NASA Astrophysics Data System (ADS)
Kim, W.; Kim, Y.; Min, D.; Oh, J.; Huh, C.; Kang, S.
2012-12-01
During last two decades, CO2 sequestration in the subsurface has been extensively studied and progressed as a direct tool to reduce CO2 emission. Commercial projects such as Sleipner, In Salah and Weyburn that inject more than one million tons of CO2 per year are operated actively as well as test projects such as Ketzin to study the behavior of CO2 and the monitoring techniques. Korea also began the CCS (CO2 capture and storage) project. One of the prospects for CO2 sequestration in Korea is the southwestern continental margin of Ulleung basin. To monitor the behavior of CO2 underground for the evaluation of stability and safety, several geophysical monitoring techniques should be applied. Among various geophysical monitoring techniques, seismic survey is considered as the most effective tool. To verify CO2 migration in the subsurface more effectively, seismic numerical simulation is an essential process. Furthermore, the efficiency of the seismic migration techniques should be investigated for various cases because numerical seismic simulation and migration test help us accurately interpret CO2 migration. In this study, we apply the reverse-time migration and Kirchhoff migration to synthetic seismic monitoring data generated for the simplified model based on the geological structures of Ulleung basin in Korea. Synthetic seismic monitoring data are generated for various cases of CO2 migration in the subsurface. From the seismic migration images, we can investigate CO2 diffusion patterns indirectly. From seismic monitoring simulation, it is noted that while the reverse-time migration generates clear subsurface images when subsurface structures are steeply dipping, Kirchhoff migration has an advantage in imaging horizontal-layered structures such as depositional sediments appearing in the continental shelf. The reverse-time migration and Kirchhoff migration present reliable subsurface images for the potential site characterized by stratigraphical traps. In case of vertical CO2 migration at injection point, the reverse time migration yields better images than Kirchhoff migration does. On the other hand, Kirchhoff migration images horizontal CO2 migration clearer than the reverse time migration does. From these results, we can conclude that the reverse-time migration and Kirchhoff migration can complement with each other to describe the behavior of CO2 in the subsurface. Acknowledgement This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).
Simple dielectric mixing model in the monitoring of CO2 leakage from geological storage aquifer
NASA Astrophysics Data System (ADS)
Abidoye, L. K.; Bello, A. A.
2017-03-01
The principle of the dielectric mixing for multiphase systems in porous media has been employed to investigate CO2-water-porous media system and monitor the leakage of CO2, in analogy to scenarios that can be encountered in geological carbon sequestration. A dielectric mixing model was used to relate the relative permittivity for different subsurface materials connected with the geological carbon sequestration. The model was used to assess CO2 leakage and its upward migration, under the influences of the depth-dependent characteristics of the subsurface media as well as the fault-connected aquifers. The results showed that for the upward migration of CO2 in the subsurface, the change in the bulk relative permittivity (εb) of the CO2-water-porous media system clearly depicts the leakage and movement of CO2, especially at depth shallower than 800 m. At higher depth, with higher pressure and temperature, the relative permittivity of CO2 increases with pressure, while that of water decreases with temperature. These characteristics of water and supercritical CO2, combine to limit the change in the εb, at higher depth. Furthermore, it was noted that if the pore water was not displaced by the migrating CO2, the presence of CO2 in the system increases the εb. But, with the displacement of pore water by the migrating CO2, it was shown how the εb profile decreases with time. Owing to its relative simplicity, composite dielectric behaviour of multiphase materials can be effectively deployed for monitoring and enhancement of control of CO2 movement in the geological carbon sequestration.
NASA Astrophysics Data System (ADS)
Livers, A. J.; Burnison, S. A.; Salako, O.; Barajas-Olalde, C.; Hamling, J. A.; Gorecki, C. D.
2016-12-01
The feasibility of monitoring potential carbon dioxide (CO2) migration in a reservoir using a sparse seismic array is being evaluated by the Energy & Environmental Research Center (EERC) at the Denbury Onshore LLC-operated Bell Creek oil field in Montana, which is undergoing commercial CO2 enhanced oil recovery (EOR). This new method may provide an economical means of continuously monitoring the CO2 plume edge and the CO2 reservoir boundaries and/or to interpret vertical or lateral out-of-reservoir CO2 migration. A 96-station scalable, automated, semipermanent seismic array (SASSA) was deployed in October 2015 to detect and track CO2 plume migration not by imaging, but by monitoring discrete source-receiver midpoints. Midpoints were strategically located within and around four injector-producer patterns covering approximately one square mile. Three-dimensional (3-D) geophysical ray tracing was used to determine surface receiver locations. Receivers used were FairfieldNodal Zland three-component, autonomous, battery-powered nodes. A GISCO ESS850 accelerated weight drop source located in a secure structure was remotely fired on a weekly basis for one calendar year, including a two-month period prior to initiation of CO2 injection to establish a baseline. Fifty shots were fired one day each week to facilitate increased signal-to-noise through novel receiver domain processing and vertical stacking. Receiver domain processing allowed for individualization of processing parameters to maximize signal enhancement and noise attenuation. Reflection events in the processed SASSA data correlate well to 3-D surface survey data collected in the field. Preliminary time-lapse data results for several individual SASSA receivers show a phase shift in the reflection events below the reservoir after injection, suggesting possible migration of the CO2 in the reservoir to the corresponding midpoint locations. This work is supported by the U.S. Department of Energy National Energy Technology Laboratory under Award No. FE0012665.
Migration of carbon dioxide included micro-nano bubble water in porous media and its monitoring
NASA Astrophysics Data System (ADS)
Takemura, T.; Hamamoto, S.; Suzuki, K.; Koichi, O.
2017-12-01
The distributed CO2 storage is the small scale storage and its located near the emission areas. In the distributed CO2 storage, the CO2 is neutralized by sediment and underground water in the subsurface region (300-500m depth). Carbon dioxide (CO2) included micro-nano bubbles is one approach in neutralizing CO2 and sediments by increasing CO2 volume per unit volume of water and accelerating the chemical reaction. In order to design underground treatment for CO2 gas in the subsurface, it is required to elucidate the behavior of CO2 included micro-nano bubbles in the water. In this study, we carried out laboratory experiment using the soil tank, and measure the amount of leakage of CO2 gas at the surface. In addition, the process of migration of carbon dioxide included micro-nano bubble was monitored by the nondestructive method, wave velocity and resistivity.
Appendix for the Final Technical Report - DE FE0009284
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duguid, Andrew
2017-05-29
Carbon capture utilization storage (CCUS) is a potential technology to store anthropogenic emissions for CO 2. Utilization often refers to CO 2-enhanced oil recovery (CO 2-EOR). An important factor in the success of CO 2 storage in saline formations or CO 2-EOR reservoirs is ensuring that the storage occurs safely and is long-term. Assessment of well integrity has become more important for CCS and CO 2-EOR as it has become apparent that wells represent the most likely migration pathway for CO 2 to leave a CCS storage unit or a CO 2-EOR reservoir. Although wells represent a migration pathway theymore » are also the best vehicle for employing technology monitoring CO 2 injection and storage. This contradiction of being a potential migration path and key monitoring technology leads to a need to understand how monitoring wells may be similar or different in comparison to other types of wells with respect to migration risk. The maturation and completion US Department of Energy sponsored research projects presents an opportunity to assess the integrity of monitoring wells that have been exposed to injected CO 2. This paper discusses an integrity assessment of two monitoring wells in an operating CO 2-EOR flood in Mississippi, USA. The CFU31F-2 and CFU31F-3 monitoring wells were constructed to test monitoring technologies in and above a commercial CO 2-EOR project. The materials selected and the design of the well were optimized for monitoring. Carbonation in CFU31-F2 was seen as high as 7900 ft, above what was considered top of cement based on the logs. Time-lapse comparison of cement bond amplitude data and acoustic impedance maps show a deterioration of signal that implies a deterioration of cement bond or cement along much of the cemented annulus in the long-string section. Analysis of sidewall cores using XRD and LA-ICP-MS validated the log interpretation by confirming the degradation of cement (carbonation) along the casing-cement interface. The ultrasonic image maps also clearly identify the control lines and monitoring technology attached to the outside of the of the long-string casing on each well studied. The control lines appear as microdebonded or fluid filled vertical features implying that they could act as leakage pathways. The sidewall core through the control line at 10380 ft confirms that CO 2 is migrating along the control line with heavily carbonated cement at the control line interface. LA-ICP-MS and XRD on formation interface of the sidewall cores collected in both wells indicates that CO 2 is also moving of the cement-formation interface. LA-ICP-MS and XRD indicate that the amount carbonation in the center of the cores was less than the carbonation at the interfaces. Indicating that CO 2 is reaching the center of the cores by diffusing in from the interfaces and not migrating up from the reservoir though the porous matrix of the cement. This agrees with Duguid et al. [5] and Carey et al. [1] who have found that the interfaces in the well are more conductive than the porous network of the cement. Both the materials used to construct the well and the decision to attach monitoring technology to the outside of the well may have contributed to the migration of CO 2 along the interfaces. Careful consideration should be given to material selection to ensure that it does not degrade when in contact with the fluids in the reservoir and overlying strata. The addition of the control line on the outside of the casing complicated the cement placement and likely caused no cement to bond to the casing adjacent to the control line leading out of the reservoir. Further study of other wells with external lines should be conducted to see of the results of the construction of CFU31-F2 and -F3 is normal or an exception.« less
NASA Astrophysics Data System (ADS)
Oh, J.; Min, D.; Kim, W.; Huh, C.; Kang, S.
2012-12-01
Recently, the CCS (Carbon Capture and Storage) is one of the promising methods to reduce the CO2 emission. To evaluate the success of the CCS project, various geophysical monitoring techniques have been applied. Among them, the time-lapse seismic monitoring is one of the effective methods to investigate the migration of CO2 plume. To monitor the injected CO2 plume accurately, it is needed to interpret seismic monitoring data using not only the imaging technique but also the full waveform inversion, because subsurface material properties can be estimated through the inversion. However, previous works for interpreting seismic monitoring data are mainly based on the imaging technique. In this study, we perform the frequency-domain full waveform inversion for synthetic data obtained by the acoustic-elastic coupled modeling for the geological model made after Ulleung Basin, which is one of the CO2 storage prospects in Korea. We suppose the injection layer is located in fault-related anticlines in the Dolgorae Deformed Belt and, for more realistic situation, we contaminate the synthetic monitoring data with random noise and outliers. We perform the time-lapse full waveform inversion in two scenarios. One scenario is that the injected CO2 plume migrates within the injection layer and is stably captured. The other scenario is that the injected CO2 plume leaks through the weak part of the cap rock. Using the inverted P- and S-wave velocities and Poisson's ratio, we were able to detect the migration of the injected CO2 plume. Acknowledgment This work was financially supported by the Brain Korea 21 project of Energy Systems Engineering, the "Development of Technology for CO2 Marine Geological Storage" program funded by the Ministry of Land, Transport and Maritime Affairs (MLTM) of Korea and the Korea CCS R&D Center (KCRC) grant funded by the Korea government (Ministry of Education, Science and Technology) (No. 2012-0008926).
VSP Monitoring of CO2 Injection at the Aneth Oil Field in Utah
NASA Astrophysics Data System (ADS)
Huang, L.; Rutledge, J.; Zhou, R.; Denli, H.; Cheng, A.; Zhao, M.; Peron, J.
2008-12-01
Remotely tracking the movement of injected CO2 within a geological formation is critically important for ensuring safe and long-term geologic carbon sequestration. To study the capability of vertical seismic profiling (VSP) for remote monitoring of CO2 injection, a geophone string with 60 levels and 96 channels was cemented into a monitoring well at the Aneth oil field in Utah operated by Resolute Natural Resources and Navajo National Oil and Gas Company. The oil field is located in the Paradox Basin of southeastern Utah, and was selected by the Southwest Regional Partnership on Carbon Sequestration, supported by the U.S. Department of Energy, to demonstrate combined enhanced oil recovery (EOR) and CO2 sequestration. The geophones are placed at depths from 805 m to 1704 m, and the oil reservoir is located approximately from 1731 m to 1786 m in depth. A baseline VSP dataset with one zero-offset and seven offset source locations was acquired in October, 2007 before CO2 injection. The offsets/source locations are approximately 1 km away from the monitoring well with buried geophone string. A time-lapse VSP dataset with the same source locations was collected in July, 2008 after five months of CO2/water injection into a horizontal well adjacent to the monitoring well. The total amount of CO2 injected during the time interval between the two VSP surveys was 181,000 MCF (million cubic feet), or 10,500 tons. The time-lapse VSP data are pre-processed to balance the phase and amplitude of seismic events above the oil reservoir. We conduct wave-equation migration imaging and interferometry analysis using the pre-processed time-lapse VSP data. The results demonstrate that time-lapse VSP surveys with high-resolution migration imaging and scattering analysis can provide reliable information about CO2 migration. Both the repeatability of VSP surveys and sophisticated time-lapse data pre-processing are essential to make VSP as an effective tool for monitoring CO2 injection.
NASA Astrophysics Data System (ADS)
Lu, C.; Zhang, C.; Huang, H.; Johnson, T.
2012-12-01
Geological sequestration of carbon dioxide (CO2) into the subsurface has been considered as one solution to reduce greenhouse emission to the atmosphere. Successful sequestration process requires efficient and adequate monitoring of injected fluids as they migrate into the aquifer to evaluate flow path, leakage, and geochemical interactions between CO2 and geologic media. In this synthetic field scale study, we have integrated 3D multiphase flow modeling code PFLOTRAN with 3D time-laps electrical resistivity tomography (ERT) to gain insight into the supercritical (SC) CO2 plumes movement in the deep saline aquifer and associated brine intrusion into shallower fresh water aquifer. A parallel ERT forward and inverse modeling package was introduced, and related algorithms are briefly described. The capabilities and limitations of ERT in monitoring CO2 migration are assessed by comparing the results from PFLOTRAN simulations with the ERT inversion results. In general, our study shows the ERT inversion results compare well with PFLOTRAN with reasonable discrepancies, indicating that the ERT can capture the actual CO2 plume dynamics and brine intrusion. Detailed comparisons on the location, size and volume of CO2 plume show the ERT method underestimated area review and overestimated total plume volume in the predictions of SC CO2 movements. These comparisons also show the ERT method constantly overestimate salt intrusion area and underestimated total solute amount in the predictions of brine filtration. Our study shows that together with other geochemical and geophysical methods, ERT is a potentially useful monitoring tool in detecting the SC CO2 and formation fluid migrations.
NASA Astrophysics Data System (ADS)
Park, Chanho; Nguyen, Phung K. T.; Nam, Myung Jin; Kim, Jongwook
2013-04-01
Monitoring CO2 migration and storage in geological formations is important not only for the stability of geological sequestration of CO2 but also for efficient management of CO2 injection. Especially, geophysical methods can make in situ observation of CO2 to assess the potential leakage of CO2 and to improve reservoir description as well to monitor development of geologic discontinuity (i.e., fault, crack, joint, etc.). Geophysical monitoring can be based on wireline logging or surface surveys for well-scale monitoring (high resolution and nallow area of investigation) or basin-scale monitoring (low resolution and wide area of investigation). In the meantime, crosswell tomography can make reservoir-scale monitoring to bridge the resolution gap between well logs and surface measurements. This study focuses on reservoir-scale monitoring based on crosswell seismic tomography aiming describe details of reservoir structure and monitoring migration of reservoir fluid (water and CO2). For the monitoring, we first make a sensitivity analysis on crosswell seismic tomography data with respect to CO2 saturation. For the sensitivity analysis, Rock Physics Models (RPMs) are constructed by calculating the values of density and P and S-wave velocities of a virtual CO2 injection reservoir. Since the seismic velocity of the reservoir accordingly changes as CO2 saturation changes when the CO2 saturation is less than about 20%, while when the CO2 saturation is larger than 20%, the seismic velocity is insensitive to the change, sensitivity analysis is mainly made when CO2 saturation is less than 20%. For precise simulation of seismic tomography responses for constructed RPMs, we developed a time-domain 2D elastic modeling based on finite difference method with a staggered grid employing a boundary condition of a convolutional perfectly matched layer. We further make comparison between sensitivities of seismic tomography and surface measurements for RPMs to analysis resolution difference between them. Moreover, assuming a similar reservoir situation to the CO2 storage site in Nagaoka, Japan, we generate time-lapse tomographic data sets for the corresponding CO2 injection process, and make a preliminary interpretation of the data sets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuan Lu; CHI Zhang; Hai Hanag
2014-04-01
Successful geological storage and sequestration of carbon dioxide (CO2) require efficient monitoring of the migration of CO2 plume during and after large-scale injection in order to verify the containment of the injected CO2 within the target formation and to evaluate potential leakage risk. Field studies have shown that surface and cross-borehole electrical resistivity tomography (ERT) can be a useful tool in imaging and characterizing solute transport in heterogeneous subsurface. In this synthetic study, we have coupled a 3-D multiphase flow model with a parallel 3-D time-lapse ERT inversion code to explore the feasibility of using time-lapse ERT for simultaneously monitoringmore » the migration of CO2 plume in deep saline formation and potential brine intrusion into shallow fresh water aquifer. Direct comparisons of the inverted CO2 plumes resulting from ERT with multiphase flow simulation results indicate the ERT could be used to delineate the migration of CO2 plume. Detailed comparisons on the locations, sizes and shapes of CO2 plume and intruded brine plumes suggest that ERT inversion tends to underestimate the area review of the CO2 plume, but overestimate the thickness and total volume of the CO2 plume. The total volume of intruded brine plumes is overestimated as well. However, all discrepancies remain within reasonable ranges. Our study suggests that time-lapse ERT is a useful monitoring tool in characterizing the movement of injected CO2 into deep saline aquifer and detecting potential brine intrusion under large-scale field injection conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Zhufeng; Hou, Zhangshuan; Lin, Guang
2014-04-01
This study examined the impacts of reservoir properties on CO2 migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as saturation distribution. The injection reservoir was assumed to be located 1400-1500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of themore » domain, which extended up to 8000 m from the injection well. The CO2 migration was simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). We adopted a nonlinear parameter estimation and optimization modeling software package, PEST, for automated reservoir parameter estimation. We explored the effects of data quality, data worth, and data redundancy on the detectability of reservoir parameters using CO2 saturation monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 saturation monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy.« less
Reducing Risk in CO2 Sequestration: A Framework for Integrated Monitoring of Basin Scale Injection
NASA Astrophysics Data System (ADS)
Seto, C. J.; Haidari, A. S.; McRae, G. J.
2009-12-01
Geological sequestration of CO2 is an option for stabilization of atmospheric CO2 concentrations. Technical ability to safely store CO2 in the subsurface has been demonstrated through pilot projects and a long history of enhanced oil recovery and acid gas disposal operations. To address climate change, current injection operations must be scaled up by a factor of 100, raising issues of safety and security. Monitoring and verification is an essential component in ensuring safe operations and managing risk. Monitoring provides assurance that CO2 is securely stored in the subsurface, and the mechanisms governing transport and storage are well understood. It also provides an early warning mechanism for identification of anomalies in performance, and a means for intervention and remediation through the ability to locate the CO2. Through theoretical studies, bench scale experiments and pilot tests, a number of technologies have demonstrated their ability to monitor CO2 in the surface and subsurface. Because the focus of these studies has been to demonstrate feasibility, individual techniques have not been integrated to provide a more robust method for monitoring. Considering the large volumes required for injection, size of the potential footprint, length of time a project must be monitored and uncertainty, operational considerations of cost and risk must balance safety and security. Integration of multiple monitoring techniques will reduce uncertainty in monitoring injected CO2, thereby reducing risk. We present a framework for risk management of large scale injection through model based monitoring network design. This framework is applied to monitoring CO2 in a synthetic reservoir where there is uncertainty in the underlying permeability field controlling fluid migration. Deformation and seismic data are used to track plume migration. A modified Ensemble Kalman filter approach is used to estimate flow properties by jointly assimilating flow and geomechanical observations. Issues of risk, cost and uncertainty are considered.
NASA Astrophysics Data System (ADS)
Lee, S. S.; Joun, W.; Ju, Y. J.; Ha, S. W.; Jun, S. C.; Lee, K. K.
2017-12-01
Artificial carbon dioxide injection into a shallow aquifer system was performed with two injection types imitating short- and long-term CO2 leakage events into a shallow aquifer. One is pulse type leakage of CO2 (6 hours) under a natural hydraulic gradient (0.02) and the other is long-term continuous injection (30 days) under a forced hydraulic gradient (0.2). Injection and monitoring tests were performed at the K-COSEM site in Eumseong, Korea where a specially designed well field had been installed for artificial CO2 release tests. CO2-infused and tracer gases dissolved groundwater was injected through a well below groundwater table and monitoring were conducted in both saturated and unsaturated zones. Real-time monitoring data on CO2 concentration and hydrochemical parameters, and periodical measurements of several gas tracers (He, Ar, Kr, SF6) were obtained. The pulse type short-term injection test was carried out prior to the long-term injection test. Results of the short-term injection test, under natural hydraulic gradient, showed that CO2 plume migrated along the preferential pathway identified through hydraulic interference tests. On the other hand, results of the long-term injection test indicated the CO2 plume migration path was aligned to the forced hydraulic gradient. Compared to the short-term test, the long-term injection formed detectable CO2 concentration change in unsaturated wellbores. Recovery data of tracer gases made breakthrough curves compatible to numerical simulation results. The monitoring results indicated that detection of CO2 leakage into groundwater was more effectively performed by using a pumping and monitoring method in order to capture by-passing plume. With this concept, an effective real-time monitoring method was proposed. Acknowledgement: Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2storage" from the KEITI (Project number : 2014001810003)
Monitoring Shallow Subsurface CO2 Migration using Electrical Imaging Technique, Pilot Site in Brazil
NASA Astrophysics Data System (ADS)
Oliva, A.; Chang, H. K.; Moreira, A.
2013-12-01
Carbon Capture and Geological Sequestration (CCGS or CCS) is one of the main technological strategies targeting Greenhouse Gases (GHG) emissions reduction, with special emphasis on carbon dioxide (CO2) coming from industrial sources. CCGS integrates the so called Carbon Management Strategies, as indicated by the Intergovernmental Panel on Climate Change (IPCC), and is the basis of main technical route likely to enable substantial emission reduction in a safe, quick and cost-effective way. Currently one of the main challenges in the area of CO2 storage research is to grant the development, testing and validation of accurate and efficient measuring, monitoring and verification (MMV) techniques to be deployed at the final storage site, targeting maximum storage efficiency at the minimal leakage risk levels. The implementation of the first CO2 MMV field lab in Brazil, located in Florianópolis, Santa Catarina state, offered an excellent opportunity for running controlled release experiments in a real open air environment. The purpose of this work is to present the results of a time lapse monitoring experiment of CO2 migration in both saturated and unsaturated sand-rich sediments, using electrical imaging technique. The experiment covered an area of approximately 6300 m2 and CO2 was continuously injected at depth of 8 m, during 12 days, at an average rate of 90 g/ day, totalizing 1080 g of injected CO2. 2D and 3D electrical images using Wenner array were acquired daily during 13 consecutive days. Comparison of post injection electrical imaging results with pre injection images shows change in resistivity values consistent with migration pathways of CO2. A pronounced increase in resistivity values (up to ~ 500 ohm.m) with respect to the pre-injection values occurs in the vicinity of the injection well. Background values of 530 ohm.m have changed to 1118 ohm.m, right after injection. Changes in resistivity values progressively diminish outward of the well, following groundwater flow path.
NASA Astrophysics Data System (ADS)
Noh, K.; Jeong, S.; Seol, S. J.; Byun, J.; Kwon, T.
2015-12-01
Man-made carbon dioxide (CO2) released into the atmosphere is a significant contributor to the greenhouse gas effect and related global warming. Sequestration of CO2 into saline aquifers has been proposed as one of the most practical options of all geological sequestration possibilities. During CO2 geological sequestration, monitoring is indispensable to delineate the change of CO2 saturation and migration of CO2 in the subsurface. Especially, monitoring of CO2 saturation in aquifers provides useful information for determining amount of injected CO2. Seismic inversion can provide the migration of CO2 plume with high resolution because velocity is reduced when CO2 replaces the pore fluid during CO2 injection. However, the estimation of CO2 saturation using the seismic method is difficult due to the lower sensitivity of the velocity to the saturation when the CO2 saturation up to 20%. On the other hand, marine controlled-source EM (mCSEM) inversion is sensitive to the resistivity changes resulting from variations in CO2 saturation, even though it has poor resolution than seismic method. In this study, we proposed an effective CO2 sequestration monitoring method using joint inversion of seismic and mCSEM data based on a cross-gradient constraint. The method was tested with realistic CO2 injection models in a deep brine aquifer beneath a shallow sea which is selected with consideration for the access convenience for the installation of source and receiver and an environmental safety. Resistivity images of CO2 plume by the proposed method for different CO2 injection stages have been significantly improved over those obtained from individual EM inversion. In addition, we could estimate a reliable CO2 saturation by rock physics model (RPM) using the P-wave velocity and the improved resistivity. The proposed method is a basis of three-dimensional estimation of reservoir parameters such as porosity and fluid saturation, and the method can be also applied for detecting a reservoir and calculating the accurate oil and gas reserves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spangler, Lee; Cunningham, Alfred; Lageson, David
2011-03-31
ZERT has made major contributions to five main areas of sequestration science: improvement of computational tools; measurement and monitoring techniques to verify storage and track migration of CO{sub 2}; development of a comprehensive performance and risk assessment framework; fundamental geophysical, geochemical and hydrological investigations of CO{sub 2} storage; and investigate innovative, bio-based mitigation strategies.
NASA Astrophysics Data System (ADS)
Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; Illangasekare, Tissa H.
2017-12-01
To assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO2 migration behavior in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross section of a shallow aquifer with layered geologic heterogeneity. As water with aqueous CO2 was injected into the system to mimic a CO2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO2 evolution processes. Significant CO2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow redissolution of gas phase CO2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO2 migration. This improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.
Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.; ...
2017-11-15
In order to assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO 2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO 2 migration behaviour in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross-section of a shallowmore » aquifer with layered geologic heterogeneity. As water with aqueous CO 2 was injected into the system to mimic a CO 2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO 2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO 2 evolution processes. Significant CO 2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow re-dissolution of gas phase CO 2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO 2 migration. In conclusion, this improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plampin, Michael R.; Porter, Mark L.; Pawar, Rajesh J.
In order to assess the risks of Geologic Carbon Sequestration (GCS), it is crucial to understand the fundamental physicochemical processes that may occur if and when stored CO 2 leaks upward from a deep storage reservoir into the shallow subsurface. Intermediate-scale experiments allow for improved understanding of the multiphase evolution processes that control CO 2 migration behaviour in the subsurface, because the boundary conditions, initial conditions, and porous media parameters can be better controlled and monitored in the laboratory than in field settings. For this study, a large experimental test bed was designed to mimic a cross-section of a shallowmore » aquifer with layered geologic heterogeneity. As water with aqueous CO 2 was injected into the system to mimic a CO 2-charged water leakage scenario, the spatiotemporal evolution of the multiphase CO 2 plume was monitored. Similar experiments were performed with two different sand combinations to assess the relative effects of different types of geologic facies transitions on the CO 2 evolution processes. Significant CO 2 attenuation was observed in both scenarios, but by fundamentally different mechanisms. When the porous media layers had very different permeabilities, attenuation was caused by local accumulation (structural trapping) and slow re-dissolution of gas phase CO 2. When the permeability difference between the layers was relatively small, on the other hand, gas phase continually evolved over widespread areas near the leading edge of the aqueous plume, which also attenuated CO 2 migration. In conclusion, this improved process understanding will aid in the development of models that could be used for effective risk assessment and monitoring programs for GCS projects.« less
Potential for the Use of Wireless Sensor Networks for Monitoring of CO2 Leakage Risks
NASA Astrophysics Data System (ADS)
Pawar, R.; Illangasekare, T. H.; Han, Q.; Jayasumana, A.
2015-12-01
Storage of supercritical CO2 in deep saline geologic formation is under study as a means to mitigate potential global climate change from green house gas loading to the atmosphere. Leakage of CO2 from these formations poses risk to the storage permanence goal of 99% of injected CO2 remaining sequestered from the atmosphere,. Leaked CO2 that migrates into overlying groundwater aquifers may cause changes in groundwater quality that pose risks to environmental and human health. For these reasons, technologies for monitoring, measuring and accounting of injected CO2 are necessary for permitting of CO2 sequestration projects under EPA's class VI CO2 injection well regulations. While the probability of leakage related to CO2 injection is thought to be small at characterized and permitted sites, it is still very important to protect the groundwater resources and develop methods that can efficiently and accurately detect CO2 leakage. Methods that have been proposed for leakage detection include remote sensing, soil gas monitoring, geophysical techniques, pressure monitoring, vegetation stress and eddy covariance measurements. We have demonstrated the use of wireless sensor networks (WSN) for monitoring of subsurface contaminant plumes. The adaptability of this technology for leakage monitoring of CO2 through geochemical changes in the shallow subsurface is explored. For this technology to be viable, it is necessary to identify geochemical indicators such as pH or electrical conductivity that have high potential for significant change in groundwater in the event of CO2 leakage. This talk presents a conceptual approach to use WSNs for CO2 leakage monitoring. Based on our past work on the use of WSN for subsurface monitoring, some of the challenges that need to be over come for this technology to be viable for leakage detection will be discussed.
NASA Astrophysics Data System (ADS)
Pawar, R.; Dash, Z.; Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Illangasekare, T. H.; Zyvoloski, G.
2011-12-01
One of the concerns related to geologic CO2 sequestration is potential leakage of CO2 and its subsequent migration to shallow groundwater resources leading to geochemical impacts. Developing approaches to monitor CO2 migration in shallow aquifer and mitigate leakage impacts will require improving our understanding of gas phase formation and multi-phase flow subsequent to CO2 leakage in shallow aquifers. We are utilizing an integrated approach combining laboratory experiments and numerical simulations to characterize the multi-phase flow of CO2 in shallow aquifers. The laboratory experiments involve a series of highly controlled experiments in which CO2 dissolved water is injected in homogeneous and heterogeneous soil columns and tanks. The experimental results are used to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. We utilize the Finite Element Heat and Mass (FEHM) simulator (Zyvoloski et al, 2010) to numerically model the experimental results. The numerical models capture the physics of CO2 exsolution, multi-phase fluid flow as well as sand heterogeneity. Experimental observations of pressure, temperature and gas saturations are used to develop and constrain conceptual models for CO2 gas-phase formation and multi-phase CO2 flow in porous media. This talk will provide details of development of conceptual models based on experimental observation, development of numerical models for laboratory experiments and modelling results.
A Sea Floor Gravity Survey of the Sleipner Field to Monitor CO2 Migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Zumberge
Carbon dioxide gas (CO{sub 2}) is a byproduct of many wells that produce natural gas. Frequently the CO{sub 2} separated from the valuable fossil fuel gas is released into the atmosphere. This adds to the growing problem of the climatic consequences of greenhouse gas contamination. In the Sleipner North Sea natural gas production facility, the separated CO{sub 2} is injected into an underground saline aquifer to be forever sequestered. Monitoring the fate of such sequestered material is important - and difficult. Local change in Earth's gravity field over the injected gas is one way to detect the CO{sub 2} andmore » track its migration within the reservoir over time. The density of the injected gas is less than that of the brine that becomes displaced from the pore space of the formation, leading to slight but detectable decrease in gravity observed on the seafloor above the reservoir. Using equipment developed at Scripps Institution of Oceanography, we have been monitoring gravity over the Sleipner CO{sub 2} sequestration reservoir since 2002. We surveyed the field in 2009 in a project jointly funded by a consortium of European oil and gas companies and the US Department of Energy. The value of gravity at some 30 benchmarks on the seafloor, emplaced at the beginning of the monitoring project, was observed in a week-long survey with a remotely operated vehicle. Three gravity meters were deployed on the benchmarks multiple times in a campaign-style survey, and the measured gravity values compared to those collected in earlier surveys. A clear signature in the map of gravity differences is well correlated with repeated seismic surveys.« less
NASA Astrophysics Data System (ADS)
Zhang, L.; Namhata, A.; Dilmore, R. M.; Bromhal, G. S.
2016-12-01
An increasing emphasis on the industrial scale implementation of CO2 storage into geological formations has led to the development of whole-system models to evaluate performance of candidate geologic storage sites, and the environmental risk associated with them. The components of that engineered geologic system include the storage reservoir, primary and secondary seals, and the overlying formations above primary and secondary seals (above-zone monitoring interval, AZMI). Leakage of CO2 and brine through the seal to the AZMI may occur due to the presence of natural or induced fractures in the seal. In this work, an AZMI model that simulates pressure and CO2 saturation responses through time to migration of fluids (here, CO2 and brine) from the primary seal to the AZMI is developed. A hypothetical case is examined wherein CO2 is injected into a storage reservoir for 30 years and a heterogeneous primary seal exists above the reservoir with some permeable zones. The total simulation period is 200 years (30 years of CO2 injection period and 170 years of post CO2 injection period). Key geophysical parameters such as permeability of the AZMI, thickness of the AZMI and porosity of the AZMI have significant impact on pressure evolution in the AZMI. arbitrary Polynomial Chaos (aPC) Expansion analysis shows that permeability of the AZMI has the most significant impact on pressure build up in the AZMI above the injection well at t=200 years, followed by thickness of the AZMI and porosity of the AZMI. Geochemical reactions have no impact on pressure and CO2 saturation evolution in the AZMI during the CO2 injection period. After the CO2 injection stops, precipitation of secondary minerals (e.g., amorphous silica and kaolinite) at the CO2 plume/brine interface in the AZMI formation may cause permeability reduction of the AZMI, which restrains horizontal migration of CO2 in the AZMI.
NASA Astrophysics Data System (ADS)
Birkham, T.; Hendry, J.; Kirkland, R.; Bradley, S.; Mendoza, C.; Wassenaar, L.
2003-04-01
From 1997 to the present, we have installed and monitored 240 gas probes (maximum depth of 43 m) in unsaturated waste rock, overburden and tailings piles at a uranium mine in northern Saskatchewan, Canada and an oil sands mine in northern Alberta, Canada. Depth profiles of O2, CO2, N2 and CH4 pore-gas concentrations, temperature, and moisture content were measured in the field and used to characterize and quantifyin situ geochemical reaction rates. An innovative field-portable GC system has been developed to monitor pore-gas concentrations. At most sites, gas migration has been attributed to diffusion. At sites where advective transport may be important, subsurface total pressure measurements have been used to assess the contribution of advection to gas migration. The stable isotopes of molecular O2 (16O2 and 18O16O) and C in CO2 (12CO2 and 13CO2) have also been measured and modeled. At the uranium mine, the modelling of the O2, CO2, δ18OO2, and δ13CCO2 depth profiles was used to identify an alternative mechanism of O2 consumption and CO2 production in mine waste-rock piles. At the oil sands mine, a complex and unique system involving O2, CO2, and CH4 fluxes in the unsaturated zone and across the capillary fringe has been identified and is currently being modeled.
Optimal distribution of borehole geophones for monitoring CO2-injection-induced seismicity
NASA Astrophysics Data System (ADS)
Huang, L.; Chen, T.; Foxall, W.; Wagoner, J. L.
2016-12-01
The U.S. DOE initiative, National Risk Assessment Partnership (NRAP), aims to develop quantitative risk assessment methodologies for carbon capture, utilization and storage (CCUS). As part of tasks of the Strategic Monitoring Group of NRAP, we develop a tool for optimal design of a borehole geophones distribution for monitoring CO2-injection-induced seismicity. The tool consists of a number of steps, including building a geophysical model for a given CO2 injection site, defining target monitoring regions within CO2-injection/migration zones, generating synthetic seismic data, giving acceptable uncertainties in input data, and determining the optimal distribution of borehole geophones. We use a synthetic geophysical model as an example to demonstrate the capability our new tool to design an optimal/cost-effective passive seismic monitoring network using borehole geophones. The model is built based on the geologic features found at the Kimberlina CCUS pilot site located in southern San Joaquin Valley, California. This tool can provide CCUS operators with a guideline for cost-effective microseismic monitoring of geologic carbon storage and utilization.
NASA Astrophysics Data System (ADS)
Zhang, M.; Gao, K.; Balch, R. S.; Huang, L.
2016-12-01
During the Development Phase (Phase III) of the U.S. Southwest Regional Partnership on Carbon Sequestration (SWP), time-lapse 3D vertical seismic profiling (VSP) data were acquired to monitor CO2 injection/migration at the Farnsworth Enhanced Oil Recovery (EOR) field, in partnership with the industrial partner Chaparral Energy. The project is to inject a million tons of carbon dioxide into the target formation, the deep oil-bearing Morrow Formation in the Farnsworth Unit EOR field. Quantitative time-lapse seismic monitoring has the potential to track CO2 movement in geologic carbon storage sites. Los Alamos National Laboratory (LANL) has recently developed new full-waveform inversion methods to jointly invert time-lapse seismic data for changes in elastic and anisotropic parameters in target monitoring regions such as a CO2 reservoir. We apply our new joint inversion methods to time-lapse VSP data acquired at the Farnsworth EOR filed, and present some preliminary results showing geophysical properties changes in the reservoir.
NASA Astrophysics Data System (ADS)
Nowak, Martin; van Geldern, Robert; Myrttinen, Anssi; Veith, Becker; Zimmer, Martin; Barth, Johannes
2013-04-01
With rising atmospheric greenhouse gas concentrations, CCS technologies are a feasible option to diminish consequences of uncontrolled anthropogenic CO2 emissions and related climate change. However, application of CCS technologies requires appropriate and routine monitoring tools in order to ensure a safe and effective CO2 injection. Stable isotope techniques have proven as a useful geochemical monitoring tool at several CCS pilot projects worldwide. They can provide important information about gas - water - rock interactions, mass balances and CO2 migration in the reservoir and may serve as a tool to detect CO2 leakage in the subsurface and surface. Since the beginning of injection in 2008 at the Ketzin pilot site in Germany, more than 450 samples of fluids and gases have been analysed for their carbon and oxygen isotopic composition. Analytical advancements were achieved by modifying a conventional isotope ratio mass-spectrometer with a He dilution system. This allowed analyses of a larger number of CO2 gas samples from the injection well and observation wells. With this, a high-resolution monitoring program was established over a time period of one year. Results revealed that two isotopical distinct kinds of CO2 are injected at the Ketzin pilot site. The most commonly injected CO2 is so-called 'technical' CO2 with an average carbon isotopic value of about -31 ‰. Sporadically, natural source CO2 with an average δ13C value of -3 ‰ was injected. The injection of natural source CO2 generated a distinct isotope signal at the injection well that can be used as an ideal tracer. CO2 isotope values analysed at the observation wells indicate a highly dispersive migration of the supercritical CO2 that results in mixing of the two kinds of CO2 within the reservoir. Above-reservoir monitoring includes the first overlying aquifer above the cap rock. An observation well within this zone comprises an U-tube sampling device that allows frequent sampling of unaltered brine. The fluids were analysed among others for their carbon isotopic compositions of dissolved inorganic carbon (DIC). δ13CDIC values allowed to assess impacts of the carbonate-based drilling fluid during well development and helped to monitor successive geochemical re-equilibration processes of the brine. Based on the determined δ13C baseline values of the aquifer fluid, first concepts indicate the scale of change of the δ13CDIC values that would be necessary to detect CO2 leakage from the underlying storage reservoir. Recent efforts aim at applications of new laser-based isotope sensors that allow online measurements in the field. These devices are applied for CO2 gas tracer experiments as well as for monitoring of isotope composition of soil gases in the vicinity of the pilot site. This new development will allow much better temporal and spatial resolution of measurements at a lower price. Therefore, stable isotope analyses can become a strong and promising tool for subsurface as well as surface monitoring at future CCS sites.
NASA Astrophysics Data System (ADS)
Kiessling, D.; Schuett, H.; Schoebel, B.; Krueger, K.; Schmidt-Hattenberger, C.; Schilling, F.
2009-04-01
Numerical models of the CO2 storage experiment CO2SINK (CO2 Storage by Injection into a Natural Saline Aquifer at Ketzin), where CO2 is injected into a deep saline aquifer at roughly 650 m depth, yield a CO2 saturation of approximately 50% for large parts of the plume. Archie's equation predicts an increase of the resistivity by a factor of approximately 3 to 4 for the reservoir sandstone, and laboratory tests on Ketzin reservoir samples support this prediction. Modeling results show that tracking the CO2 plume may be doable with crosshole resistivity surveys under these conditions. One injection well and two observation wells were drilled in 2007 to a depth of about 800 m and were completed with "smart" casings, arranged L-shaped with distances of 50 m and 100 m. 45 permanent ring-shaped steel electrodes were attached to the electrically insulated casings of the three Ketzin wells at 590 m to 735 m depth with a spacing of about 10 m. It is to our knowledge the deepest permanent vertical electrical resistivity array (VERA) worldwide. The electrodes are connected to the current power supply and data registration units at the surface through custom-made cables. This deep electrode array allows for the registration of electrical resistivity tomography (ERT) data sets at basically any desired repetition rate and at very low cost, without interrupting the injection operations. The installation of all 45 electrodes succeeded. The electrodes are connected to the electrical cable, and the insulated casing stood undamaged. Even after 2-odd years under underground conditions only 6 electrodes are in a critical state now, caused by corrosion effects. In the framework of the COSMOS project (CO2-Storage, Monitoring and Safety Technology), supported by the German "Geotechnologien" program, the geoelectric monitoring has been performed. The 3D crosshole time-laps measurements are taken using dipole-dipole configurations. The data was inverted using AGI EarthImager 3D to obtain 3D images of the true resistivity distribution in the reservoir, which reflects the extent of the CO2 plume. The resistivity data provide information about the saturation state of the reservoir independently of seismic methods. Base data sets have been measured prior to the CO2 injection; monitoring data sets are registered while CO2 is being injected. Using combined 3D surface-downhole measurements (realized in cooperation with University of Leipzig) we got in addition an indication for effects of anisotropy in CO2 migration. We present an overview of the electrode installation, first examples for baseline and monitoring datasets and the corresponding tomograms that show indications of the CO2 migration.
NASA Astrophysics Data System (ADS)
Bhattacharjya, D.; Mukerji, T.; Mascarenhas, O.; Weyant, J.
2005-12-01
Designing a cost-effective and reliable monitoring program is crucial to the success of any geological CO2 storage project. Effective design entails determining both, the optimal measurement modality, as well as the frequency of monitoring the site. Time-lapse seismic provides the best spatial coverage and resolution for reservoir monitoring. Initial results from Sleipner (Norway) have demonstrated effective monitoring of CO2 plume movement. However, time-lapse seismic is an expensive monitoring technique especially over the long term life of a storage project and should be used judiciously. We present a mathematical model based on dynamic programming that can be used to estimate site-specific optimal frequency of time-lapse surveys. The dynamics of the CO2 sequestration process are simplified and modeled as a four state Markov process with transition probabilities. The states are M: injected CO2 safely migrating within the target zone; L: leakage from the target zone to the adjacent geosphere; R: safe migration after recovery from leakage state; and S: seepage from geosphere to the biosphere. The states are observed only when a monitoring survey is performed. We assume that the system may go to state S only from state L. We also assume that once observed to be in state L, remedial measures are always taken to bring it back to state R. Remediation benefits are captured by calculating the expected penalty if CO2 seeped into the biosphere. There is a trade-off between the conflicting objectives of minimum discounted costs of performing the next time-lapse survey and minimum risk of seepage and its associated costly consequences. A survey performed earlier would spot the leakage earlier. Remediation methods would have been utilized earlier, resulting in savings in costs attributed to excessive seepage. On the other hand, there are also costs for the survey and remedial measures. The problem is solved numerically using Bellman's optimality principal of dynamic programming to optimize over the entire finite time horizon. We use a Monte Carlo approach to explore trade-offs between survey costs, remediation costs, and survey frequency and to analyze the sensitivity to leakage probabilities, and carbon tax. The model can be useful in determining a monitoring regime appropriate to a specific site's risk and set of remediation options, rather than a generic one based on a maximum downside risk threshold for CO2 storage as a whole. This may have implications on the overall costs associated with deploying Carbon capture and storage on a large scale.
Integrated Reflection Seismic Monitoring and Reservoir Modeling for Geologic CO2 Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
John Rogers
The US DOE/NETL CCS MVA program funded a project with Fusion Petroleum Technologies Inc. (now SIGMA) to model the proof of concept of using sparse seismic data in the monitoring of CO{sub 2} injected into saline aquifers. The goal of the project was to develop and demonstrate an active source reflection seismic imaging strategy based on deployment of spatially sparse surface seismic arrays. The primary objective was to test the feasibility of sparse seismic array systems to monitor the CO{sub 2} plume migration injected into deep saline aquifers. The USDOE/RMOTC Teapot Dome (Wyoming) 3D seismic and reservoir data targeting themore » Crow Mountain formation was used as a realistic proxy to evaluate the feasibility of the proposed methodology. Though the RMOTC field has been well studied, the Crow Mountain as a saline aquifer has not been studied previously as a CO{sub 2} sequestration (storage) candidate reservoir. A full reprocessing of the seismic data from field tapes that included prestack time migration (PSTM) followed by prestack depth migration (PSDM) was performed. A baseline reservoir model was generated from the new imaging results that characterized the faults and horizon surfaces of the Crow Mountain reservoir. The 3D interpretation was integrated with the petrophysical data from available wells and incorporated into a geocellular model. The reservoir structure used in the geocellular model was developed using advanced inversion technologies including Fusion's ThinMAN{trademark} broadband spectral inversion. Seal failure risk was assessed using Fusion's proprietary GEOPRESS{trademark} pore pressure and fracture pressure prediction technology. CO{sub 2} injection was simulated into the Crow Mountain with a commercial reservoir simulator. Approximately 1.2MM tons of CO{sub 2} was simulated to be injected into the Crow Mountain reservoir over 30 years and subsequently let 'soak' in the reservoir for 970 years. The relatively small plume developed from this injection was observed migrating due to gravity to the apexes of the double anticline in the Crow Mountain reservoir of the Teapot dome. Four models were generated from the reservoir simulation task of the project which included three saturation models representing snapshots at different times during and after simulated CO{sub 2} injection and a fully saturated CO{sub 2} fluid substitution model. The saturation models were used along with a Gassmann fluid substitution model for CO{sub 2} to perform fluid volumetric substitution in the Crow Mountain formation. The fluid substitution resulted in a velocity and density model for the 3D volume at each saturation condition that was used to generate a synthetic seismic survey. FPTI's (Fusion Petroleum Technologies Inc.) proprietary SeisModelPRO{trademark} full acoustic wave equation software was used to simulate acquisition of a 3D seismic survey on the four models over a subset of the field area. The simulated acquisition area included the injection wells and the majority of the simulated plume area.« less
CO2 plume management in saline reservoir sequestration
Frailey, S.M.; Finley, R.J.
2011-01-01
A significant difference between injecting CO2 into saline aquifers for sequestration and injecting fluids into oil reservoirs or natural gas into aquifer storage reservoirs is the availability and use of other production and injection wells surrounding the primary injection well(s). Of major concern for CO2 sequestration using a single well is the distribution of pressure and CO2 saturation within the injection zone. Pressure is of concern with regards to caprock integrity and potential migration of brine or CO2 outside of the injection zone, while CO2 saturation is of interest for storage rights and displacement efficiency. For oil reservoirs, the presence of additional wells is intended to maximize oil recovery by injecting CO2 into the same hydraulic flow units from which the producing wells are withdrawing fluids. Completing injectors and producers in the same flow unit increases CO2 throughput, maximizes oil displacement efficiency, and controls pressure buildup. Additional injectors may surround the CO2 injection well and oil production wells in order to provide external pressure to these wells to prevent the injected CO2 from migrating from the pattern between two of the producing wells. Natural gas storage practices are similar in that to reduce the amount of "cushion" gas and increase the amount of cycled or working gas, edge wells may be used for withdrawal of gas and center wells used for gas injection. This reduces loss of gas to the formation via residual trapping far from the injection well. Moreover, this maximizes the natural gas storage efficiency between the injection and production wells and reduces the areal extent of the natural gas plume. Proposed U.S. EPA regulations include monitoring pressure and suggest the "plume" may be defined by pressure in addition to the CO2 saturated area. For pressure monitoring, it seems that this can only be accomplished by injection zone monitoring wells. For pressure, these wells would not need to be very close to the injection well, compared to monitoring wells intended to measure CO2 saturation via fluid sampling or cased-hole well logs. If pressure monitoring wells become mandated, these wells could be used for managing the CO2 saturation and aquifer pressure distribution. To understand the relevance and effectiveness of producing and injecting brine to improve storage efficiency, direct the plume to specific pore space, and redistribute the pressure, numerical models of CO2 injection into aquifers are used. Simulated cases include various aquifer properties at a single well site and varying the number and location of surrounding wells for plume management. Strategies in terms of completion intervals can be developed to effectively contact more vertical pore space in relatively thicker geologic formations. Inter-site plume management (or cooperative) wells for the purpose of pressure monitoring and plume management may become the responsibility of a consortium of operators or a government entity, not individual sequestration site operators. ?? 2011 Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wall, Andy; Jain, Jinesh; Stewart, Brian
2012-01-01
Recent innovations in multi-collector ICP-mass spectrometry (MC-ICP-MS) have allowed for rapid and precise measurements of isotope ratios in geological samples. Naturally occurring Sr isotopes has the potential for use in Monitoring, Verification, and Accounting (MVA) associated with geologic CO2 storage. Sr isotopes can be useful for: Sensitive tracking of brine migration; Determining seal rock leakage; Studying fluid/rock reactions. We have optimized separation chemistry procedures that will allow operators to prepare samples for Sr isotope analysis off site using rapid, low cost methods.
NASA Astrophysics Data System (ADS)
Buscheck, T. A.; Chen, M.; Sun, Y.; Hao, Y.; Court, B.; Celia, M. A.; Wolery, T.; Aines, R. D.
2011-12-01
CO2 capture and sequestration (CCS) integrated with geothermal energy production in deep geological formations can play an important role in reducing CO2 emissions to the atmosphere and thereby mitigate global climate change. For industrial-scale CO2 injection in saline formations, pressure buildup can limit storage capacity and security. Active CO2 Reservoir Management (ACRM) combines brine production with CO2 injection to relieve pressure buildup, increase injectivity, manipulate CO2 migration, constrain brine leakage, and enable beneficial utilization of produced brine. Therefore, ACRM can be an enabler of carbon capture, utilization, and sequestration (CCUS). Useful products may include freshwater, cooling water, make-up water for pressure support in oil, gas, and geothermal reservoir operations, and geothermal energy production. Implementation barriers to industrial-scale CCS include concerns about (1) CO2 sequestration security and assurance, (2) pore-space competition with neighboring subsurface activities, (3) CO2 capture costs, and (4) water-use demands imposed by CCS operations, which is particularly important where water resources are already scarce. CCUS, enabled by ACRM, has the potential of addressing these barriers. Pressure relief from brine production can substantially reduce the driving force for potential CO2 and brine migration, as well as minimize interference with neighboring subsurface activities. Electricity generated from geothermal energy can offset a portion of the parasitic energy and financial costs of CCS. Produced brine can be used to generate freshwater by desalination technologies, such as RO, provide a source for saltwater cooling systems or be used as make-up water for oil, gas, or geothermal reservoir operations, reducing the consumption of valuable freshwater resources. We examine the impact of brine production on reducing CO2 and brine leakage. A volumetric balance between injected and produced fluids minimizes the spatial extent of the pressure perturbation, substantially reducing both the Area of Review (AoR) and interactions with neighboring subsurface activities. This will reduce pore-space competition between neighboring subsurface activities, allowing for independent planning, assessment, and permitting. Because post-injection pressure buildup is virtually eliminated, this could have a major impact on post-injection monitoring requirements. Reducing the volume of rock over which brine can migrate may significantly affect site characterization requirements, as well as the impact of parametric and conceptual model uncertainties, such as those related to abandoned wells. ACRM-CCUS has the potential of playing a beneficial role in site-characterization, permitting, and monitoring activities, and in gaining public acceptance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Li, Qi; Song, Ranran; Shi, Hui; Ma, Jianli; Liu, Xuehao; Li, Xiaochun
2018-04-01
The CO 2 injected into deep formations during implementation of carbon dioxide (CO 2 ) capture and storage (CCS) technology may leak and migrate into shallow aquifers or ground surfaces through a variety of pathways over a long period. The leaked CO 2 can threaten shallow environments as well as human health. Therefore, almost all monitoring programs for CCS projects around the world contain near-surface monitoring. This paper presents a U-tube based near-surface monitoring technology focusing on its first application in the Shenhua CCS demonstration project, located in the Ordos Basin, Inner Mongolia, China. First, background information on the site monitoring program of the Shenhua CCS demonstration project was provided. Then, the principle of fluid sampling and the monitoring methods were summarized for the U-tube sampler system, and the monitoring data were analyzed in detail. The U-tube based monitoring results showed that the U-tube sampler system is accurate, flexible, and representative of the subsurface fluid sampling process. The monitoring indicators for the subsurface water and soil gas at the Shenhua CCS site indicate good stratification characteristics. The concentration level of each monitoring indicator decreases with increasing depth. Finally, the significance of this near-surface environmental monitoring technology for CO 2 leakage assessments was preliminarily confirmed at the Shenhua CCS site. The application potential of the U-tube based monitoring technology was also demonstrated during the subsurface environmental monitoring of other CCS projects.
Michael, K; Whittaker, S; Varma, S; Bekele, E; Langhi, L; Hodgkinson, J; Harris, B
2016-02-01
Sedimentary basins around the world considered suitable for carbon storage usually contain other natural resources such as petroleum, coal, geothermal energy and groundwater. Storing carbon dioxide in geological formations in the basins adds to the competition for access to the subsurface and the use of pore space where other resource-based industries also operate. Managing potential impacts that industrial-scale injection of carbon dioxide may have on other resource development must be focused to prevent potential conflicts and enhance synergies where possible. Such a sustainable coexistence of various resource developments can be accomplished by implementing a Framework for Basin Resource Management strategy (FBRM). The FBRM strategy utilizes the concept of an Area of Review (AOR) for guiding development and regulation of CO2 geological storage projects and for assessing their potential impact on other resources. The AOR is determined by the expected physical distribution of the CO2 plume in the subsurface and the modelled extent of reservoir pressure increase resulting from the injection of the CO2. This information is used to define the region to be characterised and monitored for a CO2 injection project. The geological characterisation and risk- and performance-based monitoring will be most comprehensive within the region of the reservoir containing the carbon dioxide plume and should consider geological features and wells continuously above the plume through to its surface projection; this region defines where increases in reservoir pressure will be greatest and where potential for unplanned migration of carbon dioxide is highest. Beyond the expanse of the carbon dioxide plume, geological characterisation and monitoring should focus only on identified features that could be a potential migration conduit for either formation water or carbon dioxide.
NASA Astrophysics Data System (ADS)
van Geldern, Robert; Nowak, Martin; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A. C.; Jost, Hj
2016-04-01
A newly developed and commercially available isotope ratio laser spectrometer for CO2 analyses has been tested during a 10-day field monitoring campaign at the Ketzin pilot site for CO2 storage in northern Germany. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10-day carbon stable isotope data set with 30 minutes resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within 2σ analytical precision (<0.3 ‰). This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time table isotope data directly in the field. The injected CO2 tracer had a distinct δ13C value that was largely different from the reservoir background value. The laser spectroscopy data revealed a prior to this study unknown, intensive dynamic with fast changing δ13C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The new technique might contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.
Quantitative analysis of random migration of cells using time-lapse video microscopy.
Jain, Prachi; Worthylake, Rebecca A; Alahari, Suresh K
2012-05-13
Cell migration is a dynamic process, which is important for embryonic development, tissue repair, immune system function, and tumor invasion (1, 2). During directional migration, cells move rapidly in response to an extracellular chemotactic signal, or in response to intrinsic cues (3) provided by the basic motility machinery. Random migration occurs when a cell possesses low intrinsic directionality, allowing the cells to explore their local environment. Cell migration is a complex process, in the initial response cell undergoes polarization and extends protrusions in the direction of migration (2). Traditional methods to measure migration such as the Boyden chamber migration assay is an easy method to measure chemotaxis in vitro, which allows measuring migration as an end point result. However, this approach neither allows measurement of individual migration parameters, nor does it allow to visualization of morphological changes that cell undergoes during migration. Here, we present a method that allows us to monitor migrating cells in real time using video - time lapse microscopy. Since cell migration and invasion are hallmarks of cancer, this method will be applicable in studying cancer cell migration and invasion in vitro. Random migration of platelets has been considered as one of the parameters of platelet function (4), hence this method could also be helpful in studying platelet functions. This assay has the advantage of being rapid, reliable, reproducible, and does not require optimization of cell numbers. In order to maintain physiologically suitable conditions for cells, the microscope is equipped with CO(2) supply and temperature thermostat. Cell movement is monitored by taking pictures using a camera fitted to the microscope at regular intervals. Cell migration can be calculated by measuring average speed and average displacement, which is calculated by Slidebook software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alonso, Jesus
Intelligent Optical Systems, Inc. has developed distributed intrinsic fiber optic sensors to directly quantify the concentration of dissolved or gas-phase CO 2 for leak detection or plume migration in carbon capture and sequestration (CCS). The capability of the sensor for highly sensitive detection of CO 2 in the pressure and temperature range of 15 to 2,000 psi and 25°C to 175°C was demonstrated, as was the capability of operating in highly corrosive and contaminated environments such as those often found in CO 2 injection sites. The novel sensor system was for the first time demonstrated deployed in a deep well,more » detecting multiple CO 2 releases, in real time, at varying depths. Early CO 2 release detection, by means of a sensor cable integrating multiple sensor segments, was demonstrated, as was the capability of quantifying the leak. The novel fiber optic sensor system exhibits capabilities not achieved by any other monitoring technology. This project represents a breakthrough in monitoring capabilities for CCS applications.« less
NASA Astrophysics Data System (ADS)
Ben, R.; Chalaturnyk, R.; Gardner, C.; Hawkes, C.; Johnson, J.; White, D.; Whittaker, S.
2008-12-01
In July 2000, a major research project was initiated to study the geological storage of CO2 as part of a 5000 tonnes/day EOR project planned for the Weyburn Field in Saskatchewan, Canada. Major objectives of the IEA GHG Weyburn CO2 monitoring and storage project included: assessing the integrity of the geosphere encompassing the Weyburn oil pool for effective long-term storage of CO2; monitoring the movement of the injected CO2, and assessing the risk of migration of CO2 from the injection zone (approximately 1500 metres depth) to the surface. Over the period 2000-2004, a diverse group of 80+ researchers worked on: geological, geophysical, and hydrogeological characterizations at both the regional (100 km beyond the field) and detailed scale (10 km around the field); conducted time-lapse geophysical surveys; carried out surface and subsurface geochemical surveys; and undertook numerical reservoir simulations. Results of the characterization were used for a performance assessment that concluded the risk of CO2 movement to the biosphere was very small. By September 2007, more than 14 Mtonnes of CO2 had been injected into the Weyburn reservoir, including approximately 3 Mtonnes recycled from oil production. A "Final Phase" research project was initiated (2007- 2011) to contribute to a "Best Practices" guide for long-term CO2 storage in EOR settings. Research objectives include: improving the geoscience characterization; further detailed analysis and data collection on the role of wellbores; additional geochemical and geophysical monitoring activities; and an emphasis on quantitative risk assessments using multiple analysis techniques. In this talk a review of results from Phase I will be presented followed by plans and initial results for the Final Phase.
NASA Astrophysics Data System (ADS)
Rawangphai, M.; Maneeintr, K.
2018-04-01
Recently, climate change and global warming are the global concern because of an increase in the huge amount of carbon dioxide (CO2) in the atmosphere. This gas comes from energy activities and industries like petroleum industries. Carbon capture and storage (CCS) is the practical technology to reduce and storage CO2. In Thailand, one of the main potential sites for storage is the Gulf of Thailand. However, the research on this issue is very rare in Thailand. Consequently, this work is aiming on the potential study of CO2 geological storage in formations in the Gulf of Thailand by using simulation. The CO2 storage capacity, pressure buildup and plume migration have been estimated. Also, this study has been simulated with various conditions. CO2 injection is used from 1,000-4,000 tons per day with the depth from 2,200-2,330 meters and the results are studied for 50 years as a monitoring period. The results present that with the formation characteristics, CO2 storage in this area has potential. Moreover, pressure buildup and plume migration are illustrated for the period of 50 years. As a fundamental knowledge, this study can contribute to CO2 storage in an offshore area in Thailand.
NASA Astrophysics Data System (ADS)
Sauer, U.; Schuetze, C.; Dietrich, P.
2013-12-01
The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The application of FTIR spectroscopy in combination with soil gas surveys and geophysical investigations results in a comprehensive site characterization, including atmospheric and near-surface CO2 distribution, as well as subsurface structural features. We observed a correlation of higher CO2 concentration and flux rates at the meso-scale that coincides with distinct geophysical anomalies. Here, we found prominent SP anomalies and zones of lower resistivity in the geoelectrical images compared to undisturbed regions nearby. This presentation will discuss the results we obtained and illustrate the influence of CO2 on electrical parameters measured under field conditions in relation to environmental parameters.
Kharaka, Yousif K.; Thordsen, James J.; Hovorka, Susan D.; Nance, H. Seay; Cole, David R.; Phelps, Tommy J.; Knauss, Kevin G.
2009-01-01
Sedimentary basins in general, and deep saline aquifers in particular, are being investigated as possible repositories for large volumes of anthropogenic CO2 that must be sequestered to mitigate global warming and related climate changes. To investigate the potential for the long-term storage of CO2 in such aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick "C" sandstone unit of the Frio Formation, a regional aquifer in the US Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m updip showed a Na–Ca–Cl type brine with ∼93,000 mg/L TDS at saturation with CH4 at reservoir conditions; gas analyses showed that CH4 comprised ∼95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5–5.7), pronounced increases in alkalinity (100–3000 mg/L as HCO3) and in Fe (30–1100 mg/L), a slug of very high DOC values, and significant shifts in the isotopic compositions of H2O, DIC, and CH4. These data, coupled with geochemical modeling, indicate corrosion of pipe and well casing as well as rapid dissolution of minerals, especially calcite and iron oxyhydroxides, both caused by lowered pH (initially ∼3.0 at subsurface conditions) of the brine in contact with supercritical CO2.These geochemical parameters, together with perfluorocarbon tracer gases (PFTs), were used to monitor migration of the injected CO2 into the overlying Frio “B”, composed of a 4-m-thick sandstone and separated from the “C” by ∼15 m of shale and siltstone beds. Results obtained from the Frio “B” 6 months after injection gave chemical and isotopic markers that show significant CO2 (2.9% compared with 0.3% CO2 in dissolved gas) migration into the “B” sandstone. Results of samples collected 15 months after injection, however, are ambiguous, and can be interpreted to show no additional injected CO2 in the “B” sandstone. The presence of injected CO2 may indicate migration from “C” to “B” through the intervening beds or, more likely, a short-term leakage through the remedial cement around the casing of a 50-year old well. Results obtained to date from four shallow monitoring groundwater wells show no brine or CO2 leakage through the Anahuac Formation, the regional cap rock.
NASA Astrophysics Data System (ADS)
Basirat, Farzad; Perroud, Hervé; Lofi, Johanna; Denchik, Nataliya; Lods, Gérard; Fagerlund, Fritjof; Sharma, Prabhakar; Pezard, Philippe; Niemi, Auli
2015-04-01
In this study, TOUGH2/EOS7CA model is used to simulate the shallow injection-monitoring experiment carried out at Maguelone, France, during 2012 and 2013. The possibility of CO2 leakage from storage reservoir to upper layers is one of the issues that need to be addressed in CCS projects. Developing reliable monitoring techniques to detect and characterize CO2 leakage is necessary for the safety of CO2 storage in reservoir formations. To test and cross-validate different monitoring techniques, a series of shallow gas injection-monitoring experiments (SIMEx) has been carried out at the Maguelone. The experimental site is documented in Lofi et al [2013]. At the site, a series of nitrogen and one CO2 injection experiment have been carried out during 2012-2013 and different monitoring techniques have been applied. The purpose of modelling is to acquire understanding of the system performance as well as to further develop and validate modelling approaches for gas transport in the shallow subsurface, against the well-controlled data sets. The preliminary simulation of the experiment including the simulation for the Nitrogen injection test in 2012 was presented in Basirat et al [2013]. In this work, the simulations represent the gaseous CO2 distribution and dissolved CO2 within range obtained by monitoring approaches. The Multiphase modelling in combination with geophysical monitoring can be used for process understanding of gas phase migration- and mass transfer processes resulting from gaseous CO2 injection. Basirat, F., A. Niemi, H. Perroud, J. Lofi, N. Denchik, G. Lods, P. Pezard, P. Sharma, and F. Fagerlund (2013), Modeling Gas Transport in the Shallow Subsurface in Maguelone Field Experiment, Energy Procedia, 40, 337-345. Lofi, J., P. Pezard, F. Bouchette, O. Raynal, P. Sabatier, N. Denchik, A. Levannier, L. Dezileau, and R. Certain (2013), Integrated Onshore-Offshore Investigation of a Mediterranean Layered Coastal Aquifer, Groundwater, 51(4), 550-561.
Spectral-element simulations of carbon dioxide (CO2) sequestration time-lapse monitoring
NASA Astrophysics Data System (ADS)
Morency, C.; Luo, Y.; Tromp, J.
2009-12-01
Geologic sequestration of CO2, a green house gas, represents an effort to reduce the large amount of CO2 generated as a by-product of fossil fuels combustion and emitted into the atmosphere. This process of sequestration involves CO2 storage deep underground. There are three main storage options: injection into hydrocarbon reservoirs, injection into methane-bearing coal beds, or injection into deep saline aquifers, that is, highly permeable porous media. The key issues involve accurate monitoring of the CO2, from the injection stage to the prediction & verification of CO2 movement over time for environmental considerations. A natural non-intrusive monitoring technique is referred to as ``4D seismics'', which involves 3D time-lapse seismic surveys. The success of monitoring the CO2 movement is subject to a proper description of the physics of the problem. We propose to realize time-lapse migrations comparing acoustic, elastic, and poroelastic simulations of 4D seismic imaging to characterize the storage zone. This approach highlights the influence of using different physical theories on interpreting seismic data, and, more importantly, on extracting the CO2 signature from the seismic wave field. Our simulations are performed using a spectral-element method, which allows for highly accurate results. Biot's equations are implemented to account for poroelastic effects. Attenuation associated with the anelasticity of the rock frame and frequency-dependent viscous resistance of the pore fluid are accommodated based upon a memory variable approach. The sensitivity of observables to the model parameters is quantified based upon finite-frequency sensitivity kernels calculated using an adjoint method.
Shingyochi, Yoshiaki; Kanazawa, Shigeyuki; Tajima, Satoshi; Tanaka, Rica; Mizuno, Hiroshi; Tobita, Morikuni
2017-01-01
Background Low-level laser therapy (LLLT) with various types of lasers promotes fibroblast proliferation and migration during the process of wound healing. Although LLLT with a carbon dioxide (CO2) laser was also reported to promote wound healing, the underlying mechanisms at the cellular level have not been previously described. Herein, we investigated the effect of LLLT with a CO2 laser on fibroblast proliferation and migration. Materials and Methods Cultured human dermal fibroblasts were prepared. MTS and cell migration assays were performed with fibroblasts after LLLT with a CO2 laser at various doses (0.1, 0.5, 1.0, 2.0, or 5.0 J/cm2) to observe the effects of LLLT with a CO2 laser on the proliferation and migration of fibroblasts. The non-irradiated group served as the control. Moreover, western blot analysis was performed using fibroblasts after LLLT with a CO2 laser to analyze changes in the activities of Akt, extracellular signal-regulated kinase (ERK), and Jun N-terminal kinase (JNK), which are signaling molecules associated with cell proliferation and migration. Finally, the MTS assay, a cell migration assay, and western blot analysis were performed using fibroblasts treated with inhibitors of Akt, ERK, or JNK before LLLT with a CO2 laser. Results In MTS and cell migration assays, fibroblast proliferation and migration were promoted after LLLT with a CO2 laser at 1.0 J/cm2. Western blot analysis revealed that Akt, ERK, and JNK activities were promoted in fibroblasts after LLLT with a CO2 laser at 1.0 J/cm2. Moreover, inhibition of Akt, ERK, or JNK significantly blocked fibroblast proliferation and migration. Conclusions These findings suggested that LLLT with a CO2 laser would accelerate wound healing by promoting the proliferation and migration of fibroblasts. Activation of Akt, ERK, and JNK was essential for CO2 laser-induced proliferation and migration of fibroblasts. PMID:28045948
Foulger, G.R.; Julian, B.R.; Pitt, A.M.; Hill, D.P.; Malin, P.E.; Shalev, E.
2003-01-01
A temporary network of 69 three-component seismic stations captured a major seismic sequence in Long Valley caldera in 1997. We performed a tomographic inversion for crustal structure beneath a 28 km ?? 16 km area encompassing part of the resurgent dome, the south moat, and Mammoth Mountain. Resolution of crustal structure beneath the center of the study volume was good down to ???3 km below sea level (???5 km below the surface). Relatively high wave speeds are associated with the Bishop Tuff and lower wave speeds characterize debris in the surrounding moat. A low-Vp/Vs anomaly extending from near the surface to ???1 km below sea level beneath Mammoth Mountain may represent a CO2 reservoir that is supplying CO2-rich springs, venting at the surface, and killing trees. We investigated temporal variations in structure beneath Mammoth Mountain by differencing our results with tomographic images obtained using data from 1989/1990. Significant changes in both Vp and Vs were consistent with the migration of CO2 into the upper 2 km or so beneath Mammoth Mountain and its depletion in peripheral volumes that correlate with surface venting areas. Repeat tomography is capable of detecting the migration of gas beneath active silicic volcanoes and may thus provide a useful volcano monitoring tool.
Quantitative monitoring of subsurface CO2 emplacement and leakage using muon tomography
NASA Astrophysics Data System (ADS)
Coleman, M. L.; Kudryavtsev, V.; Spooner, N.; Gluyas, J.; Fung, C.
2011-12-01
Monitoring CO2 emplacement and possible leakage is a major challenge; methods, such as repeat seismic surveys, are episodic and expensive. A relevant alternative approach will use detection of cosmic ray muons, which has been used previously in archaeological and geological research as a technique for mapping features hidden underground. We developed a model to test if this concept would work for monitoring CO2 storage and show that muon detection is a viable method. To achieve this we used the well-established MUSUN/MUSIC computer codes to model changes in muon fluxes resulting from the introduction of supercritical CO2 into a simulated sandstone reservoir. Results from our first simulation indicate that we could detect as little as 0.4% change in the mean reservoir density at about 1 km depth, resulting from changing the relative proportions of CO2 and existing brine pore fluid. This change is equivalent to 7% of the pore volume in this particular case. However, other scenarios offer the promise of considerable increase in sensitivity. We will show how practical implementation can be achieved using state of the art drilling technology to place an array of detectors in short-radius side-track horizontal wells beneath the storage site. We conclude that with an appropriate design it will be possible to monitor and image the migration or loss of injected CO2 continuously using cosmic ray muons, a significant step towards implementing widescale CCS safely and help rapid introduction of this essential technology.
NASA Astrophysics Data System (ADS)
Phan, T. T.; Sharma, S.; Gardiner, J. B.; Thomas, R. B.; Stuckman, M.; Spaulding, R.; Lopano, C. L.; Hakala, A.
2017-12-01
Potential CO2 and brine migration or leakage into shallow groundwater is a critical issue associated with CO2 injection at both enhanced oil recovery (EOR) and carbon sequestration sites. The effectiveness of multiple isotope systems (δ18OH2O, δ13C, δ7Li, 87Sr/86Sr) in monitoring CO2 and brine leakage at a CO2-EOR site located within the Permian basin (Seminole, Texas, USA) was studied. Water samples collected from an oil producing formation (San Andres), a deep groundwater formation (Santa Rosa), and a shallow groundwater aquifer (Ogallala) over a four-year period were analyzed for elemental and isotopic compositions. The absence of any change in δ18OH2O or δ13CDIC values of water in the overlying Ogallala aquifer after CO2 injection indicates that injected CO2 did not leak into this aquifer. The range of Ogallala water δ7Li (13-17‰) overlaps the San Andres water δ7Li (13-15‰) whereas 87Sr/86Sr of Ogallala (0.70792±0.00005) significantly differs from San Andres water (0.70865±0.00003). This observation demonstrates that Sr isotopes are much more sensitive than Li isotopes in tracking brine leakage into shallow groundwater at the studied site. In contrast, deep groundwater δ7Li (21-25‰) is isotopically distinct from San Andres produced water; thus, monitoring this intermitted formation water can provide an early indication of CO2 injection-induced brine migration from the underlying oil producing formation. During water alternating with gas (WAG) operations, a significant shift towards more positive δ13CDIC values was observed in the produced water from several of the San Andres formation wells. The carbon isotope trend suggests that the 13C enriched injected CO2 and formation carbonates became the primary sources of dissolved inorganic carbon in the area surrounding the injection wells. Moreover, one-way ANOVA statistical analysis shows that the differences in δ7Li (F(1,16) = 2.09, p = 0.17) and 87Sr/86Sr (F(1,18) = 4.47, p = 0.05) values of shallow groundwater collected before and during the WAG period are not statistically significant. The results to date suggest that the water chemistry of shallow groundwater has not been influenced by the CO2 injection activities. The efficacy of each isotope system as a monitoring tool will be evaluated and discussed using a Bayesian mixing model.
Development of a CO 2 Chemical Sensor for Downhole CO 2 Monitoring in Carbon Sequestration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning
Geologic storage of carbon dioxide (CO 2) has been proposed as a viable means for reducing anthropogenic CO 2 emissions. The means for geological sequestration of CO 2 is injection of supercritical CO 2 underground, which requires the CO 2 to remain either supercritical, or in solution in the water/brine present in the underground formation. However, there are aspects of geologic sequestration that need further study, particularly in regards to safety. To date, none of the geologic sequestration locations have been tested for storage integrity under the changing stress conditions that apply to the sequestration of very large amounts ofmore » CO 2. Establishing environmental safety and addressing public concerns require widespread monitoring of the process in the deep subsurface. In addition, studies of subsurface carbon sequestration such as flow simulations, models of underground reactions and transports require a comprehensive monitoring process to accurately characterize and understand the storage process. Real-time information about underground CO 2 movement and concentration change is highly helpful for: (1) better understanding the uncertainties present in CO 2 geologic storage; (2) improvement of simulation models; and (3) evaluation of the feasibility of geologic CO 2 storage. Current methods to monitor underground CO 2 storage include seismic, geoelectric, isotope and tracer methods, and fluid sampling analysis. However, these methods commonly resulted low resolution, high cost, and the inability to monitor continuously over the long time scales of the CO 2 storage process. A preferred way of monitoring in-situ underground CO 2 migration is to continuous measure CO 2 concentration change in brine during the carbon storage process. An approach to obtain the real time information on CO 2 concentration change in formation solution is highly demanded in carbon storage to understand the CO 2 migration subsurface and to answer the public safety problem. The objective of the study is to develop a downhole CO 2 sensor that can in-situ, continuously monitor CO 2 concentration change in deep saline. The sensor is a Severinghaus-type CO 2 sensor with small size, which renders it can be embedded in monitoring well casing or integrated with pressure/temperature transducers, enabling the development of “smart” wells. The studies included: (1) prepare and characterize metal-oxide electrodes. Test the electrodes response to pH change. Investigate different ions and brine concentration effects on the electrode’s performance. Study the stability of the electrode in brine solution; (2) fabricate a downhole CO 2 sensor with the metal-oxide electrodes prepared in the laboratory. Test the performance of the CO 2 sensor in brine solutions. Study high pressure effects on the performance of the sensor; (3) design and conduct CO 2/brine coreflooding experiments with the CO2 sensor. Monitor CO 2 movement along the core and test the performance of the sensor in coreflooding tests. Develop a data acquisition system that can digitize the sensor’s output voltage. Our completed research has resulted in deep understanding of downhole CO 2 sensor development and CO 2 monitoring in CO 2 storage process. The developed downhole CO 2 sensor included a metal-oxide electrode, a gas-permeable membrane, a porous steel cup, and a bicarbonate-based internal electrolyte solution. Iridium oxide-based electrode was prepared and used for preparation the CO 2 sensor. The prepared iridium oxide-based electrode displayed a linearly response to pH change. Different factors such as different ions and ions concentration, temperature, and pressure effects on the electrode performance on pH response were investigated. The results indicated that the electrode exhibited a good performance even in high salt concentration of produced water. To improve the electrode performance under high pressure, IrO 2 nanoparticles with the particle size in the range of 1-2 nm were prepared and electrodeposited on stainless steel substrate by cyclic voltammetry. It was observed that the thin film of iridium oxide was formed on the substrate surface and such iridium oxide-based electrode displayed excellent performance under high pressure for longer term. A downhole CO 2 sensor with the iridium oxide-based electrode was prepared. The working principle of the CO 2 sensor is based on the measurement of the pH change of the internal electrolyte solution caused by the hydrolysis of CO 2 and then determination of the CO 2 concentration in water. The prepared downhole CO 2 sensor had the size of diameter of 0.7 in. and length of 1.5 in. The sensor was tested under the pressures of 500 psi, 2,000 psi, and 3,000 psi. A linear correlation was observed between the sensor potential change and dissolved CO 2 concentration in water. The response time of the CO 2 sensor was in the range of 60-100 minutes. Further tests indicated that the CO 2 sensor exhibited good reproducibility under high pressure. A CO 2/brine coreflooding system was constructed to simulate the real-world CO 2 storage process. The prepared downhole CO 2 sensor was loaded in the system to monitor CO 2 movement during CO 2/brine coreflooding test. The results indicated that the sensor could detect CO 2 movement in the tests. Further studies showed that the sensor could be recovered by brine flooding after CO 2/brine flushed the core. The results of the coreflooding tests demonstrated that the sensor had potential application for CO 2 monitoring in carbon sequestration. A data acquisition system for the downhoe CO 2 sensor was developed and coded. The system converted the sensor output signal into digital data and transported the data from downhole to wellhead surface. The data acquisition system was tested and evaluated in the laboratory with the prepared sensor for data collection.« less
Lin, Xuexia; Chen, Qiushui; Liu, Wu; Zhang, Jie; Wang, Shiqi; Lin, Zhixiong; Lin, Jin-Ming
2015-01-01
In this work, we report an integrated microfluidic device for cell co-culture under different concentrations of oxygen, in which the secreted protein VEGF165 was on-line qualitatively and semi-quantitatively analyzed by functional nucleic acid, hemin, ABTS and peroxide system. This microfluidic platform allowed investigation of various oxygen and distances effect on cell-to-cell communication. Besides, the microfluidic device was used for real-time analysis of VEGF165 protein by aptamer-functionalized microchannels. Under 5% O2 condition, we found that the migration of CaSki cells was faster than the migration of human umbilical vein endothelial cells. However, the migration of CaSki cells was slower than the migration of HUVECs under 15% O2 condition. Moreover, the shorter intercellular distances, the quicker cells migration. Furthermore, HIF-1α and VEGF165 genes, ROS were analyzed, and the results would provide new perspectives for the diagnosis and medical treatment of cervical cancer. PMID:25905434
CO2 migration in the vadose zone: experimental and numerical modelling of controlled gas injection
NASA Astrophysics Data System (ADS)
gasparini, andrea; credoz, anthony; grandia, fidel; garcia, david angel; bruno, jordi
2014-05-01
The mobility of CO2 in the vadose zone and its subsequent transfer to the atmosphere is a matter of concern in the risk assessment of the geological storage of CO2. In this study the experimental and modelling results of controlled CO2 injection are reported to better understanding of the physical processes affecting CO2 and transport in the vadose zone. CO2 was injected through 16 micro-injectors during 49 days of experiments in a 35 m3 experimental unit filled with sandy material, in the PISCO2 facilities at the ES.CO2 centre in Ponferrada (North Spain). Surface CO2 flux were monitored and mapped periodically to assess the evolution of CO2 migration through the soil and to the atmosphere. Numerical simulations were run to reproduce the experimental results, using TOUGH2 code with EOS7CA research module considering two phases (gas and liquid) and three components (H2O, CO2, air). Five numerical models were developed following step by step the injection procedure done at PISCO2. The reference case (Model A) simulates the injection into a homogeneous soil(homogeneous distribution of permeability and porosity in the near-surface area, 0.8 to 0.3 m deep from the atmosphere). In another model (Model B), four additional soil layers with four specific permeabilities and porosities were included to predict the effect of differential compaction on soil. To account for the effect of higher soil temperature, an isothermal simulation called Model C was also performed. Finally, the assessment of the rainfall effects (soil water saturation) on CO2 emission on surface was performed in models called Model D and E. The combined experimental and modelling approach shows that CO2 leakage in the vadose zone quickly comes out through preferential migration pathways and spots with the ranges of fluxes in the ground/surface interface from 2.5 to 600 g·m-2·day-1. This gas channelling is mainly related to soil compaction and climatic perturbation. This has significant implications to design adapted detection and monitoring strategies of early leakage in commercial CO2 storage. The presence of soils with different compactions at surface influences the CO2 dispersion. The inclusion of soils with different permeability, porosity and liquid saturation results in preferential pathways. The formation of preferential pathways in the soil and hot spots on the surface has commonly been observed in natural systems where deep CO2 fluxes interact with shallow aquifers. Increase of ambient temperature increases CO2 fluxes intensity whereas rainfall decreases CO2 emission in gas phase and trap it as aqueous species in the porous media of the soil. A good accuracy has been obtained for surface CO2 fluxes location and intensity between experimental and modelling results taking into account the selected equation of state, the soil characteristics and the operational conditions. Phenomena of compaction and preferential pathways located only in the first centimetres of the soil can explain the heterogeneity of CO2 fluxes in the 16 m2 surface area of PISCO2 experimental platform.
Capaccioni, Bruno; Caramiello, Cristina; Tatàno, Fabio; Viscione, Alessandro
2011-05-01
According to the European Landfill Directive 1999/31/EC and the related Italian Legislation ("D. Lgs. No. 36/2003"), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements. A possible quantitative approach for field measurement and consequential evaluation of landfill CO(2), CH(4) emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the "Fano" town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO(2), CH(4) emission rates varied on the whole up to about 13,100g CO(2) m(-2)d(-1) and 3800 g CH(4) m(-2)d(-1), respectively. The elaboration of these landfill gas emission data collected at the "Fano" case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH(4) emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given landfill site. Copyright © 2010 Elsevier Ltd. All rights reserved.
Lewis, Ceri N.; Brown, Kristina A.; Edwards, Laura A.; Cooper, Glenn; Findlay, Helen S.
2013-01-01
The Arctic Ocean already experiences areas of low pH and high CO2, and it is expected to be most rapidly affected by future ocean acidification (OA). Copepods comprise the dominant Arctic zooplankton; hence, their responses to OA have important implications for Arctic ecosystems, yet there is little data on their current under-ice winter ecology on which to base future monitoring or make predictions about climate-induced change. Here, we report results from Arctic under-ice investigations of copepod natural distributions associated with late-winter carbonate chemistry environmental data and their response to manipulated pCO2 conditions (OA exposures). Our data reveal that species and life stage sensitivities to manipulated OA conditions were correlated with their vertical migration behavior and with their natural exposures to different pCO2 ranges. Vertically migrating adult Calanus spp. crossed a pCO2 range of >140 μatm daily and showed only minor responses to manipulated high CO2. Oithona similis, which remained in the surface waters and experienced a pCO2 range of <75 μatm, showed significantly reduced adult and nauplii survival in high CO2 experiments. These results support the relatively untested hypothesis that the natural range of pCO2 experienced by an organism determines its sensitivity to future OA and highlight that the globally important copepod species, Oithona spp., may be more sensitive to future high pCO2 conditions compared with the more widely studied larger copepods. PMID:24297880
NASA Astrophysics Data System (ADS)
Ivanova, Alexandra; Kempka, Thomas; Huang, Fei; Diersch [Gil], Magdalena; Lüth, Stefan
2016-04-01
3D time-lapse seismic surveys (4D seismic) have proven to be a suitable technique for monitoring of injected CO2, because when CO2 replaces brine as a free gas it considerably affects elastic properties of porous media. Forward modeling of a 4D seismic response to the CO2-fluid substitution in a storage reservoir is an inevitable step in such studies. At the Ketzin pilot site (CO2 storage) 67 kilotons of CO2 were injected into a saline aquifer between 2008 and 2013. In order to track migration of CO2 at Ketzin, 3D time-lapse seismic data were acquired by means of a baseline pre-injection survey in 2005 and 3 monitor surveys: in 2009, 2012 and in 2015 (the 1st post-injection survey). Results of the 4D seismic forward modeling with the reflectivity method suggest that effects of the injected CO2 on the 4D seismic data at Ketzin are significant regarding both seismic amplitudes and time delays. These results prove the corresponding observations in the real 4D seismic data at the Ketzin pilot site. But reservoir heterogeneity and seismic resolution, as well as random and coherent seismic noise are negative factors to be considered in this interpretation. Results of the 4D seismic forward modeling with the reflectivity method support the conclusion that even small amounts of injected CO2 can be monitored in such post-injected saline aquifer as the CO2 storage reservoir at the Ketzin pilot site both qualitatively and quantitatively with considerable uncertainties (Lüth et al., 2015). Reference: Lueth, S., Ivanova, A., Kempka, T. (2015): Conformity assessment of monitoring and simulation of CO2 storage: A case study from the Ketzin pilot site. - International Journal of Greenhouse Gas Control, 42, p. 329-339.
van Geldern, Robert; Nowak, Martin E; Zimmer, Martin; Szizybalski, Alexandra; Myrttinen, Anssi; Barth, Johannes A C; Jost, Hans-Jürg
2014-12-16
A newly developed isotope ratio laser spectrometer for CO2 analyses has been tested during a tracer experiment at the Ketzin pilot site (northern Germany) for CO2 storage. For the experiment, 500 tons of CO2 from a natural CO2 reservoir was injected in supercritical state into the reservoir. The carbon stable isotope value (δ(13)C) of injected CO2 was significantly different from background values. In order to observe the breakthrough of the isotope tracer continuously, the new instruments were connected to a stainless steel riser tube that was installed in an observation well. The laser instrument is based on tunable laser direct absorption in the mid-infrared. The instrument recorded a continuous 10 day carbon stable isotope data set with 30 min resolution directly on-site in a field-based laboratory container during a tracer experiment. To test the instruments performance and accuracy the monitoring campaign was accompanied by daily CO2 sampling for laboratory analyses with isotope ratio mass spectrometry (IRMS). The carbon stable isotope ratios measured by conventional IRMS technique and by the new mid-infrared laser spectrometer agree remarkably well within analytical precision. This proves the capability of the new mid-infrared direct absorption technique to measure high precision and accurate real-time stable isotope data directly in the field. The laser spectroscopy data revealed for the first time a prior to this experiment unknown, intensive dynamic with fast changing δ(13)C values. The arrival pattern of the tracer suggest that the observed fluctuations were probably caused by migration along separate and distinct preferential flow paths between injection well and observation well. The short-term variances as observed in this study might have been missed during previous works that applied laboratory-based IRMS analysis. The new technique could contribute to a better tracing of the migration of the underground CO2 plume and help to ensure the long-term integrity of the reservoir.
Monitoring CCS Sites: Lessons Learned Studying Natural Laboratories.
NASA Astrophysics Data System (ADS)
Tartarello, M. C.; Beaubien, S. E.; Graziani, S.; Lombardi, S.; Ruggiero, L.
2016-12-01
Monitoring is one of the most important aspects of Carbon Capture and Storage (CCS), both for early recognition of leaks from the reservoir and for public safety. Natural analogues could be useful to understand the potential impact of a leakage on the local ecosystem and to develop new techniques of monitoring. These sites, called also "natural laboratories", are characterized by natural, geologically-produced CO2 constantly leaking from the seafloor or from the groundsurface. In the last 10 years, our group as partner of some EC funded projects focused on CCS (NASCENT (2000-2003), CO2GeoNet (2004-2009), CO2ReMoVe (2006-2011), RISCS (2010-2013), and ECO2 (2011-2015)), studied gas migration mechanisms in these "natural laboratories", applying near-surface geochemistry to monitoring. This method provides one of the most powerful tools to assess whether a CCS site is leaking and, if it is, to quantify that leakage. This is because rather than being a remote method that estimates amounts based on proxy associations, such as some geophysical tools, it is an exact measurement of the item of interest (in this case CO2) in the accessible biosphere where there is concern regarding its potential impact. In particular, we have been studied two sites in Italy, characterized by significant emissions of CO2, related to volcanic emissions: the Latera Caldera (in Central Italy) and the offshore emissions near Panarea Island. We combined continuous and discontinuous monitoring, structural surveys and gas flux measurements. The results show a strong correlation between fault architecture and leakage rates. Moreover, the monitoring of an area for long periods allows defining the baseline, which is the fluctuation of gas concentrations both spatially and temporally as a function of biological, chemical, geological, land-use and meteorological processes.
Michel-le pierres, Karine; Gal, Frédérick; Brach, Michel; Guignat, Stéphanie
2010-10-01
The Pechelbronn oilfield (Rhine Graben, France), where mining activity ended in the 1960s, has been used for waste disposal for twenty years. Since the wastes are varied, work is underway to identify the discharged materials and their derivatives, as well as to locate and quantify potential discharge sites. Two major goals were assigned to the present work. The first was to identify or refine the location of hidden structures that could facilitate gas emanation up to the surface, by studying soil gas concentrations (mainly (222)Rn, CO(2), CH(4) and helium) and carbon isotope ratios in the CO(2) phase. The second was devoted to examining, from a health and safety viewpoint, if the use of the oilfield as a waste disposal site might have led to enhanced or modified gas emanation throughout the area. It appeared that CO(2) and (222)Rn evolution in the whole area were similar, except near some of the faults and fractures that are known through surface mapping and underground observations. These (222)Rn and CO(2) anomalies made it possible to highlight more emissive zones that are either related to main faults or to secondary fractures acting as migration pathways. In that sense, the CO(2) phase can be used to evaluate (222)Rn activities distant from tectonic structures but can lead to erroneous evaluations near to gas migration pathways. Dumping of wastes, as well as oil residues, did not appear to have a strong influence on soil gaseous species and emanation. Similarly, enhanced gas migration due to underground galleries and exploitation wells has not been established. Carbon isotope ratios suggested a balance of biological phenomena, despite the high CO(2) contents reached. Other monitored gaseous species (N(2), Ar, H(2) and alkanes), when detected, always showed amounts close to those found subsurface and/or in atmospheric gases. Copyright 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Morency, Christina; Luo, Yang; Tromp, Jeroen
2011-05-01
The key issues in CO2 sequestration involve accurate monitoring, from the injection stage to the prediction and verification of CO2 movement over time, for environmental considerations. '4-D seismics' is a natural non-intrusive monitoring technique which involves 3-D time-lapse seismic surveys. Successful monitoring of CO2 movement requires a proper description of the physical properties of a porous reservoir. We investigate the importance of poroelasticity by contrasting poroelastic simulations with elastic and acoustic simulations. Discrepancies highlight a poroelastic signature that cannot be captured using an elastic or acoustic theory and that may play a role in accurately imaging and quantifying injected CO2. We focus on time-lapse crosswell imaging and model updating based on Fréchet derivatives, or finite-frequency sensitivity kernels, which define the sensitivity of an observable to the model parameters. We compare results of time-lapse migration imaging using acoustic, elastic (with and without the use of Gassmann's formulae) and poroelastic models. Our approach highlights the influence of using different physical theories for interpreting seismic data, and, more importantly, for extracting the CO2 signature from seismic waveforms. We further investigate the differences between imaging with the direct compressional wave, as is commonly done, versus using both direct compressional (P) and shear (S) waves. We conclude that, unlike direct P-wave traveltimes, a combination of direct P- and S-wave traveltimes constrains most parameters. Adding P- and S-wave amplitude information does not drastically improve parameter sensitivity, but it does improve spatial resolution of the injected CO2 zone. The main advantage of using a poroelastic theory lies in direct sensitivity to fluid properties. Simulations are performed using a spectral-element method, and finite-frequency sensitivity kernels are calculated using an adjoint method.
Understanding the factors affecting the activation of alkane by Cp′Rh(CO)2 (Cp′ = Cp or Cp*)
George, Michael W.; Hall, Michael B.; Jina, Omar S.; Portius, Peter; Sun, Xue-Zhong; Towrie, Michael; Wu, Hong; Yang, Xinzheng; Zarić, Snežana D.
2010-01-01
Fast time-resolved infrared spectroscopic measurements have allowed precise determination of the rates of activation of alkanes by Cp′Rh(CO) (Cp′ = η5-C5H5 or η5-C5Me5). We have monitored the kinetics of C─H activation in solution at room temperature and determined how the change in rate of oxidative cleavage varies from methane to decane. The lifetime of CpRh(CO)(alkane) shows a nearly linear behavior with respect to the length of the alkane chain, whereas the related Cp*Rh(CO)(alkane) has clear oscillatory behavior upon changing the alkane. Coupled cluster and density functional theory calculations on these complexes, transition states, and intermediates provide the insight into the mechanism and barriers in order to develop a kinetic simulation of the experimental results. The observed behavior is a subtle interplay between the rates of activation and migration. Unexpectedly, the calculations predict that the most rapid process in these Cp′Rh(CO)(alkane) systems is the 1,3-migration along the alkane chain. The linear behavior in the observed lifetime of CpRh(CO)(alkane) results from a mechanism in which the next most rapid process is the activation of primary C─H bonds (─CH3 groups), while the third key step in this system is 1,2-migration with a slightly slower rate. The oscillatory behavior in the lifetime of Cp*Rh(CO)(alkane) with respect to the alkane’s chain length follows from subtle interplay between more rapid migrations and less rapid primary C─H activation, with respect to CpRh(CO)(alkane), especially when the CH3 group is near a gauche turn. This interplay results in the activation being controlled by the percentage of alkane conformers. PMID:21048088
Using the Bongwana natural CO2 release to understand leakage processes and develop monitoring
NASA Astrophysics Data System (ADS)
Jones, David; Johnson, Gareth; Hicks, Nigel; Bond, Clare; Gilfillan, Stuart; Kremer, Yannick; Lister, Bob; Nkwane, Mzikayise; Maupa, Thulani; Munyangane, Portia; Robey, Kate; Saunders, Ian; Shipton, Zoe; Pearce, Jonathan; Haszeldine, Stuart
2016-04-01
Natural CO2 leakage along the Bongwana Fault in South Africa is being studied to help understand processes of CO2 leakage and develop monitoring protocols. The Bongwana Fault crops out over approximately 80 km in KwaZulu-Natal province, South Africa. In outcrop the fault is expressed as a broad fracture corridor in Dwyka Tillite, with fractures oriented approximately N-S. Natural emissions of CO2 occur at various points along the fault, manifest as travertine cones and terraces, bubbling in the rivers and as gas fluxes through soil. Exposed rock outcrop shows evidence for Fe-staining around fractures and is locally extensively kaolinitised. The gas has also been released through a shallow water well, and was exploited commercially in the past. Preliminary studies have been carried out to better document the surface emissions using near surface gas monitoring, understand the origin of the gas through major gas composition and stable and noble gas isotopes and improve understanding of the structural controls on gas leakage through mapping. In addition the impact of the leaking CO2 on local water sources (surface and ground) is being investigated, along with the seismic activity of the fault. The investigation will help to build technical capacity in South Africa and to develop monitoring techniques and plans for a future CO2 storage pilot there. Early results suggest that CO2 leakage is confined to a relatively small number of spatially-restricted locations along the weakly seismically active fault. Fracture permeability appears to be the main method by which the CO2 migrates to the surface. The bulk of the CO2 is of deep origin with a minor contribution from near surface biogenic processes as determined by major gas composition. Water chemistry, including pH, DO and TDS is notably different between CO2-rich and CO2-poor sites. Soil gas content and flux effectively delineates the fault trace in active leakage sites. The fault provides an effective testing ground for field-based monitoring with results to date indicating the methods and technologies tested successfully detect leaking CO2. Further work will investigate the source of the CO2 and attempt to quantify CO2 flux rates and detection thresholds.
Electronic structure and O vacancy formation/migration in La0.825(Mg/Ca/Ba)0.125CoO3
NASA Astrophysics Data System (ADS)
Omotayo Akande, Salawu; Gan, Li-Yong; Schwingenschlögl, Udo
2016-04-01
The effect of A-site hole doping (Mg2+, Ca2+ or Ba2+) on the electronic and magnetic properties as well as the O vacancy formation and migration in perovskite LaCoO3 is studied using first-principles calculations. All three dopants are found to facilitate O vacancy formation. Substitution of La3+ with Ba2+/Mg2+ yields the lowest O vacancy formation energy for low/intermediate spin Co, implying that not only the structure but also the spin state of Co is a key parameter. Only for low spin Co the ionic radius is correlated with the O migration barrier. Enhanced migration for intermediate spin Co is ascribed to the availability of additional space at the transition state.
Muon Tomography for Geological Repositories.
NASA Astrophysics Data System (ADS)
Woodward, D.; Kudryavtsev, V.; Gluyas, J.; Clark, S. J.; Thompson, L. F.; Klinger, J.; Spooner, N. J.; Blackwell, T. B.; Pal, S.; Lincoln, D. L.; Paling, S. M.; Mitchell, C. N.; Benton, C.; Coleman, M. L.; Telfer, S.; Cole, A.; Nolan, S.; Chadwick, P.
2015-12-01
Cosmic-ray muons are subatomic particles produced in the upper atmosphere in collisions of primary cosmic rays with atoms in air. Due to their high penetrating power these muons can be used to image the content (primarily density) of matter they pass through. They have already been used to image the structure of pyramids, volcanoes and other objects. Their applications can be extended to investigating the structure of, and monitoring changes in geological formations and repositories, in particular deep subsurface sites with stored CO2. Current methods of monitoring subsurface CO2, such as repeat seismic surveys, are episodic and require highly skilled personnel to operate. Our simulations based on simplified models have previously shown that muon tomography could be used to continuously monitor CO2 injection and migration and complement existing technologies. Here we present a simulation of the monitoring of CO2 plume evolution in a geological reservoir using muon tomography. The stratigraphy in the vicinity of the reservoir is modelled using geological data, and a numerical fluid flow model is used to describe the time evolution of the CO2 plume. A planar detection region with a surface area of 1000 m2 is considered, at a vertical depth of 776 m below the seabed. We find that one year of constant CO2 injection leads to changes in the column density of about 1%, and that the CO2 plume is already resolvable with an exposure time of less than 50 days. The attached figure show a map of CO2 plume in angular coordinates as reconstructed from observed muons. In parallel with simulation efforts, a small prototype muon detector has been designed, built and tested in a deep subsurface laboratory. Initial calibrations of the detector have shown that it can reach the required angular resolution for muon detection. Stable operation in a small borehole within a few months has been demonstrated.
NASA Astrophysics Data System (ADS)
Ha, S. W.; Lee, S. H.; Jeon, W. T.; Joo, Y. J.; Lee, K. K.
2014-12-01
Carbon dioxide (CO2) leakage into the shallow aquifer is one of the main concerns at a CO2 sequestration site. Various hydrogeochemical parameters have been suggested to determine the leakage (i.e., pH, EC, Alkalinity, Ca and δ13C). For the practical point of view, direct and continuous measurement of the dissolved CO2 concentration at the proper location can be the most useful strategy for the CO2 leakage detection in a shallow aquifer. In order to enhance possibility of identifying leaked CO2, monitoring location should be determined with regard to the shallow aquifer heterogeneity. In this study, a series of experiments were conducted to investigate the effects of heterogeneity on the dissolved CO2 concentrations. A 2-D sand tank of homogeneous medium sands including a single heterogeneity layer was designed. Two NDIR CO2 sensors, modified for continuous measuring in aquatic system, were installed above and below the single heterogeneous layer (clay, fine and medium sand lenses). Also, temperature and water contents were measured continuously at a same position. Bromocresol purple which is one of the acid-base indicator was used to visualize CO2 migration. During the gas phase CO2 injection at the bottom of the sand tank, dissolved CO2 in the water is continuously measured. In the results, significant differences of concentrations were observed due to the presence of heterogeneity layer, even the locations were close. These results suggested that monitoring location should be determined considering vertical heterogeneity of shallow aquifer at a CO2 leakage site.
NASA Astrophysics Data System (ADS)
Lee, S.; Allen, J.; Han, W.; Lu, C.; McPherson, B. J.
2011-12-01
Jurassic aeolian sandstones (e.g. Navajo and White Rim Sandstones) on the Colorado Plateau of Utah have been considered potential sinks for geologic CO2 sequestration due to their regional lateral continuity, thickness, high porosity and permeability, presence of seal strata and proximity to large point sources of anthropogenic CO2. However, aeolian deposits usually exhibit inherent internal complexities induced by migrating bedforms of different sizes and their resulting bounding surfaces. Therefore, CO2 plume migration in such complex media should be well defined and successively linked in models for better characterization of the plume behavior. Based on an outcrop analog of the upper Navajo Sandstone in the western flank of the San Rafael Swell, Utah, we identified five different bedform types with dune and interdune facies to represent the spatial continuity of lithofacies units. Using generated 3D geometrical facies patterns of cross-bedded structures in the Navajo Sandstone, we performed numerical simulations to understand the detailed behavior of CO2 plume migration under the different cross-bedded bedforms. Our numerical simulation results indicate that cross-bedded structures (bedform types) play an important role on governing the rate and directionality of CO2 migration, resulting in changes of imbibition processes of CO2. CO2 migration tends to follow wind ripple laminations and reactivation surfaces updip. Our results suggest that geologically-based upscaling of CO2 migration is crucial in cross-bedded formations as part of reservoir or basin scale models. Furthermore, comparative modeling studies between 3D models and 2D cross-sections extracted from 3D models showed the significant three-dimensional interplay in a cross-bedded structure and the need to correctly capture the geologic heterogeneity to predict realistic CO2 plume behavior. Our outcrop analog approach presented in this study also demonstrates an alternative method for assessing geologic CO2 storage in deep formations when scarce data is available.
NASA Astrophysics Data System (ADS)
Buscheck, T. A.; Sun, Y.; Hao, Y.; Court, B.; Celia, M. A.; Wolery, T.; Tompson, A. F.; Aines, R. D.; Friedmann, J.
2010-12-01
CO2 capture and sequestration (CCS) in deep geological formations is regarded as a promising means of lowering the amount of CO2 emitted to the atmosphere and thereby mitigate global warming. The most promising systems for CCS are depleted oil reservoirs, particularly those suited to CO2-based Enhanced Oil Recovery (CCS-EOR), and deep saline formations, both of which are well separated from the atmosphere. For conventional, industrial-scale, saline-formation CCS, pressure buildup can have a limiting effect on CO2 storage capacity. To address this concern, we analyze Active CO2 Reservoir Management (ACRM), which combines brine extraction and residual-brine reinjection with CO2 injection, comparing it with conventional saline-formation CCS. We investigate the influence of brine extraction on pressure response and CO2 and brine migration using the NUFT code. By extracting brine from the lower portion of the storage formation, from locations progressively further from the center of injection, we can counteract buoyancy that drives CO2 to the top of the formation, which is useful in dipping formations. Using “push-pull” manipulation of the CO2 plume, we expose less of the caprock seal to CO2 and more of the storage formation to CO2, with more of the formation utilized for trapping mechanisms. Plume manipulation can also counteract the influence of heterogeneity. We consider the impact of extraction ratio, defined as net extracted brine volume (extraction minus reinjection) divided by injected CO2 volume. Pressure buildup is reduced with increasing extraction ratio, which reduces CO2 and brine migration, increases CO2 storage capacity, and reduces other risks, such as leakage up abandoned wells, caprock fracturing, fault activation, and induced seismicity. For a 100-yr injection period, a 10-yr delay in brine extraction does not diminish the magnitude of pressure reduction. Moreover, it is possible to achieve pressure management with just a few brine-extraction wells, located far from the injection zone. For an extraction ratio of 1, pressure buildup is minimized, greatly reducing the Area of Review, as well as the area required for securing mineral rights. For an extraction ratio of 1, CO2 and brine migration are unaffected by neighboring CO2 operations, which allows planning, assessing, and conducting of each operation to be carried out independently; thus, permits could be granted on a single-site basis. Brine-extraction wells will be useful during monitoring, providing information for system calibration and history matching. One of several key aspects that ACRM has in common with CCS-EOR is the possibility of generating revenue from the extracted fluids; namely, fresh water produced via brine desalination, using technologies such as Reverse Osmosis. These benefits can offset brine extraction and treatment costs, streamline permitting, and help gain public acceptance. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Effects of cobalt and chromium ions on lymphocyte migration.
Baskey, Stephen J; Lehoux, Eric A; Catelas, Isabelle
2017-04-01
A T cell-mediated hypersensitivity reaction has been reported in some patients with CoCrMo-based implants. However, the role of cobalt and chromium ions in this reaction remains unclear. The objective of the present study was to analyze the effects of Co 2+ and Cr 3+ in culture medium, as well as the effects of culture supernatants of macrophages exposed to Co 2+ or Cr 3+ , on the migration of lymphocytes. The release of cytokines/chemokines by macrophages exposed to Co 2+ and Cr 3+ was also analyzed. The migration of murine lymphocytes was quantified using the Boyden chamber assay and flow cytometry, while cytokine/chemokine release by J774A.1 macrophages was measured by ELISA. Results showed an ion concentration-dependent increase in TNF-α and MIP-1α release and a decrease in MCP-1 and RANTES release. Migration analysis showed that the presence of Co 2+ (8 ppm) and Cr 3+ (100 ppm) in culture medium increased the migration of T lymphocytes, while it had little or no effect on the migration of B lymphocytes, suggesting that Co 2+ and Cr 3+ can stimulate the migration of T but not B lymphocytes. Levels of T lymphocyte migration in culture medium containing Co 2+ or Cr 3+ were not statistically different from those in culture supernatants of macrophages exposed to Co 2+ or Cr 3+ , suggesting that the effects of the ions and chemokines were not additive, possibly because of ion interference with the chemokines and/or their cognate receptors. Overall, results suggest that Co 2+ and Cr 3+ are capable of stimulating the migration of T (but not B) lymphocytes in the absence of cytokines/chemokines, and could thereby contribute to the accumulation of more T than B lymphocytes in periprosthetic tissues of some patients with CoCrMo-based implants. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:916-924, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Burnison, S. A.; Ditty, P.; Gorecki, C. D.; Hamling, J. A.; Steadman, E. N.; Harju, J. A.
2013-12-01
The Plains CO2 Reduction (PCOR) Partnership, led by the Energy & Environmental Research Center, is working with Denbury Onshore LLC to determine the effect of a large-scale injection of carbon dioxide (CO2) into a deep clastic reservoir for the purpose of simultaneous CO2 enhanced oil recovery (EOR) and to study incidental CO2 storage at the Bell Creek oil field located in southeastern Montana. This project will reduce CO2 emissions by more than 1 million tons a year while simultaneously recovering an anticipated 30 million barrels of incremental oil. The Bell Creek project provides a unique opportunity to use and evaluate a comprehensive suite of technologies for monitoring, verification, and accounting (MVA) of CO2 on a large-scale. The plan incorporates multiple geophysical technologies in the presence of complementary and sometimes overlapping data to create a comprehensive data set that will facilitate evaluation and comparison. The MVA plan has been divided into shallow and deep subsurface monitoring. The deep subsurface monitoring plan includes 4-D surface seismic, time-lapse 3-D vertical seismic profile (VSP) surveys incorporating a permanent borehole array, and baseline and subsequent carbon-oxygen logging and other well-based measurements. The goal is to track the movement of CO2 in the reservoir, evaluate the recovery/storage efficiency of the CO2 EOR program, identify fluid migration pathways, and determine the ultimate fate of injected CO2. CO2 injection at Bell Creek began in late May 2013. Prior to injection, a monitoring and characterization well near the field center was drilled and outfitted with a distributed temperature-monitoring system and three down-hole pressure gauges to provide continuous real-time data of the reservoir and overlying strata. The monitoring well allows on-demand access for time-lapse well-based measurements and borehole seismic instrumentation. A 50-level permanent borehole array of 3-component geophones was installed in a second monitoring well. A pre-injection series of carbon-oxygen logging across the reservoir was acquired in 35 wells. The baseline 3-D surface seismic survey was acquired in September 2012. A 3-D VSP incorporating two wells and 2 square miles of overlapping seismic coverage in the middle of the field was acquired in May 2013. Initial iterations of geologic modeling and reservoir simulation of the field have been completed. Currently, passive seismic monitoring with the permanent borehole array is being conducted during injection. Interpretation results from the baseline surface 3-D survey and preliminary results from the baseline 3-D VSP are being evaluated and integrated into the reservoir model. The PCOR Partnership's philosophy is to combine site characterization, modeling, and monitoring strategies into an iterative process to produce descriptive integrated results. The comprehensive effort at Bell Creek will allow a comparison of the effectiveness of several complementary geophysical and well-based methods in meeting the goals of the deep subsurface monitoring effort.
Goueguel, Christian; McIntyre, Dustin L.; Jain, Jinesh; ...
2015-06-30
A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO 2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO 2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elementsmore » that can act as tracers to detect a CO 2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr 2+, Ca 2+, K +, and Li + in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na 2CO 3, and Na 2SO 4 on the analytes calibration curves to determine underwater LIBS’ ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K + (30±1 ppb) and Li + (60±2 ppb) were in ppb range, while higher LODs were observed for Ca 2+ (0.94±0.14 ppm) and Sr 2+ (2.89±0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines’ intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na 2SO 4, whereas the intensities slightly decreased in the presence of Na 2CO 3. Lastly, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it particularly appealing for in situ monitoring of a CO 2 leak.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goueguel, Christian; McIntyre, Dustin L.; Jain, Jinesh
A significant portion of the carbon sequestration research being performed in the United States involves the risk assessment of injecting large quantities of carbon dioxide into deep saline aquifers. Leakage of CO 2 has the potential to affect the quality of groundwater supplies in case contaminants migrate through underlying conduits. New remote sensing and near-surface monitoring technologies are needed to ensure that injection, abandoned, and monitoring wells are structurally sound, and that CO 2 remains within the geologic storage reservoir. In this paper, we propose underwater laser-induced breakdown spectroscopy (underwater LIBS) as an analytical method for monitoring naturally occurring elementsmore » that can act as tracers to detect a CO 2 leak from storage sites. Laboratory-scale experiments were conducted to measure Sr 2+, Ca 2+, K +, and Li + in bulk solutions to ascertain the analytical performance of underwater LIBS. We compared the effect of NaCl, Na 2CO 3, and Na 2SO 4 on the analytes calibration curves to determine underwater LIBS’ ability to analyze samples of sodium compounds. In all cases, the calibration curves showed a good linearity within 2 orders of magnitude. The limit of detections (LODs) obtained for K + (30±1 ppb) and Li + (60±2 ppb) were in ppb range, while higher LODs were observed for Ca 2+ (0.94±0.14 ppm) and Sr 2+ (2.89±0.11 ppm). Evaluation of the calibration curves for the analytes in mixed solutions showed dependence of the lines’ intensity with the sodium compounds. The intensities increased respectively in the presence of dissolved NaCl and Na 2SO 4, whereas the intensities slightly decreased in the presence of Na 2CO 3. Lastly, the capabilities of underwater LIBS to detect certain elements in the ppb or in the low ppm range make it particularly appealing for in situ monitoring of a CO 2 leak.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chen
2015-03-31
An important question for the Carbon Capture, Storage, and Utility program is “can we adequately predict the CO2 plume migration?” For tracking CO2 plume development, the Sleipner project in the Norwegian North Sea provides more time-lapse seismic monitoring data than any other sites, but significant uncertainties still exist for some of the reservoir parameters. In Part I, we assessed model uncertainties by applying two multi-phase compositional simulators to the Sleipner Benchmark model for the uppermost layer (Layer 9) of the Utsira Sand and calibrated our model against the time-lapsed seismic monitoring data for the site from 1999 to 2010. Approximatemore » match with the observed plume was achieved by introducing lateral permeability anisotropy, adding CH4 into the CO2 stream, and adjusting the reservoir temperatures. Model-predicted gas saturation, CO2 accumulation thickness, and CO2 solubility in brine—none were used as calibration metrics—were all comparable with the interpretations of the seismic data in the literature. In Part II & III, we evaluated the uncertainties of predicted long-term CO2 fate up to 10,000 years, due to uncertain reaction kinetics. Under four scenarios of the kinetic rate laws, the temporal and spatial evolution of CO2 partitioning into the four trapping mechanisms (hydrodynamic/structural, solubility, residual/capillary, and mineral) was simulated with ToughReact, taking into account the CO2-brine-rock reactions and the multi-phase reactive flow and mass transport. Modeling results show that different rate laws for mineral dissolution and precipitation reactions resulted in different predicted amounts of trapped CO2 by carbonate minerals, with scenarios of the conventional linear rate law for feldspar dissolution having twice as much mineral trapping (21% of the injected CO2) as scenarios with a Burch-type or Alekseyev et al.–type rate law for feldspar dissolution (11%). So far, most reactive transport modeling (RTM) studies for CCUS have used the conventional rate law and therefore simulated the upper bound of mineral trapping. However, neglecting the regional flow after injection, as most previous RTM studies have done, artificially limits the extent of geochemical reactions as if it were in a batch system. By replenishing undersaturated groundwater from upstream, the Utsira Sand is reactive over a time scale of 10,000 years. The results from this project have been communicated via five peer-reviewed journal articles, four conference proceeding papers, and 19 invited and contributed presentations at conferences and seminars.« less
Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniels, Jeff
2012-11-30
Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have beenmore » the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data collection, and seismic interpretation. The data was input into GphyzCO2 to demonstrate a full implementation of the software capabilities. Part of the implementation investigated the limits of using geophysical methods to monitor CO{sub 2} injection sites. The results show that cross-hole EM numerical surveys are limited to under 100 meter borehole separation. Those results were utilized in executing numerical EM surveys that contain hypothetical CO{sub 2} injections. The outcome of the forward modeling shows that EM methods can detect the presence of CO{sub 2}.« less
Electrical Resistance Tomography Field Trials to Image CO2 Sequestration
NASA Astrophysics Data System (ADS)
Newmark, R.
2003-12-01
If geologic formations are used to sequester or store carbon dioxide (CO2) for long periods of time, it will be necessary to verify the containment of injected CO2 by assessing leaks and flow paths, and by understanding the geophysical and geochemical interactions between the CO2 and the geologic minerals and fluids. Remote monitoring methods are preferred, to minimize cost and impact to the integrity of the disposal reservoir. Electrical methods are especially well suited for monitoring processes involving fluids, as electrical properties are most sensitive to the presence and nature of the fluids contained in the medium. High resolution tomographs of electrical properties have been used with success for site characterization, monitoring subsurface migration of fluids in instances of leaking underground tanks, water infiltration events, subsurface steam floods, contaminant movement, and assessing the integrity of subsurface barriers. These surveys are commonly conducted utilizing vertical arrays of point electrodes in a crosswell configuration. Alternative ways of monitoring the reservoir are desirable due to the high costs of drilling the required monitoring boreholes Recent field results obtained using steel well casings as long electrodes are also promising. We have conducted field trials to evaluate the effectiveness of long electrode ERT as a potential monitoring approach for CO2 sequestration. In these trials, CO2 is not being sequestered but rather is being used as a solvent for enhanced oil recovery. This setting offers the same conditions expected during sequestration so monitoring secondary oil recovery allows a test of the method under realistic physical conditions and operational constraints. Field experience has confirmed the challenges identified during model studies. The principal difficulty are the very small signals due to the fact that formation changes occur only over a small segment of the 5000 foot length of the electrodes. In addition, telluric noise can be comparable to the signal levels during periods of geomagnetic activity. Finally, instrumentation stability over long periods is necessary to follow trends in reservoir behavior for several years. Solutions to these and other problems will be presented along with results from the first two years of work at a producing field undergoing CO2 flood. If electrical resistance tomography (ERT) imaging can be performed using existing well casings as long electrodes, it will substantially reduce the cost to monitor CO2 sequestration. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
CO2 storage capacity estimates from fluid dynamics (Invited)
NASA Astrophysics Data System (ADS)
Juanes, R.; MacMinn, C. W.; Szulczewski, M.
2009-12-01
We study a sharp-interface mathematical model for the post-injection migration of a plume of CO2 in a deep saline aquifer under the influence of natural groundwater flow, aquifer slope, gravity override, and capillary trapping. The model leads to a nonlinear advection-diffusion equation, where the diffusive term describes the upward spreading of the CO2 against the caprock. We find that the advective terms dominate the flow dynamics even for moderate gravity override. We solve the model analytically in the hyperbolic limit, accounting rigorously for the injection period—using the true end-of-injection plume shape as an initial condition. We extend the model by incorporating the effect of CO2 dissolution into the brine, which—we find—is dominated by convective mixing. This mechanism enters the model as a nonlinear sink term. From a linear stability analysis, we propose a simple estimate of the convective dissolution flux. We then obtain semi-analytic estimates of the maximum plume migration distance and migration time for complete trapping. Our analytical model can be used to estimate the storage capacity (from capillary and dissolution trapping) at the geologic basin scale, and we apply the model to various target formations in the United States. Schematic of the migration of a CO2 plume at the geologic basin scale. During injection, the CO2 forms a plume that is subject to gravity override. At the end of the injection, all the CO2 is mobile. During the post-injection period, the CO2 migrates updip and also driven by regional groundwater flow. At the back end of the plume, where water displaces CO2, the plume leaves a wake or residual CO2 due to capillary trapping. At the bottom of the moving plume, CO2 dissolves into the brine—a process dominated by convective mixing. These two mechanisms—capillary trapping and convective dissolution—reduce the size of the mobile plume as it migrates. In this communication, we present an analytical model that predicts the migration distance and time for complete trapping. This is used to estimate storage capacity of geologic formations at the basin scale.
Hydrogen atom migration in the oxidation of aldehydes - O(3P) + H2CO
NASA Technical Reports Server (NTRS)
Dupuis, M.; Lester, W. A., Jr.
1984-01-01
An ab initio study of hydrogen atom migration in methylenebis(oxy)H2CO2(3B2) to form triplet formic acid HCOOH (3A1) is reported. From HF, MCHF, and CI calculated energy barriers, the activation energy is estimated to be no less than 30 kcal/mol. It is concluded that the hydrogen migration channel is not accessible in recent room temperature experiments on the O(3P) + H2CO reaction.
Illuminating dynamic neutrophil trans-epithelial migration with micro-optical coherence tomography
NASA Astrophysics Data System (ADS)
Chu, Kengyeh K.; Kusek, Mark E.; Liu, Linbo; Som, Avira; Yonker, Lael M.; Leung, Huimin; Cui, Dongyao; Ryu, Jinhyeob; Eaton, Alexander D.; Tearney, Guillermo J.; Hurley, Bryan P.
2017-04-01
A model of neutrophil migration across epithelia is desirable to interrogate the underlying mechanisms of neutrophilic breach of mucosal barriers. A co-culture system consisting of a polarized mucosal epithelium and human neutrophils can provide a versatile model of trans-epithelial migration in vitro, but observations are typically limited to quantification of migrated neutrophils by myeloperoxidase correlation, a destructive assay that precludes direct longitudinal study. Our laboratory has recently developed a new isotropic 1-μm resolution optical imaging technique termed micro-optical coherence tomography (μOCT) that enables 4D (x,y,z,t) visualization of neutrophils in the co-culture environment. By applying μOCT to the trans-epithelial migration model, we can robustly monitor the spatial distribution as well as the quantity of neutrophils chemotactically crossing the epithelial boundary over time. Here, we demonstrate the imaging and quantitative migration results of our system as applied to neutrophils migrating across intestinal epithelia in response to a chemoattractant. We also demonstrate that perturbation of a key molecular event known to be critical for effective neutrophil trans-epithelial migration (CD18 engagement) substantially impacts this process both qualitatively and quantitatively.
Illuminating dynamic neutrophil trans-epithelial migration with micro-optical coherence tomography
Chu, Kengyeh K.; Kusek, Mark E.; Liu, Linbo; Som, Avira; Yonker, Lael M.; Leung, Huimin; Cui, Dongyao; Ryu, Jinhyeob; Eaton, Alexander D.; Tearney, Guillermo J.; Hurley, Bryan P.
2017-01-01
A model of neutrophil migration across epithelia is desirable to interrogate the underlying mechanisms of neutrophilic breach of mucosal barriers. A co-culture system consisting of a polarized mucosal epithelium and human neutrophils can provide a versatile model of trans-epithelial migration in vitro, but observations are typically limited to quantification of migrated neutrophils by myeloperoxidase correlation, a destructive assay that precludes direct longitudinal study. Our laboratory has recently developed a new isotropic 1-μm resolution optical imaging technique termed micro-optical coherence tomography (μOCT) that enables 4D (x,y,z,t) visualization of neutrophils in the co-culture environment. By applying μOCT to the trans-epithelial migration model, we can robustly monitor the spatial distribution as well as the quantity of neutrophils chemotactically crossing the epithelial boundary over time. Here, we demonstrate the imaging and quantitative migration results of our system as applied to neutrophils migrating across intestinal epithelia in response to a chemoattractant. We also demonstrate that perturbation of a key molecular event known to be critical for effective neutrophil trans-epithelial migration (CD18 engagement) substantially impacts this process both qualitatively and quantitatively. PMID:28368012
Geomechanical behavior of the reservoir and caprock system at the In Salah CO2 storage project.
White, Joshua A; Chiaramonte, Laura; Ezzedine, Souheil; Foxall, William; Hao, Yue; Ramirez, Abelardo; McNab, Walt
2014-06-17
Almost 4 million metric tons of CO2 were injected at the In Salah CO2 storage site between 2004 and 2011. Storage integrity at the site is provided by a 950-m-thick caprock that sits above the injection interval. This caprock consists of a number of low-permeability units that work together to limit vertical fluid migration. These are grouped into main caprock units, providing the primary seal, and lower caprock units, providing an additional buffer and some secondary storage capacity. Monitoring observations at the site indirectly suggest that pressure, and probably CO2, have migrated upward into the lower portion of the caprock. Although there are no indications that the overall storage integrity has been compromised, these observations raise interesting questions about the geomechanical behavior of the system. Several hypotheses have been put forward to explain the measured pressure, seismic, and surface deformation behavior. These include fault leakage, flow through preexisting fractures, and the possibility that injection pressures induced hydraulic fractures. This work evaluates these hypotheses in light of the available data. We suggest that the simplest and most likely explanation for the observations is that a portion of the lower caprock was hydrofractured, although interaction with preexisting fractures may have played a significant role. There are no indications, however, that the overall storage complex has been compromised, and several independent data sets demonstrate that CO2 is contained in the confinement zone.
Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.; ...
2018-03-14
PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yun; Ziegelbauer, Joseph M.; Baker, Andrew M.
PtCo-alloy cathode electrocatalysts release Co cations under operation, and the presence of these cations in the membrane electrode assembly (MEA) can result in large performance losses. It is unlikely that these cations are static, but change positions depending on operating conditions. A thorough accounting of these Co cation positions and concentrations has been impossible to obtain owing to the inability to monitor these processes in operando. Indeed, the environment (water and ion content, potential, and temperature) within a fuel cell varies widely from inlet to outlet, from anode to cathode, and from active to inactive area. Here, synchrotron micro-X-ray fluorescencemore » (μ-XRF) was leveraged to directly monitor Co 2+ transport in an operating H 2/air MEA for the first time. A Nafion membrane was exchanged to a known Co cation capacity, and standard Pt/C electrocatalysts were utilized for both electrodes. Co Kα 1 XRF maps revealed through-plane transient Co transport responses driven by cell potential and current density. Because of the cell design and imaging geometry, the distributions were strongly impacted by the MEA edge configuration. These findings will drive future imaging cell designs to allow for quantitative mapping of cation through-plane distributions during operation.« less
Spatial and Temporal Monitoring Resolutions for CO2 Leakage Detection at Carbon Storage Sites
NASA Astrophysics Data System (ADS)
Yang, Y. M.; Dilmore, R. M.; Daley, T. M.; Carroll, S.; Mansoor, K.; Gasperikova, E.; Harbert, W.; Wang, Z.; Bromhal, G. S.; Small, M.
2016-12-01
Different leakage monitoring techniques offer different strengths in detection sensitivity, coverage, feedback time, cost, and technology availability, such that they may complement each other when applied together. This research focuses on quantifying the spatial coverage and temporal resolution of detection response for several geophysical remote monitoring and direct groundwater monitoring techniques for an optimal monitoring plan for CO2 leakage detection. Various monitoring techniques with different monitoring depths are selected: 3D time-lapse seismic survey, wellbore pressure, groundwater chemistry and soil gas. The spatial resolution in terms of leakage detectability is quantified through the effective detection distance between two adjacent monitors, given the magnitude of leakage and specified detection probability. The effective detection distances are obtained either from leakage simulations with various monitoring densities or from information garnered from field test data. These spatial leakage detection resolutions are affected by physically feasible monitoring design and detection limits. Similarly, the temporal resolution, in terms of leakage detectability, is quantified through the effective time to positive detection of a given size of leak and a specified detection probability, again obtained either from representative leakage simulations with various monitoring densities or from field test data. The effective time to positive detection is also affected by operational feedback time (associated with sampling, sample analysis and data interpretation), with values obtained mainly through expert interviews and literature review. In additional to the spatial and temporal resolutions of these monitoring techniques, the impact of CO2 plume migration speed and leakage detection sensitivity of each monitoring technique are also discussed with consideration of how much monitoring is necessary for effective leakage detection and how these monitoring techniques can be better combined in a time-space framework. The results of the spatial and temporal leakage detection resolutions for several geophysical monitoring techniques and groundwater monitoring are summarized to inform future monitoring designs at carbon storage sites.
The Frio Brine Pilot Experiment Managing CO2 Sequestration in a Brine Formation
NASA Astrophysics Data System (ADS)
Sakurai, S.
2005-12-01
Funded by the U.S. Department of Energy National Energy Technology Laboratory, the Frio Brine Pilot Experiment was begun in 2002. The increase in greenhouse gas emissions, such as carbon dioxide (CO2), is thought to be a major cause of climate change. Sequestration of CO2 in saline aquifers below and separate from fresh water is considered a promising method of reducing CO2 emissions. The objectives of the experiment are to (1) demonstrate CO2 can be injected into a brine formation safely; (2) measure subsurface distribution of injected CO2; (3) test the validity of conceptual, hydrologic, and geochemical models, and (4) develop experience necessary for larger scale CO2 injection experiments. The Bureau of Economic Geology (BEG) is the leading institution on the project and is collaborating with many national laboratories and private institutes. BEG reviewed many saline formations in the US to identify candidates for CO2 storage. The Frio Formation was selected as a target that could serve a large part of the Gulf Coast and site was selected for a brine storage pilot experiment in the South Liberty field, Dayton, Texas. Most wells were drilled in the 1950's, and the fluvial sandstone of the upper Frio Formation in the Oligocene is our target, at a depth of 5,000 ft. An existing well was used as the observation well. A new injection well was drilled 100 ft away, and 30 ft downdip from the observation well. Conventional cores were cut, and analysis indicated 32 to 35 percent porosity and 2,500 md permeability. Detailed core description was valuable as better characterization resulted in design improvements. A bed bisecting the interval originally thought to be a significant barrier to flow is a sandy siltstone having a permeability of about 100 md. As a result, the upper part of the sandstone was perforated. Because of changes in porosity, permeability, and the perforation zone, input for the simulation model was updated and the model was rerun to estimate timing of CO2 breakthrough and saturation changes. A pulsed neutron tool was selected as the primary wireline log for monitoring saturation changes, because of high formation water salinity, along with high porosity. Baseline logs were recorded as preinjection values. We started injection of CO2 on October 4, 2004, and injected 1,600 tons of CO2 for 10 days. Breakthrough of CO2 to the observation well was observed on the third day by geochemical measurement of recovered fluids, including gas analysis and decreased pH value. Multiple capture logs were run to monitor saturation changes. The first log run after CO2 breakthrough on the fourth day showed a significant decrease in sigma was recorded within the upper part of the porous section (6 ft) correlative with the injection interval. Postinjection logs were compared with baseline logs to determine CO2 distribution as CO2 migrated away from the injection point. The dipole acoustic tool was used to estimate saturation changes to improve geophysical data interpretation using VSP and crosswell tomography. Compared with the baseline log, wireline sonic log made 3 months later showed a weak and slower arrival of compressional wave over the perforated interval. Results from crosswell tomography data also showed changes in compressional velocity. Successful measurement of plume evolution documents an effective method to monitor CO2 in reservoirs and document migration.
NASA Astrophysics Data System (ADS)
Namhata, A.; Dilmore, R. M.; Oladyshkin, S.; Zhang, L.; Nakles, D. V.
2015-12-01
Carbon dioxide (CO2) storage into geological formations has significant potential for mitigating anthropogenic CO2 emissions. An increasing emphasis on the commercialization and implementation of this approach to store CO2 has led to the investigation of the physical processes involved and to the development of system-wide mathematical models for the evaluation of potential geologic storage sites and the risk associated with them. The sub-system components under investigation include the storage reservoir, caprock seals, and the above zone monitoring interval, or AZMI, to name a few. Diffusive leakage of CO2 through the caprock seal to overlying formations may occur due to its intrinsic permeability and/or the presence of natural/induced fractures. This results in a potential risk to environmental receptors such as underground sources of drinking water. In some instances, leaking CO2 also has the potential to reach the ground surface and result in atmospheric impacts. In this work, fluid (i.e., CO2 and brine) flow above the caprock, in the region designated as the AZMI, is modeled for a leakage event of a typical geologic storage system with different possible boundary scenarios. An analytical and approximate solution for radial migration of fluids in the AZMI with continuous inflow of fluids from the reservoir through the caprock has been developed. In its present form, the AZMI model predicts the spatial changes in pressure - gas saturations over time in a layer immediately above the caprock. The modeling is performed for a benchmark case and the data-driven approach of arbitrary Polynomial Chaos (aPC) Expansion is used to quantify the uncertainty of the model outputs based on the uncertainty of model input parameters such as porosity, permeability, formation thickness, and residual brine saturation. The recently developed aPC approach performs stochastic model reduction and approximates the models by a polynomial-based response surface. Finally, a global sensitivity analysis was performed with Sobol indices based on the aPC technique to determine the relative importance of these input parameters on the model output space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, Curtis M.; Birkholzer, Jens T.
The Cap-and-Trade and Low Carbon Fuel Standard (LCFS) programs being administered by the California Air Resources Board (CARB) include Carbon Dioxide Capture and Storage (CCS) as a potential means to reduce greenhouse gas (GHG) emissions. However, there is currently no universal standard approach that quantifies GHG emissions reductions for CCS and that is suitable for the quantitative needs of the Cap-and-Trade and LCFS programs. CCS involves emissions related to the capture (e.g., arising from increased energy needed to separate carbon dioxide (CO 2) from a flue gas and compress it for transport), transport (e.g., by pipeline), and storage of COmore » 2 (e.g., due to leakage to the atmosphere from geologic CO 2 storage sites). In this project, we reviewed and compared monitoring, verification, and accounting (MVA) protocols for CCS from around the world by focusing on protocols specific to the geologic storage part of CCS. In addition to presenting the review of these protocols, we highlight in this report those storage-related MVA protocols that we believe are particularly appropriate for CCS in California. We find that none of the existing protocols is completely appropriate for California, but various elements of all of them could be adopted and/or augmented to develop a rigorous, defensible, and practical surface leakage MVA protocol for California. The key features of a suitable surface leakage MVA plan for California are that it: (1) informs and validates the leakage risk assessment, (2) specifies use of the most effective monitoring strategies while still being flexible enough to accommodate special or site-specific conditions, (3) quantifies stored CO 2, and (4) offers defensible estimates of uncertainty in monitored properties. California’s surface leakage MVA protocol needs to be applicable to the main CO 2 storage opportunities (in California and in other states with entities participating in California’s Cap-and-Trade or LCFS programs), specifically CO 2-enhanced oil recovery (CO 2-EOR), CO 2 injection into depleted gas reservoirs (with or without CO 2-enhanced gas recovery (CO 2-EGR)), as well as deep saline storage. Regarding the elements of an effective surface leakage MVA protocol, our recommendations for California are that: (1) both CO 2 and methane (CH 4) surface leakage should be monitored, especially for enhanced recovery scenarios, (2) emissions from all sources not directly related to injection and geologic storage (e.g., from capture, or pipeline transport) should be monitored and reported under a plan separate from the surface leakage MVA plan that is included as another component of the quantification methodology (QM), (3) the primary objective of the surface leakage MVA plan should be to quantify surface leakage of CO 2 and CH 4 and its uncertainty, with consideration of best-practices and state-of-the-art approaches to monitoring including attribution assessment, (4) effort should be made to monitor CO 2 storage and migration in the subsurface to anticipate future surface leakage monitoring needs, (5) detailed descriptions of specific monitoring technologies and approaches should be provided in the MVA plan, (6) the main purpose of the CO 2 injection project (CO 2-EOR, CO 2-EGR, or pure geologic carbon sequestration (GCS)) needs to be stated up front, (7) approaches to dealing with missing data and quantifying uncertainty need to be described, and (8) post-injection monitoring should go on for a period consistent with or longer than that prescribed by the U.S. EPA.« less
NASA Astrophysics Data System (ADS)
Sakaki, T.; Plampin, M. R.; Lassen, R. N.; Pawar, R. J.; Komatsu, M.; Jensen, K. H.; Illangasekare, T. H.
2011-12-01
Geologic sequestration of CO2 has received significant attention as a potential method for reducing the release of greenhouse gases into the atmosphere. Potential risk of leakage of the stored CO2 to the shallow zones of the subsurface is one of the critical issues that is needed to be addressed to design effective field storage systems. If a leak occurs, gaseous CO2 reaching shallow zones of the subsurface can potentially impact the surface and groundwater sources and vegetation. With a goal of developing models that can predict these impacts, a research study is underway to improve our understanding of the fundamental processes of gas-phase formation and multi-phase flow dynamics during CO2 migration in shallow porous media. The approach involves conducting a series of highly controlled experiments in soil columns and tanks to study the effects of soil properties, temperature, pressure gradients and heterogeneities on gas formation and migration. This paper presents the results from a set of column studies. A 3.6m long column was instrumented with 16 soil moisture sensors, 15 of which were capable of measuring electrical conductivity (EC) and temperature, eight water pressure, and two gas pressure sensors. The column was filled with test sands with known hydraulic and retention characteristics with predetermined packing configurations. Deionized water saturated with CO2 under ~0.3 kPa (roughly the same as the hydrostatic pressure at the bottom of the column) was injected at the bottom of the column using a peristaltic pump. Water and gas outflow at the top of the column were monitored continuously. The results, in general, showed that 1) gas phase formation can be triggered by multiple factors such as water pressure drop, temperature rise, and heterogeneity, 2) transition to gas phase tends to occur rather within a short period of time, 3) gas phase fraction was as high as ~40% so that gas flow was not via individual bubble movement but two-phase flow, 4) water outflow that was initially equal to the inflow rate increased when gas-phase started to form (i.e., water gets displaced), and 5) gas starts to flow upward after gas phase fraction stabilizes (i.e., buoyant force overcomes). These results suggest that the generation and migration processes of gas phase CO2 can be modelled as a traditional two-phase flow with source (when CO2 gas exsolved due to complex factors) as well as sink (when gas dissolved) terms. The experimental data will be used to develop and test the conceptual models that will guide the development of numerical simulators for applications involving CO2 storage and leakage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Parris; Michael Solis; Kathryn Takacs
2009-12-31
Using soil gas chemistry to detect leakage from underground reservoirs (i.e. microseepage) requires that the natural range of soil gas flux and chemistry be fully characterized. To meet this need, soil gas flux (CO{sub 2}, CH{sub 4}) and the bulk (CO{sub 2}, CH{sub 4}) and isotopic chemistry ({delta}{sup 13}C-CO2) of shallow soil gases (<1 m, 3.3 ft) were measured at 25 locations distributed among two active oil and gas fields, an active strip mine, and a relatively undisturbed research forest in eastern Kentucky. The measurements apportion the biologic, atmospheric, and geologic influences on soil gas composition under varying degrees ofmore » human surface disturbance. The measurements also highlight potential challenges in using soil gas chemistry as a monitoring tool where the surface cover consists of reclaimed mine land or is underlain by shallow coals. For example, enrichment of ({delta}{sup 13}C-CO2) and high CH{sub 4} concentrations in soils have been historically used as indicators of microseepage, but in the reclaimed mine lands similar soil chemistry characteristics likely result from dissolution of carbonate cement in siliciclastic clasts having {delta}{sup 13}C values close to 0{per_thousand} and degassing of coal fragments. The gases accumulate in the reclaimed mine land soils because intense compaction reduces soil permeability, thereby impeding equilibration with the atmosphere. Consequently, the reclaimed mine lands provide a false microseepage anomaly. Further potential challenges arise from low permeability zones associated with compacted soils in reclaimed mine lands and shallow coals in undisturbed areas that might impede upward gas migration. To investigate the effect of these materials on gas migration and composition, four 10 m (33 ft) deep monitoring wells were drilled in reclaimed mine material and in undisturbed soils with and without coals. The wells, configured with sampling zones at discrete intervals, show the persistence of some of the aforementioned anomalies at depth. Moreover, high CO{sub 2} concentrations associated with coals in the vadose zone suggest a strong affinity for adsorbing CO{sub 2}. Overall, the low permeability of reclaimed mine lands and coals and CO2 adsorption by the latter is likely to reduce the ability of surface geochemistry tools to detect a microseepage signal.« less
The Ketzin Project, Germany - Status and Future of the First European on-shore CO2 Storage Site
NASA Astrophysics Data System (ADS)
Kuehn, M.; Martens, S.; Moeller, F.; Lueth, S.; Liebscher, A.; Kempka, T.; Ketzin Group
2010-12-01
At the Ketzin site close to Berlin, the German Research Centre for Geosciences operates Europe’s first on-shore CO2 storage site with the aim of increasing the understanding of geological storage of CO2 in saline aquifers. Following site characterization and drilling of three wells, the in-situ field laboratory is fully in use since the CO2 injection started in June 2008. Our presentation summarizes key results from the first (Schilling et al. 2009) and second year (Martens et al. 2010) of injection and outlines future activities. Focus of the research is on interdisciplinary monitoring and modeling approaches. Since start of the CO2 injection on June 30, 2008, the injection facility has been reliably and safely operated. By the end of August 2010, about 37,700 tons of food grade CO2 have been injected into a sandstone aquifer of the Triassic Stuttgart Formation at a depth of about 630 to 700 m. The new project CO2MAN (CO2 Reservoir Management) is planned to succeed the EU-funded CO2SINK project which ended in March 2010 and further nationally funded projects. Our interdisciplinary monitoring concept for the Ketzin site integrates geophysical, geochemical and microbial investigations. Following baseline measurements prior to the injection, repeat measurements have been carried out for a comprehensive characterization of the reservoir and the developing CO2 plume. CO2MAN aims at continuing the injection up to a maximum of 100,000 tons of CO2, advancing the monitoring concept and further integrating numerical modeling. Planned activities include the installation of a third and a fourth observation well and the testing of well abandonment procedures. All data available from the Ketzin wells and the different monitoring techniques are going to be compiled into an integral geological model of the site. Such a geological model is the prerequisite for any holistic approach and understanding of CO2 storage not only at Ketzin. A variety of seismic methods, including cross-hole measurement between both observation wells, surface-downhole observations, and 2D and 3D surface surveys have been used in order to cover the near-injection to regional scale. In addition, geoelectric methods including cross-hole measurements between the wells and additional surface and surface-downhole electrical resistivity tomography have been applied to monitor the CO2 migration process. Geological modeling and dynamic flow modeling is conducted in different phases, including pre-existing data, information obtained from drilling and subsequent CO2 injection. On-going modeling also integrates recent geophysical monitoring data in order to improve the understanding of geological heterogeneities at the Ketzin site and their impact on the CO2 plume distribution. Martens S., Liebscher A., Möller F., Würdemann H, Schilling F., Kühn M., and Ketzin Group (2010) Progress Report on the First European on-shore CO2 Storage Site at Ketzin (Germany) - Second Year of Injection, GHGT 10, subm. Schilling F., Borm G., Würdemann H., Möller F., Kühn M., CO2SINK Group (2009) Status Report on the First European on-shore CO2 Storage Site at Ketzin (Germany). GHGT 9, Energy Procedia 1(1) 2029-2035, doi: 10.1016/j.egypro.2009.01.264
Leetaru, H.E.; Frailey, S.M.; Damico, J.; Mehnert, E.; Birkholzer, J.; Zhou, Q.; Jordan, P.D.
2009-01-01
Large scale geologic sequestration tests are in the planning stages around the world. The liability and safety issues of the migration of CO2 away from the primary injection site and/or reservoir are of significant concerns for these sequestration tests. Reservoir models for simulating single or multi-phase fluid flow are used to understand the migration of CO2 in the subsurface. These models can also help evaluate concerns related to brine migration and basin-scale pressure increases that occur due to the injection of additional fluid volumes into the subsurface. The current paper presents different modeling examples addressing these issues, ranging from simple geometric models to more complex reservoir fluid models with single-site and basin-scale applications. Simple geometric models assuming a homogeneous geologic reservoir and piston-like displacement have been used for understanding pressure changes and fluid migration around each CO2 storage site. These geometric models are useful only as broad approximations because they do not account for the variation in porosity, permeability, asymmetry of the reservoir, and dip of the beds. In addition, these simple models are not capable of predicting the interference between different injection sites within the same reservoir. A more realistic model of CO2 plume behavior can be produced using reservoir fluid models. Reservoir simulation of natural gas storage reservoirs in the Illinois Basin Cambrian-age Mt. Simon Sandstone suggest that reservoir heterogeneity will be an important factor for evaluating storage capacity. The Mt. Simon Sandstone is a thick sandstone that underlies many significant coal fired power plants (emitting at least 1 million tonnes per year) in the midwestern United States including the states of Illinois, Indiana, Kentucky, Michigan, and Ohio. The initial commercial sequestration sites are expected to inject 1 to 2 million tonnes of CO2 per year. Depending on the geologic structure and permeability anisotropy, the CO2 injected into the Mt. Simon are expected to migrate less than 3 km. After 30 years of continuous injection followed by 100 years of shut-in, the plume from a 1 million tonnes a year injection rate is expected to migrate 1.6 km for a 0 degree dip reservoir and over 3 km for a 5 degree dip reservoir. The region where reservoir pressure increases in response to CO2 injection is typically much larger than the CO2 plume. It can thus be anticipated that there will be basin wide interactions between different CO2 injection sources if multiple, large volume sites are developed. This interaction will result in asymmetric plume migration that may be contrary to reservoir dip. A basin- scale simulation model is being developed to predict CO2 plume migration, brine displacement, and pressure buildup for a possible future sequestration scenario featuring multiple CO2 storage sites within the Illinois Basin Mt. Simon Sandstone. Interactions between different sites will be evaluated with respect to impacts on pressure and CO2 plume migration patterns. ?? 2009 Elsevier Ltd. All rights reserved.
Initial results from seismic monitoring at the Aquistore CO 2 storage site, Saskatchewan, Canada
White, D. J.; Roach, L. A.N.; Roberts, B.; ...
2014-12-31
The Aquistore Project, located near Estevan, Saskatchewan, is one of the first integrated commercial-scale CO 2 storage projects in the world that is designed to demonstrate CO 2 storage in a deep saline aquifer. Starting in 2014, CO 2 captured from the nearby Boundary Dam coal-fired power plant will be transported via pipeline to the storage site and to nearby oil fields for enhanced oil recovery. At the Aquistore site, the CO 2 will be injected into a brine-filled sandstone formation at ~3200 m depth using the deepest well in Saskatchewan. The suitability of the geological formations that will hostmore » the injected CO 2 has been predetermined through 3D characterization using high-resolution 3D seismic images and deep well information. These data show that 1) there are no significant faults in the immediate area of the storage site, 2) the regional sealing formation is continuous in the area, and 3) the reservoir is not adversely affected by knolls on the surface of the underlying Precambrian basement. Furthermore, the Aquistore site is located within an intracratonic region characterized by extremely low levels of seismicity. This is in spite of oil-field related water injection in the nearby Weyburn-Midale field where a total of 656 million m 3 of water have been injected since the 1960`s with no demonstrable related induced seismicity. A key element of the Aquistore research program is the further development of methods to monitor the security and subsurface distribution of the injected CO 2. Toward this end, a permanent areal seismic monitoring array was deployed in 2012, comprising 630 vertical-component geophones installed at 20 m depth on a 2.5x2.5 km regular grid. This permanent array is designed to provide improved 3D time-lapse seismic imaging for monitoring subsurface CO 2. Prior to the onset of CO 2 injection, calibration 3D surveys were acquired in May and November of 2013. Comparison of the data from these surveys relative to the baseline 3D survey data from 2012 shows excellent repeatability (NRMS less than 10%) which will provide enhanced monitoring sensitivity to smaller amounts of CO 2. The permanent array also provides continuous passive monitoring for injection-related microseismicity. Passive monitoring has been ongoing since the summer of 2012 in order to establish levels of background seismicity before CO 2 injection starts in 2014. Microseismic monitoring was augmented in 2013 by the installation of 3 broadband seismograph stations surrounding the Aquistore site. These surface installations should provide a detection capability of seismic events with magnitudes as low as ~0. Downhole seismic methods are also being utilized for CO 2 monitoring at the Aquistore site. Baseline crosswell tomographic images depict details (meters-scale) of the reservoir in the 150-m interval between the observation and injection wells. This level of resolution is designed to track the CO 2 migration between the wells during the initial injection period. A baseline 3D vertical seismic profile (VSP) was acquired in the fall of 2013 to provide seismic images with resolution on a scale between that provided by the surface seismic array and the downhole tomography. The 3D VSP was recorded simultaneously using both a conventional array of downhole geophones (60-levels) and an optical fibre system. The latter utilized an optical fiber cable deployed on the outside of the monitor well casing and cemented in place. A direct comparison of these two methodologies will determine the suitability of using the fiber cable for ongoing time-lapse VSP monitoring.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fenxi, E-mail: fxzhang0824@gmail.com; Hong, Yan; Liang, Wenmei
Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neuralmore » stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.« less
Characterization of indoor diesel exhaust emissions from the parking garage of a school.
Debia, Maximilien; Trachy-Bourget, Marie-Claude; Beaudry, Charles; Neesham-Grenon, Eve; Perron, Stéphane; Lapointe, Caroline
2017-02-01
Diesel exhaust (DE) emissions from a parking garage located in the basement of a school were characterized during spring and winter using direct reading devices and integrated sampling methods. Concentrations of CO and NO 2 were evaluated using electrochemical sensors and passive colorimetric tubes, respectively. Elemental and total carbon concentrations were measured using the NIOSH 5040 method. Particle number concentrations (PNCs), respirable particulate matter (PM resp ) mass concentrations, and size distributions were evaluated using direct reading devices. Indoor concentrations of elemental carbon, PNC, CO, and NO 2 showed significant seasonal variation; concentrations were much higher during winter (p < 0.01). Concentrations of the PM resp and total carbon did not show significant seasonal variation. Pearson correlation coefficients were 0.9 (p < 0.01) and 0.94 (p < 0.01) between the parking garage and ground floor average daily PNCs, and between the parking garage and first floor average daily PNCs, respectively. Since DE is the main identified source of fine and ultrafine particles in the school, these results suggest that DE emissions migrate from the parking garage into the school. Our results highlight the relevance of direct reading instruments in identifying migration of contaminants and suggest that monitoring PNC is a more specific way of assessing exposure to DE than monitoring the common PM resp fraction.
NASA Astrophysics Data System (ADS)
Scheer, Dirk; Konrad, Wilfried; Class, Holger; Kissinger, Alexander; Knopf, Stefan; Noack, Vera
2017-06-01
Saltwater intrusion into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is one of the potential hazards associated with the geological storage of CO2. Thus, in a site selection process, models for predicting the fate of the displaced brine are required, for example, for a risk assessment or the optimization of pressure management concepts. From the very beginning, this research on brine migration aimed at involving expert and stakeholder knowledge and assessment in simulating the impacts of injecting CO2 into deep saline aquifers by means of a participatory modeling process. The involvement exercise made use of two approaches. First, guideline-based interviews were carried out, aiming at eliciting expert and stakeholder knowledge and assessments of geological structures and mechanisms affecting CO2-induced brine migration. Second, a stakeholder workshop including the World Café format yielded evaluations and judgments of the numerical modeling approach, scenario selection, and preliminary simulation results. The participatory modeling approach gained several results covering brine migration in general, the geological model sketch, scenario development, and the review of the preliminary simulation results. These results were included in revised versions of both the geological model and the numerical model, helping to improve the analysis of regional-scale brine migration along vertical pathways due to CO2 injection.
Wang, Jian-Guo; Yuan, Lei
2016-12-25
The aim of this study is to investigate the effects of hypoxia inducible factor-2α (HIF-2α) and Notch3 on CoCl 2 -induced migration and invasion of human breast cancer cell line MCF-7. MCF-7 cells were exposed to normoxia (21% O 2 ) or chemical hypoxia (21% O 2 plus CoCl 2 ). Short hairpin RNA (shRNA) was used to knock down HIF-2α and Notch3 in MCF-7 cells. The mRNA expression levels of HIF-2α, Notch3 and Hey1 were measured by RT-PCR. Western blot was performed to determine the protein expression levels of HIF-2α, Notch3, Hey1, Snail and E-cadherin. CoCl 2 treatment resulted in higher protein expression levels of HIF-2α, Notch3, Hey1, Snail (P < 0.05) and lower levels of E-cadherin (P < 0.05), and promoted migration and invasion of MCF-7 cells (P < 0.05). shRNA-HIF-2α suppressed CoCl 2 -induced mRNA expression of Notch3 and Hey1. Notch3 knockdown down-regulated Snail and up-regulated E-cadherin at protein level under simulated hypoxia (P < 0.05), and inhibited CoCl 2 -induced migration and invasion of MCF-7 cells (P < 0.05). In conclusion, our data provide evidence that HIF-2α may promote the migration and invasion of MCF-7 cells under chemical hypoxic conditions by potentiating Notch3 pathway.
Induced Seismicity Monitoring System
NASA Astrophysics Data System (ADS)
Taylor, S. R.; Jarpe, S.; Harben, P.
2014-12-01
There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range of environments including summer in Arizona to winter above 9000' in the mountains of southern Colorado. Statistically based on-board processing is used for detection, arrival time picking, back azimuth estimation and magnitude estimates from coda waves and acoustic signals.
NASA Astrophysics Data System (ADS)
Denchik, N.; Pezard, P. A.; Abdoulghafour, H.; Lofi, J.; Neyens, D.; Perroud, H.; Henry, G.; Rolland, B.
2015-12-01
The Maguelone experimental site for shallow subsurface hydrogeophysical monitoring, located along the Mediterranean Lido near Montpellier (Languedoc, France) has proven over the years to provide a unique setup to test gas storage monitoring methods at shallow depth. The presence of two small reservoirs (R1: 13-16 m and R2: 8-9 m) with impermeable boundaries provides an opportunity to study a saline formation for geological storage both in the field and in a laboratory context. This integrated monitoring concept was first applied at Maguelone for characterization of the reservoir state before and during N2 and CO2 injections as part of the MUSTANG FP7 project. Multimethod monitoring was shown to be sensitive to gas storage within a saline reservoir with clear data changes immediately after the beginning of injection. Pressure remains the first indicator of gas storage at ~8-9 m depth in a small permeable unit (gravels/shells) under the Holocene lagoonal sediments. A good correlation is also obtained between the resistivity response and geochemical parameters from pore fluid sampling (pH, minor and major cation concentrations) at this depth. On the basis of previous gas injection experiments, new holes were drilled as part of PANACEA (EC project) in 2014, including an injection hole targeted for injection at 8-9 m depth in the R2 reservoir in order to have gas injection and gas storage at the same depth, a single hole multi-parameter observatory, and a seismic source hole. A total volume of ~48 m3 of CO2 was injected over ~2 hours on December 4, 2014. The injection rate varied from 24 to 30 m3/h, with a well head pressure of 1.8 bars. All downhole monitoring technologies (resistivity, temperature, pressure, SP and seismic measurements) were combined in the single hole observatory. Such device allows monitoring the downhole system before and after injection and the gas migration from the injection hole, helping to characterize the transport mechanism. Decreasing the number of monitoring-measurements and verification (MMV) holes enables a significant decrease of gas leakage risk. This specific monitoring approach is expected to give information about the safety and reliability of CO2 storage operation that guarantees public acceptance.
NASA Astrophysics Data System (ADS)
Rippe, Dennis; Bergmann, Peter; Labitzke, Tim; Wagner, Florian; Schmidt-Hattenberger, Cornelia
2016-04-01
The Ketzin pilot site in Germany is the longest operating on-shore CO2 storage site in Europe. From June 2008 till August 2013, a total of ˜67,000 tonnes of CO2 were safely stored in a saline aquifer at depths of 630 m to 650 m. The storage site has now entered the abandonment phase, and continuation of the multi-disciplinary monitoring as part of the national project "CO2 post-injection monitoring and post-closure phase at the Ketzin pilot site" (COMPLETE) provides the unique chance to participate in the conclusion of the complete life cycle of a CO2 storage site. As part of the continuous evaluation of the functionality and integrity of the CO2 storage in Ketzin, from October 12, 2015 till January 6, 2015 a total of ˜2,900 tonnes of brine were successfully injected into the CO2 reservoir, hereby simulating in time-lapse the natural backflow of brine and the associated displacement of CO2. The main objectives of this brine injection experiment include investigation of how much of the CO2 in the pore space can be displaced by brine and if this displacement of CO2 during the brine injection differs from the displacement of formation fluid during the initial CO2 injection. Geophysical monitoring of the brine injection included continuous geoelectric measurements accompanied by monitoring of pressure and temperature conditions in the injection well and two adjacent observation wells. During the previous CO2 injection, the geoelectrical monitoring concept at the Ketzin pilot site consisted of permanent crosshole measurements and non-permanent large-scale surveys (Kiessling et al., 2010). Time-lapse geoelectrical tomographies derived from the weekly crosshole data at near-wellbore scale complemented by six surface-downhole surveys at a scale of 1.5 km showed a noticeable resistivity signature within the target storage zone, which was attributed to the CO2 plume (Schmidt-Hattenberger et al., 2011) and interpreted in terms of relative CO2 and brine saturations (Bergmann et al., 2012). During the brine injection, usage of a new data acquisition unit allowed the daily collection of an extended crosshole data set. This data set was complemented by an alternative surface-downhole acquisition geometry, which for the first time allowed for regular current injections from three permanent surface electrodes into the existing electrical resistivity downhole array without the demand of an extensive field survey. This alternative surface-downhole acquisition geometry is expected to be characterized by good data quality and well confined sensitivity to the target storage zone. Time-lapse geoelectrical tomographies have been derived from both surface-downhole and crosshole data and show a conductive signature around the injection well associated with the displacement of CO2 by the injected brine. In addition to the above mentioned objectives of this brine injection experiment, comparative analysis of the surface-downhole and crosshole data provides the opportunity to evaluate the alternative surface-downhole acquisition geometry with respect to its resolution within the target storage zone and its ability to quantitatively constrain the displacement of CO2 during the brine injection. These results will allow for further improvement of the deployed alternative surface-downhole acquisition geometries. References Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., Rücker, C., Labitzke, T., Henninges, J., Baumann, G., Schütt, H. (2012). Surface-Downhole Electrical Resistivity Tomography applied to Monitoring of the CO2 Storage Ketzin (Germany). Geophysics, 77, B253-B267. Kiessling, D., Schmidt-Hattenberger, C., Schuett, H., Schilling, F., Krueger, K., Schoebel, B., Danckwardt, E., Kummerow, J., CO2SINK Group (2010). Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). International Journal of Greenhouse Gas Control, 4(5), 816-826. Schmidt-Hattenberger, C., Bergmann, P., Kießling, D., Krüger, K., Rücker, C., Schütt, H., Ketzin Group (2011). Application of a Vertical Electrical Resistivity Array (VERA) for monitoring CO2 migration at the Ketzin site: First performance evaluation. Energy Procedia, 4, 3363-3370.
Impacts of relative permeability on CO2 phase behavior, phase distribution, and trapping mechanisms
NASA Astrophysics Data System (ADS)
Moodie, N.; McPherson, B. J. O. L.; Pan, F.
2015-12-01
A critical aspect of geologic carbon storage, a carbon-emissions reduction method under extensive review and testing, is effective multiphase CO2 flow and transport simulation. Relative permeability is a flow parameter particularly critical for accurate forecasting of multiphase behavior of CO2 in the subsurface. The relative permeability relationship assumed and especially the irreducible saturation of the gas phase greatly impacts predicted CO2 trapping mechanisms and long-term plume migration behavior. A primary goal of this study was to evaluate the impact of relative permeability on efficacy of regional-scale CO2 sequestration models. To accomplish this we built a 2-D vertical cross-section of the San Rafael Swell area of East-central Utah. This model simulated injection of CO2 into a brine aquifer for 30 years. The well was then shut-in and the CO2 plume behavior monitored for another 970 years. We evaluated five different relative permeability relationships to quantify their relative impacts on forecasted flow results of the model, with all other parameters maintained uniform and constant. Results of this analysis suggest that CO2 plume movement and behavior are significantly dependent on the specific relative permeability formulation assigned, including the assumed irreducible saturation values of CO2 and brine. More specifically, different relative permeability relationships translate to significant differences in CO2 plume behavior and corresponding trapping mechanisms.
Nakayama, Masanobu; Kaneko, Mayumi; Wakihara, Masataka
2012-10-28
The migration of lithium (Li) ions in electrode materials is an important factor affecting the rate performance of rechargeable Li ion batteries. We have examined Li migration in spinels LiMn(2)O(4), LiCo(2)O(4), and LiCo(1/16)Mn(15/16)O(4) by means of first-principles calculations based on density functional theory (DFT). The results showed that the trajectory of the Li jump was straight between the two adjacent Li ions for all of the three spinel compounds. However, there were significant differences in the energy profiles and the Li jump path for LiMn(2)O(4) and LiCo(2)O(4). For LiMn(2)O(4) the highest energy barrier was in the middle of the two tetrahedral sites, or in the octahedral vacancy (16c). For LiCo(2)O(4) the lowest energy was around the octahedral 16c site and the energy barrier was located at the bottleneck sites. The difference in the energy profile for LiCo(2)O(4) stemmed from the charge disproportion of Co(3.5+) to Co(3+)/Co(4+) caused by a Li vacancy forming and jumping, which was not observed for LiMn(2)O(4). Charge disproportion successfully accounted for the faster Li migration mechanism observed in LiCo(1/16)Mn(15/16)O(4). Our computational results demonstrate the importance of the effect of charge distribution on the ion jump.
A potential Italian CCS site: site characterization and monitoring of Sulcis Basin (Sardinia).
NASA Astrophysics Data System (ADS)
Chiara Tartarello, Maria; Bigi, Sabina; Beaubien, Stanley Eugene; De Angelis, Davide; Graziani, Stefano; Lombardi, Salvatore; Sacco, Pietro; Ruggiero, Livio
2017-04-01
The Sulcis Basin is an area situated in SW Sardinia (Italy) and is a potential site for the implementation of CCS in Italy. In fact, in the last years many studies were conducted to characterize the area and to define the baseline. The "Miliolitico" has been identified as the potential reservoir and is composed by fractured carbonate, while the "Produttivo Fm.", a sequence of clay, coal and marl, is the caprock. Above the "Produttivo Fm." there is a thick volcanic sequence (more than 800 m) that could be considered also a secondary caprock. In the area of Matzaccara, the "Miliolitico" is below an alluvial plain and it is estimates that could reach a depth of more than 800 m. To characterize the reservoir-caprock system there were conducted an extensive structural-geological survey, and more in detail a fracture analysis on all the Formation at the outcrop. With regard to the faults, it has been examined their architecture, and in particular the conduit-barrier behaviors. Moreover, to evaluate the theoretical capacity of the potential reservoir, we built a Discrete Fracture Model, using the fracture data collected at outcrop. So, we estimate a secondary porosity of about 3%. As regards to the definition of geochemical baseline, it has been conducted both discontinuous and continuous monitoring of CO2 and other gases. More in details, there were carried out a regional and a detailed survey, measuring the concentration and the flux of CO2. in that manner, it has been possible to identify potential migration pathways along faults and to define the position of continuous monitoring station. We developed small, low-power consuming, low-cost pCO2 "GasPro", to measure the CO2 both in soil and water. In the next months, it is planned to extend the monitoring network and to inject a little quantity of CO2 along a fault in the Matzaccara plain.
Vadose Zone and Surficial Monitoring a Controlled Release of Methane in the Borden Aquifer, Ontario.
NASA Astrophysics Data System (ADS)
Forde, O.; Mayer, K. U.; Cahill, A.; Parker, B. L.; Cherry, J. A.
2015-12-01
Development of shale gas resources and potential impacts on groundwater and fugitive gas emissions necessitates further research on subsurface methane gas (CH4) migration and fate. To address this issue, a controlled release experiment is undertaken at the Borden research aquifer, Ontario, Canada. Due to low solubility, it is expected that the injection will lead to gas exsolution and ebullition. Gas migration is expected to extend to the unsaturated zone and towards the ground surface, and may possibly be affected by CH4 oxidation. The project consists of multiple components targeting the saturated zone, unsaturated zone, and gas emissions at the ground surface. This presentation will focus on the analysis of surficial CO2 and CH4 effluxes and vadose zone gas composition to track the temporal and spatial evolution of fugitive gas. Surface effluxes are measured with flux chambers connected to a laser-based gas analyzer, and subsurface gas samples are being collected via monitoring wells equipped with sensors for oxygen, volumetric water content, electrical conductivity, and temperature to correlate with changes in gas composition. First results indicate rapid migration of CH4 to the ground surface in the vicinity of the injection locations. We will present preliminary data from this experiment and evaluate the distribution and rate of gas migration. This research specifically assesses environmental risks associated with fugitive gas emissions related to shale gas resource development.
Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.
Ziska, Lewis H; McConnell, Laura L
2016-01-13
Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.
CO Reduction to CH3OSiMe3: Electrophile-Promoted Hydride Migration at a Single Fe Site.
Deegan, Meaghan M; Peters, Jonas C
2017-02-22
One of the major challenges associated with developing molecular Fischer-Tropsch catalysts is the design of systems that promote the formation of C-H bonds from H 2 and CO while also facilitating the release of the resulting CO-derived organic products. To this end, we describe the synthesis of reduced iron-hydride/carbonyl complexes that enable an electrophile-promoted hydride migration process, resulting in the reduction of coordinated CO to a siloxymethyl (L n Fe-CH 2 OSiMe 3 ) group. Intramolecular hydride-to-CO migrations are extremely rare, and to our knowledge the system described herein is the first example where such a process can be accessed from a thermally stable M(CO)(H) complex. Further addition of H 2 to L n Fe-CH 2 OSiMe 3 releases CH 3 OSiMe 3 , demonstrating net four-electron reduction of CO to CH 3 OSiMe 3 at a single Fe site.
Source Repeatability of Time-Lapse Offset VSP Surveys for Monitoring CO2 Injection
NASA Astrophysics Data System (ADS)
Zhang, Z.; Huang, L.; Rutledge, J. T.; Denli, H.; Zhang, H.; McPherson, B. J.; Grigg, R.
2009-12-01
Time-lapse vertical seismic profiling (VSP) surveys have the potential to remotely track the migration of injected CO2 within a geologic formation. To accurately detect small changes due to CO2 injection, the sources of time-lapse VSP surveys must be located exactly at the same positions. However, in practice, the source locations can vary from one survey to another survey. Our numerical simulations demonstrate that a variation of a few meters in the VSP source locations can result in significant changes in time-lapse seismograms. To address the source repeatability issue, we apply double-difference tomography to downgoing waves of time-lapse offset VSP data to invert for the source locations and the velocity structures simultaneously. In collaboration with Resolute Natural Resources, Navajo National Oil and Gas Company, and the Southwest Regional Partnership on Carbon Sequestration under the support of the U.S. Department of Energy’s National Energy Technology Laboratory, one baseline and two repeat offset VSP datasets were acquired in 2007-2009 for monitoring CO2 injection at the Aneth oil field in Utah. A cemented geophone string was used to acquire the data for one zero-offset and seven offset source locations. During the data acquisition, there was some uncertainty in the repeatability of the source locations relative to the baseline survey. Our double-difference tomography results of the Aneth time-lapse VSP data show that the source locations for different surveys are separated up to a few meters. Accounting for these source location variations during VSP data analysis will improve reliability of time-lapse VSP monitoring.
Ethanol (EtOH), an emerging contaminant with potential direct and indirect environmental effects, poses threats to water supplies when spilled in large volumes. A series of experiments was directed at understanding the electrical geophysical signatures arising from groundwater co...
Revealing the Atomic Restructuring of Pt–Co Nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Huolin L.; Alayoglu, Selim; Tao, Runzhe
2014-06-11
We studied Pt-Co bimetallic nanoparticles during oxidation in O2 and reduction in H2 atmospheres using an aberration corrected environmental transmission electron microscope. During oxidation Co migrates to the nanoparticle surface forming a strained epitaxial CoO film. It subsequently forms islands via strain relaxation. The atomic restructuring is captured as a function of time. During reduction cobalt migrates back to the bulk, leaving a monolayer of platinum on the surface.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Li, S.
2014-12-01
Geologic carbon sequestration (GCS) is proposed for the Nugget Sandstone in Moxa Arch, a regional saline aquifer with a large storage potential. For a proposed storage site, this study builds a suite of increasingly complex conceptual "geologic" model families, using subsets of the site characterization data: a homogeneous model family, a stationary petrophysical model family, a stationary facies model family with sub-facies petrophysical variability, and a non-stationary facies model family (with sub-facies variability) conditioned to soft data. These families, representing alternative conceptual site models built with increasing data, were simulated with the same CO2 injection test (50 years at 1/10 Mt per year), followed by 2950 years of monitoring. Using the Design of Experiment, an efficient sensitivity analysis (SA) is conducted for all families, systematically varying uncertain input parameters. Results are compared among the families to identify parameters that have 1st order impact on predicting the CO2 storage ratio (SR) at both end of injection and end of monitoring. At this site, geologic modeling factors do not significantly influence the short-term prediction of the storage ratio, although they become important over monitoring time, but only for those families where such factors are accounted for. Based on the SA, a response surface analysis is conducted to generate prediction envelopes of the storage ratio, which are compared among the families at both times. Results suggest a large uncertainty in the predicted storage ratio given the uncertainties in model parameters and modeling choices: SR varies from 5-60% (end of injection) to 18-100% (end of monitoring), although its variation among the model families is relatively minor. Moreover, long-term leakage risk is considered small at the proposed site. In the lowest-SR scenarios, all families predict gravity-stable supercritical CO2 migrating toward the bottom of the aquifer. In the highest-SR scenarios, supercritical CO2 footprints are relatively insignificant by the end of monitoring.
NASA Astrophysics Data System (ADS)
Kharaka, Y. K.; Cole, D. R.; Hovorka, S. D.; Phelps, T. J.; Nance, S.
2006-12-01
Deep saline aquifers in sedimentary basins, including depleted petroleum reservoirs, provide advantageous locations close to major anthropogenic sources of CO2 and potential capacity for the storage of huge volumes of this greenhouse gas. To investigate the potential for the long-term storage of CO2 in such aquifers, 1600 t of CO2 were injected at 1500 m depth into a 24-m-thick "C" sandstone section of the Frio Formation, a regional saline aquifer in the U.S. Gulf Coast. Fluid samples obtained before CO2 injection from the injection well and an observation well 30 m updip showed a Na-Ca-Cl type brine with 93,000 mg/L TDS at near saturation with CH4 at reservoir conditions; gas analyses show CH4 comprised ~95% of dissolved gas, but CO2 was low at 0.3%. Following CO2 breakthrough, 51 h after injection, samples showed sharp drops in pH (6.5 to 5.7), pronounced increases in alkalinity (100 to 3000 mg/L as HCO3) and in Fe (30 to 1100 mg/L), and significant shifts in the isotopic compositions of H2O, Sr, DIC, and CH4. These data coupled with geochemical modeling indicate rapid dissolution of minerals, especially calcite and iron oxyhydroxides caused by lowered pH (~3.0 initially) of the brine in contact with the injected supercritical CO2. These geochemical parameters, together with perfluorocarbon tracer gases (PFTs) proved effective in mapping the distribution and interactions of the injected CO2 in the Frio "C". They are being used to track the migration of the injected CO2 into the local shallow groundwater and into the overlying Frio "B", comprised of a 4-m-thick sandstone bed and separated from the "C" by ~15 m of shale, muddy sandstone and siltstone beds. Results obtained to date from the four monitoring groundwater wells perforated (26-29 m) in the Beaumont aquifer show some temporal chemical changes. These changes, however, are tentatively attributed to natural variations and recharge events caused by the construction of a mud pit at the site, and not to leakage through the Anahuac Formation, the regional cap rock comprised of thick (~80 m) and impermeable marine shale and mudstone beds. Data on brine and gas compositions of samples obtained from the Frio "B" 6 mo after injection show significant CO2 (2.9% compared with 0.3% CO2 in dissolved gas) migration into the "B" sandstone. Except for two PFT tracer gases explained by desorption, results of samples collected 15 mo after injection show no other indications of injected CO2 in the "B" sandstone. The initial presence of injected CO2 near the observation well shows migration through the intervening beds or more likely a leakage through the remedial cement around the casing of a 50- year old well. These results highlight the importance of investigating the integrity of cement seals, especially in nearby abandoned wells, prior to the injection of large quantities of reactive and buoyant CO2.
Tahara, Keishiro; Pan, Ling; Yamaguchi, Ryoko; Shimakoshi, Hisashi; Abe, Masaaki; Hisaeda, Yoshio
2017-10-01
Among the coenzyme B 12 -dependent enzymes, methylmalonyl-CoA mutase (MMCM) catalyzes the carbon-skeleton rearrangement reaction between R-methylmalonyl-CoA and succinyl-CoA. Diethyl 2-bromomethyl-2-phenylmalonate, an alkyl bromide substrate having two different migrating groups (phenyl and carboxylic ester groups) on the β-carbon, was applied to the electrolysis mediated by a hydrophobic vitamin B 12 model complex, heptamethyl cobyrinate perchlorate in this study. The electrolysis of the substrate at -1.0V vs. Ag-AgCl by light irradiation afforded the simple reduced product (diethyl 2-methyl-2-phenylmalonate) and the phenyl migrated product (diethyl 2-benzyl-2-phenylmalonate), as well as the electrolysis of the substrate at -1.5V vs. Ag-AgCl in the dark. The electrolysis of the substrate at -2.0V vs. Ag-AgCl afforded the carboxylic ester migrated product (diethyl phenylsuccinate) as the major product. The selectivity for the migrating group was successfully tuned by controlling the electrolysis potential. We clarified that the cathodic chemistry of the Co(III) alkylated heptamethyl cobyrinate is critical for the selectivity of the migrating group through mechanistic investigations and comparisons to the simple vitamin B 12 model complex, an imine/oxime-type cobalt complex. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Commer, M.; Kowalsky, M. B.; Dafflon, B.; Wu, Y.; Hubbard, S. S.
2013-12-01
Geologic carbon sequestration is being evaluated as a means to mitigate the effects of greenhouse gas emissions. Efforts are underway to identify adequate reservoirs and to evaluate the behavior of injected CO2 over time; time-lapse geophysical methods are considered effective tools for these purposes. Pilot studies have shown that the invasion of CO2 into a background pore fluid can alter the electrical resistivity, with increases from CO2 in the super-critical or gaseous phase, and decreases from CO2 dissolved in groundwater (especially when calcite dissolution is occurring). Because of their sensitivity to resistivity changes, electrical and electromagnetic (EM) methods have been used in such studies for indirectly assessing CO2 saturation changes. While the electrical resistance tomography (ERT) method is a well-established technique for both crosswell and surface applications, its usefulness is limited by the relatively low-resolution information it provides. Controlled-source EM methods, including both frequency-domain and time-domain (transient EM) methods, can offer improved resolution. We report on three studies that aim to maximize the information content of electrical and electromagnetic measurements in inverse modeling applications that target the monitoring of resistivity changes due to CO2 migration and/or leakage. The first study considers a three-dimensional crosswell data set collected at an analogue site used for investigating CO2 distribution and geochemical reactivity within a shallow formation. We invert both resistance and phase data using a gradient-weighting method for descent-based inversion algorithms. This method essentially steers the search direction in the model space using low-cost non-linear conjugate gradient methods towards the more computationally expensive Gauss-Newton direction. The second study involves ERT data that were collected at the SECARB Cranfield site near Natchez, Mississippi, at depths exceeding 3000 m. We employ a ratio data inversion scheme, where the time-lapse input data are given by the measured ERT data normalized by their baseline values. We investigate whether three-dimensional time-lapse inversions yield improved results compared to two-dimensional results that were previously reported. Finally, we present a synthetic study that investigates a novel time-domain controlled-source EM method that has the potential for exploiting the resolution properties of vertically oriented source antennas while avoiding their logistical difficulties. A vertical source is replaced by an array of multiple horizontal dipoles arranged in a circle such that all dipoles have a common endpoint in the center. Overall, this study presents significant advances in developing adequate geophysical techniques to monitor CO2 migration and/or potential leaks in geological reservoirs.
NASA Astrophysics Data System (ADS)
Johnson, J. W.; Nitao, J. J.; Newmark, R. L.; Kirkendall, B. A.; Nimz, G. J.; Knauss, K. G.; Ziagos, J. P.
2002-05-01
Reducing anthropogenic CO2 emissions ranks high among the grand scientific challenges of this century. In the near-term, significant reductions can only be achieved through innovative sequestration strategies that prevent atmospheric release of large-scale CO2 waste streams. Among such strategies, injection into confined geologic formations represents arguably the most promising alternative; and among potential geologic storage sites, oil reservoirs and saline aquifers represent the most attractive targets. Oil reservoirs offer a unique "win-win" approach because CO2 flooding is an effective technique of enhanced oil recovery (EOR), while saline aquifers offer immense storage capacity and widespread distribution. Although CO2-flood EOR has been widely used in the Permian Basin and elsewhere since the 1980s, the oil industry has just recently become concerned with the significant fraction of injected CO2 that eludes recycling and is therefore sequestered. This "lost" CO2 now has potential economic value in the growing emissions credit market; hence, the industry's emerging interest in recasting CO2 floods as co-optimized EOR/sequestration projects. The world's first saline aquifer storage project was also catalyzed in part by economics: Norway's newly imposed atmospheric emissions tax, which spurred development of Statoil's unique North Sea Sleipner facility in 1996. Successful implementation of geologic sequestration projects hinges on development of advanced predictive models and a diverse set of remote sensing, in situ sampling, and experimental techniques. The models are needed to design and forecast long-term sequestration performance; the monitoring techniques are required to confirm and refine model predictions and to ensure compliance with environmental regulations. We have developed a unique reactive transport modeling capability for predicting sequestration performance in saline aquifers, and used it to simulate CO2 injection at Sleipner; we are now extending this capability to address CO2-flood EOR/sequestration in oil reservoirs. We have also developed a suite of innovative geophysical and geochemical techniques for monitoring sequestration performance in both settings. These include electromagnetic induction imaging and electrical resistance tomography for tracking migration of immiscible CO2, noble gas isotopes for assessing trace CO2 leakage through the cap rock, and integrated geochemical sampling, analytical, and experimental methods for determining sequestration partitioning among solubility and mineral trapping mechanisms. We have proposed to demonstrate feasibility of the co-optimized EOR/sequestration concept and utility of our modeling and monitoring technologies to design and evaluate its implementation by conducting a demonstration project in the Livermore Oil Field. This small, mature, shallow field, located less than a mile east of Lawrence Livermore National Laboratory, is representative of many potential EOR/sequestration sites in California. In approach, this proposed demonstration is analogous to the Weyburn EOR/CO2 monitoring project, to which it will provide an important complement by virtue of its contrasting depth (immiscible versus Weyburn's miscible CO2 flood) and geologic setting (clay-capped sand versus Weyburn's anhydrite-capped carbonate reservoir).
NASA Astrophysics Data System (ADS)
Nakashima, S.; Kneafsey, T. J.; Nakagawa, S.; Harper, E. J.
2013-12-01
The Central Valley of California contains promising locations for on-shore geologic CO2 storage. DOE's WESTCARB (West Coast Regional Carbon Sequestration Partnership) project drilled and cored a borehole (Citizen Green Well) at King Island (near Stockton, CA) to study the CO2 storage capability of saline and gas-bearing formations in the southwestern Sacramento Basin. Potential reservoirs encountered in the borehole include Domengine, Mokelumne River (primary target), and Top Starkey formations. In anticipation of geophysical monitoring of possible CO2 injection into this particular borehole and of the long-term migration of the CO2, we conducted small-scale CO2 injection experiments on three core samples retrieved from the well (Mokelumne River sand A and B) and from a mine outcrop (Domengine sandstone). During the experiment, a jacketed core sample (diameter 1.5 inches, length 4.0-6.0 inches) saturated with brine- (1% NaCl aq.) was confined within a pressure vessel via compressed nitrogen to 3,500-4,000psi, and supercritical CO2 was injected into the core at 2,000-2,500psi and 45-60 degrees C. The CO2 pressure and temperature were adjusted so that the bulk elastic modulus of the CO2 was close to the expected in-situ modulus--which affects the seismic properties most--while keeping the confining stress within our experimental capabilities. After the CO2 broke through the core, fresh brine was re-injected to remove the CO2 by both displacement and dissolution. Throughout the experiment, seismic velocity and attenuation of the core sample were measured using the Split Hopkinson Resonant Bar method (Nakagawa, 2012, Rev. Sci. Instr.) at near 1 kHz (500Hz--1.5 kHz), and the CO2 distribution determined via x-ray CT imaging. In contrast to relatively isotropic Mokelumne sand A, Domengine sandstone and Mokelumne sand B cores exhibited CO2 distributions strongly controlled by the bedding planes. During the CO2 injection, P-wave velocity and attenuation of the layered samples changed irregularly, roughly corresponding to the sequential invasion of the compliant fluid in the sedimentary layers revealed by the CT images. The overall behavior the seismic waves and the final CO2 saturation of the cores, however, were similar for all three cores used in this experiment.
Health and performance monitoring of the online computer cluster of CMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, G.; et al.
2012-01-01
The CMS experiment at the LHC features over 2'500 devices that need constant monitoring in order to ensure proper data taking. The monitoring solution has been migrated from Nagios to Icinga, with several useful plugins. The motivations behind the migration and the selection of the plugins are discussed.
Yang, Yong; Liu, Yongzhong; Yu, Bo; Ding, Tian
2016-06-01
Volatile contaminants may migrate with carbon dioxide (CO2) injection or leakage in subsurface formations, which leads to the risk of the CO2 storage and the ecological environment. This study aims to develop an analytical model that could predict the contaminant migration process induced by CO2 storage. The analytical model with two moving boundaries is obtained through the simplification of the fully coupled model for the CO2-aqueous phase -stagnant phase displacement system. The analytical solutions are confirmed and assessed through the comparison with the numerical simulations of the fully coupled model. Then, some key variables in the analytical solutions, including the critical time, the locations of the dual moving boundaries and the advance velocity, are discussed to present the characteristics of contaminant migration in the multi-phase displacement system. The results show that these key variables are determined by four dimensionless numbers, Pe, RD, Sh and RF, which represent the effects of the convection, the dispersion, the interphase mass transfer and the retention factor of contaminant, respectively. The proposed analytical solutions could be used for tracking the migration of the injected CO2 and the contaminants in subsurface formations, and also provide an analytical tool for other solute transport in multi-phase displacement system. Copyright © 2016 Elsevier B.V. All rights reserved.
Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration
NASA Astrophysics Data System (ADS)
McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.
2006-12-01
Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.
Lung cells support osteosarcoma cell migration and survival.
Yu, Shibing; Fourman, Mitchell Stephen; Mahjoub, Adel; Mandell, Jonathan Brendan; Crasto, Jared Anthony; Greco, Nicholas Giuseppe; Weiss, Kurt Richard
2017-01-25
Osteosarcoma (OS) is the most common primary bone tumor, with a propensity to metastasize to the lungs. Five-year survival for metastatic OS is below 30%, and has not improved for several decades despite the introduction of multi-agent chemotherapy. Understanding OS cell migration to the lungs requires an evaluation of the lung microenvironment. Here we utilized an in vitro lung cell and OS cell co-culture model to explore the interactions between OS and lung cells, hypothesizing that lung cells would promote OS cell migration and survival. The impact of a novel anti-OS chemotherapy on OS migration and survival in the lung microenvironment was also examined. Three human OS cell lines (SJSA-1, Saos-2, U-2) and two human lung cell lines (HULEC-5a, MRC-5) were cultured according to American Type Culture Collection recommendations. Human lung cell lines were cultured in growth medium for 72 h to create conditioned media. OS proliferation was evaluated in lung co-culture and conditioned media microenvironment, with a murine fibroblast cell line (NIH-3 T3) in fresh growth medium as controls. Migration and invasion were measured using a real-time cell analysis system. Real-time PCR was utilized to probe for Aldehyde Dehydrogenase (ALDH1) expression. Osteosarcoma cells were also transduced with a lentivirus encoding for GFP to permit morphologic analysis with fluorescence microscopy. The anti-OS efficacy of Disulfiram, an ALDH-inhibitor previously shown to inhibit OS cell proliferation and metastasis in vitro, was evaluated in each microenvironment. Lung-cell conditioned medium promoted osteosarcoma cell migration, with a significantly higher attractive effect on all three osteosarcoma cell lines compared to basic growth medium, 10% serum containing medium, and NIH-3 T3 conditioned medium (p <0.05). Lung cell conditioned medium induced cell morphologic changes, as demonstrated with GFP-labeled cells. OS cells cultured in lung cell conditioned medium had increased alkaline phosphatase staining. Lung endothelial HULEC-5a cells are attractants for OS cell migration, proliferation, and survival. The SJSA-1 osteosarcoma cell line demonstrated greater metastatic potential than Saos-2 and U-2 cells. ALDH appears to be involved in the interaction between lung and OS cells, and ALP may be a valuable biomarker for monitoring functional OS changes during metastasis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasan, Sanjay
2014-09-30
In-depth understanding of the long-term fate of CO₂ in the subsurface requires study and analysis of the reservoir formation, the overlaying caprock formation, and adjacent faults. Because there is significant uncertainty in predicting the location and extent of geologic heterogeneity that can impact the future migration of CO₂ in the subsurface, there is a need to develop algorithms that can reliably quantify this uncertainty in plume migration. This project is focused on the development of a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models thatmore » reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO₂ plume. Because only injection data is required, the method provides a very inexpensive method to map the migration of the plume and the associated uncertainty in migration paths. The model selection method developed as part of this project mainly consists of assessing the connectivity/dynamic characteristics of a large prior ensemble of models, grouping the models on the basis of their expected dynamic response, selecting the subgroup of models that most closely yield dynamic response closest to the observed dynamic data, and finally quantifying the uncertainty in plume migration using the selected subset of models. The main accomplishment of the project is the development of a software module within the SGEMS earth modeling software package that implements the model selection methodology. This software module was subsequently applied to analyze CO₂ plume migration in two field projects – the In Salah CO₂ Injection project in Algeria and CO₂ injection into the Utsira formation in Norway. These applications of the software revealed that the proxies developed in this project for quickly assessing the dynamic characteristics of the reservoir were highly efficient and yielded accurate grouping of reservoir models. The plume migration paths probabilistically assessed by the method were confirmed by field observations and auxiliary data. The report also documents the application of the software to answer practical questions such as the optimum location of monitoring wells to reliably assess the migration of CO₂ plume, the effect of CO₂-rock interactions on plume migration and the ability to detect the plume under those conditions and the effect of a slow, unresolved leak on the predictions of plume migration.« less
David F. DeSante
2005-01-01
Based on the experience of creating and implementing the Monitoring Avian Productivity and Survivorship (MAPS) program, I suggest that, to be successful, a migration-monitoring network must: (1) provide strong justification for the data it proposes to collect; (2) provide direct links between those monitoring data and both research and management goals; (3) provide...
Sakota, Kenji; Harada, Satoshi; Shimazaki, Yuiga; Sekiya, Hiroshi
2011-02-10
IR-dip spectra of trans-acetanilide-water 1:1 cluster, AA-(H(2)O)(1), have been measured for the S(0) and D(0) state in the gas phase. Two structural isomers, where a water molecule binds to the NH group or the CO group of AA, AA(NH)-(H(2)O)(1) and AA(CO)-(H(2)O)(1), are identified in the S(0) state. One-color resonance-enhanced two-photon ionization, (1 + 1) RE2PI, of AA(NH)-(H(2)O)(1) via the S(1)-S(0) origin generates [AA(NH)-(H(2)O)(1)](+) in the D(0) state, however, photoionization of [AA(CO)-(H(2)O)(1)] does not produce [AA(CO)-(H(2)O)(1)](+), leading to [AA(NH)-(H(2)O)(1)](+). This observation explicitly indicates that the water molecule in [AA-(H(2)O)(1)](+) migrates from the CO group to the NH group in the D(0) state. The reorganization of the charge distribution from the neutral to the D(0) state of AA induces the repulsive force between the water molecule and the CO group of AA(+), which is the trigger of the water migration in [AA-(H(2)O)(1)](+).
Hydrochemical Impacts of CO2 Leakage on Fresh Groundwater: a Field Scale Experiment
NASA Astrophysics Data System (ADS)
Lions, J.; Gal, F.; Gombert, P.; Lafortune, S.; Darmoul, Y.; Prevot, F.; Grellier, S.; Squarcioni, P.
2013-12-01
One of the questions related to the emerging technology for Carbon Geological Storage concerns the risk of CO2 migration beyond the geological storage formation. In the event of leakage toward the surface, the CO2 might affect resources in neighbouring formations (geothermal or mineral resources, groundwater) or even represent a hazard for human activities at the surface or in the subsurface. In view of the preservation of the groundwater resources mainly for human consumption, this project studies the potential hydrogeochemical impacts of CO2 leakage on fresh groundwater quality. One of the objectives is to characterize the bio-geochemical mechanisms that may impair the quality of fresh groundwater resources in case of CO2 leakage. To reach the above mentioned objectives, this project proposes a field experiment to characterize in situ the mechanisms that could impact the water quality, the CO2-water-rock interactions and also to improve the monitoring methodology by controlled CO2 leakage in shallow aquifer. The tests were carried out in an experimental site in the chalk formation of the Paris Basin. The site is equipped with an appropriate instrumentation and was previously characterized (8 piezometers, 25 m deep and 4 piezairs 11 m deep). The injection test was preceded by 6 months of monitoring in order to characterize hydrodynamics and geochemical baselines of the site (groundwater, vadose and soil). Leakage into groundwater is simulated via the injection of a small quantity of food-grade CO2 (~20 kg dissolved in 10 m3 of water) in the injection well at a depth of about 20 m. A plume of dissolved CO2 is formed and moves downward according to the direction of groundwater flow and probably by degassing in part to the surface. During the injection test, hydrochemical monitoring of the aquifer is done in situ and by sampling. The parameters monitored in the groundwater are the piezometric head, temperature, pH and electrical conductivity. Analysis on water samples provide chemical elements (major, minor and trace metals), dissolved gases, microbiological diversity and isotopes (13C). The evolution of the composition of the groundwater in terms of major elements, trace elements and isotope signatures is interpreted in terms of geochemical mechanisms, and the water-rock-CO2 interactions are characterized. Modification of the chemical composition of water in the aquifer due to CO2 injection is assessed in term of groundwater quality i.e. metal element release and the possibility of exceeding references and quality of water for human consumption. One outcome of the CIPRES project will be to highlight mechanisms that can impact groundwater quality when a CO2 leakage occurs and to propose recommendations to prevent or/and eliminate negative effects and any risks to the environment and human health. This project is partially funded by the French Research Agency (ANR).
Injection and Monitoring at the Wallula Basalt Pilot Project
McGrail, B. Peter; Spane, Frank A.; Amonette, James E.; ...
2014-01-01
Continental flood basalts represent one of the largest geologic structures on earth but have received comparatively little attention for geologic storage of CO2. Flood basalt lava flows have flow tops that are porous, permeable, and have large potential capacity for storage of CO2. In appropriate geologic settings, interbedded sediment layers and dense low-permeability basalt rock flow interior sections may act as effective seals allowing time for mineralization reactions to occur. Previous laboratory experiments showed the relatively rapid chemical reaction of CO2-saturated pore water with basalts to form stable carbonate minerals. However, recent laboratory tests with water-saturated supercritical CO2 show thatmore » mineralization reactions occur in this phase as well, providing a second and potentially more important mineralization pathway than was previously understood. Field testing of these concepts is proceeding with drilling of the world’s first supercritical CO2 injection well in flood basalt being completed in May 2009 near the township of Wallula in Washington State and corresponding CO2 injection permit granted by the State of Washington in March 2011. Injection of a nominal 1000 MT of CO2 was completed in August 2013 and site monitoring is in progress. Well logging conducted immediately after injection termination confirmed the presence of CO2 predominantly within the upper flow top region, and showed no evidence of vertical CO2 migration outside the well casing. Shallow soil gas samples collected around the injection well show no evidence of leakage and fluid and gas samples collected from the injection zone show strongly elevated concentrations of Ca, Mg, Mn, and Fe and 13C/18O isotopic shifts that are consistent with basalt-water chemical reactions. If proven viable by this field test and others that are in progress or being planned, major flood basalts in the U.S., India, and perhaps Australia would provide significant additional CO2 storage capacity and additional geologic sequestration options in regions of these countries where conventional storage options are limited.« less
NASA Astrophysics Data System (ADS)
Agarwal, R. K.; Zhang, Z.; Zhu, C.
2013-12-01
For optimization of CO2 storage and reduced CO2 plume migration in saline aquifers, a genetic algorithm (GA) based optimizer has been developed which is combined with the DOE multi-phase flow and heat transfer numerical simulation code TOUGH2. Designated as GA-TOUGH2, this combined solver/optimizer has been verified by performing optimization studies on a number of model problems and comparing the results with brute-force optimization which requires a large number of simulations. Using GA-TOUGH2, an innovative reservoir engineering technique known as water-alternating-gas (WAG) injection has been investigated to determine the optimal WAG operation for enhanced CO2 storage capacity. The topmost layer (layer # 9) of Utsira formation at Sleipner Project, Norway is considered as a case study. A cylindrical domain, which possesses identical characteristics of the detailed 3D Utsira Layer #9 model except for the absence of 3D topography, was used. Topographical details are known to be important in determining the CO2 migration at Sleipner, and are considered in our companion model for history match of the CO2 plume migration at Sleipner. However, simplification on topography here, without compromising accuracy, is necessary to analyze the effectiveness of WAG operation on CO2 migration without incurring excessive computational cost. Selected WAG operation then can be simulated with full topography details later. We consider a cylindrical domain with thickness of 35 m with horizontal flat caprock. All hydrogeological properties are retained from the detailed 3D Utsira Layer #9 model, the most important being the horizontal-to-vertical permeability ratio of 10. Constant Gas Injection (CGI) operation with nine-year average CO2 injection rate of 2.7 kg/s is considered as the baseline case for comparison. The 30-day, 15-day, and 5-day WAG cycle durations are considered for the WAG optimization design. Our computations show that for the simplified Utsira Layer #9 model, the WAG operation with 5-day cycle leads to most noticeable reduction in plume migration. For 5-day WAG cycle, the values of design variables corresponding to optimal WAG operation are found as optimal CO2 injection ICO2,optimal = 11.56 kg/s, and optimal water injection Iwater,optimal = 7.62 kg/s. The durations of CO2 and water injection in one WAG cycle are 11 and 19 days, respectively. Identical WAG cycles are repeated 20 times to complete a two-year operation. Significant reduction (22%) in CO2 migration is achieved compared to CGI operation after only two years of WAG operation. In addition, CO2 dissolution is also significantly enhanced from about 9% to 22% of the total injected CO2 . The results obtained from this and other optimization studies suggest that over 50% reduction of in situ CO2 footprint, greatly enhanced CO2 dissolution, and significantly improved well injectivity can be achieved by employing GA-TOUGH2. The optimization code has also been employed to determine the optimal well placement in a multi-well injection operation. GA-TOUGH2 appears to hold great promise for studying a host of other optimization problems related to Carbon Storage.
C principal pools and fluxes in the field agroecosystems of Juriev-Polskiy Opolie
NASA Astrophysics Data System (ADS)
Atenbekov, Ramiz; Yashin, Ivan; Vasenev, Ivan
2017-04-01
There are results of 7-year (2010-2016) investigation of the Podzols and Podzoluvisols genesis, dynamics and soil organic carbon (SOC) pools in the representative agrolandscapes of the Yuryev-Polish plain (Yaroslavl region) with estimated environmental risks, including topsoil CO2 emission and the water-soluble organic substances (WSOS) profile and lateral fluxes in conditions of different land-use practice and microclimate conditions. A set of regional stationary plots has been investigated in 5 soil-ecological catenas with different level of erosion and hydromorphic processes. Soil organic matter is poorly fixed to the mineral matrix and has high migration ability, as shown by the sorption lysimeter and model experiments with weak solutions of oxalic acid and water. The total content of soil organic carbon varies in the range of 1.4% to 2.8% in topsoil of the investigated arable Podzols and Podzoluvisols. SOC fractional-group average composition indicates the presence of 37% of fulvic acids and 41% of gumins. The most available for soil microorganisms, enhancing CO2 emission, principal water-soluble organic substances accumulate in the topsoil A1 horizon, whereas the eluvial horizon E serves as a transit barrier to their profile migration and layer of active lateral migration. Modern climate and land-use changes play important role in the spatial-temporal variability of dominant soil GHG fluxes in these landscapes that determines the rising interest in the agroecological monitoring here to develop basic elements of the climate-smart farming systems with sustainable grass, winter wheat and barley production.
R-Ras Regulates Migration through an Interaction with Filamin A in Melanoma Cells
Gawecka, Joanna E.; Griffiths, Genevieve S.; Ek-Rylander, Barbro; Ramos, Joe W.; Matter, Michelle L.
2010-01-01
Background Changes in cell adhesion and migration in the tumor microenvironment are key in the initiation and progression of metastasis. R-Ras is one of several small GTPases that regulate cell adhesion and migration on the extracellular matrix, however the mechanism has not been completely elucidated. Using a yeast two-hybrid approach we sought to identify novel R-Ras binding proteins that might mediate its effects on integrins. Methods and Findings We identified Filamin A (FLNa) as a candidate interacting protein. FLNa is an actin-binding scaffold protein that also binds to integrin β1, β2 and β7 tails and is associated with diverse cell processes including cell migration. Indeed, M2 melanoma cells require FLNa for motility. We further show that R-Ras and FLNa interact in co-immunoprecipitations and pull-down assays. Deletion of FLNa repeat 3 (FLNaΔ3) abrogated this interaction. In M2 melanoma cells active R-Ras co-localized with FLNa but did not co-localize with FLNa lacking repeat 3. Thus, activated R-Ras binds repeat 3 of FLNa. The functional consequence of this interaction was that active R-Ras and FLNa coordinately increased cell migration. In contrast, co-expression of R-Ras and FLNaΔ3 had a significantly reduced effect on migration. While there was enhancement of integrin activation and fibronectin matrix assembly, cell adhesion was not altered. Finally, siRNA knockdown of endogenous R-Ras impaired FLNa-dependent fibronectin matrix assembly. Conclusions These data support a model in which R-Ras functionally associates with FLNa and thereby regulates integrin-dependent migration. Thus in melanoma cells R-Ras and FLNa may cooperatively promote metastasis by enhancing cell migration. PMID:20585650
NASA Astrophysics Data System (ADS)
Goertz-Allmann, Bettina P.; Kühn, Daniela; Oye, Volker; Bohloli, Bahman; Aker, Eyvind
2014-07-01
We present results from microseismic monitoring and geomechanical analysis obtained at the industrial-scale CO2 sequestration site at the In Salah gas development project in Algeria. More than 5000 microseismic events have been detected at a pilot monitoring well using a master event cross-correlation method. The microseismic activity occurs in four distinct clusters and thereof three clearly correlate with injection rates and wellhead pressures. These event clusters are consistent with a location within the reservoir interval. However, due to insufficient network geometry there are large uncertainties on event location. We estimate a fracture pressure of 155 bar (at the wellhead) from the comparison of injection pressure and injection rate and conclude that reservoir fracture pressure of the injection horizon has most likely been exceeded occasionally, accompanied by increased microseismic activity. Our analysis of 3-D ray tracing for direct and converted phases suggests that one of the event clusters is located at a shallower depth than the reservoir injection interval. However, this event cluster is most likely unrelated to changes in the injection activity at a single well, as the event times do not correlate with the wellhead pressures. Furthermore, this event cluster shows b-values close to one, indicating re-activated natural or tectonic seismicity on pre-existing weakness zones rather than injection induced seismicity. Analysis of event azimuths and significant shear wave splitting of up to 5 per cent provide further valuable insight into fluid migration and fracture orientation at the reservoir level. Although only one geophone was available during the critical injection period, the microseismic monitoring of CO2 injection at In Salah is capable of addressing some of the most relevant questions about fluid migration and reservoir integrity. An improved monitoring array with larger aperture and higher sensitivity is highly recommended, as it could greatly enhance the value of this technique. As such, real-time microseismic monitoring can be used to guide the injection pressure below fracture pressure, thus providing a tool to mitigate the risk of inducing felt seismicity and compromising seal integrity.
Norris, Anne E.; Aroian, Karen J.; Nickerson, David
2015-01-01
Background Competing theories exist regarding the importance of pre-migration trauma as compared to post-migration stressors and resources with respect to the risk to immigrant mental health. Objective To examine how type of pre-migration trauma, post-migration stressors, and post-migration resources differentially predict PTSD and MDD symptomatology in Arab immigrant women who have been exposed to pre-migration trauma. Design Descriptive; using multinomial logistic regression to explain membership in one of four groups: (a) PTSD only (n = 14); (b) major depressive disorder (MDD) (n = 162), (c) Co-Morbid PTSD-MDD (n = 148), (d) Subclinical Symptoms (n = 209). Results Post-immigration related stressors (as measured by the Demands of Immigration (DI)) had the strongest effect: Parameter estimates indicated that a unit increase in DI scores was associated with a nearly 17 fold increase in the likelihood of being in the Co-morbid relative to the Subclinical group, and a nearly 2.5 increase in the likelihood of being in the Co-Morbid relative to the MDD only group (p < .05). Social support, age and type of pre-migration trauma had smaller effects and only differentiated between Subclinical and Co-Morbid PTSD-MDD groups (p < .05). Conclusion Post-migration stressors exert substantive effects on immigrant mental health outcomes. Nursing interventions are needed to reduce immigration related stressors. Screening Arab immigrant women for depression and PTSD is important given high levels observed in this community based sample. PMID:21835819
Benchmarking of vertically-integrated CO2 flow simulations at the Sleipner Field, North Sea
NASA Astrophysics Data System (ADS)
Cowton, L. R.; Neufeld, J. A.; White, N. J.; Bickle, M. J.; Williams, G. A.; White, J. C.; Chadwick, R. A.
2018-06-01
Numerical modeling plays an essential role in both identifying and assessing sub-surface reservoirs that might be suitable for future carbon capture and storage projects. Accuracy of flow simulations is tested by benchmarking against historic observations from on-going CO2 injection sites. At the Sleipner project located in the North Sea, a suite of time-lapse seismic reflection surveys enables the three-dimensional distribution of CO2 at the top of the reservoir to be determined as a function of time. Previous attempts have used Darcy flow simulators to model CO2 migration throughout this layer, given the volume of injection with time and the location of the injection point. Due primarily to computational limitations preventing adequate exploration of model parameter space, these simulations usually fail to match the observed distribution of CO2 as a function of space and time. To circumvent these limitations, we develop a vertically-integrated fluid flow simulator that is based upon the theory of topographically controlled, porous gravity currents. This computationally efficient scheme can be used to invert for the spatial distribution of reservoir permeability required to minimize differences between the observed and calculated CO2 distributions. When a uniform reservoir permeability is assumed, inverse modeling is unable to adequately match the migration of CO2 at the top of the reservoir. If, however, the width and permeability of a mapped channel deposit are allowed to independently vary, a satisfactory match between the observed and calculated CO2 distributions is obtained. Finally, the ability of this algorithm to forecast the flow of CO2 at the top of the reservoir is assessed. By dividing the complete set of seismic reflection surveys into training and validation subsets, we find that the spatial pattern of permeability required to match the training subset can successfully predict CO2 migration for the validation subset. This ability suggests that it might be feasible to forecast migration patterns into the future with a degree of confidence. Nevertheless, our analysis highlights the difficulty in estimating reservoir parameters away from the region swept by CO2 without additional observational constraints.
Rock Island Dam Smolt Monitoring; 1994-1995 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truscott, Keith B.; Fielder, Paul C.
1995-10-01
Downstream migrating salmon and steelhead trout (Oncorhynchus spp.) smolts were monitored at the Rock Island Dam bypass trap from April 1 - August 31, 1954. This was the tenth consecutive year that the bypass trap was monitored. Data collected included: (1) number of fish caught by species, (2) number of adipose clipped and/or Passive Integrated Transponder (PIT) tagged fish caught by species, (3) daily average riverflow, (4) daily average powerhouse No. 1 and No. 2 flows and daily average spill. These data were transmitted to the Fish Passage Center, which manages the Smolt Monitoring Program throughout the Columbia River Basin.more » The Smolt Monitoring Program is used to manage the {open_quotes}water budget{close_quotes}, releasing upstream reservoir water storage allocated to supplement river flows to enhance survival of downstream migrating juvenile salmonids. The Rock Island Dam trapping facility collected 37,795 downstream migrating salmonids in 1994. Collected fish included 4 yearling and 4 sub-yearling chinook salmon (O. tshawytscha) that had been previously PIT tagged to help determine migration rates. Additionally, 1,132 sub-yearling chinook, 4,185 yearling chinook, 6,627 steelhead, (O. mykiss) and 422 sockeye (O. nerka) with clipped adipose fins were collected. The middle 80% of the 1994 spring migration (excluding sub-yearling chinooks) passed Rock Island Dam during a 34 day period, April 25 - May 28. Passage rates of chinook and steelhead smolts released from hatcheries and the downstream migration timing of all salmonids are presented. The spring migration timing of juvenile salmonids is strongly influenced by hatchery releases above Rock Island Dam.« less
Doron, Lior; Segal, Na'ama; Gibori, Hadas; Shapira, Michal
2014-10-01
The expression of the CO2 -fixation enzyme ribulose-bisphosphate carboxylase/oxygenase (Rubisco), which is affected by light, involves the cysteine-rich protein bundle-sheath defective-2 (BSD2) that was originally identified in maize bundle-sheath cells. We identified the BSD2 ortholog in Chlamydomonas reinhardtii as a small protein (17 kDa) localized to the chloroplast. The algal BSD2-ortholog contains four CXXCXGXG DnaJ-like elements, but lacks the other conserved domains of DnaJ. BSD2 co-migrated with the rbcL transcript on heavy polysomes, and both BSD2 and rbcL mRNA shifted to the lighter fractions under oxidizing conditions that repress the translation of the Rubisco large subunit (RbcL). This profile of co-migration supports the possibility that BSD2 is required for the de novo synthesis of RbcL. Furthermore, BSD2 co-migrated with the rbcL transcript in a C. reinhardtii premature-termination mutant that encodes the first 60 amino acids of RbcL. In both strains, BSD2 shared its migration profile with the rbcL transcript but not with psbA mRNA. The chaperone activity of BSD2 was exemplified by its ability to prevent the aggregation of both citrate synthase (CS) and RbcL in vitro following their chemical denaturation. This activity did not depend on the presence of the thiol groups on BSD2. In contrast, the activity of BSD2 in preventing the precipitation of reduced β-chains in vitro in the insulin turbidity assay was thiol-dependent. We conclude that BSD2 combines a chaperone 'holdase' function with the ability to interact with free thiols, with both activities being required to protect newly synthesized RbcL chains. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Geophysical Signatures to Monitor Fluids and Mineralization for CO2 Sequestration in Basalts
NASA Astrophysics Data System (ADS)
Otheim, L. T.; Adam, L.; Van Wijk, K.; Batzle, M. L.; Mcling, T. L.; Podgorney, R. K.
2011-12-01
Carbon dioxide sequestration in large reservoirs can reduce emissions of this green house gas into the atmosphere. Basalts are promising host rocks due to their volumetric extend, worldwide distribution, and recent observations that CO2-water mixtures react with basalt minerals to precipitate as carbonate minerals, trapping the CO2. The chemical reaction between carbonic acid and minerals rich in calcium, magnesium and iron precipitates carbonates in the pore space. This process would increase the elastic modulus and velocity of the rock. At the same time, the higher compressibility of CO2 over water changes the elastic properties of the rock, decreasing the saturated rock bulk modulus and the P-wave velocity. Reservoirs where the rock properties change as a result of fluid or pressure changes are commonly monitored with seismic methods. Here we present experiments to study the feasibility of monitoring CO2 migration in a reservoir and CO2-rock reactions for a sequestration scenario in basalts. Our goal is to measure the rock's elastic response to mineralization with non-contacting ultrasonic lasers, and the effect of fluid substitution at reservoir conditions at seismic and ultrasonic frequencies. For the fluid substitution experiment we observe changes in the P- and S-wave velocities when saturating the sample with super-critical (sc) CO2, CO2-water mixtures and water alone for different pore and confining pressures. The bulk modulus of the rock is significantly dependent on frequency in the 2~to 106~Hz range, for CO2-water mixtures and pure water saturations. Dry and pure CO2 (sc or gas) do not show a frequency dependence on the modulus. Moreover, the shear wave modulus is not dispersive for either fluid. The frequency dependence of the elastic parameters is related to the attenuation (1/Q) of the rock. We will show the correlation between frequency dependent moduli and attenuation data for the different elastic moduli of the rocks. Three other basalt samples were stored in a pressure chamber with a sc CO2-water solution to study the effect of mineralization on the elastic properties of the rock. The rock elastic properties are recorded with non-contacting ultrasonic lasers at room conditions. After 15 weeks the first post-mineralization scan showed differences in the rock velocities with respect to the pre-mineralization scan. The analysis is done through coda wave interferometry and direct arrivals. The samples were inserted back into the pressure vessel for continuing mineralization and subsequent scans. Finally, we will discuss the applicability of Gassmann's equation and how the combination of mineralization together with CO2-water mixture affects the velocity of waves in basalt rocks.
40 CFR 75.13 - Specific provisions for monitoring CO2 emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Specific provisions for monitoring CO2... monitoring CO2 emissions. (a) CO 2 continuous emission monitoring system. If the owner or operator chooses to... operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow monitoring system...
40 CFR 75.13 - Specific provisions for monitoring CO2 emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Specific provisions for monitoring CO2... monitoring CO2 emissions. (a) CO 2 continuous emission monitoring system. If the owner or operator chooses to... operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow monitoring system...
40 CFR 75.13 - Specific provisions for monitoring CO2 emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Specific provisions for monitoring CO2... monitoring CO2 emissions. (a) CO 2 continuous emission monitoring system. If the owner or operator chooses to... operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow monitoring system...
Multiphase modeling of geologic carbon sequestration in saline aquifers.
Bandilla, Karl W; Celia, Michael A; Birkholzer, Jens T; Cihan, Abdullah; Leister, Evan C
2015-01-01
Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local-scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock. © 2015, National Ground Water Association.
CO2 bubble generation and migration during magma-carbonate interaction
NASA Astrophysics Data System (ADS)
Blythe, L. S.; Deegan, F. M.; Freda, C.; Jolis, E. M.; Masotta, M.; Misiti, V.; Taddeucci, J.; Troll, V. R.
2015-04-01
We conducted quantitative textural analysis of vesicles in high temperature and pressure carbonate assimilation experiments (1200 °C, 0.5 GPa) to investigate CO2 generation and subsequent bubble migration from carbonate into magma. We employed Mt. Merapi (Indonesia) and Mt. Vesuvius (Italy) compositions as magmatic starting materials and present three experimental series using (1) a dry basaltic-andesite, (2) a hydrous basaltic-andesite (2 wt% H2O), and (3) a hydrous shoshonite (2 wt% H2O). The duration of the experiments was varied from 0 to 300 s, and carbonate assimilation produced a CO2-rich fluid and CaO-enriched melts in all cases. The rate of carbonate assimilation, however, changed as a function of melt viscosity, which affected the 2D vesicle number, vesicle volume, and vesicle size distribution within each experiment. Relatively low-viscosity melts (i.e. Vesuvius experiments) facilitated efficient removal of bubbles from the reaction site. This allowed carbonate assimilation to continue unhindered and large volumes of CO2 to be liberated, a scenario thought to fuel sustained CO2-driven eruptions at the surface. Conversely, at higher viscosity (i.e. Merapi experiments), bubble migration became progressively inhibited and bubble concentration at the reaction site caused localised volatile over-pressure that can eventually trigger short-lived explosive outbursts. Melt viscosity therefore exerts a fundamental control on carbonate assimilation rates and, by consequence, the style of CO2-fuelled eruptions.
NASA Astrophysics Data System (ADS)
Møll Nilsen, Halvor; Lie, Knut-Andreas; Andersen, Odd
2015-06-01
MRST-co2lab is a collection of open-source computational tools for modeling large-scale and long-time migration of CO2 in conductive aquifers, combining ideas from basin modeling, computational geometry, hydrology, and reservoir simulation. Herein, we employ the methods of MRST-co2lab to study long-term CO2 storage on the scale of hundreds of megatonnes. We consider public data sets of two aquifers from the Norwegian North Sea and use geometrical methods for identifying structural traps, percolation-type methods for identifying potential spill paths, and vertical-equilibrium methods for efficient simulation of structural, residual, and solubility trapping in a thousand-year perspective. In particular, we investigate how data resolution affects estimates of storage capacity and discuss workflows for identifying good injection sites and optimizing injection strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Chuan, E-mail: zhchuansy@163.com; Ma, Cheng-bin; Yuan, Hong-mou
Background: Macrophages have been implicated in peripheral nerve regeneration. However, whether macrophages-derived microvesicles (MVs) are involved in this process remains unknown. In the present study, the effects of macrophages-derived MVs on proliferation and migration of Schwann cells (SCs) were evaluated in both in vitro and in vivo. Methods: Human monocytic leukaemia cell line (THP-1) was successfully driven to M1 and M2 phenotypes by delivery of either IFN-γ or IL-4, respectively. SCs incubated with M1 or M2 macrophages-derived MVs, the cell migration and proliferation were assessed, and expression levels of nerve growth factor (NGF) and Laminin were measured. A rat model of sciaticmore » nerve was established and the effects of macrophages-derived MVs on nerve regeneration were investigated. Results: M2-derived MVs elevated migration, proliferation, NFG and Laminin protein levels of SCs compared with M1-or M0-derived MVs. The relative expression levels of miR-223 were also increased in M2 macrophages and M2-derived MVs. Transfected M2 macrophages with miR-223 inhibitor then co-incubated with SCs, an inhibition of cell migration and proliferation and a down-regulated levels of NFG and Laminin protein expression were observed. In vivo, M2-derived MVs significantly increased the infiltration and axon number of SCs. Conclusion: M2-derived MVs promoted proliferation and migration of SCs in vitro and in vivo, which provided a therapeutic strategy for nerve regeneration. - Highlights: • M2 macrophages-derived MVs elevated migration and proliferation of SCs. • M2 macrophages-derived MVs up-regulated NFG and Laminin expression of SCs. • MiR-223 expression was increased in M2 macrophages-derived MVs. • MiR-223 inhibitor reduced migration and proliferation of SCs co-incubated with MVs. • MiR-223 inhibitor down-regulated NFG and Laminin levels of SCs co-incubated with MVs.« less
Influence of local capillary trapping on containment system effectiveness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, Steven
2014-03-31
Immobilization of CO 2 injected into deep subsurface storage reservoirs is a critical component of risk assessment for geologic CO 2 storage (GCS). Local capillary trapping (LCT) is a recently established mode of immobilization that arises when CO 2 migrates due to buoyancy through heterogeneous storage reservoirs. This project sought to assess the amount and extent of LCT expected in storage formations under a range of injection conditions, and to confirm the persistence of LCT if the seal overlying the reservoir were to lose its integrity. Numerical simulation using commercial reservoir simulation software was conducted to assess the influence ofmore » injection. Laboratory experiments, modeling and numerical simulation were conducted to assess the effect of compromised seal integrity. Bench-scale (0.6 m by 0.6 m by 0.03 m) experiments with surrogate fluids provided the first empirical confirmation of the key concepts underlying LCT: accumulation of buoyant nonwetting phase at above residual saturations beneath capillary barriers in a variety of structures, which remains immobile under normal capillary pressure gradients. Immobilization of above-residual saturations is a critical distinction between LCT and the more familiar “residual saturation trapping.” To estimate the possible extent of LCT in a storage reservoir an algorithm was developed to identify all potential local traps, given the spatial distribution of capillary entry pressure in the reservoir. The algorithm assumes that the driving force for CO 2 migration can be represented as a single value of “critical capillary entry pressure” P c,entry crit, such that cells with capillary entry pressure greater/less than P c,entry crit act as barriers/potential traps during CO 2 migration. At intermediate values of P c,entry crit, the barrier regions become more laterally extensive in the reservoir, approaching a percolation threshold while non-barrier regions remain numerous. The maximum possible extent of LCT thus occurs at P c,entry crit near this threshold. Testing predictions of this simple algorithm against full-physics simulations of buoyancy-driven CO 2 migration support the concept of critical capillary entry pressure. However, further research is needed to determine whether a single value of critical capillary entry pressure always applies and how that value can be determined a priori. Simulations of injection into high-resolution (cells 0.3 m on a side) 2D and 3D heterogeneous domains show two characteristic behaviors. At small gravity numbers (vertical flow velocity much less than horizontal flow velocity) the CO 2 fills local traps as well as regions that would act as local barriers if CO 2 were moving only due to buoyancy. When injection ceases, the CO 2 migrates vertically to establish large saturations within local traps and residual saturation elsewhere. At large gravity numbers, the CO 2 invades a smaller portion of the perforated interval. Within this smaller swept zone the local barriers are not invaded, but local traps are filled to large saturation during injection and remain during post-injection gravity-driven migration. The small gravity number behavior is expected in the region within 100 m of a vertical injection well at anticipated rates of injection for commercial GCS. Simulations of leakage scenarios (through-going region of large permeability imposed in overlying seal) indicate that LCT persists (i.e. CO 2 remains held in a large fraction of the local iv traps) and the persistence is independent of injection rate during storage. Simulations of leakage for the limiting case of CO 2 migrating vertically from an areally extensive emplacement in the lower portion of a reservoir showed similar strong persistence of LCT. This research has two broad implications for GCS. The first is that LCT can retain a significant fraction of the CO 2 stored in a reservoir – above and beyond the residual saturation -- if the overlying seal were to fail. Thus frameworks for risk assessment should be extended to account for LCT. The second implication is that compared to pressure driven flow in reservoirs, CO 2 migration and trapping behave in a qualitatively different manner in heterogeneous reservoirs when buoyancy is the dominant driving force for flow. Thus simulations of GCS that neglect capillary heterogeneity will fail to capture important features of the CO 2 plume. While commercial reservoir simulation software can account for fine scale capillary heterogeneity, it has not been designed to work efficiently with such domains, and no simulators can handle fine-scale resolution throughout the reservoir. A possible way to upscale the migration and trapping is to apply an “effective residual saturation” to coarse-scale grids. While the extent of overall immobilization can be correlated in this way, all coarser grids failed to capture the distance traveled by the migrating CO 2 for large gravity number. Thus it remains unclear how best to account for LCT in the routine simulation work-flow that will be needed for large-scale GCS. Alternatives meriting investigation include streamline methods, reduced-physics proxies (e.g. particle tracking), and biased invasion percolation algorithms, which are based on precisely the capillary heterogeneity essential for LCT.« less
NASA Astrophysics Data System (ADS)
Haar, K. K.; Balch, R. S.
2015-12-01
The Southwest Regional Partnership on Carbon Sequestration monitors a CO2 capture, utilization and storage project at Farnsworth field, TX. The reservoir interval is a Morrowan age fluvial sand deposited in an incised valley. The sands are between 10 to 25m thick and located about 2800m below the surface. Primary oil recovery began in 1958 and by the late 1960's secondary recovery through waterflooding was underway. In 2009, Chaparral Energy began tertiary recovery using 100% anthropogenic CO2 sourced from an ethanol and a fertilizer plant. This constitutes carbon sequestration and fulfills the DOE's initiative to determine the best approach to permanent carbon storage. One purpose of the study is to understand CO2 migration from injection wells. CO2 plume spatial distribution for this project is analyzed with the use of time-lapse 3D vertical seismic profiles centered on CO2 injection wells. They monitor raypaths traveling in a single direction compared to surface seismic surveys with raypaths traveling in both directions. 3D VSP surveys can image up to 1.5km away from the well of interest, exceeding regulatory requirements for maximum plume extent by a factor of two. To optimize the timing of repeat VSP acquisition, the sensitivity of the 3D VSP surveys to CO2 injection was analyzed to determine at what injection volumes a seismic response to the injected CO2 will be observable. Static geologic models were generated for pre-CO2 and post-CO2 reservoir states through construction of fine scale seismic based geologic models, which were then history matched via flow simulations. These generated static states of the model, where CO2 replaces oil and brine in pore spaces, allow for generation of impedance volumes which when convolved with a representative wavelet generate synthetic seismic volumes used in the sensitivity analysis. Funding for the project is provided by DOE's National Energy Technology Laboratory (NETL) under Award No. DE-FC26-05NT42591.
Migration monitoring with automated technology
Rhonda L. Millikin
2005-01-01
Automated technology can supplement ground-based methods of migration monitoring by providing: (1) unbiased and automated sampling; (2) independent validation of current methods; (3) a larger sample area for landscape-level analysis of habitat selection for stopover, and (4) an opportunity to study flight behavior. In particular, radar-acoustic sensor fusion can...
NASA Astrophysics Data System (ADS)
Datta, S.; Andree, I.; Johannesson, K. H.; Kempton, P. D.; Barker, R.; Birdie, T. R.; Watney, W. L.
2017-12-01
Salinization or CO2 leakage from local Enhanced Oil Recovery (EOR) projects has become a possible source for contamination and water quality degradation for local irrigation or potable well users in Wellington, Kansas. Shallow domestic and monitoring wells, as well as surface water samples collected from the site, were analyzed for a wide array of geochemical proxies including major and trace ions, rare earth elements (REE), stable isotopes, dissolved organic carbon and dissolved hydrocarbons; these analytes were employed as geotracers to understand the extent of hydrologic continuity throughout the Paleozoic stratigraphic section. Previous research by Barker et al. (2012) laid the foundation through a mineralogical and geochemical investigation of the Arbuckle injection zone and assessment of overlying caprock integrity, which led to the conclusion that the 4,910-5,050' interval will safely sequester CO2 with high confidence of a low leakage potential. EOR operations using CO2 as the injectant into the Mississippian 3,677-3,706' interval was initiated in Jan 2016. Two groundwater sampling events were conducted to investigate any temporal changes in the surface and subsurface waters. Dissolved (Ca+Mg)/Na and Na/Cl mass ratio values of two domestic wells and one monitoring well ranged from 0.67 to 2.01 and 0.19 to 0.39, respectively, whereas a nearby Mississippian oil well had values of 0.20 and 0.62, respectively . δ18O and δ2H ranged from -4.74 to -5.41 ‰VSMOW and -31.4 to -34.3 ‰VSMOW, respectively, among the domestic wells and shallowest monitoring well. Conservative ion relationships in drill-stem-test waters from Arbuckle and Mississippian injection zones displayed significant variability, indicating limited vertical hydrologic communication. Total aquifer connectivity is inconclusive based on the provided data; however, a paleoterrace and incised valley within the study site are thought to be connected through a Mississippian salt plume migration passing through the major domestic wells and a well at 200 ft depth. REE patterns of the shallow monitoring wells indicate a different water source than the domestic wells in the study area.
Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; ...
2014-12-31
Carbon stable isotopes can be used in characterization and monitoring of CO 2 sequestration sites to track the migration of the CO 2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO 2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO 2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport modulemore » of TOUGHREACT was modified to include separate isotopic species of CO 2 gas and dissolved inorganic carbon (CO 2, CO 3 2-, HCO 3 -,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO 2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less
Uncertainty analyses of CO2 plume expansion subsequent to wellbore CO2 leakage into aquifers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Zhangshuan; Bacon, Diana H.; Engel, David W.
2014-08-01
In this study, we apply an uncertainty quantification (UQ) framework to CO2 sequestration problems. In one scenario, we look at the risk of wellbore leakage of CO2 into a shallow unconfined aquifer in an urban area; in another scenario, we study the effects of reservoir heterogeneity on CO2 migration. We combine various sampling approaches (quasi-Monte Carlo, probabilistic collocation, and adaptive sampling) in order to reduce the number of forward calculations while trying to fully explore the input parameter space and quantify the input uncertainty. The CO2 migration is simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). For computationally demandingmore » simulations with 3D heterogeneity fields, we combined the framework with a scalable version module, eSTOMP, as the forward modeling simulator. We built response curves and response surfaces of model outputs with respect to input parameters, to look at the individual and combined effects, and identify and rank the significance of the input parameters.« less
Suggestions for establishing a network of landbird migration monitoring sites
Jonathan Bart; C. John Ralph
2005-01-01
Landbird migration monitoring stations, primarily using constant-effort mist netting and sometimes specialized censuses, are valuable because: (1) many of the species captured, especially northern-nesting ones, are not well surveyed by other methods; (2) demographic and other vital information for management and conservation can readily be collected; and (3) such...
Ash, S A; Valchev, G I; Looney, M; Ni Mhathuna, A; Crowley, P D; Gallagher, H C; Buggy, D J
2014-07-01
While volatile agents have been implicated in metastasis-enhancing effects on cancer cells, the effects of xenon are unknown. We investigated xenon- and sevoflurane-mediated effects on migration and expression of angiogenesis biomarkers in human breast adenocarcinoma cells. MDA-MB-231 and MCF-7 cells were exposed to xenon 70% with O2 25%, CO2 5%; control gas containing O2 25%, CO2 5%, N2 70%; or sevoflurane 2.5 vol% administered in O2 60%, N2 37%, or control gas. Cell viability was determined by the MTT assay. Migration at 24 h was determined using the Oris™ Cell Migration Assay. Secretion of angiogenesis factors was measured using a membrane-based immunoassay array. Xenon reduced MDA-MB-231 migration to 59 (13%) after 1-h exposure (P=0.02), 64 (10%) after 3 h (P=0.01), and 71 (9%) after 5 h (P=0.04) compared with control gas, without affecting viability. Similarly, MCF-7 migration was significantly reduced at all timepoints [to 58 (12%) at 1 h, 65 (12%) at 3 h, and 65% (12%) at 5 h]. Sevoflurane did not affect migration when delivered in control gas. Glycine, an N-methyl-d-aspartate receptor co-agonist, antagonized the effects of xenon on migration. Expression of the pro-angiogenesis factor regulated on activation, normal T cell expressed and secreted (RANTES) was reduced in conditioned medium from xenon-exposed MDA-MB-231 cells compared with cells exposed to either control gas or sevoflurane [mean dot density 2.0 (0.2) compared with 3.0 (0.1) and 3.1 (0.3), respectively (P=0.02)]. Xenon, but not sevoflurane, inhibited migration in both oestrogen receptor positive and negative breast adenocarcinoma cells. Furthermore, xenon decreased release of the pro-angiogenic factor RANTES from MDA-MB-231 cells. © The Author [2014]. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Natural analogues for CO2 storage sites - analysis of a global dataset
NASA Astrophysics Data System (ADS)
Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, R. Stuart
2013-04-01
Carbon Capture and Storage is the only industrial scale technology currently available to reduce CO2 emissions from fossil-fuelled power plants and large industrial source to the atmosphere and thus mitigate climate change. CO2 is captured at the source and transported to subsurface storage sites, such as depleted oil and gas fields or saline aquifers. In order to have an effect on emissions and to be considered safe it is crucial that the amount of CO2 leaking from storage sites to shallow aquifers or the surface remains very low (<1% over 1000 years). Some process that influence the safety of a reservoir, such as CO2-rock-brine interactions, can be studied using experiments on both laboratory and field-scale. However, long-term processes such as the development of leakage pathways can only be understood by either predictive modelling or by studying natural CO2 reservoirs as analogues for long term CO2 storage sites. Natural CO2 reservoirs have similar geological trapping mechanisms as anticipated for CO2 storage sites and often have held CO2 for a geological period of time (millions of years) without any indication for leakage. Yet, migration of CO2 from reservoirs to the surface is also common and evidenced by gas seeps such as springs and soil degassing. We have compiled and analysed a dataset comprising of more than 50 natural CO2 reservoirs from different settings all around the globe to provide an overview of the factors that are important for the retention of CO2 in the subsurface and what processes lead to leakage of CO2 from the reservoir. Initial results indicate that if the reservoir is found to be leaking, CO2 migration is along faults and not through caprock layers. This indicates that faults act as fluid pathways and play an important role when characterizing a storage site. Additionally, it appears that overpressure of the overburden and the state of CO2 in the reservoir influence the likelihood of migration and hence the safety of a reservoir.
Yu, Xin; Wan, Qilong; Cheng, Gu; Cheng, Xin; Zhang, Jing; Pathak, Janak L; Li, Zubing
2018-06-16
Mesenchymal stem cells homing and migration is a crucial step during bone fracture healing. Hypoxic environment in fracture site induces bone marrow mesenchymal stem cells (BMSCs) migration, but its mechanism remains unclear. Our previous study and studies by other groups have reported the involvement of signal transducer and activator of transcription 3 (STAT3) pathway in cell migration. However, the role of STAT3 pathway in hypoxia-induced cell migration is still unknown. In this study, we investigated the role of STAT3 signaling in hypoxia-induced BMSCs migration and osteogenic differentiation. BMSCs isolated from C57BL/6 male mice were cultured in the presence of cobalt chloride (CoCl 2 ) to simulate intracellular hypoxia. Hypoxia enhanced BMSCs migration, and upregulated cell migration related gene expression i.e., metal-loproteinase (MMP) 7, MMP9 and C-X-C motif chemokine receptor 4. Hypoxia enhanced the phosphorylation of STAT3, and cell migration related proteins: c-jun n-terminal kinase (JNK), focal of adhesion kinase (FAK), extracellular regulated protein kinases and protein kinase B 1/2 (ERK1/2). Moreover, hypoxia enhanced expression of osteogenic differentiation marker. Inhibition of STAT3 suppressed the hy-poxia-induced BMSCs migration, cell migration related signaling molecules phos-phorylation, and osteogenic differentiation related gene expression. In conclusion, our result indicates that hypoxia-induced BMSCs migration and osteogenic differentiation is via STAT3 phosphorylation and involves the cooperative activity of the JNK, FAK and MMP9 signaling pathways. This article is protected by copyright. All rights reserved.
Estimated migration rates under scenarios of global climate change.
Jay R. Malcolm; Adam Markham; Ronald P. Neilson; Michael Oaraci
2002-01-01
Greefihouse-induced warming and resulting shifts in climatic zones may exceed the migration capabilities of some species. We used fourteen combinations of General Circulation Models (GCMs) and Global Vegetation Models (GVMs) to investigate possible migration rates required under CO2 doubled climatic forcing.
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Zhou, Q.; Birkholzer, J. T.
2017-12-01
The injection of supercritical CO2 (scCO2) in fractured reservoirs has been conducted at several storage sites. However, no site-specific dual-continuum modeling for fractured reservoirs has been reported and modeling studies have generally underestimated the fracture-matrix interactions. We developed a conceptual model for enhanced CO2 storage to take into account global scCO2 migration in the fracture continuum, local storage of scCO2 and dissolved CO2 (dsCO2) in the matrix continuum, and driving forces for scCO2 invasion and dsCO2 diffusion from fractures. High-resolution discrete fracture-matrix models were developed for a column of idealized matrix blocks bounded by vertical and horizontal fractures and for a km-scale fractured reservoir. The column-scale simulation results show that equilibrium storage efficiency strongly depends on matrix entry capillary pressure and matrix-matrix connectivity while the time scale to reach equilibrium is sensitive to fracture spacing and matrix flow properties. The reservoir-scale modeling results shows that the preferential migration of scCO2 through fractures is coupled with bulk storage in the rock matrix that in turn retards the fracture scCO2 plume. We also developed unified-form diffusive flux equations to account for dsCO2 storage in brine-filled matrix blocks and found solubility trapping is significant in fractured reservoirs with low-permeability matrix.
21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO2) monitor.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Cutaneous carbon dioxide (PcCO2) monitor. 868.2480... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2480 Cutaneous carbon dioxide (PcCO2) monitor. (a) Identification. A cutaneous carbon dioxide (PcCO2) monitor is a noninvasive heated...
CO2 exsolution - challenges and opportunities in subsurface flow management
NASA Astrophysics Data System (ADS)
Zuo, Lin; Benson, Sally
2014-05-01
In geological carbon sequestration, a large amount of injected CO2 will dissolve in brine over time. Exsolution occurs when pore pressures decline and CO2 solubility in brine decreases, resulting in the formation of a separate CO2 phase. This scenario occurs in storage reservoirs by upward migration of carbonated brine, through faults, leaking boreholes or even seals, driven by a reverse pressure gradient from CO2 injection or ground water extraction. In this way, dissolved CO2 could migrate out of storage reservoirs and form a gas phase at shallower depths. This paper summarizes the results of a 4-year study regarding the implications of exsolution on storage security, including core-flood experiments, micromodel studies, and numerical simulation. Micromodel studies have shown that, different from an injected CO2 phase, where the gas remains interconnected, exsolved CO2 nucleates in various locations of a porous medium, forms disconnected bubbles and propagates by a repeated process of bubble expansion and snap-off [Zuo et al., 2013]. A good correlation between bubble size distribution and pore size distribution is observed, indicating that geometry of the pore space plays an important role in controlling the mobility of brine and exsolved CO2. Core-scale experiments demonstrate that as the exsolved gas saturation increases, the water relative permeability drops significantly and is disproportionately reduced compared to drainage relative permeability [Zuo et al., 2012]. The CO2 relative permeability remains very low, 10-5~10-3, even when the exsolved CO2 saturation increases to over 40%. Furthermore, during imbibition with CO2 saturated brines, CO2 remains trapped even under relatively high capillary numbers (uv/σ~10-6) [Zuo et al., submitted]. The water relative permeability at the imbibition endpoint is 1/3~1/2 of that with carbonated water displacing injected CO2. Based on the experimental evidence, CO2 exsolution does not appear to create significant risks for storage security. Falta et al. [2013] show that if carbonated brine migrates upwards and exsolution occurs, brine migration would be greatly reduced and limited by the presence of exsolved CO2 and the consequent low relatively permeability to brine. Similarly, if an exsolved CO2 phase were to evolve in seals, for example, after CO2 injection stops, the effect would be to reduce the permeability to brine and the CO2 would have very low mobility. This flow blocking effect is also studied with water/oil/CO2 [Zuo et al., 2013]. Experiments show that exsolved CO2 performs as a secondary residual phase in porous media that effectively blocks established water flow paths and deviates water to residual oil zones, thereby increasing recovery. Overall, our studies suggest that CO2 exsolution provides an opportunity for mobility control in subsurface processes. However, the lack of simulation capability that accounts for differences between gas injection and gas exsolution creates challenges for modeling and hence, designing studies to exploit the mobility reduction capabilities of CO2 exsolution. Using traditional drainage multiphase flow parameterization in simulations involving exsolution will lead to large errors in transport rates. Development of process dependent parameterizations of multiphase flow properties will be a key next step and will help to unlock the benefits from gas exsolution. ACKNOWLEDGEMENT This work is funded by the Global Climate and Energy Project (GCEP) at Stanford University. This work was also supported by U.S. EPA, Science To Achieve Results (STAR) Program, Grant #: 834383, 2010-2012. REFERENCES Falta, R., L. Zuo and S.M. Benson (2013). Migration of exsolved CO2 following depressurization of saturated brines. Journal of Greenhouse Gas Science and Technology, 3(6), 503-515. Zuo, L., S.C.M. Krevor, R.W. Falta, and S.M. Benson (2012). An experimental study of CO2 exsolution and relative permeability measurements during CO2 saturated water depressurization. Transp. Porous Media, 91(2), 459-478. Zuo, L., C. Zhang, R.W. Falta, and S.M. Benson (2013). Micromodel investigations of CO2 exsolution from carbonated water in sedimentary rocks. Adv. Water Res., 53, 188-197. Zuo, L., and S.M. Benson (2013). Exsolution enhanced oil recovery with concurrent CO2 sequestration. Energy Procedia, 37, 6957-6963. Zuo, L., and S.M. Benson. Different Effects of Imbibed and Exsolved Residually Trapped CO2 in Sandstone. Submitted to Geophysical Research Letters.
NASA Astrophysics Data System (ADS)
Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.
2014-12-01
Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.
NASA Astrophysics Data System (ADS)
Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.
2015-12-01
Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.
Purification of 2-monoacylglycerols using liquid CO2 extraction
USDA-ARS?s Scientific Manuscript database
The fatty acid moiety of 2-monoacyl-sn-glycerol (2-MAG) undergoes spontaneous acyl migration to the sn-1(3) position, resulting in a thermodynamic equilibrium of approximately 1:9 of 2-MAG to 1-monoacyl-sn-glycerol (1-MAG). Spontaneous acyl migration is an impediment to synthesizing and isolating s...
Migration of carbon dioxide (CO2) from deep storage formations into shallow drinking water aquifers is a possible system failure related to geologic CO2 sequestration. A CO2 leak may cause mineral precipitation/dissolution reactions, changes in a...
Interfacial oxygen migration and its effect on the magnetic anisotropy in Pt/Co/MgO/Pt films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Feng, Chun, E-mail: fengchun@ustb.edu.cn, E-mail: ghyu@mater.ustb.edu.cn; Liu, Yang
2014-02-03
This paper reports the interfacial oxygen migration effect and its induced magnetic anisotropy evolution in Pt/Co/MgO/Pt films. During depositing the MgO layer, oxygen atoms from the MgO combine with the neighboring Co atoms, leading to the formation of CoO at the Co/MgO interface. Meanwhile, the films show in-plane magnetic anisotropy (IMA). After annealing, most of the oxygen atoms in CoO migrate back to the MgO layer, resulting in obvious improvement of Co/MgO interface and the enhancement of effective Co-O orbital hybridization. These favor the evolution of magnetic anisotropy from IMA to perpendicular magnetic anisotropy (PMA). The oxygen migration effect ismore » achieved by the redox reaction at the Co/MgO interface. On the contrary, the transfer from IMA to PMA cannot be observed in Pt/Co/Pt films due to the lack of interfacial oxygen migration.« less
NASA Astrophysics Data System (ADS)
Park, Gyuryeong; Wang, Sookyun; Lee, Minhee; Um, Jeong-Gi; Kim, Seon-Ok
2017-04-01
The storage of CO2 in underground geological formation such as deep saline aquifers or depleted oil and gas reservoirs is one of the most promising technologies for reducing the atmospheric CO2 release. The processes in geological CO2 storage involves injection of supercritical CO2 (scCO2) into porous formations saturated with brine and initiates CO2 flooding with immiscible displacement. The CO2 migration and porewater displacement within geological formations, and , consequentially, the storage efficiency are governed by the interaction of fluid and rock properties and are affected by the interfacial tension, capillarity, and wettability in supercritical CO2-brine-mineral systems. This study aims to observe the displacement pattern and estimate storage efficiency by using micromodels. This study aims to conduct scCO2 injection experiments for visualization of distribution of injected scCO2 and residual porewater in transparent pore networks on microfluidic chips under high pressure and high temperature conditions. In order to quantitatively analyze the porewater displacement by scCO2 injection under geological CO2 storage conditions, the images of invasion patterns and distribution of CO2 in the pore network are acquired through a imaging system with a microscope. The results from image analysis were applied in quantitatively investigating the effects of major environmental factors and scCO2 injection methods on porewater displacement process by scCO2 and storage efficiency. The experimental observation results could provide important fundamental information on capillary characteristics of reservoirs and improve our understanding of CO2 sequestration progress.
Reservoir Architecture Control on the Geometry of a CO2 Plume Using 4D Seismic, Sleipner Field.
NASA Astrophysics Data System (ADS)
Bitrus, Roy; Iacopini, David; Bond, Clare
2017-04-01
Time lapse seismic from the Sleipner field, Norwegian North Sea represents a unique database to understand the geometry of a saline aquifer, the Utsira Sand Formation, and its role in containing sequestered CO2. The heterogeneous high permeability Utsira Sand formation bounded by an overlying seal is surrounded by impermeable to semi-permeable intra-reservoir thin shale units that influence the migration of injected CO2. It is important to understand and verify the dynamics of injected CO2 plume migration as this ensures close to accurate predictions of the evolving and stable state of CO2 in storage projects. Previous detailed interpretation results of the thin shale units and permeability flow path chimneys within the Utsira Formation have been used in this research. The Utsira Cap rock, IUTS1 and IUTS1 (Intra-Utsira Shale Units) are the top three units that affect the containment and upward migration path of injected CO2. They are combined with seismic geobodies of the CO2 plume across time lapse data. Here, these seismic geobodies are created using 2 methods to delineate the 3D shape and the cubic volume occupancy of the CO2 plume within the reservoir. Method 1 employs the use of an envelope attribute volume, where samples are extracted from voxels that contain seismic trace amplitude values of injected CO2 across the 3D data. These extracted samples are then tracked throughout the target area and then classed and quantified as a CO2 geobodies. Method 2 applies the same concept; the only difference is the samples extracted from voxels are classed based on the proximity and connectivity of pre-defined amplitude values. Both methods employ the use of a Bayesian classifier which defines the probability density function used to categorise the extracted threshold values. Our result of the 3D geobody shapes are compared against the internal geometry of the reservoir which shows the influence of the cap rock and intra-reservoir thin shales on the CO2 plume acting as baffles and flow paths. The amount of injected CO2 is compared against the occupied volume of CO2 within the reservoir rock. Result values are plotted in graphs and they give an indication of the upper and lower end of reservoir volume occupied by injected supercritical CO2. These values are based on the porosity, permeability, density and temperature values of the rock volume, formation fluid and supercritical CO2. The results also show a decrease in effective rock volume occupied by CO2 reaching the Utsira top cap rock with increase in injected amounts of CO2. Our results indicate that the methods proposed can be applied to storage reservoirs in their early to mid-stages to help predict and understand the internal geometries of the reservoir unit and how they can affect the containment or upward migration flow of CO2. The CO2 volumetric measurement can also be used as a well-grounded assessment for future saline aquifer storage projects.
Consequences of CO2-rich water intrusion into the Critical Zone
NASA Astrophysics Data System (ADS)
Gal, Frédérick; Lions, Julie
2017-04-01
From a geochemical point of view, the sensitivity of the Critical Zone to hazards is not only linked to its proximity to the surface. It may also be linked to - albeit less common - intrusion of upward migrating fluids. One of the hazard scenarios to observe these pathways in surface environments is the occurrence of CO2-rich fluid leakage from deeper horizons and especially leakage from reservoir in the case of underground storage such as Carbon Storage applications. Much effort is done to prevent this risk but it necessary to consider the mitigation of this leak to insure safe storage. Numerous active or planned CO2 storage sites belong to large sedimentary basins. In that perspective, a CO2 injection has been performed in a multi-layered - carbonated aquifer (Beauce aquifer) from the Paris basin as this basin has been considered for such applications. The aquifer mineralogy of the targeted site is dominated by calcite (95 to 98%) with traces of quartz and clay minerals. Around 10,000 liters of CO2 were injected at 50 m depth during a series of gaseous pulsed injections for 5 days. After 3 days of incubation in the aquifer, the groundwater was pumped during 5 days allowing the recovery of 140 m3 of backward water. Physico-chemical parameters, major and trace elements concentrations and dissolved CO2 concentrations were monitored to evaluate water-rock interactions occurring within the aquifer and impacts onto water quality. Main changes that were observed during the CO2 release are in good agreement with results from previous experiments performed worldwide. A strong decrease of the pH value (2 units), a rise of the electrical conductivity (2 fold) and changes in the redox conditions (from oxidising to less oxidising) are monitored few hours after the initiation of the pumping. The dissolution of CO2 induces a drop of pH that favours water-rock interaction processes. The kinetic of reactions appears to be dominated by the dissolution of carbonate, mainly calcite, and probably by desorption processes onto clay minerals. Thus higher concentrations in HCO3 (+225%), Ca (+95%), Mg (+45%), Na (+14%) and SiO2 (+11%) as major elements and in Sr, Mn, Ba, B, As or Li as trace elements (2 to 3 fold increase) were monitored. Congruent rise in the concentration in dissolved CO2 is also observed. Nonetheless, the effects onto water physico-chemical parameters and water chemistry are transient and vanished in few days (4-5) when pumping is done. In the case of a punctual leakage event, even if pumping was not performed, natural flow of the water will also have induced natural attenuation and progressive vanish of anomalies. From a site management perspective, this suggests that sudden and time limited events may not be noticeable in the near surface if the monitoring locations are located remotely from the source. This highlights the need to have extensive site characterization prior setting a storage site.
End-tidal carbon dioxide monitoring stabilized hemodynamic changes during ECT.
Saito, Shigeru; Kadoi, Yuji; Nihishara, Fumio; Aso, Chizu; Goto, Fumio
2003-03-01
Accumulation of carbon dioxide (CO2) can disturb systemic and cerebral hemodynamics in patients receiving electroconvulsive therapy (ECT). The purpose of this study was to identify the effects of end-tidal CO2 monitoring on hemodynamic changes in patients who received ECT under propofol anesthesia. ECT was prescribed to 40 patients under propofol anesthesia. Ventilation was assisted using a face mask and 100% oxygen, with or without end-tidal CO2 monitoring. Heart rate was significantly increased in patients without end-tidal CO2 monitoring at 1 to 5 minutes after electrical stimulation (p < 0.01). Mean arterial blood pressure and middle cerebral artery blood flow velocity in the group without end-tidal CO2 monitoring were significantly larger than the values in the group with the monitor at 1 to 5 minutes after electrical stimulation. Arterial CO2 tension in the group without end-tidal CO2 monitoring was larger than the value in the group with the monitoring at 1 minute (45+/-5 mm Hg with the monitor and 56+/-8 without the monitor) and 5 minutes (37+/-4 mm Hg with the monitor and 51+/-8 without the monitor) after electrical stimulation (p < 0.01). Application of end-tidal CO2 monitoring is considered beneficial for safe and effective anesthesia management of patients undergoing ECT, especially patients with an intracranial disorder or ischemic heart disease.
NASA Astrophysics Data System (ADS)
Van De Ven, C. J. C.; Mumford, K. G.
2016-12-01
The environmental impact and potential human health implications, specifically from the contamination of groundwater sources, has sparked controversy around shale gas extraction in North America. It is clear that understanding the effects of hydraulic fracturing on shallow fresh water aquifers is of great importance, including the threat of stray gas (also referred to as fugitive methane) on groundwater quality. Faulty wells provide a preferential pathway for free gas phase (mostly methane) to migrate from deeper gas-bearing formations of natural gas to shallow aquifers, followed by its dissolution into the surrounding groundwater. An increased understanding of the fate of fugitive methane in shallow aquifers is required to assess the potential risks associated with current and future operations, as well as to better link gas migration, dissolution and the deterioration of groundwater quality. In this study, a series of laboratory experiments were performed using carbon dioxide (CO2) gas as a surrogate for methane to improve our understanding of gas dissolution in groundwater systems. Using CO2, a novel laboratory technique was developed that allows the measurement of dissolved CO2 concentrations using image analysis alongside visualization of free gas mobilization. The technique is based on the acidification of water during CO2 dissolution, which causes a colour change in an indicator dye. The colour change is recorded using a visual light transmission technique, in which digital images are used to track dissolved concentrations at high spatial (1 mm) and temporal (5 s) resolutions in a two-dimensional (25 × 25 × 1 cm3) flow cell. The experiments were completed in both homogeneous sand packs and sand packs containing layered heterogeneities to investigate the dissolution of both gas fingers and gas pools. The results demonstrate the potential of this novel technique for investigating gas dissolution, and showed significant tailing of dissolved CO2 and persistence of other gas phase components. This technique will aid in the development of conceptual models to link fugitive methane to groundwater contamination and provide detailed data required for the validation of numerical models that account for gas-water mass transfer; both of which are required for the development of sound monitoring techniques.
Numerical investigation for the impact of CO2 geologic sequestration on regional groundwater flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, H.; Zhang, K.; Karasaki, K.
Large-scale storage of carbon dioxide in saline aquifers may cause considerable pressure perturbation and brine migration in deep rock formations, which may have a significant influence on the regional groundwater system. With the help of parallel computing techniques, we conducted a comprehensive, large-scale numerical simulation of CO{sub 2} geologic storage that predicts not only CO{sub 2} migration, but also its impact on regional groundwater flow. As a case study, a hypothetical industrial-scale CO{sub 2} injection in Tokyo Bay, which is surrounded by the most heavily industrialized area in Japan, was considered, and the impact of CO{sub 2} injection on near-surfacemore » aquifers was investigated, assuming relatively high seal-layer permeability (higher than 10 microdarcy). A regional hydrogeological model with an area of about 60 km x 70 km around Tokyo Bay was discretized into about 10 million gridblocks. To solve the high-resolution model efficiently, we used a parallelized multiphase flow simulator TOUGH2-MP/ECO2N on a world-class high performance supercomputer in Japan, the Earth Simulator. In this simulation, CO{sub 2} was injected into a storage aquifer at about 1 km depth under Tokyo Bay from 10 wells, at a total rate of 10 million tons/year for 100 years. Through the model, we can examine regional groundwater pressure buildup and groundwater migration to the land surface. The results suggest that even if containment of CO{sub 2} plume is ensured, pressure buildup on the order of a few bars can occur in the shallow confined aquifers over extensive regions, including urban inlands.« less
40 CFR 75.13 - Specific provisions for monitoring CO 2 emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the general operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow... specified in §§ 75.11(a) through (e) or § 75.16, except that the phrase “CO2 continuous emission monitoring system” shall apply rather than “SO2 continuous emission monitoring system,” the phrase “CO2...
40 CFR 75.13 - Specific provisions for monitoring CO 2 emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... the general operating requirements in § 75.10 for a CO2 continuous emission monitoring system and flow... specified in §§ 75.11(a) through (e) or § 75.16, except that the phrase “CO2 continuous emission monitoring system” shall apply rather than “SO2 continuous emission monitoring system,” the phrase “CO2...
21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO 2) monitor.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cutaneous carbon dioxide (PcCO 2) monitor. 868... dioxide (PcCO 2) monitor. (a) Identification. A cutaneous carbon dioxide (PcCO2) monitor is a noninvasive... relative changes in a hemodynamically stable patient's cutaneous carbon dioxide tension as an adjunct to...
21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO 2) monitor.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Cutaneous carbon dioxide (PcCO 2) monitor. 868... dioxide (PcCO 2) monitor. (a) Identification. A cutaneous carbon dioxide (PcCO2) monitor is a noninvasive... relative changes in a hemodynamically stable patient's cutaneous carbon dioxide tension as an adjunct to...
Imaging Fracking Zones by Microseismic Reverse Time Migration for Downhole Microseismic Monitoring
NASA Astrophysics Data System (ADS)
Lin, Y.; Zhang, H.
2015-12-01
Hydraulic fracturing is an engineering tool to create fractures in order to better recover oil and gas from low permeability reservoirs. Because microseismic events are generally associated with fracturing development, microseismic monitoring has been used to evaluate the fracking process. Microseismic monitoring generally relies on locating microseismic events to understand the spatial distribution of fractures. For the multi-stage fracturing treatment, fractures created in former stages are strong scatterers in the medium and can induce strong scattering waves on the waveforms for microseismic events induced during later stages. In this study, we propose to take advantage of microseismic scattering waves to image fracking zones by using seismic reverse time migration method. For downhole microseismic monitoring that involves installing a string of seismic sensors in a borehole near the injection well, the observation geometry is actually similar to the VSP (vertical seismic profile) system. For this reason, we adapt the VSP migration method for the common shot gather to the common event gather. Microseismic reverse-time migration method involves solving wave equation both forward and backward in time for each microseismic event. At current stage, the microseismic RTM is based on 2D acoustic wave equation (Zhang and Sun, 2008), solved by the finite-difference method with PML absorbing boundary condition applied to suppress the reflections of artificial boundaries. Additionally, we use local wavefield decomposition instead of cross-correlation imaging condition to suppress the imaging noise. For testing the method, we create a synthetic dataset for a downhole microseismic monitoring system with multiple fracking stages. It shows that microseismic migration using individual event is able to clearly reveal the fracture zone. The shorter distance between fractures and the microseismic event the clearer the migration image is. By summing migration images for many events, it can better reveal the fracture development during the hydraulic fracturing treatment. The synthetic test shows that microseismic migration is able to characterize the fracturing zone along with microseismic events. We will extend the method from 2D to 3D as well as from acoustic to elastic and apply it to real microseismic data.
Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage
NASA Astrophysics Data System (ADS)
Blackford, Jerry; Stahl, Henrik; Bull, Jonathan M.; Bergès, Benoît J. P.; Cevatoglu, Melis; Lichtschlag, Anna; Connelly, Douglas; James, Rachael H.; Kita, Jun; Long, Dave; Naylor, Mark; Shitashima, Kiminori; Smith, Dave; Taylor, Peter; Wright, Ian; Akhurst, Maxine; Chen, Baixin; Gernon, Tom M.; Hauton, Chris; Hayashi, Masatoshi; Kaieda, Hideshi; Leighton, Timothy G.; Sato, Toru; Sayer, Martin D. J.; Suzumura, Masahiro; Tait, Karen; Vardy, Mark E.; White, Paul R.; Widdicombe, Steve
2014-11-01
Fossil fuel power generation and other industrial emissions of carbon dioxide are a threat to global climate, yet many economies will remain reliant on these technologies for several decades. Carbon dioxide capture and storage (CCS) in deep geological formations provides an effective option to remove these emissions from the climate system. In many regions storage reservoirs are located offshore, over a kilometre or more below societally important shelf seas. Therefore, concerns about the possibility of leakage and potential environmental impacts, along with economics, have contributed to delaying development of operational CCS. Here we investigate the detectability and environmental impact of leakage from a controlled sub-seabed release of CO2. We show that the biological impact and footprint of this small leak analogue (<1 tonne CO2 d-1) is confined to a few tens of metres. Migration of CO2 through the shallow seabed is influenced by near-surface sediment structure, and by dissolution and re-precipitation of calcium carbonate naturally present in sediments. Results reported here advance the understanding of environmental sensitivity to leakage and identify appropriate monitoring strategies for full-scale carbon storage operations.
Geophysical monitoring technology for CO2 sequestration
NASA Astrophysics Data System (ADS)
Ma, Jin-Feng; Li, Lin; Wang, Hao-Fan; Tan, Ming-You; Cui, Shi-Ling; Zhang, Yun-Yin; Qu, Zhi-Peng; Jia, Ling-Yun; Zhang, Shu-Hai
2016-06-01
Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.
Chen, Si; Gayet, Florence; Manoury, Eric; Joumaa, Ahmad; Lansalot, Muriel; D'Agosto, Franck; Poli, Rinaldo
2016-04-25
Stable latexes of hierarchically organized core-cross-linked polymer micelles that are functionalized at the core with triphenylphosphine (TPP@CCM) have been investigated by NMR spectroscopic analysis at both natural (ca. pH 5) and strongly basic (pH 13.6) pH values after core swelling with toluene. The core-shell interface structuring forces part of the hydrophilic poly(ethylene oxide) (PEO) chains to reside inside the hydrophobic core at both pH values. Loading the particle cores with [Rh(acac)(CO)2 ] (acac=acetylacetonate) at various Rh/P ratios yielded polymer-supported [Rh(acac)(CO)(TPP)] (TPP=triphenylphosphine). The particle-to-particle rhodium migration is very fast at natural pH, but slows down dramatically at high pH, whereas the size distribution of the nanoreactors remains unchanged. The slow migration at pH 13.6 leads to the generation of polymer-anchored [Rh(OH)(CO)(TPP)2 ], which is also generated immediately upon the addition of NaOH to the particles with a [Rh(acac)(CO)] loading of 50 %. Similarly, treatment of the same particles with NaCl yielded polymer-anchored [RhCl(CO)(TPP)2 ]. Interparticle coupling occurs during these rapid processes. These experiments prove that the major contribution to metal migration is direct core-core contact. The slow migration at the high pH value, however, must result from a pathway that does not involve core-core contact. The facile penetration of the polymer cores by NaOH and NaCl results from the presence of shell-linked poly(ethylene oxide) methyl ether functions both outside and inside the polymer core-shell interface. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High Throughput Strontium Isotope Method for Monitoring Fluid Flow Related to Geological CO2 Storage
NASA Astrophysics Data System (ADS)
Capo, R. C.; Wall, A. J.; Stewart, B. W.; Phan, T. T.; Jain, J. C.; Hakala, J. A.; Guthrie, G. D.
2012-12-01
Natural isotope tracers, such as strontium (Sr), can be a unique and powerful component of a monitoring strategy at a CO2 storage site, facilitating both the quantification of reaction progress for fluid-rock interactions and the tracking of brine migration caused by CO2 injection. Several challenges must be overcome, however, to enable the routine use of isotopic tracers, including the ability to rapidly analyze numerous aqueous samples with potentially complex chemical compositions. In a field situation, it might be necessary to analyze tens of samples over a short period of time to identify subsurface reactions and respond to unexpected fluid movement in the host formation. These conditions require streamlined Sr separation chemistry for samples ranging from pristine groundwaters to those containing high total dissolved solids, followed by rapid measurement of isotope ratios with high analytical precision. We have optimized Sr separation chemistry and MC-ICP-MS methods to provide rapid and precise measurements of isotope ratios in geologic, hydrologic, and environmental samples. These improvements will allow an operator to independently prepare samples for Sr isotope analysis off-site using fast, low cost chemical separation procedures and commercially available components. Existing vacuum-assisted Sr separation procedures were modified by using inexpensive disposable parts to eliminate cross contamination. Experimental results indicate that the modified columns provide excellent separation of Sr from chemically complex samples and that Sr can be effectively isolated from problematic matrix elements (e.g., Ca, Ba, K) associated with oilfield brines and formation waters. The separation procedure is designed for high sample throughput in which batches of 24 samples can be processed in approximately 2 hours, and are ready for Sr isotope measurements by MC-ICP-MS immediately after collection from the columns. Precise Sr isotope results can be achieved by MC-ICP-MS with a throughput of 4 to 5 samples per hour. Our mean measured value of NIST Sr isotope standard SRM 987 is 0.710265 ± 0.000014 (2σ, n = 94). A range of brines and CO2-rich fluids analyzed by this method yielded results within the analytical uncertainty of 87Sr/86Sr ratios previously determined by standard column separation and thermal ionization mass spectrometry. This method provides a fast and effective way to use Sr isotopes for monitoring purposes related to geological CO2 storage.
Visualization and measurement of CO2 flooding in an artificial porous structure using micromodels
NASA Astrophysics Data System (ADS)
Park, Bogyeong; Wang, Sookyun; Um, Jeong-Gi; Lee, Minhee; Kim, Seon-Ok
2015-04-01
Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 1 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.
Visualization of CO2 flooding in an artificial porous structure using micromodels
NASA Astrophysics Data System (ADS)
Park, B.; Wang, S.; Lee, M.; Um, J. G.
2014-12-01
Geological CO2 sequestration is one of the most important technologies to mitigate greenhouse gas emission into the atmosphere by isolating great volumes of CO2 in deep geological formations. This novel storage option for CO2 involves injecting supercritical CO2 into porous formations saturated with pore fluid such as brine and initiate CO2 flooding with immiscible displacement. Despite of significant effects on macroscopic migration and distribution of injected CO2, however, only a limited information is available on wettability in microscopic scCO2-brine-mineral systems. In this study, a micromodel had been developed to improve our understanding of how CO2 flooding and residual characteristics of pore water are affected by the wettability in scCO2-water-glass bead systems. The micromodel (a transparent pore structure made of 0.5 mm diameter glass beads between two glass plates) in a high-pressure cell provided the opportunity to visualize spread of supercritical CO2 and displacement of pore water in high pressure and high temperature conditions. CO2 flooding followed by fingering migration and dewatering followed by formation of residual water were observed through a imaging system with a microscope. Measurement of contact angles of droplets of residual water on and between glass beads in a micromodel were conducted to estimate differential pressure between wetting and nonwetting fluids in a scCO2-water-glass bead system. The experimental observation results could provide important fundamental informations on capillary characteristics of reservoirs and caprocks for geological CO2 sequestration.
Stochastic Modeling of CO2 Migrations and Chemical Reactions in Deep Saline Formations
NASA Astrophysics Data System (ADS)
Ni, C.; Lee, I.; Lin, C.
2013-12-01
Carbon capture and storage (CCS) has been recognized the feasible technology that can significant reduce the anthropogenic CO2 emissions from large point sources. The CO2 injection in geological formations is one of the options to permanently store the captured CO2. Based on this concept a large number of target formations have been identified and intensively investigated with different types of techniques such as the hydrogeophysical experiments or numerical simulations. The numerical simulations of CO2 migrations in saline formations recently gather much attention because a number of models are available for this purpose and there are potential sites existing in many countries. The lower part of Cholan Formation (CF) near Changhua Coastal Industrial Park (CCIP) in west central Taiwan was identified the largest potential site for CO2 sequestration. The top elevations of the KF in this area varies from 1300 to 1700m below the sea level. Laboratory experiment showed that the permeability of CF is 10-14 to 10-12 m2. Over the years the offshore seismic survey and limited onshore borehole logs have provided information for the simulation of CO2 migration in the CF although the original investigations might not focus on the purpose of CO2 sequestration. In this study we modify the TOUGHREACT model to consider the small-scale heterogeneity in target formation and the cap rock of upper CF. A Monte Carlo Simulation (MCS) approach based on the TOUGHREACT model is employed to quantify the effect of small-scale heterogeneity on the CO2 migrations and hydrochemical reactions in the CF. We assume that the small-scale variability of permeability in KF can be described with a known Gaussian distribution. Therefore, the Gaussian type random field generator such as Sequential Gaussian Simulation (SGSIM) in Geostatistical Software Library (GSLIB) can be used to provide the random permeability realizations for the MCS. A variety of statistical parameters such as the variances and correlation lengths in a Gaussian covariance model are varied in the MCS and the uncertainty of the CO2 and other chemical concentrations are evaluated based on 144 random realizations. In this study a constant injection rate of100Mt/year supercritical CO2 is applied in the bottom of CF. The continuous injection time is 20 years and the uncertainty results are evaluated at 100 years. By comparing with the case without small-scale variability simulation results show that the CO2 plume sizes in the horizontal direction increase from tens of meters to hundreds of meters when the variances of small-scale variability are varied from 1.0 to 4.0. The changes of correlation lengths (i.e., from 100m, 200m, to 400m) show small contribution on the size increases of CO2 plumes. Other uncertainties of chemical concentrations show behaviors similar to the CO2 plume patterns.
NASA Astrophysics Data System (ADS)
Stonestrom, D. A.; Andraski, B. J.; Baker, R. J.; Luo, W.; Michel, R. L.
2005-05-01
Contaminant-transport processes are being investigated at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS), adjacent to the Nation's first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Information on plume dynamics comes from an array of shallow (<2 m) and two vertical arrays of deep (5-109 m) gas-sampling ports, plus ground-water monitoring wells. Migration is dominated by lateral transport in the upper 50 m of sediments. Radiological analyses require ex-situ wet-chemical techniques, because in-situ sensors for the radionuclides of interest do not exist. As at other LLRW-disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs) and other substances. Halogenated-methanes, -ethanes, and -ethenes dominate the complex mixture of VOCs migrating from the disposal area. These compounds and their degradates provide a distinctive "fingerprint" of contamination originating from low-level radioactive waste. Carbon-dioxide and VOC anomalies provide indicator proxies for radionuclide contamination. Spatial and temporal patterns of co-disposed and byproduct constituents provide field-scale information about physical and biochemical processes involved in transport. Processes include reduction and biorespiration within trenches, and largely non-reactive, barometrically dispersed diffusion away from trenches.
Baumjohann, Nina; Harms, Diedrich
2015-01-01
During storage, acetaldehyde migration from polyethylene terephthalate (PET) bottles can affect the quality of mineral water even in the low µg l(-1) range negatively, as it features a fruity or plastic-like off-flavour. For a sensitive and fast analysis of acetaldehyde in mineral water, a new analysis method of 2,4-dinitrophenylhydrazine (DNPH) derivatisation followed by HPLC-electrospray tandem mass spectrometry (ESI-MS/MS) was developed. Acetaldehyde was directly derivatised in the mineral water sample avoiding extraction and/or pre-concentration steps and then analysed by reversed-phase HPLC-ESI-MS/MS using multiple reaction monitoring mode (MRM). Along with method development, the optimum molar excess of DNPH in contrast to acetaldehyde was studied for the mineral water matrix, because no specific and robust data were yet available for this critical parameter. Best results were obtained by using a calibration via the derivatisation reaction. Without any analyte enrichment or extraction, an LOD of 0.5 µg l(-1) and an LOQ of 1.9 µg l(-1) were achieved. Using the developed method, mineral water samples packed in PET bottles from Germany were analysed and the correlation between the acetaldehyde concentration and other characteristics of the samples was evaluated illustrating the applicability of the method. Besides a relationship between bottle size and CO2 content of the mineral water and acetaldehyde migration, a correlation with acetaldehyde migration and the material composition of the bottle, e.g. recycled PET, was noted. Investigating the light influence on the acetaldehyde migration with a newly developed, reproducible light exposure setup, a significant increase of the acetaldehyde concentration in carbonated mineral water samples was observed.
Chen, Miaojiao; Zhang, Jingjing; Hu, Fang; Liu, Shiping; Zhou, Zhiguang
2015-11-01
Accumulating evidence suggests an association between diabetes and cancer. Inflammation is a key event that underlies the pathological processes of the two diseases. Metformin displays anti-cancer effects, but the mechanism is not completely clear. This study investigated whether metformin regulated the microenvironment of macrophage polarization to affect the characteristics of HepG2 cells and the possible role of the Notch-signalling pathway. RAW264.7 macrophages were cultured alone or co-cultured with HepG2 cells and treated with metformin. We analysed classical (M1) and alternative (M2) gene expression in RAW264.7 cells using quantitative real-time polymerase chain reaction. Changes in mRNA and protein expressions of Notch signalling in both cell types were also detected using quantitative real-time polymerase chain reaction and Western-blotting analyses. The proliferation, apoptosis and migration of HepG2 cells were detected using Cell Titer 96 AQueous One Solution Cell Proliferation Assay (MTS) (Promega Corporation, Fitchburg, WI, USA), Annexin V-FITC/PI (7SeaPharmTech, Shanghai, China) and the cell scratch assay, respectively. Metformin induced single-cultured RAW264.7 macrophages with an M2 phenotype but attenuated the M2 macrophage differentiation and inhibited monocyte chemoattractant protein-1 (MCP-1) secretion in a co-culture system. The co-cultured group of metformin pretreatment activated Notch signalling in macrophages but repressed it inHepG2 cells. Co-culture also promoted the proliferation and migration of HepG2 cells. However, along with the enhanced apoptosis, the proliferation and the migration of HepG2 cells were remarkably inhibited in another co-culture system with metformin pretreatment. Metformin can skew RAW264.7 macrophages toward different phenotypes according to changes in the microenvironment, which may affect the inflammatory conditions mediated by macrophages, induce apoptosis and inhibit the proliferation and migration of HepG2 cells. Notch signalling pathway is a potentially important mechanism in the regulation of metformin on macrophage polarization and the subsequent change of hepatoma cells. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
40 CFR 75.10 - General operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... part, a flow monitoring system and a CO2 continuous emission monitoring system that uses an O2...) Primary Measurement Requirement. The owner or operator shall measure opacity, and all SO2, NOX, and CO2... continuous emission monitoring system (consisting of a NOX pollutant concentration monitor and an O2 or CO2...
40 CFR 75.10 - General operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... part, a flow monitoring system and a CO2 continuous emission monitoring system that uses an O2...) Primary Measurement Requirement. The owner or operator shall measure opacity, and all SO2, NOX, and CO2... continuous emission monitoring system (consisting of a NOX pollutant concentration monitor and an O2 or CO2...
Earthquakes induced by fluid injection: Implications for secure CO2 storage
NASA Astrophysics Data System (ADS)
Verdon, J.; Kendall, J. M.
2013-12-01
It is well understood that the injection of fluids into the subsurface can trigger seismic activity. Recently, the US unconventional gas boom has lead to an increase in the volumes of produced water being disposed in geological formations and a concomitant increase in triggered seismic events. This issue is especially pertinent for geologic carbon sequestration, where the injection volumes necessary to store the CO2 emissions from a typical coal-fired power station far exceed the volumes known to have triggered seismic activity. Moreover, unlike water disposal operations, where there is no strong buoyancy drive to return injected fluids to the surface, CO2 sequestration requires a sealing caprock to prevent upward CO2 migration. Induced seismic events may create or reactivate faults and fracture networks, compromising the hydraulic integrity of the caprock. Therefore, induced seismic activity at future CCS sites is of doubly significant, given both the direct seismic hazard and the risk to secure CO2 storage. With this in mind, we re-examine case histories of seismic activity induced by waste water disposal into sedimentary formations with the intention of learning lessons that can be applied to future CCS sites. In particular, we examine the spatial and temporal distributions of events to determine whether there are any rules-of-thumb that might be usefully applied when appraising and monitoring operations. We find that in all cases, at least some seismicity occurs at the depth of the injection interval, but the majority (~80% of events) occur at least 500m below the injection depth. Less than 2% of events occur more than 500m above the shallowest injection interval. This observation must be considered encouraging from a CCS perspective, where seismicity in sealing caprocks will be of greatest concern. However, without a phenomenological explanation for the relative lack of seismicity above injection depths, it cannot be guaranteed that such observations would be repeated at CCS sites. We also examine the lateral distance between induced events and injection wells. The maximum distance between wells and events will define a minimum radius of influence, a distance over which geomechanical appraisal and fault characterization studies must be carried out at future CCS sites. We find that 62% of events occur within 5km, and that 99% of events occur within 19km of injection wells. These case examples highlight the importance of seismic monitoring at future CCS sites. Of the two large-scale CCS sites to deploy microseismic arrays, both have detected induced seismic events. During 6 years of monitoring at Weyburn, ~100 events with magnitudes between -3.0 and -1.0 have been detected, while at In Salah more than 1000 events, with magnitudes as large as 1.0, have been detected during 6 months of monitoring. Combined the case examples from water disposal operations, these operations demonstrate the need for dedicated local seismic monitoring networks to be installed at future CO2 injection sites.
Isotopic fractionation of gases during its migration: experiments and 2D numerical simulation
NASA Astrophysics Data System (ADS)
Kara, S.; Prinzhofer, A.
2003-04-01
Several works have been developed in the last decade on the experimental isotope fractionation of gases during migration (Prinzhofer et al., 1997 and Zhang &Krooss, 2001 among others). We add to these results new experiments on diffusion of CO_2, which becomes currently a crucial subject for environmental purpose. Our experiments showed that transport by diffusion of CO_2 through a water saturated shale induces a significant and systematic carbon isotopic fractionation with heavier (13C enriched) CO_2 migrating first. In all experiments, significant isotope fractionation was found but still remains without quantitative interpretation. To interpret these data, we developed a 2D numerical model at the pore scale. The general principle of this model is the study of transport by water solubilization/diffusion of gas in a capillary saturated with water with two different media : a mobile zone representing free water and a immobile zone representing bounded water. The model takes also into account solubilization coefficients of gas in water, as well as the migration distance and the volume of upstream and downstream reservoirs. Using our numerical model, we could reproduce the evolution of isotopic fractionations and the velocity of CO_2 migration versus the production factor F (proportion of diffused gas). We determined some physical parameters of the porous medium (bentonite) which are not directly measurable at the present time. Furthermore, we used these parameters to reproduce the curves of isotopic fractionation obtained by Pernaton (1998) on methane migration with the same porous rock. We used also a modified version of this model with infinite reservoirs to reproduce the curves of isotopic fractionation of Zhang &Krooss (2001). Application of this model to geological scale is under progress, in order to implement it into sedimentary basins modelling. REFERENCES: Zhang T. and Krooss M. (2001). Geochim. Cosmochim. Acta, Vol. 65, No.16, pp. 2723-2742. Pernaton E. (1998) PhD. Thesis, Université de Paris VII, 272 pp. Prinzhofer A. and Pernaton E. (1997) Chem. Geol., vol. 142, 193-200.
Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik
2016-07-01
The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gierzynski, A.; Pollyea, R.
2016-12-01
Recent studies suggest that continental flood basalts may be suitable for geologic carbon sequestration, due to fluid-rock reactions that mineralize injected CO2 on relatively short time-scales. Flood basalts also possess a morphological structure conducive to injection, with alternating high-permeability (flow margin) and low-permeability (flow interior) layers. However, little information exists on the behavior of CO2 migration within field-scale fracture networks, particularly within flow interiors and at conditions near the critical point for CO2. In this study, numerical simulation is used to investigate the influence of fracture permeability uncertainty during gravity-driven CO2 migration within a jointed basalt flow interior as CO2 undergoes phase change from supercritical fluid to a subcritical phase. The model domain comprises a 2D fracture network mapped with terrestrial LiDAR scans of Columbia River Basalt acquired near Starbuck, WA. The model domain is 5 m × 5 m with bimodal heterogeneity (fracture and matrix), and initial conditions corresponding to a hydrostatic pressure gradient between 750 and 755 m depth. Under these conditions, the critical point for CO2 occurs 1.5 m above the bottom of the domain. For this model scenario, CO2 enters the base of the fracture network at 0.5 MPa overpressure, and matrix permeability is assumed constant. Fracture permeability follows a lognormal distribution on the basis of fracture aperture values from literature. In order to account for spatial uncertainty, the lognormal fracture permeability distribution is randomly located in the model domain and CO2 migration is simulated within the same fracture network for 50 equally probable realizations. Model results suggest that fracture connectivity, which is independent of permeability distribution, governs the path taken by buoyant CO2 as it rises through the flow interior; however, the permeability distribution strongly governs the CO2 flux magnitude. In particular, this research shows that even where fracture networks are sufficiently connected, CO2 flux is often inhibited by a cell of lower permeability, analogous to an obstruction or asperity in a natural fracture. This impresses the importance of considering spatial uncertainty in fracture apertures when modeling CO2 leakage through a caprock.
On the development of a methodology for extensive in-situ and continuous atmospheric CO2 monitoring
NASA Astrophysics Data System (ADS)
Wang, K.; Chang, S.; Jhang, T.
2010-12-01
Carbon dioxide is recognized as the dominating greenhouse gas contributing to anthropogenic global warming. Stringent controls on carbon dioxide emissions are viewed as necessary steps in controlling atmospheric carbon dioxide concentrations. From the view point of policy making, regulation of carbon dioxide emissions and its monitoring are keys to the success of stringent controls on carbon dioxide emissions. Especially, extensive atmospheric CO2 monitoring is a crucial step to ensure that CO2 emission control strategies are closely followed. In this work we develop a methodology that enables reliable and accurate in-situ and continuous atmospheric CO2 monitoring for policy making. The methodology comprises the use of gas filter correlation (GFC) instrument for in-situ CO2 monitoring, the use of CO2 working standards accompanying the continuous measurements, and the use of NOAA WMO CO2 standard gases for calibrating the working standards. The use of GFC instruments enables 1-second data sampling frequency with the interference of water vapor removed from added dryer. The CO2 measurements are conducted in the following timed and cycled manner: zero CO2 measurement, two standard CO2 gases measurements, and ambient air measurements. The standard CO2 gases are calibrated again NOAA WMO CO2 standards. The methodology is used in indoor CO2 measurements in a commercial office (about 120 people working inside), ambient CO2 measurements, and installed in a fleet of in-service commercial cargo ships for monitoring CO2 over global marine boundary layer. These measurements demonstrate our method is reliable, accurate, and traceable to NOAA WMO CO2 standards. The portability of the instrument and the working standards make the method readily applied for large-scale and extensive CO2 measurements.
NASA Astrophysics Data System (ADS)
Oldenburg, C. M.; Nicot, J.; Bryant, S. L.
2008-12-01
Motivated by the dual objectives of (1) encouraging geologic carbon sequestration (GCS) as one of several strategies urgently needed to reduce CO2 emissions, and (2) protecting the environment from unintended CO2 injection-related impacts, we have developed a simple and transparent framework for certifying GCS safety and effectiveness at individual sites. The approach we developed, called the Certification Framework (CF), is proposed as a standard way for project proponents, regulators, and the public to analyze and understand risks and uncertainties of GCS. In the CF, we relate effective trapping to CO2 leakage risk, where we use the standard definition of risk involving the two factors (1) probability of a particular leakage scenario, and (2) impact of that leakage scenario. In short, if the CO2 leakage risk as calculated by the CF is below threshold values for the life of the project, then effective trapping is predicted and the site can be certified. The concept of effective trapping is more general than traditional "no migration" approaches to underground injection regulation. We achieve simplicity in the CF by using (1) wells and faults as the potential leakage pathways, (2) five compartments to represent where impacts can occur (underground sources of drinking water, hydrocarbon and mineral resources, near-surface environment, health and safety, and emission credits and atmosphere), (3) modeled CO2 fluxes and concentrations as proxies for impact to compartments, (4) broad ranges of storage formation properties to generate a catalog of simulated CO2 plumes, and (5) probabilities of intersection of the CO2 plume with the conduits and compartments. In a case study application of the CF for a saline formation GCS site in the Texas Gulf Coast, analysis with the CF suggested the overall leakage risk to be very small, with the largest contribution coming from risk to the near-surface environment due to potential leakage up abandoned wells, depending on the effective permeability assumed for the wells. This result shows that risk could be drastically reduced by locating and monitoring abandoned wells, along with well or leakage mitigation if necessary. By this means, effective trapping can be predicted with greater certainty because both factors of risk (probability of well leakage, and impact of well leakage) can be reduced significantly through surface monitoring and mitigation, if needed.
NASA Astrophysics Data System (ADS)
Alshammari, A.; Brantley, D.; Knapp, C. C.; Lakshmi, V.
2017-12-01
In this study, multi chemical components ((H2O, H2S) will be injected with supercritical carbon dioxide in onshore part of South Georgia Rift (SGR) Basin model. Chemical reaction expected issue between these components to produce stable mineral of carbonite rocks by the time. The 3D geological model has been extracted from petrel software and computer modelling group (CMG) package software has been used to build simulation model explain the effect of mineralization on fault permeability that control on plume migration critically between (0-0.05 m Darcy). The expected results will be correlated with single component case (CO2 only) to evaluate the importance the mineralization on CO2 plume migration in structure and stratigraphic traps and detect the variation of fault leakage in case of critical values (low permeability). The results will also, show us the ratio of every trapped phase in (SGR) basin reservoir model.
NASA Astrophysics Data System (ADS)
Carson, Cantwell G.; Goueguel, Christian; Jain, Jinesh; McIntyre, Dustin
2015-05-01
The injection of CO2 into deep aquifers can potentially affect the quality of groundwater supplies were leakage to occur from the injection formation or fluids. Therefore, the detection of CO2 and/or entrained contaminants that migrate into shallow groundwater aquifers is important both to assess storage permanence and to evaluate impacts on water resources. Naturally occurring elements (i.e., Li, Sr) in conjunction with isotope ratios can be used to detect such leakage. We propose the use of laser induced breakdown spectroscopy (LIBS) as an analytical technique to detect a suite of elements in water samples. LIBS has real time monitoring capabilities and can be applied for elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of probe design and use of fiber optics make it a suitable technique for real time measurements in harsh conditions and in hard to reach places. The laboratory scale experiments to measure Li, K, Ca, and Sr composition of water samples indicate that the technique produces rapid and reliable data. Since CO2 leakage from saline aquifers may accompany a brine solution, we studied the effect of sodium salts on the accuracy of LIBS analysis. This work specifically also details the fabrication and application of a miniature ruggedized remotely operated diode pumped solid state passively Q-switched laser system for use as the plasma excitation source for a real time LIBS analysis. This work also proposes the optical distribution of many laser spark sources across a wide area for widespread leak detection and basin monitoring.
Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm; ...
2018-01-01
Here, the role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably,more » the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding e g to t 2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm
Here, the role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably,more » the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding e g to t 2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.« less
Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure.
Jutfelt, Fredrik; Hedgärde, Maria
2013-12-27
The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour. Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible. As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content.
Atlantic cod actively avoid CO2 and predator odour, even after long-term CO2 exposure
2013-01-01
Introduction The rising atmospheric CO2 level is continuously driving the dissolution of more CO2 into the oceans, and some emission scenarios project that the surface waters may reach 1000 μatm by the end of the century. It is not known if fish can detect moderately elevated CO2 levels, and if they avoid areas with high CO2. If so, avoidance behaviour to water with high CO2 could affect movement patterns and migrations of fish in the future. It is also being increasingly recognized that fish behaviour can be altered by exposure to CO2. Therefore this study investigated how long-term exposure to elevated pCO2 affects predator avoidance and CO2 avoidance in juvenile Atlantic cod (Gadus morhua). The fish were exposed to control water or CO2-enriched water (1000 μatm) for six weeks before being subjected to tests of behaviour. Results Despite long term exposure to elevated pCO2 the cod still strongly avoided the smell of a predator. These data are surprising because several coral reef fish have demonstrated reversal of olfactory responses after CO2 exposure, turning avoidance of predator cues into preference for predator cues. Fish from both treatment groups also demonstrated strong avoidance of CO2 when presented with the choice of control or CO2-acidified water, indicating that habituation to the CO2 sensory stimuli is negligible. Conclusions As Atlantic cod maintained normal behavioural responses to olfactory cues, they may be tolerant to CO2-induced behavioural changes. The results also suggest that despite the long-term exposure to CO2-acidified water, the fish still preferred the control water over CO2-acidified water. Therefore, in the future, fish may alter their movements and migrations in search of waters with a lower CO2 content. PMID:24373523
Tectonic impact on the dynamics of CO2-rich fluid migration in Utah
NASA Astrophysics Data System (ADS)
Nadine, E. Z.; Jean Luc, F.; Remy, D.; Battani, A.; Olivier, V.
2009-12-01
With the objective to rank the first order parameters acting in the long term CO2 storage, IFP is developing an integrated study based on the analytical results around the natural silici-clastic analogue of the Colorado Plateau in Utah. What are the dominant parameters which governed the fluid/gas migration in front of the Sevier fold-and-thrust Belt, particularly the CO2-enriched ones? Several sites have been investigated in Utah and Idaho provinces; in the Colorado Plateau, East and in front of the Sevier fold-and-thrust belt, as well as in the Basin & Range geological province North and South West of Salt Lake city (Sevier basin). As a first site selection, three distinct structural provinces have been analysed depending on their seal/reservoir characteristics for confinement: the Green River leaking area (Utah), where large WNW-ESE faults (Salt Wash, Little Wash F...) show several water, oil and gas (CO2, HC) seepages; the Basin & Range province (Utah & Idaho provinces) where low-angle normal faults are seismically active (leaking locally); and the Canyonlands zone (Utah), south of the Moab fault, where the system is well confined. The migration pathways used by composite gas and particularly CO2-enriched fluids (in the Green River area) combined with a reducing agent are locally easily recognisable by the bleaching effect where some reservoir levels or the faults pathways have been flushed. The architecture of the paleo and active fluid migration network can thus be mapped. As a second selective ranking, natural gas have been sampled either from oil/gas producing wells in the Moab area and Ferron Valley, or from natural seepages along leaking fault sections or from geysers along the Green-River fault system. The results, based on noble gas isotope analyses (Battani et al, AGU fall meeting 2009) show that 3 distinct provinces can be "isolated", either marked by the occurrence of mantle-derived CO2, or mixed mantle/crustal CO2 signature of varying ratio. How to explain the existence of these distinct provinces? Is it due to the physical properties of the reservoirs, to the evolution of the fracture and fault patterns changing through time in connection with paleostress fields, to the occurrence of a thick salt pillow in the Moab area which has driven the tectonic style and played as local seal, to the shale sealing properties when PCO2 increased at depth to the physical phase of the CO2 during migration or storage (dissolved, super-critical or gas), or finally to the seismic cyclicity. A possible strong linkage between the seismicity and the volcanic activity, corresponding to large CO2-rich gas expel, have been investigated. In order to constrain the architecture of the deep buried reservoirs and traps we analyzed the deformation through analogue models, the models have been acquired with X-Ray tomography at IFP. These parameters have been analysed for the three investigated areas, allowing to propose an integrated model of the local circulation and/or storage of the CO2-enriched fluid for each area.
NASA Astrophysics Data System (ADS)
Lin, Shin-Hsun; Liou, Tai-Sheng
2013-04-01
In this study, migration of CO2 in a deep saline aquifer with anticlines under various injection schemes was numerically simulated using the ECO2N simulator. The hypothetical study site was selected at the Taoyuan Plateau near the second largest coal-fired power plant, Datan power plant (annual CO2 emission of 1.5 Mt/yr), in Northwestern Taiwan. A 15x15 km2 simulation domain, containing two sub-parallel east-northeast Hukou and Pingzhen anticlines, was discretized into unstructured grid with spatial refinement at the injection borehole. Kueichulin sandstone and Chinshui shale in the simulation domain were considered as the storage formation and the cap rock, respectively. It was assumed that no CO2 exists in the aquifer prior to injection, and that the aquifer has a hydrostatic pressure distribution and a constant salinity of 3%. All boundaries were assumed to be "open". Isothermal simulations with 1 Mt/yr injection rate and 20 years of injection period were considered. van Genuchten capillary pressure and Corey relative permeability were assumed for all rock formations. Simulation results indicated that pressure buildup characterized the CO2 migration into three different phases: drainage of brine, formation dry-out, and dissolution and gravity take-over . It was found that the worst leakage scenario occurs if a single injection borehole is placed along the anticline axis. In this case, rock formations near the anticline axis provide a leakage path such that CO2 ultimately leaks out of the upper boundary. On the other hand, CO2 can be safely sequestrated in the storage formation if the injection borehole was placed away from the anticline axis. This is because gas phase CO2 migrates along the counter dipping direction of the anticline as a result of buoyancy. More favorable scenarios were found if a multiple-borehole injection scheme was used. In such cases, not only pressure buildup was significantly mitigated but the amount of precipitated salt was reduced. If a five-borehole scheme was used, for example, pressure buildup and the amount of precipitated salt can be reduced by 20% and 90%, respectively. More interestingly, if injection borehole was placed midway between the two anticlines, buoyancy dominates the migration of CO2 such that most CO2 is accumulated under the apex of anticline. Therefore, it is suggested that a multiple-borehole injection scheme would be a preferable scenario because of the reduced risks of pressure buildup and salt precipitation. Moreover, it would be better to place the injection boreholes away from the anticline axis in order to make good use of all possible trapping mechanisms to permanently sequestrate CO2 in deep rock formations.
The response and recovery of coastal beach-dune systems to storms
NASA Astrophysics Data System (ADS)
Farrell, Eugene; Lynch, Kevin; Wilkes Orozco, Sinead; Castro Camba, Guillermo
2017-04-01
This two year field monitoring project examines the response and recovery of a coastal beach-dune system in the west coast of Ireland (The Maharees, Co. Kerry) to storms. Historic analyses were completed using maps, aerial photography, and DGPS surveys with the Digital Shoreline Analysis System. The results establish that the average shoreline recession along the 1.2 km site is 72 m during the past 115 years. The coastal monitoring experiment aims to link micro-scale aeolian processes and meso-scale beach-dune behaviour to identify and quantify sediment exchange between the beach and dune under different meteorological and hydrodynamic conditions. Geomorphological changes on the beach and near-shore bar migration were monitored using repeated monthly DGPS surveys and drone technology. Topographical data were correlated with atmospheric data obtained from a locally installed Campbell Scientific automatic weather station, oceanographic data from secondary sources, and photogrammetry using a camera installed at the site collecting pictures every 10 minutes during daylight hours. Changes in surface elevation on the top of the foredune caused by aeolian processes are measured using erosion pin transects. The preliminary results illustrate that natural beach building processes initiate system recovery post storms including elevated foreshores and backshores and nearshore sand bar migration across the entire 1.2 km stretch of coastline. In parallel with the scientific work, the local community have mobilized and are working closely with the lead scientists to implement short term coastal management strategies such as signage, information booklets, sand trap fencing, walkways, wooden revetments, dune planting in order to support the end goal of obtaining financial support from government for a larger, long term coastal protection plan.
NASA Astrophysics Data System (ADS)
Wu, H.; Pollyea, R.
2017-12-01
Carbon capture and sequestration (CCS) is one component of a broad carbon management portfolio designed to mitigate adverse effects of anthropogenic CO2 emissions. During CCS, capillary trapping is an important mechanism for CO2 isolation in the disposal reservoir, and, as a result, the distribution of capillary force is an important factor affecting CO2 migration. Moreover, the movement of CO2 being injected to the reservoir is also affected by buoyancy, which results from the density difference between CO2 and brine. In order to understand interactions between capillary force and buoyancy, we implement a parametric modeling experiment of CO2 injections in a sandstone reservoir for combinations of the van Genuchten capillary pressure model that bound the range of capillary pressure-saturation curves measured in laboratory experiments. We simulate ten years supercritical CO2 (scCO2) injections within a 2-D radially symmetric sandstone reservoir for five combinations of the van Genuchten model parameters λ and entry pressure (P0). Results are analyzed on the basis of a modified dimensionless ratio, ω, which is similar to the Bond number and defines the relationship between buoyancy pressure and capillary pressure. We show how parametric variability affects the relationship between buoyancy and capillary force, and thus controls CO2 plume geometry. These results indicate that when ω >1, then buoyancy governs the system and CO2 plume geometry is governed by upward flow. In contrast, when ω <1, then buoyancy is smaller than capillary force and lateral flow governs CO2 plume geometry. As a result, we show that the ω ratio is an easily implemented screening tool for qualitative assessment of reservoir performance.
Combustion Products Monitor: Trade Study Testing
NASA Technical Reports Server (NTRS)
Wallace, William T.; Trowbridge, John B.
2011-01-01
Current combustion products monitoring on the International Space Station (ISS) uses a handheld device (Compound Specific Analyzer-Combustion Products, CSA-CP) containing electrochemical sensors used to measure the concentration of carbon monoxide (CO), hydrogen chloride (HCl), hydrogen cyanide (HCN), and oxygen (O2). The CO sensor in this device accounts for a well-known cross-sensitivity with hydrogen (H2), which is important, as ISS air can contain up to 100 ppm H2. Unfortunately, this current device is being discontinued, and due to space constraints, the new model cannot accommodate the size of the current CO sensor. Therefore, a trade study was conducted in order to determine which CO sensors on the market were available with compensation for H2, and which instruments used these sensors, while also measuring HCN, O2, and carbon dioxide (CO2). The addition of CO2 to the device is helpful, as current monitoring of this gas requires a second hand-held monitor. By providing a device that will monitor both combustion products and CO2, volume and up-mass can be reduced as these monitors are delivered to ISS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qinghua; He, Xu; Shi, Jinan
Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. We show the process of electrically induced oxygen migration and subsequent reconstructive structural transformation in a SrCoO 2.5-σ film by scanning transmission electron microscopy. We find that the extraction of oxygen from every second SrO layer occurs gradually under an electrical bias; beyond a critical voltage, the brownmillerite units collapse abruptly and evolve into a periodic nano-twined phase with a highmore » c/a ratio and distorted tetrahedra. These results show that oxygen vacancy rows are not only natural oxygen diffusion channels, but also preferred sites for the induced oxygen vacancies. These direct experimental results of oxygen migration may provide a common mechanism for the electrically induced structural evolution of oxides.« less
Zhang, Qinghua; He, Xu; Shi, Jinan; ...
2017-07-24
Oxygen ion transport is the key issue in redox processes. Visualizing the process of oxygen ion migration with atomic resolution is highly desirable for designing novel devices such as oxidation catalysts, oxygen permeation membranes, and solid oxide fuel cells. We show the process of electrically induced oxygen migration and subsequent reconstructive structural transformation in a SrCoO 2.5-σ film by scanning transmission electron microscopy. We find that the extraction of oxygen from every second SrO layer occurs gradually under an electrical bias; beyond a critical voltage, the brownmillerite units collapse abruptly and evolve into a periodic nano-twined phase with a highmore » c/a ratio and distorted tetrahedra. These results show that oxygen vacancy rows are not only natural oxygen diffusion channels, but also preferred sites for the induced oxygen vacancies. These direct experimental results of oxygen migration may provide a common mechanism for the electrically induced structural evolution of oxides.« less
Radiocarbon as a Reactive Tracer for Tracking Permanent CO 2 Storage in Basaltic Rocks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matter, Juerg; Stute, Martin; Schlosser, Peter
In view of concerns about the long-term integrity and containment of CO 2 storage in geologic reservoirs, many efforts have been made to improve the monitoring, verification and accounting methods for geologically stored CO 2. Our project aimed to demonstrate that carbon-14 ( 14C) could be used as a reactive tracer to monitor geochemical reactions and evaluate the extent of mineral trapping of CO 2 in basaltic rocks. The capacity of a storage reservoir for mineral trapping of CO 2 is largely a function of host rock composition. Mineral carbonation involves combining CO 2 with divalent cations including Ca 2+,more » Mg 2+ and Fe 2+. The most abundant geological sources for these cations are basaltic rocks. Based on initial storage capacity estimates, we know that basalts have the necessary capacity to store million to billion tons of CO 2 via in situ mineral carbonation. However, little is known about CO2-fluid-rock reactions occurring in a basaltic storage reservoir during and post-CO 2 injection. None of the common monitoring and verification techniques have been able to provide a surveying tool for mineral trapping. The most direct method for quantitative monitoring and accounting involves the tagging of the injected CO 2 with 14C because 14C is not present in deep geologic reservoirs prior to injection. Accordingly, we conducted two CO 2 injection tests at the CarbFix pilot injection site in Iceland to study the feasibility of 14C as a reactive tracer for monitoring CO 2-fluid-rock reactions and CO 2 mineralization. Our newly developed monitoring techniques, using 14C as a reactive tracer, have been successfully demonstrated. For the first time, permanent and safe disposal of CO 2 as environmentally benign carbonate minerals in basaltic rocks could be shown. Over 95% of the injected CO 2 at the CarbFix pilot injection site was mineralized to carbonate minerals in less than two years after injection. Our monitoring results confirm that CO 2 mineralization in basaltic rocks is far faster than previously postulated.« less
NASA Astrophysics Data System (ADS)
Denli, H.; Huang, L.
2008-12-01
Quantitative monitoring of reservoir property changes is essential for safe geologic carbon sequestration. Time-lapse seismic surveys have the potential to effectively monitor fluid migration in the reservoir that causes geophysical property changes such as density, and P- and S-wave velocities. We introduce a novel method for quantitative estimation of seismic velocity changes using time-lapse seismic data. The method employs elastic sensitivity wavefields, which are the derivatives of elastic wavefield with respect to density, P- and S-wave velocities of a target region. We derive the elastic sensitivity equations from analytical differentiations of the elastic-wave equations with respect to seismic-wave velocities. The sensitivity equations are coupled with the wave equations in a way that elastic waves arriving in a target reservoir behave as a secondary source to sensitivity fields. We use a staggered-grid finite-difference scheme with perfectly-matched layers absorbing boundary conditions to simultaneously solve the elastic-wave equations and the elastic sensitivity equations. By elastic-wave sensitivities, a linear relationship between relative seismic velocity changes in the reservoir and time-lapse seismic data at receiver locations can be derived, which leads to an over-determined system of equations. We solve this system of equations using a least- square method for each receiver to obtain P- and S-wave velocity changes. We validate the method using both surface and VSP synthetic time-lapse seismic data for a multi-layered model and the elastic Marmousi model. Then we apply it to the time-lapse field VSP data acquired at the Aneth oil field in Utah. A total of 10.5K tons of CO2 was injected into the oil reservoir between the two VSP surveys for enhanced oil recovery. The synthetic and field data studies show that our new method can quantitatively estimate changes in seismic velocities within a reservoir due to CO2 injection/migration.
First-Principles Study on the Tensile Properties and Failure Mechanism of the CoSb3/Ti Interface
NASA Astrophysics Data System (ADS)
She, Wuchang; Liu, Qiwen; Mei, Hai; Zhai, Pengcheng; Li, Jun; Liu, Lisheng
2018-06-01
The mechanical properties of the CoSb3/Ti interface play a critical role in the application of thermoelectric devices. To understand the failure mechanism of the CoSb3(001)/Ti(01 \\bar{1} 0) interface, we investigated its response during tensile deformations by first-principles calculations. By comparison with the result between the perfect interface and the interface after atomic migration, we find that the atomic migration at the interface has an obvious influence on the mechanical properties. The tensile tests indicate the ideal tensile stress of the CoSb3/Ti interface after atomic migration decreases by about 8.1% as compared to that of the perfect one. The failure mechanism of the perfect CoSb3/Ti interface is different from that of the migrated CoSb3/Ti interface. For the perfect CoSb3/Ti interface, the breakage of the Co-Sb bond leads to the failure of the system. For the CoSb3/Ti interface after atomic migration, the breakage of the Sb-Sb bond leads to the failure of the system. This is mainly because the new ionic Ti-Sb bonds make the electrons redistributed and weaken the stiffness of the Co-Sb bonds.
NASA Astrophysics Data System (ADS)
Lee, K. K.; Lee, S. S.; Kim, H. H.; Koh, E. H.; Kim, M. O.; Lee, K.; Kim, H. J.
2016-12-01
Multiple tracers were applied for source and pathway detection at two different sites. CO2 gas injected in the subsurface for a shallow-depth CO2 injection and leak test can be regarded as a potential contaminant source. Therefore, it is necessary to identify the migration pattern of CO2 gas. Also, at a DNAPL contaminated site, it is important to figure out the characteristics of plume evolution from the source zone. In this study, multiple tracers (SF6 and chloride) were used to evaluate the applicability of volatile and non-volatile tracers and to identify the characteristics of contaminant transport at each CO2 injection and leak test site and DNAPL contaminated site. Firstly, at the CO2 test site, multiple tracers were used to perform the single well push-drift-pull tracer test at total 3 specific depth zones. As results of tests, volatile and non-volatile tracers showed different mass recovery percentage. Most of chloride mass was recovered but less than half of SF6 mass was recovered due to volatile property. This means that only gaseous SF6 leak out to unsaturated zone. However, breakthrough curves of both tracers indicated similar peak time, effective porosity, and regional groundwater velocity. Also, at both contaminated sites, natural gradient tracer tests were performed with multiple tracers. With the results of natural gradient tracer test, it was possible to confirm the applicability of multiple tracers and to understand the contaminant transport in highly heterogeneous aquifer systems through the long-term monitoring of tracers. Acknowledgement: financial support was provided by the R&D Project on Environmental Management of Geologic CO2 Storage)" from the KEITI (Project Number: 2014001810003) and Korea Ministry of Environment as "The GAIA project (2014000540010)".
NASA Astrophysics Data System (ADS)
Breen, S. J.; Lochbuehler, T.; Detwiler, R. L.; Linde, N.
2013-12-01
Electrical resistivity tomography (ERT) is a well-established method for geophysical characterization and has shown potential for monitoring geologic CO2 sequestration, due to its sensitivity to electrical resistivity contrasts generated by liquid/gas saturation variability. In contrast to deterministic ERT inversion approaches, probabilistic inversion provides not only a single saturation model but a full posterior probability density function for each model parameter. Furthermore, the uncertainty inherent in the underlying petrophysics (e.g., Archie's Law) can be incorporated in a straightforward manner. In this study, the data are from bench-scale ERT experiments conducted during gas injection into a quasi-2D (1 cm thick), translucent, brine-saturated sand chamber with a packing that mimics a simple anticlinal geological reservoir. We estimate saturation fields by Markov chain Monte Carlo sampling with the MT-DREAM(ZS) algorithm and compare them quantitatively to independent saturation measurements from a light transmission technique, as well as results from deterministic inversions. Different model parameterizations are evaluated in terms of the recovered saturation fields and petrophysical parameters. The saturation field is parameterized (1) in cartesian coordinates, (2) by means of its discrete cosine transform coefficients, and (3) by fixed saturation values and gradients in structural elements defined by a gaussian bell of arbitrary shape and location. Synthetic tests reveal that a priori knowledge about the expected geologic structures (as in parameterization (3)) markedly improves the parameter estimates. The number of degrees of freedom thus strongly affects the inversion results. In an additional step, we explore the effects of assuming that the total volume of injected gas is known a priori and that no gas has migrated away from the monitored region.
Field Tests of Real-time In-situ Dissolved CO2 Monitoring for CO2 Leakage Detection in Groundwater
NASA Astrophysics Data System (ADS)
Yang, C.; Zou, Y.; Delgado, J.; Guzman, N.; Pinedo, J.
2016-12-01
Groundwater monitoring for detecting CO2 leakage relies on groundwater sampling from water wells drilled into aquifers. Usually groundwater samples are required be collected periodically in field and analyzed in the laboratory. Obviously groundwater sampling is labor and cost-intensive for long-term monitoring of large areas. Potential damage and contamination of water samples during the sampling process can degrade accuracy, and intermittent monitoring may miss changes in the geochemical parameters of groundwater, and therefore signs of CO2 leakage. Real-time in-situ monitoring of geochemical parameters with chemical sensors may play an important role for CO2 leakage detection in groundwater at a geological carbon sequestration site. This study presents field demonstration of a real-time in situ monitoring system capable of covering large areas for detection of low levels of dissolved CO2 in groundwater and reliably differentiating natural variations of dissolved CO2 concentration from small changes resulting from leakage. The sand-alone system includes fully distributed fiber optic sensors for carbon dioxide detection with a unique sensor technology developed by Intelligent Optical Systems. The systems were deployed to the two research sites: the Brackenridge Field Laboratory where the aquifer is shallow at depths of 10-20 ft below surface and the Devine site where the aquifer is much deeper at depths of 140 to 150 ft. Groundwater samples were periodically collected from the water wells which were installed with the chemical sensors and further compared to the measurements of the chemical sensors. Our study shows that geochemical monitoring of dissolved CO2 with fiber optic sensors could provide reliable CO2 leakage signal detection in groundwater as long as CO2 leakage signals are stronger than background noises at the monitoring locations.
2012-09-30
be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection. Assemble the system
2011-09-30
be deployed in geat numbers to autonomously monitor the overall patterns of CO2 emissions and ocean acidification . OBJECTIVES Meet the...Integration of an Emerging Highly Sensitive Optical CO2 Sensor for Ocean Monitoring on an Existing Data Acquisition System SeaKeeper 1000TM Annual...challenging requirements for ocean pCO2 monitoring using an innovative sensor design based on high sensitivity fluorescence detection. Assemble the system
Evidence for CO2-rich fluids in rocks from the type charnockite area near Pallavaram, Tamil Nadu
NASA Technical Reports Server (NTRS)
Hansen, E.; Hunt, W.; Jacob, S. C.; Morden, K.; Reddi, R.; Tacy, P.
1988-01-01
Fluid inclusion and mineral chemistry data was presented for samples from the type charnockite area near Pallavaram (Tamil Nadu, India). The results indicate the presence of a dense CO2 fluid phase, but the data cannot distinguish between influx of this fluid from elsewhere or localized migration of CO2-rich fluids associated with dehydration melting.
Continuous CO2 gas monitoring to clarify natural pattern and artificial leakage signals
NASA Astrophysics Data System (ADS)
Joun, W.; Ha, S. W.; Joo, Y. J.; Lee, S. S.; Lee, K. K.
2017-12-01
Continuous CO2 gas monitoring at shallow aquifer is significant for early detection and immediate handling of an aquifer impacted by leaking CO2 gas from the sequestration reservoir. However, it is difficult to decide the origin of CO2 gas because detected CO2 includes not only leaked CO2 but also naturally emitted CO2. We performed CO2 injection and monitoring tests in a shallow aquifer. Before the injection of CO2 infused water, we have conducted continuous monitoring of multi-level soil CO2 gas concentration and physical parameters such as temperature, humidity, pressure, wind speed and direction, and precipitation. The monitoring data represented that CO2 gas concentrations in unsaturated soil zone borehole showed differences at depths and daily variation (360 to 6980 ppm volume). Based on the observed data at 5 m and 8 m depths, vertical flux of gas was calculated as 0.471 L/min (LPM) for inflow from 5 m to 8 m and 9.42E-2 LPM for outflow from 8 m to 5 m. The numerical and analytical models were used to calculate the vertical flux of gas and to compare with observations. The results showed that pressure-based modeling could not explain the rapid change of CO2 gas concentration in borehole. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)
NASA Astrophysics Data System (ADS)
Simon, H.; Buske, S.
2017-12-01
The Eger Rift zone (Czech Republic) is a intra-continental non-volcanic region and is characterized by outstanding geodynamic activities, which result in earthquake swarms and significant CO2 emanations. Because fluid-induced stress can trigger earthquake swarms, both natural phenomena are probably related to each other. The epicentres of the earthquake swarms cluster at the northern edge of the Cheb Basin. Although the location of the cluster coincides with the major Mariánské-Lázně Fault Zone (MLFZ) the strike of the focal plane indicates another fault zone, the N-S trending Počátky-Plesná Zone (PPZ). Isotopic analysis of the CO2-rich fluids revealed a significant portion of upper mantle derived components, hence a magmatic fluid source in the upper mantle was postulated. Because of these phenomena, the Eger Rift area is a unique site for interdisciplinary drilling programs to study the fluid-earthquake interaction. The ICDP project PIER (Probing of Intra-continental magmatic activity: drilling the Eger Rift) will set up an observatory, consisting of five monitoring boreholes. In preparation for the drilling, the goal of the seismic survey is the characterization of the projected fluid-monitoring drill site at the CO2 degassing mofette field near Hartoušov. This will be achieved by a 6 km long profile with dense source and receiver spacing. The W-E trending profile will cross the proposed drill site and the surface traces of MLFZ and PPZ. The outcome of the seismic survey will be a high-resolution structural image of potential reflectors related to these fault zones. This will be achieved by the application of advanced pre-stack depth migration methods and a detailed P-wave velocity distribution of the area obtained from first arrival tomography. During interpretation of the seismic data, a geoelectrical resistivity model, acquired along the same profile line, will provide important constraints, especially with respect to fluid pathways.
NASA Astrophysics Data System (ADS)
Koukouzas, Nikolaos; Lymperopoulos, Panagiotis; Tasianas, Alexandros; Shariatipour, Seyed
2016-10-01
Geological storage of CO2 in subsurface geological structures can mitigate global warming. A comprehensive safety and monitoring system for CO2 storage has been undertaken for the Prinos hydrocarbon field, offshore northern Greece; a system which can prevent any possible leakage of CO2. This paper presents various monitoring strategies of CO2 subsurface movement in the Prinos reservoir, the results of a simulation of a CO2 leak through a well, an environmental risk assessment study related to the potential leakage of CO2 from the seafloor and an overall economic insight of the system. The results of the simulation of the CO2 leak have shown that CO2 reaches the seabed in the form of gas approximately 13.7 years, from the beginning of injection. From that point onwards the amount of CO2 reaching the seabed increases until it reaches a peak at around 32.9 years. During the injection period, the CO2 plume develops only within the reservoir. During the post-injection period, the CO2 reaches the seabed and develops side branches. These correspond to preferential lateral flow pathways of the CO2 and are more extensive for the dissolved CO2 than for the saturated CO2 gas. For the environmental risk assessment, we set up a model, using ArcGIS software, based on the use of data regarding the speeds of the winds and currents encountered in the region. We also made assumptions related to the flow rate of CO2. Results show that after a period of 10 days from the start of CO2 leakage the CO2 has reached halfway to the continental shores where the “Natura” protected areas are located. CO2 leakage modelling results show CO2 to be initially flowing along a preferential flow direction, which is towards the NE. However, 5 days after the start of leakage of CO2, the CO2 is also flowing towards the ENE. The consequences of a potential CO2 leak are considered spatially limited and the ecosystem is itself capable of recovering. We have tried to determine the costs necessary for the creation of such an integrated CO2 monitoring program both during the CO2 injection phase as well as during permanent storage. The most prevalent solution consists of purchasing both seismic equipment and Echosounder systems as well as privileging a monitoring system, which uses selected boreholes. The necessary period required for monitoring the study area is at least 20 years after the end of the CO2 storage period at Prinos. To the overall monitoring time, we should also add a further 20 years that are required for the injection phase as well as 12 years for the storage phase. The operating costs for monitoring the CO2 amount to 0,38 /ton CO2 and the total cost for EOR at Prinos amounts to 0,45 /ton CO2.
SHP-2 inhibits tyrosine phosphorylation of Cas-L and regulates cell migration.
Yo, Koji; Iwata, Satoshi; Hashizume, Yutaka; Kondo, Shunsuke; Nomura, Sayaka; Hosono, Osamu; Kawasaki, Hiroshi; Tanaka, Hirotoshi; Dang, Nam H; Morimoto, Chikao
2009-04-24
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase, SHP-2, plays an important role in cell migration by interacting with various proteins. In this report, we demonstrated that SHP-2 inhibits tyrosine phosphorylation of Crk-associated substrate lymphocyte type (Cas-L), a docking protein which mediates cell migration, and found that SHP-2 negatively regulates migration of A549 lung adenocarcinoma cells induced by fibronectin (FN). We showed that overexpressed SHP-2 co-localizes with Cas-L at focal adhesions and that exogenous expression of SHP-2 abrogates cell migration mediated by Cas-L. SHP-2 inhibits tyrosine phosphorylation of Cas-L, and associates with Cas-L to form a complex in a tyrosine phosphorylation-dependent manner. Finally, immunoprecipitation experiments with deletion mutants revealed that both SH2 domains of SHP-2 are necessary for this association. These results suggest that SHP-2 regulates tyrosine phosphorylation of Cas-L, hence opposing the effect of kinases, and SHP-2 is a negative regulator of cell migration mediated by Cas-L.
Geologic Carbon Sequestration Leakage Detection: A Physics-Guided Machine Learning Approach
NASA Astrophysics Data System (ADS)
Lin, Y.; Harp, D. R.; Chen, B.; Pawar, R.
2017-12-01
One of the risks of large-scale geologic carbon sequestration is the potential migration of fluids out of the storage formations. Accurate and fast detection of this fluids migration is not only important but also challenging, due to the large subsurface uncertainty and complex governing physics. Traditional leakage detection and monitoring techniques rely on geophysical observations including pressure. However, the resulting accuracy of these methods is limited because of indirect information they provide requiring expert interpretation, therefore yielding in-accurate estimates of leakage rates and locations. In this work, we develop a novel machine-learning technique based on support vector regression to effectively and efficiently predict the leakage locations and leakage rates based on limited number of pressure observations. Compared to the conventional data-driven approaches, which can be usually seem as a "black box" procedure, we develop a physics-guided machine learning method to incorporate the governing physics into the learning procedure. To validate the performance of our proposed leakage detection method, we employ our method to both 2D and 3D synthetic subsurface models. Our novel CO2 leakage detection method has shown high detection accuracy in the example problems.
Upscaling of reaction rates in reactive transport using pore-scale reactive transport model
NASA Astrophysics Data System (ADS)
Yoon, H.; Dewers, T. A.; Arnold, B. W.; Major, J. R.; Eichhubl, P.; Srinivasan, S.
2013-12-01
Dissolved CO2 during geological CO2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes among hydrodynamics, transport, and reactions at the (sub) pore-scale. In this research pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reaction at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This work is motivated by the observed CO2 seeps from a natural analog to geologic CO2 sequestration at Crystal Geyser, Utah. A key observation is the lateral migration of CO2 seep sites at a scale of ~ 100 meters over time. A pore-scale model provides fundamental mechanistic explanations of how calcite precipitation alters flow paths by pore plugging under different geochemical compositions and pore configurations. In addition, response function of reaction rates will be constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Damkohler and Peclet numbers. Newly developed response functions will be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO2 seeps. Comparison of field observations and simulations results will provide mechanistic explanations of the lateral migration and enhance our understanding of subsurface processes associated with the CO2 injection. This work is supported as part of the Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001114. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Wilson, T. H.; Wells, A. W.; Diehl, R. R.; Bromhal, G. S.; Carpenter, W.; Smith, D. H.
2004-05-01
The potential for leakage of injected CO2 at carbon sequestration sites is a significant concern in the design and deployment of long term carbon sequestration efforts. Effective and reliable monitoring of near-surface environments in the vicinity of these sites is essential to ensure the viability of sequestration activities as well as long term public and environmental safety. This study reports on near-surface geological and geophysical characterization efforts conducted at the NETL West Pearl Queen carbon sequestration pilot site in southeastern New Mexico and their use in uncovering possible mechanisms facilitating escape of small amounts (10e-13 liters) of tracer injected with the CO2. In this pilot test, a small amount of CO2 (2100 tonnes) was injected into the Shattuck sandstone member of the Permian Queen Formation early in 2003. Tracers injected with the CO2 were detected within a few days of injection and continued to escape for several months following injection. Geological and geophysical characterization of the near-surface environment in the vicinity of the injection well incorporated lineament interpretations and a detailed ground penetrating radar survey conducted over a circular area extending out 300 meters from the injection well. The near-surface geology consists of a few-feet thick veneer of late Pleistocene and Holocene sand dunes covering the middle Pleistocene Mescalero caliche. The lineament study incorporated interpretation of black and white aerial photos from 1949, digital orthophotos, and Landsat TM imagery. Analysis reveals distinct northeast and northwest trending lineament sets. The GPR survey defines the presence of a nearly continuous blanket of caliche beneath the area. However, the thickness of the caliche zone varies significantly, and it is disrupted by numerous fault-like features, amplitude anomalies, and reflection gaps. Some of these disruptions are traceable over distances of 25 to 200 meters and their aerial distribution shows some association with the distribution of tracers detected in the near-surface across the site. The observations suggest that the caliche has undergone significant karstification and could provide pathways along which CO2 could migrate through the near-surface from a leaky well casing or, less likely, along more extensive vertical migration pathways.
Continuous non-invasive end-tidal CO2 monitoring in pediatric inpatients with diabetic ketoacidosis.
Agus, Michael S D; Alexander, Jamin L; Mantell, Patricia A
2006-08-01
Pediatric inpatients with diabetic ketoacidosis (DKA) are routinely subjected to frequent blood draws in order to closely monitor degree of acidosis and response to therapy. The typical level of acidosis monitoring is less than ideal, however, because of the high cost and invasiveness of frequent blood labs. Previous studies have validated end-tidal carbon dioxide (EtCO2) monitoring in the emergency department (ED) for varying periods of time. We extend these findings to the inpatient portion of the hospitalization during which the majority of blood tests are sent. All patients admitted to an intermediate care unit in (InCU) a large children's hospital were fitted with an appropriately sized oral/nasal cannula capable of sensing EtCO2. Laboratory studies were obtained according to hospital clinical practice guidelines. In a retrospective analysis, EtCO2 values were correlated with serum total CO2 (stCO2), venous pH (vpH), venous pCO2 (vpCO2), and calculated bicarbonate from venous blood gas (vHCO3-). A total of 78 consecutive episodes of DKA in 72 patients aged 1-21 yr were monitored for 3-38 h with both capnography and laboratory testing, producing 334 comparisons. Initial values were as follows, reported as median (range): stCO2, 11 (4-22) mmol/L; vpH, 7.281 (6.998-7.441); vpCO2, 28.85 (9.3-43.3) mmHg; and vHCO3-, 14 (3-25) mmol/L. EtCO2 was correlated well with stCO2 (r = 0.84, p < 0.001), vHCO3- (r = 0.84, p < 0.001), and vpCO2 (r = 0.79, p < 0.001). These data support the findings of previous studies limited to ED populations and suggest that non-invasive EtCO2 monitoring is a valuable and reliable tool to continuously follow acidosis in the setting of the acutely ill pediatric patient with DKA. Continuous EtCO2 monitoring offers the practitioner an early warning system for unexpected changes in acidosis that augments the utility of intermittent blood gas determinations.
21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO2) monitor.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cutaneous carbon dioxide (PcCO2) monitor. 868.2480 Section 868.2480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2480 Cutaneous carbon dioxide (PcCO2) monitor. (a) Identification. A...
Hsu, Chih‐Kai; Lin, Chih‐Chung; Hsiao, Li‐Der
2015-01-01
Background and Purpose Sphingosine 1‐phosphate (S1P), an important inflammatory mediator, has been shown to regulate COX‐2 production and promote various cellular responses such as cell migration. Mevastatin, an inhibitor of 3‐hydroxy‐3‐methylglutaryl‐CoA reductase (HMG‐CoA), effectively inhibits inflammatory responses. However, the mechanisms underlying S1P‐evoked COX‐2‐dependent cell migration, which is modulated by mevastatin in human tracheal smooth muscle cells (HTSMCs) remain unclear. Experimental Approach The expression of COX‐2 was determined by Western blotting, real time‐PCR and promoter analyses. The signalling molecules were investigated by pretreatment with respective pharmacological inhibitors or transfection with siRNAs. The interaction between COX‐2 promoter and transcription factors was determined by chromatin immunoprecipitation assay. Finally, the effect of mevastatin on HTSMC migration and leukocyte counts in BAL fluid and COX‐2 expression induced by S1P was determined by a cell migration assay, cell counting and Western blot. Key Results S1P stimulated mTOR activation through the Nox2/ROS and PI3K/Akt pathways, which can further stimulate FoxO1 phosphorylation and translocation to the cytosol. We also found that S1P induced CREB activation and translocation via an mTOR‐independent signalling pathway. Finally, we showed that pretreatment with mevastatin markedly reduced S1P‐induced cell migration and COX‐2/PGE2 production via a PPARγ‐dependent signalling pathway. Conclusions and Implications Mevastatin attenuates the S1P‐induced increased expression of COX‐2 and cell migration via the regulation of FoxO1 and CREB phosphorylation and translocation by PPARγ in HTSMCs. Mevastatin could be beneficial for prevention of airway inflammation in the future. PMID:26359950
RUTHENIUM-CATALYZED TANDEM OLEFIN MIGRATION-ALDOL AND MANNICH-TYPE REACTIONS IN IONIC LIQUID.
In the presence of a catalytic amount of RuCl2(PPh3)3, a cross-coupling of 3-buten-2-ol with aldehydes and imines was developed via a tandem olefin migration--aldol--Mannich reaction in bmim[PF6]. With In(OAc)3 as a co-catalyst, a-vinylbenzyl alcohol and aldehydes underwent sim...
A FMO-controlled reaction path in the benzil-benzilic acid rearrangement.
Yamabe, Shinichi; Tsuchida, Noriko; Yamazaki, Shoko
2006-03-03
Reaction paths for the title rearrangement along with its methyl analogue were investigated by density functional theory calculations. The reaction model is R-CO-CO-R + OH(-)(H2O)4 --> R2C(OH)-COO- + (H2O)4 (R = Me and Ph), where the water tetramer is employed both for solvation to OH- and for the proton relay along hydrogen bonds. The reaction is composed of OH- addition, C-C rotation, carbanion [1,2] migration, and proton relay toward the product anions. The rate-determining step was calculated to be the carbanion migration. Apparently, carbanion [1,2] migration is unlikely relative to the carbonium ion one. However, LUMOs of the 1,2-diketones have large and nodeless lobes at the reaction center, the C1-C2 bond. The specific LUMO character is reflected both in the [2+1]-like one-center nucleophilic addition and in the carbanion [1,2] shift. The proton relay involved in the isomerization from the oxo intermediate to the carboxylate was calculated to take place via the water tetramer.
Balasubramanian, Madhan; Short, Stephanie D
2011-01-01
The purpose of this article is to discuss the ethics involved in the migration of Indian trained dentists to Australia. It develops from interviews of senior oral health leaders in both the countries to provide evidence that ethics in migration is diluted in practice and to suggest that migratory procedures in both the countries should be reconsidered. There is also an urgent need for more organized bilateral communication and negotiation between the concerned organizations of both the countries (dental councils, immigration departments and research centers) in order to prevent the somewhat irreversible and intensive brain drain of top quality dentists from India to Australia. We would suggest as a starting point better monitoring of the migrants' academic and social background, the nature of the educational investment in India and the nature of the stay in Australia. This new information base could possibly lay the groundwork for more restrictive policies to be introduced both in Australia and India.
Functional analysis of HPV-like particle-activated Langerhans cells in vitro.
Yan, Lisa; Woodham, Andrew W; Da Silva, Diane M; Kast, W Martin
2015-01-01
Langerhans cells (LCs) are antigen-presenting cells responsible for initiating an immune response against human papillomaviruses (HPVs) entering the epithelial layer in vivo as they are the first immune cell that HPV comes into contact with. LCs become activated in response to foreign antigens, which causes internal signaling resulting in the increased expression of co-stimulatory molecules and the secretion of inflammatory cytokines. Functionally activated LCs are then capable of migrating to the lymph nodes where they interact with antigen-specific T cells and initiate an adaptive T-cell response in vivo. However, HPV has evolved in a manner that suppresses LC function, and thus the induction of antigen-specific T cells is hindered. While many methods exist to monitor the activity of LCs in vitro, the migration and induction of cytotoxic T cells is ultimately indicative of a functional immune response. Here, methods in analyzing functional migration and induction of antigen-specific T cells after stimulation of LCs with HPV virus-like particles in vitro are described.
Thermochemical Assessment of Oxygen Gettering by SiC or ZrC in PuO2-x TRISO Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besmann, Theodore M
2010-01-01
Particulate nuclear fuel in a modular helium reactor is being considered for the consumption of excess plutonium and related transuranics. In particular, efforts to largely consume transuranics in a single-pass will require the fuel to undergo very high burnup. This deep burn concept will thus make the proposed plutonia TRISO fuel particularly likely to suffer kernel migration where carbon in the buffer layer and inner pyrolytic carbon layer is transported from the high temperature side of the particle to the low temperature side. This phenomenon is oberved to cause particle failure and therefore must be mitigated. The addition of SiCmore » or ZrC in the oxide kernel or in a layer in communication with the kernel will lower the oxygen potential and therefore prevent kernel migration, and this has been demonstrated with SiC. In this work a thermochemical analysis was performed to predict oxygen potential behavior in the plutonia TRISO fuel to burnups of 50% FIMA with and without the presence of oxygen gettering SiC and ZrC. Kernel migration is believed to be controlled by CO gas transporting carbon from the hot side to the cool side, and CO pressure is governed by the oxygen potential in the presence of carbon. The gettering phases significantly reduce the oxygen potential and thus CO pressure in an otherwise PuO2-x kernel, and prevent kernel migration by limiting CO gas diffusion through the buffer layer. The reduction in CO pressure can also reduce the peak pressure within the particles by ~50%, thus reducing the likelihood of pressure-induced particle failure. A model for kernel migration was used to semi-quantitatively assess the effect of controlling oxygen potential with SiC or ZrC and did demonstrated the dramatic effect of the addition of these phases on carbon transport.« less
Stable isotope reactive transport modeling in water-rock interactions during CO2 injection
NASA Astrophysics Data System (ADS)
Hidalgo, Juan J.; Lagneau, Vincent; Agrinier, Pierre
2010-05-01
Stable isotopes can be of great usefulness in the characterization and monitoring of CO2 sequestration sites. Stable isotopes can be used to track the migration of the CO2 plume and identify leakage sources. Moreover, they provide unique information about the chemical reactions that take place on the CO2-water-rock system. However, there is a lack of appropriate tools that help modelers to incorporate stable isotope information into the flow and transport models used in CO2 sequestration problems. In this work, we present a numerical tool for modeling the transport of stable isotopes in groundwater reactive systems. The code is an extension of the groundwater single-phase flow and reactive transport code HYTEC [2]. HYTEC's transport module was modified to include element isotopes as separate species. This way, it is able to track isotope composition of the system by computing the mixing between the background water and the injected solution accounting for the dependency of diffusion on the isotope mass. The chemical module and database have been expanded to included isotopic exchange with minerals and the isotope fractionation associated with chemical reactions and mineral dissolution or precipitation. The performance of the code is illustrated through a series of column synthetic models. The code is also used to model the aqueous phase CO2 injection test carried out at the Lamont-Doherty Earth Observatory site (Palisades, New York, USA) [1]. References [1] N. Assayag, J. Matter, M. Ader, D. Goldberg, and P. Agrinier. Water-rock interactions during a CO2 injection field-test: Implications on host rock dissolution and alteration effects. Chemical Geology, 265(1-2):227-235, July 2009. [2] Jan van der Lee, Laurent De Windt, Vincent Lagneau, and Patrick Goblet. Module-oriented modeling of reactive transport with HYTEC. Computers & Geosciences, 29(3):265-275, April 2003.
Pradip, De; Bouzyk, Mark; Dey, Nandini; Leyland-Jones, Brian
2013-01-01
Amplification of human Her2 and its aberrant signaling in 20-30% of early breast cancer patients is responsible for highly aggressive tumors with poor outcome. Grb7 is reported to be co-amplified with Her2. We report a concurrent high expression of mRNA (from FFPE tumor samples; mRNA correlation, Pearson r(2)= 0.806), and high levels of GRB7 protein (immunoblot) in HER2+ breast cancer cell lines. We demonstrated the signaling mechanism of HER2 and downstream effectors that contributes to proliferation and migration. Using HER2+ and trastuzumab-resistant breast cancer cell lines, we identified the interaction between GRB7 and HER2 in the control of HER2+ cell proliferation. Our co-IP data show that GRB7 recruits SHC into the HER2-GRB7 signaling complex. This complex formation leads to activation of RAS-GTP. We also observed that following integrin engagement, GRB7 is phosphorylated at tyrosine in a p-FAK (Y397) dependent manner. This FAK-GRB7 complex leads to downstream activation of RAC1-GTP (responsible for migration) probably through the recruitment of VAV2. Our CO-IP data demonstrate that GRB7 directly binds with VAV2 following fibronectin engagement in HER2+ cells. To address whether GRB7 could serve as a pathway specific therapeutic target, we used siRNA to suppress GRB7 expression. Knockdown of GRB7 expression in the HER2+ breast cancer cell lines decreases RAS activation, cell proliferation, 2D and 3D colony formation and also blocked integrin-mediated RAC1 activation along with integrin-directed cell migration. These findings dissected the HER2-mediated signaling cascade into (1) HER2+ cell proliferation (HER2-GRB7-SHC-RAS) and (2) HER2+ cell migration (alpha5 beta1/alpha4 beta1-FAK-GRB7-VAV2-RAC1). Our data clearly demonstrate that a coupling of GRB7 with HER2 is required for the proliferative and migratory signals in HER2+ breast tumor cells.
COI oxidation on a single Pd atom supported on magnesia.
Abbet, S; Heiz, U; Häkkinen, H; Landman, U
2001-06-25
The oxidation of CO on single Pd atoms anchored to MgO(100) surface oxygen vacancies is studied with temperature-programmed-reaction mass spectrometry and infrared spectroscopy. In one-heating-cycle experiments, CO(2), formed from O(2) and CO preadsorbed at 90 K, is detected at 260 and 500 K. Ab-initio simulations suggest two reaction routes, with Pd(CO)(2)O(2) and PdCO(3)CO found as precursors for the low and high temperature channels, respectively. Both reactions result in annealing of the vacancy and induce migration and coalescence of the remaining Pd-CO to form larger clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blessing, T.C.; B.W. Wielinga; M.J. Morra
2001-04-15
The migration of 60Co is driven by Co(III)EDTA- complexes. Here we document the bacterial mediated reduction of Co(III) to Co(II)EDTA2- complexes, which are far less mobile within the environment. Additionally, we demonstrate that sulfate promotes reduction via production of reactive polysulfides rather than acting as a competitive electron acceptor.
Rodriguez, Andres I.; Gangopadhyay, Archana; Kelley, Eric E.; Pagano, Patrick J.; Zuckerbraun, Brian S.; Bauer, Philip M.
2009-01-01
Objective Heme oxygenase-1 (HO-1), via its enzymatic degradation products, exhibits cell and tissue protective effects in models of vascular injury and disease. The migration of vascular smooth muscle cells (VSMC) from the medial to the intimal layer of blood vessels plays an integral role in the development of a neointima in these models. Despite this, there are no studies addressing the effect of increased HO-1 expression on VSMC migration. Results and Methods The effects of increased HO-1 expression as well as biliverdin, bilirubin, and carbon monoxide (CO), were studied in in vitro models of VSMC migration. Induction of HO-1 or CO, but not biliverdin or bilirubin, inhibited VSMC migration. This effect was mediated by the inhibition of Nox1 as determined by a range of approaches including detection of intracellular superoxide, NADPH oxidase activity measurements, and siRNA experiments. Furthermore, CO decreased PDGF-stimulated, redox-sensitive signaling pathways. Conclusion Herein we demonstrate that increased HO-1 expression and CO decreases PDGF-stimulated VSMC migration via inhibition of Nox1 enzymatic activity. These studies reveal a novel mechanism by which HO-1 and CO may mediate their beneficial effects in arterial inflammation and injury. PMID:19875720
NASA Astrophysics Data System (ADS)
Chae, Gitak; Yu, Soonyoung; Sung, Ki-Sung; Choi, Byoung-Young; Park, Jinyoung; Han, Raehee; Kim, Jeong-Chan; Park, Kwon Gyu
2015-04-01
Monitoring of CO2 release through the ground surface is essential to testify the safety of CO2 storage projects. We conducted a feasibility study of the multi-channel surface-soil CO2-concentration monitoring (SCM) system as a soil CO2 monitoring tool with a small scale injection. In the system, chambers are attached onto the ground surface, and NDIR sensors installed in each chamber detect CO2 in soil gas released through the soil surface. Before injection, the background CO2 concentrations were measured. They showed the distinct diurnal variation, and were positively related with relative humidity, but negatively with temperature. The negative relation of CO2 measurements with temperature and the low CO2 concentrations during the day imply that CO2 depends on respiration. The daily variation of CO2 concentrations was damped with precipitation, which can be explained by dissolution of CO2 and gas release out of pores through the ground surface with recharge. For the injection test, 4.2 kg of CO2 was injected 1 m below the ground for about 30 minutes. In result, CO2 concentrations increased in all five chambers, which were located less than 2.5 m of distance from an injection point. The Chamber 1, which is closest to the injection point, showed the largest increase of CO2 concentrations; while Chamber 2, 3, and 4 showed the peak which is 2 times higher than the average of background CO2. The CO2 concentrations increased back after decreasing from the peak around 4 hours after the injection ended in Chamber 2, 4, and 5, which indicated that CO2 concentrations seem to be recovered to the background around 4 hours after the injection ended. To determine the leakage, the data in Chamber 2 and 5, which had low increase rates in the CO2 injection test, were used for statistical analysis. The result shows that the coefficient of variation (CV) of CO2 measurements for 30 minutes is efficient to determine a leakage signal, with reflecting the abnormal change in CO2 concentrations. The CV of CO2 measurements for 30 minutes exceeded 5% about 5 minutes before the maximum CO2 concentration was detected. The contributions of this work are as follows: (1) SCM is an efficient monitoring tool to detect the CO2 release through the ground surface. (2) The statistical analysis method to determine the leakage and a monitoring frequency are provided, with analyzing background concentrations and CO2 increases in a small-scale injection test. (3) The 5% CV of CO2 measurements for 30 minutes can be used for the early warning in CO2 storage sites.
Hydrogeologic Modeling for Monitoring, Reporting and Verification of Geologic Sequestration
NASA Astrophysics Data System (ADS)
Kolian, M.; De Figueiredo, M.; Lisa, B.
2011-12-01
In December 2010, EPA finalized Subpart RR of the Greenhouse Gas (GHG) Reporting Program, which requires facilities that conduct geologic sequestration (GS) of carbon dioxide (CO2) to report GHG data to EPA annually. The GHG Reporting Program requires reporting of GHGs and other relevant information from certain source categories in the United States, and information obtained through Subpart RR will inform Agency decisions under the Clean Air Act related to the use of carbon dioxide capture and sequestration for mitigating GHGs. This paper examines hydrogeologic modeling necessities and opportunities in the context of Subpart RR. Under Subpart RR, facilities that conduct GS by injecting CO2 for long-term containment in subsurface geologic formations are required to develop and implement an EPA-approved site-specific monitoring, reporting, and verification (MRV) plan; and report basic information on CO2 received for injection, annual monitoring activities and the amount of CO2 geologically sequestered using a mass balance approach. The major components of the MRV plan include: identification of potential surface leakage pathways for CO2 and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways; delineation of the monitoring areas; strategy for detecting and quantifying any surface leakage of CO2; and the strategy for establishing the expected baselines for monitoring CO2 surface leakage. Hydrogeologic modeling is an integral aspect of the design of an MRV plan. In order to prepare an adequate monitoring program that addresses site specific risks over the full life of the project the MRV plan must reflect the full spatial extent of the free phase CO2 over time. Facilities delineate the maximum area that the CO2 plume is predicted to cover and how monitoring can be phased in over this area. The Maximum Monitoring Area (MMA) includes the extent of the free phase CO2 plume over the lifetime of the project plus a buffer zone of one-half mile. The Active Monitoring Area (AMA) is the area that will be monitored over a specified time interval chosen by the reporter, which must be greater than one year. All of the area in the MMA will eventually be covered by one or more AMAs. This allows operators to phase in monitoring so that during any given time interval, only that part of the MMA in which surface leakage might occur needs to be monitored. EPA designed the MRV plan approach to be site-specific, flexible, and adaptive to future technology developments. This approach allows the reporter to leverage the site characterization, modeling, and monitoring approaches (e.g. monitoring of injection pressures, injection well integrity, groundwater quality and geochemistry, and CO2 plume location, etc.) developed for their Underground Injection Control (UIC) permit. UIC requirements provide the foundation for the safe sequestration of CO2 by helping to ensure that injected fluids remain isolated in the subsurface and away from underground sources of drinking water, thereby serving to reduce the risk of CO2 leakage to the atmosphere.
Stowe, Haley M; Hwang, Gyeong S
2017-12-06
2-Amino-2-methyl-1-propanol (AMP), a sterically hindered amine, exhibits a much higher CO 2 absorption rate relative to tertiary amine diethylethanolamine (DEEA), while both yield bicarbonate as a major product in aqueous solution, despite their similar basicity. We present molecular mechanisms underlying the significant difference of CO 2 absorption rate based on ab initio molecular dynamics simulations combined with metadynamics. Our calculations predict the free energy barrier for base-catalyzed CO 2 hydration to be lower in aqueous AMP compared to DEEA. Further molecular analysis suggests that the difference in free energy barrier is largely attributed to entropic effects associated with reorganization of H 2 O molecules adjacent to the basic N site. Stronger hydrogen bonding of H 2 O with N of DEEA than AMP, in addition to the presence of bulky ethyl groups, suppresses the thermal rearrangement of adjacent H 2 O molecules, thereby leading to lower stability of the transition state involving OH - creation and CO 2 polarization. Moreover, the hindered reorganization of adjacent H 2 O molecules is found to facilitate migration of OH - (created via proton abstraction by DEEA) away from the N site while suppressing CO 2 approach. This leads us to speculate that catalyzed CO 2 hydration in aqueous DEEA may involve OH - migration through multiple hydrogen-bonded H 2 O molecules prior to reaction with CO 2 , whereas in aqueous AMP it seems to preferentially follow the one H 2 O-mediated mechanism. This study highlights the importance of entropic effects in determining both mechanisms and rates of CO 2 absorption into aqueous sterically hindered amines.
NASA Astrophysics Data System (ADS)
Iddir, Hakim; Benedek, Roy; Voltage Fade Team
2014-03-01
The atomic order in layered-layered composites with composition xLi2MnO3 .(1-x)LiCoO2 is investigated with first-principles calculations at the GGA +U level. This material, and others in its class, are often regarded as solid solutions, however, only a minute solubility of Li2MnO3 in a LiCoO2 host is predicted. Calculations of Co-vacancy formation and migration energies in LiCoO2 are presented, to elucidate the rate of vacancy-mediated ordering in the transition-metal-layer, and thus determine whether low vacancy mobility could result in slow equilibration. The Co-vacancy formation energy can be predicted only to within a range, because of uncertainty in the chemical potentials. Predicted migration energies, however, are approximately 1 eV, small enough to be consistent with rapid ordering in the transition metal layer, and therefore separated Li2MnO3 and LiCoO2 phases. The relatively small (of the order of a few nm) Li2MnO3 domain sizes observed with TEM in some xLi2MnO3 .(1-x)LiMO2 composites may result from other factors, such as coherency strain, which perhaps block further domain coarsening in these materials. Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Amos, Richard T.; Mayer, K. Ulrich
2006-01-01
Ebullition of gas bubbles through saturated sediments can enhance the migration of gases through the subsurface, affect the rate of biogeochemical processes, and potentially enhance the emission of important greenhouse gases to the atmosphere. To better understand the parameters controlling ebullition, methanogenic conditions were produced in a column experiment and ebullition through the column was monitored and quantified through dissolved gas analysis and reactive transport modeling. Dissolved gas analysis showed rapid transport of CH4 vertically through the column at rates several times faster than the bromide tracer and the more soluble gas CO2, indicating that ebullition was the main transport mechanism for CH4. An empirically derived formulation describing ebullition was integrated into the reactive transport code MIN3P allowing this process to be investigated on the REV scale in a complex geochemical framework. The simulations provided insights into the parameters controlling ebullition and show that, over the duration of the experiment, 36% of the CH4 and 19% of the CO2 produced were transported to the top of the column through ebullition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodds, K.; Daley, T.; Freifeld, B.
2009-05-01
The Australian Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently injecting 100,000 tons of CO{sub 2} in a large-scale test of storage technology in a pilot project in southeastern Australia called the CO2CRC Otway Project. The Otway Basin, with its natural CO{sub 2} accumulations and many depleted gas fields, offers an appropriate site for such a pilot project. An 80% CO{sub 2} stream is produced from a well (Buttress) near the depleted gas reservoir (Naylor) used for storage (Figure 1). The goal of this project is to demonstrate that CO{sub 2} can be safely transported, stored underground, andmore » its behavior tracked and monitored. The monitoring and verification framework has been developed to monitor for the presence and behavior of CO{sub 2} in the subsurface reservoir, near surface, and atmosphere. This monitoring framework addresses areas, identified by a rigorous risk assessment, to verify conformance to clearly identifiable performance criteria. These criteria have been agreed with the regulatory authorities to manage the project through all phases addressing responsibilities, liabilities, and to assure the public of safe storage.« less
NASA Astrophysics Data System (ADS)
Zygoura, Panagiota D.; Paleologos, Evangelos K.; Kontominas, Michael G.
2011-08-01
The primary objective of the present study was to evaluate the extent to which the affinity of the surrounding medium for the migrant, as well as the packaging material, affects the specific migration characteristics of the latter. For this purpose, migration tests were conducted with vinylidene chloride copolymer (PVDC/PVC) in contact with the EU specified solvents simulating all food types: namely, distilled water, 3% w/v acetic acid, 10% v/v ethanol and isooctane. Migration testing was carried out at 40 °C for 10 days for the aqueous simulants, and at 20 °C for 2 days for the fatty food simulant (EC, 1997; EEC, 1993). In addition, food-grade saran film was subjected to ionizing radiation treatment with a [60Co] source at doses equal to 5, 15 and 25 kGy. Acetyl tributyl citrate (ATBC) plasticizer levels were monitored as a function of time for untreated, as well as gamma-irradiated packaging material, with a secondary objective to investigate the effect of ionizing radiation on polymer/migrant/surrounding medium interactions. Depending on the food simulant, determination of the analyte was performed by either direct gas chromatographic analysis, or surfactant (Triton X-114) mediated extraction followed by gas chromatographic-flame ionization detection (GC-FID). ATBC concentrations determined in aqueous and fatty food simulants were 0.216-0.497 and 5.0-5.9 mg/L, respectively. Therefore, the most efficient extracting medium of plasticizers in vinyl chloride copolymers is the non-polar isooctane. Moreover, an extremely high rate of ATBC migration into isooctane during the early stages of contact was observed. The above observation verifies the aggressiveness of isooctane towards plastic packaging materials. Amongst the aqueous food simulants tested, the 10% ethanol solution demonstrated the highest migration levels. Gamma-irradiation enhanced ATBC migration; specific migration levels increased with increasing contact time and radiation dose. This was expected, since ATBC did not undergo chemical decomposition upon irradiation up to 25 kGy. Finally, specific migration decreased proportionally with increasing polarity of the food-simulating solvent.
Migration monitoring in shorebirds and landbirds: commonalities and differences
Susan K. Skagen; Jonathan Bart
2005-01-01
Several aspects of a developing program to monitor shorebirds in the western hemisphere are pertinent to migration monitoring of landbirds. Goals of the Program for Regional and International Shorebird Monitoring (PRISM) include estimating population size and population trends of 74 species, sub-species and distinct populations of North American shorebirds, monitoring...
Yang, Changbing; Hovorka, Susan D; Treviño, Ramón H; Delgado-Alonso, Jesus
2015-07-21
This study presents a combined use of site characterization, laboratory experiments, single-well push-pull tests (PPTs), and reactive transport modeling to assess potential impacts of CO2 leakage on groundwater quality and leakage-detection ability of a groundwater monitoring network (GMN) in a potable aquifer at a CO2 enhanced oil recovery (CO2 EOR) site. Site characterization indicates that failures of plugged and abandoned wells are possible CO2 leakage pathways. Groundwater chemistry in the shallow aquifer is dominated mainly by silicate mineral weathering, and no CO2 leakage signals have been detected in the shallow aquifer. Results of the laboratory experiments and the field test show no obvious damage to groundwater chemistry should CO2 leakage occur and further were confirmed with a regional-scale reactive transport model (RSRTM) that was built upon the batch experiments and validated with the single-well PPT. Results of the RSRTM indicate that dissolved CO2 as an indicator for CO2 leakage detection works better than dissolved inorganic carbon, pH, and alkalinity at the CO2 EOR site. The detection ability of a GMN was assessed with monitoring efficiency, depending on various factors, including the natural hydraulic gradient, the leakage rate, the number of monitoring wells, the aquifer heterogeneity, and the time for a CO2 plume traveling to the monitoring well.
Liu, Zhi-sheng; Wang, Ye; Li, Qiang; Zhang, Sheng-lin; Shi, Yu-rong
2012-04-01
To establish an in vitro model of perineural invasion (PNI) with co-culture of human pancreatic cancer cells and rat root ganglion, to observe the neurite outgrowth and pancreatic cancer cell proliferation and migration, and to explore the molecular basis of perineural invasion (PNI) of pancreatic cancer. Human pancreatic cancer cell line (MIA PaCa-2) and rat dorsal root ganglion (DRG) were co-cultured in Matrigel matrix to generate the PNI model. The neurite outgrowth, pancreatic cancer cell colony formation, neurite-colony contact and retrograde migration were observed under an inverted microscope. The data were analyzed with the Image-Pro Plus 5.0 system. The proliferative index (PI) was measured by immunohistochemical staining with the Ki-67 antibody. In order to determine the absorbance (A) of the pancreatic cancer cells, MTT assay was used. The apoptotic index (AI) was evaluated by flow cytometry. Neurite outgrowth was stimulated in the presence of pancreatic cancer cells. After 72 hours of the co-culture, MIA PaCa colonies co-cultured with DRG exhibited a significantly larger colony area (242.83 ± 4.92) than that of the control (182.50 ± 5.39, P < 0.001). In the MIA PaCa-2/DRG co-culture system, the neurites exhibited a trend of growing towards the pancreatic cancer cell colony. However, the pancreatic cancer cells showed a trend of retrogradely migrating to the DRG along the neurite outgrowth, when MIA PaCa-2 colonies touched the DRG. The positive rate of Ki-67 nuclear antigen was significantly higher than in the co-culture group. The PI value was higher in the experimental group (12.80%) than that in the control group (6.81%, P < 0.01). The MTT assay showed that proliferation of the pancreatic cancer cells was more active than that in the control group. Flow cytometry analysis showed that the apoptosis rate of the pancreatic cancer cell was 2.46%, significantly lower than that of the control group (4.89%, P < 0.001). An in vitro co-culture model of rat dorsal root ganglion and human pancreatic cancer cell line is successfully established in this study. This MIA PaCa-2/DRG co-culture system demonstrates that the neural-pancreatic carcinoma cell interaction is a mutually beneficial process for the growth of neurites and pancreatic carcinoma cells. The pancreatic cancer cells show a trend of migrating to the DRG along the neurite outgrowth.
NASA Astrophysics Data System (ADS)
Watson, T.; Sullivan, T.
2013-05-01
The levels of CO2 in the atmosphere have been growing since the beginning of the industrial revolution. The current level is 391 ppm. If there are no efforts to mitigate CO2 emissions, the levels will rise to 750 ppm by 2100. Geologic carbon sequestration is one strategy that may be used to begin to reduce emissions. Sequestration will not be effective unless reservoir leak rates are significantly less than 1%. There must be rigorous monitoring protocols in place to ensure sequestration projects meet regulatory and environmental goals. Monitoring for CO2 leakage directly is difficult because of the large background levels and variability of CO2 in the atmosphere. Using tracers to tag the sequestered CO2 can mitigate some of the difficulties of direct measurement but a tracer monitoring network and the levels of tagging need to be carefully designed. Simple diffusion and dispersion models are used to predict the surface and atmospheric concentrations that would be seen by a network monitoring a sequestration site. Levels of tracer necessary to detect leaks from 0.01 to 1% are presented and suggestions for effective monitoring and protection of global tracer utility are presented.
Lewicki, Jennifer L.; Hilley, George E.; Shelly, David R.; King, John C.; McGeehin, John P.; Mangan, Margaret T.; Evans, William C.
2014-01-01
Unrest at Mammoth Mountain over the past several decades, manifest by seismicity, ground deformation, diffuse CO2 emissions, and elevated 3He/4He ratios in fumarolic gases has been driven by the release of CO2-rich fluids from basaltic intrusions in the middle to lower crust. Recent unrest included the occurrence of three lower-crustal (32–19 km depth) seismic swarms beneath Mammoth Mountain in 2006, 2008 and 2009 that were consistently followed by peaks in the occurrence rate of shallow (≤10 km depth) earthquakes. We measured 14C in the growth rings (1998–2012) of a tree growing in the largest (∼0.3 km2) area of diffuse CO2 emissions on Mammoth Mountain (the Horseshoe Lake tree kill; HLTK) and applied atmospheric CO2 concentration source area modeling to confirm that the tree was a reliable integrator of magmatic CO2 emissions over most of this area. The tree-ring 14C record implied that magmatic CO2 emissions from the HLTK were relatively stable from 1998 to 2009, nearly doubled from 2009 to 2011, and then declined by the 2012 growing season. The initial increase in CO2 emissions was detected during the growing season that immediately followed the largest (February 2010) peak in the occurrence rate of shallow earthquakes. Migration of CO2-rich magmatic fluids may have driven observed patterns of elevated deep, then shallow seismicity, while the relationship between pore fluid pressures within a shallow (upper 3 km of crust) fluid reservoir and permeability structure of the reservoir cap rock may have controlled the temporal pattern of surface CO2 emissions.
Fines migration during CO 2 injection: Experimental results interpreted using surface forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Quan; Saeedi, Ali; Delle Piane, Claudio
The South West Hub project is one of the Australian Flagship Carbon Capture and Storage projects located in the south-west of Western Australia. To evaluate the injectivity potential during the forthcoming full-scale CO 2 injection, we conducted three core-flooding experiments using reservoir core plugs from the well Harvey-1. We aimed to investigate in this paper whether the injection of CO 2 leads to fines migration and permeability reduction due to the relatively high kaolinite content (up to 13%) in the injection interval of the target formation (i.e. the Wonnerup Member of the Lesueur Formation). We imaged the core samples beforemore » flooding to verify the presence of kaolinite at the pore-scale using scanning electron microscopy (SEM). We also examined the pore network of the core plugs before and after the core-flooding experiments using Nuclear Magnetic Resonance (NMR). Moreover, to gain a better understanding of any kaolinite fines migration, we delineated surface force using two models based on Derjaguin-Landau-Verwey-Overbeek (denoted by DLVO) theory coupled hydrodynamic force: (1) sphere/flat model representing interaction between kaolinite/quartz, and (2) flat/flat model representing interaction between kaolinite/kaolinite. Our core-flooding experimental results showed that CO 2/brine injection triggered moderate to significant reduction in the permeability of the core samples with a negligible porosity change. NMR measurements supported the core-flooding results, suggesting that the relatively large pores disappeared in favour of a higher proportion of the medium to small pores after flooding. The DLVO calculations showed that some kaolinite particles probably lifted off and detached from neighbouring kaolinite particles rather than quartz grains. Moreover, the modelling results showed that the kaolinite fines migration would not occur under normal reservoir multiphase flow conditions. This is not because of the low hydrodynamic force. It is rather because the geometries of the particles dominate their interplay. Finally and overall, both of the experimental and analytical modelling results point to the fines migration to be the most likely cause of the permeability impairment observed during core-flooding experiments.« less
Fines migration during CO 2 injection: Experimental results interpreted using surface forces
Xie, Quan; Saeedi, Ali; Delle Piane, Claudio; ...
2017-09-04
The South West Hub project is one of the Australian Flagship Carbon Capture and Storage projects located in the south-west of Western Australia. To evaluate the injectivity potential during the forthcoming full-scale CO 2 injection, we conducted three core-flooding experiments using reservoir core plugs from the well Harvey-1. We aimed to investigate in this paper whether the injection of CO 2 leads to fines migration and permeability reduction due to the relatively high kaolinite content (up to 13%) in the injection interval of the target formation (i.e. the Wonnerup Member of the Lesueur Formation). We imaged the core samples beforemore » flooding to verify the presence of kaolinite at the pore-scale using scanning electron microscopy (SEM). We also examined the pore network of the core plugs before and after the core-flooding experiments using Nuclear Magnetic Resonance (NMR). Moreover, to gain a better understanding of any kaolinite fines migration, we delineated surface force using two models based on Derjaguin-Landau-Verwey-Overbeek (denoted by DLVO) theory coupled hydrodynamic force: (1) sphere/flat model representing interaction between kaolinite/quartz, and (2) flat/flat model representing interaction between kaolinite/kaolinite. Our core-flooding experimental results showed that CO 2/brine injection triggered moderate to significant reduction in the permeability of the core samples with a negligible porosity change. NMR measurements supported the core-flooding results, suggesting that the relatively large pores disappeared in favour of a higher proportion of the medium to small pores after flooding. The DLVO calculations showed that some kaolinite particles probably lifted off and detached from neighbouring kaolinite particles rather than quartz grains. Moreover, the modelling results showed that the kaolinite fines migration would not occur under normal reservoir multiphase flow conditions. This is not because of the low hydrodynamic force. It is rather because the geometries of the particles dominate their interplay. Finally and overall, both of the experimental and analytical modelling results point to the fines migration to be the most likely cause of the permeability impairment observed during core-flooding experiments.« less
Lenz, G; Heipertz, W; Leidig, E; Madee, S
1986-06-01
Monitoring of ventilation serves to ensure adequate alveolar ventilation and arterial oxygenation, and to avoid pulmonary damage due to mechanical ventilation. Basic clinical monitoring, i.e., inspection, auscultation (including precordial or oesophageal stethoscope) and monitoring of heart rate and blood pressure, is mandatory. Mechanical ventilation is monitored by ventilation pressures (peak pressure, plateau pressure and endexpiratory pressure), ventilation volumes (measured at the in/expiratory valve of the respirator and by hot-wire anemometry at the tube connector), ventilation rate, and inspiratory oxygen concentration (FiO2). Alveolar ventilation should be continuously and indirectly recorded by capnometry (pECO2) and by measurement of transcutaneous pCO2 (tcpCO2), whereas oxygenation is determined via measurement of transcutaneous pO2 (tcpO2). Invasive monitoring of gas exchange is essential in prolonged or intrathoracic interventions as well as in neonates with cardiopulmonary problems. paCO2 may be estimated by capillary or venous blood gas analysis; arterial blood gas analysis is required for exact determination of paCO2 as well as arteriocutaneous pCO2 (atcDCO2) and arterio-end-expiratory (aEDCO2) gradients.
NASA Astrophysics Data System (ADS)
Kim, K. K.; Hamm, S. Y.; Kim, S. O.; Yun, S. T.
2016-12-01
For confronting global climate change, carbon capture and storage (CCS) is one of several very useful strategies as using capture of greenhouse gases like CO2 spewed from stacks and then isolation of the gases in underground geologic storage. CO2-rich groundwater could be produced by CO2 dissolution into fresh groundwater around a CO2 storage site. As consequence, natural analogue studies related to geologic storage provide insights into future geologic CO2 storage sites as well as can provide crucial information on the safety and security of geologic sequestration, the long-term impact of CO2 storage on the environment, and field operation and monitoring that could be implemented for geologic sequestration. In this study, we developed CO2 leakage monitoring method using probability density function (PDF) by characterizing naturally occurring CO2-rich groundwater. For the study, we used existing data of CO2-rich groundwaters in different geological regions (Gangwondo, Gyeongsangdo, and Choongchungdo provinces) in South Korea. Using PDF method and QI (quantitative index), we executed qualitative and quantitative comparisons among local areas and chemical constituents. Geochemical properties of groundwater with/without CO2 as the PDF forms proved that pH, EC, TDS, HCO3-, Ca2+, Mg2+, and SiO2 were effective monitoring parameters for carbonated groundwater in the case of CO2leakage from an underground storage site. KEY WORDS: CO2-rich groundwater, CO2 storage site, monitoring parameter, natural analogue, probability density function (PDF), QI_quantitative index Acknowledgement This study was supported by the "Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Education (NRF-2013R1A1A2058186)" and the "R&D Project on Environmental Management of Geologic CO2 Storage" from KEITI (Project number: 2014001810003).
Directional Collective Cell Migration Emerges as a Property of Cell Interactions
Woods, Mae L.; Carmona-Fontaine, Carlos; Barnes, Chris P.; Couzin, Iain D.; Mayor, Roberto; Page, Karen M.
2014-01-01
Collective cell migration is a fundamental process, occurring during embryogenesis and cancer metastasis. Neural crest cells exhibit such coordinated migration, where aberrant motion can lead to fatality or dysfunction of the embryo. Migration involves at least two complementary mechanisms: contact inhibition of locomotion (a repulsive interaction corresponding to a directional change of migration upon contact with a reciprocating cell), and co-attraction (a mutual chemoattraction mechanism). Here, we develop and employ a parameterized discrete element model of neural crest cells, to investigate how these mechanisms contribute to long-range directional migration during development. Motion is characterized using a coherence parameter and the time taken to reach, collectively, a target location. The simulated cell group is shown to switch from a diffusive to a persistent state as the response-rate to co-attraction is increased. Furthermore, the model predicts that when co-attraction is inhibited, neural crest cells can migrate into restrictive regions. Indeed, inhibition of co-attraction in vivo and in vitro leads to cell invasion into restrictive areas, confirming the prediction of the model. This suggests that the interplay between the complementary mechanisms may contribute to guidance of the neural crest. We conclude that directional migration is a system property and does not require action of external chemoattractants. PMID:25181349
21 CFR 868.2480 - Cutaneous carbon dioxide (PcCO2) monitor.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cutaneous carbon dioxide (PcCO2) monitor. 868.2480 Section 868.2480 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... (PcCO2) and Oxygen (PcO2) Monitors; Guidance for Industry and FDA.” See § 868.1(e) for the...
NASA Astrophysics Data System (ADS)
Joun, Won-Tak; Ha, Seung-Wook; Kim, Hyun Jung; Ju, YeoJin; Lee, Sung-Sun; Lee, Kang-Kun
2017-04-01
Controlled ex-situ experiments and continuous CO2 monitoring in the field are significant implications for detecting and monitoring potential leakage from CO2 sequestration reservoir. However, it is difficult to understand the observed parameters because the natural disturbance will fluctuate the signal of detections in given local system. To identify the original source leaking from sequestration reservoir and to distinguish the camouflaged signal of CO2 concentration, the artificial leakage test was conducted in shallow groundwater environment and long-term monitoring have been performed. The monitoring system included several parameters such as pH, temperature, groundwater level, CO2 gas concentration, wind speed and direction, atmospheric pressure, borehole pressure, and rainfall event etc. Especially in this study, focused on understanding a relationship among the CO2 concentration, wind speed, rainfall and pressure difference. The results represent that changes of CO2 concentration in vadose zone could be influenced by physical parameters and this reason is helpful in identifying the camouflaged signal of CO2 concentrations. The 1-D column laboratory experiment also was conducted to understand the sparking-peak as shown in observed data plot. The results showed a similar peak plot and could consider two assumptions why the sparking-peak was shown. First, the trapped CO2 gas was escaped when the water table was changed. Second, the pressure equivalence between CO2 gas and water was broken when the water table was changed. These field data analysis and laboratory experiment need to advance due to comprehensively quantify local long-term dynamics of the artificial CO2 leaking aquifer. Acknowledgement Financial support was provided by the "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003)
Schug, Christina; Sievert, Wolfgang; Urnauer, Sarah; Müller, Andrea Maria; Schmohl, Kathrin Alexandra; Wechselberger, Alexandra; Schwenk, Nathalie; Lauber, Kirsten; Schwaiger, Markus; Multhoff, Gabriele; Wagner, Ernst; Nelson, Peter J; Spitzweg, Christine
2018-05-04
The tumor-homing properties of mesenchymal stem cells (MSC) have led to their development as delivery vehicles for the targeted delivery of therapeutic genes such as the sodium iodide symporter (NIS) to solid tumors. External beam radiation therapy (EBRT) may represent an ideal setting for the application of engineered MSC-based gene therapy as tumor irradiation may enhance MSC recruitment into irradiated tumors through the increased production of select factors linked to MSC migration. In the present study, the irradiation of human liver cancer cells (HuH7) (1-10 Gy) showed a strong dose-dependent increase in steady state mRNA levels of CXCL8, CXCL12/SDF-1, FGF2, PDGFβ, TGFβ1, TSP-1 and VEGF (0-48 h), which was verified for most factors at the protein level (after 48 h). Radiation effects on directed MSC migration was tested in vitro using a live cell tracking migration assay and supernatants from control and irradiated HuH7 cells. A robust increase in mean forward migration index (yFMI), mean center of mass (yCoM) and mean directionality of MSCs towards supernatants was seen from irradiated as compared to nonirradiated tumor cells. Transferability of this effect to other tumor sources was demonstrated using the human breast adenocarcinoma cell line (MDA-MB-231), which showed a similar behavior to radiation as seen with HuH7 cells in qPCR and migration assay. To evaluate this in a more physiologic in vivo setting, subcutaneously growing HuH7 xenograft tumors were irradiated with 0, 2 or 5 Gy followed by CMV-NIS-MSC application 24 h later. Tumoral iodide uptake was monitored using 123I-scintigraphy. The results showed increased tumor-specific dose-dependent accumulation of radioiodide in irradiated tumors. Our results demonstrate that EBRT enhances the migratory capacity of MSCs and may thus increase the therapeutic efficacy of MSC-mediated NIS radionuclide therapy.
NASA Astrophysics Data System (ADS)
Schoell, M.; Etiope, G.
2015-12-01
Natural gases form in tight source rocks at temperatures between 120ºC up to 200ºC over a time of 40 to 50my depending on the heating rate of the gas kitchen. Inferring from pyrolysis experiments, gases after primary migration, a pressure driven process, are rich in C2+ hydrocarbons (C2 to C5). This is consistent with gas compositions of oil-associated gases such as in the Bakken Shale which occur in immediate vicinity of the source with little migration distances. However, migration of gases along porous rocks over long distances (up to 200km in the case of the Troll field offshore Norway) changes the gas composition drastically as C2+ hydrocarbons tend to be retained/sequestered during migration of gas as case histories from Virginia and the North Sea will demonstrate. Similar "molecular fractionation" is observed between reservoirs and surface seeps. In contrast to gas composition, stable isotopes in gases are, in general, not affected by the migration process suggesting that gas migration is a steady state process. Changes in isotopic composition, from source to reservoir to surface seeps, is often the result of mixing of gases of different origins. Examples from various gas provinces will support this notion. Natural gas basins provide little opportunity of tracking and identifying gas phase separation. Future research on experimental phase separation and monitoring of gas composition and gas ratio changes e.g. various C2+ compound ratios over C1 or isomer ratios such as iso/n ratios in butane and pentane may be an avenue to develop tracers for phase separation that could possibly be applied to natural systems of retrograde natural condensate fields.
Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project
Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; ...
2014-12-31
A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO 2 and will be used for: (1) tracking the spatial extent of the free phase CO 2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO 2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated formore » a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO 2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO 2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less
Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.
A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO 2 and will be used for: (1) tracking the spatial extent of the free phase CO 2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO 2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated formore » a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO 2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO 2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less
Subsurface Monitoring of CO2 Sequestration - A Review and Look Forward
NASA Astrophysics Data System (ADS)
Daley, T. M.
2012-12-01
The injection of CO2 into subsurface formations is at least 50 years old with large-scale utilization of CO2 for enhanced oil recovery (CO2-EOR) beginning in the 1970s. Early monitoring efforts had limited measurements in available boreholes. With growing interest in CO2 sequestration beginning in the 1990's, along with growth in geophysical reservoir monitoring, small to mid-size sequestration monitoring projects began to appear. The overall goals of a subsurface monitoring plan are to provide measurement of CO2 induced changes in subsurface properties at a range of spatial and temporal scales. The range of spatial scales allows tracking of the location and saturation of the plume with varying detail, while finer temporal sampling (up to continuous) allows better understanding of dynamic processes (e.g. multi-phase flow) and constraining of reservoir models. Early monitoring of small scale pilots associated with CO2-EOR (e.g., the McElroy field and the Lost Hills field), developed many of the methodologies including tomographic imaging and multi-physics measurements. Large (reservoir) scale sequestration monitoring began with the Sleipner and Weyburn projects. Typically, large scale monitoring, such as 4D surface seismic, has limited temporal sampling due to costs. Smaller scale pilots can allow more frequent measurements as either individual time-lapse 'snapshots' or as continuous monitoring. Pilot monitoring examples include the Frio, Nagaoka and Otway pilots using repeated well logging, crosswell imaging, vertical seismic profiles and CASSM (continuous active-source seismic monitoring). For saline reservoir sequestration projects, there is typically integration of characterization and monitoring, since the sites are not pre-characterized resource developments (oil or gas), which reinforces the need for multi-scale measurements. As we move beyond pilot sites, we need to quantify CO2 plume and reservoir properties (e.g. pressure) over large scales, while still obtaining high resolution. Typically the high-resolution (spatial and temporal) tools are deployed in permanent or semi-permanent borehole installations, where special well design may be necessary, such as non-conductive casing for electrical surveys. Effective utilization of monitoring wells requires an approach of modular borehole monitoring (MBM) were multiple measurements can be made. An example is recent work at the Citronelle pilot injection site where an MBM package with seismic, fluid sampling and distributed fiber sensing was deployed. For future large scale sequestration monitoring, an adaptive borehole-monitoring program is proposed.
Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; ...
2014-12-31
The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore » strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less
Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick
2013-09-02
A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection.
Martínez-Garzón, Patricia; Bohnhoff, Marco; Kwiatek, Grzegorz; Zambrano-Narváez, Gonzalo; Chalaturnyk, Rick
2013-01-01
A passive seismic monitoring campaign was carried out in the frame of a CO2-Enhanced Oil Recovery (EOR) pilot project in Alberta, Canada. Our analysis focuses on a two-week period during which prominent downhole pressure fluctuations in the reservoir were accompanied by a leakage of CO2 and CH4 along the monitoring well equipped with an array of short-period borehole geophones. We applied state of the art seismological processing schemes to the continuous seismic waveform recordings. During the analyzed time period we did not find evidence of induced micro-seismicity associated with CO2 injection. Instead, we identified signals related to the leakage of CO2 and CH4, in that seven out of the eight geophones show a clearly elevated noise level framing the onset time of leakage along the monitoring well. Our results confirm that micro-seismic monitoring of reservoir treatment can contribute towards improved reservoir monitoring and leakage detection. PMID:24002229
Replacement Migration: Is It a Solution to Declining and Ageing Populations?
ERIC Educational Resources Information Center
United Nations, New York, NY. Dept. of Economic and Social Affairs.
The United Nations (UN) Population Division monitors fertility, mortality, and migration trends for all countries as a basis for producing the official UN population estimates and projections. Among recent demographic trends, two are prominent: (1) population decline and (2) population aging. Focusing on these two critical trends, a study…
NASA Astrophysics Data System (ADS)
Nowak, Martin; Myrttinen, Anssi; Zimmer, Martin; van Geldern, Robert; Barth, Johannes A. C.
2014-05-01
At the pilot site for CO2 storage in Ketzin, a new well-based leakage-monitoring concept was established, comprising geochemical and hydraulic observations of the aquifer directly above the CO2 reservoir (Wiese et al., 2013, Nowak et al. 2013). Its purpose was to allow early detection of un-trapped CO2. Within this monitoring concept, we established a stable carbon isotope monitoring of dissolved inorganic carbon (DIC). If baseline isotope values of aquifer DIC (δ13CDIC) and reservoir CO2 (δ13CCO2) are known and distinct from each other, the δ13CDIC has the potential to serve as an an early indicator for an impact of leaked CO2 on the aquifer brine. The observation well of the overlying aquifer was equipped with an U-tube sampling system that allowed sampling of unaltered brine. The high alkaline drilling mud that was used during well drilling masked δ13CDIC values at the beginning of the monitoring campaign. However, subsequent monitoring allowed observing on-going re-equilibration of the brine, indicated by changing δ13CDIC and other geochemical values, until values ranging around -23 ‰ were reached. The latter were close to baseline values before drilling. Baselineδ13CDIC and δ13CCO2 values were used to derive a geochemical and isotope model that predicts evolution of δ13CDIC, if CO2 from the reservoir would leak into the aquifer. The model shows that equilibrium isotope fractionation would have to be considered if CO2 dissolves in the brine. The model suggests that stable carbon isotope monitoring is a suitable tool to assess the impact of injected CO2 in overlying groundwater aquifers. However, more data are required to close gaps of knowledge about fractionation behaviour within the CO2(g) - DIC system under elevated pressures and temperatures. Nowak, M., Myrttinen, A., Zimmer, M., Wiese, B., van Geldern, R., Barth, J.A.C., 2013. Well-based, Geochemical Leakage Monitoring of an Aquifer Immediately Above a CO2 Storage Reservoir by Stable Carbon Isotopes at the Ketzin Pilot Site, Germany. Energy Procedia 40, 346-354. Wiese, B., Zimmer, M., Nowak, M., Pellizzari, L., Pilz, P., 2013. Well-based hydraulic and geochemical monitoring of the above zone of the CO2 reservoir at Ketzin, Germany. Environmental Earth Sciences, 1-18.
NASA Astrophysics Data System (ADS)
Saad, N.
2011-12-01
Information on spring migration routes, geographic linkages among winter, spring, and breeding locations, and potential geographic effects on arrival body condition of a variety of avian species is so far little known. Stable isotope ratios are exquisitely sensitive to the biochemistry of living organisms and the nutrients available to them. Isotope ratios provide detailed knowledge useful in a variety of fields, including birds migration, through a combination of stable-isotope measurements of carbon (13C/12C) and hydrogen (D/H) isotopes of flight feathers and breast feathers of tissues representing different periods of dietary integration and body composition analyses. Associations among specific geographic areas, habitat use, and arrival condition can be elucidated through the measurement of these dual isotopes. We report here on the development of a novel laser spectroscopy based system for the simultaneous analysis of the stable isotope ratios of carbon (13C/12C) and hydrogen (D/H) that is robust, easy-to-use, and is the first stable isotope ratio analysis system to combine the measurement of 13C/12C and D/H in one simple analysis from a bulk organic sample with an application to bird migration. The system comprises a combustion module to convert the organic sample into CO2 and H2O and a Cavity Ring-Down Spectrometer (CRDS) that analyzes the combustion species inside an optical cavity based on the molecular absorption of individual isotopomers. This CRDS uses dual lasers to target the four isotpomers of interest: 12CO2, 13CO2, H2O and HDO. The system delivers a typical precision of 0.1 permil for δ13C and 1.5 permil for δD that parallels that achieved by IRMS, but with an unprecedented simplicity that allows ecologists to leverage the science and elucidate the avian migration patterns.
Li, Lian; Guo, Hui-Jun; Zhu, Ling-Yan; Zheng, Limin; Liu, Xin
2016-05-15
Ganoderma lucidum (G. lucidum) is an oriental medical mushroom that has been widely used in Asian countries for centuries to prevent and treat different diseases, including cancer. The objective of this study was to investigate the effect of A supercritical-CO2 extract of G. lucidum spores on the transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of cholangiocarcinoma cells. This was an in vitro study with human cholangiocarcinoma TFK-1 cells treated with varying concentrations of G. lucidum. A supercritical-CO2 extract of G. lucidum spores (GLE) was obtained from completely sporoderm-broken germinating G. lucidum spores by supercritical fluid carbon dioxide (SCF-CO2) extraction. GLE pre-incubated with human cholangiocarcinoma TFK-1 cells prior to TGF-β1 treatment (2ng/ml) for 48h. Changes in EMT markers were analyzed by western blotting and immunofluorescence. The formation of F-actin stress fibers was assessed via immunostaining with phalloidin and examined using confocal microscopy. Additionally, the effect of the GLE on TGF-β1-induced migration was investigated by a Boyden chamber assay. TGF-β1-induced reduction in E-cadherin expression was associated with a loss of epithelial morphology and cell-cell contact. Concomitant increases in N-cadherin and Fibronectin were evident in predominantly elongated fibroblast-like cells. The GLE suppressed the TGF-β1-induced morphological changes and the changes in cadherin expression, and also inhibited the formation of F-actin stress fibers, which are a hallmark of EMT. The GLE also inhibited TGF-β1-induced migration of TFK-1 cells. Our findings provide new evidence that GLE suppress cholangiocarcinoma migration in vitro through inhibition of TGF-β1-induced EMT. The GLE may be clinically applied in the prevention and/or treatment of cancer metastasis. Copyright © 2016. Published by Elsevier GmbH.
Gas migration through Opouawe Bank at the Hikurangi margin offshore New Zealand
NASA Astrophysics Data System (ADS)
Koch, Stephanie; Schroeder, Henning; Haeckel, Matthias; Berndt, Christian; Bialas, Joerg; Papenberg, Cord; Klaeschen, Dirk; Plaza-Faverola, Andreia
2016-06-01
This study presents 2D seismic reflection data, seismic velocity analysis, as well as geochemical and isotopic porewater compositions from Opouawe Bank on New Zealand's Hikurangi subduction margin, providing evidence for essentially pure methane gas seepage. The combination of geochemical information and seismic reflection images is an effective way to investigate the nature of gas migration beneath the seafloor, and to distinguish between water advection and gas ascent. The maximum source depth of the methane that migrates to the seep sites on Opouawe Bank is 1,500-2,100 m below seafloor, generated by low-temperature degradation of organic matter via microbial CO2 reduction. Seismic velocity analysis enabled identifying a zone of gas accumulation underneath the base of gas hydrate stability (BGHS) below the bank. Besides structurally controlled gas migration along conduits, gas migration also takes place along dipping strata across the BGHS. Gas migration on Opouawe Bank is influenced by anticlinal focusing and by several focusing levels within the gas hydrate stability zone.
NASA Astrophysics Data System (ADS)
Dethlefsen, Frank; Peter, Anita; Hornbruch, Götz; Lamert, Hendrik; Garbe-Schönberg, Dieter; Beyer, Matthias; Dietrich, Peter; Dahmke, Andreas
2014-05-01
The accidental release of CO2 into potable aquifers, for instance as a consequence of a leakage out of a CO2 store site, can endanger drinking water resources due to the induced geochemical processes. A 10-day CO2 injection experiment into a shallow aquifer was carried out in Wittstock (Northeast Germany) in order to investigate the geochemical impact of a CO2 influx into such an aquifer and to test different monitoring methods. Information regarding the site investigation, the injection procedure monitoring setup, and first geochemical monitoring results are described in [1]. Apart from the utilization of the test results to evaluate monitoring approaches [2], further findings are presented on the evaluation of the geophysical monitoring [3], and the monitoring of stable carbon isotopes [4]. This part of the study focuses of the hydrogeochemical alteration of groundwater due to the CO2 injection test. As a consequence of the CO2 injection, major cations were released, i.e. concentrations increased, whereas major anion concentrations - beside bicarbonate - decreased, probably due to increased anion sorption capacity at variably charged exchange sites of minerals. Trace element concentrations increased as well significantly, whereas the relative concentration increase was far larger than the relative concentration increase of major cations. Furthermore, geochemical reactions show significant spatial heterogeneity, i.e. some elements such as Cr, Cu, Pb either increased in concentration or remained at stable concentrations with increasing TIC at different wells. Statistical analyses of regression coefficients confirm the different spatial reaction patterns at different wells. Concentration time series at single wells give evidence, that the trace element release is pH dependent, i.e. trace elements such as Zn, Ni, Co are released at pH of around 6.2-6.6, whereas other trace elements like As, Cd, Cu are released at pH of 5.6-6.4. [1] Peter, A., et al., Investigation of the geochemical impact of CO2; on shallow groundwater: design and implementation of a CO2; injection test in Northeast Germany. Environmental Earth Sciences, 2012. 67(2): p. 335-349. [2] Dethlefsen, F., et al., Monitoring approaches for detecting and evaluating CO2 and formation water leakages into near-surface aquifers. Energy Procedia, 2013. 37(0): p. 4886-4893. [3] Lamert, H., et al., Feasibility of geoelectrical monitoring and multiphase modeling for process understanding of gaseous CO2; injection into a shallow aquifer. Environmental Earth Sciences, 2012. 67(2): p. 447-462. [4] Schulz, A., et al., Monitoring of a simulated CO2 leakage in a shallow aquifer using stable carbon isotopes. Environmental Science & Technology, 2012. 46(20): p. 11243-11250.
How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs
NASA Astrophysics Data System (ADS)
Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart
2014-05-01
Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that faults play a major role when it comes to fluid migration from a reservoir. However, nearly 50% of the non-leaking studied reservoirs are also fault bound, demonstrating that faults are not always necessarily leakage pathways.
Svastova, Eliska; Witarski, Wojciech; Csaderova, Lucia; Kosik, Ivan; Skvarkova, Lucia; Hulikova, Alzbeta; Zatovicova, Miriam; Barathova, Monika; Kopacek, Juraj; Pastorek, Jaromir; Pastorekova, Silvia
2012-01-01
Carbonic anhydrase IX (CA IX) is a hypoxia-induced cell surface enzyme expressed in solid tumors, and functionally involved in acidification of extracellular pH and destabilization of intercellular contacts. Since both extracellular acidosis and reduced cell adhesion facilitate invasion and metastasis, we investigated the role of CA IX in cell migration, which promotes the metastatic cascade. As demonstrated here, ectopically expressed CA IX increases scattering, wound healing and transwell migration of MDCK cells, while an inactive CA IX variant lacking the catalytic domain (ΔCA) fails to do so. Correspondingly, hypoxic HeLa cells exhibit diminished migration upon inactivation of the endogenous CA IX either by forced expression of the dominant-negative ΔCA variant or by treatment with CA inhibitor, implying that the catalytic activity is indispensable for the CA IX function. Interestingly, CA IX improves cell migration both in the absence and presence of hepatocyte growth factor (HGF), an established inducer of epithelial-mesenchymal transition. On the other hand, HGF up-regulates CA IX transcription and triggers CA IX protein accumulation at the leading edge of lamellipodia. In these membrane regions CA IX co-localizes with sodium bicarbonate co-transporter (NBCe1) and anion exchanger 2 (AE2) that are both components of the migration apparatus and form bicarbonate transport metabolon with CA IX. Moreover, CA IX physically interacts with AE2 and NBCe1 in situ, as shown here for the first time. Thus, our findings suggest that CA IX actively contributes to cell migration via its ability to facilitate ion transport and pH control at protruding fronts of moving cells. PMID:22170054
Monitoring of leaked CO2 through sediment, water column and atmosphere in sub-seabed CCS experiment
NASA Astrophysics Data System (ADS)
Shitashima, K.; Sakamoto, A.; Maea, Y.
2013-12-01
CO2 capture and storage in sub-seabed geological formations (sub-seabed CCS) is currently being studied as a feasible option to mitigate the accumulation of anthropogenic CO2 in the atmosphere. In implementing sub-seabed CCS, detecting and monitoring the impact of the sequestered CO2 on the ocean environment is highly important. The first controlled CO2 release experiment, entitled 'Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS)', took place in Ardmucknish Bay, Oban, in May-July 2012. We applied the in-situ pH/pCO2/ORP sensor to the QICS experiment for detection and monitoring of leaked CO2, and carried out several observations. The on-line sensor that was connected by 400m of RS422 cable was deployed close to the CO2 leakage (bubbling) point, and the fluctuations of pH, pCO2 and ORP were monitored in real-time in a observation van on land. Three sets of off-line sensors were also placed on seafloor in respective points (release point, and two low impacted regions at 25m and 75m distant) for three months. The long-term monitoring of pH in sediment at 50cm depth under the seafloor was conducted. The spear type electrode was stabbed into sediment by diver near the CO2 leakage point. Wide-area mapping surveys of pH, pCO2 and ORP in seawater around the leakage point were carried out by AUV (REMUS-100) that some chemical sensors were installed in. The AUV cruised along the grid line in two layers of 4m and 2m above the seafloor during both of periods of low tide and high tide. Atmospheric CO2 in sea surface above the leakage point was observed by the LI-COR CO2 Analyzer. The analyzer was attached to the bow of ship, and the ship navigated a wide-area along a grid observation line during both of periods of low tide and high tide.
Yoon, Hongkyu; Major, Jonathan; Dewers, Thomas; ...
2017-01-05
Dissolved CO 2 in the subsurface resulting from geological CO 2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes including hydrodynamics, transport, and reactions at the (sub) pore-scale. In this work pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reactions at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This paper is motivated by observations of CO 2 seeps from a natural CO 2 sequestration analog, Crystal Geyser, Utah. Observations alongmore » the surface exposure of the Little Grand Wash fault indicate the lateral migration of CO 2 seep sites (i.e., alteration zones) of 10–50 m width with spacing on the order of ~100 m over time. Sandstone permeability in alteration zones is reduced by 3–4 orders of magnitude by carbonate cementation compared to unaltered zones. One granular porous medium and one fracture network systems are used to conceptually represent permeable porous media and locations of conduits controlled by fault-segment intersections and/or topography, respectively. Simulation cases accounted for a range of reaction regimes characterized by the Damköhler (Da) and Peclet (Pe) numbers. Pore-scale simulation results demonstrate that combinations of transport (Pe), geochemical conditions (Da), solution chemistry, and pore and fracture configurations contributed to match key patterns observed in the field of how calcite precipitation alters flow paths by pore plugging. This comparison of simulation results with field observations reveals mechanistic explanations of the lateral migration and enhances our understanding of subsurface processes associated with the CO 2 injection. In addition, permeability and porosity relations are constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Da and Pe numbers. Finally, the functional relationships obtained from pore-scale simulations can be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO 2 seeps.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Hongkyu; Major, Jonathan; Dewers, Thomas
Dissolved CO 2 in the subsurface resulting from geological CO 2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes including hydrodynamics, transport, and reactions at the (sub) pore-scale. In this work pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reactions at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This paper is motivated by observations of CO 2 seeps from a natural CO 2 sequestration analog, Crystal Geyser, Utah. Observations alongmore » the surface exposure of the Little Grand Wash fault indicate the lateral migration of CO 2 seep sites (i.e., alteration zones) of 10–50 m width with spacing on the order of ~100 m over time. Sandstone permeability in alteration zones is reduced by 3–4 orders of magnitude by carbonate cementation compared to unaltered zones. One granular porous medium and one fracture network systems are used to conceptually represent permeable porous media and locations of conduits controlled by fault-segment intersections and/or topography, respectively. Simulation cases accounted for a range of reaction regimes characterized by the Damköhler (Da) and Peclet (Pe) numbers. Pore-scale simulation results demonstrate that combinations of transport (Pe), geochemical conditions (Da), solution chemistry, and pore and fracture configurations contributed to match key patterns observed in the field of how calcite precipitation alters flow paths by pore plugging. This comparison of simulation results with field observations reveals mechanistic explanations of the lateral migration and enhances our understanding of subsurface processes associated with the CO 2 injection. In addition, permeability and porosity relations are constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Da and Pe numbers. Finally, the functional relationships obtained from pore-scale simulations can be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO 2 seeps.« less
Monitoring shifts in plant diversity in response to climate change: A method for landscapes
Stohlgren, T.J.; Owen, A.J.; Lee, M.
2000-01-01
Improved sampling designs are needed to detect, monitor, and predict plant migrations and plant diversity changes caused by climate change and other human activities. We propose a methodology based on multi-scale vegetation plots established across forest ecotones which provide baseline data on patterns of plant diversity, invasions of exotic plant species, and plant migrations at landscape scales in Rocky Mountain National Park, Colorado, USA. We established forty two 1000-m2 plots in relatively homogeneous forest types and the ecotones between them on 14 vegetation transects. We found that 64% of the variance in understory species distributions at landscape scales were described generally by gradients of elevation and under-canopy solar radiation. Superimposed on broad-scale climatic gradients are small-scale gradients characterized by patches of light, pockets of fertile soil, and zones of high soil moisture. Eighteen of the 42 plots contained at least one exotic species; monitoring exotic plant invasions provides a means to assess changes in native plant diversity and plant migrations. Plant species showed weak affinities to overstory vegetation types, with 43% of the plant species found in three or more vegetation types. Replicate transects along several environmental gradients may provide the means to monitor plant diversity and species migrations at landscape scales because: (1) ecotones may play crucial roles in expanding the geophysiological ranges of many plant species; (2) low affinities of understory species to overstory forest types may predispose vegetation types to be resilient to rapid environmental change; and (3) ecotones may help buffer plant species from extirpation and extinction.
Bioacoustic monitoring of nocturnal songbird migration in a southern great lakes ecosystem
NASA Astrophysics Data System (ADS)
Sanders, Claire Elizabeth
Many species of birds produce short vocalizations during nocturnal migration. My thesis uses bioacoustic monitoring of these night flight calls to study bird migration through a southern Great Lakes ecosystem. I deployed recording devices around western Lake Erie during spring and fall migrations. Analysis of thousands of hours of recordings revealed that night flight calls accurately predicted both the magnitude of migration, as well as the timing of migrant passage, as assessed by banding. The first arrival dates for 48 species of migratory birds were significantly earlier on Pelee Island than on mainland Ontario in the spring. More flight calls were detected over Pelee Island than over mainland comparison sites. These results suggest that many birds cross Lake Erie in spring and fall, and that islands are important for migratory birds. This research provides insight into the use of acoustics for monitoring birds in active migration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah
The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; ...
2016-12-27
The role of capillary forces during buoyant migration of CO 2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO 2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44more » m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO 2 -surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. Finally, while these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1–10 m).« less
NASA Astrophysics Data System (ADS)
Trevisan, Luca; Pini, Ronny; Cihan, Abdullah; Birkholzer, Jens T.; Zhou, Quanlin; González-Nicolás, Ana; Illangasekare, Tissa H.
2017-01-01
The role of capillary forces during buoyant migration of CO2 is critical toward plume immobilization within the postinjection phase of a geological carbon sequestration operation. However, the inherent heterogeneity of the subsurface makes it very challenging to evaluate the effects of capillary forces on the storage capacity of these formations and to assess in situ plume evolution. To overcome the lack of accurate and continuous observations at the field scale and to mimic vertical migration and entrapment of realistic CO2 plumes in the presence of a background hydraulic gradient, we conducted two unique long-term experiments in a 2.44 m × 0.5 m tank. X-ray attenuation allowed measuring the evolution of a CO2-surrogate fluid saturation, thus providing direct insight into capillarity-dominated and buoyancy-dominated flow processes occurring under successive drainage and imbibition conditions. The comparison of saturation distributions between two experimental campaigns suggests that layered-type heterogeneity plays an important role on nonwetting phase (NWP) migration and trapping, because it leads to (i) longer displacement times (3.6 months versus 24 days) to reach stable trapping conditions, (ii) limited vertical migration of the plume (with center of mass at 39% versus 55% of aquifer thickness), and (iii) immobilization of a larger fraction of injected NWP mass (67.2% versus 51.5% of injected volume) as compared to the homogenous scenario. While these observations confirm once more the role of geological heterogeneity in controlling buoyant flows in the subsurface, they also highlight the importance of characterizing it at scales that are below seismic resolution (1-10 m).
Towards the establishment of landbird migration monitoring networks in the United States
Jay D. Carlisle; C. John Ralph
2005-01-01
Migration monitoring of landbirds, in its various forms, is a well-established research endeavor across much of North America. While monitoring efforts at individual sites have contributed much to our knowledge of the biology of migrants, these studies have limited potential for population monitoring and for addressing certain broader questions about migrants....
Field demonstration of CO2 leakage detection in potable aquifers with a pulselike CO2-release test.
Yang, Changbing; Hovorka, Susan D; Delgado-Alonso, Jesus; Mickler, Patrick J; Treviño, Ramón H; Phillips, Straun
2014-12-02
This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. Measurements of groundwater pH, alkalinity, DIC, and dissolved CO2 clearly deviated from their background values, showing responses to CO2 leakage. Dissolved CO2 observed in the tests was highly sensitive in comparison to groundwater pH, DIC, and alkalinity. Comparison of the pulselike CO2-release tests to other field tests suggests that pulselike CO2-release tests can provide reliable assessment of geochemical parameters indicative of CO2 leakage. Measurements by the fiber-optic CO2 sensor, showing obvious leakage signals, demonstrated the potential of real-time in situ monitoring of dissolved CO2 for leakage detection at a geologic carbon sequestration (GCS) site. Results of a two-dimensional reactive transport model reproduced the geochemical measurements and confirmed that the decrease in groundwater pH and the increases in DIC and dissolved CO2 observed in the pulselike CO2-release tests were caused by dissolution of CO2 whereas alkalinity was likely affected by carbonate dissolution.
Wimmer, B.T.; Krapac, I.G.; Locke, R.; Iranmanesh, A.
2011-01-01
The use of carbon dioxide (CO2) for enhanced oil recovery (EOR) is being tested for oil fields in the Illinois Basin, USA. While this technology has shown promise for improving oil production, it has raised some issues about the safety of CO2 injection and storage. The Midwest Geological Sequestration Consortium (MGSC) organized a Monitoring, Verification, and Accounting (MVA) team to develop and deploy monitoring programs at three EOR sites in Illinois, Indiana, and Kentucky, USA. MVA goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. This paper focuses on the use of MVA techniques in monitoring a small CO2 leak from a supply line at an EOR facility under real-world conditions. The ability of shallow monitoring techniques to detect and quantify a CO2 leak under real-world conditions has been largely unproven. In July of 2009, a leak in the pipe supplying pressurized CO2 to an injection well was observed at an MGSC EOR site located in west-central Kentucky. Carbon dioxide was escaping from the supply pipe located approximately 1 m underground. The leak was discovered visually by site personnel and injection was halted immediately. At its largest extent, the hole created by the leak was approximately 1.9 m long by 1.7 m wide and 0.7 m deep in the land surface. This circumstance provided an excellent opportunity to evaluate the performance of several monitoring techniques including soil CO2 flux measurements, portable infrared gas analysis, thermal infrared imagery, and aerial hyperspectral imagery. Valuable experience was gained during this effort. Lessons learned included determining 1) hyperspectral imagery was not effective in detecting this relatively small, short-term CO2 leak, 2) even though injection was halted, the leak remained dynamic and presented a safety risk concern during monitoring activities and, 3) the atmospheric and soil monitoring techniques used were relatively cost-effective, easily and rapidly deployable, and required minimal manpower to set up and maintain for short-term assessments. However, characterization of CO2 distribution near the land surface resulting from a dynamic leak with widely variable concentrations and fluxes was challenging. ?? 2011 Published by Elsevier Ltd.
Composition and origin of coalbed gases in the Lower Silesian basin, southwest Poland
Kotarba, M.J.; Rice, D.D.
2001-01-01
Coalbed gases in the Lower Silesian Coal Basin (LSCB) of Poland are highly variable in both their molecular and stable isotope compositions. Geochemical indices and stable isotope ratios vary within the following ranges: hydrocarbon (CHC) index CHC = CH4/(C2H6+C3H8) from 1.1 to 5825, wet gas (C2+) index C2+ = (C2H6+ C3H8+ C4H10+ C5H12) / (CH4+ C2H6+ C3H8+ C4H10+ C5H12) 100 (%) from 0.0 to 48.3%, CO2-CH4 (CDMI) index CDMI = CO2/ (CO2+ CH4) 100 (%) from 0.1 to 99.9%, ??13C(CH4) from -66.1 to -24.6%o, ??D(CH4) from -266 to -117%o, ??13C(C2H6) from -27.8 to -22.8%o, and ??13C(CO2) from -26.6 to 16.8%o. Isotopic studies reveal the presence of 3 genetic types of natural gases: thermogenic (CH4, higher gaseous hydrocarbons, and CO2), endogenic CO2, and microbial CH4 and CO2. Thermogenic gases resulted from coalification processes, which were probably completed by Late Carboniferous and Early Permian time. Endogenic CO2 migrated along the deep-seated faults from upper mantle and/or magma chambers. Minor volumes of microbial CH4 and CO2 occur at shallow depths close to the abandoned mine workings. "Late-stage" microbial processes have commenced in the Upper Cretaceous and are probably active at present. However, depth-related isotopic fractionation which has resulted from physical and physicochemical (e.g. diffusion and adsorption/desorption) processes during gas migration cannot be neglected. The strongest rock and gas outbursts occur only in those parts of coal deposits of the LSCB which are dominated by large amounts of endogenic CO2. ?? 2001 Elsevier Science Ltd.
Jans, Ralph; Mottram, Laura; Johnson, Darren L; Brown, Anna M; Sikkink, Stephen; Ross, Kehinde; Reynolds, Nick J
2013-01-01
Lysophosphatidic acid (LPA) enhances cell migration and promotes wound healing in vivo, but the intracellular signaling pathways regulating these processes remain incompletely understood. Here we investigated the involvement of agonist-induced Ca2+ entry and STIM1 and Orai1 proteins in regulating nuclear factor of activated T cell (NFAT) signaling and LPA-induced keratinocyte cell motility. As monitored by Fluo-4 imaging, stimulation with 10 μℳ LPA in 60 μℳ Ca2+o evoked Ca2+i transients owing to store release, whereas addition of LPA in physiological 1.2 mℳ Ca2+o triggered store release coupled to extracellular Ca2+ entry. Store-operated Ca2+ entry (SOCE) was blocked by the SOCE inhibitor diethylstilbestrol (DES), STIM1 silencing using RNA interference (RNAi), and expression of dominant/negative Orai1R91W. LPA induced significant NFAT activation as monitored by nuclear translocation of green fluorescent protein-tagged NFAT2 and a luciferase reporter assay, which was impaired by DES, expression of Orai1R91W, and inhibition of calcineurin using cyclosporin A (CsA). By using chemotactic migration assays, LPA-induced cell motility was significantly impaired by STIM1, CsA, and NFAT2 knockdown using RNAi. These data indicate that in conditions relevant to epidermal wound healing, LPA induces SOCE and NFAT activation through Orai1 channels and promotes cell migration through a calcineurin/NFAT2-dependent pathway. PMID:23096711
Yu, Renyuan Pony; Darmon, Jonathan M.; Milsmann, Carsten; Margulieux, Grant W.; E. Stieber, S. Chantal; DeBeer, Serena
2013-01-01
The bis(arylimidazol-2-ylidene)pyridine cobalt methyl complex, (iPrCNC)CoCH3, was evaluated for the catalytic hydrogenation of alkenes. At 22 °C and 4 atm of H2 pressure, (iPrCNC)CoCH3 is an effective pre-catalyst for the hydrogenation of sterically hindered, unactivated alkenes such as trans-methylstilbene, 1-methyl-1-cyclohexene and 2,3-dimethyl-2-butene, representing one of the most active cobalt hydrogenation catalysts reported to date. Preparation of the cobalt hydride complex, (iPrCNC)CoH was accomplished by hydrogenation of (iPrCNC)CoCH3. Over the course of 3 hours at 22 °C, migration of the metal-hydride to the 4-position of the pyridine ring yielded (4-H2-iPrCNC)CoN2. Similar alkyl migration was observed upon treatment of (iPrCNC)CoH with 1,1-diphenylethylene. This reactivity raised the question as to whether this class of chelate is redoxactive, engaging in radical chemistry with the cobalt center. A combination of structural, spectroscopic and computational studies was conducted and provided definitive evidence for bis(arylimidazol-2-ylidene)pyridine radicals in reduced cobalt chemistry. Spin density calculations established that the radicals were localized on the pyridine ring, accounting for the observed reactivity and suggest a wide family of pyridine-based pincers may also be redox active. PMID:23968297
Yu, Renyuan Pony; Darmon, Jonathan M; Milsmann, Carsten; Margulieux, Grant W; Stieber, S Chantal E; DeBeer, Serena; Chirik, Paul J
2013-09-04
The bis(arylimidazol-2-ylidene)pyridine cobalt methyl complex, ((iPr)CNC)CoCH3, was evaluated for the catalytic hydrogenation of alkenes. At 22 °C and 4 atm of H2 pressure, ((iPr)CNC)CoCH3 is an effective precatalyst for the hydrogenation of sterically hindered, unactivated alkenes such as trans-methylstilbene, 1-methyl-1-cyclohexene, and 2,3-dimethyl-2-butene, representing one of the most active cobalt hydrogenation catalysts reported to date. Preparation of the cobalt hydride complex, ((iPr)CNC)CoH, was accomplished by hydrogenation of ((iPr)CNC)CoCH3. Over the course of 3 h at 22 °C, migration of the metal hydride to the 4-position of the pyridine ring yielded (4-H2-(iPr)CNC)CoN2. Similar alkyl migration was observed upon treatment of ((iPr)CNC)CoH with 1,1-diphenylethylene. This reactivity raised the question as to whether this class of chelate is redox-active, engaging in radical chemistry with the cobalt center. A combination of structural, spectroscopic, and computational studies was conducted and provided definitive evidence for bis(arylimidazol-2-ylidene)pyridine radicals in reduced cobalt chemistry. Spin density calculations established that the radicals were localized on the pyridine ring, accounting for the observed reactivity, and suggest that a wide family of pyridine-based pincers may also be redox-active.
Numerical modeling of time-lapse monitoring of CO2 sequestration in a layered basalt reservoir
Khatiwada, M.; Van Wijk, K.; Clement, W.P.; Haney, M.
2008-01-01
As part of preparations in plans by The Big Sky Carbon Sequestration Partnership (BSCSP) to inject CO2 in layered basalt, we numerically investigate seismic methods as a noninvasive monitoring technique. Basalt seems to have geochemical advantages as a reservoir for CO2 storage (CO2 mineralizes quite rapidly while exposed to basalt), but poses a considerable challenge in term of seismic monitoring: strong scattering from the layering of the basalt complicates surface seismic imaging. We perform numerical tests using the Spectral Element Method (SEM) to identify possibilities and limitations of seismic monitoring of CO2 sequestration in a basalt reservoir. While surface seismic is unlikely to detect small physical changes in the reservoir due to the injection of CO2, the results from Vertical Seismic Profiling (VSP) simulations are encouraging. As a perturbation, we make a 5%; change in wave velocity, which produces significant changes in VSP images of pre-injection and post-injection conditions. Finally, we perform an analysis using Coda Wave Interferometry (CWI), to quantify these changes in the reservoir properties due to CO2 injection.
Hydrothermal response to a volcano-tectonic earthquake swarm, Lassen, California
Ingebritsen, Steven E.; Shelly, David R.; Hsieh, Paul A.; Clor, Laura; P.H. Seward,; Evans, William C.
2015-01-01
The increasing capability of seismic, geodetic, and hydrothermal observation networks allows recognition of volcanic unrest that could previously have gone undetected, creating an imperative to diagnose and interpret unrest episodes. A November 2014 earthquake swarm near Lassen Volcanic National Park, California, which included the largest earthquake in the area in more than 60 years, was accompanied by a rarely observed outburst of hydrothermal fluids. Although the earthquake swarm likely reflects upward migration of endogenous H2O-CO2 fluids in the source region, there is no evidence that such fluids emerged at the surface. Instead, shaking from the modest sized (moment magnitude 3.85) but proximal earthquake caused near-vent permeability increases that triggered increased outflow of hydrothermal fluids already present and equilibrated in a local hydrothermal aquifer. Long-term, multiparametric monitoring at Lassen and other well-instrumented volcanoes enhances interpretation of unrest and can provide a basis for detailed physical modeling.
NASA Astrophysics Data System (ADS)
Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.
2014-12-01
Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (c) No owner or operator of an affected unit shall use any alternative monitoring system, alternative... be discharged, emissions of SO2, NOX or CO2 to the atmosphere without accounting for all such... approved emission monitoring method, and thereby avoid monitoring and recording SO2, NOX, or CO2 emissions...
Kyle McCarty; Keith L. Bildstein
2005-01-01
Raptors are secretive, area-sensitive predators whose populations can be logistically difficult and financially prohibitive to monitor. Many North American populations of raptors are migratory however, and on migration raptors are frequently counted at traditional migration watchsites. Experiences at Hawk Mountain Sanctuary (HMS) and elsewhere suggest that long-term...
Mathematical models as tools for probing long-term safety of CO2 storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pruess, Karsten; Birkholzer, Jens; Zhou, Quanlin
Subsurface reservoirs being considered for storing CO{sub 2} include saline aquifers, oil and gas reservoirs, and unmineable coal seams (Baines and Worden, 2004; IPCC, 2005). By far the greatest storage capacity is in saline aquifers (Dooley et al., 2004), and our discussion will focus primarily on CO{sub 2} storage in saline formations. Most issues for safety and security of CO{sub 2} storage arise from the fact that, at typical temperature and pressure conditions encountered in terrestrial crust, CO{sub 2} is less dense than aqueous fluids. Accordingly, CO{sub 2} will experience an upward buoyancy force in most subsurface environments, and willmore » tend to migrate upwards whenever (sub-)vertical permeable pathways are available, such as fracture zones, faults, or improperly abandoned wells (Bachu, 2008; Pruess, 2008a, b; Tsang et al., 2008). CO{sub 2} injection will increase fluid pressures in the target formation, thereby altering effective stress distributions, and potentially triggering movement along fractures and faults that could increase their permeability and reduce the effectiveness of a caprock in containing CO{sub 2} (Rutqvist et al., 2008; Chiaramonte et al., 2008). Induced seismicity as a consequence of fluid injection is also a concern (Healy et al., 1968; Raleigh et al., 1976; Majer et al., 2007). Dissolution of CO{sub 2} in the aqueous phase generates carbonic acid, which may induce chemical corrosion (dissolution) of minerals with associated increase in formation porosity and permeability, and may also mediate sequestration of CO{sub 2} as solid carbonate (Gaus et al., 2008). Chemical dissolution of caprock minerals could promote leakage of CO{sub 2} from a storage reservoir (Gherardi et al., 2007). Chemical dissolution and geomechanical effects could reinforce one another in compromising CO{sub 2} containment. Additional issues arise from the potential of CO{sub 2} to mobilize hazardous chemical species (Kharaka et al., 2006), and from migration of the large amounts of brine that would be mobilized by industrial-scale CO{sub 2} injection (Nicot et al., 2008; Birkholzer et al., 2008a, b).« less
NASA Astrophysics Data System (ADS)
Nakagawa, S.; Kneafsey, T. J.; Chang, C.; Harper, E.
2014-12-01
During geological sequestration of CO2, fractures are expected to play a critical role in controlling the migration of the injected fluid in reservoir rock. To detect the invasion of supercritical (sc-) CO2 and to determine its saturation, velocity and attenuation of seismic waves can be monitored. When both fractures and matrix porosity connected to the fractures are present, wave-induced dynamic poroelastic interactions between these two different types of rock porosity—high-permeability, high-compliance fractures and low-permeability, low-compliance matrix porosity—result in complex velocity and attenuation changes of compressional waves as scCO2 invades the rock. We conducted core-scale laboratory scCO2 injection experiments on small (diameter 1.5 inches, length 3.5-4 inches), medium-porosity/permeability (porosity 15%, matrix permeability 35 md) sandstone cores. During the injection, the compressional and shear (torsion) wave velocities and attenuations of the entire core were determined using our Split Hopkinson Resonant Bar (short-core resonant bar) technique in the frequency range of 1-2 kHz, and the distribution and saturation of the scCO2 determined via X-ray CT imaging using a medical CT scanner. A series of tests were conducted on (1) intact rock cores, (2) a core containing a mated, core-parallel fracture, (3) a core containing a sheared core-parallel fracture, and (4) a core containing a sheared, core-normal fracture. For intact cores and a core containing a mated sheared fracture, injections of scCO2 into an initially water-saturated sample resulted in large and continuous decreases in the compressional velocity as well as temporary increases in the attenuation. For a sheared core-parallel fracture, large attenuation was also observed, but almost no changes in the velocity occurred. In contrast, a sample containing a core-normal fracture exhibited complex behavior of compressional wave attenuation: the attenuation peaked as the leading edge of the scCO2 approached the fracture; followed by an immediate drop as scCO2 invaded the fracture; and by another, gradual increase as the scCO2 infiltrated into the other side of the fracture. The compressional wave velocity declined monotonically, but the rate of velocity decrease changed with the changes in attenuation.
NASA Astrophysics Data System (ADS)
Chen, Chao-Jun; Li, Ting-Yong
2018-06-01
The scientific explanation of speleothem δ18O in Chinese monsoon region is a greatly debated issue. Modern cave monitoring combined with instrument observation maybe is an essential solution to deal with this issue. During the period from 2011 to 2016, we monitored local precipitation, soil water in three soil profiles, and six drip water sites in Yangkou Cave, which is located in Chongqing City, Southwest China. This article presents measurements about δ18O, δD and Mg/Ca ratios of drip water and compared these geochemical proxies with contemporaneous atmospheric circulations. The main conclusions are: (1) As water migrates from precipitation to soil water to cave drip water, the amplitudes of seasonal variations in δD and δ18O decreased gradually. Due to the existence of complex hydrogeological conditions, the range of variation and the seasonal characteristics of δD and δ18O differ among the drip sites where samples were collected, but the interannual variability is nearly the same. The drip water Mg/Ca ratios are mainly regulated by changes in hydrological conditions in the epikarst zone, with higher values during winter months than that during summer months. (2) When an El Niño event occurs, the Western Pacific Subtropical High (WPSH) is migrated westward, and the production of near-source water vapor from the western Pacific and the South China Sea increases, leading to higher δ18O values in the precipitation and the cave drip water. The drip water Mg/Ca ratios were significantly lower with increased summer precipitation. On the other hand, during La Niña events, the WPSH is migrated eastward, and inputs of water vapor that has traveled greater distances (from the Indian Ocean) become comparatively important, resulting in lower δ18O values in the precipitation and the cave drip water. The drip water Mg/Ca ratios were higher with decreased summer precipitation. In summary, the interannual variability of δ18O in the drip waters of Yangkou Cave reflects changes in water vapor sources caused by atmospheric circulation patterns. Mg/Ca ratios respond to changes of precipitation and CO2 in soil and can be used to reconstruct abnormal drought or flood events.
Coupled charge migration and fluid mixing in reactive fronts
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Bandopadhyay, Aditya; Jougnot, Damien; Le Borgne, Tanguy; Meheust, Yves
2017-04-01
Quantifying fluid mixing in subsurface environments and its consequence on biogeochemical reactions is of paramount importance owing to its role in processes such as contaminant migration, aquifer remediation, CO2 sequestration or clogging processes, to name a few (Dentz et al. 2011). The presence of strong velocity gradients in porous media is expected to lead to enhanced diffusive mixing and augmented reaction rates (Le Borgne et al. 2014). Accurate in situ imaging of subsurface reactive solute transport and mixing remains to date a challenging proposition: the opacity of the medium prevents optical imaging and field methods based on tracer tests do not provide spatial information. Recently developed geophysical methods based on the temporal monitoring of electrical conductivity and polarization have shown promises for mapping and monitoring biogeochemical reactions in the subsurface although it remains challenging to decipher the multiple sources of electrical signals (e.g. Knight et al. 2010). In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of mapping reaction rates from electrical measurements. To this end, we develop a new theoretical framework based on a lamellar mixing model (Le Borgne et al. 2013) to quantify changes in electrical mobility induced by chemical reactions across mixing fronts. Electrical conductivity and induced polarization are strongly dependent on the concentration of ionic species, which in turn depend on the local reaction rates. Hence, our results suggest that variation in real and complex electrical conductivity may be quantitatively related to the mixing and reaction dynamics. Thus, the presented theory provides a novel upscaling framework for quantifying the coupling between mixing, reaction and charge migration in heterogeneous porous media flows. References: Dentz. et al., Mixing, spreading and reaction in heterogeneous media: A brief review J. Contam. Hydrol. 120-121, 1 (2011). Le Borgne et al. Impact of Fluid Deformation on Mixing-Induced Chemical Reactions in heterogeneous Flows, Geophys. Res. Lett. 41, 7898 (2014). Knight, et al., Geophysics at the interface: Response of geophysical properties to solid-fluid, fluid-fluid, and solid-solid interfaces. Rev. Geophys. 48, (2010). Le Borgne et al. (2013) Stretching, coalescence and mixing in porous media, Phys. Rev. Lett., 110, 204501
NASA Astrophysics Data System (ADS)
Leger, E.; Dafflon, B.; Thorpe, M.; Kreitinger, A.; Laura, D.; Haivala, J.; Peterson, J.; Spangler, L.; Hubbard, S. S.
2016-12-01
While subsurface storage of CO2 in geological formations offers significant potential to mitigate atmospheric greenhouse gasses, approaches are needed to monitor the efficacy of the strategy as well as possible negative consequences, such as leakage of CO2 or brine into groundwater or release of fugitive gaseous CO2. Groundwater leakages can cause subsequent reactions that may also be deleterious. For example, a release of dissolved CO2 into shallow groundwatersystems can decrease groundwater pH which can potentiallymobilize naturally occurring trace metals and ions. In this perspective, detecting and assessing potential leak requires development of novel monitoring techniques.We present the results of using surface electrical resistivity tomography (ERT) and a novel CO2 sensitive Lidar-based sensor to monitor a controlled CO2 release at the ZeroEmission Research and Technology Center (Bozeman, Montana). Soil temperature and moisture sensors, wellbore water quality measurements as well as chamber-based CO2 flux measurements were used in addition to the ERT and a novel Lidar-based sensor to detect and assess potential leakage into groundwater, vadose zone and atmosphere. The three-week release wascarried out in the vadose and the saturated zones. Well sampling of pH and conductivity and surface CO2 fluxes and concentrations measurements were acquired during the release and are compared with complex electricalresistivity time-lapse measurements. The novel Lidar-based image of the CO2 plume were compared to chamber-based CO2 flux and concentration measurements. While a continuous increase in subsurface ERT and above ground CO2 was documented, joint analysis of the above and below ground data revealed distinct transport behavior in the vadose and saturated zones. Two type of transport were observed, one in the vadoze zone, monitored by CO2 flux chamber and ERT, and the other one in the saturated zone, were ERT and wellsampling were carried. The experiment suggests how a range of geophysical, remote sensing, hydrological and geochemical measurement approaches can be optimally configured to detect the distribution and explore behavior of possible CO2 leakages in distinct compartments, including groundwater, vadose zone, and atmosphere.
Modeling basin- and plume-scale processes of CO2 storage for full-scale deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Q.; Birkholzer, J.T.; Mehnert, E.
Integrated modeling of basin- and plume-scale processes induced by full-scale deployment of CO{sub 2} storage was applied to the Mt. Simon Aquifer in the Illinois Basin. A three-dimensional mesh was generated with local refinement around 20 injection sites, with approximately 30 km spacing. A total annual injection rate of 100 Mt CO{sub 2} over 50 years was used. The CO{sub 2}-brine flow at the plume scale and the single-phase flow at the basin scale were simulated. Simulation results show the overall shape of a CO{sub 2} plume consisting of a typical gravity-override subplume in the bottom injection zone of highmore » injectivity and a pyramid-shaped subplume in the overlying multilayered Mt. Simon, indicating the important role of a secondary seal with relatively low-permeability and high-entry capillary pressure. The secondary-seal effect is manifested by retarded upward CO{sub 2} migration as a result of multiple secondary seals, coupled with lateral preferential CO{sub 2} viscous fingering through high-permeability layers. The plume width varies from 9.0 to 13.5 km at 200 years, indicating the slow CO{sub 2} migration and no plume interference between storage sites. On the basin scale, pressure perturbations propagate quickly away from injection centers, interfere after less than 1 year, and eventually reach basin margins. The simulated pressure buildup of 35 bar in the injection area is not expected to affect caprock geomechanical integrity. Moderate pressure buildup is observed in Mt. Simon in northern Illinois. However, its impact on groundwater resources is less than the hydraulic drawdown induced by long-term extensive pumping from overlying freshwater aquifers.« less
NASA Astrophysics Data System (ADS)
Craymer, M.; White, D.; Piraszewski, M.; Zhao, Y.; Henton, J.; Silliker, J.; Samsonov, S.
2015-12-01
Aquistore is a demonstration project for the underground storage of CO2 at a depth of ~3350 m near Estevan, Saskatchewan, Canada. An objective of the project is to design, adapt, and test non-seismic monitoring methods that have not been systematically utilized to date for monitoring CO2 storage projects, and to integrate the data from these various monitoring tools to obtain quantitative estimates of the change in subsurface fluid distributions, pressure changes and associated surface deformation. Monitoring methods being applied include satellite-, surface- and wellbore-based monitoring systems and comprise natural- and controlled-source electromagnetic methods, gravity monitoring, continuous GPS, synthetic aperture radar interferometry (InSAR), tiltmeter array analysis, and chemical tracer studies. Here we focus on the GPS, InSAR and gravity monitoring. Five monitoring sites were installed in 2012 and another six in 2013, each including GPS and InSAR corner reflector monuments (some collocated on the same monument). The continuous GPS data from these stations have been processed on a daily basis in both baseline processing mode using the Bernese GPS Software and precise point positioning mode using CSRS-PPP. Gravity measurements at each site have also been performed in fall 2013, spring 2014 and fall 2015, and at two sites in fall 2014. InSAR measurements of deformation have been obtained for a 5 m footprint at each site as well as at the corner reflector point sources. Here we present the first results of this geodetic deformation monitoring after commencement of CO2 injection on April 14, 2015. The time series of these sites are examined, compared and analyzed with respect to monument stability, seasonal signals, longer term trends, and any changes in motion and mass since CO2 injection.
Design and package of a {sup 14}CO{sub 2} field analyzer The Global Monitor Platform (GMP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bright, Michelle; Marino, Bruno D.V.; Gronniger, Glen
2011-08-01
Carbon Capture and Sequestration (CCS) is widely accepted as a means to reduce and eliminate the fossil fuel CO{sub 2} (ff- CO{sub 2}) emissions from coal fired power plants. Success of CCS depends on near zero leakage rates over decadal time scales. Currently no commercial methods to determine leakage of ff-CO{sub 2} are available. The Global Monitor Platform (GMP) field analyzer provides high precision analysis of CO{sub 2} isotopes [12C (99%), 13C (<1%), 14C (1.2x10-10 %)] that can differentiate between fossil and biogenic CO{sub 2} emissions. Fossil fuels contain no {sup 14}C; their combustion should lower atmospheric amounts on localmore » to global scales. There is a clear mandate for monitoring, verification and accounting (MVA) of CCS systems nationally and globally to verify CCS integrity, treaty verification (Kyoto Protocol) and to characterize the nuclear fuel cycle. Planetary Emissions Management (PEM), working with the National Secure Manufacturing Center (NSMC), has the goal of designing, ruggedizing and packaging the GMP for field deployment. The system will conduct atmosphere monitoring then adapt the system to monitor water and soil evaluations. Measuring {sup 14}CO{sub 2} in real time will provide quantitative concentration data for ff-CO{sub 2} in the atmosphere and CCS leakage detection. Initial results will be discussed along with design changes for improved detection sensitivity and manufacturability.« less
Sora rail studies on the Patuxent River, Maryland
Haramis, M.; Kearns, G.D.
1999-01-01
The freshwater marshes of the tidal Patuxent River are well known for their annual fall concentration of migrant soras (Porzana carolina) and were formerly the most famous rail hunting grounds in the Chesapeake Bay region. Because of concern over the apparent long-term decline in number of soras and the decline in the quality of the Patuxent marshes, especially the loss of wild rice (Zizania aquatica), the Maryland National-Capital Park and Planning Commission (MNCPPC), co-steward of the Jug Bay National Estuarine Research Reserve, sponsored rail-related research beginning in 1987. Past efforts focused on developing efficient trapping techniques, age and sex criteria, and monitonng body mass dynamics. Noted progress was made in developing digital playback systems and trap improvements to enhance sora captures. These improvements increased capture success by over an order of magnitude and resulted in capture of 2,315 soras and 276 Virginia rails (Rallus limicola) in the 5 year period, 1993-97. Although these methods demonstrate the efficacy of banding large numbers of soras on migration and possibly winter concentration areas, captures at the Patuxent River site have been 70-90% hatching-year birds and recoveries and recaptures have been virtually nonexistent. With the present effort, this outcome precludes population parameter estimation using traditional capture-recapture or recovery model methodologies. In 1996, studies were initiated to employ radio telemetry methods to investigate length of stay, habitat use, survival, and migration characteristics of fall migrant soras. These studies are ongoing and will be continued through 1998 with a grant from the U.S. Fish and Wildlife Service's Webless Migratory Game Bird Research Program and support from the U.S. Geological Survey's Patuxent Wildlife Research Center. Supplemental funding has also been provided by MNCPPC, FWS Region 5, the Maryland Ornithological Society, Quail Unlimited, and Prince Georges Community College. During 1996-97 we developed a successful radio transmitter attachment technique to secure 1.8g radio transmitters over the synsacrum of migrant soras. We modified Rappole and Tipton's (1991) leg-loop attachment method by addition of a waist loop to prevent soras from slipping transmitters over their short tails. Thin gauge (0.6 mm) elastic thread proved ideal for attachment and allowed for girth expansion associated with fattening during stopover. Sixty instrumented soras have been monitored in two years of study from early September until early November. Only a single mortality was recorded and 41 (68%) were confIrmed and another 13 (total 90%) were believed to have migrated from the study area. Only a single bird slipped a radio transmitter. Most birds demonstrated a sedentary nature in the marsh throughout stopover. Average length of stay was 44 days in 1997 (n=29) with peak departure occurring 20-24 October. Departing migrants were detected using a receiver/data-logger monitoring system placed 4 miles down river from the study site. Thirty-six of 37 (97%) soras departed in a 2-hour window of time, beginning 1 hour after sunset. Departure was synchronized with cold fronts on clear, starlit nights. Twenty-five soras were monitored on migration from 8 km to as far away as 770 km. Findings indicate migration flight speeds of 40 to 50 mph and a direct southward orientation from the study site at least until contact with the Atlantic Ocean west of Cape Lookout, North Carolina. We also attempted to monitor passage of migrant soras radio tagged at Iroquois National Wildlife Refuge in western New York by biologist Soch Lor. None were recorded passing a monitoring unit at Haldeman Island in the middle of the Susquehanna River 10 miles north of Harrisburg, Pennsylvania. This further corroborates our findings that when migrating overland, soras move in a direct southward orientation and are not following land features such as major rivers
Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Koo, Min-Ah; Seon, Gyeung Mi; Park, Jong-Chul
The infiltration of the cells into the scaffolds is important phenomenon to give them good biocompatibility and even biodegradability. Fluid shear stress is one of the candidates for the infiltration of cells into scaffolds. Here we investigated the directional migration of human mesenchymal stem cells and infiltration into PLGA scaffold by fluid shear stress. The human mesenchymal stem cells showed directional migrations following the direction of the flow (8, 16 dyne/cm(2)). In the scaffold models, the fluid shear stress (8 dyne/cm(2)) enhanced the infiltration of cells but did not influence on the infiltration of Poly(lactic-co-glycolic acid) particles. Copyright © 2015 Elsevier Inc. All rights reserved.
McElwain, Jennifer C
2018-04-29
Human carbon use during the next century will lead to atmospheric carbon dioxide concentrations (pCO 2 ) that have been unprecedented for the past 50-100+ million years according to fossil plant-based CO 2 estimates. The paleobotanical record of plants offers key insights into vegetation responses to past global change, including suitable analogs for Earth's climatic future. Past global warming events have resulted in transient poleward migration at rates that are equivalent to the lowest climate velocities required for current taxa to keep pace with climate change. Paleobiome reconstructions suggest that the current tundra biome is the biome most threatened by global warming. The common occurrence of paleoforests at high polar latitudes when pCO 2 was above 500 ppm suggests that the advance of woody shrub and tree taxa into tundra environments may be inevitable. Fossil pollen studies demonstrate the resilience of wet tropical forests to global change up to 700 ppm CO 2 , contrary to modeled predictions of the future. The paleobotanical record also demonstrates a high capacity for functional trait evolution as an additional strategy to migration and maintenance of a species' climate envelope in response to global change.
Seasonal movements and environmental triggers to fall migration of Sage Sparrows
Fesenmyer, K.A.; Knick, S.T.
2011-01-01
Post-breeding ecology of shrubland passerines prior to onset of migration is unknown relative to dynamics of breeding areas. We radiomarked and monitored 38 Sage Sparrows (Amphispiza belli ssp. nevadensis) at one site in Oregon and two in Nevada from September to mid-November 2007 to track local movements, estimate seasonal range sizes, and characterize weather patterns triggering onset of migration. Median area used by Sage Sparrows monitored between 3 and 18 days during or prior to migration was 14 ha; maximum daily movement was 15 km. Radio-marked Sage Sparrows at each location departed individually, rather than en masse, corresponding with passage of cold front weather systems. Conventional telemetry techniques limited our ability to monitor Sage Sparrows beyond pre-migratory periods and precluded detecting and tracking actual movements during migration. ?? 2011 by the Wilson Ornithological Society.
Decadal changes in the aragonite and calcite saturation state of the Pacific Ocean
NASA Astrophysics Data System (ADS)
Feely, Richard A.; Sabine, Christopher L.; Byrne, Robert H.; Millero, Frank J.; Dickson, Andrew G.; Wanninkhof, Rik; Murata, Akihiko; Miller, Lisa A.; Greeley, Dana
2012-09-01
Based on measurements from the WOCE/JGOFS global CO2 survey, the CLIVAR/CO2 Repeat Hydrography Program and the Canadian Line P survey, we have observed an average decrease of 0.34% yr-1 in the saturation state of surface seawater in the Pacific Ocean with respect to aragonite and calcite. The upward migrations of the aragonite and calcite saturation horizons, averaging about 1 to 2 m yr-1, are the direct result of the uptake of anthropogenic CO2 by the oceans and regional changes in circulation and biogeochemical processes. The shoaling of the saturation horizon is regionally variable, with more rapid shoaling in the South Pacific where there is a larger uptake of anthropogenic CO2. In some locations, particularly in the North Pacific Subtropical Gyre and in the California Current, the decadal changes in circulation can be the dominant factor in controlling the migration of the saturation horizon. If CO2 emissions continue as projected over the rest of this century, the resulting changes in the marine carbonate system would mean that many coral reef systems in the Pacific would no longer be able to sustain a sufficiently high rate of calcification to maintain the viability of these ecosystems as a whole, and these changes perhaps could seriously impact the thousands of marine species that depend on them for survival.
Lu, Yu; Li, Shan; Ma, Liping; Li, Yan; Zhang, Xiaolian; Peng, Qiliu; Mo, Cuiju; Huang, Li; Qin, Xue; Liu, Yinkun
2016-01-01
Macrophages play important roles in the tumor microenvironment, driving cancer progression and metastasis, particularly in hepatocellular carcinoma (HCC). However, few studies have assessed the exact secretome composition in HCC. In the present study, the impact of different phenotype of macrophages on HCC cells was investigated. Alternatively activated macrophages (M2) were found to significantly increase the proliferation, migration, and invasion abilities of SMMC7721 cells (all P < 0.05). M2 were then co-cultured with SMMC7721 cells to reconstruct the tumor microenvironment. Conditioned medium from 3D single cultures of M2, SMMC7721 cells, and their co-culture system were analyzed using quantitative proteomics via iTRAQ labeling combined with mass spectrometric analysis. Secretome analysis revealed a total of 159 differential secreted proteins in the co-culture system compared to the single culture systems, with 63 being up-regulated (>1.3-fold) and 96 down-regulated (<0.7-fold). CXCL2 was confirmed to have higher expression in the co-culture system and HCC tissues, and was selected for further investigation. Functional effects data suggested that recombinant human CXCL2 significantly enhanced the migration, invasion ability of SMMC7721 cells, and weakened adhesion ability. While CXCL2 neutralization and CXCR2 blockage significantly inhibited the effects of CXCL2 on SMMC7721 cells, indicating that CXCL2 may play pivotal role in HCC metastasis. PMID:27117207
Lu, Yu; Li, Shan; Ma, Liping; Li, Yan; Zhang, Xiaolian; Peng, Qiliu; Mo, Cuiju; Huang, Li; Qin, Xue; Liu, Yinkun
2016-04-27
Macrophages play important roles in the tumor microenvironment, driving cancer progression and metastasis, particularly in hepatocellular carcinoma (HCC). However, few studies have assessed the exact secretome composition in HCC. In the present study, the impact of different phenotype of macrophages on HCC cells was investigated. Alternatively activated macrophages (M2) were found to significantly increase the proliferation, migration, and invasion abilities of SMMC7721 cells (all P < 0.05). M2 were then co-cultured with SMMC7721 cells to reconstruct the tumor microenvironment. Conditioned medium from 3D single cultures of M2, SMMC7721 cells, and their co-culture system were analyzed using quantitative proteomics via iTRAQ labeling combined with mass spectrometric analysis. Secretome analysis revealed a total of 159 differential secreted proteins in the co-culture system compared to the single culture systems, with 63 being up-regulated (>1.3-fold) and 96 down-regulated (<0.7-fold). CXCL2 was confirmed to have higher expression in the co-culture system and HCC tissues, and was selected for further investigation. Functional effects data suggested that recombinant human CXCL2 significantly enhanced the migration, invasion ability of SMMC7721 cells, and weakened adhesion ability. While CXCL2 neutralization and CXCR2 blockage significantly inhibited the effects of CXCL2 on SMMC7721 cells, indicating that CXCL2 may play pivotal role in HCC metastasis.
Performance of an electrochemical carbon monoxide monitor in the presence of anesthetic gases.
Dunning, M; Woehlck, H J
1997-11-01
The passage of volatile anesthetic agents through accidentally dried CO2 absorbents in anesthesia circuits can result in the chemical breakdown of anesthetics with production of greater than 10000 ppm carbon monoxide (CO). This study was designed to evaluate a portable CO monitor in the presence of volatile anesthetic agents. Two portable CO monitors employing electrochemical sensors were tested to determine the effects of anesthetic agents, gas sample flow rates, and high CO concentrations on their electrochemical sensor. The portable CO monitors were exposed to gas mixtures of 0 to 500 ppm CO in either 70% nitrous oxide, 1 MAC concentrations of contemporary volatile anesthetics, or reacted isoflurane or desflurane (containing CO and CHF3) in oxygen. The CO measurements from the electrochemical sensors were compared to simultaneously obtained samples measured by gas chromatography (GC). Data were analyzed by linear regression. Overall correlation between the portable CO monitors and the GC resulted in an r2 value >0.98 for all anesthetic agents. Sequestered samples produced an exponential decay of measured CO with time, whereas stable measurements were maintained during continuous flow across the sensor. Increasing flow rates resulted in higher CO readings. Exposing the CO sensor to 3000 and 19000 ppm CO resulted in maximum reported concentrations of approximately 1250 ppm, with a prolonged recovery. Decrease in measured concentration of the sequestered samples suggests destruction of the sample by the sensor, whereas a diffusion limitation is suggested by the dependency of measured value upon flow. Any value over 500 ppm must be assumed to represent dangerous concentrations of CO because of the non-linear response of these monitors at very high CO concentrations. These portable electrochemical CO monitors are adequate to measure CO concentrations up to 500 ppm in the presence of typical clinical concentrations of anesthetics.
[Gastric mucosa tonometry in routine monitoring in the surgical intensive care unit].
Pestel, G; Uhlig, T; Götschl, A; Schmucker, P; Rothhammer, A
1998-06-01
Monitoring tissue oxygenation in the splanchnic region could be helpful for critically ill patients. In this study the postoperative course of gastric mucosal CO2 (prCO2) in 40 patients is shown. Following approval of the ethics committee, 24 patients schedulded for surgery with an expected large fluid turnover and 16 multiple injured patients were monitored with a gas tonometry device in addition to standard monitoring (ECG, pulse oximetry, capnometry, CVP, arterial pressure). Normoventilated patients with prCO2 > 50 for more than 30 minutes were treated with fluid therapy, followed by catecholamine therapy, followed by transfusion (fig. 1). All patients were admitted to the SICU post-operatively. The variation of prCO2-values was greater in multiple injured patients. Their prCO2-values began in a lower range compared to patients with scheduled operation, became higher at the end of the first SICU-day and remained higher thereafter. They had a higher fluid turnover and needed more catecholamines. Multiple injured patients with an arterio-intestinal CO2-Difference (CO2-Gap) > 10 had a higher ISS-Score, were longer mechanically ventilated, had a longer SICU-stay and a higher incidence of complications in comparison to patients with aCO2-Gap < 10. Perhaps a CO2-Gap > 10 could be predictive for a more severe course in intensive care patients.
Sun, Run; Jiang, Yu; Tang, Xiang-Ying; Shi, Min
2016-04-11
New rhodium(II)-catalyzed or thermally induced intramolecular alkoxy group migration of N-sulfonyl-1,2,3-triazoles has been developed, affording divergent synthesis of 1,2-dihydroisoquinoline and 1-indanone derivatives according to different conditions. N-Sulfonyl keteneimine is the key intermediate for the synthesis of dihydroisoquinoline, whereas the aza-vinyl carbene intermediate results in the formation of 1-indanone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices
NASA Astrophysics Data System (ADS)
Chen, C.; Gao, S.; Zeng, F.; Tang, G. S.; Li, S. Z.; Song, C.; Fu, H. D.; Pan, F.
2013-07-01
Oxides-based resistive switching memory induced by oxygen ions migration is attractive for future nonvolatile memories. Numerous works had focused their attentions on the sandwiched oxide materials for depressing the characteristic variations, but the comprehensive studies of the dependence of electrodes on the migration behavior of oxygen ions are overshadowed. Here, we investigated the interaction of various metals (Ni, Co, Al, Ti, Zr, and Hf) with oxygen atoms at the metal/Ta2O5 interface under electric stress and explored the effect of top electrode on the characteristic variations of Ta2O5-based memory device. It is demonstrated that chemically inert electrodes (Ni and Co) lead to the scattering switching characteristics and destructive gas bubbles, while the highly chemically active metals (Hf and Zr) formed a thick and dense interfacial intermediate oxide layer at the metal/Ta2O5 interface, which also degraded the resistive switching behavior. The relatively chemically active metals (Al and Ti) can absorb oxygen ions from the Ta2O5 film and avoid forming the problematic interfacial layer, which is benefit to the formation of oxygen vacancies composed conduction filaments in Ta2O5 film thus exhibit the minimum variations of switching characteristics. The clarification of oxygen ions migration behavior at the interface can lead further optimization of resistive switching performance in Ta2O5-based memory device and guide the rule of electrode selection for other oxide-based resistive switching memories.
NASA Technical Reports Server (NTRS)
Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong
2015-01-01
Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.
Liu, Ze-Hua; Yin, Hua; Dang, Zhi
2017-01-01
With the widespread application of plastic pipes in drinking water distribution system, the effects of various leachable organic chemicals have been investigated and their occurrence in drinking water supplies is monitored. Most studies focus on the odor problems these substances may cause. This study investigates the potential endocrine disrupting effects of the migrating compound 2,4-di-tert-butylphenol (2,4-d-t-BP). The summarized results show that the migration of 2,4-d-t-BP from plastic pipes could result in chronic exposure and the migration levels varied greatly among different plastic pipe materials and manufacturing brands. Based on estrogen equivalent (EEQ), the migrating levels of the leachable compound 2,4-d-t-BP in most plastic pipes were relative low. However, the EEQ levels in drinking water migrating from four out of 15 pipes may pose significant adverse effects. With the increasingly strict requirements on regulation of drinking water quality, these results indicate that some drinking water transported with plastic pipes may not be safe for human consumption due to the occurrence of 2,4-d-t-BP. Moreover, 2,4-d-t-BP is not the only plastic pipe-migrating estrogenic compound, other compounds such as 2-tert-butylphenol (2-t-BP), 4-tert-butylphenol (4-t-BP), and others may also be leachable from plastic pipes.
E-cadherin is required for cranial neural crest migration in Xenopus laevis.
Huang, Chaolie; Kratzer, Marie-Claire; Wedlich, Doris; Kashef, Jubin
2016-03-15
The cranial neural crest (CNC) is a highly motile and multipotent embryonic cell population, which migrates directionally on defined routes throughout the embryo, contributing to facial structures including cartilage, bone and ganglia. Cadherin-mediated cell-cell adhesion is known to play a crucial role in the directional migration of CNC cells. However, migrating CNC co-express different cadherin subtypes, and their individual roles have yet to be fully explored. In previous studies, the expression of individual cadherin subtypes has been analysed using different methods with varying sensitivities, preventing the direct comparison of expression levels. Here, we provide the first comprehensive and comparative analysis of the expression of six cadherin superfamily members during different phases of CNC cell migration in Xenopus. By applying a quantitative RT-qPCR approach, we can determine the copy number and abundance of each expressed cadherin through different phases of CNC migration. Using this approach, we show for the first time expression of E-cadherin and XB/C-cadherin in CNC cells, adding them as two new members of cadherins co-expressed during CNC migration. Cadherin co-expression during CNC migration in Xenopus, in particular the constant expression of E-cadherin, contradicts the classical epithelial-mesenchymal transition (EMT) model postulating a switch in cadherin expression. Loss-of-function experiments further show that E-cadherin is required for proper CNC cell migration in vivo and also for cell protrusion formation in vitro. Knockdown of E-cadherin is not rescued by co-injection of other classical cadherins, pointing to a specific function of E-cadherin in mediating CNC cell migration. Finally, through reconstitution experiments with different E-cadherin deletion mutants in E-cadherin morphant embryos, we demonstrate that the extracellular domain, but not the cytoplasmic domain, of E-cadherin is sufficient to rescue CNC cell migration in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Smith, Adam D.; Paton, Peter W. C.; McWilliams, Scott R.
2014-01-01
Atmospheric conditions fundamentally influence the timing, intensity, energetics, and geography of avian migration. While radar is typically used to infer the influence of weather on the magnitude and spatiotemporal patterns of nocturnal bird migration, monitoring the flight calls produced by many bird species during nocturnal migration represents an alternative methodology and provides information regarding the species composition of nocturnal migration. We used nocturnal flight call (NFC) recordings of at least 22 migratory songbirds (14 warbler and 8 sparrow species) during fall migration from eight sites along the mainland and island coasts of Rhode Island to evaluate five hypotheses regarding NFC detections. Patterns of warbler and sparrow NFC detections largely supported our expectations in that (1) NFC detections associated positively and strongly with wind conditions that influence the intensity of coastal bird migration and negatively with regional precipitation; (2) NFCs increased during conditions with reduced visibility (e.g., high cloud cover); (3) NFCs decreased with higher wind speeds, presumably due mostly to increased ambient noise; and (4) coastal mainland sites recorded five to nine times more NFCs, on average, than coastal nearshore or offshore island sites. However, we found little evidence that (5) nightly or intra-night patterns of NFCs reflected the well-documented latitudinal patterns of migrant abundance on an offshore island. Despite some potential complications in inferring migration intensity and species composition from NFC data, the acoustic monitoring of NFCs provides a viable and complementary methodology for exploring the spatiotemporal patterns of songbird migration as well as evaluating the atmospheric conditions that shape these patterns. PMID:24643060
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nintasen, Rungrat; Multidisciplinary Cardiovascular Research Center; Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University
2012-04-20
Highlights: Black-Right-Pointing-Pointer TNF-{alpha} augments neointimal hyperplasia in human saphenous vein. Black-Right-Pointing-Pointer TNF-{alpha} induces detrimental effects on endothelial and smooth muscle cell function. Black-Right-Pointing-Pointer Estradiol exerts modulatory effects on TNF-induced vascular cell functions. Black-Right-Pointing-Pointer The modulatory effects of estradiol are discriminatory and cell-type specific. -- Abstract: Coronary heart disease (CHD) is a condition characterized by increased levels of proinflammatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}). TNF-{alpha} can induce vascular endothelial cell (EC) and smooth muscle cell (SMC) dysfunction, central events in development of neointimal lesions. The reduced incidence of CHD in young women is believed to be due to the protectivemore » effects of estradiol (E2). We therefore investigated the effects of TNF-{alpha} on human neointima formation and SMC/EC functions and any modulatory effects of E2. Saphenous vein (SV) segments were cultured in the presence of TNF-{alpha} (10 ng/ml), E2 (2.5 nM) or both in combination. Neointimal thickening was augmented by incubation with TNF-{alpha}, an effect that was abolished by co-culture with E2. TNF-{alpha} increased SV-SMC proliferation in a concentration-dependent manner that was optimal at 10 ng/ml (1.5-fold increase), and abolished by E2 at all concentrations studied (1-50 nM). Surprisingly, E2 itself at low concentrations (1 and 5 nM) stimulated SV-SMC proliferation to a level comparable to that of TNF-{alpha} alone. SV-EC migration was significantly impaired by TNF-{alpha} (42% of control), and co-culture with E2 partially restored the ability of SV-EC to migrate and repair the wound. In contrast, TNF-{alpha} increased SV-SMC migration by 1.7-fold, an effect that was completely reversed by co-incubation with E2. Finally, TNF-{alpha} potently induced ICAM-1 and VCAM-1 expression in both SV-EC and SV-SMC. However there was no modulation by E2 in either cell-type. In conclusion, TNF-{alpha} induced SV neointima formation, increased SMC proliferation and migration, impaired SV-EC migration and increased expression of adhesion molecules. E2 exerted distinct cell-type and function-specific modulation, the mechanisms underlying which are worthy of further detailed study.« less
2010-01-01
Use time-lapse videomicroscopy and patch-clamp techniques to characterize the motility of eGFP-transfected PC-3 cells in which MScCa/TRPC1 has been...except for GsmTx-4 (Peptides International, Louisville, KY) and fluorescent agents (Invitrogen/Molecular Probes, Carlsbad, CA). Videomicroscopy ...and Ca2+-imaging. Cell migration was monitored at 37oC by time-lapse videomicroscopy using Nomarski optics with an Epifluorescent microscope (Nikon
NASA Astrophysics Data System (ADS)
Versteeg, R.; Leger, E.; Dafflon, B.
2016-12-01
Geologic sequestration of CO2 is one of the primary proposed approaches for reducing total atmospheric CO2 concentrations. MVAA (Monitoring, Verification, Accounting and Assessment) of CO2 sequestration is an essential part of the geologic CO2 sequestration cycle. MVAA activities need to meet multiple operational, regulatory and environmental objectives, including ensuring the protection of underground sources of drinking water. Anticipated negative consequences of CO2 leakage into groundwater, besides possible brine contamination and release of gaseous CO2, include a significant increase of dissolved CO2 into shallow groundwater systems, which will decrease groundwater pH and can potentially mobilize naturally occurring trace metals and ions that are commonly absorbed to or contained in sediments. Autonomous electrical geophysical monitoring in aquifers has the potential of allowing for rapid and automated detection of CO2 leakage. However, while the feasibility of such monitoring has been demonstrated by a number of different field experiments, automated interpretation of complex electrical resistivity data requires the development of quantitative relationships between complex electrical resistivity signatures and dissolved CO2 in the aquifer resulting from leakage Under a DOE SBIR funded effort we performed multiple tank scale experiments in which we investigated complex electrical resistivity signatures associated with dissolved CO2 plumes in saturated sediments. We also investigated the feasibility of distinguishing CO2 leakage signatures from signatures associated with other processes such as salt water movement, temperature variations and other variations in chemical or physical conditions. In addition to these experiments we also numerically modeled the tank experiments. These experiments showed that (a) we can distinguish CO2 leakage signatures from other signatures, (b) CO2 leakage signatures have a consistent characteristic, (c) laboratory experiments are in agreement with field results, and (d) we can numerically simulate the main characteristics of CO2 leakage and associated electrical geophysical signatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michaels, Brian; Espinosa, Neal
2009-02-18
This report summarizes the Nez Perce Tribe (NPT) Department of Fisheries Resources Management (DFRM) results for the Lower Snake River Compensation Plan (LSRCP) Hatchery Evaluation studies and the Imnaha River Smolt Monitoring Program (SMP) for the 2007 smolt migration from the Imnaha River, Oregon. These studies are closely coordinated and provide information about juvenile natural and hatchery spring/summer Naco x (Chinook Salmon; Oncorhynchus tshawytscha) and Heeyey (steelhead; O. mykiss) biological characteristics, emigrant timing, survival, arrival timing and travel time to the Snake River dams and McNary Dam (MCD) on the Columbia River. These studies provide information on listed Naco xmore » (Chinook salmon) and Heeyey (steelhead) for the Federal Columbia River Power System (FCRPS) Biological Opinion (NMFS 2000). The Lower Snake River Compensation Plan program's goal is to maintain a hatchery production program of 490,000 Naco x (Chinook salmon) and 330,000 Heeyey (steelhead) for annual release in the Imnaha River (Carmichael et al. 1998, Whitesel et al. 1998). These hatchery releases occur to compensate for fish losses due to the construction and operation of the four lower Snake River hydroelectric facilities. One of the aspects of the LSRCP hatchery evaluation studies in the Imnaha River is to determine natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolt performance, emigration characteristics and survival (Kucera and Blenden 1998). A long term monitoring effort was established to document smolt emigrant timing and post release survival within the Imnaha River, estimate smolt survival downstream to McNary Dam, compare natural and hatchery smolt performance, and collect smolt-to-adult return information. This project collects information for, and is part of, a larger effort entitled Smolt Monitoring by Federal and Non-Federal Agencies (BPA Project No. 198712700). This larger project provides data on movement of smolts out of major drainages and past dams on the Snake River and Columbia River. In season indices of migration strength and migration timing are provided for the run-at large at key monitoring sites. Marked smolts are utilized to measure travel time and estimate survival through key index reaches. Fish quality and descaling measures are recorded at each monitoring site and provide indicators of the health of the run. Co-managers in the Imnaha River subbasin (Ecovista 2004) have identified the need to collect information on life history, migration patterns, juvenile emigrant abundance, reach specific smolt survivals, and Smolt-to-Adult Return rates (SAR's) for both Heeyey (steelhead) and Naco x (Chinook salmon) smolts. The current study provides information related to the majority of the high priority data needs. Current funding does not allow for determination of a total (annual) juvenile emigrant abundance and lack of adult passive integrated transponder (PIT) tag detectors at the mouth of the Imnaha River results in the inability to calculate tributary specific SAR's. Information is shared with the Fish Passage Center (FPC) on a real time basis during the spring emigration period. The Bonneville Power Administration (BPA) and the United States Fish and Wildlife Service (USFWS) contracted the NPT to monitor emigration timing and tag up to 19,000 emigrating natural and hatchery Naco x (Chinook salmon) and Heeyey (steelhead) smolts from the Imnaha River with passive integrated transponder (PIT) tags. The completion of trapping in the spring of 2007 marked the 16th year of emigration studies on the Imnaha River, and the 14th year of participating in the FPC smolt monitoring program. Monitoring and evaluation objectives were to: (1) Evaluate effects of flow, temperature and other environmental factors on juvenile migration timing. (2) Determine emigration timing, travel time, and in-river survival of PIT tagged hatchery Naco x (Chinook salmon) smolts released at the Imnaha River acclimation facility to the Imnaha River juvenile migration trap. (3) Monitor the daily catch and biological characteristics of juvenile Naco x (Chinook salmon) and Heeyey (steelhead) smolts collected at the Imnaha River screw trap. (4) Determine spring emigration timing of Naco x (Chinook salmon) and Heeyey (steelhead) smolts collected at the Imnaha River juvenile migration trap. (5) Compare emigration characteristics and survival rates of natural fall and spring tagged juvenile Naco x (Chinook salmon). (6) Determine arrival timing, travel time and estimated survival of PIT tagged natural and hatchery Naco x (Chinook salmon) and natural and hatchery Heeyey (steelhead) smolts from the Imnaha River to Snake and Columbia River dams.« less
A SEA FLOOR GRAVITY SURVEY OF THE SLEIPNER FIELD TO MONITOR CO2 MIGATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Zumberge
2003-06-13
At the Sleipner gas field, excess CO{sub 2} is sequestered and injected underground into a porous saline aquifer 1000 m below the seafloor. A high precision micro-gravity survey was carried out on the seafloor to monitor the injected CO{sub 2}. A repeatability of 5 {micro}Gal in the station averages was observed. This is considerably better than pre-survey expectations. These data will serve as the baseline for time-lapse gravity monitoring of the Sleipner CO{sub 2} injection site. Simple modeling of the first year data give inconclusive results, thus a more detailed approach is needed. Work towards this is underway.
Watching proteins function with 150-ps time-resolved X-ray crystallography
NASA Astrophysics Data System (ADS)
Anfinrud, Philip
2007-03-01
We have used time-resolved Laue crystallography to characterize ligand migration pathways and dynamics in wild-type and several mutant forms of myoglobin (Mb), a ligand-binding heme protein found in muscle tissue. In these pump-probe experiments, which were conducted on the ID09B time-resolved beamline at the European Synchrotron and Radiation Facility, a laser pulse photodissociates CO from an MbCO crystal and a suitably delayed X-ray pulse probes its structure via Laue diffraction. Single-site mutations in the vicinity of the heme pocket docking site were found to have a dramatic effect on ligand migration. To visualize this process, time-resolved electron density maps were stitched together into movies that unveil with <2-å spatial resolution and 150-ps time-resolution the correlated protein motions that accompany and/or mediate ligand migration. These studies help to illustrate at an atomic level relationships between protein structure, dynamics, and function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Pengfei; Zheng, Jianming; Zhang, Ji-Guang
Layered lithium transition metal oxides (LTMO) are promising candidate cathode materials for next generation high energy density lithium ion battery. The challenge for using this category of cathode is the capacity and voltage fading, which is believed to be associated with the layered structure disordering, a process that is initiated from the surface or solid-electrolyte interface and facilitated by transition metal (TM) reduction and oxygen vacancy formation. However, the atomic level dynamic mechanism of such a layered structure disordering is still not fully clear. In this work, utilizing atomic resolution electron energy loss spectroscopy (EELS), we map, for the firstmore » time at atomic scale, the spatial evolution of Ni, Co and Mn in a cycled LiNi1/3M1/3Co1/3O2 layered cathode. In combination with atomic level structural imaging, we discovered the direct correlation of TM ions migration behavior with lattice disordering, featuring the residing of TM ions in the tetrahedral site and a sequential migration of Ni, Co, and Mn upon the increased lattice disordering of the layered structure. This work highlights that Ni ions, though acting as the dominant redox species in many LTMO, are labile to migrate to cause lattice disordering upon battery cycling; while the Mn ions are more stable as compared with Ni and Co and can act as pillar to stabilize layered structure. Direct visualization of the behavior of TM ions during the battery cycling provides insight for designing of cathode with structural stability and correspondingly a superior performance.« less
Moriaux, Anne-Laure; Vallon, Raphaël; Parvitte, Bertrand; Zeninari, Virginie; Liger-Belair, Gérard; Cilindre, Clara
2018-10-30
During Champagne or sparkling wine tasting, gas-phase CO 2 and volatile organic compounds invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO 2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception. Monitoring as accurately as possible the level of gas-phase CO 2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO 2 and a collection of various tasting parameters. Here, the concentration of CO 2 found in the headspace of champagne glasses served under multivariate conditions was accurately monitored, all along the 10 min following pouring, through a new combined approach by a CO 2 -Diode Laser Sensor and micro-gas chromatography. Our results show the strong impact of various tasting conditions (volume dispensed, intensity of effervescence, and glass shape) on the release of gas-phase CO 2 above the champagne surface. Copyright © 2018 Elsevier Ltd. All rights reserved.
Electrical control of exchange bias via oxygen migration across CoO-ZnO nanocomposite barrier
NASA Astrophysics Data System (ADS)
Li, Q.; Yan, S. S.; Xu, J.; Li, S. D.; Zhao, G. X.; Long, Y. Z.; Shen, T. T.; Zhang, K.; Zhang, J.
2016-12-01
We proposed a nanocomposite barrier CoO-ZnO for magnetism manipulation in Co/CoO-ZnO/Ag heterojunctions. Both electrical control of magnetism and resistive switching were realized in this junction. An electrical tunable exchange bias of CoO1-v (v denotes O vacancies) on Co films was realized using voltages below 1 volt. The magnetism modulation associated with resistive switching can be attributed to the oxygen ions migration between the insulating CoO1-v layer and the semiconductive ZnO1-v layer, which can cause both ferromagnetic phase and resistance switching of CoO1-v layer.
NASA Astrophysics Data System (ADS)
Ying, Ji-Feng; Ji, Rong; Ter Lim, Sze; Tran, Michael N.; Wang, Chen Chen; Ernult, Franck
2016-02-01
The magnetic-tunnel-junction (MTJ) structure is the core of many important devices, such as magnetic recording head and STT-RAM. CoFeB/MgO/CoFeB tri-layer thin-film stack is a widely researched MTJ structure. In this tri-layer, the functional property of the MTJ, i.e. its TMR ratio, is critically dependent on the crystal orientation of the CoFe grains. In order for the desired (1 0 0) out of plane texture to develop in the CoFeB layers, B needs to be engineered to be expelled out of these CoFeB layers, and diffuse or migrate into the adjacent layers. Ta is usually used as a seed layer adjacent to the MTJ structure. In this work, we investigated the important B-migration mechanisms within this MTJ structure through a combined XPS/TOF-SIMS study. Specifically, we tried to elucidate the possible physical/chemical interactions between the B and Ta that could happen with different film stack designs. Previous works have shown that there might be two possible B-migration mechanisms. One mechanism is direct B diffusion into the adjacent Ta layer during annealing. The other B-migration mechanism is through the formation of TaBOx species, in which B could be carried out by the Ta diffusion. In particular, through studying a series of film stacks, we discussed the circumstances under which one of these B-migration mechanisms becomes dominant. Furthermore, we discussed how these B-migration mechanisms facilitated the B expulsion in a common MTJ structure.
Wu, Sai; Du, Wang; Duan, Yiyuan; Zhang, Deteng; Liu, Yixiao; Wu, Bingbing; Zou, Xiaohui; Ouyang, Hongwei; Gao, Changyou
2018-05-30
The gradient localization of biological cues is of paramount importance to guide directional migration of cells. In this study, poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate)-block- poly(2-hydroxyethyl methacrylate) (P(HEMA-co-GMA)-b-PHEMA) brushes with a uniform underneath P(HEMA-co-GMA) layer and a gradient thickness of PHEMA blocks were prepared by using surface-initiated atom-transfer radical polymerization and a dynamically controlled polymerization process. The polymer chains were subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) peptides by reaction with the glycidyl groups, and their structures and properties were characterized by X-ray photoelectron spectrometry (XPS), quartz crystal microbalance with dissipation (QCM-D) and air contact angle. Adhesion and migration processes of smooth muscle cells (SMCs) were then studied. Compared with those on the sufficiently exposed RGD surface, the cell adhesion and mobility were well maintained when the RGD peptides were localized at 18.9 nm depth, whereas the adhesion, spreading and migration rate of SMCs were significantly impaired when the RGD peptides were localized at a depth of 38.4 nm. On the RGD depth gradient surface, the SMCs exhibited preferential orientation and enhanced directional migration toward the direction of reduced thickness of the second PHEMA brushes. Half of the cells were oriented within ± 30° to the x-axis direction, and 72% of the cells moved directionally at the optimal conditions. Cell adhesion strength, arrangement of cytoskeleton, and gene and protein expression levels of adhesion-related proteins were studied to corroborate the mechanisms, demonstrating that the cell mobility is regulated by the complex and synergetic intracellular signals resulted from the difference in surface properties. Cell migration is of paramount importance for the processes of tissue repair and regeneration. So far, the gradient localization of biological cues perpendicular to the substrate, which is the usual case for the biological signaling molecules to locate in ECM in vivo, has been scarcely studied, and has not been used to guide the directional migration of cells. In this study, we prepare a depth gradient of RGD peptides along the polymer chains, which is used to guide the directional migration of SMCs after a second hydrophilic bock is prepared in a gradient manner. For the first time the directional migration of SMCs is achieved under the guidance of a depth gradient of RGD ligands. The mechanisms of different cell migration abilities are further discussed based on the results of cell adhesion, cell adhesion force, cytoskeleton alignment and expression of relative proteins and genes. This work paves a new strategy by fabricating a gradient polymer brushes with immobilized bioactive molecules to dominate the directional cell migration, and elucidates the mechanisms underlining the biased migration along RGD depth localization gradients, shedding a light for the design of novel biomaterials to control and guide cell migration and invasion. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Scarfato, P; Garofalo, E; Di Maio, L; Incarnato, L
2017-06-01
Transport, mechanical and global migration data concern multilayer food packaging films with different layouts, all incorporating a layered silicate/polyamide nanocomposite as oxygen barrier layer, and a low-density polyethylene (LDPE) as moisture resistant layer in direct contact with food. The data are related to "Tuning of co-extrusion processing conditions and film layout to optimize the performances of PA/PE multilayer nanocomposite films for food packaging" by Garofalo et al. (2017) [1]. Nanocomposite multilayer films, with different relative layer thicknesses and clay types, were produced using a laboratory scale co-extrusion blown-film equipment and were analyzed in terms of transport to oxygen and water vapor, mechanical properties and overall migration. The results have shown that all the multilayer hybrid films, based on the copolyamide layer filled with Cloisite 30B, displayed the most significant oxygen barrier improvements and the best mechanical properties compared to the unfilled films. No significant alteration of the overall migration values was observed, as expectable [2], [3], [4]. The performance improvement was more relevant in the case of the film with the thinner nanocomposite layer.
1978-02-01
H20, 10% Na2 CO3 , H20, and dried over MqSO 4 . Yields were typically ca. 75%. "! 33 CARBENE CHEMISTRY PART II. HYDROGEN MIGRATION IN 2-CARBENA-6,6...any a delocaliza- tion. Thus if one assumes a single product determining intermediate, carbene 54 is classical in the usual sense of the word. It has...placed in a refrigerator. The crystalline product was re- crystallized from methanol-O-d/D20 yielding purified tosylhydrazone with mp 156-1580. 58
Assessment of brine migration along vertical pathways due to CO2 injection
NASA Astrophysics Data System (ADS)
Kissinger, Alexander; Class, Holger
2016-04-01
Global climate change, shortage of resources and the growing usage of renewable energy sources has lead to a growing demand for the utilization of subsurface systems which may create conflicts with essential public interests such as water supply from aquifers. For example, brine migration into potential drinking water aquifers due to the injection of CO2 into deep saline aquifers is perceived as a potential threat resulting from the Carbon Capture and Storage Technology (CCS). In this work, we focus on the large scale impacts of CO2 storage on brine migration but the methodology and the obtained results may also apply to other fields like waste water disposal, where large amounts of fluid are injected into the subsurface. We consider a realistic (but not real) on-shore site in the North German Basin with characteristic geological features. In contrast to modeling on the reservoir scale, the spatial scale in this work is much larger in both vertical and lateral direction, since the regional hydrogeology is considered as well. Structures such as fault zones, hydrogeological windows in the Rupelian clay or salt wall flanks are considered as potential pathways for displaced fluids into shallow systems and their influence needs to be taken into account. Simulations on this scale always require a compromise between the accuracy of the description of the relevant physical processes, data availability and computational resources. Therefore, we test different model simplifications and discuss them with respect to the relevant physical processes and the expected data availability. The simplifications in the models are concerned with the role of salt-induced density differences on the flow, with injection of brine (into brine) instead of CO2 into brine, and with simplifying the geometry of the site.
3D printing of biomimetic microstructures for cancer cell migration.
Huang, Tina Qing; Qu, Xin; Liu, Justin; Chen, Shaochen
2014-02-01
To understand the physical behavior and migration of cancer cells, a 3D in vitro micro-chip in hydrogel was created using 3D projection printing. The micro-chip has a honeycomb branched structure, aiming to mimic 3D vascular morphology to test, monitor, and analyze differences in the behavior of cancer cells (i.e. HeLa) vs. non-cancerous cell lines (i.e. 10 T1/2). The 3D Projection Printing system can fabricate complex structures in seconds from user-created designs. The fabricated microstructures have three different channel widths of 25, 45, and 120 microns wide to reflect a range of blood vessel diameters. HeLa and 10 T1/2 cells seeded within the micro-chip were then analyzed for morphology and cell migration speed. 10 T1/2 cells exhibited greater changes in morphology due to channel size width than HeLa cells; however, channel width had a limited effect on 10 T1/2 cell migration while HeLa cancer cell migration increased as channel width decreased. This physiologically relevant 3D cancer tissue model has the potential to be a powerful tool for future drug discoveries and cancer migration studies.
Wallula Basalt Pilot Demonstration Project: Post-injection Results and Conclusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrail, Bernard Pete; Schaef, Herbert T.; Spane, Frank A.
Deep underground geologic formations are emerging as a reasonable option for long-term storage of CO 2, including large continental flood basalt formations. At the GHGT-11 and GHGT-12 conferences, progress was reported on the initial phases for Wallula Basalt Pilot demonstration test (located in Eastern Washington state), where nearly 1,000 metric tons of CO 2 were injected over a 3-week period during July/August 2013. The target CO 2 injection intervals were two permeable basalt interflow reservoir zones with a combined thickness of ~20 m that occur within a layered basalt sequence between a depth of 830-890 m below ground surface. Duringmore » the two-year post-injection period, downhole fluid samples were periodically collected during this post-injection monitoring phase, coupled with limited wireline borehole logging surveys that provided indirect evidence of on-going chemical geochemical reactions/alterations and CO 2 disposition. A final detailed post-closure field characterization program that included downhole fluid sampling, and performance of hydrologic tests and wireline geophysical surveys. Included as part of the final wireline characterization activities was the retrieval of side-wall cores from within the targeted injection zones. These cores were examined for evidence of in-situ mineral carbonization. Visual observations of the core material identified small globular nodules, translucent to yellow in color, residing within vugs and small cavities of the recovered basalt side-wall cores, which were not evident in pre-injection side-wall cores obtained from the native basalt formation. Characterization by x-ray diffraction identified these nodular precipitates as ankerite, a commonly occurring iron and calcium rich carbonate. Isotopic characterization (δ 13C, δ 18O) conducted on the ankerite nodules indicate a distinct isotopic signature that is closely aligned with that of the injected CO 2. Both the secondary mineral nodules and injected CO 2 are measurably different from the isotopic content of basalt, injection zone groundwater and for naturally occurring calcite. Final post-injection wireline geophysical logging results also indicate the presence of free-phase CO 2 at the top of the two injection interflow zones, with no vertical migration of CO 2 above the injection horizons. Furthermore, these findings are significant and demonstrate the feasibility of sequestering CO 2 in a basalt formation.« less
Wallula Basalt Pilot Demonstration Project: Post-injection Results and Conclusions
McGrail, Bernard Pete; Schaef, Herbert T.; Spane, Frank A.; ...
2017-08-18
Deep underground geologic formations are emerging as a reasonable option for long-term storage of CO 2, including large continental flood basalt formations. At the GHGT-11 and GHGT-12 conferences, progress was reported on the initial phases for Wallula Basalt Pilot demonstration test (located in Eastern Washington state), where nearly 1,000 metric tons of CO 2 were injected over a 3-week period during July/August 2013. The target CO 2 injection intervals were two permeable basalt interflow reservoir zones with a combined thickness of ~20 m that occur within a layered basalt sequence between a depth of 830-890 m below ground surface. Duringmore » the two-year post-injection period, downhole fluid samples were periodically collected during this post-injection monitoring phase, coupled with limited wireline borehole logging surveys that provided indirect evidence of on-going chemical geochemical reactions/alterations and CO 2 disposition. A final detailed post-closure field characterization program that included downhole fluid sampling, and performance of hydrologic tests and wireline geophysical surveys. Included as part of the final wireline characterization activities was the retrieval of side-wall cores from within the targeted injection zones. These cores were examined for evidence of in-situ mineral carbonization. Visual observations of the core material identified small globular nodules, translucent to yellow in color, residing within vugs and small cavities of the recovered basalt side-wall cores, which were not evident in pre-injection side-wall cores obtained from the native basalt formation. Characterization by x-ray diffraction identified these nodular precipitates as ankerite, a commonly occurring iron and calcium rich carbonate. Isotopic characterization (δ 13C, δ 18O) conducted on the ankerite nodules indicate a distinct isotopic signature that is closely aligned with that of the injected CO 2. Both the secondary mineral nodules and injected CO 2 are measurably different from the isotopic content of basalt, injection zone groundwater and for naturally occurring calcite. Final post-injection wireline geophysical logging results also indicate the presence of free-phase CO 2 at the top of the two injection interflow zones, with no vertical migration of CO 2 above the injection horizons. Furthermore, these findings are significant and demonstrate the feasibility of sequestering CO 2 in a basalt formation.« less
NASA Astrophysics Data System (ADS)
Alm, S.; Mukala, K.; Tiittanen, P.; Jantunen, M. J.
The associations of personal carbon monoxide (CO) exposures with ambient air CO concentrations measured at fixed monitoring sites, were studied among 194 children aged 3-6 yr in four downtown and four suburban day-care centers in Helsinki, Finland. Each child carried a personal CO exposure monitor between 1 and 4 times for a time period of between 20 and 24 h. CO concentrations at two fixed monitoring sites were measured simultaneously. The CO concentrations measured at the fixed monitoring sites were usually lower (mean maximum 8-h concentration: 0.9 and 2.6 mg m -3) than the personal CO exposure concentrations (mean maximum 8-h concentration: 3.3 mg m -3). The fixed site CO concentrations were poor predictors of the personal CO exposure concentrations. However, the correlations between the personal CO exposure and the fixed monitoring site CO concentrations increased (-0.03--0.12 to 0.13-0.16) with increasing averaging times from 1 to 8 h. Also, the fixed monitoring site CO concentrations explained the mean daily or weekly personal CO exposures of a group of simultaneously measured children better than individual exposure CO concentrations. This study suggests that the short-term CO personal exposure of children cannot be meaningfully assessed using fixed monitoring sites.
NASA Astrophysics Data System (ADS)
Gragg, E.; Van Wijk, J. W.; Balch, R. S.
2016-12-01
A 40 mile long 2D petroleum system model has been constructed and simulated along a 2D reflection seismic line in the western Anadarko Basin. Petroleum system models are useful for predicting carbon storage capacity, characterizing regional CO2 plume migration risks, predicting how future fields may respond to CO2-EOR via hydrocarbon compositional estimations and characterizing the petroleum system that make sites attractive for storage. This work is part of the Southwest Regional Partnership on Carbon Sequestration Phase III large scale injection operation at Farnsworth Unit Ochiltree Co., Texas. Farnsworth Unit is a mature oil field producing from Morrowan Sandstone incised valley deposits. The project goal is to evaluate the injection and storage of 1 million metric tons of man-made CO2. Geologic carbon storage and utilization via CO2-enhanced oil recovery operations is a method under active research which aims to mitigate climate change via emission reductions while meeting current energy demands. The 2D model was constructed using 2D regional reflection seismic data, geophysical logs and core data. Simulations are forward modeled over 542 Ma of the Anadarko Basins geologic history. The research illustrates (1) in the unlikely case of CO2 leakage out of the reservoir, buoyancy driven regional migration risk is to the northwest-northeast (2) Morrowan play hydrocarbons in the Northeast Texas Panhandle dominantly migrated from the Thirteen Finger Limestone further basinward (3) the regions tectonic evolution has played an important role on the pressure and hydraulic history of reservoirs. Farnsworth's reservoir was discovered as under-pressured, the exact process(s) giving rise to this condition are not well-understood and need further investigation. Moreover, the heat flow model used in this study will aid understanding of the diagenetic evolution of the reservoir and caprocks better. The petroleum system modeling conducted here has accurately predicted 1st order reservoir parameters such as porosity, permeability, and temperature all of which are vital to potential future carbon storage site selection and performance. Funding for this project is provided by the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) under Award No. DE-FC26-05NT42591.
Innovative Visualizations Shed Light on Avian Nocturnal Migration
Farnsworth, Andrew; Aelterman, Bart; Alves, Jose A.; Azijn, Kevin; Bernstein, Garrett; Branco, Sérgio; Desmet, Peter; Dokter, Adriaan M.; Horton, Kyle; Kelling, Steve; Kelly, Jeffrey F.; Leijnse, Hidde; Rong, Jingjing; Sheldon, Daniel; Van den Broeck, Wouter; Van Den Meersche, Jan Klaas; Van Doren, Benjamin Mark; van Gasteren, Hans
2016-01-01
Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals’ life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human–wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement. PMID:27557096
Innovative Visualizations Shed Light on Avian Nocturnal Migration.
Shamoun-Baranes, Judy; Farnsworth, Andrew; Aelterman, Bart; Alves, Jose A; Azijn, Kevin; Bernstein, Garrett; Branco, Sérgio; Desmet, Peter; Dokter, Adriaan M; Horton, Kyle; Kelling, Steve; Kelly, Jeffrey F; Leijnse, Hidde; Rong, Jingjing; Sheldon, Daniel; Van den Broeck, Wouter; Van Den Meersche, Jan Klaas; Van Doren, Benjamin Mark; van Gasteren, Hans
2016-01-01
Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals' life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human-wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement.
NASA Astrophysics Data System (ADS)
Blackstock, J. M.; Covington, M. D.; Williams, S. G. W.; Myre, J. M.; Rodriguez, J.
2017-12-01
Variability in CO2 fluxes within Earth's Critical zone occurs over a wide range of timescales. Resolving this and its drivers requires high-temporal resolution monitoring of CO2 both in the soil and aquatic environments. High-cost (> 1,000 USD) gas analyzers and data loggers present cost-barriers for investigations with limited budgets, particularly if high spatial resolution is desired. To overcome high-costs, we developed an Arduino based CO2 measuring platform (i.e. gas analyzer and data logger). The platform was deployed at multiple sites within the Critical Zone overlying the Springfield Plateau aquifer in Northwest Arkansas, USA. The CO2 gas analyzer used in this study was a relatively low-cost SenseAir K30. The analyzer's optical housing was covered by a PTFE semi-permeable membrane allowing for gas exchange between the analyzer and environment. Total approximate cost of the monitoring platform was 200 USD (2% detection limit) to 300 USD (10% detection limit) depending on the K30 model used. For testing purposes, we deployed the Arduino based platform alongside a commercial monitoring platform. CO2 concentration time series were nearly identical. Notably, CO2 cycles at the surface water site, which operated from January to April 2017, displayed a systematic increase in daily CO2 amplitude. Preliminary interpretation suggests key observation of seasonally increasing stream metabolic function. Other interpretations of observed cyclical and event-based behavior are out of the scope of the study; however, the presented method describes an accurate near-hourly characterization of CO2 variability. The new platform has been shown to be operational for several months, and we infer reliable operation for much longer deployments (> 1 year) given adequate environmental protection and power supply. Considering cost-savings, this platform is an attractive option for continuous, accurate, low-power, and low-cost CO2 monitoring for remote locations, globally.
NASA Astrophysics Data System (ADS)
Will, R. A.; Balch, R. S.
2015-12-01
The Southwest Partnership on Carbon Sequestration is performing seismic based characterization and monitoring activities at an active CO2 EOR project at Farnsworth Field, Texas. CO2 is anthropogenically sourced from a fertilizer and an ethanol plant. The field has 13 CO2 injectors and has sequestered 302,982 metric tonnes of CO2 since October 2013. The field site provides an excellent laboratory for testing a range of monitoring technologies in an operating CO2 flood since planned development is sequential and allows for multiple opportunities to record zero CO2 baseline data, mid-flood data, and fully flooded data. The project is comparing and contrasting several scales of seismic technologies in order to determine best practices for large scale commercial sequestration projects. Characterization efforts include an 85 km2 3D surface seismic survey, baseline and repeat 3D VSP surveys centered on injection wells, cross-well tomography baseline and repeat surveys between injector/producer pairs, and a borehole passive seismic array to monitor induced seismicity. All surveys have contributed to detailed geologic models which were then used for fluid flow and risk assessment simulations. 3D VSP and cross-well data with repeat surveys have allowed for direct comparisons of the reservoir prior to CO2 injection and at eight months into injection, with a goal of imaging the CO2 plume as it moves away from injection wells. Additional repeat surveys at regular intervals will continue to refine the plume. The goal of this work is to demonstrate seismic based technologies to monitor CO2 sequestration projects, and to contribute to best practices manuals for commercial scale CO2 sequestration projects. In this talk the seismic plan will be outlined, progress towards goals enumerated, and preliminary results from baseline and repeat seismic data will be discussed. Funding for this project is provided by the U.S. Department of Energy under Award No. DE-FC26-05NT42591.
Reactive Tracer Techniques to Quantitatively Monitor Carbon Dioxide Storage in Geologic Formations
NASA Astrophysics Data System (ADS)
Matter, J. M.; Carson, C.; Stute, M.; Broecker, W. S.
2012-12-01
Injection of CO2 into geologic storage reservoirs induces fluid-rock reactions that may lead to the mineralization of the injected CO2. The long-term safety of geologic CO2 storage is, therefore, determined by in situ CO2-fluid-rock reactions. Currently existing monitoring and verification techniques for CO2 storage are insufficient to characterize the solubility and reactivity of the injected CO2, and to establish a mass balance of the stored CO2. Dissolved and chemically transformed CO2 thus avoid detection. We developed and are testing a new reactive tracer technique for quantitative monitoring and detection of dissolved and chemically transformed CO2 in geologic storage reservoirs. The technique involves tagging the injected carbon with radiocarbon (14C). Carbon-14 is a naturally occurring radioisotope produced by cosmic radiation and made artificially by 14N neutron capture. The ambient concentration is very low with a 14C/12C ratio of 10-12. The concentration of 14C in deep geologic formations and fossil fuels is at least two orders of magnitude lower. This makes 14C an ideal quantitative tracer for tagging underground injections of anthropogenic CO2. We are testing the feasibility of this tracer technique at the CarbFix pilot injection site in Iceland, where approximately 2,000 tons of CO2 dissolved in water are currently injected into a deep basalt aquifer. The injected CO2 is tagged with 14C by dynamically adding calibrated amounts of H14CO3 solution to the injection stream. The target concentration is 12 Bq/kg of injected water, which results in a 14C activity that is 5 times enriched compared to the 1850 background. In addition to 14C as a reactive tracer, trifluormethylsulphur pentafluoride (SF5CF3) and sulfurhexafluoride (SF6) are used as conservative tracers to monitor the transport of the injected CO2 in the subsurface. Fluid samples are collected for tracer analysis from the injection and monitoring wells on a regular basis. Results show a fast reaction of the injected CO2 with the ambient reservoir fluid and rocks. Mixing and in situ CO2-water-rock reactions are detected by changes in the different tracer ratios. The feasibility of 14C as a reactive tracer for geologic CO2 storage also depends on the analytical technique used to measure 14C activities. Currently, 14C is analyzed using Accelerator Mass Spectrometery (AMS), which is expensive and requires centralized facilities. To enable real time online monitoring and verification, we are developing an alternative detection method for radiocarbon. The IntraCavity OptoGalvanic Spectroscopy (ICOGS) system is using a CO2 laser to detect carbon isotope ratios at environmental levels. Results from our prototype of this bench-top technology demonstrate that an ICOGS system can be used in a continuous mode with analysis times of the order of minutes, and can deliver data of similar quality as AMS.
Can mesenchymal cells undergo collective cell migration?
Theveneau, Eric
2011-01-01
Cell migration is critical for proper development of the embryo and is also used by many cell types to perform their physiological function. For instance, cell migration is essential for immune cells to monitor the body and for epithelial cells to heal a wound whereas, in cancer cells, acquisition of migratory capabilities is a critical step toward malignancy. Migratory cells are often categorized into two groups: (1) mesenchymal cells, produced by an epithelium-to-mesenchyme transition, that undergo solitary migration and (2) epithelial-like cells which migrate collectively. However, on some occasions, mesenchymal cells may travel in large, dense groups and exhibit key features of collectively migrating cells such as coordination and cooperation. Here, using data published on neural crest cells, a highly invasive mesenchymal cell population that extensively migrate throughout the embryo, we explore the idea that mesenchymal cells, including cancer cells, might be able to undergo collective cell migration under certain conditions and discuss how they could do so. PMID:22274714
MARKIEWICZ, MAGARET; NAKERAKANTI, SASHIDHAR S.; KAPANADZE, BAGRAT; GHATNEKAR, ANGELA; TROJANOWSKA, MARIA
2010-01-01
Objective The primary objective of this study was to examine the potential interaction between sphingosine-1-phosphate (S1P), a pleiotropic lipid mediator, and CTGF/CCN2 a secreted multimodular protein, in the process of endothelial cell migration. The second objective was to determine whether C- and N-terminal domains of CTGF/CCN2 have specific function in cell migration. Materials and Methods Migration of human dermal microvascular endothelial cells (HDMECs) was examined in monolayer wound healing “scratch” assay, while capillary-like tube formation was examined in 3 dimensional collagen co-culture assays. Results We observed that S1P stimulates HDMECs migration concomitant with upregulation of CTGF/CCN2 expression. Furthermore, the blockade of endogenous CTGF/CCN2 via siRNA abrogated S1P induced HDMECs migration and capillary-like tube formation. Full length CTGF induced cell migration and capillary-like tube formation with potency similar to that of S1P, while C-terminal domain of CTGF was slightly less effective. However; N-terminal domain had only a residual activity in inducing capillary-like tube formation. Conclusions This study revealed that CTGF/CCN2 is required for the S1P induced endothelial cell migration, which suggests that CTGF/CCN2 may be an important mediator of S1P induced physiological and pathological angiogenesis. Moreover, this study shows that the pro-migratory activity of CTGF/CCN2 is located in the C-terminal domain. PMID:21166920
Markiewicz, Margaret; Nakerakanti, Sashidhar S; Kapanadze, Bagrat; Ghatnekar, Angela; Trojanowska, Maria
2011-01-01
The primary objective of this study was to examine the potential interaction between S1P, a pleiotropic lipid mediator, and CTGF/CCN2, a secreted multimodular protein, in the process of endothelial cell migration. The secondary objective was to determine whether C- and N-terminal domains of CTGF/CCN2 have a specific function in cell migration. Migration of HDMECs was examined in monolayer wound healing "scratch" assay, whereas capillary-like tube formation was examined in three-dimensional collagen co-culture assays. We observed that S1P stimulates migration of HDMECs concomitant with upregulation of CTGF/CCN2 expression. Furthermore, the blockade of endogenous CTGF/CCN2 via siRNA abrogated S1P-induced HDMEC migration and capillary-like tube formation. Full-length CTGF induced cell migration and capillary-like tube formation with a potency similar to that of S1P, while C-terminal domain of CTGF was slightly less effective. However, N-terminal domain had only a residual activity in inducing capillary-like tube formation. This study revealed that CTGF/CCN2 is required for the S1P-induced endothelial cell migration, which suggests that CTGF/CCN2 may be an important mediator of S1P-induced physiological and pathological angiogenesis. Moreover, this study shows that the pro-migratory activity of CTGF/CCN2 is located in the C-terminal domain. © 2010 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wells, Arthur W; Diehl, J Rodney; Strazisar, Brian R
2012-05-01
Near-surface monitoring and subsurface characterization activities were undertaken in collaboration with the Southwest Regional Carbon Sequestration Partnership on their San Juan Basin coal-bed methane pilot test site near Navajo City, New Mexico. Nearly 18,407 short tons (1.670 × 107 kg) of CO{sub 2} were injected into 3 seams of the Fruitland coal between July 2008 and April 2009. Between September 18 and October 30, 2008, two additions of approximately 20 L each of perfluorocarbon (PFC) tracers were mixed with the CO{sub 2} at the injection wellhead. PFC tracers in soil-gas and in the atmosphere were monitored over a period ofmore » 2 years using a rectangular array of permanent installations. Additional monitors were placed near existing well bores and at other locations of potential leakage identified during the pre-injection site survey. Monitoring was conducted using sorbent containing tubes to collect any released PFC tracer from soil-gas or the atmosphere. Near-surface monitoring activities also included CO{sub 2} surface flux and carbon isotopes, soil-gas hydrocarbon levels, and electrical conductivity in the soil. The value of the PFC tracers was demonstrated when a significant leakage event was detected near an offset production well. Subsurface characterization activities, including 3D seismic interpretation and attribute analysis, were conducted to evaluate reservoir integrity and the potential that leakage of injected CO{sub 2} might occur. Leakage from the injection reservoir was not detected. PFC tracers made breakthroughs at 2 of 3 offset wells which were not otherwise directly observable in produced gases containing 20–30% CO{sub 2}. These results have aided reservoir geophysical and simulation investigations to track the underground movement of CO{sub 2}. 3D seismic analysis provided a possible interpretation for the order of appearance of tracers at production wells.« less
40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... than 1 year. (2) Identification of potential surface leakage pathways for CO2 in the maximum monitoring area and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways. (3) A...
40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... than 1 year. (2) Identification of potential surface leakage pathways for CO2 in the maximum monitoring area and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways. (3) A...
NASA Astrophysics Data System (ADS)
Lawton, D. C.; Osadetz, K.
2014-12-01
The Province of Alberta, Canada identified carbon capture and storage (CCS) as a key element of its 2008 Climate Change strategy. The target is a reduction in CO2 emissions of 139 Mt/year by 2050. To encourage uptake of CCS by industry, the province has provided partial funding to two demonstration scale projects, namely the Quest Project by Shell and partners (CCS), and the Alberta Carbon Trunk Line Project (pipeline and CO2-EOR). Important to commercial scale implementation of CCS will be the requirement to prove conformance and containment of the CO2 plume injected during the lifetime of the CCS project. This will be a challenge for monitoring programs. The Containment and Monitoring Institute (CaMI) is developing a Field Research Station (FRS) to calibrate various monitoring technologies for CO2 detection thresholds at relatively shallow depths. The objective being assessed with the FRS is sensitivity for early detection of loss of containment from a deeper CO2 storage project. In this project, two injection wells will be drilled to sandstone reservoir targets at depths of 300 m and 700 m. Up to four observation wells will be drilled with monitoring instruments installed. Time-lapse surface and borehole monitoring surveys will be undertaken to evaluate the movement and fate of the CO2 plume. These will include seismic, microseismic, cross well, electrical resistivity, electromagnetic, gravity, geodetic and geomechanical surveys. Initial baseline seismic data from the FRS will presented.
NASA Astrophysics Data System (ADS)
Taniguchi, Ikuo; Wada, Norihisa; Kinugasa, Kae; Higa, Mitsuru
2017-11-01
Due to CO2-philic nature of polyoxyethylene (POE), a dense POE comb structure was tethered onto PMMA backbone to develop CO2 separation membranes over N2. The resulting hyper-branched polymers displayed preferential CO2 permeation. When the polymer thin layer was formed on a high gas permeable polydimethylsiloxane (PDMS) support by a spray-coating manner, the resulting thin film composite (TFC) membranes displayed very high CO2 permeability. However, the CO2 selectivity, which was the permeability ratio of CO2 over N2, was moderate and lower than 50. To enhance the selectivity, poly(amidoamine) (PAMAM) was introduced to the hyper-branched polymers in the CO2-selective layer of the TFC membranes. The CO2 selectivity increased from 47 to 90 with increasing PAMAM content to 40 wt%, and it was drastically enhanced to 350 with PAMAM content of 50 wt%. Differential scanning calorimetry (DSC) and laser microscope revealed formation of PAMAM-rich domain at the higher amine content, where CO2 could readily migrate in comparison to the other polymeric fractions.
Sleep Transcutaneous vs. End-Tidal CO2 Monitoring for Patients with Neuromuscular Disease.
Won, Yu Hui; Choi, Won Ah; Lee, Jang Woo; Bach, John Robert; Park, Jinyoung; Kang, Seong-Woong
2016-02-01
This study compared transcutaneous carbon dioxide partial pressure (PtcCO2) and end-tidal carbon dioxide partial pressure (PetCO2) monitoring during sleep for patients with neuromuscular disease. This is a retrospective study of patients whose PtcCO2 and PetCO2 were monitored before they began using noninvasive mechanical ventilation. The outcomes were divided into four groupings: group 1, both PtcCO2 and PetCO2 are greater than or equal to 49 mm Hg; group 2, PtcCO2 is greater than or equal to 49 mm Hg but PetCO2 is less than 49 mm Hg; group 3, PtcCO2 is less than 49 mm Hg but PetCO2 is greater than or equal to 49 mm Hg; and group 4, both PtcCO2 and PetCO2 are less than 49 mm Hg. A total of 39 subjects (mean [SD] age, 27.7 [19.3] yrs) were enrolled. PtcCO2 values were significantly higher than PetCO2 values (P < 0.001). The intraclass correlation coefficient between maximal and mean values of PtcCO2 and PetCO2 was 0.612 and 0.718, respectively. Bias and limits of agreement between PtcCO2 and PetCO2 were -7.5 mm Hg and -21.3 to 6.3 mm Hg for maximal values and -4.8 mm Hg and -14.8 to 5.3 mm Hg for mean values. Group 2 included 19 (48.7%) and group 3 included 3 (7.6%) patients who showed discrepancy of hypercapnia between two methods. Maximum PtcCO2 was significantly greater than maximum PetCO2 for both groups and, therefore, tends to be higher than PetCO2 in this population. This should be taken into consideration when assessing patients for sleep hypoventilation.
Gu, Wenwen; Chen, Ying; Li, Yu
2017-08-01
Based on the experimental subcooled liquid vapor pressures (P L ) of 17 polychlorinated naphthalene (PCN) congeners, one type of three-dimensional quantitative structure-activity relationship (3D-QSAR) models, comparative molecular similarity indices analysis (CoMSIA), was constructed with Sybyl software. Full factor experimental design was used to obtain the final regulation scheme for PCN, and then carry out modification of PCN-2 to significantly lower its P L . The contour maps of CoMSIA model showed that the migration ability of PCN decreases when the Cl atoms at the 2-, 3-, 4-, 5-, 6-, 7- and 8-positions of PCNs are replaced by electropositive groups. After modification of PCN-2, 12 types of new modified PCN-2 compounds were obtained with lnP L values two orders of magnitude lower than that of PCN-2. In addition, there are significant differences between the calculated total energies and energy gaps of the new modified compounds and those of PCN-2.
Yao, Zong-Feng; Wang, Ying; Lin, Yu-Hong; Wu, Yan; Zhu, An-You; Wang, Rui; Shen, Lin; Xi, Jin; Qi, Qi; Jiang, Zhi-Quan; Lü, He-Zuo; Hu, Jian-Guo
2017-01-01
Our previous study showed that Schwann cells (SCs) promote survival, proliferation and migration of co-transplanted oligodendrocyte progenitor cells (OPCs) and neurological recovery in rats with spinal cord injury (SCI). A subsequent in vitro study confirmed that SCs modulated OPC proliferation and migration by secreting platelet-derived growth factor (PDGF)-AA and fibroblast growth factor-2 (FGF)-2. We also found that PDGF-AA stimulated OPC proliferation and their differentiation into oligodendrocytes (OLs) at later stages. We therefore speculated that PDGF-AA administration can exert the same effect as SC co-transplantation in SCI repair. To test this hypothesis, in this study we investigated the effect of transplanting PDGF-AA-overexpressing OPCs in a rat model of SCI. We found that PDGF-AA overexpression in OPCs promoted their survival, proliferation, and migration and differentiation into OLs in vivo . OPCs overexpressing PDGF-AA were also associated with increased myelination and tissue repair after SCI, leading to the recovery of neurological function. These results indicate that PDGF-AA-overexpressing OPCs may be an effective treatment for SCI.
Pore-scale Modeling of CO2 Local Trapping in Heterogeneous Porous Media with Inter-granular Cements
NASA Astrophysics Data System (ADS)
Wang, D.; Li, Y.
2017-12-01
Based on pore-scale modeling of CO2/brine multiphase flow in heterogeneous porous media with inter-granular cements, we numerically analyze the effects of cement-modified pore structure on CO2 local trapping. Results indicate: 1) small pore throat is the main reason for causing CO2 local trapping in front of low-porosity layers (namely dense layers) formed by inter-granular cements; 2) in the case of the same pore throat size, the smaller particle size can increase the number of flow paths for CO2 plume and equivalently enhances local permeability, which may counteract the impediment of high capillary pressure on CO2 migration to some extent and consequently disables CO2 local capillary trapping; 3) the isolated pores by inter-granular cements can lead to dramatic reduction of CO2 saturation inside the dense layers, whereas the change of connectivity of some pores due to the cements can increase CO2 accumulation in front of the dense layers by lowering the displacement area of CO2 plume.
NASA Astrophysics Data System (ADS)
Galfond, B.; Riemer, D. D.; Swart, P. K.
2014-12-01
In order for Carbon Capture Utilization and Storage (CCUS) to gain wide acceptance as a method for mitigating atmospheric CO2 concentrations, schemes must be devised to ensure that potential leakage is detected. New regulations from the US Environmental Protection Agency require monitoring and accounting for Class VI injection wells, which will remain a barrier to wide scale CCUS deployment until effective and efficient monitoring techniques have been developed and proven. Monitoring near-surface CO2 at injection sites to ensure safety and operational success requires high temporal resolution CO2 concentration and carbon isotopic (δ13C) measurements. The only technologies currently capable of this rapid measurement of δ13C are optical techniques such as Cavity Ringdown Spectroscopy (CRDS). We have developed a comprehensive remote monitoring approach using CRDS and a custom manifold system to obtain accurate rapid measurements from a large sample area over an extended study period. Our modified Picarro G1101-i CRDS allows for automated rapid and continuous field measurement of δ13CO2 and concentrations of relevant gas species. At our field site, where preparations have been underway for Enhanced Oil Recovery (EOR) operations, we have been able to measure biogenic effects on a diurnal scale, as well as variation due to precipitation and seasonality. Taking these background trends into account, our statistical treatment of real data has been used to improve signal-to-noise ratios by an order of magnitude over published models. Our system has proven field readiness for the monitoring of sites with even modest CO2 fluxes.
Yotova, Iveta; Quan, Ping; Gaba, Aulona; Leditznig, Nadja; Pateisky, Petra; Kurz, Christine; Tschugguel, Walter
2012-01-01
Endometriosis is a disease characterized by the localization of endometrial tissue outside the uterine cavity. The differences observed in migration of human endometrial stromal cells (hESC) obtained from patients with endometriosis versus healthy controls were proposed to correlate with the abnormal activation of Raf-1/ROCKII signalling pathway. To evaluate the mechanism by which Raf-1 regulates cytoskeleton reorganization and motility, we used primary eutopic (Eu-, n = 16) and ectopic (Ec-, n = 8; isolated from ovarian cysts) hESC of patients with endometriosis and endometriosis-free controls (Co-hESC, n = 14). Raf-1 siRNA knockdown in Co- and Eu-hESC resulted in contraction and decreased migration versus siRNA controls. This phenotype was reversed following the re-expression of Raf-1 in these cells. Lowest Raf-1 levels in Ec-hESC were associated with hyperactivated ROCKII and ezrin/radixin/moesin (E/R/M), impaired migration and a contracted phenotype similar to Raf-1 knockdown in Co- and Eu-hESC. We further show that the mechanism by which Raf-1 mediates migration in hESC includes direct myosin light chain phosphatase (MYPT1) phosphorylation and regulation of the levels of E/R/M, paxillin, MYPT1 and myosin light chain (MLC) phosphorylation indirectly via the hyperactivation of ROCKII kinase. Furthermore, we suggest that in contrast to Co-and Eu-hESC, where the cellular Raf-1 levels regulate the rate of migration, the low cellular Raf-1 content in Ec-hESC, might ensure their restricted migration by preserving the contracted cellular phenotype. In conclusion, our findings suggest that cellular levels of Raf-1 adjust the threshold of hESC migration in endometriosis. PMID:22225925
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loring, John S.; Schaef, Herbert T.; Turcu, Romulus VF
2012-04-25
The interaction of anhydrous supercritical CO2 (scCO2) with both kaolinite and ~1W (i.e. close to but less than one layer of hydration) calcium-saturated montmorillonite was investigated under conditions relevant to geologic carbon sequestration (50 °C and 90 bar). The CO2 molecular environment was probed in situ using a combination of three novel high-pressure techniques: X-ray diffraction, magic angle spinning nuclear magnetic resonance spectroscopy and attenuated total reflection infrared spectroscopy. We report the first direct evidence that the expansion of montmorillonite under scCO2 conditions is due to CO2 migration into the interlayer. Intercalated CO2 molecules are rotationally constrained and do notmore » appear to react with waters to form bicarbonate or carbonic acid. In contrast, CO2 does not intercalate into kaolinite. The findings show that predicting the seal integrity of caprock will have complex dependence on clay mineralogy and hydration state.« less
NASA Astrophysics Data System (ADS)
Jung, Na-Hyun
This study investigated a natural analogue for CO2 leakage near Green River, Utah, aiming to understand the influence of various factors on CO2 leakage and to reliably predict underground CO2 behavior after injection for geologic CO2 sequestration. Advective, diffusive, and eruptive characteristics of CO2 leakage were assessed via a soil CO2 flux survey and numerical modeling. The field results show anomalous CO2 fluxes (> 10 g m-2 d-1 ) along the faults, particularly adjacent to CO2-driven cold springs and geysers (e.g., 36,259 g m-2 d-1 at Crystal Geyser), ancient travertines (e.g., 5,917 g m-2 d-1), joint zones in sandstone (e.g., 120 g m-2 d-1), and brine discharge zones (e.g., 5,515 g m-2 d-1). Combined with similar isotopic ratios of gas and progressive evolution of brine chemistry at springs and geysers, a gradual decrease of soil CO2 flux from the Little Grand Wash (LGW; ~36,259 g m -2 d-1) to Salt Wash (SW; ~1,428 g m-2 d-1) fault zones reveals the same CO2 origin and potential southward transport of CO2 over 10-20 km. The numerical simulations exhibit lateral transport of free CO2 and CO2-rich brine from the LGW to SW fault zones through the regional aquifers (e.g., Entrada, Navajo, Kayenta, Wingate, White Rim). CO2 travels predominantly as an aqueous phase (XCO2=~0.045) as previously suggested, giving rise to the convective instability that further accelerates CO2 dissolution. While the buoyant free CO2 always tends to ascend, a fraction of dense CO2-rich brine flows laterally into the aquifer and mixes with the formation fluids during upward migration along the fault. The fault always enhances advective CO2 transport regardless of its permeability (k). However, only low-k fault prevents unconditional upright migration of CO2 and induces fault-parallel movement, feeding the northern aquifers with more CO2. Low-k fault also impedes lateral southward fluid flow from the northern aquifers, developing anticlinal CO2 traps at shallow depths (<300 m). The regional k of the LGW fault in which CO2 flux coincides with the field spatial variation is estimated between 0.01.kh<0.1 md and 0.5.k v<1 md. The anticlinal trap serves as an essential fluid source and conducive environment for intensifying eruption at Crystal Geyser. Geyser-like discharge in the simulations sensitively responds to varying well permeability and radius, and CO2 recharge rate. Indeed, the cycling behavior of wellbore CO2 leakage turns into a constant discharge with time, indicating the potential switch of Crystal Geyser to a CO2-driven cold-water spring or even fumarole.
Monitoring of Water and Contaminant Migration at the Groundwater-Surface Water Interface
2008-08-01
seepage is occurring in a freshwater lake environment and to map the lateral extent of any subsurface contamination at the groundwater –surface water ...and Contaminant Migration at the Groundwater -Surface Water Interface August 2008 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public...4. TITLE AND SUBTITLE Monitoring of Water and Contaminant Migration at the Groundwater -Surface Water Interface 5a. CONTRACT NUMBER 5b. GRANT NUMBER
Modeling of CBM production, CO2 injection, and tracer movement at a field CO2 sequestration site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siriwardane, Hema J.; Bowes, Benjamin D.; Bromhal, Grant S.
2012-07-01
Sequestration of carbon dioxide in unmineable coal seams is a potential technology mainly because of the potential for simultaneous enhanced coalbed methane production (ECBM). Several pilot tests have been performed around the globe leading to mixed results. Numerous modeling efforts have been carried out successfully to model methane production and carbon dioxide (CO{sub 2}) injection. Sensitivity analyses and history matching along with several optimization tools were used to estimate reservoir properties and to investigate reservoir performance. Geological and geophysical techniques have also been used to characterize field sequestration sites and to inspect reservoir heterogeneity. The fate and movement of injectedmore » CO{sub 2} can be determined by using several monitoring techniques. Monitoring of perfluorocarbon (PFC) tracers is one of these monitoring technologies. As a part of this monitoring technique, a small fraction of a traceable fluid is added to the injection wellhead along with the CO{sub 2} stream at different times to monitor the timing and location of the breakthrough in nearby monitoring wells or offset production wells. A reservoir modeling study was performed to simulate a pilot sequestration site located in the San Juan coal basin of northern New Mexico. Several unknown reservoir properties at the field site were estimated by modeling the coal seam as a dual porosity formation and by history matching the methane production and CO{sub 2} injection. In addition to reservoir modeling of methane production and CO{sub 2} injection, tracer injection was modeled. Tracers serve as a surrogate for determining potential leakage of CO{sub 2}. The tracer was modeled as a non-reactive gas and was injected into the reservoir as a mixture along with CO{sub 2}. Geologic and geometric details of the field site, numerical modeling details of methane production, CO{sub 2} injection, and tracer injection are presented in this paper. Moreover, the numerical predictions of the tracer arrival times were compared with the measured field data. Results show that tracer modeling is useful in investigating movement of injected CO{sub 2} into the coal seam at the field site. Also, such new modeling techniques can be utilized to determine potential leakage pathways, and to investigate reservoir anisotropy and heterogeneity.« less
NASA Astrophysics Data System (ADS)
Zhao, Yan; Yu, Qingchun
2017-07-01
With rising threats from greenhouse gases, capture and injection of CO2 into suitable underground formations is being considered as a method to reduce anthropogenic emissions of CO2 to the atmosphere. As the injected CO2 will remain in storage for hundreds of years, the safety of CO2 geologic sequestration is a major concern. The low-permeability sandstone of the Ordos Basin in China is regarded as both caprock and reservoir rock, so understanding the breakthrough pressure and permeability of the rock is necessary. Because part of the pore volume experiences a non-wetting phase during the CO2 injection and migration process, the rock may be in an unsaturated condition. And if accidental leakage occurs, CO2 will migrate up into the unsaturated zone. In this study, breakthrough experiments were performed at various degrees of water saturation with five core samples of low-permeability sandstone obtained from the Ordos Basin. The experiments were conducted at 40 °C and pressures of >8 MPa to simulate the geological conditions for CO2 sequestration. The results indicate that the degree of water saturation and the pore structure are the main factors affecting the rock breakthrough pressure and permeability, since the influence of calcite dissolution and clay mineral swelling during the saturation process is excluded. Increasing the average pore radius or most probable pore radius leads to a reduction in the breakthrough pressure and an increase by several orders of magnitude in scCO2 effective permeability. In addition, the breakthrough pressure rises and the scCO2 effective permeability decreases when the water saturation increases. However, when the average pore radius is greater than 0.151 μm, the degree of water saturation will has a little effect on the breakthrough pressure. On this foundation, if the most probable pore radius of the core sample reaches 1.760 μm, the breakthrough pressure will not be impacted by the increasing water saturation. We establish correlations between (1) the breakthrough pressure and average pore radius or most probable pore radius, (2) the breakthrough pressure and scCO2 effective permeability, (3) the breakthrough pressure and water saturation, and (4) the scCO2 effective permeability and water saturation. This study provides practical information for further studies of CO2 sequestration as well as the caprock evaluation.
Clinically viable magnetic poly(lactide-co-glycolide) (PLGA) particles for MRI-based cell tracking
Granot, Dorit; Nkansah, Michael K.; Bennewitz, Margaret F.; Tang, Kevin S.; Markakis, Eleni A.; Shapiro, Erik M.
2013-01-01
Purpose To design, fabricate, characterize and in vivo assay clinically viable magnetic particles for MRI-based cell tracking. Methods PLGA encapsulated magnetic nano- and microparticles were fabricated. Multiple biologically relevant experiments were performed to assess cell viability, cellular performance and stem cell differentiation. In vivo MRI experiments were performed to separately test cell transplantation and cell migration paradigms, as well as in vivo biodegradation. Results Highly magnetic nano- (~100 nm) and microparticles (~1–2 μm) were fabricated. Magnetic cell labeling in culture occurred rapidly achieving 3–50 pg Fe/cell at 3 hrs for different particles types, and >100 pg Fe/cell after 10 hours, without the requirement of a transfection agent, and with no effect on cell viability. The capability of magnetically labeled mesenchymal or neural stem cells to differentiate down multiple lineages, or for magnetically labeled immune cells to release cytokines following stimulation, was uncompromised. An in vivo biodegradation study revealed that NPs degraded ~80% over the course of 12 weeks. MRI detected as few as 10 magnetically labeled cells, transplanted into the brains of rats. Also, these particles enabled the in vivo monitoring of endogenous neural progenitor cell migration in rat brains over 2 weeks. Conclusion The robust MRI properties and benign safety profile of these particles make them promising candidates for clinical translation for MRI-based cell tracking. PMID:23568825
Towards the Automatic Classification of Avian Flight Calls for Bioacoustic Monitoring
Bello, Juan Pablo; Farnsworth, Andrew; Robbins, Matt; Keen, Sara; Klinck, Holger; Kelling, Steve
2016-01-01
Automatic classification of animal vocalizations has great potential to enhance the monitoring of species movements and behaviors. This is particularly true for monitoring nocturnal bird migration, where automated classification of migrants’ flight calls could yield new biological insights and conservation applications for birds that vocalize during migration. In this paper we investigate the automatic classification of bird species from flight calls, and in particular the relationship between two different problem formulations commonly found in the literature: classifying a short clip containing one of a fixed set of known species (N-class problem) and the continuous monitoring problem, the latter of which is relevant to migration monitoring. We implemented a state-of-the-art audio classification model based on unsupervised feature learning and evaluated it on three novel datasets, one for studying the N-class problem including over 5000 flight calls from 43 different species, and two realistic datasets for studying the monitoring scenario comprising hundreds of thousands of audio clips that were compiled by means of remote acoustic sensors deployed in the field during two migration seasons. We show that the model achieves high accuracy when classifying a clip to one of N known species, even for a large number of species. In contrast, the model does not perform as well in the continuous monitoring case. Through a detailed error analysis (that included full expert review of false positives and negatives) we show the model is confounded by varying background noise conditions and previously unseen vocalizations. We also show that the model needs to be parameterized and benchmarked differently for the continuous monitoring scenario. Finally, we show that despite the reduced performance, given the right conditions the model can still characterize the migration pattern of a specific species. The paper concludes with directions for future research. PMID:27880836
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walter, M.N.M.; School of Life and Health Science, Aston University, Aston Triangle, Birmingham, B4 7EJ; Wright, K.T.
2010-04-15
We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditionsmore » significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-{beta}1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.« less
Walter, M N M; Wright, K T; Fuller, H R; MacNeil, S; Johnson, W E B
2010-04-15
We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix. Copyright 2010 Elsevier Inc. All rights reserved.
Hydro-geophysical responses to the injection of CO2 in core plugs of Berea sandstone
NASA Astrophysics Data System (ADS)
Song, I.; Park, K. G.
2017-12-01
We have built a laboratory-scale core flooding system to measure the relative permeability of a core sample and the acoustic response to the CO2 saturation degree at in situ condition of pressure and temperature down to a few kilometer depths. The system consisted of an acoustic velocity core holder (AVC model from the Core Laboratories) between upstream where CO2 and H2O were injected separately and downstream where the mixed fluids came out of a core sample. Core samples with 4 cm in diameter and 5 cm in length of Berea sandstone were in turn placed in the core holder for confining and axial pressures. The flooding operations of the multiphase fluids were conducted through the sample at 40ºC in temperature and 8 MPa in backpressure. CO2 and H2O in the physical condition were injected separately into a sample at constant rate with various ratios. The two phases were mixed during flowing through the sample. The mixed fluids out of the sample were separated again by their different densities in a chamber equipped with a level gauge of the interface. From the level change of the water in the separator, we measured the volume of water coming out of the sample for each test with a constant ratio of the injection rates. Then it was possible to calculate the saturation degree of CO2 from the difference between input volume and output volume of water. The differential pressure between upstream and downstream was directly measured to calculate the relative permeability as a function of the CO2 saturation degree. We also conducted ultrasonic measurements using piezoelectric sensors on the end plugs. An electric pulse was given to a sensor on one end of sample, and then ultrasonic waves were recorded from the other end. The various ratios of injection rate of CO2 and H2O into Berea sandstone yielded a range of 0.1-0.7 in CO2 saturation degree. The relative permeability was obtained at the condition of steady-state flow for given stages from the velocity of each phase and the pressure gradient. The arrival time of P-wave became retarded and its amplitude became smaller as the degree of CO2 saturation increases. However no change was observed in S-wave in both characters. According to our results, time-lapse measurements of P-wave signals can be a monitoring tool of the subsurface migration of CO2, thus of detecting even its leakage.
NASA Astrophysics Data System (ADS)
Jung, Na-Hyun; Han, Weon Shik; Han, Kyungdoe; Park, Eungyu
2015-05-01
Regional-scale advective, diffusive, and eruptive transport dynamics of CO2 and brine within a natural analogue in the northern Paradox Basin, Utah, were explored by integrating numerical simulations with soil CO2 flux measurements. Deeply sourced CO2 migrates through steeply dipping fault zones to the shallow aquifers predominantly as an aqueous phase. Dense CO2-rich brine mixes with regional groundwater, enhancing CO2 dissolution. Linear stability analysis reveals that CO2 could be dissolved completely within only 500 years. Assigning lower permeability to the fault zones induces fault-parallel movement, feeds up-gradient aquifers with more CO2, and impedes down-gradient fluid flow, developing anticlinal CO2 traps at shallow depths (<300 m). The regional fault permeability that best reproduces field spatial CO2 flux variation is estimated 1 × 10-17 ≤ kh < 1 × 10-16 m2 and 5 × 10-16 ≤ kv < 1 × 10-15 m2. The anticlinal trap serves as an essential fluid source for eruption at Crystal Geyser. Geyser-like discharge sensitively responds to varying well permeability, radius, and CO2 recharge rate. The cyclic behavior of wellbore CO2 leakage decreases with time.
NASA Astrophysics Data System (ADS)
Lee, S. S.; Kim, T. W.; Kim, H. H.; Ha, S. W.; Jeon, W. T.; Lee, K. K.
2015-12-01
The main goal of the this study is to evaluate the importance of heterogeneities in controlling the field-scale transport of CO2 are originated from the CO2 injected at saturated zone below the water table for monitoring and prediction of CO2 leakage from a reservoir. Hydrogeological and geophysical data are collected to characterize the site, prior to conducting CO2 injection experiment at the CO2 environmental monitoring site at Eumseong, Korea. The geophysical data were acquired from borehole electromagnetic flowmeter tests, while the hydraulic data were obtained from pumping tests, slug tests, and falling head permeability tests. Total of 13 wells to perform hydraulic and geophysical test are established along groundwater flow direction in regular sequence, revealed by the results of borehole electromagnetic flowmeter test. The results of geophysical tests indicated that hydraulic gradient is not identical with the topographic gradient. Groundwater flows toward the uphill direction in the study area. Then, the hydraulic tests were conducted to identify the hydraulic properties of the study site. According to the results of pumping and slug tests at the study site, the hydraulic conductivity values show ranges between 4.75 x 10-5 cm/day and 9.74 x 10-5 cm/day. In addition, a portable multi-level sampling and monitoring packer device which remains inflated condition for a long period developed and used to isolate designated depths to identify vertical distribution of hydrogeological characteristics. Hydrogeological information obtained from this study will be used to decide the injection test interval of CO2-infused water and gaseous CO2. Acknowledgement: Financial support was provided by "R&D Project on Environmental Mangement of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).
Luo, Haojun; Liu, Manran; Luo, Shujuan; Yu, Tenghua; Wu, Chengyi; Yang, Guanglun; Tu, Gang
2016-08-01
Cancer associated fibroblasts (CAFs) are crucial contributors to breast cancer development. Estrogen affects mammary stroma in both physiological and pathophysiological conditions. We show here that estrogen (G-protein coupled) receptor (GPER) could be detected by immunohistochemistry in stromal fibroblasts of primary breast cancers. The presence of GPER expression was further confirmed by immunofluorescence and quantitative PCR in CAFs isolated from primary breast cancers. Based on dynamic monitoring by real time cell analyzer (RTCA) system, 17-β-estradiol (E2) as well as GPER specific agonist G1 were observed to trigger transient cell index increasing within an hour in a dosage-dependent manner in breast CAFs. In addition, E2 and G1 stimulated intracellular calcium modulation and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 within seconds and minutes in CAFs, respectively. Moreover, E2 and G1 promoted cell proliferation of breast CAFs measured by RTCA monitoring, cell viability assay and cell cycle analysis, and this promotion could be blocked by a GPER-selective antagonist G15. Interestingly, dynamic RTCA monitoring indicated that E2 increased adhesion of resuspended cells, and microscopy confirmed that E2 stimulated cell spreading. Both the adhesion and spreading were proposed to be mediated by GPER, since G1 also stimulated these effects similar to E2, and G15 reduced them. Moreover, GPER was found to mediate migration that was increased by E2 and G1 but reduced by G15 in RTCA cell migration assay and transwell assay. Accordingly, GPER mediates not only rapid actions but also slow effects including adhesion/spreading, proliferation and migration in breast CAFs. Estrogen is likely to affect tumor associated stroma and contributes to mammary carcinoma development through CAFs. Copyright © 2016. Published by Elsevier Inc.
Chen, Yun-Hao; Jiang, Jin-Bao; Steven, Michael D; Gong, A-Du; Li, Yi-Fan
2012-07-01
With the global climate warming, reducing greenhouse gas emissions becomes a focused problem for the world. The carbon capture and storage (CCS) techniques could mitigate CO2 into atmosphere, but there is a risk in case that the CO2 leaks from underground. The objective of this paper is to study the chlorophyll contents (SPAD value), relative water contents (RWC) and leaf spectra changing features of beetroot under CO2 leakage stress through field experiment. The result shows that the chlorophyll contents and RWC of beetroot under CO2 leakage stress become lower than the control beetroot', and the leaf reflectance increases in the 550 nm region and decreases in the 680nm region. A new vegetation index (R550/R680) was designed for identifying beetroot under CO2 leakage stress, and the result indicates that the vegetation index R550/R680 could identify the beetroots after CO2 leakage for 7 days. The index has strong sensitivity, stability and identification for monitoring the beetroots under CO2 stress. The result of this paper has very important meaning and application values for selecting spots of CCS project, monitoring and evaluating land-surface ecology under CO2 stress and monitoring the leakage spots by using remote sensing.
Cleavage of sp3 C-O bonds via oxidative addition of C-H bonds.
Choi, Jongwook; Choliy, Yuriy; Zhang, Xiawei; Emge, Thomas J; Krogh-Jespersen, Karsten; Goldman, Alan S
2009-11-04
(PCP)Ir (PCP = kappa(3)-C(6)H(3)-2,6-[CH(2)P(t-Bu)(2)](2)) is found to undergo oxidative addition of the methyl-oxygen bond of electron-poor methyl aryl ethers, including methoxy-3,5-bis(trifluoromethyl)benzene and methoxypentafluorobenzene, to give the corresponding aryloxide complexes (PCP)Ir(CH(3))(OAr). Although the net reaction is insertion of the Ir center into the C-O bond, density functional theory (DFT) calculations and a significant kinetic isotope effect [k(CH(3))(OAr)/k(CD(3))(OAr) = 4.3(3)] strongly argue against a simple insertion mechanism and in favor of a pathway involving C-H addition and alpha-migration of the OAr group to give a methylene complex followed by hydride-to-methylene migration to give the observed product. Ethoxy aryl ethers, including ethoxybenzene, also undergo C-O bond cleavage by (PCP)Ir, but the net reaction in this case is 1,2-elimination of ArO-H to give (PCP)Ir(H)(OAr) and ethylene. DFT calculations point to a low-barrier pathway for this reaction that proceeds through C-H addition of the ethoxy methyl group followed by beta-aryl oxide elimination and loss of ethylene. Thus, both of these distinct C-O cleavage reactions proceed via initial addition of a C(sp(3))-H bond, despite the fact that such bonds are typically considered inert and are much stronger than C-O bonds.
Permanent downhole fiber optic pressure and temperature monitoring during CO2 injection
NASA Astrophysics Data System (ADS)
Schmidt-Hattenberger, C.; Moeller, F.; Liebscher, A.; Koehler, S.
2009-04-01
Permanent downhole monitoring of pressure and temperature, ideally over the entire length of the injection string, is essential for any smooth and safe CO2 injection within the framework of geological CO2 storage: i) To avoid fracturing of the cap-rock, a certain, site dependent pressure threshold within the reservoir should not be exceeded; ii) Any CO2 phase transition within the injection string, i.e. either condensation or evaporation, should be avoided. Such phase transitions cause uncontrolled and undetermined P-T regimes within the injection string that may ultimately result in a shut-in of the injection facility; and iii) Precise knowledge of the P and T response of the reservoir to the CO2 injection is a prerequisite to any reservoir modeling. The talk will present first results from our permanent downhole P-T monitoring program from the Ketzin CO2 storage test site (CO2SINK). At Ketzin, a fiber Bragg grating pressure sensor has been installed at the end of the injection string in combination with distributed temperature profiling over the entire length (about 550 m) of the string for continuous P-T monitoring during operation. Such fiber optic monitoring technique is used by default in the oil and gas industry but has not yet been applied as standard on a long-term routine mode for CO2 injection. Pressure is measured every 5 seconds with a resolution of < 1 bar. The data are later processed by user-defined program. The temperature logs along the injection string are measured every 3 minutes with a spatial resolution of one meter and with a temperature resolution of about 0.1°C. The long-term stability under full operational conditions is currently under investigation. The main computer of the P-T system operates as a stand-alone data-acquisition unit, and is connected with a secure intranet in order to ensure remote data access and system maintenance. The on-line measurements are displayed on the operator panel of the injection facility for direct control. The monitoring program started already prior to CO2 injection and runs since 6 months without any fatal errors. The recorded data cover the pre-injection well-testing phase, the initial injection phase as well as several shut-in and re-start phases during routine injection. Especially during the initial and re-start phases the monitoring results significantly optimized and improved the operation of the injection facility in terms of injection rate and injection temperature. Due to the high qualitative and also quantitative resolution of this technique even shortest-term transient disturbances of the reservoir and injection regime could be monitored as they may occur due to fluid sampling or logging in neighboring wells. Such short-term transient effects are normally overlooked using non-permanent monitoring techniques. On the long-term perspective, this monitoring technique will also support the control of CO2 injection tubing integrity, which is a prerequisite for any secure long-lasting CO2 injection and storage.
Platinized tin oxide catalysts for CO2 lasers: Effects of pretreatment
NASA Technical Reports Server (NTRS)
Gardner, Steven D.; Hoflund, Gar B.; Schryer, David R.; Upchurch, Billy T.
1990-01-01
Platinized tin oxide surfaces used for low-temperature CO oxidation in CO2 lasers have been characterized before and after reduction in CO at 125 and 250 C using ion scattering spectroscopy (ISS) and X ray photoelectron spectroscopy (XPS). XPS indicates that the Pt is present initially as PtO2. Reduction at 125 C converts the PtO2 to Pt(OH)2 while reduction at 250 C converts the PtO2 to metallic Pt. ISS shows that the Pt in the outermost atomic layer of the catalyst is mostly covered by substrate species during the 250 C reduction. Both the ISS and XPS results are consistent with Pt/Sn alloy formation. The surface dehydration and migration of substrate species over surface Pt and Sn appear to explain why a CO pretreatment at 250 C produces inferior CO oxidation activities compared to a 125 C pretreatment.
Platinized tin oxide catalysts for CO2 lasers - Effects of pretreatment
NASA Technical Reports Server (NTRS)
Gardner, Steven D.; Hoflund, Gar B.; Schryer, David R.; Upchurch, Billy T.
1989-01-01
Platinized tin oxide surfaces used for low-temperature CO oxidation in CO2 lasers have been characterized before and after reduction in CO at 125 and 250 C using ion scattering spectroscopy (ISS) and X-ray photoelectron spectroscopy (XPS). XPS indicates that the Pt is present initially as Pto2. Reduction at 125 C converts the PtO2 to Pt(OH)2 while reduction at 250 C converts the PtO2 to metallic Pt. ISS shows that the Pt in the outermost atomic layer of the catalyst is mostly covered by substrate species during the 250 C reduction. Both the ISS and XPS results are consistent with Pt/Sn alloy formation. The surface dehydration and migration of substrate species over surface Pt and Sn appear to explain why a CO pretreatment at 250 C produces inferior CO oxidation activities compared to a 125 C pretreatment.
NASA Astrophysics Data System (ADS)
Zuo, Rui; Jin, Shuhe; Chen, Minhua; Guan, Xin; Wang, Jinsheng; Zhai, Yuanzheng; Teng, Yanguo; Guo, Xueru
2018-04-01
The objective of this study was to explore the controlling factors on the migration and transformation of nitrogenous wastes in groundwater using long-term observations from a contaminated site on the southwestern edge of the Tengger Desert in northwestern China. Contamination was caused by wastewater discharge rich in ammonia. Two long-term groundwater monitoring wells (Wells 1# and 2#) were constructed, and 24 water samples were collected. Five key indicators were tested: ammonia, nitrate, nitrite, dissolved oxygen, and manganese. A numerical method was used to simulate the migration process and to determine the migration stage of the main pollutant plume in groundwater. The results showed that at Well 1# the nitrogenous waste migration process had essentially been completed, while at Well 2# ammonia levels were still rising and gradually transitioning to a stable stage. The differences for Well 1# and Well 2# were primarily caused by differences in groundwater flow. The change in ammonia concentration was mainly controlled by the migration of the pollution plume under nitrification in groundwater. The nitrification rate was likely affected by changes in dissolved oxygen and potentially manganese.
Traffic-Sensitive Live Migration of Virtual Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deshpande, Umesh; Keahey, Kate
2015-01-01
In this paper we address the problem of network contention between the migration traffic and the VM application traffic for the live migration of co-located Virtual Machines (VMs). When VMs are migrated with pre-copy, they run at the source host during the migration. Therefore the VM applications with predominantly outbound traffic contend with the outgoing migration traffic at the source host. Similarly, during post-copy migration, the VMs run at the destination host. Therefore the VM applications with predominantly inbound traffic contend with the incoming migration traffic at the destination host. Such a contention increases the total migration time of themore » VMs and degrades the performance of VM application. Here, we propose traffic-sensitive live VM migration technique to reduce the contention of migration traffic with the VM application traffic. It uses a combination of pre-copy and post-copy techniques for the migration of the co-located VMs, instead of relying upon any single pre-determined technique for the migration of all the VMs. We base the selection of migration techniques on VMs' network traffic profiles so that the direction of migration traffic complements the direction of the most VM application traffic. We have implemented a prototype of traffic-sensitive migration on the KVM/QEMU platform. In the evaluation, we compare traffic-sensitive migration against the approaches that use only pre-copy or only post-copy for VM migration. We show that our approach minimizes the network contention for migration, thus reducing the total migration time and the application degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edenborn, Harry M.; Jain, Jinesh N.
The geological storage of anthropogenic carbon dioxide (CO 2) is one method of reducing the amount of CO 2 released into the atmosphere. Monitoring programs typically determine baseline conditions in surface and near-surface environments before, during, and after CO 2 injection to evaluate if impacts related to injection have occurred. Because CO 2 concentrations in groundwater fluctuate naturally due to complex geochemical and geomicrobiologicalinteractions, a clear understanding of the baseline behavior of CO 2 in groundwater near injection sites is important. Numerous ways of measuring aqueous CO 2 in the field and lab are currently used, but most methods havemore » significant shortcomings (e.g., are tedious, lengthy, have interferences, or have significant lag time before a result is determined). In this study, we examined the effectiveness of two novel CO 2 detection methods and their ability to rapidly detect CO2in shallow groundwater monitoring wells associated with the Illinois Basin –Decatur Project geological sequestration site. The CarboQC beverage carbonation meter was used to measure the concentration of CO 2 in water by monitoring temperature and pressure changes and calculating the PCO 2 from the ideal gas law. Additionally, a non-dispersive infrared (NDIR) CO< sub>2sensor enclosed in a gas-permeable, water-impermeable membrane measured CO2by determining an equilibrium concentration. Results showed that the CarboQC method provided rapid (< 3 min) and repeatable results under field conditions within a measured concentration range of 15 –125 mg/L CO 2. The NDIR sensor results correlated well (r 2= 0.93) with the CarboQC data, but CO 2 equilibration required at least 15 minutes, making the method somewhat less desirable under field conditions. In contrast, NDIR-based sensors have a greater potential for long-term deployment. Both systems are adaptable to in-line groundwater sampling methods. Other specific advantages and disadvantages associated with the two approaches, and anomalies associated with specific samples, are discussed in greater detail in this poster.« less
Kim, Hye-Sun; Yi, Bo-Rim; Hwang, Kyung-A; Kim, Seung U; Choi, Kyung-Chul
2013-10-01
The aim of the present study was to investigate the therapeutic efficacy of genetically engineered stem cells (GESTECs) expressing bacterial cytosine deaminase (CD) and/or human interferon-beta (IFN-β) gene against HeLa cervical cancer and the migration factors of the GESTECs toward the cancer cells. Anticancer effect of GESTECs was examined in a co-culture with HeLa cells using MTT assay to measure cell viability. A transwell migration assay was performed so as to assess the migration capability of the stem cells to cervical cancer cells. Next, several chemoattractant ligands and their receptors related to a selective migration of the stem cells toward HeLa cells were determined by real-time PCR. The cell viability of HeLa cells was decreased in response to 5-fluorocytosine (5-FC), a prodrug, indicating that 5-fluorouracil (5-FU), a toxic metabolite, was converted from 5-FC by CD gene and it caused the cell death in a co-culture system. When IFN-β was additionally expressed with CD gene by these GESTECs, the anticancer activity was significantly increased. In the migration assay, the GESTECs selectively migrated to HeLa cervical cancer cells. As results of real-time PCR, chemoattractant ligands such as MCP-1, SCF, and VEGF were expressed in HeLa cells, and several receptors such as uPAR, VEGFR2, and c-kit were produced by the GESTECs. These GESTECs transduced with CD gene and IFN-β may provide a potential of a novel gene therapy for anticervical cancer treatments via their selective tumor tropism derived from VEGF and VEGFR2 expressions between HeLa cells and the GESTECs.
NASA Astrophysics Data System (ADS)
Chen, B.; Harp, D. R.; Lin, Y.; Keating, E. H.; Pawar, R.
2017-12-01
Monitoring is a crucial aspect of geologic carbon sequestration (GCS) risk management. It has gained importance as a means to ensure CO2 is safely and permanently stored underground throughout the lifecycle of a GCS project. Three issues are often involved in a monitoring project: (i) where is the optimal location to place the monitoring well(s), (ii) what type of data (pressure, rate and/or CO2 concentration) should be measured, and (iii) What is the optimal frequency to collect the data. In order to address these important issues, a filtering-based data assimilation procedure is developed to perform the monitoring optimization. The optimal monitoring strategy is selected based on the uncertainty reduction of the objective of interest (e.g., cumulative CO2 leak) for all potential monitoring strategies. To reduce the computational cost of the filtering-based data assimilation process, two machine-learning algorithms: Support Vector Regression (SVR) and Multivariate Adaptive Regression Splines (MARS) are used to develop the computationally efficient reduced-order-models (ROMs) from full numerical simulations of CO2 and brine flow. The proposed framework for GCS monitoring optimization is demonstrated with two examples: a simple 3D synthetic case and a real field case named Rock Spring Uplift carbon storage site in Southwestern Wyoming.
The Monitoring of Sallow CO2 Leakage From the CO2 Release Experiment in South Korea
NASA Astrophysics Data System (ADS)
Kim, H. J.; Han, S. H.; Kim, S.; Son, Y.
2017-12-01
This study was conducted to analyze the in-soil CO2 gas diffusion from the K-COSEM shallow CO2 release experiment. The study site consisting of five zones was built in Eumseong, South Korea, and approximately 1.8 t CO2 were injected from the perforated release well at Zones 1 to 4 from June 1 to 30, 2016. In-soil CO2 concentrations were measured once a day at 15 cm and 60 cm depths at 0 m, 2.5 m, 5.0 m, and 10.0 m away from the CO2 releasing well using a portable gas analyzer (GA5000) from May 11 to July 27, 2016. On June 4, CO2 leakage was simultaneously detected at 15 cm (8.8 %) and 60 cm (44.0 %) depths at 0 m from the well at Zone 3, and were increased up to about 30 % and 70 %, respectively. During the CO2 injection period, CO2 concentrations measured at 15 cm depth were significantly lower than those measured at 60 cm depth because of the atmospheric pressure effect. After stopping the CO2 injection, CO2 concentrations gradually decreased until July 27, but were still higher than the natural background concentration. This result suggested the possibility of long-term CO2 leakage. In addition, low levels of CO2 leakage were determined using CO2 regression analysis and CO2:O2 ratio. CO2 concentrations measured at 60 cm depth at 0 m from the well at Zones 1 to 4 consistently showed sigmoid increasing patterns with the injection time (R2=0.60-0.99). O2 concentrations at 15 cm and 60 cm depths from the CO2 release experiment were reached 0 % at about 76 % and 84 % of CO2 concentrations, respectively, whereas, those from biological reaction approached 0 % when CO2 increased to about 21 %. Therefore, deep underground monitoring would be able to detect CO2 leakage faster than near-surface monitoring, and CO2 regression and CO2:O2 ratio analyses seemed to be useful as clear indicators of CO2 leakage.
Atomic layer deposition to prevent metal transfer from implants: An X-ray fluorescence study
NASA Astrophysics Data System (ADS)
Bilo, Fabjola; Borgese, Laura; Prost, Josef; Rauwolf, Mirjam; Turyanskaya, Anna; Wobrauschek, Peter; Kregsamer, Peter; Streli, Christina; Pazzaglia, Ugo; Depero, Laura E.
2015-12-01
We show that Atomic Layer Deposition is a suitable coating technique to prevent metal diffusion from medical implants. The metal distribution in animal bone tissue with inserted bare and coated Co-Cr alloys was evaluated by means of micro X-ray fluorescence mapping. In the uncoated implant, the migration of Co and Cr particles from the bare alloy in the biological tissues is observed just after one month and the number of particles significantly increases after two months. In contrast, no metal diffusion was detected in the implant coated with TiO2. Instead, a gradient distribution of the metals was found, from the alloy surface going into the tissue. No significant change was detected after two months of aging. As expected, the thicker is the TiO2 layer, the lower is the metal migration.
Modelling of Seismic and Resistivity Responses during the Injection of CO2 in Sandstone Reservoir
NASA Astrophysics Data System (ADS)
Omar, Muhamad Nizarul Idhafi Bin; Almanna Lubis, Luluan; Nur Arif Zanuri, Muhammad; Ghosh, Deva P.; Irawan, Sonny; Regassa Jufar, Shiferaw
2016-07-01
Enhanced oil recovery plays vital role in production phase in a producing oil field. Initially, in many cases hydrocarbon will naturally flow to the well as respect to the reservoir pressure. But over time, hydrocarbon flow to the well will decrease as the pressure decrease and require recovery method so called enhanced oil recovery (EOR) to recover the hydrocarbon flow. Generally, EOR works by injecting substances, such as carbon dioxide (CO2) to form a pressure difference to establish a constant productive flow of hydrocarbon to production well. Monitoring CO2 performance is crucial in ensuring the right trajectory and pressure differences are established to make sure the technique works in recovering hydrocarbon flow. In this paper, we work on computer simulation method in monitoring CO2 performance by seismic and resistivity model, enabling geoscientists and reservoir engineers to monitor production behaviour as respect to CO2 injection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X.; Buscheck, T. A.; Mansoor, K.
The US DOE National Risk Assessment Partnership (NRAP), funded through the Office of Fossil Energy and NETL, is developing methods to evaluate the effectiveness of monitoring techniques to detect brine and CO 2 leakage from legacy wells into underground sources of drinking water (USDW) overlying a CO 2 storage reservoir. As part of the NRAP Strategic Monitoring group, we have generated 140 simulations of aquifer impact data based on the Kimberlina site in California’s southern San Joaquin Basin, Kimberlina Rev. 1.1. CO 2 buoyancy allows some of the stored CO 2 to reach shallower permeable zones and is detectable withmore » surface geophysical sensors. We are using this simulated data set to evaluate effectiveness of electrical resistivity tomography (ERT) and magnetotellurics (MT) for leak detection. The evaluation of additional monitoring methods such as pressure, seismic and gravity is underway through a multi-lab collaboration.« less
Trivett, N. B. A. [Environment Canada, Atmospheric Environment Service, Downsview, Ontario, Canada; Hudec, V. C. [Environment Canada, Atmospheric Environment Service, Downsview, Ontario, Canada; Wong, C. S. [Marine Carbon Research Centre, Institute of Ocean Sciences, Sidney, British Columbia, Canada
1993-01-01
Flask air samples collected at roughly weekly intervals at three Canadian sites [Alert, Northwest Territories (July 1975 through July 1992); Sable Island, Nova Scotia (March 1975 through July 1992); and Cape St. James, British Columbia (May 1979 through July 1992)] were analyzed for CO2 concentration with the measurements directly traceable to the WMO primary CO2 standards. Each record includes the date, atmospheric CO2 concentration, and flask classification code. They provide an accurate record of CO2 concentration levels in Canada during the past two decades. Because these data are directly traceable to WMO standards, this record may be compared with records from other Background Air Pollution Monitoring Network (BAPMoN) stations. The data are in three files (one for each of the monitoring stations) ranging in size from 9.4 to 20.1 kB.
Reactive Transport Analysis of Fault 'Self-sealing' Associated with CO2 Storage
NASA Astrophysics Data System (ADS)
Patil, V.; McPherson, B. J. O. L.; Priewisch, A.; Franz, R. J.
2014-12-01
We present an extensive hydrologic and reactive transport analysis of the Little Grand Wash fault zone (LGWF), a natural analog of fault-associated leakage from an engineered CO2 repository. Injecting anthropogenic CO2 into the subsurface is suggested for climate change mitigation. However, leakage of CO2 from its target storage formation into unintended areas is considered as a major risk involved in CO2 sequestration. In the event of leakage, permeability in leakage pathways like faults may get sealed (reduced) due to precipitation or enhanced (increased) due to dissolution reactions induced by CO2-enriched water, thus influencing migration and fate of the CO2. We hypothesize that faults which act as leakage pathways can seal over time in presence of CO2-enriched waters. An example of such a fault 'self-sealing' is found in the LGWF near Green River, Utah in the Paradox basin, where fault outcrop shows surface and sub-surface fractures filled with calcium carbonate (CaCO3). The LGWF cuts through multiple reservoirs and seal layers piercing a reservoir of naturally occurring CO2, allowing it to leak into overlying aquifers. As the CO2-charged water from shallower aquifers migrates towards atmosphere, a decrease in pCO2 leads to supersaturation of water with respect to CaCO3, which precipitates in the fractures of the fault damage zone. In order to test the nature, extent and time-frame of the fault sealing, we developed reactive flow simulations of the LGWF. Model parameters were chosen based on hydrologic measurements from literature. Model geochemistry was constrained by water analysis of the adjacent Crystal Geyser and observations from a scientific drilling test conducted at the site. Precipitation of calcite in the top portion of the fault model led to a decrease in the porosity value of the damage zone, while clay precipitation led to a decrease in the porosity value of the fault core. We found that the results were sensitive to the fault architecture, relative permeability functions, kinetic parameters for mineral reactions and treatment of molecular diffusion. Major conclusions from this analysis are that a failed (leaking) engineered sequestration site may behave very similar to the LGWF and that under similar conditions some faults are likely to seal over time.
Caivano, Marianna; Bellandi, Giacomo; Mancini, Ignazio M; Masi, Salvatore; Brienza, Rosanna; Panariello, Simona; Gori, Riccardo; Caniani, Donatella
2017-03-01
The efficiency of aeration systems should be monitored to guarantee suitable biological processes. Among the available tools for evaluating the aeration efficiency, the off-gas method is one of the most useful. Increasing interest towards reducing greenhouse gas (GHG) emissions from biological processes has resulted in researchers using this method to quantify N 2 O and CO 2 concentrations in the off-gas. Experimental measurements of direct GHG emissions from aerobic digesters (AeDs) are not available in literature yet. In this study, the floating hood technique was used for the first time to monitor AeDs. The floating hood technique was used to evaluate oxygen transfer rates in an activated sludge (AS) tank of a medium-sized municipal wastewater treatment plant located in Italy. Very low values of oxygen transfer efficiency were found, confirming that small-to-medium-sized plants are often scarcely monitored and wrongly managed. Average CO 2 and N 2 O emissions from the AS tank were 0.14 kg CO2 /kg bCOD and 0.007 kg CO2,eq /kg bCOD , respectively. For an AeD, 3 × 10 -10 kg CO2 /kg bCOD direct CO 2 emissions were measured, while CO 2,eq emissions from N 2 O were 4 × 10 -9 kg CO2,eq /kg bCOD . The results for the AS tank and the AeD were used to estimate the net carbon and energy footprint of the entire plant.
Guimbaud, Christophe; Noel, Cécile; Chartier, Michel; Catoire, Valéry; Blessing, Michaela; Gourry, Jean Christophe; Robert, Claude
2016-02-01
Real-time methods to monitor stable isotope ratios of CO2 are needed to identify biogeochemical origins of CO2 emissions from the soil-air interface. An isotope ratio infra-red spectrometer (IRIS) has been developed to measure CO2 mixing ratio with δ(13)C isotopic signature, in addition to mixing ratios of other greenhouse gases (CH4, N2O). The original aspects of the instrument as well as its precision and accuracy for the determination of the isotopic signature δ(13)C of CO2 are discussed. A first application to biodegradation of hydrocarbons is presented, tested on a hydrocarbon contaminated site under aerobic bio-treatment. CO2 flux measurements using closed chamber method is combined with the determination of the isotopic signature δ(13)C of the CO2 emission to propose a non-intrusive method to monitor in situ biodegradation of hydrocarbons. In the contaminated area, high CO2 emissions have been measured with an isotopic signature δ(13)C suggesting that CO2 comes from petroleum hydrocarbon biodegradation. This first field implementation shows that rapid and accurate measurement of isotopic signature of CO2 emissions is particularly useful in assessing the contribution of contaminant degradation to the measured CO2 efflux and is promising as a monitoring tool for aerobic bio-treatment. Copyright © 2016. Published by Elsevier B.V.
Lorenzini, R; Biedermann, M; Grob, K; Garbini, D; Barbanera, M; Braschi, I
2013-01-01
Mineral oil hydrocarbons present in printing inks and recycled paper migrate from paper-based food packaging to foods primarily through the gas phase. Migration from two commercial products packed in recycled paperboard, i.e. muesli and egg pasta, was monitored up to the end of their shelf life (1 year) to study the influence of time, storage conditions, food packaging structure and temperature. Mineral oil saturated and aromatic hydrocarbons (MOSH and MOAH, respectively), and diisopropyl naphthalenes (DIPN) were monitored using online HPLC-GC/FID. Storage conditions were: free standing, shelved, and packed in transport boxes of corrugated board, to represent domestic, supermarket and warehouse storage, respectively. Migration to food whose packs were kept in transport boxes was the highest, especially after prolonged storage, followed by shelved and free-standing packs. Tested temperatures were representative of refrigeration, room temperature, storage in summer months and accelerated migration testing. Migration was strongly influenced by temperature: for egg pasta directly packed in paperboard, around 30 mg kg⁻¹ of MOSH migrated in 8 months at 20°C, but in only 1 week at 40°C. Muesli was contained into an internal polyethylene bag, which firstly adsorbed hydrocarbons and later released them partly towards the food. Differently, the external polypropylene bag, containing pasta and recycled paper tray, strongly limited the migration towards the atmosphere and gave rise to the highest level of food contamination. Tests at increased temperatures not only accelerated migration, but also widened the migration of hydrocarbons to higher molecular masses, highlighting thus a difficult interpretation of data from accelerated simulation.
NASA Astrophysics Data System (ADS)
Agosta, Fabrizio
2017-04-01
Underground CO2 storage in depleted hydrocarbon reservoirs may become a common practice in the future to lower the concentration of greenhouse gases in the atmosphere. Results from the first experiments conducted in carbonate rocks, for instance the Lacq integrated CCS Pilot site, SW France, are quite exciting. All monitored parameters, such as the CO2 concentration at well sites, well pressures, cap rock integrity and environmental indicators show the long-term integrity of this type of geological reservoirs. Other positive news arise from the OXY-CFB-300 Compostilla Project, NW Spain, where most of the injected CO2 dissolved into the formation brines, suggesting the long-term security of this method. However, in both cases, the CO2- rich fluids partially dissolved the carbonate minerals during their migration through the fractured reservoir, modifying the overall pore volume and pressure regimes. These results support the growing need for a better understanding of the mechanical behavior of carbonate rocks over geological time of scales. In fact, it is well known that carbonates exhibit a variety of deformation mechanisms depending upon many intrinsic factors such as composition, texture, connected pore volume, and nature of the primary heterogeneities. Commonly, tight carbonates are prone to opening-mode and/or pressure solution deformation. The interplay between these two mechanisms likely affects the petrophysical properties of the fault damage zones, which form potential sites for CO2 storage due to their high values of both connected porosity and permeability. On the contrary, cataclastic deformation produces fault rocks that often form localized fluid barriers for cross-fault fluid flow. Nowadays, questions on the conditions of sealing/leakage of carbonate fault rocks are still open. In particular, the relative role played by bulk crushing, chipping, cementation, and pressure solution on connected porosity of carbonate fault rocks during structural evolution and diagenesis is not determined yet. Differently, porous rocks are mainly affected by deformation banding. The latter process involves the collapse of primary porosity within narrow bands, which often localize into well-developed clusters. Currently, researchers focus on the assessment of the 3D pore geometry of the shear bands, which may act as possible sites for residual C02 trapping. The fault-bounded rock volumes are mainly crosscut by background fractures. These diffuse fractures are often compartmentalized into discrete mechanical units, which are bounded by primary heterogeneities such as bed interfaces and transgressive erosional surfaces. Moreover, bed-parallel pressure solution seams, structural elements that commonly form in limestone rocks during burial diagenesis, can also act as mechanical interfaces during growth of background fractures. However, early embrittlement of carbonates was also documented, suggesting to further investigate their diagenetic evolution to determine the conditions at which the latter phenomenon takes place. Results could shed new lights into the storage properties and, hence, the amount of CO2 that can be securely stored within significant volumes of fractured carbonates in the underground.
PCoM-DB Update: A Protein Co-Migration Database for Photosynthetic Organisms.
Takabayashi, Atsushi; Takabayashi, Saeka; Takahashi, Kaori; Watanabe, Mai; Uchida, Hiroko; Murakami, Akio; Fujita, Tomomichi; Ikeuchi, Masahiko; Tanaka, Ayumi
2017-01-01
The identification of protein complexes is important for the understanding of protein structure and function and the regulation of cellular processes. We used blue-native PAGE and tandem mass spectrometry to identify protein complexes systematically, and built a web database, the protein co-migration database (PCoM-DB, http://pcomdb.lowtem.hokudai.ac.jp/proteins/top), to provide prediction tools for protein complexes. PCoM-DB provides migration profiles for any given protein of interest, and allows users to compare them with migration profiles of other proteins, showing the oligomeric states of proteins and thus identifying potential interaction partners. The initial version of PCoM-DB (launched in January 2013) included protein complex data for Synechocystis whole cells and Arabidopsis thaliana thylakoid membranes. Here we report PCoM-DB version 2.0, which includes new data sets and analytical tools. Additional data are included from whole cells of the pelagic marine picocyanobacterium Prochlorococcus marinus, the thermophilic cyanobacterium Thermosynechococcus elongatus, the unicellular green alga Chlamydomonas reinhardtii and the bryophyte Physcomitrella patens. The Arabidopsis protein data now include data for intact mitochondria, intact chloroplasts, chloroplast stroma and chloroplast envelopes. The new tools comprise a multiple-protein search form and a heat map viewer for protein migration profiles. Users can compare migration profiles of a protein of interest among different organelles or compare migration profiles among different proteins within the same sample. For Arabidopsis proteins, users can compare migration profiles of a protein of interest with putative homologous proteins from non-Arabidopsis organisms. The updated PCoM-DB will help researchers find novel protein complexes and estimate their evolutionary changes in the green lineage. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Advances in Monitoring Cell-Based Therapies with Magnetic Resonance Imaging: Future Perspectives
Ngen, Ethel J.; Artemov, Dmitri
2017-01-01
Cell-based therapies are currently being developed for applications in both regenerative medicine and in oncology. Preclinical, translational, and clinical research on cell-based therapies will benefit tremendously from novel imaging approaches that enable the effective monitoring of the delivery, survival, migration, biodistribution, and integration of transplanted cells. Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities for elucidating the fate of transplanted cells both preclinically and clinically. These advantages include the ability to image transplanted cells longitudinally at high spatial resolution without exposure to ionizing radiation, and the possibility to co-register anatomical structures with molecular processes and functional changes. However, since cellular MRI is still in its infancy, it currently faces a number of challenges, which provide avenues for future research and development. In this review, we describe the basic principle of cell-tracking with MRI; explain the different approaches currently used to monitor cell-based therapies; describe currently available MRI contrast generation mechanisms and strategies for monitoring transplanted cells; discuss some of the challenges in tracking transplanted cells; and suggest future research directions. PMID:28106829
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohaghegh, Shahab D.
apability of underground carbon dioxide storage to confine and sustain injected CO2 for a very long time is the main concern for geologic CO2 sequestration. If a leakage from a geological CO2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak in order to implement proper remediation activity. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO2. This study aims to monitor the integrity of CO2 storage at the reservoir level. This work proposes developing in-situmore » CO2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or Smart Wells along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered for this study. A reservoir simulation model for CO2 sequestration in the Citronelle field was developed and history matched. The presence of the PDGs were considered in the reservoir model at the injection well and an observation well. High frequency pressure data from sensors were collected based on different synthetic CO2 leakage scenarios in the model. Due to complexity of the pressure signal behaviors, a Machine Learning-based technology was introduced to build an Intelligent Leakage Detection System (ILDS). The ILDS was able to detect leakage characteristics in a short period of time (less than a day) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS was examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise in the pressure sensor and uncertainty in the reservoir model.« less
Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong
2013-08-01
This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... install, operate, and maintain each CEMS to monitor carbon monoxide (CO) or total hydrocarbons (THC) and... emission control device. (b) To comply with the CO or THC percent reduction emission limitation, you may install, operate, and maintain a CEMS to monitor CO or THC and O2 at both the inlet and the outlet of the...
[Open-path online monitoring of ambient atmospheric CO2 based on laser absorption spectrum].
He, Ying; Zhang, Yu-Jun; Kan, Rui-Feng; Xia, Hui; Geng, Hui; Ruan, Jun; Wang, Min; Cui, Xiao-Juan; Liu, Wen-Qing
2009-01-01
With the conjunction of tunable diode laser absorption spectroscopy technology (TDLAS) and the open long optical path technology, the system designing scheme of CO2 on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail, and the instrument for large-range measurement was set up. By choosing the infrared absorption line of CO2 at 1.57 microm whose line strength is strong and suitable for measurement, the ambient atmospheric CO2 was measured continuously with a 30 s temporal resolution at an suburb site in the autumn of 2007. The diurnal atmospheric variations of CO2 and continuous monitoring results were presented. The results show that the variation in CO2 concentration has an obvious diurnal periodicity in suburb where the air is free of interference and contamination. The general characteristic of diurnal variation is that the concentration is low in the daytime and high at night, so it matches the photosynthesis trend. The instrument can detect gas concentration online with high resolution, high sensitivity, high precision, short response time and many other advantages, the monitoring requires no gas sampling, the calibration is easy, and the detection limit is about 4.2 x 10(-7). It has been proved that the system and measurement project are feasible, so it is an effective method for gas flux continuous online monitoring of large range in ecosystem based on TDLAS technology.
Monitoring the Migrations of Wild Snake River Spring/Summer Chinook Salmon Juveniles, 2007-2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.
2009-07-09
This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008more » are: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007-2008 showed these antennas (and anchoring method) are not adequate to withstand high spring flows in this drainage. Future plans involve removing these antennas before high spring flows. (5) At Little Goose Dam in 2008, length and/or weight were taken on 505 recaptured fish from 12 Idaho stream populations. Fish had grown an average of 40.1 mm in length and 10.6 g in weight over an average of 288 d. Their mean condition factor declined from 1.25 at release (parr) to 1.05 at recapture (smolt). (6) Mean release lengths for detected fish were significantly larger than for fish not detected the following spring and summer (P < 0.0001). (7) Fish that migrated through Lower Granite Dam in April and May were significantly larger at release than fish that migrated after May (P < 0.0001) (only 12 fish migrated after May). (8) In 2008, peak detections at Lower Granite Dam of parr tagged during summer 2007 (from the 12 stream populations in Idaho and 4 streams in Oregon) occurred during moderate flows of 87.5 kcfs on 7 May and high flows of 197.3 kcfs on 20 May. The 10th, 50th, and 90th percentile passage occurred on 30 April, 11 May, and 23 May, respectively. (9) In 2007-2008, estimated parr-to-smolt survival to Lower Granite Dam for Idaho and Oregon streams (combined) averaged 19.4% (range 6.2-38.4% depending on stream of origin). In Idaho streams the estimated parr-to-smolt survival averaged 21.0%. This survival was the second highest since 1993 for Idaho streams. Relative parr densities were lower in 2007 (2.4 parr/100 m2) than in all previous years since 2000. In 2008, we observed low-to-moderate flows prior to mid-May and relatively cold weather conditions throughout the spring migration season. These conditions moved half of the fish through Lower Granite Dam prior to mid-May; then high flows moved 50 to 90% of the fish through the dam in only 12 days. Clearly, complex interrelationships of several factors drive the annual migrational timing of the stocks.« less
Mainstream end-tidal carbon dioxide monitoring in the neonatal intensive care unit.
Rozycki, H J; Sysyn, G D; Marshall, M K; Malloy, R; Wiswell, T E
1998-04-01
Continuous noninvasive monitoring of arterial carbon dioxide (CO2) in neonatal intensive care unit (NICU) patients would help clinicians avoid complications of hypocarbia and hypercarbia. End-tidal CO2 monitoring has not been used in this population to date, but recent technical advances and the introduction of surfactant therapy, which improves ventilation-perfusion matching, might improve the clinical utility of end-tidal monitoring. To determine the accuracy and precision of end-tidal CO2 monitoring in NICU patients. Nonrandomized recording of simultaneous end-tidal and arterial CO2 pairs. Two university NICUs. Forty-five newborn infants receiving mechanical ventilation who had indwelling arterial access, and a predefined subsample of infants who were <1000 g birth weight, <8 days of age, and who received surfactant therapy (extremely low birth weight -ELBW- <8). The correlation coefficient, degree of bias, and 95% confidence interval were determined for both the overall population and the ELBW <8 subgroup. Those factors which significantly influenced the bias were identified. The ability of the end-tidal monitor to alert the clinician to instances of hypocarbia or hypercarbia was determined. There were 411 end-tidal/arterial pairs analyzed from 45 patients. The correlation coefficient was 0.833 and the bias was -6. 9 mm Hg (95% confidence interval, +/-11.5 mm Hg). The results did not differ markedly in the ELBW <8 infants. Measures of the degree of lung disease, the ventilation index and the oxygenation index, had small influences on the degree of bias. This type of capnometry identified 91% of the instances when the arterial CO2 pressure was between 34 and 54 mm Hg using an end-tidal range of 29 to 45 mm Hg. End-tidal values outside this range had a 63% accuracy in predicting hypocarbia or hypercarbia. End-tidal CO2 monitoring in NICU patients is as accurate as capillary or transcutaneous monitoring but less precise than the latter. It may be useful for trending or for screening patients for abnormal arterial CO2 values.
Depolymerized products of lambda-carrageenan as a potent angiogenesis inhibitor.
Chen, Haimin; Yan, Xiaojun; Lin, Jing; Wang, Feng; Xu, Weifeng
2007-08-22
Since angiogenesis is involved in initiating and promoting several diseases such as cancer and cardiovascular events, this study was designed to evaluate the anti-angiogenesis of low-molecular-weight (LMW), highly sulfated lambda-carrageenan oligosaccharides (lambda-CO) obtained by carrageenan depolymerization, by CAM (chick chorioallantoic membrane) model and human umbilical vein endothelial cells (HUVECs). Significant inhibition of vessel growth was observed at 200 microg/pellet. A histochemistry assay also revealed a decrease of capillary plexus and connective tissue in lambda-CO treated samples. lambda-CO inhibited the viability of cells at the high concentration of 1 mg/mL, whereas it affected the cell survival slightly (>95%) at a low concentration (<250 microg/mL), and HUVEC is the most sensitive to lambda-CO among three kinds of cells. Furthermore, the inhibitory action of lambda-CO was also observed in the endothelial cell invasion and migration at relatively low concentration (150-300 microg/mL), through down-regulation of intracellular matrix metalloproteinases (MMP-2) expression on endothelial cells. Taken together, these findings demonstrate that lambda-CO is a potential angiogenesis inhibitor with combined effects of inhibiting invasion, migration, and proliferation.
CarbFix I: Rapid CO2 mineralization in basalt for permanent carbon storage
NASA Astrophysics Data System (ADS)
Matter, J. M.; Stute, M.; Snæbjörnsdóttir, S.; Gíslason, S. R.; Oelkers, E. H.; Sigfússon, B.; Gunnarsson, I.; Aradottir, E. S.; Gunnlaugsson, E.; Broecker, W. S.
2015-12-01
Carbon dioxide mineralization via CO2-fluid-rock reactions provides the most permanent solution for geologic CO2 storage. Basalts, onshore or offshore, have the potential to store million metric tons of CO2 as (Ca, Mg, Fe) carbonates [1, 2]. However, as of today it was unclear how fast CO2 is converted to carbonate minerals in-situ in a basalt storage reservoir. The CarbFix I project in Iceland was designed to verify in-situ CO2 mineralization in basaltic rocks. Two injection tests were performed at the CarbFix I pilot injection site near the Hellisheidi geothermal power plant in 2012. 175 tons of pure CO2 and 73 tons of a CO2+H2S mixture were injection from January to March 2012 and in June 2013, respectively. The gases were injected fully dissolved in groundwater into a permeable basalt formation between 400 and 800 m depth using a novel CO2 injection system. Using conservative (SF6, SF5CF3) and reactive (14C) tracers, we quantitatively monitor and detect dissolved and chemically transformed CO2. Tracer breakthrough curves obtained from the first monitoring well indicate that the injected solution arrived in a fast short pulse and a late broad peak. Ratios of 14C/SF6, 14C/SF5CF3 or DIC/SF6 and DIC/SF5CF3 are significantly lower in the monitoring well compared to the injection well, indicating that the injected dissolved CO2 reacted. Mass balance calculations using the tracer data reveal that >95% of the injected CO2 has been mineralized over a period of two years. Evidence of carbonate precipitation has been found in core samples that were collected from the storage reservoir using wireline core drilling as well as in and on the submersible pump in the monitoring well. Results from the core analysis will be presented with emphasis on the CO2 mineralization. [1] McGrail et al. (2006) JGR 111, B12201; [2] Goldberg et al. (2008) PNAS 105(29), 9920-9925.
NASA Technical Reports Server (NTRS)
Wang, Liang-Guo; Sachse, Glen
1990-01-01
Closed-cycle CO2 laser operation with removal of O2 and regeneration of CO2 can be achieved by catalytic CO-O2 recombination. Both parametric studies of the optimum catalyst formulation and long-term performance tests require on line monitoring of CO, O2 and CO2 concentrations. There are several existing methods for molecular oxygen detection. These methods are either intrusive (such as electrochemical method or mass spectrometry) or very expensive (such as CARS, UV laser absorption). Researchers demonstrated a high-sensitivity spectroscopic measurement of O2 using the two-tone frequency modulation spectroscopy (FMS) technique with a near infrared GaAlAs diode laser. Besides its inexpensive cost, fast response time, nonintrusive measurements and high sensitivity, this technique may also be used to differentiate between isotopes due to its high spectroscopic resolution. This frequency modulation spectroscopy technique could also be applied for the on-line monitoring of CO and CO2 using InGaAsP diode lasers operation in the 1.55 microns region and H2O in the 1.3 microns region. The existence of single mode optical fibers at the near infrared region makes it possible to combine FMS with optical fiber technology. Optical fiber FMS is particularly suitable for making point-measurements at one or more locations in the CO2 laser/catalyst system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiberi, David A.; Carrier, Jean-Francois; Beauchemin, Marie-Claude
2012-09-01
Purpose: To determine the extent of gold fiducial marker (FM) migration in patients treated for prostate cancer with concurrent androgen deprivation and external-beam radiation therapy (EBRT). Methods and Materials: Three or 4 gold FMs were implanted in 37 patients with prostate adenocarcinoma receiving androgen deprivation therapy (ADT) in conjunction with 70-78 Gy. Androgen deprivation therapy was started a median of 3.9 months before EBRT (range, 0.3-12.5 months). To establish the extent of FM migration, the distance between each FM was calculated for 5-8 treatments once per week throughout the EBRT course. For each treatment, the distance between FMs was comparedmore » with the distance from the digitally reconstructed radiographs generated from the planning CT. A total of 281 treatments were analyzed. Results: The average daily migration was 0.8 {+-} 0.3 mm, with distances ranging from 0.2 mm-2.6 mm. Two of the 281 assessed treatments (0.7%) showed migrations >2 mm. No correlation between FM migration and patient weight or time delay between ADT and start of EBRT was found. There was no correlation between the extent of FM migration and prostate volume. Conclusion: This is the largest report of implanted FM migration in patients receiving concomitant ADT. Only 0.7% of the 281 treatments studied had significant marker migrations (>2 mm) throughout the course of EBRT. Consequently, the use of implanted FMs in these patients enables accurate monitoring of prostate gland position during treatment.« less
Some aspects of the cosmogonic outward migration of Neptune. Co-planar migration
NASA Astrophysics Data System (ADS)
Neslušan, L.; Jakubík, M.
2013-10-01
Considering a simple model of the cosmogonic outward migration of Neptune, we investigate if the assumption of an extremely low orbital inclination of small bodies in a once-existing proto-planetary disk could influence the structure of reservoirs of the objects in the trans-Neptunian region. We found no significant influence. Our models predict only the existence of the mean-motion resonances (MMRs) with Neptune 2:3, 3:5, 1:2, and an anemic scattered disk (MMRs 3:4, 5:7, and 9:11 are also indicated). To explain the classical Edgeworth-Kuiper belt, relatively abundant 4:7 and 2:5 MMRs, and the more numerous scattered disk, we need to assume that, e.g., the outer boundary of the original proto-planetary disk considerably exceeded the distance of the current Neptune's orbit (Neptune probably ended its migration at the distance, where the disk's density started to be sub-critical), or that some Pluto-sized objects resided inside the MMRs and in the distant parts of the original proto-planetary disk.
Tripathi, Ashutosh; Parikh, Zalak S; Vora, Parvez; Frost, Emma E; Pillai, Prakash P
2017-03-01
Oligodendrocyte progenitor cell (OPC) migration is critical for effective myelination of the central nervous system. Not only during normal myelination but also during remyelination, the growth factors (GFs) and extracellular matrix (ECM) protein affect the OPC migration. Studies showed the altered levels of GFs and ECM in the demyelinating lesions. In our earlier studies, we have shown that the effect of platelet-derived growth factor alpha (PDGF-A) on OPC migration is dose- and time-dependent. In that we have shown that the physiological concentration (1 ng/ml) of PDGF-A was unable to induce OPC migration at transient exposure (30 min). However, the involvement of ECM in the regulation of PDGF-A mediated OPC migration was not clear. In the present study, we have used fibronectin (FN) as ECM. PDGF-A and FN have similar and overlapping intracellular signaling pathways including the extracellular regulated kinases 1 and 2 (ERK1/2). Here we demonstrate how physiological concentration of PDGF-A combines with FN to augment OPC migration in vitro. The present study is first of its kind to show the importance of the synergistic effects of PDGF-A and FN on peripheral recruitment of phosphorylated/activated ERK1/2 (pERK1/2), actin-pERK1/2 co-localization, and filopodia formation, which are essential for the enhanced OPC migration. These findings were further confirmed by ERK1/2 inhibition studies, using the pharmacological inhibitor U0126. An understanding of these complex interactions may lead to additional strategies for transplanting genetically modified OPCs to repair widespread demyelinated lesions.
The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells.
Shao, Genbao; Wang, Ranran; Sun, Aiqin; Wei, Jing; Peng, Ke; Dai, Qian; Yang, Wannian; Lin, Qiong
2018-02-19
EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4 significantly reduced extracellular amount of cathepsin B induced by EGF. Consistent with the role of NEDD4, cathepsin B is pivotal for both basal and the EGF-stimulated lung cancer cell migration. Our studies propose a novel mechanism underlying the EGFR-promoted lung cancer cell migration that is mediated by NEDD4 through regulation of cathepsin B secretion. NEDD4 mediates the EGFR lung cancer cell migration signaling through promoting lysosomal secretion of cathepsin B.
Choi, Hanna; Piao, Jize; Woo, Nam C; Cho, Heuynam
2017-02-01
A baseline hydrochemistry of the above zone aquifer was examined for the potential of CO 2 early detection monitoring. Among the major ionic components and stable isotope ratios of oxygen, hydrogen, and carbon, components with a relative standard deviation (RSD) of <10 % for the seasonal variation were selected as relatively stable. These components were tested for sensitivity to the introduction of 0.1 mol/L CO 2 (g) using the PHREEQC simulation results. If the relatively stable components were sensitive to the introduction of CO 2 , then they could be used as indicators of CO 2 leakage into the above zone. As an analog to the zone above CO 2 storage formation, we sampled deep groundwater, including geothermal groundwater from well depths of 400-700 m below the ground surface (bgs) and carbonated springs with a high CO 2 content in Korea. Under the natural conditions of inland geothermal groundwater, pH, electrical conductivity (EC), bicarbonate (HCO 3 ), δ 18 O, δ 2 H, and δ 13 C were relatively stable as well as sensitive to the introduction of CO 2 (g), thus showing good potential as monitoring parameters for early detection of CO 2 leakage. In carbonated springs, the parameters identified were pH, δ 18 O, and δ 2 H. Baseline hydrochemistry monitoring could provide information on parameters useful for detecting anomalies caused by CO 2 leakage as measures for early warning.
Sauer, Uta; Borsdorf, H; Dietrich, P; Liebscher, A; Möller, I; Martens, S; Möller, F; Schlömer, S; Schütze, C
2018-02-03
During a controlled "back-production experiment" in October 2014 at the Ketzin pilot site, formerly injected CO 2 was retrieved from the storage formation and directly released to the atmosphere via a vent-off stack. Open-path Fourier transform infrared (OP FTIR) spectrometers, on-site meteorological parameter acquisition systems, and distributed CO 2 point sensors monitored gas dispersion processes in the near-surface part of the atmospheric boundary layer. The test site provides a complex and challenging mosaic-like surface setting for atmospheric monitoring which can also be found at other storage sites. The main aims of the atmospheric monitoring of this experiment were (1) to quantify temporal and spatial variations in atmospheric CO 2 concentrations around the emitting vent-off stack and (2) to test if and how atmospheric monitoring can cope with typical environmental and operational challenges. A low environmental risk was encountered during the whole CO 2 back-production experiment. The study confirms that turbulent wind conditions favor atmospheric mixing processes and are responsible for rapid dilution of the released CO 2 leading to decreased detectability at all sensors. In contrast, calm and extremely stable wind conditions (especially occurring during the night) caused an accumulation of gases in the near-ground atmospheric layer with the highest amplitudes in measured gas concentration. As an important benefit of OP FTIR spectroscopic measurements and their ability to detect multiple gas species simultaneously, emission sources could be identified to a much higher certainty. Moreover, even simulation models using simplified assumptions help to find suitable monitoring network designs and support data analysis for certain wind conditions in such a complex environment.
Stable isotope monitoring of ionic trapping of CO2 in deep brines
NASA Astrophysics Data System (ADS)
Myrttinen, A.; Barth, J. A. C.; Becker, V.; Blum, P.; Grathwohl, P.
2009-04-01
CO2 injection into a depleted gas-reservoir is used as a combined method for Enhanced Gas Recovery (EGR) and CO2 storage. In order to safeguard this process, monitoring the degree of dissolution and potential further precipitation and mineral interactions are a necessity. Here a method is introduced, in which stable isotope and geochemical data can be used as a monitoring technique to quantify ionic trapping of injected CO2. Isotope and geochemical data of dissolved inorganic carbon (DIC) can be used to distinguish between already present and to be injected inorganic carbon. Injected CO2, for instance, is formed during combustion of former plant material and is expected to have a different isotope ratio (δ13C value) than the baseline data of the aquifer. This is because combusted CO2 originates from organic material, such as coal and oil with a predominant C3 plant signature. Mixing the injected CO2 with groundwater is therefore expected to change the isotope, as well as the geochemical composition of the groundwater. Mass balance calculations with stable isotope ratios can serve to quantify ionic trapping of CO2 as DIC in groundwater. However, depending on the composition of the aquifer, weathering of carbonate or silicates may occur. Enhanced weathering processes due to CO2 injection can also further influence the isotopic composition. Such interactions between dissolved CO2 and minerals depend on the temperature and pressure regimes applied. Field data, as well as laboratory experiments are planned to quantify isotope ratios of dissolved inorganic carbon as well as oxygen isotope ratios of the water. These are indicative of geochemical processes before, during and after EGR. The isotope method should therefore provide a new tool to quantify the efficiency of ionic trapping under various temperatures and pressures. Keywords: Enhanced Gas Recovery, monitoring of CO2 dissolution, stable isotopes
The Program for Regional and International Shorebird Monitoring (PRISM)
Bart, J.; Andres, B.; Brown, S.; Donaldson, G.; Harrington, B.; Johnston, V.; Jones, S.; Morrison, R.I.G.; Skagen, S.K.
2005-01-01
This report describes the "Program for Regional and International Shorebird Monitoring" (PRISM). PRISM is being implemented by a Canada-United States Shorebird Monitoring and Assessment Committee formed in 2001 by the Canadian Shorebird Working Group and the U.S. Shorebird Council. PRISM provides a single blueprint for implementing the shorebird conservation plans recently completed in Canada and the United States. The goals of PRISM are to (1) estimate the size of breeding population of 74 shorebird taxa in North America; (2) describe the distribution, abundance, and habitat relationships for each of these taxa; (3) monitor trends in shorebird population size; (4) monitor shorebird numbers at stopover locations, and; (5) assist local managers in meeting their shorebird conservation goals. PRISM has four main components: arctic and boreal breeding surveys, temperate breeding surveys, temperate non-breeding surveys, and neotropical surveys. Progress on, and action items for, each major component are described. The more important major tasks for immediate action are carrying out the northern surveys, conducting regional analyses to design the program of migration counts, and evaluating aerial photographic surveys for migration and winter counts.
NASA Astrophysics Data System (ADS)
Dafflon, B.; Wu, Y.; Hubbard, S. S.; Birkholzer, J. T.; Daley, T. M.; Pugh, J. D.; Peterson, J.; Trautz, R. C.
2011-12-01
A risk factor of CO2 storage in deep geological formations includes its potential to leak into shallow formations and impact groundwater geochemistry and quality. In particular, CO2 decreases groundwater pH, which can potentially mobilize naturally occurring trace metals and ions commonly absorbed to or contained in sediments. Here, geophysical studies (primarily complex electrical method) are being carried out at both laboratory and field scales to evaluate the sensitivity of geophysical methods for monitoring dissolved CO2 distribution and geochemical transformations that may impact water quality. Our research is performed in association with a field test that is exploring the effects of dissolved CO2 intrusion on groundwater geochemistry. Laboratory experiments using site sediments (silica sand and some fraction of clay minerals) and groundwater were initially conducted under field relevant CO2 partial pressures (pCO2). A significant pH drop was observed with inline sensors with concurrent changes in fluid conductivity caused by CO2 dissolution. Electrical resistivity and electrical phase responses correlated well with the CO2 dissolution process at various pCO2. Specifically, resistivity decreased initially at low pCO2 condition resulting from CO2 dissolution followed by a slight rebound because of the transition of bicarbonate into non-dissociated carbonic acid at lower pH slightly reducing the total concentration of dissociated species. Continuous electrical phase decreases were also observed, which are interpreted to be driven by the decrease of surface charge density (due to the decrease of pH, which approaches the PZC of the sediments). In general, laboratory experiments revealed the sensitivity of electrical signals to CO2 intrusion into groundwater formations and can be used to guide field data interpretation. Cross well complex electrical data are currently being collected periodically throughout a field experiment involving the controlled release of dissolved CO2 into groundwater. The objective of the geophysical cross well monitoring effort is to evaluate the sensitivity of complex electrical methods to dissolved CO2 at the field scale. Here, we report on the ability to translate laboratory-based petrophysical information from lab to field scales, and on the potential of field complex electrical methods for remotely monitoring CO2-induced geochemical transformations.
NASA Astrophysics Data System (ADS)
Guillon, Sophie; Agrinier, Pierre; Pili, Éric
2015-04-01
CO2 stable carbon isotopes are very attractive in environmental research to investigate both natural and anthropogenic carbon sources. Laser-based isotope ratio infrared spectrometers (IRIS) allow in situ continuous monitoring of CO2 isotopes, and therefore they have a potential for unprecedented understanding of carbon sources and dynamics with a high temporal resolution. Here we present the performance assessment of a commercial IRIS analyzer, including the measurement setup and the data processing scheme that we used. Even if the analyzer performs 1-Hz measurements, an integration time of the order of 1 h is commonly needed to obtain acceptable precision for δ13C. The main sources of uncertainty on δ13C come from the concentration dependence and from the temporal instability of the analyzer. The method is applied to the in situ monitoring of the CO2 carbon isotopes in an underground cavity (Roselend Natural Laboratory, France) during several months. On a weekly timescale, the temporal variability of CO2 is dominated by transient contamination by human breath. Discarding these anthropogenic contaminations, CO2 and δ13C backgrounds do not show diurnal or seasonal fluctuations. A CO2 flux released into the tunnel by the surrounding rocks is measured. The carbon isotope composition of this CO2, identified with a Keeling plot, is consistent with a main production by microbial respiration and a minor production from weathering of carbonate minerals. The presented instrument and application study are relevant to cave monitoring, whether to understand CO2 dynamics in visited and/or painted caves for preservation purposes or to understand paleoclimate recording in speleothems.
The role of Exo70 in vascular smooth muscle cell migration.
Ma, Wenqing; Wang, Yu; Yao, Xiaomeng; Xu, Zijian; An, Liguo; Yin, Miao
2016-01-01
As a key subunit of the exocyst complex, Exo70 has highly conserved sequence and is widely found in yeast, mammals, and plants. In yeast, Exo70 mediates the process of exocytosis and promotes anchoring and integration of vesicles with the plasma membrane. In mammalian cells, Exo70 is involved in maintaining cell morphology, cell migration, cell connection, mRNA splicing, and other physiological processes, as well as participating in exocytosis. However, Exo70's function in mammalian cells has yet to be fully recognized. In this paper, the expression of Exo70 and its role in cell migration were studied in a rat vascular smooth muscle cell line A7r5. Immunofluorescent analysis the expression of Exo70, α-actin, and tubulin in A7r5 cells showed a co-localization of Exo70 and α-actin, we treated the cells with cytochalasin B to depolymerize α-actin, in order to further confirm the co-localization of Exo70 and α-actin. We analyzed Exo70 co-localization with actin at the edge of migrating cells by wound-healing assay to establish whether Exo70 might play a role in cell migration. Next, we analyzed the migration and invasion ability of A7r5 cells before and after RNAi silencing through the wound healing assay and transwell assay. The mechanism of interaction between Exo70 and cytoskeleton can be clarified by the immunoprecipitation techniques and wound-healing assay. The results showed that Exo70 and α-actin were co-localized at the leading edge of migrating cells. The ability of A7r5 to undergo cell migration was decreased when Exo70 expression was silenced by RNAi. Reducing Exo70 expression in RNAi treated A7r5 cells significantly lowered the invasion and migration ability of these cells compared to the normal cells. These results indicate that Exo70 participates in the process of A7r5 cell migration. This research is importance for the study on the pathological process of vascular intimal hyperplasia, since it provides a new research direction for the treatment of cardiovascular diseases such as atherosclerosis and restenosis after balloon angioplasty.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik, E-mail: henrik.thorlacius@med.lu.se
2014-03-28
Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluatemore » CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via inhibition of geranylgeranylation and RhoA activation. Thus, statins, such as simvastatin, might be effective tools to antagonize CCL17-dependent migration and metastasis of colon cancer cells.« less
A Programmable SDN+NFV Architecture for UAV Telemetry Monitoring
NASA Technical Reports Server (NTRS)
White, Kyle J. S.; Pezaros, Dimitrios P.; Denney, Ewen; Knudson, Matt D.
2017-01-01
With the explosive growth in UAV numbers forecast worldwide, a core concern is how to manage the ad-hoc network configuration required for mobility management. As UAVs migrate among ground control stations, associated network services, routing and operational control must also rapidly migrate to ensure a seamless transition. In this paper, we present a novel, lightweight and modular architecture which supports high mobility, resilience and flexibility through the application of SDN and NFV principles on top of the UAV infrastructure. By combining SDN programmability and Network Function Virtualization we can achieve resilient infrastructure migration of network services, such as network monitoring and anomaly detection, coupled with migrating UAVs to enable high mobility management. Our container-based monitoring and anomaly detection Network Functions (NFs) can be tuned to specific UAV models providing operators better insight during live, high-mobility deployments. We evaluate our architecture against telemetry from over 80flights from a scientific research UAV infrastructure.
PP2A regulates SCF-induced cardiac stem cell migration through interaction with p38 MAPK.
Wang, Ying; Xia, Yanli; Kuang, Dong; Duan, Yaqi; Wang, Guoping
2017-12-15
Previous studies have shown that stem cell factor (SCF) induces the migration of cardiac stem cells (CSCs) and helps to repair myocardial infarctions. Earlier studies on the migration mechanism only focused on the activation of kinases; here, we aimed to explore the functional role of protein phosphatase 2A (PP2A) in SCF-induced CSC migration. CSCs were treated with SCF, PP2A enzymatic activity was measured, the phosphorylation levels of PP2A, p38 MAPK and cofilin were evaluated using western blot. Transwell assay was used to determine the migratory ability of CSCs. In vitro, SCF induced the phosphorylation of p38 MAPK and cofilin, leading to the migration of CSCs. Cofilin acted as a downstream signal of p38 MAPK. PP2A was involved in this process. Further studies revealed that PP2A was inactivated via phosphorylation at Tyr307 by SCF and the inactivation/phosphorylation was mediated by activated p38 MAPK, as p38 MAPK inhibitor SB203580 or siRNA prevented SCF-induced inactivation and phosphorylation of PP2A. When CSCs were pretreated with PP2A inhibitor (okadaic acid, OA), SCF-induced CSC migration and the downstream signals were enhanced, and the enhancement was reversed when p38 MAPK was blocked. Additionally, co-immunoprecipitation showed a direct interaction of PP2A with p38 MAPK. Our results indicated that PP2A regulated the SCF-induced activation of p38 MAPK/cofilin signaling pathway and subsequent migration of CSCs by interaction with p38 MAPK. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickles, W. L.; Ebrom, D. A.
This collaborative effort was in support of the CO 2 Capture Project (CCP), to develop techniques that integrate overhead images of plant species, plant health, geological formations, soil types, aquatic, and human use spatial patterns for detection and discrimination of any CO 2 releases from underground storage formations. The goal of this work was to demonstrate advanced hyperspectral geobotanical remote sensing methods to assess potential leakage of CO 2 from underground storage. The timeframes and scales relevant to the long-term storage of CO 2 in the subsurface make remote sensing methods attractive. Moreover, it has been shown that individual fieldmore » measurements of gas composition are subject to variability on extremely small temporal and spatial scales. The ability to verify ultimate reservoir integrity and to place individual surface measurements into context will be crucial to successful long-term monitoring and verification activities. The desired results were to produce a defined and tested procedure that could be easily used for long-term monitoring of possible CO 2 leakage from underground CO 2 sequestration sites. This testing standard will be utilized on behalf of the oil industry.« less
Multi-Spectral imaging of vegetation for detecting CO2 leaking from underground
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rouse, J.H.; Shaw, J.A.; Lawrence, R.L.
2010-06-01
Practical geologic CO{sub 2} sequestration will require long-term monitoring for detection of possible leakage back into the atmosphere. One potential monitoring method is multi-spectral imaging of vegetation reflectance to detect leakage through CO{sub 2}-induced plant stress. A multi-spectral imaging system was used to simultaneously record green, red, and near-infrared (NIR) images with a real-time reflectance calibration from a 3-m tall platform, viewing vegetation near shallow subsurface CO{sub 2} releases during summers 2007 and 2008 at the Zero Emissions Research and Technology field site in Bozeman, Montana. Regression analysis of the band reflectances and the Normalized Difference Vegetation Index with timemore » shows significant correlation with distance from the CO{sub 2} well, indicating the viability of this method to monitor for CO{sub 2} leakage. The 2007 data show rapid plant vigor degradation at high CO{sub 2} levels next to the well and slight nourishment at lower, but above-background CO{sub 2} concentrations. Results from the second year also show that the stress response of vegetation is strongly linked to the CO{sub 2} sink-source relationship and vegetation density. The data also show short-term effects of rain and hail. The real-time calibrated imaging system successfully obtained data in an autonomous mode during all sky and daytime illumination conditions.« less
Mule deer and pronghorn migration in western Wyoming
Sawyer, H.; Lindzey, F.; McWhirter, D.
2005-01-01
Migratory mule deer (Odocoileus hemionus) and pronghorn (Antilocapra americana) populations rely on seasonal ranges to meet their annual nutritional and energetic requirements. Because seasonal ranges often occur great distances apart and across a mix of vegetation types and land ownership, maintaining migration corridors to and from these ranges can be difficult, especially if managers do not have detailed information on mule deer and pronghorn seasonal movements. We captured, radiomarked, and monitored mule deer (n = 171) and pronghorn (n = 34) in western Wyoming to document seasonal distribution patterns and migration routes. Mule deer and pronghorn migrated 20-158 km and 116-258 km, respectively, between seasonal ranges. These distances represented the longest recorded migrations for either species. We identified a number of bottlenecks along the migration routes of mule deer and pronghorn, but the most critical appeared to be the 1.6-km-wide Trapper's Point bottleneck, which was used by both mule deer and pronghorn during their spring and autumn migrations. Housing developments and roadways apparently have reduced the effective width of this bottleneck to <0.8 km. We estimate 2,500-3,500 mule deer and 1,500-2,000 pronghorn move through the bottleneck twice a year during spring and autumn migrations. Identification and protection of migration corridors and bottlenecks will be necessary to maintain mule deer and pronghorn populations throughout their range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaFreniere, L. M.; Environmental Science Division
The results of the 2006 investigation of contaminant sources at Navarre, Kansas, clearly demonstrate the following: {sm_bullet} Sources of carbon tetrachloride contamination were found on the Navarre Co-op property. These sources are the locations of the highest concentrations of carbon tetrachloride found in soil and groundwater at Navarre. The ongoing groundwater contamination at Navarre originates from these sources. {sm_bullet} The sources on the Co-op property are in locations where the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) never conducted grain storage operations. {sm_bullet} No definitive sources of carbon tetrachloride were identified on the portion of the currentmore » Co-op property formerly used by the CCC/USDA. {sm_bullet} The source areas on the Co-op property are consistent with the locations of the most intense Co-op operations, both historically and at present. The Co-op historically stored carbon tetrachloride for retail sale and used it as a grain fumigant in these locations. {sm_bullet} The distribution patterns of other contaminants (tetrachloroethene and nitrate) originating from sources on the Co-op property mimic the carbon tetrachloride plume. These other contaminants are not associated with CCC/USDA operations. {sm_bullet} The distribution of carbon tetrachloride at the Co-op source areas, particularly the absence of contamination in soils at depths less than 20 ft below ground level, is consistent with vertical migration into the subsurface through a conduit (well Co-op 2), with subsequent lateral migration through the subsurface. {sm_bullet} The groundwater flow direction, which is toward the west-northwest, is not consistent with migration of carbon tetrachloride in groundwater from the former CCC/USDA property to the source areas on the Co-op property. {sm_bullet} The absence of soil and groundwater contamination along surface drainage pathways on the former CCC/USDA property is not consistent with migration of carbon tetrachloride in surface water runoff from the former CCC/USDA property to the source areas on the Co-op property. {sm_bullet} The contamination detected in soil and groundwater samples collected along the northern boundary of the former CCC/USDA facility can be attributed to migration from the Co-op sources or to operations of the Co-op on the property after CCC/USDA operations ended. {sm_bullet} The southern boundary of the Co-op property has expanded over time, so that the Co-op has operated for a lengthy period in all areas previously leased by the CCC/USDA (Figure S.1). The Co-op began expanding onto the former CCC/USDA property in 1969 and has operated on that property longer than the CCC/USDA did. The use of carbon tetrachloride as a grain fumigant was standard industry practice until 1985, when the compound was banned by the U.S. Environmental Protection Agency. {sm_bullet} Petroleum-related contamination was detected on the southern part of the former CCC/USDA property. This contamination is associated with aboveground storage tanks that are owned and operated by the Co-op. The major findings of the 2006 investigations are summarized in greater detail below. The 2006 investigation was implemented by the Environmental Science Division of Argonne National Laboratory on behalf of the CCC/USDA.« less
NASA Astrophysics Data System (ADS)
Liebscher, A. H.
2016-12-01
The Ketzin pilot site near Berlin, Germany, was initiated in 2004 as the first European onshore storage project for research and development on geological CO2 storage. The operational CO2 injection period started in June 2008 and ended in August 2013 when the site entered the post-injection closure period. During these five years, a total amount of 67 kt of CO2 was safely injected into a saline aquifer (Upper Triassic sandstone) at a depth of 630 m - 650 m. In fall 2013, the first observation well was partially plugged in the reservoir section; full abandonment of this well finished in 2015 after roughly 2 years of well closure monitoring. Abandonment of the remaining 4 wells will be finished by 2017 and hand-over of liability to the competent authority is planned for end of 2017. The CO2 injected was mainly of food grade quality (purity > 99.9%). In addition, 1.5 kt of CO2 from the pilot capture facility "Schwarze Pumpe" (oxyfuel power plant CO2 with purity > 99.7%) was injected in 2011. The injection period terminated with a CO2-N2 co-injection experiment of 650 t of a 95% CO2/5% N2 mixture in summer 2013 to study the effects of impurities in the CO2 stream on the injection operation. During regular operation, the CO2 was pre-heated on-site to 40 - 45°C prior to injection to ensure a single-phase injection process and avoid any phase transition or transient states within the injection facility or the reservoir. Between March and July 2013, just prior to the CO2-N2 co-injection experiment, the injection temperature was stepwise decreased down to 10°C within a "cold-injection" experiment to study the effects of two-phase injection conditions. During injection operation, the combination of different geochemical and geophysical monitoring methods enabled detection and mapping of the spatial and temporal in-reservoir behaviour of the injected CO2 even for small quantities. After the cessation of CO2 injection, post-injection monitoring continued and two additional field experiments have been performed. A CO2 back-production experiment was run in autumn 2014 to study the physicochemical properties of the back-produced CO2 as well as the pressure response of the reservoir. In October 2015 to January 2016, a brine injection experiment studied the imbibition process and residual gas saturation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkholzer, Jens; Apps, John; Zheng, Liange
One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water qualitymore » of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water standards might be exceeded was evaluated. A variety of scenarios and aquifer conditions was considered in a sensitivity evaluation. The scenarios and conditions simulated in Section 4, in particular those describing the geochemistry and mineralogy of potable aquifers, were selected based on the comprehensive geochemical model developed in Section 3.« less
Edgewood Area - Aberdeen Proving Ground Five-Year Review
2008-10-01
27 / 2001 Reduce the contaminant mass in the J-Field surficial aquifer through DNAPL recovery, phytoremediation , and natural processes; Eliminate...exposure to groundwater; and Control off-site contaminant migration from the confined aquifer. Institutional Controls Phytoremediation Monitoring... phytoremediation and natural degradaton processes. 2. Monitoring of MCLs and non-zero MCLGs at points outside of the designated TI Zone. J-Field
The USEPA has developed a technology transfer handbook for the EMPACt BirdCast bird migration monitoring project. The document is essentially a "How-To" Handbook that addresses the planning and implementation steps that were needed to develop, operate and maintain a program simil...
Mesa, Matthew G.; Weiland, Lisa K.; Christiansen, Helena E.
2016-01-01
We compiled and summarized previous sources of data and research results related to the presence, numbers, and migration timing characteristics of juvenile (eyed macropthalmia) and larval (ammocoetes) Pacific lamprey Entosphenus tridentatus, in the Columbia River basin (CRB). Included were data from various screw trap collections, data from historic fyke net studies, catch records of lampreys at JBS facilities, turbine cooling water strainer collections, and information on the occurrence of lampreys in the diets of avian and piscine predators. We identified key data gaps and uncertainties that should be addressed in a juvenile lamprey passage research program. The goal of this work was to summarize information from disparate sources so that managers can use it to prioritize and guide future research and monitoring efforts related to the downstream migration of juvenile Pacific lamprey within the CRB. A common finding in all datasets was the high level of variation observed for CRB lamprey in numbers present, timing and spatial distribution. This will make developing monitoring programs to accurately characterize lamprey migrations and passage more challenging. Primary data gaps centered around our uncertainty on the numbers of juvenile and larval present in the system which affects the ability to assign risk to passage conditions and prioritize management actions. Recommendations include developing standardized monitoring methods, such as at juvenile bypass systems (JBS’s), to better document numbers and timing of lamprey migrations at dams, and use biotelemetry tracking techniques to estimate survival potentials for different migration histories.
Chen, Ying; Cai, Xiaoyu; Jiang, Long; Li, Yu
2016-02-01
Based on the experimental data of octanol-air partition coefficients (KOA) for 19 polychlorinated biphenyl (PCB) congeners, two types of QSAR methods, comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), are used to establish 3D-QSAR models using the structural parameters as independent variables and using logKOA values as the dependent variable with the Sybyl software to predict the KOA values of the remaining 190 PCB congeners. The whole data set (19 compounds) was divided into a training set (15 compounds) for model generation and a test set (4 compounds) for model validation. As a result, the cross-validation correlation coefficient (q(2)) obtained by the CoMFA and CoMSIA models (shuffled 12 times) was in the range of 0.825-0.969 (>0.5), the correlation coefficient (r(2)) obtained was in the range of 0.957-1.000 (>0.9), and the SEP (standard error of prediction) of test set was within the range of 0.070-0.617, indicating that the models were robust and predictive. Randomly selected from a set of models, CoMFA analysis revealed that the corresponding percentages of the variance explained by steric and electrostatic fields were 23.9% and 76.1%, respectively, while CoMSIA analysis by steric, electrostatic and hydrophobic fields were 0.6%, 92.6%, and 6.8%, respectively. The electrostatic field was determined as a primary factor governing the logKOA. The correlation analysis of the relationship between the number of Cl atoms and the average logKOA values of PCBs indicated that logKOA values gradually increased as the number of Cl atoms increased. Simultaneously, related studies on PCB detection in the Arctic and Antarctic areas revealed that higher logKOA values indicate a stronger PCB migration ability. From CoMFA and CoMSIA contour maps, logKOA decreased when substituents possessed electropositive groups at the 2-, 3-, 3'-, 5- and 6- positions, which could reduce the PCB migration ability. These results are expected to be beneficial in predicting logKOA values of PCB homologues and derivatives and in providing a theoretical foundation for further elucidation of the global migration behaviour of PCBs. Copyright © 2015 Elsevier Inc. All rights reserved.
Ding, Jiaxi; Jiang, DeChen; Kurczy, Michael; Nalepka, Jennifer; Dudley, Brian; Merkel, Erin I; Porter, Forbes D; Ewing, Andrew G; Winograd, Nicholas; Burgess, James; Molyneaux, Kathleen
2008-01-01
Background Primordial germ cells (PGCs) are the embryonic precursors of the sperm and eggs. Environmental or genetic defects that alter PGC development can impair fertility or cause formation of germ cell tumors. Results We demonstrate a novel role for cholesterol during germ cell migration in mice. Cholesterol was measured in living tissue dissected from mouse embryos and was found to accumulate within the developing gonads as germ cells migrate to colonize these structures. Cholesterol synthesis was blocked in culture by inhibiting the activity of HMG CoA reductase (HMGCR) resulting in germ cell survival and migration defects. These defects were rescued by co-addition of isoprenoids and cholesterol, but neither compound alone was sufficient. In contrast, loss of the last or penultimate enzyme in cholesterol biosynthesis did not alter PGC numbers or position in vivo. However embryos that lack these enzymes do not exhibit cholesterol defects at the stage at which PGCs are migrating. This demonstrates that during gestation, the cholesterol required for PGC migration can be supplied maternally. Conclusion In the mouse, cholesterol is required for PGC survival and motility. It may act cell-autonomously by regulating clustering of growth factor receptors within PGCs or non cell-autonomously by controlling release of growth factors required for PGC guidance and survival. PMID:19117526
Revealing fate of CO2 leakage pathways in the Little Grand Wash Fault, Green River, Utah
NASA Astrophysics Data System (ADS)
Han, K.; Han, W. S.; Watson, Z. T.; Guyant, E.; Park, E.
2015-12-01
To assure long-term security of geologic carbon sequestration site, evaluation of natural CO2 leakage should be preceded before actual construction of the CO2 facility by comparing natural and artificial reservoir systems. The Little Grand Wash fault is located at the northwestern margin of the Paradox Basin and roles on a bypass of deep subsurface CO2 and brine water onto the surface, e.g., cold water geyser, CO2 spring, and surface travertine deposits. CO2 degassed out from brine at the Little Grand Wash fault zone may react with formation water and minerals while migrating through the fault conduit. Leakage observed by soil CO2 flux on the fault trace shows this ongoing transition of CO2, from supersaturated condition in deep subsurface to shallow surface equilibria. The present study aims to investigate the reactions induced by changes in hydrological and mineralogical factors inside of the fault zone. The methodology to develop site-specific geochemical model of the Little Grand Wash Fault combines calculated mechanical movements of each fluid end-member, along with chemical reactions among fluid, free CO2 gas and rock formations. Reactive transport modeling was conducted to simulate these property changes inside of the fault zone, using chemistry dataset based on 86 effluent samples of CO2 geysers, springs and in situ formation water from Entrada, Carmel, and Navajo Sandstone. Meanwhile, one- and two-dimensional models were separately developed to delineate features mentioned above. The results from the 3000-year simulation showed an appearance of self-sealing processes near the surface of the fault conduit. By tracking physicochemical changes at the depth of 15 m on the 2-dimensional model, significant changes induced by fluid mixing were indicated. Calculated rates of precipitation for calcite, illite, and pyrite showed increase in 2.6 x 10-4, 2.25 x 10-5, and 3.0 x 10-6 in mineral volume fraction at the depth of 15m, respectively. Concurrently, permeability and porosity were decreased 4.0 x 10-18 m2 and 3.0 x 10-4 due to precipitation of minerals. At the middle of the fault conduit (400 m), however, indicates consistent dissolution of minerals in formation which enhances vertical fluid migration.
NASA Astrophysics Data System (ADS)
Plampin, M. R.; Lassen, R. N.; Sakaki, T.; Pawar, R.; Jensen, K.; Illangasekare, T. H.
2013-12-01
A concern for geologic carbon sequestration is the potential for CO2 stored in deep geologic formations to leak upward into shallow freshwater aquifers where it can have potentially detrimental impacts to the environment and human health. Understanding the mechanisms of CO2 exsolution, migration and accumulation (collectively referred to as 'gas evolution') in the shallow subsurface is critical to predict and mitigate the environmental impacts. During leakage, CO2 can move either as free-phase or as a dissolved component of formation brine. CO2 dissolved in brine may travel upward into shallow freshwater systems, and the gas may be released from solution. In the shallow aquifer, the exsolved gas may accumulate near interfaces between soil types, and/or create flow paths that allow the gas to escape through the vadose zone to the atmosphere. The process of gas evolution in the shallow subsurface is controlled by various factors, including temperature, dissolved CO2 concentration, water pressure, background water flow rate, and geologic heterogeneity. However, the conditions under which heterogeneity controls gas phase evolution have not yet been precisely defined and can therefore not yet be incorporated into models used for environmental risk assessment. The primary goal of this study is to conduct controlled laboratory experiments to help fill this knowledge gap. With this as a goal, a series of intermediate-scale laboratory experiments were conducted to observe CO2 gas evolution in porous media at multiple scales. Deionized water was saturated with dissolved CO2 gas under a specified pressure (the saturation pressure) before being injected at a constant volumetric flow rate into the bottom of a 1.7 meter-tall by 5.7 centimeter-diameter column or a 2.4 meter-tall by 40 centimeter-wide column that were both filled with sand in various heterogeneous packing configurations. Both test systems were initially saturated with fresh water and instrumented with soil moisture sensors to monitor the evolution of gas phase through time by measuring the average water content in small sampling volumes of soil. Tensiometers allowed for observation of water pressure through space and time in the test systems, and a computer-interfaced electronic scale continuously monitored the outflow of water from the top of the two test columns. Several packing configurations with five different types of sands were used in order to test the effects of various pore size contrasts and interface shapes on the evolution of the gas phase near soil texture transitions in the heterogeneous packings. Results indicate that: (1) heterogeneity affects gas phase evolution patterns within a predictable range of conditions quantified by the newly introduced term 'oversaturation,' (2) soil transition interfaces where less permeable material overlies more permeable material have a much more pronounced effect on gas evolution than interfaces with opposite orientations, and (3) anticlines (or stratigraphic traps) cause significantly greater gas accumulation than horizontal interfaces. Further work is underway to apply these findings to more realistic, two-dimensional scenarios, and to assess how well existing numerical models can capture these processes.
Estrada, Marta F; Rebelo, Sofia P; Davies, Emma J; Pinto, Marta T; Pereira, Hugo; Santo, Vítor E; Smalley, Matthew J; Barry, Simon T; Gualda, Emilio J; Alves, Paula M; Anderson, Elizabeth; Brito, Catarina
2016-02-01
3D cell tumour models are generated mainly in non-scalable culture systems, using bioactive scaffolds. Many of these models fail to reflect the complex tumour microenvironment and do not allow long-term monitoring of tumour progression. To overcome these limitations, we have combined alginate microencapsulation with agitation-based culture systems, to recapitulate and monitor key aspects of the tumour microenvironment and disease progression. Aggregates of MCF-7 breast cancer cells were microencapsulated in alginate, either alone or in combination with human fibroblasts, then cultured for 15 days. In co-cultures, the fibroblasts arranged themselves around the tumour aggregates creating distinct epithelial and stromal compartments. The presence of fibroblasts resulted in secretion of pro-inflammatory cytokines and deposition of collagen in the stromal compartment. Tumour cells established cell-cell contacts and polarised around small lumina in the interior of the aggregates. Over the culture period, there was a reduction in oestrogen receptor and membranous E-cadherin alongside loss of cell polarity, increased collective cell migration and enhanced angiogenic potential in co-cultures. These phenotypic alterations, typical of advanced stages of cancer, were not observed in the mono-cultures of MCF-7 cells. The proposed model system constitutes a new tool to study tumour-stroma crosstalk, disease progression and drug resistance mechanisms. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kim, Yiseul; Kim, Jung Tae; Park, Joonwoo; Son, Hee Jin; Kim, Eun-Young; Lee, Young Joo; Rhyu, Mee-Ra
2017-10-01
Ligularia fischeri (Ledeb.) Turcz., a perennial plant native to northeastern Asia, has long been used as folk remedies for the alleviation of inflammatory symptoms. We investigated whether the extract of L. fischeri (LFEx) and caffeoylquinic acid (CQA) derivatives, the pharmacologically active ingredients identified from L. fischeri, regulate inflammation via a transient receptor potential vanilloid 1 (TRPV1)-mediated pathway. Changes in intracellular Ca 2+ levels to the LFEx and trans-5-O-CQA, 3,4-di-O-CQA, 3,5-di-O-CQA, and 4,5-di-O-CQA were monitored in TRPV1-expressing human embryonic kidney cell HEK 293T. LFEx and 4,5-di-O-CQA (EC 50 = 69.34 ± 1.12 μM) activated TRPV1, and these activations were significantly inhibited by ruthenium red, a general blocker of TRP channels, and capsazepine, a specific antagonist of TRPV1. 4,5-Di-O-CQA has been determined having antiinflammatory effect under hypoxic conditions by detecting the expression of cyclooxygenase-2 (COX-2), a representative inflammatory marker, and cellular migration in human pulmonary epithelial A549 cells. 4,5-Di-O-CQA suppressed COX-2 expression and cell migration, and this inhibition was countered by co-treatment with capsazepine. This study provides evidence that L. fischeri is selective to inflammatory responses via a TRPV1-mediated pathway, and 4,5-di-O-CQA might play a key role to create these effects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Monitoring Exchange of CO2 - A KISS Workshop Report 2009
NASA Technical Reports Server (NTRS)
Miller, Charles; Wennberg, Paul
2009-01-01
The problem and context: Can top-down estimates of carbon dioxide (CO2) fluxes resolve the anthropogenic emissions of China, India, the United States, and the European Union with an accuracy of +/-10% or better?The workshop "Monitoring Exchange of Carbon Dioxide" was convened at the Keck Institute for Space Studies in Pasadena, California in February 2010 to address this question. The Workshop brought together an international, interdisciplinary group of 24 experts in carbon cycle science, remote sensing, emissions inventory estimation, and inverse modeling. The participants reviewed the potential of space-based and sub-orbital observational and modeling approaches to monitor anthropogenic CO2 emissions in the presence of much larger natural fluxes from the exchange of CO2 between the land, atmosphere, and ocean. This particular challenge was motivated in part by the NRC Report "Verifying Greenhouse Gas Emissions" [Pacala et al., 2010]. This workshop report includes several recommendations for improvements to observing strategies and modeling frameworks for optimal and cost-effective monitoring of carbon exchange
Yang, Chao-Tung; Liao, Chi-Jui; Liu, Jung-Chun; Den, Walter; Chou, Ying-Chyi; Tsai, Jaw-Ji
2014-02-01
Indoor air quality monitoring in healthcare environment has become a critical part of hospital management and policy. Manual air sampling and analysis are cost-inhibitive and do not provide real-time air quality data and response measures. In this month-long study over 14 sampling locations in a public hospital in Taiwan, we observed a positive correlation between CO(2) concentration and population, total bacteria, and particulate matter concentrations, thus monitoring CO(2) concentration as a general indicator for air quality could be a viable option. Consequently, an intelligent environmental monitoring system consisting of a CO(2)/temperature/humidity sensor, a digital plug, and a ZigBee Router and Coordinator was developed and tested. The system also included a backend server that received and analyzed data, as well as activating ventilation and air purifiers when CO(2) concentration exceeded a pre-set value. Alert messages can also be delivered to offsite users through mobile devices.
NASA Astrophysics Data System (ADS)
Onda, Y.; Kato, H.; Fukushima, T.; Wakahara, T.; Kita, K.; Takahashi, Y.; Sakaguchi, A.; Tanaka, K.; Yamashiki, Y.; Yoshida, N.
2012-12-01
After the Fukushima Daiichi Nuclear Power Plant acciden, fallout radionuclides on the ground surface will transfer through geomorphic processes. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers, and entrainment from trees and soils should be confirmed. We (FMWSE group) was funded by MEXT, Japanese government, and 1 year following monitoring has been conducted about 1 year. 1 Migration study of radionuclides in natural environment including forests and rivers 1) Study on depth distribution of radiocaesium in soils within forests, fields, and grassland. 2) Confirmation of radionuclide distribution and investigation on migration in forests. 3) Study on radionuclide migration due to soil erosion under different land use. 4) Measurement of radionuclides entrained from natural environment including forests and soils. 2 Migration study of radionuclides through hydrological cycle such as soil water, rivers, lakes and ponds, ground water. 1) Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use. 2) Study on paddy-to-river transfer of radionuclides through suspended sediment. 3) Study on river-to-ocean transfer of radionuclides via suspended sediment. 4) Confirmation of radionuclide deposition in ponds and reservoirs. We will present how and where the fallout radionulides transfter through geomorphic processes.
Airborne Detection and Tracking of Geologic Leakage Sites
NASA Astrophysics Data System (ADS)
Jacob, Jamey; Allamraju, Rakshit; Axelrod, Allan; Brown, Calvin; Chowdhary, Girish; Mitchell, Taylor
2014-11-01
Safe storage of CO2 to reduce greenhouse gas emissions without adversely affecting energy use or hindering economic growth requires development of monitoring technology that is capable of validating storage permanence while ensuring the integrity of sequestration operations. Soil gas monitoring has difficulty accurately distinguishing gas flux signals related to leakage from those associated with meteorologically driven changes of soil moisture and temperature. Integrated ground and airborne monitoring systems are being deployed capable of directly detecting CO2 concentration in storage sites. Two complimentary approaches to detecting leaks in the carbon sequestration fields are presented. The first approach focuses on reducing the requisite network communication for fusing individual Gaussian Process (GP) CO2 sensing models into a global GP CO2 model. The GP fusion approach learns how to optimally allocate the static and mobile sensors. The second approach leverages a hierarchical GP-Sigmoidal Gaussian Cox Process for airborne predictive mission planning to optimally reducing the entropy of the global CO2 model. Results from the approaches will be presented.
NASA Astrophysics Data System (ADS)
Kim, Jongwook; Nam, Myung Jin; Matsuoka, Toshifumi
2013-10-01
In order to monitor injected carbon dioxide (CO2), simultaneous measurements of seismic velocity and electrical resistivity are employed during the drainage (CO2 injection) and imbibition (water injection) processes of a Berea sandstone. Supercritical CO2 (10 MPa at 40 ºC) was injected into a water-saturated Berea sandstone in the drainage stage and monitored via simultaneous measurements. After the injection of supercritical CO2, fresh distilled water was injected into the CO2-injected sandstone during the imbibition stage. Electrical resistivity and P-wave velocity measurements acquired during the drainage and imbibition stages were employed to evaluate CO2 saturations (SCO2) based on the resistivity index and the Gassmann fluid-substitution equations, respectively. Comparing estimated values for SCO2 saturation against those from volume-derived SCO2, based on analysis on injected and drained fluid volumes in the drainage process, we conclude that Gassmann-Brie and resistivity index are suitable for the evaluation based on P-wave velocity and electrical resistivity, respectively. R
Takahashi, Masato; Sawada, Yoshisuke; Aoyagi, Hideki
2017-08-23
Monitoring the environmental factors during shake-flask culture of microorganisms can help to optimise the initial steps of bioprocess development. Herein, we developed a circulation direct monitoring and sampling system (CDMSS) that can monitor the behaviour of CO 2 and O 2 in the gas-liquid phases and obtain a sample without interrupting the shaking of the culture in Erlenmeyer flasks capped with breathable culture plugs. Shake-flask culturing of Escherichia coli using this set-up indicated that a high concentration of CO 2 accumulated not only in the headspace (maximum ~100 mg/L) but also in the culture broth (maximum ~85 mg/L) during the logarithmic phase (4.5-9.0 h). By packing a CO 2 absorbent in the gas circulation unit of CDMSS, a specialised shake-flask culture was developed to remove CO 2 from the headspace. It was posited that removing CO 2 from the headspace would suppress increases in the dissolved CO 2 concentration in the culture broth (maximum ~15 mg/L). Furthermore, the logarithmic growth phase (4.5-12.0 h) was extended, the U.O.D. 580 and pH value increased, and acetic acid concentration was reduced, compared with the control. To our knowledge, this is the first report of a method aimed at improving the growth of E. coli cells without changing the composition of the medium, temperature, and shaking conditions.
The next generation of low-cost personal air quality sensors for quantitative exposure monitoring
NASA Astrophysics Data System (ADS)
Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.; Lv, Q.; Hannigan, M.; Shang, L.
2014-03-01
Advances in embedded systems and low-cost gas sensors are enabling a new wave of low cost air quality monitoring tools. Our team has been engaged in the development of low-cost wearable air quality monitors (M-Pods) using the Arduino platform. The M-Pods use commercially available metal oxide semiconductor (MOx) sensors to measure CO, O3, NO2, and total VOCs, and NDIR sensors to measure CO2. MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. Two deployments were conducted at a regulatory monitoring station in Denver, Colorado. M-Pod concentrations were determined using laboratory calibration techniques and co-location calibrations, in which we place the M-Pods near regulatory monitors to then derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. A separate user study was also conducted to assess personal exposure and M-Pod reliability. In this study, 10 M-Pods were calibrated via co-location multiple times over 4 weeks and sensor drift was analyzed with the result being a calibration function that included drift. We found that co-location calibrations perform better than laboratory calibrations. Lab calibrations suffer from bias and difficulty in covering the necessary parameter space. During co-location calibrations, median standard errors ranged between 4.0-6.1 ppb for O3, 6.4-8.4 ppb for NO2, 0.28-0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S/N) ratios for the M-Pod sensors were higher for M-Pods than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42.2 compared to 300-500. The user study provided trends and location-specific information on pollutants, and affected change in user behavior. The study demonstrated the utility of the M-Pod as a tool to assess personal exposure.
Liu, Xiaoxia; Tian, Miaomiao; Camara, Mohamed Amara; Guo, Liping; Yang, Li
2015-10-01
We present sequential CE analysis of amino acids and L-asparaginase-catalyzed enzyme reaction, by combing the on-line derivatization, optically gated (OG) injection and commercial-available UV-Vis detection. Various experimental conditions for sequential OG-UV/vis CE analysis were investigated and optimized by analyzing a standard mixture of amino acids. High reproducibility of the sequential CE analysis was demonstrated with RSD values (n = 20) of 2.23, 2.57, and 0.70% for peak heights, peak areas, and migration times, respectively, and the LOD of 5.0 μM (for asparagine) and 2.0 μM (for aspartic acid) were obtained. With the application of the OG-UV/vis CE analysis, sequential online CE enzyme assay of L-asparaginase-catalyzed enzyme reaction was carried out by automatically and continuously monitoring the substrate consumption and the product formation every 12 s from the beginning to the end of the reaction. The Michaelis constants for the reaction were obtained and were found to be in good agreement with the results of traditional off-line enzyme assays. The study demonstrated the feasibility and reliability of integrating the OG injection with UV/vis detection for sequential online CE analysis, which could be of potential value for online monitoring various chemical reaction and bioprocesses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quantifying CO2 Emissions from Individual Power Plants using OCO-2 Observations
NASA Astrophysics Data System (ADS)
Nassar, R.; Hill, T. G.; McLinden, C. A.; Wunch, D.; Jones, D. B. A.; Crisp, D.
2017-12-01
In order to better manage anthropogenic CO2 emissions, improved methods of quantifying emissions are needed at all spatial scales from the national level down to the facility level. Although the Orbiting Carbon Observatory 2 (OCO-2) satellite was not designed for monitoring power plant emissions, we show that in select cases, CO2 observations from OCO-2 can be used to quantify daily CO2 emissions from individual mid- to large-sized coal power plants by fitting the data to plume model simulations. Emission estimates for US power plants are within 1-13% of reported daily emission values enabling application of the approach to international sites that lack detailed emission information. These results affirm that a constellation of future CO2 imaging satellites, optimized for point sources, could be used for the Monitoring, Reporting and Verification (MRV) of CO2 emissions from individual power plants to support the implementation of climate policies.
Blankush, Joseph M; Freeman, Robbie; McIlvaine, Joy; Tran, Trung; Nassani, Stephen; Leitman, I Michael
2017-10-01
Modified Early Warning Scores (MEWS) provide real-time vital sign (VS) trending and reduce ICU admissions in post-operative patients. These early warning calculations classically incorporate oxygen saturation, heart rate, respiratory rate, systolic blood pressure, and temperature but have not previously included end-tidal CO2 (EtCO 2 ), more recently identified as an independent predictor of critical illness. These systems may be subject to failure when physiologic data is incorrectly measured, leading to false alarms and increased workload. This study investigates whether the implementation of automated devices that utilize ongoing vital signs monitoring and MEWS calculations, inclusive of a score for end-tidal CO 2 (EtCO 2 ), can be feasibly implemented on the general care hospital floor and effectively identify derangements in a post-operative patient's condition while limiting the amount of false alarms that would serve to increase provider workload. From July to November 2014, post-operative patients meeting the inclusion criteria (BMI > 30 kg/m 2 , history of obstructive sleep apnea, or the use of patient-controlled analgesia (PCA) or epidural narcotics) were monitored using automated devices that record minute-by-minute VS included in classic MEWS calculations as well as EtCO 2 . Automated messages via pagers were sent to providers for instances when the device measured elevated MEWS, abnormal EtCO 2 , and oxygen desaturations below 85 %. Data, including alarm and message details from the first 133 patients, were recorded and analyzed. Overall, 3.3 alarms and pages sounded per hour of monitoring. Device-only alarms sounded 2.7 times per hour-21 % were technical alarms. The remaining device-only alarms for concerning VS sounded 2.0/h, 70 % for falsely recorded VS. Pages for abnormal EtCO 2 sounded 0.4/h (82 % false recordings) while pages for low blood oxygen saturation sounded 0.1/h (55 % false alarms). 143 times (0.1 pages/h) the devices calculated a MEWS warranting a page (rise in MEWS by 2 or 5 or greater)-62 % were false scores inclusive of falsely recorded VS. An abnormal EtCO 2 value resulted in or added to an elevated MEWS score in 29 % of notifications, but 50 % of these included a falsely abnormal EtCO 2 value. To date, no adverse events have occurred. There were no statistically significant demographic, post-operative condition, or pre-existing comorbidity differences between patients who had a majority of true alarms from those who had mostly false-positive alarms. Although not statistically significant, the group of patients in whom automated MEWS suggested greater utility included those with a history of hypertension (p = 0.072) and renal disease (p = 0.084). EtCO 2 monitoring was more likely to be useful in patients with a history of type 2 diabetes, coronary artery disease, and obstructive sleep apnea (p < 0.05). These patients were also more likely to have been on a PCA post-operatively (p < 0.05). Overall, non-invasive physiologic monitoring incorporating an automated MEWS system, modified to include end-tidal CO2 can be feasibly implemented in a hospital ward. Further study is needed to evaluate its clinical utility, including an end-tidal CO 2 score, is feasibly implemented and can be useful in monitoring select post-operative patients for derangements in physiologic metrics. Like any other monitoring system, false alarms may occur at high rates. While further study is needed to determine the additive utility of EtCO 2 in MEWS calculations, this study suggests utility of EtCO 2 in select post-operative patients.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., operate, and maintain a CEMS to monitor CO and either O2 or CO2 according to the requirements in... program must be part of the maintenance plan for the engine. (j) If you own or operate a stationary SI...
Monitoring Concept for CO2 Storage at the Pilot Site Ketzin, Germany
NASA Astrophysics Data System (ADS)
Wipki, Mario; Liebscher, Axel; Lüth, Stefan; Ivanova, Alexandra; Möller, Fabian; Schmidt-Hattenberger, Cornelia; Rippe, Dennis; Zimmer, Martin; Szizybalski, Alexandra
2016-04-01
Between 2008 and 2013, the German Research Centre for Geosciences - GFZ has injected more than 67 kt of CO2 at the Pilot Site in Ketzin, 25 km west of Berlin. The CO2 was stored in porous sandstones of the Upper Triassic Stuttgart Formation at a depth of 630 to 650 m. In more than a decade, GFZ has developed and tested an extraordinary multi-monitoring concept for onshore CO2 storages which mainly comprises the following methods: Time-lapse 3D seismic surveying is the most commonly used method for imaging and monitoring a CO2-plume in the deep underground before, during and after the injection phase. Such campaigns require high logistical and financial efforts and can be realised only to a limited extent. At Ketzin, for instance, 3D-seismic repeat surveys were acquired using several thousand surface acquisition points and lasting over two or three months. Alternative approaches include permanently buried seismic receivers. Geoelectric measurements in Ketzin are mainly applied by using a permanent downhole electrode installation (Vertical Electrical Resistivity Array = VERA) which has been implemented in three wells behind the well casings. Measurements between 590 m to 735 m are constantly carried out covering the vertical thickness of the entire CO2 storage horizon. Valuable results were achieved by a combination of inhole, crosshole and surface downhole measurements which has been carried out with appropriate acquisition geometries. For focused areas around monitoring wells, geoelectric methods may support and supplement information from seismic surveys. Borehole monitoring of pressure and temperature are generally indispensable for every underground gas storage type. In Ketzin, a remote monitoring system for all wells has been installed that constantly provides the operators with values for date, time, downhole and wellhead pressure, depth, and temperature. Moreover, all wellheads are checked weekly during onsite inspections. Samples for chemical analysis are taken in regular intervals from an observation well. With a total depth of 418 m, the well reaches the natural brine filled sandstones of the Triassic Exter Formation which represents the layer straight upon the caprock of the CO2 reservoir. Fluid samples are being analysed for stable carbon isotopes δ13C, dissolved organic carbon (DIC) and pH. Any significant intrusion of CO2 into this aquifer would cause distinct anomalies and trigger alarm conditions. Another regularly applied monitoring method in Ketzin is the measurement of soil CO2 flux. Natural CO2 flux is generated by the respiration of roots and soil organisms and the decomposition of organic matter. Both processes very much depend on the seasons respectively on the soil temperature. Outliers of the natural background range could indicate a leakage in the reservoir.
Jia, Shuqin; Jia, Yongning; Weeks, Hoi Ping; Ruge, Fiona; Feng, Xuemin; Ma, Ruiting; Ji, Jiafu; Ren, Jianjun; Jiang, Wen G
2014-05-01
WAVE2 plays a crucial role in actin polymerisation and cell migration. We aimed to investigate the expression and cellular functions of WAVE2 in human gastric cancer (GC). The level of WAVE2 was determined using quantitative PCR (Q-PCR) in a cohort of human gastric tissues. Expression of WAVE2, ARP2, NWASP, ROCK1 and ROCK2 was examined using RT-PCR in paired tissues. WAVE2 and ARP2 protein co-expression was examined. Anti-WAVE2 transgene ribozymes were constructed and transiently transfected into human GC cells. Down-regulation of WAVE2 expression in GC was significantly correlated with lymph node metastasis. WAVE2 was positively correlated with E-cadherin and negatively with TWIST. Immunohistochemically, WAVE2 and ARP2 were not co-expressed in serial mirror sections. In vitro, WAVE2 knockdown was shown to increase cell motility, whilst ROCK inhibitor treatment reduced this effect in HGC27 cells. WAVE2 is down-regulated in GC and loses its metastatic role in GC. Knockdown of WAVE2 could increase metastatic potential by promoting the growth, invasiveness, motility, adhesiveness and suppressing EMT (epithelial-mesenchymal transition) of GC cells.
The Social and Economic Significance of Human Migration in the Western Region. Bulletin 859.
ERIC Educational Resources Information Center
Knop, Edward, Comp.; And Others
Because migration trends in the West and their consequences have sometimes served as indicators of what other regions can expect, it is important that such trends and effects be monitored and analyzed. This bulletin describes patterns of migration, assesses individual and family and social considerations in western migration, and discusses policy…
A Study on Seismic Hazard Evaluation at the Nagaoka CO2 Storage Site, Japan
NASA Astrophysics Data System (ADS)
Horikawa, S.
2015-12-01
RITE carried out the first Japanese pilot-scale CO2 sequestration project from July, 2003 to January, 2005 in Nagaoka City.Supercritical CO2 was injected into an onshore saline aquifer at a depth of 1,100m. CO2 was injected at a rate of 10,400 tonnes. 'Mid Niigata Prefecture Earthquake in 2004' (Mw6.6) and 'The Niigataken Chuetsu-oki Earthquake in 2007' (Mw6.6) occurred during the CO2 injection-test and after the completion of injection-test. Japan is one of the world's major countries with frequent earthquakes.This paper presents a result of seismic response analysis, and reports of seismic hazard evaluation of a reservoir and a caprock. In advance of dynamic response analysis, the earthquake motion recorded on the earth surface assumed the horizontally layer model, and set up the input wave from a basement layer by SHAKE ( = One-Dimensional Seismic Response Analysis). This wave was inputted into the analysis model and the equation of motion was solved using the direct integral calculus by Newmark Beta Method. In Seismic Response Analysis, authors have used Multiple Yield Model (MYM, Iwata, et al., 2013), which can respond also to complicated geological structure. The intensity deformation property of the foundation added the offloading characteristic to the composition rule of Duncan-Chang model in consideration of confining stress dependency, and used for and carried out the nonlinear repetition model. And the deformation characteristic which made it depend on confining stress with the cyclic loadings and un-loadings, and combined Mohr-Coulomb's law as a strength characteristic.The maximum dynamic shearing strain of caprock was generated about 1.1E-04 after the end of an earthquake. Although the dynamic safety factor was 1.925 on the beginning, after the end of an earthquake fell 0.05 point. The dynamic safety factor of reservoir fell to 1.20 from 1.29. As a result of CO2 migration monitoring by the seismic cross-hole tomography, CO2 has stopped in the reservoir through two earthquakes till the present after injection, and the leak is not accepted till the present. By the result of seismic response simulation, it turned out that the stability of the foundation is not spoiled after the earthquake.
Afshar-Mohajer, Nima; Zuidema, Christopher; Sousan, Sinan; Hallett, Laura; Tatum, Marcus; Rule, Ana M; Thomas, Geb; Peters, Thomas M; Koehler, Kirsten
2018-02-01
Development of an air quality monitoring network with high spatio-temporal resolution requires installation of a large number of air pollutant monitors. However, state-of-the-art monitors are costly and may not be compatible with wireless data logging systems. In this study, low-cost electro-chemical sensors manufactured by Alphasense Ltd. for detection of CO and oxidative gases (predominantly O 3 and NO 2 ) were evaluated. The voltages from three oxidative gas sensors and three CO sensors were recorded every 2.5 sec when exposed to controlled gas concentrations in a 0.125-m 3 acrylic glass chamber. Electro-chemical sensors for detection of oxidative gases demonstrated sensitivity to both NO 2 and O 3 with similar voltages recorded when exposed to equivalent environmental concentrations of NO 2 or O 3 gases, when evaluated separately. There was a strong linear relationship between the recorded voltages and target concentrations of oxidative gases (R 2 > 0.98) over a wide range of concentrations. Although a strong linear relationship was also observed for CO concentrations below 12 ppm, a saturation effect was observed wherein the voltage only changes minimally for higher CO concentrations (12-50 ppm). The nonlinear behavior of the CO sensors implied their unsuitability for environments where high CO concentrations are expected. Using a manufacturer-supplied shroud, sensors were tested at 2 different flow rates (0.25 and 0.5 Lpm) to mimic field calibration of the sensors with zero air and a span gas concentration (2 ppm NO2 or 15 ppm CO). As with all electrochemical sensors, the tested devices were subject to drift with a bias up to 20% after 9 months of continuous operation. Alphasense CO sensors were found to be a proper choice for occupational and environmental CO monitoring with maximum concentration of 12 ppm, especially due to the field-ready calibration capability. Alphasense oxidative gas sensors are usable only if it is valuable to know the sum of the NO 2 and O 3 concentrations.
Storm Driven Upwelling Responsible for pCO2-rich Water Intrusion in the South Atlantic Bight
NASA Astrophysics Data System (ADS)
Noakes, S.; Gledhill, D. K.
2016-02-01
Gray's Reef National Marine Sanctuary (GRNMS) is located approximately 20 miles offshore Georgia along the inner to middle shelf of the South Atlantic Bight (SAB). The University of Georgia (UGA) and the Pacific Marine Environmental Lab have maintained a high resolution pCO2 system for almost a decade on the National Data Buoy Center's buoy moored at GRNMS. To support the surface monitoring and set the stage for benthic monitoring at GRNMS, UGA and GRNMS have established a seafloor observatory that monitors pCO2, pH and water quality parameters. Traditional thought had held that given the relatively shallow water depth at GRNMS, the pCO2 measured on the surface could be extrapolated to the seafloor and utilized to monitor the benthic community. However, seafloor pCO2 data collected to date have revealed unusual episodes of subsurface pCO2-rich water moving through GRNMS that had not been previously identified by surface monitoring. Many of these events correspond with major storms that have either formed off the SAB or passed nearby GRNMS. Based on the surface data collected to date, temperature driven seasonal pCO2 changes occur naturally on an annual scale in the SAB which also affects the pH. However, the storms appear to have induced upwelling of pCO2-rich water from the deep Atlantic Ocean pushing it inward over the long continental shelf towards GRNMS. The result of the upwelling is a sharp increase of subsurface pCO2 lasting only days to weeks as compared to the seasonal cycle. It is part of the natural weather patterns for storms to form off the SAB or pass nearby, but depending on if the storm frequency increases due to global climate change, this process may become more of an impact on the benthic community. How this affects the benthic community has yet to be determined, but it is clear that they have adapted to seasonal fluctuations for survival. These upwellings are obviously adding to the SAB total carbon budget and affecting the benthic water quality, but to what extent have yet to be determined.
Increasing CO2 flux at Pisciarelli, Campi Flegrei, Italy
NASA Astrophysics Data System (ADS)
Queißer, Manuel; Granieri, Domenico; Burton, Mike; Arzilli, Fabio; Avino, Rosario; Carandente, Antonio
2017-09-01
The Campi Flegrei caldera is located in the metropolitan area of Naples (Italy) and has been undergoing different stages of unrest since 1950, evidenced by episodes of significant ground uplift followed by minor subsidence, increasing and fluctuating emission strengths of water vapor and CO2 from fumaroles, and periodic seismic crises. We deployed a scanning laser remote-sensing spectrometer (LARSS) that measured path-integrated CO2 concentrations in the Pisciarelli area in May 2017. The resulting mean CO2 flux is 578 ± 246 t d-1. Our data suggest a significant increase in CO2 flux at this site since 2015. Together with recent geophysical observations, this suggests a greater contribution of the magmatic source to the degassing and/or an increase in permeability at shallow levels. Thanks to the integrated path soundings, LARSS may help to give representative measurements from large regions containing different CO2 sources, including fumaroles, low-temperature vents, and degassing soils, helping to constrain the contribution of deep gases and their migration mechanisms towards the surface.
NASA Astrophysics Data System (ADS)
Szizybalski, Alexandra; Zimmer, Martin; Pilz, Peter; Liebscher, Axel
2017-04-01
Under the coordination of the GFZ German Research Centre for Geosciences the complete life-cycle of a geological storage site for CO2 has been investigated and studied in detail over the past 12 years at Ketzin near Berlin, Germany. The test site is located at the southern flank of an anticlinal structure. Beginning with an exploration phase in 2004, drilling of the first three wells took place in 2007. From June 2008 to August 2013 about 67 kt of CO2 were injected into Upper Triassic sandstones at a depth of 630 to 650 m overlain by more than 165 m of shaley cap rocks. A comprehensive operational and scientific monitoring program forms the central part of the Ketzin project targeting at the reservoir itself, its overburden or above-zone and the surface. The surface monitoring is done by continuous soil CO2 flux measurements. These already started in 2005, more than three years prior to the injection phase using a survey chamber from LI-COR Inc. Twenty sampling locations were selected in the area of the anticline covering about 3 x 3 km. In order to obtain information on seasonal trends, measurements are performed at least once a month. The data set obtained prior to the injection serves as a basis for comparison with all further measurements during the injection and storage operations [Zimmer et al., 2010]. To refine the monitoring network, eight automatic, permanent soil CO2 flux stations were additionally installed in 2011 in the direct vicinity of the boreholes. Using this system, the CO2 soil flux is measured on an hourly basis. Over the whole monitoring time, soil temperature and moisture are recorded simultaneously and soil samples down to 70 cm depth were studied for their structure, carbon and nitrogen content. ver the whole monitoring time. Both, diurnal and seasonal flux variations can be detected and hence, provide a basis for interpretation of the measured data. Detailed analysis of the long-term monitoring at each station clearly reveals the influence of the soil composition. As most of the sampling positions are located next to agricultural roads and fields, the use of chemicals and harvesting may have an influence on the soil structure and the biology. Soil temperature, rain events and dry periods additionally affect the CO2 flux. Moreover, the microbial controlled increased CO2 production in early fall is also observed to depend on the actual location. Annual mean values of CO2 fluxes range from 10 to 82 t ha-1 a-1. As the CO2 flux measurements significantly reflect the specific site conditions, which can vary locally and over time, long-term trends must be carefully interpreted. Hence, complementary measurements of the soil gas composition were performed at selected locations. Zimmer, M., Pilz, P., Erzinger, J. (2011): Long-term surface carbon dioxide flux monitoring at the Ketzin carbon dioxide storage test site. Environmental Geosciences, 18, 119-130, doi:10.1306/eg.11181010017.
NASA Astrophysics Data System (ADS)
Park, Yongchan; Choi, Byoungyoung; Shinn, Youngjae
2015-04-01
Captured CO2 streams contain various levels of impurities which vary depending on the combustion technology and CO2 sources such as a power plant and iron and steel production processes. Common impurities or contaminants are non-condensable gases like nitrogen, oxygen and hydrogen, and are also air pollutants like sulphur and nitrogen oxides. Specifically for geological storage, the non-condensable gases in CO2 streams are not favourable because they can decrease density of the injected CO2 stream and can affect buoyancy of the plume. However, separation of these impurities to obtain the CO2 purity higher than 99% would greatly increase the cost of capture. In 2010, the Korean Government announced a national framework to develop CCS, with the aim of developing two large scale integrated CCS projects by 2020. In order to achieve this goal, a small scale injection project into Pohang basin near shoreline has begun which is seeking the connection with a capture project, especially at a steel company. Any onshore sites that are suitable for the geological storage are not identified by this time so we turned to the shallow offshore Pohang basin where is close to a large-scale CO2 source. Currently, detailed site surveys are being undertaken and the collected data were used to establish a geological model of the basin. In this study, we performed preliminary modelling study on the effect of impurities on the geological storage using the geological model. Using a potential compositions of impurities in CO2 streams from the steel company, we firstly calculated density and viscosity of CO2 streams as a function of various pressure and temperature conditions with CMG-WINPROP and then investigated the effect of the non-condensable gases on storage capacity, injectivity and plume migrations with CMG-GEM. Further simulations to evaluate the areal and vertical sweep efficiencies by impurities were perform in a 2D vertical cross section as well as in a 3D simulation grid. Also, pressure increases caused by the impurities and the partitioning between CO2 and other non-condensable gases were explored. In addition, the possibility of using these contaminants as a tracer were examined.
Eleniste, Pierre P.; Patel, Vruti; Posritong, Sumana; Zero, Odette; Largura, Heather; Cheng, Ying-Hua; Himes, Evan R.; Hamilton, Matthew; Baughman, Jenna; Kacena, Melissa A.; Bruzzaniti, Angela
2016-01-01
Osteoblast differentiation and migration are necessary for bone formation during bone remodeling. Mice lacking the proline-rich tyrosine kinase Pyk2 (Pyk2-KO) have increased bone mass, in part due to increased osteoblast proliferation. Megakaryocytes (MKs), the platelet-producing cells, also promote osteoblast proliferation in vitro and bone-formation in vivo via a pathway that involves Pyk2. In the current study, we examined the mechanism of action of Pyk2, and the role of MKs, on osteoblast differentiation and migration. We found that Pyk2-KO osteoblasts express elevated alkaline phosphatase (ALP), type I collagen and osteocalcin mRNA levels as well as increased ALP activity and mineralization, confirming that Pyk2 negatively regulates osteoblast function. Since Pyk2 Y402 phosphorylation is important for its catalytic activity and for its protein-scaffolding functions, we expressed the phosphorylation-mutant (Pyk2Y402F) and kinase-mutant (Pyk2K457A) in Pyk2-KO osteoblasts. Both Pyk2Y402F and Pyk2K457A reduced ALP activity, whereas only kinase-inactive Pyk2K457A inhibited Pyk2-KO osteoblast migration. Consistent with a role for Pyk2 on ALP activity, co-culture of MKs with osteoblasts led to a decrease in the level of phosphorylated Pyk2 (pY402) as well as a decrease in ALP activity. Although Pyk2-KO osteoblasts exhibited increased migration compared to WT osteoblasts, Pyk2 expression was not required for the ability of MKs to stimulate osteoblast migration. Together, these data suggest that osteoblast differentiation and migration are inversely regulated by MKs via distinct Pyk2-dependent and independent signaling pathways. Novel drugs that distinguish between the kinase-dependent or protein-scaffolding functions of Pyk2 may provide therapeutic specificity for the control of bone-related diseases. PMID:26552846
NASA Astrophysics Data System (ADS)
Kogure, Tetsuya; Zhang, Yi; Nishizawa, Osamu; Xue, Ziqiu
2018-05-01
Relative permeability curves and flow mechanisms of CO2 and brine in Berea sandstone were investigated during a two-phase flow imbibition process, where CO2 saturation in the rock decreased from 55 per cent to 9 per cent by stepwise decrease of CO2/brine injection ratios. Total fluid flow velocity was 4.25 × 10-6 m/s, corresponding to the capillary number of order ˜10-8 for CO2 flow. The relative permeability curves showed a slight hysteresis compared to those during the drainage process. Local CO2 saturation and the differential pressure showed temporal fluctuations when the average differential pressure showed constant values or very small trends. The fluctuations in local CO2 saturation correlate with local porosity distributions. The differential pressure between the inlet and outlet ends showed the largest fluctuation when the CO2/brine ratio equals to one. A final brine-only injection resulted in more CO2 trapped within low porosity zones. These results suggest important roles of ganglion dynamics in the low flow rate ranges, where fluid pathways undergo repetitive brine snap-off and coalescence of CO2 ganglia that causes morphological changes in distributions of CO2 pathways.
NASA Astrophysics Data System (ADS)
Ghosh, Ranjana
2017-12-01
Causes and effects of global warming have been highly debated in recent years. Nonetheless, injection and storage of CO2 (CO2 sequestration) in the subsurface is becoming increasingly accepted as a viable tool to reduce the amount of CO2 from the atmosphere, which is a primary contributor to global warming. Monitoring of CO2 movement with time is essential to ascertain that sequestration is not hazardous. A method is proposed here to appraise CO2 saturation from seismic attributes using differential effective medium theory modified for pressure (PDEM). The PDEM theory accounts pressure-induced fluid flow between cavities, which is a very important investigation in the CO2-sequestered regime of heterogeneous microstructure. The study area is the lower Tuscaloosa formation at Cranfield in Mississippi, USA, which is one of the active enhanced oil recovery (EOR), and CO2 capture and storage (CCS) fields. Injection well (F1) and two observation wells (F2 and F3) are present close (within 112 m) to the detailed area of study for this region. Since the three wells are closely situated, two wells, namely injection well F1 and the furthest observation well F3, have been focused on to monitor CO2 movement. Time-lapse (pre- and post-injection) log, core and surface seismic data are used in the quantitative assessment of CO2 saturation from the PDEM theory. It has been found that after approximately 9 months of injection, average CO2 saturations in F1 and F3 are estimated as 50% in a zone of thickness 25 m at a depth of 3 km.
Harigae, M; Hirose, Y; Gamo, M; Hirose, M; Fujiwara, C; Matsuo, K
1999-03-01
We applied a continuous intra-arterial blood gas monitoring system (Paratrend 7) to a patient with pulmonary alveolar proteinosis during pulmonary lavage. Lavage was performed under general anesthesia with one lung ventilation. We inserted the sensor of Patatrend 7 through a 20 G catheter into the radial artery, and monitored pH, PaCO2 and PaO2 continuously throughout the procedure. SpO2 and EtCO2 were also monitored. Saline 1000-1500 ml was instilled and drained repeatedly by volume limited methods. PaO2 values by Paratrend 7 increased during instillation and decreased during drainage of the irrigating fluid. In contrast, PaCO2 value by Paratrend 7 decreased slightly during instillation and increased during drainage. The change of SpO2 was almost the same as that by Paratrend 7, but the response time of pulse oxymetry was a little quicker than Paratrend 7. During the lavage procedure, respiratory and circulatory condition changed very rapidly, and it is necessary to monitor blood gas change intensively. Paratrend 7 is useful as a perioperative monitoring system, but pulse oxymetry might be sufficient during pulmonary lavage considering its cost.
In vitro effects of Apixaban on 5 different cancer cell lines
Guasti, Luigina; Moretto, Paola; Vigetti, Davide; Ageno, Walter; Dentali, Francesco; Maresca, Andrea M.; Campiotti, Leonardo; Grandi, Anna M.; Passi, Alberto
2017-01-01
Background Cancer is associated with hypercoagulability. However, several data suggest that anticoagulant drugs may have an effect on tumor development and progression mediated by both coagulation dependent processes and non-coagulation dependent processes. Therefore, we investigated the in vitro effects of Apixaban on cell proliferation, mortality, cell migration, gene expression and matrix metalloproteinase in 5 different cancer cell lines. Methods The following cancer cell lines, and 2 normal fibroblast cultures (lung and dermal fibroblasts), were studied: OVCAR3 (ovarian cancer), MDA MB 231 (breast cancer), CaCO-2 (colon cancer), LNCaP (prostate cancer) and U937 (histiocytic lymphoma). Proliferation and cell mortality were assessed in control cells and Apixaban treated cultures (dose from 0.1 to 5 μg/ml, 0 to 96-h). Necrosis/Apoptosis (fluorescence microscopy), cell migration (24-h after scratch test), matrix metalloproteinase (MMP) activity and mRNA expression (RT PCR) of p16, p21, p53 and HAS were also assessed. Results High-dose (5 μg/ml) Apixaban incubation was associated with a significantly reduced proliferation in 3 cancer cell lines (OVCAR3, CaCO-2 and LNCaP) and with increased cancer cell mortality in all, except LNCaP, cancer lines. Apoptosis seems to account for the increased mortality. The migration capacity seems to be impaired after high-dose Apixaban incubation in OVCAR3 and CaCO-2 cells. Data on mRNA expression suggest a consistent increase in tumor suppression gene p16 in all cell lines. Conclusions Our data suggest that high-dose Apixaban may be able to interfere with cancer cell in vitro, reducing proliferation and increasing cancer cell mortality through apoptosis in several cancer cell lines. PMID:29023465
Hyperspectral detection of a subsurface CO2 leak in the presence of water stressed vegetation.
Bellante, Gabriel J; Powell, Scott L; Lawrence, Rick L; Repasky, Kevin S; Dougher, Tracy
2014-01-01
Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool.
Hyperspectral Detection of a Subsurface CO2 Leak in the Presence of Water Stressed Vegetation
Bellante, Gabriel J.; Powell, Scott L.; Lawrence, Rick L.; Repasky, Kevin S.; Dougher, Tracy
2014-01-01
Remote sensing of vegetation stress has been posed as a possible large area monitoring tool for surface CO2 leakage from geologic carbon sequestration (GCS) sites since vegetation is adversely affected by elevated CO2 levels in soil. However, the extent to which remote sensing could be used for CO2 leak detection depends on the spectral separability of the plant stress signal caused by various factors, including elevated soil CO2 and water stress. This distinction is crucial to determining the seasonality and appropriateness of remote GCS site monitoring. A greenhouse experiment tested the degree to which plants stressed by elevated soil CO2 could be distinguished from plants that were water stressed. A randomized block design assigned Alfalfa plants (Medicago sativa) to one of four possible treatment groups: 1) a CO2 injection group; 2) a water stress group; 3) an interaction group that was subjected to both water stress and CO2 injection; or 4) a group that received adequate water and no CO2 injection. Single date classification trees were developed to identify individual spectral bands that were significant in distinguishing between CO2 and water stress agents, in addition to a random forest classifier that was used to further understand and validate predictive accuracies. Overall peak classification accuracy was 90% (Kappa of 0.87) for the classification tree analysis and 83% (Kappa of 0.77) for the random forest classifier, demonstrating that vegetation stressed from an underground CO2 leak could be accurately discerned from healthy vegetation and areas of co-occurring water stressed vegetation at certain times. Plants appear to hit a stress threshold, however, that would render detection of a CO2 leak unlikely during severe drought conditions. Our findings suggest that early detection of a CO2 leak with an aerial or ground-based hyperspectral imaging system is possible and could be an important GCS monitoring tool. PMID:25330232
GOSAT/TANSO-FTS Measurement of Volcanic and Geothermal CO2 Emissions
NASA Astrophysics Data System (ADS)
Schwandner, Florian M.; Carn, Simon A.; Newhall, Christopher G.
2010-05-01
Approximately one tenth of the Earth's human population lives in direct reach of volcanic hazards. Being able to provide sufficiently early and scientifically sound warning is a key to volcanic hazard mitigation. Quantitative time-series monitoring of volcanic CO2 emissions will likely play a key role in such early warning activities in the future. Impending volcanic eruptions or any potentially disastrous activity that involves movement of magma in the subsurface, is often preceded by an early increase of CO2 emissions. Conventionally, volcanic CO2 monitoring is done either in campaigns of soil emission measurements (grid of one-time measuring points) that are labor intensive and slow, or by ground-based remote FTIR measurements in emission plumes. These methods are not easily available at all sites of potential activity and prohibitively costly to employ on a large number of volcanoes. In addition, both of these ground-based approaches pose a significant risk to the workers conducting these measurements. Some aircraft-based measurements have been conducted as well in the past, however these are limited by the usually meager funding situation of individual observatories, the hazard such flights pose to equipment and crew, and by the inaccessibility of parts of the plume due to ash hazards. The core motivation for this study is therefore to develop a method for volcanic CO2 monitoring from space that will provide sufficient coverage, resolution, and data quality for an application to quantitative time series monitoring and correlation with other available datasets, from a safe distance and with potentially global reach. In summary, the purpose of the proposed research is to quantify volcanic CO2 emissions using satellite-borne observations. Quantitative estimates will be useful for warning of impending volcanic eruptions, and assessing the contribution of volcanic CO2 to global GHG. Our approach encompasses method development and testing for the detection of volcanic CO2 anomalies using GOSAT and correlation with Aura/OMI, AIRS, and ASTER determined SO2 fluxes and ground based monitoring of CO2 and other geophysical and geochemical parameters. This will provide the ground work for future higher spatial resolution satellite missions. This is a joint effort from two GOSAT-IBUKI data application projects: "Satellite-Borne Quantification of Carbon Dioxide Emissions from Volcanoes and Geothermal Areas" (PI Schwandner), and "Application of GOSAT/TANSO-FTS to the Measurement of Volcanic CO2 Emissions" (PI Carn).
NASA Astrophysics Data System (ADS)
Wolfe, A. L.; Wikin, R. T.
2017-12-01
We evaluated water quality characteristics in the northern Raton Basin of Colorado and documented the response of the Poison Canyon aquifer system several years after upward migration of methane gas occurred from the deeper Vermejo Formation coalbed production zone. Over a 17-month study period, water samples were obtained from domestic water wells and monitoring wells located within the impacted area, and analyzed for 245 constituents, including organic compounds, nutrients, major and trace elements, dissolved gases, and isotopic tracers for carbon, sulfur, oxygen, and hydrogen. Multiple lines of evidence suggest that sulfate-dependent methane biodegradation, which involves the oxidation of methane (CH4) to carbon dioxide (CO2) using sulfate (SO42-) as the terminal electron acceptor, is occurring: (i) consumption of methane and sulfate and production of sulfide and bicarbonate, (ii) methane loss coupled to production of higher molecular weight (C2+) gaseous hydrocarbons, (iii) patterns of 13C enrichment and depletion in methane and dissolved inorganic carbon, and (iv) a systematic shift in sulfur and oxygen isotope ratios of sulfate, indicative of microbial sulfate reduction. Groundwater-methane attenuation is linked to the production of dissolved sulfide, and elevated dissolved sulfide concentrations represent an undesirable secondary water quality impact. The biogeochemical response of the aquifer system has not mobilized naturally occurring trace metals, including arsenic, chromium, cobalt, nickel, and lead, likely due to the microbial production of hydrogen sulfide, which favors stabilization of metals in aquifer solids.
NASA Astrophysics Data System (ADS)
Haar, K. K.; Balch, R. S.; Lee, S. Y.
2017-12-01
The CarbonSAFE Rocky Mountain project team is in the initial phase of investigating the regulatory, financial and technical feasibility of commercial-scale CO2 capture and storage from two coal-fired power plants in the northwest region of the San Rafael Swell, Utah. The reservoir interval is the Jurassic Navajo Sandstone, an eolian dune deposit that at present serves as the salt water disposal reservoir for Ferron Sandstone coal-bed methane production in the Drunkards Wash field and Buzzard Bench area of central Utah. In the study area the Navajo sandstone is approximately 525 feet thick and is at an average depth of about 7000 feet below the surface. If sufficient porosity and permeability exist, reservoir depth and thickness would provide storage for up to 100,000 metric tonnes of CO2 per square mile, based on preliminary estimates. This reservoir has the potential to meet the DOE's requirement of having the ability to store at least 50 million metric tons of CO2 and fulfills the DOE's initiative to develop protocols for commercially sequestering carbon sourced from coal-fired power plants. A successful carbon storage project requires thorough structural and stratigraphic characterization of the reservoir, seal and faults, thereby allowing the creation of a comprehensive geologic model with subsequent simulations to evaluate CO2/brine migration and long-term effects. Target formation lithofacies and subfacies data gathered from outcrop mapping and laboratory analysis of core samples were developed into a geologic model. Synthetic seismic was modeled from this, allowing us to seismically characterize the lithofacies of the target formation. This seismic characterization data was then employed in the interpretation of 2D legacy lines which provided stratigraphic and structural control for more accurate model development of the northwest region of the San Rafael Swell. Developing baseline interpretations such as this are crucial toward long-term carbon storage monitoring.
40 CFR 75.35 - Missing data procedures for CO2.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Missing data procedures for CO2. 75.35... (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.35 Missing data... the 720 quality-assured monitor operating hours preceding implementation of the standard missing data...
40 CFR 75.35 - Missing data procedures for CO2.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Missing data procedures for CO2. 75.35... (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.35 Missing data... the 720 quality-assured monitor operating hours preceding implementation of the standard missing data...
40 CFR 75.35 - Missing data procedures for CO 2.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Missing data procedures for CO 2. 75... (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.35 Missing data... the 720 quality-assured monitor operating hours preceding implementation of the standard missing data...
40 CFR 75.35 - Missing data procedures for CO2.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Missing data procedures for CO2. 75.35... (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.35 Missing data... the 720 quality-assured monitor operating hours preceding implementation of the standard missing data...
40 CFR 75.35 - Missing data procedures for CO 2.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 17 2014-07-01 2014-07-01 false Missing data procedures for CO 2. 75... (CONTINUED) CONTINUOUS EMISSION MONITORING Missing Data Substitution Procedures § 75.35 Missing data... the 720 quality-assured monitor operating hours preceding implementation of the standard missing data...
Proactive Fault Tolerance for HPC with Xen Virtualization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagarajan, Arun Babu; Mueller, Frank; Engelmann, Christian
2007-01-01
with thousands of processors. At such large counts of compute nodes, faults are becoming common place. Current techniques to tolerate faults focus on reactive schemes to recover from faults and generally rely on a checkpoint/restart mechanism. Yet, in today's systems, node failures can often be anticipated by detecting a deteriorating health status. Instead of a reactive scheme for fault tolerance (FT), we are promoting a proactive one where processes automatically migrate from unhealthy nodes to healthy ones. Our approach relies on operating system virtualization techniques exemplied by but not limited to Xen. This paper contributes an automatic and transparent mechanismmore » for proactive FT for arbitrary MPI applications. It leverages virtualization techniques combined with health monitoring and load-based migration. We exploit Xen's live migration mechanism for a guest operating system (OS) to migrate an MPI task from a health-deteriorating node to a healthy one without stopping the MPI task during most of the migration. Our proactive FT daemon orchestrates the tasks of health monitoring, load determination and initiation of guest OS migration. Experimental results demonstrate that live migration hides migration costs and limits the overhead to only a few seconds making it an attractive approach to realize FT in HPC systems. Overall, our enhancements make proactive FT a valuable asset for long-running MPI application that is complementary to reactive FT using full checkpoint/ restart schemes since checkpoint frequencies can be reduced as fewer unanticipated failures are encountered. In the context of OS virtualization, we believe that this is the rst comprehensive study of proactive fault tolerance where live migration is actually triggered by health monitoring.« less
NASA Astrophysics Data System (ADS)
Herd, Rainer; Krause, Yvonne; Schafrik, Wlad
2013-04-01
Within the framework of the project "brine - CO2 storage in eastern Brandenburg" geophysical investigations are conducted by the German Research Center for Geoscience (GFZ), Potsdam and the Brandenburg University of Technology (BTU), Cottbus on different scales in order to investigate underground situations and evaluate methods suitable for a salinization early warning system. The research of BTU is focused on the distribution of underground structures up to a maximum depth of 200m. Of prevalent interest are the detection capabilities for near surface failing zones which might serve as favored pathways for brine migration and the status-quo of the freshwater-saltwater boundary. Geophysical investigations with the frequency domain electromagnetic (FDEM) and direct current (DC) geoelectric methods are qualified for the identification and monitoring of brine displacement as the measuring parameter is the resistivity/conductivity of the subsurface. In eastern Brandenburg the Oligocene Rupelian clay represents the barrier horizon separating the freshwater and saline aquifers. Due to postglacial processes this layer is locally reduced or totally eroded and might enhance upward brine migration during pressure increase. The areas of investigation were selected by known high fluid conductivity values (hydro chemical indication) and the potential presence of quaternary erosion channels in the Rupelian clay (geological indication). The geophysical results yield a vertical and horizontal resistivity/conductivity distribution. The interpretation is done by lithology profiles of nearby boreholes and correlation with fluid conductivities in groundwater wells. The results of FDEM and DC on coincident profiles are generally in accordance and show that both methods are suitable with DC geoelectrics supplementing a higher resolution close to the surface (max. 80m depth) and the electromagnetics adding coarser/less detailed conductivity information of the deeper underground (down to 200m depth).
Magneto-ionic control of interfacial magnetism
NASA Astrophysics Data System (ADS)
Bauer, Uwe; Yao, Lide; Tan, Aik Jun; Agrawal, Parnika; Emori, Satoru; Tuller, Harry L.; van Dijken, Sebastiaan; Beach, Geoffrey S. D.
2015-02-01
In metal/oxide heterostructures, rich chemical, electronic, magnetic and mechanical properties can emerge from interfacial chemistry and structure. The possibility to dynamically control interface characteristics with an electric field paves the way towards voltage control of these properties in solid-state devices. Here, we show that electrical switching of the interfacial oxidation state allows for voltage control of magnetic properties to an extent never before achieved through conventional magneto-electric coupling mechanisms. We directly observe in situ voltage-driven O2- migration in a Co/metal-oxide bilayer, which we use to toggle the interfacial magnetic anisotropy energy by >0.75 erg cm-2 at just 2 V. We exploit the thermally activated nature of ion migration to markedly increase the switching efficiency and to demonstrate reversible patterning of magnetic properties through local activation of ionic migration. These results suggest a path towards voltage-programmable materials based on solid-state switching of interface oxygen chemistry.
NASA Astrophysics Data System (ADS)
Klusman, R. W.
2002-12-01
Large-scale CO2 dioxide injection for purposes of enhanced oil recovery (EOR) has been operational at Rangely, Colorado since 1986. The Rangely field serves as an onshore prototype for CO2 sequestration in depleted fields by production of a valuable commodity which partially offsets infrastructure costs. The injection is at pressures considerably above hydrostatic pressure, enhancing the possibility for migration of buoyant gases toward the surface. Methane and CO2 were measured in shallow soil gas, deep soil gas, and as fluxes into the atmosphere in both winter and summer seasons. There were large seasonal variations in surface biological noise. The direct measurement of CH4 flux to the atmosphere gave an estimate of 400 metric tonnes per year over the 78 km2 area, and carbon dioxide flux was between 170 and 3800 metric tonnes per year. Both stable carbon isotopes and carbon-14 were used in constructing these estimates. Computer modeling of the unsaturated zone migration, and of methanotrophic oxidation rates suggests a large portion of the CH4 is oxidized in the summer, and at a much lower rate in the winter. However, deep-sourced CH4 makes a larger contribution to the atmosphere than CO2, in terms of GWP. The 23+ million tonnes of carbon dioxide that have been injected at Rangely are largely stored as dissolved CO2 and a lesser amount as bicarbonate. Scaling problems, as a result of acid gas dissolution of carbonate cement, and subsequent precipitation of CaSO4 will be an increasing problem as the system matures. Evidence for mineral sequestration was not found in the scales. Ultimate injector and field capacities will be determined by mineral precipitation in the formation as it affects porosity and permeability.
McGuire, A.D.; Melillo, J.M.; Randerson, J.T.; Parton, W.J.; Heimann, Martin; Meier, R.A.; Clein, Joy S.; Kicklighter, D.W.; Sauf, W.
2000-01-01
Simulations by global terrestrial biogeochemical models (TBMs) consistently underestimate the concentration of atmospheric carbon dioxide (CO2) at high latitude monitoring stations during the nongrowing season. We hypothesized that heterotrophic respiration is underestimated during the nongrowing season primarily because TBMs do not generally consider the insulative effects of snowpack on soil temperature. To evaluate this hypothesis, we compared the performance of baseline and modified versions of three TBMs in simulating the seasonal cycle of atmospheric CO2 at high latitude CO2 monitoring stations; the modified version maintained soil temperature at 0 ??C when modeled snowpack was present. The three TBMs include the Carnegie-Ames-Stanford Approach (CASA), Century, and the Terrestrial Ecosystem Model (TEM). In comparison with the baseline simulation of each model, the snowpack simulations caused higher releases of CO2 between November and March and greater uptake of CO2 between June and August for latitudes north of 30??N. We coupled the monthly estimates of CO2 exchange, the seasonal carbon dioxide flux fields generated by the HAMOCC3 seasonal ocean carbon cycle model, and fossil fuel source fields derived from standard sources to the three-dimensional atmospheric transport model TM2 forced by observed winds to simulate the seasonal cycle of atmospheric CO2 at each of seven high latitude monitoring stations, in comparison to the CO2 concentrations simulated with the baseline fluxes of each TBM, concentrations simulated using the snowpack fluxes are generally in better agreement with observed concentrations between August and March at each of the monitoring stations. Thus, representation of the insulative effects of snowpack in TBMs generally improves simulation of atmospheric CO2 concentrations in high latitudes during both the late growing season and nongrowing season. These simulations highlight the global importance of biogeochemical processes during the nongrowing season in estimating carbon balance of ecosystems in northern high and temperate latitudes.
NASA Astrophysics Data System (ADS)
Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György
2017-04-01
Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios at seven potential CO2-storage areas have been modelled. The visualization of results has been automatized by R programming. The three types of models (equilibrium, kinetic batch and reactive transport) provide different type but overlapping information. All modelling output of both scenarios (CO2/brine) indicate the increase of ion-concentrations in the fresh water, which might exceed drinking water limit values. Transport models provide a possibility to identify the most suitable chemical parameter in the fresh water for leakage monitoring. This indicator parameter may show detectable and early changes even far away from the contamination source. In the CO2 models potassium concentration increase is significant and runs ahead of the other parameters. In the rock, the models indicate feldspar, montmorillonite, dolomite and illite dissolution whereas calcite, chlorite, kaolinite and silica precipitates, and in the case of CO2-inflow models, dawsonite traps a part of the leaking gas.
Willa, Christoph; Schmid, Alexander; Briand, Danick; Yuan, Jiayin; Koziej, Dorota
2017-08-02
We report a light, flexible, and low-power poly(ionic liquid)/alumina composite CO 2 sensor. We monitor the direct-current resistance changes as a function of CO 2 concentration and relative humidity and demonstrate fast and reversible sensing kinetics. Moreover, on the basis of the alternating-current impedance measurements we propose a sensing mechanism related to proton conduction and gas diffusion. The findings presented herein will promote the development of organic/inorganic composite CO 2 gas sensors. In the future, such sensors will be useful for numerous practical applications ranging from indoor air quality control to the monitoring of manufacturing processes.
New ground-based lidar enables volcanic CO2 flux measurements.
Aiuppa, Alessandro; Fiorani, Luca; Santoro, Simone; Parracino, Stefano; Nuvoli, Marcello; Chiodini, Giovanni; Minopoli, Carmine; Tamburello, Giancarlo
2015-09-01
There have been substantial advances in the ability to monitor the activity of hazardous volcanoes in recent decades. However, obtaining early warning of eruptions remains challenging, because the patterns and consequences of volcanic unrests are both complex and nonlinear. Measuring volcanic gases has long been a key aspect of volcano monitoring since these mobile fluids should reach the surface long before the magma. There has been considerable progress in methods for remote and in-situ gas sensing, but measuring the flux of volcanic CO2-the most reliable gas precursor to an eruption-has remained a challenge. Here we report on the first direct quantitative measurements of the volcanic CO2 flux using a newly designed differential absorption lidar (DIAL), which were performed at the restless Campi Flegrei volcano. We show that DIAL makes it possible to remotely obtain volcanic CO2 flux time series with a high temporal resolution (tens of minutes) and accuracy (<30%). The ability of this lidar to remotely sense volcanic CO2 represents a major step forward in volcano monitoring, and will contribute improved volcanic CO2 flux inventories. Our results also demonstrate the unusually strong degassing behavior of Campi Flegrei fumaroles in the current ongoing state of unrest.
In-Situ MVA of CO 2 Sequestration Using Smart Field Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohaghegh, Shahab D.
2014-09-01
Capability of underground carbon dioxide storage to confine and sustain injected CO 2 for a long period of time is the main concern for geologic CO 2 sequestration. If a leakage from a geological CO 2 sequestration site occurs, it is crucial to find the approximate amount and the location of the leak, in a timely manner, in order to implement proper remediation activities. An overwhelming majority of research and development for storage site monitoring has been concentrated on atmospheric, surface or near surface monitoring of the sequestered CO 2 . This study aims to monitor themore » integrity of CO 2 storage at the reservoir level. This work proposes developing in-situ CO 2 Monitoring and Verification technology based on the implementation of Permanent Down-hole Gauges (PDG) or “Smart Wells” along with Artificial Intelligence and Data Mining (AI&DM). The technology attempts to identify the characteristics of the CO 2 leakage by de-convolving the pressure signals collected from Permanent Down-hole Gauges (PDG). Citronelle field, a saline aquifer reservoir, located in the U.S. was considered as the basis for this study. A reservoir simulation model for CO 2 sequestration in the Citronelle field was developed and history matched. PDGs were installed, and therefore were considered in the numerical model, at the injection well and an observation well. Upon completion of the history matching process, high frequency pressure data from PDGs were generated using the history matched numerical model using different CO 2 leakage scenarios. Since pressure signal behaviors were too complicated to de-convolute using any existing mathematical formulations, a Machine Learning-based technology was introduced for this purpose. An Intelligent Leakage Detection System (ILDS) was developed as the result of this effort using the machine learning and pattern recognition technologies. The ILDS is able to detect leakage characteristics in a short period of time (less than a day from its occurrence) demonstrating the capability of the system in quantifying leakage characteristics subject to complex rate behaviors. The performance of ILDS is examined under different conditions such as multiple well leakages, cap rock leakage, availability of an additional monitoring well, presence of pressure drift and noise in the pressure sensor and uncertainty in the reservoir model.« less
NASA Astrophysics Data System (ADS)
Lin, Ye; Zhang, Haijiang; Jia, Xiaofeng
2018-03-01
For microseismic monitoring of hydraulic fracturing, microseismic migration can be used to image the fracture network with scattered microseismic waves. Compared with conventional microseismic location-based fracture characterization methods, microseismic migration can better constrain the stimulated reservoir volume regardless of the completeness of detected and located microseismic sources. However, the imaging results from microseismic migration may suffer from the contamination of other structures and thus the target fracture zones may not be illuminated properly. To solve this issue, in this study we propose a target-oriented staining algorithm for microseismic reverse-time migration. In the staining algorithm, the target area is first stained by constructing an imaginary velocity field and then a synchronized source wavefield only concerning the target structure is produced. As a result, a synchronized image from imaging with the synchronized source wavefield mainly contains the target structures. Synthetic tests based on a downhole microseismic monitoring system show that the target-oriented microseismic reverse-time migration method improves the illumination of target areas.
Warren, M A; Morbey, Y E
2012-09-01
Diel patterns of migration and migration speed were compared between reproductive timing phenotypes in female kokanee salmon Oncorhynchus nerka. Females of varying degrees of reproductive maturation were captured on their migration route to the Meadow Creek Spawning Channel (British Columbia, Canada), were tagged with passive-integrated transponders (PIT tags) and were subsequently monitored with stationary receivers. Females showed crepuscular migration timing, with approximately equal detections at dawn and dusk. In particular, peaks of movement were associated with the appearance of the sun over the mountains in the east and the disappearance of the sun over the mountains in the west. Over 25 m, migration speed was 1·0 body lengths (measured as fork length; L(F)) s(-1) and did not depend on maturation state. Over 3 km, migration speed was much slower (0·2-0·3 L(F) s(-1)) than over the short distance, with less mature females migrating more slowly than more mature females. Less mature females appeared to be in less of a hurry to reach breeding areas compared with more mature females. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Zimmerman, Naomi; Presto, Albert A.; Kumar, Sriniwasa P. N.; Gu, Jason; Hauryliuk, Aliaksei; Robinson, Ellis S.; Robinson, Allen L.; Subramanian, R.
2018-01-01
Low-cost sensing strategies hold the promise of denser air quality monitoring networks, which could significantly improve our understanding of personal air pollution exposure. Additionally, low-cost air quality sensors could be deployed to areas where limited monitoring exists. However, low-cost sensors are frequently sensitive to environmental conditions and pollutant cross-sensitivities, which have historically been poorly addressed by laboratory calibrations, limiting their utility for monitoring. In this study, we investigated different calibration models for the Real-time Affordable Multi-Pollutant (RAMP) sensor package, which measures CO, NO2, O3, and CO2. We explored three methods: (1) laboratory univariate linear regression, (2) empirical multiple linear regression, and (3) machine-learning-based calibration models using random forests (RF). Calibration models were developed for 16-19 RAMP monitors (varied by pollutant) using training and testing windows spanning August 2016 through February 2017 in Pittsburgh, PA, US. The random forest models matched (CO) or significantly outperformed (NO2, CO2, O3) the other calibration models, and their accuracy and precision were robust over time for testing windows of up to 16 weeks. Following calibration, average mean absolute error on the testing data set from the random forest models was 38 ppb for CO (14 % relative error), 10 ppm for CO2 (2 % relative error), 3.5 ppb for NO2 (29 % relative error), and 3.4 ppb for O3 (15 % relative error), and Pearson r versus the reference monitors exceeded 0.8 for most units. Model performance is explored in detail, including a quantification of model variable importance, accuracy across different concentration ranges, and performance in a range of monitoring contexts including the National Ambient Air Quality Standards (NAAQS) and the US EPA Air Sensors Guidebook recommendations of minimum data quality for personal exposure measurement. A key strength of the RF approach is that it accounts for pollutant cross-sensitivities. This highlights the importance of developing multipollutant sensor packages (as opposed to single-pollutant monitors); we determined this is especially critical for NO2 and CO2. The evaluation reveals that only the RF-calibrated sensors meet the US EPA Air Sensors Guidebook recommendations of minimum data quality for personal exposure measurement. We also demonstrate that the RF-model-calibrated sensors could detect differences in NO2 concentrations between a near-road site and a suburban site less than 1.5 km away. From this study, we conclude that combining RF models with carefully controlled state-of-the-art multipollutant sensor packages as in the RAMP monitors appears to be a very promising approach to address the poor performance that has plagued low-cost air quality sensors.
The CarbFix Pilot Project in Iceland - CO2 capture and mineral storage in basaltic rocks
NASA Astrophysics Data System (ADS)
Sigurdardottir, H.; Sigfusson, B.; Aradottir, E. S.; Gunnlaugsson, E.; Gislason, S. R.; Alfredsson, H. A.; Broecker, W. S.; Matter, J. M.; Stute, M.; Oelkers, E.
2010-12-01
The overall objective of the CarbFix project is to develop and optimize a practical and cost-effective technology for capturing CO2 and storing it via in situ mineral carbonation in basaltic rocks, as well as to train young scientist to carry the corresponding knowledge into the future. The project consists of a field injection of CO2 charged water at the Hellisheidi geothermal power plant in SW Iceland, laboratory experiments, numerical reactive transport modeling, tracer tests, natural analogue and cost analysis. The CO2 injection site is situated about 3 km south of the Hellisheidi geothermal power plant. Reykjavik Energy operates the power plant, which currently produces 60,000 tons/year CO2 of magmatic origin. The produced geothermal gas mainly consists of CO2 and H2S. The two gases will be separated in a pilot gas treatment plant, and CO2 will be transported in a pipeline to the injection site. There, CO2 will be fully dissolved in 20 - 25°C water during injection at 25 - 30 bar pressure, resulting in a single fluid phase entering the storage formation, which consists of relatively fresh basaltic lavas. The CO2 charged water is reactive and will dissolve divalent cations from the rock, which will combine with the dissolved carbon to form solid thermodynamically stable carbonate minerals. The injection test is designed to inject 2200 tons of CO2 per year. In the past three years the CarbFix project has been addressing background fluid chemistries at the injection site and characterizing the target reservoir for the planned CO2 injection. Numerous groundwater samples have been collected and analysed. A monitoring and accounting plan has been developed, which integrates surface, subsurface and atmospheric monitoring. A weather station is operating at the injection site for continuous monitoring of atmospheric CO2 and to track all key parameters for the injection. Environmental authorities have granted licenses for the CO2 injection and the use of tracers, based on the monitoring plan. Pipelines, injection and monitoring wells have been installed and equipment test runs are in the final phase. A bailer has been constructed to be used to retrieve samples at reservoir conditions. Hydrological parameters of a three dimensional field model have been calibrated and reactive transport simulations are ongoing. The key risks that the project is currently facing are technical and financial. Until now the project has been facing incidences that have already impacted the time schedule in the CarbFix project. Furthermore the project is facing world-wide exchange rate uncertainty plus the inherited uncertainty that innovative research projects contain. However, the CarbFix group remains optimistic that injection will start in near future.
Coalbed methane accumulation and dissipation patterns: A Case study of the Junggar Basin, NW China
NASA Astrophysics Data System (ADS)
Li, Xin; Fu, Xuehai; Yang, Xuesong; Ge, Yanyan; Quan, Fangkai
2018-07-01
The Junggar Basin is a potential replacement area of coalbed methane (CBM) development in China. To improve the efficiency of CBM exploration, we investigated CBM accumulation and dissipation patterns of coal profiles located in the northwestern, southern, eastern, and central Junggar Basin based on the following criteria: burial depth, hydrogeological zone, CBM origin, CBM phase, and CBM migration type. We identified four types of CBM accumulation patterns: (1) a self-sourcing CBM pattern containing adsorbed gas of biogenic origin from shallow-depth coal within a weak runoff zone; (2) an endogenic migration pattern containing adsorbed gas of thermogenic origin from the medium and deep coals within a stagnant zone; (3) an exogenic migration pattern containing adsorbed gas of thermogenic origin from deep coal within a stagnant zone; and (4) an exogenic migration pattern containing adsorbed and free gas of thermogenic origin from ultra-deep coal within a stagnant zone. We also identified two types of CBM dissipation patterns: (1) shallow-depth coal within a runoff zone with mixed origin CBM; and (2) shallow and medium-deep coal seams with mixed origin CBM. CBM migration in low-rank coals was more substantial than that adsorbed in high-rank coal. CBM in shallow coal could easily escape, in the absence of closed structures or hydrogeological seals. CBM reservoirs occurred in deep coal where oversaturated gas may accumulate. Future exploration should focus on gas-water sealing structures in shallow coalbeds. CBM that occurred in adsorbed and free phases and other unconventional natural gas dominated by free gas in the coal stratum should be co-explored and co-developed.
Martinez-Donate, Ana P; Hovell, Melbourne F; Rangel, Maria Gudelia; Zhang, Xiao; Sipan, Carol L; Magis-Rodriguez, Carlos; Gonzalez-Fagoaga, J Eduardo
2015-03-01
We conducted a probability-based survey of migrant flows traveling across the Mexico-US border, and we estimated HIV infection rates, risk behaviors, and contextual factors for migrants representing 5 distinct migration phases. Our results suggest that the influence of migration is not uniform across genders or risk factors. By considering the predeparture, transit, and interception phases of the migration process, our findings complement previous studies on HIV among Mexican migrants conducted at the destination and return phases. Monitoring HIV risk among this vulnerable transnational population is critical for better understanding patterns of risk at different points of the migration process and for informing the development of protection policies and programs.
Martinez-Donate, Ana P.; Hovell, Melbourne F.; Rangel, Maria Gudelia; Zhang, Xiao; Sipan, Carol L.; Magis-Rodriguez, Carlos; Gonzalez-Fagoaga, J. Eduardo
2015-01-01
We conducted a probability-based survey of migrant flows traveling across the Mexico–US border, and we estimated HIV infection rates, risk behaviors, and contextual factors for migrants representing 5 distinct migration phases. Our results suggest that the influence of migration is not uniform across genders or risk factors. By considering the predeparture, transit, and interception phases of the migration process, our findings complement previous studies on HIV among Mexican migrants conducted at the destination and return phases. Monitoring HIV risk among this vulnerable transnational population is critical for better understanding patterns of risk at different points of the migration process and for informing the development of protection policies and programs. PMID:25602882
Shawe-Taylor, Marianne; Kumar, J Dinesh; Holden, Whitney; Dodd, Steven; Varga, Akos; Giger, Olivier; Varro, Andrea; Dockray, Graham J
2017-05-01
Glucagon-like peptide (GLP)-2 stimulates intestinal epithelial proliferation by acting, in part, via IGF release from sub-epithelial myofibroblasts. The response of myofibroblasts to GLP-2 remains incompletely understood. We studied the action of GLP-2 on myofibroblasts from colon cancer and adjacent tissue, and the effects of conditioned medium from these cells on epithelial cell proliferation, migration and invasion. GLP-2 stimulated proliferation, migration and invasion of myofibroblasts and the proliferative and invasive responses of cancer-associated myofibroblasts were greater than those of myofibroblasts from adjacent tissue. The responses were inhibited by an IGF receptor inhibitor, AG1024. Conditioned medium from GLP-2 treated myofibroblasts increased proliferation, migration and invasion of SW480, HT29, LoVo epithelial cells and these responses were inhibited by AG1024; GLP-2 alone had no effect on these cells. In addition, when myofibroblasts and epithelial cells were co-cultured in Ibidi chambers there was mutual stimulation of migration in response to GLP-2. The latter increased both IGF-1 and IGF-2 transcript abundance in myofibroblasts. Moreover, a number of IGF binding proteins (IGFBP-4, -5, -7) were identified in myofibroblast medium; in the presence of GLP-2 there was increased abundance of the cleavage products of IGBBP-4 and IGFBP-5 suggesting activation of a degradation mechanism that might increase IGF bioavailability. The data suggest that GLP-2 stimulates cancer myofibroblast proliferation, migration and invasion; GLP-2 acts indirectly on epithelial cells partly via increased IGF expression in myofibroblasts and partly, perhaps, by increased bioavailability through degradation of IGFBPs. Copyright © 2017 Elsevier Inc. All rights reserved.
Goldberg-Bockhorn, Eva; Schwarz, Silke; Subedi, Rachana; Elsässer, Alexander; Riepl, Ricarda; Walther, Paul; Körber, Ludwig; Breiter, Roman; Stock, Karl; Rotter, Nicole
2018-02-01
The implantation of autologous cartilage as the gold standard operative procedure for the reconstruction of cartilage defects in the head and neck region unfortunately implicates a variety of negative effects at the donor site. Tissue-engineered cartilage appears to be a promising alternative. However, due to the complex requirements, the optimal material is yet to be determined. As demonstrated previously, decellularized porcine cartilage (DECM) might be a good option to engineer vital cartilage. As the dense structure of DECM limits cellular infiltration, we investigated surface modifications of the scaffolds by carbon dioxide (CO 2 ) and Er:YAG laser application to facilitate the migration of chondrocytes inside the scaffold. After laser treatment, the scaffolds were seeded with human nasal septal chondrocytes and analyzed with respect to cell migration and formation of new extracellular matrix proteins. Histology, immunohistochemistry, SEM, and TEM examination revealed an increase of the scaffolds' surface area with proliferation of cell numbers on the scaffolds for both laser types. The lack of cytotoxic effects was demonstrated by standard cytotoxicity testing. However, a thermal denaturation area seemed to hinder the migration of the chondrocytes inside the scaffolds, even more so after CO 2 laser treatment. Therefore, the Er:YAG laser seemed to be better suitable. Further modifications of the laser adjustments or the use of alternative laser systems might be advantageous for surface enlargement and to facilitate migration of chondrocytes into the scaffold in one step.
ERIC Educational Resources Information Center
Organisation for Economic Cooperation and Development, Paris (France).
This book comprises papers delivered at a conference of National Experts on Migration. The principle objective of the conference was twofold: to examine significant trends that will affect the future of migration in countries in the Organization for Economic Co-operation and Development (OCED), and to identify the relevant issues that will have to…
The role and mechanism of KCa3.1 channels in human monocyte migration induced by palmitic acid.
Ma, Xiao-Zhen; Pang, Zheng-Da; Wang, Jun-Hong; Song, Zheng; Zhao, Li-Mei; Du, Xiao-Jun; Deng, Xiu-Ling
2018-05-21
Monocyte migration into diseased tissues contributes to the pathogenesis of diseases. Intermediate-conductance Ca 2+ -activated K + (K Ca 3.1) channels play an important role in cell migration. However, the role of K Ca 3.1 channels in mediating monocyte migration induced by palmitic acid (PA) is still unclear. Using cultured THP-1 cells and peripheral blood mononuclear cells from healthy subjects, we investigated the role and signaling mechanisms of K Ca 3.1 channels in mediating the migration induced by PA. Using methods of Western blotting analysis, RNA interference, cell migration assay and ELISA, we found that PA-treated monocytes exhibited increment of the protein levels of K Ca 3.1 channel and monocyte chemoattractant protein-1 (MCP-1), and the effects were reversed by co-incubation of PA with anti-TLR2/4 antibodies or by specific inhibitors of p38-MAPK, or NF-κB. In addition, PA increased monocyte migration, which was abolished by a specific K Ca 3.1 channel blocker, TRAM-34, or K Ca 3.1 small interfering RNA (siRNA). The expression and secretion of MCP-1 induced by PA was also similarly prevented by TRAM-34 and K Ca 3.1 siRNA. These results demonstrate for the first time that PA upregulates K Ca 3.1 channels through TLR2/4, p38-MAPK and NF-κB pathway to promote the expression of MCP-1, and then induce the trans-endothelial migration of monocytes. Copyright © 2018 Elsevier Inc. All rights reserved.
Guo, Yan; Chen, Xinguang; Gong, Jie; Li, Fang; Zhu, Chaoyang; Yan, Yaqiong; Wang, Liang
2016-01-01
Background Millions of people move from rural areas to urban areas in China to pursue new opportunities while leaving their spouses and children at rural homes. Little is known about the impact of migration-related separation on mental health of these rural migrants in urban China. Methods Survey data from a random sample of rural-to-urban migrants (n = 1113, aged 18–45) from Wuhan were analyzed. The Domestic Migration Stress Questionnaire (DMSQ), an instrument with four subconstructs, was used to measure migration-related stress. The relationship between spouse/child separation and stress was assessed using survey estimation methods to account for the multi-level sampling design. Results 16.46% of couples were separated from their spouses (spouse-separation only), 25.81% of parents were separated from their children (child separation only). Among the participants who married and had children, 5.97% were separated from both their spouses and children (double separation). Spouse-separation only and double separation did not scored significantly higher on DMSQ than those with no separation. Compared to parents without child separation, parents with child separation scored significantly higher on DMSQ (mean score = 2.88, 95% CI: [2.81, 2.95] vs. 2.60 [2.53, 2.67], p < .05). Stratified analysis by separation type and by gender indicated that the association was stronger for child-separation only and for female participants. Conclusion Child-separation is an important source of migration-related stress, and the effect is particularly strong for migrant women. Public policies and intervention programs should consider these factors to encourage and facilitate the co-migration of parents with their children to mitigate migration-related stress. PMID:27124768
Guo, Yan; Chen, Xinguang; Gong, Jie; Li, Fang; Zhu, Chaoyang; Yan, Yaqiong; Wang, Liang
2016-01-01
Millions of people move from rural areas to urban areas in China to pursue new opportunities while leaving their spouses and children at rural homes. Little is known about the impact of migration-related separation on mental health of these rural migrants in urban China. Survey data from a random sample of rural-to-urban migrants (n = 1113, aged 18-45) from Wuhan were analyzed. The Domestic Migration Stress Questionnaire (DMSQ), an instrument with four subconstructs, was used to measure migration-related stress. The relationship between spouse/child separation and stress was assessed using survey estimation methods to account for the multi-level sampling design. 16.46% of couples were separated from their spouses (spouse-separation only), 25.81% of parents were separated from their children (child separation only). Among the participants who married and had children, 5.97% were separated from both their spouses and children (double separation). Spouse-separation only and double separation did not scored significantly higher on DMSQ than those with no separation. Compared to parents without child separation, parents with child separation scored significantly higher on DMSQ (mean score = 2.88, 95% CI: [2.81, 2.95] vs. 2.60 [2.53, 2.67], p < .05). Stratified analysis by separation type and by gender indicated that the association was stronger for child-separation only and for female participants. Child-separation is an important source of migration-related stress, and the effect is particularly strong for migrant women. Public policies and intervention programs should consider these factors to encourage and facilitate the co-migration of parents with their children to mitigate migration-related stress.
Our trial to develop a risk assessment tool for CO2 geological storage (GERAS-CO2GS)
NASA Astrophysics Data System (ADS)
Tanaka, A.; Sakamoto, Y.; Komai, T.
2012-12-01
We will introduce our researches about to develop a risk assessment tool named 'GERAS-CO2GS' (Geo-environmental Risk Assessment System, CO2 Geological Storage Risk Assessment System) for 'Carbon Dioxide Geological Storage (Geological CCS)'. It aims to facilitate understanding of size of impact of risks related with upper migration of injected CO2. For gaining public recognition about feasibility of Geological CCS, quantitative estimation of risks is essential, to let public knows the level of the risk: whether it is negligible or not. Generally, in preliminary hazard analysis procedure, potential hazards could be identified within Geological CCS's various facilities such as: reservoir, cap rock, upper layers, CO2 injection well, CO2 injection plant and CO2 transport facilities. Among them, hazard of leakage of injected C02 is crucial, because it is the clue to estimate risks around a specific injection plan in terms of safety, environmental protection effect and economy. Our risk assessment tool named GERAS-CO2GS evaluates volume and rate of retention and leakage of injected CO2 in relation with fractures and/or faults, and then it estimates impact of seepages on the surface of the earth. GERAS-CO2GS has four major processing segments: (a) calculation of CO2 retention and leakage volume and rate, (b) data processing of CO2 dispersion on the surface and ambient air, (c) risk data definition and (d) evaluation of risk. Concerning to the injection site, we defined a model, which is consisted from an injection well and a geological strata model: which involves a reservoir, a cap rock, an upper layer, faults, seabed, sea, the surface of the earth and the surface of the sea. For retention rate of each element of CO2 injection site model, we use results of our experimental and numerical studies on CO2 migration within reservoirs and faults with specific lithological conditions. For given CO2 injection rate, GERAS-CO2GS calculates CO2 retention and leakage of each segment of injection site model. It also evaluates dispersion of CO2 on the surface of the earth and ambient air, and displays evaluated risk level on Goole earth contour of risk levels with color classification. As regard with numerical estimation of CO2's surface dispersion, we use ADMER 2.5 (Atmospheric Dispersion Model for Exposure and Risk Assessment, AIST), which assesses ambient dispersion of materials using real observed atmospheric data such as wind direction and temperatures by meteorological observatory. As far as our simulations, it is obvious that cause of Lake Nyos type accident is owes its maar topography of the lake and the volume and duration of the CO2 outburst (about 1 km3). It's unlikely to cause similar happenings in geological CCS site, because there are significant difference amount of CO2 and topography. At this moment, GERAS-CO2GS is prototype system. We are going to extend GERAS-CO2GS functions and evaluate risks of further risk scenarios. Concerning to the route of seabed to sea and the surface of the sea, we hope to implement outer research findings into our logics. In the course of further research, we are going to develop GERAS-CO2GS will be able to estimate broader risks, and to contribute to the efforts for legislations and standards of CO2 Geological storage.
Holtkamp, Hannah U; Morrow, Stuart J; Kubanik, Mario; Hartinger, Christian G
2017-07-01
Run-by-run variations are very common in capillary electrophoretic (CE) separations and cause imprecision in both the migration times and the peak areas. This makes peak and kinetic trend identification difficult and error prone. With the aim to identify suitable standards for CE separations which are compatible with the common detectors UV, ESI-MS, and ICP-MS, the Co III complexes [Co(en) 3 ]Cl 3 , [Co(acac) 3 ] and K[Co(EDTA)] were evaluated as internal standards in the reaction of the anticancer drug cisplatin and guanosine 5'-monophosphate as an example of a classical biological inorganic chemistry experiment. These Co III chelate complexes were considered for their stability, accessibility, and the low detection limit for Co in ICP-MS. Furthermore, the Co III complexes are positively and negatively charged as well as neutral, allowing the detection in different areas of the electropherograms. The background electrolytes were chosen to cover a wide pH range. The compatibility to the separation conditions was dependent on the ligands attached to the Co III centers, with only the acetylacetonato (acac) complex being applicable in the pH range 2.8-9.0. Furthermore, because of being charge neutral, this compound could be used as an electroosmotic flow (EOF) marker. In general, employing Co complexes resulted in improved data sets, particularly with regard to the migration times and peak areas, which resulted, for example, in higher linear ranges for the quantification of cisplatin.
Migration of the CERN IT Data Centre Support System to ServiceNow
NASA Astrophysics Data System (ADS)
Alvarez Alonso, R.; Arneodo, G.; Barring, O.; Bonfillou, E.; Coelho dos Santos, M.; Dore, V.; Lefebure, V.; Fedorko, I.; Grossir, A.; Hefferman, J.; Mendez Lorenzo, P.; Moller, M.; Pera Mira, O.; Salter, W.; Trevisani, F.; Toteva, Z.
2014-06-01
The large potential and flexibility of the ServiceNow infrastructure based on "best practises" methods is allowing the migration of some of the ticketing systems traditionally used for the monitoring of the servers and services available at the CERN IT Computer Centre. This migration enables the standardization and globalization of the ticketing and control systems implementing a generic system extensible to other departments and users. One of the activities of the Service Management project together with the Computing Facilities group has been the migration of the ITCM structure based on Remedy to ServiceNow within the context of one of the ITIL processes called Event Management. The experience gained during the first months of operation has been instrumental towards the migration to ServiceNow of other service monitoring systems and databases. The usage of this structure is also extended to the service tracking at the Wigner Centre in Budapest.
NASA Astrophysics Data System (ADS)
Barth, Johannes A. C.; Myrttinen, Anssi; Becker, Veith; Nowak, Martin; Mayer, Bernhard
2014-05-01
Stable carbon and oxygen isotope data play an important role in monitoring CO2 in the subsurface, for instance during carbon capture and storage (CCS). This includes monitoring of supercritical and gaseous CO2 movement and reactions under reservoir conditions and detection of potential CO2 leakage scenarios. However, in many cases isotope data from field campaigns are either limited due to complex sample retrieval or require verification under controlled boundary conditions. Moreover, experimentally verified isotope fractionation factors are also accurately known only for temperatures and pressures lower than commonly found in CO2 reservoirs (Myrttinen et al., 2012). For this reason, several experimental series were conducted in order to investigate effects of elevated pressures, temperatures and salinities on stable carbon and oxygen isotope changes of CO2 and water. These tests were conducted with a heateable pressure device and with glass or metal gas containers in which CO2 reacted with fluids for time periods of hours to several weeks. The obtained results revealed systematic differences in 13C/12C-distributions between CO2 and the most important dissolved inorganic carbon (DIC) species under reservoir conditions (CO2(aq), H2CO3 and HCO3-). Since direct measurements of the pH, even immediately after sampling, were unreliable due to rapid CO2 de-gassing, one of the key results of this work is that carbon isotope fractionation data between DIC and CO2 may serve to reconstruct in situ pH values. pH values reconstructed with this approach ranged between 5.5 and 7.4 for experiments with 60 bars and up to 120 °C and were on average 1.4 pH units lower than those measured with standard pH electrodes directly after sampling. In addition, pressure and temperature experiments with H2O and CO2 revealed that differences between the oxygen isotope ratios of both phases depended on temperature, water-gas ratios as well as salt contents of the solutions involved. Such systematic knowledge of the extent of oxygen isotope fractionation between H2O and CO2 can help to reconstruct equilibration times, fluid-CO2 ratios as well as temperature and salinity conditions. Isotope results from systematic laboratory studies and the information they provide for assessing in situ reservoir conditions can be transferred to field applications concerning integrity of CO2 reservoirs. They can also apply to natural systems and other industrial uses that involve monitoring of gases in the subsurface under similar pressure and temperature conditions. Reference: Myrttinen, A., Becker, V., Barth, J.A.C., 2012. A review of methods used for equilibrium isotope fractionation investigations between dissolved inorganic carbon and CO2. Earth-Science Reviews, 115(3): 192-199.
Valente, Anthony J.; Yoshida, Tadashi; Izadpanah, Reza; Delafontaine, Patrice; Siebenlist, Ulrich; Chandrasekar, Bysani
2013-01-01
We investigated the role of TRAF3 interacting protein 2 (TRAF3IP2), a redox-sensitive adapter protein and an upstream regulator of IKK and JNK in interleukin (IL)-18 induced smooth muscle cell migration, and the mechanism of its inhibition by simvastatin. The pleiotropic cytokine IL-18 induced human coronary artery SMC migration through the induction of TRAF3IP2. IL-18 induced Nox1-dependent ROS generation, TRAF3IP2 expression, and IKK/NF-κB and JNK/AP-1 activation. IL-18 induced its own expression and that of its receptor subunit IL-18Rα. Using co-IP/IB and GST pull-down assays, we show for the first time that the subunits of the IL-18R heterodimer physically associate with Nox1 under basal conditions, and IL-18 appears to enhance their binding. Importantly, the HMG-coA reductase inhibitor simvastatin attenuated IL-18-induced TRAF3IP2 induction. These inhibitory effects were reversed by mevalonate and geranylgeranylpyrophosphate (GGPP), but not by farnesylpyrophosphate (FPP). Interestingly, simvastatin, GGPP, FPP, or Rac1 inhibition did not modulate ectopically expressed TRAF3IP2. The promigratory effects of IL-18 are mediated through TRAF3IP2 in a redox-sensitive manner, and this may involve IL-18R/Nox1 physical association. Further, Simvastatin inhibits inducible, but not ectopically-expressed TRAF3IP2. Targeting TRAF3IP2 may blunt progression of hyperplastic vascular diseases in vivo. PMID:23541442
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweeny, Larissa, E-mail: larissasweeny@gmail.com; Liu, Zhiyong; Bush, Benjamin D.
2012-08-15
The signaling pathways facilitating metastasis of head and neck squamous cell carcinoma (HNSCC) cells are not fully understood. CD147 is a transmembrane glycoprotein known to induce cell migration and invasion. AGR2 is a secreted peptide also known to promote cell metastasis. Here we describe their importance in the migration and invasion of HNSCC cells (FADU and OSC-19) in vitro and in vivo. In vitro, knockdown of CD147 or AGR2 decreased cellular proliferation, migration and invasion. In vivo, knockdown of CD147 or AGR2 expression decreased primary tumor growth as well as regional and distant metastasis. -- Highlights: Black-Right-Pointing-Pointer We investigated AGR2more » in head and neck squamous cell carcinoma for the first time. Black-Right-Pointing-Pointer We explored the relationship between AGR2 and CD147 for the first time. Black-Right-Pointing-Pointer AGR2 and CD147 appear to co-localize in head and squamous cell carcinoma samples. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 reduced migration and invasion in vitro. Black-Right-Pointing-Pointer Knockdown of both AGR2 and CD147 decreased metastasis in vivo.« less
Enhanced Keratinocyte Proliferation and Migration in Co-culture with Fibroblasts
Wang, Zhenxiang; Wang, Ying; Farhangfar, Farhang; Zimmer, Monica; Zhang, Yongxin
2012-01-01
Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days) of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11th to 15th day), keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF), IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage. PMID:22911722
Quantification of CO2-FLUID-ROCK Reactions Using Reactive and Non-Reactive Tracers
NASA Astrophysics Data System (ADS)
Matter, J.; Stute, M.; Hall, J. L.; Mesfin, K. G.; Gislason, S. R.; Oelkers, E. H.; Sigfússon, B.; Gunnarsson, I.; Aradottir, E. S.; Alfredsson, H. A.; Gunnlaugsson, E.; Broecker, W. S.
2013-12-01
Carbon dioxide mineralization via fluid-rock reactions provides the most effective and long-term storage option for geologic carbon storage. Injection of CO2 in geologic formations induces CO2 -fluid-rock reactions that may enhance or decrease the storage permanence and thus the long-term safety of geologic carbon storage. Hence, quantitative characterization of critical CO2 -fluid-rock interactions is essential to assess the storage efficiency and safety of geologic carbon storage. In an attempt to quantify in-situ fluid-rock reactions and CO2 transport relevant for geologic carbon storage, we are testing reactive (14C, 13C) and non-reactive (sodium fluorescein, amidorhodamine G, SF5CF3, and SF6) tracers in an ongoing CO2 injection in a basaltic storage reservoir at the CARBFIX pilot injection site in Iceland. At the injection site, CO2 is dissolved in groundwater and injected into a permeable basalt formation located 500-800 m below the surface [1]. The injected CO2 is labeled with 14C by dynamically adding calibrated amounts of H14CO3-solution into the injection stream in addition to the non-reactive tracers. Chemical and isotopic analyses of fluid samples collected in a monitoring well, reveal fast fluid-rock reactions. Maximum SF6 concentration in the monitoring well indicates the bulk arrival of the injected CO2 solution but dissolved inorganic carbon (DIC) concentration and pH values close to background, and a potentially lower 14C to SF6 ratio than the injection ratio suggest that most of the injected CO2 has reacted with the basaltic rocks. This is supported by δ13CDIC, which shows a drop from values close to the δ 13C of the injected CO2 gas (-3‰ VPDB) during breakthrough of the CO2 plume to subsequent more depleted values (-11.25‰ VPDB), indicating precipitation of carbonate minerals. Preliminary mass balance calculations using mixing relationships between the background water in the storage formation and the injected solution, suggest that approximately 85% of the injected CO2 must have reacted along the flow path from the injection well to the monitoring well within less than one year. Monitoring is still going on and we will extend the time series and the mass balance accordingly. Our study demonstrates that by combining reactive and non-reactive tracers, we are able to quantify CO2-fluid-rock interactions on a reservoir scale. [1] Gislason et al. (2010), Int. J. Greenh. Gas Con. 4, 537-545.
Herbeć, Aleksandra; Perski, Olga; Shahab, Lion; West, Robert
2018-02-07
Smartphone-based personal carbon monoxide (CO) monitors and associated apps, or "CO Smartphone Systems" (CSSs) for short, could enable smokers to independently monitor their smoking and quitting. This study explored views and preferences regarding CSSs and their use among 16 adult, UK-based smokers. First, semi-structured interviews explored participants' expectations of CSSs. Secondly, a think-aloud study identified participants' reactions to a personal CO monitor and to existing or prototype apps. Framework Analysis identified five themes: (1) General views, needs, and motivation to use CSSs; (2) Views on the personal CO monitor; (3) Practicalities of CSS use; (4) Desired features in associated apps; and (5) Factors affecting preferences for CSSs and their use. Participants had high expectations of CSSs and their potential to increase motivation. Priority app features included: easy CO testing journeys, relevant and motivating feedback, and recording of contextual data. Appearance and usability of the personal CO monitor, and accuracy and relevance of CO testing were considered important for engagement. Participants differed in their motivation to use and preferences for CSSs features and use, which might have non-trivial impact on evaluation efforts. Personal CO monitors and associated apps may be attractive tools for smokers, but making CSSs easy to use and evaluating these among different groups of smokers may be challenging.
NASA Astrophysics Data System (ADS)
Czarnogorska, M.; Samsonov, S.; White, D.
2014-11-01
The research objectives of the Aquistore CO2 storage project are to design, adapt, and test non-seismic monitoring methods for measurement, and verification of CO2 storage, and to integrate data to determine subsurface fluid distributions, pressure changes and associated surface deformation. Aquistore site is located near Estevan in Southern Saskatchewan on the South flank of the Souris River and west of the Boundary Dam Power Station and the historical part of Estevan coal mine in southeastern Saskatchewan, Canada. Several monitoring techniques were employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) technique, GPS, tiltmeters and piezometers. The targeted CO2 injection zones are within the Winnipeg and Deadwood formations located at > 3000 m depth. An array of monitoring techniques was employed in the study area including advanced satellite Differential Interferometric Synthetic Aperture Radar (DInSAR) with established corner reflectors, GPS, tiltmeters and piezometers stations. We used airborne LIDAR data for topographic phase estimation, and DInSAR product geocoding. Ground deformation maps have been calculated using Multidimensional Small Baseline Subset (MSBAS) methodology from 134 RADARSAT-2 images, from five different beams, acquired during 20120612-20140706. We computed and interpreted nine time series for selected places. MSBAS results indicate slow ground deformation up to 1 cm/year not related to CO2 injection but caused by various natural and anthropogenic causes.
Li, X; Ye, J-X; Xu, M-H; Zhao, M-D; Yuan, F-L
2017-07-01
Activated acid-sensing ion channel 1a (ASIC1a) is involved in acid-induced osteoclastogenesis by regulating activation of the transcription factor NFATc1. These results indicated that ASIC1a activation by extracellular acid may cause osteoclast migration and adhesion through Ca 2+ -dependent integrin/Pyk2/Src signaling pathway. Osteoclast adhesion and migration are responsible for osteoporotic bone loss. Acidic conditions promote osteoclastogenesis. ASIC1a in osteoclasts is associated with acid-induced osteoclastogenesis through modulating transcription factor NFATc1 activation. However, the influence and the detailed mechanism of ASIC1a in regulating osteoclast adhesion and migration, in response to extracellular acid, are not well characterized. In this study, knockdown of ASIC1a was achieved in bone marrow macrophage cells using small interfering RNA (siRNA). The adhesion and migration abilities of osteoclast precursors and osteoclasts were determined by adhesion and migration assays, in vitro. Bone resorption was performed to measure osteoclast function. Cytoskeletal changes were assessed by F-actin ring formation. αvβ3 integrin expression in osteoclasts was measured by flow cytometry. Western blotting and co-immunoprecipitation were performed to measure alterations in integrin/Pyk2/Src signaling pathway. Our results showed that blockade of ASIC1a using ASIC1a-siRNA inhibited acid-induced osteoclast precursor migration and adhesion, as well as osteoclast adhesion and bone resorption; we also demonstrated that inhibition of ASIC1a decreased the cell surface αvβ3 integrin and β3 protein expression. Moreover, blocking of ASIC1a inhibited acidosis-induced actin ring formation and reduced Pyk2 and Src phosphorylation in osteoclasts and also inhibited the acid-induced association of the αvβ3 integrin/Src/Pyk2. Together, these results highlight a key functional role of ASIC1a/αvβ3 integrin/Pyk2/Src signaling pathway in migration and adhesion of osteoclasts.
On the feasibility of borehole-to-surface electromagnetics for monitoring CO2 sequestration
NASA Astrophysics Data System (ADS)
Wilson, G. A.; Zhdanov, M. S.; Hibbs, A. D.; Black, N.; Gribenko, A. V.; Cuma, M.; Agundes, A.; Eiskamp, G.
2012-12-01
Carbon capture and storage (CCS) projects rely on storing supercritical CO2 in deep saline reservoirs where buoyancy forces drive the injected CO2 upward into the aquifer until a seal is reached. The permanence of the sequestration depends entirely on the long-term geological integrity of the seal. Active geophysical monitoring of the sequestration is critical for informing CO2 monitoring, accounting and verification (MVA) decisions. During injection, there exists a correlation between the changes in CO2 and water saturations in a saline reservoir. Dissolved salts react with the CO2 to precipitate out as carbonates, thereby generally decreasing the electrical resistivity. As a result, there is a correlation between the change in fluid saturation and measured electromagnetic (EM) fields. The challenge is to design an EM survey appropriate for monitoring large, deep reservoirs. Borehole-to-surface electromagnetic (BSEM) surveys consist of borehole-deployed galvanic transmitters and a surface-based array of electric and magnetic field sensors. During a recent field trial, it was demonstrated that BSEM could successfully identify the oil-water contact in the water-injection zone of a carbonate reservoir. We review the BSEM methodology, and perform full-field BSEM modeling. The 3D resistivity models used in this study are based on dynamic reservoir simulations of CO2 injection into a saline reservoir. Although the electric field response at the earth's surface is low, we demonstrate that it can be accurately measured and processed with novel methods of noise cancellation and sufficient stacking over the period of monitoring to increase the signal-to-noise ratio for subsequent seismic- and well-constrained 3D inversion. For long-term or permanent monitoring, we discuss the deployment of novel electric field sensors with chemically inert electrodes that couple to earth in a capacitive manner. This capacitive coupling is a purely EM phenomenon, which, to first order, has no temperature, ionic concentration or corrosion effects and has unprecedented fidelity. This makes the capacitive E-field sensor ideal for CCS applications which require very stable operation over a wide range of ground temperature and moisture level variation, for extended periods of time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Sun-Ah, E-mail: j.sarah.k@gmail.com; Lee, Eun Kyung, E-mail: leeek@catholic.ac.kr; Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul 137-701
Epithelial–mesenchymal transition (EMT) acts as a facilitator of metastatic dissemination in the invasive margin of malignant tumors where active tumor–stromal crosstalks take place. Co-cultures of cancer cells with cancer-associated fibroblasts (CAFs) are often used as in vitro models of EMT. We established a tumor–fibroblast proximity co-culture using HT-29 tumor spheroids (TSs) with CCD-18co fibroblasts. When co-cultured with TSs, CCD-18co appeared activated, and proliferative activity as well as cell migration increased. Expression of fibronectin increased whereas laminin and type I collagen decreased in TSs co-cultured with fibroblasts compared to TSs alone, closely resembling the margin of in vivo xenograft tissue. Activemore » TGFβ1 in culture media significantly increased in TS co-cultures but not in 2D co-cultures of cancer cells–fibroblasts, indicating that 3D context-associated factors from TSs may be crucial to crosstalks between cancer cells and fibroblasts. We also observed in TSs co-cultured with fibroblasts increased expression of α-SMA, EGFR and CTGF; reduced expression of membranous β-catenin and E-cadherin, together suggesting an EMT-like changes similar to a marginal region of xenograft tissue in vivo. Overall, our in vitro TS–fibroblast proximity co-culture mimics the EMT-state of the invasive margin of in vivo tumors in early metastasis. - Highlights: • An adjacent co-culture of tumor spheroids and fibroblasts is presented as EMT model. • Activation of fibroblasts and increased cell migration were shown in co-culture. • Expression of EMT-related factors in co-culture was similar to that in tumor tissue. • Crosstalk between spheroids and fibroblasts was demonstrated by secretome analysis.« less
Pulsed remineralisation in the northwestern Mediterranean Sea: a hypothesis
NASA Astrophysics Data System (ADS)
Denis, Michel; Martin, Valérie; Momzikoff, André; Gondry, Geneviève; Stemmann, Lars; Demers, Serge; Gorsky, Gaby; Andersen, Valérie
2003-02-01
A general study of biogeochemical processes (DYNAPROC cruise) was conducted in May 1995 at a time-series station in the open northwestern Mediterranean Sea where horizontal advection was weak. Short-term variations of the vertical distributions of pico- and nanophytoplankton were investigated over four 36-h cycles, along with parallel determinations of metabolic CO 2 production rates and amino acid-containing colloid (AACC) concentrations at the chlorophyll maximum depth. The vertical (0-1000-m depth) distributions of (i) AACC, (ii) suspended particles and (iii) metabolic CO 2 production rate were documented during the initial and final stages of these 36-h cycles. This study was concerned with diel vertical migration (DVM) of zooplankton, which provided periodic perturbations. Accordingly, the time scale of the experimental work varied from a few hours to a few days. Although all distributions exhibited a periodic behaviour, AACC distributions were generally not linked to diel vertical migrations. In the subsurface layer, Synechococcus made the most abundant population and large variations in concentration were observed both at day and at night. The corresponding integrated (over the upper 90 m) losses of Synechococcus during one night pointed to a potential source of exported organic matter amounting to 534 mg C m -2. This study stresses the potential importance of organic matter export from the euphotic zone through the daily grazing activity of vertically migrating organisms, which would not be accounted for by measurements at longer time scales. The metabolic CO 2 production exhibited a peak of activity below 500 m that was shifted downward, apparently in a recurrent way and independently of the vertical distributions of AACC or of suspended particulate material. To account for this phenomenon, a «sustained wave train» hypothesis is proposed that combines the effect of the diel superficial faecal pellet production by swarming migrators and the repackaging activity of the nonmigrating midwater populations. Our results confirm the recent finding that the particulate compartment is not the major source of the observed instantaneous remineralisation rate and shed a new light on the fate of organic matter in the aphotic zone.
Tang, F; Xu, L; Yan, R; Song, X; Li, X
2013-03-01
Co-expression of Trichinella spiralis macrophage migration inhibitory factor (TsMIF) with T. spiralis cystatin-like domain protein (TsMCD-1) in a DNA vaccine induces a Th1 immune response and partial protection against T. spiralis infection. The present study evaluated whether co-expression of mouse ubiquitin (Ub) with TsMIF and TsMCD-1 might improve the immune response against T. spiralis infection. Groups of BALB/c mice were immunized twice at 2-week intervals with 100 μg of plasmid DNA encoding either a TsMIF-TsMCD-1 fusion protein (pVAX1-Tsmif-Tsmcd-1) or an Ub-co-expressing triple fusion protein Ub-TsMIF-TsMCD-1 (pVAX1-Ub-Tsmif-Tsmcd-1). Control animals were immunized with pVAX1-Ub or blank vector plasmid. Specific antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, IgA, IgE) against the recombinant protein TsMIF-TsMCD-1, serum cytokines (interferon (IFN)-γ, interleukin (IL)-4, IL-5, transforming growth factor (TGF)-β1 and IL-17), CD4+/CD8+ T cells and cytotoxic T lymphocyte (CTL) responses were monitored. Challenge infection was performed 2 weeks after the second immunization and worm burden was assayed at 35 days post-challenge. Antibody responses induced by pVAX1-Ub-Tsmif-Tsmcd-1 were significantly lower than for TsMIF-TsMCD-1, but the vaccine induced increased levels of Th1 cytokine (IFN-γ) and increased T-cell cytotoxicity. The reduction of worm burden (37.95%) following immunization with pVAX1-Ub-Tsmif-Tsmcd-1 was significantly greater than that induced by the pVAX1-Tsmif-Tsmcd-1 vaccine (23.17%; P< 0.05).
Estimates of CO2 from fires in the United States: implications for carbon management.
Wiedinmyer, Christine; Neff, Jason C
2007-11-01
Fires emit significant amounts of CO2 to the atmosphere. These emissions, however, are highly variable in both space and time. Additionally, CO2 emissions estimates from fires are very uncertain. The combination of high spatial and temporal variability and substantial uncertainty associated with fire CO2 emissions can be problematic to efforts to develop remote sensing, monitoring, and inverse modeling techniques to quantify carbon fluxes at the continental scale. Policy and carbon management decisions based on atmospheric sampling/modeling techniques must account for the impact of fire CO2 emissions; a task that may prove very difficult for the foreseeable future. This paper addresses the variability of CO2 emissions from fires across the US, how these emissions compare to anthropogenic emissions of CO2 and Net Primary Productivity, and the potential implications for monitoring programs and policy development. Average annual CO2 emissions from fires in the lower 48 (LOWER48) states from 2002-2006 are estimated to be 213 (+/- 50 std. dev.) Tg CO2 yr-1 and 80 (+/- 89 std. dev.) Tg CO2 yr-1 in Alaska. These estimates have significant interannual and spatial variability. Needleleaf forests in the Southeastern US and the Western US are the dominant source regions for US fire CO2 emissions. Very high emission years typically coincide with droughts, and climatic variability is a major driver of the high interannual and spatial variation in fire emissions. The amount of CO2 emitted from fires in the US is equivalent to 4-6% of anthropogenic emissions at the continental scale and, at the state-level, fire emissions of CO2 can, in some cases, exceed annual emissions of CO2 from fossil fuel usage. The CO2 released from fires, overall, is a small fraction of the estimated average annual Net Primary Productivity and, unlike fossil fuel CO2 emissions, the pulsed emissions of CO2 during fires are partially counterbalanced by uptake of CO2 by regrowing vegetation in the decades following fire. Changes in fire severity and frequency can, however, lead to net changes in atmospheric CO2 and the short-term impacts of fire emissions on monitoring, modeling, and carbon management policy are substantial.
Review of the ITER diagnostics suite for erosion, deposition, dust and tritium measurements
NASA Astrophysics Data System (ADS)
Reichle, R.; Andrew, P.; Bates, P.; Bede, O.; Casal, N.; Choi, C. H.; Barnsley, R.; Damiani, C.; Bertalot, L.; Dubus, G.; Ferreol, J.; Jagannathan, G.; Kocan, M.; Leipold, F.; Lisgo, S. W.; Martin, V.; Palmer, J.; Pearce, R.; Philipps, V.; Pitts, R. A.; Pampin, R.; Passedat, G.; Puiu, A.; Suarez, A.; Shigin, P.; Shu, W.; Vayakis, G.; Veshchev, E.; Walsh, M.
2015-08-01
Dust and tritium inventories in the vacuum vessel have upper limits in ITER that are set by nuclear safety requirements. Erosion, migration and re-deposition of wall material together with fuel co-deposition will be largely responsible for these inventories. The diagnostic suite required to monitor these processes, along with the set of the corresponding measurement requirements is currently under review given the recent decision by the ITER Organization to eliminate the first carbon/tungsten (C/W) divertor and begin operations with a full-W variant Pitts et al. [1]. This paper presents the result of this review as well as the status of the chosen diagnostics.
Macrophages Modulate Migration and Invasion of Human Tongue Squamous Cell Carcinoma
Pirilä, Emma; Väyrynen, Otto; Sundquist, Elias; Päkkilä, Kaisa; Nyberg, Pia; Nurmenniemi, Sini; Pääkkönen, Virve; Pesonen, Paula; Dayan, Dan; Vered, Marilena; Uhlin-Hansen, Lars; Salo, Tuula
2015-01-01
Oral tongue squamous cell carcinoma (OTSCC) has a high mortality rate and the incidence is rising worldwide. Despite advances in treatment, the disease lacks specific prognostic markers and treatment modality. The spreading of OTSCC is dependent on the tumor microenvironment and involves tumor-associated macrophages (TAMs). Although the presence of TAMs is associated with poor prognosis in OTSCC, the specific mechanisms underlying this are still unknown. The aim here was to investigate the effect of macrophages (Mfs) on HSC-3 tongue carcinoma cells and NF-kappaB activity. We polarized THP-1 cells to M1 (inflammatory), M2 (TAM-like) and R848 (imidazoquinoline-treated) type Mfs. We then investigated the effect of Mfs on HSC-3 cell migration and NF-kappaB activity, cytokine production and invasion using several different in vitro migration models, a human 3D tissue invasion model, antibody arrays, confocal microscopy, immunohistochemistry and a mouse invasion model. We found that in co-culture studies all types of Mfs fused with HSC-3 cells, a process which was partially due to efferocytosis. HSC-3 cells induced expression of epidermal growth factor and transforming growth factor-beta in co-cultures with M2 Mfs. Direct cell-cell contact between M2 Mfs and HSC-3 cells induced migration and invasion of HSC-3 cells while M1 Mfs reduced HSC-3 cell invasion. M2 Mfs had an excess of NF-kappaB p50 subunit and a lack of p65 subunits both in the presence and absence of HSC-3 cells, indicating dysregulation and pro-tumorigenic NF-kappaB activation. TAM-like cells were abundantly present in close vicinity to carcinoma cells in OTSCC patient samples. We conclude that M2 Mfs/TAMs have an important role in OTSCC regulating adhesion, migration, invasion and cytokine production of carcinoma cells favouring tumor growth. These results demonstrate that OTSCC patients could benefit from therapies targeting TAMs, polarizing TAM-like M2 Mfs to inflammatory macrophages and modulating NF-kappaB activity. PMID:25811194
Optimization of a Time-Lapse Gravity Network for Carbon Sequestration
NASA Astrophysics Data System (ADS)
Appriou, D.; Strickland, C. E.; Ruprecht Yonkofski, C. M.
2017-12-01
The objective of this study is to evaluate what could be a comprehensive and optimal state of the art gravity monitoring network that would meet the UIC class VI regulation and insure that 90% of the CO2 injected remain underground. Time-lapse gravity surveys have a long history of effective applications of monitoring temporal density changes in the subsurface. For decades, gravity measurements have been used for a wide range of applications. The interest of time-lapse gravity surveys for monitoring carbon sequestration sites started recently. The success of their deployment in such sites depends upon a combination of favorable conditions, such as the reservoir geometry, depth, thickness, density change over time induced by the CO2 injection and the location of the instrument. In most cases, the density changes induced by the CO2 plume in the subsurface are not detectable from the surface but the use of borehole gravimeters can provide excellent results. In the framework of the National Assessment and Risk Partnership (NRAP) funded by the Department of Energy, the evaluation of the effectiveness of the gravity monitoring of a CO2 storage site has been assessed using multiple synthetic scenarios implemented on a community model developed for the Kimberlina site (e.g., fault leakage scenarios, borehole leakage). The Kimberlina carbon sequestration project was a pilot project located in southern San Joaquin Valley, California, aimed to safely inject 250,000 t CO2/yr for four years. Although the project was cancelled in 2012, the site characterization efforts resulted in the development of a geologic model. In this study, we present the results of the time-lapse gravity monitoring applied on different multiphase flow and reactive transport models developed by Lawrence Berkeley National Laboratory (i.e., no leakage, permeable fault zone, wellbore leakage). Our monitoring approach considers an ideal network, consisting of multiple vertical and horizontal instrumented boreholes that could be used to track the CO2 plume and potential leaks. A preliminary cost estimate will also be provided.
Molecular Simulation Models of Carbon Dioxide Intercalation in Hydrated Sodium Montmorillonite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myshakin, Evgeniy; Saidi, Wissam; Romanov, Vyacheslav
2016-11-22
In this study, classical molecular dynamics simulations and density functional theory (DFT)-based molecular dynamics are used to elucidate the process of CO 2 intercalation into hydrated Na-montmorillonite at P-T conditions relevant to geological formations suitable for CO 2 storage. Of particular interest are the structural and transport properties of interlayer species after CO 2 intercalation. The conducted simulations allowed the research team to quantify expansion/contraction of smectite as a function of CO 2 and H 2O compositions. The resulting swelling curves can be used to gauge the amount of stored CO 2, compare it to the experiment, and estimate changesmore » in geomechanical properties of the storage formation. The obtained results showed that the infrared signal of the asymmetric stretch vibration of CO 2 molecule is extremely sensitive to the solvent environment. The extent of the frequency shift relative to the gas-phase value can be used to probe hydration level in the interlayer with intercalated CO 2. Interaction of supercritical CO 2 with brine in deep geological formations promotes an increase of hydrophobicity of clay surfaces. As a result of wettability alteration, estimated diffusion constants of CO 2 and H 2O increase with the increased CO 2 load; this can contribute to faster migration of CO 2 throughout the formation.« less
NASA Astrophysics Data System (ADS)
Zhou, Y.; Gurney, K. R.
2009-12-01
In order to advance the scientific understanding of carbon exchange with the land surface and contribute to sound, quantitatively-based U.S. climate change policy interests, quantification of greenhouse gases emissions drivers at fine spatial and temporal scales is essential. Quantification of fossil fuel CO2 emissions, the primary greenhouse gases, has become a key component to cost-effective CO2 emissions mitigation options and a carbon trading system. Called the ‘Hestia Project’, this pilot study generated CO2 emissions down to high spatial resolution and hourly scale for the greater Indianapolis region in the USA through the use of air quality and traffic monitoring data, remote sensing, GIS, and building energy modeling. The CO2 emissions were constructed from three data source categories: area, point, and mobile. For the area source emissions, we developed an energy consumption model using DOE/EIA survey data on building characteristics and energy consumption. With the Vulcan Project’s county-level CO2 emissions and simulated building energy consumption, we quantified the CO2 emissions for each individual building by allocating Vulcan emissions to roughly 50,000 structures in Indianapolis. The temporal pattern of CO2 emissions in each individual building was developed based on temporal patterns of energy consumption. The point sources emissions were derived from the EPA National Emissions Inventory data and effluent monitoring of electricity producing facilities. The mobile source CO2 emissions were estimated at the month/county scale using the Mobile6 combustion model and the National Mobile Inventory Model database. The month/county scale mobile source CO2 emissions were downscaled to the “native” spatial resolution of road segments every hour using a GIS road atlas and traffic monitoring data. The result is shown in Figure 1. The resulting urban-scale inventory can serve as a baseline of current CO2 emissions and should be of immediate use to city environmental managers and regional industry as they plan emission mitigation options and project future emission trends. The results obtained here will also be a useful comparison to atmospheric CO2 monitoring efforts from the top-down. Figure 1. Location of the study area, the building level and mobile CO2 emissions, and an enlarged example neighborhood
An Implantable Device for Manipulation of the in vivo Tumor Microenvironment
NASA Astrophysics Data System (ADS)
Williams, James K.
In the past decade, it has become increasingly recognized that interactions between cancer cells and the tumor microenvironment (TME) regulate metastasis. One such interaction is the paracrine loop between macrophages and cancer cells which drives metastatic invasion in mammary tumors. Tumor associated macrophages release epidermal growth factor (EGF), a chemoattractant which induces the migration of cancer cells toward the blood vessels. The cancer cells reciprocate by releasing a macrophage chemoattractant, colony-stimulating factor 1 (CSF-1), resulting in the co-migration of both cell types and subsequent intravasation. In this work, a new technology has been developed for studying the mechanisms by which invasive tumor cells migrate in vivo toward gradients of EGF. Conventional in vitro methods used for studying tumor cell migration lack the complexity found in the TME and are therefore of limited relevance to in vivo metastasis. The Nano Intravital Device (NANIVID) has been designed as an implantable tool to manipulate the TME through the generation of soluble factor gradients. The NANIVID consists of two etched glass substrates, loaded with a hydrogel containing EGF, and sealed together using a polymer membrane. When implanted in vivo, the hydrogel will swell and release the entrapped EGF, forming a diffusion gradient in the tumor over many hours. The NANIVID design has been optimized for use with multiphoton-based intravital imaging, to monitor migration toward the device at single-cell resolution. Stabilization techniques have been developed to minimize imaging artifacts caused by breathing and specimen movement over the course of the experiment. The NANIVID has been validated in vivo using a mouse model of metastasis. When implanted in MDA-MB-231 xenograft tumors grown in SCID mice, chemotaxis of tumor cells was induced by the EGF gradient generated by the device. Cell motility parameters including velocity, directionality, and chemotactic index were calculated by tracking the migrating cells. Many additional chemicals and proteins are compatible with the NANIVID, providing a platform to initiate controlled changes in the TME that were not possible using conventional methods. Additionally, a one-dimensional (1D) cell migration assay was developed using electrospun nanofibers to mimic the collagen fibers associated with invasive breast tumors. Collagen fibers provide a substrate for cancer cells to migrate upon in vivo, serving as a connection to the blood vessels, to promote metastasis. Development of the migration assay enabled a low cost, versatile platform as a model system for the investigation of the motility processes used by tumor cells while constrained to 1D. The following supplemental material was submitted with this work and is available in the online version of this dissertation: Supp. Movie 1. Specimen Drift in Non-Fixtured Tumor.avi; Supp. Movie 2. Specimen Drift in Fixtured Tumor.avi; Supp. Movie 3. MDA-Mb-231 Cell Chemotaxis in vivo Toward 2 uM EGF NANIVID.avi; Supp. Movie 4. MDA-Mb-231 Cell Background Motility- Control NANIVID.avi; Supp. Movie 5. BAC Macrophage Chemotaxis- 300k U-ml hCSF-1 NANIVID.avi; Supp. Movie 6. BAC Macrophage Control Migration.avi; Supp. Movie 7. MTLn3 cells on Nanofiber-PVA Substrates.avi; Supp. Movie 8. MTLn3 cells on Nanofiber-Glass Substrates.avi.
Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA.
Johnson, Joshua B; Gates, J Edward; Zegre, Nicolas P
2011-02-01
Research on effects of wind turbines on bats has increased dramatically in recent years because of significant numbers of bats killed by rotating wind turbine blades. Whereas most research has focused on the Midwest and inland portions of eastern North America, bat activity and migration on the Atlantic Coast has largely been unexamined. We used three long-term acoustic monitoring stations to determine seasonal bat activity patterns on the Assateague Island National Seashore, a barrier island off the coast of Maryland, from 2005 to 2006. We recorded five species, including eastern red bats (Lasiurus borealis), big brown bats (Eptesicus fuscus), hoary bats (Lasiurus cinereus), tri-colored bats (Perimyotis subflavus), and silver-haired bats (Lasionycteris noctivagans). Seasonal bat activity (number of bat passes recorded) followed a cosine function and gradually increased beginning in April, peaked in August, and declined gradually until cessation in December. Based on autoregressive models, inter-night bat activity was autocorrelated for lags of seven nights or fewer but varied among acoustic monitoring stations. Higher nightly temperatures and lower wind speeds positively affected bat activity. When autoregressive model predictions were fitted to the observed nightly bat pass totals, model residuals>2 standard deviations from the mean existed only during migration periods, indicating that periodic increases in bat activity could not be accounted for by seasonal trends and weather variables alone. Rather, the additional bat passes were attributable to migrating bats. We conclude that bats, specifically eastern red, hoary, and silver-haired bats, use this barrier island during migration and that this phenomenon may have implications for the development of near and offshore wind energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Achord, Stephen; Sandford, Benjamin P.; Hockersmith, Eric E.
2009-05-26
This report provides results from an ongoing project to monitor the migration behavior and survival of wild juvenile spring/summer Chinook salmon in the Snake River Basin. Data reported is from detections of PIT tagged fish during late summer 2007 through mid-2008. Fish were tagged in summer 2007 by the National Marine Fisheries Service (NMFS) in Idaho and by the Oregon Department of Fish and Wildlife (ODFW) in Oregon. Our analyses include migration behavior and estimated survival of fish at instream PIT-tag monitors and arrival timing and estimated survival to Lower Granite Dam. Principal results from tagging and interrogation during 2007-2008more » are listed below: (1) In July and August 2007, we PIT tagged and released 7,390 wild Chinook salmon parr in 12 Idaho streams or sample areas. (2) Overall observed mortality from collection, handling, tagging, and after a 24-hour holding period was 1.4%. (3) Of the 2,524 Chinook salmon parr PIT tagged and released in Valley Creek in summer 2007, 218 (8.6%) were detected at two instream PIT-tag monitoring systems in lower Valley Creek from late summer 2007 to the following spring 2008. Of these, 71.6% were detected in late summer/fall, 11.9% in winter, and 16.5% in spring. Estimated parr-to-smolt survival to Lower Granite Dam was 15.5% for the late summer/fall group, 48.0% for the winter group, and 58.5% for the spring group. Based on detections at downstream dams, the overall efficiency of VC1 (upper) or VC2 (lower) Valley Creek monitors for detecting these fish was 21.1%. Using this VC1 or VC2 efficiency, an estimated 40.8% of all summer-tagged parr survived to move out of Valley Creek, and their estimated survival from that point to Lower Granite Dam was 26.5%. Overall estimated parr-to-smolt survival for all summer-tagged parr from this stream at the dam was 12.1%. Development and improvement of instream PIT-tag monitoring systems continued throughout 2007 and 2008. (4) Testing of PIT-tag antennas in lower Big Creek during 2007-2008 showed these antennas (and anchoring method) are not adequate to withstand high spring flows in this drainage. Future plans involve removing these antennas before high spring flows. (5) At Little Goose Dam in 2008, length and/or weight were taken on 505 recaptured fish from 12 Idaho stream populations. Fish had grown an average of 40.1 mm in length and 10.6 g in weight over an average of 288 d. Their mean condition factor declined from 1.25 at release (parr) to 1.05 at recapture (smolt). (6) Mean release lengths for detected fish were significantly larger than for fish not detected the following spring and summer (P < 0.0001). (7) Fish that migrated through Lower Granite Dam in April and May were significantly larger at release than fish that migrated after May (P < 0.0001) (only 12 fish migrated after May). (8) In 2008, peak detections at Lower Granite Dam of parr tagged during summer 2007 (from the 12 stream populations in Idaho and 4 streams in Oregon) occurred during moderate flows of 87.5 kcfs on 7 May and high flows of 197.3 kcfs on 20 May. The 10th, 50th, and 90th percentile passage occurred on 30 April, 11 May, and 23 May, respectively. (9) In 2007-2008, estimated parr-to-smolt survival to Lower Granite Dam for Idaho and Oregon streams (combined) averaged 19.4% (range 6.2-38.4% depending on stream of origin). In Idaho streams the estimated parr-to-smolt survival averaged 21.0%. This survival was the second highest since 1993 for Idaho streams. Relative parr densities were lower in 2007 (2.4 parr/100 m{sup 2}) than in all previous years since 2000. In 2008, we observed low-to-moderate flows prior to mid-May and relatively cold weather conditions throughout the spring migration season. These conditions moved half of the fish through Lower Granite Dam prior to mid-May; then high flows moved 50 to 90% of the fish through the dam in only 12 days. Clearly, complex interrelationships of several factors drive the annual migrational timing of the stocks.« less
Wu, L C; Liu, C; Jiang, M R; Jiang, Y M; Wang, Q H; Lu, Z Y; Wang, S J; Yang, W L; Shao, Y X
2016-08-26
Development of the eyelid requires coordination of the cellular processes involved in proliferation, cell size alteration, migration, and cell death. C57BL/6J-corneal opacity (B6-Co) mice are mutant mice generated by the administration of N-ethyl-N-nitrosourea (100 mg/kg). They exhibit the eyelids open at birth phenotype, abnormal round cell shape from tightened F-actin bundles in leading edge keratinocytes at E16.5, and gradual corneal opacity with neovessels. The tip of the leading edge in B6-Co mice did not move forward, and demonstrated a sharp peak shape without obvious directionality. Analysis of the biological characteristics of B6-Co mice demonstrated that abnormal migration of keratinocytes could affect eyelid development, but proliferation and apoptosis in B6-Co mice had no effect. Mutant gene mapping and sequence analysis demonstrated that in B6-Co mice, adenosine was inserted into the untranslated regions, between 3030 and 3031, in the mRNA 3'-terminal of Fgf10. In addition, guanine 7112 was substituted by adenine in the Mtap1B mRNA, and an A2333T mutation was identified in Mtap1B. Quantitative real-time polymerase chain reaction analysis showed that expression of the Hbegf gene was significantly down-regulated in the eyelids of B6- Co mice at E16.5, compared to B6 mice. However, the expression of Rock1, Map3k1, and Jnk1 genes did not show any significant changes. Abnormal keratinocyte migration and down-regulated expression of the Hbegf gene might be associated with impaired eyelid development in B6-Co mice.