown in-situ from medium-temperature hydrothermal fluids. Concentrations of most trace elements including high field strength elements (HFSE) increase from the undeformed, through the weakly deformed, to the mylonitized listwaenite, showing a positive correlation with the degrees of deformation and proportions of micron-size zircon, apatite, rutile and monazite. The large zircon crystals recovered from talc schist, undeformed listwaenite and mylonitized listwaenite yield similar weighted mean U-Pb ages (302.9 ± 6.8 Ma, 299.7 ± 5.5 Ma and 296.5 ± 3.5 Ma), and are thought to represent the age of formation of the talc schist and listwaenite. These ages are indistinguishable within errors and suggest a rapid transformation from talc schist to listwaenite. Some zircon rims in samples of the undeformed listwaenite and mylonitized listwaenite give much younger apparent U-Pb ages (280-277 Ma), which could be interpreted as a recrystallization age reflecting late-stage shearing in the Sartohay ophiolitic mélange.

  17. Actinides and Life's Origins

    NASA Astrophysics Data System (ADS)

    Adam, Zachary

    2007-12-01

    There are growing indications that life began in a radioactive beach environment. A geologic framework for the origin or support of life in a Hadean heavy mineral placer beach has been developed, based on the unique chemical properties of the lower-electronic actinides, which act as nuclear fissile and fertile fuels, radiolytic energy sources, oligomer catalysts, and coordinating ions (along with mineralogically associated lanthanides) for prototypical prebiotic homonuclear and dinuclear metalloenzymes. A four-factor nuclear reactor model was constructed to estimate how much uranium would have been required to initiate a sustainable fission reaction within a placer beach sand 4.3 billion years ago. It was calculated that about 1-8 weight percent of the sand would have to have been uraninite, depending on the weight percent, uranium enrichment, and quantity of neutron poisons present within the remaining placer minerals. Radiolysis experiments were conducted with various solvents with the use of uranium- and thorium-rich minerals (metatorbernite and monazite, respectively) as proxies for radioactive beach sand in contact with different carbon, hydrogen, oxygen, and nitrogen reactants. Radiation bombardment ranged in duration of exposure from 3 weeks to 6 months. Low levels of acetonitrile (estimated to be on the order of parts per billion in concentration) were conclusively identified in 2 setups and tentatively indicated in a 3rd by gas chromatography/mass spectrometry. These low levels have been interpreted within the context of a Hadean placer beach prebiotic framework to demonstrate the promise of investigating natural nuclear reactors as power production sites that might have assisted the origins of life on young rocky planets with a sufficiently differentiated crust/mantle structure. Future investigations are recommended to better quantify the complex relationships between energy release, radioactive grain size, fissionability, reactant phase, phosphorus release, and possible abiotic production of sugars, amino acids, activated phosphorus, prototypical organometallic enzymes, and oligomer catalysts at a single putative beach site.

  18. Co-Cu-Au deposits in metasedimentary rocks-A preliminary report

    USGS Publications Warehouse

    Slack, J.F.; Causey, J.D.; Eppinger, R.G.; Gray, J.E.; Johnson, C.A.; Lund, K.I.; Schulz, K.J.

    2010-01-01

    A compilation of data on global Co-Cu-Au deposits in metasedimentary rocks refines previous descriptive models for their occurrence and provides important information for mineral resource assessments and exploration programs. This compilation forms the basis for a new classification of such deposits, which is speculative at this early stage of research. As defined herein, the Co-Cu-Au deposits contain 0.1 percent or more by weight of Co in ore or mineralized rock, comprising disseminated to semi-massive Co-bearing sulfide minerals with associated Fe- and Cu-bearing sulfides, and local gold, concentrated predominantly within rift-related, siliciclastic metasedimentary rocks of Proterozoic age. Some deposits have appreciable Ag ? Bi ? W ? Ni ? Y ? rare earth elements ? U. Deposit geometry includes stratabound and stratiform layers, lenses, and veins, and (or) discordant veins and breccias. The geometry of most deposits is controlled by stratigraphic layering, folds, axial-plane cleavage, shear zones, breccias, or faults. Ore minerals are mainly cobaltite, skutterudite, glaucodot, and chalcopyrite, with minor gold, arsenopyrite, pyrite, pyrrhotite, bismuthinite, and bismuth; some deposits have appreciable tetrahedrite, uraninite, monazite, allanite, xenotime, apatite, scheelite, or molybdenite. Magnetite can be abundant in breccias, veins, or stratabound lenses within ore or surrounding country rocks. Common gangue minerals include quartz, biotite, muscovite, K-feldspar, albite, chlorite, and scapolite; many deposits contain minor to major amounts of tourmaline. Altered wall rocks generally have abundant biotite or albite. Mesoproterozoic metasedimentary successions constitute the predominant geologic setting. Felsic and (or) mafic plutons are spatially associated with many deposits and at some localities may be contemporaneous with, and involved in, ore formation. Geoenvironmental data for the Blackbird mining district in central Idaho indicate that weathering of abundant Fe, S, As, Co, and Cu in sulfide minerals of the deposits produces acidic waters, especially in pyrite-rich deposits; mine runoff has high concentrations of Fe, Cu, and Mn that exceed U.S. drinking water or aquatic life standards.

  19. Age constraints on the hydrothermal history of the Prominent Hill iron oxide copper-gold deposit, South Australia

    NASA Astrophysics Data System (ADS)

    Bowden, Bryan; Fraser, Geoff; Davidson, Garry J.; Meffre, Sebastien; Skirrow, Roger; Bull, Stuart; Thompson, Jay

    2017-08-01

    The Mesoproterozoic Prominent Hill iron-oxide copper-gold deposit lies on the fault-bound southern edge of the Mt Woods Domain, Gawler Craton, South Australia. Chalcocite-bornite-chalcopyrite ores occur in a hematitic breccia complex that has similarities to the Olympic Dam deposit, but were emplaced in a shallow water clastic-carbonate package overlying a thick andesite-dacite pile. The sequence has been overturned against the major, steep, east-west, Hangingwall Fault, beyond which lies the clastic to potentially evaporitic Blue Duck Metasediments. Immediately north of the deposit, these metasediments have been intruded by dacite porphyry and granitoid and metasomatised to form magnetite-calc-silicate skarn ± pyrite-chalcopyrite. The hematitic breccia complex is strongly sericitised and silicified, has a large sericite ± chlorite halo, and was intruded by dykes during and after sericitisation. This paper evaluates the age of sericite formation in the mineralised breccias and provides constraints on the timing of granitoid intrusion and skarn formation in the terrain adjoining the mineralisation. The breccia complex contains fragments of granitoid and porphyry that are found here to be part of the Gawler Range Volcanics/Hiltaba Suite magmatic event at 1600-1570 Ma. This indicates that some breccia formation post-dated granitoid intrusion. Monazite and apatite in Fe-P-REE-albite metasomatised granitoid, paragenetically linked with magnetite skarn formation north of the Hangingwall Fault, grew soon after granitoid intrusion, although the apatite experienced U-Pb-LREE loss during later fluid-mineral interaction; this accounts for its calculated age of 1544 ± 39 Ma. To the south of the fault, within the breccia, 40Ar-39Ar ages yield a minimum age of sericitisation (+Cu+Fe+REE) of dykes and volcanics of ˜1575 Ma, firmly placing Prominent Hill ore formation as part of the Gawler Range Volcanics/Hiltaba Suite magmatic event within the Olympic Cu-Au province of the Gawler Craton.

  20. Critical Zone Weathering and Your Smartphone: Understanding How Mineral Decomposition and Colloid Redistribution Can Generate Rare Earth Element Deposits

    NASA Astrophysics Data System (ADS)

    Bern, C.; Foley, N.

    2014-12-01

    Rare earth elements (REE's) are crucial in the manufacture of smartphones and many other high tech devices. Increasing global demand and relatively narrow geographic sourcing have promoted interest in understanding REE deposit genesis and distribution. Highly weathered, clay-hosted, ion-exchange type deposits in southern China are the source of much of the world's production of the more valuable heavy REEs. Such deposits form as REE-bearing minerals weather and REEs released to solution in ionic form are retained by negatively charged exchange sites on clay minerals. We are investigating the potential for ion-exchange REE deposits in the Piedmont of the southeastern United States, where slow erosion rates have preserved thick (up to 20 m) regolith, as required for such deposits. The Liberty Hill pluton outcrops as coarse-grained biotite-amphibole granite and quartz monzonite over nearly 400 km2 in South Carolina, and has an age of 305 Ma (new SHRIMP ion microprobe zircon age). In weathered profiles over the pluton, ion-exchangeable REE content ranges from 8 to 580 ppm and accounts for 2 to 80% of bulk REE content. Elemental and heavy mineral distributions suggest the wide ranging differences in leachability may be attributable to the amount and distribution of resistant REE-bearing phases (e.g., monazite) relative to more easily weathered phases (e.g., allanite) in the parent granite. The REEs show little mobility within the regolith, indicating the effectiveness of the ion-exchange retention mechanism. In contrast, vertical redistribution of colloidal material shows maximum accumulations at ~1 m depth, as traced by the newly developed dual-phase (colloids vs. solution) mass balance model. The contrast suggests redistributed colloidal material has minimal influence on REE mobilization or retention. Conditions and processes necessary for ion-exchange REE deposit development exist in the Piedmont, but their presence will depend upon favorable parent rock mineralogy.

  1. Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology

    NASA Astrophysics Data System (ADS)

    deMelo, Gustavo H. C.; Monteiro, Lena V. S.; Xavier, Roberto P.; Moreto, Carolina P. N.; Santiago, Erika S. B.; Dufrane, S. Andrew; Aires, Benevides; Santos, Antonio F. F.

    2017-06-01

    The giant Salobo copper-gold deposit is located in the Carajás Province, Amazon Craton. Detailed drill core description, petrographical studies, and U-Pb SHRIMP IIe and LA-ICP-MS geochronology unravel its evolution regarding the host rocks, hydrothermal alteration and mineralization. Within the Cinzento Shear Zone, the deposit is hosted by orthogneisses of the Mesoarchean Xingu Complex (2950 ± 25 and 2857 ± 6.7 Ma) and of the Neoarchean Igarapé Gelado suite (2763 ± 4.4 Ma), which are crosscut by the Old Salobo granite. Remnants of the Igarapé Salobo metavolcanic-sedimentary sequence are represented by a quartz mylonite with detrital zircon populations (ca. 3.1-3.0, 2.95, 2.86, and 2.74 Ga). High-temperature calcic-sodic hydrothermal alteration (hastingsite-actinolite) was followed by silicification, iron-enrichment (almandine-grunerite-magnetite), tourmaline formation, potassic alteration with biotite, copper-gold ore formation, and later Fe-rich hydrated silicate alteration. Myrmekitic bornite-chalcocite and magnetite comprise the bulk of copper-gold ore. All these alteration assemblages have been overprinted by post-ore hematite-bearing potassic and propylitic alteration, which is also recognized in the Old Salobo granite. In the central zone of the deposit the mylonitized Igarapé Gelado suite rocks yield an age of 2701 ± 30 Ma. Zircon ages of 2547 ± 5.3 and 2535 ± 8.4 Ma were obtained for the Old Salobo granite and for the high-grade copper ore, respectively. A U-Pb LA-ICP-MS monazite age (2452 ± 14 Ma) from the copper-gold ore indicates hydrothermal activity and overprinting in the Siderian. Therefore, a protracted tectono-thermal event due to the reactivation of the Cinzento Shear Zone is proposed for the evolution of the Salobo deposit.

  2. Mortality among male workers at a thorium-processing plant.

    PubMed

    Polednak, A P; Stehney, A F; Lucas, H F

    1983-01-01

    The long-term health effects of exposure to thorium are of interest because of the possible increased use of thorium as an energy source in reactors using 232Th to produce 233U. Mortality is described in a cohort of 3039 men who were employed between 1940 and 1973 at a company involved in the production of thorium and rare earth chemicals from monazite sand. Based on deaths ascertained by the Social Security Administration and mortality rates for U.S. white males, the standardized mortality ratio (SMR) for all causes was 1.05 with 95% confidence limits (95% CL) of 0.96 and 1.15. Much of the excess mortality was attributable to non-occupational motor vehicle accidents (SMR = 1.64; 95% CL = 1.16 and 2.23), but SMRs were also high for lung cancer (1.44; 95% CL = 0.98 and 2.02), pancreatic cancer (2.01; 95% CL = 0.92 and 3.82), and diseases of the respiratory system (1.31; 95% CL = 0.92 and 1.83). In a subgroup of 592 men who worked for at least one year in selected jobs (indicative of highest exposure to thorium and thoron) that was followed up more intensively, the SMR for pancreatic cancer was significantly elevated (i.e. 4.13; 95% confidence limits = 1.34 and 9.63). The SMR for lung cancer was 1.68 (95% CL = 0.81 and 3.09), while that for respiratory diseases was 1.20 (95% CL = 0.52 and 2.37). Information on smoking habits in a sample of survivors suggested that smoking could have explained at least part of the excess mortality from lung and pancreatic cancer and from diseases of the respiratory system. Continued follow-up of the cohort through morbidity and mortality studies is needed to evaluate further the possible long-term effects of exposure to radioactivity and chemicals in the thorium extraction process.

  3. Decoding a protracted zircon geochronological record in ultrahigh temperature granulite, and persistence of partial melting in the crust, Rogaland, Norway

    NASA Astrophysics Data System (ADS)

    Laurent, Antonin T.; Bingen, Bernard; Duchene, Stephanie; Whitehouse, Martin J.; Seydoux-Guillaume, Anne-magali; Bosse, Valerie

    2018-04-01

    This contribution evaluates the relation between protracted zircon geochronological signal and protracted crustal melting in the course of polyphase high to ultrahigh temperature (UHT; T > 900 °C) granulite facies metamorphism. New U-Pb, oxygen isotope, trace element, ion imaging and cathodoluminescence (CL) imaging data in zircon are reported from five samples from Rogaland, South Norway. The data reveal that the spread of apparent age captured by zircon, between 1040 and 930 Ma, results both from open-system growth and closed-system post-crystallization disturbance. Post-crystallization disturbance is evidenced by inverse age zoning induced by solid-state recrystallization of metamict cores that received an alpha dose above 35 × 1017 α g-1. Zircon neocrystallization is documented by CL-dark domains displaying O isotope open-system behaviour. In UHT samples, O isotopic ratios are homogenous (δ18O = 8.91 ± 0.08‰), pointing to high-temperature diffusion. Scanning ion imaging of these CL-dark domains did not reveal unsupported radiogenic Pb. The continuous geochronological signal retrieved from the CL-dark zircon in UHT samples is similar to that of monazite for the two recognized metamorphic phases (M1: 1040-990 Ma; M2: 940-930 Ma). A specific zircon-forming event is identified in the orthopyroxene and UHT zone with a probability peak at ca. 975 Ma, lasting until ca. 955 Ma. Coupling U-Pb geochronology and Ti-in-zircon thermometry provides firm evidence of protracted melting lasting up to 110 My (1040-930 Ma) in the UHT zone, 85 My (ca. 1040-955 Ma) in the orthopyroxene zone and some 40 My (ca. 1040-1000 Ma) in the regional basement. These results demonstrate the persistence of melt over long timescales in the crust, punctuated by two UHT incursions.

  4. Paleoclimatological change in the Late Neoproterozoic: Evidence from oxygen isotopes of phosphorite in Yangtze Platform, China

    NASA Astrophysics Data System (ADS)

    Ling, H.-F.; Jiang, S.-Y.; Feng, H.-Z.; Chen, J.-H.; Chen, Y.-Q.; Yang, J.-H.

    2003-04-01

    Seawater and its isotopic composition is the most promising recorder for the climate change of the Earth. Chemical sediments such as carbonate and phosphorite has long been used to reveal the seawater chemistry in the past. The d13C of carbonate with least diagenesis has proved to be sensitive proxy for paleo-environment and paleo-productivity and for chemostratigrphy (e.g. Shen, 2002; Yang et al., 1999; Lambert et al., 1987). However, d18O of carbonate are more prone to suffering diagenesis, and therefore the implications of Phanerozoic d18O curve are controversial (cf. Veizer et al., 1999). Recent study of Wenzel et al. (2000) shows that Silurian phosphatic conodont retained primary oxygen isotopes whereas the d18O values of the coeval calcitic brachiopod shells were altered by diagenesis. Here, we presented and compared oxygen, carbon isotopic compositions and trace and rare earth element concentrations of Neoproterozoic phosphorite and coeval dolomite from the Yangtze platform in an attempt to reconstruct the paleoclimatological and paleooceanographic change during Neoproterozoic. The Yangtze platform possesses excellent record of Late Neoproterozoic-Cambrian strata. In this study, we collected samples systematically from late Neoproterozoic Doushantuo Formation at the Wengan section, Guizhou province. The Doushantuo Fm, overlying on the late Vendian tillite of Nantuo Fm and overlain by dolostone of Dengying Fm which underlain the basal Cambrian black shale, consists mainly of phosphorite and minor interbeded dolostone with total thickness of about 70 m. Our results show large variations of d18Odolo(SMOW) for the dolomite (17.6 ~ 25.9‰) which has no correlation with their d13Cdolo values and other geochemical parameters. In contrast, phosphorites display rather limited variations of the d18Ophos (SMOW) values (10.7 ~ 15.0‰). Further more, the d18Ophos and d13Cdolo values, Ce anomaly and Pb/Th ratio consistently increased from the lower to upper part of the section. It is suggested that the phosphorite studied preserved primary oxygen isotopes, whereas d18Odolo values of the dolomite were altered by diagenesis. Potential causes for the overall increase trend of d18Ophos include increase in seawater d18O values and decrease in temperature. During the time span of about 10 ~ 30 Ma for the section deposition when no glaciation occurred, it seems not completely in reality to attribute the variation of more than 4‰ of d18O values to seawater change alone. To cause ~4.3‰ variation of d18Ophos, temperature would decrease about 15-20˚C, which is possible to happen in the Earth history (Lecuyer and Allemand, 2002). The following lines of evidence also support this view. The studied phosphorites were deposited after thaw of the Snowball Earth. During the Snowball Earth period, continental weathering was in minimum due to little precipitation. This, together with existence of volcanic CO2 emitting through the snowball, CO2 accumulated in the atmosphere up to very high level and thus the temperature would be very high soon after thaw of the Snowball Earth. This, combined with more precipitation, would cause progressive weathering. Enhanced weathering of continental rocks would draw down the CO2 of atmosphere and in turn cause cooling, which is consistent with temperature lowering of the period. Increase trend of Pb/Th ratio during the period is in good agreement with enhanced weathering. Pb and Th are both highly particle reactive elements in the ocean. However, their geochemical behaviors in weathering processes are potentially different. Pb is mainly contained in feldspar while Th is mainly hosted in accessory minerals such as monazite. During enhanced weathering processes feldspar can be altered and release Pb whereas monazite would usually survive. Therefore Pb/Th ratio in hydrogenic sediments would be an indicator of weathering intensity. Enhanced weathering would also provide more nutrition elements to ocean, resulting in increase in productivity. The overall increasing trend of d13Cdolo agrees well with increasing productivity. Increased alga productivity would raise release of oxygen to the ocean by processes of photosynthesis, burial of light carbon and thus elevate heavy carbon in the ocean. This may also be the cause of increase in Ce anomaly. In conclusion, the above changes are consistent with each other. The overall increase trends of phosphorite d18O may imply decrease in temperature post the temperature maximum at thaw of the Snowball Earth.

  5. Restoration of Late Neoarchean-Early Cambrian tectonics in the Rengali orogen and its environs (eastern India): The Antarctic connection

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A.; Das, H. H.; Bell, Elizabeth; Bhattacharya, Atreyee; Chatterjee, N.; Saha, L.; Dutt, A.

    2016-10-01

    Geological mapping and P-T path reconstructions are combined with monazite chemical age and Secondary Ion Mass Spectrometric (SIMS) U-Pb zircon age determinations to identify crustal domains with distinctive evolutionary histories in the Rengali orogen sandwiched between two Grenvillian-age metamorphic belts, i.e. the Eastern Ghats Granulite Belt (EGGB) in the south, and the amphibolite facies Gangpur Schist Belt (GSB) in the north, which in turn forms a collar along the NW/W margins of the Paleo/Mesoarchean Singhbhum Craton (SC) north of the Rengali orogen. Anatectic gneisses in the orogen core exhibit multi-phase Neoarchean/Paleoproterozoic deformation, metamorphic P-T histories and juvenile magma emplacement events. The high-grade belt is inferred to be a septum of the Bastar Craton (BC). The flanking supracrustal belt in the orogen - dominated by quartz-muscovite schists (± staurolite, kyanite, garnet pyrophyllite), inter-bedded with poorly-sorted and polymict meta-conglomerate, and meta-ultramafic/amphibolite bands - evolved along P-T paths characterized by sub-greenschist to amphibolite facies peak P-T conditions in closely-spaced samples. The supracrustal rocks and the anatectic gneisses of contrasting metamorphic P-T histories experienced D1, D2 and D3 fabric-forming events, but the high-angle obliquity between the steeply-plunging D3 folds in the anatectic gneisses and the gently-plunging D3 folds in the supracrustal unit suggests the two lithodemic units were tectonically accreted post-S2. The supracrustal belt is inferred to be a tectonic mélange formed in an accretionary wedge at the tri-junction of the Bastar Craton, the Eastern Ghats Granulite Belt and the Singhbhum Craton; the basin closure synchronous with the assembly of EGGB and the Singhbhum Craton-Gangpur Schist belt composite occurred between 510 and 610 Ma. Based on the available evidence across the facing coastlines of the Greater India landmass and the Australo-Antarctic blocks at 500 Ma, it is suggested that the EGGB welded with the Greater India landmass during the Pan African along an accretion zone, of which the Rengali orogen is a part, synchronous with the final assembly of the Gondwanaland.

  6. Signal or noise? Separating grain size-dependent Nd isotope variability from provenance shifts in Indus delta sediments, Pakistan

    NASA Astrophysics Data System (ADS)

    Jonell, T. N.; Li, Y.; Blusztajn, J.; Giosan, L.; Clift, P. D.

    2017-12-01

    Rare earth element (REE) radioisotope systems, such as neodymium (Nd), have been traditionally used as powerful tracers of source provenance, chemical weathering intensity, and sedimentary processes over geologic timescales. More recently, the effects of physical fractionation (hydraulic sorting) of sediments during transport have called into question the utility of Nd isotopes as a provenance tool. Is source terrane Nd provenance resolvable if sediment transport strongly induces noise? Can grain-size sorting effects be quantified? This study works to address such questions by utilizing grain size analysis, trace element geochemistry, and Nd isotope geochemistry of bulk and grain-size fractions (<63μm, 63-125 μm, 125-250 μm) from the Indus delta of Pakistan. Here we evaluate how grain size effects drive Nd isotope variability and further resolve the total uncertainties associated with Nd isotope compositions of bulk sediments. Results from the Indus delta indicate bulk sediment ɛNd compositions are most similar to the <63 µm fraction as a result of strong mineralogical control on bulk compositions by silt- to clay-sized monazite and/or allanite. Replicate analyses determine that the best reproducibility (± 0.15 ɛNd points) is observed in the 125-250 µm fraction. The bulk and finest fractions display the worst reproducibility (±0.3 ɛNd points). Standard deviations (2σ) indicate that bulk sediment uncertainties are no more than ±1.0 ɛNd points. This argues that excursions of ≥1.0 ɛNd points in any bulk Indus delta sediments must in part reflect an external shift in provenance irrespective of sample composition, grain size, and grain size distribution. Sample standard deviations (2s) estimate that any terrigenous bulk sediment composition should vary no greater than ±1.1 ɛNd points if provenance remains constant. Findings from this study indicate that although there are grain-size dependent Nd isotope effects, they are minimal in the Indus delta such that resolvable provenance-driven trends can be identified in bulk sediment ɛNd compositions over the last 20 k.y., and that overall provenance trends remain consistent with previous findings.

  7. Purification of used eutectic (LiCl-KCl) salt electrolyte from pyroprocessing

    NASA Astrophysics Data System (ADS)

    Cho, Yung-Zun; Lee, Tae-Kyo; Eun, Hee-Chul; Choi, Jung-Hoon; Kim, In-Tae; Park, Geun-Il

    2013-06-01

    The separation characteristics of surrogate rare-earth fission products in a eutectic (LiCl-KCl) molten salt were investigated. This system is based on the eutectic salt used for the pyroprocessing treatment of used nuclear fuel (UNF). The investigation was performed using an integrated rare-earth separation apparatus comprising a precipitation reactor, a solid detachment device, and a layer separation device. To separate rare-earth fission products, a phosphate precipitation method using both Li3PO4 and K3PO4 as a precipitant was performed. The use of an equivalent phosphate precipitant composed of 0.408 molar ratio-K3PO4 and 0.592 molar ratio-Li3PO4 can preserve the original eutectic ratio, LiCl-0.592 molar ratio (or 45.2 wt%), as well as provide a high separation efficiency of over 99.5% under conditions of 550 °C and Ar sparging when using La, Nd, Ce, and Pr chlorides. The mixture of La, Nd, Ce, and Pr phosphate had a typical monoclinic (or monazite) structure, which has been proposed as a reliable host matrix for the permanent disposal of a high-level waste form. To maximize the reusability of purified eutectic waste salt after rare-earth separation, the successive rare-earth separation process, which uses both phosphate precipitation and an oxygen sparging method, were introduced and tested with eight rare-earth (Y, La, Ce, Pr, Nd, Sm, Eu and Gd) chlorides. In the successive rare-earth separation process, the phosphate reaction was terminated within 1 h at 550 °C, and a 4-8 h oxygen sparging time were required to obtain over a 99% separation efficiency at 700-750 °C. The mixture of rare-earth precipitates separated by the successive rare-earth separation process was found to be phosphate, oxychloride, and oxide. Through the successive rare-earth separation process, the eutectic ratio of purified salt maintained its original value, and impurity content including the residual precipitant of purified salt can be minimized.

  8. Structural, metamorphic and geochronological insights on the Variscan evolution of the Alpine basement in the Belledonne Massif (France)

    NASA Astrophysics Data System (ADS)

    Fréville, Kévin; Trap, Pierre; Faure, Michel; Melleton, Jérémie; Li, Xian-Hua; Lin, Wei; Blein, Olivier; Bruguier, Olivier; Poujol, Marc

    2018-02-01

    A structural and petrochronological study was carried out in the southern part of the Belledonne crystalline massif. A first tectonometamorphic event, Dx, corresponds to the eastward thrusting of the Chamrousse ophiolitic complex characterized by a low-temperature-moderate-pressure metamorphism reaching 0.535 ± 0.045 GPa and 427.5 ± 17.5 °C. A subsequent D1 deformation is defined by a penetrative S1 foliation that mostly dips toward the west and displays an E-W- to NE-SW-trending mineral and stretching lineation L1. D1 is associated with a top-to-the east shearing and is responsible for the crustal thickening accommodated by the eastward nappe stacking and the emplacement of the Chamrousse ophiolitic complex upon the Rioupéroux-Livet unit. This event is characterized by an amphibolite facies metamorphism (0.58 GPa ± 0.06; 608 ± 14 °C) that attains partial melting at the base of the nappe pile (0.78 ± 0.07 GPa; 680.5 ± 11.5 °C). LA-ICP-MS U-Pb dating of monazite grains from the mica schists of the Rioupéroux-Livet unit constrain the age of D1 to 337 ± 7 Ma. The D2 tectono-metamorphic event is characterized by NE-SW trending, upright to NE-verging synfolial folding. Folding associated with D2 is pervasively developed in all lithotectonic units with the development of a steeply-dipping S2 foliation. In particular, D2 involves the uppermost weakly metamorphosed Taillefer unit. LA-ICP-MS U-Pb dating performed on detrital zircon grains shows that the Taillefer conglomerates was deposited during the Visean. A zircon SIMS U-Pb age of 352 ± 1 Ma from a plagioglase-rich leucocratic sill of the Rioupéroux-Livet unit is interpreted as the age of magmatic emplacement. Our results suggest that the D2 event took place between 330 Ma and 310 Ma. We propose a new interpretation of the tectonometamorphic evolution of the southern part of the Belledonne massif, focusing on the Middle Carboniferous stages of the Variscan orogeny.

  9. Alternations in burial and exhumation along the Selimiye (Kayabükü) shear zone in the Menderes Massif from detailed garnet pressure-temperature paths

    NASA Astrophysics Data System (ADS)

    Kelly, E. D.; Atakturk, K. R.; Catlos, E. J.; Lizzadro-McPherson, D. J.; Cemen, I.; Lovera, O. M.

    2015-12-01

    Pressure-temperature (P-T) paths derived from garnet chemical zoning and supported by thermal modeling record alternating burial and exhumation during Main Menderes Metamorphism in western Turkey. We studied six rocks along the Selimiye (Kayabükü) shear zone, three from the footwall (Çine nappe) and three from the hanging wall (Selimiye nappe). The shear zone bounds the southern Menderes Massif metamorphic core complex and has been suggested to record compression followed by extension. The rocks are lower-amphibolite facies garnet-bearing metapelites with nearly identical mineral suites. Retrograde overprinting hinders classical thermobarometry; to overcome this, preserved chemical zoning in garnet combined with a G-minimization approach was used to construct detailed P-T paths (e.g., 50 points in some paths). During continuous temperature increase, the Çine nappe paths show increasing, decreasing, and then increasing pressure (an N-shaped path) ending at 7-8 kbar and ~565-590 °C. The Selimiye nappe paths show a single increase in P-T ending at ~7.3 kbar and ~580 °C. Similar bulk-rock compositions in all samples and the separation by the shear zone suggest that garnets grew during distinct events in each nappe. The timing of garnet growth, and thus the P-T paths, is currently undetermined, as monazite inclusions in garnet appear secondary and complicated by excess common Pb. The Çine nappe N-shaped path describes alternations in burial and exhumation, possibly due to thrust motion along the shear zone. To demonstrate the physical plausibility of the P-T paths, a 2-D finite difference solution to the diffusion-advection equation was applied. The results of the thermal modeling suggest that thrusting, denudation, and renewed thrusting would produce similar changes in P-T to the N-shaped path. Thus, the Çine nappe N-shaped P-T path appears to record a gap in thrust motion along the Selimiye (Kayabükü) shear zone prior to ultimate unroofing of the massif.

  10. Hematite (α-Fe2O3) - A potential Ce4+ carrier in red mud.

    PubMed

    Bolanz, Ralph M; Kiefer, Stefan; Göttlicher, Jörg; Steininger, Ralph

    2018-05-01

    Cerium is the most abundant rare earth element (REE) within the waste product of alumina production (red mud), but its speciation in this complex material is still barely understood. Previous studies showed evidence for a correlation between Ce and the main constituent of red mud, iron oxides, which led us to investigate the most abundant iron oxide in red mud, hematite, as possible carrier phase for Ce. Synthetic hematite can incorporate up to 1.70±0.01wt% Ce, which leads to a systematical increase of all unit cell parameters. Investigations by extended X-ray absorption fine structure spectroscopy suggest an incorporation of Ce 4+ O 6 into the hematite structure by a novel atomic arrangement, fundamentally different from the close-range order around Fe 3+ in hematite. Samples of red mud were taken in Lauta (Saxony), Germany and analyzed by powder X-ray diffraction, inductively coupled plasma mass and optical emission spectrometry, electron microprobe analysis and X-ray absorption near-edge structure spectroscopy. Red mud samples consist of hematite (Fe 2 O 3 ) (34-58wt%), sodalite (Na 8 Al 6 Si 6 O 24 Cl 2 ) (4-30wt%), gibbsite (Al(OH) 3 ) (0-25wt%), goethite (FeOOH) (10-23wt%), böhmite (AlOOH) (0-11wt%), rutile (TiO 2 ) (4-8wt%), cancrinite (Na 6 Ca 2 Al 6 Si 6 O 24 (CO 3 ) 2 ) (0-5wt%), nordstrandite (Al(OH) 3 ) (0-5wt%) and quartz (SiO 2 ) (0-4wt%). While the main elemental composition is Fe>Al>Na>Ti>Ca (Si not included), the average concentration of REE is 1109±6mg/kg with an average Ce concentration of 464±3mg/kg. The main carrier of Ce was located in the Fe-rich fine-grained fraction of red mud (0.10wt% Ce 2 O 3 ), while other potential Ce carriers like monazite, lead oxides, secondary Ce-minerals and particles of potentially anthropogenic origin are of subordinated relevance. Cerium in red mud occurs predominantly as Ce 4+ , which further excludes Ce 3+ minerals as relevant sources. Copyright © 2017. Published by Elsevier B.V.

  11. Complicated secondary textures in zircon record evolution of the host granitic rocks: Studies from Western Tauern Window and Ötztal-Stubai Crystalline Complex (Eastern Alps, Western Austria)

    NASA Astrophysics Data System (ADS)

    Kovaleva, Elizaveta; Harlov, Daniel; Klötzli, Urs

    2017-07-01

    Samples of metamorphosed and deformed granitic rocks were collected from two Alpine complexes with well-constrained metamorphic history: Western Tauern Window and Ötztal-Stubai Crystalline Complex. Zircon grains from these samples were investigated in situ by a combination of scanning electron microscope techniques, cathodoluminescence (CL) imaging and Raman spectroscopy. The aims were: to describe and interpret complicated secondary textures and microstructures in zircon; based on cross-cutting relationships between secondary microstructures, reconstruct the sequence of processes, affecting zircon crystals; link the evolution of zircon with the history of the host rocks. The results indicate that zircon in the sampled granitic rocks forms growth twins and multi-grain aggregates, which are unusual for this mineral. Moreover, various secondary textures have been found in the sampled zircon, often cross-cutting each other in a single crystal. These include: distorted oscillatory CL zoning with inner zones forming inward-penetrating, CL-bright embayments, which are the evidence of dry recrystallization via annealing/lattice recovery; CL mosaicism with no preservation of growth zoning, but abundant nano- and micro-scale pores and mineral inclusions, which are the evidence of recrystallization by coupled dissolution-reprecipitation and/or leaching; embayed zircon boundaries filled with apatite, monazite, epidote and mylonitic matrix, indicating mineral-fluid reactions resulting in zircon dissolution and fragmentation; overgrowth CL-dark rims, which contain nano-pores and point to transport and precipitation of dissolved zircon matter. We conclude that zircon in our meta-granites is sensitive to metamorphism/deformation events, and was reactive with metamorphic fluids. Additionally, we have found evidence of crystal-plastic deformation in the form of low angle boundaries and bent grain tips, which is a result of shearing and ductile deformation of the host rock. We suggest that the observed complicated secondary textures in zircon can be linked to the evolutionary stages of the host rocks such as magmatic crystallization, prograde metamorphism, peak of amphibolite-facies metamorphism, post-peak cooling and exhumation, formation of ductile shear zones and final cooling to 250 °C.

  12. Magma Mixing, Mingling and Its Accompanying Isotopic and Elemental Partitioning: Records from Titanites in Guojialing-type Granodiorites and Dioritic Enclaves, Jiaodong, North China

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Yang, K. F.; Fan, H. R.; Liu, X.

    2016-12-01

    The grain-scale textural and in-situ compositional analyses on accessory minerals (such as titanite, rutile, apatite, monazite, etc.) have recently been a hot topic for geologists, through which a detailed information on magmatic, metamorphic or hydrothermal process can be extracted. As an attempt to unravel the petrogenesis of Early Cretaceous Guojialing-type granodiorites and their bearing dioritic enclaves, we accomplished an integrated geochronological and geochemical study on titanites within these rocks. Three types of titanites, with distinguishable textural and geochemical features, are identified. G-type titanites (from granodiorites) and E-type-I titanites (from plagioclase-rich dioritic enclaves) yield identical U-Pb age of 130 Ma, but reveal distinct back-scattered electron (BSE) zonings. G-type titanites are characterized by oscillatory zonings whereas E-type-I titanites are marked by core-mantle-rim zonings, exhibiting drastic but contrary variation trends for several key elements (such as LREEs, Zr, Hf and F) among their transition BSE zones. These two types of titanites are interpreted to crystallize coevally, and record a notable temperature and compositional change of two corresponding melts, as a response to magma mixing. E-type-II titanites (from plagioclase-poor dioritic enclaves) yield a relatively younger U-Pb age at 128 Ma, and show typical interstitial growth with narrower and lower range of Zr, total REEs contents, but higher F content and Nb/Ta ratios. Such titanites are perceived to record late-stage mingling, during which F-rich and REE-poor hybrid granodioritic magma squeezed into the incompletely consolidated dioritic enclaves with accompanying fluid-rock interaction. Unlike the dramatic elemental changes in these differentiated titanites, in-situ Nd isotopic compositions are relatively homogeneous, which in our view is a good sign of showing that isotopic equilibrium among two magma systems was more easily reached compared to elemental homogenization during the process of magma mixing and mingling. Our titanite work provides new and solid evidence to support a magma mixing genesis for Guojialing intrusion, and also presents a good case study of utilizing accessory titanite to decipher a detailed magmatic chamber process.

  13. Grenvillian magmatism in the northern Virginia Blue Ridge: Petrologic implications of episodic granitic magma production and the significance of postorogenic A-type charnockite

    USGS Publications Warehouse

    Tollo, R.P.; Aleinikoff, J.N.; Borduas, E.A.; Dickin, A.P.; McNutt, R.H.; Fanning, C.M.

    2006-01-01

    Grenvillian (1.2 to 1.0 Ga) plutonic rocks in northern Virginia preserve evidence of episodic, mostly granitic magmatism that spanned more than 150 million years (m.y.) of crustal reworking. Crystallization ages determined by sensitive high resolution ion microprobe (SHRIMP) U-Pb isotopic analyses of zircon and monazite, combined with results from previous studies, define three periods of magmatic activity at 1183-1144 Ma (Magmatic Interval I), 1120-1111 Ma (Magmatic Interval II), and 1078-1028 Ma (Magmatic Interval III). Magmatic activity produced dominantly tholeiitic plutons composed of (1) low-silica charnockite, (2) leucogranite, (3) non-leucocratic granitoid (with or without orthopyroxene (opx)), and (4) intermediate biotite-rich granitoid. Field, petrologic, geochemical, and geochronologic data indicate that charnockite and non-charnockitic granitoids were closely associated in both space and time, indicating that presence of opx is related to magmatic conditions, not metamorphic grade. Geochemical and Nd isotopic data, combined with results from experimental studies, indicate that leucogranites (Magmatic Intervals I and III) and non-leucocratic granitoids (Magmatic Intervals I and II) were derived from parental magmas produced by either a high degree of partial melting of isotopically evolved tonalitic sources or less advanced partial melting of dominantly tonalitic sources that also included a more mafic component. Post-orogenic, circa 1050 Ma low-silica charnockite is characterized by A-type compositional affinity including high FeOt/(FeOt + MgO), Ga/Al, Zr, Nb, Y, and Zn, and was derived from parental magmas produced by partial melting of potassic mafic sources in the lower crust. Linear geochemical trends defined by leucogranites, low-silica charnockite, and biotite-rich monzogranite emplaced during Magmatic Interval III reflect differences in source-related characteristics; these features do not represent an igneous fractionation sequence. A compositional gap between circa 1160 Ma magnesian low-silica charnockite and penecontemporaneous higher silica lithologies likewise precludes a fractionation relationship among plutons intruded during Magmatic Interval I. Correspondence in timing of magmatic activity between the Blue Ridge and neighboring Mesoproterozoic terranes underscores the widespread nature of Grenvillian processes in the region.

  14. Single-Shot Laser Ablation Split-Stream (SS-LASS) Analysis Depth Profiling

    NASA Astrophysics Data System (ADS)

    Kylander-Clark, A. R.; Stearns, M. A.; Viete, D. R.; Cottle, J. M.; Hacker, B. R.

    2014-12-01

    Laser ablation depth profiling of geochronometers—such as zircon, monazite, titanite and rutile—has become popular in recent years as a tool to both determine date vs. depth or trace-element (TE) composition vs. depth; the former allows the dating of thin rims and, potentially, inversion of Pb-loss profiles for thermal histories, whereas the latter can yield insight into changes in PTX or mineral parageneses and inversion of trace-element profiles for thermal histories. In this study, we combine both techniques, enabling simultaneous acquisition of U-Th/Pb isotopic ratios and trace-element compositions, by joining a 193 nm excimer laser to a multi-collector ICP-MS and single-collector ICP-MS. The simultaneous acquisition allows direct shot-by-shot linkage between time and petrology, expanding our ability to understand the evolution of complex geologic systems. We construct each depth profile by capturing the analyte with a succession of individual laser pulses (each ~100 nm deep) . This has two main advantages over a typical time-dependent analysis of a multi-shot routine composed of tens to hundreds of shots and a several μm deep hole. 1) The reference material is analyzed between each shot for a more-accurate standardization of each aliquot of ablated material. 2) There is no mixing of material ablated from successive laser pulses during transmission to the ICP. The method is limited by count rate, which depends on spot size, excavation rate, instrument sensitivity, etc., and, for single-collector ICP, the switching time, which limits the number of elements that can be analyzed and their total counts. We explore the latter theoretically and experimentally to provide insight on both the ideal number of elements to measure and the dwell time in any given sample. Examples of the utility of SS-LASS include the comparison of apparent Pb loss to diffusion profiles of trace elements in rims of metamorphic rutile and titanite, as well as the determination of the timing and petrologic conditions of thin zircon rims in metamorphic rocks.

  15. Advances in Laser Microprobe (U-Th)/He Geochronology

    NASA Astrophysics Data System (ADS)

    van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K. V.

    2008-12-01

    The development of the laser microprobe (U-Th)/He dating method has the potential to overcome many of the limitations that affect conventional (U-Th)/He geochronology. Conventional single- or multi-crystal (U- Th)/He geochronology requires the use of pristine, inclusion-free, euhedral crystals. Furthermore, the ages that are obtained require corrections for the effects of zoning and alpha ejection based on an ensemble of assumptions before interpretation of their geological relevance is possible. With the utilization of microbeam techniques many of the limitations of conventional (U-Th)/He geochronology can either be eliminated by careful spot selection or accounted for by detailed depth profiling analyses of He, U and Th on the same crystal. Combined He, Th, and U depth profiling on the same crystal potentially even offers the ability to extract thermal histories from the analyzed grains. Boyce et al. (2006) first demonstrated the laser microprobe (U-Th)/He dating technique by successfully dating monazite crystals using UV laser ablation to liberate He and determined U and Th concentrations using a Cameca SX-Ultrachron microprobe. At Arizona State University, further development of the microprobe (U-Th)/He dating technique continues using an ArF Excimer laser connected to a GVI Helix Split Flight Tube noble gas mass spectrometer for He analysis and SIMS techniques for U and Th. The Durango apatite age standard has been successfully dated at 30.7 +/- 1.7 Ma (2SD). Work on dating zircons by laser ablation is currently underway, with initial results from Sri Lanka zircon at 437 +/- 14 Ma (2SD) confirmed by conventional (U-Th)/He analysis and in agreement with the published (U-Th)/He age of 443 +/- 9 Ma (2SD) for zircons from this region in Sri Lanka (Nasdala et al., 2004). The results presented here demonstrate the laser microprobe (U-Th)/He method as a powerful tool that allows application of (U- Th)/He dating to areas of research such as detrital apatite and zircon dating, where conventional (U-Th)/He geochronology has limited applicability. Boyce et al. (2006) GCA 70 (3031-3039), Nasdala et al. (2004) Am. Min. 89 (219-231)

  16. Geochronologic Constraints on the Location of the Sino-Korean/Yangtze Suture and Evolution of the Northern Dabie Shan

    NASA Astrophysics Data System (ADS)

    Bryant, D. L.; Ayers, J. C.; Gao, S.; Miller, C. F.; Zhang, H.

    2002-05-01

    The Northern Dabie Complex (NDC) has been proposed to be either a Paleozoic magmatic arc, an exhumed piece of subducted continental crust, or young crust produced almost entirely by Cretaceous extensional magmatism. Ion microprobe zircon 238U-206Pb ages of separates from NDC gneisses center around 689Ma (+/- 31(95%CL)), consistent with the characteristic zircon dates of the Yangtze Craton [1]. Field observations also show that these gneisses, ranging from granitic to dioritic composition, make up a sizeable area ( ~30%) of the NDC. Zircon separates from the Baimajian granitoid, the largest of the widespread Cretaceous intrusions in the NDC, have yielded ages clustered around 677Ma (+/- 79), and 120Ma (+/- 3.4), the latter of which agrees with ion probe Th-Pb monazite ages. The ~700Ma age indicates that this intrusion may be linked with partial melting of underlying Yangtze crust, while the 120Ma age is the age of its crystallization. Granitic intrusions from Sanzushi and Yerenshai in the Dabie ultrahigh-pressure (UHP) region also show clusters of ages at 714Ma (+/- 55) from zircon cores, as well as rims around 250Ma (+/- 38), which is interpreted as the time of collision of the two continental blocks. These age data support the hypothesis set forth by Zhang et al. [2] using Sm-Nd and Pb isotopic data, that the Yangtze block lies beneath the exhumed UHP belt and outcrops as the NDC, which lies between the UHP belt and the Sino-Korean/Yangtze suture. The Baimajian granitoid, however, also shows a range of older zircon core ages from 1.4-2.0Ga, which may represent the early stages of formation of the Yangtze craton. Zhang et al. [2] suggested craton formation at 1.6-2.4Ga but few such ages have been reported for rocks of the Yangtze or Sino-Korean cratons. 1. Hacker, et al. (2000) Journal of Geophysical Research. Vol. 105. p. 13,339. 2. Zhang, et al. (In press) Chemical Geology.

  17. Microstructures and Petrology of Melt Inclusions in the Anatectic Sequence of Jubrique (Betic Cordillera, S Spain): Implications for Crustal Anatexis

    NASA Astrophysics Data System (ADS)

    Acosta-vigil, A.; Barich, A.; Garrido, C. J.; Cesare, B.; Tajčmanová, L.; Bartoli, O.

    2014-12-01

    We report a new occurrence of melt inclusions in polymetamorphic granulitic gneisses of the Jubrique unit, a complete though thinned crustal section located above the Ronda peridotite slab (Betic Cordillera, S Spain). The gneissic sequence is composed of mylonitic gneisses at the bottom and porphyroblastic gneisses on top. Mylonitic gneisses are strongly deformed rocks with abundant garnet and rare biotite. Except for the presence of melt inclusions, microstructures indicating the former presence of melt are rare or absent. Upwards in the sequence garnet decreases whereas biotite increases in proportion. Melt inclusions are present from cores to rims of garnets throughout the entire sequence. Most of the former melt inclusions are now totally crystallized and correspond to nanogranites, whereas some of them are partially made of glass or, more rarely, are totally glassy. They show negative crystal shapes and range in size from ≈5 to 200 micrometers, with a mean size of ≈30-40 micrometers. Daughter phases in nanogranites and partially crystallized melt inclusions include quartz, feldspars, biotite and muscovite; accidental minerals include kyanite, graphite, zircon, monazite, rutile and ilmenite; glass has a granitic composition. Melt inclusions are mostly similar throughout all the gneissic sequence. Some fluid inclusions, of possible primary origin, are spatially associated with melt inclusions, indicating that at some point during the suprasolidus history of these rocks granitic melt and fluid coexisted. Thermodynamic modeling and conventional thermobarometry of mylonitic gneisses provide peak conditions of ≈850 ºC and 12-14 kbar, corresponding to cores of large garnets with inclusions of kyanite and rutile. Post-peak conditions of ≈800-850 ºC and 5-6 kbar are represented by rim regions of large garnets with inclusions of sillimanite and ilmenite, cordierite-quartz-biotite coronas replacing garnet rims, and the matrix with oriented sillimanite. Previous conventional petrologic studies on these strongly deformed rocks have proposed that anatexis started during decompression from peak to post-peak conditions and in the field of sillimanite. The study of melt inclusions shows, however, that melt was already present in the system at peak conditions, and that most garnet grew in the presence of melt.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollah, A.S.

    Low level radioactive waste (LLW) is generated from various nuclear applications in Bangladesh. The major sources of radioactive waste in the country are at present: (a) the 3 MW TRIGA Mark-II research reactor; (b) the radioisotope production facility; (c) the medical, industrial and research facilities that use radionuclides; and (d) the industrial facility for processing monazite sands. Radioactive waste needs to be safely managed because it is potentially hazardous to human health and the environment. According to Nuclear Safety and Radiation Control Act-93, the Bangladesh Atomic Energy Commission (BAEC) is the governmental body responsible for the receipt and final disposalmore » of radioactive wastes in the whole country. Waste management policy has become an important environmental, social, and economical issue for LLW in Bangladesh. Policy and strategies will serve as a basic guide for radioactive waste management in Bangladesh. The waste generator is responsible for on-site collection, conditioning and temporary storage of the waste arising from his practice. The Central Waste Processing and Storage Unit (CWPSU) of BAEC is the designated national facility with the requisite facility for the treatment, conditioning and storage of radioactive waste until a final disposal facility is established and becomes operational. The Regulatory Authority is responsible for the enforcement of compliance with provisions of the waste management regulation and other relevant requirements by the waste generator and the CWPSU. The objective of this paper is to present, in a concise form, basic information about the radioactive waste management infrastructure, regulations, policies and strategies including the total inventory of low level radioactive waste in the country. For improvement and strengthening in terms of operational capability, safety and security of RW including spent radioactive sources and overall security of the facility (CWPSF), the facility is expected to serve waste management need in the country and, in the course of time, the facility may be turned into a regional level training centre. It is essential for safe conduction and culture of research and application in nuclear science and technology maintaining the relevant safety of man and environment and future generations to come. (authors)« less

  19. Reconstruction of multiple P-T-t stages from retrogressed mafic rocks: Subduction versus collision in the Southern Brasília orogen (SE Brazil)

    NASA Astrophysics Data System (ADS)

    Tedeschi, Mahyra; Lanari, Pierre; Rubatto, Daniela; Pedrosa-Soares, Antônio; Hermann, Jörg; Dussin, Ivo; Pinheiro, Marco Aurélio P.; Bouvier, Anne-Sophie; Baumgartner, Lukas

    2017-12-01

    The identification of markers of subduction zones in orogenic belts requires the estimation of paleo-geothermal gradients through pressure-temperature-time (P-T-t) estimates in mafic rocks that potentially derive from former oceanic units once. However, such markers are rare in supracrustal sequences specially in deeply eroded and weathered Precambrian orogens, and reconstructing their metamorphic history is challenging because they are commonly retrogressed and only preserve a few mineral relicts of high-pressure metamorphism. Metamorphosed mafic rocks from Pouso Alegre region of the Neoproterozoic Southern Brasília Orogen outcrop as rare lenses within continental gneisses. They have previously been classified as retrograde eclogites, based on the presence of garnet and the characteristic symplectitic texture replacing omphacite. These rocks were interpreted to mark the suture zone between the Paranapanema and São Francisco cratons. To test the possible record of eclogitic conditions in the Pouso Alegre mafic rocks, samples including the surrounding felsic rocks have been investigated using quantitative compositional mapping, forward thermodynamic modeling and in-situ dating of accessory minerals to refine their P-T-t history. In the metamorphosed mafic rocks, the peak pressure assemblage of garnet and omphacite (Jd20, reconstructed composition) formed at 690 ± 35 °C and 13.5 ± 3.0 kbar, whereas local retrogression into symplectite or corona occurred at 595 ± 25 °C and 4.8 ± 1.5 kbar. The two reactions were coupled and thus took place at the same time. A zircon U-Pb age of 603 ± 7 Ma was obtained for metamorphic rims and linked to the retrogression stage. Monazite and metamorphic zircon U-Th-Pb ages for the surrounding rocks are at ca. 630 Ma and linked to peak pressure conditions similar to the one recorded by the mafic rocks. The low maximal pressure of 14 kbar and the high geothermal gradient do not necessarily support subduction process-related metamorphism but, more likely, metamorphism related to continental collision.

  20. First Archean Zircons Found in Oceanic Crustal Rocks of Mauritius

    NASA Astrophysics Data System (ADS)

    Ashwal, L. D.; Wiedenbeck, M.; Torsvik, T. H.

    2016-12-01

    A fragment of continental crust has been postulated to underlie the young plume-related lavas of the Indian Ocean island of Mauritius, on both the basis of inversion of gravity anomaly data (crustal thickness) and the recovery of Proterozoic zircons (660-1971 Ma) from basaltic beach sands (Torsvik et al., Nature Geosci. 6, 227, 2013). We recovered 13 zircon grains from a trachyte associated with the Older Series basalts (9.0-4.7 Ma) of Mauritius, the second youngest member of a hot-spot track extending from the active plume site of Réunion. Extreme care was taken to avoid contamination during sample processing. Ten of the 13 grains are featureless, with no internal structures, and SIMS analyses (Cameca 1280-HR instrument) yield 49 spots with Miocene U-Pb systematics and a mean age of 5.7 ± 0.2 Ma (1 sd), constraining the magmatic crystallization age of the trachyte. Three grains with partially resorbed magmatic zoning, partial metamictization and mineral inclusions (quartz, K-feldspar, monazite) show uniquely mid- to late-Archean systematics: 20 spot analyses give concordant to near-concordant ages of 3030 ± 5 Ma to 2766 ± 13 Ma. This suggests that during ascent, the trachytic magmas incorporated silicic continental crustal material that preserves a record of several hundred m.y. of Archean evolution. This is consistent with Sr-Nd isotope systematics of the Mauritian trachytes, which can be modelled as having been contaminated with 0.4-3.5% of ancient granitoid crustal components. Our new age results, combined with the Proterozoic ages of zircons recovered from Mauritian beach sands, are best correlated with continental crust of east-central Madagascar, presently 700 km west of Mauritius, where Archean gneisses and Neoproterozoic intrusive rocks are juxtaposed such that a 2000 km2 area could correspond to a fragment of continent presently underlying Mauritius. This, and other continental fragments formed during Gondwana break-up, may be scattered across the western Indian Ocean. Some were later blanketed, and in the case of Mauritius, sampled, by plume-related volcanics.

  1. A Weighty Subject: Exploration for Heavy Minerals Across the State of Mississippi

    NASA Astrophysics Data System (ADS)

    Gifford, J.; Woolsey, A. I.; Yarbrough, L. D.; Platt, B. F.; Widanagamage, I. H.; Easson, G. L.

    2017-12-01

    Preliminary analysis has shown that an array of industrial minerals is known to occur in offshore deposits on the Gulf Coast as well as on-shore deposits in the Upper Cretaceous and Paleogene-Neogene clastic units, such as the Meridian Sand Member of the Eocene Tallahatta Formation in northeastern Mississippi. Furthermore, economic deposits occur within Holocene sediments along the Pearl and Pascagoula Rivers as well as along the modern Gulf of Mexico shoreline. These industrial minerals include suites of heavy minerals (specific gravity ≥2.97) that contain oxides of titanium (ilmenite, rutile, and leucoxene), oxides of zirconium (zircon), and the complex rare-earth-bearing phosphates (monazite and xenotime). These oxides are essential constituents of a wide-range of industrial materials critical to common technologies and the bulk of these mineral commodities are presently dependent on foreign supply. Current offshore deposits have been shown to be economic but are likely no longer accessible given their location within the Gulf Islands National Seashore. This comprehensive study is developing a heavy mineral occurrence dataset for the state of Mississippi including detailed analyses of the industrial mineral resources available within the state. More than 100 samples have been collected across the state from active and non-operating sand pit mining locations. The heavy mineral fraction of each sample was separated using lithium heteropolytungstates (LST) and gravity-based separation techniques. A grain mount for each sample was prepared with the heavy mineral fraction and the percentage values for each heavy mineral species were obtained from 200 grain counts per sample grain mount. Typical heavy mineral fraction for the sample set was approximately 0.9 % with an array from 0.0% to some samples ranging to a greater concentration of 7.5%. The resulting dataset will be further analyzed for geospatial similarities in trends and occurrences. Additional data collection is needed to confirm if heavy mineral enrichment is related to specific geomorphologic features, depositional features, or a combination of weathering specific source material at particular times in the geologic record.

  2. Role of light and heavy minerals on natural radioactivity level of high background radiation area, Kerala, India.

    PubMed

    Ramasamy, V; Sundarrajan, M; Suresh, G; Paramasivam, K; Meenakshisundaram, V

    2014-02-01

    Natural radionuclides ((238)U, (232)Th and (40)K) concentrations and eight different radiological parameters have been analyzed for the beach sediments of Kerala with an aim of evaluating the radiation hazards. Activity concentrations ((238)U and (232)Th) and all the radiological parameters in most of the sites have higher values than recommended values. The Kerala beach sediments pose significant radiological threat to the people living in the area and tourists going to the beaches for recreation or to the sailors and fishermen involved in their activities in the study area. In order to know the light mineral characterization of the present sediments, mineralogical analysis has been carried out using Fourier transform infrared (FTIR) spectroscopic technique. The eight different minerals are identified and they are characterized. Among the various observed minerals, the minerals such as quartz, microcline feldspar, kaolinite and calcite are major minerals. The relative distribution of major minerals is determined by calculating extinction co-efficient and the values show that the amount of quartz is higher than calcite and much higher than microcline feldspar. Crystallinity index is calculated to know the crystalline nature of quartz present in the sediments. Heavy mineral separation analysis has been carried out to know the total heavy mineral (THM) percentage. This analysis revealed the presence of nine heavy minerals. The minerals such as monazite, zircon, magnetite and illmenite are predominant. Due to the rapid and extreme changes occur in highly dynamic environments of sandy beaches, quantities of major light and heavy minerals are widely varied from site to site. Granulometric analysis shows that the sand is major content. Multivariate statistical (Pearson correlation, cluster and factor) analysis has been carried out to know the effect of mineralogy on radionuclide concentrations. The present study concluded that heavy minerals induce the (238)U and (232)Th concentrations. Whereas, light mineral (calcite) controls the (40)K concentration. In addition to the heavy minerals, clay content also induces the important radioactive variables. © 2013 Published by Elsevier Ltd.

  3. Titanium mineral resources of the western U.S.: an update

    USGS Publications Warehouse

    Force, Eric R.; Creely, Scott

    2000-01-01

    Thirteen deposits or districts in the western U.S. have been examined in which titaniummineral resources have been reported or implied. These deposits are of the following general types (in probable order of importance): 1) Cretaceous shoreline placer deposits, 2) silica-sand deposits of California, 3) fluvial monazite placers of Idaho, 4) anorthositerelated deposits, and 5) clay and bauxite deposits of the northwestern U.S. Relative to previous reports, this one shows some greater and some lesser resources (table 1). In any case, titanium-mineral resources of the western U.S. (west of 103° longitude) remain modest at world scale except as unconventional (especially perovskite) and by-product (especially porphyry) resources. Some deposits, however, have enhanced value to the titanium explorationist for the geologic relations they illustrate. Among the new conclusions are: a) Loci of Cretaceous shoreline placers form linear patterns, nested as a function of age, that can be traced for thousands of kilometers, permitting focused exploration in whole new mountain ranges. b) Medial hematite-ilmenite solid-solution, which is highly magnetic, is a major carrier of TiO2 values in the Cretaceous deposits of Wyoming. This phase was previously thought to be relatively rare. c) Regressive shoreline placer deposits in indurated Cretaceous sequences expose intricate facies relations, such as the construction of shoreface sequences by long-shore drift over tidal-channel fill, without much loss of paleogeographic information. d) Due to deep weathering, virtually every Eocene sediment that accumulated in the Ione basin at the foot of the Sierra Nevada has economic value, permitting recovery of altered ilmenite and zircon along with silica, clay, coal, and gold. Ilmenite is most abundant in newly recognized shoreline sands. e) Upper Tertiary fluvial placers of Idaho formed in and filled fault-bounded basins and thus are far more voluminous than deposits in the modern valley system. Previously reported resources are thus far too low. f) Mafic igneous rocks of Proterozoic age near Bagdad, Arizona are of ophiolitic affinity, but contain nelsonitic ilmenite enrichments associated with anorthositic layers.

  4. Assessing the origin of old apparent ages derived by Pb stepwise leaching of vein-hosted epidote from Mount Isa, northwest Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Duncan, Robert J.; Maas, Roland

    2014-12-01

    Epidote metasomatism affected large areas of tholeiitic metabasalts of the ~1,780 Ma Eastern Creek Volcanics in the Western Fold Belt of the Proterozoic Mount Isa inlier. Hydrothermal epidote generally occurs in quartz veins parallel to or boudinaged within the dominant S2 fabrics which formed during the regional metamorphic peak at ~1,570 Ma associated with the Isan orogeny. Previously published stable isotopic and halogen data suggest that the fluids responsible for epidote formation are metamorphic in origin (with an evaporitic component). Application of the Pb stepwise leaching technique to the epidote does not separate radiogenic Pb4+ and common Pb2+, generating little spread in 206Pb/204Pb (between 16.0 and 30.5). The causes for this relatively low range are twofold: There is little radiogenic Pb in the epidotes (the most radiogenic steps account for <1 % of Pb released) and both Pb2+ and uranogenic Pb4+ substitute into the same site in the epidote crystal lattice. Consequently, age regressions using the Pb stepwise leaching data give ages between 150 and 1,500 myrs older than the host rocks and over 450 myrs older than the thermal metamorphic peak. These old ages are attributed to chemical inheritance from the host metabasalts, via radiogenic Pb release by breakdown of phases such as zircon, monazite, titanomagnetite, and ilmenite during metamorphism. This idea is supported by trace element data and chrondrite-normalized rare earth element patterns that are similar to both the metabasalts and epidotes (except for a variable Eu anomaly in the latter). Relatively high fO2 during vein formation (Fe3+ dominates in the epidote crystal lattice) would allow the incorporation of Th4+ and exclusion of U6+ and would explain elevated Th/U ratios (up to 12) in epidote compared with the host metabasalts. Non-incorporation of U would explain the relatively low U/Pb ratios and non-radiogenic character of the epidote. This process may provide a source of metal for the small U deposits around Mount Isa and may also suggest a relationship between U mineralization and regional Cu mobilization during the Isan orogeny. Our work suggests that non-conventional geochronometers should be used only if additional geological information and geochemical data (e.g., mineral chemistry, trace elements) are available to evaluate any resulting age calculations.

  5. Origin of reverse compositional and textural zoning in granite plutons by localized thermal overturn of stratified magma chambers

    NASA Astrophysics Data System (ADS)

    Trubač, Jakub; Janoušek, Vojtěch; Žák, Jiří; Somr, Michael; Kabele, Petr; Švancara, Jan; Gerdes, Axel; Žáčková, Eliška

    2017-04-01

    This study integrates gravimetry and thermal modelling with petrology, U-Th-Pb monazite and zircon geochronology and whole-rock geochemistry of the early Carboniferous Říčany Pluton, Bohemian Massif, in order to discuss the origin of compositional and textural zoning in granitic plutons and complex histories of horizontally stratified, multiply replenished magma chambers. The pluton consists of two coeval, nested biotite (-muscovite) granite facies: outer one, strongly porphyritic (SPm) and inner one, weakly porphyritic (WPc). Their contact is concealed but is likely gradational over several hundreds of meters. The two facies have nearly identical modal composition, are subaluminous to slightly peraluminous and geochemically evolved. Mafic microgranular enclaves, commonly associated with K-feldspar phenocryst patches, are abundant in the pluton center and indicate a repeated basic magma injection and its multistage interactions with the granitic magma and nearly solidified cumulates. Furthermore, the gravimetric data show that the nested pluton is only a small outcrop of a large anvil-like body reaching the depth of at least 14 km, where the pluton root is expected. Trace-element compositions reveal that the pluton is doubly reversely zoned. On the pluton scale, the outer SRG is geochemically more evolved than the inner WPc. On the scale of individual units, outward whole-rock geochemical variations within each facies (SPm, WPc) are compatible with fractional crystallization dominated by feldspars. The proposed genetic model invokes vertical overturn of a deeper, horizontally stratified anvil-shaped magma chamber. The overturn was driven by reactivation of resident felsic magma from the K-feldspar-rich crystal mush. The energy for the melt remobilization, extraction and subsequent ascent is thought to be provided by a long-lived thermal anomaly above the pluton feeding zone, enhanced by the multiple injections of hot basic magmas. In general, it is concluded that the three-dimensional shape of the granitic bodies exerts a first-order control on their cooling histories and thus also on their physico-chemical evolution. Thicker and longer lived portions of magma chambers are the favourable sites for extensive fractionation and/or, potentially vigorous interaction with the basic magmas. These hot domains are then particularly prone to rejuvenation and subsequent extraction of highly mobile magma leading potentially to volcanic eruptions.

  6. Detrital Zircons From the Jack Hills and Mount Narryer, Western Australia: Geochronological, Morphological, and Geochemical Evidence for Diverse >4000 Ma Source Rocks

    NASA Astrophysics Data System (ADS)

    Crowley, J. L.; Myers, J. S.; Sylvester, P. J.; Cox, R. A.

    2004-05-01

    Detrital zircons from all major clastic units in the Jack Hills and Mount Narryer metasedimentary belts, Western Australia, were analyzed for morphology, internal zoning, inclusion mineralogy, age, and trace element concentrations (latter two obtained by laser-ablation microprobe ICPMS). The results show that zircons were derived from a wide diversity of rocks, including previously described, >4000 Ma grains that are older than any known terrestrial rocks. In three metaconglomerate samples from the western Jack Hills, 4200-3800 Ma zircons ("old grains") comprise 14% of the population, 3800-3600 Ma grains form only 2%, and 3550-3250 Ma zircons ("young grains") are dominant with a significant peak at 3380 Ma. Old and young grains are interpreted as being from similar rock types because they are indistinguishable in trace element concentrations, size (several hundred microns), morphology (subequant, typically fragmented), internal zoning (typically both oscillatory and sector), and U concentration (50-200 ppm). Many of these properties suggest an intermediate plutonic source, whereas an evolved granitic source was previously interpreted from rare-earth element and oxygen isotope data. Detrital zircons in quartzites and metaconglomerates at Mount Narryer differ significantly from zircons from the western Jack Hills. Old grains comprise only 3% (most of which are 4200-4100 Ma), 3800-3600 Ma zircons form 31%, and there are peaks at 3650, 3600, and 3500 Ma. Old and young grains have similar properties that suggest granitic sources, such as elongate prismatic morphology, oscillatory zoning, high U concentrations (100-600 ppm), and xenotime and monazite inclusions. Trace element concentrations are broadly similar to those in Jack Hills zircons, with notable exceptions being generally higher U, smaller Ce and Eu anomalies, and lower Nb/Ta. It is considered unlikely that Jack Hills zircons were derived from granitic gneisses that surround the metasedimentary belts because only a few detrital grains match gneiss zircons in age, morphology, and U concentration. The sources were probably distal, or perhaps destroyed or removed from the region during Neoarchean tectonism. In contrast, Mount Narryer zircons are similar to gneiss zircons, suggesting they were derived from the gneisses, which may include a minor, currently undiscovered 4200-4100 Ma granitic component. Such diversity in age and nature of Hadean detrital zircons is compelling evidence that Earth's crust was heterogeneous by 4200 Ma.

  7. Petrogenetic evolution of the Mesoproterozoic garnet-bearing granitoids of Dumka, Eastern India: Implication of garnet and biotite composition

    NASA Astrophysics Data System (ADS)

    Roy, P.; Goswami, B.; Ghosal, A.; Nanda, J.; Basak, A.; Bhattacharyya, C.

    2017-12-01

    Garnet is a petrologically significant accessory mineral of igneous rocks. Granite, tonalite, charnoenderbite and enderbite are prominent facies of 1450 Ma old Dumka Granitoids, Jharkhand district, India. Interestingly all the facies of Dumka granitoids contain good amount of garnet and biotite. Sphene, magnetite, ilmenite, zircon, monazite, allanite and rare hornblende present as accessory minerals. The garnets are mainly solid solutions between almandine, pyrope and grossular. Garnets contain 70.5-75.8 mol% of the almandine, 12.8-17.5 mol% of pyrope, 8-11 mol% of grossular and 0.6-2.9 mol% of spessartine. Composition of garnets fit well in the compositional range of igneous garnets suggested by Miller and Stoddard (1981). High MgO and CaO contents together with very low MnO of these garnets suggest that these have been crystallized from granitoid magma under high pressure in the lower crust. No compositional zoning is found in the analyzed garnets. Biotites of the granitoids are rich in Mg [Mg/(Fe+Mg) ratio > 0.4]. Biotites plot in Abdel-Rahman's (1994) field for biotites of calc-alkaline granites. The matrix biotites in these granitoids have higher Ti content than biotites coexist with garnets. Biotites coexisting with garnet are richer in Mg/Fe ratio than matrix biotites. Mg/Fe distribution coefficients between garnet core and matrix biotite (KD= (Mg/Fe)grt/(Mg/Fe)bt) for the Dumka enderbite and tonalite are 0.275 to 0.280 while for the granites the KD varies from 0.189 to 0.264. These KD values are higher than the values obtained from high-grade metamorphic rocks and are consistent with the values of igneous granitoids as shown by Lyons and Morse (1970). Absence of zoning in magmatic garnets in Dumka Granitoids indicate that these have crystallized above 700 °C, whereas absence of "spessartine bell-shaped profile" of the garnets of present study refute their metamorphic origin or that these crystallized below 700 °C (Dahlquist et al., 2007). Geothermobaric calculations reveal an initial crystallization temperature of 850°C and a pressure of 7.0-8.0 kbar, indicating that the parental magma was emplaced at lower crustal depths ( 25 km). Our studies reveal that garnets of Dumka Granitoids formed by direct crystallization from calc-alkaline magma in equilibrium with solid phases such as biotite.

  8. Cenozoic extensional tectonics of the Western Anatolia Extended Terrane, Turkey

    NASA Astrophysics Data System (ADS)

    Çemen, I.; Catlos, E. J.; Gogus, O.; Diniz, E.; Hancer, M.

    2008-07-01

    The Western Anatolia Extended Terrane in Turkey is located on the eastern side of the Aegean Extended Terrane and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene during the formation of the Izmir-Ankara-Erzincan suture zone. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal-slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the Central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alaşehir and the south-dipping Büyük Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alaşehir, Büyük Menderes, and Simav grabens, containing high-grade metamorphic rock fragments. The third stage of the extension was triggered by the lateral extrusion (tectonic escape) of the Anatolian plate when the North Anatolian fault was initiated at about 5 Ma. This extensional phase produced the high-angle faults in the Alaşehir, Büyük Menderes and Simav grabens and the high-angle faults controlling the Küçük Menderes graben.

  9. Kinematics of Post-Collisional Extensional Tectonics and Exhumation of the Menderes Massif in the Western Anatolia Extended Terrane, Turkey

    NASA Astrophysics Data System (ADS)

    Cemen, I.; Catlos, E. J.; Diniz, E.; Gogus, O.; Ozerdem, C.; Baker, C.; Kohn, M. J.; Goncuoglu, C.; Hancer, M.

    2006-12-01

    The Western Anatolia Extended Terrane in Turkey is one of the best-developed examples of post-collisional extended terranes and contains one of the largest metamorphic core complexes in the world, the Menderes massif. It has experienced a series of continental collisions from the Late Cretaceous to the Eocene as the Neotethys Ocean closed and the Izmir-Ankara-Erzincan suture zone was formed. Based our field work and monazite ages, we suggest that the north-directed postcollisional Cenozoic extension in the region is the product of three consecutive, uninterrupted stages, triggered by three different mechanisms. The first stage was initiated about 30 Ma ago, in the Oligocene by the Orogenic Collapse the thermally weakened continental crust along the north-dipping Southwest Anatolian shear zone. The shear zone was formed as an extensional simple-shear zone with listric geometry at depth and exhibits predominantly normal- slip along its southwestern end. But, it becomes a high-angle oblique-slip shear zone along its northeastern termination. Evidence for the presence of the shear zone includes (1) the dominant top to the north-northeast shear sense indicators throughout the Menderes massif, such as stretching lineations trending N10E to N30E; and (2) a series of Oligocene extensional basins located adjacent to the shear zone that contain only carbonate and ophiolitic rock fragments, but no high grade metamorphic rock fragments. During this stage, erosion and extensional unroofing brought high-grade metamorphic rocks of the central Menderes massif to the surface by the early Miocene. The second stage of the extension was triggered by subduction roll-back and associated back-arc extension in the early Miocene and produced the north-dipping Alasehir and the south-dipping Buyuk Menderes detachments of the central Menderes massif and the north-dipping Simav detachment of the northern Menderes massif. The detachments control the Miocene sedimentation in the Alasehir, Buyuk Menderes, and Simav grabens, containing high-grade metamorphic rock fragments. The third stage of the extension was triggered by the lateral extrusion (tectonic escape) of the Anatolian plate when the North Anatolian fault was initiated at about 5 Ma. This extensional phase produced the high- angle faults in the Alasehir, Buyuk Menderes and Simav grabens and the high-angle faults controlling the Kucuk Menderes graben.

  10. U-Pb age constraints for the La Tuna Granite and Montevideo Formation (Paleoproterozoic, Uruguay): Unravelling the structure of the Río de la Plata Craton

    NASA Astrophysics Data System (ADS)

    Pamoukaghlián, Karina; Gaucher, Claudio; Frei, Robert; Poiré, Daniel G.; Chemale, Farid; Frei, Dirk; Will, Thomas M.

    2017-11-01

    The Río de la Plata Craton is a continental block that crops out in Uruguay, eastern Argentina, southernmost Brazil and Paraguay. It comprises in Uruguay the Piedra Alta, Tandilia and Nico Pérez terranes, separated by the Colonia and the Sarandí del Yí megashears. The La Tuna Granite, which intrudes the Araminda metasandstones in the Tandilia Terrane, was considered Cambrian in age and the intruded sandstones were assigned to the Neoproterozoic Piedras de Afilar Formation. We show that the granite is Paleoproterozoic in age and that the host metasandstones do not belong to the Piedras de Afilar Formation, but to the Paleoproterozoic Montevideo Formation. U-Pb LA ICP-MS of zircon ages for the La Tuna Granite yielded a concordant crystallization age of 2156 ± 26 Ma. Furthermore a metamorphic event at 2010 ± 9 Ma is revealed by Pb stepwise leaching dating of monazites. U-Pb detrital zircon ages of the host Araminda metasandstone yield an upper intercept discordia age of 2152 ± 29 Ma, which marks the intrusion of the La Tuna pluton, and which is in accordance with the zircon U-Pb LA ICP MS constraints. A concordant U-Pb detrital zircon age of 2465 ± 40 Ma provides a maximum depositional age constraint for the metapsammites. Comparing quartz arenites of the Ediacaran Piedras de Afilar Formation with the Araminda metaquartzites, we conclude that they are very similar regarding petrology but they differ in age and metamorphic overprint. Detrital zircons in quartz arenites of the Piedras de Afilar Formation show youngest ages of 1.0 Ga. On the other hand, detrital zircons recovered from the Araminda metasandstones and the age of the intruding granite allow interpreting a depositional age between 2465 and 2150 Ma. Nd model ages show crustal residence times in average more than 200 myr older for the Tandilia Terrane both in Uruguay and Argentina, with a significant Neoarchean component, which is lacking in the Piedra Alta Terrane. Whereas the Piedra Alta Terrane was formed rapidly from a juvenile source, the Tandilia Terrane shows a more protracted history. Our data support the interpretation of the Tandilia Terrane as a separate tectonostratigraphic unit.

  11. Geochemistry of the Spor Mountain rhyolite, western Utah, as revealed by laser ablation ICP-MS, cathodoluminescence, and electron microprobe analysis

    NASA Astrophysics Data System (ADS)

    Dailey, S. R.; Christiansen, E. H.; Dorais, M.; Fernandez, D. P.

    2015-12-01

    The Miocene topaz rhyolite at Spor Mountain in western Utah hosts one of the largest beryllium deposits in the world and was responsible for producing 85% of the beryllium mined worldwide in 2010 (Boland, 2012). The Spor Mountain rhyolite is composed primarily of Ca-poor plagioclase (An8), sodic sanidine (Or40), Fe-rich biotite (Fe/(Fe+Mg)>0.95; Al 1.2-1.4 apfu), and Ti-poor quartz, along with several trace-element rich accessory phases including zircon, monazite, thorite, columbite, and allanite. Cathodoluminescence (CL) studies of quartz show oscillatory zoning, with 80% of the examined crystals displaying euhedral edges and slightly darker rims. CL images were used to guide laser ablation (LA) ICP-MS analysis of quartz, along with analyses of plagioclase, sanidine, biotite, and glass. Ti concentrations in quartz are 20±6 ppm; there is no quantifiable variation of Ti from core to rim within the diameter of the laser spot (53 microns). Temperatures, calculated using Ti in quartz (at 2 kb, aTiO2=0.34), vary between 529±10 C (Thomas et al., 2011), 669±13 C (Huang and Audetat, 2012), and 691±13 C (Wark and Watson, 2006). Two feldspar thermometry yield temperatures of 686±33 C (Elkins and Grove, 1990) and 670±41 C (Benisek et al., 2010). Zr saturation temperatures (Watson and Harrison, 1983) average 711±28 C. Analysis of the glass reveal the Spor Mountain rhyolite is greatly enriched in rare elements (i.e. Li, Be, F, Ga, Rb, Nb, Mo, Sn, and Ta) compared to average continental crust (Rudnick and Gao, 2003). Be in the glass can have as much as 100 ppm, nearly 50 times the concentration in continental crust. REE partition coefficients for sanidine are 2 to 3 times higher in the Spor Mountain rhyolite when compared to other silicic magmas (Nash and Crecraft, 1985; Mahood and Hildreth, 1983), although plagioclase tends to have lower partition coefficients; biotite has lower partition coefficients for LREE and higher partition coefficients for HREE. The patterns of trace element enrichment and depletion are similar to those of the measured partition coefficients, consistent with a major role for extensive fractional crystallization in the origin of the Be enriched magma.

  12. Dating faults by quantifying shear heating

    NASA Astrophysics Data System (ADS)

    Maino, Matteo; Casini, Leonardo; Langone, Antonio; Oggiano, Giacomo; Seno, Silvio; Stuart, Finlay

    2017-04-01

    Dating brittle and brittle-ductile faults is crucial for developing seismic models and for understanding the geological evolution of a region. Improvement the geochronological approaches for absolute fault dating and its accuracy is, therefore, a key objective for the geological community. Direct dating of ancient faults may be attained by exploiting the thermal effects associated with deformation. Heat generated during faulting - i.e. the shear heating - is perhaps the best signal that provides a link between time and activity of a fault. However, other mechanisms not instantaneously related to fault motion can generate heating (advection, upwelling of hot fluids), resulting in a difficulty to determine if the thermal signal corresponds to the timing of fault movement. Recognizing the contribution of shear heating is a fundamental pre-requisite for dating the fault motion through thermochronometric techniques; therefore, a comprehensive thermal characterization of the fault zone is needed. Several methods have been proposed to assess radiometric ages of faulting from either newly grown crystals on fault gouges or surfaces (e.g. Ar/Ar dating), or thermochronometric reset of existing minerals (e.g. zircon and apatite fission tracks). In this contribution we show two cases of brittle and brittle-ductile faulting, one shallow thrust from the SW Alps and one HT, pseudotachylite-bearing fault zone in Sardinia. We applied, in both examples, a multidisciplinary approach that integrates field and micro-structural observations, petrographical characterization, geochemical and mineralogical analyses, fluid inclusion microthermometry and numerical modeling with thermochronometric dating of the two fault zones. We used the zircon (U-Th)/He thermochronometry to estimate the temperatures experienced by the shallow Alpine thrust. The ZHe thermochronometer has a closure temperature (Tc) of 180°C. Consequently, it is ideally suited to dating large heat-producing faults that were active at shallow depths (<6-7 km) where wall-rock temperature does not exceed Tc. On the other hand, the retrogressed pseudotachylites from the Variscan basement of Sardina developed in deeper crustal levels and produced considerably higher temperatures (>800 °C). They have been dated using laser ablation ICP-MS on monazites and zircons. This large dataset provides the necessary constraints to explore the potential causes of heating, its timing and how it is eventually related to fault motion.

  13. In situ rutile petrochronology: texture-related T, Paleoproterozoic inheritance and a Pan-African overprint in the oldest subduction-related eclogites, Usagaran Orogen, Tanzania

    NASA Astrophysics Data System (ADS)

    Moeller, A.; Kraus, K.; Herms, P.; Appel, P.; Raase, P.

    2014-12-01

    Rutile U-Pb thermochronology is applied successfully by both TIMS and beam methods to date cooling events in mafic and metapelitic rocks, as well as in detrital studies. The Zr-in-rutile thermometer is very robust to thermal diffusion, and generally requires complete recrystallization to change recorded crystallization temperatures. Evidence for diffusion of HFSE elements in rutile is sparse; whereas U-Pb chronology generally records diffusion controlled cooling from the last event. This study follows conventional thermobarometry and U-Pb TIMS results on monazite, sphene and rutile of Möller et al. (1995) establishing a 2 Ga eclogite facies event from MORB-like metabasic, and metapelitic rocks in the Usagaran Orogen of Tanzania, interpreted to be the oldest outcrops of subduction-related eclogites. Rutile from both rock types were discordant near a ca. 500 Ma lower intercept, confirming a thermal overprint postulated on the basis of K-Ar and Rb-Sr mica ages by e.g. Wendt et al. (1972). The age of the eclogite-facies event was confirmed by U-Pb zircon dating of a 1991±2 Ma crosscutting pegmatite (Collins et al., 1999). We present in situ LA-ICP-MS rutile petrochronology on five metabasic and metapelitic eclogite facies samples with variable retrograde amphibolite-facies recrystallization. Thermometry confirms conventional Fe-Mg results, including higher peak temperatures in metabasites. Traverses on rutile inclusions in large garnet prophyroblasts in metapelites show increasing temperatures from cores outwards and a slight decrease towards outermost rims, with peak T coinciding with highest Mg# and highest grossular content, hence consistent with preservation of prograde zoning in the garnets and a brief eclogite facies event. Large rutiles (800μm) in recrystallized samples record temperature zoning profiles. U-Pb results show inheritance of near concordant 2 Ga domains, but dominantly confirm the ca. 490 Ma amphibolite facies overprint. The study is an excellent example of the potential of in-situ rutile petrochronology in complex, polymetamorphic rocks when meticulous attention is given to textural context. Möller et al., 1995, Geology, v. 23, p. 1067-1070. Collins et al., 2004, Earth Planet. Sci. Lett., v. 224, p. 175-192. Wendt et al., 1972, 24th Internat. Geol. Congr., Proc., p. 295-314.

  14. Field occurrence and lithology of Archean hydrothermal systems in the 3.2Ga Dixon Island Formation, Western Australia

    NASA Astrophysics Data System (ADS)

    Aihara, Y.; Kiyokawa, S.; Ito, T.; Ikehara, M.; Yamaguchi, K. E.; Horie, K.; Sakamoto, R.; Miki, T.

    2013-12-01

    Stratigraphic transition of black chert to iron-rich sedimentary rocks above volcanic sequences with hydrothermal systems is common and characteristic feature of Archean greenstone belts. The 3.2 Ga Dixon Island Formation, exposed along the northern coast of Dixon Island located in the coastal Pilbara terrane, Western Australia, is one of such units and the focus of our study. We introduce field occurrence and lithology of the Dixon Island Formation that preserves features of paleohydrohermal environment in the Mesoarchean ocean. The Dixon Island Formation is composed of the following three members (in ascending order): Komatiite-Rhyolite Tuff, Black Chert, and Varicolored Chert members (Kiyokawa and Taira, 1998). Here we focus on the Komatiite-Rholite Tuff member. It preserves two cycles of highly altered komatiite lavas and well-stratified rhyolite tuff. Komatiite lavas include dendritic crystals of chrome spinel and ghosts of spinifex, euhedral and sheet-like olivines and pyroxenes. These rocks are now composed of granular microcrystalline quartz with chromian muscovite, chrome spinel and chrorite that formed by intense silicification. Its upper part contains hydrothermal veining and alteration (i.e., many vein swarms composed of veins of quartz and organic carbon-rich black chert). Most black chert veins intrude vertically into overlying layers, and contain barite, pyrite, monazite and clay minerals which were least affected by silicificatio. Based on the cross-cutting relationship seen in the outcrops, we recognized two generations of black chert veins (type 1 and type 2 veins; Kiyokawa et al., 2006). Type 1 veins are mainly composed of carbonaceous peloids in a microcrystalline quartz matrix. Euhedral and xenocrystic tourmaline are found only in Type1 veins. Type 2 veins are organic carbon-poor and contain fragments of black chert and siliceous volcanic breccia (Kiyokawa et al., 2006). Intense silicification of komatiitic volcaniclastics and lava, enriched in Si and K and depleted in Mg, occurred earlier than the formation of black chert veins and probably during sedimentation of the overlying Black Chert member. Petrographycally, tourmaline in Type1 veins formed by hydrothermal processes and can be used to infer physicochemical conditions of the hydrothermal activity. Fragmentation of black chert and volcanic rocks within Type 2 veins was probably due to high pressure caused by hydrothermal activity.

  15. An experimental study of the behaviour of cerium/molybdenum ratios during subduction: Implications for tracing the slab component in the Lesser Antilles and Mariana Arc

    NASA Astrophysics Data System (ADS)

    Skora, Susanne; Freymuth, Heye; Blundy, Jon; Elliott, Tim; Guillong, Marcel

    2017-09-01

    Arc magmas are very distinct in their geochemical signatures, a consequence of trace element enriched components from the subducting slab that are incorporated into melts of the overlying mantle wedge. However, it is not always straightforward to distinguish such slab components from assimilation of crustal rocks during subsequent differentiation, given that both reservoirs can share similar geochemical characteristics. This has prompted the development of new tools, such as 98Mo/95Mo analyses used in combination with Ce/Mo measurements. The diverse range of δ98/95Mo in the surface environment gives rise to variable isotopic compositions of subducted Mo. Most diagnostic of these is the extremely isotopically heavy Mo in marine black shales, such as those drilled in the vicinity of the Lesser Antilles. However, subducting assemblages are invariably complex and differing melting behaviours and contrasting δ98/95Mo of various crustal components may counter-balance one another, requiring a more detailed investigation of the behaviour of Mo and Ce in the down-going slab. This study is dedicated to identifying possible hosts for Mo and Ce in sediments and basalt at sub-arc depths. New melting experiments were performed (3 GPa, 800-900 °C), using synthetic carbon-rich black shale and calcareous sediment compositions from the Lesser Antilles arc. In addition, new analyses of Mo concentrations and Ce/Mo data of previously published partial melting studies on altered oceanic crust and volcaniclastics (Mariana Arc) are presented. Our study suggests that sulfide and to a lesser extent rutile are the major hosts for Mo in eclogites, whereas the presence or absence of monazite (Ca-poor sediments), epidote (Ca-rich sediments) and carbonate (CaCO3-rich sediments) controls Ce concentrations in sediments. Redox conditions are found to be of great importance for the Ce/Mo ratios of slab components derived from these lithologies because of their influence on sulfide and epidote stability. It is further shown that rutile only hosts Mo at suitably reducing conditions, in concordance with previous studies. The combination of measured Ce/Mo with our experimental results thus places important constrains on phase petrology and redox conditions in the subducted slab.

  16. Metamorphic and geochronogical study of the Triassic El Oro metamorphic complex, Ecuador: Implications for high-temperature metamorphism in a forearc zone

    NASA Astrophysics Data System (ADS)

    Riel, N.; Guillot, S.; Jaillard, E.; Martelat, J.-E.; Paquette, J.-L.; Schwartz, S.; Goncalves, P.; Duclaux, G.; Thebaud, N.; Lanari, P.; Janots, E.; Yuquilema, J.

    2013-01-01

    In the forearc of the Andean active margin in southwest Ecuador, the El Oro metamorphic complex exhibits a well exposed tilted forearc section partially migmatized. We used Raman spectroscopy on carbonaceous matter (RSCM) thermometry and pseudosections coupled with mineralogical and textural studies to constrain the pressure-temperature (P-T) evolution of the El Oro metamorphic complex during Triassic times. Our results show that anatexis of the continental crust occurred by white-mica and biotite dehydration melting along a 10 km thick crustal domain (from 4.5 to 8 kbar) with increasing temperature from 650 to 700 °C. In the biotite dehydration melting zone, temperature was buffered at 750-820 °C in a 5 km thick layer. The estimated average thermal gradient during peak metamorphism is of 30 °C/km within the migmatitic domain can be partitioned into two apparent gradients parts. The upper part from surface to 7 km depth records a 40-45 °C/km gradient. The lower part records a quasi-adiabatic geotherm with a 10 °C/km gradient consistent with an isothermal melting zone. Migmatites U-Th-Pb geochronology yielded zircon and monazite ages of 229.3 ± 2.1 Ma and 224.5 ± 2.3 Ma, respectively. This thermal event generated S-type magmatism (the Marcabeli granitoid) and was immediately followed by underplating of the high-pressure low-temperature (HP-LT) Arenillas-Panupalí unit at 225.8 ± 1.8 Ma. The association of high-temperature low-pressure (HT-LP) migmatites with HP-LT unit constitutes a new example of a paired metamorphic belt along the South American margin. We propose that in addition to crustal thinning, underplating of the Piedras gabbroic unit before 230 Ma provided the heat source necessary to foster crustal anatexis. Furthermore, its MORB signature shows that the asthenosphere was involved as the source of the heat anomaly. S-type felsic magmatism is widespread during this time and suggests that a large-scale thermal anomaly affected a large part of the South American margin during the late Triassic. We propose that crustal anatexis is related to an anomaly that arose during subduction of the Panthalassa ocean under the South American margin. Slab verticalization or slab break-off can be invoked as the origin of the upwelling of the asthenosphere.

  17. Search for naturally occurring superheavy elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoughton, R.W.; Halperin, J.; Drury, J.S.

    1973-11-12

    Several ores, minerals, concentrates and special samples were examined for evidence of superheavy elements using a neutron multiplicity counter. This counter contains 20 /sup 3/He detectors in a paraffin matrix, and enables evaluation of the emitted neutron multiplicity spectrum of large samples with littie or no chemical processing. Such measurements provide an effective tool in the search for superheavy elements, since their decay or the decay of daughter nuclides is expected to proceed by spontaneous fission. In a search for Element 114(ekalead) a massive galena sample and a sample of galena-barite were examined, together with some chalcophilic samples, iron andmore » zinc sulphides, cerussite (PbCO/ sub 3/), and flux dust samples in Cottrell precipitators from the roasting of pentlandite (iron nickel sulphide). Element 114 would be expected to be more volatile than Hg, and intermediate between Pb and Au in nobility, and for this reason a technique was applied which was successfully developed to locate Hg ore bodies. This technique is described. In another attempt to detect possible volatile superheavy elements, such as 118 (ekaradon) or 112 (ekamercury) a sample of silica gel was examined, previously used in a plant for the production of noble gases; a gas mixture of crude Xe from the same plant was also investigated. With regard to Element 110 (ekaplatinum) several ultrabasic rocks were examined. For Element 119 (ekafracium) several potash ores were examined, as well as bittern from the Great Salt Lake, Utah. A sample of native Bi, as well as reagent Bi, were examined for Element 115 (ekabismuth). Several special samples included iron-rich meteorites, samples of biotite in which dwarf haloes had been found, some monazite samples associated with giant haloes, and some haematite and magnetite samples; also manganese nodules, sharks' teeth, and carbonaceous chondrite meteorite samples. The latter were particularly interesting since there is a Xe component in some carbonaceous chondrites that shows a higher /sup 136/Xe/sup 134/Xe ratio than Xe from any known fission source, possibly due to fission of one or more relatively volatile superheavy elements. All the results are summarized in tabular form. None of the samples examined showed evidence of spontaneous fission rates in excess of the detection limit. (UK)« less

  18. Transdomes sampling of lower and middle crust

    NASA Astrophysics Data System (ADS)

    Teyssier, C. P.; Whitney, D. L.; Roger, F.; Rey, P. F.

    2015-12-01

    Migmatite transdomes are formed by lateral and upward flow of partially molten crust in transtension zones (pull-apart structures). In order to understand the flow leading to this type of domes, 3D numerical models were set-up to simulate the general case of an extensional domain located between two strike-slip faults (pull-apart or dilational bridge). Results show that upper crust extension induces flow of the deep, low-viscosity crust, with rapid upward movement of transdome material when extension becomes localized. At this point a rolling hinge detachment allows rapid removal of upper crust. The internal structure of transdomes includes a subvertical high strain zone located beneath the zone of localized upper crust extension; this shear zone separates two elongate subdomes of foliation that show refolded/sheath folds. Lineation tends to be oriented dominantly subhorizontal when the amount of strike-slip motion is greater than the amount of upward flow of dome rocks. Models also predict nearly isothermal decompression of transdome material and rapid transfer of ~50 km deep rocks to the near surface. These model results are compared to the structural and metamorphic history of several transdomes, and in particular the Variscan Montagne Noire dome (French Massif Central) that consists of two domes separated by a complex high strain zone. The Montagne Noire dome contains ~315 Ma eclogite bodies (U-Pb zircon age) that record 1.4 GPa peak pressure. The eclogite bodies are wrapped in highly sheared migmatite that yield 314-310 Ma monazite ages interpreted as the metamorphism and deformation age. Based on these relations we conclude that the Montagne Noire transdome developed a channel of partially molten crust that likely entrained eclogite bodies from the deep crust (~50 km) before ascending to the near-surface. One implication of this work is that the flowing crust was deeply seated in the orogen although it remained a poor recorder of peak pressure of metamorphism. The eclogite bodies entrained in partially molten crust are a reliable marker of channel depth, especially when the ages of eclogite and migmatite are so close, like in the Montagne Noire. This indicates that channels of partially molten rocks are typically developed in the middle to deep orogenic crust (~50 km).

  19. The petrogenesis of the Early Permian Variscan granites of the Cornubian Batholith: Lower plate post-collisional peraluminous magmatism in the Rhenohercynian Zone of SW England

    NASA Astrophysics Data System (ADS)

    Simons, B.; Shail, Robin K.; Andersen, Jens C. Ø.

    2016-09-01

    The Early Permian Cornubian Batholith was generated during an extensional regime following Variscan convergence within the Rhenohercynian Zone of SW England. Its component granites can be classified, using mineralogical, textural and geochemical criteria, into five main types, all of which are peraluminous (A/CNK > 1.1): G1 (two-mica), G2 (muscovite), G3 (biotite), G4 (tourmaline) and G5 (topaz). G1 granites formed through up to 20% muscovite and minor biotite dehydration melting of a metagreywacke source at moderate temperatures and pressures (731-806 °C, > 5 kbar). Younger G3 granites formed through higher temperature, lower pressure (768-847 °C, < 4 kbar) biotite-dominated melting of a similar source. Partial melting was strongly influenced by the progressive lower-mid crustal emplacement of mafic igneous rocks during post-Variscan extension and a minor (< 5%-10%) mantle-derived component in the granites is possible. Two distinct fractionation series, G1-G2 and G3-G4, are defined using whole-rock geochemical and mineral chemical data. Variations in the major elements, Ba, Sr and Rb indicate that G1 and G3 granites underwent 15%-30% fractionation of an assemblage dominated by plagioclase, alkali feldspar and biotite to form more evolved G2 and G4 granites, respectively. Decreasing whole-rock abundances of Zr, Th and REE support the fractionation of zircon, monazite, apatite and allanite. Subsolidus alteration in G2 and G4 granites is indicated by non-primary muscovite and tourmaline and modification of major and trace element trends for G3-G4 granites, particularly for P2O5 and Rb. Topaz (G5) granites show low Zr, REE and extreme enrichment in Rb (up to 1530 ppm) and Nb (79 ppm) that cannot be related in a straightforward manner to continued differentiation of the G1-G2 or G3-G4 series. Instead, they are considered to represent partial melting, mediated by granulite facies fluids, of a biotite-rich restite following extraction of G1 and/or G3 magmas; they do not exhibit the typical geochemical characteristics of intraplate A-type granites.

  20. Microstructures and petrology of melt inclusions in the anatectic sequence of Jubrique (Betic Cordillera, S Spain): Implications for crustal anatexis

    NASA Astrophysics Data System (ADS)

    Barich, Amel; Acosta-Vigil, Antonio; Garrido, Carlos J.; Cesare, Bernardo; Tajčmanová, Lucie; Bartoli, Omar

    2014-10-01

    We report a new occurrence of melt inclusions in polymetamorphic granulitic gneisses of the Jubrique unit, a complete though strongly thinned crustal section located above the Ronda peridotite slab (Betic Cordillera, S Spain). The gneissic sequence is composed of mylonitic gneisses at the bottom and in contact with the peridotites, and porphyroblastic gneisses on top. Mylonitic gneisses are strongly deformed rocks with abundant garnet and rare biotite. Except for the presence of melt inclusions, microstructures indicating the former presence of melt are rare or absent. Upwards in the sequence, garnet decreases whereas biotite increases in modal proportion. Melt inclusions are present from cores to rims of garnets throughout the entire sequence. Most of the former melt inclusions are now totally crystallized and correspond to nanogranites, whereas some of them are partially made of glass or, more rarely, are totally glassy. They show negative crystal shapes and range in size from ≈ 5 to 200 μm, with a mean size of ≈ 30-40 μm. Daughter phases in nanogranites and partially crystallized melt inclusions include quartz, feldspars, biotite and muscovite; accidental minerals include kyanite, graphite, zircon, monazite, rutile and ilmenite; glass has a granitic composition. Melt inclusions are mostly similar throughout all the gneissic sequence. Some fluid inclusions, of possible primary origin, are spatially associated with melt inclusions, indicating that at some point during the suprasolidus history of these rocks granitic melt and fluid coexisted. Thermodynamic modeling and conventional thermobarometry of mylonitic gneisses provide peak conditions of ≈ 850 °C and 12-14 kbar, corresponding to cores of large garnets with inclusions of kyanite and rutile. Post-peak conditions of ≈ 800-850 °C and 5-6 kbar are represented by rim regions of large garnets with inclusions of sillimanite and ilmenite, cordierite-quartz-biotite coronas replacing garnet rims, and the matrix with oriented sillimanite. Previous conventional petrologic studies on these strongly deformed rocks have proposed that anatexis started during decompression from peak to post-peak conditions and in the field of sillimanite. The study of melt inclusions shows, however, that melt was already present in the system at peak conditions, and that most garnet grew in the presence of melt.

  1. Cretaceous-Eocene provenance connections between the Palawan Continental Terrane and the northern South China Sea margin

    NASA Astrophysics Data System (ADS)

    Shao, Lei; Cao, Licheng; Qiao, Peijun; Zhang, Xiangtao; Li, Qianyu; van Hinsbergen, Douwe J. J.

    2017-11-01

    The plate kinematic history of the South China Sea opening is key to reconstructing how the Mesozoic configuration of Panthalassa and Tethyan subduction systems evolved into today's complex Southeast Asian tectonic collage. The South China Sea is currently flanked by the Palawan Continental Terrane in the south and South China in the north and the two blocks have long been assumed to be conjugate margins. However, the paleogeographic history of the Palawan Continental Terrane remains an issue of uncertainty and controversy, especially regarding the questions of where and when it was separated from South China. Here we employ detrital zircon U-Pb geochronology and heavy mineral analysis on Cretaceous and Eocene strata from the northern South China Sea and Palawan to constrain the Late Mesozoic-Early Cenozoic provenance and paleogeographic evolution of the region testing possible connection between the Palawan Continental Terrane and the northern South China Sea margin. In addition to a revision of the regional stratigraphic framework using the youngest zircon U-Pb ages, these analyses show that while the Upper Cretaceous strata from the Palawan Continental Terrane are characterized by a dominance of zircon with crystallization ages clustering around the Cretaceous, the Eocene strata feature a large range of zircon ages and a new mineral group of rutile, anatase, and monazite. On the one hand, this change of sediment compositions seems to exclude the possibility of a latest Cretaceous drift of the Palawan Continental Terrane in response to the Proto-South China Sea opening as previously inferred. On the other hand, the zircon age signatures of the Cretaceous-Eocene strata from the Palawan Continental Terrane are largely comparable to those of contemporary samples from the northeastern South China Sea region, suggesting a possible conjugate relationship between the Palawan Continental Terrane and the eastern Pearl River Mouth Basin. Thus, the Palawan Continental Terrane is interpreted to have been attached to the South China margin from the Cretaceous until the Oligocene oceanization of the South China Sea. In our preferred paleogeographic scenario, the sediment provenance in the northeastern South China Sea region changed from dominantly nearby Cretaceous continental arcs of the South China margin to more distal southeastern South China in the Eocene.

  2. High-K granites of the Rum Jungle Complex, N-Australia: Insights into the Late Archean crustal evolution of the North Australian Craton

    NASA Astrophysics Data System (ADS)

    Drüppel, K.; McCready, A. J.; Stumpfl, E. F.

    2009-08-01

    The Late Archean (c. 2.54-2.52 Ga) high-K granitoids of the Rum Jungle Complex, Northern Australia, display the igneous mineral assemblage of K-feldspar, quartz, plagioclase, biotite, and magnetite, and accessories such as zircon, monazite, titanite, allanite, apatite, and ilmenite. The granites underwent a variably severe greenschist facies alteration and associated deformation during the Barramundi Orogeny (1.88-1.85 Ga). The K-rich granitoids have variable compositions, mainly comprising syenogranite and quartz-monzonite. They can be subdivided into two major groups, (1) felsic granites and (2) intermediate to felsic granites, quartz-monzonites, and diorite. The felsic group (69-76 wt.% SiO 2) shares many features with typical Late Archean potassic granites. They are K- and LILE-rich and show marked depletion in Sr and Eu and the high field strength elements (HFSE), particularly Nb and Ti, relative to LILE and LREE. Compared to the average upper crust they have anomalously high Th (up to 123 ppm) and U (up to 40 ppm). The intermediate to felsic group (56-69 wt.% SiO 2) differs from the felsic group in having weakly lower Th and U but higher Mg#, Ti, Ba, Sr, Ni, Cr and REE, with a less pronounced negative Eu anomaly. This group displays well-defined trends in Harker diagrams, involving a negative correlation of Si with Sr, Ca, Na, and P whereas K, Rb, and Ba increase in the same direction, suggesting fractional crystallization of feldspar was more prominent than in the felsic suite. The mineralogical and geochemical characteristics of the felsic group are consistent with granite formation by intracrustal melting of plagioclase-rich igneous protoliths, probably of tonaltic to granodioritic composition, at moderate crustal levels. The intermediate to felsic granites, on the other hand, appear to be the products of mantle-crust interaction, possibly by melting of or mixing with more mafic igneous rocks. As evidenced by the presence of older inherited zircons crustal recycling of a pre-greenstone crust of the North Australian Craton of > 3.5 Ga played an important role in the formation of the Late Archean granites of the Rum Jungle Complex.

  3. Provenance analysis and thermo-dynamic studies of multi-type Holocene duricrusts (1700 BC) in the Sua Salt Pan, NE Botswana

    NASA Astrophysics Data System (ADS)

    Dill, Harald G.; Dohrmann, R.; Kaufhold, S.; Techmer, A.

    2014-08-01

    Multi-type duricrusts, composed of silcretes, calcretes, halcretes and sulcretes developed during the Holocene at the northern rim of the Sua Salt Pan, NE Botswana. They were investigated for their light (quartz/chalcedony, feldspar, analcime, clinoptilolite, calcite, kaolinite/halloysite, illite-smectite mixed-layers, halite) and heavy minerals (baryte, clinozoisite-epidote s.s.s., amphibole, corundum, tourmaline, ilmenite, rutile, sphene, kyanite, andalusite, staurolite, garnet, zircon, apatite, monazite, cassiterite, garnet, biotite) using petrographic microscopy, X-ray fluorescence and diffraction analyses, radio-carbon dating, scanning electron microscopy equipped with an EDX-system, cation exchange capacity and infrared spectroscopy. Detrital minerals predominantly derived from the erosion of rocks belonging to the Archaean Basement Complex, the Stormberg Volcanites and the Kalahari sediments. Of particular interest to exploration geologists, geikielite-enriched ilmenite fragments are a hint to kimberlitic pipes. Biodetritus was derived from invertebrates and from vertebrates (fish bones?). A man-made impact on the heavy mineral suite has to be invoked from small fragments of cassiterite fragments that derived from processing of sulfidic and pegmatitic Sn-bearing ore. In the salt-pan-derived duricrusts mainly the aeolian and to a lesser degree fluvial inputs were responsible for the concentration of clasts in these multi-type duricrusts. Moreover, their variegated mineralogy enables us to constrain the physical-chemical regime, prevalently as to the pH and the chemical composition of the major constituents. All duricrusts developed in a self-sufficient chemically closed system where quartz and feldspar provided the elements Si, Na, K, Ca, and Ba to produce the encrustations. The spatial and temporal trend in the Sua Salt Pan rim encrustations may be described as follows: (1) sulcrete-silcretes, (2) silcretes with kaolinite-group minerals towards more recent stages at the rim and smectite-illite mixed-layers and clinoptilolite towards the basin center, (3) calcretes with analcite towards the basin center, (4) halcretes (and soda ash at a more central position). In the sulcrete-silcrete facies the pH decreases from pH 14 down to 4. In the calcretes and halcretes it increases from pH 8 to pH > 13. marking a chemical hiatus between stages 1 plus 2 and stages 3 plus 4. Mineral assemblages forming more basinward tend to have derived from more alkaline fluids than those near the edge of the salt pan.

  4. Syn-orogenic magmatism over 100 m.y. in high crustal levels of the central Grenville Province: Characteristics, age and tectonic significance

    NASA Astrophysics Data System (ADS)

    Groulier, Pierre-Arthur; Indares, Aphrodite; Dunning, Gregory; Moukhsil, Abdelali; Jenner, George

    2018-07-01

    The Escoumins Supracrustal Belt (ESB) represents higher levels of the infrastructure of a large hot orogen, exposed in a broadly dome and basin pattern. It consists of remnants of a Pinwarian-age (1.52-1.46 Ga) oceanic arc and arc-rift sequence, preserved in the low-P Belt of the central Grenville Province, and was intruded by diverse Grenvillian-age plutons. The plutonic rocks range from quartz monzodiorite to granite and have intrusion ages covering a time interval of 100 My, that represents the entire range of the Grenvillian orogeny. Moreover, the ages, field relations and geochemical signatures of the different intrusions can be matched with different documented stages of the orogeny. The oldest pluton, the magnesian, biotite-bearing Bon-Désir granite (1086 ± 2 Ma), has positive εNd (+0.6), TDM = 1.52 Ga, and is attributed to melting of a juvenile Pinwarian crust as a result of slab break-off, at the onset of continental collision. The ferroan and Ba-Sr enriched, biotite-, amphibole- and clinopyroxene-bearing Michaud plutonic suite (1063 ± 3 Ma) and biotite-rich felsic sill (1045 ± 3 Ma) have εNd (-0.01 - +0.8) and TDM = 1.45-1.48 Ga. Their geochemistry is consistent with fractionation of a mafic magma derived from melting of a Geon 14 subduction-modified subcontinental lithospheric mantle. This magmatism is consistent with convective thinning of subcontinental lithosphere, potentially linked to tectonic extrusion and orogenic collapse. This collapse ultimately led to the juxtaposition of the low-P Belt with the high-T mid-P Belt in the hinterland of the Grenville Province and to amphibolite-facies metamorphism in the former, producing metamorphic zircon overgrowths at 1037 ± 10 Ma. Finally, 988 ± 5 Ma to 983 ± 5 Ma syn-kinematic peraluminous two-mica garnetiferous leucogranite bodies and pegmatites with inherited 1055 ± 2 Ma metamorphic monazite were derived from melting of previously metamorphosed deeper levels of the low-P Belt. This is consistent with a high geothermal gradient linked to thinning of the crust in a Basin and Range setting. The geochemical and age pattern of Grenvillian-age magmatism in the ESB, in conjunction with the overall architecture of the Province, suggests that Laurentia was the upper plate during the Grenvillian orogeny.

  5. Sources of Extraterrestrial Rare Earth Elements:To the Moon and Beyond

    NASA Astrophysics Data System (ADS)

    McLeod, C. L.; Krekeler, M. P. S.

    2017-08-01

    The resource budget of Earth is limited. Rare-earth elements (REEs) are used across the world by society on a daily basis yet several of these elements have <2500 years of reserves left, based on current demand, mining operations, and technologies. With an increasing population, exploration of potential extraterrestrial REE resources is inevitable, with the Earth's Moon being a logical first target. Following lunar differentiation at 4.50-4.45 Ga, a late-stage (after 99% solidification) residual liquid enriched in Potassium (K), Rare-earth elements (REE), and Phosphorus (P), (or "KREEP") formed. Today, the KREEP-rich region underlies the Oceanus Procellarum and Imbrium Basin region on the lunar near-side (the Procellarum KREEP Terrain, PKT) and has been tentatively estimated at preserving 2.2 × 10^8 km^3 of KREEP-rich lithologies. The majority of lunar samples (Apollo, Luna, or meteoritic samples) contain REE-bearing minerals as trace phases, e.g., apatite and/or merrillite, with merrillite potentially contributing up to 3% of the PKT. Other lunar REE-bearing lunar phases include monazite, yittrobetafite (up to 94,500 ppm yttrium), and tranquillityite (up to 4.6 wt % yttrium, up to 0.25 wt % neodymium), however, lunar sample REE abundances are low compared to terrestrial ores. At present, there is no geological, mineralogical, or chemical evidence to support REEs being present on the Moon in concentrations that would permit their classification as ores. However, the PKT region has not yet been mapped at high resolution, and certainly has the potential to yield higher REE concentrations at local scales (<10s of kms). Future lunar exploration and mapping efforts may therefore reveal new REE deposits. Beyond the Moon, Mars and other extraterrestrial materials are host to REEs in apatite, chevkinite-perrierite, merrillite, whitlockite, and xenotime. These phases are relatively minor components of the meteorites studied to date, constituting <0.6% of the total sample. Nonetheless, they dominate a samples REE budget with their abundances typically 1-2 orders of magnitude enriched relative to their host rock. As with the Moon, though phases which host REEs have been identified, no extraterrestrial REE resource, or ore, has been identified yet. At present extraterrestrial materials are therefore not suitable REE-mining targets. However, they are host to other resources that will likely be fundamental to the future of space exploration and support the development of in situ resource utilization, for example: metals (Fe, Al, Mg, PGEs) and water.

  6. The South Tibet detachment shear zone in the Dinggye area. Time constraints on extrusion models of the Himalayas

    NASA Astrophysics Data System (ADS)

    Leloup, P. H.; Mahéo, G.; Arnaud, N.; Kali, E.; Boutonnet, E.; Liu, Dunyi; Xiaohan, Liu; Haibing, Li

    2010-03-01

    We investigate the timing of end of motion along the South Tibet Detachment System (STDS), a major normal fault system that runs parallel to the Himalayan range for more than 1500 km. Near Dinggye (˜ 28°10'N, 87°40'E), the STD dips ˜ 10 ± 5° to the North and separates Paleozoic Tethyan series from Upper Himalayan Crystalline Series (UHCS). Immediately below the STD, the UHCS is highly deformed in the STD shear zone, lineations trend NNE and the shear senses are top to the NE. In micaschist, the P-T path constrained by pseudosection and garnet chemistry, shows successive metamorphic conditions of ˜ 0.6 GPa and ˜ 550 °C and 0.5 GPa and 625 °C. U/Pb dating of monazites and zircons in deformed and undeformed leucogranites suggests that ductile deformation lasted until at least ˜ 16 Ma but ended prior to ˜ 15 Ma in the STD shear zone ˜ 100 m below the detachment. Ar/Ar micas ages in the footwall span between ˜ 14.6 and 13.6 Ma, indicating rapid cooling down to ˜ 320 °C, and suggesting persistence of normal faulting, at that time. The STDS is cut and offset by the N-S trending Dinggye active normal fault which initiated prior to 11 Ma thus providing a minimum bound for the end of STDS motion. These data are interpreted as reflecting 0.3 GPa (11 km) to 0.6 GPa (22 km) of exhumation along the STDS starting prior to ˜ 16 Ma, ending between 13.6 and 11 Ma. The 1000 km long stretch of the STDS east of the Gurla Mandata probably stopped almost synchronously between 13 and 11 Ma ago, coevally with a sudden switch from NNE-SSW to E-W extension at the top of the accretionary prism, with a jump of the major thrust from the lower Main Central Thrust (MCTl) to the Main Boundary Thrust (MBT), and with a change in the India and Asia convergence direction. This synchronism is probably better explained in the frame of a thrust wedge or thrust system model than a lower channel flow model. West of the Gurla Mandata the STDS appears to stop 5 to 3 Ma earlier, possibly related to local interactions with the Karakorum fault in a way that needs to be understood.

  7. Petrology and fluid inclusions of garnet-clinopyroxene rocks from the Gondwana suture zone in southern India: Implications for prograde high-pressure metamorphism

    NASA Astrophysics Data System (ADS)

    Tsunogae, T.

    2012-04-01

    The Palghat-Cauvery Suture Zone (PCSZ) in the southern granulite terrane, India, which separates Pan-African granulite blocks (e.g., Madurai and Trivandrum Blocks) to the south and Archean terrane (e.g., Salem Block and Dharwar Craton) to the north is regarded as a major suture zone in the Gondwana collisional orogeny. It probably continues westwards to the Betsimisaraka suture in Madagascar, and eastwards into Sri Lanka and possibly into Antarctica. The available geochronological data including U-Pb zircon and EPMA monazite ages indicate that the rocks along the PCSZ underwent an episode of high-grade metamorphism at ca. 530 Ma that broadly coincides with the time of final assembly of the Gondwana supercontinent. Recent investigations on high-grade metamorphic rocks in this region have identified several new occurrences of garnet-clinopyroxene rocks and associated meta-gabbros from Perundurai, Paramati, Aniyapuram, Vadugappatti, and Mahadevi areas in Namakkal region within the central domain of the PCSZ. They occur as elongated boudins of 1 m to 1 km in length within hornblende-biotite orthogneiss. The garnet-clinopyroxene mafic granulites contain coarse-grained (up to several cm) garnet (Alm30-50 Pyr30-40 Grs10-20) and clinopyroxene (XMg = 0.70-0.85) with minor pargasite, plagioclase (An30-40), orthopyroxene (hypersthene), and rutile. Garnet and clinopyroxene are both subidioblastic and contain few inclusions of clinopyroxene (in garnet) and plagioclase. Orthopyroxene occur only as Opx + Pl symplectite between garnet and clinopyroxene in almost all the localities, suggesting the progress of decompressional reaction: Grt + Cpx + Qtz => Opx + Pl, which is a dominant texture in the PCSZ. The prograde mineral assemblage of the rocks is therefore inferred to be Grt + Cpx + Qtz, although quartz was probably totally consumed by the progress of the reaction. The metamorphic P-T calculations using Grt-Cpx-Pl-Qtz geothermobarometers yield T = 850-900°C and P >13 kbar, which is consistent with the occurrence of high-pressure Mg-rich staurolite in Mg-Al-rich rocks from this region. Fluid inclusion study of some garnet-clinopyroxene rock samples identified CO2-rich fluid inclusions trapped as primary phases within garnet, suggesting that prograde high-pressure metamorphism was dominated by CO2-rich fluids. The results therefore confirmed that the PCSZ underwent regional dry high-pressure metamorphism followed by the peak ultrahigh-temperature event probably associated with the continent-continent collisional and suturing history along the PCSZ.

  8. New constraints on the age and conditions of LPHT metamorphism in the southwestern Central Zone of the Damara Belt, Namibia and implications for tectonic setting

    NASA Astrophysics Data System (ADS)

    Longridge, L.; Gibson, R. L.; Kinnaird, J. A.; Armstrong, R. A.

    2017-05-01

    Orthopyroxene-bearing pelitic migmatites and associated anatectic leucogranites from the southwestern Central Zone of the Damara Belt provide revised constraints on the age and grade of LPHT metamorphism and its timing relative to deformation. Pseudosection modelling using THERMOCALC 3.33 indicates a single metamorphic event with peak temperatures of ca. 835 °C and pressures of 4.9 kbar for a garnet-cordierite-biotite-orthopyroxene schist. These temperatures confirm the attainment of true granulite facies conditions in the belt and are higher than previous estimates based on cation-exchange thermobarometry, which are likely to have been affected by retrograde re-equilibration and underestimate peak temperatures for the Central Zone by 50-150 °C. The early growth of sillimanite, consumption of sillimanite to produce cordierite, and the late development of garnet, together with modal isopleths and textural constraints on mineral reactions suggest a near-isobaric heating path for the southwestern Central Zone. Field and petrographic relationships indicate that the metamorphic peak was coeval with non-coaxial D2 deformation that produced orogen-normal, south- to SE-verging, km-scale, recumbent folds and late-D2 shear zones linked to NE-SW, orogen-parallel, extension. Weighted mean U-Pb single-grain concordia ages of 520.3 ± 4.6 Ma (zircon) and 514.1 ± 3.1 Ma (monazite) from a syn-D2 anatectic garnet-bearing granite constrain the age of metamorphism and the D2 deformation event in the southwestern Central Zone to 520-510 Ma. It is suggested that two tectonometamorphic episodes are preserved in the Central Zone. NW-verging folding and thrusting coeval with the emplacement of the Salem-type granites and mafic-dioritic Goas Suite took place at 550-530 Ma, and south- to SE-verging folding, shearing and NE-SW extension at 520-510 Ma was coeval with granulite-facies metamorphism and the emplacement of crustal melt granitoids. These events are temporally distinct and should not be considered different rheological responses to a single tectonic episode. We suggest that the 550-530 Ma event records crustal thickening related to collision of the Congo and Kalahari cratons, whilst the 520-510 Ma event reflects orogenic collapse and crustal thinning, with a possible heat contribution as the result of detachment of the subcontinental lithosphere following collision, resulting in addition of heat to the lower crust.

  9. First occurrence of very low pressure ultra-high temperatures metamorphism in the Khondalite Belt, North China Craton.

    NASA Astrophysics Data System (ADS)

    Lobjoie, Cyril; Lin, Wei; Trap, Pierre; Goncalves, Philippe; Marquer, Didier

    2016-04-01

    This study report the first occurrence of very low pressure (<0.4GPa) ultra-high temperatures metamorphism within the Paleoproterozoic Khondalite Belt of the North China Craton. This high grade orogenic domain is mostly composed of garnet +/- spinel +/- sapphirine-bearing migmatites, numerous Grt-bearing granites and marbles. These rocks are intruded by numerous metric to kilometric mafic intrusions. Petrological analyses and phase equilibria diagram modeling were performed on garnet and spinel-bearing and olivine-bearing migmatites. Garnet and spinel-bearing migmatites show a quartz, ternary feldspar, garnet, biotite sillimanite and spinel main assemblage. Pseudosection diagram calculations give suprasolidus P-T conditions around ca. 0.7GPa for ca. 900°C that correspond to the peak temperature conditions. Thermometry using ternary feldspar thermometry gives temperatures estimations at ca. 950-1015°C for a pressure of 0.7GPa. The Olivine-bearing migmatite, located at the contact with a mafic intrusion, shows two main assemblages. The first assemblage that makes the rock matrix consists of a micrographic quartz and feldspar domains associated with biotite, sillimanite and spinel. The second assemblage appears within mm-scale pockets with a complex symplectitic texture. Careful investigation revealed that theses pockets formed after garnet pseudomorphosis, with the development of an Opx-Sp-Crd association. Within this assemblage, an olivine-cordierite and Opx-Crd-Bi-Qtz assemblage occurred as smaller pockets. The petrogenetic grid and pseudosection calculations made for this olivine-bearing migmatite give P-T conditions around 0.35GPa for ca. 950°C that correspond to the peak temperature conditions recorded by the olivine-cordierite assemblage. The succession of reactions with garnet pseudomorphosis into an Opx-Spl-Crd followed by the crystallization of an Ol-Crd assemblage is modelled in the petrogenetic grid calculation and correspond to an isobaric clockwise P-T path. Results from in situ LA-ICP-MS U-Th-Pb dating on monazite performed on the Grt-Spl bearing migmatite suggest a duration of partial melting bracketed between ca. 1932Ma and ca. 1898Ma. Zircon U-Th-Pb SIMS dating yield an age of a ca.1.92-1.94 Ga for the olivine-bearing migmatite and the adjacent gabbroic bodies. This age is interpreted as the timing for the very low pressure UHT metamorphism. This first occurrence of very low pressure UHT metamorphism bring new insight for the understanding of the UHT Khondalite Belt. Implications about spatial and temporal distribution of heat and UHT metamorphism in the orogenic crust are discussed.

  10. Geochronology and geochemistry of the granites from the Zhuxi W-Cu ore deposit in South China: Implication for petrogenesis, geodynamical setting and mineralization

    NASA Astrophysics Data System (ADS)

    Pan, Xiaofei; Hou, Zengqian; Zhao, Miao; Chen, Guohua; Rao, Jianfeng; Li, Yan; Wei, Jin; Ouyang, Yongpeng

    2018-04-01

    The giant Zhuxi tungsten deposit is located in the Taqian-Fuchun Ore Belt in northeastern Jiangxi province, and genetically associated with the Zhuxi granitic stocks and dykes. Three mineralization-related granites including granite porphyry dykes (GP), biotite granitic stocks (BG), and white granitic dykes (WG), were identified in the Zhuxi deposit. SHRIMP zircon U-Pb analysis for the three granitic rocks present ages ranging from 153.5 ± 1.0 Ma to 150.4 ± 1.0 Ma. The BG mainly contains quartz, microcline, albite, biotite and muscovite with minor accessory minerals including zircon, apatite, monazite, Ti/Fe oxides, and dolerite. However, the WG is mainly composed of quartz, microcline and albite with minor muscovite and accessory minerals. The GP is a medium-grained porphyritic granite and its phenocrysts include quartz, alkali feldspar, muscovite and plagioclase. All the Zhuxi granites have high SiO2 content (71.97 wt%-81.19 wt%) and total alkali (3.25 wt%-9.42 wt%), and their valid aluminum saturation index (ASI) values show a wide range of 1.03 to 2.49. High Rb/Sr ratios, low Sr content (<50 ppm) and markedly negative Eu anomalies of GP, WG and BG demonstrated that the Zhuxi granites are highly fractioned and intensive crystal differentiated. Because they display the features of both I- and S-types granites, they were confirmed to be I-S transform-type granites. Whole rock εNd(t) and zircon εHf(t) values fall into the ranges of -6.98 to -11.97, and -3.1 to -11.5, and the Nd (TDM2) and Hf two-stage model ages (TDMc) are 1.51-1.92 Ga and 1.42-2.01 Ga, respectively. Geochemical and isotopic data suggest that these highly fractionated I-S transform-type granites were originated from magmas which showed affinity with the Proterozoic continent and the Shuangqiaoshan Group and little mantle contribution was involved during the generation of Zhuxi granitic rocks. Extreme fractional crystallization resulted in further enrichment of tungsten in the evolved granitic magma. New data, presented together with previously published data, suggest that the Zhuxi granitic complex was likely to be formed during lithospheric compression setting during the late Jurassic to early Cretaceous. The biotite granite stock predominately contributed to the production of skarn alteration and mineralization, followed by the white granite dyke; the granite porphyry dykes have little effect.

  11. Y,REE,Nb,Ta,Ti-oxide (AB 2O 6) minerals from REL-REE euxenite-subtype pegmatites of the Třebíč Pluton, Czech Republic; substitutions and fractionation trends

    NASA Astrophysics Data System (ADS)

    Škoda, Radek; Novák, Milan

    2007-04-01

    Aeschynite-group minerals (AGM) and euxenite-group minerals (EGM) occur in REL-REE euxenite-subtype pegmatites from the Třebíč Pluton, Czech Republic. They form strongly metamictized, light brown to black, equigranular to needle-like, subhedral to anhedral grains enclosed in blocky K-feldspar and less commonly in albite, and blocky quartz, and in the graphic unit (quartz and K-feldspar). Both AGM and EGM are homogeneous to slightly heterogeneous in BSE images. They are not commonly associated with the other primary Y,REE,Ti,Nb-bearing minerals, i.e. allanite-(Ce), monazite-(Ce), titanite, and ilmenite, which occur within the same textural-paragenetic unit. Aeschynite-(Y), aeschynite-(Ce), aeschynite-(Nd), nioboaeschynite-(Ce), tantalaeschynite-(Ce), vigezzite and polycrase-(Y) were identified using EMP and canonical discrimination analysis [Ercit, T.S., 2005a. Identification and alteration trends of granitic-pegmatite-hosted (Y,REE,U,Th)-(Nb,Ta,Ti) oxide minerals: a statistical approach. Can. Mineral. 43, 4 1291-1303.]. The exchange vector ACa B(Nb,Ta) A(Y,REE) - 1 BTi - 1 or its combination with the exchange vector ACa 2B(Nb,Ta) 3A(U,Th) - 1 A(Y,REE) - 1 BTi - 3 have been elucidated for the AGM. The exchange vector ACa A(U,Th) A(Y,REE) - 2 is predominant in the EGM. The AGM are enriched in HREE, whereas LREE are concentrated in the EGM. Weak to none-existent geochemical fractionations, as expressed by the U/(U + Th), Y/(Y + REE), Ta/(Ta + Nb) and (Nb + Ta)/(Ti + Nb + Ta) ratios, were noted for single grains from both the AGM and EGM, as well as in grains of polycrase-(Y) from four different textural-paragenetic units located in the Vladislav pegmatite. Simultaneous increase of U/(U + Th) and Y/(Y + REE) in the AGM during fractionation is typical. The Ta/(Ta + Nb) fractionation is usually weak and contradicts the Y/(Y + REE) and U/(U + Th) fractionation trends. This unusual behavior of Nb and Ta may be controlled by associated Ti-rich minerals (titanite, ilmenite, rutile), the composition of parental melt and/or by elevated F activity. The AGM and EGM from pegmatites of the Třebíč Pluton are quite similar in composition to those from REL-REE euxenite-subtype pegmatites in the Trout Creek Pass, Chaffee County, Colorado, USA, which are generally Ca,U,Th-depleted, show lower Ta/(Ta+Nb), and lower variation in HREE/LREE.

  12. CONCH: A Visual Basic program for interactive processing of ion-microprobe analytical data

    NASA Astrophysics Data System (ADS)

    Nelson, David R.

    2006-11-01

    A Visual Basic program for flexible, interactive processing of ion-microprobe data acquired for quantitative trace element, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni and U-Th-Pb geochronology applications is described. Default but editable run-tables enable software identification of secondary ion species analyzed and for characterization of the standard used. Counts obtained for each species may be displayed in plots against analysis time and edited interactively. Count outliers can be automatically identified via a set of editable count-rejection criteria and displayed for assessment. Standard analyses are distinguished from Unknowns by matching of the analysis label with a string specified in the Set-up dialog, and processed separately. A generalized routine writes background-corrected count rates, ratios and uncertainties, plus weighted means and uncertainties for Standards and Unknowns, to a spreadsheet that may be saved as a text-delimited file. Specialized routines process trace-element concentration, 26Al- 26Mg, 53Mn- 53Cr, 60Fe- 60Ni, and Th-U disequilibrium analysis types, and U-Th-Pb isotopic data obtained for zircon, titanite, perovskite, monazite, xenotime and baddeleyite. Correction to measured Pb-isotopic, Pb/U and Pb/Th ratios for the presence of common Pb may be made using measured 204Pb counts, or the 207Pb or 208Pb counts following subtraction from these of the radiogenic component. Common-Pb corrections may be made automatically, using a (user-specified) common-Pb isotopic composition appropriate for that on the sample surface, or for that incorporated within the mineral at the time of its crystallization, depending on whether the 204Pb count rate determined for the Unknown is substantially higher than the average 204Pb count rate for all session standards. Pb/U inter-element fractionation corrections are determined using an interactive log e-log e plot of common-Pb corrected 206Pb/ 238U ratios against any nominated fractionation-sensitive species pair (commonly 238U 16O +/ 238U +) for session standards. Also displayed with this plot are calculated Pb/U and Pb/Th calibration line regression slopes, y-intercepts, calibration uncertainties, standard 204Pb- and 208Pb-corrected 207Pb/ 206Pb dates and other parameters useful for assessment of the calibration-line data. Calibrated data for Unknowns may be automatically grouped according to calculated date and displayed in color on interactive Wetherill Concordia, Tera-Wasserburg Concordia, Linearized Gaussian ("Probability Paper") and Gaussian-summation probability density diagrams.

  13. Standard Materials for Microbeam Analysis of Lanthanides and Actinides

    NASA Astrophysics Data System (ADS)

    Ellis, I.; Gorton, M.; Rucklidge, J. C.

    2010-12-01

    Traces of Th and U in naturally-occuring minerals monazite, xenotime and zircon are used for dating host rocks. Natural variations of actinide concentrations in some rock formations are well documented. Microbeam techniques perform dating in-situ where grains of indicator minerals are left intact in thin sections. Separated individual grains of these minerals are also routinely dated by Pb-isotope mass spectrometry. Ideal calibration materials will be compatible with multiple techniques. Quantitative analysis of low levels of lanthanides (REE), U, Th and Pb found in natural minerals requires standards containing similar concentrations of these elements. The ideal low-level standard suite will have materials with each REE cation present below 5%, similar to natural rare-earth phosphate minerals. In contrast, REE orthophosphates LnPO4 have cation concentrations from 59 to 64%, and ultraphosphates LnP5O14 from 27% to 32%. The concentrations of U and Pb must also be in the 1% range in the host REE phosphate. There are two competing limits to the synthesis of crystals with multiple cations in the REE sites. The crystal structure limits potential cation mixtures to selections within groups (La,Ce, Pr, Nd, Sm, Eu), (Gd, Tb, Dy, Ho), and (Er, Tm,Yb, Lu, Y). Complex L X-ray spectra limit the use of contiguous REE in a single material. There are two general synthetic routes for the preparation of lanthanide/actinide standard materials for beam analysis and dating. Lanthanide orthophosphates (LnPO4) are crystallized from lead-free heterogeneous fluxes; oligomers (metaphosphates LnP3O9 and ultraphosphates LnP5O14) are formed by condensation of phosphoric acid in the presence of cations. All of these trivalent lanthanide phosphate crystal structures are hosts for Th+4 and U+4, and in synthetic materals, Ca+2 is used for charge compensation. Our work focuses on the preparation of mixed-cation lanthanide metaphosphates and ultraphosphates. The solvent (essentially P2O5) provides redox conditions that favour Ce+3, Th+4, and U+4 instead of higher oxidation states. The absence of any cations other than those deliberately added permits positive control of cation mixtures in starting materials. The synthetic pathway—condensation of POx units--provides ideal conditions for the homogeneous distribution of cations including those with different charges. We present the results of synthesis, elemental analysis and imaging by XRF and SEM-EDX for mixed lanthanide-actinide phosphate materials.

  14. Rare earth element deposits in China

    USGS Publications Warehouse

    Xie, Yu-Ling; Hou, Zeng-qian; Goldfarb, Richard J.; Guo, Xiang; Wang, Lei

    2016-01-01

    China is the world’s leading rare earth element (REE) producer and hosts a variety of deposit types. Carbonatite- related REE deposits, the most significant deposit type, include two giant deposits presently being mined in China, Bayan Obo and Maoniuping, the first and third largest deposits of this type in the world, respectively. The carbonatite-related deposits host the majority of China’s REE resource and are the primary supplier of the world’s light REE. The REE-bearing clay deposits, or ion adsorption-type deposits, are second in importance and are the main source in China for heavy REE resources. Other REE resources include those within monazite or xenotime placers, beach placers, alkaline granites, pegmatites, and hydrothermal veins, as well as some additional deposit types in which REE are recovered as by-products. Carbonatite-related REE deposits in China occur along craton margins, both in rifts (e.g., Bayan Obo) and in reactivated transpressional margins (e.g., Maoniuping). They comprise those along the northern, eastern, and southern margins of the North China block, and along the western margin of the Yangtze block. Major structural features along the craton margins provide first-order controls for REE-related Proterozoic to Cenozoic carbonatite alkaline complexes; these are emplaced in continental margin rifts or strike-slip faults. The ion adsorption-type REE deposits, mainly situated in the South China block, are genetically linked to the weathering of granite and, less commonly, volcanic rocks and lamprophyres. Indosinian (early Mesozoic) and Yanshanian (late Mesozoic) granites are the most important parent rocks for these REE deposits, although Caledonian (early Paleozoic) granites are also of local importance. The primary REE enrichment is hosted in various mineral phases in the igneous rocks and, during the weathering process, the REE are released and adsorbed by clay minerals in the weathering profile. Currently, these REE-rich clays are primarily mined from open-pit operations in southern China. The complex geologic evolution of China’s Precambrian blocks, particularly the long-term subduction of ocean crust below the North and South China blocks, enabled recycling of REE-rich pelagic sediments into mantle lithosphere. This resulted in the REE-enriched nature of the mantle below the Precambrian cratons, which were reactivated and thus essentially decratonized during various tectonic episodes throughout the Proterozoic and Phanerozoic. Deep fault zones within and along the edges of the blocks, including continental rifts and strike-slip faults, provided pathways for upwelling of mantle material.

  15. ID ICPMS Lu-Hf Geochronology of Apatite from Iron-Oxide Apatite (IOA) Deposits, Northern Chilean Iron Belt.

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Vervoort, J. D.; Barra, F.; Palma, G.

    2017-12-01

    Determining the age of mineralization of ore deposits is important for understanding the mechanisms and timing of ore formation. In many cases, however, conventional dateable mineral phases (e.g., zircon, monazite) are lacking in the ore mineral assemblages. For example, Iron Oxide Apatite (IOA) and Iron Oxide Gold Copper Gold (IOCG) deposits have the remaining fundamental question as to whether they have formed by hydrothermal or magmatic processes, or some combination of the two. In these deposits, the mineralization of iron oxide is often accompanied by the growth of apatites, which typically have REE concentrations of tens to several thousand ppm and which makes them potentially amenable to dating by the Lu-Hf isochron method. These apatites, however, also have very low concentrations of Hf, which makes determination of precise Hf isotope compositions challenging. In this study, we attempted to date these deposits using the apatite Lu-Hf isochron method, using procedures modified from that of Münker et al., 2001 and Barfod et al., 2003 and report the first Lu-Hf ages for apatites from Carmen, Fresia, and Mariela IOA deposits in northern Chilean Iron Belt. The concentration of Hf in analyzed apatite is 0.001 ppm. To ensure at least 0.5ng of Hf is collected for MS analysis, 0.5g apatite was dissolved for each sample. A single stage of Ln-spec resin chromatographic columns was used to separate Hf from REEs as multi stages of separation columns would decrease the Hf yield considerably. Using these procedures, we determined a Lu-Hf apatite age for the Carmen deposit of 130.0±1.7 Ma, which is in accordance with a previously published U-Pb apatite age of 131.0±1.0 Ma (Gelcich et al., 2005). The apatites from Fresia and Mariela yield Lu-Hf ages of 132.8±5.3 Ma and 117.3±0.4 Ma respectively. The lower points on the isochrons are either a low Lu/Hf phase (actinolite, magnetite) or bulk earth ratios. These are some of the first Lu-Hf ages of directly dating apatite in the ore mineralization, and show the potential in apatite Lu-Hf geochronology. However, further work needs to be done on the chemical procedure to improve the Hf yield and lower the interferences in order to make this a more routine technique of dating ore deposits.

  16. Origin and prospectivity of heavy mineral enriched sand deposits along the Somaliland coastal areas

    NASA Astrophysics Data System (ADS)

    Ali, M. Y.; Hibberd, P.; Stoikovich, B.

    2018-04-01

    Sixty-one heavy mineral enriched samples along the Somaliland coast from Eil Sheikh to Ras Khatib, a distance of about 130 km, were analyzed using X-ray Fluorescence, X-ray Diffraction and SEM-EDS techniques. This study reveals that a considerable amount of heavy minerals is present along the Somaliland coast and confirms the presence of high concentration titanium and iron bearing minerals. However, the backshore deposits in the mouths of Waaheen and Biyo Gure ephemeral rivers as well as raised paleo-beaches in the east of port city of Berbera demonstrate the highest level of titaniferous heavy minerals with most samples showing concentration greater than 50 wt %. The titanium detected in geochemical analysis occurs in the form of ilmenite, rutile, titanite and titaniferous magnetite. Also, present in minor or trace amounts, are garnet, zircon and monazite. Heavy mineral accumulations in the east and west of Berbera have different mineralogical assemblages. The east of Berbera is dominated by quartz with moderate concentration of plagioclase, K-feldspar, magnetite, hematite and titanium bearing minerals, whereas in the west of Berbera, the dominant minerals are quartz, K-feldspar and plagioclase with variable proportions of ilmenite, rutile, mica, amphibole and pyroxene. These variations in mineral assemblages suggest different composition of the catchment areas that supply sediment to these deposits. The catchment area in the east of Berbera consists mainly of Proterozoic crystalline basement of the Qabri Bahar complex, Gabbro-Synenite belt and granitic intrusions that outcrop in Hudiso, Tulo Dibijo and surrounding areas. The primary sources of heavy minerals in the west of Berbera comprise of high-grade metamorphic rocks of the Mora and Qabri Bahar complexes as well as the Miocene volcanics that outcrop in Laferug and Hagabo areas. The heavy mineral sand deposits observed along the Somaliland coast have the potential to provide commercially important heavy minerals, in particular ilmenite. It appears that prospects for development of the heavy mineral sands in the east of Berbera are better than those to the west of Berbera. In general, east of Berbera has wider beaches, better heavy mineral sands in the upper horizons and dune areas with heavier mineral sands. Furthermore, a series of raised paleo-beaches with high concentrations of heavy mineral sands are observed 1-2 km behind the shoreline. However, further investigation, including drilling and laboratory analyses, still needs to be carried out, particularly close to the entrance of Waaheen and Biyo Gure ephemeral rivers to evaluate the potential quality and scale of the deposits.

  17. An open-water electrical geophysical tool for mapping sub-seafloor heavy placer minerals in 3D and migrating hydrocarbon plumes in 4D

    USGS Publications Warehouse

    Wynn, Jefferey C.; Urquhart, Scott; Williamson, Mike; Fleming, John B.

    2011-01-01

    A towed-streamer technology has been developed for mapping placer heavy minerals and dispersed hydrocarbon plumes in the open ocean. The approach uses induced polarization (IP), an electrical measurement that encompasses several different surface-reactive capacitive and electrochemical phenomena, and thus is ideally suited for mapping dispersed or disseminated targets. The application is operated at sea by towing active electrical geophysical streamers behind a ship; a wide area can be covered in three dimensions by folding tow-paths over each other in lawn-mower fashion. This technology has already been proven in laboratory and ocean settings to detect IP-reactive titanium- and rare-earth (REE) minerals such as ilmenite and monazite. By extension, minerals that weather and accumulate/concentrate by a similar mechanism, including gold, platinum, and diamonds, may be rapidly detected and mapped indirectly- even when dispersed and covered with thick, inert sediment. IP is also highly reactive to metal structures such as pipelines and cables. Currently, the only means for mapping an oil-spill plume is to park a large ship in the ocean and drop a sampling string over the side, requiring hours of time per sampling point. The samples must then be chemically analyzed, adding additional time and expense. We believe that an extension of the marine IP technology could also apply to rapidly mapping both seafloor- blanket and disseminated hydrocarbon plumes in the open ocean, as hydrocarbon droplets in conductive seawater are topologically equivalent to a metal-plates-and-dielectric capacitor. Because the effective capacitance would be frequency-dependent on droplet size, the approach we advocate holds the potential to not only map, but also to characterize the evolution and degradation of such a plume over time. In areas where offshore oil field development has been practiced for extended periods, making IP measurements from a towed streamer may be useful for locating buried - nd exposed pipelines, as well as pipeline leaks. We believe this technique will be a more cost-effective method than drop-sampling to map and monitor hydrocarbon plumes in open ocean settings. A marine induced polarization system was used successfully to map a 15 km × 45 km swath of the ocean floor off eastern South Africa with 3-meter sampling along 200-meter-separated profiles. The survey detected titanium-bearing sands up to 15 meters below the seafloor. From preliminary laboratory work it is apparent that we can extend this technology to monitor significant environmental problems including anthropogenic and industrial waste washed into sensitive estuaries and sounds during storm-water runoff episodes, and also to map and characterize dispersed oil plumes in the seawater column in three dimensions, as well as movement and dispersal of both over time.

  18. Ion microprobe U-Pb dating and strontium isotope analysis of biogenic apatite

    NASA Astrophysics Data System (ADS)

    Sano, Y.; Toyoshima, K.; Takahata, N.; Shirai, K.

    2012-12-01

    Conodonts are micro-fossils chemically composed of apatite which occurred in the body of one animal. They are guide fossils to show formation ages of sedimentary sequences with the highest resolution [1] and good samples to verify the dating method. We developed the ion microprobe U-Pb dating of apatite [2] and applied the method to a Carboniferous conodont [3] by using a SHRIMP II installed at Department of Earth and Planetary Sciences, Hiroshima University. Recently we have developed the NanoSIMS U-Pb dating method and successfully measured the formation ages of monazite [4] and zircon [5] at Atmosphere and Ocean Research Institute, University of Tokyo. In this work we carried out the NanoSIMS U-Pb dating of biogenic apatite such as conodont. Since the spot size of NanoSIMS is smaller than SHRIMP II, it is easier to have multi-spots on the single fragment of biogenic apatite. Based on the isochron method of U-Pb system, we have calculated the formation ages. They are consistent with those in literature. In order to study the chemical evolution of ocean during the past 600 Million years, strontium isotopes (87Sr/86Sr) of fossil marine carbonate such as coral skeletons and foraminifera tests were measured and compiled [6]. However they are not robust when the age is older than 500Ma, partly due to post-depositional histories. Apatite is more stable and more resistant to the alteration than carbonate [7]. Recently we have developed the method of NanoSIMS strontium isotopic analysis of a fish otolith, which composed of aragonite [8]. In this work we carried out the strontium isotopic analysis of biogenic apatite. The advantage of the ion microprobe technique over the TIMS (thermal ionization mass spectrometer) and MC-ICP-MS (multi-collector inductively coupled argon plasma mass spectrometer) method is preservation of the important textural context and to provide an opportunity for other simultaneous analytical work with high spatial resolution. This is the case for the combination of U-Pb dating and strontium isotope analysis of biogenic apatite. This method may be useful to extract the information of the chemistry of Past ocean in future. [1] Sweet and Donoghue (2001) J. Paleont. 75, 1174-1184. [3] Sano et al., (1999) Chem. Geol. 153, 249-258. [3] Sano and Terada (2001) Geophys. Res. Lett. 28, 831-834. [4] Sano et al. (2006) Geochem. J. 40, 597-608. [5] Takahata et al. (2008) Gondwana Res. 14, 587-596. [6] Prokoph et al. (2008) Earth Sci. Rev. 87, 113-133. [7] Karhu and Epstein (1986) Geochim. Cosmochim. Acta 50, 1745-1756. [8] Sano et al. (2008) App. Geochem. 23, 2406-2413.

  19. Geochemical and Geochronologic Investigations of Zircon-hosted Melt Inclusions in Rhyolites from the Mesoproterozoic Pea Ridge IOA-REE Deposit, St. Francois Mountains, Missouri

    NASA Astrophysics Data System (ADS)

    Watts, K. E.; Mercer, C. N.; Vazquez, J. A.

    2015-12-01

    Silicic volcanic and plutonic rocks of an eroded Mesoproterozoic caldera complex were intruded and replaced by iron ore, and cross-cut by REE-enriched breccia pipes (~12% total REO) to form the Pea Ridge iron-oxide-apatite-REE (IOA-REE) deposit. Igneous activity, iron ore formation, and REE mineralization overlapped in space and time, however the source of REEs and other metals (Fe, Cu, Au) integral to these economically important deposits remains unclear. Melt inclusions (MI) hosted in refractory zircon phenocrysts are used to constrain magmatic components and processes in the formation of the Pea Ridge deposit. Homogenized (1.4 kbar, 1000°C, 1 hr) MI in zircons from rhyolites ~600 ft (PR-91) and ~1200 ft (PR-12) laterally from the ore body were analyzed for major elements by EPMA and volatiles and trace elements (H2O, S, F, Cl, REEs, Rb, Sr, Y, Zr, Nb, U, Th) by SHRIMP-RG. Metals (including Cu, Au) will be measured in an upcoming SHRIMP-RG session. U-Pb ages, Ti and REE were determined by SHRIMP-RG for a subset of zircon spots adjacent to MI (1458 ± 18 Ma (PR-12); 1480 ± 45 Ma (PR-91)). MI glasses range from fresh and homogeneous dacite-rhyolite (65-75 wt% SiO2) to heterogeneous, patchy mixtures of K-spar and quartz (PR-12, 91), and more rarely mica, albite and/or anorthoclase (PR-91). MI are commonly attached to monazite and xenotime, particularly along re-entrants and zircon rims (PR-91). Fresh dacite-rhyolite glasses (PR-12) have moderate H2O (~2-2.5 wt%), Rb/Sr ratios (~8) and U (~5-7 ppm), and negative (chondrite-normalized) Eu anomalies (Eu ~0.4-0.7 ppm) (typical of rhyolites), whereas HREEs (Tb, Ho, Tm) are elevated (~2-3 ppm). Patchy K-spar and quartz inclusions (PR-12, 91) have flat LREE patterns, and positive anomalies in Tb, Ho, and Tm. One K-spar inclusion (PR-91) has a ~5-50 fold increase in HREEs (Tb, Dy, Ho, Er, Tm) and U (35 ppm) relative to other MI. U-Pb and REE analyses of its zircon host are not unusual (1484 ± 21 Ma); its irregular shape surrounded by a CL-bright zone (Ti-in-zircon = 713°C) is a commonly observed texture and suggests resorption. Silicic magmatism at Pea Ridge was complex, with zircons trapping both pristine melt and poly-phase mixtures that span a range of REE contents. Most MI have lower REE contents than would be expected for significant magmatic REE contribution to the Pea Ridge IOA-REE deposit.

  20. The role of detrital zircons in Hadean crustal research

    NASA Astrophysics Data System (ADS)

    Nebel, Oliver; Rapp, Robert P.; Yaxley, Gregory M.

    2014-03-01

    Meso-Archean sedimentary sequences at Mt. Narryer and the Jack Hills of the Narryer Terrane in Western Australia's Yilgarn Craton contain detrital zircon grains with ages as old as 4.37 Ga, the oldest preserved terrestrial matter. These grains are rare remnants of Hadean (4.5-4.0 Ga) terrestrial crust and their survival stems from the crystallographic properties of zircon during crustal reworking: they are resistant to physical and chemical weathering. Zircons are further suitable for single grain, precise age determinations making them a unique archive of the crustal past. Only a small proportion of all detrital zircons from the Narryer Terrane show Hadean age spectra and younger overgrowth rims on all 'Hadean' grains indicate multiple recycling events. Numerous studies that applied a spectacular range of analytical tools and proxies have been undertaken to decipher the geochemical nature of these zircons' host rocks, in order to place constraints on Hadean geodynamics and the processes responsible for creating the earliest terrestrial crust. Their elemental and isotope budget and mineral inclusions have helped to develop an emerging picture of a water-rich, evolved Hadean crust. However, subsequent studies have challenged this view and it seems that each piece of new evidence indicative of an early, evolved continental crust has non-unique interpretations also permissive of mafic to ultra-mafic crust. In this review we examine these disparate interpretations and their possible implications and conclude that at least parts of the earliest terrestrial crust were hydrated. However, to date there is no conclusive evidence for preserved granitic, continental crust. The protoliths of the Hadean detrital zircons were likely acidic in nature, yet the composition of the greater terrane from which these melts were derived was probably mafic. It remains unclear if the zircons formed in a geodynamic environment that includes Hadean subduction. We suspect that the Hadean crust was an initially homogeneous, thin, mafic layer. It was spiked with minor, low-degree, anatectic melts of granitoid composition formed from material that formerly resided at the surface and was subsequently buried. The process responsible for this was likely sag-subduction triggered by repeated volcanic resurfacing, possibly fed by early mantle plumes. Regional scale granitoid plutonism of the tonalite-trondhjemite-granodiorite suite (TTG) predominates granitoid-generating processes in the Eo-Archean, along with the first appearance of low-Ca (s-type) granites at around 3.9 Ga, evidenced by the first occurrence of detrital monazite in the Narryer Terrane. This coincides with the first addition of juvenile crust as documented by the global detrital zircon record and temperature signatures of the late heavy bombardment in Narryer Terrane zircons. This age probably marks the onset of Archean-style tectonics, likely associated with subduction activity, which lasted until ~ 3 Ga, when modern style plate tectonics emerged.

  1. Origin of the Lyme Dome and implications for the timing of multiple Alleghanian deformational and intrusive events in southern Connecticut

    USGS Publications Warehouse

    Walsh, G.J.; Aleinikoff, J.N.; Wintsch, R.P.

    2007-01-01

    Geologic mapping, structural analysis, and geochronology in the area of the Lyme dome, southern Connecticut provides constraints on the origin of the rocks in the core of the dome, the absolute timing of the principal deformational and thermal events attributed to Alleghanian orogenesis, and the processes that generated the dome. Detrital zircon geochronology in combination with ages on intrusive rocks brackets the deposition of quartzite in the core of the dome sometime between ca. 925 and 620 Ma. Granite and granodiorite intruded the Neoproteorozic metasedimentary rocks in the core of the dome at ca. 620 to 610 Ma. Four major early Permian events associated with the Alleghanian orogeny affected the rocks in the Lyme dome area. Syn-tectonic migmatization and widespread penetrative deformation (D1, ca. 300 - 290 Ma) included emplacement of alaskite at 290 ?? 4 Ma during regional foliation development and aluminosilicate-orthoclase metamorphic conditions. Rocks of the Avalon terrane may have wedged between Gander cover rocks and Gander basement in the core of the Lyme during D1. Limited structural evidence for diapiric uplift of the Lyme dome indicates that diapirism started late in D1 and was completed by D2 (ca. 290 - 280 Ma) when horizontal WNW contractional stresses dominated over vertical stresses. Second sillimanite metamorphism continued and syn-tectonic D2 granite pegmatite (288 ?? 4 Ma) and the Joshua Rock Granite Gniess (284 ?? 3 Ma) intruded at this time. North-northwest extension during D3 (ca. 280 - 275 Ma) led to granitic pegmatite intrusion along S3 cleavage planes and in extensional zones in boudin necks during hydraulic failure and decompression melting. Intrusion of a Westerly Granite dike at 275 ?? 4 Ma suggests that D3 extension was active, and perhaps concluding, by ca. 275 Ma. Late randomly oriented but gently dipping pegmatite dikes record a final stage of intrusion during D4 (ca. 275 - 260 Ma), and a switch from NNW extension to vertical unloading and exhumation. Monazite and metamorphic zircon rim ages record this event at ca. 259 Ma. The evolution of the Lyme dome involved D1 mylonitization, intrusion, and migmatization during north-directed contraction, limited late D1 diapirism, D2 migmatization during WNW contraction with associated flexural flow and fold interference, D3 NNW horizontal extension and decompression melting, and final D4 vertical extension and rapid exhumation. Late regional uplift, extension, and normal faulting at higher crustal levels may have been caused by diapiric rise of the lower crust, below the structural level of the Lyme dome. The rocks record no evidence of Acadian metamorphism or deformation, suggesting that the Gander zone here was not tectonically juxtaposed with Avalon until the Alleghanian orogeny.

  2. The influence of melting on the kinematic development of the Himalayan crystalline core

    NASA Astrophysics Data System (ADS)

    Webb, Alexander

    2016-04-01

    Current hypotheses for the development and emplacement of the Himalayan crystalline core are 1) models with intense upper plate out-of-sequence activity (i.e., tunneling of channel flow, and some modes of critical taper wedge behavior) and 2) models in which the upper plate mainly records basal accretion of horses (i.e., duplexing). The two concepts can be considered end-members. A signal difference between these two models is the role of melting. The intense upper plate deformation envisioned in the first set of models has been hypothesized to be largely a product of partial melting, particularly in channel flow models. Specifically, the persistent presence of melt in the middle crust of the upper plate may dramatically lower the viscosity of these rocks, allowing distributed deformation. The second set of models - duplexing - predicts in-sequence thrusting with only minor out-of-sequence deformation. Stacking of a duplex acts like a deli cheese-slicing machine: slice after slice is cut from the intact block to a stack of slices, but neither the block (~down-going plate) nor the stack (~upper plate) features much internal deformation. In this model, partial melting produces no significant kinematic impact. The dominant preserved structural elements across the Himalayan crystalline core rocks are flattening and L-S fabrics. Structurally high portions of the crystalline core locally display complex outcrop-scale deformation associated with migmatitic rocks, and contain km-scale leucogranite bodies; both features developed in the early to middle Miocene. The flattening and L-S fabrics have been interpreted to record either (A) southwards channel tunneling across the upper plate, or (B) fabric development during metamorphism of the down-going plate, prior to accretion to the upper plate. The deformation of migmatitic rock and emplacement of leucogranite have been interpreted in support of widespread distributed deformation. Alternatively, these features may have accumulated from increments of melting and crystallization which did not produce sufficient melt during any one period to significantly alter viscosity at >100 m scales. Recent work integrating monazite and zircon geochronology with structural records shows that the Himalayan middle crust has been assembled along a series of mainly southwards-younging thrust faults throughout the early to middle Miocene. The thrust faults separate 1-5 km thick panels that experienced similar metamorphic cycles during different time periods. At this scale, out-of-sequence deformation is rare, with its apparent significance enhanced because of the high throw-to-heave ratio of out-of-sequence thrusting. These findings support the duplexing model and indicate that melting did not have a significant impact on the kinematic development of the Himalayan crystalline core.

  3. Mid-crustal flow during Tertiary extension in the Ruby Mountains core complex, Nevada

    USGS Publications Warehouse

    MacCready, T.; Snoke, A.W.; Wright, J.E.; Howard, K.A.

    1997-01-01

    Structural analysis and geochronologic data indicate a nearly orthogonal, late Eocene-Oligocene flow pattern in migmatitic infrastructure immediately beneath the kilometer-thick, extensional, mylonitic shear zone of the Ruby Mountains metamorphic core complex, Nevada. New U-Pb radiometric dating indicates that the development of a northward-trending lineation in the infrastructure is partly coeval with the development of a pervasive, west-northwest-trending lineation in the mylonitic shear zone. U-Pb monazite data from the leucogranite orthogneiss of Thorpe Creek indicate a crystallization age of ca. 36-39 Ma. Zircon fractions from a biotite monzogranite dike yield an age of ca. 29 Ma. The three dated samples from these units exhibit a penetrative, approximately north-south-trending elongation lineation. This lineation is commonly defined by oriented bundles of sillimanite and/or elongated aggregates of quartz and feldspar, indicating a synmetamorphic and syndeformational origin. The elongation lineation can be interpreted as a slip line in the flow plane of the migmatitic, nonmylonitic infrastructural core of the northern Ruby Mountains. A portion of this midcrustal flow is coeval with the well-documented, west-northwest sense of slip in the structurally overlying kilometer-thick, mid-Tertiary mylonitic shear zone. Lineations in the mylonitic zone are orthogonal to those in the deeper infrastructure, suggesting fundamental plastic decoupling between structural levels in this core complex. Furthermore, the infrastructure is characterized by overlapping, oppositely verging fold nappes, which are rooted to the east and west. One of the nappes may be synkinematic with the intrusion of the late Eocene orthogneiss of Thorpe Creek. In addition, the penetrative, elongation lineation in the infrastructure is subparallel to hinge lines of parasitic folds developed synchronous with the fold nappes, suggesting a kinematically related evolution. The area is evaluated in terms of a whole-crust extension model. Magmatic underplating in the lower crust stimulated the production of late Eocene-early Oligocene granitic magmas, which invaded metasedimentary and Mesozoic granitic rocks of the middle crust. The midcrustal rocks, weakened by the magmatic heat influx, acted as a low-viscosity compensating material, decoupled from an extending upper crust. The fold nappes and lineation trends suggest large-scale flow of the weakened crust into the study area. The inflow pattern in the migmatitic infrastructure can be interpreted as a manifestation of midcrustal migration into an area beneath a domain of highly extended upper trustai rocks. At present the inferred Eocene-early Oligocene phase of upper-crust extension remains unknown, but available data on relative and geochronologic timing are not inconsistent with our model of return flow into an area already undergoing large-scale upper-crustal extension.

  4. Tracing Nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan)

    NASA Astrophysics Data System (ADS)

    Padoan, Marta; Garzanti, Eduardo; Harlavan, Yehudit; Villa, Igor Maria

    2011-06-01

    Strontium and neodymium isotopes, measured on diverse mud and sand fractions of sediment in transit along all major Nile branches, identify detritus sourced from Precambrian basements, Mesozoic strata, and Tertiary volcanic rocks exposed along the shoulders of the East African rift and in Ethiopian highlands. Sr and Nd isotopic ratios reflect the weighted average of detrital components generated in different catchments, allowing us to discriminate provenance, calculate sediment budgets, and investigate grain-size and hydraulic-sorting effects. 87Sr/ 86Sr and 143Nd/ 144Nd range, respectively, from as high as 0.722 and as low as 0.5108 for sediment derived from Archean gneisses in northern Uganda, to 0.705 and 0.5127 for sediment derived from Neoproterozoic Ethiopian and Eritrean basements. 87Sr/ 86Sr and 143Nd/ 144Nd, ranging 0.705-0.709 and 0.5124-0.5130 for Blue Nile tributaries, are 0.704-0.705 and 0.5127-0.5128 for largely volcaniclastic sediments of River Tekeze-Atbara, and 0.705-0.706 and 0.5126-0.5127 for main Nile sediments upstream Lake Nasser. Model mantle derivation ages ( tDM), oldest in Uganda where sediment is principally derived from the Congo Craton (3.4-3.0 Ga for Victoria and Albert Nile), progressively decrease northward across the Saharan Metacraton, from 2.6 Ga (Bahr el Jebel in South Sudan), to 2.4-2.2 Ga (Bahr ez Zeraf across the Sudd), and finally 1.6-1.3 Ga (White Nile upstream Khartoum). Instead, tDM ages of Sobat mud increase from 0.9 to 1.5 Ga across the Machar marshes. TDM ages are younger for sediments shed by Ethiopian (1.2-0.7 Ga) and Eritrean basements (1.5-1.2 Ga), and youngest for sediments shed from Ethiopian flood basalts (0.3-0.2 Ga). Integrated geochemical, mineralogical, and settling-equivalence analyses suggest influence on the Nd isotopic signal by volcanic lithic grains and titanite rather than by LREE-rich monazite or allanite. Because contributions by ultradense minerals is subordinate, intrasample variability of Sr and Nd ratios is minor. In Blue Nile, Atbara and main Nile sediments of mixed provenance, however, the Nd ratio tends to be higher and tDM ages lower in largely volcaniclastic mud than in mixed volcaniclastic/metamorphiclastic sand. The complete geochemical database presented here, coupled with high-resolution bulk-petrography and heavy-mineral data, provides a key to reconstructing erosion patterns and detrital fluxes across the whole Nile basin, and to investigate and understand how sources of sediment have changed in the historical and pre-historical past in relation to shifting climatic zones across arid northern Africa.

  5. Silicate glasses and sulfide melts in the ICDP-USGS Eyreville B core, Chesapeake Bay impact structure, Virginia, USA

    USGS Publications Warehouse

    Belkin, H.E.; Horton, J. Wright

    2009-01-01

    Optical and electron-beam petrography of melt-rich suevite and melt-rock clasts from selected samples from the Eyreville B core, Chesapeake Bay impact structure, reveal a variety of silicate glasses and coexisting sulfur-rich melts, now quenched to various sulfi de minerals (??iron). The glasses show a wide variety of textures, fl ow banding, compositions, devitrifi cation, and hydration states. Electron-microprobe analyses yield a compositional range of glasses from high SiO2 (>90 wt%) through a range of lower SiO2 (55-75 wt%) with no relationship to depth of sample. Some samples show spherical globules of different composition with sharp menisci, suggesting immiscibility at the time of quenching. Isotropic globules of higher interfacial tension glass (64 wt% SiO2) are in sharp contact with lower-surface-tension, high-silica glass (95 wt% SiO2). Immiscible glass-pair composition relationships show that the immiscibility is not stable and probably represents incomplete mixing. Devitrifi cation varies and some low-silica, high-iron glasses appear to have formed Fe-rich smectite; other glass compositions have formed rapid quench textures of corundum, orthopyroxene, clinopyroxene, magnetite, K-feldspar, plagioclase, chrome-spinel, and hercynite. Hydration (H2O by difference) varies from ~10 wt% to essentially anhydrous; high-SiO2 glasses tend to contain less H2O. Petrographic relationships show decomposition of pyrite and melting of pyrrhotite through the transformation series; pyrite? pyrrhotite? troilite??? iron. Spheres (~1 to ~50 ??m) of quenched immiscible sulfi de melt in silicate glass show a range of compositions and include phases such as pentlandite, chalcopyrite, Ni-As, monosulfi de solid solution, troilite, and rare Ni-Fe. Other sulfi de spheres contain small blebs of pure iron and exhibit a continuum with increasing iron content to spheres that consist of pure iron with small, remnant blebs of Fe-sulfi de. The Ni-rich sulfi de phases can be explained by melting and/or concentrating targetderived Ni without requiring an asteroid impactor source component. The presence of locally unaltered glasses in these rocks suggests that in some rock volumes, isolation from postimpact hydrothermal systems was suffi cient for glass preservation. Pressure and temperature indicators suggest that, on a thin-section scale, the suevites record rapid mixing and accumulation of particles that sustained widely different peak temperatures, from clasts that never exceeded 300 ?? 50 ??C, to the bulk of the glasses where melted sulfi de and unmelted monazite suggest temperatures of 1500 ?? 200 ??C. The presence of coesite in some glass-bearing samples suggests that pressures exceeded ~3 GPa. ?? 2009 Geological Society of America.

  6. Geochronological Constraints on the Exhumation and Emplacement of Subcontinental Lithospheric Mantle Peridotites in the Westernmost Mediterranean

    NASA Astrophysics Data System (ADS)

    Garrido, Carlos J.; Hidas, Károly; Marchesi, Claudio; Varas-Reus, María Isabel; Booth-Rea, Guillermo

    2017-04-01

    Exhumation of subcontinental mantle peridotite in the Western Mediterranean has been attributed to different tectonic processes including pure extension, transpression, or alternating contractive and extensional processes related with continental subduction followed by extension, before final their contractive intracrustal emplacement. Any model trying to explain the exhumation and emplacement of subcontinental lithospheric mantle peridotites in the westernmost Mediterranean should take into account the available geochronological constraints, as well as the petrological and geochemical processes that lead to internal tectono-magmatic zoning so characteristic of the Betic and Rif orogenic peridotites. Different studies have suggested a Hercynian, Cenozoic-Mesozoic or an Alpine age for the late tectono-magmatic evolution and intra-crustal emplacement of Betic-Rif peridotites. The pervasive presence of Mesozoic U-Pb zircon ages in Ronda UHP and HP garnet pyroxenites does not support a Hercynian age for the intracrustal emplacement of the peridotite. A hyper-extended margin setting for is in good agreement with the Jurassic extensional event that pervasively affected ALKAPECA terrains (i.e. the Alboran, Kabylides, Peloritani, and Calabria domains) in the western Mediterranean due to the opening of the Piemonte-Ligurian Ocean. However, a Jurassic age and a passive margin tectonic setting do not account, among other observations, for the late Miocene thermochronological ages recorded in zircons rims (U-Pb) and garnets (Lu-Hf) in garnet pyroxenites from the Betic-Rif peridotites, the pervasive Miocene resetting of U-Pb zircon and monazite ages in the overlying Jubrique crustal section, the supra-subduction radiogenic signature of late pyroxenite intrusive dikes in the Ronda peridotite, and the arc tholeiitic affinity of late mantle-derived, gabbroic dykes intruding in the Ronda and Ojen plagioclase lherzolites. These data are more consistent with a supra-subduction backarc setting for the Paleocene Alpine evolution of the Alboran peridotite massifs due to slab rollback in the westernmost Mediterranean. Several geodynamic models have proposed initial south directed migration of the orogenic arc in a more easterly position (south of the Balearic Islands) during the Paleogene before the closure of the Paleo-Tethys Ocean and collision with the Algerian margin. This early emplacement for the Ronda Peridotite (approx. 25-23 Ma) in such an easterly position would provide a common origin for the peridotite bodies found in the Kabylies in Algeria, and in the Betics-Rif. We propose that after thinning and extension in a back-arc setting recorded in the Ronda spinel tectonite domain and the recrystallization front, the final Miocene exhumation of Ronda Peridotite is associated with early folding and later but probably synkinematic shearing of the SCLM in a contractive geodynamic setting. This process is recorded in the low-pressure plagioclase tectonite domain of the Ronda peridotite and the supra-subduction bonititic affinity of late intrusive pyroxenites.

  7. New Advances in Re-Os Geochronology of Organic-rich Sedimentary Rocks.

    NASA Astrophysics Data System (ADS)

    Creaser, R. A.; Selby, D.; Kendall, B. S.

    2003-12-01

    Geochronology using 187Re-187Os is applicable to limited rock and mineral matrices, but one valuable application is the determination of depositional ages for organic-rich clastic sedimentary rocks like black shales. Clastic sedimentary rocks, in most cases, do not yield depositional ages using other radioactive isotope methods, but host much of Earth's fossil record upon which the relative geological timescale is based. As such, Re-Os dating of black shales has potentially wide application in timescale calibration studies and basin analysis, if sufficiently high precision and accuracy could be achieved. This goal requires detailed, systematic studies and evaluation of factors like standard compound stoichiometry, geologic effects, and the 187Re decay constant. Ongoing studies have resulted in an improved understanding of the abilities, limitations and systematics of the Re-Os geochronometer in black shales. First-order knowledge of the effects of processes like hydrocarbon maturation and low-grade metamorphism is now established. Hydrocarbon maturation does not impact the ability of the Re-Os geochronometer to determine depositional ages from black shales. The Re-Os age determined for the Exshaw Fm of western Canada is accurate within 2σ analytical uncertainty of the known age of the unit (U-Pb monazite from ash, conodont biostratigraphy). This suggests that the large improvement in precision attained for Re-Os dating of black shales by Cohen et al (ESPL 1999) over the pioneering work of Ravizza & Turekian (GCA 1989), relates to advances in analytical methodologies and sampling strategies, rather than a lack of disturbance by hydrocarbon maturation. We have found that a significant reduction in isochron scatter can be achieved by using an alternate dissolution medium, which preferentially attacks organic matter in which Re and Os are largely concentrated. This likely results from a more limited release of detrital Os and Re held in silicate materials during dissolution, compared with the inverse aqua regia medium used for Carius tube analysis. Using these "organic-selective" dissolution techniques, precise depositional ages have now been obtained from samples with very low TOC contents ( ˜0.5%), meaning that a greater range of clastic sedimentary rocks is amenable for Re-Os age dating. Well-fitted Re-Os isochrons of plausible geological age have also been determined from low-TOC shales subjected to chlorite-grade regional metamorphism. These results further illustrate the wide, but currently underutilized, potential of the Re-Os geochronometer in shales. The precision of age data attainable by the Re-Os system directly from black shales can be better than +/- 1% uncertainty (2σ , derived from isochron regression analysis), and the derived ages are demonstrably accurate.

  8. An integrated study on microtectonics, geothermometry and thermochronology of the Çataldaǧ Core Complex (NW Turkey): Implications for cooling, deformation and uplift history

    NASA Astrophysics Data System (ADS)

    Kamaci, Omer; Altunkaynak, Safak

    2017-04-01

    We present an integrated study on structure, microstructure, geothermometry and thermochronology of the Çataldaǧ Core Complex (ÇCC) in NW Turkey in order to understand the cooling, deformation and uplift mechanisms. ÇCC is formed from an Eo-Oligocene granite-gneiss-migmatite complex (GGMC) and an Early Miocene I-type granodioritic body (ÇG: Çataldaǧ granodiorite) which were exhumed as a dome-shaped core complex in the footwall of a ring-shaped low-angle detachment zone (The Çataldaǧ Detachment Fault Zone; ÇDFZ) in the Early Miocene. New U-Pb zircon (LA-ICPMS) and monazite ages of GGMC yielded magmatic ages of 33.8 and 30.1 Ma (Latest Eocene-Early Oligocene). 40Ar/39Ar muscovite, biotite and K-feldspar from the GGMC yielded the deformation age span 21.38±0,05 Ma and 20.81±0.04 Ma, which is also the emplacement age (20.84±0.13 Ma and 21.6±0.04 Ma) of ÇG. ÇDFZ is responsible for mainly top-to-the-north sense kinematic processes. The microstructural features of quartz, feldspar and mica indicate that the ÇCC has undergone continuous deformations during its cooling, from submagmatic to cataclastic conditions. Five microstructural grades have been classified under ductile (DZ) and ductile-to-brittle shear zone (SZ), according to the estimated deformation temperature and intensity of the strain. Microcline twinning, marginally replacement myrmekite and flame-perthite are predominant features for feldspar while chessboard extinction, grain boundary migration and subgrain rotation recrystallization is common for quartz in the DZ which has a deformation temperature range of >600°C to 400°C. Grain size reduction is an important factor for the ductile to brittle shear zone (SZ). Feldspar is represented by bulging recrystallization (BLG), feldspar-fish and domino-type microfracture/microfaulting and quartz show more elongated structures such as ribbons with high aspect ratios. Mineral-fish (muscovite, biotite and feldspar) structures indicate a temperature range of 500°C to <250°C. The GGMC and ÇG, which were formed in different periods, suffered continuous ductile-to-brittle deformation and uplifted together along ÇDFZ during Early Miocene when the first major period of N-S extension began in the western Anatolia. Microstructural grades, two-feldspar geothermometry and geochronological data indicate that the GGMC and ÇG, which were formed in different periods, suffered continuous ductile-to-brittle deformation and uplifted together along ÇDFZ during Early Miocene when the first major period of N-S extension began in the western Anatolia.

  9. Complete zircon and chromite digestion by sintering of granite, rhyolite, andesite and harzburgite rock reference materials for geochronological purposes

    NASA Astrophysics Data System (ADS)

    Bokhari, Syed Nadeem H.; Meisel, Thomas

    2014-05-01

    Zircon (ZrSiO4) is a common accessory mineral in nature that occurs in a wide variety of sedimentary, igneous, and metamorphic rocks. Zircon has the ability to retain substantial chemical and isotopic information that are used in range of geochemical and geo- chronological investigations. Sample digestion of such rock types is a limiting factor due to the chemical inertness of zircon (ZrSiO4) tourmaline, chromite, barite, monazite, sphene, xenotime etc. as the accuracy of results relies mainly on recovery of analytes from these minerals. Dissolution by wet acid digestions are often incomplete and high blank and total dissolved solids (TDS) contents with alkali fusions lead to an underestimation of analyte concentrations. Hence an effective analytical procedure, that successfully dissolves refractory minerals such as zircon is needed to be employed for reliable analytical results. Na2O2 digestion [1] was applied in characterisation of granite (G-3), rhyolite (MRH), andesite (MGL-AND) and harzburgite (MUH-1) powdered reference material with solution based ICP-MS analysis. In this study we undertake a systematic evaluation of decomposition time and sample:Na2O2 ratio and test portion size after minimising effect of all other constraints that makes homogeneity ambiguous. In recovering zircon and chromite 100 mg test portion was mixed with different amounts of Na2O2 i.e. 100-600 mg. Impact of decomposition time was observed by systematically increasing heating time from 30-45 minutes to 90-120 minutes at 480°C. Different test portion sizes 100-500 mg of samples were digested to control variance of inhomogeneity. An improved recovery of zirconium in zircon in granite (G-3), rhyolite MRH), andesite (MGL-AND) and chromite in harzburgite (MUH-1) was obtained by increasing heating time (2h) at 480°C and by keeping (1:6) ratio of sample:Na2O2. Through this work it has been established that due to presence of zircon and chromite, decomposition time and sample:Na2O2 ratio has to be increased for an accurate content determination and complete release of analytes for geochronological studies. Larger test portion size reduces the heterogeneity issues in granites in particular [2]. No significant blanks issues were observed and interferences were controlled using QQQ MS mode of ICP-MS. References [1] Meisel, T., N. Schöner, et al. (2002). "Determination of Rare Earth Elements, Y, Th, Zr, Hf, Nb and Ta in Geological Reference Materials G-2, G-3, SCo-1 and WGB-1 by Sodium Peroxide Sintering and Inductively Coupled Plasma-Mass Spectrometry." Geostandards Newsletter 26(1): 53-61. [2] Bokhari SNH., Meisel T (2013) "The Determination of Homogeneity of Geological Reference Material" Mineralogical Magazine, 77(5): 731.

  10. A refined genetic model for the Laisvall and Vassbo Mississippi Valley-type sandstone-hosted deposits, Sweden: constraints from paragenetic studies, organic geochemistry, and S, C, N, and Sr isotope data

    NASA Astrophysics Data System (ADS)

    Saintilan, Nicolas J.; Spangenberg, Jorge E.; Samankassou, Elias; Kouzmanov, Kalin; Chiaradia, Massimo; Stephens, Michael B.; Fontboté, Lluís

    2016-06-01

    The current study has aimed to refine the previously proposed two-fluid mixing model for the Laisvall (sphalerite Rb-Sr age of 467 ± 5 Ma) and Vassbo Mississippi Valley-type deposits hosted in Ediacaran to Cambrian sandstone, Sweden. Premineralization cements include authigenic monazite, fluorapatite, and anatase in the Upper Sandstone at Laisvall, reflecting anoxic conditions during sandstone burial influenced by the euxinic character of the overlying carbonaceous middle Cambrian to Lower Ordovician Alum Shale Formation ( δ 13Corg = -33.0 to -29.5 ‰, δ 15Norg = 1.5 to 3.3 ‰, 0.33 to 3.03 wt% C, 0.02 to 0.08 wt% N). The available porosity for epigenetic mineralization, including that produced by subsequent partial dissolution of pre-Pb-Zn sulfide calcite and barite cements, was much higher in calcite- and barite-cemented sandstone paleoaquifers (29 % by QEMSCAN mapping) than in those mainly cemented by quartz (8 %). A major change in the Laisvall plumbing system is recognized by the transition from barite cementation to Pb-Zn sulfide precipitation in sandstone. Ba-bearing, reduced, and neutral fluids had a long premineralization residence time (highly radiogenic 87S/86Sr ratios of 0.718 to 0.723) in basement structures. As a result of an early Caledonian arc-continent collision and the development of a foreland basin, fluids migrated toward the craton and expelled Ba-bearing fluids from their host structures into overlying sandstone where they deposited barite upon mixing with a sulfate pool ( δ 34Sbarite = 14 to 33 ‰). Subsequently, slightly acidic brines initially residing in pre-Ediacaran rift sediments in the foredeep of the early Caledonian foreland basin migrated through the same plumbing system and acquired metals on the way. The bulk of Pb-Zn mineralization formed at temperatures between 120 and 180 °C by mixing of these brines with a pool of H2S ( δ 34S = 24 to 29 ‰) produced via thermochemical sulfate reduction (TSR) with oxidation of hydrocarbons in sandstone. Other minor H2S sources are identified. Upward migration and fluctuation of the hydrocarbon-water interface in sandstone below shale aquicludes and the formation of H2S along this interface explain the shape of the orebodies that splay out like smoke from a chimney and the conspicuous alternating layers of galena and sphalerite. Intimate intergrowth of bitumen with sphalerite suggests that subordinate amounts of H2S might have been produced by TSR during Pb-Zn mineralization. Gas chromatograms of the saturated hydrocarbon fraction from organic-rich shale and from both mineralized and barren sandstone samples indicate that hydrocarbons migrated from source rocks in the overlying Alum Shale Formation buried in the foredeep into sandstone, where they accumulated in favorable traps in the forebulge setting.

  11. The "granite pump": LP/HT metamorphism and exhumation in the Montagne Nore (S-France)

    NASA Astrophysics Data System (ADS)

    Franke, W.; Doublier, M. P.; Doerr, W.; Stein, E.

    2003-04-01

    The Montagne Noire at the southern margin of the French Massif Central represents an exceptional case of a hot metamorphic core complex evolved from a thrust stack in a foreland position. The core of the structure (Zone Axiale) exposes granites and LP/HT gneisses up to anatectic grade. The hot core is encased by ENE-trending shear zones, which define a dextral pull-apart structure. Ductile extension is documented by top WSW shearing in the W, and ENE shearing in the E part of the Zone Axiale (eg, MATTE et al., 1998). Extension in ENE and reduction of the metamorphic profile are accompanied by NNW-directed contraction ("pinched pull-apart"). Palaeozoic sediments on the southern flank of the Zone Axiale exhibit only greenschist to diagenetic grades of metamorphism. Conodont alteration index (WIEDERER et al., 2002) and illite crystallinity (Doublier, this meeting) reveal a decrease of metamorphic temperature away from the hot core. Metamorphic isograds cut across the axial planes of D1 nappes. These features suggest that metamorphism was imposed by the rising hot core. Accordingly, the palaeozoic sediments show a tectonic evolution which closely resembles that of the gneissic core (extension top ENE, contraction in NNW). Structures relating to stacking (D1) have survived at the southern margin of the Montagne Noire. U-Pb studies (TIMS on single zircon and monazite) reveal peak metamorphism and magmatism already at c. 315 Ma (KLAMA et al., 2001), i.e., only <10 Ma after the end of flysch deposition in latest Visean/Early Namurian time (<= 323 Ma). The coincidence, within error, of the U-Pb ages and earlier Ar/Ar ages (MALUSKI et al., 1991) suggest rapid cooling. Synchronous granite emplacement and metamorphism is best explained by advective heating. Since granites are not generated in foreland settings, we propose derivation of the melts from areas of thickened crust adjacent to the N. Transport and emplacement of granites was essentially driven by the hydraulic gradient between the locus of melt generation in the orogenic root, and the opening pull-apart window. Such a pumping model may also be applied to other thermal anomalies in the Variscan Belt, e.g., in the SW-Bohemian Transverse Zone (FRANKE 2000), or in the Saxonian Granulites (FRANKE and STEIN 2000). Hydraulic expulsion of hot, low viscously materials has played an important role in the transport of heat for the hot Variscan root to higher and more external parts of the crust. FRANKE (2000); Geol. Soc. Spec. Publ. No. 179, 35-63. FRANKE and STEIN (2000); Geol. Soc. Spec. Publ. No. 179, 337-355. KLAMA et al. (2001); J. Conf. Abs.,6, 235. MALUSKI et al. (1991); Lithos, 26: 287-304. MATTE et al. (1998); Geodynamica Acta: 13-22. WIEDERER et al. (2002); Schweiz. Mineral. Petrogr. Mitt. 82, 393-407.

  12. Metamorphic and tectonic evolution of Ceuta peninsula (Internal Rif): new interpretation in the framework of arc and back arc evolution

    NASA Astrophysics Data System (ADS)

    Homonnay, Emmanuelle; Lardeaux, Jean-Marc; Corsini, Michel; Cenki-Tok, Bénédicte; Bosch, Delphine; Munch, Philippe; Romagny, Adrien; Ouazzani-Touhami, Mohamed

    2016-04-01

    In the last twenty years, various geophysical investigations have established that the Western Mediterranean opened in a subduction context as a back arc domain. In the Alboran basin the dip of the subduction plane is eastwards or southeastwards depending of considered models. If the geological records of back-arc opening are well-known, the arc-related tectonic and petrologic evolutions are still poorly documented. In order to decipher these markers, we focalised structural, petrological and thermo-chronological studies on the Ceuta peninsula located in the Rif belt, on the western part of the Gibraltar arc to the North of Morocco. The present-day tectonic pile is constituted by: (1) the upper Ceuta unit, composed of High Pressure and High Temperature metapelites retromorphosed under Amphibolite-facies condition, with Ultra-High Pressure relicts, and pyrigarnite and spinel bearing peridotites boudins at its base, (2) the lower Monte Hacho unit, with orthogneisses metamorphosed under Amphibolite-facies conditions. Structural analysis indicates a polyphase tectonic evolution: (1) an earlier deformation phase only observed in the UHP metapelites and characterized by a steep S1 foliation plane, (2) a main deformation phase associated to a pervasive gently dipping S2 foliation plane bearing a L2 stretching lineation and synschistose folds whose axes are parallel to L2 and (3) a late deformation phase which developed S3 foliation plane and L3 stretching lineation coeval with development of narrow normal ductile shear zones. A zone of increasing deformation, several dozen meters wide, is identified as a major ductile shear zone involving the peridotitic lenses at the base of the metapelites of the Ceuta unit and overlaying this upper unit on top of the orthogneisses of the Monte Hacho lower unit. The attitude of mylonitic foliation and stretching and mineral lineations as well as the numerous shear sense indicators observed in the shear zone are consistent with a thrusting toward the NE. Furthermore, biotite-sillimanite bearing S2 foliation affecting the whole of crustal rocks is contemporaneous with the movement on this main ductile thrusting. We combined garnet-biotite and GASP thermo-barometers with thermodynamic modelling (Theriak-Domino) in order to constrain pressure and temperature conditions of D2 and D3 tectono-metamorphic events. P-T conditions of D2 deformation are in the range 7-10kbar and 770-820°C and are compatible with syn-tectonic partial melting. D3 deformation event occurred at 1-7kbar and 400-550°C. These metamorphic conditions reflect abnormally high geothermal gradients during both shortening and thinning and are clearly compatible with the thermal evolution recognized in continental arcs. Preliminary U-Th-Pb (monazite, zircon and xenotime) and previous Ar39/Ar40 (micas) analyses, furnished similar ages around 21 Ma for D2 and D3 events, suggesting a very fast transition from arc to back-arc dynamics.

  13. The Pinkie Unit of the Southwestern Svalbard Caledonian Province and its bearing on distribution of the Torellian-Timanian basement in the High Arctic

    NASA Astrophysics Data System (ADS)

    Kośmińska, Karolina; Majka, Jarosław; Manecki, Maciej

    2015-04-01

    Here we present for the first time petrological characteristics of metapelites from the Pinkie Unit (Prins Karls Forland, western Svalbard). Rocks belonging to the Pinkie Unit are represented mainly by laminated quartzites, siliciclastic rocks (sometimes with garnet) and garnet-bearing mica schists. They are overthrust by the lower grade lithologies of the Grampian Group. The mineral composition confirmed by preliminary microscopic observations suggests that the Pinkie rocks were subjected to at least amphibolite facies metamorphism. The metamorphic zoning from chloritoid through staurolite, up to kyanite zone is apparent. This indicates Barrovian type metamorphism. The rocks are strongly deformed, M1 assemblages and D1 structures are overprinted by pervasive D2 mylonitic pattern. This study is focused on kyanite-bearing schists. They consist mainly of garnet, plagioclase, biotite, muscovite, kyanite, quartz and turmaline. Garnet forms anhedral crystals. Its chemical composition is characterized by Alm79-84Sps1-5Prp5-11Grs5-10. The profiles through the garnets are almost flat and they seem to be homogenized most probably during peak temperature at an early stage of retrogression. The Si content in muscovite varies from 3.06 to 3.13. Biotite is characterized by XFe in the range of 0.53 - 0.66. The garnet-biotite-muscovite-plagioclase (GBPM) geothermobarometer (Holdaway, 2001; Wu, 2014) has been used for estimation of pressure - temperature conditions. Preliminary calculations indicate peak metamorphic conditions at 8 - 9 kbar and 650 - 700°C. Our P-T calculations provide further evidence for the Barrovian type of metamorphism along the western coast of Svalbard. The correlation of the Pinkie Unit with other higher grade complexes within Southwestern Svalbard Caledonian Province is still difficult, but the studied rocks resemble the Isbjørnhamna Group of Wedel Jarlsberg Land. This is based on the metamorphic grade, mineral assemblage and probable protolith age (post-950Ma; Kośmińska, unpublished data). If this is a case, the Pinkie Unit will provide another evidence of the Torellian-Timanian (late Neoproterozoic, e.g. Majka et al. 2008) tectonothermal event within the Svalbard's Caledonides. In turn, it can bear important implications for Arctic tectonic reconstructions. This project is financed by NCN research project No 2013/11/N/ST10/00357. References: Holdaway M.J., 2001. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist, 86, 1117-1129. Majka J., Mazur S., Czerny J., Manecki M., Holm D.K., 2008. Late Neoproterozoic amphibolite facies metamorphism of a pre-Caledonian basement block in southwest Wedel Jarlsberg Land, Spitsbergen: new evidence from U-Th-Pb dating of monazite. Geological Magazine, 145, 822-830. Wu C. M., 2014. Revised empirical garnet-biotite-muscovite-plagioclase (GBMP) geobarometer in metapelites. Journal of Metamorphic Geology. doi: 10.1111/jmg.12115

  14. Investigating Alpine fissure rutilated quartz to constrain timing and conditions of post-metamorphic hydrothermal fluid flow

    NASA Astrophysics Data System (ADS)

    Shulaker, D. Z.; Schmitt, A. K.; Zack, T.; Bindeman, I. N.

    2013-12-01

    Rutilated quartz, aka Venus' hair, is finely-acicular rutile intergrown with host quartz generated by fluid-mediated co-crystallization. It is commonly found in hydrothermal veins, including the renown cleft mineral locations of the Swiss Alps. Previous studies of Alpine cleft mineralizations used rare hydrothermal monazite [1] and titanite [2] to constrain vein formation to ~13.5-15.2 Ma, postdating peak metamorphism by ~2-4 Ma. Temperature (T) estimates of 150-450°C are based on fluid inclusions and bulk quartz-mineral oxygen isotope exchange equilibria, and formation pressures (P) are 0.5-2.5 kbar (for a geothermal gradient of 30°C/km) [2]. The potential of rutilated quartz as a thermochronometer, however, has not been harnessed previously. Here, we present the first results of age and P-T determinations for rutilated quartz from six locations in the Swiss Alps (San Gottardo; Feldbach, Binntal; Pi Aul, Vals; Faido, Leventina; Elm, Steinbach; Binntal). Samples were cut and mounted in epoxy discs to expose rutile (0.03 to 1 mm in diameter) and its host quartz which was also imaged in cathodoluminescence (CL). CL images for half of the samples' host quartz exhibited strong sector zoning, while others reveal only weak CL zonation. Isotopic and trace element analyses were carried out by SIMS using a CAMECA ims1270 for U-Pb, O-isotopes, and Ti-in-quartz, and a LA-ICP-MS system (213 nm New Wave laser coupled to an Agilent 7500a) for Zr-in-rutile. U-Pb rutile ages average 15.5×2.0 Ma (2σ). T estimates are 352-575°C (rutile-quartz oxygen isotopes in touching domains), 470-530°C (Zr-in-rutile assuming P = 0.5 and equilibrium with host-rock zircon), and 251-391°C (Ti-in-quartz at assumed P = 0.5 kbar and aTiO2 = 1). CL zones are isotopically unzoned. Rutile-quartz oxygen isotopes are pressure insensitive, whereas Zr-in-rutile and Ti-in-quartz are minimum temperatures. These results demonstrate that rutilated quartz can constrain timing and conditions of post-metamorphic hydrothermal fluid flow and mineralization. Discrepancies in thermometers are attributed to differences between experimental calibrations of isotopic and trace element thermometers, and the conditions of post-metamorphic hydrothermal fluid flow. Only rutile-quartz oxygen isotope exchange [3] has been calibrated close to natural T conditions for rutilated quartz (500°C). This may help to extend the applicability of the Ti-in-quartz and Zr-in-rutile to T below experimental calibrations (>600°C; [4] and >700°C; [5], resp.). [1] Janots et al., 2012, Chem. Geol., 326-327, 61-71 [2] Mullis, 1996, Schweiz. Mineral. Petrogr. Mitt., 76, 159-164 [3] Matthews, 1994, J. Met. Geol., 12, 211-219 [4] Thomas et al., 2010, Contrib. Mineral. Petrol., 160, 743-759 [5] Ferry and Watson, 2007, Contrib. Mineral. Petrol., 154, 429-437

  15. Thermochronology of the Cornubian batholith in southwest England: Implications for pluton emplacement and protracted hydrothermal mineralization

    NASA Astrophysics Data System (ADS)

    Chesley, J. T.; Halliday, A. N.; Snee, L. W.; Mezger, K.; Shepherd, T. J.; Scrivener, R. C.

    1993-04-01

    The metalliferous ore deposits of southwest England are associated with biotite-muscovite granites that intruded upper Paleozoic sediments and volcanic rocks at the end of the Hercynian Orogeny. The hydrothermal mineralization can be subdivided into four stages: (1) exoskarns (2) high-temperature tin and tungsten oxide-bearing sheeted greisen bordered veins and Sn-bearing tourmaline veins and breccias (3) polymetallic quartz-tourmaline-chlorite-sulfide-fluorite-bearing fissure veins, which represent the main episode of economic mineralization (4) late-stage, low-temperature polymetallic fluorite veins. U-Pb dating of monazite and xenotime and 40Ar /39Ar dating of muscovite were used to determine emplacement ages and cooling times for individual plutons within the Cornubian batholith, as well as separate intrusive phases within the plutons. In addition, 40Ar /39Ar ages from hornblende and secondary muscovite and Sm-Nd isochron ages from fluorite were employed to determine the relationship between pluton emplacement and different stages of mineralization. The U-Pb ages indicate that granite magmatism was protracted from ~300 Ma down to ~275 Ma with no evidence of a major hiatus. There is no systematic relation between the age of a pluton and its location within the batholith. The U-Pb ages for separate granite phases within a single pluton are resolvable and indicate that magma emplacement within individual plutons occurred over periods of as much as 4.5 myrs. Felsic porphyry dike emplacement was coeval with plutonism, but continued to ~270 Ma. The geochronologic data suggest that the Cornubian batholith originated from repeated melting events over 30 myrs and was formed by a series of small coalescing granitic bodies. Cooling rates of the main plutons are unrelated to emplacement age, but decrease from the southwest to the northeast from ~210°C myr -1 to ~60°C myr -1 with a mean of 100°C myr -1. These slow cooling rates appear to reflect the addition of heat from multiple intrusive episodes. The mineralization history is distinct for each pluton and ranges from coeval with, to up to 40 myrs younger than the cooling age for the host pluton. Stage 2 mineralization is broadly synchronous with the emplacement of granite magmas, is dominated by fluids expelled during crystallization, and may be repeated by the emplacement of younger magmas within the same pluton. Sm-Nd isochrons for fluorite from stage 3 polymetallic mineralization give ages of 259 ± 7, 266 ± 3 and 267 ± 12 Ma, postdating stage 2 mineralization by up to 25 myrs within the same deposit. The similarity in age of the main polymetallic mineralization hosted by the oldest and youngest plutons, suggests that this stage of mineralization is unlikely to be related to hydrothermal circulation driven by the emplacement and cooling of the host granite. The mineralization is more likely the product of regional hydrothermal circulation driven by heat from the emplacement and crystallization of younger buried pulses of magma.

  16. The success and complementarity of Sm-Nd and Lu-Hf garnet geochronology

    NASA Astrophysics Data System (ADS)

    Baxter, E. F.; Scherer, E. E.

    2013-12-01

    Garnet's potential as a direct chronometer of tectonometamorphic processes and conditions was first realized over 30 years ago. Since then, the Sm-Nd and Lu-Hf systems have emerged as the most effective, with both permitting age precision < ×1 Myr. Both have proven successful not merely in dating garnet growth itself, but rather in constraining the ages, durations, and rates of particular earth processes or conditions that can be directly linked to garnet growth via chemical, thermodynamic, or petrographic, means. Appreciating important differences between Sm-Nd and Lu-Hf in terms of contaminant phases, partitioning, daughter element diffusivity, and isotopic analysis makes these two systems powerfully complementary when used and interpreted in concert. Well established, robust analytical methods mitigate the effects of ubiquitous mineral inclusions (monazite is most significant for Sm-Nd; zircon is most significant for Lu-Hf), improving the precision and accuracy of garnet dates from both systems. Parent-daughter ratios tend to be higher for Lu-Hf leading to the potential for better age precision in general. The Lu-176 decay rate is faster than Sm-147, meaning that Lu-Hf provides better age precision potential for young (Cenozoic) samples. However, Sm-Nd provides better precision potential for older (Precambrian) samples primarily because of the higher precisions on the parent-daughter ratios (i.e., 147Sm/144Nd) that can be achieved by ID-TIMS analysis. For dating microsampled zones or growth rings in single garnet crystals, Sm-Nd has proven most successful owing to more uniform distribution of Sm, and established methods to measure <10 ng quantities of Nd at high precision via TIMS. However, new MC-ICP-MS sample introduction technologies are closing this gap for small samples. For analyses of bulk garnet that grew over a protracted interval, Lu-Hf dates are expected to be older than Sm-Nd dates owing to differences in Lu and Sm zonation (i.e. Lu tends to be strongly sequestered by garnet cores, whereas Sm is more evenly distributed). Thus, Lu-Hf is often useful for targeting nucleation times (and earliest growth zones), whereas Sm-Nd is preferable when targeting the mid- to later stages (and outermost growth zones) of garnet. Depending on grain size and heating duration, most garnets can retain their primary growth chronology up to about 700 C, and thus they are one of the few metamorphic minerals that faithfully record prograde metamorphic processes and conditions. For granulite facies rocks (e.g., > about 700 C), higher retentivity (i.e., slower diffusivity) for Hf than for Nd can lead to older Lu-Hf (growth) ages compared to Sm-Nd (partially reset) dates for the same sample. Finally, as with all geochronometers, decay constant uncertainties and sources of systematic error in methods (e.g., spike calibrations) should be considered when comparing absolute Lu-Hf and Sm-Nd dates to each other or to other chronometers.

  17. Trace element mobility in dolomitic argillites of the Mesoproterozoic Belt-Purcell Supergroup, Western North America

    NASA Astrophysics Data System (ADS)

    González-Álvarez, Ignacio; Kerrich, Robert

    2011-04-01

    The Belt-Purcell Supergroup comprises dolomite-rich stratigraphic units in a dominantly siliciclastic succession, where sedimentation spans 1400-1470 Ma. Dolomitic units are variable mixtures of co-sedimented argillite and primary carbonate post-depositionally converted to secondary dolomite. Based on rare earth element (REE) relationships three distinct REE patterns are identified in the dolomite-rich units: Type 1 (T1d; d = dolomitic sample) with REE patterns parallel to post-Archean Upper Continental Crust (PA-UCC), albeit at lower absolute abundances due to dilution by carbonate content; Type 2 (T2d) with Heavy REE (HREE) enrichment but Light REE (LREE) depletion relative to T1d; and Type 3 (T3d) with enrichment in LREE and HREE relative to T1d, but erratic Middle REE (MREE) patterns. There is a progressive increase of ΣREE from T1d through T2d to T3d, whereas for ΣLREE/ΣHREE T2d < T1d < T3d. T1d-T2d and T3d represent three different "snapshots" of a continuous process. In terms of timing, dolomitization of calcite primary sediment in all samples likely took place broadly during burial diagenesis, as inferred for most Proterozoic dolomites. T1d is easily explained by provenance: however, T2d and T3d cannot be related to provenance, weathering or sedimentary sorting processes to explain higher concentrations of HREE referenced to PA-UCC and consequently developed in the sediment from a T1d precursor. The same three REE signatures have been described in previous studies in counterpart siliciclastic counterparts throughout the Belt-Purcell Supergroup at three different locations. Mobility of normally stable REE is accompanied by mobility of normally isochemical high field strength elements (HFSE) in T2d and T3d to give REE/REE, HFSE/HFSE, REE/HFSE and Y/HREE fractionations. No specific REE-HFSE signatures are apparent in the carbonate-rich units as compared to their non-dolomitic siliciclastic counterparts. This unusual mobility of REE and HFSE reflected in T2d and T3d is attributed to alkaline oxidizing post-depositional brines. Salinity was derived from seawater-sediment reactions, dissolution of evaporite minerals, and the smectite-illite transformation, whereas alkaline oxidizing conditions were promoted by groundwater interaction with mafic units in the basin, CO 2 introduced into the system during episodic rifting with mantle degassing, and interaction of syn-sedimentary mafic intrusions with carbonate units at early stages of BPS deposition. Intermittent brine activity, inducing T2d and T3d patterns, spanned >1 Ga as recorded by secondary monazite grains with age distributions that correspond to large scale tectono-thermal events in Laurentia. Post-depositional processes and redistribution of carbonate can have an impact on transitional stratigraphic contacts between dolomitic and siliciclastic units which may have been incorrectly described as primary due to sedimentary environment changes.

  18. Advantages of conducting in-situ U-Pb age dating of multiple U-bearing minerals from a single complex: Case in point - the Oka Carbonatite Complex

    NASA Astrophysics Data System (ADS)

    Chen, W.; Simonetti, A.

    2012-12-01

    A detailed radiometric investigation is currently underway focusing on U-bearing accessory minerals apatite, perovskite, and niocalite from the Oka Carbonatite Complex (Canada). One of the main objectives is to obtain a comparative chronology of melt crystallization for the complex. Unlike other commonly adopted U-bearing minerals (e.g., zircon, monazite) for in-situ dating investigations, apatite, perovskite, and niocalite contain relatively high contents of common Pb. Hence, careful assessment of the proportion and composition of the common Pb, and usage of appropriate matrix-matched external standards are imperative. The Madagascar apatite was utilized as the external standard for apatite dating, and the Emerald Lake and Durango apatites were adopted as secondary standards; the latter yield ages of 92.6 ±1.8 and 32.2 ±1.1 Ma, respectively, and these are identical to their accepted ages. Pb/U ages for apatite from Oka were obtained for different rock types, including 8 carbonatites, 4 okaites, 3 ijolites and 3 alnoites, and these define a range of ages between ~105 and ~135 Ma; this result suggests a protracted crystallization history. In total, 266 individual analyses define two peaks at ~115 and ~125Ma. For perovskite dating, the Ice River perovskite standard was utilized as the external standard. The perovskites from one okaite sample yield an age of 112.2 ±1.9 Ma, and is much younger than the previously reported U-Pb perovskite age of 131 ±7 Ma. Hence, the combined U-Pb perovskite ages also suggest a rather prolonged time of melt crystallization. Niocalite is a rare, accessory silicate mineral that occurs within the carbonatites at Oka. The international zircon standard BR266 was selected for use as the external standard and rastering was employed to minimize the Pb-U fractionation. Two niocalite samples give young ages at 110.6 ±1.2 and 115.0 ±1.9 Ma, and are identical to their respective apatite ages (given associated uncertainties) from the same sample. The niocalite for a carbonatite sample Oka153 defines a bimodal age distribution, with weighted average 206Pb/238U ages of 110.1 ±5.0 and 133.2 ±6.1 Ma. Apatite from the same sample also records a similar bimodal age distribution of 111.4 ±2.8 and 126.9 ±1.8 Ma. The combined in situ U-Pb dating results for apatite, pervoskite, niocalite from Oka clearly support a protracted history of magmatic activity (~30 Myr) for this carbonatite complex. Of importance, the U-Pb results from this study clearly indicate the significance of conducting a thorough geochronological investigation rather than defining the age of any one alkaline complex solely on the basis of a single radiometric age determination.

  19. Thermochronology of the Cornubian batholith in southwest England: Implications for pluton emplacement and protracted hydrothermal mineralization

    USGS Publications Warehouse

    Chesley, J.T.; Halliday, A.N.; Snee, L.W.; Mezger, K.; Shepherd, T.J.; Scrivener, R.C.

    1993-01-01

    The metalliferous ore deposits of southwest England are associated with biotite-muscovite granites that intruded upper Paleozoic sediments and volcanic rocks at the end of the Hercynian Orogeny. The hydrothermal mineralization can be subdivided into four stages: 1. (1) exoskarns 2. (2) high-temperature tin and tungsten oxide-bearing sheeted greisen bordered veins and Sn-bearing tourmaline veins and breccias 3. (3) polymetallic quartz-tourmaline-chlorite-sulfide-fluorite-bearing fissure veins, which represent the main episode of economic mineralization 4. (4) late-stage, low-temperature polymetallic fluorite veins. U-Pb dating of monazite and xenotime and 40Ar 39Ar dating of muscovite were used to determine emplacement ages and cooling times for individual plutons within the Cornubian batholith, as well as separate intrusive phases within the plutons. In addition, 40Ar 39Ar ages from hornblende and secondary muscovite and Sm-Nd isochron ages from fluorite were employed to determine the relationship between pluton emplacement and different stages of mineralization. The U-Pb ages indicate that granite magmatism was protracted from ~300 Ma down to ~275 Ma with no evidence of a major hiatus. There is no systematic relation between the age of a pluton and its location within the batholith. The U-Pb ages for separate granite phases within a single pluton are resolvable and indicate that magma emplacement within individual plutons occurred over periods of as much as 4.5 myrs. Felsic porphyry dike emplacement was coeval with plutonism, but continued to ~270 Ma. The geochronologic data suggest that the Cornubian batholith originated from repeated melting events over 30 myrs and was formed by a series of small coalescing granitic bodies. Cooling rates of the main plutons are unrelated to emplacement age, but decrease from the southwest to the northeast from ~210??C myr-1 to ~60??C myr-1 with a mean of 100??C myr-1. These slow cooling rates appear to reflect the addition of heat from multiple intrusive episodes. The mineralization history is distinct for each pluton and ranges from coeval with, to up to 40 myrs younger than the cooling age for the host pluton. Stage 2 mineralization is broadly synchronous with the emplacement of granite magmas, is dominated by fluids expelled during crystallization, and may be repeated by the emplacement of younger magmas within the same pluton. Sm-Nd isochrons for fluorite from stage 3 polymetallic mineralization give ages of 259 ?? 7, 266 ?? 3 and 267 ?? 12 Ma, postdating stage 2 mineralization by up to 25 myrs within the same deposit. The similarity in age of the main polymetallic mineralization hosted by the oldest and youngest plutons, suggests that this stage of mineralization is unlikely to be related to hydrothermal circulation driven by the emplacement and cooling of the host granite. The mineralization is more likely the product of regional hydrothermal circulation driven by heat from the emplacement and crystallization of younger buried pulses of magma. ?? 1993.

  20. High seismic velocity (7.x) lower crustal layers in cratonic North America: a view from xenoliths and EarthScope seismic data

    NASA Astrophysics Data System (ADS)

    Mahan, K. H.; Barnhart, K. R.; Schulte-Pelkum, V.; Blackburn, T.; Bowring, S. A.; Dudas, F. O.

    2010-12-01

    Continental crust worldwide has local areas with a lowermost layer characterized by unusually high seismic P velocities of over 7 km/s. The presence (or absence) of these high-velocity layers, as well as their thickness, composition and degree of heterogeneity, can have a profound influence on the rheological properties and behavior of the lower crust. These data also provide fundamental information about lithospheric growth and destruction processes. In North America, high-velocity layers have been inferred for portions of a significant number of seismic refraction lines, as well as from surface wave and receiver function studies. However, the 2-D and localized nature of most existing studies leave many open questions regarding the full spatial extent of these layers (e.g. correlations with Archean vs Proterozoic terranes, collisional or accretionary boundaries, rift zones or plume tracks, etc.). EarthScope’s USArray provides an exceptional opportunity to improve our knowledge of the distribution of 7.x layers in North America. Similarly, xenoliths provide a complimentary opportunity to investigate compositional, geochronological, and petrophysical characteristics of the lower crust in selected areas. In Montana and Wyoming, where seismic experiments reveal an anomalously thick (up to 25 km) 7.x layer, our studies emphasize the heterogeneity in modes of formation, physical properties, and age of the lower crust. We highlight an example from xenoliths exhumed by Eocene minettes from the Great Falls Tectonic Zone in central Montana. The suite includes mafic garnet granulites, mafic eclogite, and felsic granulites with peak pressures of 0.8-1.5+ GPa, consistent with derivation from depths of 28-55+ km. Multiple samples preserve evidence for prograde burial and some are polymetamorphic. One sample (likely a restite from melted supracrustal material) contains evidence for an early mid-crustal metamorphic event followed by an increase in pressure from <0.8 to >1.0 GPa. Another sample records prograde breakdown of plagioclase and peak eclogite-facies conditions, followed by retrograde decompression and reentry into the plagioclase stability field. Prograde burial may represent thickening during collision across the Great Falls Tectonic Zone. Calculated seismic velocities are also heterogeneous with data from samples within the seismically defined 7.x layer ranging from 6.5 to 7.5 km/s. Zircon, monazite, titanite, and rutile U-(Th)-Pb data indicate igneous, metamorphic and/or fluid flow events at 2.7-2.6 Ga, 2.1 Ga, 1.8-1.7 Ga, and 1.3 Ga. Collectively, the data point to incremental assembly of the 7.x layer in Montana from Archean to Mesoproterozoic time. Other potentially similar studies across the continent, especially when combined with seismic techniques employing EarthScope’s USArray and other experiments, allow significant improvements in the development of models for the formation, evolution and present day structure of the North American lithosphere.

  1. NENIMF: Northeast National Ion Microprobe Facility - A Multi-User Facility for SIMS Microanalysis

    NASA Astrophysics Data System (ADS)

    Layne, G. D.; Shimizu, N.

    2002-12-01

    The MIT-Brown-Harvard Regional Ion Microprobe Facility was one of the earliest multi-user facilities enabled by Dan Weill's Instrumentation and Facilities Program - and began with the delivery of a Cameca IMS 3f ion microprobe to MIT in 1978. The Northeast National Ion Microprobe Facility (NENIMF) is the direct descendant of this original facility. Now housed at WHOI, the facility incorporates both the original IMS 3f, and a new generation, high transmission-high resolution instrument - the Cameca IMS 1270. Purchased with support from NSF, and from a consortium of academic institutions in the Northeast (The American Museum of Natural History, Brown University, The Lamont-Doherty Earth Observatory, MIT, Rensselaer Polytechnic Institute, WHOI) - this latest instrument was delivered and installed during 1996. NENIMF continues to be supported by NSF EAR I&F as a multi-user facility for geochemical research. Work at NENIMF has extended the original design strength of the IMS 1270 for microanalytical U-Pb zircon geochronology to a wide variety of novel and improved techniques for geochemical research. Isotope microanalysis for studies in volcanology and petrology is currently the largest single component of facility activity. This includes the direct measurement of Pb isotopes in melt inclusions, an application developed at NENIMF, which is making an increasingly significant contribution to our understanding of basalt petrogenesis. This same technique has also been extended to the determination of Pb isotopes in detrital feldspar grains, for the study of sedimentary provenance and tectonics of the Himalayas and other terrains. The determination of δ11B in volcanic melt inclusions has also proven to be a powerful tool in the modeling of subduction-related magmatism. The recent development of δ34S and δ37Cl determination in glasses is being applied to studies of the behavior of these volatile elements in both natural and experimental systems. Other recent undertakings have included development of high precision 232Th/230Th for U-series disequilibrium studies of young volcanic rocks, and the implementation and refinement of U-Th-Pb dating of individual monazite crystals. The facility is also developing an expanding number of applications in the general field of biogeochemistry. Examples include; δ18O in biogenic carbonates for climate and paleotemperature studies, determination of δ13C in graphite microfossils for early life studies, and determination of δ13C and trace metal concentrations in bacterial cultures in support of studies of natural microbial ecosystems. The IMS 3f instrument - now in its 25th year of operation - continues to be a productive resource for trace element and rare earth element determinations in natural and experimental materials. It has also become an important component of ongoing research in the derivation of paleotemperatures from marine biomineralization using trace element ratios of biogenic aragonite.

  2. The Santa Izabel Complex, Gavião Block, Brazil: Components, geocronology, regional correlations and tectonic implications

    NASA Astrophysics Data System (ADS)

    Medeiros, Eder Luis Mathias; Cruz, Simone Cerqueira Pereira; Barbosa, Johildo Salomão Figueiredo; Paquette, Jean Louis; Peucat, Jean Jacques; Jesus, Silvandira dos Santos Góes Pereira de; Barbosa, Rafael Gordilho; Brito, Reinaldo Santana Correia de; Carneiro, Mauricio Antônio

    2017-12-01

    Cratons, as well as the basement of their marginal orogens, may represent important sites of research regarding the formation and evolution of Archean continental crusts. The Gavião Block is one of the oldest terranes in South America with rocks aged up to 3.6 Ga. Among the Archean units that outcrop in the southern sector of this block is the Santa Izabel Complex, which for the most part is located in the São Francisco Craton, close to its limit with the Araçuaí-West Congo Orogen. This complex has generally been described as comprising ortho- and paraderived rocks that were metamorphosed in high amphibolite facies. Studies in the southern region of this complex have shown the main components: (i) orthogneisses, whose protoliths are the Mesoarchean rocks of the Santa Izabel Magmatic Suite; and (iii) migmatites. and (iv) amphibolitic and metaultramafic enclaves. U-Pb studies (LA-ICPMS and SHRIMP) performed on zircons of the paleosome in metatexites and inherited zircons in migmatites indicate crystallization ages between 3091 ± 24 and 3136 ± 8 Ma for the rocks of the Santa Izabel Magmatic Suite. Inherited zircons aged ca. 3.4 Ga in paleosomes demonstrate the influence of older continental crust in the formation of these rocks. For the Caraguatai Magmatic Suite, the alignment of zircons and monazites suggests a crystallization age around 2.6 Ga. The Rhyacian migmatites were divided into metatexites and diatexites. Diatexites were divided into: (i) discontinuous boudinated early diatexites, which are parallel to stromatic metatexites, composing the gneissic banding. These rocks have diffuse metamorphic banding and features that suggest the action of mylonitization processes; and (ii) late diatexites, forming more continuous bodies, which truncate the gneissic banding. The migmatization occurred in two stages, with time interval between ca. 2.1 Ga and 2.07 Ga. The structural framework reveal the existence of four progressive Rhyacian deformation phases (Dn to Dn+3), and one deformation phase assumed to be Ediacaran (Dn+4). Gneissic banding is the dominant structure and lithofacies of the Santa Izabel and Caraguatai Magmatic suites, in which metatexites and late diatexites alternate between themselves. This progressive deformation occurred in conditions of high amphibolite facies, with stress fields varying between NW-SE and WSW-ENE. The youngest phase, Dn+4, was associated with distal deformations related to the evolution of the intracontinental Araçuaí-West Congo Orogen with a WSW-ENE stress field. The combined data suggest a complex evolution for the Gavião Block, involving juvenile accretion, crustal reworking, deformation and metamorphism/migmatization from the Paleoarchean to the early Rhyacian. Almost all elements of the evolutionary stages of the Gavião Block can be recognized in the study area, setting it as a natural laboratory to unravel the evolutionary history of this sector of the South American continental crust.

  3. Strain partitioning in the Belledonne and Pelvoux massifs. Some clues to understand the Variscan tectono-thermal evolution.

    NASA Astrophysics Data System (ADS)

    Fréville, Kévin; Trap, Pierre; Faure, Michel; Melleton, Jeremie; Blein, Olivier

    2016-04-01

    This contribution presents new structural, petrological, geochemical and geochronological data obtained in the Variscan basement of the Alpine Belledonne and Pelvoux External Crystalline massifs. The Belledonne-Pelvoux area is a stack of four litho-tectonic units. The uppermost unit is the early Ordovician Chamrousse ophiolite. It overthrusts a volcanic-sedimentary unit (VSU) made of an alternation of volcanoclastic rocks, plagiogranites and metapelites. The VSU crops out in the eastern Belledonne and western Pelvoux massifs. It is unconformably overlain by a Visean sandstone-conglomerate series with felsic lava (keratophyres). The lowermost litho-tectonic unit is made of felsic and mafic migmatites and granitoids that form the major part of the Pelvoux massif. The western boundary of this tectonic pile is the "synclinal median" strike-slip fault, on the western side of which crops out the Belledonne micaschist unit made of Cambro-ordovician turbiditic series. The structural analysis revealed four main tectono-thermal events: Dx, D1, D2, and D3. Dx is only recorded in relictual metamorphic assemblage in Ky-Grt-Ab bearing micaschist from the VSU holding an obduction metamorphic gradient (3kbar, 370°C up to 7kbar, 430°C). The age of the Dx event remains unknown. The D1 event, characterized by westward low-angle dipping foliation (S1) and a NE-SW striking stretching lineation (L1), is responsible for the crustal thickening resulting of the Eastward emplacement of the Chamrousse ophiolite upon the VSU. D1 is coeval with a barrovian metamorphism with P-T conditions of 6kbar, 600°C recorded in metapelites, and partial melting developed at the base of the VSU. Monazite LA-ICP-MS U-Pb dating revealed that D1 crustal thickening occurred at 337±7 Ma. D2 is a sinistral transpressional deformation responsible for the folding of S1 and L1, and the development of a NE-SW trending pervasive sub-vertical foliation S2. In the lower structural domain, i.e. the partially molten Pelvoux core, D2 intensifies with the development of C-C'sub-vertical sinistral shear zones. At mid-crustal level, in the western Pelvoux massif, a flat lying S3 foliation transposes the D2 S-C-C' pattern. The D3 event occurs in response to a vertical shortening probably due to the ascent of the partially molten crust beginning during D2. D3 marks a transition zone where the deformation is partitioned between molten and unmolten rocks. In spite of Alpine shear zones, due to the high elevation, the Belledonne-Pelvoux area provides a continuous section of the upper to middle Variscan crust. From the data set presented above, we propose that the Belledonne-Pelvoux area exposes two different tectono-metamorphic expressions of the same geodynamic history, due to their different structural position in the continental crust. This interpretation challenges the classical "tectonic collage" model along the east Variscan shear zone that would have put in contact different tectono-metamorphic realms.

  4. Genesis of rare-metal pegmatites and alkaline apatite-fluorite rocks of Burpala massi, Northern Baikal folded zone

    NASA Astrophysics Data System (ADS)

    Sotnikova, Irina; Vladykin, Nikolai

    2015-04-01

    Burpalinsky rare metal alkaline massif in the Northern Baikal folded zone in southern margin of Siberian Platform, is a of intrusion central type, created 287 Ma covering area of about 250 km2. It is composed of nepheline syenites and pulaskites grading to quartz syenites in the contacts. Veines and dykes are represented by shonkinites, sodalite syenite, leucocratic granophyres, alkali granites and numerous rare metal alkaline syenite pegmatites and two dykes of carbonatites. All rocks except for granites are cut by a large apatite-fluorite dyke rocks with mica and magnetite, which in turn is cut by alaskite granites dyke. The massif has been studied by A.M. Portnov, A.A. Ganzeev et al. (1992) Burpalinsky massif is highly enriched with trace elements, which are concentrated in pegmatite dykes. About 70 rare-metal minerals we found in massif. Zr-silicates: zircon, eudialyte, lovenite, Ti-lovenite, velerite, burpalite, seidozerite, Ca- seidozerite, Rosenbuschite, vlasovite, katapleite, Ca-katapleite, elpidite. Ti- minerals:- sphene, astrophyllite, ramsaite, Mn-neptunite bafertisite, chevkinite, Mn-ilmenite, pirofanite, Sr-perrerit, landauite, rutile, anatase, brookite; TR- minerals - loparite, metaloparite, britolite, rinkolite, melanocerite, bastnesite, parisite, ankilite, monazite, fluocerite, TR-apatite; Nb- minerals - pyrochlore, loparite. Other rare minerals leucophanite, hambergite, pyrochlore, betafite, torite, thorianite, tayniolite, brewsterite, cryolite and others. We have proposed a new scheme massif: shonkinites - nepheline syenites - alkaline syenite - quartz syenites - veined rocks: mariupolites, rare-metal pegmatites, apatite, fluorite rock alyaskite and alkaline granites and carbonatites (Sotnikova, 2009). Apatite-fluorite rocks are found in the central part of massif. This is a large vein body of 2 km length and a 20 m width cutting prevailing pulaskites. Previously, these rocks were regarded as hydrothermal low-temperature phase. New geological and thermobarometric evidence suggests that apatite-fluorite rocks were formed from the residual fluid-melt, separated after crystallization of rare-metal pegmatites. Petrochemical and geochemical data Burpalinsky are in accord of general trend of crystal differentiation of alkaline magma containing small concentrations of CO2 and higher P2O5 and F, which accumulated significantly separated from the pegmatite melts. In some pegmatites fluorite with rare-metal minerals (flyuocerit etc) are separating in schlieren. Apatite-fluorite rocks are cut by leucogranite dyke, having genetic connection with rare-metal pegmatites. Late granitic phases has its own association of rare-metal minerals described by A.A. Ganzeev (1972). Thermobarometric geochemical study of apatite-fluorite rocks Burpala massif found a large number of primary fluid inclusions (15-50 micrometers). Thermal and cryometric research of 60 individual fluid inclusions in fluorite showed the domination of Na, Ca, Mg chlorides and high temperatures salt inclusions in fluorites (above 550C) and melt inclusions in apatites (800C). Apatite-fluorite rocks in massif are similar to foskorites in carbonatite complexes, with similar high Ca content, but instead fluorite, together with other "foskoritovymi" minerals - apatite, magnetite, mica, and pyroxene were formed instead for calcite. Isotopic studies (Sr-Nd) indicate the mantle source of primary magma Burpala massif close to EM-2, which is characteristic of alkaline intrusions in the folded belts (Vladykin 2009). RBRF grant 14-45-04057

  5. Zircon U-Pb age, Lu-Hf isotope, mineral chemistry and geochemistry of Sundamalai peralkaline pluton from the Salem Block, southern India: Implications for Cryogenian adakite-like magmatism in an aborted-rift

    NASA Astrophysics Data System (ADS)

    Renjith, M. L.; Santosh, M.; Li, Tang; Satyanarayanan, M.; Korakoppa, M. M.; Tsunogae, T.; Subba Rao, D. V.; Kesav Krishna, A.; Nirmal Charan, S.

    2016-01-01

    The Sundamalai peralkaline pluton is one among the Cryogenian alkaline plutons occurring in the Dharmapuri Rift Zone (DRZ) of the Salem Block in the Southern Granulite Terrane (SGT) of India. Here we present zircon U-Pb age and Lu-Hf isotopic composition, mineral chemistry and geochemistry of the pluton to explore the petrogenesis and geodynamic implications. Systematic modal variation of orthoclase, Na-plagioclase, Ca-amphibole (ferro-edenite and hastingsite) and quartz developed quartz-monzonite and granite litho units in the Sundamalai pluton. Thermometry based on amphibole-plagioclase pair suggests that the pluton was emplaced and solidified at around 4.6 kbar pressure with crystallization of the major phases between 748 and 661 °C. Estimated saturation temperature of zircon (712-698 °C) is also well within this range. However, apatite saturation occurred at higher temperatures between 835 and 870 °C, in contrast with monazite saturation (718-613 °C) that continued up to the late stage of crystallization. Estimated oxygen fugacity values (log fO2: -14 to -17) indicate high oxidation state for the magma that stabilized titanite and magnetite. The magmatic zircons from Sundamalai pluton yielded a weighted mean 206Pb/238U age of 832.6 ± 3.2 Ma. Geochemically, the Sundamalai rocks are high-K to shoshonitic, persodic (Na2O/K2O ratio > 1), silica-saturated (SiO2:65-72 wt.%), and peralkaline in composition (aluminum saturation index, ASI < 1; Alkalinity index, AI < 0). The initial magma was mildly metaluminous which evolved to strongly peralkaline as result of fractional crystallization (plagioclase effect) controlled differentiation between quartz-monzonite and granite. Both rock types have high content of Na2O (5.1-6.3 wt.%), Ba (350-2589 ppm) and Sr (264-1036 ppm); low content of Y (8.7-17 ppm) and Yb (0.96-1.69 ppm); elevated ratios of La/Yb (11-46) and Sr/Y (46-69) and are depleted in Ti, with a positive Sr anomaly suggesting an adakite-like composition and garnet controlled melting of a plagioclase-poor source. The low content of MgO (<1 wt.%), Cr (7-29 ppm), Ni (6-19 ppm), Sc(2-3 ppm), positive Sr anomaly and predominantly negative zircon εHf(t) values (-10.8 to -9.3 with an average of -10.2) and initial 176Hf/177Hf ratios (0.281947-0.282022) confirm a Paleoproterozoic crustal source. Based on the field and geochemical evidences, we propose that a previously metasomatized mafic lower-crustal source enriched in alkalis has undergone CO2-present partial melting as a result of asthenospheric upwelling beneath an aborted rifting along the DRZ generating the magma that crystallized the Sundamalai rocks. Age of this pluton is comparable with that of the other Cryogenian felsic alkaline plutons from Salem Block suggesting extensive rift-related magmatism at this time in the SGT.

  6. Geologic history of the Blackbird Co-Cu district in the Lemhi subbasin of the Belt-Purcell Basin

    USGS Publications Warehouse

    Bookstrom, Arthur A.; Box, Stephen E.; Cossette, Pamela M.; Frost, Thomas P.; Gillerman, Virginia; King, George; Zirakparvar, N. Alex

    2016-01-01

    The Blackbird cobalt-copper (Co-Cu) district in the Salmon River Mountains of east-central Idaho occupies the central part of the Idaho cobalt belt—a northwest-elongate, 55-km-long belt of Co-Cu occurrences, hosted in grayish siliciclastic metasedimentary strata of the Lemhi subbasin (of the Mesoproterozoic Belt-Purcell Basin). The Blackbird district contains at least eight stratabound ore zones and many discordant lodes, mostly in the upper part of the banded siltite unit of the Apple Creek Formation of Yellow Lake, which generally consists of interbedded siltite and argillite. In the Blackbird mine area, argillite beds in six stratigraphic intervals are altered to biotitite containing over 75 vol% of greenish hydrothermal biotite, which is preferentially mineralized.Past production and currently estimated resources of the Blackbird district total ~17 Mt of ore, averaging 0.74% Co, 1.4% Cu, and 1.0 ppm Au (not including downdip projections of ore zones that are open downward). A compilation of relative-age relationships and isotopic age determinations indicates that most cobalt mineralization occurred in Mesoproterozoic time, whereas most copper mineralization occurred in Cretaceous time.Mesoproterozoic cobaltite mineralization accompanied and followed dynamothermal metamorphism and bimodal plutonism during the Middle Mesoproterozoic East Kootenay orogeny (ca. 1379–1325 Ma), and also accompanied Grenvilleage (Late Mesoproterozoic) thermal metamorphism (ca. 1200–1000 Ma). Stratabound cobaltite-biotite ore zones typically contain cobaltite1 in a matrix of biotitite ± tourmaline ± minor xenotime (ca. 1370–1320 Ma) ± minor chalcopyrite ± sparse allanite ± sparse microscopic native gold in cobaltite. Such cobaltite-biotite lodes are locally folded into tight F2 folds with axial-planar S2 cleavage and schistosity. Discordant replacement-style lodes of cobaltite2-biotite ore ± xenotime2 (ca. 1320–1270 Ma) commonly follow S2fractures and fabrics. Discordant quartz-biotite and quartz-tourmaline breccias, and veins contain cobaltite3 ± xenotime3 (ca. 1058–990 Ma).Mesoproterozoic cobaltite deposition was followed by: (1) within-plate plutonism (530–485 Ma) and emplacement of mafic dikes (which cut cobaltite lodes but are cut by quartz-Fe-Cu-sulfide veins); (2) garnet-grade metamorphism (ca. 151–93 Ma); (3) Fe-Cu-sulfide mineralization (ca. 110–92 Ma); and (4) minor quartz ± Au-Ag ± Bi mineralization (ca. 92–83 Ma).Cretaceous Fe-Cu-sulfide vein, breccia, and replacement-style deposits contain various combinations of chalcopyrite ± pyrrhotite ± pyrite ± cobaltian arsenopyrite (not cobaltite) ± arsenopyrite ± quartz ± siderite ± monazite (ca. 144–88 Ma but mostly 110–92 Ma) ± xenotime (104–93 Ma). Highly radiogenic Pb (in these sulfides) and Sr (in siderite) indicate that these elements resided in Mesoproterozoic source rocks until they were mobilized after ca. 100 Ma. Fe-Cu-sulfide veins, breccias, and replacement deposits appear relatively undeformed and generally lack metamorphic fabrics.Composite Co-Cu-Au ore contains early cobaltite-biotite lodes, cut by Fe-Cu-sulfide veins and breccias, or overprinted by Fe-Cu-sulfide replacement-style deposits, and locally cut by quartz veinlets ± Au-Ag ± Bi minerals.

  7. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    NASA Astrophysics Data System (ADS)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho by more than 0.5 Ma. Polymetallic veins (5.78 ± 0.10 and 5.72 ± 0.18 Ma; 40Ar/39Ar ages) and the Manto Italia polymetallic replacement bodies (6.23 ± 0.12 and 6.0 ± 0.2 Ma; 40Ar/39Ar ages) are interpreted to have been formed by a single hydrothermal pulse. Hydrothermal activity ceased after the formation of the base metal vein and replacement bodies. Overlapping monazite U-Pb (8.26 ± 0.18 Ma) and muscovite 40Ar/39Ar ages (8.1 ± 0.5 Ma) from the early base metal stage of one Cordilleran vein sample in the Sulfurosa area provide evidence that a discrete hydrothermal pulse was responsible for polymetallic vein formation 2.6 Ma prior to the district-wide polymetallic veins. These ages pre-date those of Toromocho porphyry Cu-Mo formation and show that Zn-Pb-Ag-Cu mineralisation formed during several discrete magmatic-hydrothermal pulses in the same district.

  8. Geologic setting of the Mountain Pass rare earth deposits, San Bernardino County, California

    USGS Publications Warehouse

    Olson, Jerry Chipman

    1952-01-01

    The Mountain Pass district is in a block of pre-Cambrian metamorphic rocks bounded on the east and south by the alluvium of Ivanpah Valley. This block is separated from Paleozoic and Mesozoic sedimentary and volcanic rocks on the west by the Clark Mountain normal fault, and the northern boundary of the district is a prominent transverse fault. The pre-Cambrian metamorphic complex comprises a great variety of lithologic types including garnetiferous mica gneisses and schists; biotite-garnet-sillimenite gneiss; hornblende gneiss, schist, and amphibolite; biotite gneiss and schist; granitic gneisses and migmatites; pegmatites; and minor amounts of foliated mafic rocks. The rare earth-bearing carbonate rocks are related to potash-rich igneous rocks, of uncertain age, that cut the metamorphic complex. The larger potash-rich intrusive masses, 300 or more feet wide, comprise one granite, two syenite, and four composite shonkinite-syenite bodies. One of the shonkinite-syenite stocks is more than a mile long. Several hundred relatively thin dikes of these potash-rich rocks range in composition, and generally decreasing age, from biotite shonkinite through syenite to granite. A few thin fine-grained shonkinite dikes cut the granite. These potash-rich rocks are cut by east-trending andesitic dikes and by faults. Veins of carbonate rock are most abundant in and near the southwest side of the largest shonkinite-syenite body. Although most veins are less than 6 feet thick, one mass of carbonate rock near the Sulphide Queen min4e is 600 feet in maximum width and 2,400 feet long. About 200 veins have been mapped in the district; their aggregate surface area is probably less than one-tenth that of the large carbonate mass. The carbonate materials, which make up about 60 percent of the veins and the large carbonite body, are chiefly calcite, dolomite, ankerite, and siderite. The other constituents are barite, bastnaesite and perisite, quartz, and variable small quantities of crocidolite, biotite, phlogopite, chlorite, muscovite, apatite, iron oxides, fluorite, monazite, galena, allanite, sphene, pyrite, chalcopyrite, tetrahedrite, malachite, azurite, corussite, wulfenite, aragonite, and thorite. The rare earth oxide content in most of the carbonate rock is less than 13 percent, but in some local concentrations of bastnaesite the content is as high as 40 percent. The origin of the carbonate rocks and related potash-rich igneous rocks is considered in the light of similar associations of carbonate and alkalinic rocks in Sweden, Norway, Russia, South Africa, and the United States. The carbonate rock may have originated (1) as a pre-Cambrian limestone or evaporate sequence in the gneisses; (2) by reaction between magma and the Paleozoic dolomite and limestone overlying the pre-Cambrian complex; (3) by alteration of pre-Cambrian gneisses by emanations from an unknown deep-seated source; or (4) by differentiation of an alkaline magma from shonkinite to syenite to granite, leading to a final carbonate-rich fraction, containing the rare elements, which was emplaced either as a concentrated or a dilute solution. The fourth hypothesis is considered the most plausible.

  9. Syntectonic Variscan magmatism in the Aguiar da Beira region (Iberian Massif, Portugal)

    NASA Astrophysics Data System (ADS)

    Mafalda Costa, Maria; Margarida Neiva, Ana; do Rosario Azevedo, Maria; Corfu, Fernando

    2014-05-01

    The Aguiar da Beira region (Portugal) is located in the core of the Iberian Massif, more precisely in the Central-Iberian Zone, which is dominantly composed by abundant volumes of plutonic rocks, emplaced into Late Proterozoic - Early Cambrian and Palaeozoic metasediments, mainly during or slightly after the third deformation phase of the Variscan Orogeny (D3). A considerable amount of these granites are syntectonic, intruded during the peak of this deformation event (D3). In particular, at the Aguiar da Beira region, two suites of syntectonic granitoids represent distinct magmatic series: a medium- to coarse-grained porphyritic biotite granodiorite-granite (322 Ma), which belongs to the early granodiorite series, and a medium-grained muscovite-biotite granite (317 Ma) that is part of the two-mica peraluminous leucogranites suite. The petrographic, geochemical (whole-rock and mineral compositions) and isotopic (Sr-Nd, δ18O-wr and δ18O-zr) study of the two intrusions reveals their remarkably different character. It is concluded that they correspond to two independent magma pulses, derived from distinct sources and/or petrogenetic processes. The biotite granodiorite-granite is a weakly peraluminous intrusion, characterized by intermediate to felsic SiO2 contents (66 - 68 %), high Ba, Sr and REE, and biotite with high Al and Mg contents, typical of the calc-alkaline associations. The Sr-Nd initial ratios are homogeneous (87Sr-86Sr322: 0.7070 - 0.7074; ɛNd322: -3.9 to -4.6) and overlap the isotopic signatures of lower crustal felsic metaigneous granulites (Villaseca et al. 1999). This similarity, which is further supported by δ18O-wr and δ18O-zr data, may indicate an origin by anatexis of lower felsic metaigneous rocks. Alternatively, the same data, allied to the presence of microgranular enclaves seen in this intrusion, can also be explained by the mixing of lower crustal derived magmas and mantle melts. By contrast, the muscovite-biotite granite has an entirely distinct geochemical signature, typical of S-type granites: a highly evolved and strongly peraluminous character (SiO2 = 72 - 74 %; CaO = 0.3-0.6 %; A/CNK = 1.18 - 1.36, low Mg, Ti, Ba, Sr, ΣREE, HFSE contents, and high Al2O3-TiO2 ratio e Rb-Sr ratios), high (87Sr-86Sr)317 (0.7104 - 0.7146), low ɛNd317 (-7.7 to -8.7), and high δ18O (δ18O-wr = 11.33 %; δ18O-zr = 9.5 ± 0.2 o). The data suggest that this magma was derived from the partial melting of metasedimentary middle crustal protoliths, which has been successfully modeled. The observed variation in major and trace element composition suggests an evolution controlled by fractionational crystallization of a mineral association composed by plagioclase, biotite, apatite, zircon, monazite, ilmenite. The first author benefited from a PhD grant from the Portuguese Science and Technology Foundation (SFRH.BD.2005.21410)and support from PETROCHRON (PTDC.CTE-GIX.112561.2009).

  10. Mesozoic fault reactivation along the St. Lawrence Rift System as constrained by (U-Th/He) thermochronology

    NASA Astrophysics Data System (ADS)

    Bouvier, L.; Pinti, D. L.; Tremblay, A.; Minarik, W. G.; Roden-Tice, M. K.; Pik, R.

    2011-12-01

    The Saint Lawrence Rift System (SLRS) is a half-graben, extending for 1000 km along St. Lawrence River valley. Late Proterozoic-Early Paleozoic faults of the graben form the contact with the metamorphic Grenvillian basement to the northwest and extend under the Paleozoic sedimentary sequences of the St. Lawrence Lowlands to the southeast. The SLRS is the second most seismically active area in Canada, but the causes of this activity remain unclear. Reactivation of the SLRS is believed to have occurred along Late Proterozoic to Early Paleozoic normal faults related to the opening of the Iapetus Ocean. The absence of strata younger than the Ordovician makes difficult to determine when the faults reactivated after the Ordovician. Field relations between the normal faults bordering the SLRS and those produced by the Charlevoix impact crater suggest a reactivation of the rift younger than the Devonian, the estimated age of the impact. Apatite (U-Th)/He thermochronology is an adequate tool to recognize thermal events related to fault movements. A thermochronology study was then started along three transects across the SLRS, from Québec up to Charlevoix. Apatites were extracted and separated from five granitic to charnockitic gneisses and an amphibolite of Grenvillian age. The samples were exposed on hanging wall and footwall of the Montmorency and Saint-Laurent faults at three different locations along the SLRS. For precision and accuracy, each of the six samples was analyzed for radiogenic 4He and U-Th contents at least twice. Apatite grains were isolated by heavy liquids and magnetic separation. For each sample, ten apatite grains were selected under optical microscope and inserted into Pt capsules. Particular care was taken to isolate apatite free of mineral and fluid inclusions. Indeed, SEM investigations showed that some inclusions are U-rich monazite, which is a supplementary source of 4He to be avoided. The 4He content was determined by using a static noble gas mass spectrometer in CRPG-Nancy and duplicates using a quadrupole mass spectrometer at GEOTOP-UQAM. 4He was measured against internal He gas standards and Durango apatite, with the reference U-Th/He age of 31.13 ± 1.01 Ma. U and Th contents were determined at CRPG-Nancy and duplicated at McGill University by ICP-MS. Preliminary results of U-Th/He on St.-Laurent fault yield an age of 137±12 Ma for the hanging wall, at Sault-au-Cochon and 118±10 Ma for a sample from the footwall, at Cap-aux-oies. Previous Apatite Fission Track (AFT) performed for the two locations gave expected older ages at 149±16 Ma and 196±19 Ma for the hanging wall and the footwall, respectively. These preliminary U-Th/He results are consistent with AFT ages of the area (i.e. as expected, U-Th/He ages are younger than AFT ages) but do not yet provide new constraints for the structural evolution of the St. Lawrence rift system. We are determining further U-Th/He ages and these ages will constrain an exhumation model of the region.

  11. Palaeoproterozoic Volcanic Massive Sulphides (VMS) in the Lithuanian crystalline basement: evidences for a back-arc tectonic setting

    NASA Astrophysics Data System (ADS)

    Skridlaite, Grazina; Siliauskas, Laurynas

    2014-05-01

    In the southwestern part of the East European Craton (EEC), several events of Palaeoproterozoic volcanic arc magmatic activity were recognized in the concealed crystalline basement. In Lithuania, the TTG suites of 1.89 Ga and 1.86-1.84 Ga were later metamorphosed in amphibolite and granulite facies conditions. Remnants of a volcano-sedimentary sequence metamorphosed in green schist and amphibolite facies conditions were discovered in central and southern Lithuania. In southern Lithuania, the upper part of the Lazdijai 13 (Lz13) drilling (at c. 493 m depth) consists of exhalitic quartz chlorite cherts mixed with andesitic rocks. The rocks are impregnated with magnetite in some places replacing calcite. Most of the magnetite grains are overgrown by a dendritic kovelite, which may have formed while magnetite was still in aqueous surrounding. Other accessory minerals are xenotime, zircon, apatite, Sr-Ba sulphates etc. The cherts are underlain by a metaandesite which volcanic structures were obscured by hydrothermal alteration, i.e. the idiomorphic magnetite crystals and porphyritic plagioclase grains were replaced by clay minerals and quartz or muscovite in many places. Thin metamorphosed mudstone layers turned into garnet, biotite (+/-staurolite) and chlorite schists. The rocks were affected by silicification, chloritization, argilitization and carbonatization. Taking into account the rock composition, micro and macro scale alteration zones and absence of breccia, the whole package resembles an outer part of the VMS stockwork. The lower boundary at 526 m is sharp, marked by a quartz vein, below which lies quartz, biotite (+/- chlorite) bearing schist with minor tremolite (former sandstone). It was intensely affected by silicification, and was enriched in Na, K and Ca. Accessory minerals are monazite, xenotime, apatite and detrital zircon. The schist exhibits fine mineral foliation, and is fine-grained. A 4 m thick granitic vein cuts the rock at 654 m depth, below which there are amphibolites with layers or lenses of skarns formed in marbles. Some amphibolites resemble porphyritic basalts. These might be dikes of basalts, which are common for back arc VMS surroundings. The volcano-clastic rock from the Lz13 yielded c. 1.83 Ga and c. 1.80 Ga ages. The whole rock Sm-Nd isotopic composition points towards juvenile origin of the rock (TDM=2.08 Ga, ɛNd (1.9) +1.8). After the comparison of the obtained data set with VMS deposits formed in different environments, it is most likely that the volcano-sedimentary sequence of Lz13 was formed in a back arc tectonic setting. The volcano-sedimentary sequence can be correlated with the 1.83 Ga Oskarshamn-Jönköping Belt (Mansfeld et al., 2005) and the volcano-sedimentary Vetlanda formation (Makowsky and Mansfeld, 2013) in southeastern Sweden. The c. 1.83-1.80 Ga volcanic arc and back-arc system continues from southeastern Sweden through the Baltic Sea to Lithuania. This is a contribution to the Open Access Centre activities Mansfeld, J., Beunk, F.F. and Barling, J., 2005. GFF, 127: 149-157 Makowsky, F., Mansfeld, J., 2013. 31st Nordic Geological Winter Meeting, Lund, Sweden, 89-90.

  12. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    NASA Astrophysics Data System (ADS)

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal

    2016-04-01

    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal fluids. The high fluorine content of the apatite at Khanlogh may testify to the presence of Ti-fluoride complex in the fluids. Formation of apatite crystals was concurrent with development of titanium lamellae in magnetite. The apatite possesses high REE content which is possibly associated with monazite inclusions. The SEM studies better show these inclusions are occasionally present at the margin of apatite crystals and veins. Based upon field relations, microscopic examinations, and the results of XRD analyses, sodic (albite), propylitic (epidote, chlorite, calcite), and argillic (montmorillonite) alterations are developed in the study area. The principal minerals in these alteration zones are albite, epidote, sericite, chlorite, quartz, calcite, and montmorllonite. Mineralogy, alteration, geochemistry, structure, and texture of the ores at Khanlogh indicate that the magnetite and apatite were chiefly formed by hydrothermal solutions which were enriched in iron mainly transported by F- and Cl- rich fluids. Reference Hou,,T., Zhaochong, Z., Timothy, K., (2011). Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type? Ore geology review, 43, 333-346. Purtov, V.K., Kotelnikova, A.L. (1993). Solubility of titanium in chloride and fluoride hydrothermal solution. International Geology Review 35, 274 -287.

  13. Pan-Africa/Pan-Brazilian detrital zircons in Lower Palaeozoic schists of SW Norway - enigmatic detrital zircon U-Pb ages

    NASA Astrophysics Data System (ADS)

    Zimmermann, Udo; Bjørheim, Maren; Clark, Chris

    2013-04-01

    We present Sensitive High Resolution Ion Microprobe (SHRIMP) U-Pb zircon age data from metasedimentary rocks (schists and quartzites) located in the town of Stavanger (SW Norway). The metasedimentary sequence is composed of schists, medium grained quartz-rich metawackes and quartzites. Quartzites and meta-quartz-wackes exhibit a mylonitic fabric with newly grown fine-grained muscovite defining the fabric. Accessory minerals are zircon, allanite, detrital apatite, monazite, ilmenite, rutile and zircon. The schists are dark and dominated by quartz and feldspar in a fine chloritic and silica-rich matrix and represent the dominant lithology of the region. While quartzites and metawackes show typical geochemical characteristics for strongly reworked rocks, the schists have very low Zr/Sc and Th/Sc ratios below 0.9 and point together with other trace element ratios (La/Sc, Ti/Zr) to the strong influence of less fractionated, mafic, sources in the detritus, possibly arc derived. U-Pb ages of detrital zircon from quartzites range between 740 to 1800 Ma. There is a defined population at 1135 and 1010 Ma tentatively correlated with the Sveconorwegian orogeny. A second population at ~1450 Ma that can be related to a tectono-magmatic event during the Earliest Mesoproterozoic, also recorded in Oslo, southern Sweden and Bornholm, mapped along the proposed southern margin of Baltica. Other detrital zircons record ages between 1586 - 1664 Ma that are not related to the latter event. The oldest U-Pb detrital zircon grain age was 1796 Ma and is potentially associated with the terminal phase of the Svecofennian orogeny. Detrital zircons from the associated schists do show a similar abundance of main age clusters but the oldest found zircons dates to 2013 Ma while the maximum depositional age could be determined by grains of Cambrian to even Ordovician ages with a large 1 sigma error, as such that we rather propose a Cambrian maximum depositional age. It is possible to speculate that the black schists are an equivalent of the Alum shale successions, which is exposed in the Oslo region, southern Sweden and Bornholm (Denmark) and would be then belong to the margin of Baltica. However, detrital zircons with Ediacaran to Lower Palaeozoic ages are exotic to Baltica, and especially unexpected for the proposed passive margin. Magmatic events in SW Baltica of such an age are yet unknown, besides the intrusion of mafic dykes which cannot account for this large number of detrital zircons in the schists. Hence, there are several possibilities to explain this population: 1. The source area was not in Baltica and this sliver of schists is exotic to Baltica and was accreted during the Caledonian orogeny as the rocks show Caledonian deformation and metamorphism. 2. The depositional area had been in Baltica but the source area has drifted away and the schists are younger than Middle Cambrian, possibly Caledonian. 3. The schists are one of the few relicts which reflect magmatic events of Ediacaran and Lower Paleozoic ages (pre-Caledonian) in Baltica, which we have not been aware of so far and for which we have no geodynamic explanation (as the current opinion interprets a passive margin at the western boundary of Baltica) and might indicate unexpectedly young rift magmatism. If possibility (1) is taken into account then the candidates for the origin are somewhat restricted to Gondwana as on the eastern margin of Laurentia massive magmatism of Ediacaran to Lower Paleozoic ages is as well not well constrained.

  14. Timing of the end of motion along the South Tibet Detachment shear zone. An important constraint on collision models.

    NASA Astrophysics Data System (ADS)

    Hervé Leloup, Philippe; Mahéo, Gweltaz; Arnaud, Nicolas; Kali, Elise; Boutonnet, Emmanuelle; Liu, Dunyi; Xiaohan, Liu; Haibing, Li

    2010-05-01

    The South Tibet detachment system (STDS) is a major normal fault system that runs parallel to the Himalayan range for more than 1500km, and that is fundamental to the major models proposed the belt tectonic evolution. The STDS is a fossil structure, as it has no clear morphological expression, is crosscut by perpendicular (N-S) active normal faults (Gurla Mandata, Thakhola, Ama Drime, Yadong), and no crustal earthquake indicative of ~N-S extension has ever been documented in the South Tibetan crust. It has long been proposed that the STDS and the MCT slips where coeval during the Miocene, however the timing of the STDS all along its length has rarely been investigated. Near Dinggye (~ 28°10'N, 87°40'E), the South Tibet Detachment, main branch of the STDS, dips ~10±5° to the North and separates Paleozoic Tethyan series from Upper Himalayan Crystalline Series (UHCS). Immediately below the STD, the UHCS is highly deformed in the STD shear zone, stretching lineations trend NNE and the shear senses are top to the NE. In micaschist, P-T path constrained by pseudosection and garnet chemistry, shows successive metamorphic conditions of ~0.6 GPa and ~550°C and 0.5 GPa and 625°C. U/Pb dating of Monazite and zircons in deformed and undeformed leucogranites suggest that ductile deformation lasted until at least ~16 Ma but ended prior to ~15Ma in the STD shear zone ~100 meters below the detachment. Ar/Ar micas ages in the footwall span between ~14.6 and 13.6 Ma, indicating rapid cooling down to ~320°C, and suggesting persistence of normal faulting, at that time. The STDS is cut and offset by the N-S trending Dinggye active normal fault which initiated prior to 11Ma thus providing a minimum bound for the end of STDS motion. These data are interpreted as reflecting 0.3 GPa (11km) to 0.6 GPa (22km) of exhumation along the STDS starting prior to ~16 Ma and ending between 13.6 and 11 Ma. On both side of the Ama Drime, analysis of structural and geochronological constraints available from the literature allows us to propose a time interval for the end shearing on the STDS in 11 other sections along the Himalayan arc. It appears that the STDS stopped first in the west, at ~17 Ma in Zanskar but only after 13Ma east of the Gurla Mandata. This timing difference could be related to interactions with the Karakorum fault zone that shows a strong bent at the level of the Gurla Mandata. The 1000 km long stretch of the STDS east of the Gurla Mandata probably stopped almost synchronously between 13 and 11 Ma ago. This generalized stop appears coeval to a sudden switch from NNE-SSW to E-W extension at the top of the accretionary prism, with jump of the major thrust from the lower Main Central Thrust (MCTl) to the Main the Boundary Thrust (MBT), and with change in India and Asia convergence direction. This synchronism is probably better explain in the frame of a thrust wedge or thrust system model than a lower channel flow model.

  15. Application of U-Th-Pb phosphate geochronology to young orogenic gold deposits: New age constraints on the formation of the Grass Valley gold district, Sierra Foothills province, California

    USGS Publications Warehouse

    Taylor, Ryan D.; Goldfarb, Richard J.; Monecke, Thomas; Fletcher, Ian R.; Cosca, Michael A.; Kelly, Nigel M.

    2015-01-01

    The Grass Valley orogenic gold district in the Sierra Nevada foothills province, central California, the largest historic gold producer of the North American Cordillera, comprises both steeply dipping east-west (E-W) veins located along lithologic contacts in accreted ca. 300 and 200 Ma oceanic rocks and shallowly dipping north-south (N-S) veins hosted by the Grass Valley granodiorite; the latter have yielded about 70 percent of the 13 million ounces of historic lode gold production in the district. The oceanic host rocks were accreted to the western margin of North America between 200 and 170 Ma, metamorphosed to greenschist and amphibolite facies, and uplifted between 175 and 160 Ma. Large-scale magmatism in the Sierra Nevada occurred between 170-140 Ma and 120-80 Ma, with the Grass Valley granodiorite being emplaced during the older episode of magmatism. Uranium-lead isotopic dating of hydrothermal xenotime yielded the first absolute age of 162±5 Ma for the economically more significant N-S veins. The vein-hosted xenotime, as well as associated monazite, are unequivocally of hydrothermal origin as indicated by textural and chemical characteristics, including grain shape, lack of truncated growth banding, lack of a Eu anomaly, and low U and Th concentrations. Furthermore, the crack-seal texture of the veins, with abundant wallrock slivers, suggests their formation as a result of episodic fluid flow possibly related to reoccurring seismic events, rather than a period of fluid exsolution from an evolving magma. The N-S veins are temporally distinct from a younger 153-151 Ma gold event that was previously reported for the E-W veins. Overlapping U-Pb zircon (159.9±2.2 Ma) and 40Ar/39Ar biotite and hornblende (159.7±0.6 to 161.9±1.4 Ma) ages and geothermobarometric calculations indicate that the Grass Valley granodiorite was emplaced at ca. 160 Ma at elevated temperatures (~800°C) within approximately 3 km of the paleosurface and rapidly cooled to the ambient temperature of the surrounding country rocks (<300°C). The age of the granodiorite is indistinguishable from that of the N-S veins, as recorded by the U-Pb age of xenotime in those veins. Consequently, the N-S veins must have formed between 162 and 157 Ma, the maximum permissive age of magma emplacement and the youngest permissive xenotime U-Pb age, respectively, during an E- to ENE-directed compressional regime. The geochemistry of the Grass Valley granodiorite is consistent with it being the product of arc magmatism. It served as a receptive host for mineralization, but it is has no direct genetic relationship to gold mineralization. Initial uplift of the intrusive mass correlates with the initial voluminous fluid flow event and vein formation at depths of no greater than 3 km. The E-W gold-bearing veins hosted within greenschist-facies country rocks adjacent to the intrusion formed during a second hydrothermal event 5-10 million years later than the magmatism and were contemporaneous with a shift to a transtensional deformation denoted by sinistral strike-slip faulting.

  16. Two-pyroxene syenitoids from the Moldanubian Zone of the Bohemian Massif: peculiar magmas derived from a strongly enriched lithospheric mantle source

    NASA Astrophysics Data System (ADS)

    Janoušek, Vojtěch; Holub, František; Gerdes, Axel; Verner, Kryštof

    2013-04-01

    (Ultra-)potassic plutonic rocks constitute a conspicuous association with metamorphic rocks of the high-grade, lower crustal/upper mantle Gföhl Unit (Moldanubian Zone). They can be subdivided into two contrasting suites: (1) coarse Kfs-phyric amphibole-biotite melagranite to quartz syenite (the durbachite series sensu Holub 1997), and (2) essentially even-grained biotite-two-pyroxene quartz syenites to melagranites (Tábor and Jihlava plutons). The latter, "syenitoid suite", characterized by an originally 'dry' mineral assemblage orthopyroxene + clinopyroxene + Mg-biotite, with accessoric zircon, apatite, ilmenite, monazite and/or rutile ± Cr-spinel, is a subject of the current study. Our conventional U-Pb ages for zircon (336.9 ± 0.6 Ma) and rutile (336.8 ± 0.8 Ma) from the Tábor Pluton, together with the age from the Jihlava body (U-Pb zircon: 335.1 ± 0.6 Ma; Kotková et al. 2010), provide a precise time bracket for the emplacement and rapid cooling of the syenitoids below c.600 ° C (closure temperature of U-Pb system in rutile: Cherniak 2000). This is in line with post-tectonic emplacement of hot dry melt into shallow levels of essentially consolidated orogenic crust. Comparably low temperatures obtained by zircon and rutile saturation calculations document probably a delayed onset of crystallization of the accessories in a hot, alkalis and ferromagnesian components-rich magma derived from a mantle source. Indeed, the structural relations inside and around the ultrapotassic plutons suggest that the most important regional HT/LP flat-lying fabric(s) in the Moldanubian Zone are closely related with the emplacement and crystallization of the durbachite suite at 343-338 Ma. They have formed prior to the relatively shallower emplacement of the essentially post-tectonic syenitoids dated at ~337-336 Ma (Žák et al. 2005; Verner et al. 2006, 2008). The two magmatic suites are thus essentially diachronous and not (nearly) contemporaneous (c. 335 Ma) intrusions at contrasting crustal levels as assumed by Kotková et al. (2010). The syenitoid plutons show mutually comparable, crustal-like radiogenic isotope signatures with highly radiogenic Sr (87Sr/86Sr337= 0.7119-0.7125) and unradiogenic Nd (?Nd337 = -6.8 to -7.6). This, together with the rest of the whole-rock geochemical variation, is in line with a generation from a strongly enriched lithospheric mantle source. It was, shortly before, modified by a deep subduction and relamination of the upper crustal material, similar to the felsic HP granulites common in the Moldanubian Zone (Janoušek & Holub 2007; Lexa et al. 2011). The petrology and chemical data indicate that large-scale mixing with crustally-derived acid magmas can be largely or fully discounted and the key role is ascribed to closed-system fractional crystallization with, or without, crystal accumulation of various combinations of biotite, clinopyroxene and/or orthopyroxene with minor amounts of apatite. This stands in a sharp contrast with the history of volumetrically prevalent, slightly older, durbachite suite, in genesis of which the magma mixing of chemically and isotopically contrasting mantle and crustal components was clearly much more significant (Holub 1997). This research was financially supported by the GAR Project P210-11-2358 (to VJ).

  17. P-T-t paths from polyphased garnets of the Yenisey Ridge: evidence for three tectonothermal events along the western margin of Siberian craton

    NASA Astrophysics Data System (ADS)

    Likhanov, Igor

    2015-04-01

    Studies of pelitic gneisses and schists within the Yenisey regional shear zone (Garevka complex) at the western margin of the Siberian craton provide important constraints on the tectonothermal events and geodynamic processes in the Yenisey Ridge. In situ U-Th-Pb geochronology of monazite and xenotime from different growth zones of the garnet porphyroblasts coupled with P-T path calculations derived from garnet zoning patterns records three superimposed metamorphic event [1]. The different field gradients reflect contrasting tectonic settings. The first stage occurred as a result of the Grenville-age orogeny during late Meso-early Neoproterozoic (1050-850 Ma) and was marked by low-pressure zoned metamorphism at c. 4.8-5.0 kbar and 565-580 °C with a metamorphic field gradient of dT/dZ = 20-30 °C/km. At the second stage, the rocks experienced middle Neoproterozoic (801-793 Ma) collision-related medium-pressure metamorphism at c. 7.7-7.9 kbar and 630 °C with dT/dZ < 10 °C/km. The final stage evolved as a synexhumation retrograde metamorphism (785-776 Ma) at c. 4.8-5.4 kbar and 500 °C with dT/dZ < 14 °C/km and recorded uplift of the rocks to upper crustal levels in shear zones. The duration of post-collisional thrust exhumation does not exceed 16 Myr, which gives an exhumation rate of the metamorphic rocks of about 500-700 m/Myr [2]. This is in good agreement with the rate of exhumation (400 m/Myr) calculated for coeval collision-related metamorphic events in the Teya complex of the Yenisey Ridge [3] resulted from crustal thickening due to overthrusting [4] and also agrees with the results of thermomechanical numerical modeling (350 m/Myr) [5]. The final stages of collisional orogeny were followed by the development of rift-related bimodal dyke swarms of the Baikal-Yenisey belt, resulting from Neoproterozoic (790-780 Ma) extensional processes along the western margin of the Siberian craton and the onset of Rodinia's breakup [6]. Post-Grenville metamorphic episodes of regional crust evolution are correlated with the synchronous succession and similar style of the later tectonometamorphic events within the Valhalla orogen along the Arctic margin of Rodinia [7,8] and supports the spatial proximity of Siberia and North Atlantic cratons (Laurentia, Baltica, Svalbard) at c. 800 Ma, as indicated by the Neoproterozoic paleocontinental reconstructions of the classic Rodinia configuration [9,10]. [1] Likhanov et al. (2013) Petrology 21, 561-578. [2] Likhanov et al. (2014) J. Asian Earth Sci., http://dx.doi.org/10.1016/j.jseaes.2014.10.026. [3] Likhanov et al. (2011) Russ. Geol. Geophys. 52, 1256-1269. [4] Likhanov & Reverdatto (2011) Int. Geol. Rev. 53, 802-845. [5] Likhanov et al. (2004) J. Metamorph. Geol. 22, 743-762. [6] Likhanov et al. (2013) Dokl. Earth Sci. 450, 613-617. [7] Cutts et al. (2010) J. Metamorph. Geol. 28, 249-267. [8] Cawood et al. (2010) Geology 38, 99-102. [9] Dalziel et al. (2000) J. Geol. 108, 499-513. [10] Torsvik (2003) Science 300, 1379-1381.

  18. Geochemistry of biotite granites from the Lamas de Olo Pluton, northern Portugal

    NASA Astrophysics Data System (ADS)

    Fernandes, Susana; Gomes, Maria; Teixeira, Rui; Corfu, Fernando

    2013-04-01

    In the Central Iberian Zone (CIZ) extensive crustal recycling occurred during the post-thickening extension stage of the Variscan orogeny (~330-290 Ma). After the ductile deformation phase D3 (~320-300 Ma), characterized by the intrusion of large volumes of highly peraluminous granitic magmas, rapid and drastic tectonic changes at about 300 Ma gave rise to the brittle phase of deformation D4 that controlled the emplacement of Fe-K subalkaline granites (296-290 Ma; Dias et al. 1998). The Lamas de Olo Pluton (LOP) is controlled by NE-SW and NW-SE fracture systems, probably related to the Régua-Verin fault zone (Pereira, 1989). The LOP is a medium to coarse-grained, porphyritic biotite granite, accompanied by medium- to fine grained, porphyritic biotite granite (Alto dos Cabeços- AC) and a more leucocratic, fine-grained, slightly porphyritic biotite-muscovite granite (Barragens- BA). The contacts between LO and AC are generally diffuse, whereas those to BA are sharp. In fact, the BA granite can occur in dykes and sills cutting LO and AC. Microgranular enclaves and xenoliths are very rare. The LOP intrudes the Douro Group, presumably of Precambrian to Cambrian age, and two-mica granites from the Vila Real composite massif. The LOP granites consist of quartz, microcline, plagioclase, biotite, zircon, titanite, tourmaline apatite, fluorite, ilmenite, magnetite, and rutile, with muscovite in BA granite and rare allanite in the LO and AC granites. The plagioclase composition is of oligoclase (An12) - andesine (An35) for LO granite, albite (An9) - andesine (An30) for CA granite and albite (An5) - oligoclase (An20) for BA granite. There are decreases in: a) anorthite content from phenocryst to matrix plagioclase; b) Ba content from phenocryst to matrix microcline in all granites. The Fe2+ biotite has a composition similar to that of biotite from calc-alkaline to sub-alkaline rock series. The LO and AC granites are meta- to peraluminous with ASI variable between 1.05 and 1.21, and display isotopic signatures of (87Sr/86Sr)i = 0.7044-0.7077 and Nd = -2.2 to -1.1. Six samples of LO define a whole rock isochron age of 285±15 Ma with (87Sr/86Sr)i = 0.7051±0.001 (MSWD = 0.11). Two monazite analyses for the LO granite yield an weighted average 207Pb/235U age of 297.19±0.73 Ma, consistent with the preliminary ID-TIMS U-Pb analyses of two transparent and euhedral prisms of zircon that define a concordia age of 296.37 ±0.52 Ma (MSWD = 0.66). The linear trends of major and trace elements variation diagrams of LO and AC granites and their similar mean values of (87Sr/86Sr)i point, at this stage, to an involvement of mid-crustal sources, probably mixed with asthenospheric material. Therefore, LOP consists of post-D3 biotite granites installed in higher structural crustal levels, testifying the occurrence of a crustal growth episode after the major recycling processes that occurred during the deformation phase D3. We thank Prof. J.F. Santos and Dr. S. Ribeiro and Petrochron project (PTDC/CTE-GIX/112561/2009) for the Rb-Sr isotopic data obtained at LGI of University of Aveiro, Portugal. Dias, G. et al. 1998. Lithos, 45, 349-369. Pereira, E., 1989. Serviços Geológicos de Portugal.

  19. The Palaeoproterozoic accretionary crustal growth: implications from new age data on the crystalline basement in Lithuania, NW Belarus and N Poland (the East European Craton)

    NASA Astrophysics Data System (ADS)

    Skridlaite, G.; Bogdanova, S.; Taran, L.; Wiszniewska, J.

    2012-04-01

    A southwestward younging of Palaeoproterozoic terranes in the crystalline basement in the western part of the East European Craton has been recently suggested by numerous isotopic datings (TIMS, SIMS zircon, EPMA monazite and 40Ar/39Ar). Along with geochemical and geophysical data this allows to decipher a multistage accretionary history. In the east, the Belarus-Podlasie Granulite belt (BPG) is dominated by 1.88 Ga dioritic-granodioritic (calc-alkaline) magmatism in Belarus (Claesson et al., 2001). Remnants of c. 1.89 Ga metadiorites, c. 1.90 Ga magmatic zircon cores in c. 1.80 Ga granites (Vejelyte, 2011) in S and E Lithuania and 1.88 Ga metagranodiorites in E Poland (Radzyn area) confirm the c. 1.90 Ga accretion-related magmatism in the BPG and the East Lithuanian domain. Together with the coeval juvenile granitoids in the adjacent Okolovo terrane this indicates the formation of the Lithuanian-Belarus composite terrane at 1.90-1.88 Ga. At c. 1.86-1.84 Ga, abundant gabbro-diorite-granodiorite-granite intrusions were emplaced further southwest in Lithuania, NW Belarus and N Poland. In Lithuana, within the Polish-Lithuanian terrane the TTG suite of deformed and metamorphosed in amphibolite facies calc-alkaline tonalitic, quartz dioritic and dioritic rocks is characteristic for the Randamonys massif. The strongly deformed granitoids in the adjacent NW Belarus, mafic granulites and gneissic granites of igneous origin in central Lithuania, garnet-cordierite bearing granites further north display similar c. 1.84 Ga magmatic age (Motuza et al., 2008). This shows that various tectonic settings including island and continental magmatic arcs were possible. They were accreted to the Lithuanian-Belarus terrane sometime at 1.84-1.81 Ga while voluminous charnockitic magmatism took place in W Lithuania (e.g. Claesson et al., 2001; Vejelyte, 2011). A chain of younger c. 1.83 Ga volcanic arcs was developed in W and S Lithuania and N Poland (Wiszniewska et al., 2005). The widespread c. 1.80-1.76 Ga metamorphism and tholeiitic magmatism related to post-collisional extension constrain the maximum age of the final accretion of the terranes. It is evidenced by numerous 1.80-1.79 Ga gabbro-noritic, dioritic and granitic intrusions in NE Poland and elsewhere in Lithuania and Belarus (Claesson, 2001; Vejelyte, 2011). The later reworking at c. 1.70-1.45 Ga and c. 1.60-1.45 Ga AMCG magmatism affected the already accreted craton. Evolutionary, a 1.90-1.87 Ga continental margin was established in present-day E Lithuania and NW Belarus, while younger volcanic arcs were still forming to the west and south at 1.86-1.84 Ga. They had been subsequently accreted to the c. 1.89 Ga continental margin in the time span of 1.84-1.80 Ga, and a new continental margin emerged. After the youngest c. 1.83-1.80 Ga island arcs were docked, the ocean was closed and the crust was finally cratonized. The younger 1.70-1.45 Ga events were intracratonic reflections of active geological processes further west. This is a contribution to the project "Precambrian rock provinces and active tectonic boundaries across the Baltic Sea and in adjacent areas" of the Visby Programme (the Swedish Institute), Lithuanian Science Council grant MIP-034/2011 and SYNTHESYS project SE-TAF-1535

  20. Characterization and modes of occurrence of elements in feed coal and coal combustion products from a power plant utilizing low-sulfur coal from the Powder River Basin, Wyoming

    USGS Publications Warehouse

    Brownfield, Michael E.; Cathcart, James D.; Affolter, Ronald H.; Brownfield, Isabelle K.; Rice, Cynthia A.; O'Connor, Joseph T.; Zielinski, Robert A.; Bullock, John H.; Hower, James C.; Meeker, Gregory P.

    2005-01-01

    The U.S. Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana utility company to determine the physical and chemical properties of feed coal and coal combustion products from a coal-fired power plant. The Indiana power plant utilizes a low-sulfur (0.23 to 0.47 weight percent S) and lowash (4.9 to 6.3 weight percent ash) subbituminous coal from the Wyodak-Anderson coal zone in the Tongue River Member of the Paleocene Fort Union Formation, Powder River Basin, Wyoming. Based on scanning electron microscope and X-ray diffraction analyses of feed coal samples, two mineral suites were identified: (1) a primary or detrital suite consisting of quartz (including beta-form grains), biotite, feldspar, and minor zircon; and (2) a secondary authigenic mineral suite containing alumino-phosphates (crandallite and gorceixite), kaolinite, carbonates (calcite and dolomite), quartz, anatase, barite, and pyrite. The primary mineral suite is interpreted, in part, to be of volcanic origin, whereas the authigenic mineral suite is interpreted, in part, to be the result of the alteration of the volcanic minerals. The mineral suites have contributed to the higher amounts of barium, calcium, magnesium, phosphorus, sodium, strontium, and titanium in the Powder River Basin feed coals in comparison to eastern coals. X-ray diffraction analysis indicates that (1) fly ash is mostly aluminate glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals; and (2) bottom ash is predominantly quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite, and spinel group minerals. Microprobe and scanning electron microscope analyses of fly ash samples revealed quartz, zircon, and monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, wollastonite, and periclase. The abundant calcium and magnesium mineral phases in the fly ash are attributed to the presence of carbonate, clay, and phosphate minerals in the feed coal and their alteration to new phases during combustion. The amorphous diffraction-scattering maxima or glass 'hump' appears to reflect differences in chemical composition of fly ash and bottom ash glasses. In Wyodak-Anderson fly and bottom ashes, the center point of scattering maxima is due to calcium and magnesium content, whereas the glass 'hump' of eastern fly ash reflects variation in aluminum content. The calcium- and magnesium-rich and alumino-phosphate mineral phases in the coal combustion products can be attributed to volcanic minerals deposited in peat-forming mires. Dissolution and alteration of these detrital volcanic minerals occurred either in the peat-forming stage or during coalification and diagenesis, resulting in the authigenic mineral suite. The presence of free lime (CaO) in fly ash produced from Wyodak-Anderson coal acts as a self-contained 'scrubber' for SO3, where CaO + SO3 form anhydrite either during combustion or in the upper parts of the boiler. Considering the high lime content in the fly ash and the resulting hydration reactions after its contact with water, there is little evidence that major amounts of leachable metals are mobilized in the disposal or utilization of this fly ash.

Top