NASA Technical Reports Server (NTRS)
Christian, Hugh J.
2004-01-01
Our knowledge of the global distribution of lightning has improved dramatically since the advent of spacebased lightning observations. Of major importance was the 1995 launch of the Optical Transient Detector (OTD), followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous eight-year record of global lightning activity. These lightning observations have provided a new global perspective on total lightning activity. For the first time, total lightning activity (cloud-to-ground and intra-cloud) has been observed over large regions with high detection efficiency and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised global flash rate estimate (44 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe weather. Accurate flash rate estimates are now available over large areas of the earth (+/- 72 deg. latitude). Ocean-land contrasts as a function of season are clearly reveled, as are orographic effects and seasonal and interannual variability. The space-based observations indicate that air mass thunderstorms, not large storm system dominate global activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated that this capability could lead to significantly improved severe weather warning times and reduced false warning rates. This talk will summarize our space-based lightning measurements, will discuss how lightning observations can be used to monitor severe weather, and present a concept for continuous geostationary-based lightning observations.
NASA Astrophysics Data System (ADS)
Hui, W.; Huang, F.; Guo, Q.; Li, D.; Yao, Z.; Zou, W.
2017-12-01
The development of lightning detection technology accumulates a large amount of long-term data for investigating the lightning activities. Ground-based lightning networks provide continuous lightning location but offer limited spatial coverage because of the complex underlying surface conditions. Space-based optical sensors can detect lightning with global homogeneity. However, observing from satellites in low-earth orbit has fixed locations at the ground very shortly during its overpasses. The latest launched geostationary satellite-based lightning imagers can detect lightning in real time, and provide complete life-cycle coverage of each observed thunderstorm. In this study, based on multi-source lightning data, the lightning activities in southwest China, which with complex terrain and prone to appear lightning, are researched. Firstly, the climatological characteristics of lightning activities in this region from 1998 to 2013 are analyzed by using very-high resolution (0.1°) Lightning Imaging Sensor (LIS)-derived data. The results indicate that the lightning activity is more intense in eastern and southern regions of southwest China than in western and northern regions; the monthly and hourly flash densities also show its obvious seasonal and diurnal variation respectively, which is consistent with the development of the convective systems in the region. The results show that the spatial and temporal distribution of lightning activities in southwest China is related to its topography, water vapor, and atmospheric conditions. Meanwhile, by comparing with the analysis derived data from Chinese Ground-based Lightning Location System, the LIS-based detection results are confirmed. Furthermore, the process of a thunderstorm in southwest China from 29 to 30 March 2017 is investigated by using the new-generation monitoring data of Chinese Fengyun-4 geostationary satellite-based Lightning Mapping Imager (LMI) and the rainfall data. The results tell us more about the behavior of lightning while the thunderstorm traverses through the region, and also demonstrate the correlation between the rainfall amounts and the storm track. This study will contribute to applications of lightning data to improve monitoring and forecasting of severe weather.
NASA Astrophysics Data System (ADS)
Mochalov, V. A.; Firstov, P. P.; Cherneva, N. V.; Sannikov, D. V.; Akbashev, R. R.; Uvarov, V. N.; Shevtsov, B. M.; Druzhin, G. I.; Mochalova, A. V.
2017-11-01
In the region of the Northern group of volcanoes in Kamchatka peninsula, a distributed network is being planned to monitor the VLF range electromagnetic radiation and to locate the lightning strokes. It will allow the researchers to register weaker electromagnetic pulses from lightning strokes in comparison to the World Wide Lightning Location Network. The hardware-software complex of the network under construction is presented. The capabilities of the available and the developing hardware and software to investigate natural phenomena associated with lightning activity are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deecke, T.A.; Hyde, J.V.; Hylko, J.M.
2006-07-01
The weather is the most significant and unmanageable variable when performing environmental remediation activities. This variable can contribute to the failure of a project in two ways: 1) severe injury to an employee or employees following a cloud-to-ground lightning strike without prior visual or audible warnings; and 2) excessive 'down time' associated with mobilization and demobilization activities after a false alarm (e.g., lightning was seen in the distance but was actually moving away from the site). Therefore, in order for a project to be successful from both safety and financial viewpoints, the uncertainties associated with inclement weather, specifically lightning, needmore » to be understood to eliminate the element of surprise. This paper discusses educational information related to the history and research of lightning, how lightning storms develop, types of lightning, the mechanisms of lightning injuries and fatalities, and follow-up medical treatment. Fortunately, lightning storm monitoring does not have to be either costly or elaborate. WESKEM, LLC selected the Boltek StormTracker Lightning Detection System with the Aninoquisi Lightning 2000{sup TM} software. This fixed system, used in combination with online weather web pages, monitors and alarms WESKEM, LLC field personnel in the event of an approaching lightning storm. This application was expanded to justify the purchase of the hand-held Sky Scan Lightning/Storm Detector Model P5 used by the Heath Youth Athletic Association (HYAA) which is a non-profit, charitable organization offering sports programs for the youth and young adults in the local community. Fortunately, a lightning injury or fatality has never occurred on a WESKEM Paducah project or an HYAA-sponsored event. Using these fixed and hand-held systems will continue to prevent such injuries from occurring in the foreseeable future. (authors)« less
NASA Astrophysics Data System (ADS)
Smith, C. M.; Thompson, G.; McNutt, S. R.; Behnke, S. A.; Edens, H. E.; Van Eaton, A. R.; Gaudin, D.; Thomas, R. J.
2017-12-01
The period of 28 May - 7 June 2015 at Sakurajima Volcano, Japan witnessed a multitude of Vulcanian eruptive events, which resulted in plumes reaching 500-3000m above the vent. These plumes varied from white, gas-rich plumes to dark grey and black ash-rich plumes, and were recorded on lowlight and infrared cameras. A nine-station lightning mapping array (LMA) was deployed to locate sources of VHF (67-73 MHz) radiation produced by lightning flashes and other types of electrical activity such as `continuous RF (radio frequency)'. Two Nanometrics Trillium broadband seismometers and six BSU infrasound sensors were deployed. Over this ten day period we recorded 1556 events that consisted of both seismic and infrasound signals, indicating explosive activity. There are an additional 1222 events that were recorded as only seismic or infrasound signals, which may be a result of precursory seismic signals or noise contamination. Plume discharge types included both distinct lightning flashes and `continuous RF'. The LMA ran continuously for the duration of the experiment. On 30 May 2015 at least seven lightning flashes were also detected by the Vaisala Global Lightning Detection 360 network, which detects VLF (3-30 kHz) radiation. However the University of Washington's World Wide Lightning Location Network, which also detects VLF radiation, detected no volcanic lightning flashes in this time period. This indicates that the electrical activity in Sakurajima's plume occurs near the lower limits of the VLF detection threshold. We investigate relationships between the plume dynamics, the geophysical signal and the corresponding electrical activity through: plume velocity and height; event waveform cross-correlation; volcano acoustic-seismic ratios; overall geophysical energy; RSAM records; and VHF sources detected by the LMA. By investigating these relationships we hope to determine the seismic/infrasound energy threshold required to generate measurable electrical activity. Seismic and infrasound are two of the most common volcanic monitoring methods. By developing the relationships between plume electrification and these geophysical methods we hope to expand the use of lightning for active volcano monitoring.
NASA Technical Reports Server (NTRS)
Christian, Hugh
2003-01-01
Our knowledge of the global distribution of lightning has improved dramatically since the 1995 launch of the Optical Transient Detector (OTD) followed in 1997 by the launch of the Lightning Imaging Sensor (LIS). Together, these instruments have generated a continuous seven-year record of global lightning activity. These lightning observations have provided a new global perspective on total lightning activity. For the first time, total lightning activity (CG and IC) has been observed over large regions with high detection efficiencies and accurate geographic location. This has produced new insights into lightning distributions, times of occurrence and variability. It has produced a revised global flash rate estimate (46 flashes per second) and has lead to a new realization of the significance of total lightning activity in severe weather. Accurate flash rate estimates are now available for large areas of the earth (+/- 72deg latitude) Ocean-land contrasts as a function of season are clearly revealed, as are orographic effects and seasonal and interannual variability. The data set indicates that air mass thunderstorms, not large storm systems dominate global activity. The ability of LIS and OTD to detect total lightning has lead to improved insight into the correlation between lightning and storm development. The relationship between updraft development and lightning activity is now well established and presents an opportunity for providing a new mechanism for remotely monitoring storm development. In this concept, lightning would serve as a surrogate for updraft velocity. It is anticipated hat this capability could lead to significantly improved severe weather warning times and reduced false warning rates.
NASA Technical Reports Server (NTRS)
Mata, C. T.; Wilson, J. G.
2012-01-01
The NASA Kennedy Space Center (KSC) and the Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) lightning detection networks, the Cloud-to-Ground Lightning Surveillance System (CGLSS) and the U.S. National Lightning Detection Network (NLDN), and a volumetric mapping array, the lightning detection and ranging II (LDAR II) system: These systems are used to monitor and characterize lightning that is potentially hazardous to launch or ground operations and hardware. These systems are not perfect and both have documented missed lightning events when compared to the existing lightning surveillance system at Launch Complex 39B (LC39B). Because of this finding it is NASA's plan to install a lightning surveillance system around each of the active launch pads sharing site locations and triggering capabilities when possible. This paper shows how the existing lightning surveillance system at LC39B has performed in 2011 as well as the plan for the expansion around all active pads.
Statistical Patterns in Natural Lightning
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M.; Said, R.; Inan, U. S.
2011-12-01
Every day millions of lightning flashes occur around the globe but the understanding of this natural phenomenon is still lacking. Fundamentally, lightning is nature's way of destroying charge separation in clouds and restoring electric neutrality. Thus, statistical patterns of lightning activity indicate the scope of these electric discharges and offer a surrogate measure of timescales for charge buildup in thunderclouds. We present a statistical method to investigate spatio-temporal correlations among lightning flashes using National Lightning Detection Network (NLDN) stroke data. By monitoring the distribution of lightning activity, we can observe the charging and discharging processes in a given thunderstorm. In particular, within a given storm, the flashes do not occur as a memoryless random process. We introduce the No Flash Zone (NFZ) which results from the suppressed probability of two consecutive neighboring flashes. This effect lasts for tens of seconds and can extend up to 15 km around the location of the initial flash, decaying with time. This suppression effect may be a function of variables such as storm location, storm phase, and stroke peak current. We develop a clustering algorithm, Storm-Locator, which groups strokes into flashes, storm cells, and thunderstorms, and enables us to study lightning and the NFZ in different geographical regions, and for different storms. The recursive algorithm also helps monitor the interaction among spatially displaced storm cells, and can provide more insight into the spatial and temporal impacts of lightning discharges.
Monitoring lightning from space with TARANIS
NASA Astrophysics Data System (ADS)
Farges, T.; Blanc, E.; Pinçon, J.
2010-12-01
Some recent space experiments, e.g. OTD, LIS, show the large interest of lightning monitoring from space and the efficiency of optical measurement. Future instrumentations are now defined for the next generation of geostationary meteorology satellites. Calibration of these instruments requires ground truth events provided by lightning location networks, as NLDN in US, and EUCLID or LINET in Europe, using electromagnetic observations at a regional scale. One of the most challenging objectives is the continuous monitoring of the lightning activity over the tropical zone (Africa, America, and Indonesia). However, one difficulty is the lack of lightning location networks at regional scale in these areas to validate the data quality. TARANIS (Tool for the Analysis of Radiations from lightNings and Sprites) is a CNES micro satellite project. It is dedicated to the study of impulsive transfers of energy, between the Earth atmosphere and the space environment, from nadir observations of Transient Luminous Events (TLEs), Terrestrial Gamma ray Flashes (TGFs) and other possible associated emissions. Its orbit will be sun-synchronous at 10:30 local time; its altitude will be 700 km. Its lifetime will be nominally 2 years. Its payload is composed of several electromagnetic instruments in different wavelengths: X and gamma-ray detectors, optical cameras and photometers, electromagnetic wave sensors from DC to 30 MHz completed by high energy electron detectors. The optical instrument includes 2 cameras and 4 photometers. All sensors are equipped with filters for sprite and lightning differentiation. The filters of cameras are designed for sprite and lightning observations at 762 nm and 777 nm respectively. However, differently from OTD or LIS instruments, the filter bandwidth and the exposure time (respectively 10 nm and 91 ms) prevent lightning optical observations during daytime. The camera field of view is a square of 500 km at ground level with a spatial sampling frequency of about 1 km. One of the photometers will measure precisely the lightning radiance in a wide spectral range from 600 to 900 nm with a sampling frequency of 20 kHz. We suggest using the Event and mainly Survey mode of MCP instrument to monitor lightning activity and compare it to the geostationary satellite lightning mapper data. In the Event mode, data are recorded with their highest resolution. In the camera survey mode, every image is archived using a specific compression algorithm. The photometer Survey mode consists in decimating the data by a factor of 10 and to reduce the data dynamic. However, it remains well adapted to provide a good continuous characterization of lightning activity. The use of other instruments for example 0+ whistler detector will complete the lightning characterization.
The Monitoring Of Thunderstorm In Sao Paulo's Urban Areas, Brazil
NASA Astrophysics Data System (ADS)
Gin, R. B.; Pereira, A.; Beneti, C.; Jusevicius, M.; Kawano, M.; Bianchi, R.; Bellodi, M.
2005-12-01
A monitoring of thunderstorm in urban areas occurred in the vicinity of Sao Bernardo do Campo, Sao Paulo from November 2004 to March 2005. Eight thunderstorms were monitored by local electric field, video camera, Brazilian Lightning Location Network (RINDAT) and weather radar. The most of these thunderstorms were associated with the local convection and cold front. Some of these events presented floods in the vicinity of Sao Bernardo and in the Metropolitan Area of Sao Paulo (MASP) being associated with local sea breeze circulation and the heat island effect. The convectives cells exceeding 100km x 100 km of area, actives between 2 and 3 hours. The local electric field identified the electrification stage of thunderstorms, high transients of lightning and total lightning rate of above 10 flashes per minute. About 29.5 thousands of cloud-to-ground lightning flashes were analyzed . From the total set of CG flashes analyzed, about 94 percent were negative strokes and presented average peak current of above 25kA, common for this region. Some lightning images were obtained by video camera and compared with transients of lightning and lightning detection network data. The most of these transients of lightning presented continuing current duration between 100ms and 200ms. A CG lightning occurred on 25th February was visually observed 3.5km from FEI campus, Sao Bernardo do Campo. This lightning presented negative polarity and estimed peak current of above 30kA. A spider was visually observed over FEI Campus at 17th March. No transients of lightning and recording by lightning location network were found.
Lightning Instrumentation at KSC
NASA Technical Reports Server (NTRS)
Colon, Jose L.; Eng, D.
2003-01-01
This report summarizes lightning phenomena with a brief explanation of lightning generation and lightning activity as related to KSC. An analysis of the instrumentation used at launching Pads 39 A&B for measurements of lightning effects is included with alternatives and recommendations to improve the protection system and upgrade the actual instrumentation system. An architecture for a new data collection system to replace the present one is also included. A novel architecture to obtain lightning current information from several sensors using only one high speed recording channel while monitoring all sensors to replace the actual manual lightning current recorders and a novel device for the protection system are described.
Walsh, K M; Bennett, B; Cooper, M A; Holle, R L; Kithil, R; López, R E
2000-10-01
To educate athletic trainers and others about the dangers of lightning, provide lightning-safety guidelines, define safe structures and locations, and advocate prehospital care for lightning-strike victims. Lightning may be the most frequently encountered severe-storm hazard endangering physically active people each year. Millions of lightning flashes strike the ground annually in the United States, causing nearly 100 deaths and 400 injuries. Three quarters of all lightning casualties occur between May and September, and nearly four fifths occur between 10:00 AM and 7:00 PM, which coincides with the hours for most athletic or recreational activities. Additionally, lightning casualties from sports and recreational activities have risen alarmingly in recent decades. The National Athletic Trainers' Association recommends a proactive approach to lightning safety, including the implementation of a lightning-safety policy that identifies safe locations for shelter from the lightning hazard. Further components of this policy are monitoring local weather forecasts, designating a weather watcher, and establishing a chain of command. Additionally, a flash-to-bang count of 30 seconds or more should be used as a minimal determinant of when to suspend activities. Waiting 30 minutes or longer after the last flash of lightning or sound of thunder is recommended before athletic or recreational activities are resumed. Lightning- safety strategies include avoiding shelter under trees, avoiding open fields and spaces, and suspending the use of land-line telephones during thunderstorms. Also outlined in this document are the prehospital care guidelines for triaging and treating lightning-strike victims. It is important to evaluate victims quickly for apnea, asystole, hypothermia, shock, fractures, and burns. Cardiopulmonary resuscitation is effective in resuscitating pulseless victims of lightning strike. Maintenance of cardiopulmonary resuscitation and first-aid certification should be required of all persons involved in sports and recreational activities.
Real-time Monitoring of 2017 Hurricanes and Typhoons with Lightning
NASA Astrophysics Data System (ADS)
Solorzano, N. N.; Thomas, J. N.; Bracy, C.; Holzworth, R. H., II
2017-12-01
The 2017 Atlantic season had the highest number of major hurricanes since 2005. To tackle the demand of real-time tropical cyclone (TC) monitoring, our group has developed a unique "storm-following" satellite and ground-based lightning product known as WWLLN-TC (World Wide Lightning Location Network - Tropical Cyclones; http://wwlln.net/storms/). In the present study, we explore this tool and other datasets, combining lightning and microwave data to quantify areas of intense convection in 2017 TCs Harvey, Hato, Irma, Maria, Nate, Ophelia and others. For each storm, the temporal distribution of discharges outside and within the inner core is compared to the changes in TC intensity. The intensification processes, monitored in near real-time by WWLLN-TC, are quantified in terms of pressure and/or wind speed changes. A peak in lightning activity is often observed in the inner core of TCs before and during rapid weakening, such as in Hurricanes Irma and Maria and Typhoon Hato. The microwave frequencies investigated include the 37 to 183 GHz channels of the satellite sensors DMSP/SSMIS and GPM/GMI. We reconstruct brightness temperatures from lightning data, providing more detailed pictures of the evolution of TCs at moments when satellite passes are missing or incomplete. This study also compares lightning activity in the inner core with convective and environmental parameters. Examples of environmental parameters discussed are sea surface temperature, wind shear, and sea surface height anomalies. We conclude by considering possible implications of WWLLN-TC on forecasts of rapid intensity change and rainfall.
Lightning Sensors for Observing, Tracking and Nowcasting Severe Weather
Price, Colin
2008-01-01
Severe and extreme weather is a major natural hazard all over the world, often resulting in major natural disasters such as hail storms, tornados, wind storms, flash floods, forest fires and lightning damages. While precipitation, wind, hail, tornados, turbulence, etc. can only be observed at close distances, lightning activity in these damaging storms can be monitored at all spatial scales, from local (using very high frequency [VHF] sensors), to regional (using very low frequency [VLF] sensors), and even global scales (using extremely low frequency [ELF] sensors). Using sensors that detect the radio waves emitted by each lightning discharge, it is now possible to observe and track continuously distant thunderstorms using ground networks of sensors. In addition to the number of lightning discharges, these sensors can also provide information on lightning characteristics such as the ratio between intra-cloud and cloud-to-ground lightning, the polarity of the lightning discharge, peak currents, charge removal, etc. It has been shown that changes in some of these lightning characteristics during thunderstorms are often related to changes in the severity of the storms. In this paper different lightning observing systems are described, and a few examples are provided showing how lightning may be used to monitor storm hazards around the globe, while also providing the possibility of supplying short term forecasts, called nowcasting. PMID:27879700
The GOES-R Lightning Mapper Sensor
NASA Technical Reports Server (NTRS)
Buechler, Dennis; Christian, Hugh; Goodman, Steve
2004-01-01
The Lightning Mapper Sensor on GOES-R builds on previous measurements of lightning from low earth orbit by the OTD (Optical Transient Detector) and LIS (Lightning Imaging Sensor) sensors. Unlike observations from low earth orbit, the GOES-R platform will allow continuous monitoring of lightning activity over the Continental United States and southern Canada, Central and South America, and portions of the Atlantic and Pacific Oceans. The LMS will detect total (cloud-to-ground and intracloud) lightning at storm scale resolution (approx. 8 km) using a highly sensitive Charge Coupled Device (CCD) detector array. Discrimination between lightning optical transients and a bright sunlit background scene is accomplished by employing spectral, spatial, and temporal filtering along with a background subtraction technique. The result is 24 hour detection capability of total lightning. These total lightning observations can be made available to users within about 20 seconds. Research indicates a number of ways that total lightning observations from LMS could benefit operational activities, including 1) potential increases in lead times and reduced false alarms for severe thunderstorm and tornado Warnings, 2) improved routing of &rail around thunderstorms, 3) support for spacecraft launches and landings, 4) improved ability to monitor tropical cyclone intensity, 5) ability to monitor thunderstorm intensification/weakening during radar outages or where radar coverage is poor, 6) better identification of deep convection for the initialization of numerical prediction models, 7) improved forest fire forecasts, 8) identification of convective initiation, 9) identification of heavy convective snowfall, and 10) enhanced temporal resolution of storm evolution (1 minute) than is available from radar observations. Total lightning data has been used in an operational environment since July 2003 at the Huntsville, Alabama National Weather Service office. Total lightning measurements are obtained by the North Alabama Lightning Mapping Array (LMA) and have successfully been used in warning decisions. Every 2 minutes, total lightning counts in 2 km by 2 km horizontal, 1 km vertical grids are available to forecasters on an AWIPS (Advanced Weather Interactive Processing System) workstation. Experience with the LMA total lightning data is used to illustrate the potential use of LMS data that would be available to forecasters across the US. This abstract is for submission as a presentation to the National Weather Association Annual Meeting to be held 16-21 October 2004 in Portland, OR. This abstract will be published in the conference proceedings.
NASA Astrophysics Data System (ADS)
Yamashita, Kozo; Takahashi, Yukihiro; Ohya, Hiroyo; Tsuchiya, Fuminori; Sato, Mitsuteru; Matsumoto, Jun
2013-04-01
Data of lightning discharge has been focused on as an effective way for monitoring and nowcasting of thunderstorm activity which causes extreme weather. Spatial distribution of lightning discharge has been used as a proxy of the presence or absence of deep convection. Latest observation shows that there is extremely huge lightning whose scale is more than hundreds times bigger than that of averaged event. This result indicates that lightning observation should be carried out to estimate not only existence but also scale for quantitative evaluation of atmospheric convection. In this study, lightning observation network in the Maritime Continent is introduced. This network is consisted of the sensors which make possible to measure electromagnetic wave radiated from lightning discharges. Observation frequency is 0.1 - 40 kHz for the measurement of magnetic field and 1 - 40 kHz for that of electric field. Sampling frequency is 100 kHz. Waveform of electromagnetic wave is recorded by personal computer. We have already constructed observation stations at Tainan in Taiwan (23.1N, 121.1E), Saraburi in Thailand (14.5N, 101.0E), and Pontianak in Indonesia (0.0N, 109.4E). Furthermore, we plan to install the monitoring system at Los Banos in Philippines (14.18, 121.25E) and Hanoi in Viet Nam. Data obtained by multipoint observation is synchronized by GPS receiver installed at each station. By using data obtained by this network, location and scale of lightning discharge can be estimated. Location of lightning is determined based on time of arrival method. Accuracy of geolocation could be less than 10km. Furthermore, charge moment is evaluated as a scale of each lightning discharge. It is calculated from electromagnetic waveform in ELF range (3-30 kHz). At the presentation, we will show the initial result about geolocation for source of electromagnetic wave and derivation of charge moment value based on the measurement of ELF and VLF sferics.
A Model Lightning Safety Policy for Athletics
Bennett, Brian L.
1997-01-01
Objective: The purpose of this paper is to present a model policy on lightning safety for athletic trainers. Background: Among college athletic programs in the United States there is a serious lack of written policy on lightning safety. Available evidence shows that most National Collegiate Athletic Association (NCAA) Division I institutions, even though they are located in high lightning activity areas of the country, do not have formal, written lightning safety policies. Clinical Advantages/ Recommendations: The policy presented herein, which is at the forefront of such policies, is the lightning safety policy written as part of a policies and procedures manual for the division of sports medicine at a public NCAA Division I university. This is a policy based on practicality that utilizes the “flash-to- bang” method for determining the distance of lightning activity from the observer. The policy begins with the importance of prevention, including the daily monitoring of weather reports. The policy defines a “safe shelter” and specifies the chain of command for determining who removes a team or individuals from an athletic site in the event of dangerous lightning activity. PMID:16558459
Automatic lightning detection and photographic system
NASA Technical Reports Server (NTRS)
Wojtasinski, R. J.; Holley, L. D.; Gray, J. L.; Hoover, R. B. (Inventor)
1972-01-01
A system is presented for monitoring and recording lightning strokes within a predetermined area with a camera having an electrically operated shutter with means for advancing the film in the camera after activating the shutter. The system includes an antenna for sensing lightning strikes which, in turn, generates a signal that is fed to an electronic circuit which generates signals for operating the shutter of the camera. Circuitry is provided for preventing activation of the shutter as the film in the camera is being advanced.
Walsh, Katie M.; Bennett, Brian; Cooper, Mary Ann; Holle, Ronald L.; Kithil, Richard; López, Raul E.
2000-01-01
Objective: To educate athletic trainers and others about the dangers of lightning, provide lightning-safety guidelines, define safe structures and locations, and advocate prehospital care for lightning-strike victims. Background: Lightning may be the most frequently encountered severe-storm hazard endangering physically active people each year. Millions of lightning flashes strike the ground annually in the United States, causing nearly 100 deaths and 400 injuries. Three quarters of all lightning casualties occur between May and September, and nearly four fifths occur between 10:00 AM and 7:00 PM, which coincides with the hours for most athletic or recreational activities. Additionally, lightning casualties from sports and recreational activities have risen alarmingly in recent decades. Recommendations: The National Athletic Trainers' Association recommends a proactive approach to lightning safety, including the implementation of a lightning-safety policy that identifies safe locations for shelter from the lightning hazard. Further components of this policy are monitoring local weather forecasts, designating a weather watcher, and establishing a chain of command. Additionally, a flash-to-bang count of 30 seconds or more should be used as a minimal determinant of when to suspend activities. Waiting 30 minutes or longer after the last flash of lightning or sound of thunder is recommended before athletic or recreational activities are resumed. Lightning- safety strategies include avoiding shelter under trees, avoiding open fields and spaces, and suspending the use of land-line telephones during thunderstorms. Also outlined in this document are the prehospital care guidelines for triaging and treating lightning-strike victims. It is important to evaluate victims quickly for apnea, asystole, hypothermia, shock, fractures, and burns. Cardiopulmonary resuscitation is effective in resuscitating pulseless victims of lightning strike. Maintenance of cardiopulmonary resuscitation and first-aid certification should be required of all persons involved in sports and recreational activities. PMID:16558665
Tropic lightning: myth or menace?
McCarthy, John
2014-11-01
Lightning is one of the leading causes of death related to environmental disaster. Of all lightning fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai'i has had zero documented lightning fatalities since weather data tracking was initiated in 1959. There is a common misconception that lightning does not strike the ground in Hawai'i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. Lightning damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on "reverse triage" and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications.
Thunderstorm monitoring and lightning warning, operational applications of the Safir system
NASA Technical Reports Server (NTRS)
Richard, Philippe
1991-01-01
During the past years a new range of studies have been opened by the application of electromagnetic localization techniques to the field of thunderstorm remote sensing. VHF localization techniques were used in particular for the analysis of lightning discharges and gave access to time resolved 3-D images of lightning discharges within thunderclouds. Detection and localization techniques developed have been applied to the design of the SAFIR system. This development's main objective was the design of an operational system capable of assessing and warning in real time for lightning hazards and potential thunderstorm hazards. The SAFIR system main detection technique is the long range interferometric localization of thunderstorm electromagnetic activity; the system performs the localization of intracloud and cloud to ground lightning discharges and the analysis of the characteristics of the activity.
Infrasound from lightning measured in Ivory Coast
NASA Astrophysics Data System (ADS)
Farges, T.; Matoza, R. S.
2011-12-01
It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. More than two thirds (42) of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes, ...). Some of the IMS stations are located where worldwide lightning detection networks (e.g. WWLLN) have a weak detection capability but lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. For example, Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within a range of distances from the infrasound station. Infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. The motion of the squall zone is very well measured inside this zone. Up to 25% of lightning flashes can be detected with this technique, giving better results locally than worldwide lightning detection networks. An IMS infrasound station has been installed in Ivory Coast for 8 years. The optical space-based instrument OTD measured a rate of 10-20 flashes/km^2/year in that country and showed strong seasonal variations (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 3 years of data (2005-2008).
The Design of Lightning Protection
NASA Technical Reports Server (NTRS)
1983-01-01
Engineering study guides design and monitoring of lightning protection. Design studies for project are collected in 150-page report, containing wealth of information on design of lightning protection systems and on instrumentation for monitoring current waveforms of lightning strokes.
The Development of the Puerto Rico Lightning Detection Network for Meteorological Research
NASA Technical Reports Server (NTRS)
Legault, Marc D.; Miranda, Carmelo; Medin, J.; Ojeda, L. J.; Blakeslee, Richard J.
2011-01-01
A land-based Puerto Rico Lightning Detection Network (PR-LDN) dedicated to the academic research of meteorological phenomena has being developed. Five Boltek StormTracker PCI-Receivers with LTS-2 Timestamp Cards with GPS and lightning detectors were integrated to Pentium III PC-workstations running the CentOS linux operating system. The Boltek detector linux driver was compiled under CentOS, modified, and thoroughly tested. These PC-workstations with integrated lightning detectors were installed at five of the University of Puerto Rico (UPR) campuses distributed around the island of PR. The PC-workstations are left on permanently in order to monitor lightning activity at all times. Each is networked to their campus network-backbone permitting quasi-instantaneous data transfer to a central server at the UPR-Bayam n campus. Information generated by each lightning detector is managed by a C-program developed by us called the LDN-client. The LDN-client maintains an open connection to the central server operating the LDN-server program where data is sent real-time for analysis and archival. The LDN-client also manages the storing of data on the PC-workstation hard disk. The LDN-server software (also an in-house effort) analyses the data from each client and performs event triangulations. Time-of-arrival (TOA) and related hybrid algorithms, lightning-type and event discriminating routines are also implemented in the LDN-server software. We also have developed software to visually monitor lightning events in real-time from all clients and the triangulated events. We are currently monitoring and studying the spatial, temporal, and type distribution of lightning strikes associated with electrical storms and tropical cyclones in the vicinity of Puerto Rico.
NASA Astrophysics Data System (ADS)
Lang, T. J.; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.; Tatum, P. F.
2018-02-01
We propose the Deep Space Gateway Lightning Mapper (DLM) instrument. The primary goal of the DLM is to optically monitor Earth's high-latitude (50° and poleward) total lightning not observed by current and planned spaceborne lightning mappers.
Global lightning and severe storm monitoring from GPS orbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suszcynsky, D. M.; Jacobson, A. R.; Linford, J
Over the last few decades, there has been a growing interest to develop and deploy an automated and continuously operating satellite-based global lightning mapper [e.g. Christian et al., 1989; Weber et al., 1998; Suszcynsky et al., 2000]. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. Satellite-based lightning mappers are designed to exploit this relationship by using lightning detection as a proxy for remotely identifying, locating and characterizing strong convective activity on a global basis. Global lightning and convection mapping promises to provide users with (1) an enhancedmore » global severe weather monitoring and early warning capability [e.g. Weber et al., 1998] (2) improved ability to optimize aviation flight paths around convective cells, particularly over oceanic and remote regions that are not sufficiently serviced by existing weather radar [e.g. Weber et al., 1998], and (3) access to regional and global proxy data sets that can be used for scientific studies and as input into meteorological forecast and global climatology models. The physical foundation for satellite-based remote sensing of convection by way of lightning detection is provided by the basic interplay between the electrical and convective states of a thundercloud. It is widely believed that convection is a driving mechanism behind the hydrometeor charging and transport that produces charge separation and lightning discharges within thunderclouds [e.g. see chapter 3 in MacGorman and Rust, 1998]. Although cloud electrification and discharge processes are a complex function of the convective dynamics and microphysics of the cloud, the fundamental relationship between convection and electrification is easy to observe. For example, studies have shown that the strength of the convective process within a thundercell can be loosely parameterized (with large variance) by the intensity of the electrical activity within that cell as measured by the lightning flash rate. Williams [2001] has provided a review of experimental work that shows correlations between the total lightning flash rate and the fifth power of the radar cloud-top height (i.e. convective strength) of individual thunder cells. More recently, Ushio et al., [2001] used a large statistical sampling of optical data from the Lightning Imaging Sensor (LIS) in conjunction with data provided by the Precipitation Radar (PR) aboard the Tropical Rainfall Monitoring Mission (TRMM) satellite to conclude that the total lightning flash rate increases exponentially with storm height. Lightning activity levels have also been correlated to cloud ice content, a basic product of the convective process. For example, Blyth et al. [2001] used the Thermal Microwave Imager (TMI) aboard the TRMM satellite to observe a decrease in the 37 and 85 GHz brightness temperatures of upwelling terrestrial radiation during increased lightning activity. This reduction in brightness temperature is believed to be the result of increased ice scattering in the mixed phase region of the cloud. Toracinta and Zipser [2001] have found similar relationships using the Optical Transient Detector (OTD) satellite instrument and the Special Sensor Microwave Imager (SSM/I) aboard the DMSP satellites.« less
Combined VLF and VHF lightning observations of Hurricane Rita landfall
NASA Astrophysics Data System (ADS)
Henderson, B. G.; Suszcynsky, D. M.; Wiens, K. C.; Hamlin, T.; Jeffery, C. A.; Orville, R. E.
2009-12-01
Hurricane Rita displayed abundant lightning in its northern eyewall as it made landfall at 0740 UTC 24 Sep 2005 near the Texas/Louisiana border. For this work, we combined VHF and VLF lightning data from Hurricane Rita, along with radar observations from Gulf Coast WSR-88D stations, for the purpose of demonstrating the combined utility of these two spectral regions for hurricane lightning monitoring. Lightning is a direct consequence of the electrification and breakdown processes that take place during the convective stages of thunderstorm development. As Rita approached the Gulf coast, the VHF lightning emissions were distinctly periodic with a period of 1.5 to 2 hours, which is consistent with the rotational period of hurricanes. VLF lightning emissions, measured by LASA and NLDN, were present in some of these VHF bursts but not all of them. At landfall, there was a significant increase in lightning emissions, accompanied by a significant convective surge observed in radar. Furthermore, VLF and VHF lightning source heights clearly increase as a function of time. The evolution of the IC/CG ratio is consistent with that seen in thunderstorms, showing a dominance of IC activity during storm development, followed by an increase in CG activity at the storm’s peak. The periodic VHF lightning events are correlated with increases in convective growth (quantified by the volume of radar echo >40 dB) above 7 km altitude. VLF can discriminate between lightning types, and in the LASA data, Rita landfall lightning activity was dominated by Narrow Bi-polar Events (NBEs)—high-energy, high-altitude, compact intra-cloud discharges. The opportunity to locate NBE lightning sources in altitude may be particularly useful in quantifying the vertical extent (strength) of the convective development and in possibly deducing vertical charge distributions.
Tropic Lightning: Myth or Menace?
2014-01-01
Lightning is one of the leading causes of death related to environmental disaster. Of all lightning fatalities documented between 2006 and 2012, leisure activities contributed the largest proportion of deaths, with water-associated, sports, and camping being the most common. Despite the prevalence of these activities throughout the islands, Hawai‘i has had zero documented lightning fatalities since weather data tracking was initiated in 1959. There is a common misconception that lightning does not strike the ground in Hawai‘i. This myth may contribute to a potentially dangerous false sense of security, and recognition of warning signs and risk factor modification remain the most important prevention strategies. Lightning damage occurs on a spectrum, from minor burns to multi-organ dysfunction. After injury, initial treatment should focus on “reverse triage” and immediate cardiopulmonary resuscitation when indicated, followed by transfer to a healthcare facility. Definitive treatment entails monitoring and management of potential sequelae, to include cardiovascular, neurologic, dermatologic, ophthalmologic, audiovestibular, and psychiatric complications. PMID:25478304
NASA Technical Reports Server (NTRS)
Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey
2015-01-01
Lightning one of the most dangerous weather-related phenomena, especially as many jobs and activities occur outdoors, presenting risk from a lightning strike. Cloud-to-ground (CG) lightning represents a considerable safety threat to people at airfields, marinas, and outdoor facilities-from airfield personnel, to people attending outdoor stadium events, on beaches and golf courses, to mariners, as well as emergency personnel. Holle et al. (2005) show that 90% of lightning deaths occurred outdoors, while 10% occurred indoors despite the perception of safety when inside buildings. Curran et al. (2000) found that nearly half of fatalities due to weather were related to convective weather in the 1992-1994 timeframe, with lightning causing a large component of the fatalities, in addition to tornadoes and flash flooding. Related to the aviation industry, CG lightning represents a considerable hazard to baggage-handlers, aircraft refuelers, food caterers, and emergency personnel, who all become exposed to the risk of being struck within short time periods while convective storm clouds develop. Airport safety protocols require that ramp operations be modified or discontinued when lightning is in the vicinity (typically 16 km), which becomes very costly and disruptive to flight operations. Therefore, much focus has been paid to nowcasting the first-time initiation and extent of lightning, both of CG and of any lightning (e.g, in-cloud, cloud-to-cloud). For this project three lightning nowcasting methodologies will be combined: (1) a GOESbased 0-1 hour lightning initiation (LI) product (Harris et al. 2010; Iskenderian et al. 2012), (2) a High Resolution Rapid Refresh (HRRR) lightning probability and forecasted lightning flash density product, such that a quantitative amount of lightning (QL) can be assigned to a location of expected LI, and (3) an algorithm that relates Pseudo-GLM data (Stano et al. 2012, 2014) to the so-called "lightning jump" (LJ) methodology (Shultz et al. 2011) to monitor lightning trends and to anticipate/forecast severe weather (hail > or =2.5 cm, winds > or =25 m/s, tornadoes). The result will be a time-continuous algorithm that uses GOES satellite, radar fields, and HRRR model fields to nowcast first-flash LI and QL, and subsequently monitors lightning trends on a perstorm basis within the LJ algorithm for possible severe weather occurrence out to > or =3 hours. The LI-QL-LJ product will also help prepare the operational forecast community for Geostationary Lightning Mapper (GLM) data expected in late 2015, as these data are monitored for ongoing convective storms. The LI-QL-LJ product will first predict where new lightning is highly probable using GOES imagery of developing cumulus clouds, followed by n analysis of NWS (dual-polarization) radar indicators (reflectivity at the -10 C altitude) of lightning occurrence, to increase confidence that LI is immanent. Once lightning is observed, time-continuous lightning mapping array and Pseudo-GLM observations will be analyzed to assess trends and the severe weather threat as identified by trends in lightning (i.e. LJs). Additionally, 5- and 15-min GOES imagery will then be evaluated on a per-storm basis for overshooting and other cloud-top features known to be associated with severe storms. For the processing framework, the GOES-R 0-1 hour convective initiation algorithm's output will be developed within the Warning Decision Support System - Integrated Information (WDSS-II) tracking tool, and merged with radar and lightning (LMA/Psuedo-GLM) datasets for active storms. The initial focus of system development will be over North Alabama for select lightning-active days in summer 2014, yet will be formed in an expandable manner. The lightning alert tool will also be developed in concert with National Weather Service (NWS) forecasters to meet their needs for real-time, accurate first-flash LI and timing, as well as anticipated lightning trends, amounts, continuation and cessation, so to provide key situational awareness and decision support information. The NASA Short-term Prediction Research and Transition (SPoRT) Center will provide important logistical and collaborative support and training, involving interactions with the NWS and broader user community.
Lightning Applications in Weather and Climate Research
NASA Astrophysics Data System (ADS)
Price, Colin G.
2013-11-01
Thunderstorms, and lightning in particular, are a major natural hazard to the public, aviation, power companies, and wildfire managers. Lightning causes great damage and death every year but also tells us about the inner working of storms. Since lightning can be monitored from great distances from the storms themselves, lightning may allow us to provide early warnings for severe weather phenomena such as hail storms, flash floods, tornadoes, and even hurricanes. Lightning itself may impact the climate of the Earth by producing nitrogen oxides (NOx), a precursor of tropospheric ozone, which is a powerful greenhouse gas. Thunderstorms themselves influence the climate system by the redistribution of heat, moisture, and momentum in the atmosphere. What about future changes in lightning and thunderstorm activity? Many studies show that higher surface temperatures produce more lightning, but future changes will depend on what happens to the vertical temperature profile in the troposphere, as well as changes in water balance, and even aerosol loading of the atmosphere. Finally, lightning itself may provide a useful tool for tracking climate change in the future, due to the nonlinear link between lightning, temperature, upper tropospheric water vapor, and cloud cover.
Lightning Mapping Observations: What we are learning.
NASA Astrophysics Data System (ADS)
Krehbiel, P.
2001-12-01
The use of radio frequency time-of-arrival techniques for accurately mapping lightning discharges is revolutionizing our ability to study lightning discharge processes and to investigate thunderstorms. Different types of discharges are being observed that we have not been able to study before or knew existed. Included are a variety of inverted and normal polarity intracloud and cloud-to-ground discharges, frequent short-duration discharges at high altitude in storms and in overshooting convective tops, highly energetic impulsive discharge events, and horizontally extensive `spider' lightning discharges in large mesoscale convective systems. High time resolution measurements valuably complement interferometric observations and are starting to exceed the ability of interferometers to provide detailed pictures of flash development. Mapping observations can be used to infer the polarity of the breakdown channels and hence the location and sign of charge regions in the storm. The lightning activity in large, severe storms is found to be essentially continuous and volume-filling, with substantially more lightning inside the storm than between the cloud and ground. Spectacular dendritic structures are observed in many flashes. The lightning observations can be used to infer the electrical structure of a storm and therefore to study the electrification processes. The results are raising fundamental questions about how storms become electrified and how the electrification evolves with time. Supercell storms are commonly observed to electrify in an inverted or anomalous manner, raising questions about how these storms are different from normal storms, and even what is `normal'. The high lightning rates in severe storms raises the distinct possibility that the discharges themselves might be sustaining or enhancing the electrification. Correlated observations with radar, instrumented balloons and aircraft, and ground-based measurements are leading to greatly improved understanding of the electrical processes in storms. The mapping observations also provide possible diagnostics of storm type and severity. Lightning `holes' are observed as storms intensify and are robust indicators of strong updrafts and precursors of tornadic activity. Lightning in overshooting convective tops provides another indicator of strong convective surges and a valuable precursor of severity. The lightning observations show the locations of convective cores in storms and can be obtained in real time to monitor and track convective activity, much like meteorological radar. Mapping systems are able to passively detect and track aircraft flying through ice crystal clouds, as well as airborne or ground-based instruments or vehicles carrying active transmitters. Finally, the mapping techniques could readily be adapted to monitor noise and detect faults on power transmission lines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Bradley G; Suszcynsky, David M; Hamlin, Timothy E
Los Alamos National Laboratory (LANL) owns and operates an array of Very-Low Frequency (VLF) sensors that measure the Radio-Frequency (RF) waveforms emitted by Cloud-to-Ground (CG) and InCloud (IC) lightning. This array, the Los Alamos Sferic Array (LASA), has approximately 15 sensors concentrated in the Great Plains and Florida, which detect electric field changes in a bandwidth from 200 Hz to 500 kHz (Smith et al., 2002). Recently, LANL has begun development of a new dual-band RF sensor array that includes the Very-High Frequency (VHF) band as well as the VLF. Whereas VLF lightning emissions can be used to deduce physicalmore » parameters such as lightning type and peak current, VHF emissions can be used to perform precise 3d mapping of individual radiation sources, which can number in the thousands for a typical CG flash. These new dual-band sensors will be used to monitor lightning activity in hurricanes in an effort to better predict intensification cycles. Although the new LANL dual-band array is not yet operational, we have begun initial work utilizing both VLF and VHF lightning data to monitor hurricane evolution. In this paper, we present the temporal evolution of Rita's landfall using VLF and VHF lightning data, and also WSR-88D radar. At landfall, Rita's northern eyewall experienced strong updrafts and significant lightning activity that appear to mark a transition between oceanic hurricane dynamics and continental thunderstorm dynamics. In section 2, we give a brief overview of Hurricane Rita, including its development as a hurricane and its lightning history. In the following section, we present WSR-88D data of Rita's landfall, including reflectivity images and temporal variation. In section 4, we present both VHF and VLF lightning data, overplotted on radar reflectivity images. Finally, we discuss our observations, including a comparison to previous studies and a brief conclusion.« less
Fifty Years of Lightning Observations from Space
NASA Astrophysics Data System (ADS)
Christian, H. J., Jr.
2017-12-01
Some of the earliest satellites, starting with OSO (1965), ARIEL (1967), and RAE (1968), detected lightning using either optical and RF sensors, although that was not their intent. One of the earliest instruments designed to detect lightning was the PBE (1977). The use of space to study lightning activity has exploded since these early days. The advent of focal-plane imaging arrays made it possible to develop high performance optical lightning sensors. Prior to the use of charged-coupled devices (CCD), most space-based lightning sensors used only a few photo-diodes, which limited the location accuracy and detection efficiency (DE) of the instruments. With CCDs, one can limit the field of view of each detector (pixel), and thus improve the signal to noise ratio over single-detectors that summed the light reflected from many clouds with the lightning produced by a single cloud. This pixelization enabled daytime DE to increase from a few percent to close to 90%. The OTD (1995), and the LIS (1997), were the first lightning sensors to utilize focal-plane arrays. Together they detected global lightning activity for more than twenty years, providing the first detailed information on the distribution of global lightning and its variability. The FORTE satellite was launched shortly after LIS, and became the first dedicated satellite to simultaneously measure RF and optical lightning emissions. It too used a CCD focal plane to detect and locate lightning. In November 2016, the GLM became the first lightning instrument in geostationary orbit. Shortly thereafter, China placed its GLI in orbit. Lightning sensors in geostationary orbit significantly increase the value of space-based observations. For the first time, lightning activity can be monitored continuously, over large areas of the Earth with high, uniform DE and location accuracy. In addition to observing standard lightning, a number of sensors have been placed in orbit to detect transient luminous events and tropospheric gamma-ray flashes. A lineal history of space-based lightning observations will be presented as well as a discussion of the scientific contributions made possible by these instruments. In addition, relative merits of space versus ground measurements will be addressed, as well as an effort to demonstrate the complementary nature of the two approaches.
NASA Astrophysics Data System (ADS)
Van Eaton, A. R.; Smith, C. M.; Schneider, D. J.
2017-12-01
Lightning in volcanic plumes provides a promising way to monitor ash-producing eruptions and investigate their dynamics. Among the many methods of lightning detection are global networks of sensors that detect electromagnetic radiation in the very low frequency band (3-30 kHz), including the World Wide Lightning Location Network. These radio waves propagate thousands of kilometers at the speed of light, providing an opportunity for rapid detection of explosive volcanism anywhere in the world. Lightning is particularly valuable as a near real-time indicator of ash-rich plumes that are hazardous to aviation. Yet many fundamental questions remain. Under what conditions does electrical activity in volcanic plumes become powerful, detectable lightning? And conversely, can we use lightning to illuminate eruption processes and hazards? This study highlights recent observations from the eruptions of Redoubt (Alaska, 2009), Kelud (Indonesia, 2014), Calbuco (Chile, 2015), and Bogoslof (Alaska, 2017) to examine volcanic lighting from a range of eruption styles (Surtseyan to Plinian) and mass eruption rates from 10^5 to 10^8 kg/s. It is clear that lightning stroke-rates do not scale in a simple way with mass eruption rate or plume height across different eruptions. However, relative changes in electrical activity through individual eruptions relate to changes in eruptive intensity, ice content, and volcanic plume processes (fall vs. flow).
NASA Astrophysics Data System (ADS)
Sato, M.; Takahashi, Y.; Yamashita, K.; Kubota, H.; Hamada, J. I.; Momota, E.; Marciano, J. J.
2017-12-01
Lightning activity represents the thunderstorm activity, that is, the precipitation and/or updraft intensity and area. Thunderstorm activity is also an important parameter in terms of the energy inputs from the ocean to the atmosphere inside tropical cyclone, which is one of severe weather events. Recent studies suggest that it is possible to predict the maximum wind velocity and minimum pressure near the center of the tropical cyclone by one or two days before if we monitor the lightning activities in the tropical cyclone. Many countries in the western Pacific region suffer from the attack of tropical cyclone (typhoon) and have a strong demand to predict the intensity development of typhoons. Thus, we started developing a new lightning observation system and installing the observation system at Guam, Palau, and Manila in the Philippines from this summer. The lightning observation system consists of a VLF sensor detecting lightning-excited electromagnetic waves in the frequency range of 1-5 kHz, an automatic data-processing unit, solar panels, and batteries. Lightning-excited pulse signals detected by the VLF sensor are automatically analyzed by the data-processing unit, and only the extracted information of the trigger time and pulse amplitude is transmitted to a data server via the 3G data communications. In addition, we are now developing an upgraded lightning and weather observation system, which will be installed at 50 automated weather stations in Metro Manila and 10 radar sites in the Philippines under the 5-year project (SATREPS) scheme. At the presentation, we will show the initial results derived from the lightning observation system in detail and will show the detailed future plan of the SATREPS project.
NASA Astrophysics Data System (ADS)
Smith, Cassandra M.; Van Eaton, Alexa R.; Charbonnier, Sylvain; McNutt, Stephen R.; Behnke, Sonja A.; Thomas, Ronald J.; Edens, Harald E.; Thompson, Glenn
2018-06-01
Volcanic lightning detection has become a useful resource for monitoring remote, under-instrumented volcanoes. Previous studies have shown that the behavior of volcanic plume electrification responds to changes in the eruptive processes and products. However, there has not yet been a study to quantify the links between ash textures and plume electrification during an actively monitored eruption. In this study, we examine a sequence of vulcanian eruptions from Sakurajima Volcano in Japan to compare ash textural properties (grain size, shape, componentry, and groundmass crystallinity) to plume electrification using a lightning mapping array and other monitoring data. We show that the presence of the continual radio frequency (CRF) signal is more likely to occur during eruptions that produce large seismic amplitudes (>7 μm) and glass-rich volcanic ash with more equant particle shapes. We show that CRF is generated during energetic, impulsive eruptions, where charge buildup is enhanced by secondary fragmentation (milling) as particles travel out of the conduit and into the gas-thrust region of the plume. We show that the CRF signal is influenced by a different electrification process than later volcanic lightning. By using volcanic CRF and lightning to better understand the eruptive event and its products these key observations will help the monitoring community better utilize volcanic electrification as a method for monitoring and understanding ongoing explosive eruptions.
MUSIC for localization of thunderstorm cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosher, J.C.; Lewis, P.S.; Rynne, T.M.
1993-12-31
Lightning represents an event detectable optically, electrically, and acoustically, and several systems are already in place to monitor such activity. Unfortunately, such detection of lightning can occur too late, since operations need to be protected in advance of the first lightning strike. Additionally, the bolt itself can traverse several kilometers before striking the ground, leaving a large region of uncertainty as to the center of the storm and its possible strike regions. NASA Kennedy Space Center has in place an array of electric field mills that monitor the (effectively) DC electric field. Prior to the first lightning strike, the surfacemore » electric fields rise as the storm generator within a thundercloud begins charging. Extending methods we developed for an analogous source localization problem in mangnetoencephalography, we present Cramer-Rao lower bounds and MUSIC scans for fitting a point-charge source model to the electric field mill data. Such techniques can allow for the identification and localization of charge centers in cloud structures.« less
Acoustic Manifestations of Natural versus Triggered Lightning
NASA Astrophysics Data System (ADS)
Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Rison, W.; Thomas, R. J.; Eack, K.; Eastvedt, E. M.; Aulich, G. D.; Trueblood, J.
2010-12-01
Positive leaders are rarely detected by VHF lightning detection systems; positive leader channels are usually outlined only by recoil events. Positive cloud-to-ground (CG) channels are usually not mapped. The goal of this work is to study the types of thunder produced by natural versus triggered lightning and to assess which types of thunder signals have electromagnetic activity detected by the lightning mapping array (LMA). Towards this end we are investigating the lightning detection capabilities of acoustic techniques, and comparing them with the LMA. In a previous study we used array beam forming and time of flight information to locate acoustic sources associated with lightning. Even though there was some mismatch, generally LMA and acoustic techniques saw the same phenomena. To increase the database of acoustic data from lightning, we deployed a network of three infrasound arrays (30 m aperture) during the summer of 2010 (August 3 to present) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) and audio range sources due to natural and triggered lightning. The arrays were located at a range of distances (60 to 1400 m) surrounding the triggering site, called the Kiva, used by Langmuir Laboratory to launch rockets. We have continuous acoustic measurements of lightning data from July 20 to September 18 of 2009, and from August 3 to September 1 of 2010. So far, lightning activity around the Kiva was higher during the summer of 2009. We will present acoustic data from several interesting lightning flashes including a comparison between a natural and a triggered one.
Volcanic Thunder From Explosive Eruptions at Bogoslof Volcano, Alaska
NASA Astrophysics Data System (ADS)
Haney, Matthew M.; Van Eaton, Alexa R.; Lyons, John J.; Kramer, Rebecca L.; Fee, David; Iezzi, Alexandra M.
2018-04-01
Lightning often occurs during ash-producing eruptive activity, and its detection is now being used in volcano monitoring for rapid alerts. We report on infrasonic and sonic recordings of the related, but previously undocumented, phenomenon of volcanic thunder. We observe volcanic thunder during the waning stages of two explosive eruptions at Bogoslof volcano, Alaska, on a microphone array located 60 km away. Thunder signals arrive from a different direction than coeruptive infrasound generated at the vent following an eruption on 10 June 2017, consistent with locations from lightning networks. For the 8 March 2017 eruption, arrival times and amplitudes of high-frequency thunder signals correlate well with the timing and strength of lightning detections. In both cases, the thunder is associated with lightning that continues after significant eruptive activity has ended. Infrasonic and sonic observations of volcanic thunder offer a new avenue for studying electrification processes in volcanic plumes.
Lightning NOx Estimates from Space-Based Lightning Imagers
NASA Technical Reports Server (NTRS)
Koshak, William J.
2017-01-01
The intense heating of air by a lightning channel, and subsequent rapid cooling, leads to the production of lightning nitrogen oxides (NOx = NO + NO2) as discussed in Chameides [1979]. In turn, the lightning nitrogen oxides (or "LNOx" for brevity) indirectly influences the Earth's climate because the LNOx molecules are important in controlling the concentration of ozone (O3) and hydroxyl radicals (OH) in the atmosphere. Climate is most sensitive to O3 in the upper troposphere, and LNOx is the most important source of NOx in the upper troposphere at tropical and subtropical latitudes; hence, lightning is a useful parameter to monitor for climate assessments. The National Climate Assessment (NCA) program was created in response to the Congressionally-mandated Global Change Research Act (GCRA) of 1990. Thirteen US government organizations participate in the NCA program which examines the effects of global change on the natural environment, human health and welfare, energy production and use, land and water resources, human social systems, transportation, agriculture, and biological diversity. The NCA focuses on natural and human-induced trends in global change, and projects major trends 25 to 100 years out. In support of the NCA, the NASA Marshall Space Flight Center (MSFC) continues to assess lightning-climate inter-relationships. This activity applies a variety of NASA assets to monitor in detail the changes in both the characteristics of ground- and space- based lightning observations as they pertain to changes in climate. In particular, changes in lightning characteristics over the conterminous US (CONUS) continue to be examined by this author using data from the Tropical Rainfall Measuring Mission Lightning Imaging Sensor. In this study, preliminary estimates of LNOx trends derived from TRMM/LIS lightning optical energy observations in the 17 yr period 1998-2014 are provided. This represents an important first step in testing the ability to make remote retrievals of LNOx from a satellite-based lightning sensor. As is shown, the methodology can also be directly applied to more recently launched lightning mappers, such as the Geostationary Lightning Mapper, and the International Space Station LIS.
NASA Technical Reports Server (NTRS)
Sharp, D.; Williams, E.; Weber, M.; Goodman, Steven J.; Raghavan, R.; Matlin, A.; Boldi, B.
1998-01-01
This paper will discuss findings of a collaborative lightning research project between National Aeronautics and Space Administration, the Massachusetts Institute of Technology and the National Weather Service office In Melbourne Florida. In August 1996, NWS/MLB received a workstation which incorporates data from the KMLB WSR-88D, Cloud to Ground (CG) stroke data from the National Lightning Detection Network (NLDN), and 3D volumetric lightning data collected from the Kennedy Space Centers' Lightning Detection And Ranging (LDAR) lightning system. The two primary objectives of this lightning workstation, called Lightning Imaging Sensor Data Applications Display (USDAD), are to: observe how total lightning relates to severe convective storm morphology over central Florida, and compare ground based total lightning data (LDAR) to a satellite based lightning detection system. This presentation will focus on objective #1. The LISDAD system continuously displays CG and total lighting activity overlaid on top of the KMLB composite reflectivity product. This allows forecasters to monitor total lightning activity associated with convective cells occurring over the central Florida peninsula and adjacent coastal waters. The LISDAD system also keeps track of the amount of total lightning data, and associated KMLB radar products with individual convective cells occurring over the region. By clicking on an individual cell, a history table displays flash rate information (CG and total lightning) in one minute increments, along with radar parameter trends (echo tops, maximum dBz and height of maximum dBz) every 5 minutes. This history table Is updated continuously, without user intervention, as long as the cell is identified. Reviewing data collected during the 1997 wet season (21 cases) revealed that storms which produced severe weather (hall greater or = 0.75 in. or wind damage) typically showed a rapid rise In total lightning prior to the onset of severe weather. On average, flash rate increases of 25 FPM per minute over a time scale of approximately 5 minutes were common. These pulse severe storms typically reached values of 150 to 200 FPM with some cells exceeding 400 FPM. One finding which could have a direct application to the warning process is that the rapid increase in lightning typically occurred in advance of the warning issuance time. Comparisons between the ending time of the rapid rate increase and the time of when the warning was issued by NWS/MLB meteorologist exhibited a lead time of 8 minutes. It is conceivable that if close monitoring of the LISDAD system by operational meteorologist is routinely performed, warnings for pulse severe storms could be issued up to 4 to 6 minutes earlier than what is issued currently.
NASA Technical Reports Server (NTRS)
Buechler, Dennis E.; Christian, Hugh J.; Koshak, William J.; Goodman, Steven J.
2013-01-01
There is a need to monitor the on-orbit performance of the Geostationary Lightning Mapper (GLM) on the Geostationary Operational Environmental Satellite R (GOES-R) for changes in instrument calibration that will affect GLM's lightning detection efficiency. GLM has no onboard calibration so GLM background radiance observations (available every 2.5 min) of Deep Convective Clouds (DCCs) are investigated as invariant targets to monitor GLM performance. Observations from the Lightning Imaging Sensor (LIS) and the Visible and Infrared Scanner (VIRS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite are used as proxy datasets for GLM and ABI 11 m measurements.
Comparison of lighting activity and inner radiation belt particle fluxes perturbations
NASA Astrophysics Data System (ADS)
Martinez Calderon, C.; Bortnik, J.; Li, W.; Spence, H. E.; Rodger, C. J.
2016-12-01
Lightning discharges are known to inject whistlers into the inner magnetosphere over a wide range of latitudes around their source. When a discharge occurs, it radiates electromagnetic energy, some of which propagates in the whistler-mode wave through the ionospheric plasma travelling away from the Earth. Previous studies have discussed the effects of whistler-induced electron precipitation and radiation belt losses associated with lightning but there has been little research on the long term effects of these precipitation on the inner radiation belts [Rodger et al. (2004), Clilverd et al. (2004)].Here, we use data from the World Wide Lightning Location Network (WWLLN), which has continuously monitored global lightning since 2004, to examine one year of lightning data and locate the L-shells with high lighting activity. We use Van Allen Probes' Energetic Particle, Composition, and Thermal Plasma Suite (ECT) from both satellites (RBSP-A/B) to measure electron fluxes in the inner radiation belt at the L-shells of interest. We compare these fluxes to a globally-integrated count of lightning strikes and investigate the relationship between global lightning occurrence and RBSP electron fluxes. We examine several factors, such as different energy ranges, timescales ranging from a few weeks to the entire year and seasonal changes in order to quantify the loss process driven by lightning in the inner radiation belts.
Infrasound from lightning: characteristics and impact on an infrasound station
NASA Astrophysics Data System (ADS)
Farges, Thomas; Blanc, Elisabeth
2010-05-01
More than two third of the infrasound stations of the International Monitoring System (IMS) of the CTBTO are now certified and measure routinely signals due particularly to natural activity (swell, volcano, severe weather including lightning, …). It is well established that more than 2,000 thunderstorms are continuously active all around the world and that about 45 lightning flashes are produced per second over the globe. During the Eurosprite 2005 campaign, we took the opportunity to measure, in France during summer, infrasound from lightning and from sprites (which are transient luminous events occurring over thunderstorm). We examine the possibility to measure infrasound from lightning when thunderstorms are close or far from the infrasound station. Main results concern detection range of infrasound from lightning, amplitude vs. distance law, and characteristics of frequency spectrum. We show clearly that infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. In good noise conditions, infrasound from lightning can be detected when thunderstorms are located more than 200 km from the station. No signal is recorded from lightning flashes occurring between 75 and 200 km away from the station, defining then a silence zone. When the thunderstorm is close to the station, the infrasound signal could reach several Pascal. The signal is then on average 30 dB over the noise level at 1 Hz. Infrasound propagate upward where the highest frequencies are dissipated and can produce a significant heating of the upper mesosphere. Some of these results have been confirmed by case studies with data from the IMS Ivory Coast station. The coverage of the IMS stations is very good to study the thunderstorm activity and its disparity which is a good proxy of the global warming. Progress in data processing for infrasound data in the last ten years and the appearance of global lightning detection network as the World Wide Lightning Localisation Network make such studies possible.
Infrasound from lightning: characteristics and impact on an infrasound station
NASA Astrophysics Data System (ADS)
Farges, T.; Blanc, E.
2009-12-01
More than two third of the infrasound stations of the International Monitoring System (IMS) of the CTBTO are now certified and measure routinely signals due particularly to natural activity (swell, volcano, severe weather including lightning, …). It is well established that more than 2,000 thunderstorms are continuously active all around the world and that about 45 lightning flashes are produced per second over the globe. During the Eurosprite 2005 campaign, we took the opportunity to measure, in France during summer, infrasound from lightning and from sprites (which are transient luminous events occurring over thunderstorm). We examine the possibility to measure infrasound from lightning when thunderstorms are close or far from the infrasound station. Main results concern detection range of infrasound from lightning, amplitude vs. distance law, and characteristics of frequency spectrum. We show clearly that infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. In good noise conditions, infrasound from lightning can be detected when thunderstorms are located more than 200 km from the station. No signal is recorded from lightning flashes occurring between 75 and 200 km away from the station, defining then a silence zone. When the thunderstorm is close to the station, the infrasound signal could reach several Pascal. The signal is then on average 30 dB over the noise level at 1 Hz. Infrasound propagate upward where the highest frequencies are dissipated and can produce a significant heating of the upper mesosphere. Some of these results have been confirmed by case studies with data from the IMS Ivory Coast station. The coverage of the IMS stations is very good to study the thunderstorm activity and its disparity which is a good proxy of the global warming. Progress in data processing for infrasound data in the last ten years and the appearance of global lightning detection network as the World Wide Lightning Localisation Network make such studies possible.
NASA Astrophysics Data System (ADS)
Takahashi, Y.
2016-12-01
It has become known that lightning activity represents the thunderstorm activity, namely, the intensity and area of precipitation and/or updraft. Thunderstorm is also important as a proxy of the energy input from ocean to atmosphere in typhoon, meaning that if we could monitor the thunderstorm with lightning we could predict the maximum wind velocity near the typhoon center by one or two days before. Constructing ELF and VLF radio wave observation network in Southeast Asia (AVON) and a regional dense network of automated weather station in a big city, we plan to establish the monitoring system for thunderstorm development in western pacific warm pool (WPWP) where typhoon is formed and in detail in big city area. On the other hand, some developing countries in SE-Asia are going to own micro-satellites dedicated to meteorological remote sensing. Making use of the lightning activity data measured by the ground-based networks, and information on 3-D structures of thunderclouds observed by the flexible on-demand operation of the remote-sensing micro-satellites, we would establish a new methodology to obtain very detail semi-real time information that cannot be achieved only with existing observation facilities, such as meteorological radar or large meteorological satellite. Using this new system we try to issue nowcast for the local thunderstorm and for typhoons. The first attempt will be carried out in Metro Manila in Philippines and WPWP as one of the SATREPS projects.
Lightning protection of distribution systems
NASA Astrophysics Data System (ADS)
Darveniza, M.; Uman, M. A.
1982-09-01
Research work on the lightning protection of distribution systems is described. The rationale behind the planning of the first major phase of the work - the field experiments conducted in the Tampa Bay area during August 1978 and July to September 1979 is explained. The aims of the field work were to characterize lightning in the Tampa Bay area, and to identify the lightning parameters associated with the occurrence of line outages and equipment damage on the distribution systems of the participating utilities. The equipment developed for these studies is fully described. The field work provided: general data on lightning - e.g., electric and magnetic fields of cloud and ground flashes; data from automated monitoring of lightning activity; stroke current waveshapes and peak currents measured at distribution arresters; and line outage and equipment damage on 13 kV networks in the Tampa Bay area. Computer aided analyses were required to collate and to process the accumulated data. The computer programs developed for this work are described.
NASA Astrophysics Data System (ADS)
Sousasantos, Jonas; Sobral, José Humberto Andrade; Alam Kherani, Esfhan; Magalhães Fares Saba, Marcelo; Rodolfo de Campos, Diovane
2018-03-01
The vertical coupling between the troposphere and the ionosphere presents some remarkable features. Under intense tropospheric convection, gravity waves may be generated, and once they reach the ionosphere, these waves may seed instabilities and spread F and equatorial plasma bubble events may take place. Additionally, there is a close association between severe tropospheric convection and lightning strikes. In this work an investigation covering an equinox period (September-October) during the deep solar minimum (2009) presents the relation between lightning strike activity and spread F (equatorial plasma bubble) detected over a low-latitude Brazilian region. The results show a considerable correlation between these two phenomena. The common element in the center of this conformity seems to be the gravity waves. Once gravity waves and lightning strikes share the same source (intense tropospheric convection) and the effects of such gravity waves in the ionosphere include the seeding of instabilities according to the gravity waves magnitude, the monitoring of the lightning strike activity seems to offer some information about the subsequent development of spread F over the equatorial region.
The Goes-R Geostationary Lightning Mapper (GLM): Algorithm and Instrument Status
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas
2010-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. A joint field campaign with Brazilian researchers in 2010-2011 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.
NASA Technical Reports Server (NTRS)
Lang, Timothy; Blakeslee, R. J.; Cecil, D. J.; Christian, H. J.; Gatlin, P. N.; Goodman, S. J.; Koshak, W. J.; Petersen, W. A.; Quick, M.; Schultz, C. J.;
2018-01-01
Function: Monitor global change and thunderstorm processes through observations of Earth's high-latitude lightning. This instrument will combine long-lived sampling of individual thunderstorms with long-term observations of lightning at high latitudes: How is global change affecting thunderstorm patterns; How do high-latitude thunderstorms differ from low-latitude? Why is the Gateway the optimal facility for this instrument / research: Expected DSG (Deep Space Gateway) orbits will provide nearly continuous viewing of the Earth's high latitudes (50 degrees latitude and poleward); These regions are not well covered by existing lightning mappers (e.g., Lightning Imaging Sensor / LIS, or Geostationary Lightning Mapper / GLM); Polar, Molniya, Tundra, etc. Earth orbits have significant drawbacks related to continuous coverage and/or stable FOVs (Fields of View).
Extensive air showers, lightning, and thunderstorm ground enhancements
NASA Astrophysics Data System (ADS)
Chilingarian, A.; Hovsepyan, G.; Kozliner, L.
2016-09-01
For lightning research, we monitor particle fluxes from thunderclouds, the so-called thunderstorm ground enhancements (TGEs) initiated by runaway electrons, and extensive air showers (EASs) originating from high-energy protons or fully stripped nuclei that enter the Earth's atmosphere. We also monitor the near-surface electric field and atmospheric discharges using a network of electric field mills. The Aragats "electron accelerator" produced several TGEs and lightning events in the spring of 2015. Using 1-s time series, we investigated the relationship between lightning and particle fluxes. Lightning flashes often terminated the particle flux; in particular, during some TGEs, lightning events would terminate the particle flux thrice after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of a TGE or in its decay phase; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just at the peak of its development. We discuss the possibility of a huge EAS facilitating lightning leader to find its path to the ground.
Infrasound from lightning measured in Ivory Coast from 2004 to 2014
NASA Astrophysics Data System (ADS)
Farges, Thomas; Le Pichon, Alexis; Ceranna, Lars; Diawara, Adama
2016-04-01
It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. 80 % of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes …). Some of the IMS stations are located where lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. Assink et al. (2008) and Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within 300 km. One-to-one correlation is possible when the thunderstorm is within about 75 km from the station. When the lightning flash occurs within 20 km, it is also possible to rebuild the 3D geometry of the discharges when the network size is less than 100 m (Arechiga et al., 2011; Gallin, 2014). An IMS infrasound station has been installed in Ivory Coast since 2002. The lightning rate of this region is 10-20 flashes/km²/year from space-based instrument OTD (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 10 years of data (2005-2014). Correlation between infrasound having a mean frequency higher than 1 Hz and lightning flashes detected by the World Wide Lightning Location Network (WWLLN) is systematically looked for. One-to-one correlation is obtained for flashes occurring within about 100 km. An exponential decrease of the infrasound amplitude with the distance of one order of magnitude per 50 km is found. The detection variability with the arrival azimuth is examined. A non-negligible number of events coming from the shadow zone (30 - 200 km) is found. It is also interesting to note that most of the infrasound related to lightning flashes is due to thunderstorm which occurred more than 200 km away from the station. However, it is hard to deduce any precise characteristics in those cases.
TRMM/LIS and PR Observations and Thunderstorm Activity
NASA Astrophysics Data System (ADS)
Ohita, S.; Morimoto, T.; Kawasaki, Z. I.; Ushio, T.
2005-12-01
Thunderstorms observed by TRMM/PR and LIS have been investigating, and Lightning Research Group of Osaka University (LRG-OU) has unveiled several interesting features. Correlation between lightning activities and the snow depth of convective clouds may follow the power-five law. The power five law means that the flash density is a function of the snow-depth to power five. The definition of snow depth is the height of detectable cloud tops by TRMM/PR from the climatological freezing level, and it may be equivalent to the length of the portion where the solid phase precipitation particles exist. This is given by examining more than one million convective clouds, and we conclude that the power five law should be universal from the aspect of the statistic. Three thunderstorm active areas are well known as "Three World Chimneys", and those are the Central Africa, Amazon of the South America, and South East Asia. Thunderstorm activities in these areas are expected to contribute to the distribution of thermal energy around the equator to middle latitude regions. Moreover thunderstorm activity in the tropical region is believed to be related with the average temperature of our planet earth. That is why long term monitoring of lightning activity is required. After launching TRMM we have accumulated seven-year LIS observations, and statistics for three world chimneys are obtained. We have recognized the additional lightning active area, and that is around the Maracaibo lake in Venezuera. We conclude that this is because of geographical features of the Maracaibo lake and the continuous easterly trade wind. Lightning Activity during El Niño period is another interesting subject. LRGOU studies thunderstorm occurrences over west Indonesia and south China, and investigates the influence of El Nino on lightning . We compare the statistics between El Nino and non El Nino periods. We learn that the lightning activity during El Niño period is higher than non El Nino period instead of less precipitation on the ground during El Niño period. Since we expect the strong correlation between precipitation and lightning activity, the results seem to be against the conventional common sense. However analyzed results for these two areas show no contradictions, or we can say that the results are exactly same from the aspect of statistics. The meteorological comprehension is still remained.
The Goes-R Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved storm diagnostic capability with the Advanced Baseline Imager. The GLM will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. In this paper we will report on new Nowcasting and storm warning applications being developed and evaluated at various NOAA Testbeds.
Infrasound from lightning measured in Ivory Coast
NASA Astrophysics Data System (ADS)
Farges, T.; Millet, C.; Matoza, R. S.
2012-04-01
It is well established that more than 2,000 thunderstorms occur continuously around the world and that about 45 lightning flashes are produced per second over the globe. More than two thirds (42) of the infrasound stations of the International Monitoring System (IMS) of the CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) are now certified and routinely measure signals due to natural activity (e.g., airflow over mountains, aurora, microbaroms, surf, volcanoes, severe weather including lightning flashes, …). Some of the IMS stations are located where worldwide lightning detection networks (e.g. WWLLN) have a weak detection capability but lightning activity is high (e.g. Africa, South America). These infrasound stations are well localised to study lightning flash activity and its disparity, which is a good proxy for global warming. Progress in infrasound array data processing over the past ten years makes such lightning studies possible. For example, Farges and Blanc (2010) show clearly that it is possible to measure lightning infrasound from thunderstorms within a range of distances from the infrasound station. Infrasound from lightning can be detected when the thunderstorm is within about 75 km from the station. The motion of the squall zone is very well measured inside this zone. Up to 25% of lightning flashes can be detected with this technique, giving better results locally than worldwide lightning detection networks. An IMS infrasound station has been installed in Ivory Coast for 9 years. The lightning rate of this region is 10-20 flashes/km2/year from space-based instrument OTD (Christian et al., 2003). Ivory Coast is therefore a good place to study infrasound data associated with lightning activity and its temporal variation. First statistical results will be presented in this paper based on 4 years of data (2005-2009). For short lightning distances (less than 20 km), up to 60 % of lightning detected by WWLLN has been one-to-one correlated. Moreover, numerous infrasound events which have the infrasound from lightning signature could not be correlated when thunderstorms were close to the station. Statistical analyses of all correlated infrasound events show an exponential decrease of the infrasound amplitude with the distance of one order of magnitude per 50 km. These analyses show also that the relative position of lightning is important: the detection limit is higher when lightning occur at the East of the station than when they occur at the West. The dominant wind (the Easterlies) could be responsible of this dissymmetry. It also exists a high variability of detection efficiency with the seasons (better efficiency in fall than in spring). Finally, these statistics show clearly a structure inside the shadow zone (from 70 to 200 km away from the station). These results will be compared with intensive numerical simulations. The simulations are separated into two parts: the simulation of the near-field blast wave generated by a lightning and the simulation of the non-linear propagation of the shock front through a realistic atmosphere. By comparing our numerical results to recorded data over a full 1-year period, we aim to show that dominant features of statistics at the IMS station may be explained by the meteorological variability.
NASA Technical Reports Server (NTRS)
Levine, D. M.
1981-01-01
Ground-based data collected on lightning monitoring equipment operated by Goddard Space Flight Center at Wallops Island, Virginia, during a storm being monitored by NASA's F-106B, are presented. The slow electric field change data and RF radiation data were collected at the times the lightning monitoring equipment on the aircraft was triggered. The timing of the ground-based events correlate well with events recorded on the aircraft and provide an indication of the type of flash with which the aircraft was involved.
Diurnal variations of ELF transients and background noise in the Schumann resonance band
NASA Astrophysics Data System (ADS)
Greenberg, Eran; Price, Colin
2007-02-01
Schumann resonances (SR) are resonant electromagnetic waves in the Earth-ionosphere cavity, induced primarily by lightning discharges, with a fundamental frequency of about 8 Hz and higher-order modes separated by approximately 6 Hz. The SR are made up of the background signal resulting from global lightning activity and extremely low frequency (ELF) transients resulting from particularly intense lightning discharges somewhere on the planet. Since transients within the Earth-ionosphere cavity due to lightning propagate globally in the ELF range, we can monitor and study global ELF transients from a single station. Data from our Negev Desert (Israel) ELF site are collected using two horizontal magnetic induction coils and a vertical electric field ball antenna, monitored in the 5-40 Hz range with a sampling frequency of 250 Hz. In this paper we present statistics related to the probability distribution of ELF transients and background noise in the time domain and its temporal variations during the day. Our results show that the ELF signal in the time domain follows the normal distribution very well. The σ parameter exhibits three peaks at 0800, 1400, and 2000 UT, which are related to the three main global lightning activity centers in Asia, Africa, and America, respectively. Furthermore, the occurrence of intense ELF events obeys the Poisson distribution, with such intense events occurring every ~10 s, depending on the time of the day. We found that the diurnal changes of the σ parameter are several percent of the mean, while for the number of intense events per minute, the diurnal changes are tens of percent about the mean. We also present the diurnal changes of the SR intensities in the frequency domain as observed at our station. To better understand the diurnal variability of the observations, we simulated the measured ELF background noise using space observations as input, as detected by the Optical Transient Detector (OTD). The most active center which is reflected from both ELF measurements and OTD observations is in Africa. However, the second most active center on the basis of ELF measurements appears to be Asia, while OTD observations show that the American center is more active than the Asian center. These differences are discussed. This paper contributes to our understanding of the origin of the SR by comparing different lightning data sets: background electromagnetic radiation and optical emission observed from space.
Lightning Burns and Electrical Trauma in a Couple Simultaneously Struck by Lightning
Eyerly-Webb, Stephanie A.; Solomon, Rachele; Lee, Seong K.; Sanchez, Rafael; Carrillo, Eddy H.; Davare, Dafney L.; Kiffin, Chauniqua; Rosenthal, Andrew
2017-01-01
More people are struck and killed by lightning each year in Florida than any other state in the United States. This report discusses a couple that was simultaneously struck by lightning while walking arm-in-arm. Both patients presented with characteristic lightning burns and were admitted for hemodynamic monitoring, serum labs, and observation and were subsequently discharged home. Despite the superficial appearance of lightning burns, serious internal electrical injuries are common. Therefore, lightning strike victims should be admitted and evaluated for cardiac arrhythmias, renal injury, and neurological sequelae.
NASA Astrophysics Data System (ADS)
O'Regan, J.; Muller, J.-P.; Matthews, S.
2012-04-01
The runaway breakdown hypothesis of lightning discharge has predicted relationships between cosmic rays' interactions with the atmosphere and thunderstorm production and lightning activity. Precipitating energetic particles lead to the injection of MeV-energy electrons into electrified thunderclouds [1,2], resulting in runaway breakdown occurring, and assisting in the process of charge separation [2]. Previous lightning studies show that correlations to solar activity are weak but significant, with better correlations to solar activity and cosmic rays when carried out over smaller geographical areas [3,4,5,6] and over longer timescales [6]. In this work, correlations are explored between variations of SEPs and lightning activity levels at various spatio-temporal scales. Temporal scales span from short-term (days) scales surrounding large Earth-directed coronal mass ejection (CME) events to long-term (years) scales. Similarly, spatial scales span from 1-degree x 1-degree latitudinal-longitudinal grid scales to an entirely global study, for varying timescales. Additionally, investigation of correlation sign and statistical significance by 1-degree latitudinal bands is also employed, allowing a comparative study of lightning activity relative to regions of greatest - and contrasting regions of relative absence of - energetic particle precipitation. These regions are determined from electron and proton flux maps, derived from measurements from the Medium Energy Proton and Electron Detector (MEPED) onboard the Polar Orbiting Environmental Satellite (POES) system. Lightning data is obtained from the World Wide Lightning Location Network (WWLLN) for the period 2005 to 2011. The correlations of lightning strike rates are carried out with respect to Relative Sunspot Number (R), 10.7cm Solar radio flux (F10.7), Galactic Cosmic Ray (GCR) neutron monitor flux, the Ap geomagnetic activity index, and Disturbance Storm Time (DST) index. Correlations show dramatic variations in both sign and significance over small geographic distances, similar to previous results [3,4,6], highlighting the complexity of the atmospheric processes contributing to the mechanism of thunderstorm generation and lightning discharge. We find correlations are generally more significant over larger timescales, as daily meteorological variability is smoothened out, suggesting a role for changing Solar activity levels in influencing thunderstorm development and onset of lightning discharge. Comparisons of small-scale correlation results to planetary wave patterns suggests an influence over the correlations of lightning activity to the above indices, as proposed by Schlegel et al. [6], and previously suggested by the results of Fritz [3] and Brooks [4]. Our results show agreement with Schlegel et al. [6] for the same region over Germany, but are in disagreement with their results for Austria. This lends support to the idea of the theory of planetary waves influence over correlation signs and significance across short geographic distances, as discussed by Schlegel et al. [6]. Acknowledgement: The authors wish to thank the World Wide Lightning Location Network (http://wwlln.net), a collaboration among over 50 universities and institutions (including MSSL) for providing the lightning location data used in this paper. [1] Ermakov, V.I. and Stozhkov, Yu.I., 2003. Cosmic rays in the mechanism of thundercloud production. 28th International Cosmic Ray Conference, pp. 4157-4160. [2] Kirkby, J., 2007. Cosmic rays and climate. Surv Geophys, vol. 28 (5-6) pp. 333-375. [3] Fritz, H., 1878. Die wichtigsten periodischen Erscheinungen der Meteorologie und Kosmologie. Natuurkundige Verhandelingen van de Hollandsche Maatschappij der Wetenschappen te Haarlem, Deel III, Haarlem. [4] Brooks, C.E.P., 1934. The variation of the annual frequency of thunderstorms in relation to sunspots. Quarterly Journal of the Royal Meteorological Society 60, 153-165. [5] Stringfellow, M.F., 1974. Lightning incidence in Britain and the solar cycle. Nature 249, 332-333. [6] Schlegel, K. et al, 2001. Thunderstorms, lightning and solar activity - Middle Europe. J Atmos Sol-Terr Phy vol. 63 (16) pp. 1705-1713
The GOES-R GeoStationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development.
NASA Technical Reports Server (NTRS)
Albrecht, R. I.; Goodman, S. J.; Petersen, W. A.; Buechler, D. E.; Bruning, E. C.; Blakeslee, R. J.; Christian, H. J.
2011-01-01
How often lightning strikes the Earth has been the object of interest and research for decades. Several authors estimated different global flash rates using ground-based instruments, but it has been the satellite era that enabled us to monitor lightning thunderstorm activity on the time and place that lightning exactly occurs. Launched into space as a component of NASA s Tropical Rainfall Measuring Mission (TRMM) satellite, in November 1997, the Lighting Imaging Sensor (LIS) is still operating. LIS detects total lightning (i.e., intracloud and cloud-to-ground) from space in a low-earth orbit (35deg orbit). LIS has collected lightning measurements for 13 years (1998-2010) and here we present a fully revised and current total lightning climatology over the tropics. Our analysis includes the individual flash characteristics (number of events and groups, total radiance, area footprint, etc.), composite climatological maps, and trends for the observed total lightning during these 13 years. We have identified differences in the energetics of the flashes and/or the optical scattering properties of the storms cells due to cell-relative variations in microphysics and kinematics (i.e., convective or stratiform rainfall). On the climatological total lightning maps we found a dependency on the scale of analysis (resolution) in identifying the lightning maximums in the tropics. The analysis of total lightning trends observed by LIS from 1998 to 2010 in different temporal (annual and seasonal) and spatial (large and regional) scales, showed no systematic trends in the median to lower-end of the distributions, but most places in the tropics presented a decrease in the highest total lightning flash rates (higher-end of the distributions).
Lightning-Related Indicators for National Climate Assessment (NCA) Studies
NASA Technical Reports Server (NTRS)
Koshak, W.
2017-01-01
Changes in climate can affect the characteristics of lightning (e.g., number of flashes that occur in a region, return stroke current and multiplicity, polarity of charge deposited to ground, and the lightning cloud-top optical energy emission). The NASA/MSFC Lightning Analysis Tool (LAT) monitors these and other quantities in support of the National Climate Assessment (NCA) program. Changes in lightning characteristics lead to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality).
Detection of VHF lightning from GPS orbit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suszcynsky, D. M.
2003-01-01
Satellite-based VHF' lightning detection is characterized at GPS orbit by using a VHF receiver system recently launched on the GPS SVN 54 satellite. Collected lightning triggers consist of Narrow Bipolar Events (80%) and strong negative return strokes (20%). The results are used to evaluate the performance of a future GPS-satellite-based VHF global lightning monitor.
Aerosols and lightning activity: The effect of vertical profile and aerosol type
NASA Astrophysics Data System (ADS)
Proestakis, E.; Kazadzis, S.; Lagouvardos, K.; Kotroni, V.; Amiridis, V.; Marinou, E.; Price, C.; Kazantzidis, A.
2016-12-01
The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite has been utilized for the first time in a study regarding lightning activity modulation due to aerosols. Lightning activity observations, obtained by the ZEUS long range Lightning Detection Network, European Centre for Medium range Weather Forecasts (ECMWF) Convective Available Potential Energy (CAPE) data and Cloud Fraction (CF) retrieved by MODIS on board Aqua satellite have been combined with CALIPSO CALIOP data over the Mediterranean basin and for the period March to November, from 2007 to 2014. The results indicate that lightning activity is enhanced during days characterized by higher Aerosol Optical Depth (AOD) values, compared to days with no lightning. This study contributes to existing studies on the link between lightning activity and aerosols, which have been based just on columnar AOD satellite retrievals, by performing a deeper analysis into the effect of aerosol profiles and aerosol types. Correlation coefficients of R = 0.73 between the CALIPSO AOD and the number of lightning strikes detected by ZEUS and of R = 0.93 between ECMWF CAPE and lightning activity are obtained. The analysis of extinction coefficient values at 532 nm indicates that at an altitudinal range exists, between 1.1 km and 2.9 km, where the values for extinction coefficient of lightning-active and non-lightning-active cases are statistically significantly different. Finally, based on the CALIPSO aerosol subtype classification, we have investigated the aerosol conditions of lightning-active and non-lightning-active cases. According to the results polluted dust aerosols are more frequently observed during non-lightning-active days, while dust and smoke aerosols are more abundant in the atmosphere during the lightning-active days.
Lighnting detection and tracking with consumer electronics
NASA Astrophysics Data System (ADS)
Kamau, Gilbert; van de Giesen, Nick
2015-04-01
Lightning data is not only important for environment and weather monitoring but also for safety purposes. The AS3935 Franklin Lightning Sensor (AMS, Unterpremstaetten, Austria) is a lightning sensor developed for inclusion in consumer electronics such as watches and mobile phones. The AS3935 is small (4mmx4mm) and relatively cost effective (Eu 5). The downside is that only rough distance estimates are provided, as average power is assumed for every lightning strike. To be able to track lightning, a network of devices that monitor and keep track of occurrences of lightning strikes was developed. A communication interface was established between the sensors, a data logging circuit and a microcontroller. The digital outputs of the lightning sensor and data from a GPS are processed by the microcontroller and logged onto an SD card. The interface program enables sampling parameters such as distance from the lightning strike, time of strike occurrence and geographical location of the device. For archiving and analysis purposes, the data can be transferred from the SD card to a PC and results displayed using a graphical user interface program. Data gathered shows that the device can track the frequency and movement of lightning strikes in an area. The device has many advantages as compared to other lightning sensor stations in terms of huge memory, lower power consumption, small size, greater portability and lower cost. The devices were used in a network around Nairobi, Kenya. Through multi-lateration, lightning strikes could be located with a RMSE of 2 km or better.
NASA Astrophysics Data System (ADS)
Jana, S.; Chakraborty, R.; Maitra, A.
2017-12-01
Nowcasting of lightning activities during intense convective events using a single electric field monitor (EFM) has been carried out at a tropical location, Kolkata (22.65oN, 88.45oE). Before and at the onset of heavy lightning, certain changes of electric field (EF) can be related to high liquid water content (LWC) and low cloud base height (CBH). The present study discusses the utility of EF observation to show a few aspects of convective events. Large convective cloud showed by high LWC and low CBH can be detected from EF variation which could be a precursor of upcoming convective events. Suitable values of EF gradient can be used as an indicator of impending lightning events. An EF variation of 0.195 kV/m/min can predict lightning within 17.5 km radius with a probability of detection (POD) of 91% and false alarm rate (FAR) of 8% with a lead time of 45 min. The total number of predicted lightning strikes is nearly 9 times less than that measured by the lightning detector. This prediction technique can, therefore, give an estimate of cloud to ground (CG) and intra cloud (IC) lighting occurrences within the surrounding area. This prediction technique involving POD, FAR and lead time information shows a better prediction capability compared to the techniques reported earlier. Thus an EFM can be effectively used for prediction of lightning events at a tropical location.
High Impact Weather Forecasts and Warnings with the GOES-R Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William; Mach, Douglas M.
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. A major advancement over the current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM). The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, a GOES-R Risk Reduction Science Team and Algorithm Working Group Lightning Applications Team have begun to develop cal/val performance monitoring tools and new applications using the GLM alone, in conjunction with other instruments, and merged or blended integrated observing system products combining satellite, radar, in-situ and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms.
Fermi GBM Observations of Terrestrial Gamma-Ray Flashes
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.;
2010-01-01
This slide presentation explores the relationship between Terrestrial Gamma-Ray Flashes (TGF) and lightning. Using data from the World-Wide Lightning Location Network (WWLLN), and the gamma ray observations from Fermi's Gamma-ray Burst Monitor (GBM), the study reviews any causal relationship between TGFs and lightning. The conclusion of the study is that the TGF and lightning are simultaneous with out a causal relationship.
Ionospheric signatures of Lightning
NASA Astrophysics Data System (ADS)
Hsu, M.; Liu, J.
2003-12-01
The geostationary metrology satellite (GMS) monitors motions of thunderstorm cloud, while the lightning detection network (LDN) in Taiwan and the very high Frequency (VHF) radar in Chung-Li (25.0›XN, 121.2›XE) observed occurrences of lightning during May and July, 1997. Measurements from the digisonde portable sounder (DPS) at National Central University shows that lightning results in occurrence of the sporadic E-layer (Es), as well as increase and decrease of plasma density at the F2-peak and E-peak in the ionosphere, respectively. A network of ground-based GPS receivers is further used to monitor the spatial distribution of the ionospheric TEC. To explain the plasma density variations, a model is proposed.
First results of the Colombia Lightning Mapping Array
NASA Astrophysics Data System (ADS)
López, Jesus; Montanyà, Joan; van der Velde, Oscar; Romero, David; Fabró, Ferran; Taborda, John; Aranguren, Daniel; Torres, Horacio
2016-04-01
In April 2015 the 3D Lightning Mapping Array (COLMA) network was installed on Santa Marta area (north of Colombia). The COLMA maps VHF radio emissions of lightning leaders in three dimensions by the time-of-arrival technique (Rison et al., 1999). This array has six sensors with base lines between 5 km to 20 km. The COLMA is the first VHF 3D network operating in the tropics and it has been installed in the frame of ASIM (Atmosphere-Space Interactions Monitor) ESA's mission in order to investigate the electrical characteristics of tropical thunderstorms favorable for the production of Terrestrial Gamma ray Flashes (TGF). In this paper we present COLMA data of several storms. We discuss lightning activity, lightning leader altitudes and thunderstorm charge structures compared to data form our ELMA (Ebro Lightning Mapping Array) at the north-east coast of Spain. The data confirm what we expected, lightning leaders can propagate at higher altitudes compared to mid latitude thunderstorms because the higher vertical development of tropical thunderstorms. A simple inspection of a ten minute period of the 16th of November of 2015 storm shows a tripolar electric charge structure. In that case, the midlevel negative charge region was located between 7 to 9 km. The structure presented a lower positive charge below the midlevel negative and centred at 6.5 km and an upper positive charge region extending from 9 km to slightly more than 15 km. This vertical extension of the upper positive charge where negative leaders evolve is significantly larger compared to the storms at the ELMA area in Spain. COLMA has shown frequent activity of negative leaders reaching altitudes of more than 15 km.
NASA Astrophysics Data System (ADS)
Williams, E.
2012-12-01
Lightning is of interest in the domain of climate change for several reasons: (1) thunderstorms are extreme forms of moist convection, and lightning flash rate is a sensitive measure of that extremity, (2) thunderstorms are deep conduits for delivering water substance from the boundary layer to the upper troposphere and stratosphere, and (3) global lightning can be monitored continuously and inexpensively within a natural framework (the Earth-ionosphere waveguide and Schumann resonances). Lightning and temperature, and lightning and upper tropospheric water vapor, are positively correlated on weather-related time scales (diurnal, semiannual, and annual) with a lightning temperature sensitivity of order 10% per oC. Lightning also follows temperature variations on the ENSO time scale, both locally and globally. The response of lightning in some of its extreme forms (exceptional flash rates and the prevalence of sprite-producing mesoscale lightning, for example) to temperature variations will be addressed. Consistently obtained records of lightning activity on longer time scales are scarce as stable detection networks are uncommon. As a consequence, thunder day data have been used to extend the lightning record for climate studies, with evidence for increases over decades in urban areas. Global records of lightning following Schumann resonance intensity and from space-based optical sensors (OTD and LIS) are consistent with the record of ionospheric potential representing the global electrical circuit in showing flat behavior over the few decades. This flatness is not well understood, though the majority of all lightning flashes are found in the tropics, the most closely regulated portion of the atmosphere. Other analysis of frequency variations of Schumann resonances in recent decades shows increased lightning in the northern hemisphere, where the global warming is most pronounced. The quantity more fundamental than temperature for lightning control is cloud buoyancy as this forces the updraft in thunderstorm convection and strongly influences the ice phase microphysics on which the charge separation and lightning depends. The vertical integration of cloud buoyancy is Convective Available Potential Energy (CAPE), a rather delicate quantity. Though many GCM results show evidence for an extended tail in distributions of CAPE in a warmer world, its real variation over the last century is not well established. The CCN component of aerosol is now recognized to influence the cloud water content and thereby the profile of cloud buoyancy, and so the response of lightning to climate is not entirely a thermodynamic one. Key evidence here is the recent finding of a weekend effect in lightning activity. A number of contrasting phenomena between land and ocean (and between urban and rural environments), including the dramatic continental dominance of lightning (and the urban dominance of lightning), and in upper level cirrus cloud and in warm rain production, have explanations in both thermodynamics and in aerosol-modulated microphysics. Sorting out these contributions has proven to be a challenging task. The prevailing view is that lightning responds to climate change. Another perspective is that cloud electrification and lightning can cause changes in climate, either by influencing chemistry or large scale dynamics. These issues will also be addressed.
NASA Astrophysics Data System (ADS)
Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.
2017-12-01
Over two decades, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) provided global observations of tropical lightning for an impressive 17 years before that mission came to a close in April 2015. Now a space-qualified LIS, built as the flight spare for TRMM, has been installed on the International Space Station (ISS) for a minimum two year mission following its SpaceX launch on February 19, 2017. The LIS, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission, was robotically installed in an Earth-viewing position on the outside of the ISS, providing a great opportunity to not only extend the 17-year TRMM LIS record of tropical lightning measurements but also to expand that coverage to higher latitudes missed by the TRMM mission. Since its activation, LIS has continuously observed the amount, rate, and radiant energy lightning within its field-of-view as it orbits the Earth. A major focus of this mission is to better understand the processes which cause lightning, as well as the connections between lightning and subsequent severe weather events. This understanding is a key to improving weather predictions and saving lives and property here in the United States and around the world. The LIS measurements will also help cross-validate observations from the new Geostationary Lightning Mapper (GLM) operating on NOAA's newest weather satellite GOES-16. An especially unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational forecasting and warning applications over data sparse regions such as the oceans. Finally, being on ISS enables LIS to provide simultaneous and complementary observations with other ISS payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that will explore the connection between thunderstorms and lightning with terrestrial gamma-ray flashes (TGFs) when it is launched to ISS in 2018.
Preliminary lightning observations over Greece
NASA Astrophysics Data System (ADS)
Chronis, Themis G.
2012-02-01
The first Precision Lightning Network, monitoring the Cloud-to-Ground (CG) lightning stroke activity over Greece and surrounding waters is operated and maintained by the Hellenic National Meteorological Service. This paper studies the regional (land/water interface), seasonal and diurnal variability of the CG strokes as a function of density, polarity and peak current. Additional investigation uniquely links the CG stroke current to sea surface salinity and cloud electrical capacitance. In brief, this study's major findings area as follows: (1) The seasonal maps of thunder days agree well with the regional climatic convective characteristics of the study area, (2) the CG diurnal variability is consistent with the global lightning activity observations over land and ocean, (3) the maxima of monthly averaged CG counts are located over land and water during typical summer and fall months respectively for both polarities, (4) CG peak currents show a distinct seasonality with larger currents during relatively colder months and smaller currents during summer months, and (5) strong linear trends between -CGs and sea surface salinity; (6) this trend is absent for +CGs data analysis of the employed database relate to the thunderstorm's RC constant and agrees with previous numerical modeling studies.
NASA Astrophysics Data System (ADS)
Kawasaki, Zen
This paper presents a phenomenological idea about lightning flash to share the back ground understanding for this special issue. Lightning discharges are one of the terrible phenomena, and Benjamin Franklin has led this natural phenomenon to the stage of scientific investigation. Technical aspects like monitoring and location are also summarized in this article.
An experiment to detect and locate lightning associated with eruptions of Redoubt Volcano
Hoblitt, R.P.
1994-01-01
A commercially-available lightning-detection system was temporarily deployed near Cook Inlet, Alaska in an attempt to remotely monitor volcanogenic lightning associated with eruptions of Redoubt Volcano. The system became operational on February 14, 1990; lightning was detected in 11 and located in 9 of the 13 subsequent eruptions. The lightning was generated by ash clouds rising from pyroclastic density currents produced by collapse of a lava dome emplaced near Redoubt's summit. Lightning discharge (flash) location was controlled by topography, which channeled the density currents, and by wind direction. In individual eruptions, early flashes tended to have a negative polarity (negative charge is lowered to ground) while late flashes tended to have a positive polarity (positive charge is lowered to ground), perhaps because the charge-separation process caused coarse, rapid-settling particles to be negatively charged and fine, slow-settling particles to be positively charged. Results indicate that lightning detection and location is a useful adjunct to seismic volcano monitoring, particularly when poor weather or darkness prevents visual observation. The simultaneity of seismicity and lightning near a volcano provides the virtual certainty that an ash cloud is present. This information is crucial for aircraft safety and to warn threatened communities of impending tephra falls. The Alaska Volcano Observatory has now deployed a permanent lightning-detection network around Cook Inlet. ?? 1994.
Comparing distinct ground-based lightning location networks covering the Netherlands
NASA Astrophysics Data System (ADS)
de Vos, Lotte; Leijnse, Hidde; Schmeits, Maurice; Beekhuis, Hans; Poelman, Dieter; Evers, Läslo; Smets, Pieter
2015-04-01
Lightning can be detected using a ground-based sensor network. The Royal Netherlands Meteorological Institute (KNMI) monitors lightning activity in the Netherlands with the so-called FLITS-system; a network combining SAFIR-type sensors. This makes use of Very High Frequency (VHF) as well as Low Frequency (LF) sensors. KNMI has recently decided to replace FLITS by data from a sub-continental network operated by Météorage which makes use of LF sensors only (KNMI Lightning Detection Network, or KLDN). KLDN is compared to the FLITS system, as well as Met Office's long-range Arrival Time Difference (ATDnet), which measures Very Low Frequency (VLF). Special focus lies on the ability to detect Cloud to Ground (CG) and Cloud to Cloud (CC) lightning in the Netherlands. Relative detection efficiency of individual flashes and lightning activity in a more general sense are calculated over a period of almost 5 years. Additionally, the detection efficiency of each system is compared to a ground-truth that is constructed from flashes that are detected by both of the other datasets. Finally, infrasound data is used as a fourth lightning data source for several case studies. Relative performance is found to vary strongly with location and time. As expected, it is found that FLITS detects significantly more CC lightning (because of the strong aptitude of VHF antennas to detect CC), though KLDN and ATDnet detect more CG lightning. We analyze statistics computed over the entire 5-year period, where we look at CG as well as total lightning (CC and CG combined). Statistics that are considered are the Probability of Detection (POD) and the so-called Lightning Activity Detection (LAD). POD is defined as the percentage of reference flashes the system detects compared to the total detections in the reference. LAD is defined as the fraction of system recordings of one or more flashes in predefined area boxes over a certain time period given the fact that the reference detects at least one flash, compared to the total recordings in the reference dataset. The reference for these statistics is taken to be either another dataset, or a dataset consisting of flashes detected by two datasets. Extreme thunderstorm case evaluation shows that the weather alert criterion for severe thunderstorm is reached by FLITS when this is not the case in KLDN and ATD, suggesting the need for KNMI to modify that weather alert criterion when using KLDN.
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Buechler, Dennis; Cammarata, Michael; Arnold, James E. (Technical Monitor)
2002-01-01
Data from a single WSR-88D Doppler radar and the National Lightning Detection Network are used to examine the characteristics of the convective storms that produced a severe tornado outbreak within Tropical Storm Beryl's remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 12 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 hours, spawning tornadoes over a time period spanning approximately 6.5 hours. Time-height analyses of the three strongest supercells are presented in order to document storm kinematic structure and evolution. These Beryl mini-supercells were comparable in radar-observed intensity but much more persistent than other tropical cyclone-spawned tornadic cells documented thus far with Doppler radars. Cloud-to-ground lightning data are also examined for all the tornadic cells in this severe swarm-type tornado outbreak. These data show many of the characteristics of previously reported heavy-precipitation supercells. Lightning rates were weak to moderate, even in the more intense supercells, and in all the storms the lightning flashes were almost entirely negative in polarity. No lightning at all was detected in some of the single-tornado storms. In the stronger cells, there is some evidence that lightning rates can decrease during tornadogenesis, as has been documented before in some midlatitude tornadic storms. A number of the storms spawned tornadoes just after producing their final cloud-to-ground lightning flashes. These findings suggest possible benefits from implementation of observing systems capable of monitoring intracloud as well as cloud-to-ground lightning activity.
The GOES-R Geostationary Lightning Mapper (GLM)
NASA Astrophysics Data System (ADS)
Goodman, S. J.; Blakeslee, R. J.; Koshak, W. J.; Mach, D. M.; Bailey, J. C.; Buechler, D. E.; Carey, L. D.; Schultz, C. J.; Bateman, M. G.; McCaul, E., Jr.; Stano, G. T.
2012-12-01
The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning activity (in-cloud and cloud-to-ground lightning flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low earth orbit, and from ground-based lightning networks and intensive pre-launch field campaigns. GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extends their combined climatology over the western hemisphere into the coming decades. Science and application development along with pre-operational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in late 2015. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings. Results from recent field campaigns and forecaster evaluations on the utility of the total lightning products will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Lightning is an energetic electric discharge, creating a current that flows briefly within a cloud--or between a cloud and the ground--and heating the air to temperatures about five times hotter than the sun’s surface. But there’s a lot about lightning that’s still a mystery. Los Alamos National Laboratory is working to change that. Because lightning produces optical and radio frequency signals similar to those from a nuclear explosion, it’s important to be able to distinguish whether such signals are caused by lightning or a nuclear event. As part of the global security mission at Los Alamos, scientists use lightning tomore » help develop better instruments for nuclear test-ban treaty monitoring and, in the process, have learned a lot about lightning itself.« less
The GOES-R Series Geostationary Lightning Mapper (GLM)
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas M.
2011-01-01
The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), which will have just completed Critical Design Review and move forward into the construction phase of instrument development. The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (an engineering development unit and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithms
Tropical Cyclone Lightning Distribution and Its Relationship to Convection and Intensity Change
NASA Technical Reports Server (NTRS)
Rodgers, Edward; Wienman, James; Pierce, Harold; Olson, William
2000-01-01
The long distance National Lightning Detection Network (NLDN) was used to monitor the distribution of lightning strokes in various 1998 and 1999 western North Atlantic tropical cyclones. These ground-based lightning observations together with the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave/Imager (SSM/I) and the Tropical Rain Mapping Mission (TRMM) Microwave Instrument (TMI) derived convective rain rates were used to monitor the propagation of electrically charged convective rain bands aid to qualitatively estimate intensification. An example of the lightning analyses was performed on hurricane George between 25-28 September, 1998 when the system left Key West and moved towards the Louisiana coast. During this period of time, George's maximum winds increased from 38 to 45 meters per second on 25 September and then remained steady state until it made landfall. Time-radius displays of the lightning strokes indicated that the greatest number of lightning strokes occurred within the outer core region (greater than 165 km) with little or no lightning strokes at radii less than 165 km. The trend in these lightning strokes decreased as George move into the Gulf of Mexico and showed no inward propagation. The lack inward propagating lightning strokes with time indicated that there was no evidence that an eye wall replacement was occurring that could alter George's intensity. Since George was steady state at this time, this result is not surprising. Time-azimuth displays of lightning strokes in an annulus whose outer and inner radii were respectively, 222 and 333 km from George's center were also constructed. A result from this analysis indicated that the maximum number of strokes occurred in the forward and rear right quadrant when George was over the Gulf of Mexico. This result is, consistent with the aircraft and satellite observations of maximum rainfall.
Estimating Lightning NOx Emissions for Regional Air Quality Modeling
NASA Astrophysics Data System (ADS)
Holloway, T.; Scotty, E.; Harkey, M.
2014-12-01
Lightning emissions have long been recognized as an important source of nitrogen oxides (NOx) on a global scale, and an essential emission component for global atmospheric chemistry models. However, only in recent years have regional air quality models incorporated lightning NOx emissions into simulations. The growth in regional modeling of lightning emissions has been driven in part by comparisons with satellite-derived estimates of column NO2, especially from the Ozone Monitoring Instrument (OMI) aboard the Aura satellite. We present and evaluate a lightning inventory for the EPA Community Multiscale Air Quality (CMAQ) model. Our approach follows Koo et al. [2010] in the approach to spatially and temporally allocating a given total value based on cloud-top height and convective precipitation. However, we consider alternate total NOx emission values (which translate into alternate lightning emission factors) based on a review of the literature and performance evaluation against OMI NO2 for July 2007 conditions over the U.S. and parts of Canada and Mexico. The vertical distribution of lightning emissions follow a bimodal distribution from Allen et al. [2012] calculated over 27 vertical model layers. Total lightning NO emissions for July 2007 show the highest above-land emissions in Florida, southeastern Texas and southern Louisiana. Although agreement with OMI NO2 across the domain varied significantly depending on lightning NOx assumptions, agreement among the simulations at ground-based NO2 monitors from the EPA Air Quality System database showed no meaningful sensitivity to lightning NOx. Emissions are compared with prior studies, which find similar distribution patterns, but a wide range of calculated magnitudes.
The GOES-R Geostationary Lightning Mapper (GLM)
NASA Astrophysics Data System (ADS)
Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Mach, Douglas; Bailey, Jeffrey; Buechler, Dennis; Carey, Larry; Schultz, Chris; Bateman, Monte; McCaul, Eugene; Stano, Geoffrey
2013-05-01
The Geostationary Operational Environmental Satellite R-series (GOES-R) is the next block of four satellites to follow the existing GOES constellation currently operating over the Western Hemisphere. Advanced spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved cloud and moisture imagery with the 16-channel Advanced Baseline Imager (ABI). The GLM will map total lightning activity continuously day and night with near-uniform storm-scale spatial resolution of 8 km with a product refresh rate of less than 20 s over the Americas and adjacent oceanic regions in the western hemisphere. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development, an Algorithm Working Group (AWG) Lightning Detection Science and Applications Team developed the Level 2 (stroke and flash) algorithms from the Level 1 lightning event (pixel level) data. Proxy data sets used to develop the GLM operational algorithms as well as cal/val performance monitoring tools were derived from the NASA Lightning Imaging Sensor (LIS) and Optical Transient Detector (OTD) instruments in low Earth orbit, and from ground-based lightning networks and intensive prelaunch field campaigns. The GLM will produce the same or similar lightning flash attributes provided by the LIS and OTD, and thus extend their combined climatology over the western hemisphere into the coming decades. Science and application development along with preoperational product demonstrations and evaluations at NWS forecast offices and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and checkout of GOES-R in late 2015. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.
NASA Astrophysics Data System (ADS)
Ilhamsyah, Y.; Koesmaryono, Y.; Hidayat, R.; Murjaya, J.; Nurjaya, I. W.; Rizwan
2017-02-01
Climate change would lead to such hydrometeorological disaster as: flash-flood, landslide, hailstone, lightning, and twister become more likely to happen in the future. In terms of lightning event, one research question arise of where lightning would be mostly to strike over the Maritime Continent (MC)?. The objective of the research is to investigate region with high-density of lightning activity over MC by mapping climatological features of lightning flashes derived from onboard NASA-TRMM Satellite, i.e. Optical Transient Detector/Lightning Imaging Sensor (OTD/LIS). Based on data retrieved since 1995-2013, it is seasonally observed that during transition season March to May, region with high vulnerability of lightning flashes cover the entire Sumatra Island, the Malacca Strait, and Peninsular Malaysia as well as Java Island. High-frequent of lightning activity over the Malacca Strait is unique since it is the only sea-region in the world where lightning flashes are denser. As previously mentioned that strong lightning activity over the strait is driven by mesoscale convective system of Sumatra Squalls due to convergences of land breeze between Sumatra and Peninsular Malaysia. Lightning activity over the strait is continuously observed throughout season despite the intensity reduced. Java Island, most populated island, receive high-density of lightning flashes during rainy season (December to February) but small part in the northwestern of Java Island, e.g., Bogor and surrounding areas, the density of lightning flashes are high throughout season. Northern and southern parts of Kalimantan and Central part of Sulawesi are also prone to lightning activity particularly during transition season March to May and September to November. In the eastern part of MC, Papua receive denser lightning flashes during September to November. It is found that lightning activity are mostly concentrated over land instead of ocean which is in accordance with diurnal convective precipitation event due to the existence of numerous mountainous island in MC. The malacca strait however is the only exception and turn into a unique characteristic of convective system over MC and the only sea-region in the world where lightning activity is the greatest.
ST-segment elevation following lightning strike: case report and review of the literature.
Akın, Alper; Bilici, Meki; Demir, Fikri; Gözü Pirinççioğlu, Ayfer; Yıldırım, Ahmet
2015-01-01
Lightning strikes may cause injury to the heart, ranging from slight electrocardiographic changes to fatal damage. As heart injury is the most important cause of mortality in these patients, cardiac monitoring is crucial. Even though various ECG changes have been reported, published data on pathologic ST-segment changes is scarce. Herein, we present a seven-year old patient with ST-segment elevation following a lightning strike. There is not sufficient data regarding lightning-related myocardial ischemia. However, because of the similar effects of lightning strikes and high-voltage electric shocks, we believe myocardial injury related to lightning may be managed in the same manner as is cardiac involvement associated with electric shock.
NASA Astrophysics Data System (ADS)
Nína Petersen, Guðrún; Arason, Þórður; Bjornsson, Halldór
2013-04-01
Eruption of subglacial volcanoes may lead to catastrophic floods and therefore early determination of the exact eruption site may be critical to civil protection evacuation plans. Poor visibility due to weather or darkness often inhibit positive identification of exact eruption location for many hours. However, because of the proximity and abundance of water in powerful subglacial volcanic eruptions, they are probably always accompanied by early lightning activity in the volcanic column. Lightning location systems, designed for weather thunderstorm monitoring, based on remote detection of electromagnetic waves from lightning, can provide valuable real-time information on location of eruption site. Important aspect of such remote detection is its independence of weather, apart from thunderstorms close to the volcano. Individual lightning strikes can be 5-10 km in length and are sometimes tilted and to the side of the volcanic column. This adds to the lightning location uncertainty, which is often a few km. Furthermore, the volcanic column may be swayed by the local wind to one side. Therefore, location of a single lightning can be misleading but by calculating average location of many lightning strikes and applying wind correction a more accurate eruption site location can be obtained. In an effort to assess the expected accuracy, the average lightning locations during the past five volcanic eruptions in Iceland (1998-2011) were compared to the exact site of the eruption vent. Simultaneous weather thunderstorms might have complicated this analysis, but there were no signs of ordinary thunderstorms in Iceland during these eruptions. To identify a suitable wind correction, the vector wind at the 500 hPa pressure level (5-6 km altitude) was compared to mean lightning locations during the eruptions. The essential elements of a system, which predicts the eruption site during the first hour(s) of an eruption, will be described.
Dowdy, Andrew J
2016-02-11
Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world's tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world.
Dowdy, Andrew J.
2016-01-01
Thunderstorms are convective systems characterised by the occurrence of lightning. Lightning and thunderstorm activity has been increasingly studied in recent years in relation to the El Niño/Southern Oscillation (ENSO) and various other large-scale modes of atmospheric and oceanic variability. Large-scale modes of variability can sometimes be predictable several months in advance, suggesting potential for seasonal forecasting of lightning and thunderstorm activity in various regions throughout the world. To investigate this possibility, seasonal lightning activity in the world’s tropical and temperate regions is examined here in relation to numerous different large-scale modes of variability. Of the seven modes of variability examined, ENSO has the strongest relationship with lightning activity during each individual season, with relatively little relationship for the other modes of variability. A measure of ENSO variability (the NINO3.4 index) is significantly correlated to local lightning activity at 53% of locations for one or more seasons throughout the year. Variations in atmospheric parameters commonly associated with thunderstorm activity are found to provide a plausible physical explanation for the variations in lightning activity associated with ENSO. It is demonstrated that there is potential for accurately predicting lightning and thunderstorm activity several months in advance in various regions throughout the world. PMID:26865431
Laboratory simulations of volcanic ash charging and conditions for volcanic lightning on Venus
NASA Astrophysics Data System (ADS)
Airey, Martin; Warriner-Bacon, Elliot; Aplin, Karen
2017-04-01
Lightning may be important in the emergence of life on Earth and elsewhere, as significant chemical reactions occur in the superheated region around the lightning channel. This, combined with the availability of phosphates in volcanic clouds, suggests that volcanic lightning could have been the catalyst for the formation of biological compounds on the early Earth [1]. In addition to meteorological lightning, volcanic activity also generates electrical discharges within charged ash plumes, which can be a significant contributor to atmospheric electricity on geologically active planets. The physical properties of other planetary atmospheres, such as that of Venus, have an effect on the processes that lead to the generation of volcanic lightning. Volcanism is known to have occurred on Venus in the past, and recent observations made by ESA's Venus Express satellite have provided evidence for currently active volcanism [2-4], and lightning discharges [e.g. 5]. Venusian lightning could potentially be volcanic in origin, since no meteorological mechanisms are known to separate charge effectively in its clouds [6]. The hunt for further evidence for lightning at Venus is ongoing, for example by means of the Lightning and Airglow Camera (LAC) [7] on Akatsuki, the current JAXA mission at Venus. Our laboratory experiments simulate ash generation and measure electrical charging of the ash under typical atmospheric conditions on Earth and Venus. The study uses a 1 litre chamber, which, when pressurised and heated, can simulate the high-pressure, high-temperature, carbon dioxide-dominated atmosphere of Venus at 10 km altitude ( 5 MPa, 650 K). A key finding of previous work [8] is that ash plume-forming eruptions are more likely to occur at higher altitudes such as these on Venus. The chamber contains temperature/pressure monitoring and logging equipment, a rock collision apparatus (based on [9]) to generate the charged rock fragments, and charge measurement electrodes connected to a high-precision electrometer. The separate effects of varying the atmospheric composition, temperature, and pressure on the charges attained and the relationship between particle size and charge polarity will be addressed, and the implications discussed. The key questions considered here are: (a) is volcanic activity a feasible mechanism for lightning generation on Venus, (b) how do the extreme environmental conditions on Venus affect the mechanisms required to generate lightning, (c) what are the implications for volcanic lightning's role in the emergence of life on other planets? [1] Navarro-Gonzalez, R. and Segura, A., (2001) Volcanic lightning and the availability of reactive nitrogen and phosphorus for chemical evolution. [2] Marcq, E., et al. (2012) Nature Geoscience, 1-4 [3] Shalygin, E.V., et al. (2015) Geophys. Res. Lett., 42 [4] Smrekar, S.E., et al. (2010) Science, 328, 5978, 605-608 [5] Russell, C.T., et al. (2008) Journal of Geophysical Research-Planets, 113 [6] Aplin, K.L. and Fischer, G. (In press) Weather, (preprint at https://arxiv.org/abs/1606.03285) [7] Takahashi, Y., et al. (2008) Space Sci. Rev., 137, 1-4, 317-334 [8] Airey, M.W., et al. (2015) Planetary and Space Science, 113-114, 33-48 [9] James, M.R., et al. (2000) Journal of Geophysical Research-Solid Earth, 105, B7, 16641-16649
Abdulla, Susanne; Conrad, Anton; Schwemm, Karl-Peter; Stienstra, Mark P; Gorsselink, Edward L; Dengler, Reinhard; Abdulla, Walied
2014-01-01
This study describes a case of lesions of the upper motor neuronal pathway with locked-in features after lightning strike and cardiac arrest. A case-review analysis. In a 29-year-old male who was hit by a lightning strike during farming activities, cardiopulmonary resuscitation was provided first by co-workers and continued with success by the medical rescue service. After conducting advanced life support under monitoring and therapeutic hypothermia, quadriplegia with facial diplegia was recognized. A review was undertaken detailing the clinical course. MR imaging presented signs consistent with hypoxia-induced damage and diffusion-weighted MR images revealed pronounced damages along the upper motor neuronal pathway. A reactive electroencephalogram pattern, sustained eye movement and the patient communicating via eye-blinking were interpreted as locked-in features. Two weeks after admission the patient was transferred to a neurological rehabilitation centre for further professional care. Direct damage of the upper motor neuron pathway due to the current of the lightning should be considered, albeit the relative contribution of hypoxia-induced damage cannot be separated.
Nowcasting and forecasting of lightning activity: the Talos project.
NASA Astrophysics Data System (ADS)
Lagouvardos, Kostas; Kotroni, Vassiliki; Kazadzis, Stelios; Giannaros, Theodore; Karagiannidis, Athanassios; Galanaki, Elissavet; Proestakis, Emmanouil
2015-04-01
Thunder And Lightning Observing System (TALOS) is a research program funded by the Greek Ministry of Education with the aim to promote excellence in the field of lightning meteorology. The study focuses on exploring the real-time observations provided by the ZEUS lightning detection system, operated by the National Observatory of Athens since 2005, as well as the 10-year long database of the same system. More precisely the main research issues explored are: - lightning climatology over the Mediterranean focusing on lightning spatial and temporal distribution, on the relation of lightning with topographical features and instability and on the importance of aerosols in lightning initiation and enhancement. - nowcasting of lightning activity over Greece, with emphasis on the operational aspects of this endeavour. The nowcasting tool is based on the use of lightning data complemented by high-time resolution METEOSAT imagery. - forecasting of lightning activity over Greece based on the use of WRF numerical weather prediction model. - assimilation of lightning with the aim to improve the model precipitation forecast skill. In the frame of this presentation the main findings of each of the aforementioned issues are highlighted.
NASA Technical Reports Server (NTRS)
Mecikalski, John; Jewett, Chris; Carey, Larry; Zavodsky, Brad; Stano, Geoffrey; Chronis, Themis
2015-01-01
Using satellite-based methods that provide accurate 0-1 hour convective initiation (CI) nowcasts, and rely on proven success coupling satellite and radar fields in the Corridor Integrated Weather System (CIWS; operated and developed at MIT-Lincoln Laboratory), to subsequently monitor for first-flash lightning initiation (LI) and later period lightning trends as storms evolve. Enhance IR-based methods within the GOES-R CI Algorithm (that must meet specific thresholds for a given cumulus cloud before the cloud is considered to have an increased likelihood of producing lightning next 90 min) that forecast LI. Integrate GOES-R CI and LI fields with radar thresholds (e.g., first greater than or equal to 40 dBZ echo at the -10 C altitude) and NWP model data within the WDSS-II system for LI-events from new convective storms. Track ongoing lightning using Lightning Mapping Array (LMA) and pseudo-Geostationary Lightning Mapper (GLM) data to assess per-storm lightning trends (e.g., as tied to lightning jumps) and outline threat regions. Evaluate the ability to produce LI nowcasts through a "lightning threat" product, and obtain feedback from National Weather Service forecasters on its value as a decision support tool.
NASA Technical Reports Server (NTRS)
Burns, Lee; Decker, Ryan
2005-01-01
Lightning strike location and peak current are monitored operationally in the Kennedy Space Center (KSC) Cape Canaveral Air Force Station (CCAFS) area by the Cloud to Ground Lightning Surveillance System (CGLSS). The present study compiles ten years worth of CGLSS data into a database of near strikes. Using shuffle launch platform LP39A as a convenient central point, all strikes recorded within a 20-mile radius for the period of record O R ) from January 1, 1993 to December 31,2002 were included in the subset database. Histograms and cumulative probability curves are produced for both strike intensity (peak current, in kA) and the corresponding magnetic inductance fields (in A/m). Results for the full POR have application to launch operations lightning monitoring and post-strike test procedures.
Noise and interference study for satellite lightning sensor
NASA Technical Reports Server (NTRS)
Herman, J. R.
1981-01-01
The use of radio frequency techniques for the detection and monitoring of terrestrial thunderstorms from space are discussed. Three major points are assessed: (1) lightning and noise source characteristics; (2) propagation effects imposed by the atmosphere and ionosphere; and (3) the electromagnetic environment in near space within which lightning RF signatures must be detected. A composite frequency spectrum of the peak of amplitude from lightning flashes is developed. Propagation effects (ionospheric cutoff, refraction, absorption, dispersion and scintillation) are considered to modify the lightning spectrum to the geosynchronous case. It is suggested that in comparing the modified spectrum with interfering noise source spectra RF lightning pulses on frequencies up to a few GHz are detectable above the natural noise environment in near space.
NASA Astrophysics Data System (ADS)
Venkanna, R.; Nikhil, G. N.; Sinha, P. R.; Siva Rao, T.; Swamy, Y. V.
2016-08-01
The influence of lightning over surface-level trace gases was examined for pre-monsoon and monsoon seasons in the year 2012. Lightning events were measured using ground-based electric field monitor (EFM) and space-based lightning imaging sensor (LIS). The results showed that lightning frequency was higher during pre-monsoon period compared to monsoon, which is in good agreement with the satellite retrievals. The increase in concentration of NOx on lightning event led to a subsequent decrease in surface O3 due to the titration reaction. Source apportionment study of SO2/NOx (S/N) and CO/NOx (C/N) ratios and poor correlation of NOx vs CO and NOx vs SO2 on the lightning day confirmed the emission of NOx from dissimilar sources.
Walsh, Katie M; Cooper, Mary Ann; Holle, Ron; Rakov, Vladimir A; Roeder, William P; Ryan, Michael
2013-01-01
To present recommendations for the education, prevention, and management of lightning injuries for those involved in athletics or recreation. Lightning is the most common severe-storm activity encountered annually in the United States. The majority of lightning injuries can be prevented through an aggressive educational campaign, vacating outdoor activities before the lightning threat, and an understanding of the attributes of a safe place from the hazard. This position statement is focused on supplying information specific to lightning safety and prevention and treatment of lightning injury and providing lightning-safety recommendations for the certified athletic trainer and those who are involved in athletics and recreation.
A review of advances in lightning observations during the past decade in Guangdong, China
NASA Astrophysics Data System (ADS)
Zhang, Yijun; Lü, Weitao; Chen, Shaodong; Zheng, Dong; Zhang, Yang; Yan, Xu; Chen, Lüwen; Dong, Wansheng; Dan, Jianru; Pan, Hanbo
2016-08-01
This paper reviews recent advances in understanding the physical processes of artificially triggered lightning and natural lightning as well as the progress in testing lightning protection technologies, based on a series of lightning field campaigns jointly conducted by the Chinese Academy of Meteorological Sciences and Guangdong Meteorological Bureau since 2006. During the decade-long series of lightning field experiments, the technology of rocket-wire artificially triggered lightning has been improved, and has successfully triggered 94 lightning flashes. Through direct lightning current waveform measurements, an average return stroke peak current of 16 kA was obtained. The phenomenon that the downward leader connects to the lateral surface of the upward leader in the attachment process was discovered, and the speed of the upward leader during the connection process being significantly greater than that of the downward leader was revealed. The characteristics of several return strokes in cloud-to-ground lighting have also been unveiled, and the mechanism causing damage to lightning protection devices (i.e., ground potential rise within the rated current) was established. The performance of three lightning monitoring systems in Guangdong Province has also been quantitatively assessed.
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Christian, H. J.; Stewart, M. F.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.
2014-01-01
In recent years, NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to provide global observations of total lightning after 17 years on-orbit. In April 2013, a space-qualified LIS built as the flight spare for TRMM, was selected for flight as a science mission on the International Space Station. The ISS LIS (or I-LIS as Hugh Christian prefers) will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of global lightning. More specifically, it measures lightning during both day and night, with storm scale resolution, millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that the characteristics of lightning that LIS measures can be quantitatively coupled to both thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations with other payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that will be exploring the connection between thunderstorms and lightning with terrestrial gamma-ray flashes (TGFs). Another important function of the ISS LIS will be to provide cross-sensor calibration/validation with a number of other payloads, including the TRMM LIS and the next generation geostationary lightning mappers (e.g., GOES-R Geostationary Lightning Mapper and Meteosat Third Generation Lightning Imager). This inter-calibration will improve the long term climate monitoring provided by all these systems. Finally, the ISS LIS will extend the time-series climate record of LIS lightning observations and expand the latitudinal coverage of LIS lightning to the climate significant upper middle-latitudes.
Fermi GBM Observations of Terrestrial Gamma-ray Flashes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briggs, Michael S.
2011-09-21
Terrestrial Gamma-ray Flashes are short pulses of energetic radiation associated with thunderstorms and lightning. While the Gamma-ray Burst Monitor (GBM) on Fermi was designed to observe gamma-ray bursts, its large BGO detectors are excellent for observing TGFs. Using GBM, TGF pulses are seen to either be symmetrical or have faster rise time than fall times. Some TGFs are resolved into double, partially overlapping pulses. Using ground-based radio observations of lightning from the World Wide Lightning Location Network (WWLLN), TGFs and their associated lightning are found to be simultaneous to {approx_equal}40 {mu} s. The lightning locations are typically within 300 kmmore » of the sub-spacecraft point.« less
Walsh, Katie M.; Cooper, Mary Ann; Holle, Ron; Rakov, Vladimir A.; Roeder, William P.; Ryan, Michael
2013-01-01
Objective: To present recommendations for the education, prevention, and management of lightning injuries for those involved in athletics or recreation. Background: Lightning is the most common severe-storm activity encountered annually in the United States. The majority of lightning injuries can be prevented through an aggressive educational campaign, vacating outdoor activities before the lightning threat, and an understanding of the attributes of a safe place from the hazard. Recommendations: This position statement is focused on supplying information specific to lightning safety and prevention and treatment of lightning injury and providing lightning-safety recommendations for the certified athletic trainer and those who are involved in athletics and recreation. PMID:23672391
Using Satellite Lightning Data as a Hands-On Activity for a Broad Audience
NASA Astrophysics Data System (ADS)
Sinclair, L.; Smith, T.; Smith, D. K.; Weigel, A. M.; Bugbee, K.; Leach, C.
2017-12-01
Satellite lightning data archived at the NASA Global Hydrology Resource Center Distributed Active Archive Center (GHRC DAAC) captures the number of lightning flashes occurring within four by four kilometer pixels around the world from January 1998 through October 2014. These data were measured by the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite. As an outreach effort to educate other on the use lightning measurements, the GHRC DAAC developed an interactive color-by-number poster showing accumulated lightning flashes around the world. As participants color the poster it reveals regions of maximum lightning flash counts across the Earth, including Lake Maracaibo in Catatumbo, Venezuela and a region in Congo, Africa. This hands-on activity is a bright, colorful, and inviting way to bring lightning data to a broad audience and can be used for people of many ages, including elementary-aged audiences up to adults.
Detection of Lightning-produced NOx by Air Quality Monitoring Stations in Israel
NASA Astrophysics Data System (ADS)
Yair, Y.; Shalev, S.; Saaroni, H.; Ziv, B.
2011-12-01
Lightning is the largest natural source for the production of nitrogen oxides (LtNOx) in the troposphere. Since NOx are greenhouse gases, it is important to know the global production rate of LtNOx for climate studies (present estimates range from 2 to 8 Tg per year) and to model its vertical distribution (Ott et al., 2010). One of the key factors for such an estimate is the yield of a single lightning flash, namely the number of molecules produced for each Joule of energy deposited along the lightning channel. We used lightning stroke data from the Israel Lightning Location System (ILLS) together with NOx data obtained from the national network of air quality monitoring stations operated by the Israeli Ministry of Environmental Protection. Looking for the fingerprints of LtNOx in the general ambient concentrations, usually most affected by pollution from urban sources, we looked only for CG strokes occurring within a radius of 3 km from the location of an air-quality monitoring station. This lowered the number of relevant cases from 605,413 strokes detected in the 2004/5 through 2009/10 seasons to 1,897 strokes. We applied a threshold of > 60kA reducing the number of events to 35. The results showed that there was no consistent rising trend in the NOx concentrations in the hour following the lightning (the lifetime near the ground is expected to be a few hours; Zhang et al., 2003). However, when considering only those events when the prevailing wind was in the direction from the stroke location toward the sensor (7 cases), a clear increase of few ppb following the stroke was observed in 5 cases [see Fig.]. This increase is well correlated with the wind speed, suggesting an effective transport from the stroke location to the sensor. Weaker winds allow dilution and result in smaller observed increases of LtNOx. Separate analysis of additional 17 cases in which the strokes were located < 500 m from the monitoring station (with any peak current above 7 kA) showed no consistent trend. When excluding the 7 events that occurred during rush hour traffic, we found 6 (of 10) cases with an average increase in NOx concentrations of 16 ppb in the hour following the lightning. These results suggest a contribution of CG lightning strokes to the ground level concentrations of NOx. L. E. Ott, K. E. Pickering, G. L. Stenchikov, D. J. Allen, A. J. DeCaria, B. Ridley, R.F. Lin, S. Lang, and W.K. Tao (2010), Production of lightning NOx and its vertical distribution calculated from three dimensional cloud scale chemical transport model simulations, J. Geophys. Res., 115, D04301, doi:10.1029/2009JD011880
Doppler Radar and Lightning Network Observations of a Severe Outbreak of Tropical Cyclone Tornadoes
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Buechler, Dennis; Goodman, Steven; Cammarata, Michael
2003-01-01
Data from a single WSR-88D Doppler radar and the National Lightning Detection Network are used to examine in detail the characteristics of the convective storms that produced a severe tornado outbreak within Tropical Storm Beryl's remnants on 16 August 1994. Comparison of the radar data with reports of tornadoes suggests that only 13 cells produced the 29 tornadoes that were documented in Georgia and the Carolinas on that date. Six of these cells spawned multiple tornadoes, and the radar data confirm the presence of miniature supercells. One of the cells was identifiable on radar for 11 hours, spawning tornadoes over a time period spanning approximately 6.5 hours. Several other tornadic cells also exhibited great longevity, with cell lifetimes greater than ever previously documented in a landfalling tropical cyclone tornado event, and comparable to those found in major midlatitude tornadic supercell outbreaks. Time-height analyses of the three strongest tornadic supercells are presented in order to document storm kinematic structure and to show how these storms appear at different ranges from a WSR-88D radar. In addition, cloud-to-ground (CG) lightning data are examined for the outbreak, the most intense tropical cyclone tornado event studied thus far. Although the tornadic cells were responsible for most of Beryl's CG lightning, flash rates were only weak to moderate, even in the most intense supercells, and in all the tornadic storms the lightning flashes were almost entirely negative in polarity. A few of the single-tornado storms produced no detectable CG lightning at all. In the stronger cells, there is some evidence that CG lightning rates decreased during tornadogenesis, as has been documented before in some midlatitude tornadic storms. A number of the storms spawned tornadoes just after producing their final CG lightning flashes. Surprisingly, both peak currents and positive flash percentages were larger in Beryl s nontornadic storms than in the tornadic ones. Despite some intriguing patterns, the CG lightning behavior in this outbreak remains mostly inconsistent and ambiguous, and offers only secondary value for warning guidance. The present findings argue in favor of the implementation of observing systems capable of continuous monitoring of total lightning activity in storms.
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.;
2015-01-01
In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations with other ISS payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) that will be exploring the connection between thunderstorms and lightning with terrestrial gamma-ray flashes (TGFs) and the Japan Aerospace Exploration Agency's Global LIghtning and Sprites MeasurementS (GLIMS) with its focus on global lightning and sprite connections. Another important function of the ISS LIS will be to provide cross-sensor calibration/validation with a number of other payloads, including the TRMM LIS and the next generation geostationary lightning mappers such as the GOES-R Geostationary Lightning Mapper (GLM) and Meteosat Third Generation Lightning Imager (MTG LI), as well as with ground-based lightning detection systems. These inter-calibrations will improve the long term climate monitoring record provided by all these systems. Finally, the ISS LIS will extend the time-series climate record of LIS lightning observations and expand the latitudinal coverage of LIS lightning to the climate significant upper middle-latitudes.
Lightning-Generated NO(x) Seen By OMI during NASA's TC-4 Experiment: First Results
NASA Technical Reports Server (NTRS)
Bucsela, Eric; Pickering, Kenneth E.; Huntemann, Tabitha; Cohen, Ronald; Perring, Anne; Gleason, James; Blakeslee, Richard; Navarro, Dylana Vargas; Segura, Ileana Mora; Hernandez, Alexia Pacheco;
2009-01-01
We present here case studies identifying upper-tropospheric NO2 produced in convective storms during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TCi)n July and August 2007. DC8 aircraft missions, flown from the mission base in Costa Rica, recorded in situ NO2 profiles near active storms and in relatively quiet areas. We combine these data with measurements from the Ozone Monitoring Instrument (OMI) on the Aura satellite to estimate the amount of NO2 produced by lightning (LN02) above background levels in the regions influenced by storms. In our analysis, improved off-line processing techniques are employed to minimize known artifacts in the OM1 data. Information on lightning flashes (primarily CG) observed by the surface network operated by the Instituto Costarricense de Electricidad are examined upwind of regions where OM1 indicates enhanced LNO2. Comparisons of the observed flash data with measurements by the TRMM/LIS satellite instrument are used to obtain the lightning detection efficiency for total flashes. Finally, using the NO/NO2 ratio estimated from DC-8 observations, we estimate the average NO(x) production per lightning flash for each case in this study. The magnitudes of the measured NO(x) enhancements are compared with those observed by the DC-8 and with similar OM1 measurements analyzed in mid-latitude experiments.
NASA Astrophysics Data System (ADS)
Mushtak, V. C.; Williams, E. R.
2011-12-01
Among the palette of methods (satellite, VLF, ELF) for monitoring global lightning activity, observations of the background Schumann resonances (SR) provide a unique prospect for estimating the integrated activity of global lightning activity in absolute units (coul2 km2/sec). This prospect is ensured by the SR waves' low attenuation, with wavelengths commensurate with the dimensions of dominant regional lightning "chimneys", and by the accumulating methodology for background SR techniques. Another benefit is the reduction of SR measurements into a compact set of resonance characteristics (modal frequencies, intensities, and quality factors). Suggested and tested in numerical simulations by T.R. Madden in the 1960s, the idea to invert the SR characteristics for the global lightning source has been farther developed, statistically substantiated, and practically realized here on the basis of the computing power and the quantity of experimental material way beyond what the SR pioneers had at their disposal. The critical issue of the quality of the input SR parameters is addressed by implementing a statistically substantiated sanitizing procedure to dispose of the fragments of the observed time series containing unrepresentative elements - local interference of various origin and strong ELF transients originating outside the major "chimneys" represented in the source model. As a result of preliminary research, a universal empirical sanitizing criterion has been established. Due to the fact that the actual observations have been collected from a set of individually organized ELF stations with various equipment sets and calibration techniques, the relative parameters in both input (the intensities) and output (the "chimney" activities) are being used as far as possible in the inversion process to avoid instabilities caused by calibration inconsistencies. The absolute regional activities - and so the sought for global activity in absolute units - is determined in the final stage from the estimated positions and relative activities of the modeled "chimneys" using SR power spectra at the stations with the most reliable calibrations. Additional stabilization in the procedure has been achieved by exploiting the Le Come/Goltzman inversion algorithm that uses the empirically estimated statistical characteristics of the input parameters. When applied to electric and/or magnetic observations collected simultaneously in January 2009 from six ELF stations in Poland (Belsk), Japan (Moshiri), Hungary (Nagycenk), USA (Rhode Island), India (Shillong), and Antarctica (Syowa), the inversion procedure reveals a general repeatability of diurnal lightning scenarios with variations of "chimney" centroid locations by a few megameters, while the estimated regional activity has been found to vary from day to day by up to several tens of percent. A combined empirical-theoretical analysis of the collected data aimed at selecting the most reliably calibrated ELF stations is presently in progress. All the effort is being made to transform the relative lightning activity into absolute units by the time of this meeting. The authors are greatly thankful to all the experimentalists who generously provided their observations and related information for this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lay, Erin Hoffmann; Wiens, Kyle Cameron; Delapp, Dorothea Marcia
2016-03-11
The World Wide Lightning Location Network (WWLLN) provides continuous global lightning monitoring and detection. At LANL we collect and archive these data on a daily basis. This document describes the WWLLN data, how they are collected and archived, and how to use the data at LANL.
NASA Astrophysics Data System (ADS)
Rigo, T.; Pineda, N.; Bech, J.
2010-09-01
Monitoring thunderstorms activity is an essential part of operational weather surveillance given their potential hazards, including lightning, hail, heavy rainfall, strong winds or even tornadoes. This study has two main objectives: firstly, the description of a methodology, based on radar and total lightning data to characterise thunderstorms in real-time; secondly, the application of this methodology to 66 thunderstorms that affected Catalonia (NE Spain) in the summer of 2006. An object-oriented tracking procedure is employed, where different observation data types generate four different types of objects (radar 1-km CAPPI reflectivity composites, radar reflectivity volumetric data, cloud-to-ground lightning data and intra-cloud lightning data). In the framework proposed, these objects are the building blocks of a higher level object, the thunderstorm. The methodology is demonstrated with a dataset of thunderstorms whose main characteristics, along the complete life cycle of the convective structures (development, maturity and dissipation), are described statistically. The development and dissipation stages present similar durations in most cases examined. On the contrary, the duration of the maturity phase is much more variable and related to the thunderstorm intensity, defined here in terms of lightning flash rate. Most of the activity of IC and CG flashes is registered in the maturity stage. In the development stage little CG flashes are observed (2% to 5%), while for the dissipation phase is possible to observe a few more CG flashes (10% to 15%). Additionally, a selection of thunderstorms is used to examine general life cycle patterns, obtained from the analysis of normalized (with respect to thunderstorm total duration and maximum value of variables considered) thunderstorm parameters. Among other findings, the study indicates that the normalized duration of the three stages of thunderstorm life cycle is similar in most thunderstorms, with the longest duration corresponding to the maturity stage (approximately 80% of the total time).
Infrasound Observations from Lightning
NASA Astrophysics Data System (ADS)
Arechiga, R. O.; Johnson, J. B.; Edens, H. E.; Thomas, R. J.; Jones, K. R.
2008-12-01
To provide additional insight into the nature of lightning, we have investigated its infrasound manifestations. An array of three stations in a triangular configuration, with three sensors each, was deployed during the Summer of 2008 (July 24 to July 28) in the Magdalena mountains of New Mexico, to monitor infrasound (below 20 Hz) sources due to lightning. Hyperbolic formulations of time of arrival (TOA) measurements and interferometric techniques were used to locate lightning sources occurring over and outside the network. A comparative analysis of simultaneous Lightning Mapping Array (LMA) data and infrasound measurements operating in the same area was made. The LMA locates the sources of impulsive RF radiation produced by lightning flashes in three spatial dimensions and time, operating in the 60 - 66 MHz television band. The comparison showed strong evidence that lightning does produce infrasound. This work is a continuation of the study of the frequency spectrum of thunder conducted by Holmes et al., who reported measurements of infrasound frequencies. The integration of infrasound measurements with RF source localization by the LMA shows great potential for improved understanding of lightning processes.
The impact of the Western Ghats on lightning activity on the western coast of India
NASA Astrophysics Data System (ADS)
Kamra, A. K.; Nair, A. A.
2015-06-01
The effect of the Western Ghats on the lightning activity across the west coast of India around the coastal metropolitan city of Mumbai during the 1998-2012 period is investigated using data from the Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. A land-sea contrast of an order of magnitude in the lightning activity is observed even in a small area across the western coast of India. The shape of a zone of high lightning activity formed almost parallel to the Western Ghats during the onset and withdrawal phases of monsoon, strongly suggests the effect of the Western Ghats in its formation. Seasonal variation of the lightning activity in this area and also in each of its four equal sectors (two each over the Arabian Sea and over land) is bi-annual with one peak each in the onset (May/June) and withdrawal months (September/October) of monsoon and a sharp dip to very low values during the monsoon months (July/August) of maximum seasonal rainfall. The lightning activity in each sector is found to increase over the 1998-2012 period. However, the increase in lightning activity over the sector containing Mumbai is found to be greater during the pre- and post-monsoon periods and smaller during the monsoon period as compared to an identical sector immediately south of it.
NOAA study finds fishing tops U.S. lightning death activities
lightning were male. "When people think of lightning deaths, they usually think of golf," occurred while people were participating in leisure activities, with fishing topping the list at 26 deaths deaths). The remaining 77 people were struck by lightning while participating in a number of other
21st Century Lightning Protection for High Altitude Observatories
NASA Astrophysics Data System (ADS)
Kithil, Richard
2013-05-01
One of the first recorded lightning insults to an observatory was in January 1890 at the Ben Nevis Observatory in Scotland. In more recent times lightning has caused equipment losses and data destruction at the US Air Force Maui Space Surveillance Complex, the Cerro Tololo observatory and the nearby La Serena scientific and technical office, the VLLA, and the Apache Point Observatory. In August 1997 NOAA's Climate Monitoring and Diagnostic Laboratory at Mauna Loa Observatory was out of commission for a month due to lightning outages to data acquisition computers and connected cabling. The University of Arizona has reported "lightning strikes have taken a heavy toll at all Steward Observatory sites." At Kitt Peak, extensive power down protocols are in place where lightning protection for personnel, electrical systems, associated electronics and data are critical. Designstage lightning protection defenses are to be incorporated at NSO's ATST Hawaii facility. For high altitude observatories lightning protection no longer is as simple as Franklin's 1752 invention of a rod in the air, one in the ground and a connecting conductor. This paper discusses selection of engineered lightning protection subsystems in a carefully planned methodology which is specific to each site.
NASA Technical Reports Server (NTRS)
Watson, Andrew I.; Holle, Ronald L.; Lopez, Raul E.; Nicholson, James R.
1991-01-01
Since 1986, USAF forecasters at NASA-Kennedy have had available a surface wind convergence technique for use during periods of convective development. In Florida during the summer, most of the thunderstorm development is forced by boundary layer processes. The basic premise is that the life cycle of convection is reflected in the surface wind field beneath these storms. Therefore the monitoring of the local surface divergence and/or convergence fields can be used to determine timing, location, longevity, and the lightning hazards which accompany these thunderstorms. This study evaluates four years of monitoring thunderstorm development using surface wind convergence, particularly the average over the area. Cloud-to-ground (CG) lightning is related in time and space with surface convergence for 346 days during the summers of 1987 through 1990 over the expanded wind network at KSC. The relationships are subdivided according to low level wind flow and midlevel moisture patterns. Results show a one in three chance of CG lightning when a convergence event is identified. However, when there is no convergence, the chance of CG lightning is negligible.
The North Alabama Severe Thunderstorm Observations, Research, and Monitoring Network (STORMnet)
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hall, J.; Bateman, M.; McCaul, E.; Buechler, D.;
2002-01-01
The Severe Thunderstorm Observations, Research, and Monitoring network (STORMnet) became operational in 2001 as a test bed to infuse new science and technologies into the severe and hazardous weather forecasting and warning process. STORMnet is collaboration among NASA scientists, National Weather Service (NWS) forecasters, emergency managers and other partners. STORMnet integrates total lightning observations from a ten-station 3-D VHF regional lightning mapping array, the National Lightning Detection Network (NLDN), real-time regional NEXRAD Doppler radar, satellite visible and infrared imagers, and a mobile atmospheric profiling system to characterize storms and their evolution. The storm characteristics and life-cycle trending are accomplished in real-time through the second generation Lightning Imaging Sensor Demonstration and Display (LISDAD II), a distributed processing system with a JAVA-based display application that allows anyone, anywhere to track individual storm histories within the Tennessee Valley region of north Alabama and Tennessee, a region of the southeastern U.S. well known for abundant severe weather.
Weekly Cycle of Lightning: Evidence of Storm Invigoration by Pollution
NASA Technical Reports Server (NTRS)
Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong
2009-01-01
We have examined summertime 1998 2009 U.S. lightning data from the National Lightning Detection Network (NLDN) to look for weekly cycles in lightning activity. As was found by Bell et al. (2008) for rain over the southeast U.S., there is a significant weekly cycle in afternoon lightning activity that peaks in the middle of the week there. The weekly cycle appears to be reduced over population centers. Lightning activity peaks on weekends over waters near the SE U.S. The statistical significance of weekly cycles over the western half of the country is generally small. We found no evidence of a weekly cycle of synoptic-scale forcing that might explain these patterns. The lightning behavior is entirely consistent with the explanation suggested by Bell et al. (2008) for the cycles in rainfall and other atmospheric data from the SE U.S., that aerosols can cause storms to intensify in humid, convectively unstable environments.
Monitoring D-Region Variability from Lightning Measurements
NASA Technical Reports Server (NTRS)
Simoes, Fernando; Berthelier, Jean-Jacques; Pfaff, Robert; Bilitza, Dieter; Klenzing, Jeffery
2011-01-01
In situ measurements of ionospheric D-region characteristics are somewhat scarce and rely mostly on sounding rockets. Remote sensing techniques employing Very Low Frequency (VLF) transmitters can provide electron density estimates from subionospheric wave propagation modeling. Here we discuss how lightning waveform measurements, namely sferics and tweeks, can be used for monitoring the D-region variability and day-night transition, and for local electron density estimates. A brief comparison among D-region aeronomy models is also presented.
NASA Astrophysics Data System (ADS)
Krämer, Sebastian G. M.; Wiesent, Benjamin; Müller, Mathias S.; Puente León, Fernando; Méndez Hernández, Yarú
2008-04-01
Wind turbine blades are made of composite materials and reach a length of more than 42 meters. Developments for modern offshore turbines are working on about 60 meters long blades. Hence, with the increasing height of the turbines and the remote locations of the structures, health monitoring systems are becoming more and more important. Therefore, fiber-optic sensor systems are well-suited, as they are lightweight, immune against electromagnetic interference (EMI), and as they can be multiplexed. Based on two separately existing concepts for strain measurements and lightning detection on wind turbines, a fused system is presented. The strain measurement system is based on a reflective fiber-Bragg-grating (FBG) network embedded in the composite structure of the blade. For lightning detection, transmissive &fiber-optic magnetic field sensors based on the Faraday effect are used to register the lightning parameters and estimate the impact point. Hence, an existing lightning detection system will be augmented, due to the fusion, by the capability to measure strain, temperature and vibration. Load, strain, temperature and impact detection information can be incorporated into the turbine's monitoring or SCADA system and remote controlled by operators. Data analysis techniques allow dynamic maintenance scheduling to become a reality, what is of special interest for the cost-effective maintenance of large offshore or badly attainable onshore wind parks. To prove the feasibility of this sensor fusion on one optical fiber, interferences between both sensor systems are investigated and evaluated.
Spatio-temporal activity of lightnings over Greece
NASA Astrophysics Data System (ADS)
Nastos, P. T.; Matsangouras, I. T.; Chronis, T. G.
2012-04-01
Extreme precipitation events are always associated with convective weather conditions driving to intense lightning activity: Cloud to Ground (CG), Ground to Cloud (GC) and Cloud to Cloud (CC). Thus, the study of lightnings, which typically occur during thunderstorms, gives evidence of the spatio-temporal variability of intense precipitation. Lightning is a natural phenomenon in the atmosphere, being a major cause of storm related with deaths and main trigger of forest fires during dry season. Lightning affects the many electrochemical systems of the body causing nerve damage, memory loss, personality change, and emotional problems. Besides, among the various nitrogen oxides sources, the contribution from lightning likely represents the largest uncertainty. An operational lightning detection network (LDN) has been established since 2007 by HNMS, consisting of eight time-of-arrival sensors (TOA), spatially distributed across Greek territory. In this study, the spatial and temporal variability of recorded lightnings (CG, GC and CC) are analyzed over Greece, during the period from January 14, 2008 to December 31, 2009, for the first time. The data for retrieving the location and time-of-occurrence of lightning were acquired from Hellenic National Meteorological Service (HNMS). In addition to the analysis of spatio-temporal activity over Greece, the HNMS-LDN characteristics are also presented. The results of the performed analysis reveal the specific geographical sub-regions associated with lightnings incidence. Lightning activity occurs mainly during the autumn season, followed by summer and spring. Higher frequencies of flashes appear over Ionian and Aegean Sea than over land during winter period against continental mountainous regions during summer period.
GOES-R Geostationary Lightning Mapper Performance Specifications and Algorithms
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Goodman, Steven J.; Blakeslee, Richard J.; Koshak, William J.; Petersen, William A.; Boldi, Robert A.; Carey, Lawrence D.; Bateman, Monte G.; Buchler, Dennis E.; McCaul, E. William, Jr.
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series will carry a GLM that will provide continuous day and night observations of lightning. The mission objectives for the GLM are to: (1) Provide continuous, full-disk lightning measurements for storm warning and nowcasting, (2) Provide early warning of tornadic activity, and (2) Accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997- present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. The science data will consist of lightning "events", "groups", and "flashes". The algorithm is being designed to be an efficient user of the computational resources. This may include parallelization of the code and the concept of sub-dividing the GLM FOV into regions to be processed in parallel. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama, Oklahoma, Central Florida, and the Washington DC Metropolitan area) are being used to develop the prelaunch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution.
Effects of Lightning Injection on Power-MOSFETs
NASA Technical Reports Server (NTRS)
Celaya, Jose; Saha, Sankalita; Wysocki, Phil; Ely, Jay; Nguyen, Truong; Szatkowski, George; Koppen, Sandra; Mielnik, John; Vaughan, Roger; Goebel, Kai
2009-01-01
Lightning induced damage is one of the major concerns in aircraft health monitoring. Such short-duration high voltages can cause significant damage to electronic devices. This paper presents a study on the effects of lightning injection on power metal-oxide semiconductor field effect transistors (MOSFETs). This approach consisted of pin-injecting lightning waveforms into the gate, drain and/or source of MOSFET devices while they were in the OFF-state. Analysis of the characteristic curves of the devices showed that for certain injection modes the devices can accumulate considerable damage rendering them inoperable. Early results demonstrate that a power MOSFET, even in its off-state, can incur considerable damage due to lightning pin injection, leading to significant deviation in its behavior and performance, and to possibly early device failures.
NASA Astrophysics Data System (ADS)
Muñoz, Á. G.; Díaz-Lobatón, J.; Chourio, X.; Stock, M. J.
2016-05-01
The Lake Maracaibo Basin in North Western Venezuela has the highest annual lightning rate of any place in the world (~ 200 fl km- 2 yr- 1), whose electrical discharges occasionally impact human and animal lives (e.g., cattle) and frequently affect economic activities like oil and natural gas exploitation. Lightning activity is so common in this region that it has a proper name: Catatumbo Lightning (plural). Although short-term lightning forecasts are now common in different parts of the world, to the best of the authors' knowledge, seasonal prediction of lightning activity is still non-existent. This research discusses the relative role of both large-scale and local climate drivers as modulators of lightning activity in the region, and presents a formal predictability study at seasonal scale. Analysis of the Catatumbo Lightning Regional Mode, defined in terms of the second Empirical Orthogonal Function of monthly Lightning Imaging Sensor (LIS-TRMM) and Optical Transient Detector (OTD) satellite data for North Western South America, permits the identification of potential predictors at seasonal scale via a Canonical Correlation Analysis. Lightning activity in North Western Venezuela responds to well defined sea-surface temperature patterns (e.g., El Niño-Southern Oscillation, Atlantic Meridional Mode) and changes in the low-level meridional wind field that are associated with the Inter-Tropical Convergence Zone migrations, the Caribbean Low Level Jet and tropical cyclone activity, but it is also linked to local drivers like convection triggered by the topographic configuration and the effect of the Maracaibo Basin Nocturnal Low Level Jet. The analysis indicates that at seasonal scale the relative contribution of the large-scale drivers is more important than the local (basin-wide) ones, due to the synoptic control imposed by the former. Furthermore, meridional CAPE transport at 925 mb is identified as the best potential predictor for lightning activity in the Lake Maracaibo Basin. It is found that the predictive skill is slightly higher for the minimum lightning season (Jan-Feb) than for the maximum one (Sep-Oct), but that in general the skill is high enough to be useful for decision-making processes related to human safety, oil and natural gas exploitation, energy and food security.
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Stano, Geoffrey T.; Gatlin, Patrick N.
2013-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. In order to become a viable option for operational forecasters to incorporate into their severe storm monitoring process, the total lightning jump must be placed into the framework of several severe storm conceptual models (e.g., radar evolution, storm morphology) which forecasters have built through training and experience. Thus, one of the goals of this study is to examine and relate the lightning jump concept to often used radar parameters (e.g., dBZ vertical structure, VIL, MESH, MESO/shear) in the warning environment. Tying lightning trends and lightning jump occurrences to these radar based parameters will provide forecasters with an additional tool that they can use to build an accurate realtime depiction as to what is going on in a given environment. Furthermore, relating the lightning jump concept to these parameters could also increase confidence in a warning decision they have already made, help tip the scales on whether or not to warn on a given storm, or to draw the forecaster s attention to a particular storm that is rapidly developing. Furthermore the lightning information will add vital storm scale information in regions that are not well covered by radar, or when radar failures occur. The physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relation to updraft strength, updraft volume, precipitation -sized ice mass, etc.; however, very few have related the concept of the lightning jump and manifestation of severe weather to storm dynamics and microphysics using multi -Doppler and polarimetric radar techniques. Therefore, the second half of this study will combine the lightning jump algorithm and these radar techniques in order to place the lightning jump concept into a physical and dynamical framework. This analysis includes examining such parameters as mixed phase precipitation volume, charging zone, updraft strength and updraft volume. Such a study should provide increased understanding of and confidence in the strengths and limitations of the lightning jump algorithm in the storm warning process.
NASA Technical Reports Server (NTRS)
Miller, George P.; Alzmann, Melanie A.
1993-01-01
A review of past and future investigations into lightning detection from space was incorporated into a brochure. Following the collection of background information, a meeting was held to discuss the format and contents of the proposed documentation. An initial outline was produced and decided upon. Photographs to be included in the brochure were selected. Quotations with respect to printing the document were requested. In the period between 28 March and June 1993, work continued on compiling the text. Towards the end of this contract, a review of the brochure was undertaken by the technical monitor. Photographs were being revised and additional areas of lightning research were being considered for inclusion into the brochure. Included is a copy of the draft (and photographs) which is still being edited by the technical monitor at the time of this report.
A Total Lightning Climatology for the Tennessee Valley Region
NASA Technical Reports Server (NTRS)
McCaul, E. W.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R.; Christian, H.; Boccippio, D.; Koshak, W.; Bailey, J.; Hallm, J.; Bateman, M.
2003-01-01
Total flash counts derived from the North Alabama Lightning Mapping Array are being processed for 2002 to form a climatology of total lightning for the Tennessee Valley region. The data from this active and interesting period will be compared to data fiom the National Lightning Detection Network, space-based lightning sensors, and weather radars.
Atmospheric electricity/meteorology analysis
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard; Buechler, Dennis
1993-01-01
This activity focuses on Lightning Imaging Sensor (LIS)/Lightning Mapper Sensor (LMS) algorithm development and applied research. Specifically we are exploring the relationships between (1) global and regional lightning activity and rainfall, and (2) storm electrical development, physics, and the role of the environment. U.S. composite radar-rainfall maps and ground strike lightning maps are used to understand lightning-rainfall relationships at the regional scale. These observations are then compared to SSM/I brightness temperatures to simulate LIS/TRMM multi-sensor algorithm data sets. These data sets are supplied to the WETNET project archive. WSR88-D (NEXRAD) data are also used as it becomes available. The results of this study allow us to examine the information content from lightning imaging sensors in low-earth and geostationary orbits. Analysis of tropical and U.S. data sets continues. A neural network/sensor fusion algorithm is being refined for objectively associating lightning and rainfall with their parent storm systems. Total lightning data from interferometers are being used in conjunction with data from the national lightning network. A 6-year lightning/rainfall climatology has been assembled for LIS sampling studies.
On the controls of deep convection and lightning in the Amazon
NASA Astrophysics Data System (ADS)
Albrecht, R. I.; Giangrande, S. E.; Wang, D.; Morales, C. A.; Pereira, R. F. O.; Machado, L.; Silva Dias, M. A. F.
2017-12-01
Local observations and remote sensing have been extensively used to unravel cloud distribution and life cycle but yet their representativeness in cloud resolve models (CRMs) and global climate models (GCMs) are still very poor. In addition, the complex cloud-aerosol-precipitation interactions (CAPI), as well as thermodynamics, dynamics and large scale controls on convection have been the focus of many studies in the last two decades but still no final answer has been reached on the overall impacts of these interactions and controls on clouds, especially on deep convection. To understand the environmental and CAPI controls of deep convection, cloud electrification and lightning activity in the pristine region of Amazon basin, in this study we use long term satellite and field campaign measurements to depict the characteristics of deep convection and the relationships between lightning and convective fluxes in this region. Precipitation and lightning activity from the Tropical Rainfall Measuring Mission (TRMM) satellite are combined with estimates of aerosol concentrations and reanalysis data to delineate the overall controls on thunderstorms. A more detailed analysis is obtained studying these controls on the relationship between lightning activity and convective mass fluxes using radar wind profiler and 3D total lightning during GoAmazon 2014/15 field campaign. We find evidences that the large scale conditions control the distribution of the precipitation, with widespread and more frequent mass fluxes of moderate intensity during the wet season, resulting in less vigorous convection and lower lightning activity. Under higher convective available potential energy, lightning is enhanced in polluted and background aerosol conditions. The relationships found in this study can be used in model parameterizations and ensemble evaluations of both lightning activity and lightning NOx from seasonal forecasting to climate projections and in a broader sense to Earth Climate System Modeling.
The First Fermi-GBM Terrestrial Gamma Ray Flash Catalog
NASA Astrophysics Data System (ADS)
Roberts, O. J.; Fitzpatrick, G.; Stanbro, M.; McBreen, S.; Briggs, M. S.; Holzworth, R. H.; Grove, J. E.; Chekhtman, A.; Cramer, E. S.; Mailyan, B. G.
2018-05-01
We present the first Fermi Space Telescope Gamma Ray Burst Monitor (GBM) catalog of 4,144 terrestrial gamma ray flashes (TGFs), detected since launch in 11 July 2008 through 31 July 2016. We discuss the updates and improvements to the triggered data and off-line search algorithms, comparing this improved detection rate of ˜800 TGFs per year with event rates from previously published TGF catalogs from other missions. A Bayesian block algorithm calculated the temporal and spectral properties of the TGFs, revealing a delay between the hard (>300 keV) and soft (≤300 keV) photons of around 27 μs. Detector count rates of "low-fluence" events were found to have average rates exceeding 150 kHz. Searching the World-Wide Lightning Location Network data for radio sferics within ±5 min of each TGF revealed a clean sample of 1,314 World-Wide Lightning Location Network locations, which were used to to accurately locate TGF-producing storms. It also revealed lightning and storm activity for specific regions, as well as seasonal and daily variations of global lightning patterns. Correcting for the orbit of Fermi, we quantitatively find a marginal excess of TGFs being produced from storms over land near oceans (i.e., narrow isthmuses and small islands). No difference was observed between the duration of TGFs over the ocean and land. The distribution of TGFs at a given local solar time for predefined American, Asian, and African regions were confirmed to correlate well with known regional lightning rates.
Very High Frequency Radio Emissions Associated With the Production of Terrestrial Gamma-Ray Flashes
NASA Astrophysics Data System (ADS)
Lyu, Fanchao; Cummer, Steven A.; Krehbiel, Paul R.; Rison, William; Briggs, Michael S.; Cramer, Eric; Roberts, Oliver; Stanbro, Matthew
2018-02-01
Recent studies of the close association between terrestrial gamma-ray flashes (TGFs) production and simultaneous lightning processes have shown that many TGFs are produced during the initial leader of intracloud flashes and that some low-frequency (LF) radio emissions may directly come from TGF itself. Measurements of any simultaneous very high frequency (VHF) radio emissions would give important insight into any lightning leader dynamics that are associated with TGF generation, and thus, such measurements are needed. Here we report on coordinated observations of TGFs detected simultaneously by Fermi Gamma-ray Burst Monitor, two VHF lightning mapping arrays, and Duke ground-based LF radio sensors to investigate more on the close association between TGFs and LF and VHF radio emissions. Three TGFs are analyzed here and confirm previous findings on the close association between TGF generation and lightning processes and, for the first time, provide time-aligned measurements of the VHF radio signature within a few tens of microseconds of TGF generation. Strong VHF emissions were observed essentially simultaneously with two TGFs and within a few tens of microseconds of a third TGF. Equally importantly, the VHF measurement details indicate that the TGF-associated emissions are nonimpulsive and extended in time. We conclude that the TGF-producing process is at least sometimes closely associated with strong VHF emissions, and thus, there may be a link between the generation of TGFs and active lightning streamer dynamics.
Preliminary Results form the Japanese Total Lightning Network
NASA Astrophysics Data System (ADS)
Hobara, Y.; Ishii, H.; Kumagai, Y.; Liu, C.; Heckman, S.; Price, C. G.; Williams, E. R.
2015-12-01
We report on the initial observational results from the first Japanese Total Lightning Detection Network (JTLN) in relation to severe weather phenomena. The University of Electro-Communications (UEC) has deployed the Earth Networks (EN) Total Lightning System over Japan to carry out research on the relationship between thunderstorm activity and severe weather phenomena since 2013. In this paper we first demonstrate the current status of our new network followed by the initial scientific results. The lightning jump algorithm was applied to our total lightning data to study the relationship between total lighting activity and hazardous weather events such as gust fronts and tornadoes over land reported by the JMA (Japanese Meteorological Agency) in 2014. As a result, a clear increase in total lighting flash rate as well as lightning jumps are observed prior to most hazardous weather events (~20 min) indicating potential usefulness for early warning in Japan. Furthermore we are going to demonstrate the relationship of total lightning activities with meteorological radar data focusing particularly on Japanese Tornadic storms.
NASA Astrophysics Data System (ADS)
Huang, F.; Hui, W.; Li, X.; Liu, R.; Zhang, Z.; Zheng, Y.; Kang, N.
2017-12-01
The Lightning Mapping Imager (LMI) on the FY-4A satellite, which was launched successfully in December 2016, is the first satellite-based lightning detector from space independently developed in China, and one of the world's first two stationary satellite LMIs. The optical imaging technique with a 400x600 CCD array plane and a frequency of 500 frames/s is adopted in the FY-4A LMI to perform real-time and continuous observation of total lightening in the Chinese mainland and adjacent areas. As of July 2017, the in-orbit test shows that the lightening observation date could be accurately obtained by the FY-4A LMI, and that the geo-location could be verified by the ground lightening observation network over China. Since the beginning of the 2017 flood season, every process of strong thunderstorms has been monitored by the FY-4A LMI throughout the various areas of China, and of these are used as a typical application case in this talk. On April 8 and 9, 2017, a strong convective precipitation process occurred in the middle-lower reaches of the Yangtze River, China. The observation data of the FY-4A LMI are used to monitor the occurrence, development, shift and extinction of the thunderstorm track. By means of analyzing the station's synchronous precipitation observation data, it is indicated that the moving track of the thunderstorm is not completely consistent with that of the precipitation center, and while the distribution areas of thunderstorm and precipitation are consistent to a certain extent, a significant difference also exists. This difference is mainly caused by the convective precipitation and stratus precipitation area during the precipitation process. Through comparative analysis, the preliminary satellite and foundation lightening observation data show a higher consistency. However, the time of lightening activity observed by satellite is one hour earlier than that of the ground observation, which is likely related to the total lightning observation by satellite rather than the cloud-ground lightning observation by the ground network. The application test shows that the FY-4A LMI can achieve the real-time and continuous observation on the lightening activity with a strong convective system. This is a significant technological breakthrough in China's lightening detection field.
NASA Astrophysics Data System (ADS)
Wu, F.; Cui, X.; Zhang, D. L.; Lin, Q.
2017-12-01
The relationship between lightning activity and rainfall associated with 2925 short-duration rainfall (SDR) events over the Beijing metropolitan region (BMR) is examined during the warm seasons of 2006-2007, using the cloud-to-ground (CG) and intracloud (IC) lightning data from Surveillance et Alerte Foudre par Interférometrie Radioélectrique (SAFIR)-3000 and 5-min rainfall data from automatic weather stations (AWSs). To facilitate the analysis of the rainfall-lightning correlations, the SDR events are categorized into six different intensity grades according to their hourly rainfall rates (HRRs), and an optimal radius of 10 km from individual AWSs for counting their associated lightning flashes is used. Results show that the lightning-rainfall correlations vary significantly with different intensity grades. Weak correlations (R 0.4) are found in the weak SDR events, and 40-50% of the events are no-flash ones. And moderate correlation (R 0.6) are found in the moderate SDR events, and > 10-20% of the events are no-flash ones. In contrast, high correlations (R 0.7) are obtained in the SDHR events, and < 10% of the events are no-flash ones. The results indicate that lightning activity is observed more frequently and correlated more robust with the rainfall in the SDHR events. Significant time lagged correlations between lightning and rainfall are also found. About 80% of the SDR events could reach their highest correlation coefficients when the associated lightning flashes shift at time lags of < 25 min before and after rainfall begins. The percentages of SDR events with CG or total lightning activity preceding, lagging or coinciding with rainfall shows that (i) in about 55% of the SDR events lightning flashes preceded rainfall; (ii) the SDR events with lightning flashes lagging behind rainfall accounted for about 30%; and (iii) the SDR events without any time shifts accounted for the remaining 15%. Better lightning-rainfall correlations can be attained when time lags are incorporated, with the use of total (CG and IC) lightning data. These results appear to have important implications to improving the nowcast of SDHR events.
NASA Astrophysics Data System (ADS)
Arason, Þórður; Bjornsson, Halldór; Nína Petersen, Guðrún
2013-04-01
Eruption of subglacial volcanoes may lead to catastrophic floods and thus early determination of the exact eruption site may be critical to civil protection evacuation plans. A system is being developed that automatically monitors and analyses volcanic lightning in Iceland. The system predicts the eruption site location from mean lightning locations, taking into account upper level wind. In estimating mean lightning locations, outliers are automatically omitted. A simple wind correction is performed based on the vector wind at the 500 hPa pressure level in the latest radiosonde from Keflavík airport. The system automatically creates a web page with maps and tables showing individual lightning locations and mean locations with and without wind corrections along with estimates of uncetainty. A dormant automatic monitoring system, waiting for a rare event, potentially for several years, is quite susceptible to degeneration during the waiting period, e.g. due to computer or other IT-system upgrades. However, ordinary weather thunderstorms in Iceland should initiate special monitoring and automatic analysis of this system in the same fashion as during a volcanic eruption. Such ordinary weather thunderstorm events will be used to observe anomalies and malfunctions in the system. The essential elements of this system will be described. An example is presented of how the system would have worked during the first hours of the Grímsvötn 2011 eruption. In that case the exact eruption site, within the Grímsvötn caldera, was first known about 15 hours into the eruption.
Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity
NASA Astrophysics Data System (ADS)
Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.
2013-12-01
VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a method for rapid detection of volcanic activity in real-time.
NASA Astrophysics Data System (ADS)
Emersic, C.; Macgorman, D.; Schuur, T.; Lund, N.; Payne, C.; Bruning, E.
2007-12-01
We have examined lightning activity relative to the microphysical and kinematic structure of a winter thunderstorm complex (a thunder-snow episode) observed east of Norman, Oklahoma during the evening of 29-30 November 2006. Polarimetric radar provided information about the type of particles present in various regions of the storms. The Lightning Mapping Array (LMA) recorded VHF signals produced by developing lightning channels. The times of arrival of these lightning signals across the array were then used to reconstruct the location and structure of lightning, and these reconstructions were overlaid with radar data to examine the relationship between lightning properties and storm particle types. Four storms in this winter complex have been examined. It was inferred from lightning structure that, in their mature stage, all cells we examined had a positive tripole electrical structure (an upper positive charge center, a midlevel negative charge center, and a lower positive charge center). The storms began with lightning activity in the lower dipole (lower positive and midlevel negative regions), but this evolved into lightning activity throughout the tripole structure within approximately 15-20 minutes. In the longer lived storms, the mature stage lasted for approximately 1.5-2 hours. During this stage, the lower positive charge region was situated less than 5 km above ground, the midlevel negative charge region was typically above 5 km, and the upper positive charge region was located at an altitude of less than 10 km in all the storm cells analyzed. The charge regions descended over approximately the last 30 minutes of lightning activity, the lower charge regions eventually reaching ground. This resulted in the loss of the lower positive charge center and the subsequent diminishment of the lower negative charge center. Lightning initiation usually coincided with the edges of regions of high reflectivity and was coincident with the presence of graupel and ice crystals in the lower dipole. Radar data suggest that ice crystals were the dominant charge carriers in the upper positive region.
ASU Formula Lightning Race Vehicle Report Prepared for Ohio Aerospace Institute
NASA Technical Reports Server (NTRS)
Sirkis, Murray D.; Happ, John B., III; Gilbert, Nicholas
1994-01-01
This report describes the drive system in the Arizona State University Formula Lightning electric race car when it participated in the 1994 Cleveland Electric Formula Classic on 9 July 1994. In addition, the telemetry system used to monitor the car's performance and plans for improving the car's performance are described.
NASA Astrophysics Data System (ADS)
Pytharoulis, I.; Kotsopoulos, S.; Tegoulias, I.; Kartsios, S.; Bampzelis, D.; Karacostas, T.
2016-03-01
This study investigates an intense precipitation event and its lightning activity that affected northern Greece and primarily Thessaloniki on 15 July 2014. The precipitation measurement of 98.5 mm in 15 h at the Aristotle University of Thessaloniki set a new absolute record maximum. The thermodynamic analysis indicated that the event took place in an environment that could support deep thunderstorm activity. The development of this intense event was associated with significant low-level convergence and upper-level divergence even before its triggering and a positive vertical gradient of relative vorticity advection. The high resolution (1.667 km × 1.667 km) non-hydrostatic WRF-ARW numerical weather prediction model was used to simulate this intense precipitation event, while the Lightning Potential Index was utilized to calculate the potential for lightning activity. Sensitivity experiments suggested that although the strong synoptic forcing assumed primary role in the occurrence of intense precipitation and lightning activity, their spatiotemporal variability was affected by topography. The application of the very fine resolution topography of NASA Shuttle Radar Topographic Mission improved the simulated precipitation and the calculated lightning potential.
NASA Astrophysics Data System (ADS)
Ringhausen, J.
2017-12-01
This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Petersen, W.; Buechler, D. E.; Krehbiel, P. R.; Gatlin, P.; Zubrick, S.
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models is expected to be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 ground processing algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area)
Severe weather detection by using Japanese Total Lightning Network
NASA Astrophysics Data System (ADS)
Hobara, Yasuhide; Ishii, Hayato; Kumagai, Yuri; Liu, Charlie; Heckman, Stan; Price, Colin
2015-04-01
In this paper we demonstrate the preliminary results from the first Japanese Total Lightning Network. The University of Electro-Communications (UEC) recently deployed Earth Networks Total Lightning System over Japan to conduct various lightning research projects. Here we analyzed the total lightning data in relation with 10 severe events such as gust fronts and tornadoes occurred in 2014 in mainland Japan. For the analysis of these events, lightning jump algorithm was used to identify the increase of the flash rate in prior to the severe weather events. We found that lightning jumps associated with significant increasing lightning activities for total lightning and IC clearly indicate the severe weather occurrence than those for CGs.
Spatial and temporal analysis of a 17-year lightning climatology over Bangladesh with LIS data
NASA Astrophysics Data System (ADS)
Dewan, Ashraf; Ongee, Emmanuel T.; Rahman, Md. Masudur; Mahmood, Rezaul; Yamane, Yusuke
2017-10-01
Using NASA's TRMM Lightning Imaging Sensor (LIS) data from 1998 to 2014, this paper presents a 17-year lightning climatology of Bangladesh, at 0.5° × 0.5° spatial resolution. Diurnal, seasonal, monthly and annual variations in the occurrence of lightning flashes were explored. The diurnal regime of lightning is dominated by afternoon/evening events. Overall, peak lightning activity occurs in the early morning (0200 LST) and evening (1900 LST). The distribution of lightning flash counts by season over Bangladesh landmass is as follows: pre-monsoon (69.2%), monsoon (24.1%), post-monsoon (4.6%) and winter (2.1%). Flash rate density (FRD) hotspots were primarily located in the north and north-eastern parts of Bangladesh, with a maximum of 72 fl km-2 year-1. Spatially, the distribution of FRD increases from the Bay of Bengal in the south to relatively higher elevations (of the Himalayan foothills) in the north. A spatial shift in FRD hotspots occurs with change in season. For example, in monsoon season, hotspots of lightning activity move in a south-westerly direction from their pre-monsoon location (i.e. north-eastern Bangladesh) towards West Bengal in India. South and south-eastern parts of Bangladesh experience high lightning activity during post-monsoon season due to regional orographic lifting and low-pressure systems (i.e. cyclone) in the Bay of Bengal. To the best of our knowledge, this is the first study focused on LIS-based lightning climatology over Bangladesh. This baseline study, therefore, is an essential first step towards effective management of lightning-related hazards in Bangladesh.
Fermi GBM Observations of Terrestrial Gamma Flashes
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Briggs, M. S.; Connaughton, V.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R. D.; Kippen, R. M.; vonKienlin, A.; Dwyer, J. R.;
2010-01-01
In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed 79 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds.
Cloud-to-ground lightning activity in Colombia and the influence of topography
NASA Astrophysics Data System (ADS)
Aranguren, D.; López, J.; Inampués, J.; Torres, H.; Betz, H.
2017-02-01
Lightning activity on the Colombian mountains, where the altitude varies from 0 to more than 5000 MSL, is studied based on VLF/LF lightning detection data and using a 2012-2013 dataset. The influence of altitude is observed by evaluating cloud-to-ground lightning incidence at different altitude intervals. The relationship between ground flash density and altitude gradient vectors is studied. Results show a clear dependence of the flash density on elevation.
Possible implications of global climate change on global lightning distributions and frequencies
NASA Technical Reports Server (NTRS)
Price, Colin; Rind, David
1994-01-01
The Goddard Institute for Space Studies (GISS) general circulation model (GCM) is used to study the possible implications of past and future climate change on global lightning frequencies. Two climate change experiments were conducted: one for a 2 x CO2 climate (representing a 4.2 degs C global warming) and one for a 2% decrease in the solar constant (representing a 5.9 degs C global cooling). The results suggest at 30% increase in global lightning activity for the warmer climate and a 24% decrease in global lightning activity for the colder climate. This implies an approximate 5-6% change in global lightning frequencies for every 1 degs C global warming/cooling. Both intracloud and cloud-to-ground frequencies are modeled, with cloud-to-ground lightning frequencies showing larger sensitivity to climate change than intracloud frequencies. The magnitude of the modeled lightning changes depends on season, location, and even time of day.
First ever Evaluation of Atmospheric Lightning Activity in Pakistan
NASA Astrophysics Data System (ADS)
Shahzad, M. I.; Qaiser, S.; Campbell, J. R.; Mahmud, S.
2016-12-01
In Pakistan, most of the atmospheric lightning occurs in monsoon and pre-monsoon seasons. To prevent or at least minimize the unforeseen property damages and human casuality, we need to identify the vulnerable locations to lightning in Pakistan. However, unfortunately, there has not been any study regarding the lightning hazards to date for Pakistan. In this study satellite based datasets of location and Time of Occurrence (TOA) along with ground data for subset of thunderstorms are used to identify lightning-prone locations in Pakistan for the years 2001-2014. This is the first study to compute climatologies for lighting activity, identifying locations that are susceptible to high, moderate and low lightning activities regionally. Results of the study indicate that lightning activity is comparatively higher over the mountain and sub-mountain regions in the Punjab, Federally Administered Tribal Areas (FATA) and Khyber Pakhtoon Khwa (KPK) provinces. Overall, there is a significant increase in lighting activity in Pakistan from 2001-2014 with more than a 138 % increase near Islamabad and Karachi, indicating the development a lightening dipole. Interestingly, lightning data shows a strong correlation between flashes-per-year and El Niño and La Niña conditions. Atmospheric lightning in Pakistan shows a seasonal pattern, with significant dependencies on Convective Available Potential Energy (CAPE), Aerosol Optical Depth (AOD), Total Cloud Cover, Convective Precipitation, Soil Temperature and Total Column Ozone. Extreme lighting events are found significantly dependant on high surface temperatures, high CAPE and AOD values between 0-0.4 in pre monsoon and monsoon seasons that contribute to overall staggering high mean intra-seasonal value of 66832 flashes. The results surely demand urgent attention of the stakeholders and policy makers for proposing mitigation and adaptation strategies.
LNOx Estimates Directly from LIS Data
NASA Astrophysics Data System (ADS)
Koshak, W. J.; Vant-hull, B.; McCaul, E.
2014-12-01
Nitrogen oxides (NOx = NO + NO2) are known to indirectly influence climate since they affect the concentration of both atmospheric ozone (O3) and hydroxyl radicals (OH). In addition, lightning NOx (LNOx) is the most important source of NOx in the upper troposphere (particularly in the tropics). It is difficult to estimate LNOx because it is not easy to make measurements near the lightning channel, and the various NOx-producing mechanisms within a lightning flash are not fully understood. A variety of methods have been used to estimate LNOx production [e.g., in-situ observations, combined ground-based VHF lightning mapping and VLF/LF lightning locating observations, indirect retrievals using satellite Ozone Monitoring Instrument (OMI) observations, theoretical considerations, laboratory spark measurements, and rocket triggered lightning measurements]. The present study introduces a new approach for estimating LNOx that employs Lightning Imaging Sensor (LIS) data. LIS optical measurements are used to directly estimate the total energy of a flash; the total flash energy is then converted to LNOx production (in moles) by multiplying by a thermo-chemical yield. Hence, LNOx estimates on a flash-by-flash basis are obtained. A Lightning NOx Indicator (LNI) is computed by summing up the LIS-derived LNOx contributions from a region over a particular analysis period. Larger flash optical areas are consistent with longer channel length and/or more energetic channels, and hence more NOx production. Brighter flashes are consistent with more energetic channels, and hence more NOx production. The location of the flash within the thundercloud and the optical scattering characteristics of the thundercloud are complicating factors. LIS data for the years 2003-2013 were analyzed, and geographical plots of the time-evolution of the LNI over the southern tier states (i.e. upto 38o N) of CONUS were determined. Overall, the LNI trends downward over the 11 yr analysis period. The LNI has been added to the list of indicators presently provided by a sustaining assessment tool developed at the NASA Marshall Space Flight Center (MSFC) for monitoring lightning/climate interactions over the United States, as part of the National Climate Assessment (NCA) program.
Observations of lightning in convective supercells within tropical storms and hurricanes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, W.A.; Keen, C.S.
1994-08-01
Cloud-to-ground (CG) lightning observations from land-based lightning detection networks now allow monitoring this component of the electrical structure of tropical storms and hurricanes within a few hundred kilometers of the United States coastline. Several case studies confirm the long-held opinion that lightning is rather common within the outer rainbands. The general absence of CG lightning within the interior of mature tropical cyclones is also apparent. On the other hand, bursts of CG lightning near the circulation center of developing storms appear to precede periods of further deepening. The CG events are associated with convective supercells, whose anvil canopies can oftenmore » obscure much of the underlying storm. Near-eyewall CG bursts preceding periods of intensification were noted in Hurricanes Diana (1984) and Florence (1988). A detailed case study of the 1987 unnamed tropical storm that struck the Texas-Louisiana coastline reveals that lightning was associated with two large supercells. These supercells appeared to be the trigger for the development of a closed circulation that formed several hours after the apparent low pressure center made landfall. Further studies of lightning may provide additional insight into the role of convective supercells in tropical storm intensification. It may also provide a useful diagnostic of impending deepening.« less
NASA Astrophysics Data System (ADS)
Sisniega, David Prieto; García, Manuel Mora; Menéndez, Susana Fernández; Soriano, Luís Rivas; de Pablo Dávila, Fernando
2018-05-01
The present study analyses the impact of the different categories of land use and types of soils on cloud-to-ground (CG) lightning activity in the region of Asturias (Spain). Thirteen (fifteen) land uses (types of soils) and a range of fourteen years (2000 to 2013) of CG-lightning flash data were considered to complete the study. Some areas that have suffered the strong impact of human activity (urban, mining, and industrial) were associated with the increase of CG-lightning activity. When considering vegetated areas, areas with non-agricultural vegetation, arable land and permanent crops, it was showed a greater CG activity. With reference to the types of soils, Fluvisols, Regosols/Cambic-Arenosols, and Luvisols, these seemed to be associated to the increase of CG-lightning activity. The results found for the region of Asturias are different from those reported by Mora et al. (2015) for the region of Castilla y Leon (Spain).
Geostationary Lightning Mapper for GOES-R
NASA Technical Reports Server (NTRS)
Goodman, Steven; Blakeslee, Richard; Koshak, William
2007-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 11 year data record of global lightning activity. Instrument formulation studies begun in January 2006 will be completed in March 2007, with implementation expected to begin in September 2007. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite, airborne science missions (e.g., African Monsoon Multi-disciplinary Analysis, AMMA), and regional test beds (e.g, Lightning Mapping Arrays) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data now being provided to selected forecast offices will lead to improved understanding of the application of these data in the severe storm warning process and accelerate the development of the pre-launch algorithms and Nowcasting applications. Proxy data combined with MODIS and Meteosat Second Generation SEVERI observations will also lead to new applications (e.g., multi-sensor precipitation algorithms blending the GLM with the Advanced Baseline Imager, convective cloud initiation and identification, early warnings of lightning threat, storm tracking, and data assimilation).
Geostationary Lightning Mapper for GOES-R and Beyond
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR imager/optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch readiness in December 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fUlly operational. The mission objectives for the GLM are to 1) provide continuous, full-disk lightning measurements for storm warning and nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight models will be underway in the latter part of 2007. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data are being provided in an experimental mode to selected National Weather Service (NWS) forecast offices in Southern and Eastern Region. This effort is designed to help improve our understanding of the application of these data in operational settings.
Optical characteristics of lightning and thunderstorm currents
NASA Technical Reports Server (NTRS)
Krider, E. P.; Blakeslee, R. J.
1985-01-01
Researchers determined that lightning can be used to determine the diurnal variations of thunderstorms, i.e., storms that produce audible thunder, and that these variations are also in good agreement with diurnal variations in rainfall and convective activity. Measurements of the Maxwell current density, J sub m, under active thunderstorms show that this physical quantity is quasi-steady between lightning discharges and that lightning does not produce large changes in J sub m. Maps of J sub m show contours of iso-current density that are consistent with the locations of radar echos and the locations of where lightning has altered the cloud charge distribution.
Methods to estimate lightning activity using WWLLN and RS data
NASA Astrophysics Data System (ADS)
Baranovskiy, Nikolay V.; Belikova, Marina Yu.; Karanina, Svetlana Yu.; Karanin, Andrey V.; Glebova, Alena V.
2017-11-01
The aim of the work is to develop a comprehensive method for assessing thunderstorm activity using WWLLN and RS data. It is necessary to group lightning discharges to solve practical problems of lightning protection and lightningcaused forest fire danger, as well as climatology problems using information on the spatial and temporal characteristics of thunderstorms. For grouping lightning discharges, it is proposed to use clustering algorithms. The region covering Timiryazevskiy forestry (Tomsk region, borders (55.93 - 56.86)x(83.94 - 85.07)) was selected for the computational experiment. We used the data on lightning discharges registered by the WWLLN network in this region on July 23, 2014. 273 lightning discharges were sampling. A relatively small number of discharges allowed us a visual analysis of solutions obtained during clustering.
NASA Astrophysics Data System (ADS)
Giesige, C.; Nava, E.
2016-12-01
In the midst of a changing climate we have seen extremes in weather events: lightning, wildfires, hurricanes, tornadoes, and earthquakes. All of these ride on an imbalance of magnetic and electrical distribution about the earth including what goes on from the atmospheric and geophysic levels. There is relevance to the important role the sun plays in developing and feeding of the extreme weather events along with the sun's role helping to create a separation of charges on earth furthering climactic extremes. Focusing attention in North America and on how the sun, atmospheric and geophysic winds come together producing lightning events, there are connections between energy distribution in the environment, lightning caused wildfires, and extreme wildfire behavior. Lightning caused wildfires and extreme fire behavior have become enhanced with the changing climate conditions. Even with strong developments in wildfire science, there remains a lack in full understanding of connections that create a lightning caused wildfire event and lack of monitoring advancements in predicting extreme fire behavior. Several connections have been made in our research allowing us to connect multiple facets of the environment in regards to electric and magnetic influences on wildfires. Among them include: irradiance, winds, pressure systems, humidity, and topology. The connections can be made to develop better detection systems of wildfires, establish with more accuracy areas of highest risk for wildfire and extreme wildfire behavior, and prediction of wildfire behavior. A platform found within the environment can also lead to further understanding and monitoring of other extreme weather events in the future.
Global thunderstorm activity research survey
NASA Technical Reports Server (NTRS)
Coroniti, S. C.
1982-01-01
The published literature on the subject of the monitoring of global thunderstorm activity by instrumented satellites was reviewed. A survey of the properties of selected physical parameters of the thunderstorm is presented. The concepts used by satellites to identify and to measure terrestrial lightning pulses are described. The experimental data acquired by satellites are discussed. The scientific achievements of the satellites are evaluated against the needs of scientists and the potential requirements of user agencies. The performances of the satellites are rated according to their scientific and operational achievements.
The North Alabama Lightning Warning Product
NASA Technical Reports Server (NTRS)
Buechler, Dennis E.; Blakeslee, R. J.; Stano, G. T.
2009-01-01
The North Alabama Lightning Mapping Array NALMA has been collecting total lightning data on storms in the Tennessee Valley region since 2001. Forecasters from nearby National Weather Service (NWS) offices have been ingesting this data for display with other AWIPS products. The current lightning product used by the offices is the lightning source density plot. The new product provides a probabalistic, short-term, graphical forecast of the probability of lightning activity occurring at 5 min intervals over the next 30 minutes . One of the uses of the current lightning source density product by the Huntsville National Weather Service Office is to identify areas of potential for cloud-to-ground flashes based on where LMA total lightning is occurring. This product quantifies that observation. The Lightning Warning Product is derived from total lightning observations from the Washington, D.C. (DCLMA) and North Alabama Lightning Mapping Arrays and cloud-to-ground lightning flashes detected by the National Lightning Detection Network (NLDN). Probability predictions are provided for both intracloud and cloud-to-ground flashes. The gridded product can be displayed on AWIPS workstations in a manner similar to that of the lightning source density product.
The Altus Cumulus Electrification Study (ACES): A UAV-Based Science Demonstration
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Croskey, C. L.; Desch, M. D.; Farrell, W. M.; Goldberg, R. A.; Houser, J. G.; Kim, H. S.; Mach, D. M.; Mitchell, J. D.; Stoneburner, J. C.
2003-01-01
The Altus Cumulus Electrification Study (ACES) is an unmanned aerial vehicle (UAV)- based project that investigated thunderstorms in the vicinity of the Florida Everglades in August 2002. ACES was conducted to investigate storm electrical activity and its relationship to storm morphology, and to validate satellite-based lightning measurements. In addition, as part of the NASA sponsored UAV-based science demonstration program, this project provided a scientifically useful demonstration of the utility and promise of UAV platforms for Earth science and applications observations. ACES employed the Altus II aircraft, built by General Atomics - Aeronautical Systems, Inc. Key science objectives simultaneously addressed by ACES are to: (1) investigate lightning-storm relationships, (2) study storm electrical budgets, and provide Lightning Imaging Sensor validation. The ACES payload included electrical, magnetic, and optical sensors to remotely characterize the lightning activity and the electrical environment within and around thunderstorms. ACES contributed important electrical and optical measurements not available from other sources. Also, the high altitude vantage point of the UAV observing platform (up to 55,000 feet) provided cloud-top perspective. By taking advantage of its slow flight speed (70 to 100 knots), long endurance, and high altitude flight, the Altus was flown near, and when possible, over (but never into) thunderstorms for long periods of time that allowed investigations to be conducted over entire storm life cycles. An innovative real time weather system was used to identify and vector the aircraft to selected thunderstorms and safely fly around these storms, while, at the same time monitor the weather near our base of operations. In addition, concurrent ground-based observations that included radar (Miami and Key West WSRBD, NASA NPOL), satellite imagery, and lightning (NALDN and Los Alamos EDOT) enable the UAV measurements to be more completely interpreted and evaluated in the context of the thunderstorm structure, evolution, and environment.
NASA Astrophysics Data System (ADS)
Ortega, P.; Guignes, T.
2006-12-01
The South Pacific Convergence Zone (SPCZ) is located from the West Pacific warm pool and trends Southeast towards French Polynesia. The Island Climate Update monthly publishes the mean location deduced from the outgoing long-wave radiation anomalies or higher rainfall. On the other hand, the Wide World Lightning Location Network monthly provides data from which the lightning activity distribution in the 0°-30° South latitude and 150°-240° West longitude area can be drawn. Scanning this rectangle from West to East the location of the maximum lightning activity can be located versus the longitude. Fitting the location of these maximum with a polynomial function leads to a curve comparable with the monthly mean position of the SPCZ, showing that this band of cloudiness is the main source of lightning in this whole area. Besides, relations between surface atmospheric parameters, the number of thunder days and the number of flashes recorded around Tahiti have been analyzed using, the absolute humidity and the lightning activity recorded during the last nine years with the help of CIGRE Lightning Flash Counters. Since it is known that the cloud base is closely related to the boundary layer relative humidity, the aim of the analysis was to sort out a correlation between this parameter and the lightning activity. No correlation has been clearly put in evidence with the number of thunder days but the monthly mean values of the amount of flashes recorded exhibit similar oscillation with air humidity over a 9 year long period including the several phases of the ENSO.
Thunderstorm monitoring with VLF network and super dense meteorological observation system
NASA Astrophysics Data System (ADS)
Takahashi, Yukihiro; Sato, Mitsuteru
2015-04-01
It's not easy to understand the inside structure and developing process of thunderstorm only with existing meteorological instruments since its horizontal extent of the storm cell is sometimes smaller than an order of 10 km while one of the densest ground network in Japan, AMEDAS, consists of sites located every 17 km in average and the resolution of meteorological radar is 1-2 km in general. Even the X-band radar realizes the resolution of 250 m or larger. Here we suggest a thunderstorm monitoring system consisting of the network of VLF radio wave receivers and the super dense meteorological observation system with simple and low cost plate-type sensors that can be used for measurement both of raindrop and vertical electric field change caused by cloud-to-ground lightning discharge, adding to basic equipments for meteorological measurements. The plate-type sensor consists of two aluminum plates with a diameter of 10-20 cm. We carried out an observation campaign in summer of 2013 in the foothills of Mt. Yastugatake, Yamanashi and Nagano prefectures in Japan, installing 6 plate-type sensors at a distance of about 4 km. Horizontal location, height and charge amount of each lightning discharge are estimated successfully based on the information of electric field changes at several observing sites. Moreover, it was found that the thunderstorm has a very narrow structure smaller than 300 m that cannot be measured by any other ways, counting the positive and negative pulses caused by attachment of raindrop to the sensor plate, respectively. We plan to construct a new super dense observation network in the north Kanto region, Japan, where the lightning activity is most prominent in summer Japan and surrounded by our VLF systems developed for detecting sferics from lightning discharge, distributing more than several tens of sensors at every 4 km or shorter, such as an order of 100 m at minimum. This kind of new type network will reveal the unknown fine structures of thunderstorms and open the door for constructing real time alert system of torrential rainfall and lightning stroke especially in the city area.
NASA Astrophysics Data System (ADS)
Defer, Eric; Bovalo, Christophe; Coquillat, Sylvain; Pinty, Jean-Pierre; Farges, Thomas; Krehbiel, Paul; Rison, William
2016-04-01
The upcoming decade will see the deployment and the operation of French, European and American space-based missions dedicated to the detection and the characterization of the lightning activity on Earth. For instance the Tool for the Analysis of Radiation from lightNIng and Sprites (TARANIS) mission, with an expected launch in 2018, is a CNES mission dedicated to the study of impulsive energy transfers between the atmosphere of the Earth and the space environment. It will carry a package of Micro Cameras and Photometers (MCP) to detect and locate lightning flashes and triggered Transient Luminous Events (TLEs). At the European level, the Meteosat Third Generation Imager (MTG-I) satellites will carry in 2019 the Lightning Imager (LI) aimed at detecting and locating the lightning activity over almost the full disk of Earth as usually observed with Meteosat geostationary infrared/visible imagers. The American community plans to operate a similar instrument on the GOES-R mission for an effective operation in early 2016. In addition NASA will install in 2016 on the International Space Station the spare version of the Lightning Imaging Sensor (LIS) that has proved its capability to optically detect the tropical lightning activity from the Tropical Rainfall Measuring Mission (TRMM) spacecraft. We will present concurrent observations recorded by the optical space-borne Lightning Imaging Sensor (LIS) and the ground-based Very High Frequency (VHF) Lightning Mapping Array (LMA) for different types of lightning flashes. The properties of the cloud environment will also be considered in the analysis thanks to coincident observations of the different TRMM cloud sensors. The characteristics of the optical signal will be discussed according to the nature of the parent flash components and the cloud properties. This study should provide some insights not only on the expected optical signal that will be recorded by LI, but also on the definition of the validation strategy of LI, and on the synergetic use of LI and ground-based VHF mappers like the SAETTA LMA network in Corsica for operational and research activities. Acknowledgements: this study is part of the SOLID-PREVALS project and is supported by CNES-TOSCA.
NASA Technical Reports Server (NTRS)
Levine, D. M.
1978-01-01
Radiation from lightning in the RF band from 3-300 MHz were monitored. Radiation in this frequency range is of interest as a potential vehicle for monitoring severe storms and for studying the lightning itself. Simultaneous measurements were made of RF radiation and fast and slow field changes. Continuous analogue recordings with a system having 300 kHz of bandwidth were made together with digital records of selected events (principally return strokes) at greater temporal resolution. The data reveal patterns in the RF radiation for the entire flash which are characteristic of flash type and independent of the frequency of observation. Individual events within the flash also have characteristic RF patterns. Strong radiation occurs during the first return strokes, but delayed about 20 micron sec with respect to the begining of the return stroke; whereas, RF radiation from subsequent return strokes tends to be associated with cloud processes preceding the flash with comparatively little radiation occurring during the return stroke itself.
Lightning injuries in sports and recreation.
Thomson, Eric M; Howard, Thomas M
2013-01-01
The powers of lightning have been worshiped and feared by all known human cultures. While the chance of being struck by lightning is statistically very low, that risk becomes much greater in those who frequently work or play outdoors. Over the past 2 yr, there have been nearly 50 lightning-related deaths reported within the United States, with a majority of them associated with outdoor recreational activities. Recent publications primarily have been case studies, review articles, and a discussion of a sixth method of injury. The challenge in reducing lightning-related injuries in organized sports has been addressed well by both the National Athletic Trainers' Association and the National Collegiate Athletic Association in their guidelines on lightning safety. Challenges remain in educating the general population involved in recreational outdoor activities that do not fall under the guidelines of organized sports.
Aerosol indirect effect on tropospheric ozone via lightning
NASA Astrophysics Data System (ADS)
Yuan, Tianle; Remer, Lorraine A.; Bian, Huisheng; Ziemke, Jerald R.; Albrecht, Rachel; Pickering, Kenneth E.; Oreopoulos, Lazaros; Goodman, Steven J.; Yu, Hongbin; Allen, Dale J.
2012-09-01
Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. Inadequate understanding of processes related to O3 production, in particular those natural ones such as lightning, contributes to this uncertainty. Here we demonstrate a new effect of aerosol particles on O3production by affecting lightning activity and lightning-generated NOx (LNOx). We find that lightning flash rate increases at a remarkable rate of 30 times or more per unit of aerosol optical depth. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses show O3is increased as a result of aerosol-induced increase in lightning and LNOx, which is supported by modle simulations with prescribed lightning change. O3production increase from this aerosol-lightning-ozone link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. In the face of anthropogenic aerosol increase our findings suggest that lightning activity, LNOx and O3, especially in the upper troposphere, have all increased substantially since preindustrial time due to the proposed aerosol-lightning-ozone link, which implies a stronger O3 historical radiative forcing. Aerosol forcing therefore has a warming component via its effect on O3 production and this component has mostly been ignored in previous studies of climate forcing related to O3and aerosols. Sensitivity simulations suggest that 4-8% increase of column tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications for understanding past and projecting future tropospheric O3forcing as well as wildfire changes and call for integrated investigations of the coupled aerosol-cloud-chemistry system.
NASA Astrophysics Data System (ADS)
Lay, Erin Hoffmann
In this dissertation, the capabilities of the World-Wide Lightning Location Network (WWLLN) are analyzed in order to study the interactions of lightning energy with the lower ionosphere. WWLLN is the first global ground-based lightning location network and the first lightning detection network that continuously monitors lightning around the world in real time. For this reason, a better characterization of the WWLLN could allow many global atmospheric science problems to be addressed, including further investigation into the global electric circuit and global mapping of regions of the lower ionosphere likely to be impacted by strong lightning and transient luminous events. This dissertation characterizes the World-Wide Location Network (WWLLN) in terms of detection efficiency, location and timing accuracy, and lightning type. This investigation finds excellent timing and location accuracy for WWLLN. It provides the first experimentally-determined estimate of relative global detection efficiency that is used to normalize lightning counts based on location. These normalized global lightning data from the WWLLN are used to map intense storm regions around the world with high time and spatial resolution as well as to provide information on energetic emissions known as elves and terrestrial gamma-ray flashes (TGFs). This dissertation also improves WWLLN by developing a procedure to provide the first estimate of relative lightning stroke radiated energy in the 1-24 kHz frequency range by a global lightning detection network. These characterizations and improvements to WWLLN are motivated by the desire to use WWLLN data to address the problem of lightning-to-ionosphere energy coupling. Therefore, WWLLN stroke rates are used as input to a model, developed by Professor Mengu Cho at the Kyushu Institute of Technology in Japan, that describes the non-linear effect of lightning electromagnetic pulses (EMP) on the ionosphere by accumulating electron density changes resulting from the interaction of the EMP of ten successive lightning strokes with the lower ionosphere. Further studies must be completed to narrow uncertainties in the model, but the qualitative ionospheric response to successive EMPs is presented. Results from this study show that the non-linear effect of lightning EMP due to successive lightning strokes must be taken into account, and varies with altitude, such that the most significant electron density enhancement occurs at 88 km altitude.
Cross-Referencing GLM and ISS-LIS with Ground-Based Lightning Networks
NASA Astrophysics Data System (ADS)
Virts, K.; Blakeslee, R. J.; Goodman, S. J.; Koshak, W. J.
2017-12-01
The Geostationary Lightning Mapper (GLM), in geostationary orbit aboard GOES-16 since late 2016, and the Lightning Imaging Sensor (LIS), installed on the International Space Station in February 2017, provide observations of total lightning activity from space. ISS-LIS samples the global tropics and mid-latitudes, while GLM observes the full thunderstorm life-cycle over the Americas and surrounding oceans. The launch of these instruments provides an unprecedented opportunity to compare lightning observations across multiple space-based optical lightning sensors. In this study, months of observations from GLM and ISS-LIS are cross-referenced with each other and with lightning detected by the ground-based Earth Networks Global Lightning Network (ENGLN) and the Vaisala Global Lightning Dataset 360 (GLD360) throughout and beyond the GLM field-of-view. In addition to calibration/validation of the new satellite sensors, this study provides a statistical comparison of the characteristics of lightning observed by the satellite and ground-based instruments, with an emphasis on the lightning flashes uniquely identified by the satellites.
NASA Astrophysics Data System (ADS)
Wilson, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip
2009-12-01
The NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) lightning detection networks, the Cloud-to-Ground Lightning Surveillance System (CGLSS) and the U.S. National Lightning Detection Network™ (NLDN), and a volumetric lightning mapping array, the Lightning Detection and Ranging (LDAR) system, to monitor and characterize lightning that is potentially hazardous to launch or ground operations. Data obtained from these systems during June-August 2006 have been examined to check the classification of small, negative CGLSS reports that have an estimated peak current, ∣Ip∣ less than 7 kA, and to determine the smallest values of Ip that are produced by first strokes, by subsequent strokes that create a new ground contact (NGC), and by subsequent strokes that remain in a preexisting channel (PEC). The results show that within 20 km of the KSC-ER, 21% of the low-amplitude negative CGLSS reports were produced by first strokes, with a minimum Ip of -2.9 kA; 31% were by NGCs, with a minimum Ip of -2.0 kA; and 14% were by PECs, with a minimum Ip of -2.2 kA. The remaining 34% were produced by cloud pulses or lightning events that we were not able to classify.
Nowcasting of Lightning-Related Accidents in Africa
NASA Astrophysics Data System (ADS)
Ihrlich, Laura; Price, Colin
2016-04-01
Tropical Africa is the world capital of thunderstorm activity with the highest density of strikes per square kilometer per year. As a result it is also the continent with perhaps the highest casualties and injuries from direct lightning strikes. This region of the globe also has little lightning protection of rural homes and schools, while many casualties occur during outdoor activities (e.g. farming, fishing, sports, etc.) In this study we investigated two lightning-caused accidents that got wide press coverage: A lightning strike to a Cheetah Center in Namibia which caused a huge fire and great destruction (16 October 2013), and a plane crash in Mali where 116 people died (24 July 2014). Using data from the World Wide Lightning Location Network (WWLLN) we show that the lightning data alone can provide important early warning information that can be used to reduce risks and damages and loss of life from lightning strikes. We have developed a now-casting scheme that allows for early warnings across Africa with a relatively low false alarm rate. To verify the accuracy of our now-cast, we have performed some statistical analysis showing relatively high skill at providing early warnings (lead time of a few hours) based on lightning alone. Furthermore, our analysis can be used in forensic meteorology for determining if such accidents are caused by lightning strikes.
Cloud-to-ground lightning activity in Colombia: A 14-year study using lightning location system data
NASA Astrophysics Data System (ADS)
Herrera, J.; Younes, C.; Porras, L.
2018-05-01
This paper presents the analysis of 14 years of cloud-to-ground lightning activity observation in Colombia using lightning location systems (LLS) data. The first Colombian LLS operated from 1997 to 2001. After a few years, this system was upgraded and a new LLS has been operating since 2007. Data obtained from these two systems was analyzed in order to obtain lightning parameters used in designing lightning protection systems. The flash detection efficiency was estimated using average peak current maps and some theoretical results previously published. Lightning flash multiplicity was evaluated using a stroke grouping algorithm resulting in average values of about 1.0 and 1.6 for positive and negative flashes respectively and for both LLS. The time variation of this parameter changes slightly for the years considered in this study. The first stroke peak current for negative and positive flashes shows median values close to 29 kA and 17 kA respectively for both networks showing a great dependence on the flash detection efficiency. The average percentage of negative and positive flashes shows a 74.04% and 25.95% of occurrence respectively. The daily variation shows a peak between 23 and 02 h. The monthly variation of this parameter exhibits a bimodal behavior typical of the regions located near The Equator. The lightning flash density was obtained dividing the study area in 3 × 3 km cells and resulting in maximum average values of 25 and 35 flashes km- 2 year- 1 for each network respectively. A comparison of these results with global lightning activity hotspots was performed showing good correlation. Besides, the lightning flash density variation with altitude shows an inverse relation between these two variables.
NASA Technical Reports Server (NTRS)
Goodman, Steven; Blakeslee, Richard; Koshak, William
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. The mission objectives for the GLM are to 1) provide continuous,full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornado activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight units is expected to begin in latter part of the year. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2B algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data provided to selected National Weather Service forecast offices in Southern and Eastern Region are also improving our understanding of the application of these data in the severe storm warning process and help to accelerate the development of the pre-launch algorithms and Nowcasting applications.
NASA Technical Reports Server (NTRS)
Goodman, Steven; Blakeslee, Richard; Koshak, William; Petersen, Walt; Buechler, Dennis; Krehbiel, Paul; Gatlin, Patrick; Zubrick, Steven
2008-01-01
The Geostationary Lightning Mapper (GLM) is a single channel, near-IR optical transient event detector, used to detect, locate and measure total lightning activity over the full-disk as part of a 3-axis stabilized, geostationary weather satellite system. The next generation NOAA Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2014 will carry a GLM that will provide continuous day and night observations of lightning from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational.The mission objectives for the GLM are to 1) provide continuous,full-disk lightning measurements for storm warning and Nowcasting, 2) provide early warning of tornadic activity, and 3) accumulate a long-term database to track decadal changes of lightning. The GLM owes its heritage to the NASA Lightning Imaging Sensor (1997-Present) and the Optical Transient Detector (1995-2000), which were developed for the Earth Observing System and have produced a combined 13 year data record of global lightning activity. Instrument formulation studies were completed in March 2007 and the implementation phase to develop a prototype model and up to four flight units is expected to begin in latter part of the year. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2B algorithms and applications. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) sate]lite and regional test beds (e.g., Lightning Mapping Arrays in North Alabama and the Washington DC Metropolitan area) are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time lightning mapping data provided to selected National Weather Service forecast offices in Southern and Eastern Region are also improving our understanding of the application of these data in the severe storm warning process and help to accelerate the development of the pre-launch algorithms and Nowcasting applications. Abstract for the 3 rd Conference on Meteorological
Total lightning characteristics of recent hazardous weather events in Japan
NASA Astrophysics Data System (ADS)
Hobara, Y.; Kono, S.; Ogawa, T.; Heckman, S.; Stock, M.; Liu, C.
2017-12-01
In recent years, the total lightning (IC + CG) activity have attracted a lot of attention to improve the quality of prediction of hazardous weather phenomena (hail, wind gusts, tornadoes, heavy precipitation). Sudden increases of the total lightning flash rate so-called lightning jump (LJ) preceding the hazardous weather, reported in several studies, are one of the promising precursors. Although, increases in the frequency and intensity of these extreme weather events were reported in Japan, relationship with these events with total lightning have not studied intensively yet. In this paper, we will demonstrate the recent results from Japanese total lightning detection network (JTLN) in relation with hazardous weather events occurred in Japan in the period of 2014-2016. Automatic thunderstorm cell tracking was carried out based on the very high spatial and temporal resolution X-band MP radar echo data (1 min and 250 m) to correlate with total lightning activity. Results obtained reveal promising because the flash rate of total lightning tends to increase about 10 40 minutes before the onset of the extreme weather events. We also present the differences in lightning characteristics of thunderstorm cells between hazardous weather events and non-hazardous weather events, which is a vital information to improve the prediction efficiency.
Relationship between lightning and solar activity for recorded between CE 1392-1877 in Korea
NASA Astrophysics Data System (ADS)
Jeon, Junhyeok; Noh, Sung-Jun; Lee, Dong-Hee
2018-07-01
In this study, we collected lightning data recorded in the Joseon-wangjo-sillok, one of the Korean history books, and discuss the characteristics of the long term variations and distribution of lightning based on the data. Although historical data such as lightning records are fragmentary, they are important information of solar activity on a long term scale. We found that there is a difference between the monthly distribution of lightning recorded in the Joseon-wangjo-sillok and the monthly distribution of modern observations. This difference of distribution could be understood to reflect that the purpose of viewpoint of the observers is different between the past and the present. Nevertheless, it is a very interesting result that the periodicity calculated from the records of lightning recorded in the Joseon-wangjo-sillok is similar to the solar cycle which is widely known as almost periodically 11 years.
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Christian, H. J.; Boccippio, D. J.; Koshak, W. J.; Cecil, D. J.; Arnold, James E. (Technical Monitor)
2002-01-01
The ThOR mission uses a lightning mapping sensor in geostationary Earth orbit to provide continuous observations of thunderstorm activity over the Americas and nearby oceans. The link between lightning activity and cloud updrafts is the basis for total lightning observations indicating the evolving convective intensification and decay of storms. ThOR offers a national operational demonstration of the utility of real-time total lightning mapping for earlier and more reliable identification of potentially severe and hazardous storms. Regional pilot projects have already demonstrated that the dominance in-cloud lightning and increasing in-cloud lash rates are known to precede severe weather at the surface by tens of minutes. ThOR is currently planned for launch in 2005 on a commercial or research satellite. Real-time data will be provided to selected NWS Weather Forecast Offices and National Centers (EMC/AWC/SPC) for evaluation.
Cloud-to-ground lightning activity over Greece: Spatio-temporal analysis and impacts
NASA Astrophysics Data System (ADS)
Matsangouras, I. T.; Nastos, P. T.; Kapsomenakis, J.
2016-03-01
Cloud-to-ground (CG) lightning activity recorded by the Hellenic National Meteorological Service (HNMS) Precision Lightning Network (PLN) is analysed over the wider area of Greece. In addition, the spatial and temporal relationships between TRMM 3B42 (Tropical Rainfall Measuring Mission) datasets and lightning are presented. The analyses concern the period from January 14, 2008 to December 31, 2012. The Laboratory of Climatology and Atmospheric Environment, University of Athens, has established a detailed dataset of lightning impacts over Greece from 1895 to 2013, based on digitized archive editions of newspapers. The mean seasonal variability of CG lightning activity revealed autumn as the most dominant season with 303 LD, while the mean monthly variability of CG indicated October as the most lightning active month and May as the month with a mean of 27 LD. The mean annual spatial distribution of CG lightning per km2, depicted the maximum frequency over Pindus mountain range (> 7 CG/km2). During the autumn season, the northern Ionian Sea experienced a mean frequency of more than 5 CG/km2, compared to the southern Ionian Sea and NW Peloponnesus, where values of more than 7 CG/km2 are depicted. During the summer season, the maximum frequency appeared along Pindus mountain range, around Attica, Thessaly and central Macedonia highlands. The spatial distribution of seasonal correlations between the number of CG flashes/day and gridded (TRMM 3B42) daily rainfall totals for the period 2008-2012 over Greece, indicated that correlations were mainly positive all over the under study area, within all seasons, and especially during summer and autumn. Regarding the lightning impacts in Greece, based on the 1895-2013 study period, more than 343 fatalities and at least 224 injured people have been recorded. The spatial analysis of lightning impacts, showed that the majority of events has been recorded over Greek mainland and only few scattered events have been reported over Ionian and Aegean Seas. The results of the performed research for Greece, during 1895-2013 (2000-2013), indicated that fatalities/injuries caused by lightning, were estimated at 2.9 (2) deaths/1.9 (1.6) injuries per year, respectively.
Upper limit set for level of lightning activity on Titan
NASA Technical Reports Server (NTRS)
Desch, M. D.; Kaiser, M. L.
1990-01-01
Because optically thick cloud and haze layers prevent lightning detection at optical wavelength on Titan, a search was conducted for lightning-radiated signals (spherics) at radio wavelengths using the planetary radioastronomy instrument aboard Voyager 1. Given the maximum ionosphere density of about 3000/cu cm, lightning spherics should be detectable above an observing frequency of 500 kHz. Since no evidence for spherics is found, an upper limit to the total energy per flash in Titan lightning of about 10 to the 6th J, or about 1000 times weaker than that of typical terrestrial lightning, is inferred.
NASA Technical Reports Server (NTRS)
Allen, Dale; Pickering, Kenneth; Pinder, Robert; Koshak, William; Pierce, Thomas
2011-01-01
Lightning-NO emissions are responsible for 15-30 ppbv enhancements in upper tropospheric ozone over the eastern United States during the summer time. Enhancements vary from year to year but were particularly large during the summer of 2006, a period during which meteorological conditions were particularly conducive to ozone formation. A lightning-NO parameterization has been developed that can be used with the CMAQ model. Lightning-NO emissions in this scheme are assumed to be proportional to convective precipitation rate and scaled so that monthly average flash rates in each grid box match National Lightning Detection Network (NLDN) observed flash rates after adjusting for climatological intracloud to cloud-to-ground (IC/CG) ratios. The contribution of lightning-NO emissions to eastern United States NOx and ozone distributions during the summer of 2006 will be evaluated by comparing results of 12- km CMAQ simulations with and without lightning-NO emissions to measurements from the IONS field campaign and to satellite retrievals from the Tropospheric Emission Spectrometer (TES) and the Ozone Monitoring Instrument (OMI) aboard the Aura satellite. Special attention will be paid to the impact of the assumed vertical distribution of emissions on upper tropospheric NOx and ozone amounts.
Search for possible relationship between volcanic ash particles and thunderstorm lightning activity
NASA Astrophysics Data System (ADS)
Várai, A.; Vincze, M.; Lichtenberger, J.; Jánosi, I. M.
2011-12-01
Explosive volcanic eruptions that eject columns of ash from the crater often generate lightning discharges strong enough to be remotely located by very low frequency radio waves. A fraction of volcanic ash particles can stay and disperse long enough to have an effect on weather phenomena days later such as thunderstorms and lightnings. In this work we report on lightning activity analysis over Europe following two recent series of volcanic eruptions in order to identify possible correlations between ash release and subsequent thunderstorm flash frequency. Our attempts gave negative results which can be related to the fact that we have limited information on local atmospheric variables of high enough resolution, however lightning frequency is apparently determined by very local circumstances.
Lightning and middle atmospheric discharges in the atmosphere
NASA Astrophysics Data System (ADS)
Siingh, Devendraa; Singh, R. P.; Kumar, Sarvan; Dharmaraj, T.; Singh, Abhay K.; Singh, Ashok K.; Patil, M. N.; Singh, Shubha
2015-11-01
Recent development in lightning discharges including transient luminous events (TLEs) and global electric circuit are discussed. Role of solar activity, convective available potential energy, surface temperature and difference of land-ocean surfaces on convection process are discussed. Different processes of discharge initiation are discussed. Events like sprites and halos are caused by the upward quasi-electrostatic fields associated with intense cloud-to-ground discharges while jets (blue starter, blue jet, gigantic jet) are caused by charge imbalance in thunderstorm during lightning discharges but they are not associated with a particular discharge flash. Elves are generated by the electromagnetic pulse radiated during lightning discharges. The present understanding of global electric circuit is also reviewed. Relation between lightning activity/global electric circuit and climate is discussed.
Cell Mergers and Their Impact on Cloud-to-Ground Lightning Over the Houston Area
NASA Technical Reports Server (NTRS)
Gauthier, Michael L.; Petersen, Walter A.; Carey, Lawrence D.
2009-01-01
A previous hypothesis advanced from observational studies such as METROMEX suggests that the intensity, frequency, and organization of cumulus convection may be impacted by the forcing of enhanced merger activity downstream of urban zones. A resulting corollary is that cities may exert an indirect anthropogenic forcing of parameters related to convection and associated phenomena such as lightning and precipitation. This paper investigates the urban merger hypothesis by examining the role of convective cell mergers on the existence and persistence of the Houston lightning "anomaly", a local maximum in cloud-to-ground (CG) lightning activity documented to exist over and east of Houston. Using eight summer seasons of peak columnar radar reflectivity, CG lightning data and a cell-tracking algorithm, a two-dimensional cell merger climatology is created for portions of eastern Texas and Louisiana. Results from the tracking and analysis of over 3.8 million cells indicate that merger-driven enhancements in convection induce a positive response (O 46%) in ground-flash densities throughout the domain, with areas of enhanced lightning typically being co-located with areas of enhanced merger activity. However, while mergers over the Houston area (relative to elsewhere in the domain) do result in more vigorous convective cells that produce larger CG flash densities, we find that CG lightning contributions due to mergers are distributed similarly throughout the domain. Hence while we demonstrate that cell mergers do greatly impact the production of lightning, the urban cell merger hypothesis does not uniquely explain the presence of a local lightning maximum near and downstream of Houston.
The reciprocal relation between lightning and pollution and their impact over Kolkata, India.
Middey, Anirban; Chaudhuri, Sutapa
2013-05-01
Aerosol loading in the atmosphere can cause increased lightning flashes, and those lightning flashes produce NOX , which reacts in sun light to produce surface ozone. The present study deals with the effect of surface pollutants on premonsoon (April-May) lightning activity over the station Kolkata (22.65° N, 88.45° E). Seven-year (2004-2010) premonsoon thunderstorms data are taken for the study. Different parameters like aerosol optical depth and cloud top temperature from the Moderate Resolution Imaging Spectroradiometer satellite products along with lightning flash data from Tropical Rainfall Measuring Mission's (TRMM) Lightning Imaging Sensor are analyzed. Some surface pollution parameters like suspended particulate matter, particulate matter 10, nitrogen oxides (NOX), and surface ozone (O₃) data during the same period are taken account for clear understanding of their association with lightning activity. Heights of convective condensation level and lifting condensation level are collected from radiosonde observations to anticipate about cloud base. It is found that increased surface pollution in a near storm environment is related to increased lightning flash rate, which results in increased surface NOX and consequently increased surface ozone concentration over the station Kolkata.
Lightning propagation and flash density in squall lines as determined with radar
NASA Technical Reports Server (NTRS)
Mazur, V.; Rust, W. D.
1983-01-01
Lightning echo rise times and range-time variations due to discharge propagation are determined using S and L band radars, and the evolution of precipitation reflectivity and the associated lightning activity in squall lines is investigated using VHF and L band radars. The rise time of radar echoes can be explained by ionized channel propagation through the radar beams. Speeds of at least 250,000 m/s are found from measurements of the radial velocity of streamer propagation along the antenna beam. The range-time variations in lightning echoes indicate that either new ionization occurs as streamers develop into different parts of the cloud, channel delay occurs during which adequate ionization exists for radar detection, or continuing current occurs. Determinations of the lightning flash density for a squall line in the U.S. show that the maximum lightning density tends to be near the leading edge of the precipitation cores in developing cells. Long discharges are produced as a cell in the squall line develops and the total lightning density increases, although short discharges predominate. As the cell dissipates, short flashes diminish or cease and the long flashes dominate the lightning activity.
Hinkelbein, J; Spelten, O; Wetsch, W A
2013-01-01
Up to 32.2% of patients in a burn center suffer from electrical injuries. Of these patients, 2-4% present with lightning injuries. In Germany, approximately 50 people per year are injured by a lightning strike and 3-7 fatally. Typically, people involved in outdoor activities are endangered and affected. A lightning strike usually produces significantly higher energy doses as compared to those in common electrical injuries. Therefore, injury patterns vary significantly. Especially in high voltage injuries and lightning injuries, internal injuries are of special importance. Mortality ranges between 10 and 30% after a lightning strike. Emergency medical treatment is similar to common electrical injuries. Patients with lightning injuries should be transported to a regional or supraregional trauma center. In 15% of all cases multiple people may be injured. Therefore, it is of outstanding importance to create emergency plans and evacuation plans in good time for mass gatherings endangered by possible lightning.
Aerosol indirect effect on tropospheric ozone via lightning
NASA Astrophysics Data System (ADS)
Yuan, T.; Remer, L. A.; Bian, H.; Ziemke, J. R.; Albrecht, R. I.; Pickering, K. E.; Oreopoulos, L.; Goodman, S. J.; Yu, H.; Allen, D. J.
2012-12-01
Tropospheric ozone (O3) is a pollutant and major greenhouse gas and its radiative forcing is still uncertain. The unresolved difference between modeled and observed natural background O3 concentrations is a key source of the uncertainty. Here we demonstrate remarkable sensitivity of lightning activity to aerosol loading with lightning activity increasing more than 30 times per unit of aerosol optical depth over our study area. We provide observational evidence that indicates the observed increase in lightning activity is caused by the influx of aerosols from a volcano. Satellite data analyses suggest O3 is increased as a result of aerosol-induced increase in lightning and lightning produced NOx. Model simulations with prescribed lightning change corroborate the satellite data analysis. This aerosol-O3 connection is achieved via aerosol increasing lightning and thus lightning produced nitrogen oxides. This aerosol-lightning-ozone link provides a potential physical mechanism that may account for a part of the model-observation difference in background O3 concentration. More importantly, O3 production increase from this link is concentrated in the upper troposphere, where O3 is most efficient as a greenhouse gas. Both of these implications suggest a stronger O3 historical radiative forcing. This introduces a new pathway, through which increasing in aerosols from pre-industrial time to present day enhances tropospheric O3 production. Aerosol forcing thus has a warming component via its effect on O3 production. Sensitivity simulations suggest that 4-8% increase of tropospheric ozone, mainly in the tropics, is expected if aerosol-lighting-ozone link is parameterized, depending on the background emission scenario. We note, however, substantial uncertainties remain on the exact magnitude of aerosol effect on tropospheric O3 via lightning. The challenges for obtaining a quantitative global estimate of this effect are also discussed. Our results have significant implications for understanding past and projecting future tropospheric O3 forcing as well as wildfire changes and call for integrated investigations of the coupled aerosol-cloud-chemistry system.
Physical and Dynamical Linkages Between Lightning Jumps and Storm Conceptual Models
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.
NASA Technical Reports Server (NTRS)
Shultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Stano, Geoffrey T.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; AMS 10th Satellite Symposium) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end to end physical and dynamical basis for relating lightning rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relation to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, relation specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.
Physical and Dynamical Linkages between Lightning Jumps and Storm Conceptual Models
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawrence D.; Schultz, Elise V.; Blakeslee, Richard J.; Goodman, Steven J.
2014-01-01
The presence and rates of total lightning are both correlated to and physically dependent upon storm updraft strength, mixed phase precipitation volume and the size of the charging zone. The updraft modulates the ingredients necessary for electrification within a thunderstorm, while the updraft also plays a critical role in the development of severe and hazardous weather. Therefore utilizing this relationship, the monitoring of lightning rates and jumps provides an additional piece of information on the evolution of a thunderstorm, more often than not, at higher temporal resolution than current operational radar systems. This correlation is the basis for the total lightning jump algorithm that has been developed in recent years. Currently, the lightning jump algorithm is being tested in two separate but important efforts. Schultz et al. (2014; this conference) is exploring the transition of the algorithm from its research based formulation to a fully objective algorithm that includes storm tracking, Geostationary Lightning Mapper (GLM) Proxy data and the lightning jump algorithm. Chronis et al. (2014; this conference) provides context for the transition to current operational forecasting using lightning mapping array based products. However, what remains is an end-to-end physical and dynamical basis for coupling total lightning flash rates to severe storm manifestation, so the forecaster has a reason beyond simple correlation to utilize the lightning jump algorithm within their severe storm conceptual models. Therefore, the physical basis for the lightning jump algorithm in relation to severe storm dynamics and microphysics is a key component that must be further explored. Many radar studies have examined flash rates and their relationship to updraft strength, updraft volume, precipitation-sized ice mass, etc.; however, their relationship specifically to lightning jumps is fragmented within the literature. Thus the goal of this study is to use multiple Doppler and polarimetric radar techniques to resolve the physical and dynamical storm characteristics specifically around the time of the lightning jump. This information will help forecasters anticipate lightning jump occurrence, or even be of use to determine future characteristics of a given storm (e.g., development of a mesocyclone, downdraft, or hail signature on radar), providing additional lead time/confidence in the severe storm warning paradigm.
First Cloud-to-Ground Lightning Timing Study
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.
2013-01-01
NASA's LSP, GSDO and other programs use the probability of cloud-to-ground (CG) lightning occurrence issued by the 45th Weather Squadron (45 WS) in their daily and weekly lightning probability forecasts. These organizations use this information when planning potentially hazardous outdoor activities, such as working with fuels, or rolling a vehicle to a launch pad, or whenever personnel will work outside and would be at-risk from lightning. These organizations would benefit greatly if the 45 WS could provide more accurate timing of the first CG lightning strike of the day. The Applied Meteorology Unit (AMU) has made significant improvements in forecasting the probability of lightning for the day, but forecasting the time of the first CG lightning with confidence has remained a challenge. To address this issue, the 45 WS requested the AMU to determine if flow regimes, wind speed categories, or a combination of the two could be used to forecast the timing of the first strike of the day in the Kennedy Space Center (KSC)/Cape Canaveral Air Force Station (CCAFS) lightning warning circles. The data was stratified by various sea breeze flow regimes and speed categories in the surface to 5,000-ft layer. The surface to 5,000-ft layer was selected since that is the layer the 45 WS uses to predict the behavior of sea breeze fronts, which are the dominant influence on the occurrence of first lightning in Florida during the warm season. Due to small data sample sizes after stratification, the AMU could not determine a statistical relationship between flow regimes or speed categories and the time of the first CG strike.. As expected, although the amount and timing of lightning activity varies by time of day based on the flow regimes and speed categories, there are extended tails of low lightning activity making it difficult to specify times when the threat of the first lightning flash can be avoided. However, the AMU developed a graphical user interface with input from the 45 WS that allows forecasters to visualize the climatological frequencies of the timing of the first lightning strike. This tool should contribute directly to the 45 WS goal of improving lightning timing capability for its NASA, US Air Force and commercial customers.
NASA Technical Reports Server (NTRS)
Burns, Lee; Decker, Ryan
2004-01-01
Lightning strike location and peak current are monitored operationally in the Kennedy Space Center (KSC)/Cape Canaveral Air Force Station (CCAFS) area by the Cloud to Ground Lightning Surveillance System (CGLSS). The present study compiles ten years of CGLSS data into a climatological database of all strikes recorded within a 20-mile radius of space shuttle launch platform LP39A, which serves as a convenient central point. The period of record (POR) for the database runs from January 1, 1993 to December 31, 2002. Histograms and cumulative probability curves are produced to determine the distribution of occurrence rates for the spectrum of strike intensities (given in kA). Further analysis of the database provides a description of both seasonal and interannual variations in the lightning distribution.
Research on electrical properties of severe thunderstorms in the Great Plains
NASA Technical Reports Server (NTRS)
Rust, W. D.; Taylor, W. L.; Macgorman, D. R.; Arnold, R. T.
1981-01-01
Techniques, equipment, and results of studies (1978-1980) to determine the relationships between electrical phenomena and the dynamics and precipitation of storms are reported. Doppler and conventional radar, video tapes and movies, and VHF recording devices were used to monitor an area 200 x 100 km, aligned SW to NE. The 23 cm radar and a Doppler radar were employed to acquire radar echoes from lightning. Observations of a squall line, a severe storm, and radar echoes from electrical discharges are described. Positively charged cloud-to-ground lightning was observed during the severe and final stages of severe storms; average lightning rates and total flashes for normal and severe storms are provided. Comparisons of lightning echoes and electric field changes indicated that abrupt increases in radar reflectivity were correlated with return strokes and K-type field changes.
Cosmic rays, solar activity, magnetic coupling, and lightning incidence
NASA Technical Reports Server (NTRS)
Ely, J. T. A.
1984-01-01
A theoretical model is presented and described that unifies the complex influence of several factors on spatial and temporal variation of lightning incidence. These factors include the cosmic radiation, solar activity, and coupling between geomagnetic and interplanetary (solar wind) magnetic fields. Atmospheric electrical conductivity in the 10 km region was shown to be the crucial parameter altered by these factors. The theory reconciles several large scale studies of lightning incidence previously misinterpreted or considered contradictory. The model predicts additional strong effects on variations in lightning incidence, but only small effects on the morphology and rate of thunderstorm development.
NASA Astrophysics Data System (ADS)
Tüchler, Lukas; Meyer, Vera
2013-04-01
The new radar-data and lightning-data based automatic cell identification, tracking and nowcasting tool A-TNT (Austrian Thunderstorm Nowcasting Tool), which has been developed at ZAMG, has been applied to investigate the appearance of thunderstorms at Europe scale. Based on the ec-TRAM-method [1], the algorithm identifies and monitors regions of intense precipitation and lightning activity separately by analyzing sequential two-dimensional intensity maps of radar precipitation rate or lightning densities, respectively. Each data source is processed by a stand-alone identification, tracking and nowcasting procedure. The two tracking results are combined to a "main" cell in a final step. This approach allows that the output derived from the two data sources complement each other giving a more comprehensive picture about the current storm situation. So it is possible to distinguish between pure precipitation cells and thunderstorms, to observe regions, where one data source is not or poorly available, and to compensate for occasional data failures. Consequently, the combined cell-tracks are expected to be more consistent and the cell-tracking more robust. Input data for radar-cell tracking on European Scale is the OPERA radar-composite, which is provided every 15 minutes on a 2 km x 2 km grid, indicating the location and intensity of precipitation over Europe. For the lightning-cell tracking, the lightning-detection data of the EUCLID network is mapped on the OPERA grid. Every five minutes, flash density maps with recorded strokes are created and analyzed. This study will present a detailed investigation of the quality of the identification and tracking results using radar and lightning data. The improvements concerning the robustness and reliability of the cell tracking achieved by combining both data sources will be shown. Analyses about cell tracks and selected storm parameters like frequency, longevity and area will give insight into occurrence, appearance and impact of different severe precipitation events. These studies are performed to support the project HAREN (Hazard Assessment based on Rainfall European Nowcasts, funded by the EC Directorate General for Humanitarian Aid and Civil Protection), which has the objective to improve warnings for hazards induced by precipitation at local scale all over Europe. REFERENCES: [1] Meyer, V. K., H. Höller, and H. D. Betz 2012: Automated thunderstorm tracking and nowcasting: utilization of three-dimensional lightning and radar data. Manuscript accepted for publication in ACPD.
System and Method of Locating Lightning Strikes
NASA Technical Reports Server (NTRS)
Medelius, Pedro J. (Inventor); Starr, Stanley O. (Inventor)
2002-01-01
A system and method of determining locations of lightning strikes has been described. The system includes multiple receivers located around an area of interest, such as a space center or airport. Each receiver monitors both sound and electric fields. The detection of an electric field pulse and a sound wave are used to calculate an area around each receiver in which the lighting is detected. A processor is coupled to the receivers to accurately determine the location of the lighting strike. The processor can manipulate the receiver data to compensate for environmental variables such as wind, temperature, and humidity. Further, each receiver processor can discriminate between distant and local lightning strikes.
NASA Technical Reports Server (NTRS)
Johnson, R. L.; Smith, G. A.; Goodman, S. J.
1984-01-01
Measurement of lightning location data which occur together with continental thunderstorms and hurricanes was examined, and a second phase linear interferometer was deployed. Electrical emission originating from tropical storms in the Gulf of Mexico were monitored. The time span between hurricane ALLEN (10 August 1980) and hurricane ALICIA (18 August 1983) represents the longest period that the United States has gone without hurricane landfall. Both systems were active and data were acquired during the landfall period of hurricane ALICIA.
NASA Astrophysics Data System (ADS)
Girish, T. E.; Eapen, P. E.
2008-12-01
From a study of thunder/lightning observations in Trivandrum (near dip equator) for selected years between 1853 and 2005, we could find an inverse relation of the same with sunspot activity and associations with enhancements in diurnal range of local geomagnetic declination. The results seem to suggest lightning-associated modulation of E-region dynamo currents in the equatorial ionosphere and the thunderstorm activity near dip equator probably acts as a moderator to regulate electric potential gradient changes in the global electric circuit due to solar activity changes.
Lightning Forecasts and Data Assimilation into Numerical Weather Prediction Models
NASA Astrophysics Data System (ADS)
MacGorman, D. R.; Mansell, E. R.; Fierro, A.; Ziegler, C.
2012-12-01
This presentation reviews two aspects of lightning in numerical weather prediction (NWP) models: forecasting lightning and assimilating lightning data into NWP models to improve weather forecasts. One of the earliest routine forecasts of lightning was developed for fire weather operations. This approach used a multi-parameter regression analysis of archived cloud-to-ground (CG) lightning data and archived NWP data to optimize the combination of model state variables to use in forecast equations for various CG rates. Since then, understanding of how storms produce lightning has improved greatly. As the treatment of ice in microphysics packages used by NWP models has improved and the horizontal resolution of models has begun approaching convection-permitting scales (with convection-resolving scales on the horizon), it is becoming possible to use this improved understanding in NWP models to predict lightning more directly. An important role for data assimilation in NWP models is to depict the location, timing, and spatial extent of thunderstorms during model spin-up so that the effects of prior convection that can strongly influence future thunderstorm activity, such as updrafts and outflow boundaries, can be included in the initial state of a NWP model run. Radar data have traditionally been used, but systems that map lightning activity with varying degrees of coverage, detail, and detection efficiency are now available routinely over large regions and reveal information about storms that is complementary to the information provided by radar. Because data from lightning mapping systems are compact, easily handled, and reliably indicate the location and timing of thunderstorms, even in regions with little or no radar coverage, several groups have investigated techniques for assimilating these data into NWP models. This application will become even more valuable with the launch of the Geostationary Lightning Mapper on the GOES-R satellite, which will extend routine coverage even farther into remote regions and provides the most promising means for routine thunderstorm detection over oceans. On-going research is continually expanding the methods used to assimilate lightning data, which began with simple techniques for assimilating CG data and now are being extended to assimilate total lightning data. Most approaches either have used the lightning data simply to indicate where the subgrid scale convective parameterization of a model should produce deep convection or have used the lightning data to indicate how to modify a model variable related to thunderstorms, such as rainfall rate or water vapor mixing ratio. The developing methods for explicitly predicting lightning activity provide another, more direct means for assimilating total lightning data, besides providing information valuable to the general public and to many governmental and commercial enterprises. Such a direct approach could be particularly useful for ensemble techniques used to produce probabilistic thunderstorm forecasts.
Artist's Concept of Jupiter Lightning
2018-06-06
This artist's concept of lightning distribution in Jupiter's northern hemisphere incorporates a JunoCam image with artistic embellishments. Data from NASA's Juno mission indicates that most of the lightning activity on Jupiter is near its poles. https://photojournal.jpl.nasa.gov/catalog/PIA22474
NASA Technical Reports Server (NTRS)
1987-01-01
In the last three years the focus was on the information contained in the lightning measurement, which is independent of other meteorological measurements that can be made from space. The characteristics of lightning activity in mesoscale convective systems were quantified. A strong relationship was found between lightning activity and surface rainfall. It is shown that lightning provides a precursor signature for wet microbursts (the strong downdrafts that produce windshears hazardous to aircraft) and that the lightning signature is a direct consequence of storm evolution. The Universities Space Research Association (USRA) collaborated with NASA scientists in the preliminary analysis and scientific justification for the design and deployment of an optical instrument which can detect lightning from geostationary orbit. Science proposals for the NASA mesoscale science program and for the Tethered Satellite System were reviewed. The weather forecasting research and unmanned space vehicles. Software was written to ingest and analyze the lightning ground strike data on the MSFC McIDAS system. The capabilities which were developed have a wide application to a number of problems associated with the operational impacts of electrical discharge within the atmosphere.
Climate Change and Tropical Total Lightning
NASA Technical Reports Server (NTRS)
Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.
2009-01-01
While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.
When lightning strikes: bolting down the facts & fiction.
Usatch, Ben
2009-04-01
MYTH: There's no danger from lightning until the rain starts. FACT: Lightning often precedes the storm by up to 10 miles. A reasonable guideline is the "30-30 rule," by which you count the seconds between the flash and the thunder. If the time span is less than 30 seconds, seek shelter. Additionally, wait a full 30 minutes from last lightning flash to resume outdoor activities.
Characterization of infrasound from lightning
NASA Astrophysics Data System (ADS)
Assink, J. D.; Evers, L. G.; Holleman, I.; Paulssen, H.
2008-08-01
During thunderstorm activity in the Netherlands, electromagnetic and infrasonic signals are emitted due to the process of lightning and thunder. It is shown that correlating infrasound detections with results from a electromagnetic lightning detection network is successful up to distances of 50 km from the infrasound array. Infrasound recordings clearly show blastwave characteristics which can be related to cloud-ground discharges, with a dominant frequency between 1-5 Hz. Amplitude measurements of CG discharges can partly be explained by the beam pattern of a line source with a dominant frequency of 3.9 Hz, up to a distance of 20 km. The ability to measure lightning activity with infrasound arrays has both positive and negative implications for CTBT verification purposes. As a scientific application, lightning studies can benefit from the worldwide infrasound verification system.
NASA Astrophysics Data System (ADS)
Carey, L. D.; Butts, D. A.
2006-12-01
Several past case and climatological studies have analyzed the relationship between tornadogenesis and cloud-to-ground (CG) lightning polarity. In particular, there has been an emphasis on investigating when and under what environmental and storm conditions tornadoes are associated with anomalous positive CG lightning in order to understand cloud electrification mechanisms and to explore tornado nowcasting opportunities using National Lightning Detection Network (NLDN) CG lightning data. Most of the case and all of the climatological studies have been conducted during the warm season (April to September). In the southeastern United States, a significant number of tornadoes occur in the cool season (October to March). To address this gap in our climatological knowledge, we extend past research by determining the NLDN ground flash properties, including polarity, flash density, peak current, and multiplicity, in the vicinity of tornado reports during the cool season from 1989 2002 in the southeastern United States (i.e., from 102 to 72 degrees west longitude and from 24 to 42 degrees north latitude). Following past studies, we examined NLDN CG lightning properties within 50 km and one hour prior to all tornado reports (i.e., F0 - F5 on the Fujita damage scale). Interestingly, no NLDN detected ground flash activity occurred in the vicinity of 967 (29 %) of the 3325 tornado reports in our sample. Only 10 % (236) of the remaining 2358 tornado reports were associated with predominately (> 50 %) positive CG (PPCG) lightning activity. About 25 % (598) of the tornado reports accompanied by ground flash activity were associated with > 25 % positive CG polarity. In our analysis domain, the geographic frequency maximum of tornadoes accompanied by PPCG lightning activity occurred in a north-south oriented region centered on central Kansas that extended northward into Nebraska and southward into Oklahoma. In this preferred region, 30 % to 60 % of all cool season tornado reports were associated with PPCG lightning activity. Secondary frequency maxima of tornadoes accompanied by PPCG lightning occurred from Louisiana to North Carolina in an arc that followed about 100 to 200 km inland from the coast. From North Carolina to Georgia, the secondary maxima were also downwind of the southern Appalachian Mountains. Another secondary frequency maximum in tornado PPCG activity was centered over northern Florida. However, the percentage of tornadoes associated with PPCG lightning activity over these secondary frequency maxima was typically less than 10 %. Interestingly, this percentage was slightly elevated (10 % to 20 %) over North Carolina on the lee side of the Appalachian Mountains. Additional results will be presented and implications of this study will be discussed.
NASA Technical Reports Server (NTRS)
Hodanish, S; Sharp, D.; Williams, E.; Boldi, B.; Goodman, Steven J.; Raghavan, R.; Matlin, A.; Weber, M.
1998-01-01
During the early morning hours of February 23 1998, the worst tornado outbreak ever recorded occurred over the central Florida peninsula. At least 7 confirmed tornadoes, associated with 4 supercells, developed, with 3 of the tornadoes reaching F3 intensity. Many of the tornadoes where on the ground for tens of miles, uncommon for the state of Florida. A total of 42 people were killed, with over 250 people injured. During the outbreak, National Weather Service Melbourne, in collaboration with the National Aeronautics and Space Administration and the Massachusetts Institute of Technology was collecting data from a unique lightning observing system called Lightning Imaging Sensor Data Applications Display (LISDAD, Boldi et.al., this conference). This system marries radar data collected from the KMLB WSR-88D, cloud to ground data collected from the National Lightning Detection Network, and total lightning data collected from NASKs Lightning Detection And Ranging system. This poster will display, concurrently, total lightning data (displayed in 1 minute increments), time/height storm relative velocity products from the KMLB WSR-88D, and damage information (tornado/hail/wind) from each of the supercell thunderstorms. The primary objective of this poster presentation is to observe how total lightning activity changes as the convective storm intensifies, and how the lightning activity changes with respect to mesocyclone strength (vortex stretching) and damaging weather on the ground.
Cloud-to-ground lightning in Portugal: patterns and dynamical forcing
NASA Astrophysics Data System (ADS)
Santos, J. A.; Reis, M. A.; Sousa, J.; Leite, S. M.; Correia, S.; Janeira, M.; Fragoso, M.
2012-03-01
An analysis of the cloud-to-ground discharges (CGD) over Portugal is carried out using data collected by a network of sensors maintained by the Portuguese Meteorological Institute for 2003-2009 (7 yr). Only cloud-to-ground flashes are considered and negative polarity CGD are largely dominant. The total number of discharges reveals a considerable interannual variability and a large irregularity in their distribution throughout the year. However, it is shown that a large number of discharges occur in the May-September period (71%), with a bimodal distribution that peaks in May and September, with most of the lightning activity recorded in the afternoon (from 16:00 to 18:00 UTC). In spring and autumn the lightning activity tends to be scattered throughout the country, whereas in summer it tends to be more concentrated over northeastern Portugal. Winter generally presents low lightning activity. Furthermore, two significant couplings between the monthly number of days with discharges and the large-scale atmospheric circulation are isolated: a regional forcing, predominantly in summer, and a remote forcing. In fact, the identification of daily lightning regimes revealed three important atmospheric conditions for triggering lightning activity: regional cut-off lows, cold troughs induced by remote low pressure systems and summertime regional low pressures at low-tropospheric levels combined with a mid-tropospheric cold trough.
Diurnal, seasonal and inter-annual variations in the Schumann resonance parameters
NASA Astrophysics Data System (ADS)
Price, Colin; Melnikov, Alexander
2004-09-01
The Schumann resonances (SR) represent an electromagnetic phenomenon in the Earth's atmosphere related to global lightning activity. The spectral characteristics of the SR modes are defined by their resonant mode amplitude, center frequency and half-width (Q-factor). Long-term (4 years) diurnal and seasonal variations of these parameters are presented based on measurements at a field site in the Negev desert, Israel. Variations of the different modes (8, 14 and 20Hz) and the different electromagnetic components (Hns, Hew and Ez) are presented. The power variations of the various modes and components show three dominant maxima in the diurnal cycle related to lightning activity in south-east Asia (0800UT), Africa (1400UT) and South America (2000UT). The largest global lightning activity occurs during the northern hemisphere summer (JJA) with the southern hemisphere summer (DJF) having the least lightning around the globe. The frequency and half-width (Q-factor) variations of the different modes and SR components are fairly complicated in structure, and will need additional theoretical work to explain their variations. However, the frequency variations are in excellent agreement with previous studies, implying that the frequency variations are robust features of the SR. The inter-annual variability of global lightning activity is shown to vary differently for each of the three major source regions of global lightning.
New Mission to Measure Global Lightning from the International Space Station (ISS)
NASA Astrophysics Data System (ADS)
Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.
2015-12-01
Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) from November 1997 to April 2015 between 38° N/S latitudes, and its Optical Transient Detector predecessor that acquired observation from May 1995 to April 2000 over 75° N/S latitudes. In February 2016, as an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission. The LIS on ISS will continue observations of the amount, rate, and radiant energy of total lightning over the Earth. More specifically, LIS measures lightning during both day and night, with storm scale resolution (~4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines. This mission will also extend TRMM time series observations, expand the latitudinal coverage to 54° latitude, provide real-time lightning data to operational users, espically over data sparse oceanic regions, and enable cross-sensor observations and calibrations that includes the new GOES-R Geostationary Lightning Mapper (GLM) and the Meteosat Third Generation Lightning Imager (MTG LI). The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations with other ISS payloads such as the European Space Agency's Atmosphere-Space Interaction Monitor (ASIM) exploring the connection between lightning and terrestrial gamma-ray flashes (TGFs).
NASA Technical Reports Server (NTRS)
Buechler, Dennis E.; Christian, H. J.; Koshak, William J.; Goodman, Steve J.
2013-01-01
The Geostationary Lightning Mapper (GLM) on the next generation Geostationary Operational Environmental Satellite-R (GOES-R) will not have onboard calibration capability to monitor its performance. The Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite has been providing observations of total lightning over the Earth's Tropics since 1997. The GLM design is based on LIS heritage, making it a good proxy dataset. This study examines the performance of LIS throughout its time in orbit. This was accomplished through application of the Deep Convective Cloud Technique (DCCT) (Doelling et al., 2004) to LIS background pixel radiance data. The DCCT identifies deep convective clouds by their cold Infrared (IR) brightness temperatures and using them as invariant targets in the solar reflective portion of the solar spectrum. The GLM and LIS operate in the near-IR at a wavelength of 777.4 nm. In the present study the IR data is obtained from the Visible Infrared Sensor (VIRS) which is collocated with LIS onboard the Tropical Rainfall Measuring Mission (TRMM) satellite. The DCCT is applied to LIS observations for July and August of each year from 1998-2010. The resulting distributions of LIS background DCC pixel radiance for each July August are very similar, indicating stable performance. The mean radiance of the DCCT analysis does not show a long term trend and the maximum deviation of the July August mean radiance for each year is within 0.7% of the overall mean. These results demonstrate that there has been no discernible change in LIS performance throughout its lifetime. A similar approach will used for monitoring the performance of GLM, with cold clouds identified using IR data from the Advanced Baseline Imager (ABI) which will also be located on GOES-R. Since GLM is based on LIS design heritage, the LIS results indicate that GLM should also experience stable performance over its lifetime.
Lightning Imaging Sensor (LIS) for the Earth Observing System
NASA Technical Reports Server (NTRS)
Christian, Hugh J.; Blakeslee, Richard J.; Goodman, Steven J.
1992-01-01
Not only are scientific objectives and instrument characteristics given of a calibrated optical LIS for the EOS but also for the Tropical Rainfall Measuring Mission (TRMM) which was designed to acquire and study the distribution and variability of total lightning on a global basis. The LIS can be traced to a lightning mapper sensor planned for flight on the GOES meteorological satellites. The LIS consists of a staring imager optimized to detect and locate lightning. The LIS will detect and locate lightning with storm scale resolution (i.e., 5 to 10 km) over a large region of the Earth's surface along the orbital track of the satellite, mark the time of occurrence of the lightning, and measure the radiant energy. The LIS will have a nearly uniform 90 pct. detection efficiency within the area viewed by the sensor, and will detect intracloud and cloud-to-ground discharges during day and night conditions. Also, the LIS will monitor individual storms and storm systems long enough to obtain a measure of the lightning flashing rate when they are within the field of view of the LIS. The LIS attributes include low cost, low weight and power, low data rate, and important science. The LIS will study the hydrological cycle, general circulation and sea surface temperature variations, along with examinations of the electrical coupling of thunderstorms with the ionosphere and magnetosphere, and observations and modeling of the global electric circuit.
Response of Global Lightning Activity Observed by the TRMM/LIS During Warm and Cold ENSO Phases
NASA Technical Reports Server (NTRS)
Chronis, Themis G.; Cecil, Dan; Goodman, Steven J.; Buechler, Dennis
2007-01-01
This paper investigates the response of global lightning activity to the transition from the warm (January February March-JFM 1998) to the cold (JFM 1999) ENSO phase. The nine-year global lightning climatology for these months from the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) provides the observational baseline. Flash rate density is computed on a 5.0x5.0 degree lat/lon grid within the LIS coverage area (between approx.37.5 N and S) for each three month period. The flash rate density anomalies from this climatology are examined for these months in 1998 and 1999. The observed lightning anomalies spatially match the documented general circulation features that accompany the warm and cold ENSO events. During the warm ENSO phase the dominant positive lightning anomalies are located mostly over the Western Hemisphere and more specifically over Gulf of Mexico, Caribbean and Northern Mid-Atlantic. We further investigate specifically the Northern Mid-Atlantic related anomaly features since these show strong relation to the North Atlantic Oscillation (NAO). Furthermore these observed anomaly patterns show strong spatial agreement with anomalous upper level (200 mb) cold core cyclonic circulations. Positive sea surface temperature anomalies during the warm ENSO phase also affect the lightning activity, but this is mostly observed near coastal environments. Over the open tropical oceans, there is climatologically less lightning and the anomalies are less pronounced. Warm ENSO related anomalies over the Eastern Hemisphere are most prominent over the South China coast. The transition to the cold ENSO phase illustrates the detected lightning anomalies to be more pronounced over East and West Pacific. A comparison of total global lightning between warm and cold ENSO phase reveals no significant difference, although prominent regional anomalies are located over mostly oceanic environments. All three tropical "chimneys" (Maritime Continent, Central Africa, and Amazon Basin) do not show any particular response to this transition.
The response of thunderstorms and lightning to smoke from Amazonian fires
NASA Astrophysics Data System (ADS)
Altaratz, Orit; Koren, Ilan; Yair, Yoav; Price, Colin
2010-05-01
The effects of man-made aerosols on clouds are long believed to be a key component for model predictions of climate change, yet are one of the least understood. High aerosol concentrations can change the convection intensity and hence the electrical activity of thunderclouds. Focusing on the Amazon dry season in Brazil, where thousands of man-made forest fires inject smoke into the atmosphere, we studied the aerosol effects on thunderclouds and lightning. We used the ground-based World-Wide Lightning Location Network (WWLLN) measurements together with Aqua-MODIS remotely-sensed aerosol and cloud data to study the relationship between aerosol loading and lightning flash occurrence. We present evidence for the transition between two regimes, representing opposing effects of aerosols on clouds. The first is the microphysical effect which is manifested in an increase in convective intensity (and therefore in electrical activity), followed by the radiative effect that becomes dominant with the increase in aerosol loading leading to a decrease in convective intensity, manifested in lower lightning activity.
NASA Astrophysics Data System (ADS)
Wu, Fan; Cui, Xiaopeng; Zhang, Da-Lin; Qiao, Lin
2017-10-01
The relationship between lightning activity and rainfall associated with 2925 short-duration rainfall (SDR) events over the Beijing metropolitan region (BMR) is examined during the warm seasons of 2006-2007, using the cloud-to-ground (CG) and intracloud (IC) lightning data from Surveillance et Alerte Foudre par Interférometrie Radioélectrique (SAFIR)-3000 and 5-min rainfall data from automatic weather stations (AWSs). An optimal radius of 10 km around selected AWSs is used to determine the lightning-rainfall relationship. The lightning-rainfall correlations vary significantly, depending upon the intensity of SDR events. That is, correlation coefficient (R 0.7) for the short-duration heavy rainfall (SDHR, i.e., ≥ 20 mm h- 1) events is found higher than that (R 0.4) for the weak SDR (i.e., 5-10 mm h- 1) events, and lower percentage of the SDHR events (< 10%) than the weak SDR events (40-50%) are observed with few flashes. Significant time-lagged correlations between lightning and rainfall are also found. About 80% of the SDR events could reach their highest correlation coefficients when the associated lightning flashes shift at time lags of < 25 min before and after rainfall begins. Those events with lightning preceding rainfall account for 50-60% of the total SDR events. Better lightning-rainfall correlations can be attained when time lags are incorporated, with the use of total (CG and IC) lightning data. These results appear to have important implications for improving the nowcast of SDHR events.
The Behavior of Total Lightning Activity in Severe Florida Thunderstorms
NASA Technical Reports Server (NTRS)
Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark; Hodanish, Steve; Sharp, Dave; Goodman, Steve; Raghavan, Ravi; Buechler, Dennis
1998-01-01
The development of a new observational system called LISDAD (Lightning Imaging Sensor Demonstration and Display) has enabled a study of severe weather in central Florida. The total flash rates for storms verified to be severe are found to exceed 60 flashes/min, with some values reaching 500 flashes/min. Similar to earlier results for thunderstorm microbursts, the peak flash rate precedes the severe weather at the ground by 5-20 minutes. A distinguishing feature of severe storms is the presence of lightning "jumps"-abrupt increases in flash rate in advance of the maximum rate for the storm. ne systematic total lightning precursor to severe weather of all kinds-wind, hail, tornadoes-is interpreted in terms of the updraft that sows the seeds aloft for severe weather at the surface and simultaneously stimulates the ice microphysics that drives the lightning activity.
NASA Technical Reports Server (NTRS)
Bailey, Jeff C.; Blakeslee, Richard J.; Buechler, Dennis E.; Christian, Hugh J.
2007-01-01
Data obtained from the Optical Transient Detector (April 1995 to March 2000) and the Lightning Imaging Sensor (December 1997 to December 2005) satellites (70 and 35 inclination low earth orbits, respectively) are used to statistically determine the number of flashes in the annual and seasonal diurnal cycle as a function of local and universal time. The data are further subdivided by season, land versus ocean, northern versus southern hemisphere, and other spatial (e.g., continents) and temporal (e.g., time of peak diurnal amplitude) categories. The data include corrections for detection efficiency and instrument view time. Continental results display strong diurnal variation, with a lightning peak in the late afternoon and a minimum in late morning. In regions of the world dominated by large mesoscale convective systems the peak in the diurnal curve shifts toward late evening or early morning hours. The maximum diurnal flash rate occurs in June-August, corresponding to the Northern Hemisphere summer, while the minimum occurs in December-February. Summer lightning dominates over winter activity and springtime lightning dominates over autumn activity at most continental locations. This latter behavior occurs especially strongly over the Amazon region in South America in September-November. Oceanic lightning activity in winter and autumn tends to exceed that in summer and spring. Global lightning is well correlated in phase but not in amplitude with the Carnegie curve. The diurnal flash rate varies about 4-35 percent about the mean, while the Carnegie curve varies around 4-15 percent.
Lightning Strike in Golf Practice
Elena-Sorando, E.; Galeano-Ricaño, N.; Agulló-Domingo, A.; Cimorra-Moreno, G.; Gil-Castillo, C.
2006-01-01
Summary The case is presented of a golfer who was struck by lightning while playing golf during a thunderstorm. The patient was found lying unconscious on wet grass with his clothes scorched and his spiked golf shoes torn. He had suffered dermal burns affecting the neck, thorax, abdomen, and upper and lower limbs (10% total body surface area), without any cardiovascular or respiratory disturbances. It may be hypothesized that the lightning current went over the outside of the patient, causing ignition of his clothes. Treatment included monitoring, adequate fluid management, debridement, and topical treatment (silver sulphadiazine). Complete healing of the wounds was achieved in two weeks. After three years' follow-up, the patient had no sequelae. PMID:21991022
NASA Astrophysics Data System (ADS)
Dyrda, Michal; Kulak, Andrzej; Mlynarczyk, Janusz
2015-04-01
Monitoring of the global lightning activity provides a very useful tool to study the global warming phenomenon and the other longer-scale climate changes induced by humans. The lightning activity is measured using various observational methods form space (optical satellite observations) as well as from the ground mostly by VLF /LF lightning detection networks, i.e. World Wide Lightning Location Network (WWLLN) or lightning detection network (LINET) in Europe. However, the global lightning activity measurements are possible only in the ELF range. Here we examine the African thunderstorm activity center, which is the most violent and active one. In a spherical damped resonator, such as the Earth-ionosphere cavity, the electromagnetic field is described by the solution of an inhomogeneous wave equation. For such equation the general solution can be expressed by the superposition of the solutions of the homogeneous equation, describing the resonance field, and the component, which is quite strong close to the source and weakens with source-observer separation. Thus, the superposition of the standing wave field with the field of traveling waves, which supply the energy from the lighting discharges to the global resonator, is a main reason for an asymmetric shape of the observational Schumann resonance (SR) power spectra, which highly deviate from the Lorentz curves. It is possible to separate this component from the signal using the spectrum decomposition method proposed by Kułak et al. [2006]. In our approach, we apply the inverse problem solution for determining the distance of the dominant lightning source. The distances to the thunderstorm centers are calculated using the analytical models for the electromagnetic waves propagation in the Earth-ionosphere cavity. Such forms of analytic solutions of the resonant field in the spherical cavity is the zonal harmonic series representation, described by Mushtak and Williams [2002] and we calculated the sets of such curves for different source-observer separations, starting at 1 Mm up to 20 Mm with a step of 0.1 Mm. We selected two observational data sets, collected during different seasons of the year, from our Hylaty station, located in Poland. The data were binned in 10-minute files for which the SR power spectra were derived. In the next step a decomposition curve describing 7 asymmetric SR modes was fitted to the observational data. To compare the resulted decomposed power spectra with analytic model we use chi-squared test and hence we obtained the distances to the dominant thunderstorm center, located in Africa. We computed the monthly lighting activity maps and possible locations on the African continent with the spatial resolution of 1 degree and temporal resolution of 10 minute. Moreover we calculated the thunderstorm intensities in physical units, which are of the order of 2 × 1011 [C2 m2 s-1]. We also notice the seasonal variations of the African thunderstorm centers distributions and as well as intensities. Finally, we compared our results with satellite data recorded by the Lighting Imaging Sensor (LIS) and we obtained very high correlation. Acknowledgements. This work has been supported by the National Science Centre grant 2012/04/M/ST10/00565. The numerical computations were done using the PL-Grid infrastructure.
Using the VAHIRR Radar Algorithm to Investigate Lightning Cessation
NASA Technical Reports Server (NTRS)
Stano, Geoffrey T.; Schultz, Elise V.; Petersen, Walter A.
2012-01-01
Accurately determining the threat posed by lightning is a major area for improved operational forecasts. Most efforts have focused on the initiation of lightning within a storm, with far less effort spent investigating lightning cessation. Understanding both components, initiation and cessation, are vital to improving lightning safety. Few organizations actively forecast lightning onset or cessation. One such organization is the 45th Weather Squadron (45WS) for the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). The 45WS has identified that charged anvil clouds remain a major threat of continued lightning and can greatly extend the window of a potential lightning strike. Furthermore, no discernable trend of total lightning activity has been observed consistently for all storms. This highlights the need for more research to find a robust method of knowing when a storm will cease producing lightning. Previous lightning cessation work has primarily focused on forecasting the cessation of cloud-to -ground lightning only. A more recent, statistical study involved total lightning (both cloud-to-ground and intracloud). Each of these previous works has helped the 45WS take steps forward in creating improved and ultimately safer lightning cessation forecasts. Each study has either relied on radar data or recommended increased use of radar data to improve cessation forecasts. The reasoning is that radar data is able to either directly or by proxy infer more about dynamical environment leading to cloud electrification and eventually lightning cessation. The authors of this project are focusing on a two ]step approach to better incorporate radar data and total lightning to improve cessation forecasts. This project will utilize the Volume Averaged Height Integrated Radar Reflectivity (VAHIRR) algorithm originally developed during the Airborne Field Mill II (ABFM II) research project. During the project, the VAHIRR product showed a trend of increasing values with increases in the electric field magnitude above 3 kV/m. An extreme value analysis showed that VAHIRR values less than or equal to 10 dBZ-km showed that the probability of having an electric field magnitude larger than 3 kV/m was less than one in ten thousand. VAHIRR also was found to be sensitive at indicating anvil clouds that posed a threat of initiating a lightning flash. This project seeks to use VAHIRR to analyze its utility as a lightning cessation tool, particularly dealing with the threat posed by detached anvils. The results from this project will serve as a baseline effectiveness of radar ]based lightning cessation algorithms. This baseline will be used in the second, and concurrent work by the co ]author fs who are developing a lightning cessation algorithm based on dual ]polarimetric radar data. Ultimately, an accurate method for identifying lightning cessation can save money on lost manpower time as well as greatly improve lightning safety.
Lightning characteristics of derecho producing mesoscale convective systems
NASA Astrophysics Data System (ADS)
Bentley, Mace L.; Franks, John R.; Suranovic, Katelyn R.; Barbachem, Brent; Cannon, Declan; Cooper, Stonie R.
2016-06-01
Derechos, or widespread, convectively induced wind storms, are a common warm season phenomenon in the Central and Eastern United States. These damaging and severe weather events are known to sweep quickly across large spatial regions of more than 400 km and produce wind speeds exceeding 121 km h-1. Although extensive research concerning derechos and their parent mesoscale convective systems already exists, there have been few investigations of the spatial and temporal distribution of associated cloud-to-ground lightning with these events. This study analyzes twenty warm season (May through August) derecho events between 2003 and 2013 in an effort to discern their lightning characteristics. Data used in the study included cloud-to-ground flash data derived from the National Lightning Detection Network, WSR-88D imagery from the University Corporation for Atmospheric Research, and damaging wind report data obtained from the Storm Prediction Center. A spatial and temporal analysis was conducted by incorporating these data into a geographic information system to determine the distribution and lightning characteristics of the environments of derecho producing mesoscale convective systems. Primary foci of this research include: (1) finding the approximate size of the lightning activity region for individual and combined event(s); (2) determining the intensity of each event by examining the density and polarity of lightning flashes; (3) locating areas of highest lightning flash density; and (4) to provide a lightning spatial analysis that outlines the temporal and spatial distribution of flash activity for particularly strong derecho producing thunderstorm episodes.
NASA Astrophysics Data System (ADS)
Qin, Zilong; Chen, Mingli; Zhu, Baoyou; Du, Ya-ping
2017-01-01
An improved ray theory and transfer matrix method-based model for a lightning electromagnetic pulse (LEMP) propagating in Earth-ionosphere waveguide (EIWG) is proposed and tested. The model involves the presentation of a lightning source, parameterization of the lower ionosphere, derivation of a transfer function representing all effects of EIWG on LEMP sky wave, and determination of attenuation mode of the LEMP ground wave. The lightning source is simplified as an electric point dipole standing on Earth surface with finite conductance. The transfer function for the sky wave is derived based on ray theory and transfer matrix method. The attenuation mode for the ground wave is solved from Fock's diffraction equations. The model is then applied to several lightning sferics observed in central China during day and night times within 1000 km. The results show that the model can precisely predict the time domain sky wave for all these observed lightning sferics. Both simulations and observations show that the lightning sferics in nighttime has a more complicated waveform than in daytime. Particularly, when a LEMP propagates from east to west (Φ = 270°) and in nighttime, its sky wave tends to be a double-peak waveform (dispersed sky wave) rather than a single peak one. Such a dispersed sky wave in nighttime may be attributed to the magneto-ionic splitting phenomenon in the lower ionosphere. The model provides us an efficient way for retrieving the electron density profile of the lower ionosphere and hence to monitor its spatial and temporal variations via lightning sferics.
Electrical and Hydrometeor Structure of Thunderstorms that produce Upward Lightning
NASA Astrophysics Data System (ADS)
dos Santos Souza, J. C.; Albrecht, R. I.; Lang, T. J.; Saba, M. M.; Warner, T. A.; Schumann, C.
2017-12-01
Upward lightning (UL) flashes at tall structures have been reported to be initiated by in-cloud branching of a parent positive cloud-to-ground (CG) or intracloud (IC) lightning during the decaying stages of thunderstorms, and associated with stratiform precipitation. This in-cloud branching of the parent CG lightning into lower layers of the stratiform precipitation, as well as other situational modes of UL triggering, are indicative of a lower charge center. The objective of this study is to determine the hydrometeor characteristics of thunderstorms that produce UL, especially at the lower layers of the stratiform region where the bidirectional leader of the parent CG or IC lightning propagates through. We investigated 17 thunderstorms that produced 56 UL flashes in São Paulo, SP, Brazil and 10 thunderstorms (27 UL) from the UPLIGHTS field experiment in Rapid City, SD, USA. We used polarimetric radar data and 3D lighting mapping or the combination of total (i.e., intracloud and cloud-to-ground) and cloud-to-ground lightning strokes data. The Hydrometeor Identification for the thunderstorms of this study consider the information from polarimetric variables ZH, ZDR, KDP and RHOHV to infer radar echoes into rain (light, medium, heavy), hail, dry snow, wet snow, ice crystals, graupel and rain-hail mixtures. Charge structure is inferred by the 3D very-high-frequency (VHF) Lightning Mapping Array by monitoring lightning propagation closely in time and space and constructing vertical histograms of VHF source density. The results of this research project are important to increase the understanding of the phenomenon, the storm evolution and the predictability of UL.
The variation of the ground electric field associated with the Mei-Nung earthquake on Feb. 6, 2016
NASA Astrophysics Data System (ADS)
Bing-Chih Chen, Alfred; Yeh, Er-Chun; Chuang, Chia-Wen
2017-04-01
Recent studies show that a strong coupling exists between lithosphere, atmosphere and extending up to the ionosphere. Natural phenomena on the ground surface such as oceans variation, volcanic and seismic activities such as earthquakes, and lightning possibly generate significant impacts at ionosphere immediately by electrodynamic processes. The electric field near the ground is one of the potential quantities to explore this coupling process, especially caused by earthquake. Unfortunately, thunderstorm, dust storm or human activities also affect the measured electric field at ground. To investigate the feasibility of a network to monitor the variation of the ground electric field driven by the lightning and earthquake, a filed mill has been deployed in the NCKU campus since Dec. 2015, and luckily experienced the earthquake with a moment magnitude of 6.4 struck 28 km on 6 Feb. 2016. The recorded ground electric field deceased steadily since 1.5 days before the earthquake, and returned to normal level gradually. Moreover, this special feature can not be identified in the other period of the field test. The detail analysis is reported in this presentation.
A Comparison between Lightning Activity and Passive Microwave Measurements
NASA Technical Reports Server (NTRS)
Kevin, Driscoll T.; Hugh, Christian J.; Goodman, Steven J.
1999-01-01
A recent examination of data from the Lightning Imaging Sensor (LIS) and the TRMM Microwave Imager (TMI) suggests that storm with the highest frequency of lightning also possess the most pronounced microwave scattering signatures at 37 and 85 GHz. This study demonstrates a clear dependence between lightning and the passive microwave measurements, and accentuates how direct the relationship really is between cloud ice and lightning activity. In addition, the relationship between the quantity of ice content and the frequency of lightning (not just the presence of lightning) , is consistent throughout the seasons in a variety of regimes. Scatter plots will be presented which show the storm-averaged brightness temperatures as a function of the lightning density of the storms (L/Area) . In the 85 GHz and 37 GHz scatter plots, the brightness temperature is presented in the form Tb = k1 x log10(L/Area) + k2, where the slope of the regression, k1, is 58 for the 85 GHz relationship and 30.7 for the 37 GHz relationship. The regression for both these fits showed a correlation of 0.76 (r2 = 0.58), which is quite promising considering the simple procedure used to make the comparisons, which have not yet even been corrected for the view angle differences between the instruments, or the polarization corrections in the microwave imager.
Statistical patterns in the location of natural lightning
NASA Astrophysics Data System (ADS)
Zoghzoghy, F. G.; Cohen, M. B.; Said, R. K.; Inan, U. S.
2013-01-01
Lightning discharges are nature's way of neutralizing the electrical buildup in thunderclouds. Thus, if an individual discharge destroys a substantial fraction of the cloud charge, the probability of a subsequent flash is reduced until the cloud charge separation rebuilds. The temporal pattern of lightning activity in a localized region may thus inherently be a proxy measure of the corresponding timescales for charge separation and electric field buildup processes. We present a statistical technique to bring out this effect (as well as the subsequent recovery) using lightning geo-location data, in this case with data from the National Lightning Detection Network (NLDN) and from the GLD360 Network. We use this statistical method to show that a lightning flash can remove an appreciable fraction of the built up charge, affecting the neighboring lightning activity for tens of seconds within a ˜ 10 km radius. We find that our results correlate with timescales of electric field buildup in storms and suggest that the proposed statistical tool could be used to study the electrification of storms on a global scale. We find that this flash suppression effect is a strong function of flash type, flash polarity, cloud-to-ground flash multiplicity, the geographic location of lightning, and is proportional to NLDN model-derived peak stroke current. We characterize the spatial and temporal extent of the suppression effect as a function of these parameters and discuss various applications of our findings.
NASA Astrophysics Data System (ADS)
Coquillat, Sylvain; Defer, Eric; Lambert, Dominique; Martin, Jean-Michel; Pinty, Jean-Pierre; Pont, Véronique; Prieur, Serge
2015-04-01
Located in the West Mediterranean basin, Corsica is strategically positioned for atmospheric studies referred by MISTRALS/HyMeX and MISTRALS/CHARMEX programs. The implementation of the project of atmospheric observatory CORSiCA (supported by the Collectivité Territoriale de Corse via CPER/FEDER funds) was an opportunity to strengthen the potential observation of convective events causing heavy rainfall and flash floods, by acquiring a total lightning activity detection system adapted to storm tracking at a regional scale. This detection system called SAETTA (Suivi de l'Activité Electrique Tridimensionnelle Totale de l'Atmosphère) is a network of 12 LMA stations (Lightning Mapping Array). Developed by New Mexico Tech (USA), the instrument allows observing lightning flashes in 3D and real time, at high temporal and spatial resolutions. It detects the radiations emitted by cloud discharges in the 60-66 MHz band, in a radius of about 300 km from the centre of the network, in passive mode and standalone (solar panel and battery). Each LMA station samples the signal at high rate (80 microseconds), records data on internal hard disk, and transmits a decimated signal in real-time via the 3G phone network. The decimated data are received on a server that calculates the position of the detected sources by the time-of-arrival method and manages a quasi real-time display on a website. The non decimated data intended for research applications are recovered later on the field. Deployed in May and June 2014, SAETTA operated nominally from July 13 to October 20, 2014. It is to be definitively re-installed in spring 2015 after a hardware updating. The operation of SAETTA is contractually scheduled until the end of 2019, but it is planned to continue well beyond to obtain longer-term observations for addressing issues related to climatic trends. SAETTA has great scientific potential in a broad range of topics: physics of discharge; monitoring and simulation of storm systems; climatology of convection in the western Mediterranean; production of nitrogen oxides by lightning; influence of pollution and aerosols on the electrical activity; synergy with operational lightning networks (EUCLID, ATDnet, Linet, ZEUS) and radar observations (ARAMIS). SAETTA should also become a validation tool for space observation of lightning (e.g. TARANIS mission and optical flash sensor on Meteosat Third Generation), but also for field campaigns. Acknowledgements are adressed to CORSiCA-SAETTA main sponsors (Collectivité Territoriale de Corse through the Fonds Européen de Développement Régional of the European Operational Program 2007-2013 and the Contrat de Plan Etat Région; HyMeX/MISTRALS; Observatoire Midi-Pyrénées; Laboratoire d'Aérologie) and many individuals and regional institutions in Corsica that host the 12 stations of the network or that helped us to find sites.
Status of research into lightning effects on aircraft
NASA Technical Reports Server (NTRS)
Plumer, J. A.
1976-01-01
Developments in aircraft lightning protection since 1938 are reviewed. Potential lightning problems resulting from present trends toward the use of electronic controls and composite structures are discussed, along with presently available lightning test procedures for problem assessment. The validity of some procedures is being questioned because of pessimistic results and design implications. An in-flight measurement program is needed to provide statistics on lightning severity at flight altitudes and to enable more realistic tests, and operators are urged to supply researchers with more details on electronic components damaged by lightning strikes. A need for review of certain aspects of fuel system vulnerability is indicated by several recent accidents, and specific areas for examination are identified. New educational materials and standardization activities are also noted.
Katrina and Rita were lit up with lightning
NASA Astrophysics Data System (ADS)
Shao, X.-M.; Harlin, J.; Stock, M.; Stanley, M.; Regan, A.; Wiens, K.; Hamlin, T.; Pongratz, M.; Suszcynsky, D.; Light, T.
Hurricanes generally produce very little lightning activity compared to other noncyclonic storms, and lightning is especially sparse in the eye wall and inner regions within tens of kilometers surrounding the eye [Molinari et al., 1994, 1999]. (The eye wall is the wall of clouds that encircles the eye of the hurricane.) Lightning can sometimes be detected in the outer, spiral rainbands, but the lightning occurrence rate varies significantly from hurricane to hurricane as well as within an individual hurricane's lifetime.Hurricanes Katrina and Rita hit the U.S. Gulf coasts of Louisiana, Mississippi, and Texas, and their distinctions were not just limited to their tremendous intensity and damage caused. They also differed from typical hurricanes in their lightning production rate.
Space Shuttle Video Images: An Example of Warm Cloud Lightning
NASA Technical Reports Server (NTRS)
Vaughan, Otha H., Jr.; Boeck, William L.
1998-01-01
Warm cloud lightning has been reported in several tropical locations. We have been using the intensified monochrome TV cameras at night during a number of shuttle flights to observe large active thunderstorms and their associated lightning. During a nighttime orbital pass of the STS-70 mission on 17 July 1995 at 07:57:42 GMT, the controllers obtained video imagery of a small cloud that was producing lightning. Data from a GOES infrared image establishes that the cloud top had a temperature of about 271 degrees Kelvin ( -2 degrees Celsius). Since this cloud was electrified to the extent that a lightning discharge did occur, it may be another case of lightning in a cloud that presents little if any evidence of frozen or melting precipitation.
Simultaneous Observation of Lightning and Terrestrial Gamma-ray Flashes
NASA Astrophysics Data System (ADS)
Alnussirat, S.; Christian, H. J., Jr.; Fishman, G. J.; Burchfield, J. C.
2017-12-01
The relative timing between TGFs and lightning optical emissions is a critical parameter that may elucidate the production mechanism(s) of TGFs. In this work, we study the correlation between optical emissions detected by the Geostationary Lightning Mapper (GLM) and TGFs triggered by the Fermi-GBM. The GLM is the only instrument that detects total lightning activities (IC and CG) continuously (day and night) over a large area of the Earth, with very high efficiency and location accuracy. The unique optical emission data from the GLM will enable us to study, for the first time, the lightning activity before and after the TGF production. From this investigation, we hope to clarify the production mechanism of TGFs and the characteristics of thundercloud cells that produce them. A description of the GLM concept and operation will be presented and as well as the preliminary results of the TGF-optical emission correlation.
Case Report: Mass Casualty Lightning Strike at Ranger Training Camp.
Thompson, Shannon N; Wilson, Zachary W; Cole, Christopher B; Kennedy, Andrew R; Aycock, Ryan D
2017-05-01
Although lightning strikes are a rare occurrence, their significance cannot be ignored given military operations in the field during all types of weather. With proper medical management, patients with lightning injuries can return to duty. Information for this case report comes from eyewitness account at the 6th Ranger Training Battalion and from review of physician documentation from the 96th Medical Group, Eglin Air Force Base, Florida. A lightning strike injured 44 Ranger School participants during a training exercise on August 12, 2015, at Camp Rudder, Florida. These patients were triaged in the field and transported to emergency department of Eglin Air Force Base. Of the 44 casualties, 20 were admitted. All were returned to duty the following day. One patient had cardiac arrest. This patient, along with two others, was admitted to the intensive care unit. Seventeen other patients were admitted for observation for rhabdomyolysis and/or cardiac arrhythmias. One patient was admitted with suspected acute kidney injury indicated by an elevated creatinine. All patients, including those admitted to the intensive care unit, were released on the day following the lightning strike without restrictions and were allowed to return to duty with increased medical monitoring. This case report highlights the need for proper triage and recognition of lightning strike injury, coordination of care between field operations and emergency department personnel, and close follow-up for patients presenting with lightning injury. Symptoms, physical exam, and laboratory findings from rigorous training can be difficult to distinguish from those resulting from lightning injury. Secondary injuries resulting from blunt trauma from falls may have been prevented by the use of the lightning strike posture. Further analysis of procedures and standard operating protocols to mitigate risk during thunderstorms may be required to prevent lightning's effects on large groups of military personnel. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Lightning x-rays inside thunderclouds, in-flight measurements on-board an A350
NASA Astrophysics Data System (ADS)
van Deursen, Alexander; Kochkin, Pavlo; de Boer, Alte; Bardet, Michiel; Boissin, Jean-François
2015-04-01
Thunderstorms emit bursts of energetic radiation. Moreover, lightning stepped leader produces x-ray pulses. The phenomena, their interrelation and impact on Earth's atmosphere and near space are not fully understood yet. The In-flight Lightning Strike Damage Assessment System ILDAS was developed in an EU FP6 project ( http://ildas.nlr.nl/ ) to provide information on threat that lightning poses to aircraft. It is intended to localize the lightning attachment points in order to reduce maintenance time and to build statics on lightning current. The system consists of 2 E-field sensors and a varying number of H-field sensors. It has recently been enhanced by two LaBr3 scintillation detectors inside the aircraft. The scintillation detectors are sensitive to x- and gamma-rays above 30 keV. The entire system is installed on-board of an A-350 aircraft and digitizes data with 100Msamples/sec rate when triggered by lightning. A continuously monitoring channel counts the number of occurrences that the x-ray signal exceeds a set of trigger levels. In the beginning of 2014 the aircraft flew through thunderstorm cells collecting the data from the sensors. The x-rays generated by the lightning flash are measured in synchronization better than 40 ns with the lightning current information during a period of 1 second around the strike. The continuous channel stores x-ray information with very limited time and amplitude resolution during the whole flight. That channel would allow x-rays from cosmic ray background, TGFs and continuous gamma-ray glow of thundercloud outside the 1 s time window. In the EGU2014 we presented the ILDAS system and showed that the x-ray detection works as intended. Fast x-ray bursts have been detected during stepped/dart stepped leaders and during interception of lightning. Data analysis of continuous channel recordings will be presented as well.
NASA Astrophysics Data System (ADS)
Smeltzer, C. D.; Wang, Y.; Koshak, W. J.
2014-12-01
Vertical profiles and emission lifetimes of lightning nitrogen oxides (LNOx) are derived using the Ozone Monitoring Instrument (OMI). Approximately 200 million flashes, over a 10 year climate period, from the United States National Lighting Detection Network (NLDN), are aggregated with OMI cloud top height to determine the vertical LNOx structure. LNOx lifetime is determined as function of LNOx signal in a 36 kilometer vertical column from the time of the last known flash to depletion of the LNOx signal. Environmental Protection Agency (EPA) Air Quality Station (AQS) surface data further support these results by demonstrating as much as a 200% increase in surface level NO2 during strong thunderstorm events and a lag as long as 5 to 8 hours from the lightning event to the peak surface event, indicating a evolutional process. Analysis of cloud resolving chemical transport model (REAM Cloud) demonstrates that C-shaped LNOx profiles, which agree with OMI vertical profile observations, evolve due to micro-scale convective meteorology given inverted C-shaped LNOx emission profiles as determined from lightning radio telemetry. It is shown, both in simulations and in observations, that the extent to which the LNOx vertical distribution is C-shaped and the lifetime of LNOx is proportional to the shear-strength of the thunderstorm. Micro-scale convective meteorology is not adequately parameterized in global scale and regional scale chemical transport models (CTM). Therefore, these larger scale CTMs ought to use a C-shape emissions profile to best reproduce observations until convective parameterizations are updated. These findings are used to simulate decadal LNOx and lightning ozone climatology over the Continental United States (CONUS) from 2004-2014.
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Bailey, J. C.; Carey, L. D.; Goodman, S. J.; Rudlosky, S. D.; Albrecht, R.; Morales, C. A.; Anselmo, E. M.; Neves, J. R.
2013-01-01
A 12 station Lightning Mapping Array (LMA) network was deployed during October 2011in the vicinity of São Paulo, Brazil (SP-LMA) to contribute total lightning measurements to an international field campaign [CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)]. The SP-LMA was operational from November 2011 through March 2012. Sensor spacing was on the order of 15-30 km, with a network diameter on the order of 40-50km. The SP-LMA provides good 3-D lightning mapping out to150 km from the network center, with 2-D coverage considerably farther. In addition to supporting CHUVA science/mission objectives, the SP-LMA is supporting the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), on NOAA's Geostationary Operational Environmental Satellite-R (GOES-R: scheduled for a 2015 launch). These proxy data will be used to develop and validate operational algorithms so that they will be ready to use on "day1" following the GOES-R launch. The SP-LMA data also will be intercompared with lightning observations from other deployed lightning networks to advance our understanding of the capabilities/contributions of each of these networks toward GLM proxy and validation activities. This paper addresses the network assessment and analyses for intercomparison studies and GOES-R proxy activities
Cloud-to-Ground Lightning Characteristics of a Major Tropical Cyclone Tornado Outbreak
NASA Technical Reports Server (NTRS)
McCaul, Eugene W., Jr.; Buechler, Dennis; Goodman, Steven J.
1999-01-01
A comprehensive analysis has been conducted of the cloud-to-ground lightning activity occurring within a landfalling tropical cyclone that produced an outbreak of strong and damaging tornadoes. Radar data indicate that 12 convective cells were responsible for 29 tornadoes, several of which received an F3 intensity rating, in the southeastern United States on 16 August 1994 within the remnants of Tropical Storm Beryl. Of these 12 tornadic storms, the most active cell produced 315 flashes over a 5.5 hour period, while the other storms were less active. Three tornadic storms failed to produce any CG lightning at all. In general, the tornadic storms were more active electrically than other non-tornadic cells within Beryl's remnants, although the flash rates were rather modest by comparison with significant midlatitude severe storm events. Very few positive polarity flashes were found in the Beryl outbreak. During some of the stronger tornadoes, CG flash rates in the parent storms showed sharp transient decreases. Doppler radar data suggest the stronger tornadic storms were small supercells, and the lightning data indicate these storms exhibited lightning characteristics similar to those found in heavy-precipitation supercell storms.
An automatic lightning detection and photographic system
NASA Technical Reports Server (NTRS)
Wojtasinski, R. J.; Holley, L. D.; Gray, J. L.; Hoover, R. B.
1973-01-01
Conventional 35-mm camera is activated by an electronic signal every time lightning strikes in general vicinity. Electronic circuit detects lightning by means of antenna which picks up atmospheric radio disturbances. Camera is equipped with fish-eye lense, automatic shutter advance, and small 24-hour clock to indicate time when exposures are made.
Long recovery VLF perturbations associated with lightning discharges
NASA Astrophysics Data System (ADS)
Salut, M. M.; Abdullah, M.; Graf, K. L.; Cohen, M. B.; Cotts, B. R. T.; Kumar, Sushil
2012-08-01
Long D-region ionospheric recovery perturbations are a recently discovered and poorly understood subcategory of early VLF events, distinguished by exceptionally long ionospheric recovery times of up to 20 min (compared to more typical ˜1 min recovery times). Characteristics and occurrence rates of long ionospheric recovery events on the NWC transmitter signal recorded at Malaysia are presented. 48 long recovery events were observed. The location of the causative lightning discharge for each event is determined from GLD360 and WWLLN data, and each discharge is categorized as being over land or sea. Results provide strong evidence that long recovery events are attributed predominately to lightning discharges occurring over the sea, despite the fact that lightning activity in the region is more prevalent over land. Of the 48 long recovery events, 42 were attributed to lightning activity over water. Analysis of the causative lightning of long recovery events in comparison to all early VLF events reveals that these long recovery events are detectable for lighting discharges at larger distances from the signal path, indicating a different scattering pattern for long recovery events.
The impact of a 2 X CO2 climate on lightning-caused fires
NASA Technical Reports Server (NTRS)
Price, Colin; Rind, David
1994-01-01
Future climate change could have significant repercussions for lightning-caused wildfires. Two empirical fire models are presented relating the frequency of lightning fires and the area burned by these fires to the effective precipitation and the frequency of thunderstorm activity. One model deals with the seasonal variations in lightning fires, while the second model deals with the interannual variations of lightning fires. These fire models are then used with the Goddard Institute for Space Studies General Circulation Model to investigate possible changes in fire frequency and area burned in a 2 X CO2 climate. In the United States, the annual mean number of lightning fires increases by 44%, while the area burned increases by 78%. On a global scale, the largest increase in lightning fires can be expected in untouched tropical ecosystems where few natural fires occur today.
Lightning and Precipitation: Observational Analysis of LIS and PR
NASA Technical Reports Server (NTRS)
Adamo, C.; Solomon, R.; Goodman, S.; Dietrich, S.; Mugnai, A.
2003-01-01
Lightning flash rate can identify areas of convective rainfall when the storms are dominated by ice-phase precipitation. Modeling and observational studies indicate that cloud electrification and microphysics are very closely related and it is of great interest to understand the relationship between lightning and cloud microphysical quantities. Analyzing data from the Lightning Image Sensor (LIS) and the Precipitation Radar (PR), we show a quantitative relationship between microphysical characteristics of thunderclouds and lightning flash rate. We have performed a complete analysis of all data available over the Mediterranean during the TRMM mission and show a range of reflective profiles as a function of lightning activity for both convective and stratiform regimes as well as seasonal variations. Due to the increasing global coverage of lightning detection networks, this kind of study can used to extend the knowledge about thunderstorms and discriminate between different regimes in regions where radar measurements are readilly available.
Where are the lightning hotspots on Earth?
NASA Astrophysics Data System (ADS)
Albrecht, R. I.; Goodman, S. J.; Buechler, D. E.; Blakeslee, R. J.; Christian, H. J., Jr.
2015-12-01
The first lightning observations from space date from the early 1960s and more than a dozen spacecraft orbiting the Earth have flown instruments that recorded lightning signals from thunderstorms over the past 45 years. In this respect, the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS), having just completed its mission (1997-2015), provides the longest and best total (intracloud and cloud-to-ground) lightning data base over the tropics.We present a 16 year (1998-2013) reprocessed data set to create very high resolution (0.1°) TRMM LIS total lightning climatology. This detailed very high resolution climatology is used to identify the Earth's lightning hotspots and other regional features. Earlier studies located the lightning hotspot within the Congo Basin in Africa, but our very high resolution lightning climatology found that the highest lightning flash rate on Earth actually occurs in Venezuela over Lake Maracaibo, with a distinct maximum during the night. The higher resolution dataset clearly shows that similar phenomenon also occurs over other inland lakes with similar conditions, i.e., locally forced convergent flow over a warm lake surface which drives deep nocturnal convection. Although Africa does not have the top lightning hotspot, it comes in a close second and it is the continent with the highest number of lightning hotspots, followed by Asia, South America, North America, and Oceania. We also present climatological maps for local hour and month of lightning maxima, along with a ranking of the highest five hundred lightning maxima, focusing discussion on each continent's 10 highest lightning maxima. Most of the highest continental maxima are located near major mountain ranges, revealing the importance of local topography in thunderstorm development. These results are especially relevant in anticipation of the upcoming availability of continuous total lightning observations from the Geostationary Lightning Mapping (GLM) aboard GOES-R. This study provides context to forecasters as to total lightning activity and locations within GLM field of view as well as around the world.
NASA Technical Reports Server (NTRS)
Williams, E.; Lin, S.; Labrada, C.; Christian, H.; Goodman, S.; Boccippio, D.; Driscoll, K.
1999-01-01
Simultaneous radar (13.8 Ghz) and lightning (Lightning Imaging Sensor) observations from the NASA TRMM (Tropical Rainfall Measuring Mission) spacecraft afford a new opportunity to examine differences in tropical continental and oceanic convection on a global basis, The 250 meter vertical resolution of the radar data and the approximately 17 dBZ sensitivity are well suited to providing vertical profiles of radar reflectivity over the entire tropical belt. The reflectivity profile has been shown in numerous local ground-based studies to be a good indicator of both updraft velocity and electrical activity. The radar and lightning observations for multiple satellite orbits have been integrated to produce global CAPPI's for various altitudes. At 7 km altitude, where mixed phase microphysics is known to be active, the mean reflectivity in continental convection is 10-15 dB greater than the value in oceanic convection. These results provide a sound physical basis for the order-of-magnitude contrast in lightning counts between continental and oceanic convection. These observations still beg the question, however, about the contrast in updraft velocity in these distinct convective regimes.
NASA Astrophysics Data System (ADS)
Oike, Yuta; Kasahara, Yoshiya; Goto, Yoshitaka
2014-09-01
We statistically analyzed lightning whistlers detected from the analog waveform data below 15 kHz observed by the VLF instruments onboard Akebono. We examined the large amount of data obtained at Uchinoura Space Center in Japan for 22 years from 1989 to 2010. The lightning whistlers were mainly observed inside the L shell region below 2. Seasonal dependence of the occurrence frequency of lightning whistlers has two peaks around July to August and December to January. As lightning is most active in summer, in general, these two peaks correspond to summer in the Northern and Southern Hemispheres, respectively. Diurnal variation of the occurrence frequency showed that lightning whistlers begin to increase in the early evening and remain at a high-occurrence level through the night with a peak around 21 in magnetic local time (MLT). This peak shifts toward nightside compared with lightning activity, which begins to rise around noon and peaks in the late afternoon. This trend is supposed to be caused by attenuation of VLF wave in the ionosphere in the daytime. Comparison study with the ground-based observation revealed consistent results, except that the peak of the ground-based observation appeared after midnight while our measurements obtained by Akebono was around 21 in MLT. This difference is explained qualitatively in terms that lightning whistlers measured at the ground station passed through the ionosphere twice above both source region and the ground station. These facts provide an important clue to evaluate quantitatively the absorption effect of lightning whistler in the ionosphere.
NASA Technical Reports Server (NTRS)
Bailey, J. C.; Blakeslee, R. J.; Carey, L. D.; Goodman, S. J.; Rudlosky, S. D.; Albrecht, R.; Morales, C. A.; Anselmo, E. M.; Neves, J. R.; Buechler, D. E.
2014-01-01
A 12 station Lightning Mapping Array (LMA) network was deployed during October 2011 in the vicinity of Sao Paulo, Brazil (SP-LMA) to contribute total lightning measurements to an international field campaign [CHUVA - Cloud processes of tHe main precipitation systems in Brazil: A contribUtion to cloud resolVing modeling and to the GPM (GlobAl Precipitation Measurement)]. The SP-LMA was operational from November 2011 through March 2012 during the Vale do Paraiba campaign. Sensor spacing was on the order of 15-30 km, with a network diameter on the order of 40-50km. The SP-LMA provides good 3-D lightning mapping out to 150 km from the network center, with 2-D coverage considerably farther. In addition to supporting CHUVA science/mission objectives, the SP-LMA is supporting the generation of unique proxy data for the Geostationary Lightning Mapper (GLM) and Advanced Baseline Imager (ABI), on NOAA's Geostationary Operational Environmental Satellite-R (GOES-R: scheduled for a 2015 launch). These proxy data will be used to develop and validate operational algorithms so that they will be ready to use on "day1" following the GOES-R launch. As the CHUVA Vale do Paraiba campaign opportunity was formulated, a broad community-based interest developed for a comprehensive Lightning Location System (LLS) intercomparison and assessment study, leading to the participation and/or deployment of eight other ground-based networks and the space-based Lightning Imaging Sensor (LIS). The SP-LMA data is being intercompared with lightning observations from other deployed lightning networks to advance our understanding of the capabilities/contributions of each of these networks toward GLM proxy and validation activities. This paper addresses the network assessment including noise reduction criteria, detection efficiency estimates, and statistical and climatological (both temporal and spatially) analyses for intercomparison studies and GOES-R proxy activities.
NASA Technical Reports Server (NTRS)
Carey, Lawrence D.; Schultz, Chris J.; Petersen, Walter A.; Rudlosky, Scott D.; Bateman, Monte; Cecil, Daniel J.; Blakeslee, Richard J.; Goodman, Steven J.
2011-01-01
The planned GOES-R Geostationary Lightning Mapper (GLM) will provide total lightning data on the location and intensity of thunderstorms over a hemispheric spatial domain. Ongoing GOES-R research activities are demonstrating the utility of total flash rate trends for enhancing forecasting skill of severe storms. To date, GLM total lightning proxy trends have been well served by ground-based VHF systems such as the Northern Alabama Lightning Mapping Array (NALMA). The NALMA (and other similar networks in Washington DC and Oklahoma) provide high detection efficiency (> 90%) and location accuracy (< 1 km) observations of total lightning within about 150 km from network center. To expand GLM proxy applications for high impact convective weather (e.g., severe, aviation hazards), it is desirable to investigate the utility of additional sources of continuous lightning that can serve as suitable GLM proxy over large spatial scales (order 100 s to 1000 km or more), including typically data denied regions such as the oceans. Potential sources of GLM proxy include ground-based long-range (regional or global) VLF/LF lightning networks such as the relatively new Vaisala Global Lightning Dataset (GLD360) and Weatherbug Total Lightning Network (WTLN). Before using these data in GLM research applications, it is necessary to compare them with LMAs and well-quantified cloud-to-ground (CG) lightning networks, such as Vaisala s National Lightning Detection Network (NLDN), for assessment of total and CG lightning location accuracy, detection efficiency and flash rate trends. Preliminary inter-comparisons from these lightning networks during selected severe weather events will be presented and their implications discussed.
NASA Astrophysics Data System (ADS)
Wang, D.; Takagi, N.
2012-12-01
We have observed the lightning occurred on a 100 m high windmill and its 105 m high standalone lightning-protection tower about 45 m separated from the windmill in the Hokuriku area of Japan for 7 consecutive winter seasons from 2005 to 2012. Our main observation items include: (1) Lightning current at the bottom of both the windmill and the tower. (2) Thunderstorm electric fields and the electric field changes caused by lightning at multiple sites. (3) Optical images by both low and high speed imaging systems. During the 7 winter seasons, over 100 lightning have hit either the tower or the windmill or both. All the lightning but two observed are of upward lightning. Those upward lightning can be sub-classified into self-initiated types and other-triggered types according to whether there is a discharge activity prior to the upward leaders or not. Self-initiated and other-triggered upward lightning tend to have biased percentages in terms of striking locations (windmill versus tower) and thunderstorm types (active versus weak). All the upward lightning but one contained only initial continuous current stages. In the presentation, we will first give a review on those results we have reported before [1-3]. As an update, we will report the following results. (1) The electric field change required for triggering a negative upward leader is usually more than twice bigger than that for triggering a positive upward leader. (2) An electric current pulse with an amplitude of several tens of Amperes along a high structure has been observed to occur in response to a rapid electric change generated by either a nearby return stroke or K-change. References [1] D.Wang, N.Takagi, T.Watanebe, H. Sakurano, M. Hashimoto, Observed characteristics of upward leaders that are initiated from a windmill and its lightning protection tower, Geophys. Res. Lett., Vol.35, L02803, doi:10.1029/2007GL032136, 2008. [2] W. Lu, D.Wang, Y. Zhang and N. Takagi, Two associated upward lightning flashes that produced opposite polarity electric field changes, Geophys. Res. Lett., Vol.36, L05801, doi:10.1029/2008GL036598, 2009. [3] D. Wang, N. Takagi, Characteristics of Winter Lightning that Occurred on a Windmill and its Lightning Protection Tower in Japan, IEEJ Trans. on Power and Energy, Vol. 132, No.6, pp.568-572, Doi:10.1541/ieejpes.132.568, 2012.
Broadband VHF observations for lightning impulses from a small satellite SOHLA-1 (Maido 1)
NASA Astrophysics Data System (ADS)
Morimoto, T.; Kikuchi, H.; Ushio, T.; Kawasaki, Z.; Hidekazu, H.; Aoki, T.
2009-12-01
Lightning Research Group of Osaka University (LRG-OU) has been developing VHF Broadband Digital Interferometer (DITF) to image precise lightning channels and monitor lightning activity widely. The feature of broadband DITF is its ultrawide bandwidth (from 25MHz to 100MHz) and implicit redundancy for estimating VHF source location. LRG-OU considers an application of the broadband DITF to the spaceborne measurement system and joins the SOHLA (Space Oriented Higashi-Osaka Leading Associate) satellite project. The SOHLA satellite project represents a technology transfer program to expand the range of the space development community in Japan. The objective is to get SMEs (Small and Medium sized manufacturing Enterprises) involved in small space projects and new space technologies. Under the cooperative agreement, JAXA (Japan Aerospace Exploration Agency) intends to contribute to socio-economic development by returning its R&D results to society, and SOHLA tries to revitalize the local economy through the commercialization of versatile small satellites. According to the agreement, JAXA provides SOHLA its technical information on small satellites and other technical assistance for the development of the small satellites, SOHLA-1. The prime objective of the SOHLA-1 program is to realize low-cost and short term development of a microsatellite which utilizes the components and bus technologies of JAXA’s MicroLabSat. SOHLA-1 is a spin-stabilized microsatellite of MicroLabSat heritage (about 50 kg). The spin axis is fixed to inertial reference frame. The spin axis (z-axis) lies in the plane containing the solar direction and the normal to the orbital plane. LRG-OU takes responsibility for a science mission of SOHLA-1. To examine the feasibility of the DITF receiving VHF lightning impulses in space, LRG-OU proposes the BMW (Broadband Measurement of Waveform for VHF Lightning Impulses). BMW consists of a single pair of an antenna, a band-pass filter, an amplifier, and an analog-to-digital converter (ADC) to record broadband VHF pulses in orbit. The waveforms of 100 EM pulses in VHF band emitted from a lightning flash are obtained. Three pairs of BMW with accurate synchronized 3-channel-ADC are needed to realize DITF. From the successful satellite observation like TRMM/LIS, the effectiveness and impact of satellite observations for lightning are obvious. The combination of optical and VHF lightning observations are complimentary each other. ISS/JEM is a candidate platform to realize the simplest DITF and synchronous observations with optical sensors. SOHLA-1 was launched by a HII-A rocket at January 23, 2009 and named Maido-1. Then BMW has worked well and recorded VHF EM waveforms. The development of Maido-1 and its observations results will be presented.
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Petersen, Walter A.; Carey, Lawrence D.
2009-01-01
Previous studies have demonstrated that rapid increases in total lightning activity (intracloud + cloud-to-ground) are often observed tens of minutes in advance of the occurrence of severe weather at the ground. These rapid increases in lightning activity have been termed "lightning jumps." Herein, we document a positive correlation between lightning jumps and the manifestation of severe weather in thunderstorms occurring across the Tennessee Valley and Washington D.C. A total of 107 thunderstorms were examined in this study, with 69 of the 107 thunderstorms falling into the category of non-severe, and 38 into the category of severe. From the dataset of 69 isolated non-severe thunderstorms, an average peak 1 minute flash rate of 10 flashes/min was determined. A variety of severe thunderstorm types were examined for this study including an MCS, MCV, tornadic outer rainbands of tropical remnants, supercells, and pulse severe thunderstorms. Of the 107 thunderstorms, 85 thunderstorms (47 non-severe, 38 severe) from the Tennessee Valley and Washington D.C tested 6 lightning jump algorithm configurations (Gatlin, Gatlin 45, 2(sigma), 3(sigma), Threshold 10, and Threshold 8). Performance metrics for each algorithm were then calculated, yielding encouraging results from the limited sample of 85 thunderstorms. The 2(sigma) lightning jump algorithm had a high probability of detection (POD; 87%), a modest false alarm rate (FAR; 33%), and a solid Heidke Skill Score (HSS; 0.75). A second and more simplistic lightning jump algorithm named the Threshold 8 lightning jump algorithm also shows promise, with a POD of 81% and a FAR of 41%. Average lead times to severe weather occurrence for these two algorithms were 23 minutes and 20 minutes, respectively. The overall goal of this study is to advance the development of an operationally-applicable jump algorithm that can be used with either total lightning observations made from the ground, or in the near future from space using the GOES-R Geostationary Lightning Mapper.
Fermi GBM Observations of Terrestrial Gamma Flashes
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Briggs, M. S.; Fishman, G. J.; Bhat, P. N.; Paciesas, W. S.; Preece, R.; Kippen, R. M.; von Kienlin, A.; Dwyer, J. R.; Smith, D. M.;
2010-01-01
In its first two years of operation, the Fermi Gamma Ray Burst Monitor (GBM) has observed more than 77 Terrestrial Gamma Flashes (TGFs). The thick Bismuth Germanate (BGO) detectors are excellent for TGF spectroscopy, having a high probability of recording the full energy of an incident photon, spanning a broad energy range from 150 keV to 40 MeV, and recording a large number of photons per TGF. Correlations between GBM TGF triggers and lightning sferics detected with the World-Wide Lightning Location Network indicate that TGFs and lightning are simultaneous to within tens of microseconds. The energy spectra of some TGFs have strong 511 keV positron annihilation lines, indicating that these TGFs contain a large fraction of positrons
Lightning Protection and Instrumentation at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Colon, Jose L.
2005-01-01
Lightning is a natural phenomenon, but can be dangerous. Prevention of lightning is a physical impossibility and total protection requires compromises on costs and effects, therefore prediction and measurements of the effects that might be produced by iightn:ing is a most at locat:ions where people or sensitive systems and equipment are exposed. This is the case of the launching pads for the Space Shuttle at Kennedy Space Center (KSC) of the National Aeronautics and Space Administration. This report summarizes lightring phenomena with a brief explanation of lightning generation and lightning activity as related to KSC. An analysis of the instrumentation used at the launching pads for measurements of lightning effects with alternatives to improve the protection system and up-grade the actual instrumentation system is indicated.
Lightning and electrical activity during the Shiveluch volcano eruption on 16 November 2014
NASA Astrophysics Data System (ADS)
Shevtsov, Boris M.; Firstov, Pavel P.; Cherneva, Nina V.; Holzworth, Robert H.; Akbashev, Renat R.
2016-03-01
According to World Wide Lightning Location Network (WWLLN) data, a sequence of lightning discharges was detected which occurred in the area of the explosive eruption of Shiveluch volcano on 16 November 2014 in Kamchatka. Information on the ash cloud motion was confirmed by the measurements of atmospheric electricity, satellite observations and meteorological and seismic data. It was concluded that WWLLN resolution is enough to detect the earlier stage of volcanic explosive eruption when electrification processes develop the most intensively. The lightning method has the undeniable advantage for the fast remote sensing of volcanic electric activity anywhere in the world. There is a good opportunity for the development of WWLLN technology to observe explosive volcanic eruptions.
Mortalidade em florestas de Pinus palustris causada por tempestade de raios
Kenneth W. Outcalt; Jorge Paladino Corrêa de Lima; Jose Américo de Mello Filho
2002-01-01
The importance of lightning as an ignition source for the fire driven Pinus palustris ecosystem is widely recognized. Lightning also impacts this system on a smaller scale by causing individual tree mortality. The objective of this study was to determine the level of mortality due to lightning activity at the Department of Energy's Savannah...
GLM Post Launch Testing and Airborne Science Field Campaign
NASA Astrophysics Data System (ADS)
Goodman, S. J.; Padula, F.; Koshak, W. J.; Blakeslee, R. J.
2017-12-01
The Geostationary Operational Environmental Satellite (GOES-R) series provides the continuity for the existing GOES system currently operating over the Western Hemisphere. The Geostationary Lightning Mapper (GLM) is a wholly new instrument that provides a capability for total lightning detection (cloud and cloud-to-ground flashes). The first satellite in the GOES-R series, now GOES-16, was launched in November 2016 followed by in-orbit post launch testing for approximately 12 months before being placed into operations replacing the GOES-E satellite in December. The GLM will map total lightning continuously throughout day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. The total lightning is very useful for identifying hazardous and severe thunderstorms, monitoring storm intensification and tracking evolution. Used in tandem with radar, satellite imagery, and surface observations, total lightning data has great potential to increase lead time for severe storm warnings, improve aviation safety and efficiency, and increase public safety. In this paper we present initial results from the post-launch in-orbit performance testing, airborne science field campaign conducted March-May, 2017 and assessments of the GLM instrument and science products.
NASA Technical Reports Server (NTRS)
Buechler, D. E.; Christian, H. J.; Koshak, W. J.; Goodman, S. J.
2011-01-01
The Lightning Imaging Sensor (LIS) onboard the Tropical Rainfall Measuring Mission (TRMM) satellite has been providing observations of total lightning over the Earth s Tropics for 13 years. This study examines the performance of the LIS throughout its time in orbit. Application of the Deep Convective Cloud Technique (DCCT) (Doelling et al., 2004) was performed on the LIS background pixels to assess the stability of the LIS instrument. The DCCT analysis indicates that the maximum deviation of the monthly mean radiance is within 2% of the overall mean, indicating stable performance over the period. In addition, an examination of the number of flashes detected over time similarly shows no significant trend (after adjusting for the orbit boost that occurred in August 2001). These and other results indicate that there has been no discernible change in LIS performance throughout its lifetime. A similar approach will used for monitoring the performance of the Geostationary Lightning Mapper (GLM) onboard the next generation Geostationary Operational Environmental Satellite-R (GOES-R). Since GLM is based on LIS design heritage, the LIS results indicate that GLM may also experience stable performance over its lifetime.
Relationship between aerosol and lightning over Indo-Gangetic Plain (IGP), India
NASA Astrophysics Data System (ADS)
Lal, D. M.; Ghude, Sachin D.; Mahakur, M.; Waghmare, R. T.; Tiwari, S.; Srivastava, Manoj K.; Meena, G. S.; Chate, D. M.
2017-08-01
The relationship between aerosol and lightning over the Indo-Gangetic Plain (IGP), India has been evaluated by utilising aerosol optical depth (AOD), cloud droplet effective radius and cloud fraction from Moderate Resolution Imaging Spectroradiometer. Lightning flashes have been observed by the lightning Imaging sensor on the board of Tropical Rainfall and Measuring Mission and humidity from modern-era retrospective-analysis for research and applications for the period of 2001-2012. In this study, the role of aerosol in lightning generation over the north-west sector of IGP has been revealed. It is found that lightning activity increases (decreases) with increasing aerosols during normal (deficient) monsoon rainfall years. However, lightning increases with increasing aerosol during deficient rainfall years when the average value of AOD is less than 0.88. We have found that during deficient rainfall years the moisture content of the atmosphere and cloud fraction is smaller than that during the years with normal or excess monsoon rainfall over the north-west IGP. Over the north-east Bay of Bengal and its adjoining region the variations of moisture and cloud fraction between the deficient and normal rainfall years are minimal. We have found that the occurrence of the lightning over this region is primarily due to its topography and localised circulation. The warm-dry air approaching from north-west converges with moist air emanating from the Bay of Bengal causing instability that creates an environment for deep convective cloud and lightning. The relationship between lightning and aerosol is stronger over the north-west sector of IGP than the north-east, whereas it is moderate over the central IGP. We conclude that aerosol is playing a major role in lightning activity over the north-west sector of IGP, but, local meteorological conditions such as convergences of dry and moist air is the principal cause of lightning over the north-east sector of IGP. In addition, atmospheric humidity also plays an important role in regulating the effect of aerosol on the microphysical properties of clouds over IGP region.
NASA Astrophysics Data System (ADS)
Pineda, N.; Rigo, T.; Bech, J.; Argemí, O.
2009-09-01
Thunderstorms can be characterized by both rainfall and lightning. The relationship between convective precipitation and lightning activity may be used as an indicator of the rainfall regime. Besides, a better knowledge of local thunderstorm phenomenology can be very useful to assess weather surveillance tasks. Two types of approach can be distinguished in the bibliography when analyzing the rainfall and lightning activity. On one hand, rain yields (ratio of rain mass to cloud-to-ground flash over a common area) calculated for long temporal and spatial domains and using rain-gauge records to estimate the amounts of precipitation. On the other hand, a case-by-case approach has been used in many studies to analyze the relationship between convective precipitation and lightning in individual storms, using weather radar data to estimate rainfall volumes. Considering a local thunderstorm case study approach, the relation between rainfall and lightning is usually quantified as the Rainfall-Lightning ratio (RLR). This ratio estimates the convective rainfall volume per lightning flash. Intense storms tend to produce lower RLR values than moderate storms, but the range of RLR found in diverse studies is quite wide. This relationship depends on thunderstorm type, local climatology, convective regime, type of lightning flashes considered, oceanic and continental storms, etc. The objective of this paper is to analyze the relationship between convective precipitation and lightning in a case-by-case approach, by means of daily radar-derived quantitative precipitation estimates (QPE) and total lightning data, obtained from observations of the Servei Meteorològic de Catalunya remote sensing systems, which covers an area of approximately 50000 km2 in the NE of the Iberian Peninsula. The analyzed dataset is composed by 45 thunderstorm days from April to October 2008. A good daily correlation has been found between the radar QPE and the CG flash counts (best linear fit with a R^2=0.74). The daily RLR found has a mean value of 86 10^3m3 rainfall volume per CG flash. The daily range of variation is quite wide, as it goes from 19 to 222 10^3m3 per CG flash. This variation has a seasonal component, related to changes in the convective regime. Summer days (July to middle September) had a mean RLR of 57 10^3m3 rainfall volume per CG flash, while from middle September to the end of October the rainfall volume per CG flash doubles (mean of 125 10^3m3 per CG flash).
Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.
2012-01-01
Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.
NASA Astrophysics Data System (ADS)
Marais, Eloise A.; Jacob, Daniel J.; Choi, Sungyeon; Joiner, Joanna; Belmonte-Rivas, Maria; Cohen, Ronald C.; Ryerson, Thomas B.; Weinheimer, Andrew J.; Volz-Thomas, Andreas
2017-04-01
Nitrogen oxides (NOx ≡ NO + NO2) are long lived in the upper troposphere (UT), and so have a large impact on ozone formation where ozone is a powerful greenhouse gas. Measurements of UT NOx are limited to summertime aircraft campaigns predominantly in North America. There are year-round NOx measurements from instruments onboard commercial aircraft, but NO2 measurements are susceptible to large interferences. Satellites provide global coverage, but traditional space-based NO2 observations only provide one piece of vertical information in the troposphere. New cloud-sliced satellite NO2 products offer additional vertical information by retrieving partial NO2 columns above clouds and further exploit differences in cloud heights to calculate UT NO2 mixing ratios. Two new cloud-sliced NO2 products from the Ozone Monitoring Instrument (OMI; 2004 launch) provide seasonal UT NO2 data centered at 350 hPa for 2005-2007 (NASA product) and 380 hPa for 2006 only (KNMI). Differences between the products include spectral fitting to obtain NO2 along the viewing path (slant column), the air mass factor calculation to convert slant columns to true vertical columns, treatment of the stratospheric NO2 component, and the choice of cloud products. The resultant NASA NO2 mixing ratios are 30% higher than KNMI NO2 and are consistent with summertime aircraft NO2 observations over North America. Comparison between NASA NO2 and the GEOS-Chem chemical transport model exposes glaring inadequacies in the model. In summer in the eastern US lightning NOx emissions are overestimated by at least a factor of 2, corroborated by comparison of GEOS-Chem and MOZAIC aircraft observations of reactive nitrogen (NOy). Too fast heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) leads to an underestimate in UT NO2 in winter across the northern hemisphere. Absence of interannual variability in lightning flashes in the lightning NOx parameterization induces biases in UT NO2 in the tropics due to anomalous lightning activity linked to the El Niño Southern Oscillation. Ongoing work is to use GEOS-Chem to investigate the implications of updated representation of UT NOx on ozone.
NASA Astrophysics Data System (ADS)
Kumar, Sanjay; Chen, Wu; Chen, Mingli; Liu, Zhizhao; Singh, R. P.
2017-08-01
Total electron content (TEC) computed from the network of Global Positioning System over Hong Kong area known as Hong Kong Sat-Ref-network has been used to study perturbation in the ionosphere from thunder storm activity. Data for geomagnetic quiet day (Kp < 4, on 1 April 2014) have been analyzed. The lightning activity was measured from Total Lightning sensor LS8000 over/around the Hong Kong region. Deviation in vertical TEC (DTEC) and the rate of change of TEC index (ROTI) have been derived and compared for lightning day of 1 April 2014 and nonlightning day of 7 April 2014. An analysis showed reduction in TEC during evening hour (up to 1245 UT), whereas an enhancement during nighttime hour on the lightning day is observed. The variations in DTEC during nonlightning day are found to be insignificant in comparison to that during the lightning day. The ionospheric perturbation in TEC has been noticed up to a distance around 500 km and more from the lightning center. ROTI is found to vary from 3 to 60 total electron content unit (TECU)/min (1 TECU = 1016 el m-2) on the day of thunderstorm activity, whereas ROTI is insignificant on nonlightning days. Signature of density bubbles in slant TEC data and periodicities (10-100 min) in DTEC data are observed. For the same pseudorandom numbers (1, 10, 13, 23, and 28) strong amplitude scintillations are also observed at a close by station. Amplitude scintillations are proposed to be caused by plasma bubbles. The results are tentatively explained by thunderstorm-induced electric fields and gravity waves.
Prevalent lightning sferics at 600 megahertz near Jupiter's poles
NASA Astrophysics Data System (ADS)
Brown, Shannon; Janssen, Michael; Adumitroaie, Virgil; Atreya, Sushil; Bolton, Scott; Gulkis, Samuel; Ingersoll, Andrew; Levin, Steven; Li, Cheng; Li, Liming; Lunine, Jonathan; Misra, Sidharth; Orton, Glenn; Steffes, Paul; Tabataba-Vakili, Fachreddin; Kolmašová, Ivana; Imai, Masafumi; Santolík, Ondřej; Kurth, William; Hospodarsky, George; Gurnett, Donald; Connerney, John
2018-06-01
Lightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures1-6. Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning7-9. Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies10,11, lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range12. Strong ionospheric attenuation or a lightning discharge much slower than that on Earth have been suggested as possible explanations for this discrepancy13,14. Here we report observations of Jovian lightning sferics (broadband electromagnetic impulses) at 600 megahertz from the Microwave Radiometer15 onboard the Juno spacecraft. These detections imply that Jovian lightning discharges are not distinct from terrestrial lightning, as previously thought. In the first eight orbits of Juno, we detected 377 lightning sferics from pole to pole. We found lightning to be prevalent in the polar regions, absent near the equator, and most frequent in the northern hemisphere, at latitudes higher than 40 degrees north. Because the distribution of lightning is a proxy for moist convective activity, which is thought to be an important source of outward energy transport from the interior of the planet16,17, increased convection towards the poles could indicate an outward internal heat flux that is preferentially weighted towards the poles9,16,18. The distribution of moist convection is important for understanding the composition, general circulation and energy transport on Jupiter.
Tracking LNOx Downwind to Investigate Driving Production Physics
NASA Astrophysics Data System (ADS)
Lapierre, J. L.; Pusede, S.
2016-12-01
Emissions of nitrogen oxides (NOx) influence atmospheric oxidation chemistry and drive ozone production. In the upper troposphere, lightning production (LNOx) is believed to contribute as much as 70% of the total NOx. Therefore, accurate, process-driven constraints on LNOx are required to understand the global NOx and ozone burden. However, estimates of the amount of NOx produced per lightning flash remain highly uncertain, ranging across multiple orders of magnitude ( 10-1000 moles NOx/flash). Satellite measurements provide unique advantages to study LNOx due to their extensive spatial coverage of the Earth, but despite the mechanism by which lightning produces NOx being generally known, correlations between satellite NO2 and measured flash counts are often observed to be poor. Here, we combine NO2 measurements from the Ozone Monitoring Instrument (OMI), lightning data from the National Lightning Detection Network (NLDN), and wind data from the NCEP North American Regional Reanalysis (NARR) over a 4 year period (2012-2015) to study observed relationships between the occurrence and physical characteristics of lightning (e.g., intracloud/cloud-to-ground ratio, polarity, peak current, and multiplicity) with elevated NO2 columns. We investigate the observed spatial mismatch between high flash rates and elevated upper tropospheric NO2, highlight a number of individual storms as case studies, and describe the winds and chemistry that dislocate LNOx from storms. We then use these new constraints on LNOx to investigate the physical drivers of LNOx production rates.
Inducing Therapeutic Hypothermia in Cardiac Arrest Caused by Lightning Strike.
Scantling, Dane; Frank, Brian; Pontell, Mathew E; Medinilla, Sandra
2016-09-01
Only limited clinical scenarios are grounds for induction of therapeutic hypothermia. Its use in traumatic cardiac arrests, including those from lightning strikes, is not well studied. Nonshockable cardiac arrest rhythms have only recently been included in resuscitation guidelines. We report a case of full neurological recovery with therapeutic hypothermia after a lightning-induced pulseless electrical activity cardiac arrest in an 18-year-old woman. We also review the important pathophysiology of lightning-induced cardiac arrest and neurologic sequelae, elaborate upon the mechanism of therapeutic hypothermia, and add case-based evidence in favor of the use of targeted temperature management in lightning-induced cardiac arrest. Copyright © 2016 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
HAARP-based Investigations of Lightning-induced Nonlinearities within the D-Region Ionosphere
NASA Astrophysics Data System (ADS)
Moore, R. C.
2015-12-01
It is well-documented that energetic lightning can produce fantastical events with the lower ionosphere. Although the High-frequency Active Auroral Research Program (HAARP) transmitter is not as powerful as lightning, it can be used to investigate the nonlinear interactions that occur within the lower ionosphere, many of which also occur during lightning-induced ionospheric events. This paper presents the best experimental results obtained during D-region modification experiments performed by the University of Florida at the HAARP observatory between 2007 and 2014, including ELF/VLF wave generation experiments, wave-wave mixing experiments, and cross-modulation experiments. We emphasize the physical processes important for lightning-ionosphere interactions that can be directly investigated using HAARP.
Electric Field and Lightning Observations in the Core of Category 5 Hurricane Emily
NASA Technical Reports Server (NTRS)
Blakeslee, Richard; Mach, Doug M.; Bateman, Monte G.; Bailey, Jeff C.
2007-01-01
Significant electric fields and lightning activity associated with Hurricane Emily were observed from a NASA high-altitude ER-2 aircraft on July 17, 2005 while this storm developed as a compact but intense category 5 hurricane in the Caribbean south of Cuba. The electrical measurements were acquired as part of the NASA sponsored Tropical Cloud Systems and Processes (TCSP) experiment. In addition to the electrical measurements, the aircraft's remote sensing instrument complement also included active radars, passive microwave, visible and infrared radiometers, and a temperature sounder providing details on the dynamical, microphysical, and environmental structure, characteristics and development of this intense storm. Cloud-to-ground lightning location data from Vaisala's long range lightning detection network were also acquired and displayed in real-time along with electric fields measured at the aircraft. These data and associated display also supported aircraft guidance and vectoring during the mission. During the observing period, flash rates in excess of 3 to 5 flashes per minute, as well as large electric field and field change values were observed as the storm appeared to undergo periods of intensification, especially in the northwest quadrant in the core eyewall regions. This is in contrast to most hurricanes that tend to be characterized by weak electrification and little or no lightning activity except in the outer rain bands. It should be noted that this storm also had significant lightning associated with its rain bands.
Scientific Lightning Detection Network for Kazakhstan
NASA Astrophysics Data System (ADS)
Streltsov, A. V.; Lozbin, A.; Inchin, A.; Shpadi, Y.; Inchin, P.; Shpadi, M.; Ayazbayev, G.; Bykayev, R.; Mailibayeva, L.
2015-12-01
In the frame of grant financing of the scientific research in 2015-2017 the project "To Develop Electromagnetic System for lightning location and atmosphere-lithosphere coupling research" was found. The project was start in January, 2015 and should be done during 3 years. The purpose is to create a system of electromagnetic measurements for lightning location and atmosphere-lithosphere coupling research consisting of a network of electric and magnetic sensors and the dedicated complex for data processing and transfer to the end user. The main tasks are to set several points for electromagnetic measurements with 100-200 km distance between them, to develop equipment for these points, to develop the techniques and software for lightning location (Time-of-arrival and Direction Finding (TOA+DF)) and provide a lightning activity research in North Tien-Shan region with respect to seismicity and other natural and manmade activities. Also, it is planned to use lightning data for Global Electric Circuit (GEC) investigation. Currently, there are lightning detection networks in many countries. In Kazakhstan we have only separate units in airports. So, we don't have full lightning information for our region. It is planned, to setup 8-10 measurement points with magnetic and electric filed antennas for VLF range. The final data set should be including each stroke location, time, type (CG+, CG-, CC+ or CC-) and waveform from each station. As the magnetic field lightning antenna the ferrite rod VLF antenna will be used. As the electric field antenna the wide range antenna with specific frequencies filters will be used. For true event detection TOA and DF methods needs detected stroke from minimum 4 stations. In this case we can get location accuracy about 2-3 km and better.
The Interferometric View of Lightning
NASA Astrophysics Data System (ADS)
Stock, M.; Lapierre, J. L.
2017-12-01
Recent advances in off the shelf high-speed digitizers has enabled vast improvements in broadband, digital VHF interferometers. These simple instruments consist of 3 or more VHF antennas distributed in an array which are then digitized at a speed above the Nyquist frequency of the antenna bandwidth (usually 200+ MHz). Broadband interferometers are capable of creating very detailed maps of lightning, with time resolution better than 1us, and angular resolution only limited by their baseline lengths. This is combined with high sensitivity, and the ability to locate both continuously emitting and impulsive radiation sources. They are not without their limitations though. Because the baselines are relatively short, the maps are only 2-dimensional (direction to the source), unless many antennas are used only a single VHF radiation source can be located at any instant, and because the antennas are almost always arranged in a planar array they are better suited for observing lightning at high elevation angles. Even though imperfect, VHF interferometers provide one of the most detailed views of the behavior of lightning flashes inside a cloud. This presentation will present the overall picture of in-cloud lightning as seen by VHF interferometers. Most flashes can be split into 3 general phases of activity. Phase 1 is the initiation phase, covering all activity until the negative leader completes its vertical extension, and includes both lightning initiation and initial breakdown pulses. Phase 2 is the active phase and includes all activity during the horizontal extension of the negative leader. During Phase 2, any K-processes which occur tend to be short in duration and extent. Phase 3 is the final phase, and includes all activity after the negative leader stops propagating. During Phase 3, the conductivity of the lightning channels starts to decline, and extensive K-processes are seen which traverse the entire channel structure, this is also the period in which regular pulse trains tend to be observed. Not all flashes fit this fairly simplistic structure, in particular some flashes seem to lack a vertically developing negative leader, and others seem to lack activity after the negative leader stops propagating. Still, this basic anatomy of an in-cloud flash proves useful in describing the overall structure of a lightning flash.
NASA Astrophysics Data System (ADS)
Allen, D. J.; Pickering, K. E.; Ring, A.; Holzworth, R. H.
2013-12-01
Lightning is the dominant source of nitrogen oxides (NOx) involved in the production of ozone in the middle and upper troposphere in the tropics and in summer in the midlatitudes. Therefore it is imperative that the lightning NOx (LNOx) source strength per flash be better constrained. This process requires accurate information on the location and timing of lightning flashes. In the past fifteen years satellite-based lightning monitoring by the Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) has greatly increased our understanding of the global distribution of lightning as a function of season and time-of-day. However, detailed information at higher temporal resolutions is only available for limited regions where ground-based networks such as the United States National Lightning Detection Network (NLDN) exist. In 2004, the ground-based World Wide Lightning Location Network (WWLLN) was formed with the goal of providing continuous flash rate information over the entire globe. It detects very low frequency (VLF) radio waves emitted by lightning with a detection efficiency (DE) that varies with stroke energy, time-of-day, surface type, and network coverage. This study evaluated the DE of WWLLN strokes relative to climatological OTD/LIS flashes using data from the 2007 to 2012 time period, a period during which the mean number of working sensors increased from 28 to 53. The analysis revealed that the mean global DE increased from 5% in 2007 to 13% in 2012. Regional variations were substantial with mean 2012 DEs of 5-10% over much of Argentina, Africa, and Asia and 15-30% over much of the Atlantic, Pacific, and Indian Oceans, the United States and the Maritime Continent. Detection-efficiency adjusted WWLLN flash rates were then compared to NLDN-based flash rates. Spatial correlations for individual summer months ranged from 0.66 to 0.93. Temporal correlations are currently being examined for regions of the U.S. and will also be shown.
Predicting thunderstorm evolution using ground-based lightning detection networks
NASA Technical Reports Server (NTRS)
Goodman, Steven J.
1990-01-01
Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.
NASA Technical Reports Server (NTRS)
Borucki, W. J.; Bar-Nun, A.; Scarf, F. L.; Look, A. F.; Hunt, G. E.
1982-01-01
Photographic observations of the nightside of Jupiter by the Voyager 1 spacecraft show the presence of extensive lightning activity. Detection of whistlers by the plasma wave analyzer confirms the optical observations and implies that many flashes were not recorded by the Voyager camera because the intensity of the flashes was below the threshold sensitivity of the camera. Measurements of the optical energy radiated per flash indicate that the observed flashes had energies similar to that for terrestrial superbolts. The best estimate of the lightning energy dissipation rate of 0.0004 W/sq m was derived from a consideration of the optical and radiofrequency measurements. The ratio of the energy dissipated by lightning compared to the convective energy flux is estimated to be between 0.000027 and 0.00005. The terrestrial value is 0.0001.
Nighttime observations of thunderstorm electrical activity from a high altitude airplane
NASA Technical Reports Server (NTRS)
Brook, M.; Rhodes, C.; Vaughan, O. H., Jr.; Orville, R. E.; Vonnegut, B.
1984-01-01
Photographs from a NASA U-2 airplane flying over nocturnal thunderstorms show frequent lightning activity in the upper part of the cloud. In some cases, unobscured segments of lightning channels 1 km or longer are visible in clear air around and above the cloud. Multiple images of lightning channels indicate multiple discharges in the same channel. Photographs taken through a diffraction grating show that the lightning has a spectrum similar to that observed in the lower troposphere. Lightning spectra obtained with a slitless line-scan spectrometer show strong singly ionized nitrogen emissions at 463.0 and 500.5 nm. Field changes measured with an electric field-change meter correlate with pulses measured with a photocell optical system. Optical signals corresponding to dart leader, return stroke, and continuing current events are readily distinguished in the scattered light emerging from the cloud surface. The variation of light intensity with time in lightning events is consistent with predicted modification of optical lightning signals by clouds. It appears that satellite based optical sensor measurements cannot provide reliable information on current rise times in return strokes. On the other hand, discrimination between cloud-to-ground and intracloud flashes and the counting of ground strokes is possible using the optical pulse pairs which have been identified with leader, return-stroke events in the cloud-to-ground flashes studied.
NASA Studies Lightning Storms Using High-Flying, Uninhabited Vehicle
NASA Technical Reports Server (NTRS)
2002-01-01
A NASA team studying the causes of electrical storms and their effects on our home planet achieved a milestone on August 21, 2002, completing the study's longest-duration research flight and monitoring four thunderstorms in succession. Based at the Naval Air Station Key West, Florida, researchers with the Altus Cumulus Electrification Study (ACES) used the Altus II remotely-piloted aircraft to study thunderstorms in the Atlantic Ocean off Key West and the west of the Everglades. Using special equipment aboard the Altus II, scientists in ACES will gather electric, magnetic, and optical measurements of the thunderstorms, gauging elements such as lightning activity and the electrical environment in and around the storms. With dual goals of gathering weather data safely and testing the adaptability of the uninhabited aircraft, the ACES study is a collaboration among the Marshall Space Flight Center, the University of Alabama in Huntsville, NASA's Goddard Space Flight Center in Greenbelt, Maryland, Pernsylvania State University in University Park, and General Atomics Aeronautical Systems, Inc.
Solar rotational cycle in lightning activity in Japan during the 18-19th centuries
NASA Astrophysics Data System (ADS)
Miyahara, Hiroko; Kataoka, Ryuho; Mikami, Takehiko; Zaiki, Masumi; Hirano, Junpei; Yoshimura, Minoru; Aono, Yasuyuki; Iwahashi, Kiyomi
2018-04-01
Thunderstorm and cloud activities sometimes show a 27-day period, and this has long been studied to uncover a possible important link to solar rotation. Because the 27-day variations in the solar forcing parameters such as solar ultraviolet and galactic cosmic rays become more prominent when the solar activity is high, it is expected that the signal of the 27-day period in meteorological phenomena may wax and wane according to the changes in the solar activity level. In this study, we examine in detail the intensity variations in the signal of the 27-day solar rotational period in thunder and lightning activity from the 18th to the 19th centuries based on 150-year-long records found in old diaries kept in Japan and discuss their relation with the solar activity levels. Such long records enable us to examine the signals of solar rotation at both high and low solar activity levels. We found that the signal of the solar rotational period in the thunder and lightning activity increases as the solar activity increases. In this study, we also discuss the possibility of the impact of the long-term climatological conditions on the signals of the 27-day period in thunder/lightning activities.
Dancing red sprites and the lightning activity in their parent thunderstorm
NASA Astrophysics Data System (ADS)
Bór, József; Zelkó, Zoltán; Hegedüs, Tibor; Jäger, Zoltán; Mlynarczyk, Janusz; Popek, Martin; Betz, Hans-Dieter
2016-04-01
Red sprites are brief optical emissions initiated in the mesosphere by intense tropospheric lightning discharges. A group of red sprites, in which the elements appear in rapid succession with some lateral offset from one another is referred to as a dancing sprite event. The occurrence of such events implies that significant and sequential charge removal extending to large regions of the thunderstorm can take place in the underlying cloud system. In this work, we examine the relation of the locations and observation times of appearing sprite elements to the temporal and spatial distribution of the lightning activity in a specific sprite-active thunderstorm. The selected mesoscale convective system (MCS) composed of several extremely active thundercloud cells crossed Central Europe from South-West to North-East through Germany, Austria, the Czech Republic, and Poland on the night of 6 August, 2013. This MCS has triggered over one hundred sprites including several dancing sprite events. Video recordings of sprites captured from Sopron, Hungary (16.6°E, 47.7°N) and Nydek, Czech Republic (18.8°E, 49.7°N) were used to identify dancing sprite events and to determine the exact locations of the appearing sprite elements by a triangulation technique used originally to analyze meteor observations. Lightning activity in the MCS can be reviewed using the database of LINET lightning detection network which fully covers the region of interest (ROI). The poster demonstrates how cases of sequential charge removal in the thunderstorm can be followed by combining the available information on the occurrence time, location, polarity, and type (CG/IC) of detected lightning strokes in the ROI on one hand and the occurrence time and location of elements in dancing sprite events on the other hand.
NASA Astrophysics Data System (ADS)
Lagasio, Martina; Parodi, Antonio; Procopio, Renato; Rachidi, Farhad; Fiori, Elisabetta
2017-04-01
Lightning activity is a characteristic phenomenon of severe weather as confirmed by many studies on different weather regimes that reveal strong interplay between lightning phenomena and extreme rainfall process in thunderstorms. The improvement of the so-called total (i.e. cloud-to-ground and intra-cloud) lightning observation systems in the last decades has allowed to investigate the relationship between the lightning flash rate and the kinematic and microphysical properties of severe hydro-meteorological events characterized by strong convection. V-shape back-building Mesoscale Convective Systems (MCSs) occurring over short periods of time have hit several times the Liguria region located in north-western Italy in the period between October 2010 and November 2014, generating flash-flood events responsible for hundreds of fatalities and millions of euros of damage. All these events showed an area of intense precipitation sweeping an arc of a few degrees around the warm conveyor belt originating about 50-60 km from the Liguria coastline. A second main ingredient was the presence of a convergence line, which supported the development and the maintenance of the aforementioned back-building process. Other common features were the persistence of such geometric configuration for many hours and the associated strong lightning activity. A methodological approach for the evaluation of these types of extreme rainfall and lightning convective events is presented for a back-building MCS event occurred in Genoa in 2014. A microphysics driven ensemble of WRF simulations at cloud-permitting grid spacing (1 km) with different microphysics parameterizations is used and compared to the available observational radar and lightning data. To pursue this aim, the performance of the Lightning Potential Index (LPI) as a measure of the potential for charge generation and separation that leads to lightning occurrence in clouds, is computed and analyzed to gain further physical insight in these V-shape convective processes and to understand its predictive ability.
NASA Technical Reports Server (NTRS)
Solakiewiz, Richard; Koshak, William
2008-01-01
Continuous monitoring of the ratio of cloud flashes to ground flashes may provide a better understanding of thunderstorm dynamics, intensification, and evolution, and it may be useful in severe weather warning. The National Lighting Detection Network TM (NLDN) senses ground flashes with exceptional detection efficiency and accuracy over most of the continental United States. A proposed Geostationary Lightning Mapper (GLM) aboard the Geostationary Operational Environmental Satellite (GOES-R) will look at the western hemisphere, and among the lightning data products to be made available will be the fundamental optical flash parameters for both cloud and ground flashes: radiance, area, duration, number of optical groups, and number of optical events. Previous studies have demonstrated that the optical flash parameter statistics of ground and cloud lightning, which are observable from space, are significantly different. This study investigates a Bayesian network methodology for discriminating lightning flash type (ground or cloud) using the lightning optical data and ancillary GOES-R data. A Directed Acyclic Graph (DAG) is set up with lightning as a "root" and data observed by GLM as the "leaves." This allows for a direct calculation of the joint probability distribution function for the lighting type and radiance, area, etc. Initially, the conditional probabilities that will be required can be estimated from the Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD) together with NLDN data. Directly manipulating the joint distribution will yield the conditional probability that a lightning flash is a ground flash given the evidence, which consists of the observed lightning optical data [and possibly cloud data retrieved from the GOES-R Advanced Baseline Imager (ABI) in a more mature Bayesian network configuration]. Later, actual GLM and NLDN data can be used to refine the estimates of the conditional probabilities used in the model; i.e., the Bayesian network is a learning network. Methods for efficient calculation of the conditional probabilities (e.g., an algorithm using junction trees), finding data conflicts, goodness of fit, and dealing with missing data will also be addressed.
Merging Infrasound and Electromagnetic Signals as a Means for Nuclear Explosion Detection
NASA Astrophysics Data System (ADS)
Ashkenazy, Joseph; Lipshtat, Azi; Kesar, Amit S.; Pistinner, Shlomo; Ben Horin, Yochai
2016-04-01
The infrasound monitoring network of the CTBT consists of 60 stations. These stations are capable of detecting atmospheric events, and may provide approximate location within time scale of a few hours. However, the nature of these events cannot be deduced from the infrasound signal. More than two decades ago it was proposed to use the electromagnetic pulse (EMP) as a means of discriminating nuclear explosion from other atmospheric events. An EMP is a unique signature of nuclear explosion and is not detected from chemical ones. Nevertheless, it was decided to exclude the EMP technology from the official CTBT verification regime, mainly because of the risk of high false alarm rate, due to lightning electromagnetic pulses [1]. Here we present a method of integrating the information retrieved from the infrasound system with the EMP signal which enables us to discriminate between lightning discharges and nuclear explosions. Furthermore, we show how spectral and other characteristics of the electromagnetic signal emitted from a nuclear explosion are distinguished from those of lightning discharge. We estimate the false alarm probability of detecting a lightning discharge from a given area of the infrasound event, and identifying it as a signature of a nuclear explosion. We show that this probability is very low and conclude that the combination of infrasound monitoring and EMP spectral analysis may produce a reliable method for identifying nuclear explosions. [1] R. Johnson, Unfinished Business: The Negotiation of the CTBT and the End of Nuclear Testing, United Nations Institute for Disarmament Research, 2009.
Lightning climatology in the Congo Basin: methodology and first results
NASA Astrophysics Data System (ADS)
Kigotsi, Jean; Soula, Serge; Georgis, Jean-François; Barthe, Christelle
2016-04-01
The global climatology of lightning issued from space observations (OTD and LIS) clearly showed the maximum of the thunderstorm activity is located in a large area of the Congo Basin, especially in the Democratic Republic of Congo (DRC). The first goal of the present study is to compare observations from the World Wide Lightning Location Network (WWLLN) from the Lightning Imaging Sensor (LIS) over a 9-year period (2005-2013) in this 2750 km × 2750 km area. The second goal is to analyse the lightning activity in terms of time and space variability. The detection efficiency (DE) of the WWLLN relative to LIS has increased between 2005 and 2013, typically from about 1.70 % to 5.90 %, in agreement with previous results for other regions of the world. The mean monthly flash rate describes an annual cycle with a maximum between November and March and a minimum between June and August, associated with the ICTZ migration but not exactly symmetrical on both sides of the equator. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, depending on the reference year, in agreement with previous works in other regions of the world. The annual flash density shows a sharp maximum localized in eastern DRC regardless of the reference year and the period of the year. This annual maximum systematically located west of Kivu Lake corresponds to that previously identified by many authors as the worldwide maximum which Christian et al. (2013) falsely attributed to Rwanda. Another more extended region within the Congo Basin exhibits moderately large values, especially during the beginning of the period analyzed. A comparison of both patterns of lightning density from the WWLLN and from LIS allows to validate the representativeness of this world network and to restitute the total lightning activity in terms of lightning density and rate.
Preliminary study on the Validation of FY-4A Lightning Mapping Imager
NASA Astrophysics Data System (ADS)
Cao, D.; Lu, F.; Qie, X.; Zhang, X.; Huang, F.; Wang, D.
2017-12-01
The FengYun-4 (FY-4) geostationary meteorological satellite is the second generation of China's geostationary meteorological satellite. The FY-4A was launched on December 11th, 2016. It includes a new instrument Lightning Mapping Imager (LMI) for total lightning (cloud and cloud-to-ground flashes) detection. The LMI operates at a wavelength of 777.4nm with 1.9ms integrated time. And it could observe lightning activity continuously day and night with spatial resolution of 7.8 km (sub satellite point) over China region. The product algorithm of LMI consists of false signal filtering and flash clustering analysis. The false signal filtering method is used to identify and remove non-lightning artifacts in optical events. The flash clustering analysis method is used to cluster "event" into "group" and "flash" using specified time and space threshold, and the other non-lightning optical events are filtered further more in the clustering analysis. The ground-based lightning location network (LLN) in China and WWLLN (World Wide Lightning Location Network) were both used to make preliminary validation of LMI. The detection efficiency for cloud-to-ground lightning, spatial and temporal accuracy of LMI were estimated by the comparison of lightning observations from ground-based network and LMI. The day and night biases were also estiamted. Although the LLN and WWLLN mainly observe return strokes in cloud-to-ground flash, the accuracy of LMI still could be estimated for that it was not associated with the flash type mostly. The false alarm efficiency of LMI was estimated using the Geostationary Interferometric Infrared Sounder (GIIRS), another payloads on the FY-4A satellite. The GIIRS could identify the convective cloud region and give more information about the cloud properties. The GIIRS products were used to make a rough evaluation of false alarm efficiency of LMI. The results of this study reveal details of characteristics of LMI instrument. It is also found that the product algorithm of LMI is effective and the LMI products could be used for the analysis of lightning activity in China in a certain extent.
NASA Technical Reports Server (NTRS)
Peterson, D.; Wang, J.; Ichoku, C.; Remer, L. A.
2010-01-01
The effects of lightning and other meteorological factors on wildfire activity in the North American boreal forest are statistically analyzed during the fire seasons of 2000-2006 through an integration of the following data sets: the MODerate Resolution Imaging Spectroradiometer (MODIS) level 2 fire products, the 3-hourly 32-kin gridded meteorological data from North American Regional Reanalysis (NARR), and the lightning data collected by the Canadian Lightning Detection Network (CLDN) and the Alaska Lightning Detection Network (ALDN). Positive anomalies of the 500 hPa geopotential height field, convective available potential energy (CAPE), number of cloud-to-ground lightning strikes, and the number of consecutive dry days are found to be statistically important to the seasonal variation of MODIS fire counts in a large portion of Canada and the entirety of Alaska. Analysis of fire occurrence patterns in the eastern and western boreal forest regions shows that dry (in the absence of precipitation) lightning strikes account for only 20% of the total lightning strikes, but are associated with (and likely cause) 40% of the MODIS observed fire counts in these regions. The chance for ignition increases when a threshold of at least 10 dry strikes per NARR grid box and at least 10 consecutive dry days is reached. Due to the orientation of the large-scale pattern, complex differences in fire and lightning occurrence and variability were also found between the eastern and western sub-regions. Locations with a high percentage of dry strikes commonly experience an increased number of fire counts, but the mean number of fire counts per dry strike is more than 50% higher in western boreal forest sub-region, suggesting a geographic and possible topographic influence. While wet lightning events are found to occur with a large range of CAPE values, a high probability for dry lightning occurs only when 500 hPa geopotential heights are above 5700m and CAPE values are near the maximum observed level, underscoring the importance of low-level instability to boreal fire weather forecasts-
Lightning Enhancement Over Major Shipping Lanes
NASA Astrophysics Data System (ADS)
Thornton, J. A.; Holzworth, R. H., II; Virts, K.; Mitchell, T. P.
2017-12-01
Using twelve years of high resolution global lightning stroke data from the World Wide Lightning Location Network (WWLLN), we show that lightning density is enhanced by up to a factor of two directly over shipping lanes in the northeastern Indian Ocean and the South China Sea as compared to adjacent areas with similar climatological characteristics. The lightning enhancement is most prominent during the convectively active season, November-April for the Indian Ocean and April - December in the South China Sea, and has been detectable from at least 2005 to the present. We hypothesize that emissions of aerosol particles and precursors by maritime vessel traffic leads to a microphysical enhancement of convection and storm electrification in the region of the shipping lanes. These persistent localized anthropogenic perturbations to otherwise clean regions are a unique opportunity to more thoroughly understand the sensitivity of maritime deep convection and lightning to aerosol particles.
Modulation of UK lightning by heliospheric magnetic field polarity
NASA Astrophysics Data System (ADS)
Owens, M. J.; Scott, C. J.; Lockwood, M.; Barnard, L.; Harrison, R. G.; Nicoll, K.; Watt, C.; Bennett, A. J.
2014-11-01
Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesn't greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40-60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity.
Evolution of lightning flash density and reflectivity structure in a multicell thunderstorm
NASA Technical Reports Server (NTRS)
Mazur, V.; Rust, W. D.; Gerlach, J. C.
1986-01-01
The radar reflectivity structure and the distribution of lightning in a storm cell was investigated using S-band and UHF-band radar data for six storm cells over Wallops Island. The S-band scans were vertical and continuous, while the UHF data were taken in steps of 2.5 deg elevation. The peak in lightning activity during the study corresponded to a merging of two storm cells. A minimum height of 7 km was found necessary for the appearance of a 40 dBZ core with lightning, which first appears in a multicell thunderstorm at the leading edge of the 50 dBZ core of the cell and between a cell and its decaying neighbor. The lightning moves further into the cell during cell decay and decreases in density. Finally, the lightning is offset horizontally from the precipitation core during cell growth but colocates with the precipitation core as the cell dissipates.
Proceedings: Workshop on the Need for Lightning Observations from Space
NASA Technical Reports Server (NTRS)
Christensen, L. S. (Editor); Frost, W. (Editor); Vaughan, W. W. (Editor)
1979-01-01
The results of the Workshop on the Need for Lightning Observations from Space held February 13-15, 1979, at the University of Tennessee Space Institute, Tullahoma, Tennessee are presented. The interest and active involvement by the engineering, operational, and scientific participants in the workshop demonstrated that lightning observations from space is a goal well worth pursuing. The unique contributions, measurement requirements, and supportive research investigations were defined for a number of important applications. Lightning has a significant role in atmospheric processes and needs to be systematically investigated. Satellite instrumentation specifically designed for indicating the characteristics of lightning are of value in severe storms research, in engineering and operational problem areas, and in providing information on atmospheric electricity and its role in meteorological processes.
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Wright, Pat; Christian, Hugh; Blakeslee, Richard; Buechler, Dennis; Scharfen, Greg
1991-01-01
The global lightning signatures were analyzed from the DMSP Optical Linescan System (OLS) imagery archived at the National Snow and Ice Data Center. Transition to analysis of the digital archive becomes available and compare annual, interannual, and seasonal variations with other global data sets. An initial survey of the quality of the existing film archive was completed and lightning signatures were digitized for the summer months of 1986 to 1987. The relationship is studied between: (1) global and regional lightning activity and rainfall, and (2) storm electrical development and environment. Remote sensing data sets obtained from field programs are used in conjunction with satellite/radar/lightning data to develop and improve precipitation estimation algorithms, and to provide a better understanding of the co-evolving electrical, microphysical, and dynamical structure of storms.
Atmospheric Electrical Activity and the Prospects for Improving Short-Term, Weather Forcasting
NASA Technical Reports Server (NTRS)
Goodman, Steven J.
2003-01-01
How might lightning measurements be used to improve short-term (0-24 hr) weather forecasting? We examine this question under two different prediction strategies. These include integration of lightning data into short-term forecasts (nowcasts) of convective (including severe) weather hazards and the assimilation of lightning data into cloud-resolving numerical weather prediction models. In each strategy we define specific metrics of forecast improvement and a progress assessment. We also address the conventional observing system deficiencies and potential gap-filling information that can be addressed through the use of the lightning measurement.
Evaluation of lightning accommodation systems for wind-driven turbine rotors
NASA Technical Reports Server (NTRS)
Bankaitis, H.
1982-01-01
Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.
NASA Astrophysics Data System (ADS)
Pinto, O.; Pinto, I. R.
2009-12-01
Thunder day frequencies (TD) have been collected throughout the world in a systematic way since the beginning of the twenty century, producing the longest lightning-related data set available to investigate possible climatic changes in the global, tropical or, even, regional lightning activity. Such changes may be related to natural climate variations associated with many different large scale phenomena and/or to anthropogenic warming variations. The role of each component may be different at different spatial scales. In Brazil TD data have been recorded in many stations throughout the country. In this report, TD data from 1960s to 1990s in different stations in Brazil are analyzed looking for variations related to volcanic eruptions, El Niño Southern Oscillation (ENSO), tropical Atlantic sea-surface temperature (SST) anomaly, Pacific Decadal Oscillation (POD), solar irradiance and urban effects. The preliminary results are discussed in the context of their implications for future climatic changes in the lightning activity.
Lichtenberg figures: cutaneous manifestation of phone electrocution from lightning.
Mahajan, Ajay L; Rajan, Ruchika; Regan, Padraic J
2008-01-01
Lichtenberg figures are reddish, fern-like patterns that appear on the skin when a patient is struck by lightning. These appear to be a result of an inflammatory response as current spreads out causing ionisation and heat effects and damage to the small subcutaneous capillaries. A 30-year-old lady was brought to the accident and emergency department with a history of momentary loss of consciousness. All that the patient could recollect was that she had been on the phone when she heard a loud bang following which she 'blacked out'. On examination, she had characteristic cutaneous Lichtenberg figures. These revealed the true diagnosis of a lightning strike conducted through the phone line into the patient. The cutaneous manifestation of a surreptitious lightning strike through a telephone plays an important role in diagnosing the problem and is particularly significant when the patient is unconscious and unable to give a history of events or, as in this case, has retrograde amnesia. Establishing the diagnosis enables us to look for other lightning-associated injuries and to monitor the cardiac status of the patient to avoid any concomitant complications. Also, establishing the diagnosis is extremely helpful to allay patient anxiety as Lichtenberg figures on the skin can be quite dramatic, as seen in this case.
Small Negative Cloud-to-Ground Lightning Reports at the KSC-ER
NASA Technical Reports Server (NTRS)
Wilson, Jennifer G.; Cummins, Kenneth L.; Krider, E. Philip
2009-01-01
'1he NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) lightning detection networks, the CGLSS and the NLDN, and a volumetric lightning mapping array, LDAR, to monitor and characterize lightning that is potentially hazardous to ground or launch operations. Data obtained from these systems during June-August 2006 have been examined to check the classification of small, negative CGLSS reports that have an estimated peak current, [I(sup p)] less than 7 kA, and to determine the smallest values of I(sup p), that are produced by first strokes, by subsequent strokes that create a new ground contact (NGC), and by subsequent strokes that remain in a pre-existing channel (PEC). The results show that within 20 km of the KSC-ER, 21% of the low-amplitude negative CGLSS reports were produced by first strokes, with a minimum I(sup p) of-2.9 kA; 31% were by NGCs, with a minimum I(sup p) of-2.0 kA; and 14% were by PECs, with a minimum I(sup p) of -2.2 kA. The remaining 34% were produced by cloud pulses or lightning events that we were not able to classify.
NASA Astrophysics Data System (ADS)
Saha, Upal; Maitra, Animesh; Talukdar, Shamitaksha; Jana, Soumyajyoti
Lightning flashes, associated with vigorous convective activity, is one of the most prominent weather phenomena in the tropical atmosphere. High aerosol loading is indirectly associated with the increase in lightning flash rates via the formation of tropospheric ozone during the pre-monsoon and monsoon over the tropics. Tropospheric ozone, an important greenhouse pollutant gas have impact on Earth’s radiation budget and play a key role in changing the atmospheric circulation patterns. Lightning-induced NOx is a primary pollutant found in photochemical smog and an important precursor for the formation of tropospheric ozone. A critical analysis is done to study the indirect effects of high aerosol loading on the formation of tropospheric ozone via lightning flashes and induced NOx formation over an urban metropolitan location Kolkata (22°32'N, 88°20'E), India during the period 2001-2012. The seasonal variation of lightning flash rates (LFR), taken from TRMM-LIS 2.5o x 2.5o gridded dataset, show that the LFR was observed to be intensified in the pre-monsoon (March-May) and high in monsoon (June-September) months over the region. Aerosol Optical Depth (AOD) at 555nm, taken from MISR 0.5o x 0.5o gridded level-3 dataset, plays an indirect effect on the increase in LFR during the pre-monsoon and monsoon months and has positive correlations between them during these periods. This is also justified from the seasonal variation of the increase in LFR due to the increase in AOD over the region during 2001-2012. The calibrated GOME and OMI/AURA satellite data analysis shows that the tropospheric ozone, formed as a result of lightning-induced NOx and due to the increased AOD at 555 nm, also increases during the pre-monsoon and monsoon months. The seasonal variation of lightning-induced tropospheric NOx, taken from SCIAMACHY observations also justified the fact that the pre-monsoon and monsoon LFR solely responsible for the generation of induced NOx over the region. The increase in lightning activity is caused by the indirect influx of aerosols, especially in the upper troposphere. This is due to the warming-effect of aerosol forcing via its effect on tropospheric ozone production. Due to the increased production of O3 by lightning-induced NOx and high aerosol loading in the pre-monsoon and monsoon months, the positive climate feedback indicates a warmer climate. As a consequence, convective activity as well as lightning flashes may increase due to this indirect effect of AOD over the region. The generation of induced NOx has a positive correlation (r = 0.723) with the LFR during 2001-2012 over Kolkata. Thus, our results have significant implications for understanding the tropospheric ozone forcing by investigating the coupled aerosol-cloud-chemistry system on the generation of lightning and lightning-induced NOx over the urban metropolis.
Variation of a Lightning NOx Indicator for National Climate Assessment
NASA Technical Reports Server (NTRS)
Koshak, William J.; McCaul, Eugene W., Jr.; Peterson, Harold S.; Vant-Hull, Brian
2014-01-01
During the past couple of years, an analysis tool was developed by the NASA Marshall Space Flight Center (MSFC) for the National Climate Assessment (NCA) program. The tool monitors and examines changes in lightning characteristics over the conterminous US (CONUS) on a continual basis. In this study, we have expanded the capability of the tool so that it can compute a new climate assessment variable that is called the Lightning NOx Indicator (LNI). Nitrogen oxides (NOx = NO + NO2) are known to indirectly influence our climate, and lightning NOx is the most important source of NOx in the upper troposphere (particularly in the tropics). The LNI is derived using Lightning Imaging Sensor (LIS) data and is computed by summing up the product of flash area x flash brightness over all flashes that occur in a particular region and period. Therefore, it is suggested that the LNI is a proxy to lightning NOx production. Specifically, larger flash areas are consistent with longer channel length and/or more energetic channels, and hence more NOx production. Brighter flashes are consistent with more energetic channels, and hence more NOx production. The location of the flash within the thundercloud and the optical scattering characteristics of the thundercloud are of course complicating factors. We analyze LIS data for the years 2003-2013 and provide geographical plots of the time-evolution of the LNI in order to determine if there are any significant changes or trends between like seasons, or from year to year.
Total Lightning and Radar Storm Characteristics Associated with Severe Storms in Central Florida
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Raghavan, Ravi; Ramachandran, Rahul; Buechler, Dennis; Hodanish, Stephen; Sharp, David; Williams, Earle; Boldi, Bob; Matlin, Anne; Weber, Mark
1998-01-01
A number of prior studies have examined the association of lightning activity with the occurrence of severe weather and tornadoes, in particular. High flash rates are often observed in tornadic storms (Taylor, 1973; Johnson, 1980; Goodman and Knupp, 1993) but not always. Taylor found that 23% of nontornadic storms and 1% of non-severe storms had sferics rates comparable to the tornadic storms. MacGorman (1993) found that storms with mesocyclones produced more frequent intracloud (IC) lightning than cloud-to-ground (CG) lightning. MacGorman (1993) and others suggest that the lightning activity accompanying tomadic storms will be dominated by intracloud lightning-with an increase in intracloud and total flash rates as the updraft increases in depth, size, and velocity. In a recent study, Perez et al. (1998) found that CG flash rates alone are too variable to be a useful predictor of (F4, F5) tornado formation. Studies of non-tomadic storms have also shown that total lightning flash rates track the updraft, with rates increasing as the updraft intensities and decreasing rapidly with cessation of vertical growth or downburst onset (Goodman et al., 1988; Williams et al., 1989). Such relationships result from the development of mixed phase precipitation and increased hydrometer collisions that lead to the efficient separation of charge. Correlations between updraft strength and other variables such as cloud-top height, cloud water mass, and hail size have also been observed.
1992-11-01
November 1992 1992 INTERNATIONAL AEROSPACE AND GROUND CONFERENCE 6. Perfrming Orgnis.aten Code ON LIGHTNING AND STATIC ELECTRICITY - ADDENDUM 111...October 6-8 1992 Program and the Federal Aviation Administration 14. Sponsoring Agency Code Technical Center ACD-230 15. Supplementary Metes The NICG...area]. The program runs well on an IBM PC or compatible 386 with a math co-processor 387 chip and a VGA monitor. For this study, streamers were added
LEP Events, TLE's, and Q-bursts observed from the Antarctic
NASA Astrophysics Data System (ADS)
Moore, R. C.; Kim, D.; Flint, Q. A.
2017-12-01
ELF/VLF measurements at Palmer Station, McMurdo Station, and South Pole Station, Antarctica are used to detect lightning-generated ELF/VLF radio atmospherics from around the globe and to remote sense ionospheric disturbances in the Southern hemisphere. The Antarctic ELF/VLF receivers complement a Northern hemisphere ELF/VLF monitoring array. In this paper, we present our latest observational results, including a full statistical analysis of conjugate observations of lightning-induced electron precipitation and radio atmospherics associated specifically with the transient luminous events known as gigantic jets and sprites.
Optical design of the lightning imager for MTG
NASA Astrophysics Data System (ADS)
Lorenzini, S.; Bardazzi, R.; Di Giampietro, M.; Feresin, F.; Taccola, M.; Cuevas, L. P.
2017-11-01
The Lightning Imager for Meteosat Third Generation is an optical payload with on-board data processing for the detection of lightning. The instrument will provide a global monitoring of lightning events over the full Earth disk from geostationary orbit and will operate in day and night conditions. The requirements of the large field of view together with the high detection efficiency with small and weak optical pulses superimposed to a much brighter and highly spatial and temporal variable background (full operation during day and night conditions, seasonal variations and different albedos between clouds oceans and lands) are driving the design of the optical instrument. The main challenge is to distinguish a true lightning from false events generated by random noise (e.g. background shot noise) or sun glints diffusion or signal variations originated by microvibrations. This can be achieved thanks to a `multi-dimensional' filtering, simultaneously working on the spectral, spatial and temporal domains. The spectral filtering is achieved with a very narrowband filter centred on the bright lightning O2 triplet line (777.4 nm +/- 0.17 nm). The spatial filtering is achieved with a ground sampling distance significantly smaller (between 4 and 5 km at sub satellite pointing) than the dimensions of a typical lightning pulse. The temporal filtering is achieved by sampling continuously the Earth disk within a period close to 1 ms. This paper presents the status of the optical design addressing the trade-off between different configurations and detailing the design and the analyses of the current baseline. Emphasis is given to the discussion of the design drivers and the solutions implemented in particular concerning the spectral filtering and the optimisation of the signal to noise ratio.
Martin, Geoffrey V; Houle, Timothy; Nicholson, Robert; Peterlin, Albert; Martin, Vincent T
2013-04-01
The aim of this article is to determine if lightning is associated with the frequency of headache in migraineurs. Participants fulfilling diagnostic criteria for International Headache Society-defined migraine were recruited from sites located in Ohio ( N = 23) and Missouri ( N = 67). They recorded headache activity in a daily diary for three to six months. A generalized estimating equations (GEE) logistic regression determined the odds ratio (OR) of headache on lightning days compared to non-lightning days. Other weather factors associated with thunderstorms were also added as covariates to the GEE model to see how they would attenuate the effect of lightning on headache. The mean age of the study population was 44 and 91% were female. The OR for headache was 1.31 (95% confidence limits (CL); 1.07, 1.66) during lighting days as compared to non-lightning days. The addition of thunderstorm-associated weather variables as covariates were only able to reduce the OR for headache on lightning days to 1.18 (95% CL; 1.02, 1.37). The probability of having a headache on lightning days was also further increased when the average current of lightning strikes for the day was more negative. This study suggests that lightning represents a trigger for headache in migraineurs that cannot be completely explained by other meteorological factors. It is unknown if lightning directly triggers headaches through electromagnetic waves or indirectly through production of bioaerosols (e.g. ozone), induction of fungal spores or other mechanisms. These results should be interpreted cautiously until replicated in a second dataset.
NASA Astrophysics Data System (ADS)
Anderson, J.; Johnson, J. B.; Steele, A. L.; Anzieta, J. C.; Ortiz, H. D.; Hall, M. L.; Ruiz, M. C.
2014-12-01
Acoustic recordings reveal a variety of volcanic activities during an exceptionally loud vulcanian eruption at Tungurahua. A period of several months of mild surface activity came to an abrupt end with the emission of a powerful blast wave heard at least 180 km away. Sensors 2080 m from the vent recorded a stepped rise to its maximum overpressure of 1220 Pa (corresponding to a sound pressure level of 156 dB) and its unusually long dominant period of 5.6 s. We discuss source processes that produced the blast wave, considering that wave propagation could be nonlinear near the vent because of high overpressures. More than an hour of acoustic activity was recorded after the blast wave, including sound from falling ballistics, reflections of the blast wave from nearby mountains, pyroclastic density currents, and acoustic tremor at the vent. Glitches in the acoustic records related to plume lightning were also serendipitously observed, although thunder could not be unambiguously identified. We discuss acoustic signatures of falling ballistics and pyroclastic density currents and how array-style deployments and analytic methods can be used to reveal them. Placement of sensors high on the volcano's slopes facilitated resolving these distinct processes. This study demonstrates that near-vent, array-style acoustic installations can be used to monitor various types of volcanic activity.
The Characteristics of Total Lightning Activity in Severe Florida Thunderstorms
NASA Technical Reports Server (NTRS)
Williams, E.; Goodman, S. J.; Raghavan, R.; Boldi, R.; Matlin, A.; Weber, M.; Hodanish, S.; Sharp, D.
1997-01-01
Severe thunderstorms are defined by specific exceedance criteria regarding either wind speed (greater than or equal to 50 kts), hailstone diameter (greater than or equal to 3/4 inch), the occurrence of a tornado, or any combination thereof. Although traditional radar signatures of severe thunderstorms have been well documented, the characteristics of associated total lightning activity (both intracloud and cloud-to-ground) of severe thunderstorms remain poorly established. The reason for this are (1) less than 1% of all storms are actually severe, (2) intracloud lightning, which is typically the dominant form of electrical discharge within thunderstorms, is not routinely measured or recorded, (3) direct visual observations of intracloud lightning are obscured during the daytime, and (4) the migratory nature of many severe thunderstorms can make the accurate detection and mapping of intracloud lightning difficult when using fixed-location sensors. The recent establishment of LISDAD (Lightning Imaging Sensor Data Acquisition and Display - discussed in Goodman et al, this Meeting) has substantially addressed these limitations in east central Florida (ECFL). Analysis of total lightning flash Count histories using the LDAR (Lightning Detection And Ranging) system for known severe thunderstorms (currently irrespective of seasonal aspects and severe storm-type) has revealed flash rates exceeding 1 per second. This appears to be a necessary, but not sufficient,condition for most ECFL severe storm cases. The differences in radar-observed storm structure for high flash rate storms (to include both severe and non-severe categories) will be described together with the timing of peak flash rate vs. the timing of the severe weather manifestation. Comparisons with the satellite-bases OTD (Optical Transient Detector) overhead passes will also be presented when possible.
NASA Astrophysics Data System (ADS)
Eack, K. B.; Winn, W. P.; Rust, W. D.; Minschwaner, K.; Fredrickson, S.; Kennedy, D.; Edens, H. E.; Kalnajs, L. E.; Rabin, R. M.; Lu, G. P.; Bonin, D.
2008-12-01
A field project was conducted at the Langmuir Laboratory for Atmospheric Research during the summer of 2008 in an effort to better understand the direct production of ozone within electrically active storms. Five balloon flights were successfully launched into thunderstorms during this project. In situ measurements from the balloon instrument package included ozone mixing ratio, electric field strength, meteorological variables, and GPS location and timing. Lightning discharges were identified within each storm using a ground based lightning mapping array. The data show that the instruments ascended through regions of high electric fields within the sampled storms, and in some cases the balloon was in very close proximity to lightning. Relationships between electric field, lightning, and ozone observed during these flights will be discussed.
The extratropical transition of Tropical Storm Cindy from a GLM, ISS LIS and GPM perspective
NASA Astrophysics Data System (ADS)
Heuscher, L.; Gatlin, P. N.; Petersen, W. A.; Liu, C.; Cecil, D. J.
2017-12-01
The distribution of lightning with respect to tropical convective precipitation systems has been well established in previous studies, and more recently by the successful Tropical Rainfall Measuring Mission (TRMM). However, TRMM did not provide information about precipitation features pole-ward of ±38° latitude. Hence not much is known about the evolution of lightning within extra-tropical cyclones traversing the mid-latitudes, especially its oceans. To facilitate such studies we have combined lightning data from the Geostationary Lightning Mapper (GLM) onboard GOES-16 and the Lightning Imaging Sensor (LIS) onboard the International Space Station (ISS) together with precipitation features obtained from the Global Precipitation Measurement (GPM) mission constellation of satellites. We used this lightning-enriched precipitation feature dataset to investigate the lightning and precipitation characteristics of Tropical Storm Cindy (20 June - 24 June 2017) from its organization in the central Gulf of Mexico to its landfall along the northern Gulf and transition to an extra-tropical cyclone. We analyzed lightning observations from GLM and ISS LIS in relation to microwave brightness temperatures from GPM constellation satellite overpasses of Cindy. We find that the 37 and 89 GHz brightness temperatures decreased as Cindy strengthened and continued to decrease after landfall and as Cindy took on more baroclinic characteristics during which time its overall lightning activity increased by a factor of six. In this regard, the study provides a new observationally-based view of the tropical to extra-tropical transition and its impact on lightning production.
NASA Astrophysics Data System (ADS)
Buiat, Martina; Porcù, Federico; Dietrich, Stefano
2017-01-01
Cloud electrification and related lightning activity in thunderstorms have their origin in the charge separation and resulting distribution of charged iced particles within the cloud. So far, the ice distribution within convective clouds has been investigated mainly by means of ground-based meteorological radars. In this paper we show how the products from Cloud Profiling Radar (CPR) on board CloudSat, a polar satellite of NASA's Earth System Science Pathfinder (ESSP), can be used to obtain information from space on the vertical distribution of ice particles and ice content and relate them to the lightning activity. The analysis has been carried out, focusing on 12 convective events over Italy that crossed CloudSat overpasses during significant lightning activity. The CPR products considered here are the vertical profiles of cloud ice water content (IWC) and the effective radius (ER) of ice particles, which are compared with the number of strokes as measured by a ground lightning network (LINET). Results show a strong correlation between the number of strokes and the vertical distribution of ice particles as depicted by the 94 GHz CPR products: in particular, cloud upper and middle levels, high IWC content and relatively high ER seem to be favourable contributory causes for CG (cloud to ground) stroke occurrence.
NASA Astrophysics Data System (ADS)
Alves, J.; Saraiva, A. C. V.; Campos, L. Z. D. S.; Pinto, O., Jr.; Antunes, L.
2014-12-01
This work presents a method for the evaluation of location accuracy of all Lightning Location System (LLS) in operation in southeastern Brazil, using natural cloud-to-ground (CG) lightning flashes. This can be done through a multiple high-speed cameras network (RAMMER network) installed in the Paraiba Valley region - SP - Brazil. The RAMMER network (Automated Multi-camera Network for Monitoring and Study of Lightning) is composed by four high-speed cameras operating at 2,500 frames per second. Three stationary black-and-white (B&W) cameras were situated in the cities of São José dos Campos and Caçapava. A fourth color camera was mobile (installed in a car), but operated in a fixed location during the observation period, within the city of São José dos Campos. The average distance among cameras was 13 kilometers. Each RAMMER sensor position was determined so that the network can observe the same lightning flash from different angles and all recorded videos were GPS (Global Position System) time stamped, allowing comparisons of events between cameras and the LLS. The RAMMER sensor is basically composed by a computer, a Phantom high-speed camera version 9.1 and a GPS unit. The lightning cases analyzed in the present work were observed by at least two cameras, their position was visually triangulated and the results compared with BrasilDAT network, during the summer seasons of 2011/2012 and 2012/2013. The visual triangulation method is presented in details. The calibration procedure showed an accuracy of 9 meters between the accurate GPS position of the object triangulated and the result from the visual triangulation method. Lightning return stroke positions, estimated with the visual triangulation method, were compared with LLS locations. Differences between solutions were not greater than 1.8 km.
NASA Astrophysics Data System (ADS)
Heckman, S.
2015-12-01
Modern lightning locating systems (LLS) provide real-time monitoring and early warning of lightningactivities. In addition, LLS provide valuable data for statistical analysis in lightning research. It isimportant to know the performance of such LLS. In the present study, the performance of the EarthNetworks Total Lightning Network (ENTLN) is studied using rocket-triggered lightning data acquired atthe International Center for Lightning Research and Testing (ICLRT), Camp Blanding, Florida.In the present study, 18 flashes triggered at ICLRT in 2014 were analyzed and they comprise of 78negative cloud-to-ground return strokes. The geometric mean, median, minimum, and maximum for thepeak currents of the 78 return strokes are 13.4 kA, 13.6 kA, 3.7 kA, and 38.4 kA, respectively. The peakcurrents represent typical subsequent return strokes in natural cloud-to-ground lightning.Earth Networks has developed a new data processor to improve the performance of their network. Inthis study, results are presented for the ENTLN data using the old processor (originally reported in 2014)and the ENTLN data simulated using the new processor. The flash detection efficiency, stroke detectionefficiency, percentage of misclassification, median location error, median peak current estimation error,and median absolute peak current estimation error for the originally reported data from old processorare 100%, 94%, 49%, 271 m, 5%, and 13%, respectively, and those for the simulated data using the newprocessor are 100%, 99%, 9%, 280 m, 11%, and 15%, respectively. The use of new processor resulted inhigher stroke detection efficiency and lower percentage of misclassification. It is worth noting that theslight differences in median location error, median peak current estimation error, and median absolutepeak current estimation error for the two processors are due to the fact that the new processordetected more number of return strokes than the old processor.
Yolla Bolly Complex Wildland Fire
NASA Technical Reports Server (NTRS)
2008-01-01
The Yolla Bolly Complex Wildland Fire was started on June 21 by a lightning strike. As of July 11, it had burned 8,000 acres and was 65% contained. This is one of the numerous lightning-triggered blazes burning in northern California this summer. This false-color image was made from visible and infrared data collected by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite on July 6. The image centers on the largest of the fires. The burned area is charcoal-colored, while surrounding forest and other vegetation is red. Smoke is light blue-gray. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 22.5 by 33.2 kilometers (14 by 20.6 miles) Location: 40.1 degrees North latitude, 122.9 degrees West longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 15 meters (49 feet) Dates Acquired: July 6, 2008NASA Technical Reports Server (NTRS)
Szatkowski, George N.; Dudley, Kenneth L.; Smith, Laura J.; Wang, Chuantong; Ticatch, Larry A.
2014-01-01
Traditional methods to protect composite aircraft from lightning strike damage rely on a conductive layer embedded on or within the surface of the aircraft composite skin. This method is effective at preventing major direct effect damage and minimizes indirect effects to aircraft systems from lightning strike attachment, but provides no additional benefit for the added parasitic weight from the conductive layer. When a known lightning strike occurs, the points of attachment and detachment on the aircraft surface are visually inspected and checked for damage by maintenance personnel to ensure continued safe flight operations. A new multi-functional lightning strike protection (LSP) method has been developed to provide aircraft lightning strike protection, damage detection and diagnosis for composite aircraft surfaces. The method incorporates a SansEC sensor array on the aircraft exterior surfaces forming a "Smart skin" surface for aircraft lightning zones certified to withstand strikes up to 100 kiloamperes peak current. SansEC sensors are open-circuit devices comprised of conductive trace spiral patterns sans (without) electrical connections. The SansEC sensor is an electromagnetic resonator having specific resonant parameters (frequency, amplitude, bandwidth & phase) which when electromagnetically coupled with a composite substrate will indicate the electrical impedance of the composite through a change in its resonant response. Any measureable shift in the resonant characteristics can be an indication of damage to the composite caused by a lightning strike or from other means. The SansEC sensor method is intended to diagnose damage for both in-situ health monitoring or ground inspections. In this paper, the theoretical mathematical framework is established for the use of open circuit sensors to perform damage detection and diagnosis on carbon fiber composites. Both computational and experimental analyses were conducted to validate this new method and system for aircraft composite damage detection and diagnosis. Experimental test results on seeded fault damage coupons and computational modeling simulation results are presented. This paper also presents the shielding effectiveness along with the lightning direct effect test results from several different SansEC LSP and baseline protected and unprotected carbon fiber reinforced polymer (CFRP) test panels struck at 40 and 100 kiloamperes following a universal common practice test procedure to enable damage comparisons between SansEC LSP configurations and common practice copper mesh LSP approaches. The SansEC test panels were mounted in a LSP test bed during the lightning test. Electrical, mechanical and thermal parameters were measured during lightning attachment and are presented with post test nondestructive inspection comparisons. The paper provides correlational results between the SansEC sensors computed electric field distribution and the location of the lightning attachment on the sensor trace and visual observations showing the SansEC sensor's affinity for dispersing the lightning attachment.
Observations of severe in-flight environments on airplane composite structural components
NASA Technical Reports Server (NTRS)
Howell, W. E.; Fisher, B. D.
1983-01-01
The development of relatively inexpensive, highly sophisticated avionics systems makes it now possible for general aviation aircraft to fly under more severe weather conditions than formerly. Increased instrument flying increases exposure of aircraft to potentially severe thunderstorm activity such as high rain rates, hail stones, and lightning strikes. In particular, the effects of lightning on aircraft can be catastrophic. Interest in aircraft lightning protection has been stimulated by the introduction of advanced composites as an aircraft structural material. The present investigation has the objective to report experiences with three composite components which have flown in thunderstorms, taking into account three F-106B composite fin caps. The only visible lightning strike damage to a flame sprayed aluminum coated glass/epoxy fin cap was a small area of the aluminum which was burned. Visible lightning strike damage to a Kevlar/epoxy fin cap was limited to the exterior ply of aluminum coated glass fabric. In the case of a graphite/epoxy fin cap, lightning currents could be conducted.
NASA Astrophysics Data System (ADS)
Owens, Mathew; Scott, Chris; Lockwood, Mike; Barnard, Luke; Harrison, Giles; Nicoll, Keri; Watt, Clare; Bennett, Alec
2015-04-01
Observational studies have reported solar magnetic modulation of terrestrial lightning on a range of time scales, from days to decades. The proposed mechanism is two-step: lightning rates vary with galactic cosmic ray (GCR) flux incident on Earth, either via changes in atmospheric conductivity and/or direct triggering of lightning. GCR flux is, in turn, primarily controlled by the heliospheric magnetic field (HMF) intensity. Consequently, global changes in lightning rates are expected. This study instead considers HMF polarity, which doesn't greatly affect total GCR flux. Opposing HMF polarities are, however, associated with a 40 to 60% difference in observed UK lightning and thunder rates. As HMF polarity skews the terrestrial magnetosphere from its nominal position, this perturbs local ionospheric potential at high latitudes and local exposure to energetic charged particles from the magnetosphere. We speculate as to the mechanism(s) by which this may, in turn, redistribute the global location and/or intensity of thunderstorm activity.
A Survey of Lightning Policy in Selected Division I Colleges
Walsh, Katie M.; Hanley, Michael J.; Graner, Susanne J.; Beam, Dwayne; Bazluki, Jim
1997-01-01
Objective: The purpose of this research was to investigate the hazards of lightning for participants in outdoor athletics and to determine the existence of, and assess the nature of, lightning safety policy at the collegiate level. Design and Setting: We used data from the National Severe Storms Laboratory in Norman, Oklahoma, and from a survey of Division I institutions. Subjects: The 48 National Collegiate Athletic Association Division I (football) universities in Florida, Michigan, Pennsylvania, North Carolina, and New York. Measurements: Athletic trainers at all of the selected 48 Division I institutions responded to the telephone survey. Results: Florida, Michigan, Pennsylvania, North Carolina, and New York led the country in lightning deaths and injuries from 1959-1994. Only 8% (n = 4) of the institutions surveyed in these states have a written policy regarding lightning safety. Conclusions: This study demonstrated the lack of lightning safety policy in the surveyed universities and the need for a systematic plan of action to make fields safer for all who are involved in outdoor sport activities. PMID:16558450
NASA Astrophysics Data System (ADS)
Defer, E.; Coquillat, S.; Lambert, D.; Pinty, J. P.; Prieur, S.; Caumont, O.; Labatut, L.; Nuret, M.; Blanchet, P.; Buguet, M.; Lalande, P.; Labrouche, G.; Pedeboy, S.; Lojou, J. Y.; Schwarzenboeck, A.; Delanoë, J.; Bourdon, A.; Guiraud, L.
2017-12-01
The 4-year EXAEDRE (EXploiting new Atmospheric Electricity Data for Research and the Environment; Oct 2016-Sept 2020) project is sponsored by the French Science Foundation ANR (Agence Nationale de la Recherche). This project is a French contribution to the HyMeX (HYdrological cycle in the Mediterranean EXperiment) program. The EXAEDRE activities rely on innovative multi-disciplinary and state of the art instrumentation and modeling tools to provide a comprehensive description of the electrical activity in thunderstorms. The EXAEDRE observational part is based on i) existing lightning records collected during HyMeX Special Observation Period (SOP1; Sept-Nov 2012), and permanent lightning observations provided by the research Lightning Mapping Array SAETTA and the operational Météorage lightning locating systems, ii) additional lightning observations mapped with a new VHF interferometer especially developed within the EXAEDRE project, and iii) a dedicated airborne campaign over Corsica. The modeling part of the EXAEDRE project exploits the electrification and lightning schemes developed in the cloud resolving model MesoNH and promotes an innovative technique of flash data assimilation in the french operational model AROME of Météo-France. An overview of the EXAEDRE project will be given with an emphasis on the instrumental, observational and modeling activities performed during the 1st year of the project. The preparation of the EXAEDRE airborne campaign scheduled for September 2018 over Corsica will then be discussed. Acknowledgements. The EXAEDRE project is sponsored by grant ANR-16-CE04-0005 with support from the MISTRALS/HyMeX meta program.
Dual-Polarization Radar Observations of Upward Lightning-Producing Storms
NASA Astrophysics Data System (ADS)
Lueck, R.; Helsdon, J. H.; Warner, T.
2013-12-01
The Upward Lightning Triggering Study (UPLIGHTS) seeks to determine how upward lightning, which originates from the tips of tall objects, is triggered by nearby flash activity. As a component of this study we analyze standard and dual-polarization weather radar data. The Correlation Coefficient (CC) in particular can be used to identify and quantify the melting layer associated with storms that produce upward lightning. It has been proposed that positive charge generation due to aggregate shedding at the melting layer results in a positive charge region just above the cloud base. This positive charge region may serve as a positive potential well favorable for negative leader propagation, which initiate upward positive leaders from tall objects. We characterize the horizontal coverage, thickness and height of the melting layer in addition to cloud base heights when upward lightning occurs to determine trends and possible threshold criteria relating to upward lightning production. Furthermore, we characterize storm type and morphology using relevant schemes as well as precipitation type using the Hydrometer Classification Algorithm (HCA) for upward lightning-producing storms. Ice-phase hydrometeors have been shown to be a significant factor in thunderstorm electrification. Only a small fraction of storms produce upward lightning, so null cases will be examined and compared as well.
Range Atmospheric and Oceanic Environmental Support Capabilities
2011-12-01
Precipitation location/intensity, thunderstorm location/intensity, rainfall/flash flood warning, hydrometer characterization, wind warnings, and...intensity, lightning monitoring, rainfall and flash flood warning, hydrometer characterization, and wind warnings. b. Satellite: MTSAT, GOES-10
Hydrological Monitoring System Design and Implementation Based on IOT
NASA Astrophysics Data System (ADS)
Han, Kun; Zhang, Dacheng; Bo, Jingyi; Zhang, Zhiguang
In this article, an embedded system development platform based on GSM communication is proposed. Through its application in hydrology monitoring management, the author makes discussion about communication reliability and lightning protection, suggests detail solutions, and also analyzes design and realization of upper computer software. Finally, communication program is given. Hydrology monitoring system from wireless communication network is a typical practical application of embedded system, which has realized intelligence, modernization, high-efficiency and networking of hydrology monitoring management.
Far from thunderstorm UV transient events in the atmosphere measured by Vernov satellite
NASA Astrophysics Data System (ADS)
Morozenko, Violetta; Klimov, Pavel; Khrenov, Boris; Gali, Garipov; Margarita, Kaznacheeva; Mikhail, Panasyuk; Sergei, Svertilov; Robert, Holzworth
2016-04-01
The steady self-contained classification of events such as sprites, elves, blue jets emerged for the period of transient luminous events (TLE) observation. In accordance with TLE origin theories the presence of the thunderstorm region where the lightnings with the large peak current generating in is necessary. However, some far-from-thunderstorm region events were also detected and revealed to us another TLE generating mechanisms. For the discovering of the TLE nature the Universitetsky-Tatiana-2 and Vernov satellites were equipped with ultraviolet (240-400 nm) and red-infrared ( >610 nm) detectors. In both detector it was carried out regardless the lightnings with the guidance by the flashes in the UV wavelength where lightning's emitting is quite faint. The lowered threshold on the Vernov satellite allowed to select the great amount of TLE with the numerous far-from-thunderstorm region events examples. such events were not conjuncted with lightning activity measured by global lightning location network (WWLLN) on the large area of approximately 107 km2 for 30 minutes before and after the time of registration. The characteristic features of this type of event are: the absence of significant signal in the red-infrared detector's channel; a relatively small number of photons (less than 5 ṡ 1021). A large number of without lightning flash were detected at high latitudes over the ocean (30°S - 60°S). Lightning activity in the magnetic conjugate point also was analyzed. The relationship of far-from-thunderstorm region events with the specific lightning discharges didn't confirmed. Far-from-thunderstorm events - a new type of transient phenomena in the upper atmosphere is not associated with the thunderstorm activity. The mechanism of such discharges is not clear, though it was accumulated a sufficient amount of experimental facts of the existence of such flashes. According to the data of Vernov satellite the temporal profile, duration, location with earth coordinates and the number of photons generated in the far-from-thunderstorm atmospheric events has been analyzed and the discussion of these events origin is in progress.
[STS-48 Mission Highlights Resource Tape. Part 1 of 2
NASA Technical Reports Server (NTRS)
1991-01-01
In this first part of a two part video mission-highlights set, the flight of the STS-48 Space Shuttle Orbiter Discovery is reviewed. The flight crew consisted of: J. O. Creighton (Commander); Ken Reightler (Pilot); Charles 'Sam' Gemar (Mission Specialist); James 'Jim' Buchli (MS); and Mark Brown (MS). Step-by-step pre-launch and sunset launch sequences are shown with accompanying shots inside the Mission Control Center. The primary goal of this mission was the deployment of Upper Atmosphere Research Satellite (UARS). Other (secondary) payloads included: the MidDeck Zero Gravity Experiment (MODE); the Sam/Cream device; the Shuttle Activation Monitor/Cosmic Ray Effects and Activation Monitor Experiment; and the Physiology and Anatomical Rodent Experiment (PARE). Crew activities were shown, along with Earth views (Aurora Borealis (B/W), light from the Kuwait oil fires, lightning over Italy and other areas, polar regions and ice caps, and the United States at night (B/W)). This was the thirteenth flight of the Space Shuttle Discovery. A night landing is shown.
NASA Technical Reports Server (NTRS)
Mazur, V.; Gerlach, J. C.; Rust, W. D.
1984-01-01
The UHF-(70.5 cm wavelength) and S-band (10 cm wavelength) radar at NASA/Wallops Island Research Facility in Virginia, U.S.A. have been used to relate lightning activity with altitude and with the reflectivity structure of thunderstorms. Two centers of lightning flash density were found; one between 6 and 8 km altitude and another between 11 and 15 km. Previously announced in STAR as N83-31206
NASA Astrophysics Data System (ADS)
Strauss, Cesar; Rosa, Marcelo Barbio; Stephany, Stephan
2013-12-01
Convective cells are cloud formations whose growth, maturation and dissipation are of great interest among meteorologists since they are associated with severe storms with large precipitation structures. Some works suggest a strong correlation between lightning occurrence and convective cells. The current work proposes a new approach to analyze the correlation between precipitation and lightning, and to identify electrically active cells. Such cells may be employed for tracking convective events in the absence of weather radar coverage. This approach employs a new spatio-temporal clustering technique based on a temporal sliding-window and a standard kernel density estimation to process lightning data. Clustering allows the identification of the cells from lightning data and density estimation bounds the contours of the cells. The proposed approach was evaluated for two convective events in Southeast Brazil. Image segmentation of radar data was performed to identify convective precipitation structures using the Steiner criteria. These structures were then compared and correlated to the electrically active cells in particular instants of time for both events. It was observed that most precipitation structures have associated cells, by comparing the ground tracks of their centroids. In addition, for one particular cell of each event, its temporal evolution was compared to that of the associated precipitation structure. Results show that the proposed approach may improve the use of lightning data for tracking convective events in countries that lack weather radar coverage.
NASA Astrophysics Data System (ADS)
Eliseev, A. V.; Mokhov, I. I.; Chernokulsky, A. V.
2017-01-01
A module for simulating of natural fires (NFs) in the climate model of the A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM), is extended with respect to the influence of lightning activity and population density on the ignition frequency and fire suppression. The IAP RAS CM is used to perform numerical experiments in accordance with the conditions of the project that intercompares climate models, CMIP5 (Coupled Models Intercomparison Project, phase 5). The frequency of lightning flashes was assigned in accordance with the LIS/OTD satellite data. In the calculations performed, anthropogenic ignitions play an important role in NF occurrences, except for regions at subpolar latitudes and, to a lesser degree, tropical and subtropical regions. Taking into account the dependence of fire frequency on lightning activity and population density intensifies the influence of characteristics of natural fires on the climate changes in tropics and subtropics as compared to the version of the IAP RAS CM that does not take the influence of ignition sources on the large-scale characteristics of NFs into consideration.
Thunderstorm incidence in southeastern Brazil estimated from different data sources
NASA Astrophysics Data System (ADS)
Pinto, O., Jr.; Naccarato, K. P.; Pinto, I. R. C. A.
2013-07-01
This paper describes a comparative analysis of the thunderstorm incidence in southeastern Brazil obtained from thunderstorm days observed at two different epochs (from 1910 to 1951 and from 1971 to 1984) and from lightning data provided by the Brazilian lightning location system RINDAT (from 1999 to 2006) and the Lightning Imaging Sensor (LIS) on board the Tropical Rainfall Measuring Mission (TRMM) satellite (from 1998 to 2010). The results are interpreted in terms of the main synoptic patterns associated with thunderstorm activity in this region, indicating that the prevailing synoptic pattern associated with thunderstorm activity is the occurrence of frontal systems and their modulation by the South Atlantic Convergence Zone (SACZ) and topography. Evidence of urban effects is also found. The results are also discussed in the context of practical applications involving their use in the Brazilian lightning protection standards, suggesting that the present version of the Brazilian standards should be revised incorporating RINDAT and LIS data. Finally, the results are important to improve our knowledge about the limitations of the different techniques used to record the thunderstorm activity and support future climatic studies.
Designs for surge immunity in critical electronic facilities
NASA Technical Reports Server (NTRS)
Roberts, Edward F., Jr.
1991-01-01
In recent years, Federal Aviation Administration (FAA) embarked on a program replacing older tube type electronic equipment with newer solid state equipment. This replacement program dramatically increased the susceptibility of the FAA's facilities to lightning related damages. The proposal is presented of techniques which may be employed to lessen the susceptibility of new FAA electronic facility designs to failures resulting from lightning related surges and transients as well as direct strikes. The general concept espoused is one of a consistent system approach employing both perimeter and internal protection. It compares the technique presently employed to reduce electronic noise with other techniques which reduce noise while lowering susceptibility to lightning related damage. It is anticipated that these techniques will be employed in the design of an Air Traffic Control Tower in a high isokeraunic area. This facility would be subjected to rigorous monitoring over a multi-year period to provide quantitative data hopefully supporting the advantage of this design.
NASA Astrophysics Data System (ADS)
Sathiesh Kumar, V.; Vasa, Nilesh J.; Sarathi, R.
2013-07-01
The study of pollution performance on a wind turbine blade due to lightning is important, as it can cause major damage to wind turbine blades. In the present work, optical emission spectroscopy (OES) technique is used to understand the influence of pollutant deposited on a wind turbine blade in an off-shore environment. A methodical experimental study was carried out by adopting IEC 60507 standards, and it was observed that the lightning discharge propagates at the interface between the pollutant and the glass fiber reinforced plastic (Material used in manufacturing of wind turbine blades). In addition, as a diagnostic condition monitoring technique, laser-induced breakdown spectroscopy (LIBS) is proposed and demonstrated to rank the severity of pollutant on the wind turbine blades from a remote area. Optical emission spectra observed during surface discharge process induced by lightning impulse voltage is in agreement with the spectra observed during LIBS.
Optical image acquisition system for colony analysis
NASA Astrophysics Data System (ADS)
Wang, Weixing; Jin, Wenbiao
2006-02-01
For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems since they belong to a new technology product. One of the main problems is image acquisition. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. A digital camera in the top of the box connected to a PC computer with a USB cable, all the camera functions are controlled by the computer.
NASA Astrophysics Data System (ADS)
Gaudin, Damien; Cimarelli, Corrado; Behnke, Sonja; Cigala, Valeria; Edens, Harald; McNutt, Stefen; Smith, Cassandra; Thomas, Ronald; Van Eaton, Alexa
2017-04-01
Volcanic lightning is being increasingly studied, due to its great potential for the detection and monitoring of ash plumes. Indeed, it is observed in a large number of ash-rich volcanic eruptions and it produces electromagnetic waves that can be detected remotely in all weather conditions. Electrical discharges in volcanic plume can also significantly change the structural, chemical and reactivity properties of the erupted material. Although electrical discharges are detected in various regions of the plume, those happening at the onset of an explosion are of particular relevance for the early warning and the study of volcanic jet dynamics. In order to better constrain the electrical activity of young volcanic plumes, we deployed at Sakurajima (Japan) in 2015 a multiparametric set-up including: i) a lightning mapping array (LMA) of 10 VHF antennas recording the electromagnetic waves produced by lightning at a sample rate of 25 Msps; ii) a visible-light high speed camera (5000 frames per second, 0.5 m pixel size, 300 m field of view) shooting short movies (approx. duration 1 s) at different stages of the plume evolution, showing the location of discharges in relation to the plume; and iii) a thermal camera (25 fps, 1.5 m pixel size, 800 m field of view) continuously recording the plume and allowing the estimation of its main source parameters (volume, rise velocity, mass eruption rate). The complementarity of these three setups is demonstrated by comparing and aggregating the data at various stages of the plume development. In the earliest stages, the high speed camera spots discrete small discharges, that appear on the LMA data as peaks superimposed to the continuous radio frequency (CRF) signal. At later stages, flashes happen less frequently and increase in length. The correspondence between high speed camera and LMA data allows to define a direct correlation between the length of the flash and the intensity of the electromagnetic signal. Such correlation is used to estimate the evolution of the total discharges within a volcanic plume, while the superimposition of thermal and high speed videos allows to contextualize the flashes location in the scope of the plume features and dynamics.
Variability of lightning activity over India on ENSO time scales
NASA Astrophysics Data System (ADS)
Ahmad, Adnan; Ghosh, Mili
2017-12-01
ENSO, the reliable indicator of inter-annual climate variation of the ocean-atmosphere system in the tropical Pacific region, can affect the overall lightning activity which is another atmospheric phenomenon. In the present study, the impact of the ENSO on the total lightning activity over India has been studied for the period 2004-2014. During the El-Nino period (July 2004-April 2005 and July 2009-April 2010), total number of lightning flashes increased by 10% and 18% respectively and during La-Nina period (July 2010-April 2011 and August 2011 to March 2012), the total number of lightning flashes decreased approximately by 19% and 28% respectively as compared to the mean of corresponding period (2004-14) of the Non-ENSO. Seasonal variation of flash density is also examined for the El-Nino and La-Nina period. The result shows that in the El-Nino period of the pre-monsoon and monsoon seasons, there is an increment in the flash density approximately by 48% and 9% respectively than the Non-ENSO and the spatial variation also having high flash density along the foot of Himalayas region. In the post-monsoon season, there is a marginal change in the flash density between El-Nino and the Non-ENSO. In the winter season, there is an increment in flash density in the El-Nino period approximately by 45% than the Non-ENSO. In the La-Nina period of the pre-monsoon and monsoon seasons, there is the decrement in the flash density approximately by the 44% and 24% respectively than the Non-ENSO. In the Post-monsoon season and winter season of La-Nina, the flash density is increased by about 24% and 33% over India. These findings can be applied to do proper planning of lightning induced hazard mitigation as lightning is of one of the major natural disasters of India.
The ENSO Effect on the Temporal and Spatial Distribution of Global Lightning Activity
NASA Technical Reports Server (NTRS)
Chronis, Themis G.; Goodman, Steven J.; Cecil, Dan; Buechler, Dennis; Pittman, Jasna; Robertson, Franklin R.; Blakeslee, Richard J.
2007-01-01
The recently reprocessed (1997-2006) OTD/LIS database is used to investigate the global lightning climatology in response to the ENSO cycle. A linear correlation map between lightning anomalies and ENSO (NINO3.4) identifies areas that generally follow patterns similar to precipitation anomalies. We also observed areas where significant lightning/ENSO correlations are found and are not accompanied of significant precipitation/ENSO correlations. An extreme case of the strong decoupling between lightning and precipitation is observed over the Indonesian peninsula (Sumatra) where positive lightning/NINO3.4 correlations are collocated with negative precipitation/NINO3.4 correlations. Evidence of linear relationships between the spatial extent of thunderstorm distribution and the respective NINO3.4 magnitude are presented for different regions on the Earth. Strong coupling is found over areas remote to the main ENSO axis of influence and both during warm and cold ENSO phases. Most of the resulted relationships agree with the tendencies of precipitation related to ENSO empirical maps or documented teleconnection patterns. Over the Australian continent, opposite behavior in terms of thunderstorm activity is noted for warm ENSO phases with NINO3.4 magnitudes with NINO3.4>+l.08 and 0
Mathematical Inversion of Lightning Data: Techniques and Applications
NASA Technical Reports Server (NTRS)
Koshak, William
2003-01-01
A survey of some interesting mathematical inversion studies dealing with radio, optical, and electrostatic measurements of lightning are presented. A discussion of why NASA is interested in lightning, what specific physical properties of lightning are retrieved, and what mathematical techniques are used to perform the retrievals are discussed. In particular, a relatively new multi-station VHF time-of-arrival (TOA) antenna network is now on-line in Northern Alabama and will be discussed. The network, called the Lightning Mapping Array (LMA), employs GPS timing and detects VHF radiation from discrete segments (effectively point emitters) that comprise the channel of lightning strokes within cloud and ground flashes. The LMA supports on-going ground-validation activities of the low Earth orbiting Lightning Imaging Sensor (LIS) satellite developed at NASA Marshall Space Flight Center (MSFC) in Huntsville, Alabama. The LMA also provides detailed studies of the distribution and evolution of thunderstorms and lightning in the Tennessee Valley, and offers interesting comparisons with other meteorological/geophysical datasets. In order to take full advantage of these benefits, it is essential that the LMA channel mapping accuracy (in both space and time) be fully characterized and optimized. A new channel mapping retrieval algorithm is introduced for this purpose. To characterize the spatial distribution of retrieval errors, the algorithm has been applied to analyze literally tens of millions of computer-simulated lightning VHF point sources that have been placed at various ranges, azimuths, and altitudes relative to the LMA network. Statistical results are conveniently summarized in high-resolution, color-coded, error maps.
A Closer Look at the Congo and the Lightning Maximum on Earth
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Buechler, D. E.; Lavreau, Johan; Goodman, Steven J.
2008-01-01
The global maps of maximum mean annual flash density derived from a decade of observations from the Lightning Imaging Sensor on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite show that a 0.5 degree x 0.5 degree pixel west of Bukavu, Democratic Republic of Congo (latitude 2S, longitude 28E) has the most frequent lightning activity anywhere on earth with an average value in excess of 157 fl/sq km/yr. This pixel has a flash density that is much greater than even its surrounding neighbors. By contrast the maximum mean annual flash rate for North America located in central Florida is only 33 fl/sq km/yr. Previous studies have shown that monthly-seasonal-annual lightning maxima on earth occur in regions dominated by coastal (land-sea breeze interactions) or topographic influences (elevated heat sources, enhanced convergence). Using TRMM, Landsat Enhanced Thematic Mapper, and Shuttle Imaging Radar imagery we further examine the unique features of this region situated in the deep tropics and dominated by a complex topography having numerous mountain ridges and valleys to better understand why this pixel, unlike any other, has the most active lightning on the planet.
NASA Technical Reports Server (NTRS)
Rivera, Lizxandra Flores; Lang, Timothy
2014-01-01
Sprites are a category of Transient Luminous Events (TLEs) that occur in the upper atmosphere above the tops of Mesoscale Convective Systems (MCSs). They are commonly associated with lightning strokes that produce large charge moment changes (CMCs). Synergistic use of satellite and radar-retrieved observations together with sounding data, forecasts, and lightning-detection networks allowed the diagnosis and analysis of the meteorological conditions associated with sprites as well as large-CMC lightning over Oklahoma. One goal of the NASA-funded effort reported herein is the investigation of the potential for sprite interference with aerospace activities in the 20- 100km altitude range, including research balloons, space missions and other aviation transports.
Rocket-triggered lightning strikes and forest fire ignition
NASA Technical Reports Server (NTRS)
Fenner, James H.
1989-01-01
Background information on the rocket-triggered lightning project at Kennedy Space Center (KSC), a summary of the forecasting problem there, the facilities and equipment available for undertaking field experiments at KSC, previous research activity performed, a description of the atmospheric science field laboratory near Mosquito Lagoon on the KSC complex, methods of data acquisition, and present results are discussed. New sources of data for the 1989 field experiment include measuring the electric field in the lower few thousand feet of the atmosphere by suspending field measuring devices below a tethered balloon. Problems encountered during the 1989 field experiment are discussed. Future prospects for both triggered lightning and lightning-kindled forest fire research at KSC are listed.
Radar characteristics of cloud-to-ground lightning producing storms in Florida
NASA Technical Reports Server (NTRS)
Buechler, D. E.; Goodman, S. J.
1991-01-01
The interrelation between cloud-to-ground lightning, convective rainfall, and the environment in Central Florida storms is examined. The rain flux, storm area, and ground discharge rates are computed within the outlined area. Time-height cross sections of maximum dBZ values at each level for two storms are shown. The multicellular nature of these storms is readily apparent. The cloud-to-ground lightning activity occurs mainly where high reflectivity values (30-40 dBZ) extend above 7 km.
Atmospheric electricity criteria guidelines for use in aerospace vehicle development
NASA Technical Reports Server (NTRS)
Daniels, G. E.
1972-01-01
Lightning has always been of concern for aerospace vehicle ground activities. The unexpected triggering of lightning discharges by the Apollo 12 space vehicle shortly after launch and the more recent repeated lightning strikes to the launch umbilical tower while the Apollo 15 space vehicle was being readied for launch have renewed interest in studies of atmospheric electricity as it relates to space vehicle missions. The material presented reflects some of the results of these studies with regard to updating the current criteria guidelines.
A Probabilistic, Facility-Centric Approach to Lightning Strike Location
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.; Roeder, William p.; Merceret, Francis J.
2012-01-01
A new probabilistic facility-centric approach to lightning strike location has been developed. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collisionith spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.
Three-dimensional modeling of lightning-induced electromagnetic pulses on Venus, Jupiter, and Saturn
NASA Astrophysics Data System (ADS)
Pérez-Invernón, F. J.; Luque, A.; Gordillo-Vázquez, F. J.
2017-07-01
While lightning activity in Venus is still controversial, its existence in Jupiter and Saturn was first detected by the Voyager missions and later on confirmed by Cassini and New Horizons optical recordings in the case of Jupiter, and recently by Cassini on Saturn in 2009. Based on a recently developed 3-D model, we investigate the influence of lightning-emitted electromagnetic pulses on the upper atmosphere of Venus, Saturn, and Jupiter. We explore how different lightning properties such as total energy released and orientation (vertical, horizontal, and oblique) can produce mesospheric transient optical emissions of different shapes, sizes, and intensities. Moreover, we show that the relatively strong background magnetic field of Saturn can enhance the lightning-induced quasi-electrostatic and inductive electric field components above 1000 km of altitude producing stronger transient optical emissions that could be detected from orbital probes.
Lightning activity during the 1999 Superior derecho
NASA Astrophysics Data System (ADS)
Price, Colin G.; Murphy, Brian P.
2002-12-01
On 4 July 1999, a severe convective windstorm, known as a derecho, caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators of severe weather.
Lightning Activity During the 1999 Superior Derecho
NASA Astrophysics Data System (ADS)
Price, C. G.; Murphy, B. P.
2002-12-01
On 4 July 1999, a severe convective windstorm, known as a derecho, caused extensive damage to forested regions along the United States/Canada border, west of Lake Superior. There were 665,000 acres of forest destroyed in the Boundary Waters Canoe Area Wilderness (BWCAW) in Minnesota and Quetico Provincial Park in Canada, with approximately 12.5 million trees blown down. This storm resulted in additional severe weather before and after the occurrence of the derecho, with continuous cloud-to-ground (CG) lightning occurring for more than 34 hours during its path across North America. At the time of the derecho the percentage of positive cloud-to-ground (+CG) lightning measured by the Canadian Lightning Detection Network (CLDN) was greater than 70% for more than three hours, with peak values reaching 97% positive CG lightning. Such high ratios of +CG are rare, and may be useful indicators of severe weather.
Lightning prevention systems for paper mills
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, R.B. Jr.
1989-05-01
Paper mills are increasingly relying on sensitive electronic equipment to control their operations. However, the sensitivity of these devices has made mills vulnerable to the effects of lightning strokes. An interruption in the power supply or the destruction of delicate microcircuits can have devastating effects on mill productivity. The authors discuss how lightning strokes can be prevented by a Dissipation Array system (DAS). During the past 17 years, the concept has been applied to a host of applications in regions with a high incidence of lightning activity. With nearly 700 systems now installed, more than 4000 system-years of history havemore » been accumulated. Areas as large as 1 km{sup 2} and towers as high as 2000 ft have been protected and completely isolated from lightning strokes. There have been very few failures, and in every case, the cause of the failure was determined and corrected.« less
Laboratory-produced ball lightning
NASA Astrophysics Data System (ADS)
Golka, Robert K., Jr.
1994-05-01
For 25 years I have actively been searching for the true nature of ball lightning and attempting to reproduce it at will in the laboratory. As one might expect, many unidentified lights in the atmosphere have been called ball lightning, including Texas Maffa lights (automobile headlights), flying saucers (UFOs), swamp gas in Ann Arbor, Michigan, etc. For 15 years I thought ball lightning was strictly a high-voltage phenomenon. It was not until 1984 when I was short-circuiting the electrical output of a diesel electric railroad locomotive that I realized that the phenomenon was related more to a high current. Although I am hoping for some other types of ball lightning to emerge such as strictly electrostatic-electromagnetic manifestations, I have been unlucky in finding laboratory provable evidence. Cavity-formed plasmodes can be made by putting a 2-inch burning candle in a home kitchen microwave oven. The plasmodes float around for as long as the microwave energy is present.
NASA Astrophysics Data System (ADS)
Boldi, R.; Hobara, Y.; Yamashita, K.; Hayakawa, M.; Satori, G.; Bor, J.; Lyons, W. A.; Nelson, T.; Russell, B.; Williams, E.
2006-12-01
The generation of electromagnetic transient signatures in the SR frequency range (Q-bursts) from the energetic lightning originating in Africa were intensively studied during the AMMA (African Monsoon Multidisciplinary Analysis) field program centered on Niamey, Niger in 2006. During this wet season many active westward- moving MCSs were observed by the MIT C-band Doppler radar. The MCSs exhibited a gust front, a leading squall line and a large spatially-extended (100-200 km) stratiform region that often passed over the observation site. Many transient events were recorded in association with local lightning both with a slow antenna and a DC electric field mill installed near the radar. During the gust front and squall line traverse, the majority of lightning exhibited normal polarity. A remarkable transition of polarity is observed once the radar site is under the stratiform region and a pronounced radar bright band has had time to develop. The majority of the ground flashes then exhibit a positive polarity (positive ground flash). In particular, very intense positive ground flashes (often topped with spider lightning structure) are registered when the radar "hbright band"h is most strongly developed. These positive flashes exhibit a large DC field change in comparison to ones observed during the earlier squall line passage. Video observations of nighttime events support the existence of the lateral extensive spider lightning. Daytime events exhibit thunder durations of a few minutes. ELF Q-bursts were recorded at MIT's Schumann resonance station in Rhode Island U.S.A. (about 8 Mm distance from Niamey) associated with several large well-established positive ground flashes observed locally near Niamey. The event identification is made by accurate GPS timing and arrival direction of the waves. The onset times of the Q-burst are in good agreement with the electric field measurement near Niamey. The arrival directions of the waves are also in good agreement assuming the lightning source near Niamey. Those Q- bursts were generated when the radar observed the bright band in the stratiform region. Africa stands out among the three tropical chimneys in its production of large and energetic positive ground flashes in several independently produced maps of global lightning activity. Comparison of the morphology of convection in radar field programs in Niamey and in Brazil (LBA Program, 1999) have shown far more squall line activity with accompanying stratiform regions in Africa. A large ratio of positive to negative ground flashes in Africa has been documented by the global mapping of Q-bursts, and is consistent with production of positive lightning in the prevalent stratiform regions behind active squall lines. In contrast, a predominance of large negative ground flashes is observed in the Maritime Continent where many lightning sources are located close to (or over) the ocean, and where vigorous continental-style squall lines are relatively scarce. The global maps from Rhode Island U.S. and Moshiri Japan show similar tendency in the distribution of lightning polarity.
Mechanisms of the global electric circuit and lightning variability on the ENSO time scale
NASA Astrophysics Data System (ADS)
Mareev, Evgeny; Volodin, Evgeny; Slyunyaev, Nikolay
2017-04-01
Many studies of lightning activity on the El Niño-Southern Oscillation (ENSO) time scale show increased activity over tropical land areas during the warm El Niño phase (e.g., Satori et al., 2009; Price, 2009). The mechanisms of this variability—particularly in terms of its role in the global electric circuit (GEC)—are still under debate (e.g., Williams and Mareev, 2014). In this study a general circulation model of the atmosphere and ocean INMCM4.0 (Institute of Numerical Mathematics Coupled Model) is used for modelling the GEC variability on the ENSO time scale. The ionospheric potential (IP) and the lightning flash rate are calculated to study regional peculiarities and possible mechanisms of lightning variation. The IP parameterisation is used (Mareev and Volodin, 2014) which takes into account quasi-stationary currents of electrified clouds (including thunderstorms) as principal contributors into the DC global circuit. The account of conductivity variation in the IP parameterisation is suggested based on the approach realised in (Slyunyaev et al., 2014). Comparison of simulation results with the observational data on lightning activity on the ENSO time scale is discussed. Numerical simulations suggest that the inter-annual IP variability is low and does not exceed 1% of the mean value, being tightly correlated with the mean sea surface temperature (SST) in the Pacific Ocean (180W-100W, 5S-5N—El Niño area). The IP maximum corresponds to the SST minimum. This result can be explained taking into account that during El Niño (positive temperature anomaly) precipitations in the equatorial part of the Pacific increase while in other tropic zones including the land areas they decrease. Comparison of simulation results with the observational data on lightning activity on the ENSO time scale is discussed. During the El Niño period in the model, the mean aerosol content in the atmosphere decrease, which is caused by the weakening of the winds over Sahara and South-West Asia lifting dust into the atmosphere. Taking into consideration the decrease in the number of thunderstorms, this does not explain the observed global lightning variation. As another possible explanation for the enhanced El Niño lightning activity, the variation of the atmospheric aerosols and cloud condensation nuclei due to fires is discussed. The work was supported by a grant from the Government of the Russian Federation (contract no. 14.B25.31.0023) and by RFBR grant no. 16-05-01086. References Mareev E.A., Volodin E.M. (2014), Variation of the global electric circuit and ionospheric potential in a general circulation model, Geophys. Res. Lett., V. 41, P. 9009-9016. Sátori G., Williams E., Lemperger I. (2009), Variability of global lightning activity on the ENSO time scale, Atmos. Res., V. 91, P. 500-507. Price C. (2009), Will a drier climate result in a more lightning?, Atmos. Res., V. 91, P. 479-484. Williams E.R., Mareev E.A. (2014), Recent progress on the global electrical circuit, Atmos. Res., V. 135-136, P. 208-227. Slyunyaev N.N., Mareev E.A., Kalinin A.V., Zhidkov A.A. (2014), Influence of large-scale conductivity inhomogeneities in the atmosphere on the global electric circuit, J. Atmos. Sci., V. 71, P. 4382-4396.
Exploring a Physically Based Tool for Lightning Cessation: A Preliminary Study
NASA Technical Reports Server (NTRS)
Schultz, Elise V.; Petersen, Walter a.; Carey, Lawrence D.; Deierling, Wiebke
2010-01-01
The University of Alabama in Huntsville (UA Huntsville) and NASA's Marshall Space Flight Center are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. The project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UA Huntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. A summary of preliminary results will be presented.
Exploring a Physically Based Tool for Lightning Cessation: Preliminary Results
NASA Technical Reports Server (NTRS)
Schultz, Elsie V.; Petersen, Walter A.; Carey, Lawrence D.; Buechler, Dennis E.; Gatlin, Patrick N.
2010-01-01
The University of Alabama in Huntsville (UAHuntsville) and NASA s Marshall Space Flight Center are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. The project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. A summary of preliminary results will be presented.
Structural Analysis of Lightning Protection System for New Launch Vehicle
NASA Technical Reports Server (NTRS)
Cope, Anne; Moore, Steve; Pruss, Richard
2008-01-01
This project includes the design and specification of a lightning protection system for Launch Complex 39 B (LC39B) at Kennedy Space Center, FL in support of the Constellation Program. The purpose of the lightning protection system is to protect the Crew Launch Vehicle (CLV) or Cargo Launch Vehicle (CaLV) and associated launch equipment from direct lightning strikes during launch processing and other activities prior to flight. The design includes a three-tower, overhead catenary wire system to protect the vehicle and equipment on LC39B as described in the study that preceded this design effort: KSC-DX-8234 "Study: Construct Lightning Protection System LC3 9B". The study was a collaborative effort between Reynolds, Smith, and Hills (RS&H) and ASRC Aerospace (ASRC), where ASRC was responsible for the theoretical design and risk analysis of the lightning protection system and RS&H was responsible for the development of the civil and structural components; the mechanical systems; the electrical and grounding systems; and the siting of the lightning protection system. The study determined that a triangular network of overhead catenary cables and down conductors supported by three triangular free-standing towers approximately 594 ft tall (each equipped with a man lift, ladder, electrical systems, and communications systems) would provide a level of lightning protection for the Constellation Program CLV and CaLV on Launch Pad 39B that exceeds the design requirements.
Comparison of lightning activity in the two most active areas of the Congo Basin
NASA Astrophysics Data System (ADS)
Kigotsi, Jean K.; Soula, Serge; Georgis, Jean-François
2018-02-01
A comparison of the lightning activity in the two most active areas (Area_max for the main maximum and Area_sec for the secondary maximum) of the Congo Basin is made with data obtained by the World Wide Lightning Location Network (WWLLN) during 2012 and 2013. Both areas of same size (5° × 5°) exhibit flash counts in a ratio of about 1.32 for both years and very different distributions of the flash rate density (FRD) with maximums in a ratio of 1.94 and 2.59 for 2012 and 2013, respectively. The FRD is much more widely distributed in Area_sec, which means the whole area contributes more or less equal to the lightning activity. The diurnal cycle is much more pronounced in Area_max than in Area_sec with a ratio between the maximum and the minimum of 15.4 and 4.7, respectively. However, the minimum and maximum of the hourly flash rates are observed roughly at the same time in both areas, between 07:00 and 09:00 UTC and between 16:00 and 17:00 UTC, respectively. In Area_sec the proportion of days with low lightning rate (0-1000 flashes per day) is much larger (˜ 45 % in 2013) compared to Area_max (˜ 23 % in 2013). In Area_max the proportion of days with moderate lightning rate (1001-6000 flashes per day) is larger (˜ 68.5 % in 2013) compared to Area_sec (˜ 46 % in 2013). The very intense convective events are slightly more numerous in Area_sec. In summary, the thunderstorm activity in Area_sec is more variable at different scales of time (annually and daily), in intensity and in location. Area_max combines two favourable effects for thunderstorm development, the convergence associated with the African easterly jet of the Southern Hemisphere (AEJ-S) and a geographic effect due to the orography and the presence of a lake. The location of the strong convection in Area_sec is modulated by the distance of westward propagation/regeneration of mesoscale convective systems (MCSs) in relation to the phase of Kelvin waves.
Civil Applications of National Satellites
NASA Astrophysics Data System (ADS)
Killam, Dudley B.
2002-01-01
For over thirty years, the United States Air Force has employed infrared surveillance for missile warning purposes in support of peace. The Defense Support Program, currently employed in this way, consists of a constellation of satellites that provide civil-oriented, peace preserving infrared surveillance. Such civil applications include monitoring parched areas for wind-whipped brush fires or lightning-initiated forest fires that consume many acres of timber and threaten populated areas. Other applications include the similar monitoring of static, infrared-sensed heat sources including volcanoes and the plumes of acrid smoke produced when the volcanoes are active. This paper will address these important missions that can be performed by the national infrared surveillance satellite constellations, furthering the peace of the world in ways never envisioned by their creators 30 years ago.
NASA Astrophysics Data System (ADS)
Zheng, Hao; Holzworth, Robert H.; Brundell, James B.; Jacobson, Abram R.; Wygant, John R.; Hospodarsky, George B.; Mozer, Forrest S.; Bonnell, John
2016-03-01
Lightning-generated whistler waves are electromagnetic plasma waves in the very low frequency (VLF) band, which play an important role in the dynamics of radiation belt particles. In this paper, we statistically analyze simultaneous waveform data from the Van Allen Probes (Radiation Belt Storm Probes, RBSP) and global lightning data from the World Wide Lightning Location Network (WWLLN). Data were obtained between July to September 2013 and between March and April 2014. For each day during these periods, we predicted the most probable 10 min for which each of the two RBSP satellites would be magnetically conjugate to lightning producing regions. The prediction method uses integrated WWLLN stroke data for that day obtained during the three previous years. Using these predicted times for magnetic conjugacy to lightning activity regions, we recorded high time resolution, burst mode waveform data. Here we show that whistlers are observed by the satellites in more than 80% of downloaded waveform data. About 22.9% of the whistlers observed by RBSP are one-to-one coincident with source lightning strokes detected by WWLLN. About 40.1% more of whistlers are found to be one-to-one coincident with lightning if source regions are extended out 2000 km from the satellites footpoints. Lightning strokes with far-field radiated VLF energy larger than about 100 J are able to generate a detectable whistler wave in the inner magnetosphere. One-to-one coincidences between whistlers observed by RBSP and lightning strokes detected by WWLLN are clearly shown in the L shell range of L = 1-3. Nose whistlers observed in July 2014 show that it may be possible to extend this coincidence to the region of L≥4.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Wheeler, Mark
2004-01-01
The 45th Weather Squadron (45 WS) forecasters at Cape Canaveral Air Force Station (CCAFS) in Florida include a probability of thunderstorm occurrence in their daily morning briefings. This information is used by personnel involved in determining the possibility of violating Launch Commit Criteria, evaluating Flight Rules for the Space Shuttle, and daily planning for ground operation activities on Kennedy Space Center (KSC)/CCAFS. Much of the current lightning probability forecast is based on a subjective analysis of model and observational data. The forecasters requested that a lightning probability forecast tool based on statistical analysis of historical warm-season (May - September) data be developed in order to increase the objectivity of the daily thunderstorm probability forecast. The tool is a set of statistical lightning forecast equations that provide a lightning occurrence probability for the day by 1100 UTC (0700 EDT) during the warm season. This study used 15 years (1989-2003) of warm season data to develop the objective forecast equations. The local CCAFS 1000 UTC sounding was used to calculate stability parameters for equation predictors. The Cloud-to-Ground Lightning Surveillance System (CGLSS) data were used to determine lightning occurrence for each day. The CGLSS data have been found to be more reliable indicators of lightning in the area than surface observations through local informal analyses. This work was based on the results from two earlier research projects. Everitt (1999) used surface observations and rawinsonde data to develop logistic regression equations that forecast the daily thunderstorm probability at CCAFS. The Everitt (1999) equations showed an improvement in skill over the Neumann-Pfeffer thunderstorm index (Neumann 1971), which uses multiple linear regression, and also persistence and climatology forecasts. Lericos et al. (2002) developed lightning distributions over the Florida peninsula based on specific flow regimes. The flow regimes were inferred from the average wind direction in the 1000-700 mb layer at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), Florida, and the lightning data were from the National Lightning Detection Network. The results suggested that the daily flow regime may be an important predictor of lightning occurrence on KSC/CCAFS.
Exploring the Use of Radar for a Physically Based Lightning Cessation Nowcasting Tool
NASA Technical Reports Server (NTRS)
Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.
2011-01-01
NASA s Marshall Space Flight Center (MSFC) and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual-polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms, we believe that dual-polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and hydrometeors. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can these ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far, our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature encompassed the period of the polarimetric negative phase shift signature. To the extent this behavior is repeatable in other cases, even if only in a substantial fraction of those cases, the case analyses suggests that differential propagation phase may prove to be a useful parameter for future lightning cessation algorithms. Indeed, analysis of 15+ cases has shown additional indications of the weakening and disappearance of this ice alignment signature with lightning cessation. A summary of results will be presented.
On the Nature of Cloud Lightning
NASA Astrophysics Data System (ADS)
Betz, H. D.; Schmidt, K.; Oettinger, W. P.; Montag, B.; Wuerl, A.
2009-04-01
Studies of lightning discharges generally deal with electrical activities that occur both inside thunderclouds (IC) and may involve a ground connection (CG). Even though CG has been studied more extensively than IC, it is known that the two types of discharges are accompanied by emission of qualitatively similar radiation. Less well recognized is the observation that relatively strong strokes are produced not only in connection with CG, but also by discharge processes that do not connect to ground. These IC strokes tend to exhibit somewhat smaller field amplitudes than CG strokes, but they produce thunder and the field records often resemble the ones known from CG. In fact, the number of these IC-strokes is large enough to allow efficient monitoring of cloud activity with the same technique as one applies for CG detection (VLF/LF). Very frequently, IC-strokes are produced during the initial breakdown phase, whereby initiation is probably caused by electron runaway processes that extend over hundreds of meters. Further prominent discharge phases can be effectively observed, most important are stepped leaders with copious emission of VHF radio signals. Experimental data for the various cloud processes are discussed and evaluated with respect to theoretical and practical significance. Open questions on the production mechanisms are elucidated, and the relative occurrence of IC versus CG strokes is illustrated.
Spatial distribution of cold-season lightning frequency in the coastal areas of the Sea of Japan
NASA Astrophysics Data System (ADS)
Tsurushima, Daiki; Sakaida, Kiyotaka; Honma, Noriyasu
2017-12-01
The coastal areas of the Sea of Japan are a well-known hotspot of winter lightning activity. This study distinguishes between three common types of winter lightning in that region (types A-C), based on their frequency distributions and the meteorological conditions under which they occur. Type A lightning occurs with high frequency in the Tohoku district. It is mainly caused by cold fronts that accompany cyclones passing north of the Japanese islands. Type B, which occurs most frequently in the coastal areas of the Hokuriku district, is mainly caused by topographically induced wind convergence and convective instability, both of which are associated with cyclones having multiple centers. Type C's lightning frequency distribution pattern is similar to that of type B, but its principal cause is a topographically induced wind convergence generated by cold air advection from the Siberian continent. Type A is most frequently observed from October to November, while types B and C tend to appear from November to January, consistent with seasonal changes in lightning frequency distribution in Japan's Tohoku and Hokuriku districts.
NASA Technical Reports Server (NTRS)
Woodard, Crystal; Carey, Lawrence D.; Petersen, Walter A.; Felix, Mariana; Roeder, William P.
2011-01-01
Lightning is one of Earth s natural dangers, destructive not only to life but also physical property. According to the National Weather Service, there are on average 58 lightning fatalities each year, with over 300 related injuries (NWS 2010). The ability to forecast lightning is critical to a host of activities ranging from space vehicle launch operations to recreational sporting events. For example a single lightning strike to a Space Shuttle could cause billions of dollars of damage and possible loss of life. While forecasting that provides longer lead times could provide sporting officials with more time to respond to possible threatening weather events, thus saving the lives of player and bystanders. Many researchers have developed and tested different methods and tools of first flash forecasting, however few have done so using dual-polarimetric radar variables and products on an operational basis. The purpose of this study is to improve algorithms for the short-term prediction of lightning initiation through development and testing of operational techniques that rely on parameters observed and diagnosed using C-band dual-polarimetric radar.
NASA Technical Reports Server (NTRS)
Johnson, Elsie V.; Petersen, W. A,
2009-01-01
Numerous case studies and recent modeling studies have found that various metrics of updraft intensity appear to be reasonably well correlated to lightning production in thunderstorms, particularly severe thunderstorms. Indeed, the relationship between updraft and lightning flash rate is hypothesized to be the physical connection between a lightning "jump" signature and manifestations of severe weather such as tornadic activity. This study further examines this connection using a combination of dual Doppler wind retrievals made with the UAH ARMOR dual polarimetric and KHTX WSR 88D Doppler radar pair, together with northern Alabama Lightning Mapping Array (LMA) data. The dual Doppler data were used to construct three dimensional wind fields and the retrieved vertical velocity fields were subsequently compared to collocated total lightning flash rates observed by the LMA. Particular attention was paid to the timing of updraft pulses relative to changes in the flash rate, with the goal of assessing impacts on warning decision lead time. Results from the analysis of severe and non severe thunderstorms in Northern Alabama will be presented including the EF 4 tornado producing supercell on 6 February 2008.
Calibration/validation strategy for GOES-R L1b data products
NASA Astrophysics Data System (ADS)
Fulbright, Jon P.; Kline, Elizabeth; Pogorzala, David; MacKenzie, Wayne; Williams, Ryan; Mozer, Kathryn; Carter, Dawn; Race, Randall; Sims, Jamese; Seybold, Matthew
2016-10-01
The Geostationary Operational Environmental Satellite-R series (GOES-R) will be the next generation of NOAA geostationary environmental satellites. The first satellite in the series is planned for launch in November 2016. The satellite will carry six instruments dedicated to the study of the Earth's weather, lightning mapping, solar observations, and space weather monitoring. Each of the six instruments require specialized calibration plans to achieve their product quality requirements. In this talk we will describe the overall on-orbit calibration program and data product release schedule of the GOES-R program, as well as an overview of the strategies of the individual instrument science teams. The Advanced Baseline Imager (ABI) is the primary Earth-viewing weather imaging instrument on GOES-R. Compared to the present on-orbit GOES imagers, ABI will provide three times the spectral bands, four times the spatial resolution, and operate five times faster. The increased data demands and product requirements necessitate an aggressive and innovative calibration campaign. The Geostationary Lightning Mapper (GLM) will provide continuous rapid lightning detection information covering the Americas and nearby ocean regions. The frequency of lightning activity points to the intensification of storms and may improve tornado warning lead time. The calibration of GLM will involve intercomparisons with ground-based lightning detectors, an airborne field campaign, and a ground-based laser beacon campaign. GOES-R also carries four instruments dedicated to the study of the space environment. The Solar Ultraviolet Imager (SUVI) and the Extreme Ultraviolet and X-Ray Irradiance Sensors (EXIS) will study solar activity that may affect power grids, communication, and spaceflight. The Space Environment In-Situ Suite (SEISS) and the Magnetometer (MAG) study the in-situ space weather environment. These instruments follow a calibration and validation (cal/val) program that relies on intercomparisons with other space-based sensors and utilize special spacecraft maneuvers. Given the importance of cal/val to the success of GOES-R, the mission is committed to a long-term effort. This commitment enhances our knowledge of the long-term data quality and builds user confidence. The plan is a collaborative effort amongst the National Oceanic and Atmospheric Administration (NOAA), the National Institute of Standards and Technology (NIST), and the National Aeronautics and Space Administration (NASA). It is being developed based on the experience and lessons-learned from the heritage GOES and Polar-orbiting Operational Environmental Satellite (POES) systems, as well as other programs. The methodologies described in the plan encompass both traditional approaches and the current state-of-the-art in cal/val.
Electric field mill network products to improve detection of the lightning hazard
NASA Technical Reports Server (NTRS)
Maier, Launa M.
1987-01-01
An electric field mill network has been used at Kennedy Space Center for over 10 years as part of the thunderstorm detection system. Several algorithms are currently available to improve the informational output of the electric field mill data. The charge distributions of roughly 50 percent of all lightning can be modeled as if they reduced the charged cloud by a point charge or a point dipole. Using these models, the spatial differences in the lightning induced electric field changes, and a least squares algorithm to obtain an optimum solution, the three-dimensional locations of the lightning charge centers can be located. During the lifetime of a thunderstorm, dynamically induced charging, modeled as a current source, can be located spatially with measurements of Maxwell current density. The electric field mills can be used to calculate the Maxwell current density at times when it is equal to the displacement current density. These improvements will produce more accurate assessments of the potential electrical activity, identify active cells, and forecast thunderstorm termination.
Circulation types related to lightning activity over Catalonia and the Principality of Andorra
NASA Astrophysics Data System (ADS)
Pineda, N.; Esteban, P.; Trapero, L.; Soler, X.; Beck, C.
In the present study, we use a Principal Component Analysis (PCA) to characterize the surface 6-h circulation types related to substantial lightning activity over the Catalonia area (north-eastern Iberia) and the Principality of Andorra (eastern Pyrenees) from January 2003 to December 2007. The gridded data used for classification of the circulation types is the NCEP Final Analyses of the Global Tropospheric Analyses at 1° resolution over the region 35°N-48°N by 5°W-8°E. Lightning information was collected by the SAFIR lightning detection system operated by the Meteorological Service of Catalonia (SMC), which covers the region studied. We determined nine circulation types on the basis of the S-mode orthogonal rotated Principal Component Analysis. The “extreme scores” principle was used previous to the assignation of all cases, to obtain the number of final types and their centroids. The distinct differences identified in the resulting mean Sea Level Pressure (SLP) fields enabled us to group the types into three main patterns, taking into account their scale/dynamical origin. The first group of types shows the different distribution of the centres of action at synoptic scale associated with the occurrence of lightning. The second group is connected to mesoscale dynamics, mainly induced by the relief of the Pyrenees. The third group shows types with low gradient SLP patterns in which the lightning activity is a consequence of thermal dynamics (coastal and mountain breezes). Apart from reinforcing the consistency of the groups obtained, analysis of the resulting classification improves our understanding of the geographical distribution and genesis factors of thunderstorm activity in the study area, and provides complementary information for supporting weather forecasting. Thus, the catalogue obtained will provide advances in different climatological and meteorological applications, such as nowcasting products or detection of climate change trends.
Lightning discharges produced by wind turbines
NASA Astrophysics Data System (ADS)
Montanyà, Joan; van der Velde, Oscar; Williams, Earle R.
2014-02-01
New observations with a 3-D Lightning Mapping Array and high-speed video are presented and discussed. The first set of observations shows that under certain thunderstorm conditions, wind turbine blades can produce electric discharges at regular intervals of 3 s in relation to its rotation, over periods of time that range from a few minutes up to hours. This periodic effect has not been observed in static towers indicating that the effect of rotation is playing a critical role. The repeated discharges can occur tens of kilometers away from electrically active thunderstorm areas and may or may not precede a fully developed upward lightning discharge from the turbine. Similar to rockets used for triggering lightning, the fast movement of the blade tip plays an important role on the initiation of the discharge. The movement of the rotor blades allows the tip to "runaway" from the generated corona charge. The second observation is an uncommon upward/downward flash triggered by a wind turbine. In that flash, a negative upward leader was initiated from a wind turbine without preceding lightning activity. The flash produced a negative cloud-to-ground stroke several kilometers from the initiation point. The third observation corresponds to a high-speed video record showing simultaneous upward positive leaders from a group of wind turbines triggered by a preceding intracloud flash. The fact that multiple leaders develop simultaneously indicates a poor shielding effect among them. All these observations provide some special features on the initiation of lightning by nonstatic and complex tall structures.
Vinogradova, I A
2009-01-01
The influence of different light regimes (standard lightning--12 hours light/ 12 hours darkness; natural light regime of the North-West of Russia; constant darkness and constant lightning), melatonin and epitalon on the thyrotrophic activity of hypophysis and on the function of thyroid gland was studied. It has been found out that the maximum values of free thyroxin and triiodothyronine in blood were observed in the conditions of constant lightning and the minimal values--in the conditions of light deprivation. In the conditions of natural lightning of Karelia, with orientation on seasonal lightning, the following annual-circadian rhythms were observed: in autumn (period of short lightness duration) the level of free T3 was the lowest; in spring (period of short darkness duration) it was the highest; the inverse relationship was observed by the comparison of free T4 concentration. The lowest values of TSH were observed in old rats kept in constant light and natural light regimes. The concentration of TSH in blood was practically on the same level in the standard regime and in the regime of light deprivation. The age changes of the level of hormones appeared later in rats who received medication, in comparison with the control sets of animals. The use of melatonin and epitalon smoothened the seasonal variations of the level of thyroidal hormones in blood in the lightning conditions of Karelia.
Baines, K.H.; Delitsky, M.L.; Momary, T.W.; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.
2009-01-01
Thunderstorm activity on Saturn is associated with optically detectable clouds that are atypically dark throughout the near-infrared. As observed by Cassini/VIMS, these clouds are ~20% less reflective than typical neighboring clouds throughout the spectral range from 0.8 ??m to at least 4.1 ??m. We propose that active thunderstorms originating in the 10-20 bar water-condensation region vertically transport dark materials at depth to the ~1 bar level where they can be observed. These materials in part may be produced by chemical processes associated with lightning, likely within the water clouds near the ~10 bar freezing level of water, as detected by the electrostatic discharge of lightning flashes observed by Cassini/RPWS (e.g., Fischer et al. 2008, Space Sci. Rev., 137, 271-285). We review lightning-induced pyrolytic chemistry involving a variety of Saturnian constituents, including hydrogen, methane, ammonia, hydrogen sulfide, phosphine, and water. We find that the lack of absorption in the 1-2 ??m spectral region by lightning-generated sulfuric and phosphorous condensates renders these constituents as minor players in determining the color of the dark storm clouds. Relatively small particulates of elemental carbon, formed by lightning-induced dissociation of methane and subsequently upwelled from depth - perhaps embedded within and on the surface of spectrally bright condensates such as ammonium hydrosulfide or ammonia - may be a dominant optical material within the dark thunderstorm-related clouds of Saturn. ?? 2009 Elsevier Ltd. All rights reserved.
Statistical-dynamical modeling of the cloud-to-ground lightning activity in Portugal
NASA Astrophysics Data System (ADS)
Sousa, J. F.; Fragoso, M.; Mendes, S.; Corte-Real, J.; Santos, J. A.
2013-10-01
The present study employs a dataset of cloud-to-ground discharges over Portugal, collected by the Portuguese lightning detection network in the period of 2003-2009, to identify dynamically coherent lightning regimes in Portugal and to implement a statistical-dynamical modeling of the daily discharges over the country. For this purpose, the high-resolution MERRA reanalysis is used. Three lightning regimes are then identified for Portugal: WREG, WREM and SREG. WREG is a typical cold-core cut-off low. WREM is connected to strong frontal systems driven by remote low pressure systems at higher latitudes over the North Atlantic. SREG is a combination of an inverted trough and a mid-tropospheric cold-core nearby Portugal. The statistical-dynamical modeling is based on logistic regressions (statistical component) developed for each regime separately (dynamical component). It is shown that the strength of the lightning activity (either strong or weak) for each regime is consistently modeled by a set of suitable dynamical predictors (65-70% of efficiency). The difference of the equivalent potential temperature in the 700-500 hPa layer is the best predictor for the three regimes, while the best 4-layer lifted index is still important for all regimes, but with much weaker significance. Six other predictors are more suitable for a specific regime. For the purpose of validating the modeling approach, a regional-scale climate model simulation is carried out under a very intense lightning episode.
Triangulations of sprites relative to parent lighting near the Oklahoma Lightning Mapping Array
NASA Astrophysics Data System (ADS)
Lu, G.; Cummer, S. A.; Li, J.; Lyons, W. A.; Stanley, M. A.; Krehbiel, P. R.; Rison, W.; Thomas, R. J.; Weiss, S. A.; Beasley, W. H.; Bruning, E. C.; MacGorman, D. R.; Palivec, K.; Samaras, T. M.
2012-12-01
Temporal and spatial development of sprite-producing lightning flashes is examined with coordinated observations over an asymmetric mesoscale convective system on June 29, 2011 near the Oklahoma Lightning Mapping Array (OK-LMA). About 30 sprites were mutually observed from Bennett, Colorado and Hawley, Texas, allowing us to triangulate sprite formation in comparison with spatial/temporal development of the parent lightning. Complementary measurements of broadband (<1 Hz to ~300 kHz) radio frequency lightning signals are available from several magnetic sensors across the United States. Our analyses indicate that although sprite locations can be significantly offset horizontally (up to 70 km) from the parent ground stroke, they are usually laterally within 30 km of the in-cloud lightning activity during the 100 ms time interval prior to the sprite production. This is true for short-delayed sprites produced within 20 ms after a causative stroke, and long-delayed sprites appearing up to more than 200 ms after the stroke. Multiple sprites appearing as dancing/jumping events can be produced during one single flash either in a single lightning channel, through series of current surges superposed on a long and intense continuing current, or in multiple lightning channels through distinct ground strokes of the flash. The burst of continuous very-low-frequency/low-frequency lightning sferics commonly observed in association with sprites is linked to the horizontal progression of multiple negative leaders through positive charged regions of the cloud, which are typically centered at altitudes ~1-2 km (or more) above the freezing level.
NASA Astrophysics Data System (ADS)
Van Eaton, A. R.; Amigo, A.; Bertin, D.; Mastin, L. G.; Giacosa, R.; Behnke, S. A.
2015-12-01
On 22 April 2015, Calbuco Volcano in southern Chile erupted for the first time in 43 years. The two primary phases of eruption, separated by a few hours, produced pyroclastic density currents, lahars, and spectacular vertical eruption columns that rose into the stratosphere. Clear weather conditions allowed the populated areas of Puerto Montt and Puerto Varas full view of the lightning-rich eruption, which was rapidly shared through social media. A wealth of remote-sensing data was also publically available in near real-time. We used this information to assess the eruption behavior by combining satellite-based umbrella growth rates, and the location and frequency of volcanic lightning. Umbrella expansion rates from GOES-13 satellite retrievals correspond to eruption rates of about 4x106 kg s-1 for the first eruptive phase and 6x106 kg s-1 for the second phase, following the approach of Pouget et al. (2013, JVGR, 258, 100-112). The location and timing of lightning flashes were obtained from the World Wide Lightning Location Network (WWLLN) Global Volcanic Lightning Monitor, which is updated approximately every minute (Ewert et al., 2010, Fall AGU Abstract AE31A-04). Interestingly, the onset of detected flashes was delayed by ~30 min after the start of each eruptive phase. Lighting provided a useful proxy for the waxing or waning intensity of the eruption, and helped identify the end of significant ash emissions. Using the 1-D volcanic plume model Plumeria, we have also simulated the vertical distribution of ash and ice in the plumes to examine potential causes of the extraordinary amount of volcanic lightning (1,094 flashes detected). Our analysis provides information on eruption timing, duration, and mass flow rate, which are necessary for ash dispersal modeling within hours of eruption. Results are also consistent with the field-based measurements of total erupted volume. We suggest that the combination of satellite-detected umbrella expansion rates with lightning data may provide a useful approach to constrain near real-time inputs for ash dispersal models and hazard warnings.
Electromagnetic emission from terrestrial lightning in the 0.1-30 MHz frequency range
NASA Astrophysics Data System (ADS)
Karashtin, A. N.; Gurevich, A. V.
Results of measurements carried out at SURA facility of Radiophisical Research Institute and at Tien-Shan Mountain Scientific Station of Lebedev Physical Institute using specially designed installations for short electromagnetic pulse observation in the frequency range from 0.1 to 30 MHz are presented. Specific attention is paid to initial stage of the lightning discharge. It is shown that lightning can be initiated by extensive atmospheric showers caused by high energy cosmic ray particles. Analysis of emission of few thousand lightning discharges showed that • Short wave radio emission of lightning consists of a series of short pulses with duration from less than 100 nanoseconds to several microseconds separated well longer gaps. • Background noise between lightning discharges is not differ from one observed without thunderstorm activity (at given sensitivity). Usually it is the same between lightning pulses at least at the initial stage. • Each lightning discharge radio emission starts with a number of very short (less than 100 nanoseconds at 0.7 level) bi-polar pulses. Gaps between initial pulses vary from several microseconds to few hundreds of microseconds. No radio emission was observed before the first pulse during at least 500 milliseconds. Both positive and negative polarity of the first pulses occur in approximately equal proportion in different lightning discharges while the polarity was the same in any individual lightning. • First pulse amplitude, width and waveform are consistent with predicted by the theory of combined action of runaway breakdown and extensive atmospheric shower caused by cosmic ray particle of 1016 eV energy. Lightning discharges at other planets can be initiated by cosmic ray particles as well. This work was partly supported by ISTC grant # 2236p. The work of one of the authors (A. N. Karashtin) was also partly supported by INTAS grant # 03-51-5727.
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, Richard; Koshak, William; Petersen, Walter; Carey, Larry; Mach, Douglas; Buechler, Dennis; Bateman, Monte; McCaul, Eugene; Bruning, Eric;
2010-01-01
The next generation Geostationary Operational Environmental Satellite (GOES-R) series with a planned launch in 2015 is a follow on to the existing GOES system currently operating over the Western Hemisphere. The system will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. The system provides products including lightning, cloud properties, rainfall rate, volcanic ash, air quality, hurricane intensity, and fire/hot spot characterization. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved spectral, spatial, and temporal resolution for the 16-channel Advanced Baseline Imager (ABI). The Geostationary Lightning Mapper (GLM), an optical transient detector will map total (in-cloud and cloud-to-ground) lightning flashes continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions, from the west coast of Africa (GOES-E) to New Zealand (GOES-W) when the constellation is fully operational. In parallel with the instrument development, a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the higher level algorithms and applications using the GLM alone and decision aids incorporating information from the ABI, ground-based weather radar, and numerical models. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional lightning networks are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. Real time total lightning mapping data are also being provided in an experimental mode to selected National Weather Service (NWS) national centers and forecast offices via the GOES-R Proving Ground to help improve our understanding of the application of these data in operational settings and facilitate early on-orbit user readiness for this new capability.
Estimates of Lightning NOx Production Based on OMI NO2 Observations Over the Gulf of Mexico
NASA Technical Reports Server (NTRS)
Pickering, Kenneth E.; Bucsela, Eric; Allen, Dale; Ring, Allison; Holzworth, Robert; Krotkov, Nickolay
2016-01-01
We evaluate nitrogen oxide (NO(sub x) NO + NO2) production from lightning over the Gulf of Mexico region using data from the Ozone Monitoring Instrument (OMI) aboard NASAs Aura satellite along with detection efficiency-adjusted lightning data from the World Wide Lightning Location Network (WWLLN). A special algorithm was developed to retrieve the lightning NOx [(LNO(sub x)] signal from OMI. The algorithm in its general form takes the total slant column NO2 from OMI and removes the stratospheric contribution and tropospheric background and includes an air mass factor appropriate for the profile of lightning NO(sub x) to convert the slant column LNO2 to a vertical column of LNO(sub x). WWLLN flashes are totaled over a period of 3 h prior to OMI overpass, which is the time an air parcel is expected to remain in a 1 deg. x 1 deg. grid box. The analysis is conducted for grid cells containing flash counts greater than a threshold value of 3000 flashes that yields an expected LNO(sub x) signal greater than the background. Pixels with cloud radiance fraction greater than a criterion value (0.9) indicative of highly reflective clouds are used. Results for the summer seasons during 2007-2011 yield mean LNO(sub x) production of approximately 80 +/- 45 mol per flash over the region for the two analysis methods after accounting for biases and uncertainties in the estimation method. These results are consistent with literature estimates and more robust than many prior estimates due to the large number of storms considered but are sensitive to several substantial sources of uncertainty.
Exploring the Use of Radar for Physically-Based Nowcasting of Lightning Cessation
NASA Technical Reports Server (NTRS)
Schultz, Elise V.; Petersen, Walter A.; Carey, Lawrence D.
2011-01-01
NASA's Marshall Space Flight Center and the University of Alabama in Huntsville (UAHuntsville) are collaborating with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) to enable improved nowcasting of lightning cessation. This project centers on use of dual-polarimetric radar capabilities, and in particular, the new C-band dual polarimetric weather radar acquired by the 45WS. Special emphasis is placed on the development of a physically-based operational algorithm to predict lightning cessation. While previous studies have developed statistically based lightning cessation algorithms driven primarily by trending in the actual total lightning flash rate, we believe that dual polarimetric radar variables offer the possibility to improve existing algorithms through the inclusion of physically meaningful trends reflecting interactions between in-cloud electric fields and ice-microphysics. Specifically, decades of polarimetric radar research using propagation differential phase has demonstrated the presence of distinct phase and ice crystal alignment signatures in the presence of strong electric fields associated with lightning. One question yet to be addressed is: To what extent can propagation phase-based ice-crystal alignment signatures be used to nowcast the cessation of lightning activity in a given storm? Accordingly, data from the UAHuntsville Advanced Radar for Meteorological and Operational Research (ARMOR) along with the NASA-MSFC North Alabama Lightning Mapping Array are used in this study to investigate the radar signatures present before and after lightning cessation. Thus far our case study results suggest that the negative differential phase shift signature weakens and disappears after the analyzed storms ceased lightning production (i.e., after the last lightning flash occurred). This is a key observation because it suggests that while strong electric fields may still have been present, the lightning cessation signature was encompassed in the period of the polarimetric negative phase shift signature. To the extent this behavior is repeatable in other cases, even if only in a substantial fraction of those cases, the analysis suggests that differential propagation phase may prove to be a useful parameter for future lightning cessation algorithms. Indeed, a preliminary analysis of 15+ cases has shown additional indications of the weakening and disappearance of this ice alignment signature with lightning cessation. A summary of these case-study results is presented.
Atmospheric electrical modeling in support of the NASA F106 Storm Hazards Project
NASA Technical Reports Server (NTRS)
Helsdon, J. H.
1986-01-01
With the use of composite (non-metallic) and microelectronics becoming more prevalent in the construction of both military and commercial aircraft, the control systems have become more susceptible to damage or failure from electromagnetic transients. One source of such transients is the lightning discharge. In order to study the effects of the lightning discharge on the vital components of an aircraft, NASA Langley Research Center has undertaken a Storm Hazards Program in which a specially instrumented F106B jet aircraft is flown into active thunderstorms with the intention of being struck by lightning. One of the specific purposes of the program is to quantify the environmental conditions which are conductive to aircraft lightning strikes.
NASA Technical Reports Server (NTRS)
Szatkowski, George N.; Dudley, Kenneth L.; Koppen, Sandra V.; Ely, Jay J.; Nguyen, Truong X.; Ticatch, Larry A.; Mielnik, John J.; Mcneill, Patrick A.
2013-01-01
To support FAA certification airworthiness standards, composite substrates are subjected to lightning direct-effect electrical waveforms to determine performance characteristics of the lightning strike protection (LSP) conductive layers used to protect composite substrates. Test results collected from independent LSP studies are often incomparable due to variability in test procedures & applied practices at different organizations, which impairs performance correlations between different LSP data sets. Under a NASA supported contract, The Boeing Company developed technical procedures and documentation as guidance in order to facilitate a test method for conducting universal common practice lightning strike protection test procedures. The procedures obtain conformity in future lightning strike protection evaluations to allow meaningful performance correlations across data sets. This universal common practice guidance provides the manufacturing specifications to fabricate carbon fiber reinforced plastic (CFRP) test panels, including finish, grounding configuration, and acceptable methods for pretest nondestructive inspection (NDI) and posttest destructive inspection. The test operations guidance elaborates on the provisions contained in SAE ARP5416 to address inconsistencies in the generation of damage protection performance data, so as to provide for maximum achievable correlation across capable lab facilities. In addition, the guidance details a direct effects test bed design to aid in quantification of the multi-physical phenomena surrounding a lightning direct attachment supporting validation data requirements for the development of predictive computational modeling. The lightning test bed is designed to accommodate a repeatable installation procedure to secure the test panel and eliminate test installation uncertainty. It also facilitates a means to capture the electrical waveform parameters in 2 dimensions, along with the mechanical displacement and thermal heating parameters which occur during lightning attachment. Following guidance defined in the universal common practice LSP test documents, protected and unprotected CFRP panels were evaluated at 20, 40 and 100KAmps. This report presents analyzed data demonstrating the scientific usefulness of the common practice approach. Descriptions of the common practice CFRP test articles, LSP test bed fixture, and monitoring techniques to capture the electrical, mechanical and thermal parameters during lightning attachment are presented here. Two methods of measuring the electrical currents were evaluated, inductive current probes and a newly developed fiberoptic sensor. Two mechanical displacement methods were also examined, optical laser measurement sensors and a digital imaging correlation camera system. Recommendations are provided to help users implement the common practice test approach and obtain LSP test characterizations comparable across data sets.
Electrification in winter storms and the analysis of thunderstorm overflight
NASA Technical Reports Server (NTRS)
Brook, Marx
1991-01-01
The emergence of 24 hr operational lightning detection networks has led to the finding that positive lightning strokes, although still much fewer in number than the normal negative strokes, are present in summer and winter storms. Recent papers address the importance of understanding the meteorological conditions which lead to a dominance of one polarity of stroke over another; the appearance of positive strokes at the end of a storm appeared to presage the end-of-storm downdraft and subsidence leading to downburst activity. It is beginning to appear that positive strokes may be important meteorological indicators. Significant research accomplishments on the following topics are addressed: (1) a study to verify that the black boxes used in the lightning networks to detect both negative and positive strokes to ground were accurate; (2) the use of slow tails to determine the polarity of distant lightning; (3) lightning initiation in winter vs. summer storms; (4) the upgrade of sensors for the measurement of electric field signals associated with lightning; (5) the analysis of lightning flash records from storms between 40 and 125 km from the sensor; and (6) an interesting aspect of the initiation process which involves the physical processes driving the stepped leader. The focus of current research and future research plans are presented.
Long duration gamma-ray emission from thunderclouds
NASA Astrophysics Data System (ADS)
Kelley, Nicole A.
Gamma-ray glows are long duration emission coming from thunderclouds. They are one example of high-energy atmospheric physics, a relatively new field studying high-energy phenomena from thunderstorms and lightning. Glows arise from sustained relativistic runaway electron avalanches (RREA). Gamma-ray instruments on the ground, balloons and airplanes have detected glows. The Airborne Detector for Energetic Lightning Emissions (ADELE) is an array of gamma-ray detectors, built at the University of California, Santa Cruz. ADELE detected 12 gamma-ray glows during its summer 2009 campaign. ADELE was designed to study another type of high-energy atmospheric physics, terrestrial gamma-ray flashes (TGFs). TGFs are incredibly bright, sub-millisecond bursts of gamma-rays coming from thunderstorms. ADELE was installed on NCAR's Gulfstream V for the summer of 2009. While many glows were detected, only one TGF was observed. In this thesis I present a detailed explanation of the 2009 version of ADELE along with the results of the 2009 campaign. ADELE was modified to become a smaller, autonomous instrument to fly on the NASA drone, a Global Hawk. This was a piggyback to NASA's Hurricane and Severe Storm Sentinel mission. These flights took place during the summer of 2013. The following summer, ADELE flew on an Orion P3 as a piggyback of NOAA's Hurricane Hunters. This newer, modified instrument is discussed in detail in this thesis. The 12 gamma-ray glows from the 2009 campaign are presented, with information about nearby lightning activity. I show that lightning activity is suppressed after a glow. This could be from the glow causing the cloud to discharge and therefore reduce the lightning activity. It is also possible that glows can only occur once lightning activity has diminished. Lightning is also used to find a distance to the glow. Using this distance, it is found that the brightness of glow cannot be explained as a function of distance while the duration of the glow is related to the distance. The glow measured on August 21, 2009 was 20 times brighter than any other glow. This glow was modeled most extensively and it was found that ADELE was in the end of a downward facing avalanche, implying that is was lying between the upper positive and negative screening layer of the thunderstorm. The brightness of this glow also showed that the avalanche was approaching the levels necessary for relativistic feedback. I also show that this glow provides a significant discharge current and for a short while is discharging the cloud as much as nearby lightning.
Very low frequency radio signatures of transient luminous events above thunderstorms
NASA Astrophysics Data System (ADS)
Marshall, Robert Andrew
Lightning discharges emit intense optical and acoustic energy, in the form of lightning and thunder, respectively, but a large amount of energy is emitted as radio-frequency electromagnetic pulses (EMP). These pulses can be detected thousands of kilometers away, thanks to efficient propagation in the waveguide formed by the conducting Earth and the overlying ionosphere. In addition, intense discharges interact with the overlying ionosphere at 80-100 km altitude. The EMP-ionosphere interaction is directly observed in one manifestation as the bright transient optical emissions known as "elves", but in addition, the interaction can directly modify the free electron density in the nighttime lower ionosphere. Modifications of the ionospheric electron density can be detected via subionospheric Very Low Frequency (VLF) remote sensing. In this method, coherent signals from powerful VLF transmitters, built for submarine communication and operated by the Navy, are monitored and their amplitude and phase are tracked in time. The variations of these signais are used to sense ionospheric modifications through rapid changes in the received amplitude and/or phase when the transmitted signal propagates through an ionospheric perturbation. When these perturbations are caused by lightning, they are known as "Early VLF" perturbations, due to the negligible delay between the lightning discharge and the appearance of the VLF signal change, whereas lightning-induced electron precipitation (LEP) events have a delay of 1--2 seconds. In this work, correlations between VLF signatures and optical events are used to show that these Early VLF events may be the signature of ionospheric modification by in-cloud (IC) lightning discharges. While the more impressive cloud-to-ground (CG) lightning discharges are more commonly observed and better understood, they are outnumbered in occurrence 3:1 by IC discharges, whose effects may be relatively stronger in the overlying ionosphere. We use a 3D time-domain model of the lightning EMP-ionosphere interaction to calculate expected ionospheric density changes from IC discharges. We find that bursts of IC-EMPs can significantly modify the lower ionosphere, with both increases and decreases in electron density. We then use a frequency-domain model of the VLF transmitter signal propagation in the Earth-ionosphere waveguide to a receiver to show that these density changes are consistent with measurements. Our results demonstrate that these Early VLF events, which are ubiquitous in VLF data, are signatures of the effects of in-cloud lightning, and that they can be used to quantify the effects of IC lightning on the ionosphere during an intense thunderstorm.
NASA Technical Reports Server (NTRS)
Taylor, Harry A., Jr.; Cloutier, Paul A.
1986-01-01
In situ nightside electric field observations from the Pioneer Venus Orbiter have been interpreted as evidence of extensive lightning in the lower atmosphere of Venus. The scenario, including proposed evidence of clustering of lightning over surface highland regions, has encouraged the acceptance of currently active volcanic output as part of several investigations of the dynamics and chemistry of the atmosphere and the geology of the planet. However, the correlation between the 100-hertz electric field events attributed to lightning and nightside ionization troughs resulting from the interaction of the solar wind with the ionosphere indicates that the noise results from locally generated plasma instabilities and not from any behavior of the lower atmosphere. Furthemore, analysis of the spatial distribution of the noise shows that it is not clustered over highland topography, but rather occurs at random throughout the latitude and longitude regions sampled by the orbiter during the first 5 years of operation, from 1978 to 1984. Thus the electric field observations do not identify lightning and do not provide a basis for inferring the presence of currently active volcanic output. In the absence of known evidence to the contrary, it appears that Venus is no longer active.
The properties of optical lightning flashes and the clouds they illuminate
NASA Astrophysics Data System (ADS)
Peterson, Michael; Deierling, Wiebke; Liu, Chuntao; Mach, Douglas; Kalb, Christina
2017-01-01
Optical lightning sensors like the Optical Transient Detector and Lightning Imaging Sensor (LIS) measure total lightning across large swaths of the globe with high detection efficiency. With two upcoming missions that employ these sensors - LIS on the International Space Station and the Geostationary Lightning Mapper on the GOES-R satellite - there has been increased interest in what these measurements can reveal about lightning and thunderstorms in addition to total flash activity. Optical lightning imagers are capable of observing the characteristics of individual flashes that include their sizes, durations, and radiative energies. However, it is important to exercise caution when interpreting trends in optical flash measurements because they can be affected by the scene. This study uses coincident measurements from the Tropical Rainfall Measuring Mission (TRMM) satellite to examine the properties of LIS flashes and the surrounding cloud regions they illuminate. These combined measurements are used to assess to what extent optical flash characteristics can be used to make inferences about flash structure and energetics. Clouds illuminated by lightning over land and ocean regions that are otherwise similar based on TRMM measurements are identified. Even when LIS flashes occur in similar clouds and background radiances, oceanic flashes are still shown to be larger, brighter, longer lasting, more prone to horizontal propagation, and to contain more groups than their land-based counterparts. This suggests that the optical trends noted in literature are not entirely the result of radiative transfer effects but rather stem from physical differences in the flashes.
NASA Astrophysics Data System (ADS)
Basarab, B.; Fuchs, B.; Rutledge, S. A.
2013-12-01
Predicting lightning activity in thunderstorms is important in order to accurately quantify the production of nitrogen oxides (NOx = NO + NO2) by lightning (LNOx). Lightning is an important global source of NOx, and since NOx is a chemical precursor to ozone, the climatological impacts of LNOx could be significant. Many cloud-resolving models rely on parameterizations to predict lightning and LNOx since the processes leading to charge separation and lightning discharge are not yet fully understood. This study evaluates predicted flash rates based on existing lightning parameterizations against flash rates observed for Colorado storms during the Deep Convective Clouds and Chemistry Experiment (DC3). Evaluating lightning parameterizations against storm observations is a useful way to possibly improve the prediction of flash rates and LNOx in models. Additionally, since convective storms that form in the eastern plains of Colorado can be different thermodynamically and electrically from storms in other regions, it is useful to test existing parameterizations against observations from these storms. We present an analysis of the dynamics, microphysics, and lightning characteristics of two case studies, severe storms that developed on 6 and 7 June 2012. This analysis includes dual-Doppler derived horizontal and vertical velocities, a hydrometeor identification based on polarimetric radar variables using the CSU-CHILL radar, and insight into the charge structure using observations from the northern Colorado Lightning Mapping Array (LMA). Flash rates were inferred from the LMA data using a flash counting algorithm. We have calculated various microphysical and dynamical parameters for these storms that have been used in empirical flash rate parameterizations. In particular, maximum vertical velocity has been used to predict flash rates in some cloud-resolving chemistry simulations. We diagnose flash rates for the 6 and 7 June storms using this parameterization and compare to observed flash rates. For the 6 June storm, a preliminary analysis of aircraft observations of storm inflow and outflow is presented in order to place flash rates (and other lightning statistics) in the context of storm chemistry. An approach to a possibly improved LNOx parameterization scheme using different lightning metrics such as flash area will be discussed.
Cloud-to-Ground Lightning Estimates Derived from SSMI Microwave Remote Sensing and NLDN
NASA Technical Reports Server (NTRS)
Winesett, Thomas; Magi, Brian; Cecil, Daniel
2015-01-01
Lightning observations are collected using ground-based and satellite-based sensors. The National Lightning Detection Network (NLDN) in the United States uses multiple ground sensors to triangulate the electromagnetic signals created when lightning strikes the Earth's surface. Satellite-based lightning observations have been made from 1998 to present using the Lightning Imaging Sensor (LIS) on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, and from 1995 to 2000 using the Optical Transient Detector (OTD) on the Microlab-1 satellite. Both LIS and OTD are staring imagers that detect lightning as momentary changes in an optical scene. Passive microwave remote sensing (85 and 37 GHz brightness temperatures) from the TRMM Microwave Imager (TMI) has also been used to quantify characteristics of thunderstorms related to lightning. Each lightning detection system has fundamental limitations. TRMM satellite coverage is limited to the tropics and subtropics between 38 deg N and 38 deg S, so lightning at the higher latitudes of the northern and southern hemispheres is not observed. The detection efficiency of NLDN sensors exceeds 95%, but the sensors are only located in the USA. Even if data from other ground-based lightning sensors (World Wide Lightning Location Network, the European Cooperation for Lightning Detection, and Canadian Lightning Detection Network) were combined with TRMM and NLDN, there would be enormous spatial gaps in present-day coverage of lightning. In addition, a globally-complete time history of observed lightning activity is currently not available either, with network coverage and detection efficiencies varying through the years. Previous research using the TRMM LIS and Microwave Imager (TMI) showed that there is a statistically significant correlation between lightning flash rates and passive microwave brightness temperatures. The physical basis for this correlation emerges because lightning in a thunderstorm occurs where ice is first present in the cloud and electric charge separation occurs. These ice particles efficiently scatter the microwave radiation at the 85 and 37 GHz frequencies, thus leading to large brightness temperature depressions. Lightning flash rate is related to the total amount of ice passing through the convective updraft regions of thunderstorms. Confirmation of this relationship using TRMM LIS and TMI data, however, remains constrained to TRMM observational limits of the tropics and subtropics. Satellites from the Defense Meteorology Satellite Program (DMSP) have global coverage and are equipped with passive microwave imagers that, like TMI, observe brightness temperatures at 85 and 37 GHz. Unlike the TRMM satellite, however, DMSP satellites do not have a lightning sensor, and the DMSP microwave data has never been used to derive global lightning. In this presentation, a relationship between DMSP Special Sensor Microwave Imager (SSMI) data and ground-based cloud-to-ground (CG) lightning data from NLDN is investigated to derive a spatially complete time history of CG lightning for the USA study area. This relationship is analogous to the established using TRMM LIS and TMI data. NLDN has the most spatially and temporally complete CG lightning data for the USA, and therefore provides the best opportunity to find geospatially coincident observations with SSMI sensors. The strongest thunderstorms generally have minimum 85 GHz Polarized Corrected brightness Temperatures (PCT) less than 150 K. Archived radar data was used to resolve the spatial extent of the individual storms. NLDN data for that storm spatial extent defined by radar data was used to calculate the CG flash rate for the storm. Similar to results using TRMM sensors, a linear model best explained the relationship between storm-specific CG flash rates and minimum 85 GHz PCT. However, the results in this study apply only to CG lightning. To extend the results to weaker storms, the probability of CG lightning (instead of the flash rate) was calculated for storms having 85 GHz PCT greater than 150 K. NLDN data was used to determine if a CG strike occurred for a storm. This probability of CG lightning was plotted as a function of minimum 85 GHz PCT and minimum 37 GHz PCT. These probabilities were used in conjunction with the linear model to estimate the CG flash rate for weaker storms with minimum 85 GHz PCTs greater than 150 K. Results from the investigation of CG lightning and passive microwave radiation signals agree with the previous research investigating total lightning and brightness temperature. Future work will take the established relationships and apply them to the decades of available DMSP data for the USA to derive a map of CG lightning flash rates. Validation of this method and uncertainty analysis will be done by comparing the derived maps of CG lightning flash rates against existing NLDN maps of CG lightning flash rates.
Electrification in Hurricanes over the Tropical Americas: Implication for Stratospheric Water Vapor
NASA Technical Reports Server (NTRS)
Pittman, Jasna V.; Chronis, Themis G.; Robertson, Franklin R.; Miller, Timothy L.
2007-01-01
This study explores the relation between lightning activity and water vapor in the Tropical Tropopause Layer (TTL) over hurricane systems in the Tropical Americas. The hypothesis herein is that hurricanes that exhibit enhanced lightning activity are associated with stronger updrafts that can transport more moisture directly into the TTL (and subsequently into the tropical stratosphere) or even directly into the tropical stratosphere over this region. The TTL over the Tropical Americas, which includes the Caribbean and Gulf of Mexico, is of particular interest, because summertime cold point tropopause is the lowest in height and thus the warmest in temperature over the tropics. The latter condition implies higher saturation values and thus potential for more water vapor to enter the stratosphere. Climate forecast is very sensitive to stratospheric water vapor abundance, because of the key role that water vapor plays in regulating the chemical and radiative properties of the stratosphere. Given the potential for increases in hurricane intensity and frequency under predicted warmer conditions, it becomes essential to understand the effect of hurricanes on stratospheric water vapor. In this study, we use a combination of ground and space-borne observations as well as trajectory calculations. The observations include: cloud-to-ground (CG) lightning data from the U.S. National Lightning Detection Network (NLDN), geostationary infrared observations from the National Climatic Data Center Hurricane Satellite (HURSAT) data set, cloud properties from Aqua-MODIS, and water vapor from Aura-MLS. We analyze hurricanes from the 2005 season when Aura-MLS data are available, namely: Dennis, Emily, Katrina, Rita, and Wilma. Our analysis consists of examining CG lightning, cloud-top properties, and TTL water vapor (i.e., 100 and 147 mb) over the hurricane while it remains over water in the Tropical Americas region. We investigate daily as well as diurnal statistical properties. The hurricanes analyzed in this study showed that lightning activity is negatively correlated with minimum infrared brightness temperature and positively correlated with 100-mb water vapor. An examination of the maxima in water vapor observed over the hurricane not only shows larger magnitudes, but also larger differences between water vapor averages and water vapor maxima over the hurricane as lightning activity increases. Trajectory calculations are performed using the Flextra model in order to investigate the fate of the moister air masses found in the TTL.
NASA Technical Reports Server (NTRS)
Folmer, Michael; Halverson, Jeffrey; Berndt, Emily; Dunion, Jason; Goodman, Steve; Goldberg, Mitch
2014-01-01
The Geostationary Operational Environmental Satellites R-Series (GOES-R) and Joint Polar Satellite System (JPSS) Satellite Proving Grounds have introduced multiple proxy and operational products into operations over the last few years. Some of these products have proven to be useful in current operations at various National Weather Service (NWS) offices and national centers as a first look at future satellite capabilities. Forecasters at the National Hurricane Center (NHC), Ocean Prediction Center (OPC), NESDIS Satellite Analysis Branch (SAB) and the NASA Hurricane and Severe Storms Sentinel (HS3) field campaign have had access to a few of these products to assist in monitoring extratropical transitions of hurricanes. The red, green, blue (RGB) Air Mass product provides forecasters with an enhanced view of various air masses in one complete image to help differentiate between possible stratospheric/tropospheric interactions, moist tropical air masses, and cool, continental/maritime air masses. As a compliment to this product, a new Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrIS) Ozone product was introduced in the past year to assist in diagnosing the dry air intrusions seen in the RGB Air Mass product. Finally, a lightning density product was introduced to forecasters as a precursor to the new Geostationary Lightning Mapper (GLM) that will be housed on GOES-R, to monitor the most active regions of convection, which might indicate a disruption in the tropical environment and even signal the onset of extratropical transition. This presentation will focus on a few case studies that exhibit extratropical transition and point out the usefulness of these new satellite techniques in aiding forecasters forecast these challenging events.
Electrical activity during the 2006 Mount St. Augustine volcanic eruptions
Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.
2007-01-01
By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.
NASA Astrophysics Data System (ADS)
Samir, Nait Amor; Bouderba, Yasmina
VLF signal perturbations in association with thunderstorm activity appear as changes in the signal amplitude and phase. Several papers reported on the characteristics of thus perturbations and their connection to the lightning strokes amplitude and polarity. In this contribution, we quantified the electrons density increases due to lightning activity by the use of the LWPC code and VLF signal perturbations parameters. The method is similar to what people did in studying the solar eruptions effect. the results showed that the reference height (h') decreased to lower altitudes (between 70 and 80 km). From the LWPC code results the maximum of the electron density was then deduced. Therefore, a numerical simulation of the atmospheric species times dependences was performed to study the recovery times of the electrons density at different heights. The results showed that the recovery time last for several minutes and explain the observation of long recovery Early signal perturbations.
NASA Astrophysics Data System (ADS)
Wang, Fei; Zhang, Yijun; Zheng, Dong; Xu, Liangtao; Zhang, Wenjuan; Meng, Qing
2017-10-01
A three-dimensional charge-discharge numerical model is used, in a semi-idealized mode, to simulate a thunder-storm cell. Characteristics of the graupel microphysics and vertical air motion associated with the lightning initiation are revealed, which could be useful in retrieving charge strength during lightning when no charge-discharge model is available. The results show that the vertical air motion at the lightning initiation sites ( W ini) has a cubic polynomial correlation with the maximum updraft of the storm cell ( W cell-max), with the adjusted regression coefficient R 2 of approximately 0.97. Meanwhile, the graupel mixing ratio at the lightning initiation sites ( q g-ini) has a linear correlation with the maximum graupel mixing ratio of the storm cell ( q g-cell-max) and the initiation height ( z ini), with the coefficients being 0.86 and 0.85, respectively. These linear correlations are more significant during the middle and late stages of lightning activity. A zero-charge zone, namely, the area with very low net charge density between the main positive and negative charge layers, appears above the area of q g-cell-max and below the upper edge of the graupel region, and is found to be an important area for lightning initiation. Inside the zero-charge zone, large electric intensity forms, and the ratio of q ice (ice crystal mixing ratio) to q g (graupel mixing ratio) illustrates an exponential relationship to q g-ini. These relationships provide valuable clues to more accurately locating the high-risk area of lightning initiation in thunderstorms when only dual-polarization radar data or outputs from numerical models without charging/discharging schemes are available. The results can also help understand the environmental conditions at lightning initiation sites.
NASA Technical Reports Server (NTRS)
Christian, Hugh J.; Blakeslee, Richard J.; Boccippio, Dennis J.; Boeck, William L.; Bucchler, Dennis E.; Driscoll, Kevin T.; Goodman, Steven J.; Hall, John M.; Koshak, William J.; Mach, Douglas M.;
2002-01-01
The Optical Transient Detector (OTD) is a space-based instrument specifically designed to detect and locate lightning discharges as it orbits the Earth. This instrument is a scientific payload on the MicroLab-1 satellite that was launched into a low-earth, 70 deg. inclination orbit in April 1995. Given the orbital trajectory of the satellite, most regions of the earth are observed by the OTD instrument more than 400 times during a one year period, and the average duration of each observation is 2 minutes. The OTD instrument optically detects lightning flashes that occur within its 1300x1300 sq km field-of-view during both day and night conditions. A statistical examination of OTD lightning data reveals that nearly 1.4 billion flashes occur annually over the entire earth. This annual flash count translates to an average of 44 +/- 5 lightning flashes (intracloud and cloud-to-ground combined) occurring around the globe every second, which is well below the traditional estimate of 100 flashes per second that was derived in 1925 from world thunder-day records. The range of uncertainty for the OTD global totals represents primarily the uncertainty (and variability) in the flash detection efficiency of the instrument. The OTD measurements have been used to construct lightning climatology maps that demonstrate the geographical and seasonal distribution of lightning activity for the globe. An analysis of this annual lightning distribution confirms that lightning occurs mainly over land areas, with an average land:ocean ratio of 10:1. A dominant Northern Hemisphere summer peak occurs in the annual cycle, and evidence is found for a tropically-driven semiannual cycle.
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.; Roeder, William P.; Merceret, Francis J.
2010-01-01
A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station.
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawerence D.; Brunning, Eric C.; Blakeslee, Richard
2013-01-01
Four electrified snowfall cases are examined using total lightning measurements from lightning mapping arrays (LMAs), and the National Lightning Detection Network (NLDN) from Huntsville, AL and Washington D.C. In each of these events, electrical activity was in conjunction with heavy snowfall rates, sometimes exceeding 5-8 cm hr-1. A combination of LMA, and NLDN data also indicate that many of these flashes initiated from tall communications towers and traveled over large horizontal distances. During events near Huntsville, AL, the Advanced Radar for Meteorological and Operational Research (ARMOR) C-band polarimetric radar was collecting range height indicators (RHIs) through regions of heavy snowfall. The combination of ARMOR polarimetric radar and VHF LMA observations suggested contiguous layer changes in height between sloping aggregate-dominated layers and horizontally-oriented crystals. These layers may have provided ideal conditions for the development of extensive regions of charge and resultant horizontal propagation of the lightning flashes over large distances.
VLF long-range lightning location using the arrival time difference technique (ATD)
NASA Technical Reports Server (NTRS)
Ierkic, H. Mario
1996-01-01
A new network of VLF receiving systems is currently being developed in the USA to support NASA's Tropical Rain Measuring Mission (TRMM). The new network will be deployed in the east coast of the US, including Puerto Rico, and will be operational in late 1995. The system should give affordable, near real-time, accurate lightning locating capabilities at long ranges and with extended coverage. It is based on the Arrival Time Difference (ATD) method of Lee (1986; 1990). The ATD technique is based on the estimation of the time of arrival of sferics detected over an 18 kHz bandwith. The ground system results will be compared and complemented with satellite optical measurements gathered with the already operational Optical Transient Detector (OTD) instrument and in due course with its successor the Lightning Imaging Sensor (LIS). Lightning observations are important to understand atmospheric electrification phenomena, discharge processes, associated phenomena on earth (e.g. whistlers, explosive Spread-F) and other planets. In addition, lightning is a conspicuous indicator of atmospheric activity whose potential is just beginning to be recognized and utilized. On more prosaic grounds, lightning observations are important for protection of life, property and services.
Response of lightning energy and total electron content with sprites over Antarctic Peninsula
NASA Astrophysics Data System (ADS)
Suparta, W.; Yusop, N.
2017-05-01
This paper investigates the response of the lightning energy with the total electron content (TEC) derived from GPS over Antarctic Peninsula during St Patrick’s geomagnetic storm. During this event, sprite as one of the mesospheric transient luminous events (TLEs) associated with positive cloud-to-ground (+CG) lightning discharges can be generated. In this work, GPS and lightning data for the period from 14 to 20 March 2015 is analyzed. Geomagnetic activity and electric field data are also processed to relate the geomagnetic storm and lightning. Results show that during St Patrick’s geomagnetic storm, the lighting energy was produced up to ∼257 kJ. The ionospheric TEC was obtained 60 TECU, 38 TECU and 78 TECU between 18:00 and 21:00 UT for OHI3, PALV and ROTH stations, respectively. The peak of lightning energy was observed 14 hours after peaked of TEC. Sprite possibly generated through the electrical coupling process between the top cloud, middle and upper atmosphere with the DC electric field found to be ∼10 mVm-1 which leading to the sprite generation after the return strokes on 18 March 2015.
Common Gamma-ray Glows above Thunderclouds
NASA Astrophysics Data System (ADS)
Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid
2013-04-01
Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.
Using radar-derived parameters to forecast lightning cessation for nonisolated storms
NASA Astrophysics Data System (ADS)
Davey, Matthew J.; Fuelberg, Henry E.
2017-03-01
Lightning impacts operations at the Kennedy Space Center (KSC) and other outdoor venues leading to injuries, inconvenience, and detrimental economic impacts. This research focuses on cases of "nonisolated" lightning which we define as one cell whose flashes have ceased although it is still embedded in weak composite reflectivity (Z ≥ 15 dBZ) with another cell that is still producing flashes. The objective is to determine if any radar-derived parameters provide useful information about the occurrence of lightning cessation in remnant storms. The data set consists of 50 warm season (May-September) nonisolated storms near KSC during 2013. The research utilizes the National Lightning Detection Network, the second generation Lightning Detection and Ranging network, and polarized radar data. These data are merged and analyzed using the Warning Decision Support System-Integrated Information at 1 min intervals. Our approach only considers 62 parameters, most of which are related to the noninductive charging mechanism. They included the presence of graupel at various thermal altitudes, maximum reflectivity of the decaying storm at thermal altitudes, maximum connecting composite reflectivity between the decaying cell and active cell, minutes since the previous flash, and several others. Results showed that none of the parameters reliably indicated lightning cessation for even our restrictive definition of nonisolated storms. Additional research is needed before cessation can be determined operationally with the high degree of accuracy required for safety.
Analysis of TRMM-LIS Lightning and Related Microphysics Using a Cell-Scale Database
NASA Technical Reports Server (NTRS)
Leroy, Anita; Petersen, Walter A.
2010-01-01
Previous studies of tropical lightning activity using Tropical Rainfall Measurement Mission (TRMM) Lightning Imaging Sensor (LIS) data performed analyses of lightning behavior over mesoscale "feature" scales or over uniform grids. In order to study lightning and the governing ice microphysics intrinsic to thunderstorms at a more process-specific scale (i.e., the scale over which electrification processes and lightning occur in a "unit" thunderstorm), a new convective cell-scale database was developed by analyzing and refining the University of Utah's Precipitation Features database and retaining precipitation data parameters computed from the TRMM precipitation radar (PR), microwave imager (TMI) and LIS instruments. The resulting data base was to conduct a limited four-year study of tropical continental convection occurring over the Amazon Basin, Congo, Maritime Continent and the western Pacific Ocean. The analysis reveals expected strong correlations between lightning flash counts per cell and ice proxies, such as ice water path, minimum and average 85GHz brightness temperatures, and 18dBz echo top heights above the freezing level in all regimes, as well as regime-specific relationships between lighting flash counts and PR-derived surface rainfall rates. Additionally, radar CFADs were used to partition the 3D structure of cells in each regime at different flash counts. The resulting cell-scale analyses are compared to previous mesoscale feature and gridded studies wherever possible.
NASA Astrophysics Data System (ADS)
Gallin, Louis-Jonardan; Farges, Thomas; Marchiano, Régis; Coulouvrat, François; Defer, Eric; Rison, William; Schulz, Wolfgang; Nuret, Mathieu
2016-04-01
In the framework of the European Hydrological Cycle in the Mediterranean Experiment project, a field campaign devoted to the study of electrical activity during storms took place in the south of France in 2012. An acoustic station composed of four microphones and four microbarometers was deployed within the coverage of a Lightning Mapping Array network. On the 26 October 2012, a thunderstorm passed just over the acoustic station. Fifty-six natural thunder events, due to cloud-to-ground and intracloud flashes, were recorded. This paper studies the acoustic reconstruction, in the low frequency range from 1 to 40 Hz, of the recorded flashes and their comparison with detections from electromagnetic networks. Concurrent detections from the European Cooperation for Lightning Detection lightning location system were also used. Some case studies show clearly that acoustic signal from thunder comes from the return stroke but also from the horizontal discharges which occur inside the clouds. The huge amount of observation data leads to a statistical analysis of lightning discharges acoustically recorded. Especially, the distributions of altitudes of reconstructed acoustic detections are explored in detail. The impact of the distance to the source on these distributions is established. The capacity of the acoustic method to describe precisely the lower part of nearby cloud-to-ground discharges, where the Lightning Mapping Array network is not effective, is also highlighted.
NASA Astrophysics Data System (ADS)
Giannaros, Theodore; Kotroni, Vassiliki; Lagouvardos, Kostas
2015-04-01
Lightning data assimilation has been recently attracting increasing attention as a technique implemented in numerical weather prediction (NWP) models for improving precipitation forecasts. In the frame of TALOS project, we implemented a robust lightning data assimilation technique in the Weather Research and Forecasting (WRF) model with the aim to improve the precipitation prediction in Greece. The assimilation scheme employs lightning as a proxy for the presence or absence of deep convection. In essence, flash data are ingested in WRF to control the Kain-Fritsch (KF) convective parameterization scheme (CPS). When lightning is observed, indicating the occurrence of convective activity, the CPS is forced to attempt to produce convection, whereas the CPS may be optionally be prevented from producing convection when no lightning is observed. Eight two-day precipitation events were selected for assessing the performance of the lightning data assimilation technique. The ingestion of lightning in WRF was carried out during the first 6 h of each event and the evaluation focused on the consequent 24 h, constituting a realistic setup that could be used in operational weather forecasting applications. Results show that the implemented assimilation scheme can improve model performance in terms of precipitation prediction. Forecasts employing the assimilation of flash data were found to exhibit more skill than control simulations, particularly for the intense (>20 mm) 24 h rain accumulations. Analysis of results also revealed that the option not to suppress the KF scheme in the absence of observed lightning, leads to a generally better performance compared to the experiments employing the full control of the CPS' triggering. Overall, the implementation of the lightning data assimilation technique is found to improve the model's ability to represent convection, especially in situations when past convection has modified the mesoscale environment in ways that affect the occurrence and evolution of subsequent convection.
Forest fires and lightning activity during the outstanding 2003 and 2005 fire seasons
NASA Astrophysics Data System (ADS)
Russo, Ana; Ramos, Alexandre; Trigo, Ricardo
2013-04-01
Wildfires in southern Europe cause frequent extensive economical and ecological losses and, even human casualties. Comparatively to other Mediterranean countries, Portugal is the country with more burnt area and fires per unit area in the last decade, mainly during the summer season (Pereira et al., 2011). According to the fire records available, between 1980 and 2009, wildfires have affected over 3 million hectares in Portugal (JRC, 2011), which corresponds to approximately a third of the Portuguese Continental territory. The main factors that influence fire ignition and propagation are: (1) the presence of fuel (i.e. vegetation); (2) climate and weather; (3) socioeconomic conditions that affect land use/land cover patterns, fire-prevention and fire-fighting capacity and (4) topography. Specifically, weather (e.g. wind, temperature, precipitation, humidity, and lightning occurrence) plays an important role in fire behavior, affecting both ignition and spread of wildfires. Some countries have a relatively large fraction of fires caused by lightning, e.g. northwestern USA, Canada, Russia (). In contrast, Portugal has only a small percentage of fire records caused by lightning. Although significant doubts remain for the majority of fires in the catalog since they were cataloged without a likely cause. The recent years of 2003 and 2005 were particularly outstanding for fire activity in Portugal, registering, respectively, total burned areas of 425 726 ha and 338 262 ha. However, while the 2003 was triggered by an exceptional heatwave that struck the entire western Europe, the 2005 fire season registered was coincident with one of the most severe droughts of the 20th century. In this work we have used mainly two different databases: 1) the Portuguese Rural Fire Database (PRFD) which is representative of rural fires that have occurred in Continental Portugal, 2001-2011, with the original data provided by the Autoridade Florestal Nacional (AFN, 2011); 2) lightning discharges location which were extracted from the Portuguese Lightning Location System that has been in service since June of 2002 and is operated by the national weather service - Instituto de Meteorologia (IM). The main objective of this work is to analyze for possible relations between the PRFD and the Portuguese lightning database for the 2003 and 2005 extreme fire seasons. In particularly we were able to verify the forest fires labeled as "ignited by lightning" by comparing its location to the lightning discharges location database. Furthermore we have also investigated possible fire ignition by lightning discharges that have not yet been labeled in the PRFD by comparing daily data from both datasets.
Science of Ball Lightning (Fire Ball)
NASA Astrophysics Data System (ADS)
Ohtsuki, Yoshi-Hiko
1989-08-01
The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Ball Lightning -- The Continuing Challenge * Hungarian Ball Lightning Observations in 1987 * Nature of Ball Lightning in Japan * Phenomenological and Psychological Analysis of 150 Austrian Ball Lightning Reports * Physical Problems and Physical Properties of Ball Lightning * Statistical Analysis of the Ball Lightning Properties * A Fluid-Dynamical Model for Ball Lightning and Bead Lightning * The Lifetime of Hill's Vortex * Electrical and Radiative Properties of Ball Lightning * The Candle Flame as a Model of Ball Lightning * A Model for Ball Lightning * The High-Temperature Physico-Chemical Processes in the Lightning Storm Atmosphere (A Physico-Chemical Model of Ball Lightning) * New Approach to Ball Lightning * A Calculation of Electric Field of Ball Lightning * The Physical Explanation to the UFO over Xinjiang, Northern West China * Electric Reconnection, Critical Ionization Velocity, Ponderomotive Force, and Their Applications to Triggered and Ball Lightning * The PLASMAK™ Configuration and Ball Lightning * Experimental Research on Ball Lightning * Performance of High-Voltage Test Facility Designed for Investigation of Ball Lightning * List of Participants
Multicolor Photometric Observation of Lightning from Space: Comparison with Radio Measurements
NASA Technical Reports Server (NTRS)
Adachi, Toru; Cohen, Morris; Said, Ryan; Blakeslee, Richard J.; Cummer, Steven A.; Li, Jingbo; Lu, Geopeng; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred Bing-Chih;
2011-01-01
This study evaluates the effectiveness of spectrophotometric measurements from space in revealing properties of lightning flash. The multicolor optical waveform data obtained by FORMOSAT-2/Imager of Sprites and Upper Atmospheric Lightning (ISUAL) were analyzed in relation to National Lightning Detection Network (NLDN), North Alabama Lightning Mapping Array (LMA). As of July 2011, we found six lightning events which were observed by ISUAL and North Alabama LMA. In two of these events, NLDN showed clear positive cloud-to-ground (CG) discharges with peak current of +139.9 kA and +41.6 kA and, around that time, LMA showed continuous intra-cloud (IC) leader activities at 4-6 km altitudes. ISUAL also observed consistent optical waveforms of the IC and CG components and, interestingly, it was found that the blue/red spectral ratio clearly decreased by a factor of 1.5-2.5 at the time of CG discharges. Other four lightning events in which NLDN did not detect any CG discharges were also investigated, but such a feature was not found in any of these cases. These results suggest that the optical color of CG component is more reddish than that of IC component and we explain this as a result of more effective Rayleigh scattering in blue light emissions coming from lower-altitude light source. This finding suggests that spectral measurements could be a new useful technique to characterize ICs and CGs from space. In this talk, we will also present a result from lightning statistical analysis of ISUAL spectrophotometric data and ULF magnetic data.
Persinger, Michael A.
2012-01-01
The space-time characteristics of the axonal action potential are remarkably similar to the scaled equivalents of lightning. The energy and current densities from these transients within their respective volumes or cross-sectional areas are the same order of magnitude. Length–velocity ratios and temporal durations are nearly identical. There are similar chemical consequences such as the production of nitric oxide. Careful, quantitative examination of the characteristics of lightning may reveal analogous features of the action potential that could lead to a more accurate understanding of these powerful correlates of neurocognitive processes. PMID:22615688
The Washington DC Metro Area Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Krehbiel, Paul; Rison, William; Edens, Harald; OConnor, Nicholas; Aulich, Graydon; Thomas, Ronald; Kieft, Sandra; Goodman, Steven; Blakeslee, Richard; Hall, John;
2006-01-01
During the spring and summer of 2006, a network of eight lightning mapping stations has been set up in the greater DC metropolitan area to monitor the total lightning activity in storms over Virginia, Maryland and the Washington DC area. The network is a joint project between New Mexico Tech, NASA, and NOAA/National Weather Service, with real-time data being provided to the NWS for use in their forecast and warning operations. The network utilizes newly available portable stations developed with support from the National Science Foundation. Cooperating institutions involved in hosting mapping stations are Howard University, Montgomery County Community College in Rockville MD, NOAA/NWS's Test and Evaluation Site in Sterling, VA, College of Southern Maryland near La Plata MD, the Applied Physics Laboratory of Johns Hopkins University, Northern Virginia Community College in Annandale, VA, the University of Maryland at Baltimore County, and George Mason University (Prince William Campus) in Manassas, VA. The network is experimental in that its stations a) operate in the upper rather than the lower VHF (TV channel 10, 192-198 MHz) to reduce the radio frequency background noise associated with urban environments, and b) are linked to the central processing site via the internet rather than by dedicated wireless communication links. The central processing is done in Huntsville, AL, and updated observations are sent to the National Weather Service every 2 min. The observational data will also be available on a public website. The higher operating frequency results in a decrease in signal strength estimated to be about 15-20 dB, relative to the LMA networks being operated in northern Alabama and central Oklahoma (which operate on TV channels 5 and 3, respectively). This is offset somewhat by decreased background noise levels at many stations. The receiver threshold levels range from about -95 dBm up to -80 dBm and the peak lightning signals typically extend 15-20 dB above the threshold values. Despite having decreased sensitivity, the network locates lightning in plan position over all of Maryland and Delaware, much of Virginia, and into Southern Pennsylvania and New Jersey. 3-D coverage is provided out to 100-150 km range from the Sterling WFO including the 3 major DC commercial airports (Reagan National, Dulles International, and Baltimore Washington International). The network will eventually consist of 10 or more stations, which will extend and improve its coverage.
NASA Astrophysics Data System (ADS)
Shalev, S.; Izsak, T.; Saaroni, H.; Yair, Y.; Ziv, B.
2010-09-01
The saptio-temporal distribution of lightning flashes over the southern Levant is derived from data obtained from the Lightning Positioning and Tracking System (LPATS) operated by the Israeli Electrical Company (IEC). The system has an aerial coverage in a range of ~ 500 Km around central Israel, including the southeastern Mediterranean Sea, Israel, Lebanon, western Syria and Jordan and the eastern part of Sinai Peninsula and the Red Sea. The study period includes 4 years. The spatial distribution of lightning flash density indicated the highest concentration over the sea, and is attributed to the contribution of sensible and latent heat fluxes. Other centers of high flash density appear along the coastal plain, expressing the friction effect of the coastline, and along orographic barriers, especially in northern Israel. The intra-annual distribution shows a complete absence of lightning in the eastern Mediterranean during the summer (JJA) which is due to the persistent existence of the subtropical high above the region. The vast majority of the lightning activity occurs during 7 months between October and April. Even though over 65% of the rainfall is obtained in the winter months (DJF) only 35% of the lightning is obtained in the winter and October is the richest month, with 40% of total annual number of lightning flashes. This is attributed mostly to tropical intrusions, i.e., Red Sea Trough (RST), which is characterized by high static instability. Cyprus lows are the synoptic system contributing the vast majority, >80%, of the rainfall in Israel, but only 42% of the lightning, whereas the RST, a minor contributor of rainfall, shares 48% of the lightning. However, during the winter 66% of the lightning flashes are associated with Cyprus lows and 25% with RST while during the autumn months the ratio is reversed: only 27% are associated with Cyprus lows and the majority (63%) occurs during RST. It was found that over 80% of the days defined as Cyprus lows were associated with lightning, indicating the instability associated with these cyclones over the region. During the RST, even though it is characterized by different weather conditions, 60% of the days were associated with lightning. The spatial distribution of lightning is further studied for positive and negative cloud-to-ground flashes separately. Positive lightning, being <10% of their total number, are concentrated eastward over the coast and inland compared to the negative flashes. This may be explained by the enhanced inclination of the thunder-cloud due to their encounter with the coastline, leading to a "tilted dipole" which is manifested in a larger percentage of positive flashes. Similar results are found in the west coast of Japan in the winter season.
Lightning Mapping Observations During DC3 in Northern Colorado
NASA Astrophysics Data System (ADS)
Krehbiel, P. R.; Rison, W.; Thomas, R. J.
2012-12-01
The Deep Convective Clouds and Chemistry Experiment (DC3) was conducted in three regions covered by Lightning Mapping Arrays (LMAs): Oklahoma and west Texas, northern Alabama, and northern Colorado. In this and a companion presentation, we discuss results obtained from the newly-deployed North Colorado LMA. The CO LMA revealed a surprising variety of lightning-inferred electrical structures, ranging from classic tripolar, normal polarity storms to several variations of anomalously electrified systems. Storms were often characterized by a pronounced lack or deficit of cloud-to-ground discharges (negative or positive), both in relative and absolute terms compared to the large amount of intracloud activity revealed by the LMA. Anomalous electrification was observed in small, localized storms as well as in large, deeply convective and severe storms. Another surprising observation was the frequent occurrence of embedded convection in the downwind anvil/outflow region of large storm systems. Observations of discharges in low flash rate situations over or near the network are sufficiently detailed to enable branching algorithms to estimate total channel lengths for modeling NOx production. However, this will not be possible in large or distant storm systems where the lightning was essentially continuous and structurally complex, or spatially noisy. Rather, a simple empirical metric for characterizing the lightning activity can be developed based on the number of located VHF radiation sources, weighted for example by the peak source power, source altitude, and temporal duration.
NASA Technical Reports Server (NTRS)
Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.; Virts, K.;
2017-01-01
Mission: Fly a flight-spare LIS (Lightning Imaging Sensor) on ISS to take advantage of unique capabilities provided by the ISS (e.g., high inclination, real time data); Integrate LIS as a hosted payload on the DoD Space Test Program-Houston 5 (STP-H5) mission and launch on a Space X rocket for a minimum 2 year mission. Measurement: NASA and its partners developed and demonstrated effectiveness and value of using space-based lightning observations as a remote sensing tool; LIS measures lightning (amount, rate, radiant energy) with storm scale resolution, millisecond timing, and high detection efficiency, with no land-ocean bias. Benefit: LIS on ISS will extend TRMM (Tropical Rainfall Measuring Mission) time series observations, expand latitudinal coverage, provide real time data to operational users, and enable cross-sensor calibration.
NASA Technical Reports Server (NTRS)
Pickering, Kenneth; Prados, Ana; Bucsela, Eric
2010-01-01
This talk will be presented in two parts: 1) an analysis of tropospheric column NO2 trends in the eastern half of the United States over the period 2005 to 2009 and 2) estimation of lightning NO(x) production rates based on OMI observations and lightning flash rate data. The air quality trends in the eastern US will be determined for specific subregions using tropospheric column NO2 data from OMI for 2005 through 2008 and from GOME-2 for 2007 through 2009. This period is characterized by significant NO(x) emission reductions at power plants within most of this region. The air quality trends will be compared with those estimated from continuous emission monitoring data from the power plants compiled by the US Environmental Protection Agency. OMI NO2 data have also been used to estimate lightning NOx production per flash in selected storms near Costa Rica and Panama during the 2007 NASA TC4 field campaign and over the continental US, Gulf of Mexico, and western Atlantic during the summers of 2005 and 2006. The lightning signal is extracted from the OMI data through a custom retrieval in which an NO2 profile representative of convective outflow is used in the airmass factor calculation and the background NO2 column is subtracted from the tropospheric column. When combined with NO(x)/NO2 ratios from the NASA GMT model and observed flash rates, the resulting estimates of NO(x) production per flash are comparable to those estimated obtained from analyses of aircraft data and cloud-resolving modeling.
Photonuclear reactions triggered by lightning discharge.
Enoto, Teruaki; Wada, Yuuki; Furuta, Yoshihiro; Nakazawa, Kazuhiro; Yuasa, Takayuki; Okuda, Kazufumi; Makishima, Kazuo; Sato, Mitsuteru; Sato, Yousuke; Nakano, Toshio; Umemoto, Daigo; Tsuchiya, Harufumi
2017-11-22
Lightning and thunderclouds are natural particle accelerators. Avalanches of relativistic runaway electrons, which develop in electric fields within thunderclouds, emit bremsstrahlung γ-rays. These γ-rays have been detected by ground-based observatories, by airborne detectors and as terrestrial γ-ray flashes from space. The energy of the γ-rays is sufficiently high that they can trigger atmospheric photonuclear reactions that produce neutrons and eventually positrons via β + decay of the unstable radioactive isotopes, most notably 13 N, which is generated via 14 N + γ → 13 N + n, where γ denotes a photon and n a neutron. However, this reaction has hitherto not been observed conclusively, despite increasing observational evidence of neutrons and positrons that are presumably derived from such reactions. Here we report ground-based observations of neutron and positron signals after lightning. During a thunderstorm on 6 February 2017 in Japan, a γ-ray flash with a duration of less than one millisecond was detected at our monitoring sites 0.5-1.7 kilometres away from the lightning. The subsequent γ-ray afterglow subsided quickly, with an exponential decay constant of 40-60 milliseconds, and was followed by prolonged line emission at about 0.511 megaelectronvolts, which lasted for a minute. The observed decay timescale and spectral cutoff at about 10 megaelectronvolts of the γ-ray afterglow are well explained by de-excitation γ-rays from nuclei excited by neutron capture. The centre energy of the prolonged line emission corresponds to electron-positron annihilation, providing conclusive evidence of positrons being produced after the lightning.
Spatial and Temporal Ionospheric Monitoring Using Broadband Sferic Measurements
NASA Astrophysics Data System (ADS)
McCormick, J. C.; Cohen, M. B.; Gross, N. C.; Said, R. K.
2018-04-01
The D region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales up to many hundreds of kilometers. Very low frequency (VLF) and low-frequency (LF) (3-30 kHz and 30-300 kHz) radio waves are guided to global distances by reflections from the ground and the D region. Therefore, information about its current state is encoded in received VLF/LF signals. VLF transmitters have been used in the past for D region studies, with ionospheric disturbances manifesting as perturbations in amplitude and/or phase. The return stroke of lightning is an impulsive VLF radiator, but unlike VLF transmitters, lightning events are distributed broadly in space allowing for much greater spatial coverage of the D region compared to VLF transmitter-based remote sensing in addition to the broadband spectral advantage over the narrowband transmitters. The challenge is that individual lightning-generated waveforms, or "sferics," vary due to the lightning current parameters and uncertainty in the time/location information, in addition to D region ionospheric variability. These factors make it difficult to utilize the VLF/LF emissions from lightning in a straightforward manner. We describe a technique to recover the time domain and amplitude/phase spectra for both Bϕ and Br with high fidelity and consider the utility of our technique with ambient and varied ionospheric conditions. We demonstrate a technique to simulate sferics and infer a parameterized ionosphere with the Wait and Spies parameters (h
Exploring the Production of NOx by Lightning and Its Impact on Tropospheric Ozone
NASA Technical Reports Server (NTRS)
Gillani, Noor; Koshak, William; Biazar, Arastoo; Doty, Kevin; Mahon, Robert; Newchurch, Michael; Byun, Daewon; Emmons, Louisa
2006-01-01
Our quantitative understanding of free tropospheric (FT) chemistry is quite poor. State-of-the-art regional air quality models (e.g., US EPA's CMAQ) perform very poorly in simulating FT chemistry, with Uniform ozone around 70 ppb throughout the FT in summer, while ozonesonde data show much higher levels of ozone and much spatial-temporal structure. Such models completely neglect lightning-NOx (LNOx) emissions (the most significant source of NOx in the FT), and also contain large uncertainties in the specifications of intercontinental transport, stratosphere-troposphere exchange (STE) and PBLFT exchange (PFTE). Global air chemistry models include LNOx, but in very crude fashion, with the frequency and distribution of lightning being based on modeled cloud parameters (hence large uncertainty), lightning energetics being assumed to be constant for all flashes (literature value, while in reality there is at least a two-orders of magnitude variability from flash-to-flash), and the production of NOx in the surrounding heated air, per Joule of heating, being assumed to be constant also (literature value, while in fact it is a non-linear function of the dissipated heat and local air density, p). This situation is commonly blamed on paucity of pertinent observational data, but for the USA, there is now a wealth of surface- and satellite-based data of lightning available to permit much improved observation-based estimation of LNOx emissions. In the FT, such NOx has a long residence time, and also the ozone production efficiency from NOx there is considerably higher than in the PBL. It is, therefore, of critical importance in FT chemistry. This paper will describe the approach and data products of an ongoing NSSTC project aimed at a much-improved quantification of not only LNOx production on the scale of continental USA based on local and regional lightning observations, but also of intercontinental transport, STE and PFTE, all in upgraded simulations of tropospheric transport and chemistry. In our approach for LNOx, (a) we utilize continuous observed lightning information from the NLDN ground network and from satellite imagers (OTD and LIS) to quantify lightning frequency and distribution at the spatial-temporal scales of models such as CMAQ; (b) we develop new methodologies to quantify flash-specific lightning energy dissipation as heat (epsilon) using data from the research-grade lightning measurement facility at NASA-KSC, and to parameterize epsilon based on regional lightning monitoring data (ground- and satellite-based); and, (c) we develop a new parameterization of NOx production as a function of epsilon and rho. Based on such observation-based information, we are working to develop a gridded, episodic LNOx emissions inventory for the USA for use in models like CMAQ. We are also developing approaches for global(MOZART)- regional(CMAQ) chemistry coupling to improve intercontinental transport and STE. Finally, we are developing new methodologies for assimilation of satellite-observed (GOES) clouds into meteorological modeling (MM5), to improve PFTE and to optimize co-location of cloud convection and observed lightning. We will incorporate these improvements in CMAQ simulations over the USA to better understand FT processes and chemistry, and its impact on ground-level ozone.
NASA Astrophysics Data System (ADS)
Ondraskova, Adriena; Sevcik, Sebastian
2015-04-01
Schumann resonances (SR) are resonant electromagnetic oscillations in extremely low frequency band (ELF, 3 Hz - 3 kHz), which arise in the Earth-ionosphere cavity due to lightning activity in planetary range. The time records in the ELF-band consist of background signals and ELF transients/Q-bursts superimposed on the background exceeding it by a factor of 5 - 10. The former are produced by the common worldwide thunderstorm activity (100 - 150 events per second), the latter origin from individual intense distant lightning discharges (100 - 120 powerful strokes per hour). A Q-burst is produced by a combination of direct and antipodal pulses and the decisive factor for its shape follows from the source-to-observer distance (SOD). Diurnal/seasonal variations of global thunderstorm activity can be deduced from spectral amplitudes of SR modes. Here we focus on diurnal/seasonal variations of the number of ELF-transients assuming that it is another way of lightning activity estimation. To search for transients, our own code was applied to the SR vertical electric component measured in October 2004 - December 2008 at the Astronomical and Geophysical Observatory of FMPI CU, Slovakia. Limits (min-max) for the width of primary spike, time difference between primary and secondary spike and the amplitude of the spike were chosen as criteria for the identification of the burst. Cumulative spectral amplitude of the first three SR modes compared with number of ELF-transients in monthly averaged diurnal variations quite successfully confirmed, that the number of transients can be a suitable criterion for the quantification of global lightning activity.
NASA Astrophysics Data System (ADS)
Stepanenko, V. D.
Papers are presented on a wide range of studies of atmospheric electricity, from the problem of the global atmospheric-electricity circuit to the effects of atmospheric electricity on ground-based facilities and biological objects. The main topics considered are general problems of atmospheric electricity, studies of atmospheric ions and aerosols, cloud electricity, studies of lightning-storm activity and atmospherics, and lightning protection.
NASA Technical Reports Server (NTRS)
Fishman, G J.; Briggs, M. S.; Connaughton, V.; Bhat, P. N.
2010-01-01
The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is now detecting 2.1 TGFs per week. At this rate, nearly a hundred TGFs will have been detected by the time of this Meeting. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. The high time resolution (2 microseconds) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented.
NASA Astrophysics Data System (ADS)
Mushtak, V. C.; Williams, E.
2010-12-01
The spatial-temporal behavior of world-wide lightning activity can be effectively used as an indicator of various geophysical processes, the global climate change being of a special interest among them. Since it has been reliably established that the lightning activity presents a major source of natural electromagnetic background in the Schumann resonance (SR) frequency range (5 to 40 Hz), SR measurements provide a continuous flow of information about this globally distributed source, thus forming an informative basis for monitoring its behavior via an inversion of observations into the source’s properties. To have such an inversion procedure effective, there is a series of prerequisites to comply with when planning and realizing it: (a) a proper choice of observable parameters to be used in the inversion; (b) a proper choice of a forward propagation model that would be accurate enough to take into consideration the major propagation effects occurring between a source and observer; (c) a proper choice of a method for inverting the sensitivity matrix. While the prerequisite (a) is quite naturally fulfilled by considering the SR resonance characteristics (modal frequencies, intensities, and quality factors), the compliance with prerequisites (b) and (c) has benefitted greatly from earlier seminal work on geophysical inversion by T.R. Madden. Since it has been found that the electrodynamic non-uniformities of the Earth-ionosphere waveguide, primarily the day/night, play an essential role in low-frequency propagation, use has been made of theory for the two-dimensional telegraph equation (TDTE; Kirillov, 2002) developed on the basis of the innovative suggestion by Madden and Thompson (1965) to consider the waveguide, both physically and mathematically, by analogy with a two-dimensional transmission line. Because of the iterative nature of the inversion procedure and the complicated, non-analytical character of the propagation theory, a special, fast-running TDTE forward algorithm has been developed for repeated numerous calculations of the sensitivity matrix. The theory for the inverse boundary value problem from Madden (1972) allows not only to correctly invert the sensitivity matrix, especially when the latter is ill-defined, but also to determine a priori the optimal observational design. The workability of the developed approaches and techniques is illustrated by estimating and processing observations from a network of SR stations located in Europe (Sopron, Hungary; Belsk, Poland), Asia (Shilong, India; Moshiri, Japan), North America (Rhode Island, USA), and Antarctica (Syowa). The spatial dynamics of major lightning “chimneys” determined via the inversion procedure had been found in a good agreement with general geophysical knowledge even when only the modal frequencies had been used. The incorporation of modal intensities greatly improves the agreement, while the Q-factors have been found of a lesser informative value. The preliminary results form a promising basis for achieving the ultimate objective of this study, The authors are deeply grateful to all the participants of the project who have generously, and on a gratis basis, invested their time and effort into preparing and providing the SR data.
Positron Annihilation in Thunderstorms Observed by ILDAS.
NASA Astrophysics Data System (ADS)
Kochkin, P.; Sarria, D., Sr.; Van Deursen, A.; de Boer, A.; Bardet, M.; Allasia, C.; Flourens, F.; Østgaard, N.
2017-12-01
Positron clouds within thunderstorms were for the first time reported in 2015 [Dwyer et al. 2015]. The observation was made by the Airborne Detector for Energetic Lightning Emissions (ADELE) in 2009 at 14.1 km altitude. Strong 511 keV line enhancement was recorded synchronously with nearby electrical activity. It lasted at least 0.2 s and was modeled as annihilation from disperse positron cloud more than a kilometer across. Different positron generation mechanisms were proposed in the paper. In January 2016 an Airbus A340 factory test aircraft was intentionally flying through thunderstorms over Northern Australia. The aircraft was equipped with a dedicated in-flight lightning detection system ILDAS (http://ildas.nlr.nl). The system contains two gamma-ray scintillation detectors each with 38x38 mm cylinder LaBr3 crystals. Total 9 video cameras were installed on-board to monitor the outer surfaces. When the aircraft flew at 12 km inside an active thundercloud, the ambient electric field was strong enough to trigger electrical discharges from the sharp edges. One sequence of such discharges was accompanied with enhancements of 511 keV line, each lasted for 0.5 - 1.0 s and total duration over 15 s. The video cameras recorded electrical discharges attached to the aircraft during this process. ILDAS reported brief 100 A current pulses in association with these discharges. Ground-based lightning location networks, i.e. WWLLN and local Australian LIAS, have not detected any sferics from this region. A detailed Geant4 model of the aircraft was created. The model was used to test different production mechanisms for the observed emission. In this presentation we will show a detailed reconstruction ofthe events with precise mapping on infrared cloud snapshot. Videos from the cameras at the positron detection moment will be shown. The results of the Geant4 simulation will be presented and discussed. References: 1. Dwyer, Joseph R., et al. "Positron clouds within thunderstorms." Journal of Plasma Physics 81.4 (2015).
Ionospheric effects of thunderstorms and lightning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lay, Erin H.
2014-02-03
Tropospheric thunderstorms have been reported to disturb the lower ionosphere (~65-90 km) by convective atmospheric gravity waves and by electromagnetic field changes produced by lightning discharges. However, due to the low electron density in the lower ionosphere, active probing of its electron distribution is difficult, and the various perturbative effects are poorly understood. Recently, we have demonstrated that by using remotely-detected ?me waveforms of lightning radio signals it is possible to probe the lower ionosphere and its fluctuations in a spatially and temporally-resolved manner. Here we report evidence of gravity wave effects on the lower ionosphere originating from the thunderstorm.more » We also report variations in the nighttime ionosphere atop a small thunderstorm and associate the variations with the storm’s electrical activity. Finally, we present a data analysis technique to map ionospheric acoustic waves near thunderstorms.« less
Global thunderstorm activity estimation based on number of transients in ELF-band
NASA Astrophysics Data System (ADS)
Ondraskova, Adriena; Sevcik, Sebastian
2017-04-01
Schumann resonances (SR) are resonant electromagnetic oscillations in extremely low frequency band (ELF, 3 Hz - 3 kHz), which arise in the Earth-ionosphere cavity due to lightning activity in planetary range. The time records in the ELF-band consist of background signals and ELF transients/Q-bursts superimposed on the background exceeding it by a factor of 5 - 10. The former are produced by the common worldwide thunderstorm activity (100 - 150 events per second), the latter origin from individual intense distant lightning discharges (100 - 120 powerful strokes per hour). A Q-burst is produced by a combination of direct and antipodal pulses and the decisive factor for its shape follows from the source-to-observer distance. Diurnal/seasonal variations of global thunderstorm activity can be deduced from spectral amplitudes of SR modes. Here we focus on diurnal/seasonal variations of the number of ELF-transients assuming that it is another way of lightning activity estimation. To search for transients, our own code was applied to the SR vertical electric component measured in October 2004 - October 2008 at the Astronomical and Geophysical Observatory of FMPI CU, Slovakia. Criteria for the identification of the burst are chosen on the basis of the transient amplitudes and their morphological features. Monthly mean daily variations in number of transients showed that African focus dominates at 14 - 16 h UT and it is more active in comparison with Asian source, which dominates at 5 - 8 h UT in dependence on winter or summer month. American source had surprisingly slight response. Meteorological observations in South America aiming to determine lightning hotspots on the Earth indicate that flash rate in this region is greatest during nocturnal 0 h - 3 h local standard time. This fact may be interpreted that Asian and South American sources contribute together in the same UT. Cumulative spectral amplitude of the first three SR modes compared with number of ELF-transients in monthly averaged diurnal variations quite successfully confirmed, that the number of transients could be a suitable criterion for the quantification of global lightning activity.
Solar wind modulation of UK lightning
NASA Astrophysics Data System (ADS)
Davis, Chris; Harrison, Giles; Lockwood, Mike; Owens, Mathew; Barnard, Luke
2013-04-01
The response of lightning rates in the UK to arrival of high speed solar wind streams at Earth is investigated using a superposed epoch analysis. The fast solar wind streams' arrivals are determined from modulation of the solar wind Vy component, measured by the Advanced Composition Explorer (ACE) spacecraft. Lightning rate changes around these event times are then determined from the very low frequency Arrival Time Difference (ATD) system of the UK Met Office. Arrival of high speed streams at Earth is found to be preceded by a decrease in total solar irradiance and an increase in sunspot number and Mg II emissions. These are consistent with the high speed stream's source being co-located with an active region appearing on the Eastern solar limb and rotating at the 27 day rate of the Sun. Arrival of the high speed stream at Earth also coincides with a rapid decrease in cosmic ray flux and an increase in lightning rates over the UK, persisting for around 40 days. The lightning rate increase is corroborated by an increase in the total number of thunder days observed by UK Met stations, again for around 40 days after the arrival of a high speed solar wind stream. This increase in lightning may be beneficial to medium range forecasting of hazardous weather.
NASA Technical Reports Server (NTRS)
Huddleston, Lisa L.; Roeder, William P.; Merceret, Francis J.
2011-01-01
A new technique has been developed to estimate the probability that a nearby cloud to ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even with the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force Station. Future applications could include forensic meteorology.
Relationships between thunderstorms and cloud-to-ground lightning in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Changnon, S.A.
Climatic assessments of cloud-to-ground (CG) flashes, and of the relationship between CG flashes and thunder events, as reported at 62 first-order stations in the contiguous US, are performed on the basis of data from networks of lightning sensors operated during 1986-1989. The adequacy of thunder-event data for describing thunderstorm occurrences at a point is determined. The average and extreme frequencies of CG lightning is delineated. Thunder events are found to provide poor estimates of CG lightning incidences and durations. CG flash data reveal that 20 percent (far west) and 50 percent (southeast US) of all thunder events are missed atmore » weather stations; 30-60 percent of all thunder events have durations too short; and 10 per cent (North and West), 40 percent (mountains), and 25 percent (southeast) of all CG flashes within 20 km of weather stations are not reported as thunderstorms. The use of historical thunder data, as a surrogate for lightning activity, is improper, and thunder values need to be adjusted with the relationships presented. 33 refs.« less
NASA Technical Reports Server (NTRS)
Huddleston, Lisa; Roeder, WIlliam P.; Merceret, Francis J.
2011-01-01
A new technique has been developed to estimate the probability that a nearby cloud-to-ground lightning stroke was within a specified radius of any point of interest. This process uses the bivariate Gaussian distribution of probability density provided by the current lightning location error ellipse for the most likely location of a lightning stroke and integrates it to determine the probability that the stroke is inside any specified radius of any location, even if that location is not centered on or even within the location error ellipse. This technique is adapted from a method of calculating the probability of debris collision with spacecraft. Such a technique is important in spaceport processing activities because it allows engineers to quantify the risk of induced current damage to critical electronics due to nearby lightning strokes. This technique was tested extensively and is now in use by space launch organizations at Kennedy Space Center and Cape Canaveral Air Force station. Future applications could include forensic meteorology.
NASA Astrophysics Data System (ADS)
Narayanan, V. L.
2017-12-01
For the first time, high speed imaging of lightning from few isolated tropical thunderstorms are observed from India. The recordings are made from Tirupati (13.6oN, 79.4oE, 180 m above mean sea level) during summer months with a digital camera capable of recording high speed videos up to 480 fps. At 480 fps, each individual video file is recorded for 30 s resulting in 14400 deinterlaced images per video file. An automatic processing algorithm is developed for quick identification and analysis of the lightning events which will be discussed in detail. Preliminary results indicating different types of phenomena associated with lightning like stepped leader, dart leader, luminous channels corresponding to continuing current and M components are discussed. While most of the examples show cloud to ground discharges, few interesting cases of intra-cloud, inter-cloud and cloud-air discharges will also be displayed. This indicates that though high speed cameras with few 1000 fps are preferred for a detailed study on lightning, moderate range CMOS sensor based digital cameras can provide important information as well. The lightning imaging activity presented herein is initiated as an amateur effort and currently plans are underway to propose a suite of supporting instruments to conduct coordinated campaigns. The images discussed here are acquired from normal residential area and indicate how frequent lightning strikes are in such tropical locations during thunderstorms, though no towering structures are nearby. It is expected that popularizing of such recordings made with affordable digital cameras will trigger more interest in lightning research and provide a possible data source from amateur observers paving the way for citizen science.
Lightning safety awareness of visitors in three California national parks.
Weichenthal, Lori; Allen, Jacoby; Davis, Kyle P; Campagne, Danielle; Snowden, Brandy; Hughes, Susan
2011-09-01
To assess the level of lightning safety awareness among visitors at 3 national parks in the Sierra Nevada Mountains of California. A 12-question, short answer convenience sample survey was administered to participants 18 years of age and over concerning popular trails and points of interest with known lightning activity. There were 6 identifying questions and 5 knowledge-based questions pertaining to lightning that were scored on a binary value of 0 or 1 for a total of 10 points for the survey instrument. Volunteers in Fresno, California, were used as a control group. Participants were categorized as Sequoia and Kings Canyon National Park (SEKI), frontcountry (FC), or backcountry (BC); Yosemite National Park (YNP) FC or BC; and Fresno. Analysis of variance (ANOVA) was used to test for differences between groups. 467 surveys were included for analysis: 77 in Fresno, 192 in SEKI, and 198 in YNP. National park participants demonstrated greater familiarity with lightning safety than individuals from the metropolitan community (YNP 5.84 and SEKI 5.65 vs Fresno 5.14, P = .0032). There were also differences noted between the BC and FC subgroups (YNP FC 6.07 vs YNP BC 5.62, P = .02; YNP FC 6.07 vs SEKI FC 5.58, P = .02). Overall results showed that participants had certain basic lightning knowledge but lacked familiarity with other key lightning safety recommendations. While there are statistically significant differences in lightning safety awareness between national parks and metropolitan participants, the clinical impact of these findings are debatable. This study provides a starting point for providing educational outreach to visitors in these national parks. Copyright © 2011 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.
Lightning Detection Efficiency Analysis Process: Modeling Based on Empirical Data
NASA Technical Reports Server (NTRS)
Rompala, John T.
2005-01-01
A ground based lightning detection system employs a grid of sensors, which record and evaluate the electromagnetic signal produced by a lightning strike. Several detectors gather information on that signal s strength, time of arrival, and behavior over time. By coordinating the information from several detectors, an event solution can be generated. That solution includes the signal s point of origin, strength and polarity. Determination of the location of the lightning strike uses algorithms based on long used techniques of triangulation. Determination of the event s original signal strength relies on the behavior of the generated magnetic field over distance and time. In general the signal from the event undergoes geometric dispersion and environmental attenuation as it progresses. Our knowledge of that radial behavior together with the strength of the signal received by detecting sites permits an extrapolation and evaluation of the original strength of the lightning strike. It also limits the detection efficiency (DE) of the network. For expansive grids and with a sparse density of detectors, the DE varies widely over the area served. This limits the utility of the network in gathering information on regional lightning strike density and applying it to meteorological studies. A network of this type is a grid of four detectors in the Rondonian region of Brazil. The service area extends over a million square kilometers. Much of that area is covered by rain forests. Thus knowledge of lightning strike characteristics over the expanse is of particular value. I have been developing a process that determines the DE over the region [3]. In turn, this provides a way to produce lightning strike density maps, corrected for DE, over the entire region of interest. This report offers a survey of that development to date and a record of present activity.
Searching for possible effects on midlatitude sporadic E layer, caused by tropospheric lightning.
NASA Astrophysics Data System (ADS)
Barta, Veronika; Haldoupis, Christos; Sátori, Gabriella; Buresova, Dalia
2016-07-01
Thunderstorms in the troposphere may affect the overlying ionosphere through electrodynamic and/or neutral atmosphere wave coupling processes. For example, it is well known that lightning discharges may impact upper atmosphere through quasi-electrostatic fields and strong electromagnetic pulses, leading to transient luminous phenomena, such as sprites and elves, along with electron heating and ionization changes in the upper D and lower E-region ionosphere that have been detected in VLF transmissions propagating in the earth-ionosphere waveguide. On the other hand, mechanical coupling between the troposphere and the ionosphere may be caused by neutral atmosphere gravity waves which are known to have their origin in massive thunderstorms. The effects of troposphere-ionosphere coupling during thunderstorms, are not yet fully established and understood, therefore there is need for more correlative studies, for example by using concurrent ionospheric and lightning observations. In the present work an effort is made to investigate a possible relationship between tropospheric lighting and sporadic E layer, which are known to dominate at bottomside ionosphere and at middle latitudes during summer. For this, a correlative analysis was undertaken using lightning data obtained with the LINET lightning detection network in Central Europe, and E region ionospheric parameters (fmin, foE, foEs, fbEs) measured with the Pruhonice (50° N, 14.5° E) DPS-4D digisonde in the summer of 2009. For direct correlation with the digisonde data, the lightning activity was quantified every 15 minutes in coincidence with the measured ionogram parameters. In the search for relation between lightning and sporadic E, the digisonde observations during lightning were also compared with those taken during a number of tropospheric storm-free days in Pruhonice. The results of this correlative study did not provide evidence of significance that favors a relationship between tropospheric lightning and midlatitude sporadic E layer.
Lightning and severe thunderstorms in event management.
Walsh, Katie M
2012-01-01
There are a few national position stands/guidelines that address environmental conditions in athletics, yet they do not govern all outdoor sports. Extreme heat and cold, lightning, and severe wind can all be fatal, yet the majority of outdoor sports have no published guidelines addressing these conditions in relation to activity. Available research on extreme heat and cold conditions in athletics provides prevention strategies, to include acclimatization. Lightning and severe wind are two environmental conditions to which humans cannot accommodate, and they both can be deadly. There are strong positions on extreme heat/cold and lightning safety in athletics, but none affiliated with severe winds. Medical personnel involved in planning large outdoor sporting events must know of the presence of nationally published weather-related documents and apply them to their event. In addition, research needs to be expanded in the realm of establishing guidelines for safety to participants and spectators in severe wind conditions.
New Physical Mechanism for Lightning
NASA Astrophysics Data System (ADS)
Artekha, Sergey N.; Belyan, Andrey V.
2018-02-01
The article is devoted to electromagnetic phenomena in the atmosphere. The set of experimental data on the thunderstorm activity is analyzed. It helps to identify a possible physical mechanism of lightning flashes. This mechanism can involve the formation of metallic bonds in thunderclouds. The analysis of the problem is performed at a microphysical level within the framework of quantum mechanics. The mechanism of appearance of metallic conductivity includes the resonant tunneling of electrons along resonance-percolation trajectories. Such bonds allow the charges from the vast cloud charged subsystems concentrate quickly in lightning channel. The formation of metal bonds in the thunderstorm cloudiness is described as the second-order phase transition. A successive mechanism for the process of formation and development of the lightning channel is suggested. This mechanism is associated with the change in the orientation of crystals in growing electric field. Possible consequences of the quantum-mechanical mechanism under discussion are compared with the results of observations.
The likelihood of winter sprites over the Gulf Stream
NASA Astrophysics Data System (ADS)
Price, Colin; Burrows, William; King, Patrick
2002-11-01
With the recent introduction of the Canadian Lightning Detection Network (CLDN), it was revealed that during the winter months every year, the highest lightning activity within the network occurs over the Gulf Stream, southeast of Nova Scotia. These storms over the Gulf Stream, in addition to being of importance to trans-Atlantic shipping and aviation, have an unusually high fraction of positive polarity lightning, with unusually large peak currents. Such intense positive lightning flashes are known to generate transient luminous events (TLEs) such as sprites and elves in the upper atmosphere. It is found that many of these large positive discharges produce extremely low frequency (ELF) electromagnetic radiation detected at a field station in the Negev Desert, Israel, 8000 km away, in agreement with previously documented sprite observations. Since these winter storms occur in the same location every year, it provides a good opportunity for field experiments focused on studying winter sprites and oceanic thunderstorms.
NASA Astrophysics Data System (ADS)
Rakas, J.; Ding, C.; Murthi, A.; Lukovic, J.; Bajat, B.
2016-12-01
Lightning is a serious hazard that can cause significant impacts on human infrastructure. In the aviation industry, lightning strikes cause damage and outages to air traffic control equipment and facilities at airports that result in major disruptions in commercial air travel, compounding delays during storm events that lead to losses in the millions of dollars. To date poor attention has been given to how lightning might change with the increase of greenhouse gases and temperature. Under some climate change scenarios, the increase in the occurrence and severity of storms in the future with potential for increases in lightning activity has been studied. Recent findings suggest that lighting rates will increase 12 percent per every degree Celsius rise in global temperatures. That will results to a 50 percent increase by the end of the century. Accurate prediction of the intensity and frequency of lightning strikes is therefore required by the air traffic management and control sector in order to develop more robust adaptation and mitigation strategies under the threat of global climate change and increasing lightning rates. In this work, we use the regression kriging method to predict lightning strikes over several regions over the contiguous United Sates using two meteorological variables- namely convective available potential energy (CAPE) and total precipitation rate. These two variables are used as a measure of storm convection, since strong convections are related to more lightning. Specifically, CAPE multiplied by precipitation is used as a proxy for lightning strikes owing to a strong linear relationship between the two. These two meteorological variables are obtained from a subset of models used in phase 5 of the coupled model inter-comparison experiment pertaining to the "high emissions" climate change scenario corresponding to the representative concentration pathway (RCP) 8.5. Precipitation observations from the National Weather Cooperative Network (COOP) were incorporated as an additional dataset. This scenario indicates a doubling of CAPE and precipitation resulting in significant increases in CAPE×precipitation by the end of the century. Overall, this research highlights the use of global climate models and observations to assess climate change impacts on aviation.
Nighttime observations of thunderstorm electrical activity from a high altitude airplane
NASA Technical Reports Server (NTRS)
Brook, M.; Vonnegut, B.; Orville, R. E.; Vaughan, O. H., Jr.
1984-01-01
Nocturnal thunderstorms were observed from above and features of cloud structure and lightning which are not generally visible from the ground are discussed. Most, lightning activity seems to be associated with clouds with strong convective cauliflower tops. In both of the storms lightning channels were visible in the clear air above the cloud. It is shown that substances produced by thunderstorm electrical discharges can be introduced directly into the stratosphere. The cause and nature of the discharges above the cloud are not clear. They may be produced by accumulations of space charge in the clear air above the cloud. The discharges may arise solely because of the intense electric fields produced by charges within the cloud. In the latter case the ions introduced by these discharges will increase the electrical conductivity of the air above the cloud and increase the conduction current that flows from the cloud to the electrosphere. More quantitative data at higher resolution may show significant spectral differences between cloud to ground and intracloud strokes. It is shown that electric field change data taken with an electric field change meter mounted in an airplane provide data on lightning discharges from above that are quite similar to those obtained from the ground in the past. The optical signals from dart leaders, from return strokes, and from continuing currents are recognizable, can be used to provide information on the fine structure of lightning, and can be used to distinguish between cloud to ground and intracloud flashes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Virts, Katrina S.; Houze, Robert A.
Seasonal and intraseasonal differences in mesoscale convective systems (MCSs) over South Asia are examined using A-Train satellites, a ground-based lightning network, and reanalysis fields. Pre-monsoon (April-May) MCSs occur primarily over Bangladesh and the eastern Bay of Bengal. During the monsoon (June-September), small MCSs occur over the Meghalaya Plateau and northeast Himalayan notch, while large and connected MCSs are most widespread over the Bay of Bengal. Monsoon MCSs produce less lightning and exhibit more extensive stratiform and anvil reflectivity structures in CloudSat observations than do pre-monsoon MCSs. During the monsoon season, Bay of Bengal and Meghalaya Plateau MCSs vary with themore » 30-60 day northward-propagating intraseasonal oscillation, while northeast Himalayan notch MCSs are associated with weak large-scale anomalies but locally enhanced CAPE. During intraseasonal active periods, a zone of enhanced large and connected MCSs, precipitation, and lightning extends from the northeastern Arabian Sea southeast over India and the Bay of Bengal, flanked by suppressed anomalies. Spatial variability is observed within this enhancement zone: lightning is most enhanced where MCSs are less enhanced, and vice versa. Reanalysis composites indicate that Bay of Bengal MCSs are associated with monsoon depressions, which are frequent during active monsoon periods, while Meghalaya Plateau MCSs are most frequent at the end of break periods, as anomalous southwesterly winds strengthen moist advection toward the terrain. Over both regions, MCSs exhibit more extensive stratiform and anvil regions and less lightning when the large-scale environment is moister, and vice versa.« less
NASA Astrophysics Data System (ADS)
Centeno Delgado, Diana C.
In this study, the results of an observational analysis and a numerical analysis on the role of the Saharan Air Layer during tropical cyclogenesis (TC-genesis) are described. The observational analysis investigates the interaction of dust particles and lightning during the genesis stage of two developed cases (Hurricanes Helene 2006 and Julia 2010). The Weather Research and Forecasting (WRF) and WRF-Chemistry models were used to include and monitor the aerosols and chemical processes that affect TC-genesis. The numerical modeling involved two developed cases (Hurricanes Helene 2006 and Julia 2010) and two non-developed cases (Non-Developed 2011 and Non-Developed 2012). The Aerosol Optical Depth (AOD) and lightning analysis for Hurricane Helene 2006 demonstrated the time-lag connection through their positive contribution to TC-genesis. The observational analyses supported the fact that both systems developed under either strong or weak dust conditions. From the two cases, the location of strong versus weak dust outbreaks in association with lightning was essential interactions that impacted TC-genesis. Furthermore, including dust particles, chemical processes, and aerosol feedback in the simulations with WRF-CHEM provides results closer to observations than regular WRF. The model advantageously shows the location of the dust particles inside of the tropical system. Overall, the results from this study suggest that the SAL is not a determining factor that affects the formation of tropical cyclones.
Seasonal and Local Characteristics of Lightning Outages of Power Distribution Lines in Hokuriku Area
NASA Astrophysics Data System (ADS)
Sugimoto, Hitoshi; Shimasaki, Katsuhiko
The proportion of the lightning outages in all outages on Japanese 6.6kV distribution lines is high with approximately 20 percent, and then lightning protections are very important for supply reliability of 6.6kV lines. It is effective for the lightning performance to apply countermeasures in order of the area where a large number of the lightning outages occur. Winter lightning occurs in Hokuriku area, therefore it is also important to understand the seasonal characteristics of the lightning outages. In summer 70 percent of the lightning outages on distribution lines in Hokuriku area were due to sparkover, such as power wire breakings and failures of pole-mounted transformers. However, in winter almost half of lightning-damaged equipments were surge arrester failures. The number of the lightning outages per lightning strokes detected by the lightning location system (LLS) in winter was 4.4 times larger than that in summer. The authors have presumed the occurrence of lightning outages from lightning stroke density, 50% value of lightning current and installation rate of lightning protection equipments and overhead ground wire by multiple regression analysis. The presumed results suggest the local difference in the lightning outages.
Modern concepts of treatment and prevention of lightning injuries.
Edlich, Richard F; Farinholt, Heidi-Marie A; Winters, Kathryne L; Britt, L D; Long, William B
2005-01-01
Lightning is the second most common cause of weather-related death in the United States. Lightning is a natural atmospheric discharge that occurs between regions of net positive and net negative electric charges. There are several types of lightning, including streak lightning, sheet lightning, ribbon lightning, bead lightning, and ball lightning. Lightning causes injury through five basic mechanisms: direct strike, flash discharge (splash), contact, ground current (step voltage), and blunt trauma. While persons struck by lightning show evidence of multisystem derangement, the most dramatic effects involve the cardiovascular and central nervous systems. Cardiopulmonary arrest is the most common cause of death in lightning victims. Immediate resuscitation of people struck by lightning greatly affects the prognosis. Electrocardiographic changes observed following lightning accidents are probably from primary electric injury or burns of the myocardium without coronary artery occlusion. Lightning induces vasomotor spasm from direct sympathetic stimulation resulting in severe loss of pulses in the extremities. This vasoconstriction may be associated with transient paralysis. Damage to the central nervous system accounts for the second most debilitating group of injuries. Central nervous system injuries from lightning include amnesia and confusion, immediate loss of consciousness, weakness, intracranial injuries, and even brief aphasia. Other organ systems injured by lightning include the eye, ear, gastrointestinal system, skin, and musculoskeletal system. The best treatment of lightning injuries is prevention. The Lightning Safety Guidelines devised by the Lightning Safety Group should be instituted in the United States and other nations to prevent these devastating injuries.
Colony image acquisition and segmentation
NASA Astrophysics Data System (ADS)
Wang, W. X.
2007-12-01
For counting of both colonies and plaques, there is a large number of applications including food, dairy, beverages, hygiene, environmental monitoring, water, toxicology, sterility testing, AMES testing, pharmaceuticals, paints, sterile fluids and fungal contamination. Recently, many researchers and developers have made efforts for this kind of systems. By investigation, some existing systems have some problems. The main problems are image acquisition and image segmentation. In order to acquire colony images with good quality, an illumination box was constructed as: the box includes front lightning and back lightning, which can be selected by users based on properties of colony dishes. With the illumination box, lightning can be uniform; colony dish can be put in the same place every time, which make image processing easy. The developed colony image segmentation algorithm consists of the sub-algorithms: (1) image classification; (2) image processing; and (3) colony delineation. The colony delineation algorithm main contain: the procedures based on grey level similarity, on boundary tracing, on shape information and colony excluding. In addition, a number of algorithms are developed for colony analysis. The system has been tested and satisfactory.
NASA Astrophysics Data System (ADS)
Mushtak, V. C.
2009-12-01
Observations of electromagnetic fields in the Schumann resonance (SR) frequency range (5 to 40 Hz) contain information about both the major source of the electromagnetic radiation (repeatedly confirmed to be global lightning activity) and the source-to-observer propagation medium (the Earth-ionosphere waveguide). While the electromagnetic signatures from individual lightning discharges provide preferable experimental material for exploring the medium, the properties of the world-wide lightning process are best reflected in background spectral SR observations. In the latter, electromagnetic contributions from thousands of lightning discharges are accumulated in intervals of about 10-15 minutes - long enough to present a statistically significant (and so theoretically treatable) ensemble of individual flashes, and short enough to reflect the spatial-temporal dynamics of global lightning activity. Thanks to the small (well below 1 dB/Mm) attenuation in the SR range and the accumulated nature of background SR observations, the latter present globally integrated information about lightning activity not available via other (satellite, meteorological) techniques. The most interesting characteristics to be extracted in an inversion procedure are the rates of vertical charge moment change (and their temporal variations) in the major global lightning “chimneys”. The success of such a procedure depends critically on the accuracy of the propagation theory (used to carry out “direct” calculations for the inversion) and the quality of experimental material. Due to the nature of the problem, both factors - the accuracy and the quality - can only be estimated indirectly, which requires specific approaches to assure that the estimates are realistic and more importantly, that the factors could be improved. For the first factor, simulations show that the widely exploited theory of propagation in a uniform (spherically symmetrical) waveguide provides unacceptable (up to several tens of percent) errors when used to extract the rates of charge moment change in the major “chimneys”. A comparative analysis carried out on the basis of a more accurate two-dimensional telegraph equation (TDTE) technique shows that the above inaccuracy results mainly from neglecting the major non-uniformity of the Earth-ionosphere waveguide due to the electrodynamic contrast between its day- and nighttime hemispheres. To estimate improve the quality of observations, several approaches are presented. Generally, the approaches are based on dividing the observation interval into shorter (10-sec) segments and collecting their Fourier transforms via an “accept/reject” criterion dependent on both the statistics of the segments’ energy contents within the given interval and the observational history. Such a procedure allows the removal of “bad” segments contaminated by either cultural interference or local lightning activity, instead of rejecting the whole interval as a “bad” one. Several criteria are presented, their efficiencies demonstrated, compared, and tested on actual SR observations from various stations for various seasons and times; the effect of using improved (rectified) SR data in an actual multi-station inversion procedure is demonstrated.
Produce documents and media information. [on lightning
NASA Technical Reports Server (NTRS)
Alzmann, Melanie A.; Miller, G.A.
1994-01-01
Lightning data and information were collected from the United States, Germany, France, Brazil, China, and Australia for the dual purposes of compiling a global lightning data base and producing publications on the Marshall Space Flight Center's lightning program. Research covers the history of lightning, the characteristics of a storm, types of lightningdischarges, observations from airplanes and spacecraft, the future fole of planes and spacecraft in lightning studies, lightning detection networks, and the relationships between lightning and rainfall. Descriptions of the Optical Transient Dectector, the Lightning Imaging Sensor, and the Lightning Mapper Sensor are included.
NASA Astrophysics Data System (ADS)
Rakas, J.; Nikolic, M.; Bauranov, A.
2017-12-01
Lightning storms are a serious hazard that can cause damage to vital human infrastructure. In aviation, lightning strikes cause outages to air traffic control equipment and facilities that result in major disruptions in the network, causing delays and financial costs measured in the millions of dollars. Failure of critical systems, such as Visual Navigational Aids (Visual NAVAIDS), are particularly dangerous since NAVAIDS are an essential part of landing procedures. Precision instrument approach, an operation utilized during the poor visibility conditions, utilizes several of these systems, and their failure leads to holding patterns and ultimately diversions to other airports. These disruptions lead to both ground and airborne delay. Accurate prediction of these outages and their costs is a key prerequisite for successful investment planning. The air traffic management and control sector need accurate information to successfully plan maintenance and develop a more robust system under the threat of increasing lightning rates. To analyze the issue, we couple the Remote Monitoring and Logging System (RMLS) database and the Aviation System Performance Metrics (ASPM) databases to identify lightning-induced outages, and connect them with weather conditions, demand and landing runway to calculate the total delays induced by the outages, as well as the number of cancellations and diversions. The costs are then determined by calculating direct costs to aircraft operators and costs of passengers' time for delays, cancellations and diversions. The results indicate that 1) not all NAVAIDS are created equal, and 2) outside conditions matter. The cost of an outage depends on the importance of the failed system and the conditions that prevailed before, during and after the failure. The outage that occurs during high demand and poor weather conditions is more likely to result in more delays and higher costs.
Modeling of Pulses in Terrestrial Gamma-ray Flashes
NASA Astrophysics Data System (ADS)
Xu, Wei; Celestin, Sebastien; Pasko, Victor
2015-04-01
Terrestrial Gamma-ray Flashes (TGFs) are high-energy photon bursts originating from the Earth's atmosphere that are associated with lightning activities. After their discovery in 1994 by the Burst and Transient Source Experiment (BATSE) detector aboard the Compton Gamma-Ray Observatory [Fishman et al., Science, 264, 1313, 1994], this phenomenon has been further observed by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) [Smith et al., Science, 307, 1085, 2005], the Fermi Gamma-ray Space Telescope [Briggs et al., JGR, 115, A07323, 2010] and the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite [Marisaldi et al., JGR, 115, A00E13, 2010]. Photon spectra corresponding to the mechanism of relativistic runaway electron avalanches (RREAs) usually provide a very good agreement with satellite observations [Dwyer and Smith, GRL, 32, L22804, 2005]. On the other hand, Celestin and Pasko [JGR, 116, A03315, 2011] have shown theoretically that the large flux of thermal runaway electrons generated by streamers during the negative corona flash stage of stepping lightning leaders in intracloud lightning flashes could be responsible for TGFs. Recently, based on analysis of the temporal profiles of 278 TGF events observed by the Fermi Gamma-Ray Burst Monitor, Foley et al. [JGR, 119, 5931, 2014] have suggested that 67% of TGF pulses detected are asymmetric and these asymmetric pulses are consistent with the production mechanism of TGFs by relativistic feedback discharges. In the present work, we employ a Monte Carlo model to study the temporal distribution of photons at low-orbit satellite altitudes during TGF events. Using the pulse fitting method described in [Foley et al., 2014], we further investigate the characteristics of TGF pulses. We mainly focus on the effects of Compton scattering on the symmetry properties and the rise and fall times of TGF pulses.
NASA Astrophysics Data System (ADS)
Muller, C.; Moreau, D., Sr.; Pandey, P. K.; Crosby, N. B.
2014-12-01
The Belgian User Support and Operations Centre (B.USOC) is an operational centre managing technological and scientific payloads on the International Space Station (ISS). B.USOC is the Facility Responsible Centre (FRC) for the European Space Agency's (ESA) Atmosphere-Space Interactions Monitor (ASIM) payload and also manages the Scientific Mission Centre of the Centre National d'Etudes Spatiales (CNES) PICARD satellite that monitors solar activity, among various other space missions. In this respect, B.USOC is ideally positioned to manage possible synergies between ASIM, the satellite TARANIS (Tool for the Analysis of RAdiation from lightNIng and Sprites), other space missions and ground-based networks. The ASIM mission (Neubert, 2009) consists of a package of two nadir instruments: one for the visible spectrum and another for X-ray and gamma-ray frequencies. In the normal operating mode "trigger mode" both instruments continuously measure, but, do not record data below certain thresholds. Another mode is a "timed mode", where, during a certain time the observations are recorded even in the absence of triggers. The "timed mode" demands a lot of flexibility from both scientific teams and B.USOC, as, ASIM's main targets of investigation (sprites and elves) are related to intense thunderstorms and thus, require reliable meteorological forecasts in the entire range of ISS latitudes. Moreover, ASIM is sensitive to a large number of phenomena of which most have a direct relationship with solar activity and therefore would probably need support from the ESA SSA (Space Situational Awareness) Space Weather Coordination Centre (SSCC) that shares the same campus with B.USOC. Local cooperation between the two centres, together with other space payloads such as TARANIS and ground-based networks will greatly optimize ASIM payload operations as well as scientific return. Neubert, T., and the ASIM Team, ASIM - an Instrument Suite for the International Space Station, Corte Workshop 2008, Coupling of Thunderstorms and Lightning Discharges to Near-Earth, Corsica, 2008, edited by N. B. Crosby et al, American Institute of Physics, 978-0-7354-0657-5/09/, 2009.
A study of lightning in winter thunderstorms and the analysis of thunderstorm overflight data
NASA Technical Reports Server (NTRS)
Brook, Marx
1995-01-01
Thunderstorms and the activities associated with them was the emphasis of this final report. The primary goal of the investigation of the dynamics, microphysics, and the electrical properties of tropical thunderstorms, was to understand the process or processes which initiate the precipitation in various convective clouds. A concept that the degree of atmospheric instability that determines the updraft velocity is different between those storms that generate electrical activity and those that do not. This is apparent in temperate latitudes, but in tropical regions, little knowledge of these interactions is available. Several ground monitoring stations have been set up and, along with a waveform recorder at one of the stations, the data collected from these stations will be analyzed in conjunction with other data collected from ship and airborne radars and airborne in situ measurements of electrical activity in coordination with the TOGA-COARE program.
A comparison between initial continuous currents of different types of upward lightning
NASA Astrophysics Data System (ADS)
Wang, D.; Sawada, N.; Takagi, N.
2009-12-01
We have observed the lightning to a wind turbine and its lightning-protection tower for four consecutive winter seasons from 2005 to 2009. Our observation items include (1) thunderstorm electrical fields and lightning-caused electric field changes at multi sites around the wind turbine, (2) electrical currents at the bottom of the wind turbine and its lightning protection tower, (3) normal video and high speed image of lightning optical channels. Totally, we have obtained the data for 42 lightning that hit either on wind turbine or its lightning protection tower or both. Among these 42 lightning, 38 are upward lightning and 2 are downward lightning. We found the upward lightning can be sub-classified into two types. Type 1 upward lightning are self-triggered from a high structure, while type 2 lightning are triggered by a discharge occurred in other places which could be either a cloud discharge or a cloud-to-ground discharge (other-triggered). In this study, we have compared the two types of upward lightning in terms of initial continuous current rise time, peak current and charge transferred to the ground. We found that the initial current of self-triggered lightning tends to rise significantly faster and to a bigger peak value than the other-triggered lightning, although both types of lightning transferred similar amount of charge to the ground.
Developing Lightning Prediction Tools for the CCAFS Dual-Polarimetric Radar
NASA Technical Reports Server (NTRS)
Petersen, W. A.; Carey, L. D.; Deierling, W.; Johnson, E.; Bateman, M.
2009-01-01
NASA Marshall Space Flight Center and the University of Alabama Huntsville are collaborating with the 45th Weather Squadron (45WS) to develop improved lightning prediction capabilities for the new C-band dual-polarimetric weather radar being acquired for use by 45WS and launch weather forecasters at Cape Canaveral Air Force Station (CCAFS). In particular, these algorithms will focus on lightning onset, cessation and combined lightning-radar applications for convective winds assessment. Research using radar reflectivity (Z) data for prediction of lightning onset has been extensively discussed in the literature and subsequently applied by launch weather forecasters as it pertains to lightning nowcasting. Currently the forecasters apply a relatively straight forward but effective temperature-Z threshold algorithm for assessing the likelihood of lightning onset in a given storm. In addition, a layered VIL above the freezing level product is used as automated guidance for the onset of lightning. Only limited research and field work has been conducted on lightning cessation using Z and vertically-integrated Z for determining cessation. Though not used operationally vertically-integrated Z (basis for VIL) has recently shown promise as a tool for use in nowcasting lightning cessation. The work discussed herein leverages and expands upon these and similar reflectivity-threshold approaches via the application/addition of over two decades of polarimetric radar research focused on distinct multi-parameter radar signatures of ice/mixed-phase initiation and ice-crystal orientation in highly electrified convective clouds. Specifically, our approach is based on numerous previous studies that have observed repeatable patterns in the behavior of the vertical hydrometeor column as it relates to the temporal evolution of differential reflectivity and depolarization (manifested in either LDR or p(sub hv)), development of in-situ mixed and ice phase microphysics, electric fields, and ensuing lightning in the sub-tropical/tropical convection typical of the southeastern U.S., Maritime Continent, and southwestern Amazon. The polarimetric signatures detected in this setting provide a basis for automated 3-D detection of hydrometeor types in fuzzy logic hydrometeor identification algorithms (HID). Our working hypothesis is that improvement in lightning onset warning lead time and specificity for a given storm, relative to application of a Z-threshold algorithm, should arise as a consequence of the ability of dual-polarimetric radar to unambiguously detect and identify (through HID algorithms) the updraft elevation of rain-water cores above the freezing level and subsequent onset of drop freezing, riming, and robust mixed phase processes leading to significant charge separation and lightning. This type of algorithm, though dependent on the quality of the polarimetric data should be less susceptible to variable Z-calibration that can impact a given Z-threshold approach. To facilitate development of the algorithm while the 45WS dual-pol radar is in its current test stages and to evaluate the impact of polarimetric data quality (e.g., modified scan parameters and sampling) on the ensuing algorithms, we are using the ARMOR C-band dual-pol radar in Huntsville combined with N. Alabama LMA data and ARMOR HID algorithms [NCAR algorithm modified for application at C-band] in a testbed fashion. For lightning cessation we are revisiting the application of differential propagation phase variables for the monitoring of ice crystal alignment driven by in-cloud electric fields combined with metrics of ice water path (i.e., vertically integrated reflectivity). Importantly it should be noted that this approach is still very much a research topic and as such, we will explore operational applications that involve radar frequencies other than C-Band by using the UAH MAX X-band dual-pol radar in slow staring modes.
Principles of Lightning Physics
NASA Astrophysics Data System (ADS)
Mazur, Vladislav
2016-12-01
Principles of Lightning Physics presents and discusses the most up-to-date physical concepts that govern many lightning events in nature, including lightning interactions with man-made structures, at a level suitable for researchers, advanced students and well-educated lightning enthusiasts. The author's approach to understanding lightning-to seek out, and show what is common to all lightning flashes-is illustrated by an analysis of each type of lightning and the multitude of lightning-related features. The book examines the work that has gone into the development of new physical concepts, and provides critical evaluations of the existing understanding of the physics of lightning and the lexicon of terms and definitions presently used in lightning research.
Applied Meteorology Unit (AMU)
NASA Technical Reports Server (NTRS)
Bauman, William; Lambert, Winifred; Wheeler, Mark; Barrett, Joe; Watson, Leela
2007-01-01
This report summarizes the Applied Meteorology Unit (AMU) activities for the second quarter of Fiscal Year 2007 (January - March 2007). Tasks reported on are: Obiective Lightning Probability Tool, Peak Wind Tool for General Forecasting, Situational Lightning Climatologies for Central Florida, Anvil Threat Corridor Forecast Tool in AWIPS, Volume Averaqed Heiqht lnteq rated Radar Reflectivity (VAHIRR), Tower Data Skew-t Tool, and Weather Research and Forecastini (WRF) Model Sensitivity Study
Pioneer Venus orbiter search for Venusian lightning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borucki, W.J.; Dyer, J.W.; Phillips, J.R.
1991-07-01
During the 1988 and 1990, the star sensor aboard the Pioneer Venus orbiter (PVO) was used to search for optical pulses from lightning on the nightside of Venus. Useful data were obtained for 53 orbits in 1988 and 55 orbits in 1990. During this period, approximately 83 s of search time plus 7749 s of control data were obtained. The results again find no optical evidence for lightning activity. With the region that was observed during 1988, the results imply that the upper bound to short-duration flashes is 4 {times} 10{sup {minus}7} flashes/km{sup 2}/s for flashes that are at leastmore » 50% as bright as typical terrestrial lightning. During 1990, when the 2-Hz filter was used, the results imply an upper bound of 1 {times} 10{sup {minus}7} flashes/km{sup 2}/s for long-duration flashes at least 1.6% as bright as typical terrestrial lightning flashes or 33% as bright as the pulses observed by the Venera 9. The upper bounds to the flash rates for the 1988 and 1990 searches are twice and one half the global terrestrial rate, respectively. These two searches covered the region from 60{degrees}N latitude to 30{degrees}S latitude, 250{degrees} to 350{degrees} longitude, and the region from 45{degrees}N latitude to 55{degrees}S latitude, 155{degrees} to 300{degrees} longitude. Both searches sampled much of the nightside region from the dawn terminator to within 4 hours of the dusk terminator. These searches covered a much larger latitude range than any previous search. The results show that the Beat and Phoebe Regio areas previously identified by Russell et al. (1988) as areas with high rates of lightning activity were not active during the two seasons of the observations. When the authors assume that their upper bounds to the nightside flash rate are representative of the entire planet, the results imply that the global flash rate and energy dissipation rate derived by Krasnopol'sky (1983) from his observation of a single storm are too high.« less
Global Lightning Response to Forbush Decreases in Short-term
NASA Astrophysics Data System (ADS)
Li, H.; Wu, Q.; Wang, C.
2017-12-01
During the past three decades, particular scientific attention has been drawn to the potential link between solar activities and global climate change. How the sun modulates the climate has always been controversial. There are three relatively widely accepted mechanisms illustrating this process: the total solar irradiance (TSI), the solar ultraviolet radiation (SUR), and the space weather mechanisms. As for space weather mechanism, the sun influences the microphysical process in cloud by modulating the cosmic ray flux and thus changes the cloud cover, which finally affects the earth's radiation balance. Unfortunately, the lack of related observations and some opposite research results make this mechanism rather debatable. In order to provide possible evidence for space weather mechanism, we study the influence of Forbush decreases (FDs) of galactic cosmic ray on global lightning activities, which to some extent represents the basic process of cosmic ray-atmospheric coupling. We use the daily lightning counts from 1998 to 2014 observed by LIS sensor aboard the TRMM satellite. Considering the "diurnal distribution" (occurring more in the afternoon than in the morning) and the "seasonal distribution" (occurring more in summer than in winter) of lightning activities as well as the 49-day precession of TRMM satellite, the daily lightning counts show an intricate periodic fluctuation. We propose a 3-step approach - latitude zone limitation, orbit branch selection and local time normalization - to eliminate it. As for FDs, we select them by checking the hourly neutron counts variation of each month of 17 years obtained from the Oulu Cosmic Ray Station. During the selection, we choose the FDs which are "strong" (decrease more than 6%) and "standard" (strongly decrease in a few hours to one day and gradually recover in about one week) to diminish the meteorological influence and other possible disturbance. For both case study and temporal superposition of several cases, the results illustrate that there is a statistically significant positive correlation between FD and daily lightning count, and the latter reaches its minimum 2-3 days after the former onset. In addition, this response enhances if we only choose the stronger and the more standard FDs. This work has reached the 95% confidence level of Monte Carlo test.
NASA Astrophysics Data System (ADS)
Liu, Ningyu; Dwyer, Joseph; Rassoul, Hamid
2013-04-01
The fact that lightning/thunderstorm activities can directly modify the lower ionosphere has long been established by observations of the perturbations of very low frequency (VLF) signals propagating in the earth-ionosphere waveguide. These perturbations are known as early VLF events [Inan et al., 2010, JGR, 115, A00E36, 2010]. More recently discovered transient luminous events caused by the lightning/thunderstorm activities only last ~1-100 ms, but studies of the early VLF events show that the lightning ionospheric effects can persist much longer, >10s min [Cotts and Inan, GRL, 34, L14809, 2007; Haldoupis et al., JGR, 39, L16801, 2012; Salut et al., JGR, 117, A08311, 2012]. It has been suggested that the long recovery is caused by long-lasting conductivity perturbations in the lower ionosphere, which can be created by sprites/sprite halos which in turn are triggered by cloud-to-ground (CG) lightning [Moore et al., JGR, 108, 1363, 2003; Haldoupis et al., 2012]. We recently developed a two-dimensional fluid model with simplified ionospheric chemistry for studying the quasi-electrostatic effects of lightning in the lower ionosphere [Liu, JGR, 117, A03308, 2012]. The model chemistry captures major ion species and reactions in the lower ionosphere. Additional important features of the model include self-consistent background ion density profiles and full description of electron and ion transport. In this talk, we present the simulation results on the dynamics of sprite halos caused by negative CG lightning. The modeling results indicate that electron density around 60 km altitude can be enhanced in a region as wide as 80 km. The enhancement reaches its full extent in ~1 s and recovers in 1-10 s, which are on the same orders as the durations of slow onset and post-onset peaks of some VLF events, respectively. In addition, long-lasting electron and ion density perturbations can occur around 80 km altitude due to negative halos as well as positive halos, which can explain long-recovery VLF events and step-change VLF events.
NASA Technical Reports Server (NTRS)
Mata, C.T.; Mata, A.G.
2012-01-01
A Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida in 2009. This LPS was instrumented with comprehensive meteorological and lightning data acquisition systems that were deployed from late 2010 until mid 2011. The first direct strikes to the LPS were recorded in March of 2011, when a limited number of sensors had been activated. The lightning instrumentation system detected a total of 70 nearby strokes and 19 direct strokes to the LPS, 2 of the 19 direct strokes to the LPS had two simultaneous ground attachment points (in both instances one channel terminated on the LPS and the other on the nearby ground). Additionally, there are more unaccounted nearby strokes seen on video records for which limited data was acquired either due to the distance of the stroke or the settings of the data acquisition system. Instrumentation deployment chronological milestones, a summary of lightning strikes (direct and nearby), high speed video frames, downconductor currents, and dH/dt and dE/dt typical waveforms for direct and nearby strokes are presented.
NASA Technical Reports Server (NTRS)
Rust, W. D.; Macgorman, D. R.; Taylor, W.; Arnold, R. T.
1984-01-01
Severe storms and lightning were measured with a NASA U2 and ground based facilities, both fixed base and mobile. Aspects of this program are reported. The following results are presented: (1) ground truth measurements of lightning for comparison with those obtained by the U2. These measurements include flash type identification, electric field changes, optical waveforms, and ground strike location; (2) simultaneous extremely low frequency (ELF) waveforms for cloud to ground (CG) flashes; (3) the CG strike location system (LLP) using a combination of mobile laboratory and television video data are assessed; (4) continued development of analog-to-digital conversion techniques for processing lightning data from the U2, mobile laboratory, and NSSL sensors; (5) completion of an all azimuth TV system for CG ground truth; (6) a preliminary analysis of both IC and CG lightning in a mesocyclone; and (7) the finding of a bimodal peak in altitude lightning activity in some storms in the Great Plains and on the east coast. In the forms on the Great Plains, there was a distinct class of flash what forms the upper mode of the distribution. These flashes are smaller horizontal extent, but occur more frequently than flashes in the lower mode of the distribution.
Experience gained in operation of the VLF ATD lightning location system
NASA Technical Reports Server (NTRS)
Lee, Anthony C. L.
1991-01-01
The United Kingdom (UK) Meteorological Office's Very Low Frequency (VLF) Arrival Time Difference (ATD) System for long-range location of lightning flashes started automatic international issue of lightning-location products on 17 Jun. 1988. Data from before and after this formal start-date were carefully scrutinized to judge performance. Techniques for estimating location accuracy include internal consistency and comparisons against other systems. Other areas studied were range (up to several thousand km); detection efficiency, saturation effects in active situations, and communication difficulties (for this redundant system); and spurious fix rate. Care was taken to assess the potential of the system, in addition to identifying the operational difficulties of the present implementation.
Detection and analysis of radio frequency lightning emissions
NASA Technical Reports Server (NTRS)
Jalali, F.
1982-01-01
The feasibility study of detection of lightning discharges from a geosynchronous satellite requires adequate ground-based information regarding emission characteristics. In this investigation, a measurement system for collection of S-band emission data is set up and calibrated, and the operations procedures for rapid data collection during a storm activity developed. The system collects emission data in two modes; a digitized, high-resolution, short duration record stored in solid-state memory, and a continuous long-duration record on magnetic tape. Representative lightning flash data are shown. Preliminary results indicate appreciable RF emissions at 2 gHz from both the leader and return strokes portions of the cloud-to-ground discharge with strong peaks associated with the return strokes.
NASA Technical Reports Server (NTRS)
1976-01-01
To avoid the possibility of an unnecessary launch delay, a special program was initiated to provide aircraft measurement of electric fields at various altitudes over the Apollo vehicle launch pad. Eight aircraft, each equipped with electric field meters, were used in the program. This program and some of the more important findings are discussed. Also included is a summary of the history of manned space vehicle involvement with lightning, a brief description of the lightning instrumentation in use at KSC (Kennedy Space Center) at the time of the Apollo Soyuz mission and a discussion of the airborne instrumentation and related data.
A Lightning Safety Primer for Camps.
ERIC Educational Resources Information Center
Attarian, Aram
1992-01-01
Provides the following information about lightning, which is necessary for camp administrators and staff: (1) warning signs of lightning; (2) dangers of lightning; (3) types of lightning injuries; (4) prevention of lightning injury; and (5) helpful training tips. (KS)
Volcanic activity in Alaska: summary of events and response of the Alaska Volcano Observatory 1993
Neal, Christina A.; McGimsey, Robert G.; Doukas, Michael P.
1996-01-01
During 1993, the Alaska Volcano Observatory (AVO) responded to episodes of eruptive activity or false alarms at nine volcanic centers in the state of Alaska. Additionally, as part of a formal role in KVERT (the Kamchatkan Volcano Eruption Response Team), AVO staff also responded to eruptions on the Kamchatka Peninsula, details of which are summarized in Miller and Kurianov (1993). In 1993, AVO maintained seismic instrumentation networks on four volcanoes of the Cook Inlet region--Spurr, Redoubt, Iliamna, and Augustine--and two stations at Dutton Volcano near King Cove on the Alaska Peninsula. Other routine elements of AVO's volcano monitoring program in Alaska include periodic airborne measurement of volcanic SO2 and CO2 at Cook Inlet volcanoes (Doukas, 1995) and maintenance of a lightning detection system in Cook Inlet (Paskievitch and others, 1995).
NASA Astrophysics Data System (ADS)
Caicedo, J. A.; Uman, M. A.; Pilkey, J. T.
2018-01-01
We present the first lightning evolution studies, via the Lightning Mapping Array (LMA) and radar, performed in North Central Florida. Parts of three winter/spring frontal storms (cold season) and two complete summer (warm season) multicell storms are studied. Storm parameters measured are as follows: total number of flashes, flash-type classification, first flashes, flash initiation altitude, flash initiation power, flash rate (flashes per minute), charge structure, altitude and temperature ranges of the inferred charge regions, atmospheric isotherm altitude, radar base reflectivity (dBZ), and radar echo tops (EET). Several differences were found between summer multicell and winter/spring frontal storms in North Central Florida: (1) in winter/spring storms, the range of altitudes that all charge regions occupy is up to 1 km lower in altitude than in summer storms, as are the 0°C, -10°C, and -20°C isotherms; (2) lightning activity in summer storms is highly correlated with changes in radar signatures, in particular, echo tops; and (3) the LMA average initiation power of all flash types in winter/frontal storms is about an order of magnitude larger than that for summer storms. In relation to storms in other geographical locations, North Central Florida seasonal storms were found to have similarities in most parameters studied with a few differences, examples in Florida being (1) colder initiation altitudes for intracloud flashes, (2) charge regions occupying larger ranges of atmospheric temperatures, and (3) winter/spring frontal storms not having much lightning activity in the stratiform region.
NASA Astrophysics Data System (ADS)
Van Der Velde, O. A.; Montanya, J.; López, J. A.
2017-12-01
A Lightning Mapping Array (LMA) maps radio pulses emitted by lightning leaders, displaying lightning flash development in the cloud in three dimensions. Since the last 10 years about a dozen of these advanced systems have become operational in the United States and in Europe, often with the purpose of severe weather monitoring or lightning research. We introduce new methods for the analysis of complex three-dimensional lightning data produced by LMAs and illustrate them by cases of a mid-latitude severe weather producing thunderstorm and a tropical thunderstorm in Colombia. The method is based on the characteristics of bidrectional leader development as observed in LMA data (van der Velde and Montanyà, 2013, JGR-Atmospheres), where mapped positive leaders were found to propagate at characteristic speeds around 2 · 104 m s-1, while negative leaders typically propagate at speeds around 105 m s-1. Here, we determine leader speed for every 1.5 x 1.5 x 0.75 km grid box in 3 ms time steps, using two time intervals (e.g., 9 ms and 27 ms) and circles (4.5 km and 2.5 km wide) in which a robust Theil-Sen fitting of the slope is performed for fast and slow leaders. The two are then merged such that important speed characteristics are optimally maintained in negative and positive leaders, and labeled with positive or negative polarity according to the resulting velocity. The method also counts how often leaders from a lightning flash initiate or pass through each grid box. This "local flash rate" may be used in severe thunderstorm or NOx production studies and shall be more meaningful than LMA source density which is biased by the detection efficiency. Additionally, in each grid box the median x, y and z components of the leader propagation vectors of all flashes result in a 3D vector grid which can be compared to vectors in numerical models of leader propagation in response to cloud charge structure. Finally, the charge region altitudes, thickness and rates are summarized from vertical profiles of positive and negative leader rates where these exceed their 7-point averaged profiles. The summarized data can be used to follow charge structure evolution over time, and will be useful for climatological studies and statistical comparison against the parameters of the meteorological environment of storms.
Lightning climatology in the Congo Basin
NASA Astrophysics Data System (ADS)
Soula, S.; Kasereka, J. Kigotsi; Georgis, J. F.; Barthe, C.
2016-09-01
The lightning climatology of the Congo Basin including several countries of Central Africa is analysed in detail for the first time. It is based on data from the World Wide Lightning Location Network (WWLLN), for the period from 2005 to 2013. A comparison of these data with Lightning Imaging Sensor (LIS) data for the same period shows the relative detection efficiency of the WWLLN (DE) in the 2500 km × 2500 km region increases from about 1.70% in the beginning of the period to 5.90% in 2013, and it is in agreement with previous results for other regions of the world. However, the increase of DE is not uniform over the whole region. The average monthly flash rate describes an annual cycle with a strong activity from October to March and a low one from June to August, associated with the ITCZ migration but not exactly symmetrical on both sides of the equator. The zonal distribution of the lightning flashes exhibits a maximum between 1°S and 2°S and about 56% of the flashes are located south of the equator in the 10°S-10°N interval. The diurnal evolution of the flash rate has a maximum between 1400 and 1700 UTC, according to the reference year. The annual flash density and number of stormy days show a sharp maximum localized in the eastern part of Democratic Republic of Congo (DRC) regardless of the reference year and the period of the year. These maxima reach 12.86 fl km- 2 and 189 days, respectively, in 2013, and correspond to a very active region located at the rear of the Virunga mountain range at altitudes that exceed 3000 m. The presence of these mountains plays a role in the thunderstorm development along the year. The estimation of this local maximum of the lightning density by taking into account the DE, leads to a value consistent with that of the global climatology by Christian et al. (2003).
Ball lightning dynamics and stability at moderate ion densities
NASA Astrophysics Data System (ADS)
Morrow, R.
2017-10-01
A general mechanism is presented for the dynamics and structure of ball lightning and for the maintenance of the ball lightning structure for several seconds. Results are obtained using a spherical geometry for air at atmospheric pressure, by solving the continuity equations for electrons, positive ions and negative ions coupled with Poisson’s equation. A lightning strike can generate conditions in the lightning channel with a majority of positive nitrogen ions, and a minority of negative oxygen ions and electrons. The calculations are initiated with electrons included; however, at the moderate ion densities chosen the electrons are rapidly lost to form negative ions, and after 1 µs their influence on the ion dynamics is negligible. Further development after 1 µs is followed using a simpler set of equations involving only positive ions and negative ions, but including ion diffusion. The space-charge electric field generated by the majority positive ions drives them from the centre of the distribution and drives the minority negative ions and electrons towards the centre of the distribution. In the central region the positive and negative ion distributions eventually overlap exactly and their space-charge fields cancel resulting in zero electric field, and the plasma ball formed is quite stable for a number of seconds. The formation of such plasma balls is not critically dependent on the initial diameter of the ion distributions, or the initial density of minority negative ions. The ion densities decrease relatively slowly due to mutual neutralization of positive and negative ions. The radiation from this neutralization process involving positive nitrogen ions and negative oxygen ions is not sufficient to account for the reported luminosity of ball lightning and some other source of luminosity is shown to be required; the plasma ball model used could readily incorporate other ions in order to account for the luminosity and range of colours reported for ball lightning. Additionally, ‘phantom plasma balls’ may well be generated and go unnoticed due to very low luminosity; luminous ball lightning may be the exception. Finally, the mechanism described here may also be active in the dynamics of bead lightning.
The hidden consequences of fire suppression
Carol Miller
2012-01-01
Wilderness managers need a way to quantify and monitor the effects of suppressing lightning-caused wildfires, which can alter natural fire regimes, vegetation, and habitat. Using computerized models of fire spread, weather, and fuels, it is now possible to quantify many of the hidden consequences of fire suppression. Case study watersheds in Yosemite and Sequoia-Kings...
The North Alabama Lightning Mapping Array: Recent Severe Storm Observations and Future Prospects
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Blakeslee, R.; Christian, H.; Koshak, W.; Bailey, J.; Hall, J.; McCaul, E.; Buechler, D.; Darden, C.; Burks, J.
2004-01-01
The North Alabama Lightning Mapping Array became operational in November 2001 as a principal component of a severe weather test bed to infuse new science and technology into the short-term forecasting of severe and hazardous weather, principally within nearby National Weather Service forecast offices. Since the installation of the LMA, it has measured the total lightning activity of a large number of severe weather events, including three supercell tornado outbreaks, two supercell hailstorm events, and numerous microburst-producing storms and ordinary non-severe thunderstorms. The key components of evolving storm morphology examined are the time rate-of-change (temporal trending) of storm convective and precipitation characteristics that can be diagnosed in real-time using NEXRAD WSR-88D Doppler radar (echo growth and decay, precipitation structures and velocity features, outflow boundaries), LMA (total lightning flash rate and its trend) and National Lightning Detection Network (cloud-to- ground lightning, its polarity and trends). For example, in a transitional season supercell tornado outbreak, peak total flash rates for typical supercells in Tennessee reached 70-100/min, and increases in the total flash rate occurred during storm intensification as much as 20-25 min prior to at least some of the tornadoes. The most intense total flash rate measured during this outbreak (over 800 flashes/min) occurred in a storm in Alabama. In the case of a severe summertime pulse thunderstorm in North Alabama, the peak total flash rate reached 300/min, with a strong increase in total lightning evident some 9 min before damaging winds were observed at the surface. In this paper we provide a sampling of LMA observations and products during severe weather events to illustrate the capability of the system, and discuss the prospects for improving the short-term forecasting of convective weather using total lightning data.
The October 25th 2015 super-cell storm over central Israel: numerical simulations with the WRF model
NASA Astrophysics Data System (ADS)
Lynn, Barry; Yair, Yoav
2017-04-01
We present high-resolution WRF simulations with lightning assimilation (Fierro et al., 2012; Lynn et al., 2015) coupled with the Dynamic Lightning Scheme (Lynn et al., 2012) of the October 25th 2015 super-cell event in the eastern Mediterranean. That storm developed within the northern tip of a Red-Sea trough off the Egyptian coastline near Alexandria, with deep convective cells rapidly growing over the sea, exhibiting cloud top temperatures colder than -70°C ( 18 km) and radar reflectivity cores > 65 dBz at 10 km. As the cells crossed the Israeli coast-line north of Tel-Aviv, they exhibited intensive lightning activity, severe hail, downbursts, and intense rain. The lightning detection system of the Israeli Electrical Corporation registered a total of over 17,000 CGs, and for 20 minutes at the peak of the event recorded CG flash-rates greater than 430 strokes per minute (if including IC strokes, it was likely higher). The results of the simulations properly reconstruct the rapid growth of vertically extensive high-reflectivity cores, with significant amounts of graupel, ice and supercooled water within the charging zone below -20C. This guaranteed the effectiveness of non-inductive charge separation processes leading to the exceptional flash rates that were observed. Fierro, A. O, E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2012: Application of a Lightning Data Assimilation Technique in the WRF-ARW Model at Cloud-Resolving Scales for the Tornado Outbreak of 24 May 2011. Mon. Wea. Rev., 140, 2609-2627. Lynn, B. H., G. Kelman, and G. Ellrod, 2015: An Evaluation of the Efficacy of Using Observed Lightning to Improve Convective Lightning Forecasts. Wea. Forecasting, 30, 405-423. Lynn, B. H., Y. Yair, C. Price, G. Kelman, and A. J. Clark, 2012: Predicting cloud-to-ground and intracloud lightning in weather forecast models.Wea. Forecasting, 27, 1470-1488, doi:10.1175/WAF-D-11-00144.1.
NASA Technical Reports Server (NTRS)
Fishman, G. J.; Briggs, M. S.; Connaughton, W.; Wilson-Hodge, C.; Bhat, P. N.
2010-01-01
The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) was detecting 2.1 TGFs per week. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Further upgrades to Fermi-GBM to allow observations of weaker TGFs are in progress. The high time resolution (2 s) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented along with spectral characteristics and properties of several electron-positron TGF events that have been identified.
NASA Studies Lightning Storms Using High-Flying, Uninhabited Vehicle
NASA Technical Reports Server (NTRS)
2002-01-01
A NASA team studying the causes of electrical storms and their effects on our home planet achieved a milestone on August 21, 2002, completing the study's longest-duration research flight and monitoring four thunderstorms in succession. Based at the Naval Air Station Key West, Florida, researchers with the Altus Cumulus Electrification Study (ACES) used the Altus II remotely-piloted aircraft to study thunderstorms in the Atlantic Ocean off Key West and the west of the Everglades. Data obtained through sensors mounted to the aircraft will allow researchers in ACES to gauge elements such as lightning activity and the electrical environment in and around storms. By learning more about individual storms, scientists hope to better understand the global water and energy cycle, as well as climate variability. Contained in one portion of the aircraft is a three-axis magnetic search coil, which measures the AC magnetic field; a three-axis electric field change sensor; an accelerometer; and a three-axis magnetometer, which measures the DC magnetic field. With dual goals of gathering weather data safely and testing the adaptability of the uninhabited aircraft, the ACES study is a collaboration among the Marshall Space Flight Center, the University of Alabama in Huntsville, NASA's Goddard Space Flight Center in Greenbelt, Maryland, Pernsylvania State University in University Park, and General Atomics Aeronautical Systems, Inc.
Ted Madden's Network Methods: Applications to the Earth's Schumann Resonances
NASA Astrophysics Data System (ADS)
Williams, E. R.; Yu, H.
2014-12-01
Ted Madden made clever use of electrical circuit concepts throughout his long career in geophysical research: induced polarization, DC resistivity, magnetotellurics, Schumann resonances, the transport properties of rocks and even elasticity and the brittle failure of stressed rocks. The general methods on network analogies were presented in a terse monograph (Madden, 1972) which came to be called "The Grey Peril" by his students, named more for the challenge of deciphering the material as for the color of its cover. This talk will focus on Ted's first major use of the transmission line analogy in treating the Earth's Schumann resonances. This approach in Madden and Thompson (1965) provided a greatly simplified two-dimensional treatment of an electromagnetic problem with a notable three-dimensional structure. This skillful treatment that included the role of the Earth's magnetic field also led to predictions that the Schumann resonance energy would leak into space, predictions that have been verified nearly 50 years later in satellite observations. An extension of the network analogy by Nelson (1967) using Green's function methods provides a means to treat the inverse problem for the background Schumann resonances for the global lightning activity. The development of Madden's methods will be discussed along with concrete results based on them for the monitoring of global lightning.
NASA Astrophysics Data System (ADS)
Marshall, R. A.; Inan, U. S.; Glukhov, V. S.
2010-04-01
A 3-D finite difference time domain model is used to simulate the lightning electromagnetic pulse (EMP) and its interaction with the lower ionosphere. Results agree with the frequently observed, doughnut-shaped optical signature of elves but show that the structure exhibits asymmetry due to the presence of Earth's ambient magnetic field. Furthermore, in-cloud (horizontal) lightning channels produce observable optical emissions without the doughnut shape and, in fact, produce a much stronger optical output for the same channel current. Electron density perturbations associated with elves are also calculated, with contributions from attachment and ionization. Results presented as a function of parameters such as magnetic field direction, dipole current orientation, altitude and amplitude, and ambient ionospheric density profile demonstrate the highly nonlinear nature of the EMP-ionosphere interaction. Ionospheric effects of a sequence of in-cloud discharges are calculated, simulating a burst of in-cloud lightning activity and resulting in large density changes in the overlying ionosphere.
Analysis of electrical transients created by lightning
NASA Technical Reports Server (NTRS)
Nanevicz, J. E.; Vance, E. F.
1980-01-01
A series of flight tests was conducted using a specially-instrumented NASA Learjet to study the electrical transients created on an aircraft by nearby lightning. The instrumentation included provisions for the time-domain and frequency-domain recording of the electrical signals induced in sensors located both on the exterior and on the interior of the aircraft. The design and calibration of the sensors and associated measuring systems is described together with the results of the flight test measurements. The results indicate that the concept of providing instrumentation to follow the lightning signal from propagation field, to aircraft skin current, to current on interior wiring is basically sound. The results of the measurement indicate that the high frequency signals associated with lightning stroke precursor activity are important in generating electromagnetic noise on the interior of the aircraft. Indeed, the signals produced by the precursors are often of higher amplitude and of longer duration that the pulse produced by the main return stroke.
NASA Technical Reports Server (NTRS)
Maier, Launa M.; Huddleston, Lisa L.
2017-01-01
Kennedy Space Center (KSC) operations are located in a region which experiences one of the highest lightning densities across the United States. As a result, on average, KSC loses almost 30 minutes of operational availability each day for lightning sensitive activities. KSC is investigating using existing instrumentation and automated algorithms to improve the timeliness and accuracy of lightning warnings. Additionally, the automation routines will be warning on a grid to minimize under-warnings associated with not being located in the center of the warning area and over-warnings associated with encompassing too large an area. This study discusses utilization of electric field mill data to provide improved warning times. Specifically, this paper will demonstrate improved performance of an enveloping algorithm of the electric field mill data as compared with the electric field zero crossing to identify initial storm electrification. End-of-Storm-Oscillation (EOSO) identification algorithms will also be analyzed to identify performance improvement, if any, when compared with 30 minutes after the last lightning flash.
Lightning and related phenomena in thunderstorms and squall lines
NASA Technical Reports Server (NTRS)
Rust, W. D.; Taylor, W. L.; Macgorman, D. R.; Brandes, E.; Mazur, V.; Arnold, R.; Marshall, T.; Christian, H.; Goodman, S. J.
1984-01-01
During the past few years, cooperative research on storm electricity has yielded the following results of both basic and applied interest: (1) the intracloud to cloud-to-ground flashing ratio can be as great as 40:1; (2) as storm cells in a squall line dissipate, longer flashes become predominant; (3) there are two centers of lightning activity maxima that are vertically separated, the lower maximum at about 5 km and the upper at about 12 km. In addition, (4) storms produce lightning in their upper regions at a high rate; (5) lightning appears to be related in time to convective motions; (6) positive cloud-to-ground flashes occur in the severe stage of storms and in the later, well-developed stage of squall line storms; (7) mesoscale convective complexes have been observed to have cloud-to-ground flashing rates of more than 48/min; and (8) the electric field in anvils well away from the main storm core (more than 60 km) can be very high, more than 94 kV/m.
The Intra-Cloud Lightning Fraction in the Contiguous United States
NASA Technical Reports Server (NTRS)
Medici, Gina; Cummins, Kenneth L.; Koshak, William J.; Rudlosky, Scott D.; Blakeslee, Richard J.; Goodman, Steven J.; Cecil, Daniel J.; Bright, David R.
2015-01-01
Lightning is dangerous and destructive; cloud-to-ground (CG) lightning flashes can start fires, interrupt power delivery, destroy property and cause fatalities. Its rate-of-occurrence reflects storm kinematics and microphysics. For decades lightning research has been an important focus, and advances in lightning detection technology have been essential contributors to our increasing knowledge of lightning. A significant step in detection technology is the Geostationary Lightning Mapper (GLM) to be onboard the Geostationary Operational Environment Satellite R-Series (GOES-R) to be launched in early 2016. GLM will provide continuous "Total Lightning" observations [CG and intra-cloud lightning (IC)] with near-uniform spatial resolution over the Americas by measuring radiance at the cloud tops from the different types of lightning. These Total Lightning observations are expected to significantly improve our ability to nowcast severe weather. It may be important to understand the long-term regional differences in the relative occurrence of IC and CG lightning in order to understand and properly use the short-term changes in Total Lightning flash rate for evaluating individual storms.
[Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].
Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai
2012-07-01
Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Short, David; Wolkmer, Matthew; Sharp, David; Spratt, Scott
2006-01-01
Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to improve consistency between forecasters while allowing them to focus on the mesoscale detail of the forecast, ultimately benefiting the end-users of the product. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) in which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities, or number of strikes per specified area. The soundings used to determine the flow regimes were taken at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), FL, and the lightning data for the strike densities came from the National Lightning Detection Network (NLDN). The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at FSU and NWS TAE provided this data and supporting software for the work performed by the AMU.
NASA Technical Reports Server (NTRS)
Lambert, Winifred; Short, David; Volkmer, Matthew; Sharp, David; Spratt, Scott
2007-01-01
Each morning, the forecasters at the National Weather Service in Melbourne, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (httl://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in East Central Florida, especially during the warm season months of May September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Until recently, the forecasters created each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent was to improve consistency between forecasters while allowing them to focus on the mesoscale detail of the forecast. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) in which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities, or number of strikes per specified area. The soundings used to determine the flow regimes were taken at Miami (MIA), Tampa (TBW), and Jacksonville (JAX), FL, and the lightning data for the strike densities came from the National Lightning Detection Network (NLDN). The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at FSU and NWS TAE provided this data and supporting software for the work performed by the AMU.
LOFAR Lightning Imaging: Mapping Lightning With Nanosecond Precision
NASA Astrophysics Data System (ADS)
Hare, B. M.; Scholten, O.; Bonardi, A.; Buitink, S.; Corstanje, A.; Ebert, U.; Falcke, H.; Hörandel, J. R.; Leijnse, H.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Rutjes, C.; Schellart, P.; Thoudam, S.; Trinh, T. N. G.; ter Veen, S.; Winchen, T.
2018-03-01
Lightning mapping technology has proven instrumental in understanding lightning. In this work we present a pipeline that can use lightning observed by the LOw-Frequency ARray (LOFAR) radio telescope to construct a 3-D map of the flash. We show that LOFAR has unparalleled precision, on the order of meters, even for lightning flashes that are over 20 km outside the area enclosed by LOFAR antennas (˜3,200 km2), and can potentially locate over 10,000 sources per lightning flash. We also show that LOFAR is the first lightning mapping system that is sensitive to the spatial structure of the electrical current during individual lightning leader steps.
Exploring Lightning Jump Characteristics
NASA Technical Reports Server (NTRS)
Chronis, Themis; Carey, Larry D.; Schultz, Christopher J.; Schultz, Elise; Calhoun, Kristin; Goodman, Steven J.
2014-01-01
This study is concerned with the characteristics of storms exhibiting an abrupt temporal increase in the total lightning flash rate (i.e., lightning jump, LJ). An automated storm tracking method is used to identify storm "clusters" and total lightning activity from three different lightning detection systems over Oklahoma, northern Alabama and Washington, D.C. On average and for different employed thresholds, the clusters that encompass at least one LJ (LJ1) last longer, relate to higher Maximum Expected Size of Hail, Vertical Integrated Liquid and lightning flash rates (area-normalized) than the clusters that did not exhibit any LJ (LJ0). The respective mean values for LJ1 (LJ0) clusters are 80 min (35 min), 14 mm (8 mm), 25 kg per square meter (18 kg per square meter) and 0.05 flash per min per square kilometer (0.01 flash per min per square kilometer). Furthermore, the LJ1 clusters are also characterized by slower decaying autocorrelation functions, a result that implies a less "random" behavior in the temporal flash rate evolution. In addition, the temporal occurrence of the last LJ provides an estimate of the time remaining to the storm's dissipation. Depending of the LJ strength (i.e., varying thresholds), these values typically range between 20-60 min, with stronger jumps indicating more time until storm decay. This study's results support the hypothesis that the LJ is a proxy for the storm's kinematic and microphysical state rather than a coincidental value.
The GOES-R Geostationary Lightning Mapper (GLM) and the Global Observing System for Total Lightning
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Blakeslee, R. J.; Koshak, W.; Buechler, D.; Carey, L.; Chronis, T.; Mach, D.; Bateman, M.; Peterson, H.; McCaul, E. W., Jr.;
2014-01-01
for the existing GOES system currently operating over the Western Hemisphere. New and improved instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved temporal, spatial, and spectral resolution for the next generation Advanced Baseline Imager (ABI). The GLM will map total lightning continuously day and night with near-uniform spatial resolution of 8 km with a product latency of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. The GLM will help address the National Weather Service requirement for total lightning observations globally to support warning decision-making and forecast services. Science and application development along with pre-operational product demonstrations and evaluations at NWS national centers, forecast offices, and NOAA testbeds will prepare the forecasters to use GLM as soon as possible after the planned launch and check-out of GOES-R in 2016. New applications will use GLM alone, in combination with the ABI, or integrated (fused) with other available tools (weather radar and ground strike networks, nowcasting systems, mesoscale analysis, and numerical weather prediction models) in the hands of the forecaster responsible for issuing more timely and accurate forecasts and warnings.
NASA Astrophysics Data System (ADS)
Serozhkin, Yu.
2008-09-01
Introduction The structure and the physical parameters of an early Earth atmosphere [1], most likely, played a determining role in formation of conditions for origin of life. The estimation of thunderstorm activity in atmosphere of the early Earth is important for understanding of the real role of electrical discharges during formation of biochemical compounds. The terrestrial lightning a long time are considered as one of components determining a physical state and chemical structure of an atmosphere. Liebig in 1827 has considered a capability of nitrogen fixation at discharges of lightning [2]. Recent investigations (Lamarque et al. 1996) have achieved that production rate of NOx due to lightning at 3·106 ton/year [3]. The efficiency of electric discharges as energy source for synthesis of low molecular weight organic compounds is explained by the several factors. To them concern effect of optical radiation, high temperature, shock waves and that is especially important, pulse character of these effects. The impulse impact is essentially reduced the probability of destruction of the formed compounds. However, for some reasons is not clear the real role of electric discharges in synthesis of biochemical compounds. The discharges used in experiments on synthesis of organic substances, do not remind the discharges observable in a nature. One more aspect of a problem about a role of electric discharges in forming pre-biotic conditions on the Earth is connected with the thunderstorm activity in a modern atmosphere. This activity is connected with the presence in an atmosphere of ice crystals and existing gradient of temperature. To tell something about a degree of thunderstorm activity during the early Earth, i.e. that period, when formed pre-biotic conditions were is very difficult. Astrobiological potential of various discharges First of all the diversity of electric discharges in terrestrial atmosphere (usual lightning, lightning at eruption of volcanoes, discharges in mesosphere - sprites, elves and jets) puts a question about comparison of the potential efficiency of various discharges for the synthesis of biochemical compounds. The efficiency of lightning's discharges and coronal discharge is compared by Chyba and Sagan [4]. Authors do a conclusion about greater efficiency of lightning discharge for synthesis of organic substances. How to estimate efficiency of various types of discharges at synthesis of chemical compounds? It seems that in the absence of full understanding of mechanism of synthesis under effect of discharges it is necessary to begin from an estimation of quantity of substance located in the field of discharge and energy of discharge. However by viewing a role of energy it is necessary to remember, that at discharge of the usual lightning its main part is spent for a heating of the channel up to high temperatures, at which the organic compounds can not be preserved. We are compared the usual lightning, electrical discharges in mesosphere (sprites etc.) and lightning at eruption of volcanoes. In the Table are shown the following data about the basic types of the terrestrial lightning: - quantity of flashes in one year; - volume occupied by discharge (for usual lightning product of cross section of the channel on length of lightning); - quantity of air in this volume; - product quantity of air on number of flashes in one year. From these dates follows that: - the frequency and energy (≈ 5·102 MJ) of usual lightings make their basic candidate for a role of an energy source for synthesis in atmosphere. Terrestrial lightning is played important role at transformation of low-molecular compounds (NOx). - the huge volume and amount of substance in area of sprites give a reason to speak about their large possibilities for synthesis. As to energy, in sprites (≈ 10 MJ) are absent the losses on heating of substance. The efficiency of its using for synthesis will be more, than in usual lightning. At last time numerous theoretical and experimental researches of gas-grain chemistry show that the chemical reactions on boundary gas - ice play a considerable role in changes of evolution of molecular composition of gas-grains mediums [5,6]. Electric discharges in such gas-grain mediums can be not only energy source for synthesis of biochemical compounds. For prebiotic chemistry will have the important consequences that plasma of these discharges will have properties of dusty plasma. First, it is the presence of the charged micron-size particles (0,1…10 μm). These grains can be charged up to values 103-105 elementary charges at sticking of high-energy electrons and ions (≥1eV), which are produced at lightning discharge. In this connection it is expedient at an estimation of efficiency of the electrical discharges to take into account conditions, in which they occur. In the area of the lightning at eruption of volcanoes there is a plenty of ashes, and aerosols. In the area of the usual lightnings there are snowflakes, drops of water and ice crystals. The electrical discharges in mesosphere cannot be considered without an estimation of influence on biochemical processes the submicron ice crystals and aerosols. What is possible to tell about the degree and nature of thunderstorm activity in the early Earth? We can to formulate some questions: - from what moment of time there were conditions for various types of electrical discharges in an atmosphere; - up to what time, and how we can trace existence of lightning. The modern thunderstorm activity is determined by presence of water in an atmosphere and on a surface of the Earth, and also physical properties of the atmosphere (pressure, temperature, gradient of temperature). The chemical structure of an atmosphere plays a role through influence on temperature and gradient of temperatures. For example, the increase of concentration CO2 gives to global warming. On some estimation in modern conditions the climate warms by 3.8 degrees will increase quantity of lightning at 50 % [7]. The examinations of processes of separation of charges in clouds result in a very narrow diapason of temperature and pressure of an atmosphere, at which the separation of charges is possible. It is necessary to tell that the electrostatic charging of thunderstorm clouds not received a satisfactory explanation. One of not explained properties is the formation at the altitude 6 … 8 km at temperature about -15o the negatively charged layer by thickness some hundreds meters. At this altitude at such pressure the water can exist in three phases. In this layer because of interaction of the ice crystals with snow pellets there is a separation of charges. Above this layer there is a so-called charge reverse - a not explained phenomenon causing that the ice crystals are lower this layer are charged positively, and above negatively. The snow pellets are higher this layer is charged positively, and below negatively. Thus negatively charged layer consists of negatively charged ice crystals and snow pellets. Positively charged snow pellets form a charge at the top of a cloud, and positively charged ice crystals form positive charge in the bottom of a cloud. It follows that the dependence of the electrostatic charging of thunderstorm clouds from parameters of atmosphere is extremely difficult to estimate. About influence of pressure it is possible to tell the general words. It is possible to tell that at pressure corresponding to the point of charge reverse (about 250 Torr at the altitude 8 km) usual thunderstorm activity will decrease. It means that if the atmospheric pressure during formation pre-biotic conditions was less than 100 Torr, it is necessary to discuss a role of electrical discharges, which are connected with accumulation of charges on particles (sand storms, tornado) or ashes at eruption of volcano. What tracks of thunderstorm activity it is possible to search in the past? It is know that the cloud - ground lightning frequently tracks in ground, so-called fulgurites, the alloyed fragments of surface, in which has struck the lightning. There are two classes of fulgurites: sand fulgurites and rock fulgurites. Since fulgurites are real glasses, they are very resistant to weathering and are usually well preserved for a long period of time. For this reason they are used as paleoindicator. It would be interesting to study the opportunity of definition of the lightning stroke date. Conclusion First, we must to orient on such conditions in Earth's early atmosphere in which are possible the existence a so-called charge reverse layer. Next, it would be interesting to study the opportunity of definition of the lightning stroke date by fulgurites. At last, our estimations of the role of electrical discharges for synthesis in atmosphere of early Earth we must to do taking into account the presence in atmosphere of dust grains, ice crystals and aerosols. References [1] Kasting James F. Earth's Early Atmosphere. Science, (1993), Vol. 259, 12 February, pp. 920-926 [2] von Liebig, J. Am. Chem. Phys. 38, pp.329-333 (1827) [3] Lamarque et al. 1996 J. Geophys. Res.101, 22955-68 [4] Chyba C., Sagan C. Electrical energy sources for organic synthesis on the early Earth. Orig Life Evol Biosph. 1991;Vol. 21:pp3-17. [5] Allamandola, L.J. and Hudgins, D.M. (2003) From Interstellar Polycyclic Aromatic Hydrocarbons and Ice to Astrobiology. Proceedings of the NATO ASI entitled "Solid State Astrochemistry", V. Pirronello and J. Krelowski (eds.), Kluwer: Dordrecht. [6] Hugh G.M. Hill; Joseph A. Nuth, (2003), The Catalytic Potential of Cosmic Dust: Implications for Prebiotic Chemistry in the Solar Nebula and Other Protoplanetary Systems, Astrobiology, Vol. 3, No. 2, pp.291-304 [7] Colin Price, NATO Advanced Study Institute on Sprites, Elves and Intense Lightning Discharges, Corte in Corsica, July 24-31, 2004
NASA Technical Reports Server (NTRS)
Goodman, Steven J.; Buechler, Dennis E.; Wright, Patrick D.; Rust, W. David; Nielsen, Kurt E.
1989-01-01
The life cycles of two electrified, microburst-producing storms that occurred on July 19 and 20, 1986 near Huntsville, Alabama are described and compared. The kinematic and microphysical development of the storm clouds is examined. Lightning activity prior to the onset of the microburst is studied. It is observed that ice phase precipitation particles are important in the electrification of the storm and in the formation of the strong downdraft, and the vertical distribution and movement of mass have a role in determining the total lightning activity and type of flashes.
Clustering ENTLN sferics to improve TGF temporal analysis
NASA Astrophysics Data System (ADS)
Pradhan, E.; Briggs, M. S.; Stanbro, M.; Cramer, E.; Heckman, S.; Roberts, O.
2017-12-01
Using TGFs detected with Fermi Gamma-ray Burst Monitor (GBM) and simultaneous radio sferics detected by Earth Network Total Lightning Network (ENTLN), we establish a temporal co-relation between them. The first step is to find ENTLN strokes that that are closely associated to GBM TGFs. We then identify all the related strokes in the lightning flash that the TGF-associated-stroke belongs to. After trying several algorithms, we found out that the DBSCAN clustering algorithm was best for clustering related ENTLN strokes into flashes. The operation of DBSCAN was optimized using a single seperation measure that combined time and distance seperation. Previous analysis found that these strokes show three timescales with respect to the gamma-ray time. We will use the improved identification of flashes to research this.
Vicente, Roberto; Potiens, Ademar; Sakata, Solange; Dellamano, José
2013-11-01
Radioactive lightning rods (RLR) were manufactured and installed in Brazil for almost two decades, before they were prohibited in 1989. Structures protected by this type of lightning preventers included residential buildings, schools, commercial and industrial facilities, among others. It is estimated that about 3.4 TBq of 241Am were used by manufacturers, and a total of 75,000 pieces with a mean activity of about 46 MBq were in the market. While only a fraction of the total has been recovered, the almost twenty thousand pieces already collected at the Nuclear and Energy Research Institute (IPEN) had their sources successfully separated from the remaining recyclable metal scrap and are now encapsulated in lead containers for final disposal.
[Neurological diseases after lightning strike : Lightning strikes twice].
Gruhn, K M; Knossalla, Frauke; Schwenkreis, Peter; Hamsen, Uwe; Schildhauer, Thomas A; Tegenthoff, Martin; Sczesny-Kaiser, Matthias
2016-06-01
Lightning strikes rarely occur but 85 % of patients have lightning-related neurological complications. This report provides an overview about different modes of energy transfer and neurological conditions related to lightning strikes. Moreover, two case reports demonstrate the importance of interdisciplinary treatment and the spectrum of neurological complications after lightning strikes.
The NASA Lightning Nitrogen Oxides Model (LNOM): Recent Updates and Applications
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harold; Biazar, Arastoo; Khan, Maudood; Wang, Lihua; Park, Yee-Hun
2011-01-01
Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are presented. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(tm) (NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx (= NO + NO2). Lightning channel length distributions and lightning 10-m segment altitude distributions are also provided. In addition to NOx production from lightning return strokes, the LNOM now includes non-return stroke lightning NOx production due to: hot core stepped and dart leaders, stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NOx for an August 2006 run of CMAQ is discussed.
Visual Analytics approach for Lightning data analysis and cell nowcasting
NASA Astrophysics Data System (ADS)
Peters, Stefan; Meng, Liqiu; Betz, Hans-Dieter
2013-04-01
Thunderstorms and their ground effects, such as flash floods, hail, lightning, strong wind and tornadoes, are responsible for most weather damages (Bonelli & Marcacci 2008). Thus to understand, identify, track and predict lightning cells is essential. An important aspect for decision makers is an appropriate visualization of weather analysis results including the representation of dynamic lightning cells. This work focuses on the visual analysis of lightning data and lightning cell nowcasting which aim to detect and understanding spatial-temporal patterns of moving thunderstorms. Lightnings are described by 3D coordinates and the exact occurrence time of lightnings. The three-dimensionally resolved total lightning data used in our experiment are provided by the European lightning detection network LINET (Betz et al. 2009). In all previous works, lightning point data, detected lightning cells and derived cell tracks are visualized in 2D. Lightning cells are either displayed as 2D convex hulls with or without the underlying lightning point data. Due to recent improvements of lightning data detection and accuracy, there is a growing demand on multidimensional and interactive visualization in particular for decision makers. In a first step lightning cells are identified and tracked. Then an interactive graphic user interface (GUI) is developed to investigate the dynamics of the lightning cells: e.g. changes of cell density, location, extension as well as merging and splitting behavior in 3D over time. In particular a space time cube approach is highlighted along with statistical analysis. Furthermore a lightning cell nowcasting is conducted and visualized. The idea thereby is to predict the following cell features for the next 10-60 minutes including location, centre, extension, density, area, volume, lifetime and cell feature probabilities. The main focus will be set to a suitable interactive visualization of the predicted featured within the GUI. The developed visual exploring tool for the purpose of supporting decision making is investigated for two determined user groups: lightning experts and interested lay public. Betz HD, Schmidt K, Oettinger WP (2009) LINET - An International VLF/LF Lightning Detection Network in Europe. In: Betz HD, Schumann U, Laroche P (eds) Lightning: Principles, Instruments and Applications. Springer Netherlands, Dordrecht, pp 115-140 Bonelli P, Marcacci P (2008) Thunderstorm nowcasting by means of lightning and radar data: algorithms and applications in northern Italy. Nat. Hazards Earth Syst. Sci 8(5):1187-1198
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikiforov, E. P.
2009-07-15
Damage by lightning discharges to lightning arrester cables for 110-175 kV aerial transmission lines is analyzed using data from power systems on incidents with aerial transmission lines over a ten year operating period (1997-2006). It is found that failures of lightning arrester cables occur when a tensile force acts on a cable heated to the melting point by a lightning current. The lightning currents required to heat a cable to this extent are greater for larger cable cross sections. The probability that a lightning discharge will develop decreases as the amplitude of the lightning current increases, which greatly reduces themore » number of lightning discharges which damage TK-70 cables compared to TK-50 cables. In order to increase the reliability of lightning arrester cables for 110 kV aerial transmission lines, TK-70 cables should be used in place of TK-50 cables. The number of lightning discharges per year which damage lightning arrester cables is lowered when the density of aerial transmission lines is reduced within the territory of electrical power systems. An approximate relationship between these two parameters is obtained.« less
SPoRT's Participation in the GOES-R Proving Ground Activity
NASA Technical Reports Server (NTRS)
Jedlovec, Gary; Fuell, Kevin; Smith, Matthew; Stano, Geoffrey; Molthan, Andrew
2011-01-01
The next generation geostationary satellite, GOES-R, will carry two new instruments with unique atmospheric and surface observing capabilities, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM), to study short-term weather processes. The ABI will bring enhanced multispectral observing capabilities with frequent refresh rates for regional and full disk coverage to geostationary orbit to address many existing and new forecast challenges. The GLM will, for the first time, provide the continuous monitoring of total lightning flashes over a hemispherical region from space. NOAA established the GOES-R Proving Ground activity several years ago to demonstrate the new capabilities of these instruments and to prepare forecasters for their day one use. Proving Ground partners work closely with algorithm developers and the end user community to develop and transition proxy data sets representing GOES-R observing capabilities. This close collaboration helps to maximize refine algorithms leading to the delivery of a product that effectively address a forecast challenge. The NASA Short-term Prediction Research and Transition (SPoRT) program has been a participant in the NOAA GOES-R Proving Ground activity by developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the SPoRT program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. Participation in the Proving Ground activities extends SPoRT s activities and taps its experience and expertise in diagnostic weather analysis, short-term weather forecasting, and the transition of research and experimental data to operational decision support systems like NAWIPS, AWIPS, AWIPS2, and Google Earth. Recent SPoRT Proving Ground activities supporting the development and use of a pseudo GLM total lightning product and the transition of the AWG s Convective Initiation (CI) product, both of which were available in AWIPS and AWIPS II environments, by forecasters during the Hazardous Weather Testbed (HWT) Spring Experiment. SPoRT is also providing a suite of SEVIRI and MODIS RGB image products, and a high resolution composite SST product to several National Centers for use in there ongoing demonstration activities. Additionally, SPoRT has involved numerous WFOs in the evaluation of a GOES-MODIS hybrid product which brings ABI-like data sets in front of the forecaster for everyday use. An overview of this activity will be presented at the conference.
SPoRT's Participation in the GOES-R Proving Ground Activity
NASA Astrophysics Data System (ADS)
Jedlovec, G.; Fuell, K.; Smith, M. R.; Stano, G. T.; Molthan, A.
2011-12-01
The next generation geostationary satellite, GOES-R, will carry two new instruments with unique atmospheric and surface observing capabilities, the Advanced Baseline Imager (ABI) and the Geostationary Lightning Mapper (GLM), to study short-term weather processes. The ABI will bring enhanced multispectral observing capabilities with frequent refresh rates for regional and full disk coverage to geostationary orbit to address many existing and new forecast challenges. The GLM will, for the first time, provide the continuous monitoring of total lightning flashes over a hemispherical region from space. NOAA established the GOES-R Proving Ground activity several years ago to demonstrate the new capabilities of these instruments and to prepare forecasters for their day one use. Proving Ground partners work closely with algorithm developers and the end user community to develop and transition proxy data sets representing GOES-R observing capabilities. This close collaboration helps to maximize refine algorithms leading to the delivery of a product that effectively address a forecast challenge. The NASA Short-term Prediction Research and Transition (SPoRT) program has been a participant in the NOAA GOES-R Proving Ground activity by developing and disseminating selected GOES-R proxy products to collaborating WFOs and National Centers. Established in 2002 to demonstrate the weather and forecasting application of real-time EOS measurements, the SPoRT program has grown to be an end-to-end research to operations activity focused on the use of advanced NASA modeling and data assimilation approaches, nowcasting techniques, and unique high-resolution multispectral data from EOS satellites to improve short-term weather forecasts on a regional and local scale. Participation in the Proving Ground activities extends SPoRT's activities and taps its experience and expertise in diagnostic weather analysis, short-term weather forecasting, and the transition of research and experimental data to operational decision support systems like NAWIPS, AWIPS, AWIPS2, and Google Earth. Recent SPoRT Proving Ground activities supporting the development and use of a pseudo GLM total lightning product and the transition of the AWG's Convective Initiation (CI) product, both of which were available in AWIPS and AWIPS II environments, by forecasters during the Hazardous Weather Testbed (HWT) Spring Experiment. SPoRT is also providing a suite of SEVIRI and MODIS RGB image products, and a high resolution composite SST product to several National Centers for use in there ongoing demonstration activities. Additionally, SPoRT has involved numerous WFOs in the evaluation of a GOES-MODIS hybrid product which brings ABI-like data sets in front of the forecaster for everyday use. An overview of this activity will be presented at the conference.
NASA Astrophysics Data System (ADS)
Liu, Feifan; Zhu, Baoyou; Lu, Gaopeng; Qin, Zilong; Lei, Jiuhou; Peng, Kang-Ming; Chen, Alfred B.; Huang, Anjing; Cummer, Steven A.; Chen, Mingli; Ma, Ming; Lyu, Fanchao; Zhou, Helin
2018-03-01
On 19 August 2012, the Imager of Sprites and Upper Atmospheric Lightning on board the FORMOSAT-2 satellite captured a sequence of seven blue discharges within 1 min that emanated from a parent thunderstorm over Lake Taihu in East China. The analysis of lightning activity produced in the thunderstorm indicates that at least six of these events occurred in association with negative narrow bipolar events (NBEs) that were concurrent with the blue discharge by less than 1 ms, and negative cloud-to-ground occurred within 6 s before each blue discharge, which is in agreement with the modeling presented by Krehbiel et al. (2008). Therefore, the frequent occurrence of negative cloud-to-ground could provide the favorable condition for the production of blue discharges, and negative NBEs are probably the initial event of blue discharges. The detection of negative NBEs might provide a convenient approach to detect the occurrence of blue discharges as lightning bolt shooting upward from the top of energetic thunderstorms.
Total Lightning as an Indicator of Mesocyclone Behavior
NASA Technical Reports Server (NTRS)
Stough, Sarah M.; Carey, Lawrence D.; Schultz, Christopher J.
2014-01-01
Apparent relationship between total lightning (in-cloud and cloud to ground) and severe weather suggests its operational utility. Goal of fusion of total lightning with proven tools (i.e., radar lightning algorithms. Preliminary work here investigates circulation from Weather Suveilance Radar- 1988 Doppler (WSR-88D) coupled with total lightning data from Lightning Mapping Arrays.
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold S.; McCaul, Eugene W.; Blazar, Arastoo
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (NALMA) data to estimate the (unmixed and otherwise environmentally unmodified) vertical source profile of lightning nitrogen oxides, NOx = NO + NO2. Data from the National Lightning Detection Network (Trademark) (NLDN) is also employed. This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the NALMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting lightning NOx source profiles are discussed.
Electric field at the ground in a large tornado
NASA Astrophysics Data System (ADS)
Winn, W. P.; Hunyady, S. J.; Aulich, G. D.
2000-08-01
A number of observers have reported lightning, diffuse luminosity, or other manifestations of electrical activity in tornadoes. To try to quantify these observations, eight instruments with sensors for electric field and other parameters were placed in front of a large tornado that passed by Allison, Texas, on June 8, 1995. The edge of the tornado vortex passed over two of the instruments and near other instruments. When the two instruments were in the low-pressure region near the edge of the vortex, they indicated electric field amplitudes less than about 3 kV/m, which is low compared with amplitudes of 10 kV/m or greater that are often present below thunderclouds. The thunderstorm produced frequent lightning, but there is no evidence from the measurements or from visual observations of lightning in the vortex. However, there was one interesting electrical effect associated with the tornado: the electric field at the two instruments in the vortex relaxed to zero quickly after lightning flashes, whereas the electric field at nearby instruments outside the vortex did not relax quickly after the same lightning flashes. The most likely cause of the rapid relaxation is shielding of the electric field at the ground by charge induced on soil, leaves, grass, and other debris lofted by the strong winds.
Lightning fires in North Dakota grasslands and in pine-savanna lands of South Dakota and Montana
Higgins, K.F.
1984-01-01
Lightning strike fires which occurred between 1940 and 1981 were studied in mixed-grass prairie grasslands and in pine-savanna lands in the Northern Great Plains region. A majority (73%) of ignitions occurred during July and August, while a lesser number was recorded in April, May, June, and September. The April-September period is also the average time of the freeze-free period and approximates the average distribution period for thunderstorm activity in this region. The area burned by each of 293 lightning fires (most of which were suppressed) ranged from 0.004-1158.3 ha (mean = 10.8 ha). The frequency of lightning fires in mixed-grass prairie grasslands averaged 6.0/yr per 10,000 km2 in eastern North Dakota, 22.4/yr per 10,000 km2 in southcentral North Dakota, 24.7/yr per 10,000 km2 in western North Dakota, and 91.7/yr per 10,000 km2 in pine-savanna lands in northwestern South Dakota and southeastern Montana. The ecological role of lightning-set fires is discussed relative to the development of resource research and management plans and to the interpretation of historical records of natural fire occurrence in the Northern Great Plains region.
Lightning Safety Tips and Resources
... Safety Brochure U.S. Lightning Deaths in 2018 : 5 Youtube: Lightning Safety for the Deaf and Hard of ... for Hard of Hearing: jpg , high res png YouTube: Lightning Safety Tips Lightning Safety When Working Outdoors : ...
NASA Manned Launch Vehicle Lightning Protection Development
NASA Technical Reports Server (NTRS)
McCollum, Matthew B.; Jones, Steven R.; Mack, Jonathan D.
2009-01-01
Historically, the National Aeronautics and Space Administration (NASA) relied heavily on lightning avoidance to protect launch vehicles and crew from lightning effects. As NASA transitions from the Space Shuttle to the new Constellation family of launch vehicles and spacecraft, NASA engineers are imposing design and construction standards on the spacecraft and launch vehicles to withstand both the direct and indirect effects of lightning. A review of current Space Shuttle lightning constraints and protection methodology will be presented, as well as a historical review of Space Shuttle lightning requirements and design. The Space Shuttle lightning requirements document, NSTS 07636, Lightning Protection, Test and Analysis Requirements, (originally published as document number JSC 07636, Lightning Protection Criteria Document) was developed in response to the Apollo 12 lightning event and other experiences with NASA and the Department of Defense launch vehicles. This document defined the lightning environment, vehicle protection requirements, and design guidelines for meeting the requirements. The criteria developed in JSC 07636 were a precursor to the Society of Automotive Engineers (SAE) lightning standards. These SAE standards, along with Radio Technical Commission for Aeronautics (RTCA) DO-160, Environmental Conditions and Test Procedures for Airborne Equipment, are the basis for the current Constellation lightning design requirements. The development and derivation of these requirements will be presented. As budget and schedule constraints hampered lightning protection design and verification efforts, the Space Shuttle elements waived the design requirements and relied on lightning avoidance in the form of launch commit criteria (LCC) constraints and a catenary wire system for lightning protection at the launch pads. A better understanding of the lightning environment has highlighted the vulnerability of the protection schemes and associated risk to the vehicle, which has resulted in lost launch opportunities and increased expenditures in manpower to assess Space Shuttle vehicle health and safety after lightning events at the launch pad. Because of high-percentage launch availability and long-term on-pad requirements, LCC constraints are no longer considered feasible. The Constellation vehicles must be designed to withstand direct and indirect effects of lightning. A review of the vehicle design and potential concerns will be presented as well as the new catenary lightning protection system for the launch pad. This system is required to protect the Constellation vehicles during launch processing when vehicle lightning effects protection might be compromised by such items as umbilical connections and open access hatches.
Characteristics of long recovery early VLF events observed by the North African AWESOME Network
NASA Astrophysics Data System (ADS)
Naitamor, S.; Cohen, M. B.; Cotts, B. R. T.; Ghalila, H.; Alabdoadaim, M. A.; Graf, K.
2013-08-01
Lightning strokes are capable of initiating disturbances in the lower ionosphere, whose recoveries persist for many minutes. These events are remotely sensed via monitoring subionospherically propagating very low frequency (VLF) transmitter signals, which are perturbed as they pass through the region above the lightning stroke. In this paper we describe the properties and characteristics of the early VLF signal perturbations, which exhibit long recovery times using subionospheric VLF transmitter data from three identical receivers located at Algiers (Algeria), Tunis (Tunisia), and Sebha (Libya). The results indicate that the observation of long recovery events depends strongly on the modal structure of the signal electromagnetic field and the distance from the disturbed region and the receiver or transmitter locations. Comparison of simultaneously collected data at the three sites indicates that the role of the causative lightning stroke properties (e.g., peak current and polarity), or that of transient luminous events may be much less important. The dominant parameter which determines the duration of the recovery time and amplitude appears to be the modal structure of the subionospheric VLF probe signal at the ionospheric disturbance, where scattering occurs, and the subsequent modal structure that propagates to the receiver location.
NASA Technical Reports Server (NTRS)
Lambert, Winnie; Sharp, David; Spratt, Scott; Volkmer, Matthew
2005-01-01
Each morning, the forecasters at the National Weather Service in Melbourn, FL (NWS MLB) produce an experimental cloud-to-ground (CG) lightning threat index map for their county warning area (CWA) that is posted to their web site (http://www.srh.weather.gov/mlb/ghwo/lightning.shtml) . Given the hazardous nature of lightning in central Florida, especially during the warm season months of May-September, these maps help users factor the threat of lightning, relative to their location, into their daily plans. The maps are color-coded in five levels from Very Low to Extreme, with threat level definitions based on the probability of lightning occurrence and the expected amount of CG activity. On a day in which thunderstorms are expected, there are typically two or more threat levels depicted spatially across the CWA. The locations of relative lightning threat maxima and minima often depend on the position and orientation of the low-level ridge axis, forecast propagation and interaction of sea/lake/outflow boundaries, expected evolution of moisture and stability fields, and other factors that can influence the spatial distribution of thunderstorms over the CWA. The lightning threat index maps are issued for the 24-hour period beginning at 1200 UTC (0700 AM EST) each day with a grid resolution of 5 km x 5 km. Product preparation is performed on the AWIPS Graphical Forecast Editor (GFE), which is the standard NWS platform for graphical editing. Currently, the forecasters create each map manually, starting with a blank map. To improve efficiency of the forecast process, NWS MLB requested that the Applied Meteorology Unit (AMU) create gridded warm season lightning climatologies that could be used as first-guess inputs to initialize lightning threat index maps. The gridded values requested included CG strike densities and frequency of occurrence stratified by synoptic-scale flow regime. The intent is to increase consistency between forecasters while enabling them to focus on the mesoscale detail of the forecast, ultimately benefiting the end-users of the product. Several studies took place at the Florida State University (FSU) and NWS Tallahassee (TAE) for which they created daily flow regimes using Florida 1200 UTC synoptic soundings and CG strike densities from National Lightning Detection Network (NLDN) data. The densities were created on a 2.5 km x 2.5 km grid for every hour of every day during the warm seasons in the years 1989-2004. The grids encompass an area that includes the entire state of Florida and adjacent Atlantic and Gulf of Mexico waters. Personnel at the two organizations provided this data and supporting software for the work performed by the AMU. The densities were first stratified by flow regime, then by time in 1-, 3-, 6-, 12-, and 24-hour increments while maintaining the 2.5 km x 2.5 km grid resolution. A CG frequency of occurrence was calculated for each stratification and grid box by counting the number of days with lightning and dividing by the total number of days in the data set. New CG strike densities were calculated for each stratification and grid box by summing the strike number values over all warm seasons, then normalized by dividing the summed values by the number of lightning days. This makes the densities conditional on whether lightning occurred. The frequency climatology values will be used by forecasters as proxy inputs for lightning prObability, while the density climatology values will be used for CG amount. In addition to the benefits outlined above, these climatologies will provide improved temporal and spatial resolution, expansion of the lightning threat area to include adjacent coastal waters, and potential to extend the forecast to include the day-2 period. This presentation will describe the lightning threat index map, discuss the work done to create the maps initialized with climatological guidance, and show examples of the climatological CG lightning densities and frequencies of occurren based on flow regime.
NASA Astrophysics Data System (ADS)
1985-12-01
The conference presents papers on statistical data and standards, coupling and indirect effects, meteorology and thunderstorm studies, lightning simulators, fuel ignition hazards, the phenomenology and characterization of lightning, susceptibility and protection of avionics, ground systems protection, lightning locators, aircraft systems protection, structures and materials, electrostatics, and spacecraft protection against static electricity. Particular attention is given to a comparison of published HEMP and natural lightning on the surface of an aircraft, electromagnetic interaction of external impulse fields with aircraft, of thunderstorm currents and lightning charges at the NASA Kennedy Space Center, the design of a fast risetime lightning generator, lightning simulation tests in FAA CV-580 lightning research aircraft, and the energy requirements of an aircraft triggered discharge. Papers are also presented on aircraft lightning attachment at low altitudes, a new form of transient suppressor, a proving ground for lightning research, and a spacecraft materials test in a continuous, broad energy-spectrum electron beam.
The electric field changes and UHF radiations caused by the triggered lightning in Japan
NASA Technical Reports Server (NTRS)
Kawasaki, Zen-Ichiro; Kanao, Tadashi; Matsuura, Kenji; Nakano, Minoru; Horii, Kenji; Nakamura, Koichi
1991-01-01
In the rocket triggered lightning experiment of fiscal 1989, researchers observed electromagnetic field changes and UHF electromagnetic radiation accompanying rocket triggered lightning. It was found that no rapid changes corresponding to the return stroke of natural lightning were observed in the electric field changes accompanying rocket triggered lightning. However, continuous currents were present. In the case of rocket triggered lightning to the tower, electromagnetic field changes corresponding to the initiation of triggered lightning showed a bipolar pulse of a relatively large amplitude. In contrast, the rocket triggered lightning to the ground did not have such a bipolar pulse. The UHF radiation accompanying the rocket triggered lightning preceded the waveform portions corresponding to the first changes in electromagnetic fields. The number of isolated pulses in the UHF radiation showed a correlation with the time duration from rocket launching up to triggered lightning. The time interval between consecutive isolated pulses tended to get shorter with the passage of time, just like the stepped leaders of natural lightning.
Lightning-Related Indicators for National Climate Assessment (NCA) Studies
NASA Astrophysics Data System (ADS)
Koshak, W. J.
2017-12-01
With the recent advent of space-based lightning mappers [i.e., the Geostationary Lightning Mapper (GLM) on GOES-16, and the Lightning Imaging Sensor (LIS) on the International Space Station], improved investigations on the inter-relationships between lightning and climate are now possible and can directly support the goals of the National Climate Assessment (NCA) program. Lightning nitrogen oxides (LNOx) affect greenhouse gas concentrations such as ozone that influences changes in climate. Conversely, changes in climate (from any causes) can affect the characteristics of lightning (e.g., frequency, current amplitudes, multiplicity, polarity) that in turn leads to changes in lightning-caused impacts to humans (e.g., fatalities, injuries, crop/property damage, wildfires, airport delays, changes in air quality). This study discusses improvements to, and recent results from, the NASA/MSFC NCA Lightning Analysis Tool (LAT). It includes key findings on the development of different types of lightning flash energy indicators derived from space-based lightning observations, and demonstrates how these indicators can be used to estimate trends in LNOx across the continental US.
Lightning Technology: Proceedings of a Technical Symposium
NASA Technical Reports Server (NTRS)
1980-01-01
Several facets of lightning technology are considered including phenomenology, measurement, detection, protection, interaction, and testing. Lightning electromagnetics, protection of ground systems, and simulated lightning testing are emphasized. The lightning-instrumented F-106 aircraft is described.
NASA Astrophysics Data System (ADS)
Larnier, H.; Sailhac, P.; Chambodut, A.
2018-01-01
Atmospheric electromagnetic waves created by global lightning activity contain information about electrical processes of the inner and the outer Earth. Large signal-to-noise ratio events are particularly interesting because they convey information about electromagnetic properties along their path. We introduce a new methodology to automatically detect and characterize lightning-based waves using a time-frequency decomposition obtained through the application of continuous wavelet transform. We focus specifically on three types of sources, namely, atmospherics, slow tails and whistlers, that cover the frequency range 10 Hz to 10 kHz. Each wave has distinguishable characteristics in the time-frequency domain due to source shape and dispersion processes. Our methodology allows automatic detection of each type of event in the time-frequency decomposition thanks to their specific signature. Horizontal polarization attributes are also recovered in the time-frequency domain. This procedure is first applied to synthetic extremely low frequency time-series with different signal-to-noise ratios to test for robustness. We then apply it on real data: three stations of audio-magnetotelluric data acquired in Guadeloupe, oversea French territories. Most of analysed atmospherics and slow tails display linear polarization, whereas analysed whistlers are elliptically polarized. The diversity of lightning activity is finally analysed in an audio-magnetotelluric data processing framework, as used in subsurface prospecting, through estimation of the impedance response functions. We show that audio-magnetotelluric processing results depend mainly on the frequency content of electromagnetic waves observed in processed time-series, with an emphasis on the difference between morning and afternoon acquisition. Our new methodology based on the time-frequency signature of lightning-induced electromagnetic waves allows automatic detection and characterization of events in audio-magnetotelluric time-series, providing the means to assess quality of response functions obtained through processing.
Pre-Launch GOES-R Risk Reduction Activities for the Geostationary Lightning Mapper
NASA Technical Reports Server (NTRS)
Goodman, S. J.; Blakeslee, R. J.; Boccippio, D. J.; Christian, H. J.; Koshak, W. J.; Petersen, W. A.
2005-01-01
The GOES-R Geostationary Lightning Mapper (GLM) is a new instrument planned for GOES-R that will greatly improve storm hazard nowcasting and increase warning lead time day and night. Daytime detection of lightning is a particularly significant technological advance given the fact that the solar illuminated cloud-top signal can exceed the intensity of the lightning signal by a factor of one hundred. Our approach is detailed across three broad themes which include: Data Processing Algorithm Readiness, Forecast Applications, and Radiance Data Mining. These themes address how the data will be processed and distributed, and the algorithms and models for developing, producing, and using the data products. These pre-launch risk reduction activities will accelerate the operational and research use of the GLM data once GOES-R begins on-orbit operations. The GLM will provide unprecedented capabilities for tracking thunderstorms and earlier warning of impending severe and hazardous weather threats. By providing direct information on lightning initiation, propagation, extent, and rate, the GLM will also capture the updraft dynamics and life cycle of convective storms, as well as internal ice precipitation processes. The GLM provides information directly from the heart of the thunderstorm as opposed to cloud-top only. Nowcasting applications enabled by the GLM data will expedite the warning and response time of emergency management systems, improve the dispatch of electric power utility repair crews, and improve airline routing around thunderstorms thereby improving safety and efficiency, saving fuel and reducing delays. The use of GLM data will assist the Bureau of Land Management (BLM) and the Forest Service in quickly detecting lightning ground strikes that have a high probability of causing fires. Finally, GLM data will help assess the role of thunderstorms and deep convection in global climate, and will improve regional air quality and global chemistry/climate modeling. The GLM has a robust design that benefits and improves upon its strong heritage of NASA-developed LEO predecessors, the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS). GLM will have a substantially larger number of pixels within the focal plane, two lens systems, and multiple Real-Time Event Processors REPS for on-board event detection and data compression to provide continuous observations of the Americas and adjacent oceans.
The NASA Lightning Nitrogen Oxides Model (LNOM): Application to Air Quality Modeling
NASA Technical Reports Server (NTRS)
Koshak, William; Peterson, Harold; Khan, Maudood; Biazar, Arastoo; Wang, Lihua
2011-01-01
Recent improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) and its application to the Community Multiscale Air Quality (CMAQ) modeling system are discussed. The LNOM analyzes Lightning Mapping Array (LMA) and National Lightning Detection Network(TradeMark)(NLDN) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NO(x) (= NO + NO2). The latest LNOM estimates of lightning channel length distributions, lightning 1-m segment altitude distributions, and the vertical profile of lightning NO(x) are presented. The primary improvement to the LNOM is the inclusion of non-return stroke lightning NOx production due to: (1) hot core stepped and dart leaders, (2) stepped leader corona sheath, K-changes, continuing currents, and M-components. The impact of including LNOM-estimates of lightning NO(x) for an August 2006 run of CMAQ is discussed.
Effects of Solar Activities on the Transient Luminous Events
NASA Astrophysics Data System (ADS)
Wu, Y.; Williams, E.; Chou, J.; Lee, L.; Huang, S.; Chang, S.; Chen, A. B.; Kuo, C.; Su, H.; Hsu, R.; Frey, H. U.; Takahashi, Y.; Lee, L.
2013-12-01
The Imager of Sprite and Upper Atmosphere Lightning (ISUAL) onboard the Formosat-2 was launched in May 2004; since then, it has continuously observed transient luminous events (TLEs) within the +/-60 degree of latitude for nearly 10 years. Due to ISUAL's long-term observations, the possible correlation between the TLE and the solar activity can be explored. Among the ISUAL TLEs, elves, which occur at the mesospheric altitude ~90 km and are caused by the heating incurred by the lightning-launched electromagnetic pulse of the lower ionosphere boundary are the most numerous and are the most suitable for this type of study. In previous studies, the elve distribution has proved to be a good surrogate for the lightning with exceptional peak current globally. ISUAL records the occurrence time and the height and location of elves, and the spectral emission intensities at six different band pass including the FUV N2 Lyman-Birge-Hopfield (LBH) band, which is a dominant emission in elves. The LBH intensity not only reflects the peak current of parent lightning, but may also represent the solar-activity-driven-lighting's perturbation to the ionosphere. In this study, we first examine whether the 11-year solar cycle affects the elve activity and altitude by analyzing the elve occurrence rates and heights in different latitudinal regions. To avoid the climatological and instrumental biases in the elve observations, the effects arising from the ENSO and moonlight must be carefully eliminated. Besides, we will discuss the elve variation in shorter time scale due to strong and sudden change of solar activity. Since the ion density of the mesosphere at mid-latitude may be significantly altered during/after a strong corona mass ejection (CME).Furthermore, it has been proven that the changes in the solar X-ray flux dominate the variations in the conductivity profile within the upper characteristic ELF layer (the 90-100km portion of the E-region). we will compare the variation of emission intensity of elves with and without intense CME/x-ray flux events to quantify the possible effects of ionospheric perturbations due to solar activity. We have selected elves over the winter storm track in the Pacific Ocean region northeast of Japan due to the strong elve activity there during northern hemisphere winters in order to make sure the sufficient events for statistical analysis. The peak current of the parent lightning for the ISUAL elves can be inferred from the lightning energy recorded by the WWLLN. With the inferred peak current, the LBH band emission intensity in elves can be computed. Finally, the theoretical and the observed LBH band intensity for elves are to be compared; the difference may come from the effect of intense CME/x-ray flux .Details of the data analyses and the preliminary results will be presented fully in the report.
The Lightning Nitrogen Oxides Model (LNOM): Status and Recent Applications
NASA Technical Reports Server (NTRS)
Koshak, William; Khan, Maudood; Peterson, Harold
2011-01-01
Improvements to the NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) are discussed. Recent results from an August 2006 run of the Community Multiscale Air Quality (CMAQ) modeling system that employs LNOM lightning NOx (= NO + NO2) estimates are provided. The LNOM analyzes Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning NOx. The latest LNOM estimates of (a) lightning channel length distributions, (b) lightning 1-m segment altitude distributions, and (c) the vertical profile of NOx are presented. The impact of including LNOM-estimates of lightning NOx on CMAQ output is discussed.
Developing empirical lightning cessation forecast guidance for the Kennedy Space Center
NASA Astrophysics Data System (ADS)
Stano, Geoffrey T.
The Kennedy Space Center in east Central Florida is one of the few locations in the country that issues lightning advisories. These forecasts are vital to the daily operations of the Space Center and take on even greater significance during launch operations. The U.S. Air Force's 45th Weather Squadron (45WS), who provides forecasts for the Space Center, has a good record of forecasting the initiation of lightning near their locations of special concern. However, the remaining problem is knowing when to cancel a lightning advisory. Without specific scientific guidelines detailing cessation activity, the Weather Squadron must keep advisories in place longer than necessary to ensure the safety of personnel and equipment. This unnecessary advisory time costs the Space Center millions of dollars in lost manpower each year. This research presents storm and environmental characteristics associated with lightning cessation that then are utilized to create lightning cessation guidelines for isolated thunderstorms for use by the 45WS during the warm season months of May through September. The research uses data from the Lightning Detection and Ranging (LDAR) network at the Kennedy Space Center, which can observe intra-cloud and portions of cloud-to-ground lightning strikes. Supporting data from the Cloud-to-Ground Lightning Surveillance System (CGLSS), radar observations from the Melbourne WSR-88D, and Cape Canaveral morning radiosonde launches also are included. Characteristics of 116 thunderstorms comprising our dataset are presented. Most of these characteristics are based on LDAR-derived spark and flash data and have not been described previously. In particular, the first lightning activity is quantified as either cloud-to-ground (CG) or intra-cloud (IC). Only 10% of the storms in this research are found to initiate with a CG strike. Conversely, only 16% of the storms end with a CG strike. Another characteristic is the average horizontal extent of all the flashes comprising a storm. Our average is 12-14 km, while the greatest flash extends 26 km. Comparisons between the starting altitude of the median and last flashes of a storm are analyzed, with only 37% of the storms having a higher last flash initiating altitude. Additional observations are made of the total lightning flash rate, percentage of CG to IC lightning, trends of individual flash initiation altitudes versus the average initiation altitude, the average inter-flash time distribution, and time series of inter-flash times. Five schemes to forecast lightning cessation are developed and evaluated. 100 of the 116 storms were randomly selected as the dependent sample, while the remaining 16 storms were used for verification. The schemes included a correlation and regression tree analysis, multiple linear regression, trends of storm duration, trend of the altitude of the greatest reflectivity to the time of the final flash, and a percentile scheme. Surprisingly, the percentile method was found to be the most effective technique and the simplest. The inclusion of real time storm parameters is found to have little effect on the results, suggesting that different forecast predictors, such as microphysical data from polarimetric radar, will be necessary to produce improved skill. When the percentile method used a confidence level of 99.5%, it successfully maintained lightning advisories for all 16 independent storms on which the schemes were tested. Since the computed wait time was 25 min, compared to the 45WS' most conservative and accurate wait time of 30 min, the percentile method saves 5 min for each advisory. This 5 min of savings safely shortens the Weather Squadron's advisories and saves money. Additionally, these results are the first to evaluate the 30/30 rule that is used commonly. The success of the percentile method is surprising since it out performs more complex procedures involving correlation and regression tree analysis and regression schemes. These more sophisticated statistical analyses were expected to perform better since they include more predictors in the forecasts. However, with the predictors available to us, this was not the case. While not the expected result, the percentile method succeeds in creating a safe and expedited forecast.
Giant elves: Lightning-generated electromagnetic pulses in giant planets.
NASA Astrophysics Data System (ADS)
Luque Estepa, Alejandro; Dubrovin, Daria; José Gordillo-Vázquez, Francisco; Ebert, Ute; Parra-Rojas, Francisco Carlos; Yair, Yoav; Price, Colin
2015-04-01
We currently have direct optical observations of atmospheric electricity in the two giant gaseous planets of our Solar System [1-5] as well as radio signatures that are possibly generated by lightning from the two icy planets Uranus and Neptune [6,7]. On Earth, the electrical activity of the troposphere is associated with secondary electrical phenomena called Transient Luminous Events (TLEs) that occur in the mesosphere and lower ionosphere. This led some researchers to ask if similar processes may also exist in other planets, focusing first on the quasi-static coupling mechanism [8], which on Earth is responsible for halos and sprites and then including also the induction field, which is negligible in our planet but dominant in Saturn [9]. However, one can show that, according to the best available estimation for lightning parameters, in giant planets such as Saturn and Jupiter the effect of the electromagnetic pulse (EMP) dominates the effect that a lightning discharge has on the lower ionosphere above it. Using a Finite-Differences, Time-Domain (FDTD) solver for the EMP we found [10] that electrically active storms may create a localized but long-lasting layer of enhanced ionization of up to 103 cm-3 free electrons below the ionosphere, thus extending the ionosphere downward. We also estimate that the electromagnetic pulse transports 107 J to 1010 J toward the ionosphere. There emissions of light of up to 108 J would create a transient luminous event analogous to a terrestrial elve. Although these emissions are about 10 times fainter than the emissions coming from the lightning itself, it may be possible to target them for detection by filtering the appropiate wavelengths. [1] Cook, A. F., II, T. C. Duxbury, and G. E. Hunt (1979), First results on Jovian lightning, Nature, 280, 794, doi:10.1038/280794a0. [2] Little, B., C. D. Anger, A. P. Ingersoll, A. R. Vasavada, D. A. Senske, H. H. Breneman, W. J. Borucki, and The Galileo SSI Team (1999), Galileo images of lightning on Jupiter, Icarus, 142, 306-323, doi:10.1006/icar.1999.6195. [3] Dyudina, U. A., A. D. Del Genio, A. P. Ingersoll, C. C. Porco, R. A. West, A. R. Vasavada, and J. M. Barbara (2004), Lightning on Jupiter observed in the Hα line by the Cassini imaging science subsystem, Icarus, 172, 24-36, doi:10.1016/j.icarus.2004.07.014. [4] Baines, K. H., et al. (2007), Polar lightning and decadal-scale cloud variability on Jupiter, Science, 318, 226-229, doi:10.1126/science.1147912. [5] Dyudina, U. A., A. P. Ingersoll, S. P. Ewald, C. C. Porco, G. Fischer, W. S. Kurth, and R. A. West (2010), Detection of visible lightning on Saturn, Geophys. Res. Lett., 37, L09205, doi:10.1029/2010GL043188. [6] Zarka, P., and B. M. Pedersen (1986), Radio detection of Uranian lightning by Voyager 2, Nature, 323, 605-608, doi:10.1038/323605a0. [7] Gurnett, D. A., W. S. Kurth, I. H. Cairns, and L. J. Granroth (1990), Whistlers in Neptune's magnetosphere'Evidence of atmospheric lightning, J. Geophys. Res., 95, 20,967-20,976, doi:10.1029/JA095iA12p20967. [8] Yair, Y., Y. Takahashi, R. Yaniv, U. Ebert, and Y. Goto (2009), A study of the possibility of sprites in the atmospheres of other planets, J. Geophys. Res., 114, E09002, doi:10.1029/2008JE003311. [9] Dubrovin, D., A. Luque, F. J. Gordillo-Vázquez, Y. Yair, F. C. Parra-Rojas, U. Ebert, and C. Price (2014), Impact of lightning on the lower ionosphere of Saturn and possible generation of halos and sprites, Icarus, 241, 313-328, doi:10.1016/j.icarus.2014.06.025. [10] Luque, A., D. Dubrovin, F. J. Gordillo-Vázquez, U. Ebert, F. C. Parra-Rojas, Y. Yair, and C. Price (2014), Coupling between atmospheric layers in gaseous giant planets due to lightning-generated electromagnetic pulses, J. Geophys. Res. Space Physics, 119, doi:10.1002/2014JA020457.
Measuring Method for Lightning Channel Temperature.
Li, X; Zhang, J; Chen, L; Xue, Q; Zhu, R
2016-09-26
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.
Measuring Method for Lightning Channel Temperature
NASA Astrophysics Data System (ADS)
Li, X.; Zhang, J.; Chen, L.; Xue, Q.; Zhu, R.
2016-09-01
In this paper, we demonstrate the temperature of lightning channel utilizing the theory of lightning spectra and the model of local thermodynamic equilibrium (LTE). The impulse current generator platform (ICGS) was used to simulate the lightning discharge channel, and the spectral energy of infrared spectroscopy (930 nm) and the visible spectroscopy (648.2 nm) of the simulated lightning has been calculated. Results indicate that the peaks of luminous intensity of both infrared and visible spectra increase with the lightning current intensity in range of 5-50 kA. Based on the results, the temperature of the lightning channel is derived to be 6140.8-10424 K. Moreover, the temperature of the channel is approximately exponential to the lightning current intensity, which shows good agreement with that of the natural lightning cases.
NASA Astrophysics Data System (ADS)
Williams, E. R.; Guha, A.; Liu, Y.; Boldi, R. A.; Pracser, E.; Said, R.; Satori, G.; Bozoki, T.; Bor, J.; Atkinson, M.; Beggan, C.; Cummer, S.; Lyu, F.; Fain, B.; Hobara, Y.; Alexander, K.; Kulak, A.; McCraty, R.; Mlynarczyk, J.; Montanya, J.; Moore, R. C.; Neska, M.; Ortega, P.; Price, C. G.; Rawat, R.; Sato, M.; Sinha, A. K.; Yampolski, Y.
2017-12-01
The global reach of single, calibrated ELF receivers operating in the Schumann resonance (SR) band (3-50 Hz) has been verified by global maps of energetic Q-burst locations and vertical charge moment change, and by locations of independently verified transient luminous events in a wide variety of locations worldwide. It has also been previously shown that with as few as six ELF receivers in widely separated locations, multi-station, multi-modal SR parameters extracted from the SR "background" signal can be inverted to provide the centroid locations of continental lightning "chimneys" (Asia, Africa, Americas) and their respective lightning activities in absolute units (coul2 km2/sec). This inversion method involves a propagation model for the Earth-ionosphere cavity with day-night asymmetry. The Earth is now populated with more than 30 calibrated ELF receivers making continuous time series observations. This circumstance is exploited in the present study to verify the findings of the ELF inversion method. During the period May 17-20 and 23-24, 2015, two independent sets of nine ELF receivers each, in widely-separated geographical locations (first set: Antarctica (3 sites), Hungary, Japan (2 sites), Poland, Spitzbergen, and USA; second set: Antarctica, Canada, Cape Verde Island, Lithuania, New Zealand, Saudi Arabia, Scotland, Tahiti, and USA), are used to compare the locations and source strengths of lightning chimneys. Detailed comparisons will be shown over Universal Time for selected days.
Human-started wildfires expand the fire niche across the United States.
Balch, Jennifer K; Bradley, Bethany A; Abatzoglou, John T; Nagy, R Chelsea; Fusco, Emily J; Mahood, Adam L
2017-03-14
The economic and ecological costs of wildfire in the United States have risen substantially in recent decades. Although climate change has likely enabled a portion of the increase in wildfire activity, the direct role of people in increasing wildfire activity has been largely overlooked. We evaluate over 1.5 million government records of wildfires that had to be extinguished or managed by state or federal agencies from 1992 to 2012, and examined geographic and seasonal extents of human-ignited wildfires relative to lightning-ignited wildfires. Humans have vastly expanded the spatial and seasonal "fire niche" in the coterminous United States, accounting for 84% of all wildfires and 44% of total area burned. During the 21-y time period, the human-caused fire season was three times longer than the lightning-caused fire season and added an average of 40,000 wildfires per year across the United States. Human-started wildfires disproportionally occurred where fuel moisture was higher than lightning-started fires, thereby helping expand the geographic and seasonal niche of wildfire. Human-started wildfires were dominant (>80% of ignitions) in over 5.1 million km 2 , the vast majority of the United States, whereas lightning-started fires were dominant in only 0.7 million km 2 , primarily in sparsely populated areas of the mountainous western United States. Ignitions caused by human activities are a substantial driver of overall fire risk to ecosystems and economies. Actions to raise awareness and increase management in regions prone to human-started wildfires should be a focus of United States policy to reduce fire risk and associated hazards.
Human-started wildfires expand the fire niche across the United States
Balch, Jennifer K.; Bradley, Bethany A.; Nagy, R. Chelsea; Fusco, Emily J.; Mahood, Adam L.
2017-01-01
The economic and ecological costs of wildfire in the United States have risen substantially in recent decades. Although climate change has likely enabled a portion of the increase in wildfire activity, the direct role of people in increasing wildfire activity has been largely overlooked. We evaluate over 1.5 million government records of wildfires that had to be extinguished or managed by state or federal agencies from 1992 to 2012, and examined geographic and seasonal extents of human-ignited wildfires relative to lightning-ignited wildfires. Humans have vastly expanded the spatial and seasonal “fire niche” in the coterminous United States, accounting for 84% of all wildfires and 44% of total area burned. During the 21-y time period, the human-caused fire season was three times longer than the lightning-caused fire season and added an average of 40,000 wildfires per year across the United States. Human-started wildfires disproportionally occurred where fuel moisture was higher than lightning-started fires, thereby helping expand the geographic and seasonal niche of wildfire. Human-started wildfires were dominant (>80% of ignitions) in over 5.1 million km2, the vast majority of the United States, whereas lightning-started fires were dominant in only 0.7 million km2, primarily in sparsely populated areas of the mountainous western United States. Ignitions caused by human activities are a substantial driver of overall fire risk to ecosystems and economies. Actions to raise awareness and increase management in regions prone to human-started wildfires should be a focus of United States policy to reduce fire risk and associated hazards. PMID:28242690
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bailey, R. L.; Helling, Ch.; Hodosán, G.
2014-03-20
Mineral clouds in substellar atmospheres play a special role as a catalyst for a variety of charge processes. If clouds are charged, the surrounding environment becomes electrically activated, and ensembles of charged grains are electrically discharging (e.g., by lightning), which significantly influences the local chemistry creating conditions similar to those thought responsible for life in early planetary atmospheres. We note that such lightning discharges contribute also to the ionization state of the atmosphere. We apply scaling laws for electrical discharge processes from laboratory measurements and numerical experiments to DRIFT-PHOENIX model atmosphere results to model the discharge's propagation downward (as lightning)more » and upward (as sprites) through the atmospheric clouds. We evaluate the spatial extent and energetics of lightning discharges. The atmospheric volume affected (e.g., by increase of temperature or electron number) is larger in a brown dwarf atmosphere (10{sup 8}-10{sup 10} m{sup 3}) than in a giant gas planet (10{sup 4}-10{sup 6} m{sup 3}). Our results suggest that the total dissipated energy in one event is <10{sup 12} J for all models of initial solar metallicity. First attempts to show the influence of lightning on the local gas phase indicate an increase of small carbohydrate molecules like CH and CH{sub 2} at the expense of CO and CH{sub 4}. Dust-forming molecules are destroyed and the cloud particle properties are frozen in unless enough time is available for complete evaporation. We summarize instruments potentially suitable to observe lightning on extrasolar objects.« less
Estimates of the Lightning NOx Profile in the Vicinity of the North Alabama Lightning Mapping Array
NASA Technical Reports Server (NTRS)
Koshak, William J.; Peterson, Harold
2010-01-01
The NASA Marshall Space Flight Center Lightning Nitrogen Oxides Model (LNOM) is applied to August 2006 North Alabama Lightning Mapping Array (LMA) data to estimate the raw (i.e., unmixed and otherwise environmentally unmodified) vertical profile of lightning nitrogen oxides, NOx = NO + NO 2 . This is part of a larger effort aimed at building a more realistic lightning NOx emissions inventory for use by the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system. Data from the National Lightning Detection Network TM (NLDN) is also employed. Overall, special attention is given to several important lightning variables including: the frequency and geographical distribution of lightning in the vicinity of the LMA network, lightning type (ground or cloud flash), lightning channel length, channel altitude, channel peak current, and the number of strokes per flash. Laboratory spark chamber results from the literature are used to convert 1-meter channel segments (that are located at a particular known altitude; i.e., air density) to NOx concentration. The resulting raw NOx profiles are discussed.
Optimizing Precipitation Thresholds for Best Correlation Between Dry Lightning and Wildfires
NASA Astrophysics Data System (ADS)
Vant-Hull, Brian; Thompson, Tollisha; Koshak, William
2018-03-01
This work examines how to adjust the definition of "dry lightning" in order to optimize the correlation between dry lightning flash count and the climatology of large (>400 km2) lightning-ignited wildfires over the contiguous United States (CONUS). The National Lightning Detection Network™ and National Centers for Environmental Prediction Stage IV radar-based, gauge-adjusted precipitation data are used to form climatic data sets. For a 13 year analysis period over CONUS, a correlation of 0.88 is found between annual totals of wildfires and dry lightning. This optimal correlation is found by defining dry lightning as follows: on a 0.1° hourly grid, a precipitation threshold of no more than 0.3 mm may accumulate during any hour over a period of 3-4 days preceding the flash. Regional optimized definitions vary. When annual totals are analyzed as done here, no clear advantage is found by weighting positive polarity cloud-to-ground (+CG) lightning differently than -CG lightning. The high variability of dry lightning relative to the precipitation and lightning from which it is derived suggests it would be an independent and useful climate indicator.
In-Flight Observation of Gamma Ray Glows by ILDAS.
Kochkin, Pavlo; van Deursen, A P J; Marisaldi, M; Ursi, A; de Boer, A I; Bardet, M; Allasia, C; Boissin, J-F; Flourens, F; Østgaard, N
2017-12-16
An Airbus A340 aircraft flew over Northern Australia with the In-Flight Lightning Damage Assessment System (ILDAS) installed onboard. A long-duration gamma ray emission was detected. The most intense emission was observed at 12 km altitude and lasted for 20 s. Its intensity was 20 times the background counts, and it was abruptly terminated by a distant lightning flash. In this work we reconstruct the aircraft path and event timeline. The glow-terminating flash triggered a discharge from the aircraft wing that was recorded by a video camera operating onboard. Another count rate increase was observed 6 min later and lasted for 30 s. The lightning activity as reported by ground networks in this region was analyzed. The measured spectra characteristics of the emission were estimated.
In-Flight Observation of Gamma Ray Glows by ILDAS
NASA Astrophysics Data System (ADS)
Kochkin, Pavlo; van Deursen, A. P. J.; Marisaldi, M.; Ursi, A.; de Boer, A. I.; Bardet, M.; Allasia, C.; Boissin, J.-F.; Flourens, F.; Østgaard, N.
2017-12-01
An Airbus A340 aircraft flew over Northern Australia with the In-Flight Lightning Damage Assessment System (ILDAS) installed onboard. A long-duration gamma ray emission was detected. The most intense emission was observed at 12 km altitude and lasted for 20 s. Its intensity was 20 times the background counts, and it was abruptly terminated by a distant lightning flash. In this work we reconstruct the aircraft path and event timeline. The glow-terminating flash triggered a discharge from the aircraft wing that was recorded by a video camera operating onboard. Another count rate increase was observed 6 min later and lasted for 30 s. The lightning activity as reported by ground networks in this region was analyzed. The measured spectra characteristics of the emission were estimated.
Terrestrial gamma-ray flash production by lightning
NASA Astrophysics Data System (ADS)
Carlson, Brant E.
Terrestrial gamma-ray flashes (TGFs) are brief flashes of gamma-rays originating in the Earth's atmosphere and observed by satellites. First observed in 1994 by the Burst And Transient Source Experiment on board the Compton Gamma-Ray Observatory, TGFs consist of one or more ˜1 ms pulses of gamma-rays with a total fluence of ˜1/cm2, typically observed when the satellite is near active thunderstorms. TGFs have subsequently been observed by other satellites to have a very hard spectrum (harder than dN/d E ∝ 1/ E ) that extends from below 25 keV to above 20 MeV. When good lightning data exists, TGFs are closely associated with measurable lightning discharge. Such discharges are typically observed to occur within 300 km of the sub-satellite point and within several milliseconds of the TGF observation. The production of these intense energetic bursts of photons is the puzzle addressed herein. The presence of high-energy photons implies a source of bremsstrahlung, while bremsstrahlung implies a source of energetic electrons. As TGFs are associated with lightning, fields produced by lightning are naturally suggested to accelerate these electrons. Initial ideas about TGF production involved electric fields high above thunderstorms as suggested by upper atmospheric lightning research and the extreme energies required for lower-altitude sources. These fields, produced either quasi-statically by charges in the cloud and ionosphere or dynamically by radiation from lightning strokes, can indeed drive TGF production, but the requirements on the source lightning are too extreme and therefore not common enough to account for all existing observations. In this work, studies of satellite data, the physics of energetic electron and photon production, and consideration of lightning physics motivate a new mechanism for TGF production by lightning current pulses. This mechanism is then developed and used to make testable predictions. TGF data from satellite observations are compared to the results of Monte Carlo simulations of the physics of energetic photon production and propagation in air. These comparisons are used to constrain the TGF source altitude, energy, and directional distribution, and indicate a broadly-beamed low-altitude source inconsistent with production far above thunderstorms as previously suggested. The details of energetic electron production by electric fields in air are then examined. In particular, the source of initial high-energy electrons that are accelerated and undergo avalanche multiplication to produce bremsstrahlung is studied and the properties of these initial seed particles as produced by cosmic rays are determined. The number of seed particles available indicates either extremely large amplification of the number of seed particles or an alternate source of seeds. The low-altitude photon source and alternate source of seed particles required by these studies suggest a production mechanism closely-associated with lightning. A survey of lightning physics in the context of TGF emission indicates that current pulses along lightning channels may trigger TGF production by both producing strong electric fields and a large population of candidate seed electrons. The constraints on lightning physics, thunderstorm physics, and TGF physics all allow production by this mechanism. A computational model of this mechanism is then presented on the basis of a method of moments simulation of charge and current on a lightning channel. Calculation of the nearby electric fields then drives Monte Carlo simulations of energetic electron dynamics which determine the properties of the resulting bremsstrahlung. The results of this model compare quite well with satellite observations of TGFs subject to requirements on the ambient electric field and the current pulse magnitude and duration. The model makes quantitative predictions about the TGF source altitude, directional distribution, and lightning association that are in overall agreement with existing TGF observations and may be tested in more detail in future experiments.
Lightning attachment process to common buildings
NASA Astrophysics Data System (ADS)
Saba, M. M. F.; Paiva, A. R.; Schumann, C.; Ferro, M. A. S.; Naccarato, K. P.; Silva, J. C. O.; Siqueira, F. V. C.; Custódio, D. M.
2017-05-01
The physical mechanism of lightning attachment to grounded structures is one of the most important issues in lightning physics research, and it is the basis for the design of the lightning protection systems. Most of what is known about the attachment process comes from leader propagation models that are mostly based on laboratory observations of long electrical discharges or from observations of lightning attachment to tall structures. In this paper we use high-speed videos to analyze the attachment process of downward lightning flashes to an ordinary residential building. For the first time, we present characteristics of the attachment process to common structures that are present in almost every city (in this case, two buildings under 60 m in São Paulo City, Brazil). Parameters like striking distance and connecting leaders speed, largely used in lightning attachment models and in lightning protection standards, are revealed in this work.