Vostiar, Igor; Tkac, Jan; Mandenius, Carl-Fredrik
2004-07-15
A surface plasmon resonance (SPR) biosensor was used to monitor the profiles of the heat-shock protein (DnaK) and the expression of a heterologous protein to map the dynamics of the cellular stress response in Escherichia coli. As expression system was used an E. coli strain overproducing human recombinant superoxide dismutase (rhSOD). Expression of DnaK showed complex patterns differing with strength of induction. The strong up-regulation of DnaK expression was observed in all cultivations which over-produced of rhSOD. Similar patterns were not observed in non-induced reference cultures. Differences in DnaK concentration profiles were correlated with induction strength. Presented data, carried out in shake flask and glucose limited fed-batch cultivation, show a good consistency with previously published transcriptional profiling results and provide complementary information to understand stress response related to overproduction of recombinant protein. The study also demonstrates the feasibility of using the SPR as a two channel protein array for monitoring of intracellular components.
Green fluorescent protein as a reporter of gene expression and protein localization.
Kain, S R; Adams, M; Kondepudi, A; Yang, T T; Ward, W W; Kitts, P
1995-10-01
The green fluorescent protein (GFP) from the jellyfish Aequorea victoria is rapidly becoming an important reporter molecule for monitoring gene expression and protein localization in vivo, in situ and in real time. GFP emits bright green light (lambda max = 509 nm) when excited with UV or blue light (lambda max = 395 nm, minor peak at 470 nm). The fluorescence excitation and emission spectra of GFP are similar to those of fluorescein, and the conditions used to visualize this fluorophore are also suitable for GFP. Unlike other bioluminescent reporters, the chromophore in GFP is intrinsic to the primary structure of the protein, and GFP fluorescence does not require a substrate or cofactor. GFP fluorescence is stable, species-independent and can be monitored non-invasively in living cells and, in the case of transparent organisms, whole animals. Here we demonstrate GFP fluorescence in bacterial and mammalian cells and introduce our Living Colors line of GFP reporter vectors, GFP protein and anti-GFP antiserum. The reporter vectors for GFP include a promoterless GFP vector for monitoring the expression of cloned promoters/enhancers in mammalian cells and a series of six vectors for creating fusion protein to either the N or C terminus of GFP.
An orange fluorescent protein tagging system for real-time pollen tracking.
Rice, J Hollis; Millwood, Reginald J; Mundell, Richard E; Chambers, Orlando D; Abercrombie, Laura L; Davies, H Maelor; Stewart, C Neal
2013-09-27
Monitoring gene flow could be important for future transgenic crops, such as those producing plant-made-pharmaceuticals (PMPs) in open field production. A Nicotiana hybrid (Nicotiana. tabacum × Nicotiana glauca) shows limited male fertility and could be used as a bioconfined PMP platform. Effective assessment of gene flow from these plants is augmented with methods that utilize fluorescent proteins for transgenic pollen identification. We report the generation of a pollen tagging system utilizing an orange fluorescent protein to monitor pollen flow and as a visual assessment of transgene zygosity of the parent plant. This system was created to generate a tagged Nicotiana hybrid that could be used for the incidence of gene flow. Nicotiana tabacum 'TN 90' and Nicotiana glauca were successfully transformed via Agrobacterium tumefaciens to express the orange fluorescent protein gene, tdTomato-ER, in pollen and a green fluorescent protein gene, mgfp5-er, was expressed in vegetative structures of the plant. Hybrids were created that utilized the fluorescent proteins as a research tool for monitoring pollen movement and gene flow. Manual greenhouse crosses were used to assess hybrid sexual compatibility with N. tabacum, resulting in seed formation from hybrid pollination in 2% of crosses, which yielded non-viable seed. Pollen transfer to the hybrid formed seed in 19% of crosses and 10 out of 12 viable progeny showed GFP expression. The orange fluorescent protein is visible when expressed in the pollen of N. glauca, N. tabacum, and the Nicotiana hybrid, although hybrid pollen did not appear as bright as the parent lines. The hybrid plants, which show limited ability to outcross, could provide bioconfinement with the benefit of detectable pollen using this system. Fluorescent protein-tagging could be a valuable tool for breeding and in vivo ecological monitoring.
Druzinec, Damir; Salzig, Denise; Brix, Alexander; Kraume, Matthias; Vilcinskas, Andreas; Kollewe, Christian; Czermak, Peter
2013-01-01
Due to the increasing use of insect cell based expression systems in research and industrial recombinant protein production, the development of efficient and reproducible production processes remains a challenging task. In this context, the application of online monitoring techniques is intended to ensure high and reproducible product qualities already during the early phases of process development. In the following chapter, the most common transient and stable insect cell based expression systems are briefly introduced. Novel applications of insect cell based expression systems for the production of insect derived antimicrobial peptides/proteins (AMPs) are discussed using the example of G. mellonella derived gloverin. Suitable in situ sensor techniques for insect cell culture monitoring in disposable and common bioreactor systems are outlined with respect to optical and capacitive sensor concepts. Since scale up of production processes is one of the most critical steps in process development, a conclusive overview is given about scale up aspects for industrial insect cell culture processes.
Paulmurugan, R; Gambhir, S S
2003-04-01
In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein-protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor alpha through NFkappaB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein-protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subramanian, Venkataramanan; Schuster, Logan A.; Moore, Kyle T.
Here, the industrial workhorse fungus, Trichoderma reesei, is typically exploited for its ability to produce cellulase enzymes, whereas use of this fungus for over-expression of other proteins (homologous and heterologous) is still very limited. Identifying transformants expressing target protein is a tedious task due to low transformation efficiency, combined with highly variable expression levels between transformants. Routine methods for identification include PCR-based analysis, western blotting, or crude activity screening, all of which are time-consuming techniques. To simplify this screening, we have adapted the 2A peptide system from the foot-and-mouth disease virus (FMDV) to T. reesei to express a readily screenablemore » marker protein that is co-translated with a target protein. The 2A peptide sequence allows multiple independent genes to be transcribed as a single mRNA. Upon translation, the 2A peptide sequence causes a 'ribosomal skip' generating two (or more) independent gene products. When the 2A peptide is translated, the 'skip' occurs between its two C-terminal amino acids (glycine and proline), resulting in the addition of extra amino acids on the C terminus of the upstream protein and a single proline addition to the N terminus of the downstream protein. To test this approach, we have cloned two heterologous proteins on either side of a modified 2A peptide, a secreted cellobiohydrolase enzyme (Cel7A from Penicillium funiculosum) as our target protein, and an intracellular enhanced green fluorescent protein (eGFP) as our marker protein. Using straightforward monitoring of eGFP expression, we have shown that we can efficiently monitor the expression of the target Cel7A protein.« less
Subramanian, Venkataramanan; Schuster, Logan A.; Moore, Kyle T.; ...
2017-02-06
Here, the industrial workhorse fungus, Trichoderma reesei, is typically exploited for its ability to produce cellulase enzymes, whereas use of this fungus for over-expression of other proteins (homologous and heterologous) is still very limited. Identifying transformants expressing target protein is a tedious task due to low transformation efficiency, combined with highly variable expression levels between transformants. Routine methods for identification include PCR-based analysis, western blotting, or crude activity screening, all of which are time-consuming techniques. To simplify this screening, we have adapted the 2A peptide system from the foot-and-mouth disease virus (FMDV) to T. reesei to express a readily screenablemore » marker protein that is co-translated with a target protein. The 2A peptide sequence allows multiple independent genes to be transcribed as a single mRNA. Upon translation, the 2A peptide sequence causes a 'ribosomal skip' generating two (or more) independent gene products. When the 2A peptide is translated, the 'skip' occurs between its two C-terminal amino acids (glycine and proline), resulting in the addition of extra amino acids on the C terminus of the upstream protein and a single proline addition to the N terminus of the downstream protein. To test this approach, we have cloned two heterologous proteins on either side of a modified 2A peptide, a secreted cellobiohydrolase enzyme (Cel7A from Penicillium funiculosum) as our target protein, and an intracellular enhanced green fluorescent protein (eGFP) as our marker protein. Using straightforward monitoring of eGFP expression, we have shown that we can efficiently monitor the expression of the target Cel7A protein.« less
Schmidt, Kristina Maria; Schümann, Michael; Olejnik, Judith; Krähling, Verena
2011-01-01
The generation of recombinant enhanced green fluorescent protein (EGFP)--expressing viruses has significantly improved the study of their life cycle and opened up the possibility for the rapid screening of antiviral drugs. Here we report rescue of a recombinant Marburg virus (MARV) expressing EGFP from an additional transcription unit (ATU). The ATU was inserted between the second and third genes, encoding VP35 and VP40, respectively. Live-cell imaging was used to follow virus spread in real time. EGFP expression was detected at 32 hours postinfection (hpi), and infection of neighboring cells was monitored at 55 hpi. Compared to the parental virus, production of progeny rMARV-EGFP was reduced 4-fold and lower protein levels of VP40, but not nucleoprotein, were observed, indicating a decrease in downstream protein expression due to the insertion of an ATU. Interestingly, EGFP concentrated in viral inclusions in infected cells. This was reproduced by transient expression of both EGFP and other fluorescent proteins along with filovirus nucleocapsid proteins, and may suggest that a general increase in protein synthesis occurs at viral inclusion sites. In conclusion, the EGFP-expressing MARV will be a useful tool not only to monitor virus spread and screen for antiviral compounds, but also to investigate the biology of inclusion body formation. PMID:21987762
Paulmurugan, R.; Gambhir, S. S.
2014-01-01
In this study we developed an inducible synthetic renilla luciferase protein-fragment-assisted complementation-based bioluminescence assay to quantitatively measure real time protein–protein interactions in mammalian cells. We identified suitable sites to generate fragments of N and C portions of the protein that yield significant recovered activity through complementation. We validate complementation-based activation of split synthetic renilla luciferase protein driven by the interaction of two strongly interacting proteins, MyoD and Id, in five different cell lines utilizing transient transfection studies. The expression level of the system was also modulated by tumor necrosis factor α through NFκB-promoter/enhancer elements used to drive expression of the N portion of synthetic renilla luciferase reporter gene. This new system should help in studying protein–protein interactions and when used with other split reporters (e.g., split firefly luciferase) should help to monitor different components of an intracellular network. PMID:12705589
Engine out of the Chassis: Cell-Free Protein Synthesis and its Uses
Rosenblum, Gabriel; Cooperman, Barry S.
2013-01-01
The translation machinery is the engine of life. Extracting the cytoplasmic milieu from a cell affords a lysate capable of producing proteins in concentrations reaching tens of micromolar. Such lysates, derivable from a variety of cells, allow the facile addition and subtraction of components that are directly or indirectly related to the translation machinery and/or the over-expressed protein. The flexible nature of such cell-free expression systems, when coupled with high throughput monitoring, can be especially suitable for protein engineering studies, allowing one to bypass multiple steps typically required using conventional in vivo protein expression. PMID:24161673
Remily-Wood, Elizabeth R.; Liu, Richard Z.; Xiang, Yun; Chen, Yi; Thomas, C. Eric; Rajyaguru, Neal; Kaufman, Laura M.; Ochoa, Joana E.; Hazlehurst, Lori; Pinilla-Ibarz, Javier; Lancet, Jeffrey; Zhang, Guolin; Haura, Eric; Shibata, David; Yeatman, Timothy; Smalley, Keiran S.M.; Dalton, William S.; Huang, Emina; Scott, Ed; Bloom, Gregory C.; Eschrich, Steven A.; Koomen, John M.
2012-01-01
Purpose The Quantitative Assay Database (QuAD), http://proteome.moffitt.org/QUAD/, facilitates widespread implementation of quantitative mass spectrometry in cancer biology and clinical research through sharing of methods and reagents for monitoring protein expression and modification. Experimental Design Liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM) assays are developed using SDS-PAGE fractionated lysates from cancer cell lines. Pathway maps created using GeneGO Metacore provide the biological relationships between proteins and illustrate concepts for multiplexed analysis; each protein can be selected to examine assay development at the protein and peptide level. Results The coupling of SDS-PAGE and LC-MRM screening has been used to detect 876 peptides from 218 cancer-related proteins in model systems including colon, lung, melanoma, leukemias, and myeloma, which has led to the development of 95 quantitative assays including stable-isotope labeled peptide standards. Methods are published online and peptide standards are made available to the research community. Protein expression measurements for heat shock proteins, including a comparison with ELISA and monitoring response to the HSP90 inhibitor, 17-DMAG, are used to illustrate the components of the QuAD and its potential utility. Conclusions and Clinical Relevance This resource enables quantitative assessment of protein components of signaling pathways and biological processes and holds promise for systematic investigation of treatment responses in cancer. PMID:21656910
Use of green fluorescent protein to monitor fungal growth in biomass hydrolysate
USDA-ARS?s Scientific Manuscript database
Green Fluorescent Protein (GFP) was introduced into the Ascomycete Coniochaeta ligniaria NRRL30616, and fluorescence of cultures was monitored as a measure of cell growth. Fluorescence in the GFP-expressing strain was measured during growth of cells in defined and complex media as well as in the liq...
Electroporation of Functional Bacterial Effectors into Mammalian Cells
Sontag, Ryan L.; Mihai, Cosmin; Orr, Galya; ...
2015-01-19
Electroporation was used to insert purified bacterial virulence effector proteins directly into living eukaryotic cells. Protein localization was monitored by confocal immunofluorescence microscopy. This method allows for studies on trafficking, function, and protein-protein interactions using active exogenous proteins, avoiding the need for heterologous expression in eukaryotic cells.
NASA Astrophysics Data System (ADS)
Lee, Ja-Yun; Wu, Tzong-Yuan; Hsu, I.-Jen
2008-04-01
The cloning and transcription techniques on gene cloned fluorescent proteins have been widely used in many applications. They have been used as reporters of some conditions in a series of reactions. However, it is usually difficult to monitor the specific target with the exactly number of proteins during the process in turbid media, especially at micrometer scales. We successfully revealed an alternative way to monitor the cell cycle behavior and quantitatively analyzed the target cells with green and red fluorescent proteins (GFP and RFP) during different phases of the cell cycle by quantitatively analyzing its behavior and also monitoring its spatial distribution.
Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko
2014-05-01
Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Utilizing GCaMP transgenic mice to monitor endogenous Gq/11-coupled receptors
Partridge, John G.
2015-01-01
The family of GCaMPs are engineered proteins that contain Ca2+ binding motifs within a circularly permutated variant of the Aequorea Victoria green fluorescent protein (cp-GFP). The rapidly advancing field of utilizing GCaMP reporter constructs represents a major step forward in our ability to monitor intracellular Ca2+ dynamics. With the use of these genetically encoded Ca2+ sensors, investigators have studied activation of endogenous Gq types of G protein-coupled receptors (GPCRs) and subsequent rises in intracellular calcium. Escalations in intracellular Ca2+ from GPCR activation can be faithfully monitored in space and time as an increase in fluorescent emission from these proteins. Further, transgenic mice are now commercially available that express GCaMPs in a Cre recombinase dependent fashion. These GCaMP reporter mice can be bred to distinct Cre recombinase driver mice to direct expression of this sensor in unique populations of cells. Concerning the central nervous system (CNS), sources of calcium influx, including those arising from Gq activation can be observed in targeted cell types like neurons or astrocytes. This powerful genetic method allows simultaneous monitoring of the activity of dozens of cells upon activation of endogenous Gq-coupled GPCRs. Therefore, in combination with pharmacological tools, this strategy of monitoring GPCR activation is amenable to analysis of orthosteric and allosteric ligands of Gq-coupled receptors in their endogenous environments. PMID:25805995
Han, Xufeng; Wang, Lei; Li, Wei; Li, Bibo; Yang, Yuxin; Yan, Hailong; Qu, Lei; Chen, Yulin
2015-01-01
The experiment aimed to specifically monitor the passage of lactobacilli in vivo after oral administration. The green fluorescent protein (GFP) gene was cloned downstream from the constitutive p32 promoter from L. lactis subsp. cremoris Wg2. The recombinant expression vector, pLEM415-gfp-p32, was electroporated into Lactobacillus plantarum (L. plantarum) isolated from goat. Green fluorescent protein (GFP) was successfully expressed in L. plantarum. After 2 h post-administration, transformed Lactobacillus could be detectable in all luminal contents. In the rumen, bacteria concentration initially decreased, reached the minimum at 42 h post-oral administration and then increased. However, this concentration decreased constantly in the duodenum. This result indicated that L. plantarum could colonize in the rumen but not in the duodenum.
USDA-ARS?s Scientific Manuscript database
Protein kinase specificity is of fundamental importance to pathway regulation and signal transduction. Here, we report a convenient system to monitor the activity and specificity of recombinant protein kinases expressed in E.coli. We apply this to the study of the cytoplasmic domain of the plant rec...
Meek, Megan E; Van Dolah, Frances M
2016-05-01
Phytoplankton rarely occur as unialgal populations. Therefore, to study species-specific protein expression, indicative of physiological status in natural populations, methods are needed that will both assay for a protein of interest and identify the species expressing it. Here we describe a protocol for IF-FISH, a dual labeling procedure using immunofluorescence (IF) labeling of a protein of interest followed by fluorescence in situ hybridization (FISH) to identify the species expressing that protein. The protocol was developed to monitor expression of the cell cycle marker proliferating cell nuclear antigen (PCNA) in the red tide dinoflagellate, Karenia brevis, using a large subunit (LSU) rRNA probe to identify K. brevis in a mixed population of morphologically similar Karenia species. We present this protocol as proof of concept that IF-FISH can be successfully applied to phytoplankton cells. This method is widely applicable for the analysis of single-cell protein expression of any protein of interest within phytoplankton communities. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, X; Zhu, J; Zhang, K; Liu, T; Zhang, Z
2016-12-30
This study was aimed at investigating the expression of brain-derived neurotrophic factor (BDNF) in mesenchymal stem cells (MSCs) modified with recombinant lentivirus bearing BDNF gene. Lentivirus vectors bearing BDNF gene were constructed. MSCs were isolated from rats and cultured. The lentiviral vectors containing BDNF gene were transfected into the MSCs, and BDNF gene and protein expressions were monitored with enhanced green fluorescent protein (EGFP). RT-PCR and Western blot were used to measure gene and protein expressions, respectibvely in MSCs, MSCs-EGFP and MSCs-EGFP-BDNF groups. Green fluorescence assay confirmed successful transfection of BDNF gene recombinant lentivirus into MSCs. RT-PCR and Western blot revealed that BDNF gene and protein expressions in the MSCs-EGFP-BDNF group were significantly higher than that in MSCs group and MSCs-EGFP group. There were no statistically significant differences in gene expression between MSCs and MSCs-EGFP groups. MSCs can over-express BDNF when transfected with recombinant lentivirus bearing BDNF gene.
Pan, Li; Iliuk, Anton; Yu, Shuai; Geahlen, Robert L.; Tao, W. Andy
2012-01-01
We report here for the first time the multiplexed quantitation of phosphorylation and protein expression based on a functionalized soluble nanopolymer. The soluble nanopolymer, pIMAGO, is functionalized with Ti (IV) ions for chelating phosphoproteins in high specificity, and with infrared fluorescent tags for direct, multiplexed assays. The nanopolymer allows for direct competition for epitopes on proteins of interest, thus facilitating simultaneous detection of phosphorylation by pIMAGO and total protein amount by protein antibody in the same well of microplates. The new strategy has a great potential to measure cell signaling events by clearly distinguishing actual phosphorylation signals from protein expression changes, thus providing a powerful tool to accurately profile cellular signal transduction in healthy and disease cells. We anticipate broad applications of this new strategy in monitoring cellular signaling pathways and discovering new signaling events. PMID:23088311
Real-time detecting gelatinases activity in living cells by FRET imaging
NASA Astrophysics Data System (ADS)
Yang, Jie; Zhang, Zhihong; Liu, Bifeng; Luo, Qingming
2006-01-01
Degradation of the extracellular matrix by Matrix metalloproteinases (MMPs) not only enhances tumor invasion, but also affects tumor cell behaviour and leads to cancer progression. To monitor gelatinases (contain MMP2 and MMP9) activity in living cells, we constructed a vector that encoded a gelatinases recognition site (GRS) between citrine (mutation of EYFP Q69M) in N terminal and ECFP in C terminal. Because Gelatinases are secretory proteins and act outside of cell, an expressing vector displayed the fusion protein on cellular surface was used for this FRET gene probe. On expression of YFP-GRS-ECFP in MCF-7 cells that expressed no gelatinases, we were able to observe the efficient transfer of energy from excited ECFP to YFP within the YFP-GRS-ECFP molecule. However, the fusion protein YFP-GRS-ECFP was expressed in MDA-MB 453s cell line with high secretory gelatinases, so YFP-GRS-ECFP was cleaved by gelatinases, no such transfer of energy was detected and fluorescence signal disappeared in YFP channel since YFP protein was cut down. Moreover, Doxycycline, a MMP inhibitor, could make FRET signal increase and fluorescence signal appeared in YFP channel. Thus, the FRET probe YFP-GRS-ECFP can sensitively and reliably monitor gelatinases activation in living cells and can be used for screening MMP inhibitors.
Azumi, Kaoru; Usami, Takeshi; Kamimura, Akiko; Sabau, Sorin V; Miki, Yasufumi; Fujie, Manabu; Jung, Sung-Ju; Kitamura, Shin-Ichi; Suzuki, Satoru; Yokosawa, Hideyoshi
2007-12-01
A serious disease of the ascidian Halocynthia roretzi has been spread extensively among Korean aquaculture sites. To reveal the cause of the disease and establish a monitoring system for it, we constructed a cDNA microarray spotted with 2,688 cDNAs derived from H. roretzi hemocyte cDNA libraries to detect genes differentially expressed in hemocytes between diseased and non-diseased ascidians. We detected 21 genes showing increased expression and 16 genes showing decreased expression in hemocytes from diseased ascidians compared with those from non-diseased ascidians. RT-PCR analyses confirmed that the expression levels of genes encoding astacin, lysozyme, ribosomal protein PO, and ubiquitin-ribosomal protein L40e fusion protein were increased in hemocytes from diseased ascidians, while those of genes encoding HSP40, HSP70, fibronectin, carboxypeptidase and lactate dehydrogenase were decreased. These genes were expressed not only in hemocytes but also in various other tissues in ascidians. Furthermore, the expression of glutathione-S transferase omega, which is known to be up-regulated in H. roretzi hemocytes during inflammatory responses, was strongly increased in hemocytes from diseased ascidians. These gene expression profiles suggest that immune and inflammatory reactions occur in the hemocytes of diseased ascidians. These genes will be good markers for detecting and monitoring this disease of ascidians in Korean aquaculture sites.
Kume, Hideaki; Muraoka, Satoshi; Kuga, Takahisa; Adachi, Jun; Narumi, Ryohei; Watanabe, Shio; Kuwano, Masayoshi; Kodera, Yoshio; Matsushita, Kazuyuki; Fukuoka, Junya; Masuda, Takeshi; Ishihama, Yasushi; Matsubara, Hisahiro; Nomura, Fumio; Tomonaga, Takeshi
2014-01-01
Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the identification of useful biomarker candidates for various cancers. Data are available via ProteomeXchange with identifier PXD000851. PMID:24687888
Kume, Hideaki; Muraoka, Satoshi; Kuga, Takahisa; Adachi, Jun; Narumi, Ryohei; Watanabe, Shio; Kuwano, Masayoshi; Kodera, Yoshio; Matsushita, Kazuyuki; Fukuoka, Junya; Masuda, Takeshi; Ishihama, Yasushi; Matsubara, Hisahiro; Nomura, Fumio; Tomonaga, Takeshi
2014-06-01
Recent advances in quantitative proteomic technology have enabled the large-scale validation of biomarkers. We here performed a quantitative proteomic analysis of membrane fractions from colorectal cancer tissue to discover biomarker candidates, and then extensively validated the candidate proteins identified. A total of 5566 proteins were identified in six tissue samples, each of which was obtained from polyps and cancer with and without metastasis. GO cellular component analysis predicted that 3087 of these proteins were membrane proteins, whereas TMHMM algorithm predicted that 1567 proteins had a transmembrane domain. Differences were observed in the expression of 159 membrane proteins and 55 extracellular proteins between polyps and cancer without metastasis, while the expression of 32 membrane proteins and 17 extracellular proteins differed between cancer with and without metastasis. A total of 105 of these biomarker candidates were quantitated using selected (or multiple) reaction monitoring (SRM/MRM) with stable synthetic isotope-labeled peptides as an internal control. The results obtained revealed differences in the expression of 69 of these proteins, and this was subsequently verified in an independent set of patient samples (polyps (n = 10), cancer without metastasis (n = 10), cancer with metastasis (n = 10)). Significant differences were observed in the expression of 44 of these proteins, including ITGA5, GPRC5A, PDGFRB, and TFRC, which have already been shown to be overexpressed in colorectal cancer, as well as proteins with unknown function, such as C8orf55. The expression of C8orf55 was also shown to be high not only in colorectal cancer, but also in several cancer tissues using a multicancer tissue microarray, which included 1150 cores from 14 cancer tissues. This is the largest verification study of biomarker candidate membrane proteins to date; our methods for biomarker discovery and subsequent validation using SRM/MRM will contribute to the identification of useful biomarker candidates for various cancers. Data are available via ProteomeXchange with identifier PXD000851. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Proteomic Analysis of Saliva Identifies Potential Biomarkers for Orthodontic Tooth Movement
Ellias, Mohd Faiz; Zainal Ariffin, Shahrul Hisham; Karsani, Saiful Anuar; Abdul Rahman, Mariati; Senafi, Shahidan; Megat Abdul Wahab, Rohaya
2012-01-01
Orthodontic treatment has been shown to induce inflammation, followed by bone remodelling in the periodontium. These processes trigger the secretion of various proteins and enzymes into the saliva. This study aims to identify salivary proteins that change in expression during orthodontic tooth movement. These differentially expressed proteins can potentially serve as protein biomarkers for the monitoring of orthodontic treatment and tooth movement. Whole saliva from three healthy female subjects were collected before force application using fixed appliance and at 14 days after 0.014′′ Niti wire was applied. Salivary proteins were resolved using two-dimensional gel electrophoresis (2DE) over a pH range of 3–10, and the resulting proteome profiles were compared. Differentially expressed protein spots were then identified by MALDI-TOF/TOF tandem mass spectrometry. Nine proteins were found to be differentially expressed; however, only eight were identified by MALDI-TOF/TOF. Four of these proteins—Protein S100-A9, immunoglobulin J chain, Ig alpha-1 chain C region, and CRISP-3—have known roles in inflammation and bone resorption. PMID:22919344
NASA Technical Reports Server (NTRS)
Manak, Michael S.; Paul, Anna-Lisa; Sehnke, Paul C.; Ferl, Robert J.
2002-01-01
Transgenic arabidopsis plants containing the alcohol dehydrogenase (Adh) gene promoter fused to the green fluorescent protein (GFP) reporter gene were developed as biological sensors for monitoring physiological responses to unique environments. Plants were monitored in vivo during exposure to hypoxia, high salt, cold, and abcissic acid in experiments designed to characterize the utility and responses of the Adh/GFP biosensors. Plants in the presence of environmental stimuli that induced the Adh promoter responded by expressing GFP, which in turn generated a detectable fluorescent signal. The GFP signal degraded when the inducing stimulus was removed. Digital imaging of the Adh/GFP plants exposed to each of the exogenous stresses demonstrated that the stress-induced gene expression could be followed in real time. The experimental results established the feasibility of using a digital monitoring system for collecting gene expression data in real time from Transgenic Arabidopsis Gene Expression System (TAGES) biosensor plants during space exploration experiments.
Impact of the Usher syndrome on olfaction.
Jansen, Fabian; Kalbe, Benjamin; Scholz, Paul; Mikosz, Marta; Wunderlich, Kirsten A; Kurtenbach, Stefan; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe; Hatt, Hanns; Osterloh, Sabrina
2016-02-01
Usher syndrome is a genetically and clinically heterogeneous disease in humans, characterized by sensorineural hearing loss, retinitis pigmentosa and vestibular dysfunction. This disease is caused by mutations in genes encoding proteins that form complex networks in different cellular compartments. Currently, it remains unclear whether the Usher proteins also form networks within the olfactory epithelium (OE). Here, we describe Usher gene expression at the mRNA and protein level in the OE of mice and showed interactions between these proteins and olfactory signaling proteins. Additionally, we analyzed the odor sensitivity of different Usher syndrome mouse models using electro-olfactogram recordings and monitored significant changes in the odor detection capabilities in mice expressing mutant Usher proteins. Furthermore, we observed changes in the expression of signaling proteins that might compensate for the Usher protein deficiency. In summary, this study provides novel insights into the presence and purpose of the Usher proteins in olfactory signal transduction. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dark proteins: effect of inclusion body formation on quantification of protein expression.
Iafolla, Marco A J; Mazumder, Mostafizur; Sardana, Vandit; Velauthapillai, Tharsan; Pannu, Karanbir; McMillen, David R
2008-09-01
Plasmid-borne gene expression systems have found wide application in the emerging fields of systems biology and synthetic biology, where plasmids are used to implement simple network architectures, either to test systems biology hypotheses about issues such as gene expression noise or as a means of exerting artificial control over a cell's dynamics. In both these cases, fluorescent proteins are commonly applied as a means of monitoring the expression of genes in the living cell, and efforts have been made to quantify protein expression levels through fluorescence intensity calibration and by monitoring the partitioning of proteins among the two daughter cells after division; such quantification is important in formulating the predictive models desired in systems and synthetic biology research. A potential pitfall of using plasmid-based gene expression systems is that the high protein levels associated with expression from plasmids can lead to the formation of inclusion bodies, insoluble aggregates of misfolded, nonfunctional proteins that will not generate fluorescence output; proteins caught in these inclusion bodies are thus "dark" to fluorescence-based detection methods. If significant numbers of proteins are incorporated into inclusion bodies rather than becoming biologically active, quantitative results obtained by fluorescent measurements will be skewed; we investigate this phenomenon here. We have created two plasmid constructs with differing average copy numbers, both incorporating an unregulated promoter (P(LtetO-1) in the absence of TetR) expressing the GFP derivative enhanced green fluorescent protein (EGFP), and inserted them into Escherichia coli bacterial cells (a common model organism for work on the dynamics of prokaryotic gene expression). We extracted the inclusion bodies, denatured them, and refolded them to render them active, obtaining a measurement of the average number of EGFP per cell locked into these aggregates; at the same time, we used calibrated fluorescent intensity measurements to determine the average number of active EGFP present per cell. Both measurements were carried out as a function of cellular doubling time, over a range of 45-75 min. We found that the ratio of inclusion body EGFP to active EGFP varied strongly as a function of the cellular growth rate, and that the number of "dark" proteins in the aggregates could in fact be substantial, reaching ratios as high as approximately five proteins locked into inclusion bodies for every active protein (at the fastest growth rate), and dropping to ratios well below 1 (for the slowest growth rate). Our results suggest that efforts to compare computational models to protein numbers derived from fluorescence measurements should take inclusion body loss into account, especially when working with rapidly growing cells. 2008 Wiley-Liss, Inc.
Cluzeau, Celine V M; Watkins-Chow, Dawn E; Fu, Rao; Borate, Bhavesh; Yanjanin, Nicole; Dail, Michelle K; Davidson, Cristin D; Walkley, Steven U; Ory, Daniel S; Wassif, Christopher A; Pavan, William J; Porter, Forbes D
2012-08-15
Niemann-Pick disease type C (NPC) is a lysosomal storage disorder characterized by liver disease and progressive neurodegeneration. Deficiency of either NPC1 or NPC2 leads to the accumulation of cholesterol and glycosphingolipids in late endosomes and early lysosomes. In order to identify pathological mechanisms underlying NPC and uncover potential biomarkers, we characterized liver gene expression changes in an Npc1 mouse model at six ages spanning the pathological progression of the disease. We identified altered gene expression at all ages, including changes in asymptomatic, 1-week-old mice. Biological pathways showing early altered gene expression included: lipid metabolism, cytochrome P450 enzymes involved in arachidonic acid and drug metabolism, inflammation and immune responses, mitogen-activated protein kinase and G-protein signaling, cell cycle regulation, cell adhesion and cytoskeleton remodeling. In contrast, apoptosis and oxidative stress appeared to be late pathological processes. To identify potential biomarkers that could facilitate monitoring of disease progression, we focused on a subset of 103 differentially expressed genes that encode secreted proteins. Further analysis identified two secreted proteins with increased serum levels in NPC1 patients: galectin-3 (LGALS3), a pro-inflammatory molecule, and cathepsin D (CTSD), a lysosomal aspartic protease. Elevated serum levels of both proteins correlated with neurological disease severity and appeared to be specific for NPC1. Expression of Lgals3 and Ctsd was normalized following treatment with 2-hydroxypropyl-β-cyclodextrin, a therapy that reduces pathological findings and significantly increases Npc1(-/-) survival. Both LGALS3 and CTSD have the potential to aid in diagnosis and serve as biomarkers to monitor efficacy in therapeutic trials.
Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi
2009-05-01
Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs.
Azad, Abul Kalam; Sawa, Yoshihiro; Ishikawa, Takahiro; Shibata, Hitoshi
2009-01-01
Water channels formed by aquaporins (AQPs) play an important role in the control of water homeostasis in individual cells and in multicellular organisms. Plasma membrane intrinsic proteins (PIPs) constitute a subclass of plant AQPs. TgPIP2;1 and TgPIP2;2 from tulip petals are members of the PIP family. In this study, we overexpressed TgPIP2;1 and TgPIP2;2 in Pichia pastoris and monitored their water channel activity (WCA) either by an in vivo spheroplast-bursting assay performed after hypo-osmotic shock or by growth assay. Osmolarity, pH, and inhibitors of AQPs, protein kinases (PKs), and protein phosphatases (PPs) affect the WCA of heterologous AQPs in this expression system. The WCA of TgPIP2;2-expressing spheroplasts was affected by inhibitors of PKs and PPs, which indicates that the water channel of this homologue is regulated by phosphorylation in P. pastoris. From the results reported herein, we suggest that P. pastoris can be employed as a heterologous expression system to assay the WCA of PIPs and to monitor the AQP-mediated channel gating mechanism, and it can be developed to screen inhibitors/effectors of PIPs. PMID:19251885
Cheng, Hao-Wen; Chen, Kuan-Chun; Raja, Joseph A J; Li, Jian-Xian; Yeh, Shyi-Dong
2013-04-15
NSscon (23 aa), a common epitope in the gene silencing suppressor NSs proteins of the members of the Watermelon silver mottle virus (WSMoV) serogroup, was previously identified. In this investigation, we expressed different green fluorescent protein (GFP)-fused deletions of NSscon in bacteria and reacted with NSscon monoclonal antibody (MAb). Our results indicated that the core 9 amino acids, "(109)KFTMHNQIF(117)", denoted as "nss", retain the reactivity of NSscon. In bacterial pET system, four different recombinant proteins labeled with nss, either at N- or C-extremes, were readily detectable without position effects, with sensitivity superior to that for the polyhistidine-tag. When the nss-tagged Zucchini yellow mosaic virus (ZYMV) helper component-protease (HC-Pro) and WSMoV nucleocapsid protein were transiently expressed by agroinfiltration in tobacco, they were readily detectable and the tag's possible efficacy for gene silencing suppression was not noticed. Co-immunoprecipitation of nss-tagged and non-tagged proteins expressed from bacteria confirmed the interaction of potyviral HC-Pro and coat protein. Thus, we conclude that this novel nss sequence is highly valuable for tagging recombinant proteins in both bacterial and plant expression systems. Copyright © 2013 Elsevier B.V. All rights reserved.
Torregrossa, Ann-Marie; Nikonova, Larissa; Bales, Michelle B.; Villalobos Leal, Maria; Smith, James C.; Contreras, Robert J.; Eckel, Lisa A.
2014-01-01
There are hundreds of proteins in saliva. Although it has long been hypothesized that these proteins modulate taste by interacting with taste receptors or taste stimuli, the functional impact of these proteins on feeding remains relatively unexplored. We have developed a new technique for saliva collection that does not interfere with daily behavioral testing and allows us to explore the relationship between feeding behavior and salivary protein expression. First, we monitored the alterations in salivary protein expression while simultaneously monitoring the animals' feeding behavior and meal patterns on a custom control diet or on the same diet mixed with 3% tannic acid. We demonstrated that six protein bands increased in density with dietary tannic acid exposure. Several of these bands were significantly correlated with behaviors thought to represent both orosensory and postingestive signaling. In a follow-up experiment, unconditioned licking to 0.01–3% tannic acid solutions was measured during a brief-access taste test before and after exposure to the tannic acid diet. In this experiment, rats with salivary proteins upregulated found the tannin solution less aversive (i.e., licked more) than those in the control condition. These data suggest a role for salivary proteins in mediating changes in both orosensory and postingestive feedback. PMID:25162297
Analysis of proteome changes in doxorubicin-treated adult rat cardiomyocyte
Kumar, Suresh N.; Konorev, Eugene A.; Aggarwal, Deepika; Kalyanaraman, Balaraman
2011-01-01
Doxorubicin-induced cardiomyopathy in cancer patients is well established. The proposed mechanism of cardiac damage includes generation of reactive oxygen species, mitochondrial dysfunction and cardiomyocyte apoptosis. Exposure of adult rat cardiomyocytes to low levels of DOX for 48 h induced apoptosis. Analysis of protein expression showed a differential regulation of several key proteins including the voltage dependent anion selective channel protein 2 and methylmalonate semialdehyde dehydrogenase. In comparison, proteomic evaluation of DOX-treated rat heart showed a slightly different set of protein changes that suggests nuclear accumulation of DOX. Using a new solubilization technique, changes in low abundant protein profiles were monitored. Altered protein expression, modification and function related to oxidative stress response may play an important role in DOX cardiotoxicity. PMID:21338723
A pink mouse reports the switch from red to green fluorescence upon Cre-mediated recombination.
Hartwich, Heiner; Satheesh, Somisetty V; Nothwang, Hans Gerd
2012-06-14
Targeted genetic modification in the mouse becomes increasingly important in biomedical and basic science. This goal is most often achieved by use of the Cre/loxP system and numerous Cre-driver mouse lines are currently generated. Their initial characterization requires reporter mouse lines to study the in vivo spatiotemporal activity of Cre. Here, we report a dual fluorescence reporter mouse line, which switches expression from the red fluorescent protein mCherry to eGFP after Cre-mediated recombination. Both fluorescent proteins are expressed from the ubiquitously active and strong CAGGS promoter. Among the founders, we noticed a pink mouse line, expressing high levels of the red fluorescent protein mCherry throughout the entire body. Presence of mCherry in the living animal as well as in almost all organs was clearly visible without optical equipment. Upon Cre-activity, mCherry expression was switched to eGFP, demonstrating functionality of this reporter mouse line. The pink mouse presented here is an attractive novel reporter line for fluorescence-based monitoring of Cre-activity. The high expression of mCherry, which is visible to the naked eye, facilitates breeding and crossing, as no genotyping is required to identify mice carrying the reporter allele. The presence of two fluorescent proteins allows in vivo monitoring of recombined and non-recombined cells. Finally, the pink mouse is an eye-catching animal model to demonstrate the power of transgenic techniques in teaching courses.
Puckette, Michael; Burrage, Thomas; Neilan, John G; Rasmussen, Max
2017-06-12
The Gaussia princeps luciferase is used as a stand-alone reporter of transgene expression for in vitro and in vivo expression systems due to the rapid and easy monitoring of luciferase activity. We sought to simultaneously quantitate production of other recombinant proteins by transcriptionally linking the Gaussia princeps luciferase gene to other genes of interest through the foot-and-mouth disease virus 2A translational interrupter sequence. We produced six plasmids, each encoding a single open reading frame, with the foot-and-mouth disease virus 2A sequence placed either N-terminal or C-terminal to the Gaussia princeps luciferase gene. Two plasmids included novel Gaussia princeps luciferase variants with the position 1 methionine deleted. Placing a foot-and-mouth disease virus 2A translational interrupter sequence on either the N- or C-terminus of the Gaussia princeps luciferase gene did not prevent the secretion or luminescence of resulting chimeric luciferase proteins. We also measured the ability of another polycistronic plasmid vector with a 2A-luciferase sequence placed downstream of the foot-and-mouth disease virus P1 and 3C protease genes to produce of foot-and-mouth disease virus-like particles and luciferase activity from transfected cells. Incorporation of the 2A-luciferase sequence into a transgene encoding foot-and-mouth disease virus structural proteins retained luciferase activity and the ability to form virus-like particles. We demonstrated a mechanism for the near real-time, sequential, non-destructive quantitative monitoring of transcriptionally-linked recombinant proteins and a valuable method for monitoring transgene expression in recombinant vaccine constructs.
Hsieh, Chia-Hung; Kuo, Jung-Wen; Lee, Yi-Jang; Chang, Chi-Wei; Gelovani, Juri G; Liu, Ren-Shyan
2009-12-01
The herpes simplex virus type 1 thymidine kinase (HSV1-tk)/green fluorescent protein (TKGFP) dual-reporter gene and a multimodality imaging approach play a critical role in monitoring therapeutic gene expression, immune cell trafficking, and protein-protein interactions in translational molecular-genetic imaging. However, the cytotoxicity and low temporal resolution of TKGFP limits its application in studies that require a rapid turnover of the reporter. The purpose of this study was to construct a novel mutant TKGFP fusion reporter gene with low cytotoxicity and high temporal resolution for use in the real-time monitoring of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor 1 (HIF-1) signal transduction activity mediated by hypoxia and reoxygenation in vitro and in vivo. Destabilized TKGFP was produced by inserting the nuclear export signal (NES) sequence at the N terminus and fusing the degradation domain of mouse ornithine decarboxylase (dMODC) at the C terminus. The stability of TKGFP in living NG4TL4 cells was determined by Western blot analysis, HSV1-tk enzyme activity assay, and flow cytometric analysis. The suitability of NESTKGFP:dMODC as a transcription reporter was investigated by linking it to a promoter consisting of 8 copies of hypoxia-responsive elements, whose activities depend on HIF-1. The dynamic transcriptional events mediated by hypoxia and reoxygenation were monitored by NESTKGFP:dMODC or TKGFP and determined by optical imaging and PET. Unlike TKGFP, NESTKGFP:dMODC was unstable in the presence of cycloheximide and showed a short half-life of protein and enzyme activity. Rapid turnover of NESTKGFP:dMODC occurred in a 26S proteasome-dependent manner. Furthermore, NESTKGFP:dMODC showed an upregulated expression and low cytotoxicity in living cells. Studies of hypoxia-responsive TKGFP and NESTKGFP:dMODC expression showed that NESTKGFP:dMODC as a reporter gene had better temporal resolution than did TKGFP for monitoring the dynamic transcriptional events mediated by hypoxia and reoxygenation; the TKGFP expression level was not optimal for the purpose of monitoring. In translational molecular-genetic imaging, NESTKGFP:dMODC as a reporter gene, together with optical imaging and PET, allows the direct monitoring of transcription induction and easy determination of its association with other biochemical changes.
Uncovering Hidden Layers of Cell Cycle Regulation through Integrative Multi-omic Analysis
Aviner, Ranen; Shenoy, Anjana; Elroy-Stein, Orna; Geiger, Tamar
2015-01-01
Studying the complex relationship between transcription, translation and protein degradation is essential to our understanding of biological processes in health and disease. The limited correlations observed between mRNA and protein abundance suggest pervasive regulation of post-transcriptional steps and support the importance of profiling mRNA levels in parallel to protein synthesis and degradation rates. In this work, we applied an integrative multi-omic approach to study gene expression along the mammalian cell cycle through side-by-side analysis of mRNA, translation and protein levels. Our analysis sheds new light on the significant contribution of both protein synthesis and degradation to the variance in protein expression. Furthermore, we find that translation regulation plays an important role at S-phase, while progression through mitosis is predominantly controlled by changes in either mRNA levels or protein stability. Specific molecular functions are found to be co-regulated and share similar patterns of mRNA, translation and protein expression along the cell cycle. Notably, these include genes and entire pathways not previously implicated in cell cycle progression, demonstrating the potential of this approach to identify novel regulatory mechanisms beyond those revealed by traditional expression profiling. Through this three-level analysis, we characterize different mechanisms of gene expression, discover new cycling gene products and highlight the importance and utility of combining datasets generated using different techniques that monitor distinct steps of gene expression. PMID:26439921
A general approach for chemical labeling and rapid, spatially controlled protein inactivation
Marks, Kevin M.; Braun, Patrick D.; Nolan, Garry P.
2004-01-01
Chemical labeling of proteins inside of living cells can enable studies of the location, movement, and function of proteins in vivo. Here we demonstrate an approach for chemical labeling of proteins that uses the high-affinity interaction between an FKBP12 mutant (F36V) and a synthetic, engineered ligand (SLF′). A fluorescein conjugate to the engineered ligand (FL-SLF′) retained binding to FKBP12(F36V) and possessed similar fluorescence properties as parental fluorescein. FL-SLF′ labeled FKBP12(F36V) fusion proteins in live mammalian cells, and was used to monitor the subcellular localization of a membrane targeted FKBP12(F36V) construct. Chemical labeling of FKBP12(F36V) fusion proteins with FL-SLF′ was readily detectable at low expression levels of the FKBP12(F36V) fusion, and the level of fluorescent staining with FL-SLF′ was proportional to the FKBP12(F36V) expression level. This FL-SLF′-FKBP12(F36V) labeling technique was tested in fluorophore assisted laser inactivation (FALI), a light-mediated technique to rapidly inactivate fluorophore-labeled target proteins. FL-SLF′ mediated FALI of a β-galactosidase-FKBP12(F36V) fusion protein, causing rapid inactivation of >90% of enzyme activity upon irradiation in vitro. FL-SLF′ also mediated FALI of a β-galactosidase fusion expressed in living NIH 3T3 cells, where β-galactosidase activity was reduced in 15 s. Thus, FL-SLF′ can be used to monitor proteins in vivo and to target rapid, spatially and temporally defined inactivation of target proteins in living cells in a process that we call FK-FALI. PMID:15218100
Koul, Sweaty; Johnson, Thomas; Pramanik, Saroj; Koul, Hari
2005-01-01
Background: Primary hyperoxaluria-type 1 (PH-1) is a rare autosomal recessive disorder of glyoxalate metabolism caused by deficiency in the liver-specific peroxisomal enzyme alanine-glyoxalate transaminase 1 (AGT) resulting in the increased oxidation of glyoxalate to oxalate. Accumulation of oxalate in the kidney and other soft tissues results in loss of renal function and significant morbidity. The present treatment options offer some relief in the short term, but they are not completely successful. In the present study, we tested the feasibility of corrective gene therapy for this metabolic disorder. Methods: A cDNA library was made from HepG2 cells. PCR primers were designed for the AGT sequence with modifications to preclude mistargeting during gene delivery. Amplified AGT cDNA was cloned as a fusion protein with green fluorescent protein (GFP) using the vector EGFP-C1 (Clontech) for monitoring subcellular distribution. Sequence and expression of the fusion protein was verified. Fusion protein vectors were transfected into hepatocytes by liposomal transfection. AGT expression and subcellular distribution was monitored by GFP fluorescence. Results: HepG2 cells express full-length mRNA coding for AGT as confirmed by insert size as well as sequence determination. Selective primers allowed us to generate a modified recombinant GFP-AGT fusion protein. Cellular transfections with Lipofectamine resulted in transfection efficiencies of 60–90%. The recombinant AGT did localize to peroxisomes as monitored by GFP fluorescence. Conclusions: The results demonstrate preliminary in vitro feasibility data for AGT transfection into the hepatocytes. To the best of our knowledge, this is the first study to attempt recombinant AGT gene therapy for treatment of primary hyperoxaluria-1. PMID:15849465
Ramsay, Douglas; Bevan, Nicola; Rees, Stephen; Milligan, Graeme
2001-01-01
The wild-type β2-adrenoceptor and a constitutively active mutant of this receptor were C-terminally tagged with luciferase from the sea pansy Renilla reniformis. C-terminal addition of Renilla luciferase did not substantially alter the levels of expression of either form of the receptor, the elevated constitutive activity of the mutant β2-adrenoceptor nor the capacity of isoprenaline to elevate cyclic AMP levels in intact cells expressing these constructs. Treatment of cells expressing constitutively active mutant β2-adrenoceptor-Renilla luciferase with antagonist/inverse agonist ligands resulted in upregulation of levels of this polypeptide which could be monitored by the elevated luciferase activity. The pEC50 for ligand-induced luciferase upregulation and ligand affinity to bind the receptor were highly correlated. Similar upregulation could be observed following sustained treatment with agonist ligands. These effects were only observed at a constitutively active mutant of the β2-adrenoceptor. Co-expression of the wild-type β2-adrenoceptor C-terminally tagged with the luciferase from Photinus pyralis did not result in ligand-induced upregulation of the levels of activity of this luciferase. Co-expression of the constitutively active mutant β2-adrenoceptor-Renilla luciferase and an equivalent mutant of the α1b-adrenoceptor C-terminally tagged with green fluorescent protein allowed pharmacological selectivity of adrenoceptor antagonists to be demonstrated. This approach offers a sensitive and convenient means, which is amenable to high throughput analysis, to monitor ligand binding to a constitutively active mutant receptor. As no prior knowledge of receptor ligands is required this approach may be suitable to identify ligands at orphan G protein-coupled receptors. PMID:11350868
Zheng, Nuoyan; Huang, Xiahe; Yin, Bojiao; Wang, Dan; Xie, Qi
2012-12-01
Detection of protein-protein interaction can provide valuable information for investigating the biological function of proteins. The current methods that applied in protein-protein interaction, such as co-immunoprecipitation and pull down etc., often cause plenty of working time due to the burdensome cloning and purification procedures. Here we established a system that characterization of protein-protein interaction was accomplished by co-expression and simply purification of target proteins from one expression cassette within E. coli system. We modified pET vector into co-expression vector pInvivo which encoded PPV NIa protease, two cleavage site F and two multiple cloning sites that flanking cleavage sites. The target proteins (for example: protein A and protein B) were inserted at multiple cloning sites and translated into polyprotein in the order of MBP tag-protein A-site F-PPV NIa protease-site F-protein B-His(6) tag. PPV NIa protease carried out intracellular cleavage along expression, then led to the separation of polyprotein components, therefore, the interaction between protein A-protein B can be detected through one-step purification and analysis. Negative control for protein B was brought into this system for monitoring interaction specificity. We successfully employed this system to prove two cases of reported protien-protein interaction: RHA2a/ANAC and FTA/FTB. In conclusion, a convenient and efficient system has been successfully developed for detecting protein-protein interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Eric L.; Orsat, Valerie; Shah, Manesh B
2012-01-01
System biology and bioprocess technology can be better understood using shotgun proteomics as a monitoring system during the fermentation. We demonstrated a shotgun proteomic method to monitor the temporal yeast proteome in early, middle and late exponential phases. Our study identified a total of 1389 proteins combining all 2D-LC-MS/MS runs. The temporal Saccharomyces cerevisiae proteome was enriched with proteolysis, radical detoxification, translation, one-carbon metabolism, glycolysis and TCA cycle. Heat shock proteins and proteins associated with oxidative stress response were found throughout the exponential phase. The most abundant proteins observed were translation elongation factors, ribosomal proteins, chaperones and glycolytic enzymes. Themore » high abundance of the H-protein of the glycine decarboxylase complex (Gcv3p) indicated the availability of glycine in the environment. We observed differentially expressed proteins and the induced proteins at mid-exponential phase were involved in ribosome biogenesis, mitochondria DNA binding/replication and transcriptional activator. Induction of tryptophan synthase (Trp5p) indicated the abundance of tryptophan during the fermentation. As fermentation progressed toward late exponential phase, a decrease in cell proliferation was implied from the repression of ribosomal proteins, transcription coactivators, methionine aminopeptidase and translation-associated proteins.« less
Natsume, Tohru; Taoka, Masato; Manki, Hiroshi; Kume, Shouen; Isobe, Toshiaki; Mikoshiba, Katsuhiko
2002-09-01
We describe a rapid analysis of interactions between antibodies and a recombinant protein present in total cell lysates. Using a surface plasmon resonance biosensor, a low concentration of glutathione-S-transferase (GST) fused protein expressed in small scale Esherichia coli culture was purified on an anti-GST antibody immobilized sensor chip. The 'on-chip purification' was verified using matrix-assisted laser desorption/ionization-time of flight mass spectrometry by measuring the molecular masses of recombinant proteins purified on the sensor chip. The specific binding of monoclonal antibodies for the on-chip micropurified recombinant proteins can then be monitored, thus enabling kinetic analysis and epitope mapping of the bound antibodies. This approach reduced time, resources and sample consumption by avoiding conventional steps related to concentration and purification.
Monitoring transgenic plants using in vivo markers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, C.N. Jr.
The gene coding for green fluorecent protein (GFP), isolated and cloned from the jellyfish Aequorea victoria, is an ideal transgene for the monitoring of any plant species. It has the ability to fluoresce without added substrate, enzyme, or cofactor; it does not introduce morphological or sexual aberrations when expressed. 7 refs., 1 fig.
Monitoring substrate enables real-time regulation of a protein localization pathway.
Ito, Koreaki; Mori, Hiroyuki; Chiba, Shinobu
2018-06-01
Protein localization machinery supports cell survival and physiology, suggesting the potential importance of its expression regulation. Here, we summarize a remarkable scheme of regulation, which allows real-time feedback regulation of the machinery expression. A class of regulatory nascent polypeptides, called monitoring substrates, undergoes force-sensitive translation arrest. The resulting ribosome stalling on the mRNA then affects mRNA folding to expose the ribosome-binding site of the downstream target gene and upregulate its translation. The target gene encodes a component of the localization machinery, whose physical action against the monitoring substrate leads to arrest cancellation. Thus, this scheme of feedback loop allows the cell to adjust the amount of the machinery to correlate inversely with the effectiveness of the process at a given moment. The system appears to have emerged late in evolution, in which a narrow range of organisms selected a distinct monitoring substrate-machinery combination. Currently, regulatory systems of SecM-SecA, VemP-SecDF2 and MifM-YidC2 are known to occur in different bacterial species.
Drabovich, Andrei P.; Pavlou, Maria P.; Dimitromanolakis, Apostolos; Diamandis, Eleftherios P.
2012-01-01
To investigate the quantitative response of energy metabolic pathways in human MCF-7 breast cancer cells to hypoxia, glucose deprivation, and estradiol stimulation, we developed a targeted proteomics assay for accurate quantification of protein expression in glycolysis/gluconeogenesis, TCA cycle, and pentose phosphate pathways. Cell growth conditions were selected to roughly mimic the exposure of cells in the cancer tissue to the intermittent hypoxia, glucose deprivation, and hormonal stimulation. Targeted proteomics assay allowed for reproducible quantification of 76 proteins in four different growth conditions after 24 and 48 h of perturbation. Differential expression of a number of control and metabolic pathway proteins in response to the change of growth conditions was found. Elevated expression of the majority of glycolytic enzymes was observed in hypoxia. Cancer cells, as opposed to near-normal MCF-10A cells, exhibited significantly increased expression of key energy metabolic pathway enzymes (FBP1, IDH2, and G6PD) that are known to redirect cellular metabolism and increase carbon flux through the pentose phosphate pathway. Our quantitative proteomic protocol is based on a mass spectrometry-compatible acid-labile detergent and is described in detail. Optimized parameters of a multiplex selected reaction monitoring (SRM) assay for 76 proteins, 134 proteotypic peptides, and 401 transitions are included and can be downloaded and used with any SRM-compatible mass spectrometer. The presented workflow is an integrated tool for hypothesis-driven studies of mammalian cells as well as functional studies of proteins, and can greatly complement experimental methods in systems biology, metabolic engineering, and metabolic transformation of cancer cells. PMID:22535206
Szopinska, Aleksandra; Christ, Eva; Planchon, Sebastien; König, Helmut; Evers, Daniele; Renaut, Jenny
2016-02-01
During fermentation oenological yeast cells are subjected to a number of different stress conditions and must respond rapidly to the continuously changing environment of this harsh ecological niche. In this study we gained more insights into the cell adaptation mechanisms by linking proteome monitoring with knowledge on physiological behaviour of different strains during fermentation under model winemaking conditions. We used 2D-DIGE technology to monitor the proteome evolution of two newly discovered environmental yeast strains Saccharomyces bayanus and triple hybrid Saccharomyces cerevisiae × Saccharomyces kudriavzevii × S. bayanus and compared them to data obtained for the commercially available S. cerevisiae strain. All strains examined showed (i) different fermentative behaviour, (ii) stress resistance as well as (iii) susceptibility to stuck fermentation which was reflected in significant differences in protein expression levels. During our research we identified differentially expressed proteins in 155 gel spots which correspond to 70 different protein functions. Differences of expression between strains were observed mainly among proteins involved in stress response, proteins degradation pathways, cell redox homeostasis and amino acids biosynthesis. Interestingly, the newly discovered triple hybrid S. cerevisiae × S. kudriavzevii × S. bayanus strain which has the ability to naturally restart stuck fermentation showed a very strong induction of expression of two proteolytic enzymes: Pep4 and Prc1 that appear as numerous isoforms on the gel image and which may be the key to its unique properties. This study is an important step towards the better understanding of wine fermentations at a molecular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Le-Bel, Gaëtan; Ghio, Sergio Cortez; Larouche, Danielle; Germain, Lucie; Guérin, Sylvain L
2018-05-27
Electrophoretic mobility shift assays and Western blots are simple, efficient, and rapid methods to study DNA-protein interactions and protein expression, respectively. Primary cultures and subcultures of epithelial cells are widely used for the production of tissue-engineered substitutes and are gaining popularity as a model for gene expression studies. The preservation of stem cells through the culture process is essential to produce high quality substitutes. However, the increase in the number of cell passages is associated with a decrease in their ability to proliferate until senescence is reached. This process is likely to be mediated by the altered expression of nuclear-located transcription factors such as Sp1 and NFI, whose expression has been documented to be required for cell adhesion, migration, and differentiation. In some of our recent studies, we observed a correlation between reconstructed tissues exhibiting poor histological and structural characteristics and a low expression of Sp1 in their constituting epithelial cells. Therefore, monitoring both the expression and DNA binding of these transcription factors in human skin and corneal epithelial cells is a useful tool for characterizing the quality of primary cultured epithelial cells.
Huber, Robert; Roth, Simon; Rahmen, Natalie; Büchs, Jochen
2011-03-17
The specific productivity of cultivation processes can be optimized, amongst others, by using genetic engineering of strains, choice of suitable host/vector systems or process optimization (e.g. choosing the right induction time). A further possibility is to reduce biomass buildup in favor of an enhanced product formation, e.g. by limiting secondary substrates in the medium, such as phosphate. However, with conventional techniques (e.g. small scale cultivations in shake flasks), it is very tedious to establish optimal conditions for cell growth and protein expression, as the start of protein expression (induction time) and the degree of phosphate limitation have to be determined in numerous concerted, manually conducted experiments. We investigated the effect of different induction times and a concurrent phosphate limitation on the specific productivity of the T7 expression system E.coli BL21(DE3) pRhotHi-2-EcFbFP, which produces the model fluorescence protein EcFbFP upon induction. Therefore, specific online-monitoring tools for small scale cultivations (RAMOS, BioLector) as well as a novel cultivation platform (Robo-Lector) were used for rapid process optimization. The RAMOS system monitored the oxygen transfer rate in shake flasks, whereas the BioLector device allowed to monitor microbial growth and the production of EcFbFP in microtiter plates. The Robo-Lector is a combination of a BioLector and a pipetting robot and can conduct high-throughput experiments fully automated. By using these tools, it was possible to determine the optimal induction time and to increase the specific productivity for EcFbFP from 22% (for unlimited conditions) to 31% of total protein content of the E.coli cells via a phosphate limitation. The results revealed that a phosphate limitation at the right induction time was suitable to redirect the available cellular resources during cultivation to protein expression rather than in biomass production. To our knowledge, such an effect was shown for the first time for an IPTG-inducible expression system. Finally, this finding and the utilization of the introduced high-throughput experimentation approach could help to find new targets to further enhance the production capacity of recombinant E.coli-strains.
Xiang, Yun; Koomen, John M.
2012-01-01
Protein quantification with liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM) has emerged as a powerful platform for assessing panels of biomarkers. In this study, direct infusion, using automated, chip-based nanoelectrospray ionization, coupled with MRM (DI-MRM) is used for protein quantification. Removal of the LC separation step increases the importance of evaluating the ratios between the transitions. Therefore, the effects of solvent composition, analyte concentration, spray voltage, and quadrupole resolution settings on fragmentation patterns have been studied using peptide and protein standards. After DI-MRM quantification was evaluated for standards, quantitative assays for the expression of heat shock proteins (HSPs) were translated from LC-MRM to DI-MRM for implementation in cell line models of multiple myeloma. Requirements for DI-MRM assay development are described. Then, the two methods are compared; criteria for effective DI-MRM analysis are reported based on the analysis of HSP expression in digests of whole cell lysates. The increased throughput of DI-MRM analysis is useful for rapid analysis of large batches of similar samples, such as time course measurements of cellular responses to therapy. PMID:22293045
Bagó, Juli R; Aguilar, Elisabeth; Alieva, Maria; Soler-Botija, Carolina; Vila, Olaia F; Claros, Silvia; Andrades, José A; Becerra, José; Rubio, Nuria; Blanco, Jerónimo
2013-03-01
In vivo testing is a mandatory last step in scaffold development. Agile longitudinal noninvasive real-time monitoring of stem cell behavior in biomaterials implanted in live animals should facilitate the development of scaffolds for tissue engineering. We report on a noninvasive bioluminescence imaging (BLI) procedure for simultaneous monitoring of changes in the expression of multiple genes to evaluate scaffold performance in vivo. Adipose tissue-derived stromal mensenchymal cells were dually labeled with Renilla red fluorescent protein and firefly green fluorescent protein chimeric reporters regulated by cytomegalovirus and tissue-specific promoters, respectively. Labeled cells were induced to differentiate in vitro and in vivo, by seeding in demineralized bone matrices (DBMs) and monitored by BLI. Imaging results were validated by RT-polymerase chain reaction and histological procedures. The proposed approach improves molecular imaging and measurement of changes in gene expression of cells implanted in live animals. This procedure, applicable to the simultaneous analysis of multiple genes from cells seeded in DBMs, should facilitate engineering of scaffolds for tissue repair.
Bagó, Juli R.; Aguilar, Elisabeth; Alieva, Maria; Soler-Botija, Carolina; Vila, Olaia F.; Claros, Silvia; Andrades, José A.; Becerra, José; Rubio, Nuria
2013-01-01
In vivo testing is a mandatory last step in scaffold development. Agile longitudinal noninvasive real-time monitoring of stem cell behavior in biomaterials implanted in live animals should facilitate the development of scaffolds for tissue engineering. We report on a noninvasive bioluminescence imaging (BLI) procedure for simultaneous monitoring of changes in the expression of multiple genes to evaluate scaffold performance in vivo. Adipose tissue-derived stromal mensenchymal cells were dually labeled with Renilla red fluorescent protein and firefly green fluorescent protein chimeric reporters regulated by cytomegalovirus and tissue-specific promoters, respectively. Labeled cells were induced to differentiate in vitro and in vivo, by seeding in demineralized bone matrices (DBMs) and monitored by BLI. Imaging results were validated by RT-polymerase chain reaction and histological procedures. The proposed approach improves molecular imaging and measurement of changes in gene expression of cells implanted in live animals. This procedure, applicable to the simultaneous analysis of multiple genes from cells seeded in DBMs, should facilitate engineering of scaffolds for tissue repair. PMID:23013334
Sysel, Annette M.; Valli, Victor E.; Bauer, Joseph A.
2015-01-01
Cancer cells have an obligate need for cobalamin (vitamin B12) to enable DNA synthesis necessary for cellular replication. This study quantified the immunohistochemical expression of the cobalamin transport protein (transcobalamin II; TCII), cell surface receptor (transcobalamin II-R; TCII-R) and proliferation protein (Ki-67) in naturally occurring canine and feline malignant tumors, and compared these results to expression in corresponding adjacent normal tissues. All malignant tumor tissues stained positively for TCII, TCII-R and Ki-67 proteins; expression varied both within and between tumor types. Expression of TCII, TCII-R and Ki-67 was significantly higher in malignant tumor tissues than in corresponding adjacent normal tissues in both species. There was a strong correlation between TCII and TCII-R expression, and a modest correlation between TCII-R and Ki-67 expression in both species; a modest association between TCII and Ki-67 expression was present in canine tissues only. These results demonstrate a quantifiable, synchronous up-regulation of TCII and TCII-R expression by proliferating canine and feline malignant tumors. The potential to utilize these proteins as biomarkers to identify neoplastic tissues, streamline therapeutic options, evaluate response to anti-tumor therapy and monitor for recurrent disease has important implications in the advancement of cancer management for both human and companion animal patients. PMID:25633912
The fluorescent photobleaching properties of GFP expressed in human lung cancer cells
NASA Astrophysics Data System (ADS)
Jin, Ying; Xing, Da
2003-12-01
The characteristic properties of GFP make this protein a good candidate for use as a molecular reporter to monitor patterns of protein localization, gene expression, and intracellular protein trafficking in living cells. In this study, the dicistronic expression vector (pEGFP-C1) was used to transfected into human lung cancer cell line (ASTC-a-1) and a positive clone which stably expressed GFP in high level was obtained. After more than three months' passengers, the cells were also remained the strong fluorescence under fluorescent microscope. The results showed that the green fluorescent protein expressed in tumor cells was also photobleached under intense irradiation (approximately 488 nm) and the degree of photobleaching varied with the difference of the intensity of the excitation. Using different interdiction parcel (None, ND4, ND8, ND16), there were significant differences in photobleaching among the different excitation. The photobleaching was also affected by the time length of excitation, and the intensity of fluorescence was obviously decreased along with the increasing of excitation time, especially to stronger excitation.
Carlson, Ruth I; Cattet, Marc R L; Sarauer, Bryan L; Nielsen, Scott E; Boulanger, John; Stenhouse, Gordon B; Janz, David M
2016-01-01
A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic-pituitary-adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50-100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally <10 and <15%, respectively. With one exception, there were no significant differences in protein expression among skin samples collected from the neck, forelimb, hindlimb and ear in a subsample of n = 4 bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change.
Ude, Christian; Ben-Dov, Nadav; Jochums, André; Li, Zhaopeng; Segal, Ester; Scheper, Thomas; Beutel, Sascha
2016-05-01
The online monitoring of recombinant protein aggregate inclusion bodies during microbial cultivation is an immense challenge. Measurement of scattered and reflected light offers a versatile and non-invasive measurement technique. Therefore, we investigated two methods to detect the formation of inclusion bodies and monitor their production: (1) online 180° scattered light measurement (λ = 625 nm) using a sensor platform during cultivation in shake flask and (2) online measurement of the light reflective interference using a porous Si-based optical biosensor (SiPA). It could be shown that 180° scattered light measurement allows monitoring of alterations in the optical properties of Escherichia coli BL21 cells, associated with the formation of inclusion bodies during cultivation. A reproducible linear correlation between the inclusion body concentration of the non-fluorescent protein human leukemia inhibitory factor (hLIF) carrying a thioredoxin tag and the shift ("Δamp") in scattered light signal intensity was observed. This was also observed for the glutathione-S-transferase-tagged green fluorescent protein (GFP-GST). Continuous online monitoring of reflective interference spectra reveals a significant increase in the bacterium refractive index during hLIF production in comparison to a non-induced reference that coincide with the formation of inclusion bodies. These online monitoring techniques could be applied for fast and cost-effective screening of different protein expression systems.
Ošiņa, Kristīne; Rostoka, Evita; Isajevs, Sergejs; Sokolovska, Jelizaveta; Sjakste, Tatjana; Sjakste, Nikolajs
2016-11-01
Development of complications of diabetes mellitus (DM), including diabetic nephropathy, is a complex multi-stage process, dependent on many factors including the modification of nitric oxide (NO) production and an impaired DNA repair. The goal of this work was to study in vivo effects of 1,4-dihydropyridine AV-153, known as antimutagen and DNA binder, on the expression of several genes and proteins involved in NO metabolism and DNA repair in the kidneys of rats with a streptozotocin (STZ)-induced model of DM. Transcription intensity was monitored by means of real-time RT-PCR and the expression of proteins by immunohistochemistry. Development of DM significantly induced PARP1 protein expression, while AV-153 (0.5 mg/kg) administration decreased it. AV-153 increased the expression of Parp1 gene in the kidneys of both intact and diabetic animals. Expression of H2afx mRNA and γH2AX histone protein, a marker of DNA breakage, was not changed in diabetic animals, but AV-153 up-regulated the expression of the gene without any impact on the protein expression. Development of DM was followed by a significant increase in iNOS enzyme expression, while AV-153 down-regulated the enzyme expression up to normal levels. iNos gene expression was also found to be increased in diabetic animals, but unlike the protein, the expression of mRNA was found to be enhanced by AV-153 administration. Expression of both eNOS protein and eNos gene in the kidneys was down-regulated, and the administration of AV-153 normalized the expression level. The effects of the compound in the kidneys of diabetic animals appear to be beneficial, as a trend for the normalization of expression of NO synthases is observed. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Synergistic Effects of Toxic Elements on Heat Shock Proteins
Mahmood, Khalid; Mahmood, Qaisar; Irshad, Muhammad; Hussain, Jamshaid
2014-01-01
Heat shock proteins show remarkable variations in their expression levels under a variety of toxic conditions. A research span expanded over five decades has revealed their molecular characterization, gene regulation, expression patterns, vast similarity in diverse groups, and broad range of functional capabilities. Their functions include protection and tolerance against cytotoxic conditions through their molecular chaperoning activity, maintaining cytoskeleton stability, and assisting in cell signaling. However, their role as biomarkers for monitoring the environmental risk assessment is controversial due to a number of conflicting, validating, and nonvalidating reports. The current knowledge regarding the interpretation of HSPs expression levels has been discussed in the present review. The candidature of heat shock proteins as biomarkers of toxicity is thus far unreliable due to synergistic effects of toxicants and other environmental factors. The adoption of heat shock proteins as “suit of biomarkers in a set of organisms” requires further investigation. PMID:25136596
Wolenski, Francis S; Layden, Michael J; Martindale, Mark Q; Gilmore, Thomas D; Finnerty, John R
2016-01-01
In an effort to reconstruct the early evolution of animal genes and proteins, there is an increasing focus on basal animal lineages such as sponges, cnidarians, ctenophores and placozoans. Among the basal animals, the starlet sea anemone Nematostella vectensis (phylum Cnidaria) has emerged as a leading laboratory model organism partly because it is well suited to experimental techniques for monitoring and manipulating gene expression. Here we describe protocols adapted for use in Nematostella to characterize the expression of RNAs by in situ hybridization using either chromogenic or fluorescence immunohistochemistry (~1 week), as well as to characterize protein expression by whole-mount immunofluorescence (~3 d). We also provide a protocol for labeling cnidocytes (~3 h), the phylum-specific sensory-effector cell type that performs a variety of functions in cnidarians, including the delivery of their venomous sting. PMID:23579779
Stope, Matthias B; Schubert, Tina; Staar, Doreen; Rönnau, Cindy; Streitbörger, Andreas; Kroeger, Nils; Kubisch, Constanze; Zimmermann, Uwe; Walther, Reinhard; Burchardt, Martin
2012-06-01
Heat shock proteins (HSP) are involved in processes of folding, activation, trafficking and transcriptional activity of most steroid receptors including the androgen receptor (AR). Accumulating evidence links rising heat shock protein 27 (HSP27) levels with the development of castration-resistant prostate cancer. In order to study the functional relationship between HSP27 and the AR, we modulated the expression of the small heat shock protein HSP27 in human prostate cancer (PC) cell lines. HSP27 protein concentrations in LNCaP and PC-3 cells were modulated by over-expression or silencing of HSP27. The effects of HSP27 on AR protein and mRNA levels were monitored by Western blotting and quantitative RT-PCR. Treatment for the AR-positive LNCaP with HSP27-specific siRNA resulted in a down-regulation of AR levels. This down-regulation of protein was paralleled by a decrease in AR mRNA. Most interestingly, over-expression of HSP27 in PC-3 cells led to a significant increase in AR mRNA although the cells were unable to produce functional AR protein. The observation that HSP27 is involved in the regulation of AR mRNA by a yet unknown mechanism highlights the complexity of HSP27-AR signaling network.
Park, Kiyun
2014-01-01
Objectives Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone important in the maturation of a broad spectrum of protein. In this study, an HSP90 gene was isolated from Asian paddle crab, Charybdis japonica, as a bio-indicator to monitor the marine ecosystem. Methods This work reports the responses of C. japonica HSP90 mRNA expression to cellular stress by endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 4-nonylphenol (NP) using real-time. reverse transcription polymerase chain reaction. Results The deduced amino acid sequence of HSP90 from C. japonica shared a high degree of homology with their homologues in other species. In a phylogenetic analysis, C. japonica HSP90 is evolutionally related with an ortholog of the other crustacean species. The expression of HSP90 gene was almost distributed in all the examined tissues of the C. japonica crab but expression levels varied among the different body parts of the crabs. We examined HSP90 mRNA expression pattern in C. japonica crabs exposed to EDCs for various exposure times. The expression of HSP90 transcripts was significantly increased in C. japonica crabs exposed to BPA and NP at different concentrations for 12, 24, 48 and 96 hours. The mRNA expression of HSP90 gene was significantly induced in a concentration- and time-dependent manner after BPA or NP exposures for 96 hours. Conclusions Taken together, expression analysis of Asian paddle crab HSP90 gene provided useful molecular information about crab responses in stress conditions and potential ways to monitor the EDCs stressors in marine environments. PMID:24955332
Park, Kiyun; Kwak, Ihn-Sil
2014-01-01
Heat shock protein 90 (HSP90) is a highly conserved molecular chaperone important in the maturation of a broad spectrum of protein. In this study, an HSP90 gene was isolated from Asian paddle crab, Charybdis japonica, as a bio-indicator to monitor the marine ecosystem. This work reports the responses of C. japonica HSP90 mRNA expression to cellular stress by endocrine disrupting chemicals (EDCs), such as bisphenol A (BPA) and 4-nonylphenol (NP) using real-time. reverse transcription polymerase chain reaction. The deduced amino acid sequence of HSP90 from C. japonica shared a high degree of homology with their homologues in other species. In a phylogenetic analysis, C. japonica HSP90 is evolutionally related with an ortholog of the other crustacean species. The expression of HSP90 gene was almost distributed in all the examined tissues of the C. japonica crab but expression levels varied among the different body parts of the crabs. We examined HSP90 mRNA expression pattern in C. japonica crabs exposed to EDCs for various exposure times. The expression of HSP90 transcripts was significantly increased in C. japonica crabs exposed to BPA and NP at different concentrations for 12, 24, 48 and 96 hours. The mRNA expression of HSP90 gene was significantly induced in a concentration- and time-dependent manner after BPA or NP exposures for 96 hours. Taken together, expression analysis of Asian paddle crab HSP90 gene provided useful molecular information about crab responses in stress conditions and potential ways to monitor the EDCs stressors in marine environments.
Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells.
Tan, Chris Soon Heng; Go, Ka Diam; Bisteau, Xavier; Dai, Lingyun; Yong, Chern Han; Prabhu, Nayana; Ozturk, Mert Burak; Lim, Yan Ting; Sreekumar, Lekshmy; Lengqvist, Johan; Tergaonkar, Vinay; Kaldis, Philipp; Sobota, Radoslaw M; Nordlund, Pär
2018-03-09
Proteins differentially interact with each other across cellular states and conditions, but an efficient proteome-wide strategy to monitor them is lacking. We report the application of thermal proximity coaggregation (TPCA) for high-throughput intracellular monitoring of protein complex dynamics. Significant TPCA signatures observed among well-validated protein-protein interactions correlate positively with interaction stoichiometry and are statistically observable in more than 350 annotated human protein complexes. Using TPCA, we identified many complexes without detectable differential protein expression, including chromatin-associated complexes, modulated in S phase of the cell cycle. Comparison of six cell lines by TPCA revealed cell-specific interactions even in fundamental cellular processes. TPCA constitutes an approach for system-wide studies of protein complexes in nonengineered cells and tissues and might be used to identify protein complexes that are modulated in diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
2009-10-22
ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES...MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION/AVAILABILITY STATEMENT...fusion protein C*-BR( S )-Y* expression vector pET/C*-CyaA1488-1680-Y*, nonfluorescent CFP expression vector pET/CFP*, and the maltose binding protein-RTX
Morinaga, Takao; Nguyễn, Thảo Thi Thanh; Zhong, Boya; Hanazono, Michiko; Shingyoji, Masato; Sekine, Ikuo; Tada, Yuji; Tatsumi, Koichiro; Shimada, Hideaki; Hiroshima, Kenzo; Tagawa, Masatoshi
2017-11-10
Genetically modified adenoviruses (Ad) with preferential replications in tumor cells have been examined for a possible clinical applicability as an anti-cancer agent. A simple method to detect viral and cellular proteins is valuable to monitor the viral infections and to predict the Ad-mediated cytotoxicity. We used type 5 Ad in which the expression of E1A gene was activated by 5'-regulatory sequences of genes that were augmented in the expression in human tumors. The Ad were further modified to have the fiber-knob region replaced with that derived from type 35 Ad. We infected human mesothelioma cells with the fiber-replaced Ad, and sequentially examined cytotoxic processes together with an expression level of the viral E1A, hexon, and cellular cleaved caspase-3 with image cytometric and Western blot analyses. The replication-competent Ad produced cytotoxicity on mesothelioma cells. The infected cells expressed E1A and hexon 24 h after the infection and then showed cleavage of caspase-3, all of which were detected with image cytometry and Western blot analysis. Image cytometry furthermore demonstrated that increased Ad doses did not enhance an expression level of E1A and hexon in an individual cell and that caspase-3-cleaved cells were found more frequently in hexon-positive cells than in E1A-positive cells. Image cytometry thus detected these molecular changes in a sensitive manner and at a single cell level. We also showed that an image cytometric technique detected expression changes of other host cell proteins, cyclin-E and phosphorylated histone H3 at a single cell level. Image cytometry is a concise procedure to detect expression changes of Ad and host cell proteins at a single cell level, and is useful to analyze molecular events after the infection.
Martin, Laetitia B. B.; Sherwood, Robert W.; Nicklay, Joshua J.; Yang, Yong; Muratore-Schroeder, Tara L.; Anderson, Elizabeth T.; Thannhauser, Theodore W.; Rose, Jocelyn K. C.; Zhang, Sheng
2017-01-01
We describe here the use of label-free wide selected-ion monitoring data-independent acquisition (WiSIM-DIA) to identify proteins that are involved in the formation of tomato (Solanum lycopersicum) fruit cuticles and that are regulated by the transcription factor CUTIN DEFICIENT2 (CD2). A spectral library consisting of 11 753 unique peptides, corresponding to 2338 tomato protein groups, was used and the DIA analysis was performed at the MS1 level utilizing narrow mass windows for extraction with Skyline 2.6 software. We identified a total of 1140 proteins, 67 of which had expression levels that differed significantly between the cd2 tomato mutant and the wild-type cultivar M82. Differentially expressed proteins including a key protein involved in cutin biosynthesis, were selected for validation by target SRM/MRM and by Western blot analysis. In addition to confirming a role for CD2 in regulating cuticle formation, the results also revealed that CD2 influences pathways associated with cell wall biology, anthocyanin biosynthesis, plant development, and responses to stress, which complements findings of earlier RNA-Seq experiments. Our results provide new insights into molecular processes and aspects of fruit biology associated with CD2 function, and demonstrate that the WiSIM-DIA is an effective quantitative approach for global protein identifications. PMID:27089858
Mačinković, Igor S; Abughren, Mohamed; Mrkic, Ivan; Grozdanović, Milica M; Prodanović, Radivoje; Gavrović-Jankulović, Marija
2013-12-01
High levels of recombinant protein expression can lead to the formation of insoluble inclusion bodies. These complex aggregates are commonly solubilized in strong denaturants, such as 6-8M urea, although, if possible, solubilization under milder conditions could facilitate subsequent refolding and purification of bioactive proteins. Commercially available GST-tag assays are designed for quantitative measurement of GST activity under native conditions. GST fusion proteins accumulated in inclusion bodies are considered to be undetectable by such assays. In this work, solubilization of recombinantly produced proteins was performed in 4M urea. The activity of rGST was assayed in 2M urea and it was shown that rGST preserves 85% of its activity under such denaturing conditions. A colorimetric GST activity assay with 1-chloro-2, 4-dinitrobenzene (CDNB) was examined for use in rapid detection of expression targeted to inclusion bodies and for the identification of inclusion body proteins which can be solubilized in low concentrations of chaotropic agents. Applicability of the assay was evaluated by tracking protein expression of two GST-fused allergens of biopharmaceutical value in E. coli, GST-Der p 2 and GST-Mus a 5, both targeted to inclusion bodies. Copyright © 2013 Elsevier B.V. All rights reserved.
Müller, Gabrielle do Amaral E Silva; Lüchmann, Karim Hahn; Razzera, Guilherme; Toledo-Silva, Guilherme; Bebianno, Maria João; Marques, Maria Risoleta Freire; Bainy, Afonso Celso Dias
2018-06-06
Diesel fuel water-accommodated fraction (diesel-WAF) is a complex mixture of organic compounds that may cause harmful effects to marine invertebrates. Expression of microsomal proteins can be changed by oil exposure, causing functional alterations in endoplasmic reticulum (ER). The aim of this study was to investigate changes in protein expression signatures in microsomes of oysterl Crassostrea brasiliana (=C.gasar) gill after exposure to 10% diesel-WAF for 24 and 72 h. Protein expression signatures of gills of oysters exposed to diesel-WAF were compared to those of unexposed oysters using two-dimensional electrophoresis (2-DE) to identify differentially expressed proteins. A total of 458 protein spots with molecular weights between 30-75 kDa were detected by 2-DE in six replicates of exposed oyster proteomes compared to unexposed ones. Fourteen differentially expressed proteins (six up-regulated and eight down-regulated) were identified. They are: proteins related to xenobiotic biotransformation (cytochrome P450 6 A, NADPH-cytochrome P450 reductase); cytoskeleton (α-tubulin, β-tubulin, gelsolin); processing and degradation of proteins pathways (thioredoxin domain-containing protein E3 ubiquitin-protein ligase MIB2); involved in the biosynthesis of glycolipids and glycoproteins (beta-1,3-galactosyltransferase 1); associated with stress responses (glutamate receptor 4 and 14-3-3 protein zeta, corticotropin-releasing factor-binding protein); plasmalogen biosynthesis (fatty acyl-CoA reductase 1), and sodium-and chloride-dependent glycine transporter 2 and glyoxylate reductase/hydroxypyruvate reductase. Different patterns of protein responses were observed between 24 and 72 h-exposed groups. Expression pattern of microsomal proteins provided a first insight on the potential diesel-WAF effects at protein level in microsomal fraction of oyster gills and indicated new potential biomarkers of exposure and effect. The present work can be a basis for future ecotoxicological studies in oysters aiming to elucidate the molecular mechanisms behind diesel-WAF toxicity and for environmental monitoring programs. Copyright © 2018 Elsevier B.V. All rights reserved.
Anil, Veena S.; Harmon, Alice C.; Rao, K. Sankara
2000-01-01
Western-blot analysis and protein kinase assays identified two Ca2+-dependent protein kinases (CDPKs) of 55 to 60 kD in soluble protein extracts of embryogenic cultures of sandalwood (Santalum album L.). However, these sandalwood CDPKs (swCDPKs) were absent in plantlets regenerated from somatic embryos. swCDPKs exhibited differential expression (monitored at the level of the protein) and activity in different developmental stages. Zygotic embryos, seedlings, and endosperm showed high accumulation of swCDPK, but the enzyme was not detected in the soluble proteins of shoots and flowers. swCDPK exhibited a temporal pattern of expression in endosperm, showing high accumulation and activity in mature fruit and germinating stages; the enzyme was localized strongly in the storage bodies of the endosperm cells. The study also reports for the first time to our knowledge a post-translational inhibition/inactivation of swCDPK in zygotic embryos during seed dormancy and early stages of germination. The temporal expression of swCDPK during somatic/zygotic embryogenesis, seed maturation, and germination suggests involvement of the enzyme in these developmental processes. PMID:10759499
Anil, V S; Harmon, A C; Rao, K S
2000-04-01
Western-blot analysis and protein kinase assays identified two Ca(2+)-dependent protein kinases (CDPKs) of 55 to 60 kD in soluble protein extracts of embryogenic cultures of sandalwood (Santalum album L.). However, these sandalwood CDPKs (swCDPKs) were absent in plantlets regenerated from somatic embryos. swCDPKs exhibited differential expression (monitored at the level of the protein) and activity in different developmental stages. Zygotic embryos, seedlings, and endosperm showed high accumulation of swCDPK, but the enzyme was not detected in the soluble proteins of shoots and flowers. swCDPK exhibited a temporal pattern of expression in endosperm, showing high accumulation and activity in mature fruit and germinating stages; the enzyme was localized strongly in the storage bodies of the endosperm cells. The study also reports for the first time to our knowledge a post-translational inhibition/inactivation of swCDPK in zygotic embryos during seed dormancy and early stages of germination. The temporal expression of swCDPK during somatic/zygotic embryogenesis, seed maturation, and germination suggests involvement of the enzyme in these developmental processes.
Duś-Szachniewicz, Kamila; Woźniak, Marta; Nelke, Kamil; Gamian, Elżbieta; Gerber, Hanna; Ziółkowski, Piotr
2015-12-01
The actions of tyrosine phosphorylation and dephosphorylation are controlled by tyrosine kinases and phosphatases. Although substantial previous data have revealed the role of several protein tyrosine phosphatases (PTPs) in various cancers, the function of protein tyrosine phosphatase receptor R (PTPRR) and protein tyrosine phosphatase, receptor-type, Z polypeptide 1 (PTPRZ1) proteins in oral cavity squamous cell carcinoma (SCC) has not been studied to date. The PTPRR and PTPRZ1 immunoreactivity in 67 formalin-fixed and paraffin-embedded oral cancer tissues at different stages were analyzed with the technique of immunohistochemistry (IHC). The presence of PTPRR in cancerous tissue was confirmed by Western blotting. The occurrence of PTPRR and PTPRZ1 proteins in the cancer specimens was more frequent in lower grade tumors. In addition, the association between the immunoreactivity of both examined proteins and improved patients survival was detected. Moreover, the PTPRR expression was found to be related to the absence of synchronous lymph node involvement. The above results indicate that the PTPRR and PTPRZ1 protein expression should be monitored in oral cancer for patients' prognostic stratification. © 2015 Wiley Periodicals, Inc.
Moussaud, Simon; Malany, Siobhan; Mehta, Alka; Vasile, Stefan; Smith, Layton H; McLean, Pamela J
2015-05-01
Reducing the burden of α-synuclein oligomeric species represents a promising approach for disease-modifying therapies against synucleinopathies such as Parkinson's disease and dementia with Lewy bodies. However, the lack of efficient drug discovery strategies that specifically target α-synuclein oligomers has been a limitation to drug discovery programs. Here we describe an innovative strategy that harnesses the power of bimolecular protein-fragment complementation to monitor synuclein-synuclein interactions. We have developed two robust models to monitor α-synuclein oligomerization by generating novel stable cell lines expressing α-synuclein fusion proteins for either fluorescent or bioluminescent protein-fragment complementation under the tetracycline-controlled transcriptional activation system. A pilot screen was performed resulting in the identification of two potential hits, a p38 MAPK inhibitor and a casein kinase 2 inhibitor, thereby demonstrating the suitability of our protein-fragment complementation assay for the measurement of α-synuclein oligomerization in living cells at high throughput. The application of the strategy described herein to monitor α-synuclein oligomer formation in living cells with high throughput will facilitate drug discovery efforts for disease-modifying therapies against synucleinopathies and other proteinopathies.
Weisman, Itamar; Romano, Jacob; Ivics, Zoltán; Izsvák, Zsuzsanna; Barkai, Uriel
2017-01-01
Diabetes is a chronic disease characterized by high levels of blood glucose. Diabetic patients should normalize these levels in order to avoid short and long term clinical complications. Presently, blood glucose monitoring is dependent on frequent finger pricking and enzyme based systems that analyze the drawn blood. Continuous blood glucose monitors are already on market but suffer from technical problems, inaccuracy and short operation time. A novel approach for continuous glucose monitoring is the development of implantable cell-based biosensors that emit light signals corresponding to glucose concentrations. Such devices use genetically modified cells expressing chimeric genes with glucose binding properties. MSCs are good candidates as carrier cells, as they can be genetically engineered and expanded into large numbers. They also possess immunomodulatory properties that, by reducing local inflammation, may assist long operation time. Here, we generated a novel immortalized human MSC line co-expressing hTERT and a secreted glucose biosensor transgene using the Sleeping Beauty transposon technology. Genetically modified hMSCs retained their mesenchymal characteristics. Stable transgene expression was validated biochemically. Increased activity of hTERT was accompanied by elevated and constant level of stem cell pluripotency markers and subsequently, by MSC immortalization. Furthermore, these cells efficiently suppressed PBMC proliferation in MLR transwell assays, indicating that they possess immunomodulatory properties. Finally, biosensor protein produced by MSCs was used to quantify glucose in cell-free assays. Our results indicate that our immortalized MSCs are suitable for measuring glucose concentrations in a physiological range. Thus, they are appropriate for incorporation into a cell-based, immune-privileged, glucose-monitoring medical device. PMID:28949988
Siska, Evangelia K; Weisman, Itamar; Romano, Jacob; Ivics, Zoltán; Izsvák, Zsuzsanna; Barkai, Uriel; Petrakis, Spyros; Koliakos, George
2017-01-01
Diabetes is a chronic disease characterized by high levels of blood glucose. Diabetic patients should normalize these levels in order to avoid short and long term clinical complications. Presently, blood glucose monitoring is dependent on frequent finger pricking and enzyme based systems that analyze the drawn blood. Continuous blood glucose monitors are already on market but suffer from technical problems, inaccuracy and short operation time. A novel approach for continuous glucose monitoring is the development of implantable cell-based biosensors that emit light signals corresponding to glucose concentrations. Such devices use genetically modified cells expressing chimeric genes with glucose binding properties. MSCs are good candidates as carrier cells, as they can be genetically engineered and expanded into large numbers. They also possess immunomodulatory properties that, by reducing local inflammation, may assist long operation time. Here, we generated a novel immortalized human MSC line co-expressing hTERT and a secreted glucose biosensor transgene using the Sleeping Beauty transposon technology. Genetically modified hMSCs retained their mesenchymal characteristics. Stable transgene expression was validated biochemically. Increased activity of hTERT was accompanied by elevated and constant level of stem cell pluripotency markers and subsequently, by MSC immortalization. Furthermore, these cells efficiently suppressed PBMC proliferation in MLR transwell assays, indicating that they possess immunomodulatory properties. Finally, biosensor protein produced by MSCs was used to quantify glucose in cell-free assays. Our results indicate that our immortalized MSCs are suitable for measuring glucose concentrations in a physiological range. Thus, they are appropriate for incorporation into a cell-based, immune-privileged, glucose-monitoring medical device.
Identification of plant compounds that inactivate Shiga toxin from Escherichia coli O157:H7
USDA-ARS?s Scientific Manuscript database
In the present study, we describe a simple cell-based assay for the detection of Stxs and inhibitors of Stx activity. A Vero cell line that expresses a destabilized variant (t1/2 = 2 hours) of the enhanced green fluorescent protein (d2EGFP) was used to monitor the Stx-induced inhibition of protein ...
Hernandez, Julio; Matter-Sadzinski, Lidia; Skowronska-Krawczyk, Dorota; Chiodini, Florence; Alliod, Christine; Ballivet, Marc; Matter, Jean-Marc
2007-12-28
The atonal homolog 5 (ATH5) protein is central to the transcriptional network regulating the specification of retinal ganglion cells, and its expression comes under the spatiotemporal control of several basic helix-loop-helix (bHLH) proteins in the course of retina development. Monitoring the in vivo occupancy of the ATH5 promoter by the ATH5, Ngn2, and NeuroM proteins and analyzing the DNA motifs they bind, we show that three evolutionarily conserved E-boxes are required for the bHLH proteins to control the different phases of ATH5 expression. E-box 4 mediates the activity of Ngn2, ATH5, and NeuroM along the pathway leading to the conversion of progenitors into newborn neurons. E-box 1, by mediating the antagonistic effects of Ngn2 and HES1 in proliferating progenitors, controls the expansion of the ATH5 expression domain in early retina. E-box 2 is required for the positive feedback by ATH5 that underlies the up-regulation of ATH5 expression when progenitors are going through their last cell cycle. The combinatorial nature of the regulation of the ATH5 promoter suggests that the bHLH proteins involved have no assigned E-boxes but use a common set at which they either cooperate or compete to finely tune ATH5 expression as development proceeds.
AN APPROACH TO TRANSGENIC CROP MONITORING
Remote sensing by aerial or satellite images may provide a method of identifying transgenic pesticidal crop distribution in the landscape. Genetically engineered crops containing bacterial gene(s) that express an insecticidal protein from Bacillus thuringiensis (Bt) are regulated...
Bracht, Thilo; Schweinsberg, Vincent; Trippler, Martin; Kohl, Michael; Ahrens, Maike; Padden, Juliet; Naboulsi, Wael; Barkovits, Katalin; Megger, Dominik A; Eisenacher, Martin; Borchers, Christoph H; Schlaak, Jörg F; Hoffmann, Andreas-Claudius; Weber, Frank; Baba, Hideo A; Meyer, Helmut E; Sitek, Barbara
2015-05-01
Hepatic fibrosis and cirrhosis are major health problems worldwide. Until now, highly invasive biopsy remains the diagnostic gold standard despite many disadvantages. To develop noninvasive diagnostic assays for the assessment of liver fibrosis, it is urgently necessary to identify molecules that are robustly expressed in association with the disease. We analyzed biopsied tissue samples from 95 patients with HBV/HCV-associated hepatic fibrosis using three different quantification methods. We performed a label-free proteomics discovery study to identify novel disease-associated proteins using a subset of the cohort (n = 27). Subsequently, gene expression data from all available clinical samples were analyzed (n = 77). Finally, we performed a targeted proteomics approach, multiple reaction monitoring (MRM), to verify the disease-associated expression in samples independent from the discovery approach (n = 68). We identified fibulin-5 (FBLN5) as a novel protein expressed in relation to hepatic fibrosis. Furthermore, we confirmed the altered expression of microfibril-associated glycoprotein 4 (MFAP4), lumican (LUM), and collagen alpha-1(XIV) chain (COL14A1) in association to hepatic fibrosis. To our knowledge, no tissue-based quantitative proteomics study for hepatic fibrosis has been performed using a cohort of comparable size. By this means, we add substantial evidence for the disease-related expression of the proteins examined in this study.
Use of Small Fluorescent Molecules to Monitor Channel Activity
NASA Astrophysics Data System (ADS)
Jones, Sharon; Stringer, Sarah; Naik, Rajesh; Stone, Morley
2001-03-01
The Mechanosensitive channel of Large conductance (MscL) allows bacteria to rapidly adapt to changing environmental conditions such as osmolarity. The MscL channel opens in response to increases in membrane tension, which allows for the efflux of cytoplasmic constituents. Here we describe the cloning and expression of Salmonella typhimurium MscL (St-MscL). Using a fluorescence efflux assay, we demonstrate that efflux through the MscL channel during hypoosmotic shock can be monitored using endogenously produced fluorophores. In addition, we observe that thermal stimulation, i.e., heat shock, can also induce efflux through MscL. We present the first evidence of thermal activation of MscL efflux by heat shocking cells expressing the S. typhimurium protein variant. This finding has significant biosensor implications, especially for investigators exploring the use of channel proteins in biosensor applications. Thermal biosensors are relatively unexplored, but would have considerable commercial and military utility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, Jacque C; Dill, Brian; Pan, Chongle
The CRISPR/Cas system, comprised of clustered regularly interspaced short palindromic repeats along with their associated (Cas) proteins, protects bacteria and archaea from viral predation and invading nucleic acids. While the mechanism of action for this acquired immunity is currently under investigation, the response of Cas protein expression to phage infection has yet to be elucidated. In this study, we employed shotgun proteomics to measure the global proteome expression in a model system for studying the CRISPR/Cas response: infection of S. thermophilus DGCC7710 with phage 2972. Host and viral proteins were simultaneously measured following inoculation at two different multiplicities of infectionmore » and across various time points using two-dimensional liquid chromatography tandem mass spectroscopy. Thirty-seven out of forty predicted viral proteins were detected, including all proteins of the structural virome and viral effector proteins. In total, 1,013 of 2,079 predicted S. thermophilus proteins were detected, facilitating the monitoring of host protein synthesis changes in response to virus infection. Importantly, Cas proteins from all four CRISPR loci in the S. thermophilus DGCC7710 genome were detected, including loci previously thought to be inactive. Many Cas proteins were found to be constitutively expressed, but several demonstrated increased abundance during peak infection, including the Cas9 proteins from the CRISPR1 and CRISPR3 loci, which are key players in the interference phase of the CRISPR/Cas response. Altogether, these results provide novel insights into the proteomic response of S. thermophilus, specifically CRISPR-associated proteins, upon phage 2972 infection.« less
Real-time functional imaging for monitoring miR-133 during myogenic differentiation.
Kato, Yoshio; Miyaki, Shigeru; Yokoyama, Shigetoshi; Omori, Shin; Inoue, Atsushi; Horiuchi, Machiko; Asahara, Hiroshi
2009-11-01
MicroRNAs (miRNAs) are a class of non-coding small RNAs that act as negative regulators of gene expression through sequence-specific interactions with the 3' untranslated regions (UTRs) of target mRNA and play various biological roles. miR-133 was identified as a muscle-specific miRNA that enhanced the proliferation of myoblasts during myogenic differentiation, although its activity in myogenesis has not been fully characterized. Here, we developed a novel retroviral vector system for monitoring muscle-specific miRNA in living cells by using a green fluorescent protein (GFP) that is connected to the target sequence of miR-133 via the UTR and a red fluorescent protein for normalization. We demonstrated that the functional promotion of miR-133 during myogenesis is visualized by the reduction of GFP carrying the miR-133 target sequence, suggesting that miR-133 specifically down-regulates its targets during myogenesis in accordance with its expression. Our cell-based miRNA functional assay monitoring miR-133 activity should be a useful tool in elucidating the role of miRNAs in various biological events.
Zhou, Jin; Cai, Zhong-Hua; Zhu, Xiao-Shan; Li, Lei; Gao, Yun-Feng
2010-10-01
The immunotoxicity of tributyltin (TBT) on marine gastropods has been comparatively little studied although risks to wildlife associated with this compound are well known. In this study, a 30-day trial was conducted to evaluate the immunotoxic effects on abalone (Haliotis diversicolor supertexta) by exposing a range of doses of TBT (0, 2, 10, and 50 ng/L). Innate immune parameters, including phagocytic ability (PA), lysozyme activity, phenoloxidase (PO) level and superoxide dismutase (SOD) activity were monitored at intervals of 5, 15 and 30 days. Haemolymph protein expression profile was also examined at the end of the experiment. The results showed that PA value, lysozyme activity and PO level significantly decreased compared with the controls (P < 0.05), which indicated that TBT exposure markedly suppressed non-specific immune competence. Exposure to TBT also caused variation in protein expression patterns of haemolymph. Among the protein spots of differential expressions, seven proteins from the haemolymph of TBT-treated abalone were successfully identified by MALDI-TOF-MS analysis. Three protein spots increased and were identified as carrier-like peptide, peroxidase 21 precursor and creatine phosphokinase. These proteins are believed to up-regulate in expression as a response to detoxification and antioxidative stress mechanisms. The other four protein spots that down-regulated in TBT-treated groups were identified as aromatase-like protein, protein kinase C, ceruloplasmin and microtubule-actin crosslinking factor 1, and these proteins play an important role in endocrine regulation and immune defense. Taken together, the results demonstrate that TBT impair abalone immunological ability and is a potential immune disruptor. 2010 Elsevier Ltd. All rights reserved.
Sun, Kaiwen; Zheng, Yuyu; Zhu, Ziqiang
2017-11-20
Protein-protein interactions are fundamental mechanisms for relaying signal transduction in most cellular processes; therefore, identification of novel protein-protein interaction pairs and monitoring protein interaction dynamics are of particular interest for revealing how plants respond to environmental factors and/or developmental signals. A plethora of approaches have been developed to examine protein-protein interactions, either in vitro or in vivo. Among them, the recently established luciferase complementation imaging (LCI) assay is the simplest and fastest method for demonstrating in vivo protein-protein interactions. In this assay, protein A or protein B is fused with the amino-terminal or carboxyl-terminal half of luciferase, respectively. When protein A interacts with protein B, the two halves of luciferase will be reconstituted to form a functional and active luciferase enzyme. Luciferase activity can be recorded with a luminometer or CCD-camera. Compared with other approaches, the LCI assay shows protein-protein interactions both qualitatively and quantitatively. Agrobacterium infiltration in Nicotiana benthamiana leaves is a widely used system for transient protein expression. With the combination of LCI and transient expression, these approaches show that the physical interaction between COP1 and SPA1 was gradually reduced after jasmonate treatment.
Chen, Yao; Zane, Nicole R; Thakker, Dhiren R; Wang, Michael Zhuo
2016-07-01
Flavin-containing monooxygenases (FMOs) have a significant role in the metabolism of small molecule pharmaceuticals. Among the five human FMOs, FMO1, FMO3, and FMO5 are the most relevant to hepatic drug metabolism. Although age-dependent hepatic protein expression, based on immunoquantification, has been reported previously for FMO1 and FMO3, there is very little information on hepatic FMO5 protein expression. To overcome the limitations of immunoquantification, an ultra-performance liquid chromatography (UPLC)-multiple reaction monitoring (MRM)-based targeted quantitative proteomic method was developed and optimized for the quantification of FMO1, FMO3, and FMO5 in human liver microsomes (HLM). A post-in silico product ion screening process was incorporated to verify LC-MRM detection of potential signature peptides before their synthesis. The developed method was validated by correlating marker substrate activity and protein expression in a panel of adult individual donor HLM (age 39-67 years). The mean (range) protein expression of FMO3 and FMO5 was 46 (26-65) pmol/mg HLM protein and 27 (11.5-49) pmol/mg HLM protein, respectively. To demonstrate quantification of FMO1, a panel of fetal individual donor HLM (gestational age 14-20 weeks) was analyzed. The mean (range) FMO1 protein expression was 7.0 (4.9-9.7) pmol/mg HLM protein. Furthermore, the ontogenetic protein expression of FMO5 was evaluated in fetal, pediatric, and adult HLM. The quantification of FMO proteins also was compared using two different calibration standards, recombinant proteins versus synthetic signature peptides, to assess the ratio between holoprotein versus total protein. In conclusion, a UPLC-MRM-based targeted quantitative proteomic method has been developed for the quantification of FMO enzymes in HLM. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Chen, Yao; Zane, Nicole R.; Thakker, Dhiren R.
2016-01-01
Flavin-containing monooxygenases (FMOs) have a significant role in the metabolism of small molecule pharmaceuticals. Among the five human FMOs, FMO1, FMO3, and FMO5 are the most relevant to hepatic drug metabolism. Although age-dependent hepatic protein expression, based on immunoquantification, has been reported previously for FMO1 and FMO3, there is very little information on hepatic FMO5 protein expression. To overcome the limitations of immunoquantification, an ultra-performance liquid chromatography (UPLC)-multiple reaction monitoring (MRM)-based targeted quantitative proteomic method was developed and optimized for the quantification of FMO1, FMO3, and FMO5 in human liver microsomes (HLM). A post-in silico product ion screening process was incorporated to verify LC-MRM detection of potential signature peptides before their synthesis. The developed method was validated by correlating marker substrate activity and protein expression in a panel of adult individual donor HLM (age 39–67 years). The mean (range) protein expression of FMO3 and FMO5 was 46 (26–65) pmol/mg HLM protein and 27 (11.5–49) pmol/mg HLM protein, respectively. To demonstrate quantification of FMO1, a panel of fetal individual donor HLM (gestational age 14–20 weeks) was analyzed. The mean (range) FMO1 protein expression was 7.0 (4.9–9.7) pmol/mg HLM protein. Furthermore, the ontogenetic protein expression of FMO5 was evaluated in fetal, pediatric, and adult HLM. The quantification of FMO proteins also was compared using two different calibration standards, recombinant proteins versus synthetic signature peptides, to assess the ratio between holoprotein versus total protein. In conclusion, a UPLC-MRM-based targeted quantitative proteomic method has been developed for the quantification of FMO enzymes in HLM. PMID:26839369
Iijima, Norio; Miyamoto, Shinji; Matsumoto, Keisuke; Takumi, Ken; Ueta, Yoichi; Ozawa, Hitoshi
2017-09-01
We have newly developed a system that allows monitoring of the intensity of fluorescent signals from deep brains of rats transgenically modified to express enhanced green fluorescent protein (eGFP) via an optical fiber. One terminal of the optical fiber was connected to a blue semiconductor laser oscillator/green fluorescence detector. The other terminal was inserted into the vicinity of the eGFP-expressing neurons. Since the optical fiber was vulnerable to twisting stresses caused by animal movement, we also developed a cage in which the floor automatically turns, in response to the turning of the rat's head. This relieved the twisting stress on the optical fiber. The system then enabled real-time monitoring of fluorescence in awake and unrestrained rats over many hours. Using this system, we could continuously monitor eGFP-expression in arginine vasopressin-eGFP transgenic rats. Moreover, we observed an increase of eGFP-expression in the paraventricular nucleus under salt-loading conditions. We then performed in vivo imaging of eGFP-expressing GnRH neurons in the hypothalamus, via a bundle consisting of 3000 thin optical fibers. With the combination of the optical fiber bundle connection to the fluorescence microscope, and the special cage system, we were able to capture and retain images of eGFP-expressing neurons from free-moving rats. We believe that our newly developed method for monitoring and imaging eGFP-expression in deep brain neurons will be useful for analysis of neuronal functions in awake and unrestrained animals for long durations.
Wu, Chieh-Lin; Chou, Hsiu-Chuan; Cheng, Chao-Sheng; Li, Ji-Min; Lin, Szu-Ting; Chen, Yi-Wen; Chan, Hong-Lin
2012-04-03
UVB is the most energetic and DNA-damaging to humans in ultraviolet radiation. Previous research has suggested that exposure to UVB causes skin pathologies because of direct DNA damage and the generation of reactive oxygen species (ROS). However, the detailed molecular mechanisms by which UVB leads to skin cancer have yet to be clarified. In the current study, normal skin fibroblast cells (CCD-966SK) were exposed to various doses of UVB, and the changes in protein expression and thiol reactivity were monitored with lysine- and cysteine-labeling 2D-DIGE and MALDI-TOF mass spectrometry. Our proteomic analysis revealed that 89 identified proteins showed significant changes in protein expression, and 37 in thiol reactivity. Many proteins that are known to be involved in protein folding, redox regulation and nucleotide biosynthesis were up-regulated under UVB irradiation. In contrast, proteins responsible for biosynthesis and protein degradation were down-regulated. In addition, the thiol-reactivity of proteins involving cytoskeleton, metabolism, and signal transduction were altered by UVB. In summary, these UVB-modulated cellular proteins and redox-regulated proteins might play important roles in the early stages of skin cancer formation and photoaging induced by UVB-irradiation. Such proteins might provide a potential target for the rational design of drugs to prevent UVB-induced diseases. Copyright © 2011 Elsevier B.V. All rights reserved.
Arakawa, Reiko; Arakawa, Masayuki; Kaneko, Kaori; Otsuki, Noriko; Aoki, Ryoko; Saito, Kayoko
2016-08-01
Spinal muscular atrophy is a neurodegenerative disorder caused by the deficient expression of survival motor neuron protein in motor neurons. A major goal of disease-modifying therapy is to increase survival motor neuron expression. Changes in survival motor neuron protein expression can be monitored via peripheral blood cells in patients; therefore we tested the sensitivity and utility of imaging flow cytometry for this purpose. After the immortalization of peripheral blood lymphocytes from a human healthy control subject and two patients with spinal muscular atrophy type 1 with two and three copies of SMN2 gene, respectively, we used imaging flow cytometry analysis to identify significant differences in survival motor neuron expression. A bright detail intensity analysis was used to investigate differences in the cellular localization of survival motor neuron protein. Survival motor neuron expression was significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. Moreover, survival motor neuron expression correlated with the clinical severity of spinal muscular atrophy according to SMN2 copy number. The cellular accumulation of survival motor neuron protein was also significantly decreased in cells derived from patients with spinal muscular atrophy relative to those derived from a healthy control subject. The benefits of imaging flow cytometry for peripheral blood analysis include its capacities for analyzing heterogeneous cell populations; visualizing cell morphology; and evaluating the accumulation, localization, and expression of a target protein. Imaging flow cytometry analysis should be implemented in future studies to optimize its application as a tool for spinal muscular atrophy clinical trials. Copyright © 2016 Elsevier Inc. All rights reserved.
Kinnear, Ekaterina; Caproni, Lisa J; Tregoning, John S
2015-01-01
DNA vaccines can be manufactured cheaply, easily and rapidly and have performed well in pre-clinical animal studies. However, clinical trials have so far been disappointing, failing to evoke a strong immune response, possibly due to poor antigen expression. To improve antigen expression, improved technology to monitor DNA vaccine transfection efficiency is required. In the current study, we compared plasmid encoded tdTomato, mCherry, Katushka, tdKatushka2 and luciferase as reporter proteins for whole animal in vivo imaging. The intramuscular, subcutaneous and tattooing routes were compared and electroporation was used to enhance expression. We observed that overall, fluorescent proteins were not a good tool to assess expression from DNA plasmids, with a highly heterogeneous response between animals. Of the proteins used, intramuscular delivery of DNA encoding either tdTomato or luciferase gave the clearest signal, with some Katushka and tdKatushka2 signal observed. Subcutaneous delivery was weakly visible and nothing was observed following DNA tattooing. DNA encoding haemagglutinin was used to determine whether immune responses mirrored visible expression levels. A protective immune response against H1N1 influenza was induced by all routes, even after a single dose of DNA, though qualitative differences were observed, with tattooing leading to high antibody responses and subcutaneous DNA leading to high CD8 responses. We conclude that of the reporter proteins used, expression from DNA plasmids can best be assessed using tdTomato or luciferase. But, the disconnect between visible expression level and immunogenicity suggests that in vivo whole animal imaging of fluorescent proteins has limited utility for predicting DNA vaccine efficacy.
Bai, Yunpeng; Patil, Santoshkumar N; Bowden, Steven D; Poulter, Simon; Pan, Jie; Salmond, George P C; Welch, Martin; Huck, Wilhelm T S; Abell, Chris
2013-05-21
In this paper, we investigated the intra-species bacterial quorum sensing at the single cell level using a double droplet trapping system. Escherichia coli transformed to express the quorum sensing receptor protein, LasR, were encapsulated in microdroplets that were positioned adjacent to microdroplets containing the autoinducer, N-(3-oxododecanoyl)-L-homoserine lactone (OdDHL). Functional activation of the LasR protein by diffusion of the OdDHL across the droplet interface was measured by monitoring the expression of green fluorescent protein (GFP) from a LasR-dependent promoter. A threshold concentration of OdDHL was found to induce production of quorum-sensing associated GFP by E. coli. Additionally, we demonstrated that LasR-dependent activation of GFP expression was also initiated when the adjacent droplets contained single E. coli transformed with the OdDHL synthase gene, LasI, representing a simple quorum sensing circuit between two droplets.
Martin, Laetitia B B; Sherwood, Robert W; Nicklay, Joshua J; Yang, Yong; Muratore-Schroeder, Tara L; Anderson, Elizabeth T; Thannhauser, Theodore W; Rose, Jocelyn K C; Zhang, Sheng
2016-08-01
We describe here the use of label-free wide selected-ion monitoring data-independent acquisition (WiSIM-DIA) to identify proteins that are involved in the formation of tomato (Solanum lycopersicum) fruit cuticles and that are regulated by the transcription factor CUTIN DEFICIENT2 (CD2). A spectral library consisting of 11 753 unique peptides, corresponding to 2338 tomato protein groups, was used and the DIA analysis was performed at the MS1 level utilizing narrow mass windows for extraction with Skyline 2.6 software. We identified a total of 1140 proteins, 67 of which had expression levels that differed significantly between the cd2 tomato mutant and the wild-type cultivar M82. Differentially expressed proteins including a key protein involved in cutin biosynthesis, were selected for validation by target SRM/MRM and by Western blot analysis. In addition to confirming a role for CD2 in regulating cuticle formation, the results also revealed that CD2 influences pathways associated with cell wall biology, anthocyanin biosynthesis, plant development, and responses to stress, which complements findings of earlier RNA-Seq experiments. Our results provide new insights into molecular processes and aspects of fruit biology associated with CD2 function, and demonstrate that the WiSIM-DIA is an effective quantitative approach for global protein identifications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Takalloo, Zeinab; Sajedi, Reza H; Hosseinkhani, Saman; Asghari, S Mohsen
2016-11-15
Artemin is an abundant thermostable protein in Artemia encysted embryos and considered as a stress protein, as its highly regulated expression is associated with stress resistance. Artemin cDNA was previously isolated and cloned from Artemia urmiana and artemin was found as an efficient molecular chaperone in vitro. Here, co-transformation of E. coli was performed with two expression vectors containing artemin and firefly luciferase for in vivo studies. The time-course of luciferase inactivation at low and elevated temperatures showed that luciferase was rapidly inactivated in control cells, but it was found that luciferase was protected significantly in artemin expressing cells. More interestingly, luciferase activity was completely regained in heat treated artemin expressing cells at room temperature. In addition, in both stress conditions, similar to residual activity of luciferase, cell viability in induced cultures over-expressing artemin was significantly higher than non-expressed artemin cells. It can be suggested that artemin confers impressive resistance in stressful conditions when introduced into E. coli cells, which is due to that it protects proteins against aggregation. Such luciferase co-expression system can be used as a real-time reporter to investigate the activity of chaperone proteins in vivo and provide a rapid and simple test for molecular chaperones. Copyright © 2016 Elsevier Inc. All rights reserved.
Protein Expression in Insect and Mammalian Cells Using Baculoviruses in Wave Bioreactors.
Kadwell, Sue H; Overton, Laurie K
2016-01-01
Many types of disposable bioreactors for protein expression in insect and mammalian cells are now available. They differ in design, capacity, and sensor options, with many selections available for either rocking platform, orbitally shaken, pneumatically mixed, or stirred-tank bioreactors lined with an integral disposable bag (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). WAVE Bioreactors™ were among the first disposable systems to be developed (Singh, Cytotechnology 30:149-158, 1999). Since their commercialization in 1999, Wave Bioreactors have become routinely used in many laboratories due to their ease of operation, limited utility requirements, and protein expression levels comparability to traditional stirred-tank bioreactors. Wave Bioreactors are designed to use a presterilized Cellbag™, which is attached to a rocking platform and inflated with filtered air provided by the bioreactor unit. The Cellbag can be filled with medium and cells and maintained at a set temperature. The rocking motion, which is adjusted through angle and rock speed settings, provides mixing of oxygen (and CO2, which is used to control pH in mammalian cell cultures) from the headspace created in the inflated Cellbag with the cell culture medium and cells. This rocking motion can be adjusted to prevent cell shear damage. Dissolved oxygen and pH can be monitored during scale-up, and samples can be easily removed to monitor other parameters. Insect and mammalian cells grow very well in Wave Bioreactors (Shukla and Gottschalk, Trends Biotechnol 31(3):147-154, 2013). Combining Wave Bioreactor cell growth capabilities with recombinant baculoviruses engineered for insect or mammalian cell expression has proven to be a powerful tool for rapid production of a wide range of proteins.
Development of a Targeted Urine Proteome Assay for kidney diseases.
Cantley, Lloyd G; Colangelo, Christopher M; Stone, Kathryn L; Chung, Lisa; Belcher, Justin; Abbott, Thomas; Cantley, Jennifer L; Williams, Kenneth R; Parikh, Chirag R
2016-01-01
Since human urine is the most readily available biofluid whose proteome changes in response to disease, it is a logical sample for identifying protein biomarkers for kidney diseases. Potential biomarkers were identified by using a multiproteomics workflow to compare urine proteomes of kidney transplant patients with immediate and delayed graft function. Differentially expressed proteins were identified, and corresponding stable isotope labeled internal peptide standards were synthesized for scheduled MRM. The Targeted Urine Proteome Assay (TUPA) was then developed by identifying those peptides for which there were at least two transitions for which interference in a urine matrix across 156 MRM runs was <30%. This resulted in an assay that monitors 224 peptides from 167 quantifiable proteins. TUPA opens the way for using a robust mass spectrometric technology, MRM, for quantifying and validating biomarkers from among 167 urinary proteins. This approach, while developed using differentially expressed urinary proteins from patients with delayed versus immediate graft function after kidney transplant, can be expanded to include differentially expressed urinary proteins in multiple kidney diseases. Thus, TUPA could provide a single assay to help diagnose, prognose, and manage many kidney diseases. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Baculovirus expression of the avian paramyxovirus 2 HN gene for diagnostic applications.
Choi, Kang-Seuk; Kye, Soo-Jeong; Kim, Ji-Ye; Seul, Hee-Jeong; Lee, Hee-Soo; Kwon, Hyuk-Moo; Sung, Haan-Woo
2014-03-01
Avian paramyxovirus 2 (APMV-2) infections are associated with respiratory diseases in poultry worldwide. The hemagglutination inhibition (HI) test is a useful tool for surveillance and monitoring of this virus. In this study, full-length hemagglutinin (HN) gene of APMV-2 was chemically synthesized based on its published sequence, cloned and expressed in Spodoptera frugiperda insect cells using recombinant baculoviruses. The biological, antigenic and immunogenic properties of the expressed protein were evaluated to assess its ability to produce diagnostic reagents for HI testing. Recombinant APMV-2 HN protein showed two distinct bands with molecular masses of 64 and 75kDa, which showed hemagglutination (HA) and neuraminidase activities, respectively. The recombinant HN (rHN) protein extracted from infected cells produced high HA titers (2(13) per 25μL). HA activity of the protein was inhibited by APMV-2 antiserum, although there were weak cross reactions with other APMV serotype antisera. The rHN protein induced high titers of APMV-2-specific antibodies in immunized chickens based on the HI test. These results indicated that recombinant APMV-2 HN protein is a useful alternative to the APMV-2 antigen in HI assays. Copyright © 2013 Elsevier B.V. All rights reserved.
Yu, Zhanjiang; Yang, Xiaoda; Wang, Kui
2006-06-01
The aim of this work is to define the relationship between heat shock protein (HSP) and reactive oxygen species (ROS) in the cells exposed to different concentrations of metal ions, and to evaluate a new method for tracing the dynamic levels of cellular reactive oxygen species using a HSE-SEAP reporter gene. The expression of heat shock protein was measured using a secreted alkaline phosphatase (SEAP) reporter gene transformed into HeLa cell strain, the levels of superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were determined by NBT reduction assay and DCFH staining flow cytometry (FCM), respectively. The experimental results demonstrated that the expression of heat shock protein induced by metal ions was linearly related to the cellular superoxide anion level before cytotoxic effects were observed, but not related to the cellular hydrogen peroxide level. The experimental results suggested that metal ions might induce heat shock protein by elevating cellular superoxide anion level, and thus the expression of heat shock protein indicated by the HSE-SEAP reporter gene can be an effective model for monitoring the dynamic level of superoxide anion and early metal-induced oxidative stress/cytotoxicity.
Tran, Bao Quoc; Miller, Philip R; Taylor, Robert M; Boyd, Gabrielle; Mach, Phillip M; Rosenzweig, C Nicole; Baca, Justin T; Polsky, Ronen; Glaros, Trevor
2018-01-05
As wearable fitness devices have gained commercial acceptance, interest in real-time monitoring of an individual's physiological status using noninvasive techniques has grown. Microneedles have been proposed as a minimally invasive technique for sampling the dermal interstitial fluid (ISF) for clinical monitoring and diagnosis, but little is known about its composition. In this study, a novel microneedle array was used to collect dermal ISF from three healthy human donors and compared with matching serum and plasma samples. Using a shotgun quantitative proteomic approach, 407 proteins were quantified with at least one unique peptide, and of those, 135 proteins were differently expressed at least 2-fold. Collectively, these proteins tended to originate from the cytoplasm, membrane bound vesicles, and extracellular vesicular exosomes. Proteomic analysis confirmed previously published work that indicates that ISF is highly similar to both plasma and serum. In this study, less than one percent of proteins were uniquely identified in ISF. Taken together, ISF could serve as a minimally invasive alternative for blood-derived fluids with potential for real-time monitoring applications.
Regulation of the macrophage oxytocin receptor in response to inflammation
Szeto, Angela; Sun-Suslow, Ni; Mendez, Armando J.; Hernandez, Rosa I.; Wagner, Klaus V.
2017-01-01
It has been demonstrated that the neuropeptide oxytocin (OT) attenuates oxidative stress and inflammation in macrophages. In the current study, we examined the role of inflammation on the expression of the oxytocin receptor (OXTR). We hypothesized that OXTR expression is increased during the inflammation through a nuclear factor-κB (NF-κB)-mediated pathway, thus responding as an acute-phase protein. Inflammation was induced by treating macrophages (human primary, THP-1, and murine) with lipopolysaccharide (LPS) and monitored by expression of IL-6. Expression of OXTR and vasopressin receptors was assessed by qPCR, and OXTR expression was confirmed by immunoblotting. Inflammation upregulated OXTR transcription 10- to 250-fold relative to control in THP-1 and human primary macrophages and increased OXTR protein expression. In contrast, vasopressin receptor-2 mRNA expression was reduced following LPS treatment. Blocking NF-κB activation prevented the increase in OXTR transcription. OT treatment of control cells and LPS-treated cells increased ERK1/2 phosphorylation, demonstrating activation of the OXTR/Gαq/11 signaling pathway. OT activation of OXTR reduced secretion of IL-6 in LPS-activated macrophages. Collectively, these findings suggest that OXTR is an acute-phase protein and that its increased expression is regulated by NF-κB and functions to attenuate cellular inflammatory responses in macrophages. PMID:28049625
Time-lapse monitoring of TLR2 ligand internalization with newly developed fluorescent probes.
Arai, Yohei; Yokoyama, Kouhei; Kawahara, Yuki; Feng, Qi; Ohta, Ippei; Shimoyama, Atsushi; Inuki, Shinsuke; Fukase, Koichi; Kabayama, Kazuya; Fujimoto, Yukari
2018-05-23
As a mammalian toll-like receptor family member protein, TLR2 recognizes lipoproteins from bacteria and modulates the immune response by inducing the expression of various cytokines. We have developed fluorescence-labeled TLR2 ligands with either hydrophilic or hydrophobic fluorescence groups. The labeled ligands maintained the inflammatory IL-6 induction activity and enabled us to observe the internalization and colocalization of the TLR2 ligands using live-cell imaging. The time-lapse monitoring in the live-cell imaging of the fluorescence-labeled TLR2 ligand showed that TLR2/CD14 expression in the host cells enhanced the internalization of TLR2 ligand molecules.
Sangar, Vineet; Funk, Cory C; Kusebauch, Ulrike; Campbell, David S; Moritz, Robert L; Price, Nathan D
2014-10-01
Glioblastoma multiforme is a highly invasive and aggressive brain tumor with an invariably poor prognosis. The overexpression of epidermal growth factor receptor (EGFR) is a primary influencer of invasion and proliferation in tumor cells and the constitutively active EGFRvIII mutant, found in 30-65% of Glioblastoma multiforme, confers more aggressive invasion. To better understand how EGFR contributes to tumor aggressiveness, we investigated the effect of EGFR on the secreted levels of 65 rationally selected proteins involved in invasion. We employed selected reaction monitoring targeted mass spectrometry using stable isotope labeled internal peptide standards to quantity proteins in the secretome from five GBM (U87) isogenic cell lines in which EGFR, EGFRvIII, and/or PTEN were expressed. Our results show that cell lines with EGFR overexpression and constitutive EGFRvIII expression differ remarkably in the expression profiles for both secreted and intracellular signaling proteins, and alterations in EGFR signaling result in reproducible changes in concentrations of secreted proteins. Furthermore, the EGFRvIII-expressing mutant cell line secretes the majority of the selected invasion-promoting proteins at higher levels than other cell lines tested. Additionally, the intracellular and extracellular protein measurements indicate elevated oxidative stress in the EGFRvIII-expressing cell line. In conclusion, the results of our study demonstrate that EGFR signaling has a significant effect on the levels of secreted invasion-promoting proteins, likely contributing to the aggressiveness of Glioblastoma multiforme. Further characterization of these proteins may provide candidates for new therapeutic strategies and targets as well as biomarkers for this aggressive disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Wang, Yufeng; Kuramitsu, Yasuhiro; Baron, Byron; Kitagawa, Takao; Tokuda, Kazuhiro; Akada, Junko; Nakamura, Kazuyuki
2015-11-24
Microtubule-associated protein 1A/1B-light chain 3 (LC3)-II is essential for autophagosome formation and is widely used to monitor autophagic activity. We show that CGK733 induces LC3 II and LC3-puncta accumulation, which are not involved in the activation of autophagy. The treatment of CGK733 did not alter the autophagic flux and was unrelated to p62 degradation. Treatment with CGK733 activated the AMP-activated protein kinase (AMPK) and protein kinase RNA-like endoplasmic reticulum kinase/CCAAT-enhancer-binding protein homologous protein (PERK/CHOP) pathways and elevated the expression of p21Waf1/Cip1. Inhibition of both AMPK and PERK/CHOP pathways by siRNA or chemical inhibitor could block CGK733-induced p21Waf1/Cip1 expression as well as caspase-3 cleavage. Knockdown of LC3 B (but not LC3 A) abolished CGK733-triggered LC3 II accumulation and consequently diminished AMPK and PERK/CHOP activity as well as p21Waf1/Cip1 expression. Our results demonstrate that CGK733-triggered LC3 II formation is an initial event upstream of the AMPK and PERK/CHOP pathways, both of which control p21Waf1/Cip1 expression.
Jeong, Seul-Ki; Hancock, William S; Paik, Young-Ki
2015-09-04
Since the launch of the Chromosome-centric Human Proteome Project (C-HPP) in 2012, the number of "missing" proteins has fallen to 2932, down from ∼5932 since the number was first counted in 2011. We compared the characteristics of missing proteins with those of already annotated proteins with respect to transcriptional expression pattern and the time periods in which newly identified proteins were annotated. We learned that missing proteins commonly exhibit lower levels of transcriptional expression and less tissue-specific expression compared with already annotated proteins. This makes it more difficult to identify missing proteins as time goes on. One of the C-HPP goals is to identify alternative spliced product of proteins (ASPs), which are usually difficult to find by shot-gun proteomic methods due to their sequence similarities with the representative proteins. To resolve this problem, it may be necessary to use a targeted proteomics approach (e.g., selected and multiple reaction monitoring [S/MRM] assays) and an innovative bioinformatics platform that enables the selection of target peptides for rarely expressed missing proteins or ASPs. Given that the success of efforts to identify missing proteins may rely on more informative public databases, it was necessary to upgrade the available integrative databases. To this end, we attempted to improve the features and utility of GenomewidePDB by integrating transcriptomic information (e.g., alternatively spliced transcripts), annotated peptide information, and an advanced search interface that can find proteins of interest when applying a targeted proteomics strategy. This upgraded version of the database, GenomewidePDB 2.0, may not only expedite identification of the remaining missing proteins but also enhance the exchange of information among the proteome community. GenomewidePDB 2.0 is available publicly at http://genomewidepdb.proteomix.org/.
Subcellular localization of transiently expressed fluorescent fusion proteins.
Collings, David A
2013-01-01
The recent and massive expansion in plant genomics data has generated a large number of gene sequences for which two seemingly simple questions need to be answered: where do the proteins encoded by these genes localize in cells, and what do they do? One widespread approach to answering the localization question has been to use particle bombardment to transiently express unknown proteins tagged with green fluorescent protein (GFP) or its numerous derivatives. Confocal fluorescence microscopy is then used to monitor the localization of the fluorescent protein as it hitches a ride through the cell. The subcellular localization of the fusion protein, if not immediately apparent, can then be determined by comparison to localizations generated by fluorescent protein fusions to known signalling sequences and proteins, or by direct comparison with fluorescent dyes. This review aims to be a tour guide for researchers wanting to travel this hitch-hiker's path, and for reviewers and readers who wish to understand their travel reports. It will describe some of the technology available for visualizing protein localizations, and some of the experimental approaches for optimizing and confirming localizations generated by particle bombardment in onion epidermal cells, the most commonly used experimental system. As the non-conservation of signal sequences in heterologous expression systems such as onion, and consequent mis-targeting of fusion proteins, is always a potential problem, the epidermal cells of the Argenteum mutant of pea are proposed as a model system.
Chen, Yi; Fisher, Kate J.; Lloyd, Mark; Wood, Elizabeth R.; Coppola, Domenico; Siegel, Erin; Shibata, David; Chen, Yian A.; Koomen, John M.
2017-01-01
Quantitative evaluation of protein expression across multiple cancer-related signaling pathways (e.g. Wnt/β-catenin, TGF-β, receptor tyrosine kinases (RTK), MAP kinases, NF-κB, and apoptosis) in tumor tissues may enable the development of a molecular profile for each individual tumor that can aid in the selection of appropriate targeted cancer therapies. Here, we describe the development of a broadly applicable protocol to develop and implement quantitative mass spectrometry assays using cell line models and frozen tissue specimens from colon cancer patients. Cell lines are used to develop peptide-based assays for protein quantification, which are incorporated into a method based on SDS-PAGE protein fractionation, in-gel digestion, and liquid chromatography-multiple reaction monitoring mass spectrometry (LC-MRM/MS). This analytical platform is then applied to frozen tumor tissues. This protocol can be broadly applied to the study of human disease using multiplexed LC-MRM assays. PMID:28808993
Li, Hongjun; Yang, Tianhua; Huang, Yanping; Liu, Mingzhu; Qin, Zhongqiang; Chu, Fei; Li, Zhenghong; Li, Yonghai
2017-11-01
Objective To establish a hepatocellular carcinoma xenograft model in nude mice which could stably express gene and be monitored dynamically. Methods We first constructed the lentiviral particles containing luciferase (Luc) and near-infrared fluorescent protein (iRFP) and puromycin resistance gene, and then transduced them into the HepG2 hepatoma cells. The cell line stably expressing Luc and iRFP genes were screened and inoculated into nude mice to establish xenograft tumor model. Tumor growth was monitored using in vivo imaging system. HE staining and immunohistochemistry were used to evaluate the pathological features and tumorigenic ability. Results HepG2 cells stably expressing iRFP and Luc were obtained; with the engineered cell line, xenograft model was successfully established with the features of proper tumor developing time and high rate of tumor formation as well as typical pathological features as showed by HE staining and immunohistochemistry. Conclusion Hepatocellular carcinoma model in nude mice with the features of stable gene expression and dynamical monitoring has been established successfully with the HepG2-iRFP-Luc cell line.
Dual RNA regulatory control of a Staphylococcus aureus virulence factor.
Chabelskaya, Svetlana; Bordeau, Valérie; Felden, Brice
2014-04-01
In pathogens, the accurate programming of virulence gene expression is essential for infection. It is achieved by sophisticated arrays of regulatory proteins and ribonucleic acids (sRNAs), but in many cases their contributions and connections are not yet known. Based on genetic, biochemical and structural evidence, we report that the expression pattern of a Staphylococcus aureus host immune evasion protein is enabled by the collaborative actions of RNAIII and small pathogenicity island RNA D (SprD). Their combined expression profiles during bacterial growth permit early and transient synthesis of Sbi to avoid host immune responses. Together, these two sRNAs use antisense mechanisms to monitor Sbi expression at the translational level. Deletion analysis combined with structural analysis of RNAIII in complex with its novel messenger RNA (mRNA) target indicate that three distant RNAIII domains interact with distinct sites of the sbi mRNA and that two locations are deep in the sbi coding region. Through distinct domains, RNAIII lowers production of two proteins required for avoiding innate host immunity, staphylococcal protein A and Sbi. Toeprints and in vivo mutational analysis reveal a novel regulatory module within RNAIII essential for attenuation of Sbi translation. The sophisticated translational control of mRNA by two differentially expressed sRNAs ensures supervision of host immune escape by a major pathogen.
Artemin protects cells and proteins against oxidative and salt stress.
Takalloo, Zeinab; Sajedi, Reza H; Hosseinkhani, Saman; Moazzenzade, Taghi
2017-02-01
Artemin is an abundant thermostable protein in Artemia encysted embryos under environmental stresses. It is confirmed that high regulatory expression of artemin is relevant to stress resistance in this crustacean. Here, the protective role of artemin from Artemia urmiana has been investigated on survival of bacterial cells under salt and oxidative shocks. Also, for continuous monitoring of the effect of artemin in prevention of proteins aggregation/inactivation, co-expression of artemin and luciferase (as an intracellular reporter) in bacterial cells was performed. According to the results, residual activity of luciferase in artemin expressing E. coli cells exposing to different concentrations of H 2 O 2 and NaCl was significantly higher than non-expressing cells. The luciferase activity was rapidly lost in control cells under salt treatments while in co-transformed cells, the activity was considerably retained at higher salt concentrations. Also, analysis from cell viability assays showed that artemin-expressing cells exhibited more resistance to both stress conditions. In the present study, we document for the first time that artemin can protect proteins and bacterial cells against oxidative and salt stress conditions. These results can declare the resistance property of this crustacean against harsh environmental conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Yanhong; Ream, Amy
2008-11-01
To study how Listeria monocytogenes survives and grows in ultrahigh-temperature-processed (UHT) skim milk, microarray technology was used to monitor the gene expression profiles of strain F2365 in UHT skim milk. Total RNA was isolated from strain F2365 in UHT skim milk after 24 h of growth at 4 degrees C, labeled with fluorescent dyes, and hybridized to "custom-made" commercial oligonucleotide (35-mers) microarray chips containing the whole genome of L. monocytogenes strain F2365. Compared to L. monocytogenes grown in brain heart infusion (BHI) broth for 24 h at 4 degrees C, 26 genes were upregulated (more-than-twofold increase) in UHT skim milk, whereas 14 genes were downregulated (less-than-twofold decrease). The upregulated genes included genes encoding transport and binding proteins, transcriptional regulators, proteins in amino acid biosynthesis and energy metabolism, protein synthesis, cell division, and hypothetical proteins. The downregulated genes included genes that encode transport and binding proteins, protein synthesis, cellular processes, cell envelope, energy metabolism, a transcriptional regulator, and an unknown protein. The gene expression changes determined by microarray assays were confirmed by real-time reverse transcriptase PCR analyses. Furthermore, cells grown in UHT skim milk displayed the same sensitivity to hydrogen peroxide as cells grown in BHI, demonstrating that the elevated levels of expression of genes encoding manganese transporter complexes in UHT skim milk did not result in changes in the oxidative stress sensitivity. To our knowledge, this report represents a novel study of global transcriptional gene expression profiling of L. monocytogenes in a liquid food.
Tissue- and Time-Specific Expression of Otherwise Identical tRNA Genes
Adir, Idan; Dahan, Orna; Broday, Limor; Pilpel, Yitzhak; Rechavi, Oded
2016-01-01
Codon usage bias affects protein translation because tRNAs that recognize synonymous codons differ in their abundance. Although the current dogma states that tRNA expression is exclusively regulated by intrinsic control elements (A- and B-box sequences), we revealed, using a reporter that monitors the levels of individual tRNA genes in Caenorhabditis elegans, that eight tryptophan tRNA genes, 100% identical in sequence, are expressed in different tissues and change their expression dynamically. Furthermore, the expression levels of the sup-7 tRNA gene at day 6 were found to predict the animal’s lifespan. We discovered that the expression of tRNAs that reside within introns of protein-coding genes is affected by the host gene’s promoter. Pairing between specific Pol II genes and the tRNAs that are contained in their introns is most likely adaptive, since a genome-wide analysis revealed that the presence of specific intronic tRNAs within specific orthologous genes is conserved across Caenorhabditis species. PMID:27560950
Tools to minimize interlaboratory variability in vitellogenin gene expression monitoring programs
The egg yolk precursor protein vitellogenin is widely used as a biomarker of estrogen exposure in male fish. However, standardized methodology is lacking and little is known regarding the reproducibility of results among laboratories using different equipment, reagents, protocols...
MONITORING ENDOCRINE DISRUPTION IN SHEEPSHEAD MINNOWS (C. VARIEGATUS) USING ARRAY TECHNOLOGY
Many anthropogenic chemicals that are found in the environment act through estrogen receptors. Binding of xenobiotics to estrogen receptors could negatively impact an animal by disrupting the expression of gene products and proteins at critical times during development and reprod...
USING PROTEOMICS TO MONITOR PROTEIN EXPRESSION IN HUMAN CELLS EXPOSED TO CARCINOGENS
People are continuously exposed exogenously to varying amounts of chemicals that have been shown to have carcinogenic properties in experimental systems. It has been estimated that exposure to environmental chemical carcinogens in the environment may contribute significantly to t...
Inglis, Peter W.; Queiroz, Paulo R.; Valadares-Inglis, M. Cléria
1999-04-01
A plasmid vector for fungal expression of an enhanced, red-shifted variant of the Aequoria victoriae green fluorescent protein was constructed by fusion of the EGFP gene to the highly expressed Aspergillus nidulans gpd promoter and the A. nidulans trpC terminator. This construction was introduced by cotransformation, using benomyl selection, into Trichoderma harzianum strain 1051, a strain being evaluated for the biological control of witches'-broom disease of cocoa caused by Crinipellis perniciosa. Epifluorescence microscopy was used to monitor germination and attachment of stable transformant conidia on the surface of C. perniciosa hyphae.
Pan, Yan; Kislinger, Thomas; Gramolini, Anthony O; Zvaritch, Elena; Kranias, Evangelia G; MacLennan, David H; Emili, Andrew
2004-02-24
Phospholamban (PLN) is a critical regulator of cardiac contractility through its binding to and regulation of the activity of the sarco(endo)plasmic reticulum Ca2+ ATPase. To uncover biochemical adaptations associated with extremes of cardiac muscle contractility, we used high-throughput gel-free tandem MS to monitor differences in the relative abundance of membrane proteins in standard microsomal fractions isolated from the hearts of PLN-null mice (PLN-KO) with high contractility and from transgenic mice overexpressing a superinhibitory PLN mutant in a PLN-null background (I40A-KO) with diminished contractility. Significant differential expression was detected for a subset of the 782 proteins identified, including known membrane-associated biomarkers, components of signaling pathways, and previously uninvestigated proteins. Proteins involved in fat and carbohydrate metabolism and proteins linked to G protein-signaling pathways activating protein kinase C were enriched in I40A-KO cardiac muscle, whereas proteins linked to enhanced contractile function were enriched in PLN-KO mutant hearts. These data demonstrate that Ca2+ dysregulation, leading to elevated or depressed cardiac contractility, induces compensatory biochemical responses.
Altered expression of Aurora kinases in Arabidopsis results in aneu- and polyploidization.
Demidov, Dmitri; Lermontova, Inna; Weiss, Oda; Fuchs, Joerg; Rutten, Twan; Kumke, Katrin; Sharbel, Timothy F; Van Damme, Daniel; De Storme, Nico; Geelen, Danny; Houben, Andreas
2014-11-01
Aurora is an evolutionary conserved protein kinase family involved in monitoring of chromosome segregation via phosphorylation of different substrates. In plants, however, the involvement of Aurora proteins in meiosis and in sensing microtubule attachment remains to be proven, although the downstream components leading to the targeting of spindle assembly checkpoint signals to anaphase-promoting complex have been described. To analyze the three members of Aurora family (AtAurora1, -2, and -3) of Arabidopsis we employed different combinations of T-DNA insertion mutants and/or RNAi transformants. Meiotic defects and the formation of unreduced pollen were revealed including plants with an increased ploidy level. The effect of reduced expression of Aurora was mimicked by application of the ATP-competitive Aurora inhibitor II. In addition, strong overexpression of any member of the AtAurora family is not possible. Only tagged or truncated forms of Aurora kinases can be overexpressed. Expression of truncated AtAurora1 resulted in a high number of aneuploids in Arabidopsis, while expression of AtAurora1-TAPi construct in tobacco resulted in 4C (possible tetraploid) progeny. In conclusion, our data demonstrate an essential role of Aurora kinases in the monitoring of meiosis in plants. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Takahashi, Eri; Okumura, Akinori; Unoki-Kubota, Hiroyuki; Hirano, Hisashi; Kasuga, Masato; Kaburagi, Yasushi
2013-06-12
To identify candidate serum molecules associated with the progression of type 2 diabetes mellitus (T2DM), we carried out differential proteomic analysis using the KK-A(y) mouse, an animal model of T2DM with obesity. We employed an iTRAQ-based quantitative proteomic approach to analyze the proteomic changes in the sera collected from a pair of 4-week-old KK-A(y) versus C57BL/6 mice. Among the 227 proteins identified, a total of 45 proteins were differentially expressed in KK-A(y) versus C57BL/6 mice. We comparatively analyzed a series of the sera collected at 4 and 12weeks of age from KK-A(y) and C57BL/6 mice for the target protein using multiple reaction monitoring analysis, and identified 8 differentially expressed proteins between the sera of these mice at both time points. Among them, serine (or cysteine) peptidase inhibitor, clade A, member 3K (SERPINA3K) levels were elevated significantly in the sera of KK-A(y) mice compared to C57BL/6 mice. An in vitro assay revealed that the human homologue SERPINA3 increased the transendothelial permeability of retinal microvascular endothelial cells, which may be involved in the pathogenesis of diabetes and/or diabetic retinopathy. With the identified proteins, our proteomics study could provide valuable clues for a better understanding of the underlying mechanisms associated with T2DM. In this paper, we investigated the serum proteome of KK-A(y) mice in a pre-diabetic state compared to that of wild type controls in an attempt to uncover early diagnostic markers of diabetes that are maintained through a diabetic phenotype. We used iTRAQ-based two-dimensional LC-MS/MS serum profiling, and identified several differentially expressed proteins at the pre-diabetic stage. The differential expression was confirmed by multiple reaction monitoring assay, which is fast gaining ground as a sensitive, specific, and cost-effective methodology for relative quantification of the candidate proteins. Using these techniques, we have identified eight candidate proteins of interest including SERPINA3K, which may be important in the pathology of T2DM and/or diabetic retinopathy. Copyright © 2013 Elsevier B.V. All rights reserved.
Zheng, Luyu; Zhang, Weiyi; Jiang, Miao; Zhang, Huarong; Xiong, Fei; Yu, Yang; Chen, Meijuan; Zhou, Jing; Dai, Xiaoming; Jiang, Ming; Wang, Mingyan; Cheng, Ge; Duan, Jinao; Yu, Wei; Lin, Biaoyang; Fu, Haian; Zhang, Xu
2013-01-01
Many traditional Chinese medicine (TCM) formulae have been used in cancer therapy. The JIN formula is an ancient herbal formula recorded in the classic TCM book Jin Kui Yao Lue (Golden Chamber). The JIN formula significantly delayed the growth of subcutaneous human H460 xenografted tumors in vivo compared with the growth of mock controls. Gene array analysis of signal transduction in cancer showed that the JIN formula acted on multiple targets such as the mitogen-activated protein kinase, hedgehog, and Wnt signaling pathways. The coformula treatment of JIN and diamminedichloroplatinum (DDP) affected the stress/heat shock pathway. Proteomic analysis showed 36 and 84 differentially expressed proteins between the mock and DDP groups and between the mock and JIN groups, respectively. GoMiner analysis revealed that the differentially expressed proteins between the JIN and mock groups were enriched during cellular metabolic processes, and so forth. The ones between the DDP and mock groups were enriched during protein-DNA complex assembly, and so forth. Most downregulated proteins in the JIN group were heat shock proteins (HSPs) such as HSP90AA1 and HSPA1B, which could be used as markers to monitor responses to the JIN formula therapy. The mechanism of action of the JIN formula on HSP proteins warrants further investigation. PMID:24066008
Codon Optimization to Enhance Expression Yields Insights into Chloroplast Translation1[OPEN
Chan, Hui-Ting; Williams-Carrier, Rosalind; Barkan, Alice
2016-01-01
Codon optimization based on psbA genes from 133 plant species eliminated 105 (human clotting factor VIII heavy chain [FVIII HC]) and 59 (polio VIRAL CAPSID PROTEIN1 [VP1]) rare codons; replacement with only the most highly preferred codons decreased transgene expression (77- to 111-fold) when compared with the codon usage hierarchy of the psbA genes. Targeted proteomic quantification by parallel reaction monitoring analysis showed 4.9- to 7.1-fold or 22.5- to 28.1-fold increase in FVIII or VP1 codon-optimized genes when normalized with stable isotope-labeled standard peptides (or housekeeping protein peptides), but quantitation using western blots showed 6.3- to 8-fold or 91- to 125-fold increase of transgene expression from the same batch of materials, due to limitations in quantitative protein transfer, denaturation, solubility, or stability. Parallel reaction monitoring, to our knowledge validated here for the first time for in planta quantitation of biopharmaceuticals, is especially useful for insoluble or multimeric proteins required for oral drug delivery. Northern blots confirmed that the increase of codon-optimized protein synthesis is at the translational level rather than any impact on transcript abundance. Ribosome footprints did not increase proportionately with VP1 translation or even decreased after FVIII codon optimization but is useful in diagnosing additional rate-limiting steps. A major ribosome pause at CTC leucine codons in the native gene of FVIII HC was eliminated upon codon optimization. Ribosome stalls observed at clusters of serine codons in the codon-optimized VP1 gene provide an opportunity for further optimization. In addition to increasing our understanding of chloroplast translation, these new tools should help to advance this concept toward human clinical studies. PMID:27465114
Kitata, Reta Birhanu; Dimayacyac-Esleta, Baby Rorielyn T; Choong, Wai-Kok; Tsai, Chia-Feng; Lin, Tai-Du; Tsou, Chih-Chiang; Weng, Shao-Hsing; Chen, Yi-Ju; Yang, Pan-Chyr; Arco, Susan D; Nesvizhskii, Alexey I; Sung, Ting-Yi; Chen, Yu-Ju
2015-09-04
Despite significant efforts in the past decade toward complete mapping of the human proteome, 3564 proteins (neXtProt, 09-2014) are still "missing proteins". Over one-third of these missing proteins are annotated as membrane proteins, owing to their relatively challenging accessibility with standard shotgun proteomics. Using nonsmall cell lung cancer (NSCLC) as a model study, we aim to mine missing proteins from disease-associated membrane proteome, which may be still largely under-represented. To increase identification coverage, we employed Hp-RP StageTip prefractionation of membrane-enriched samples from 11 NSCLC cell lines. Analysis of membrane samples from 20 pairs of tumor and adjacent normal lung tissue was incorporated to include physiologically expressed membrane proteins. Using multiple search engines (X!Tandem, Comet, and Mascot) and stringent evaluation of FDR (MAYU and PeptideShaker), we identified 7702 proteins (66% membrane proteins) and 178 missing proteins (74 membrane proteins) with PSM-, peptide-, and protein-level FDR of 1%. Through multiple reaction monitoring using synthetic peptides, we provided additional evidence of eight missing proteins including seven with transmembrane helix domains. This study demonstrates that mining missing proteins focused on cancer membrane subproteome can greatly contribute to map the whole human proteome. All data were deposited into ProteomeXchange with the identifier PXD002224.
Refolding of proteins from inclusion bodies: rational design and recipes.
Basu, Anindya; Li, Xiang; Leong, Susanna Su Jan
2011-10-01
The need to develop protein biomanufacturing platforms that can deliver proteins quickly and cost-effectively is ever more pressing. The rapid rate at which genomes can now be sequenced demands efficient protein production platforms for gene function identification. There is a continued need for the biotech industry to deliver new and more effective protein-based drugs to address new diseases. Bacterial production platforms have the advantage of high expression yields, but insoluble expression of many proteins necessitates the development of diverse and optimised refolding-based processes. Strategies employed to eliminate insoluble expression are reviewed, where it is concluded that inclusion bodies are difficult to eliminate for various reasons. Rational design of refolding systems and recipes are therefore needed to expedite production of recombinant proteins. This review article discusses efforts towards rational design of refolding systems and recipes, which can be guided by the development of refolding screening platforms that yield both qualitative and quantitative information on the progression of a given refolding process. The new opportunities presented by light scattering technologies for developing rational protein refolding buffer systems which in turn can be used to develop new process designs armed with better monitoring and controlling functionalities are discussed. The coupling of dynamic and static light scattering methodologies for incorporation into future bioprocess designs to ensure delivery of high-quality refolded proteins at faster rates is also discussed.
Monitoring the function of membrane transport proteins in detergent-solubilized form
Quick, Matthias; Javitch, Jonathan A.
2007-01-01
Transport proteins constitute ≈10% of most proteomes and play vital roles in the translocation of solutes across membranes of all organisms. Their (dys)function is implicated in many disorders, making them frequent targets for pharmacotherapy. The identification of substrates for members of this large protein family, still replete with many orphans of unknown function, has proven difficult, in part because high-throughput screening is greatly complicated by endogenous transporters present in many expression systems. In addition, direct structural studies require that transporters be extracted from the membrane with detergent, thereby precluding transport measurements because of the lack of a vectorial environment and necessitating reconstitution into proteoliposomes for activity measurements. Here, we describe a direct scintillation proximity-based radioligand-binding assay for determining transport protein function in crude cell extracts and in purified form. This rapid and universally applicable assay with advantages over cell-based platforms will greatly facilitate the identification of substrates for many orphan transporters and allows monitoring the function of transport proteins in a nonmembranous environment. PMID:17360689
Luciferase NanoLuc as a reporter for gene expression and protein levels in Saccharomyces cerevisiae.
Masser, Anna E; Kandasamy, Ganapathi; Kaimal, Jayasankar Mohanakrishnan; Andréasson, Claes
2016-05-01
Reporter proteins are essential tools in the study of biological processes and are employed to monitor changes in gene expression and protein levels. Luciferases are reporter proteins that enable rapid and highly sensitive detection with an outstanding dynamic range. Here we evaluated the usefulness of the 19 kDa luciferase NanoLuc (Nluc), derived from the deep sea shrimp Oplophorus gracilirostris, as a reporter protein in yeast. Cassettes with codon-optimized genes expressing yeast Nluc (yNluc) or its destabilized derivative yNlucPEST have been assembled in the context of the dominant drug resistance marker kanMX. The reporter proteins do not impair the growth of yeast cells and exhibit half-lives of 40 and 5 min, respectively. The commercial substrate Nano-Glo® is compatible with detection of yNluc bioluminescence in < 50 cells. Using the unstable yNlucPEST to report on the rapid and transient expression of a heat-shock promoter (PCYC1-HSE ), we found a close match between the intensity of the bioluminescent signal and mRNA levels during both induction and decay. We demonstrated that the bioluminescence of yNluc fused to the C-terminus of a temperature-sensitive protein reports on its protein levels. In conclusion, yNluc and yNlucPEST are valuable new reporter proteins suitable for experiments with yeast using standard commercial substrate. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd. © 2016 The Authors. Yeast published by John Wiley & Sons Ltd.
Glutathione S-Transferase Protein Expression in Different Life Stages of Zebrafish (Danio rerio)
Tierbach, Alena; Groh, Ksenia J; Schönenberger, René; Schirmer, Kristin
2018-01-01
Abstract Zebrafish is a widely used animal model in biomedical sciences and toxicology. Although evidence for the presence of phases I and II xenobiotic defense mechanisms in zebrafish exists on the transcriptional and enzyme activity level, little is known about the protein expression of xenobiotic metabolizing enzymes. Given the important role of glutathione S-transferases (GSTs) in phase II biotransformation, we analyzed cytosolic GST proteins in zebrafish early life stages and different organs of adult male and female fish, using a targeted proteomics approach. The established multiple reaction monitoring-based assays enable the measurement of the relative abundance of specific GST isoenzymes and GST classes in zebrafish through a combination of proteotypic peptides and peptides shared within the same class. GSTs of the classes alpha, mu, pi and rho are expressed in zebrafish embryo as early as 4 h postfertilization (hpf). The majority of GST enzymes are present at 72 hpf followed by a continuous increase in expression thereafter. In adult zebrafish, GST expression is organ dependent, with most of the GST classes showing the highest expression in the liver. The expression of a wide range of cytosolic GST isoenzymes and classes in zebrafish early life stages and adulthood supports the use of zebrafish as a model organism in chemical-related investigations. PMID:29361160
[Proteome analysis for identification of tumor-associated biomarkers in breast cancer].
Wang, Xi; Liang, Wei-Jiang; Zhu, Zhen-Yu; Yang, Ming-Tian; Zeng, Yi-Xin
2004-11-01
Pre-symptomatic screening of early-stage breast cancer may greatly reduce tumor-related mortality. Some tumor markers, such as CA15-3 and CA27-29, are recommended only for monitoring therapy of advanced or relapsed breast cancer. This study was to find new biomarkers that could be used individually or in combination with an existing modality for cost-effective screening of breast cancer by proteome analysis. Protein expression differences among 128 serum samples of 64 breast cancer patients (19 of stage I, 24 of stage II, and 21 of stage III), 52 patients with benign breast diseases, and 12 healthy women were analyzed with IMAC3 and WCX2 Ciphergen ProteinChip Arrays. On WCX2 chip, a panel of 5 proteins (9 116, 8 905, 8 749, 9 470, and 9 692 Da) was selected based on their collective contribution to the optimal separation between breast cancer patients and both non-cancer patients and healthy women, and expression of another 2 proteins (9 405 and 6 424 Da) was different between patients with breast cancer of stage I and stage III. On IMAC3 chip, a panel of 9 proteins (5 236, 7 823, 7 464, 5 213, 5 334, 5 064, 5 374, 7 756, and 7 623 Da) was selected based on their collective contribution to the optimal separation between breast cancer patients and both non-cancer patients and healthy women, and expression of another 3 proteins (7 922, 4 641, and 5 910 Da) was different between patients with breast cancer of stage I and stage III. Protein expression in breast cancer patients is different from that in both non-cancer patients and healthy women, and those proteins with different expression may be used as new biomarkers in breast cancer.
LARGE AREA MONITORING FOR PESTICIDAL TRANSGENIC CROPS: HOW SPECTRAL IMAGING MAY PLAY A ROLE
Crops genetically engineered to contain a bacterial gene that expresses an insecticidal protein from Bacillus thuringiensis are regulated by EPA under the Federal Insecticide Fungicide and Rodenticide Act (FIFRA). EPA has declared crops containing transgenic pesticidal traits to...
Phage phenomics: Physiological approaches to characterize novel viral proteins
Sanchez, Savannah E. [San Diego State Univ., San Diego, CA (United States); Cuevas, Daniel A. [San Diego State Univ., San Diego, CA (United States); Rostron, Jason E. [San Diego State Univ., San Diego, CA (United States); Liang, Tiffany Y. [San Diego State Univ., San Diego, CA (United States); Pivaroff, Cullen G. [San Diego State Univ., San Diego, CA (United States); Haynes, Matthew R. [San Diego State Univ., San Diego, CA (United States); Nulton, Jim [San Diego State Univ., San Diego, CA (United States); Felts, Ben [San Diego State Univ., San Diego, CA (United States); Bailey, Barbara A. [San Diego State Univ., San Diego, CA (United States); Salamon, Peter [San Diego State Univ., San Diego, CA (United States); Edwards, Robert A. [San Diego State Univ., San Diego, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Burgin, Alex B. [Broad Institute, Cambridge, MA (United States); Segall, Anca M. [San Diego State Univ., San Diego, CA (United States); Rohwer, Forest [San Diego State Univ., San Diego, CA (United States)
2018-06-21
Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.
Kawasaki, Takeru; Satsuma, Hideki; Fujie, Makoto; Usami, Shoji; Yamada, Takashi
2007-12-01
A green fluorescent protein (GFP)-expressing plasmid was constructed from a filamentous bacteriophage phiRSS1 that infects the phytopathogen Ralstonia solanacearum. This plasmid designated as pRSS12 (4.7 kbp in size) consists of an approximately 2248 bp region of the phiRSS1 RF DNA, including ORF1-ORF3 and the intergenic region (IG), and a Km cassette in addition to the GFP gene. It was easily introduced by electroporation and stably maintained even without selective pressure in strains of R. solanacearum of different races and biovars. Strong green fluorescence emitted from pRSS12-transformed bacterial cells was easily monitored in tomato tissues (stem, petiole, and root) after infection as well as from soil samples. These results suggest that pRSS12 can serve as an easy-to-use GFP-tagging tool for any given strain of R. solanacearum in cytological as well as field studies.
Transcript and protein environmental biomarkers in fish--a review.
Tom, Moshe; Auslander, Meirav
2005-04-01
The levels of contaminant-affected gene products (transcripts and proteins) are increasingly utilized as environmental biomarkers, and their appropriate implementation as diagnostic tools is discussed. The required characteristics of a gene product biomarker are accurate evaluation using properly normalized absolute units, aiming at long-term comparability of biomarker levels over a wide geographical range and among many laboratories. Quantitative RT-PCR and competitive ELISA are suggested as preferred evaluation methods for transcript and protein, respectively. Constitutively expressed RNAs or proteins which are part of the examined homogenate are suggested as normalizing agents, compensating for variable processing efficiency. Essential characterization of expression patterns is suggested, providing reference values to be compared to the monitored levels. This comparison would enable estimation of the intensity of biological effects of contaminants. Contaminant-independent reference expression patterns should include natural fluctuations of the biomarker level. Contaminant-dependent patterns should include dose response to model contaminants chronically administered in two environmentally-realistic routes, reaching extreme sub-lethal affected levels. Recent studies using fish as environmental sentinel species, applying gene products as environmental biomarkers, and implementing at least part of the depicted methodologies are reviewed.
Söling, Ariane; Theiss, Christian; Jungmichel, Stephanie; Rainov, Nikolai G
2004-08-04
BACKGROUND: Suicide gene therapy employing the prodrug activating system Herpes simplex virus type 1 thymidine kinase (HSV-TK)/ ganciclovir (GCV) has proven to be effective in killing experimental brain tumors. In contrast, glioma patients treated with HSV-TK/ GCV did not show significant treatment benefit, most likely due to insufficient transgene delivery to tumor cells. Therefore, this study aimed at developing a strategy for real-time noninvasive in vivo monitoring of the activity of a therapeutic gene in brain tumor cells. METHODS: The HSV-TK gene was fused to the firefly luciferase (Luc) gene and the fusion construct HSV-TK-Luc was expressed in U87MG human malignant glioma cells. Nude mice with subcutaneous gliomas stably expressing HSV-TK-Luc were subjected to GCV treatment and tumor response to therapy was monitored in vivo by serial bioluminescence imaging. Bioluminescent signals over time were compared with tumor volumes determined by caliper. RESULTS: Transient and stable expression of the HSV-TK-Luc fusion protein in U87MG glioma cells demonstrated close correlation of both enzyme activities. Serial optical imaging of tumor bearing mice detected in all cases GCV induced death of tumor cells expressing the fusion protein and proved that bioluminescence can be reliably used for repetitive and noninvasive quantification of HSV-TK/ GCV mediated cell kill in vivo. CONCLUSION: This approach may represent a valuable tool for the in vivo evaluation of gene therapy strategies for treatment of malignant disease.
Constitutive expression of human pancreatic lipase-related protein 1 in Pichia pastoris.
Aloulou, Ahmed; Grandval, Philippe; De Caro, Josiane; De Caro, Alain; Carrière, Frédéric
2006-06-01
High-level constitutive expression of the human pancreatic lipase-related protein 1 (HPLRP1) was achieved using the methylotrophic yeast Pichia pastoris. The HPLRP1 cDNA, including its original leader sequence, was subcloned into the pGAPZB vector and further integrated into the genome of P. pastoris X-33 under the control of the glyceraldehyde 3-phosphate dehydrogenase (GAP) constitutive promoter. A major protein with a molecular mass of 50 kDa was found to be secreted into the culture medium and was identified using anti-HPLRP1 polyclonal antibodies as HPLRP1 recombinant protein. The level of expression reached 100-120 mg of HPLRP1 per liter of culture medium after 40 h, as attested by specific and quantitative enzyme-linked immunosorbent assay. A single cation-exchange chromatography sufficed to obtain a highly purified recombinant HPLRP1 after direct batch adsorption onto S-Sepharose of the HPLRP1 present in the culture medium, at pH 5.5. N-terminal sequencing and mass spectrometry analysis were carried out to monitor the production of the mature protein and to confirm that its signal peptide was properly processed.
The Monitoring and Affinity Purification of Proteins Using Dual Tags with Tetracysteine Motifs
NASA Astrophysics Data System (ADS)
Giannone, Richard J.; Liu, Yie; Wang, Yisong
Identification and characterization of protein-protein interaction networks is essential for the elucidation of biochemical mechanisms and cellular function. Affinity purification in combination with liquid chromatography-tandem mass spectrometry (LC-MS/MS) has emerged as a very powerful tactic for the identification of specific protein-protein interactions. In this chapter, we describe a comprehensive methodology that uses our recently developed dual-tag affinity purification system for the enrichment and identification of mammalian protein complexes. The protocol covers a series of separate but sequentially related techniques focused on the facile monitoring and purification of a dual-tagged protein of interest and its interacting partners via a system built with tetracysteine motifs and various combinations of affinity tags. Using human telomeric repeat binding factor 2 (TRF2) as an example, we demonstrate the power of the system in terms of bait protein recovery after dual-tag affinity purification, detection of bait protein subcellular localization and expression, and successful identification of known and potentially novel TRF2 interacting proteins. Although the protocol described here has been optimized for the identification and characterization of TRF2-associated proteins, it is, in principle, applicable to the study of any other mammalian protein complexes that may be of interest to the research community.
Schwab, Karen; Lauber, Jennifer; Hesse, Friedemann
2016-01-01
The glycosyltransferase HisDapGalNAcT2 is the key protein of the Escherichia coli (E. coli) SHuffle® T7 cell factory which was genetically engineered to allow glycosylation of a protein substrate in vivo. The specific activity of the glycosyltransferase requires time-intensive analytics, but is a critical process parameter. Therefore, it has to be monitored closely. This study evaluates fluorometric in situ monitoring as option to access this critical process parameter during complex E. coli fermentations. Partial least square regression (PLS) models were built based on the fluorometric data recorded during the EnPresso® B fermentations. Capable models for the prediction of glucose and acetate concentrations were built for these fermentations with rout mean squared errors for prediction (RMSEP) of 0.19 g·L−1 and 0.08 g·L−1, as well as for the prediction of the optical density (RMSEP 0.24). In situ monitoring of soluble enzyme to cell dry weight ratios (RMSEP 5.5 × 10−4 µg w/w) and specific activity of the glycosyltransferase (RMSEP 33.5 pmol·min−1·µg−1) proved to be challenging, since HisDapGalNAcT2 had to be extracted from the cells and purified. However, fluorescence spectroscopy, in combination with PLS modeling, proved to be feasible for in situ monitoring of complex expression systems. PMID:28952595
Kaufmann, Stefan; Weiss, Ingrid M; Eckstein, Volker; Tanaka, Motomu
2012-03-09
In this paper, we expressed murine gap junction protein Cx43 in Dictyostelium discoideum by introducing the specific vector pDXA. In the first step, the successful expression of Cx43 and Cx43-eGFP was verified by (a) Western blot (anti-Cx43, anti-GFP), (b) fluorescence microscopy (eGFP-Cx43 co-expression, Cx43 immunostaining), and (c) flow cytometry analysis (eGFP-Cx43 co-expression). Although the fluorescence signals from cells expressing Cx43-eGFP detected by fluorescence microscopy seem relatively low, analysis by flow cytometry demonstrated that more than 60% of cells expressed Cx43-eGFP. In order to evaluate the function of expressed Cx43 in D. discoideum, we examined the hemi-channel function of Cx43. In this series of experiments, the passive uptake of carboxyfluorescein was monitored using flow cytometric analysis. A significant number of the transfected cells showed a prominent dye uptake in the absence of Ca(2+). The dye uptake by transfected cells in the presence of Ca(2+) was even lower than the non-specific dye uptake by non-transformed Ax3 orf+ cells, confirming that Cx43 expressed in D. discoideum retains its Ca(2+)-dependent, specific gating function. The expression of gap junction proteins expressed in slime molds opens a possibility to the biological significance of intercellular communications in development and maintenance of multicellular organisms. Copyright © 2012 Elsevier Inc. All rights reserved.
Cos, Oriol; Ramón, Ramón; Montesinos, José Luis; Valero, Francisco
2006-01-01
The methylotrophic yeast Pichia pastoris has been widely reported as a suitable expression system for heterologous protein production. The use of different phenotypes under PAOX promoter, other alternative promoters, culture medium, and operational strategies with the objective to maximize either yield or productivity of the heterologous protein, but also to obtain a repetitive product batch to batch to get a robust process for the final industrial application have been reported. Medium composition, kinetics growth, fermentation operational strategies from fed-batch to continuous cultures using different phenotypes with the most common PAOX promoter and other novel promoters (GAP, FLD, ICL), the use of mixed substrates, on-line monitoring of the key fermentation parameters (methanol) and control algorithms applied to the bioprocess are reviewed and discussed in detail. PMID:16600031
Cereal cystatins delay sprouting and nutrient loss in tubers of potato, Solanum tuberosum.
Munger, Aurélie; Simon, Marie-Aube; Khalf, Moustafa; Goulet, Marie-Claire; Michaud, Dominique
2015-12-21
Recent studies have reported agronomically useful ectopic effects for recombinant protease inhibitors expressed in leaves of transgenic plants, including improved tolerance to abiotic stress conditions and partial resistance to necrotrophic pathogens. Here we assessed the effects of these proteins on the post-dormancy sprouting of storage organs, using as a model potato tubers expressing cysteine protease inhibitors of the cystatin protein superfamily. Sprout emergence and distribution, soluble proteins, starch and soluble sugars were monitored in tubers of cereal cystatin-expressing clones stored for several months at 4 °C. Cystatin expression had a strong repressing effect on sprout growth, associated with an apparent loss of apical dominance and an increased number of small buds at the skin surface. Soluble protein content remained high for up to 48 weeks in cystatin-expressing tubers compared to control (untransformed) tubers, likely explained by a significant stabilization of the major storage protein patatin, decreased hydrolysis of the endogenous protease inhibitor multicystatin and low cystatin-sensitive cysteine protease activity in tuber tissue. Starch content decreased after several months in cystatin-expressing tubers but remained higher than in control tubers, unlike sucrose showing a slower accumulation in the transgenics. Plantlet emergence, storage protein processing and height of growing plants showed similar time-course patterns for control and transgenic tubers, except for a systematic delay of 2 or 3 d in the latter group likely due to limited sprout size at sowing. Our data point overall to the onset of metabolic interference effects for cereal cystatins in sprouting potato tubers. They suggest, in practice, the potential of endogenous cysteine proteases as relevant targets for the development of potato varieties with longer storage capabilities.
NASA Technical Reports Server (NTRS)
Mahtani, H. K.; Richmond, R. C.; Chang, T. Y.; Chang, C. C. Y.; Rose, M. Franklin (Technical Monitor)
2001-01-01
The enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT) is an important contributor to the pathological expression of plaque leading to artherosclerosis n a major health problem. Adequate knowledge of the structure of this protein will enable pharmaceutical companies to design drugs specific to the enzyme. ACAT is a membrane protein located in the endoplasmic reticulum.t The protein has never been purified to homogeneity.T.Y. Chang's laboratory at Dartmouth College provided a 4-kb cDNA clone (K1) coding for a structural gene of the protein. We have modified the gene sequence and inserted the cDNA into the BioGreen His Baculovirus transfer vector. This was successfully expressed in Sf2l insect cells as a GFP-labeled ACAT protein. The advantage to this ACAT-GFP fusion protein (abbreviated GCAT) is that one can easily monitor its expression as a function of GFP excitation at 395 nm and emission at 509 nm. Moreover, the fusion protein GCAT can be detected on Western blots with the use of commercially available GFP antibodies. Antibodies against ACAT are not readily available. The presence of the 6xHis tag in the transfer vector facilitates purification of the recombinant protein since 6xHis fusion proteins bind with high affinity to Ni-NTA agarose. Obtaining highly pure protein in large quantities is essential for subsequent crystallization. The purified GCAT fusion protein can readily be cleaved into distinct GFP and ACAT proteins in the presence of thrombin. Thrombin digests the 6xHis tag linking the two protein sequences. Preliminary experiments have indicated that both GCAT and ACAT are expressed as functional proteins. The ultimate aim is to obtain large quantities of the ACAT protein in pure and functional form appropriate for protein crystal growth. Determining protein structure is the key to the design and development of effective drugs. X-ray analysis requires large homogeneous crystals that are difficult to obtain in the gravity environment of earth. Protein crystals grown in microgravity are often larger and have fewer defects than those grown on earth. The analysis of higher quality space-grown crystals will assist in structure-based drug design. We have successfully grown GCAT-infected Sf21 cells in both adhesion and suspension cultures. Expression levels of GCAT in cell lines such as Sf9 and High Five appear to be reduced. We intend to replicate GCAT expression in all three cell lines using the NASA rotating wall bioreactor which effectively duplicates a microgravity environment. The bioreactor itself could be launched to study the expression of the GFP and GCAT proteins in the actual microgravity environment achieved in orbit.
2012-01-01
Background Proteins that are associated with hypertension may be identified by comparing the 2-dimensional gel electrophoresis (2-DE) profiles of the sera of spontaneously hypertensive rats (SHR) with those generated from normotensive Spraque-Dawley rats (SDR). Results Five proteins of high abundance were found to be significantly altered when the 2-DE serum profiles of the SHR were compared to those that were similarly generated from the SDR. Analysis by mass spectrometry and database search identified the proteins as retinol binding protein 4, complement C3, albumin (19.9 kDa fragment), alpha1 macroglobulin and alpha1 antiproteinase, which are all known to be associated with hypertension. The altered expression of the two latter proteins was found to be abrogated when similar analysis was performed on sera of the SHR that were treated with captopril. Conclusion Our data suggests that serum alpha1 macroglobulin and alpha1 antiproteinase are potentially useful complementary biomolecular indicators for monitoring of hypertension. PMID:22416803
Sekar, Narendrakumar; Veetil, Soumya Kariyadan; Neerathilingam, Muniasamy
2013-09-02
Escherichia coli is most widely used prokaryotic expression system for the production of recombinant proteins. Several strategies have been employed for expressing recombinant proteins in E.coli. This includes the development of novel host systems, expression vectors and cost effective media. In this study, we exploit tender coconut water (TCW) as a natural and cheaper growth medium for E.coli and Pichia pastoris. E.coli and P.pastoris were cultivated in TCW and the growth rate was monitored by measuring optical density at 600 nm (OD(600nm)), where 1.55 for E.coli and 8.7 for P.pastoris was obtained after 12 and 60 hours, respectively. However, variation in growth rate was observed among TCW when collected from different localities (0.15-2.5 at OD(600nm)), which is attributed to the varying chemical profile among samples. In this regard, we attempted the supplementation of TCW with different carbon and nitrogen sources to attain consistency in growth rate. Here, supplementation of TCW with 25 mM ammonium sulphate (TCW-S) was noted efficient for the normalization of inconsistency, which further increased the biomass of E.coli by 2 to 10 folds, and 1.5 to 2 fold in P.pastoris. These results indicate that nitrogen source is the major limiting factor for growth. This was supported by total nitrogen and carbon estimation where, nitrogen varies from 20 to 60 mg/100 ml while carbohydrates showed no considerable variation (2.32 to 3.96 g/100 ml). In this study, we also employed TCW as an expression media for recombinant proteins by demonstrating successful expression of maltose binding protein (MBP), MBP-TEV protease fusion and a photo switchable fluorescent protein (mEos2) using TCW and the expression level was found to be equivalent to Luria Broth (LB). This study highlights the possible application of TCW-S as a media for cultivation of a variety of microorganisms and recombinant protein expression.
Knöchel, Christian; Kniep, Jonathan; Cooper, Jason D; Stäblein, Michael; Wenzler, Sofia; Sarlon, Jan; Prvulovic, David; Linden, David E J; Bahn, Sabine; Stocki, Pawel; Ozcan, Sureyya; Alves, Gilberto; Carvalho, Andre F; Reif, Andreas; Oertel-Knöchel, Viola
2017-04-01
Proteomic analyses facilitate the interpretation of molecular biomarker probes which are very helpful in diagnosing schizophrenia (SZ). In the current study, we attempt to test whether potential differences in plasma protein expressions in SZ and bipolar disorder (BD) are associated with cognitive deficits and their underlying brain structures. Forty-two plasma proteins of 29 SZ patients, 25 BD patients and 93 non-clinical controls were quantified and analysed using multiple reaction monitoring-based triple quadrupole mass spectrometry approach. We also computed group comparisons of protein expressions between patients and controls, and between SZ and BD patients, as well. Potential associations of protein levels with cognitive functioning (psychomotor speed, executive functioning, crystallised intelligence) as well as underlying brain volume in the hippocampus were explored, using bivariate correlation analyses. The main finding of this study was that apolipoprotein expression differed between patients and controls and that these alterations in both disease groups were putatively related to cognitive impairments as well as to hippocampus volumes. However, none of the protein level differences were related to clinical symptom severity. In summary, altered apolipoprotein expression in BD and SZ was linked to cognitive decline and underlying morphological changes in both disorders. Our results suggest that the detection of molecular patterns in association with cognitive performance and its underlying brain morphology is of great importance for understanding of the pathological mechanisms of SZ and BD, as well as for supporting the diagnosis and treatment of both disorders.
Rojas, Valentina; Jiménez, Héctor; Palma-Millanao, Rubén; González-González, Angélica; Machuca, Juan; Godoy, Ricardo; Ceballos, Ricardo; Mutis, Ana; Venthur, Herbert
2018-04-30
The grapevine moth, Lobesia botrana, is considered a harmful pest for vineyards in Chile as well as in North America and Europe. Currently, monitoring and control methods of L. botrana are based on its main sex pheromone component, being effective for low population densities. In order to improve control methods, antennal olfactory proteins in moths, such as odorant-binding proteins (OBPs) and odorant receptors (ORs) have been studied as promising targets for the discovery of new potent semiochemicals, which have not been reported for L. botrana. Therefore, the objective of this study was to identify the repertoire of proteins related to chemoreception in L. botrana by antennal transcriptome and analyze the relative expression of OBPs and CSPs in male and female antennae. Through next-generation sequencing of the antennal transcriptome by Ilumina HiSeq2500 we identified a total of 118 chemoreceptors, from which 61, 42 and 15 transcripts are related to ORs, ionotropic receptors (IRs) and gustatory receptors (GRs), respectively. Furthermore, RNA-Seq data revealed 35 transcripts for OBPs and 18 for chemosensory proteins (CSPs). Analysis by qRT-PCR showed 20 OBPs significantly expressed in female antennae, while 5 were more expressed in males. Similarly, most of the CSPs were significantly expressed in female than male antennae. All the olfactory-related sequences were compared with homologs and their phylogenetic relationships elucidated. Finally, our findings in relation to the improvement of L. botrana management are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.
A Method for Comprehensive Glycosite-Mapping and Direct Quantitation of Serum Glycoproteins.
Hong, Qiuting; Ruhaak, L Renee; Stroble, Carol; Parker, Evan; Huang, Jincui; Maverakis, Emanual; Lebrilla, Carlito B
2015-12-04
A comprehensive glycan map was constructed for the top eight abundant glycoproteins in plasma using both specific and nonspecific enzyme digestions followed by nano liquid chromatography (LC)-chip/quadrupole time-of-flight mass spectrometry (MS) analysis. Glycopeptides were identified using an in-house software tool, GPFinder. A sensitive and reproducible multiple reaction monitoring (MRM) technique on a triple quadrupole MS was developed and applied to quantify immunoglobulins G, A, M, and their site-specific glycans simultaneously and directly from human serum/plasma without protein enrichments. A total of 64 glycopeptides and 15 peptides were monitored for IgG, IgA, and IgM in a 20 min ultra high performance (UP)LC gradient. The absolute protein contents were quantified using peptide calibration curves. The glycopeptide ion abundances were normalized to the respective protein abundances to separate protein glycosylation from protein expression. This technique yields higher method reproducibility and less sample loss when compared with the quantitation method that involves protein enrichments. The absolute protein quantitation has a wide linear range (3-4 orders of magnitude) and low limit of quantitation (femtomole level). This rapid and robust quantitation technique, which provides quantitative information for both proteins and glycosylation, will further facilitate disease biomarker discoveries.
Attar, Mayssa; Ling, Kah-Hiing John; Tang-Liu, Diane D-S; Neamati, Nouri; Lee, Vincent H L
2005-12-01
Cytochrome P450 3A (CYP3A) is an enzyme of paramount importance to drug metabolism. The expression and activity of CYP3A, an enzyme responsible for active androgen clearance, was investigated in the rabbit lacrimal gland. Analysis of CYP3A expression and activity was performed on lacrimal gland tissues obtained from naïve untreated and treated New Zealand White rabbits. For 5 days, treated rabbits received daily administration of vehicle or 0.1% or 1.0% dexamethasone, in the lower cul-de-sac of each eye. Changes in mRNA expression were monitored by real-time RT-PCR. Protein expression was confirmed by Western blot. Functional activity was measured by monitoring the metabolism of CYP3A probe substrates-namely, 7-benzyloxyquinoline (BQ) and [3H]testosterone. Cytochrome P450 heme protein was detected at a concentration of 44.6 picomoles/mg protein, along with its redox partner NADPH reductase and specifically CYP3A6 in the naïve rabbit lacrimal gland. Genes encoding CYP3A6, in addition to the pregnane-X-receptor (PXR) and P-glycoprotein (P-gp) were expressed in the untreated tissue. BQ dealkylation was measured in the naïve rabbit lacrimal gland at a rate of 14 +/- 7 picomoles/mg protein per minute. Changes in CYP3A6, P-gp, and androgen receptor mRNA expression levels were detected after dexamethasone treatment. In addition, dexamethasone treatment resulted in significant increases in BQ dealkylation and CYP3A6-mediated [3H]testosterone metabolism. Concomitant increases in CYP3A6-mediated hydroxylated testosterone metabolites were observed in the treated rabbits. Furthermore, ketoconazole, all-trans retinoic acid, and cyclosporine inhibited CYP3A6 mediated [3H]testosterone 6beta hydroxylation in a concentration-dependent manner, with IC50 ranging from 3.73 to 435 microM. The results demonstrate, for the first time, the expression and activity of CYP3A6 in the rabbit lacrimal gland. In addition, this pathway was shown to be subject to modulation by a commonly prescribed glucocorticoid and can be inhibited by known CYP3A inhibitors.
Rutkowski, D. Thomas; Arnold, Stacey M; Miller, Corey N; Wu, Jun; Li, Jack; Gunnison, Kathryn M; Mori, Kazutoshi; Sadighi Akha, Amir A.; Raden, David; Kaufman, Randal J
2006-01-01
The accumulation of unfolded proteins in the endoplasmic reticulum (ER) activates a signaling cascade known as the unfolded protein response (UPR). Although activation of the UPR is well described, there is little sense of how the response, which initiates both apoptotic and adaptive pathways, can selectively allow for adaptation. Here we describe the reconstitution of an adaptive ER stress response in a cell culture system. Monitoring the activation and maintenance of representative UPR gene expression pathways that facilitate either adaptation or apoptosis, we demonstrate that mild ER stress activates all UPR sensors. However, survival is favored during mild stress as a consequence of the intrinsic instabilities of mRNAs and proteins that promote apoptosis compared to those that facilitate protein folding and adaptation. As a consequence, the expression of apoptotic proteins is short-lived as cells adapt to stress. We provide evidence that the selective persistence of ER chaperone expression is also applicable to at least one instance of genetic ER stress. This work provides new insight into how a stress response pathway can be structured to allow cells to avert death as they adapt. It underscores the contribution of posttranscriptional and posttranslational mechanisms in influencing this outcome. PMID:17090218
Missing Value Monitoring Enhances the Robustness in Proteomics Quantitation.
Matafora, Vittoria; Corno, Andrea; Ciliberto, Andrea; Bachi, Angela
2017-04-07
In global proteomic analysis, it is estimated that proteins span from millions to less than 100 copies per cell. The challenge of protein quantitation by classic shotgun proteomic techniques relies on the presence of missing values in peptides belonging to low-abundance proteins that lowers intraruns reproducibility affecting postdata statistical analysis. Here, we present a new analytical workflow MvM (missing value monitoring) able to recover quantitation of missing values generated by shotgun analysis. In particular, we used confident data-dependent acquisition (DDA) quantitation only for proteins measured in all the runs, while we filled the missing values with data-independent acquisition analysis using the library previously generated in DDA. We analyzed cell cycle regulated proteins, as they are low abundance proteins with highly dynamic expression levels. Indeed, we found that cell cycle related proteins are the major components of the missing values-rich proteome. Using the MvM workflow, we doubled the number of robustly quantified cell cycle related proteins, and we reduced the number of missing values achieving robust quantitation for proteins over ∼50 molecules per cell. MvM allows lower quantification variance among replicates for low abundance proteins with respect to DDA analysis, which demonstrates the potential of this novel workflow to measure low abundance, dynamically regulated proteins.
Unique self-assembly properties of a bridge-shaped protein dimer with quantum dots
NASA Astrophysics Data System (ADS)
Wang, Jianhao; Jiang, Pengju; Gao, Liqian; Yu, Yongsheng; Lu, Yao; Qiu, Lin; Wang, Cheli; Xia, Jiang
2013-09-01
How protein-protein interaction affects protein-nanoparticle self-assembly is the key to the understanding of biomolecular coating of nanoparticle in biological fluids. However, the relationship between protein shape and its interaction with nanoparticles is still under-exploited because of lack of a well-conceived binding system and a method to detect the subtle change in the protein-nanoparticle assemblies. Noticing this unresolved need, we cloned and expressed a His-tagged SpeA protein that adopts a bridge-shaped dimer structure, and utilized a high-resolution capillary electrophoresis method to monitor assembly formation between the protein and quantum dots (QDs, 5 nm in diameter). We observed that the bridge-shaped structure rendered a low SpeA:QD stoichiometry at saturation. Also, close monitoring of imidazole (Im) displacement of surface-bound protein revealed a unique two-step process. High-concentration Im could displace surface-bound SpeA protein and form a transient QD-protein intermediate, through a kinetically controlled displacement process. An affinity-driven equilibrium step then followed, resulting in re-assembling of the QD-protein complex in about 1 h. Through a temporarily formed intermediate, Im causes a rearrangement of His-tagged proteins on the surface. Thus, our work showcases that the synergistic interplay between QD-His-tag interaction and protein-protein interaction can result in unique properties of protein-nanoparticle assembly for the first time.
Hsu, Min-Feng; Yu, Tsung-Fu; Chou, Chia-Cheng; Fu, Hsu-Yuan; Yang, Chii-Shen; Wang, Andrew H. J.
2013-01-01
Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR) from Haloarcula marismortui (HmBRI/D94N) as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system. PMID:23457558
Analysis of the biofilm proteome of Xylella fastidiosa.
Silva, Mariana S; De Souza, Alessandra A; Takita, Marco A; Labate, Carlos A; Machado, Marcos A
2011-09-22
Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. We observed overexpression of proteins related to quorum sensing, proving the existence of communication between cells, and thus the development of structuring the biofilm (mature biofilm) leading to obstruction of vessels and development of disease. This paper reports a first proteomic analysis of mature biofilm of X. fastidiosa, opening new perspectives for understanding the biochemistry of mature biofilm growth in a plant pathogen.
Analysis of the biofilm proteome of Xylella fastidiosa
2011-01-01
Background Xylella fastidiosa is limited to the xylem of the plant host and the foregut of insect vectors (sharpshooters). The mechanism of pathogenicity of this bacterium differs from other plant pathogens, since it does not present typical genes that confer specific interactions between plant and pathogens (avr and/or hrp). The bacterium is injected directly into the xylem vessels where it adheres and colonizes. The whole process leads to the formation of biofilms, which are considered the main mechanism of pathogenicity. Cells in biofilms are metabolically and phenotypically different from their planktonic condition. The mature biofilm stage (phase of higher cell density) presents high virulence and resistance to toxic substances such as antibiotics and detergents. Here we performed proteomic analysis of proteins expressed exclusively in the mature biofilm of X. fastidiosa strain 9a5c, in comparison to planktonic growth condition. Results We found a total of 456 proteins expressed in the biofilm condition, which correspond to approximately 10% of total protein in the genome. The biofilm showed 37% (or 144 proteins) different protein than we found in the planktonic growth condition. The large difference in protein pattern in the biofilm condition may be responsible for the physiological changes of the cells in the biofilm of X. fastidiosa. Mass spectrometry was used to identify these proteins, while real-time quantitative polymerase chain reaction monitored expression of genes encoding them. Most of proteins expressed in the mature biofilm growth were associated with metabolism, adhesion, pathogenicity and stress conditions. Even though the biofilm cells in this work were not submitted to any stress condition, some stress related proteins were expressed only in the biofilm condition, suggesting that the biofilm cells would constitutively express proteins in different adverse environments. Conclusions We observed overexpression of proteins related to quorum sensing, proving the existence of communication between cells, and thus the development of structuring the biofilm (mature biofilm) leading to obstruction of vessels and development of disease. This paper reports a first proteomic analysis of mature biofilm of X. fastidiosa, opening new perspectives for understanding the biochemistry of mature biofilm growth in a plant pathogen. PMID:21939513
Corridon, Peter R.; Rhodes, George J.; Leonard, Ellen C.; Basile, David P.; Gattone, Vincent H.; Bacallao, Robert L.
2013-01-01
Gene therapy has been proposed as a novel alternative to treat kidney disease. This goal has been hindered by the inability to reliably deliver transgenes to target cells throughout the kidney, while minimizing injury. Since hydrodynamic forces have previously shown promising results, we optimized this approach and designed a method that utilizes retrograde renal vein injections to facilitate transgene expression in rat kidneys. We show, using intravital fluorescence two-photon microscopy, that fluorescent albumin and dextrans injected into the renal vein under defined conditions of hydrodynamic pressure distribute broadly throughout the kidney in live animals. We found injection parameters that result in no kidney injury as determined by intravital microscopy, histology, and serum creatinine measurements. Plasmids, baculovirus, and adenovirus vectors, designed to express EGFP, EGFP-actin, EGFP-occludin, EGFP-tubulin, tdTomato-H2B, or RFP-actin fusion proteins, were introduced into live kidneys in a similar fashion. Gene expression was then observed in live and ex vivo kidneys using two-photon imaging and confocal laser scanning microscopy. We recorded widespread fluorescent protein expression lasting more than 1 mo after introduction of transgenes. Plasmid and adenovirus vectors provided gene transfer efficiencies ranging from 50 to 90%, compared with 10–50% using baculovirus. Using plasmids and adenovirus, fluorescent protein expression was observed 1) in proximal and distal tubule epithelial cells; 2) within glomeruli; and 3) within the peritubular interstitium. In isolated kidneys, fluorescent protein expression was observed from the cortex to the papilla. These results provide a robust approach for gene delivery and the study of protein function in live mammal kidneys. PMID:23467422
2013-01-01
Background Triglyceride deposit cardiomyovasculopathy (TGCV) is a rare disease, characterized by the massive accumulation of triglyceride (TG) in multiple tissues, especially skeletal muscle, heart muscle and the coronary artery. TGCV is caused by mutation of adipose triglyceride lipase, which is an essential molecule for the hydrolysis of TG. TGCV is at high risk for skeletal myopathy and heart dysfunction, and therefore premature death. Development of therapeutic methods for TGCV is highly desirable. This study aims to discover specific molecules responsible for TGCV pathogenesis. Methods To identify differentially expressed proteins in TGCV patient cells, the stable isotope labeling with amino acids in cell culture (SILAC) method coupled with LC-MS/MS was performed using skin fibroblast cells derived from two TGCV patients and three healthy volunteers. Altered protein expression in TGCV cells was confirmed using the selected reaction monitoring (SRM) method. Microarray-based transcriptome analysis was simultaneously performed to identify changes in gene expression in TGCV cells. Results Using SILAC proteomics, 4033 proteins were quantified, 53 of which showed significantly altered expression in both TGCV patient cells. Twenty altered proteins were chosen and confirmed using SRM. SRM analysis successfully quantified 14 proteins, 13 of which showed the same trend as SILAC proteomics. The altered protein expression data set was used in Ingenuity Pathway Analysis (IPA), and significant networks were identified. Several of these proteins have been previously implicated in lipid metabolism, while others represent new therapeutic targets or markers for TGCV. Microarray analysis quantified 20743 transcripts, and 252 genes showed significantly altered expression in both TGCV patient cells. Ten altered genes were chosen, 9 of which were successfully confirmed using quantitative RT-PCR. Biological networks of altered genes were analyzed using an IPA search. Conclusions We performed the SILAC- and SRM-based identification-through-confirmation study using skin fibroblast cells derived from TGCV patients, and first identified altered proteins specific for TGCV. Microarray analysis also identified changes in gene expression. The functional networks of the altered proteins and genes are discussed. Our findings will be exploited to elucidate the pathogenesis of TGCV and discover clinically relevant molecules for TGCV in the near future. PMID:24360150
Ratiometric Gas Reporting: A Nondisruptive Approach To Monitor Gene Expression in Soils.
Cheng, Hsiao-Ying; Masiello, Caroline A; Del Valle, Ilenne; Gao, Xiaodong; Bennett, George N; Silberg, Jonathan J
2018-03-16
Fluorescent proteins are ubiquitous tools that are used to monitor the dynamic functions of natural and synthetic genetic circuits. However, these visual reporters can only be used in transparent settings, a limitation that complicates nondisruptive measurements of gene expression within many matrices, such as soils and sediments. We describe a new ratiometric gas reporting method for nondisruptively monitoring gene expression within hard-to-image environmental matrices. With this approach, C 2 H 4 is continuously synthesized by ethylene forming enzyme to provide information on viable cell number, and CH 3 Br is conditionally synthesized by placing a methyl halide transferase gene under the control of a conditional promoter. We show that ratiometric gas reporting enables the creation of Escherichia coli biosensors that report on acylhomoserine lactone (AHL) autoinducers used for quorum sensing by Gram-negative bacteria. Using these biosensors, we find that an agricultural soil decreases the bioavailable concentration of a long-chain AHL up to 100-fold. We also demonstrate that these biosensors can be used in soil to nondisruptively monitor AHLs synthesized by Rhizobium leguminosarum and degraded by Bacillus thuringiensis. Finally, we show that this new reporting approach can be used in Shewanella oneidensis, a bacterium that lives in sediments.
2017-01-01
Pathogenic gram-negative bacteria cause serious diseases in animals and plants. These bacterial pathogens use the type III secretion system (T3SS) to deliver effector proteins into host cells; these effectors then localize to different subcellular compartments to attenuate immune responses by altering biological processes of the host cells. The fluorescent protein (FP)-based approach to monitor effectors secreted from bacteria into the host cells is not possible because the folded FP prevents effector delivery through the T3SS. Therefore, we optimized an improved variant of self-assembling split super-folder green fluorescent protein (sfGFPOPT) system to investigate the spatiotemporal dynamics of effectors delivered through bacterial T3SS into plant cells. In this system, effectors are fused to 11th β-strand of super-folder GFP (sfGFP11), and when delivered into plant cells expressing sfGFP1-10 β-strand (sfGFP1-10OPT), the two proteins reconstitute GFP fluorescence. We generated a number of Arabidopsis thaliana transgenic lines expressing sfGFP1-10OPT targeted to various subcellular compartments to facilitate localization of sfGFP11-tagged effectors delivered from bacteria. We demonstrate the efficacy of this system using Pseudomonas syringae effectors AvrB and AvrRps4 in Nicotiana benthamiana and transgenic Arabidopsis plants. The versatile split sfGFPOPT system described here will facilitate a better understanding of bacterial invasion strategies used to evade plant immune responses. PMID:28619883
2013-01-01
Background Down syndrome (DS), caused by an extra copy of chromosome 21, affects 1 in 750 live births and is characterized by cognitive impairment and a constellation of congenital defects. Currently, little is known about the molecular pathogenesis and no direct genotype-phenotype relationship has yet been confirmed. Since DS amniocytes are expected to have a distinct biological behaviour compared to normal amniocytes, we hypothesize that relative quantification of proteins produced from trisomy and euploid (chromosomally normal) amniocytes will reveal dysregulated molecular pathways. Results Chromosomally normal- and Trisomy 21-amniocytes were quantitatively analyzed by using Stable Isotope Labeling of Amino acids in Cell culture and tandem mass spectrometry. A total of 4919 unique proteins were identified from the supernatant and cell lysate proteome. More specifically, 4548 unique proteins were identified from the lysate, and 91% of these proteins were quantified based on MS/MS spectra ratios of peptides containing isotope-labeled amino acids. A total of 904 proteins showed significant differential expression and were involved in 25 molecular pathways, each containing a minimum of 16 proteins. Sixty of these proteins consistently showed aberrant expression from trisomy 21 affected amniocytes, indicating their potential role in DS pathogenesis. Nine proteins were analyzed with a multiplex selected reaction monitoring assay in an independent set of Trisomy 21-amniocyte samples and two of them (SOD1 and NES) showed a consistent differential expression. Conclusions The most extensive proteome of amniocytes and amniotic fluid has been generated and differentially expressed proteins from amniocytes with Trisomy 21 revealed molecular pathways that seem to be most significantly affected by the presence of an extra copy of chromosome 21. PMID:23394617
Dynamic monitoring of horizontal gene transfer in soil
NASA Astrophysics Data System (ADS)
Cheng, H. Y.; Masiello, C. A.; Silberg, J. J.; Bennett, G. N.
2015-12-01
Soil microbial gene expression underlies microbial behaviors (phenotypes) central to many aspects of C, N, and H2O cycling. However, continuous monitoring of microbial gene expression in soils is challenging because genetically-encoded reporter proteins widely used in the lab are difficult to deploy in soil matrices: for example, green fluorescent protein cannot be easily visualized in soils, even in the lab. To address this problem we have developed a reporter protein that releases small volatile gases. Here, we applied this gas reporter in a proof-of-concept soil experiment, monitoring horizontal gene transfer, a microbial activity that alters microbial genotypes and phenotypes. Horizontal gene transfer is central to bacterial evolution and adaptation and is relevant to problems such as the spread of antibiotic resistance, increasing metal tolerance in superfund sites, and bioremediation capability of bacterial consortia. This process is likely to be impacted by a number of matrix properties not well-represented in the petri dish, such as microscale variations in water, nutrients, and O2, making petri-dish experiments a poor proxy for environmental processes. We built a conjugation system using synthetic biology to demonstrate the use of gas-reporting biosensors in safe, lab-based biogeochemistry experiments, and here we report the use of these sensors to monitor horizontal gene transfer in soils. Our system is based on the F-plasmid conjugation in Escherichia coli. We have found that the gas signal reports on the number of cells that acquire F-plasmids (transconjugants) in a loamy Alfisol collected from Kellogg Biological Station. We will report how a gas signal generated by transconjugants varies with the number of F-plasmid donor and acceptor cells seeded in a soil, soil moisture, and soil O2 levels.
Aldor, Ilana S.; Krawitz, Denise C.; Forrest, William; Chen, Christina; Nishihara, Julie C.; Joly, John C.; Champion, Kathleen M.
2005-01-01
By using two-dimensional polyacrylamide gel electrophoresis, a proteomic analysis over time was conducted with high-cell-density, industrial, phosphate-limited Escherichia coli fermentations at the 10-liter scale. During production, a recombinant, humanized antibody fragment was secreted and assembled in a soluble form in the periplasm. E. coli protein changes associated with culture conditions were distinguished from protein changes associated with heterologous protein expression. Protein spots were monitored quantitatively and qualitatively. Differentially expressed proteins were quantitatively assessed by using a t-test method with a 1% false discovery rate as a significance criterion. As determined by this criterion, 81 protein spots changed significantly between 14 and 72 h (final time) of the control fermentations (vector only). Qualitative (on-off) comparisons indicated that 20 more protein spots were present only at 14 or 72 h in the control fermentations. These changes reflected physiological responses to the culture conditions. In control and production fermentations at 72 h, 25 protein spots were significantly differentially expressed. In addition, 19 protein spots were present only in control or production fermentations at this time. The quantitative and qualitative changes were attributable to overexpression of recombinant protein. The physiological changes observed during the fermentations included the up-regulation of phosphate starvation proteins and the down-regulation of ribosomal proteins and nucleotide biosynthesis proteins. Synthesis of the stress protein phage shock protein A (PspA) was strongly correlated with synthesis of a recombinant product. This suggested that manipulation of PspA levels might improve the soluble recombinant protein yield in the periplasm for this bioprocess. Indeed, controlled coexpression of PspA during production led to a moderate, but statistically significant, improvement in the yield. PMID:15811994
Synaptic vesicle dynamic changes in a model of fragile X.
Broek, Jantine A C; Lin, Zhanmin; de Gruiter, H Martijn; van 't Spijker, Heleen; Haasdijk, Elize D; Cox, David; Ozcan, Sureyya; van Cappellen, Gert W A; Houtsmuller, Adriaan B; Willemsen, Rob; de Zeeuw, Chris I; Bahn, Sabine
2016-01-01
Fragile X syndrome (FXS) is a single-gene disorder that is the most common heritable cause of intellectual disability and the most frequent monogenic cause of autism spectrum disorders (ASD). FXS is caused by an expansion of trinucleotide repeats in the promoter region of the fragile X mental retardation gene (Fmr1). This leads to a lack of fragile X mental retardation protein (FMRP), which regulates translation of a wide range of messenger RNAs (mRNAs). The extent of expression level alterations of synaptic proteins affected by FMRP loss and their consequences on synaptic dynamics in FXS has not been fully investigated. Here, we used an Fmr1 knockout (KO) mouse model to investigate the molecular mechanisms underlying FXS by monitoring protein expression changes using shotgun label-free liquid-chromatography mass spectrometry (LC-MS(E)) in brain tissue and synaptosome fractions. FXS-associated candidate proteins were validated using selected reaction monitoring (SRM) in synaptosome fractions for targeted protein quantification. Furthermore, functional alterations in synaptic release and dynamics were evaluated using live-cell imaging, and interpretation of synaptic dynamics differences was investigated using electron microscopy. Key findings relate to altered levels of proteins involved in GABA-signalling, especially in the cerebellum. Further exploration using microscopy studies found reduced synaptic vesicle unloading of hippocampal neurons and increased vesicle unloading in cerebellar neurons, which suggests a general decrease of synaptic transmission. Our findings suggest that FMRP is a regulator of synaptic vesicle dynamics, which supports the role of FMRP in presynaptic functions. Taken together, these studies provide novel insights into the molecular changes associated with FXS.
A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo.
Li, Junling; Chen, Zhiliang; Gao, Lian-Yong; Colorni, Angelo; Ucko, Michal; Fang, Shengyun; Du, Shao Jun
2015-08-01
Accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) triggers ER stress that initiates unfolded protein response (UPR). XBP1 is a transcription factor that mediates one of the key signaling pathways of UPR to cope with ER stress through regulating gene expression. Activation of XBP1 involves an unconventional mRNA splicing catalyzed by IRE1 endonuclease that removes an internal 26 nucleotides from xbp1 mRNA transcripts in the cytoplasm. Researchers have taken advantage of this unique activation mechanism to monitor XBP1 activation, thereby UPR, in cell culture and transgenic models. Here we report a Tg(ef1α:xbp1δ-gfp) transgenic zebrafish line to monitor XBP1 activation using GFP as a reporter especially in zebrafish oocytes and developing embryos. The Tg(ef1α:xbp1δ-gfp) transgene was constructed using part of the zebrafish xbp1 cDNA containing the splicing element. ER stress induced splicing results in the cDNA encoding a GFP-tagged partial XBP1 without the transactivation activation domain (XBP1Δ-GFP). The results showed that xbp1 transcripts mainly exist as the spliced active isoform in unfertilized oocytes and zebrafish embryos prior to zygotic gene activation at 3 hours post fertilization. A strong GFP expression was observed in unfertilized oocytes, eyes, brain and skeletal muscle in addition to a weak expression in the hatching gland. Incubation of transgenic zebrafish embryos with (dithiothreitol) DTT significantly induced XBP1Δ-GFP expression. Collectively, these studies unveil the presence of maternal xbp1 splicing in zebrafish oocytes, fertilized eggs and early stage embryos. The Tg(ef1α:xbp1δ-gfp) transgenic zebrafish provides a useful model for in vivo monitoring xbp1 splicing during development and under ER stress conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
CXCL14 is a candidate biomarker for Hedgehog signalling in idiopathic pulmonary fibrosis.
Jia, Guiquan; Chandriani, Sanjay; Abbas, Alexander R; DePianto, Daryle J; N'Diaye, Elsa N; Yaylaoglu, Murat B; Moore, Heather M; Peng, Ivan; DeVoss, Jason; Collard, Harold R; Wolters, Paul J; Egen, Jackson G; Arron, Joseph R
2017-09-01
Idiopathic pulmonary fibrosis (IPF) is associated with aberrant expression of developmental pathways, including Hedgehog (Hh). As Hh signalling contributes to multiple pro-fibrotic processes, Hh inhibition may represent a therapeutic option for IPF. However, no non-invasive biomarkers are available to monitor lung Hh activity. We assessed gene and protein expression in IPF and control lung biopsies, mouse lung, fibroblasts stimulated in vitro with sonic hedgehog (SHh), and plasma in IPF patients versus controls, and cancer patients before and after treatment with vismodegib, a Hh inhibitor. Lung tissue from IPF patients exhibited significantly greater expression of Hh-related genes versus controls. The gene most significantly upregulated in both IPF lung biopsies and fibroblasts stimulated in vitro with SHh was CXCL14 , which encodes a soluble secreted chemokine whose expression is inhibited in vitro by the addition of vismodegib. CXCL14 expression was induced by SHh overexpression in mouse lung. Circulating CXCL14 protein levels were significantly higher in plasma from IPF patients than controls. In cancer patients, circulating CXCL14 levels were significantly reduced upon vismodegib treatment. CXCL14 is a systemic biomarker that could be used to identify IPF patients with increased Hh pathway activity and monitor the pharmacodynamic effects of Hh antagonist therapy in IPF. Post-results, NCT00968981. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkins, Michael J.; Wrighton, Kelly C.; Nicora, Carrie D.
2013-03-05
While microbial activities in environmental systems play a key role in the utilization and cycling of essential elements and compounds, microbial activity and growth frequently fluctuates in response to environmental stimuli and perturbations. To investigate these fluctuations within a saturated aquifer system, we monitored a carbon-stimulated in situ Geobacter population while iron reduction was occurring, using 16S rRNA abundances and high-resolution tandem mass spectrometry proteome measurements. Following carbon amendment, 16S rRNA analysis of temporally separated samples revealed the rapid enrichment of Geobacter-like environmental strains with strong similarity to G. bemidjiensis. Tandem mass spectrometry proteomics measurements suggest high carbon flux throughmore » Geobacter respiratory pathways, and the synthesis of anapleurotic four carbon compounds from acetyl-CoA via pyruvate ferredoxin oxidoreductase activity. Across a 40-day period where Fe(III) reduction was occurring, fluctuations in protein expression reflected changes in anabolic versus catabolic reactions, with increased levels of biosynthesis occurring soon after acetate arrival in the aquifer. In addition, localized shifts in nutrient limitation were inferred based on expression of nitrogenase enzymes and phosphate uptake proteins. These temporal data offer the first example of differing microbial protein expression associated with changing geochemical conditions in a subsurface environment.« less
Desfougères, Thomas; Haddouche, Ramdane; Fudalej, Franck; Neuvéglise, Cécile; Nicaud, Jean-Marc
2010-02-01
The oleaginous yeast Yarrowia lipolytica efficiently metabolizes hydrophobic substrates such as alkanes, fatty acids or triacylglycerol. This yeast has been identified in oil-polluted water and in lipid-rich food. The enzymes involved in lipid breakdown, for use as a carbon source, are known, but the molecular mechanisms controlling the expression of the genes encoding these enzymes are still poorly understood. The study of mRNAs obtained from cells grown on oleic acid identified a new group of genes called SOA genes (specific for oleic acid). SOA1 and SOA2 are two small genes coding for proteins with no known homologs. Single- and double-disrupted strains were constructed. Wild-type and mutant strains were grown on dextrose, oleic acid and triacylglycerols. The double mutant presents a clear phenotype consisting of a growth defect on tributyrin and triolein, but not on dextrose or oleic acid media. Lipase activity was 50-fold lower in this mutant than in the wild-type strain. The impact of SOA deletion on the expression of the main extracellular lipase gene (LIP2) was monitored using a LIP2-beta-galactosidase promoter fusion protein. These data suggest that Soa proteins are components of a molecular mechanism controlling lipase gene expression in response to extracellular triacylglycerol.
The next phase of life-sciences spaceflight research
Etheridge, Timothy; Nemoto, Kanako; Hashizume, Toko; Mori, Chihiro; Sugimoto, Tomoko; Suzuki, Hiromi; Fukui, Keiji; Yamazaki, Takashi; Higashibata, Akira; Higashitani, Atsushi
2011-01-01
Recently we demonstrated that the effectiveness of RNAi interference (RNAi) for inhibiting gene expression is maintained during spaceflight in the worm Caenorhabditis elegans and argued for the biomedical importance of this finding. We also successfully utilized green fluorescent protein (GFP)-tagged proteins to monitor changes in GPF localization during flight. Here we discuss potential applications of RNAi and GFP in spaceflight studies and the ramifications of these experiments for the future of space life-sciences research. PMID:22446523
Kito, Keiji; Okada, Mitsuhiro; Ishibashi, Yuko; Okada, Satoshi; Ito, Takashi
2016-05-01
The accurate and precise absolute abundance of proteins can be determined using mass spectrometry by spiking the sample with stable isotope-labeled standards. In this study, we developed a strategy of hierarchical use of peptide-concatenated standards (PCSs) to quantify more proteins over a wider dynamic range. Multiple primary PCSs were used for quantification of many target proteins. Unique "ID-tag peptides" were introduced into individual primary PCSs, allowing us to monitor the exact amounts of individual PCSs using a "secondary PCS" in which all "ID-tag peptides" were concatenated. Furthermore, we varied the copy number of the "ID-tag peptide" in each PCS according to a range of expression levels of target proteins. This strategy accomplished absolute quantification over a wider range than that of the measured ratios. The quantified abundance of budding yeast proteins showed a high reproducibility for replicate analyses and similar copy numbers per cell for ribosomal proteins, demonstrating the accuracy and precision of this strategy. A comparison with the absolute abundance of transcripts clearly indicated different post-transcriptional regulation of expression for specific functional groups. Thus, the approach presented here is a faithful method for the absolute quantification of proteomes and provides insights into biological mechanisms, including the regulation of expressed protein abundance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Computational Algorithm for Functional Clustering of Proteome Dynamics During Development
Wang, Yaqun; Wang, Ningtao; Hao, Han; Guo, Yunqian; Zhen, Yan; Shi, Jisen; Wu, Rongling
2014-01-01
Phenotypic traits, such as seed development, are a consequence of complex biochemical interactions among genes, proteins and metabolites, but the underlying mechanisms that operate in a coordinated and sequential manner remain elusive. Here, we address this issue by developing a computational algorithm to monitor proteome changes during the course of trait development. The algorithm is built within the mixture-model framework in which each mixture component is modeled by a specific group of proteins that display a similar temporal pattern of expression in trait development. A nonparametric approach based on Legendre orthogonal polynomials was used to fit dynamic changes of protein expression, increasing the power and flexibility of protein clustering. By analyzing a dataset of proteomic dynamics during early embryogenesis of the Chinese fir, the algorithm has successfully identified several distinct types of proteins that coordinate with each other to determine seed development in this forest tree commercially and environmentally important to China. The algorithm will find its immediate applications for the characterization of mechanistic underpinnings for any other biological processes in which protein abundance plays a key role. PMID:24955031
Intracellular protein determination using droplet-based immunoassays.
Martino, Chiara; Zagnoni, Michele; Sandison, Mairi E; Chanasakulniyom, Mayuree; Pitt, Andrew R; Cooper, Jonathan M
2011-07-01
This paper describes the implementation of a sensitive, on-chip immunoassay for the analysis of intracellular proteins, developed using microdroplet technology. The system offers a number of analytical functionalities, enabling the lysis of low cell numbers, as well as protein detection and quantification, integrated within a single process flow. Cells were introduced into the device in suspension and were electrically lysed in situ. The cell lysate was subsequently encapsulated together with antibody-functionalized beads into stable, water-in-oil droplets, which were stored on-chip. The binding of intracellular proteins to the beads was monitored fluorescently. By analyzing many individual droplets and quantifying the data obtained against standard additions, we measured the level of two intracellular proteins, namely, HRas-mCitrine, expressed within HEK-293 cells, and actin-EGFP, expressed within MCF-7 cells. We determined the concentrations of these proteins over 5 orders of magnitude, from ~50 pM to 1 μM. The results from this semiautomated method were compared to those for determinations made using Western blots, and were found not only to be faster, but required a smaller number of cells.
Awde, Ali R; Boisgard, Raphaël; Thézé, Benoit; Dubois, Albertine; Zheng, Jinzi; Dollé, Frédéric; Jacobs, Andreas H; Tavitian, Bertrand; Winkeler, Alexandra
2013-12-01
On the one hand, the translocator protein (TSPO) radioligand N,N-diethyl-2-(2-(4-(2-(18)F-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide ((18)F-DPA-714) has been suggested to serve as an alternative radiotracer to image human glioma, and on the other hand the alkylphosphocholine erufosine (ErPC3) has been reported to induce apoptosis in otherwise highly apoptosis-resistant glioma cell lines. The induction of apoptosis by ErPC3 requires TSPO, a mitochondrial membrane protein highly expressed in malignant gliomas. In this preclinical study, we monitored the effect of ErPC3 treatment in vivo using (18)F-DPA-714 PET. In vitro studies investigated the antitumor effect of ErPC3 in 9L rat gliosarcoma cells. In vivo, glioma-bearing rats were imaged with (18)F-DPA-714 for the time of treatment. A significant decrease in 9L cell proliferation and viability and a significant increase in apoptosis and caspase-3 activation were demonstrated on ErPC3 treatment in cell culture. In the rat model, ErPC3 administration resulted in significant changes in (18)F-DPA-714 tumor uptake over the course of the treatment. Immunohistochemistry revealed reduced tumor volume and increased cell death in ErPC3-treated animals accompanied by infiltration of the tumor core by CD11b-positive microglia/macrophages and glial fibrillary acidic protein-positive astrocytes. Our findings demonstrate a potent antitumor effect of ErPC3 in vitro, in vivo, and ex vivo. PET imaging of TSPO expression using (18)F-DPA-714 allows effective monitoring and quantification of disease progression and response to ErPC3 therapy in intracranial 9L gliomas.
Comparative proteomic analysis of somatic embryo maturation in Carica papaya L.
2014-01-01
Background Somatic embryogenesis is a complex process regulated by numerous factors. The identification of proteins that are differentially expressed during plant development could result in the development of molecular markers of plant metabolism and provide information contributing to the monitoring and understanding of different biological responses. In addition, the identification of molecular markers could lead to the optimization of protocols allowing the use of biotechnology for papaya propagation and reproduction. This work aimed to investigate the effects of polyethylene glycol (PEG) on somatic embryo development and the protein expression profile during somatic embryo maturation in papaya (Carica papaya L.). Results The maturation treatment supplemented with 6% PEG (PEG6) resulted in the greatest number of somatic embryos and induced differential protein expression compared with cultures grown under the control treatment. Among 135 spots selected for MS/MS analysis, 76 spots were successfully identified, 38 of which were common to both treatments, while 14 spots were unique to the control treatment, and 24 spots were unique to the PEG6 treatment. The identified proteins were assigned to seven categories or were unclassified. The most representative class of proteins observed in the control treatment was associated with the stress response (25.8%), while those under PEG6 treatment were carbohydrate and energy metabolism (18.4%) and the stress response (18.4%). Conclusions The differential expression of three proteins (enolase, esterase and ADH3) induced by PEG6 treatment could play an important role in maturation, and these proteins could be characterized as candidate biomarkers of somatic embryogenesis in papaya. PMID:25076862
Development of a proteomic approach to monitor protein synthesis in mycotoxin producing moulds.
Milles, J; Krämer, J; Prange, A
2007-12-01
In general, proteome studies compare different states of metabolism to investigate external or internal influences on protein expression. In the context of mycotoxin production the method could open another view on this complex and could be helpful to gain knowledge about proteins which are involved in metabolism (enzymes, transporters). In this short technical report, we describe a new protocol suitable for protein preparation for whole proteome analysis ofFusarium graminearum. Cell lysis was performed by grinding the mycelium with liquid nitrogen. Proteins were extracted with TCA/acetone and then cleaned; the isolated proteins were separated in a 2D-gel electrophoresis system (BioRad) using different pH gradients. The protocol established seems also generally applicable for other mycotoxin producing fungi.
Multispectral Scanner for Monitoring Plants
NASA Technical Reports Server (NTRS)
Gat, Nahum
2004-01-01
A multispectral scanner has been adapted to capture spectral images of living plants under various types of illumination for purposes of monitoring the health of, or monitoring the transfer of genes into, the plants. In a health-monitoring application, the plants are illuminated with full-spectrum visible and near infrared light and the scanner is used to acquire a reflected-light spectral signature known to be indicative of the health of the plants. In a gene-transfer- monitoring application, the plants are illuminated with blue or ultraviolet light and the scanner is used to capture fluorescence images from a green fluorescent protein (GFP) that is expressed as result of the gene transfer. The choice of wavelength of the illumination and the wavelength of the fluorescence to be monitored depends on the specific GFP.
Kitata, Reta Birhanu; Dimayacyac-Esleta, Baby Rorielyn T.; Choong, Wai-Kok; Tsai, Chia-Feng; Lin, Tai-Du; Tsou, Chih-Chiang; Weng, Shao-Hsing; Chen, Yi-Ju; Yang, Pan-Chyr; Arco, Susan D.; Nesvizhskii, Alexey I.; Sung, Ting-Yi; Chen, Yu-Ju
2016-01-01
Despite significant efforts in the past decade towards complete mapping of the human proteome, 3564 proteins (neXtProt, 09-2014) are still “missing proteins”. Over one-third of these missing proteins are annotated as membrane proteins, owing to their relatively challenging accessibility with standard shotgun proteomics. Using non-small cell lung cancer (NSCLC) as a model study, we aim to mine missing proteins from disease-associated membrane proteome, which may be still largely under-represented. To increase identification coverage, we employed Hp-RP StageTip pre-fractionation of membrane-enriched samples from 11 NSCLC cell lines. Analysis of membrane samples from 20 pairs of tumor and adjacent normal lung tissue were incorporated to include physiologically expressed membrane proteins. Using multiple search engines (X!Tandem, Comet and Mascot) and stringent evaluation of FDR (MAYU and PeptideShaker), we identified 7702 proteins (66% membrane proteins) and 178 missing proteins (74 membrane proteins) with PSM-, peptide-, and protein-level FDR of 1%. Through multiple reaction monitoring (MRM) using synthetic peptides, we provided additional evidences for 8 missing proteins including 7 with transmembrane helix domains (TMH). This study demonstrates that mining missing proteins focused on cancer membrane sub-proteome can greatly contribute to map the whole human proteome. All data were deposited into ProteomeXchange with the identifier PXD002224. PMID:26202522
Data Pre-Processing for Label-Free Multiple Reaction Monitoring (MRM) Experiments
Chung, Lisa M.; Colangelo, Christopher M.; Zhao, Hongyu
2014-01-01
Multiple Reaction Monitoring (MRM) conducted on a triple quadrupole mass spectrometer allows researchers to quantify the expression levels of a set of target proteins. Each protein is often characterized by several unique peptides that can be detected by monitoring predetermined fragment ions, called transitions, for each peptide. Concatenating large numbers of MRM transitions into a single assay enables simultaneous quantification of hundreds of peptides and proteins. In recognition of the important role that MRM can play in hypothesis-driven research and its increasing impact on clinical proteomics, targeted proteomics such as MRM was recently selected as the Nature Method of the Year. However, there are many challenges in MRM applications, especially data pre‑processing where many steps still rely on manual inspection of each observation in practice. In this paper, we discuss an analysis pipeline to automate MRM data pre‑processing. This pipeline includes data quality assessment across replicated samples, outlier detection, identification of inaccurate transitions, and data normalization. We demonstrate the utility of our pipeline through its applications to several real MRM data sets. PMID:24905083
Data Pre-Processing for Label-Free Multiple Reaction Monitoring (MRM) Experiments.
Chung, Lisa M; Colangelo, Christopher M; Zhao, Hongyu
2014-06-05
Multiple Reaction Monitoring (MRM) conducted on a triple quadrupole mass spectrometer allows researchers to quantify the expression levels of a set of target proteins. Each protein is often characterized by several unique peptides that can be detected by monitoring predetermined fragment ions, called transitions, for each peptide. Concatenating large numbers of MRM transitions into a single assay enables simultaneous quantification of hundreds of peptides and proteins. In recognition of the important role that MRM can play in hypothesis-driven research and its increasing impact on clinical proteomics, targeted proteomics such as MRM was recently selected as the Nature Method of the Year. However, there are many challenges in MRM applications, especially data pre‑processing where many steps still rely on manual inspection of each observation in practice. In this paper, we discuss an analysis pipeline to automate MRM data pre‑processing. This pipeline includes data quality assessment across replicated samples, outlier detection, identification of inaccurate transitions, and data normalization. We demonstrate the utility of our pipeline through its applications to several real MRM data sets.
Activity Based Profiling of Deubiquitylating Enzymes and Inhibitors in Animal Tissues.
McLellan, Lauren; Forder, Cassie; Cranston, Aaron; Harrigan, Jeanine; Jacq, Xavier
2016-01-01
The attachment of ubiquitin or ubiquitin-like modifiers to proteins is an important signal for the regulation of a variety of biological processes including the targeting of substrates for degradation, receptor internalization, regulation of gene expression, and DNA repair. Posttranslational modification of proteins by ubiquitin controls many cellular processes, and aberrant ubiquitylation can contribute to cancer, immunopathologies, and neurodegeneration. Thus, deubiquitylating enzymes (DUBs) that remove ubiquitin from proteins have become attractive therapeutic targets. Monitoring the activity of DUBs in cells or in tissues is critical for understanding the biological function of DUBs in particular pathways and is essential for determining the physiological specificity and potency of small-molecule DUB inhibitors. Here, we describe a method for the homogenization of animal tissues and incubation of tissue lysates with ubiquitin-based activity probes to monitor DUB activity in mouse tissues and target engagement following treatment of animals with small-molecule DUB inhibitors.
Dynamics of zebrafish fin regeneration using a pulsed SILAC approach.
Nolte, Hendrik; Hölper, Soraya; Housley, Michael P; Islam, Shariful; Piller, Tanja; Konzer, Anne; Stainier, Didier Y R; Braun, Thomas; Krüger, Marcus
2015-02-01
The zebrafish owns remarkable regenerative capacities allowing regeneration of several tissues, including the heart, liver, and brain. To identify protein dynamics during fin regeneration we used a pulsed SILAC approach that enabled us to detect the incorporation of (13) C6 -lysine (Lys6) into newly synthesized proteins. Samples were taken at four different time points from noninjured and regrowing fins and incorporation rates were monitored using a combination of single-shot 4-h gradients and high-resolution tandem MS. We identified more than 5000 labeled proteins during the first 3 weeks of fin regeneration and were able to monitor proteins that are responsible for initializing and restoring the shape of these appendages. The comparison of Lys6 incorporation rates between noninjured and regrowing fins enabled us to identify proteins that are directly involved in regeneration. For example, we observed increased incorporation rates of two actinodin family members at the actinotrichia, which is a hairlike fiber structure at the tip of regrowing fins. Moreover, we used quantitative real-time RNA measurements of several candidate genes, including osteoglycin, si:ch211-288h17.3, and prostaglandin reductase 1 to correlate the mRNA expression to Lys6 incorporation data. This novel pulsed SILAC methodology in fish can be used as a versatile tool to monitor newly synthesized proteins and will help to characterize protein dynamics during regenerative processes in zebrafish beyond fin regeneration. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chasseriaud, Laura; Miot-Sertier, Cécile; Coulon, Joana; Iturmendi, Nerea; Moine, Virginie; Albertin, Warren; Bely, Marina
2015-12-01
The existing methods for testing proteolytic activity are time consuming, quite difficult to perform, and do not allow real-time monitoring. Proteases have attracted considerable interest in winemaking and some yeast species naturally present in grape must, such as Metschnikowia pulcherrima, are capable of expressing this activity. In this study, a new test is proposed for measuring proteolytic activity directly in fermenting grape must, using azocasein, a chromogenic substrate. Several yeast strains were tested and differences in proteolytic activity were observed. Moreover, analysis of grape must proteins in wines revealed that protease secreted by Metschnikowia strains may be active against wine proteins. Copyright © 2015. Published by Elsevier B.V.
Girolami, F; Badino, P; Spalenza, V; Manzini, L; Renzone, G; Salzano, A M; Dal Piaz, F; Scaloni, A; Rychen, G; Nebbia, C
2018-05-28
Dioxins and polychlorinated biphenyls (PCBs) are widespread and persistent contaminants. Through a combined gene expression/proteomic-based approach, candidate biomarkers of the exposure to such environmental pollutants in cattle subjected to a real eco-contamination event were identified. Animals were removed from the polluted area and fed a standard ration for 6 months. The decontamination was monitored by evaluating dioxin and PCB levels in pericaudal fat two weeks after the removal from the contaminated area (day 0) and then bimonthly for six months (days 59, 125 and 188). Gene expression measurements demonstrated that CYP1B1 expression was significantly higher in blood lymphocytes collected in contaminated animals (day 0), and decreased over time during decontamination. mRNA levels of interleukin 2 showed an opposite quantitative trend. MALDI-TOF-MS polypeptide profiling of serum samples ascertained a progressive decrease (from day 0 to 188) of serum levels of fibrinogen β-chain and serpin A3-7-like fragments, apolipoprotein (APO) C-II and serum amyloid A-4 protein, along with an augmented representation of transthyretin isoforms, as well as APOC-III and APOA-II proteins during decontamination. When differentially represented species were combined with serum antioxidant, acute phase and proinflammatory protein levels already ascertained in the same animals (Cigliano et al., 2016), bioinformatics unveiled an interaction network linking together almost all components. This suggests the occurrence of a complex PCB-responsive mechanism associated with animal contamination/decontamination, including a cohort of protein/polypeptide species involved in blood redox homeostasis, inflammation and lipid transport. All together, these results suggest the use in combination of such biomarkers for identifying PCB-contaminated animals, and for monitoring the restoring of their healthy condition following a decontamination process. Copyright © 2018 Elsevier B.V. All rights reserved.
Metal-enhanced fluorescence of single green fluorescent protein (GFP)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu Yi; Zhang Jian; Lakowicz, Joseph R.
2008-11-28
The green fluorescent protein (GFP) has emerged as a powerful reporter molecule for monitoring gene expression, protein localization, and protein-protein interaction. However, the detection of low concentrations of GFPs is limited by the weakness of the fluorescent signal and the low photostability. In this report, we observed the proximity of single GFPs to metallic silver nanoparticles increases its fluorescence intensity approximately 6-fold and decreases the decay time. Single protein molecules on the silvered surfaces emitted 10-fold more photons as compared to glass prior to photobleaching. The photostability of single GFP has increased to some extent. Accordingly, we observed longer durationmore » time and suppressed blinking. The single-molecule lifetime histograms indicate the relatively heterogeneous distributions of protein mutants inside the structure.« less
Negoita, Silvius I; Sandesc, Dorel; Rogobete, Alexandru F; Dutu, Madalina; Bedreag, Ovidiu H; Papurica, Marius; Ercisli, Muhammed F; Popovici, Sonia E; Dumache, Raluca; Sandesc, Mihai; Dinu, Anca; Sas, Adriana M; Serban, Denis; Corneci, Dan
2017-09-01
A high percentage of patients develop Alzheimer`s disease (AD). The main signs are loss of memory and cognitive functions which have a significant impact on lifestyle. Numerous studies have been conducted to identify new biomarkers for early diagnosis of patients with AD. An ideal biomarker is represented by the expression of miRNAs. In this paper, we want to summarize expressions miRNAs in AD. We also want to present the pathophysiological and genetic interactions of miRNAs with protein systems in these patients. For the study, we examined available studies in scientific databases, such as PubMed and Scopus. The studies were searched using the keywords "miRNAs expression", "Alzheimer`s disease", "genetic polymorphisms", and "genetic biomarkers". For the assessment and monitoring of patients with AD, the expression of miRNAs can be used successfully due to increased specificity and selectivity. Moreover, the expression of miRNAs can provide important answers regarding possible genetic interactions and genetic therapeutic regimens. For the evaluation and non-invasive monitoring of patients with Alzheimer`s disease the expression of miRNAs can be successfully used.
Juck, D F; Whissell, G; Steven, B; Pollard, W; McKay, C P; Greer, C W; Whyte, L G
2005-02-01
Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-microm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses.
Juck, D. F.; Whissell, G.; Steven, B.; Pollard, W.; McKay, C. P.; Greer, C. W.; Whyte, L. G.
2005-01-01
Fluorescent microspheres were applied in a novel fashion during subsurface drilling of permafrost and ground ice in the Canadian High Arctic to monitor the exogenous microbiological contamination of core samples obtained during the drilling process. Prior to each drill run, a concentrated fluorescent microsphere (0.5-μm diameter) solution was applied to the interior surfaces of the drill bit, core catcher, and core tube and allowed to dry. Macroscopic examination in the field demonstrated reliable transfer of the microspheres to core samples, while detailed microscopic examination revealed penetration levels of less than 1 cm from the core exterior. To monitor for microbial contamination during downstream processing of the permafrost and ground ice cores, a Pseudomonas strain expressing the green fluorescent protein (GFP) was painted on the core exterior prior to processing. Contamination of the processed core interiors with the GFP-expressing strain was not detected by culturing the samples or by PCR to detect the gfp marker gene. These methodologies were quick, were easy to apply, and should help to monitor the exogenous microbiological contamination of pristine permafrost and ground ice samples for downstream culture-dependent and culture-independent microbial analyses. PMID:15691963
London, Anne Serdakowski; Patel, Kunal; Quinn, Lisa; Lemmerer, Martin
2015-04-01
Coupled affinity liquid chromatography and size exclusion chromatography (ALC-SEC) is a technique that has been shown to successfully report product quality of proteins during cell expression and prior to the commencement of downstream processing chromatography steps. This method was applied to monitoring the degradation and subsequent partial remediation of a HSA-tagged protein which showed proteolysis, allowing for rapid cell line development to address this product quality dilemma. This paper outlines the novel application of this method for measuring and addressing protease-induced proteolysis. Copyright © 2014 Elsevier Inc. All rights reserved.
Normalized Quantitative Western Blotting Based on Standardized Fluorescent Labeling.
Faden, Frederik; Eschen-Lippold, Lennart; Dissmeyer, Nico
2016-01-01
Western blot (WB) analysis is the most widely used method to monitor expression of proteins of interest in protein extracts of high complexity derived from diverse experimental setups. WB allows the rapid and specific detection of a target protein, such as non-tagged endogenous proteins as well as protein-epitope tag fusions depending on the availability of specific antibodies. To generate quantitative data from independent samples within one experiment and to allow accurate inter-experimental quantification, a reliable and reproducible method to standardize and normalize WB data is indispensable. To date, it is a standard procedure to normalize individual bands of immunodetected proteins of interest from a WB lane to other individual bands of so-called housekeeping proteins of the same sample lane. These are usually detected by an independent antibody or colorimetric detection and do not reflect the real total protein of a sample. Housekeeping proteins-assumed to be constitutively expressed mostly independent of developmental and environmental states-can greatly differ in their expression under these various conditions. Therefore, they actually do not represent a reliable reference to normalize the target protein's abundance to the total amount of protein contained in each lane of a blot.Here, we demonstrate the Smart Protein Layers (SPL) technology, a combination of fluorescent standards and a stain-free fluorescence-based visualization of total protein in gels and after transfer via WB. SPL allows a rapid and highly sensitive protein visualization and quantification with a sensitivity comparable to conventional silver staining with a 1000-fold higher dynamic range. For normalization, standardization and quantification of protein gels and WBs, a sample-dependent bi-fluorescent standard reagent is applied and, for accurate quantification of data derived from different experiments, a second calibration standard is used. Together, the precise quantification of protein expression by lane-to-lane, gel-to-gel, and blot-to-blot comparisons is facilitated especially with respect to experiments in the area of proteostasis dealing with highly variable protein levels and involving protein degradation mutants and treatments modulating protein abundance.
Application of targeted proteomics to metabolically engineered Escherichia coli.
Singh, Pragya; Batth, Tanveer S; Juminaga, Darmawi; Dahl, Robert H; Keasling, Jay D; Adams, Paul D; Petzold, Christopher J
2012-04-01
As synthetic biology matures to compete with chemical transformation of commodity and high-value compounds, a wide variety of well-characterized biological parts are needed to facilitate system design. Protein quantification based on selected-reaction monitoring (SRM) mass spectrometry compliments metabolite and transcript analysis for system characterization and optimizing flux through engineered pathways. By using SRM quantification, we assayed red fluorescent protein (RFP) expressed from plasmids containing several inducible and constitutive promoters and subsequently assessed protein production from the same promoters driving expression of eight mevalonate pathway proteins in Escherichia coli. For each of the promoter systems, the protein level for the first gene in the operon followed that of RFP, however, the levels of proteins produced from genes farther from the promoter were much less consistent. Second, we used targeted proteomics to characterize tyrosine biosynthesis pathway proteins after removal of native regulation. The changes were not expected to cause significant impact on protein levels, yet significant variation in protein abundance was observed and tyrosine production for these strains spanned a range from less than 1 mg/L to greater than 250 mg/L. Overall, our results underscore the importance of targeted proteomics for determining accurate protein levels in engineered systems and fine-tuning metabolic pathways. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rahpeyma, Mehdi; Samarbaf-Zadeh, Alireza; Makvandi, Manoochehr; Ghadiri, Ata A; Dowall, Stuart D; Fotouhi, Fatemeh
2017-07-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is a major cause of tick-borne viral hemorrhagic disease in the world. Despite of its importance as a deadly pathogen, there is currently no licensed vaccine against CCHF disease. The attachment glycoprotein of CCHFV (Gn) is a potentially important target for protective antiviral immune responses. To characterize the expression of recombinant CCHFV Gn in an insect-cell-based system, we developed a gene expression system expressing the full-length coding sequence under a polyhedron promoter in Sf9 cells using recombinant baculovirus. Recombinant Gn was purified by affinity chromatography, and the immunoreactivity of the protein was evaluated using sera from patients with confirmed CCHF infection. Codon-optimized Gn was successfully expressed, and the product had the expected molecular weight for CCHFV Gn glycoprotein of 37 kDa. In time course studies, the optimum expression of Gn occurred between 36 and 48 hours postinfection. The immunoreactivity of the recombinant protein in Western blot assay against human sera was positive and was similar to the results obtained with the anti-V5 tag antibody. Additionally, mice were subjected to subcutaneous injection with recombinant Gn, and the cellular and humoral immune response was monitored. The results showed that recombinant Gn protein was highly immunogenic and could elicit high titers of antigen-specific antibodies. Induction of the inflammatory cytokine interferon-gamma and the regulatory cytokine IL-10 was also detected. In conclusion, a recombinant baculovirus harboring CCHFV Gn was constructed and expressed in Sf9 host cells for the first time, and it was demonstrated that this approach is a suitable expression system for producing immunogenic CCHFV Gn protein without any biosafety concerns.
MHC class I-associated peptides derive from selective regions of the human genome.
Pearson, Hillary; Daouda, Tariq; Granados, Diana Paola; Durette, Chantal; Bonneil, Eric; Courcelles, Mathieu; Rodenbrock, Anja; Laverdure, Jean-Philippe; Côté, Caroline; Mader, Sylvie; Lemieux, Sébastien; Thibault, Pierre; Perreault, Claude
2016-12-01
MHC class I-associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology.
MHC class I–associated peptides derive from selective regions of the human genome
Pearson, Hillary; Granados, Diana Paola; Durette, Chantal; Bonneil, Eric; Courcelles, Mathieu; Rodenbrock, Anja; Laverdure, Jean-Philippe; Côté, Caroline; Thibault, Pierre
2016-01-01
MHC class I–associated peptides (MAPs) define the immune self for CD8+ T lymphocytes and are key targets of cancer immunosurveillance. Here, the goals of our work were to determine whether the entire set of protein-coding genes could generate MAPs and whether specific features influence the ability of discrete genes to generate MAPs. Using proteogenomics, we have identified 25,270 MAPs isolated from the B lymphocytes of 18 individuals who collectively expressed 27 high-frequency HLA-A,B allotypes. The entire MAP repertoire presented by these 27 allotypes covered only 10% of the exomic sequences expressed in B lymphocytes. Indeed, 41% of expressed protein-coding genes generated no MAPs, while 59% of genes generated up to 64 MAPs, often derived from adjacent regions and presented by different allotypes. We next identified several features of transcripts and proteins associated with efficient MAP production. From these data, we built a logistic regression model that predicts with good accuracy whether a gene generates MAPs. Our results show preferential selection of MAPs from a limited repertoire of proteins with distinctive features. The notion that the MHC class I immunopeptidome presents only a small fraction of the protein-coding genome for monitoring by the immune system has profound implications in autoimmunity and cancer immunology. PMID:27841757
L-Myo-inositol 1-phosphate synthase in the aquatic fern Azolla filiculoides.
Benaroya, Rony Oren; Zamski, Eli; Tel-Or, Elisha
2004-02-01
L-Myo-inositol 1-phosphate synthase (INPS EC 5.5.1.4) catalyzes the conversion of D-glucose 6-phosphate to L-myo-inositol 1-phosphate. INPS is a key enzyme involved in the biosynthesis of phytate which is a common form of stored phosphates in higher plants. The present study monitored the increase of INPS expression in Azolla filiculoides resulting from exposure to inorganic phosphates, metals and salt stress. The expression of INPS was significantly higher in Azolla plants that were grown in rich mineral growth medium than those maintained on nutritional growth medium. The expression of INPS protein and corresponding mRNA increased in plants cultured in minimal nutritional growth medium when phosphate or Zn2+, Cd2+ and NaCl were added to the growth medium. When employing rich mineral growth medium, INPS protein content increased with the addition of Zn2+, but decreased in the presence of Cd2+ and NaCl. These results indicated that accumulation of phytate in Azolla is a result of the intensified expression of INPS protein and mRNA, and its regulation may be primarily derived by the uptake of inorganic phosphate, and Zn2+, Cd2+ or NaCl.
Genetic Mutation and Exosome Signature of Human Papilloma Virus Associated Oropharyngeal Cancer
Kannan, Anbarasu; Hertweck, Kate L.; Philley, Julie V.; Wells, Robert B.; Dasgupta, Santanu
2017-01-01
Human papilloma virus-16 (HPV-16) associated oropharyngeal cancer (HPVOPC) is increasing alarmingly in the United States. We performed whole genome sequencing of a 44 year old, male HPVOPC subject diagnosed with moderately differentiated tonsillar carcinoma. We identified new somatic mutation in MUC16 (A.k.a. CA-125), MUC12, MUC4, MUC6, MUC2, SIRPA, HLA-DRB1, HLA-A and HLA-B molecules. Increased protein expression of MUC16, SIRPA and decreased expression of HLA-DRB1 was further demonstrated in this HPVOPC subject and an additional set of 15 HPVOPC cases. Copy number gain (3 copies) was also observed for MUC2, MUC4, MUC6 and SIRPA. Enhanced expression of MUC16, SIRPA and HPV-16-E7 protein was detectable in the circulating exosomes of numerous HPVOPC subjects. Treatment of non-tumorigenic mammary epithelial cells with exosomes derived from aggressive HPVOPC cells harboring MUC16, SIRPA and HPV-16-E7 proteins augmented invasion and induced epithelial to mesenchymal transition (EMT) accompanied by an increased expression ratio of the EMT markers Vimentin/E-cadherin. Exosome based screening of key HPVOPC associated molecules could be beneficial for early cancer diagnosis, monitoring and surveillance. PMID:28383029
Kim, Sung Bae; Ozawa, Takeaki; Watanabe, Shigeaki; Umezawa, Yoshio
2004-08-10
Nucleocytoplasmic trafficking of functional proteins plays a key role in regulating gene expressions in response to extracellular signals. We developed a genetically encoded bioluminescent indicator for monitoring the nuclear trafficking of target proteins in vitro and in vivo. The principle is based on reconstitution of split fragments of Renilla reniformis (Rluc) by protein splicing with a DnaE intein (a catalytic subunit of DNA polymerase III). A target cytosolic protein fused to the N-terminal half of Rluc is expressed in mammalian cells. If the protein translocates into the nucleus, the Rluc moiety meets the C-terminal half of Rluc, and full-length Rluc is reconstituted by protein splicing. We demonstrated quantitative cell-based in vitro sensing of ligand-induced translocation of androgen receptor, which allowed high-throughput screening of exo- and endogenous agonists and antagonists. Furthermore, the indicator enabled noninvasive in vivo imaging of the androgen receptor translocation in the brains of living mice with a charge-coupled device imaging system. These rapid and quantitative analyses in vitro and in vivo provide a wide variety of applications for screening pharmacological or toxicological compounds and testing them in living animals.
Buschow, Christian; Charo, Jehad; Anders, Kathleen; Loddenkemper, Christoph; Jukica, Ana; Alsamah, Wisam; Perez, Cynthia; Willimsky, Gerald; Blankenstein, Thomas
2010-03-15
Visualizing oncogene/tumor Ag expression by noninvasive imaging is of great interest for understanding processes of tumor development and therapy. We established transgenic (Tg) mice conditionally expressing a fusion protein of the SV40 large T Ag and luciferase (TagLuc) that allows monitoring of oncogene/tumor Ag expression by bioluminescent imaging upon Cre recombinase-mediated activation. Independent of Cre-mediated recombination, the TagLuc gene was expressed at low levels in different tissues, probably due to the leakiness of the stop cassette. The level of spontaneous TagLuc expression, detected by bioluminescent imaging, varied between the different Tg lines, depended on the nature of the Tg expression cassette, and correlated with Tag-specific CTL tolerance. Following liver-specific Cre-loxP site-mediated excision of the stop cassette that separated the promoter from the TagLuc fusion gene, hepatocellular carcinoma development was visualized. The ubiquitous low level TagLuc expression caused the failure of transferred effector T cells to reject Tag-expressing tumors rather than causing graft-versus-host disease. This model may be useful to study different levels of tolerance, monitor tumor development at an early stage, and rapidly visualize the efficacy of therapeutic intervention versus potential side effects of low-level Ag expression in normal tissues.
Shiba, Kazuhiro; Torashima, Takashi; Hirai, Hirokazu; Ogawa, Kazuma; Akhter, Nasima; Nakajima, Kenichi; Kinuya, Seigo; Mori, Hirofumi
2009-02-01
We investigated a gene expression imaging method to examine the level of therapeutic gene expression in the cerebellum. Using a human immunodeficiency virus derived lentivial vector, we expressed the dopamine D(2) receptor (D(2)R) as a reporter protein to mouse cerebellar Purkinje cells. Biodistribution and ex vivo autoradiography studies were performed by giving [(125)I]5-iodo-7-N-[(1-ethyl-2-pyrrolidinyl)methyl]carboxamide-2,3-dihydrobenzofuran ([(125)I]IBF) (1.85 MBq), as a radioactive D(2)R ligand, to model mice expressing the D(2)R with an HA tag (HA-D(2)R) in the cerebellum. In this study, [(125)I]IBF was bound to the D(2)R expressed in the cerebellum of the model mice selectively. Immunostaining was performed to confirm the HA-D(2)R expression in the cerebellum of the model mice. A significant correlation (r=0.900, P<0.001) between areas that expressed HA-D(2)R by immunostaining and areas in which [(125)I]IBF accumulated by the ex vivo autoradiograms was found. These results indicated that radioiodinated IBF is useful as a reporter probe to detect D(2)R reporter gene expression, which can be used for monitoring therapeutic gene expression in the cerebellum.
Wnt signaling is involved in human articular chondrocyte de-differentiation in vitro.
Sassi, N; Laadhar, L; Allouche, M; Zandieh-Doulabi, B; Hamdoun, M; Klein-Nulend, J; Makni, S; Sellami, S
2014-01-01
Osteoarthritis is the most prevalent form of arthritis in the world. Certain signaling pathways, such as the wnt pathway, are involved in cartilage pathology. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to chondrocyte de-differentiation. We investigated whether the Wnt pathway is involved in de-differentiation of human articular chondrocytes in vitro. Human articular chondrocytes were cultured for four passages in the presence or absence of IL-1 in monolayer or micromass culture. Changes in cell morphology were monitored by light microscopy. Protein and gene expression of chondrocyte markers and Wnt pathway components were determined by Western blotting and qPCR after culture. After culturing for four passages, chondrocytes exhibited a fibroblast-like morphology. Collagen type II and aggrecan protein and gene expression decreased, while collagen type I, matrix metalloproteinase 13, and nitric oxide synthase expressions increased. Wnt molecule expression profiles changed; Wnt5a protein expression, the Wnt target gene, c-jun, and in Wnt pathway regulator, sFRP4 increased. Treatment with IL-1 caused chondrocyte morphology to become more filament-like. This change in morphology was accompanied by extinction of col II expression and increased col I, MMP13 and eNOS expression. Changes in expression of the Wnt pathway components also were observed. Wnt7a decreased significantly, while Wnt5a, LRP5, β-catenin and c-jun expressions increased. Culture of human articular chondrocytes with or without IL-1 not only induced chondrocyte de-differentiation, but also changed the expression profiles of Wnt components, which suggests that the Wnt pathway is involved in chondrocyte de-differentiation in vitro.
Catenacci, Daniel V.T.; Liao, Wei-Li; Zhao, Lei; Whitcomb, Emma; Henderson, Les; O’Day, Emily; Xu, Peng; Thyparambil, Sheeno; Krizman, David; Bengali, Kathleen; Uzzell, Jamar; Darfler, Marlene; Cecchi, Fabiola; Blackler, Adele; Bang, Yung-Jue; Hart, John; Xiao, Shu-Yuan; Lee, Sang Mee; Burrows, Jon; Hembrough, Todd
2015-01-01
Background Trastuzumab showed survival benefit for Her2-positive gastroesophageal cancers (GEC). Immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH) currently determine eligibility for trastuzumab-based therapy. However, these low-throughput assays often produce discordant or equivocal results. Methods We developed a targeted proteomic assay based on selected reaction monitoring mass spectrometry (SRM-MS) and quantified levels (amol/ug) of Her2-SRM protein in cell lines (n=27) and GEC tissues (n=139). We compared Her2-SRM protein expression with IHC/FISH, seeking to determine optimal SRM protein expression cut-offs to identify HER2 gene amplification. Results After demonstrating assay development, precision, and stability, Her2-SRM protein measurement was observed to be highly concordant with HER2/CEP17 ratio, particularly in a multivariate regression model adjusted for SRM-expression of Met, Egfr, Her3, and HER2-heterogeneity covariates, and their interactions (cell lines r2=0.9842; FFPE r2=0.7643). In GEC tissues, Her2-SRM protein was detected in 71.2% of cases. ROC curves demonstrated Her2-SRM protein levels to have high specificity (100%) at an upper-level cut-off of >750 amol/μg and sensitivity (75%) at lower-level cut-off of <450 amol/ug to identify HER2 FISH amplified tumors. An ‘equivocal-zone’ of 450-750 amol/ug of Her2-SRM protein was analogous to ’IHC2+#x2019;, but represented fewer cases (9-16% of cases versus 36-41%). Conclusions Compared to IHC, targeted SRM-Her2 proteomics provided more objective and quantitative Her2 expression with excellent HER2/CEP17 FISH correlation and fewer equivocal cases. Along with the multiplex capability for other relevant oncoproteins, these results demonstrated a refined HER2 protein expression assay for clinical application. PMID:26581548
Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells.
Ganini, Douglas; Leinisch, Fabian; Kumar, Ashutosh; Jiang, JinJie; Tokar, Erik J; Malone, Christine C; Petrovich, Robert M; Mason, Ronald P
2017-08-01
Fluorescent proteins are an important tool that has become omnipresent in life sciences research. They are frequently used for localization of proteins and monitoring of cells [1,2]. Green fluorescent protein (GFP) was the first and has been the most used fluorescent protein. Enhanced GFP (eGFP) was optimized from wild-type GFP for increased fluorescence yield and improved expression in mammalian systems [3]. Many GFP-like fluorescent proteins have been discovered, optimized or created, such as the red fluorescent protein TagRFP [4]. Fluorescent proteins are expressed colorless and immature and, for eGFP, the conversion to the fluorescent form, mature, is known to produce one equivalent of hydrogen peroxide (H 2 O 2 ) per molecule of chromophore [5,6]. Even though it has been proposed that this process is non-catalytic and generates nontoxic levels of H 2 O 2 [6], this study investigates the role of fluorescent proteins in generating free radicals and inducing oxidative stress in biological systems. Immature eGFP and TagRFP catalytically generate the free radical superoxide anion (O 2 •- ) and H 2 O 2 in the presence of NADH. Generation of the free radical O 2 •- and H 2 O 2 by eGFP in the presence of NADH affects the gene expression of cells. Many biological pathways are altered, such as a decrease in HIF1α stabilization and activity. The biological pathways altered by eGFP are known to be implicated in the pathophysiology of many diseases associated with oxidative stress; therefore, it is critical that such experiments using fluorescent proteins are validated with alternative methodologies and the results are carefully interpreted. Since cells inevitably experience oxidative stress when fluorescent proteins are expressed, the use of this tool for cell labeling and in vivo cell tracing also requires validation using alternative methodologies. Published by Elsevier B.V.
Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B; Grillone, Teresa; Giovannone, Emilia D; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A S; Bond, Heather M; Mesuraca, Maria; Morrone, Giovanni
2014-01-01
Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and -LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG-LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells.
Carollo, Maria; Hogaboam, Cory M; Kunkel, Stephen L; Delaney, Stephen; Christie, Mark I; Perretti, Mauro
2001-01-01
Chemokine expression and function was monitored in an experimental model of granulomatous tissue formation after injection of croton oil in complete Freund's adjuvant (CO/CFA) into mouse dorsal air-pouches up to 28 days. In the first week, mast cell degranulation and leukocyte influx (mononuclear cell, MNC, and polymorphonuclear cell, PMN) were associated with CXCR2, KC and macrophage inflammatory protein (MIP)-2 mRNA expression, as determined by TaqMan® reverse transcriptase-polymerase chain reaction. KC (∼400 pg mg protein−1, n=12) and MIP-2 (∼800 pg mg protein−1, n=12) proteins peaked at day 7, together with myeloperoxidase (MPO) activity. Highest MIP-1α (>1 ng mg protein−1, n=12) levels were measured at day 3. After day 7, a gradual increase in CCR2 and CCR5 mRNA, monocyte chemoattractant protein (MCP)-1 mRNA and protein expression was measured. MCP-1 protein peaked at day 21 (∼150 pg mg protein−1, n=12) and was predominantly expressed by mast cells. A gradual increase in N-acetyl-β-D-glucosaminidase (NAG) activity (maximal at 28 days) was also measured. An antiserum against MIP-1α did not modify the inflammatory response measured at day 7 (except for a 50% reduction in MIP-1α levels), but provoked a significant increase in MPO, NAG and MCP-1 levels as measured at day 21 (n=6, P<0.05). An antiserum to MCP-1 reduced NAG activity at day 21 but increased MPO activity values (n=8, P<0.05). In conclusion, we have shown that CO/CFA initiates a complex inflammatory reaction in which initial expression of MIP-1α serves a protective role whereas delayed expression of MCP-1 seems to have a genuine pro-inflammatory role. PMID:11704636
USDA-ARS?s Scientific Manuscript database
Aspergillus niger and A. carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspe...
USDA-ARS?s Scientific Manuscript database
Transgenic maize hybrids that express insecticidal Bacillus thuringiensis (Bt) crystalline (Cry) protein toxins effectively protect against feeding damage inflicted by the insect pest the European corn borer, Ostrinia nubilalis. Field monitoring and laboratory selections have detected varying level...
Phage phenomics: Physiological approaches to characterize novel viral proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.
Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysismore » by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.« less
Phage phenomics: Physiological approaches to characterize novel viral proteins
Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.; ...
2015-06-11
Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysismore » by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.« less
Collins, Adam; Huett, Alan
2018-05-15
We present a high-content screen (HCS) for the simultaneous analysis of multiple phenotypes in HeLa cells expressing an autophagy reporter (mcherry-LC3) and one of 224 GFP-fused proteins from the Crohn's Disease (CD)-associated bacterium, Adherent Invasive E. coli (AIEC) strain LF82. Using automated confocal microscopy and image analysis (CellProfiler), we localised GFP fusions within cells, and monitored their effects upon autophagy (an important innate cellular defence mechanism), cellular and nuclear morphology, and the actin cytoskeleton. This data will provide an atlas for the localisation of 224 AIEC proteins within human cells, as well as a dataset to analyse their effects upon many aspects of host cell morphology. We also describe an open-source, automated, image-analysis workflow to identify bacterial effectors and their roles via the perturbations induced in reporter cell lines when candidate effectors are exogenously expressed.
Oliveira, Janaina Correia; da Silva, Aline Caroline; Oliveira, Renato Antonio Dos Santos; Pereira, Valéria Rêgo Alves; Gil, Laura Helena Vega Gonzales
2016-11-01
The use of Leishmania amazonensis-infected BALB/c mice is an important model for the study of experimental cutaneous leishmaniasis. Here we report the development of a non-invasive method to directly evaluate and measure parasite burden during the course of the infection, based on the near-infrared fluorescence detection of a recombinant L. amazonensis strain. So, we generated a L. amazonensis strain that stably expresses the near-infrared protein (iRFP) gene and compared the maintenance of its vitro and in vivo characteristics, such as fitness, pathogenicity and fluorescence emission. After that, we followed the disease development, as well as the parasite burden in BALB/c mice footpads infected with L. amazonensis-iRFP, by using an in vivo near-infrared fluorescence scanner. In vitro results showed a linear correlation between the fluorescence emission and the number of parasites. The in vivo study showed that the use of iRFP-transfected L. amazonensis enables the monitoring of parasite burden by measuring fluorescence signals. Therefore, this technique can be confidently used to directly monitor parasitic load and infection overtime and could be an excellent tool for in vitro and in vivo screening of anti-leishmanial drugs and vaccine efficiency. This is the first report of the use of the near-infrared fluorescence imaging technique for monitoring in vivo cutaneous leishmaniasis. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Alibhai, Dominic; Kumar, Sunil; Kelly, Douglas; Warren, Sean; Alexandrov, Yuriy; Munro, Ian; McGinty, James; Talbot, Clifford; Murray, Edward J.; Stuhmeier, Frank; Neil, Mark A. A.; Dunsby, Chris; French, Paul M. W.
2011-03-01
We describe an optically-sectioned FLIM multiwell plate reader that combines Nipkow microscopy with wide-field time-gated FLIM, and its application to high content analysis of FRET. The system acquires sectioned FLIM images in <10 s/well, requiring only ~11 minutes to read a 96 well plate of live cells expressing fluorescent protein. It has been applied to study the formation of immature HIV virus like particles (VLPs) in live cells by monitoring Gag-Gag protein interactions using FLIM FRET of HIV-1 Gag transfected with CFP or YFP. VLP formation results in FRET between closely packed Gag proteins, as confirmed by our FLIM analysis that includes automatic image segmentation.
Yeom, Chan Joo; Chung, Taemoon; Youn, Hyewon; Kang, Keon Wook; Lee, Dong Soo; Chung, June-Key
2015-01-01
The function of membrane-localized sodium iodide symporter (NIS) determines the efficacy of radioiodine therapy in thyroid cancer. Here, we describe a dual mode reporter fused with human NIS (hNIS) and a red fluorescent protein named tandem dimeric Tomato (tdTomato) for the in vitro and in vivo imaging of hNIS protein expression, localization, and iodide uptake function. Human cervical epithelial adenocarcinoma cell line (HeLa)-hNIS/tdTomato cells were established by transducing a fusion gene expressing hNIS/tdTomato under the control of a cytomegalovirus promoter. Fluorescence imaging, confocal microscopy, and an 125I uptake assay were performed to validate the integrity of the fusion protein. Actinomycin D and cycloheximide were used to block newly synthesized hNIS proteins. In vivo images were acquired using a gamma camera and a Maestro fluorescence imaging device. The fluorescence intensity of membrane-localized hNIS and 125I uptake both were increased after heat shock. Scintigraphy and fluorescence imaging indicated specific accumulation of the hNIS/tdTomato fusion protein in xenografted tumors, supporting the utility of this system for in vivo monitoring of hNIS expression and activity. We developed a novel hNIS/tdTomato dual mode reporter that enables visualization of the expression, localization, and iodine uptake function of hNIS in vitro and in vivo.
Biochemical modifications in Pinus pinaster Ait. as a result of environmental pollution.
Acquaviva, Rosaria; Vanella, Luca; Sorrenti, Valeria; Santangelo, Rosa; Iauk, Liliana; Russo, Alessandra; Savoca, Francesca; Barbagallo, Ignazio; Di Giacomo, Claudia
2012-11-01
Exposure to chemical pollution can cause significant damage to plants by imposing conditions of oxidative stress. Plants combat oxidative stress by inducing antioxidant metabolites, enzymatic scavengers of activated oxygen and heat shock proteins. The accumulation of these proteins, in particular heat shock protein 70 and heme oxygenase, is correlated with the acquisition of thermal and chemical adaptations and protection against oxidative stress. In this study, we used Pinus pinaster Ait. collected in the areas of Priolo and Aci Castello representing sites with elevated pollution and reference conditions, respectively. The presence of heavy metals and the levels of markers of oxidative stress (lipid hydroperoxide levels, thiol groups, superoxide dismutase activity and expression of heat shock protein 70, heme oxygenase and superoxide dismutase) were evaluated, and we measured in field-collected needles the response to environmental pollution. P. pinaster Ait. collected from a site characterized by industrial pollution including heavy metals had elevated stress response as indicated by significantly elevated lipid hydroperoxide levels and decreased thiol groups. In particular, we observed that following a chronic chemical exposure, P. pinaster Ait. showed significantly increased expression of heat shock protein 70, heme oxygenase and superoxide dismutase. This increased expression may have protective effects against oxidative stress and represents an adaptative cellular defence mechanism. These results suggest that evaluation of heme oxygenase, heat shock protein 70 and superoxide dismutase expression in P. pinaster Ait. could represent a useful tool for monitoring environmental contamination of a region and to better understand mechanisms involved in plant defence and stress tolerance.
Cao, Xueyuan; Costa, Liliana M; Biderre-Petit, Corinne; Kbhaya, Bouchab; Dey, Nrisingha; Perez, Pascual; McCarty, Donald R; Gutierrez-Marcos, Jose F; Becraft, Philip W
2007-02-01
Viviparous1 (Vp1) encodes a B3 domain-containing transcription factor that is a key regulator of seed maturation in maize (Zea mays). However, the mechanisms of Vp1 regulation are not well understood. To examine physiological factors that may regulate Vp1 expression, transcript levels were monitored in maturing embryos placed in culture under different conditions. Expression of Vp1 decreased after culture in hormone-free medium, but was induced by salinity or osmotic stress. Application of exogenous abscisic acid (ABA) also induced transcript levels within 1 h in a dose-dependent manner. The Vp1 promoter fused to beta-glucuronidase or green fluorescent protein reproduced the endogenous Vp1 expression patterns in transgenic maize plants and also revealed previously unknown expression domains of Vp1. The Vp1 promoter is active in the embryo and aleurone cells of developing seeds and, upon drought stress, was also found in phloem cells of vegetative tissues, including cobs, leaves, and stems. Sequence analysis of the Vp1 promoter identified a potential ABA-responsive complex, consisting of an ACGT-containing ABA response element (ABRE) and a coupling element 1-like motif. Electrophoretic mobility shift assay confirmed that the ABRE and putative coupling element 1 components specifically bound proteins in embryo nuclear protein extracts. Treatment of embryos in hormone-free Murashige and Skoog medium blocked the ABRE-protein interaction, whereas exogenous ABA or mannitol treatment restored this interaction. Our data support a model for a VP1-dependent positive feedback mechanism regulating Vp1 expression during seed maturation.
Yang, Fan; Xue, Feng; Guan, Junjie; Zhang, Zeng; Yin, Jimin; Kang, Qingling
2018-05-07
Osteonecrosis of the femoral head (ONFH) is a devastating orthopedic disease. Previous studies suggested that stromal-cell-derived factor (SDF)-1 was involved in osteogenesis and angiogenesis. However, whether SDF-1 potentiates the angiogenesis and osteogenesis of bone marrow-derived stromal stem cells (BMSCs) in ONFH is not clear. BMSCs were transfected with green fluorescent protein (GFP) or the fusion gene encoding GFP and SDF-1α, and transgenic efficacy was monitored by immunofluorescence. The expression of SDF-1α, runt-related transcription factor 2 (Runx2, osteocalcin (OCN), and alkaline phosphatase (ALP) at the mRNA level was measured by real-time polymerase chain reactions (RT-PCR). The expression of SDF-1α, Runx2, OCN, and p-Smad1/5 were measured at the protein level by Western blot. Transwell migration assay and tube formation assay were utilized to detect the angiogenesis in vitro, whereas the in vivo angiogenesis was monitored by angiography. Immunohistological staining and micro-CT scanning were conducted to assess the histological changes in morphology. In vitro, SDF-1α overexpression in BMSCs promoted osteogenic differentiation and upregulated the expression of osteogenic-related proteins, such as ALP, Runx2, OCN, and p-Smadl/5. In the methylprednisolone induced ONFH rat model used in our investigation, the overexpression of SDF-1α in BMSCs promoted significantly more bone regeneration and the expression of OCN and Runx2 as compared with the effect of vehicle overexpression. Moreover, the morphology of ONFH was ameliorated after the transplantation of BMSCs with SDF-1α overexpression. Furthermore, SDF-1α overexpression in BMSCs significantly increased osteoblastic angiogenesis as indicated by the increased tube formation ability, CD31 expression, and vessel volume. SDF-1α overexpression in BMSCs promotes bone generation as indicated by osteogenesis and angiogenesis, suggesting SDF-1α may serve as a therapeutic drug target for ONFH treatment. © 2018 The Author(s). Published by S. Karger AG, Basel.
2013-01-01
Background Escherichia coli is most widely used prokaryotic expression system for the production of recombinant proteins. Several strategies have been employed for expressing recombinant proteins in E.coli. This includes the development of novel host systems, expression vectors and cost effective media. In this study, we exploit tender coconut water (TCW) as a natural and cheaper growth medium for E.coli and Pichia pastoris. Result E.coli and P.pastoris were cultivated in TCW and the growth rate was monitored by measuring optical density at 600 nm (OD600nm), where 1.55 for E.coli and 8.7 for P.pastoris was obtained after 12 and 60 hours, respectively. However, variation in growth rate was observed among TCW when collected from different localities (0.15-2.5 at OD600nm), which is attributed to the varying chemical profile among samples. In this regard, we attempted the supplementation of TCW with different carbon and nitrogen sources to attain consistency in growth rate. Here, supplementation of TCW with 25 mM ammonium sulphate (TCW-S) was noted efficient for the normalization of inconsistency, which further increased the biomass of E.coli by 2 to 10 folds, and 1.5 to 2 fold in P.pastoris. These results indicate that nitrogen source is the major limiting factor for growth. This was supported by total nitrogen and carbon estimation where, nitrogen varies from 20 to 60 mg/100 ml while carbohydrates showed no considerable variation (2.32 to 3.96 g/100 ml). In this study, we also employed TCW as an expression media for recombinant proteins by demonstrating successful expression of maltose binding protein (MBP), MBP-TEV protease fusion and a photo switchable fluorescent protein (mEos2) using TCW and the expression level was found to be equivalent to Luria Broth (LB). Conclusion This study highlights the possible application of TCW-S as a media for cultivation of a variety of microorganisms and recombinant protein expression. PMID:24004578
Zipplies, Johanna K; Hauck, Stefanie M; Schoeffmann, Stephanie; Amann, Barbara; van der Meijden, Christiaan H; Stangassinger, Manfred; Ueffing, Marius; Deeg, Cornelia A
2010-01-01
Equine recurrent uveitis (ERU) is an incurable disease affecting the inner eye that leads to blindness, through activated T cells that pass the blood-retinal barrier and destroy the retina. Serum markers are a desirable choice for monitoring development of disease, as serum is easy accessible and the markers could serve to predict the beginning of disease or an imminent relapse. In this study, serum proteomes (depleted of high-abundance serum proteins) of horses with ERU and healthy controls were compared with the 2-D DIGE (two-dimensional gel electrophoresis) technique to identify differentially expressed proteins. The expression pattern of a candidate protein in retina and vitreous was validated by Western blots and immunohistochemistry. Ten differentially expressed proteins could be identified by mass spectrometry (MALDI-TOF/TOF). Five proteins--IgM, IgG4 hc, serotransferrin, alpha-2HS-glycoprotein, and complement factor B--were upregulated in the uveitic state, whereas the five proteins albumin, apolipoprotein A-IV and H, IgG5 hc, and high-molecular-weight kininogen (HK) showed a significantly lower expression in sera of uveitis cases. Of interest, kininogen was significantly upregulated in the target tissues vitreous and retina. HK is a plasma protein with multiple physiological functions, with an important role in inflammation and promoting neovascularization. Most interesting is the as of yet unaddressed association of HK with uveitis. Immunohistochemistry showed coexpression of kininogen and VEGF in inflamed eyes. Since neovascularization plays a major role in the pathogenesis of uveitis, the identification of a proangiogenic factor in the retina presents an important finding and may contribute to elucidating the pathogenesis of uveitis.
Nakano, Rei; Edamura, Kazuya; Sugiya, Hiroshi; Narita, Takanori; Okabayashi, Ken; Moritomo, Tadaaki; Teshima, Kenji; Asano, Kazushi; Nakayama, Tomohiro
2013-10-01
To investigate the in vitro differentiation of canine bone marrow stromal cells (BMSCs) into functional, mature neurons. Bone marrow from 6 adult dogs. BMSCs were isolated from bone marrow and chemically induced to develop into neurons. The morphology of the BMSCs during neuronal induction was monitored, and immunocytochemical analyses for neuron markers were performed after the induction. Real-time PCR methods were used to evaluate the mRNA expression levels of markers for neural stem or progenitor cells, neurons, and ion channels, and western blotting was used to assess the expression of neuronal proteins before and after neuronal induction. The electrophysiological properties of the neuron-like cells induced from canine BMSCs were evaluated with fluorescent dye to monitor Ca(2)+ influx. Canine BMSCs developed a neuron-like morphology after neuronal induction. Immunocytochemical analysis revealed that these neuron-like cells were positive for neuron markers. After induction, the cells' mRNA expression levels of almost all neuron and ion channel markers increased, and the protein expression levels of nestin and neurofilament-L increased significantly. However, the neuron-like cells derived from canine BMSCs did not have the Ca(2)+ influx characteristic of spiking neurons. Although canine BMSCs had neuron-like morphological and biochemical properties after induction, they did not develop the electrophysiological characteristics of neurons. Thus, these results have suggested that canine BMSCs could have the capacity to differentiate into a neuronal lineage, but the differentiation protocol used may have been insufficient to induce development into functional neurons.
Expression and use of the green fluorescent protein as a reporter system in Legionella pneumophila.
Köhler, R; Bubert, A; Goebel, W; Steinert, M; Hacker, J; Bubert, B
2000-01-01
The gene encoding the green fluorescent protein (GFP) was used as a reporter gene in Legionella pneumophila. To analyze GFP expression in Legionella, transcriptional fusions of gfp with the Legionella-specific mip (Macrophage Infectivity Potentiator) promoter (P(mip)) and the sod (SuperOxide Dismutase) promoter (P(sod)) derived from Listeria monocytogenes were constructed. Following transformation into the virulent L. pneumophila strain JR 32, strong GFP-mediated fluorescence was detected with both plasmids, although the sod promoter was associated with a 1ten-fold higher intensity. No fluorescence was observed in L. pneumophila transformed with the promoterless gfp gene. Comparison of fluorescence yields between various L. pneumophila strains that differ in their virulence characteristics and were transformed with the P(mip)-gfp carrying plasmid revealed no differences in GFP expression. Infection studies using Acanthamoeba castellanii as host and recombinant L. pneumophila strains carrying the P(mip)-gfp and P(sod)-gfp fusions indicated that the mip promoter was expressed when the bacteria replicated intracellularly. GFP expression was also used to monitor, in infected A. castellanii cells, the intracellular survival of, and incidence of host-cell killing by. L. pneumophila strains that vary in their virulence properties. As quantified by flow cytometry the highly virulent L. pneumophila strain Corby was twice as infectious to A. castellanii as the Philadelphia strain JR 32. Using the avirulent Philadelphia derivative 25D invasion but no intracellular multiplication was observed. In addition, we examined by flow cytometry the influence of cytochalasin D, cycloheximide, and methylamine on the uptake of Legionella by A. castellanii. In conclusion, gfp appears to be a convenient reporter gene whose expression in Legionella can be followed in real time and allows analysis of promoter activities in Legionella and monitoring of the infection process.
Protein mass analysis of histones.
Galasinski, Scott C; Resing, Katheryn A; Ahn, Natalie G
2003-09-01
Posttranslational modification of chromatin-associated proteins, including histones and high-mobility-group (HMG) proteins, provides an important mechanism to control gene expression, genome integrity, and epigenetic inheritance. Protein mass analysis provides a rapid and unbiased approach to monitor multiple chemical modifications on individual molecules. This review describes methods for acid extraction of histones and HMG proteins, followed by separation by reverse-phase chromatography coupled to electrospray ionization mass spectrometry (LC/ESI-MS). Posttranslational modifications are detected by analysis of full-length protein masses. Confirmation of protein identity and modification state is obtained through enzymatic digestion and peptide sequencing by MS/MS. For differentially modified forms of each protein, the measured intensities are semiquantitative and allow determination of relative abundance and stoichiometry. The method simultaneously detects covalent modifications on multiple proteins and provides a facile assay for comparing chromatin modification states between different cell types and/or cellular responses.
Recombinant adeno-associated virus targets passenger gene expression to cones in primate retina
NASA Astrophysics Data System (ADS)
Mancuso, Katherine; Hendrickson, Anita E.; Connor, Thomas B., Jr.; Mauck, Matthew C.; Kinsella, James J.; Hauswirth, William W.; Neitz, Jay; Neitz, Maureen
2007-05-01
Recombinant adeno-associated virus (rAAV) is a promising vector for gene therapy of photoreceptor-based diseases. Previous studies have demonstrated that rAAV serotypes 2 and 5 can transduce both rod and cone photoreceptors in rodents and dogs, and it can target rods, but not cones in primates. Here we report that using a human cone-specific enhancer and promoter to regulate expression of a green fluorescent protein (GFP) reporter gene in an rAAV-5 vector successfully targeted expression of the reporter gene to primate cones, and the time course of GFP expression was able to be monitored in a living animal using the RetCam II digital imaging system.
Mechanical Force-induced TGFB1 Increases Expression of SOST/POSTN by hPDL Cells.
Manokawinchoke, J; Limjeerajarus, N; Limjeerajarus, C; Sastravaha, P; Everts, V; Pavasant, P
2015-07-01
The aim of this study was to investigate the response of human periodontal ligament (hPDL) fibroblasts to an intermittent compressive force and its effect on the expression of SOST, POSTN, and TGFB1. A computerized cell compressive force loading apparatus was introduced, and hPDL cells were subjected to intermittent compressive force. The changes in messenger RNA (mRNA) and protein expression were monitored by real-time polymerase chain reaction and Western blot analysis, respectively. An increased expression of SOST, POSTN, and TGFB1 was observed in a time-dependent fashion. Addition of cycloheximide, a transforming growth factor (TGF)-β inhibitor (SB431542), or a neutralizing antibody against TGF-β1 attenuated the force-induced expression of SOST and POSTN as well as sclerostin and periostin, indicating a role of TGF-β1 in the pressure-induced expression of these proteins. Enzyme-linked immunosorbent assay analysis revealed an increased level of TGF-β1 in the cell extracts but not in the medium, suggesting that intermittent compressive force promoted the accumulation of TGF-β1 in the cells or their surrounding matrix. In conclusion, an intermittent compressive force regulates SOST/POSTN expression by hPDL cells via the TGF-β1 signaling pathway. Since these proteins play important roles in the homeostasis of the periodontal tissue, our results indicate the importance of masticatory forces in this process. © International & American Associations for Dental Research 2015.
A general insert label for peptide display on chimeric filamentous bacteriophages.
Kaplan, Gilad; Gershoni, Jonathan M
2012-01-01
The foreign insert intended to be displayed via recombinant phage proteins can have a negative effect on protein expression and phage assembly. A typical example is the case of display of peptides longer than 6 amino acid residues on the major coat protein, protein VIII of the filamentous bacteriophages M13 and fd. A solution to this problem has been the use of "two-gene systems" generating chimeric phages that concomitantly express wild-type protein VIII along with recombinant protein VIII. Although the two-gene systems are much more permissive in regard to insert length and composition, some cases can still adversely affect phage assembly. Although these phages genotypically contain the desired DNA of the insert, they appear to be phenotypically wild type. To avoid false-negative results when using chimeric phages in binding studies, it is necessary to confirm that the observed lack of phage recognition is not due to faulty assembly and display of the intended insert. Here we describe a strategy for generating antibodies that specifically recognize recombinant protein VIII regardless of the nature of its foreign insert. These antibodies can be used as a general monitor of the display of recombinant protein VIII into phage particles. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camuzeaux, Barbara; Spriet, Corentin; Heliot, Laurent
2005-07-15
Physical interactions between transcription factors play important roles in modulating gene expression. Previous in vitro studies have shown a transcriptional synergy between Erg protein, an Ets family member, and Jun/Fos heterodimer, members of the bZip family, which requires direct Erg-Jun protein interactions. Visualization of protein interactions in living cells is a new challenge in biology. For this purpose, we generated fusion proteins of Erg, Fos, and Jun with yellow and cyan fluorescent proteins, YFP and CFP, respectively. After transient expression in HeLa cells, interactions of the resulting fusion proteins were explored by fluorescence resonance energy transfer microscopy (FRET) in fixedmore » and living cells. FRET between YFP-Erg and CFP-Jun was monitored by using photobleaching FRET and fluorescence lifetime imaging microscopy. Both techniques revealed the occurrence of intermolecular FRET between YFP-Erg and CFP-Jun. This is stressed by loss of FRET with an YFP-Erg version carrying a point mutation in its ETS domain. These results provide evidence for the interaction of Erg and Jun proteins in living cells as a critical prerequisite of their transcriptional synergy, but also for the essential role of the Y371 residue, conserved in most Ets proteins, in this interaction.« less
O’Malley, Michelle A.; Lazarova, Tzvetana; Britton, Zachary T.; Robinson, Anne S.
2007-01-01
The G-protein coupled receptors (GPCRs) are a class of membrane proteins that trigger cellular responses to external stimuli, and are believed to be targets for nearly half of all pharmaceutical drugs on the market. However, little is known regarding their folding and cellular interactions, as well as what factors are crucial for their activity. Further structural characterization of GPCRs has largely been complicated by problems with expression, purification, and preservation of activity in vitro. Previously, we have demonstrated high-level expression (~4 mg/L of culture) of functional human adenosine A2a receptor fused to a green fluorescent protein (A2aR-GFP) from Saccharomyces cerevisiae. In this work we re-engineered A2aR with a purification tag, developed an adequate purification scheme, and performed biophysical characterization on purified receptors. Milligram amounts per liter of culture of A2aR and A2aR-GFP were functionally expressed in S. cerevisiae, with a C-terminal deca-histidine tag. Lysis procedures were developed for optimal membrane protein solubilization and recovery through monitoring fluorescence of A2aR-GFP-His10. One-step purification of the protein was achieved through immobilized metal affinity chromatography. After initial solubilization in n-dodecyl-β-D-maltoside (DDM), a combination of added cholesterol hemisuccinate (CHS) in 3-(3-cholamidopropyl)-dimethylammoniopropane sulfonate (CHAPS) was required to stabilize the functional state of the protein. Isolated A2aR under these conditions was found to be largely alpha-helical, and properly incorporated into a mixed-micelle environment. The A2a-His10 receptor was purified in quantities of 6 +/− 2 mg/L of culture, with ligand-binding yields of 1 mg/L, although all protein bound to xanthine affinity resin. This represents the highest purified total and functional yields for A2aR yet achieved from any heterologous expression system. PMID:17591446
Ko, Su Hyuk; Jeon, Jong Ik; Myung, Hyun Soo; Kim, Young-Jeon; Kim, Jung Mogg
2017-10-01
Bacteroides fragilis enterotoxin (BFT), a virulence factor of enterotoxigenic B. fragilis (ETBF), plays an essential role in mucosal inflammation. Although autophagy contributes to the pathogenesis of diverse infectious diseases, little is known about autophagy in ETBF infection. This study was conducted to investigate the role of BFT in the autophagic process in endothelial cells (ECs). Stimulation of human umbilical vein ECs (HUVECs) with BFT increased light chain 3 protein II (LC3-II) conversion from LC3-I and protein expression of p62, Atg5, and Atg12. In addition, BFT-exposed ECs showed increased indices of autophagosomal fusion with lysosomes such as LC3-lysosome-associated protein 2 (LAMP2) colocalization and the percentage of red vesicles monitored by the expression of dual-tagged LC3B. BFT also upregulated expression of C/EBP homologous protein (CHOP), and inhibition of CHOP significantly increased indices of autophagosomal fusion with lysosomes. BFT activated an AP-1 transcription factor, in which suppression of AP-1 activity significantly downregulated CHOP and augmented autophagosomal fusion with lysosomes. Furthermore, suppression of Jun N-terminal protein kinase (JNK) mitogen-activated protein kinase (MAPK) significantly inhibited the AP-1 and CHOP signals, leading to an increase in autophagosomal fusion with lysosomes in BFT-stimulated ECs. These results suggest that BFT induced accumulation of autophagosomes in ECs, but activation of a signaling pathway involving JNK, AP-1, and CHOP may interfere with complete autophagy. Copyright © 2017 American Society for Microbiology.
Rabiee, Atefeh; Schwämmle, Veit; Sidoli, Simone; Dai, Jie; Rogowska-Wrzesinska, Adelina; Mandrup, Susanne; Jensen, Ole N
2017-03-01
Adipocytes (fat cells) are important endocrine and metabolic cells critical for systemic insulin sensitivity. Both adipose excess and insufficiency are associated with adverse metabolic function. Adipogenesis is the process whereby preadipocyte precursor cells differentiate into lipid-laden mature adipocytes. This process is driven by a network of transcriptional regulators (TRs). We hypothesized that protein PTMs, in particular phosphorylation, play a major role in activating and propagating signals within TR networks upon induction of adipogenesis by extracellular stimulus. We applied MS-based quantitative proteomics and phosphoproteomics to monitor the alteration of nuclear proteins during the early stages (4 h) of preadipocyte differentiation. We identified a total of 4072 proteins including 2434 phosphorylated proteins, a majority of which were assigned as regulators of gene expression. Our results demonstrate that adipogenic stimuli increase the nuclear abundance and/or the phosphorylation levels of proteins involved in gene expression, cell organization, and oxidation-reduction pathways. Furthermore, proteins acting as negative modulators involved in negative regulation of gene expression, insulin stimulated glucose uptake, and cytoskeletal organization showed a decrease in their nuclear abundance and/or phosphorylation levels during the first 4 h of adipogenesis. Among 288 identified TRs, 49 were regulated within 4 h of adipogenic stimulation including several known and many novel potential adipogenic regulators. We created a kinase-substrate database for 3T3-L1 preadipocytes by investigating the relationship between protein kinases and protein phosphorylation sites identified in our dataset. A majority of the putative protein kinases belong to the cyclin-dependent kinase family and the mitogen-activated protein kinase family including P38 and c-Jun N-terminal kinases, suggesting that these kinases act as orchestrators of early adipogenesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ribosome profiling reveals the what, when, where and how of protein synthesis.
Brar, Gloria A; Weissman, Jonathan S
2015-11-01
Ribosome profiling, which involves the deep sequencing of ribosome-protected mRNA fragments, is a powerful tool for globally monitoring translation in vivo. The method has facilitated discovery of the regulation of gene expression underlying diverse and complex biological processes, of important aspects of the mechanism of protein synthesis, and even of new proteins, by providing a systematic approach for experimental annotation of coding regions. Here, we introduce the methodology of ribosome profiling and discuss examples in which this approach has been a key factor in guiding biological discovery, including its prominent role in identifying thousands of novel translated short open reading frames and alternative translation products.
Melidoni, Anna N.; Dyson, Michael R.; Wormald, Sam; McCafferty, John
2013-01-01
Antibodies that modulate receptor function have great untapped potential in the control of stem cell differentiation. In contrast to many natural ligands, antibodies are stable, exquisitely specific, and are unaffected by the regulatory mechanisms that act on natural ligands. Here we describe an innovative system for identifying such antibodies by introducing and expressing antibody gene populations in ES cells. Following induced antibody expression and secretion, changes in differentiation outcomes of individual antibody-expressing ES clones are monitored using lineage-specific gene expression to identify clones that encode and express signal-modifying antibodies. This in-cell expression and reporting system was exemplified by generating blocking antibodies to FGF4 and its receptor FGFR1β, identified through delayed onset of ES cell differentiation. Functionality of the selected antibodies was confirmed by addition of exogenous antibodies to three different ES reporter cell lines, where retained expression of pluripotency markers Oct4, Nanog, and Rex1 was observed. This work demonstrates the potential for discovery and utility of functional antibodies in stem cell differentiation. This work is also unique in constituting an example of ES cells carrying an inducible antibody that causes a functional protein “knock-down” and allows temporal control of stable signaling components at the protein level. PMID:24082130
Update on monitoring of resistance to Bt cotton in key lepidopteran pests in the USA
USDA-ARS?s Scientific Manuscript database
Producers sprayed more Bollgard II to control target lepidopteran pests in 2010 than in previous years, and therefore concerns have been expressed that the susceptibility of the target lepidopteran pests to the Bt Cry1Ac and Cry2Ab proteins in Bollgard II has significantly decreased. However, resist...
Varela, Patricia; Levicán, Gloria; Rivera, Francisco; Jerez, Carlos A.
1998-01-01
Thiobacillus ferrooxidans is one of the chemolithoautotrophic bacteria important in industrial biomining operations. During the process of ore bioleaching, the microorganisms are subjected to several stressing conditions, including the lack of some essential nutrients, which can affect the rates and yields of bioleaching. When T. ferrooxidans is starved for phosphate, the cells respond by inducing the synthesis of several proteins, some of which are outer membrane proteins of high molecular weight (70,000 to 80,000). These proteins were considered to be potential markers of the phosphate starvation state of these microorganisms. We developed a single-cell immunofluorescence assay that allowed monitoring of the phosphate starvation condition of this biomining microorganism by measuring the increased expression of the surface proteins. In the presence of low levels of arsenate (2 mM), the growth of phosphate-starved T. ferrooxidans cells was greatly inhibited compared to that of control nonstarved cells. Therefore, the determination of the phosphorus nutritional state is particularly relevant when arsenic compounds are solubilized during the bioleaching of different ores. PMID:9835593
Gence, Rémi; Bouchenot, Catherine; Lajoie-Mazenc, Isabelle
2018-01-01
ABSTRACT The human Ras superfamily of small GTPases controls essential cellular processes such as gene expression and cell proliferation. As their deregulation is widely associated with human cancer, small GTPases and their regulatory proteins have become increasingly attractive for the development of novel therapeutics. Classical methods to monitor GTPase activation include pulldown assays that limit the analysis of GTP-bound form of proteins from cell lysates. Alternatively, live-cell FRET biosensors may be used to study GTPase activation dynamics in response to stimuli, but these sensors often require further optimization for high-throughput applications. Here, we describe a cell-based approach that is suitable to monitor the modulation of small GTPase activity in a high-content analysis. The assay relies on a genetically encoded tripartite split-GFP (triSFP) system that we integrated in an optimized cellular model to monitor modulation of RhoA and RhoB GTPases. Our results indicate the robust response of the reporter, allowing the interrogation of inhibition and stimulation of Rho activity, and highlight potential applications of this method to discover novel modulators and regulators of small GTPases and related protein-binding domains. PMID:29192060
Yuan, Xiaoling; Hu, Tao; He, Hanwen; Qiu, Huan; Wu, Xuan; Chen, Jingxian; Wang, Minmin; Chen, Cheng; Huang, Shenghai
2018-02-10
Respiratory syncytial virus (RSV) infects the central nervous system, resulting in neurological symptoms. However, the precise underlying pathogenic mechanisms have not been elucidated. In the present study, the infectivity of RSV on N2a neuronal cells and the possible roles of Toll-like receptor 4 (TLR4) and nucleolin (C23) during RSV infection were investigated. We compared two experimental groups (infected and non-infected) and monitored the RSV viral titers in the culture supernatant by a viral plaque assay. We also inspected the morphology of the nucleus in infected N2a cells. We measured the level of RSV F protein and studied its co-localization with TLR4 and nucleolin using immunofluorescence assays and laser confocal microscopy. The potential interaction of RSV F protein with TLR4 and nucleolin was examined by coimmunoprecipitation. The expression changes of TLR4, nucleolin, TLR3 and TLR7 proteins in N2a cells and IL-6 and TNF-α in the culture supernatant were investigated by Western Blot analysis and ELISA assay. Changes in neuronal cell apoptosis status was examined by flow cytometry. The results demonstrated prolific RSV infection of N2a cells, which triggered a decrease of NeuN protein expression, coinciding with an increase of nuclear lesions, F protein expression, RSV viral titers, and late apoptotic levels of N2a cells. RSV infection induced co-localization of RSV F protein with TLR4 and nucleolin, which could potentially lead to a direct interaction. Furthermore, it was found that TLR4 and nucleolin levels increased early after infection and decreased subsequently, whereas TLR3 and TLR7 expression increased throughout RSV infection. The RSV Long strain can prolifically infect N2a neuronal cells, modulating the expression of TLR4 and nucleolin, as well as TLR3, TLR7 and their downstream inflammatory factors, and inducing the co-localization of the RSV F protein with TLR4 and nucleolin.
Rosorius, O; Heger, P; Stelz, G; Hirschmann, N; Hauber, J; Stauber, R H
1999-08-01
We established a straightforward experimental system to investigate directly the requirements for nucleocytoplasmic transport in live cells. For this purpose, substrates were created containing nuclear localization signals (NLS) or nuclear export signals (NES) linked to a chimeric protein composed of the glutathione S-transferase (GST) fused to the green fluorescent protein (GFP). The combination of GST/GFP-tagging allowed us to control protein expression in bacteria and to monitor protein purification during chromatography. Following microinjection into somatic cells, nuclear export/import of the highly fluorescent substrates could be observed directly by fluorescence microscopy. This system sets the stage to quantitate, in real time, the kinetics of nuclear import/export in living cells and to evaluate qualitative differences in various NLS/NES signals and pathways.
C-reactive protein in degenerative aortic valve stenosis
Sanchez, Pedro L; Mazzone, AnnaMaria
2006-01-01
Degenerative aortic valve stenosis includes a range of disorder severity from mild leaflet thickening without valve obstruction, "aortic sclerosis", to severe calcified aortic stenosis. It is a slowly progressive active process of valve modification similar to atherosclerosis for cardiovascular risk factors, lipoprotein deposition, chronic inflammation, and calcification. Systemic signs of inflammation, as wall and serum C-reactive protein, similar to those found in atherosclerosis, are present in patients with degenerative aortic valve stenosis and may be expression of a common disease, useful in monitoring of stenosis progression. PMID:16774687
Imaging Heat Shock Protein 90 (Hsp90) Activity in Hormone-Refractory Prostate Cancer
2009-03-01
proteins. The quantitative PET imaging of EGFR expression with 64Cu- DOTA -cetuximab is successful for monitoring the early therapeutic response upon 17...activated DOTA ester to afford DOTA -TD) for 64Cu labeling. Mice bearing human glioma U87MG tumors were then subjected to microPET scans at various...time points post-injection (p.i.) of 64Cu- DOTA -TD. The coronal slices that contain the tumor are shown in Fig. 1. The uptake of 64Cu- DOTA -TD into U87MG
Changes in miRNAs Signal High-Risk HPV Infections | Center for Cancer Research
microRNAs (miRNAs) are approximately 21 nucleotide long, non-coding RNAs that regulate the expression of certain proteins. As part of the RNA-induced silencing complex or RISC, miRNAs bind to complementary sequences in the 3’ untranslated regions of target messenger RNAs, blocking protein synthesis and sometimes leading to the destruction of the target RNA. Numerous studies have shown that the levels of cellular miRNAs can be altered in diseased tissues, and these changes potentially could be used for diagnosis or disease monitoring.
Lab-on-a-chip technologies for proteomic analysis from isolated cells.
Sedgwick, H; Caron, F; Monaghan, P B; Kolch, W; Cooper, J M
2008-10-06
Lab-on-a-chip systems offer a versatile environment in which low numbers of cells and molecules can be manipulated, captured, detected and analysed. We describe here a microfluidic device that allows the isolation, electroporation and lysis of single cells. A431 human epithelial carcinoma cells, expressing a green fluorescent protein-labelled actin, were trapped by dielectrophoresis within an integrated lab-on-a-chip device containing saw-tooth microelectrodes. Using these same trapping electrodes, on-chip electroporation was performed, resulting in cell lysis. Protein release was monitored by confocal fluorescence microscopy.
Kunihiro, Marie; Fujii, Hideki; Miyagi, Takuya; Takahashi, Yoshiaki; Tanaka, Reiko; Fukushima, Takuya; Ansari, Aftab A; Tanaka, Yuetsu
2016-07-11
The environmental factors that lead to the reactivation of human T cell leukemia virus type-1 (HTLV-I) in latently infected T cells in vivo remain unknown. It has been previously shown that heat shock (HS) is a potent inducer of HTLV-I viral protein expression in long-term cultured cell lines. However, the precise HTLV-I protein(s) and mechanisms by which HS induces its effect remain ill-defined. We initiated these studies by first monitoring the levels of the trans-activator (Tax) protein induced by exposure of the HTLV-I infected cell line to HS. HS treatment at 43 °C for 30 min for 24 h led to marked increases in the level of Tax antigen expression in all HTLV-I-infected T cell lines tested including a number of HTLV-I-naturally infected T cell lines. HS also increased the expression of functional HTLV-I envelope gp46 antigen, as shown by increased syncytium formation activity. Interestingly, the enhancing effect of HS was partially inhibited by the addition of the heat shock protein 70 (HSP70)-inhibitor pifithlin-μ (PFT). In contrast, the HSP 70-inducer zerumbone (ZER) enhanced Tax expression in the absence of HS. These data suggest that HSP 70 is at least partially involved in HS-mediated stimulation of Tax expression. As expected, HS resulted in enhanced expression of the Tax-inducible host antigens, such as CD83 and OX40. Finally, we confirmed that HS enhanced the levels of Tax and gp46 antigen expression in primary human CD4⁺ T cells isolated from HTLV-I-infected humanized NOD/SCID/γc null (NOG) mice and HTLV-I carriers. In summary, the data presented herein indicate that HS is one of the environmental factors involved in the reactivation of HTLV-I in vivo via enhanced Tax expression, which may favor HTLV-I expansion in vivo.
Karothia, B S; Athmaram, T N; D, Thavaselvam; Ashu, Kumar; Tiwari, Sapna; Singh, Anil K; Sathyaseelan, K; Gopalan, N
2013-07-01
Brucellosis is a disease caused by bacteria belonging to the genus Brucella. It affects cattle, goat, sheep, dog and humans. The serodiagnosis of brucellosis involves detection of antibodies generated against the LPS or whole cell bacterial extracts, however these tests lack sensitivity and specificity. The present study was performed to optimize the culture condition for the production of recombinant Brucella melitensis outer membrane protein 28 kDa protein in E.coli via fed batch fermentation. Expression was induced with 1.5mM isopropyl β thiogalactoside and the expressed recombinant protein was purified using Ni-NTA affinity chromatography. After fed-batch fermentation the dry cell weight of 17.81 g/L and a purified protein yield of 210.10 mg/L was obtained. The purified Brucella melitensis recombinant Omp 28 kDa protein was analyzed through SDS- poly acrylamide gel electrophoresis and western blotting. The obtained recombinant protein was evaluated for its diagnostic application through Indirect ELISA using brucellosis suspected human sera samples. Our results clearly indicate that recombinant Omp28 produced via fed batch fermentation has immense potential as a diagnostic reagent that could be employed in sero monitoring of brucellosis.
Schott, Ann-Sophie; Behr, Jürgen; Quinn, Jennifer; Vogel, Rudi F.
2016-01-01
Lactic acid bacteria (LAB) are widely used as starter cultures in the manufacture of foods. Upon preparation, these cultures undergo various stresses resulting in losses of survival and fitness. In order to find conditions for the subsequent identification of proteomic biomarkers and their exploitation for preconditioning of strains, we subjected Lactobacillus (Lb.) paracasei subsp. paracasei TMW 1.1434 (F19) to different stress qualities (osmotic stress, oxidative stress, temperature stress, pH stress and starvation stress). We analysed the dynamics of its stress responses based on the expression of stress proteins using MALDI-TOF mass spectrometry (MS), which has so far been used for species identification. Exploiting the methodology of accumulating protein expression profiles by MALDI-TOF MS followed by the statistical evaluation with cluster analysis and discriminant analysis of principle components (DAPC), it was possible to monitor the expression of low molecular weight stress proteins, identify a specific time point when the expression of stress proteins reached its maximum, and statistically differentiate types of adaptive responses into groups. Above the specific result for F19 and its stress response, these results demonstrate the discriminatory power of MALDI-TOF MS to characterize even dynamics of stress responses of bacteria and enable a knowledge-based focus on the laborious identification of biomarkers and stress proteins. To our knowledge, the implementation of MALDI-TOF MS protein profiling for the fast and comprehensive analysis of various stress responses is new to the field of bacterial stress responses. Consequently, we generally propose MALDI-TOF MS as an easy and quick method to characterize responses of microbes to different environmental conditions, to focus efforts of more elaborate approaches on time points and dynamics of stress responses. PMID:27783652
Zhao, Wenwen; Wu, Chuanhong; Li, Shaojing; Chen, Xiuping
2016-12-01
Endothelial inflammation and insulin resistance (IR) has been closely associated with endothelial dysfunction. Adiponectin (APN), an adipocyte-secreted hormone from adipose tissues, showed cardioprotective effects. Here, the protective effect of APN on palmitic acid (PA)-induced endothelial inflammation and IR was investigated. Cultured human umbilical vein endothelial cells (HUVECs) were treated with PA without or without APN pretreatment. The expression of inflammatory cytokines TNF-α, IL-6, adhesion molecule ICAM-1 were determined by western blotting, ELISA, and real-time PCR. The protein expression and protein-protein interaction were determined by western blotting and immunoprecipitation. The intracellular reactive oxygen species (ROS) and nitric oxide (NO) production were monitored with fluorescence probes. PA-induced secretion of TNF-α, IL-6, and expression of ICAM-1 at protein and mRNA levels, which was significantly inhibited by APN. PA treatment caused increase of ROS generation, NOX2, p-IKKβ, p-IκBα, p-p65 expression, and p-IκBα-IKKβ interaction, which were all partly reversed by APN. ROS scavenger N-acetylcysteine (NAC) and NF-κB inhibitor PDTC showed similar effect on PA-induced secretion of TNF-α, IL-6, and expression of ICAM-1. Furthermore, APN and NAC pretreatment restored PA-induced increase of p-IRS-1(S307), decrease of p-IRS-1(Tyr). In addition, insulin-triggered expression of p-IRS-1(Tyr), p-PI3K, p-AKT, p-eNOS and NO generation were inhibited by PA, which were also restored by both APN and NAC. These results suggested that APN ameliorated endothelial inflammation and IR through ROS/IKKβ pathway. This study shed new insights into the mechanisms of APN's cardiovascular protective effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Jin Wuk; Kim, Yong Hwa; Yoon, Seokjoo; Lee, Sung Kyu
2014-09-01
Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that causes mutations and tumor formation. Zacco platypus is a sentinel species that is suitable for monitoring aquatic environments. We studied cytochrome P450 system (CYP system) expression and DNA adduct formation in the liver of Z. platypus following waterborne exposure to BaP. The results showed both dose and time dependency. The significant induction levels of CYP system mRNA and protein reached maximums at 2 days and 14 days, respectively, and hepatosomatic index was maximally induced at 4 days during 14 days BaP exposure. DNA adduct formation was significantly induced compared to corresponding controls (t-test, p < 0.01) after 4 days of exposure in 100 μg/L BaP. These results indicate that the only use of mRNA expression level of CYP system as a biomarker make us underestimate prolonged toxicity (4-14 days) of BaP and the only use of protein expression level of CYP system make us underestimate acute toxicity (1-2 days) of BaP. Therefore, we suggests that a combinational use of the mRNA expression level and protein expression level of CYP system, hepatosomatic index is a useful biomarker in risk assessment of waterborne BaP exposure. In addition, DNA adduct formation was a useful biomarker in risk assessment of waterborne BaP exposure at 4 days. CYP1A was a more sensitive biomarker than CYP reductase for BaP exposure when considering both the mRNA and protein level. Furthermore, our results show that Z. platypus is a useful species for assessing the risk of waterborne BaP exposure. Copyright © 2012 Wiley Periodicals, Inc., a Wiley company.
Augusto, Elisabeth F P; Moraes, Angela M; Piccoli, Rosane A M; Barral, Manuel F; Suazo, Cláudio A T; Tonso, Aldo; Pereira, Carlos A
2010-01-01
Studies of a bioprocess optimization and monitoring for protein synthesis in animal cells face a challenge on how to express in quantitative terms the system performance. It is possible to have a panel of calculated variables that fits more or less appropriately the intended goal. Each mathematical expression approach translates different quantitative aspects. We can basically separate them into two categories: those used for the evaluation of cell physiology in terms of product synthesis, which can be for bioprocess improvement or optimization, and those used for production unit sizing and for bioprocess operation. With these perspectives and based on our own data of kinetic S2 cells growth and metabolism, as well as on their synthesis of the transmembrane recombinant rabies virus glycoprotein, here indicated as P, we show and discuss the main characteristics of calculated variables and their recommended use. Mainly applied to a bioprocess improvement/optimization and that mainly used for operation definition and to design the production unit, we expect these definitions/recommendations would improve the quality of data produced in this field and lead to more standardized procedures. In turn, it would allow a better and easier comprehension of scientific and technological communications for specialized readers. Copyright 2009 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Transcriptional profiling of murine osteoblast differentiation based on RNA-seq expression analyses.
Khayal, Layal Abo; Grünhagen, Johannes; Provazník, Ivo; Mundlos, Stefan; Kornak, Uwe; Robinson, Peter N; Ott, Claus-Eric
2018-04-11
Osteoblastic differentiation is a multistep process characterized by osteogenic induction of mesenchymal stem cells, which then differentiate into proliferative pre-osteoblasts that produce copious amounts of extracellular matrix, followed by stiffening of the extracellular matrix, and matrix mineralization by hydroxylapatite deposition. Although these processes have been well characterized biologically, a detailed transcriptional analysis of murine primary calvaria osteoblast differentiation based on RNA sequencing (RNA-seq) analyses has not previously been reported. Here, we used RNA-seq to obtain expression values of 29,148 genes at four time points as murine primary calvaria osteoblasts differentiate in vitro until onset of mineralization was clearly detectable by microscopic inspection. Expression of marker genes confirmed osteogenic differentiation. We explored differential expression of 1386 protein-coding genes using unsupervised clustering and GO analyses. 100 differentially expressed lncRNAs were investigated by co-expression with protein-coding genes that are localized within the same topologically associated domain. Additionally, we monitored expression of 237 genes that are silent or active at distinct time points and compared differential exon usage. Our data represent an in-depth profiling of murine primary calvaria osteoblast differentiation by RNA-seq and contribute to our understanding of genetic regulation of this key process in osteoblast biology. Copyright © 2018 Elsevier Inc. All rights reserved.
Yang, T T; Kain, S R; Kitts, P; Kondepudi, A; Yang, M M; Youvan, D C
1996-01-01
The green fluorescent protein (GFP) from the jellyfish, Aequorea victoria, has become a versatile reporter for monitoring gene expression and protein localization in a variety of cells and organisms. GFP emits bright green light (lambda max = 510 nm) when excited with ultraviolet (UV) or blue light (lambda max = 395 nm, minor peak at 470 nm). The chromophore in GFP is intrinsic to the primary structure of the protein, and fluorescence from GFP does not require additional gene products, substrates or other factors. GFP fluorescence is stable, species-independent and can be monitored noninvasively using the techniques of fluorescence microscopy and flow cytometry [Chalfie et al., Science 263 (1994) 802-805; Stearns, Curr. Biol. 5 (1995) 262-264]. The protein appears to undergo an autocatalytic reaction to create the fluorophore [Heim et al., Proc. Natl. Acad. Sci. USA 91 (1994) 12501-12504] in a process involving cyclization of a Tyr66 aa residue. Recently [Delagrave et al., Bio/Technology 13 (1995) 151-154], a combinatorial mutagenic strategy was targeted at aa 64 through 69, which spans the chromophore of A. victoria GFP, yielding a number of different mutants with red-shifted fluorescence excitation spectra. One of these, RSGFP4, retains the characteristic green emission spectra (lambda max = 505 nm), but has a single excitation peak (lambda max = 490 nm). The fluorescence properties of RSGFP4 are similar to those of another naturally occurring GFP from the sea pansy, Renilla reniformis [Ward and Cormier, Photobiochem. Photobiol. 27 (1978) 389-396]. In the present study, we demonstrate by fluorescence microscopy that selective excitation of A. victoria GFP and RSGFP4 allows for spectral separation of each fluorescent signal, and provides the means to image these signals independently in a mixed population of bacteria or mammalian cells.
Numajiri, Toshiaki; Mitsui, Shinichi; Hisa, Yasuo; Ishida, Toshihiro; Nishino, Kenichi; Yamaguchi, Nozomi
2006-01-01
Motopsin (PRSS12) is a mosaic serine protease that is preferentially expressed in motor neurons. To study the relationship between motopsin and motoneuron function, we investigated the expression of motopsin mRNA in facial nerve nuclei after facial nerve axotomy at the anterior margin of the parotid gland in mice. Neuronal function was monitored by assessing vibrissal motion in 3 months. Vibrissal behaviour on the injured side disappeared until the day 14 post-operation, and then recovered between the day 21 and 35. Motopsin expression decreased at the day 14, but markedly recovered by the day 21. In contrast, expression of growth-associated protein-43 (GAP-43) was induced at the day 3. These results suggest that the recovery of motopsin expression is correlated with the recovery of the facial motor neuronal function.
Ursolic acid improves podocyte injury caused by high glucose.
Xu, Li; Fan, Qiuling; Wang, Xu; Li, Lin; Lu, Xinxing; Yue, Yuan; Cao, Xu; Liu, Jia; Zhao, Xue; Wang, Lining
2017-08-01
Autophagy plays an important role in the maintenance of podocyte homeostasis. Reduced autophagy may result in limited renal cell function during exposure to high glucose conditions. In this study we investigated the effects of ursolic acid (UA) on autophagy and podocyte injury, which were induced by high glucose. Conditionally immortalized murine podocytes were cultured in media supplemented with high glucose and the effects of the PI3K inhibitor LY294002 and UA on protein expression were determined. miR-21 expression was detected by real-time RT-PCR. Activation of the PTEN-PI3K/Akt/mTOR pathway, expression of autophagy-related proteins and expression of podocyte marker proteins were determined by western blot. Immunofluorescence was used to monitor the accumulation of LC3 puncta. Autophagosomes were also observed by transmission electron microscopy. During exposure to high glucose conditions, the normal level of autophagy was reduced in podocytes, and this defective autophagy induced podocyte injury. Increased miR-21 expression, decreased PTEN expression and abnormal activation of the PI3K/Akt/mTOR pathway were observed in cells that were cultured in high glucose conditions. UA and LY294002 reduced podocyte injury through the restoration of defective autophagy. Our data suggest that UA inhibits miR-21 expression and increases PTEN expression, which in turn inhibits Akt and mTOR and restores normal levels of autophagy. Our data suggest that podocyte injury is associated with reduced levels of autophagy during exposure to high glucose conditions, UA attenuated podocyte injury via an increase in autophagy through miR-21 inhibition and PTEN expression, which inhibit the abnormal activation of the PI3K/Akt/mTOR pathway. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Nanoparticles as conjugated delivery agents for therapeutic applications
NASA Astrophysics Data System (ADS)
Muroski, Megan Elizabeth
This dissertation explores the use of nanoparticles as conjugated delivery agents. Chapter 1 is a general introduction. Chapter 2 discusses the delivery by a nanoparticle platform provides a method to manipulate gene activation, by taking advantage of the high surface area of a nanoparticle and the ability to selectively couple a desired biological moiety to the NP surface. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6 nm AuNP (gold nanoparticle) surface. The endosomal release of the regulatory elements from the nanoparticle surface results in endogenous protein knockdown simultaneously with exogenous protein expression for the first 48 h. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression enables the efficiency of co-delivery of siRNA (small interfering RNA) for GFP (green fluorescent protein) knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24 h of delivery and continues exhibiting knockdown for up to 48 h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same time frame with expression levels reaching 34% after 25 days although cells have divided approximately 20 times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for definitive genetic control within a single cell and leads to a very efficient cell transfection protocol. In Chapter 3, we wanted to understand the NP complex within the cell, and to look at the dynamics of release utilizing nanometal surface energy transfer as a molecular beacon. The development of non-viral transfection approaches using gold nanoparticles (AuNP) as a gene carrier allows the implementation of advanced biophysical tools to follow the transfection cycle by utilizing nanometal surface energy transfer (NSET) molecular beacon methods coupled to delivery of a gene that induces a fluorescent protein. The change in photoluminescence of an appended dye following gene release from the AuNP surface within endosomes can be tempo-rally and spatially followed. The ability to correlate the release events with the protein expression event by simultaneously monitoring fluorescent protein production provides insight into package uptake, nanoparticle disassembly, and final gene expression. Employing AuNP transfection constructs and then monitoring the stages of the transfection cycle via NSET, indicates delivery of the constructs leads to gene release from the AuNP surface within the endosome followed by slow cytosolic diffusion. The slow diffusion is the limiting step for transfection and impacts the protein yield due to competing degradation processes. Chapter 4 aims to improve the NP conjugate through the use of cell penetrating peptides (CPP) to Transfect Primary Cells. All future clinical applications of mesenchymal stem cell (MSC) therapies must allow the MSC to be harvested, transfected, and induced to express a desired protein or selection of proteins to have medical benefit. For the full potential of MSC cell therapy to be realized, it is desirable to be able to systematically alter the protein expression in harvested MSC cells with high fidelity in a single transfection event. We have developed a bimodal delivery platform based on the use of a solid gold core nanoparticle that has been surface modified to produce a chimera containing a protein transduction domain (PTD) sequence to enhance cellular uptake and a linearized expression vector to induce protein production. The transfection chimera is observed to be an efficient inducer of protein expression following a single treatment of femur bone marrow isolated rat MSCs. Use of the neutral penta-peptide, Ku70, designed from Bax-inhibiting peptides in a 500:1 ratio to the linearized gene yields >80% transfection efficiencies. Chapter 5 further develops this idea by using cell penetrating peptides. Research over the past decade has identified several of the key limiting features in multidrug resistance therapy applications, such as, cellular targeting, protection from multidrug resistant mediators and retention of intact and functional drugs. Cell penetrating peptides are able to overcome the difficulties of drug transport resulting in improved efficacy of delivery. Functionalizing the cell penetrating peptide onto the surface of a quantum dot, allows the capability of creating an individualized package for further downstream studies. Four distinct cell penetrating peptides, TAT, VP-22, Ku-70, and hCT (9-32), were utilized to study the different profiles in gliosarcoma lines (rat 9L) with varying resistances to one of the most prescribed drugs in treating glioblastoma in the clinic; BCNU. (Abstract shortened by UMI.)
Sayed, Ahmed A; Cook, Shawna K; Williams, David L
2006-06-23
Schistosoma mansoni, a causative agent of schistosomiasis, resides in the hepatic portal circulation of their human host up to 30 years without being eliminated by the host immune attack. Production of an antioxidant "firewall," which would neutralize the oxidative assault generated by host immune defenses, is one proposed survival mechanism of the parasite. Schistosomes lack catalase, the main H2O2-neutralizing enzyme of many organisms, and their glutathione peroxidases are in the phospholipid class with poor reactivity toward H2O2. Evidence implicates peroxiredoxins (Prx) as providing the main enzymatic activity to reduce H2O2 in the parasite. Quantitative monitoring of Prx mRNAs during parasite life cycle indicated that Prx proteins are differentially expressed, with highest expression occurring in adult stages (oxidative resistant stages). Incubation of schistosomula with Prx1 double-stranded RNA knocked down total Prx enzymatic activity and resulted in lowered survival of cultured parasites compared with controls demonstrating that Prx are essential parasite proteins. These results represent the first report of lethal gene silencing in Schistosoma. Investigation of downstream effects of Prx silencing revealed an abrupt increase of lipid peroxides and the generation of several oxidized proteins. Using mass spectrometry, parasite albumin and actin were identified as the main oxidized proteins. Gene expression analysis showed that schistosome albumin was induced by oxidative stress. This study highlights Prx proteins as essential parasite proteins and potential new targets for anti-schistosome drug development and albumin as a novel, sacrificial oxidant scavenging protein in parasite redox regulation.
Emery, Samantha J; Baker, Louise; Ansell, Brendan R E; Mirzaei, Mehdi; Haynes, Paul A; McConville, Malcom J; Svärd, Staffan G; Jex, Aaron R
2018-01-01
Abstract Background Metronidazole (Mtz) is the frontline drug treatment for multiple anaerobic pathogens, including the gastrointestinal protist, Giardia duodenalis. However, treatment failure is common and linked to in vivo drug resistance. In Giardia, in vitro drug-resistant lines allow controlled experimental interrogation of resistance mechanisms in isogenic cultures. However, resistance-associated changes are inconsistent between lines, phenotypic data are incomplete, and resistance is rarely genetically fixed, highlighted by reversion to sensitivity after drug selection ceases or via passage through the life cycle. Comprehensive quantitative approaches are required to resolve isolate variability, fully define Mtz resistance phenotypes, and explore the role of post-translational modifications therein. Findings We performed quantitative proteomics to describe differentially expressed proteins in 3 seminal Mtz-resistant lines compared to their isogenic, Mtz-susceptible, parental line. We also probed changes in post-translational modifications including protein acetylation, methylation, ubiquitination, and phosphorylation via immunoblotting. We quantified more than 1,000 proteins in each genotype, recording substantial genotypic variation in differentially expressed proteins between isotypes. Our data confirm substantial changes in the antioxidant network, glycolysis, and electron transport and indicate links between protein acetylation and Mtz resistance, including cross-resistance to deacetylase inhibitor trichostatin A in Mtz-resistant lines. Finally, we performed the first controlled, longitudinal study of Mtz resistance stability, monitoring lines after cessation of drug selection, revealing isolate-dependent phenotypic plasticity. Conclusions Our data demonstrate understanding that Mtz resistance must be broadened to post-transcriptional and post-translational responses and that Mtz resistance is polygenic, driven by isolate-dependent variation, and is correlated with changes in protein acetylation networks. PMID:29688452
Emery, Samantha J; Baker, Louise; Ansell, Brendan R E; Mirzaei, Mehdi; Haynes, Paul A; McConville, Malcom J; Svärd, Staffan G; Jex, Aaron R
2018-04-01
Metronidazole (Mtz) is the frontline drug treatment for multiple anaerobic pathogens, including the gastrointestinal protist, Giardia duodenalis. However, treatment failure is common and linked to in vivo drug resistance. In Giardia, in vitro drug-resistant lines allow controlled experimental interrogation of resistance mechanisms in isogenic cultures. However, resistance-associated changes are inconsistent between lines, phenotypic data are incomplete, and resistance is rarely genetically fixed, highlighted by reversion to sensitivity after drug selection ceases or via passage through the life cycle. Comprehensive quantitative approaches are required to resolve isolate variability, fully define Mtz resistance phenotypes, and explore the role of post-translational modifications therein. We performed quantitative proteomics to describe differentially expressed proteins in 3 seminal Mtz-resistant lines compared to their isogenic, Mtz-susceptible, parental line. We also probed changes in post-translational modifications including protein acetylation, methylation, ubiquitination, and phosphorylation via immunoblotting. We quantified more than 1,000 proteins in each genotype, recording substantial genotypic variation in differentially expressed proteins between isotypes. Our data confirm substantial changes in the antioxidant network, glycolysis, and electron transport and indicate links between protein acetylation and Mtz resistance, including cross-resistance to deacetylase inhibitor trichostatin A in Mtz-resistant lines. Finally, we performed the first controlled, longitudinal study of Mtz resistance stability, monitoring lines after cessation of drug selection, revealing isolate-dependent phenotypic plasticity. Our data demonstrate understanding that Mtz resistance must be broadened to post-transcriptional and post-translational responses and that Mtz resistance is polygenic, driven by isolate-dependent variation, and is correlated with changes in protein acetylation networks.
Marzano, Valeria; Santini, Simonetta; Rossi, Claudia; Zucchelli, Mirco; D'Alessandro, Annamaria; Marchetti, Carlo; Mingardi, Michele; Stagni, Venturina; Barilà, Daniela; Urbani, Andrea
2012-01-01
Ataxia Telangiectasia Mutated (ATM) protein kinase is a key effector in the modulation of the functionality of some important stress responses, including DNA damage and oxidative stress response, and its deficiency is the hallmark of Ataxia Telangiectasia (A-T), a rare genetic disorder. ATM modulates the activity of hundreds of target proteins, essential for the correct balance between proliferation and cell death. The aim of this study is to evaluate the phenotypic adaptation at the protein level both in basal condition and in presence of proteasome blockage in order to identify the molecules whose level and stability are modulated through ATM expression. We pursued a comparative analysis of ATM deficient and proficient lymphoblastoid cells by label-free shotgun proteomic experiments comparing the panel of proteins differentially expressed. Through a non-supervised comparative bioinformatic analysis these data provided an insight on the functional role of ATM deficiency in cellular carbohydrate metabolism's regulation. This hypothesis has been demonstrated by targeted metabolic fingerprint analysis SRM (Selected Reaction Monitoring) on specific thermodynamic checkpoints of glycolysis. This article is part of a Special Issue entitled: Translational Proteomics. PMID:22641158
Ho Kim, Jae; Franck, Julien; Kang, Taewook; Heinsen, Helmut; Ravid, Rivka; Ferrer, Isidro; Hee Cheon, Mi; Lee, Joo-Yong; Shin Yoo, Jong; Steinbusch, Harry W; Salzet, Michel; Fournier, Isabelle; Mok Park, Young
2015-01-01
Alzheimer’s disease (AD) is the most common form of dementia; however, mechanisms and biomarkers remain unclear. Here, we examined hippocampal CA4 and dentate gyrus subfields, which are less studied in the context of AD pathology, in post-mortem AD and control tissue to identify possible biomarkers. We performed mass spectrometry-based proteomic analysis combined with label-free quantification for identification of differentially expressed proteins. We identified 4,328 proteins, of which 113 showed more than 2-fold higher or lower expression in AD hippocampi than in control tissues. Five proteins were identified as putative AD biomarkers (MDH2, PCLO, TRRAP, YWHAZ, and MUC19 isoform 5) and were cross-validated by immunoblotting, selected reaction monitoring, and MALDI imaging. We also used a bioinformatics approach to examine upstream signalling interactions of the 113 regulated proteins. Five upstream signalling (IGF1, BDNF, ZAP70, MYC, and cyclosporin A) factors showed novel interactions in AD hippocampi. Taken together, these results demonstrate a novel platform that may provide new strategies for the early detection of AD and thus its diagnosis. PMID:26059363
Ohara-Imaizumi, Mica; Nakamichi, Yoko; Tanaka, Toshiaki; Katsuta, Hidenori; Ishida, Hitoshi; Nagamatsu, Shinya
2002-04-01
The dynamics of exocytosis/endocytosis of insulin secretory granules in pancreatic beta-cells remains to be clarified. In the present study, we visualized and analysed the motion of insulin secretory granules in MIN6 cells using pH-sensitive green fluorescent protein (pHluorin) fused to either insulin or the vesicle membrane protein, phogrin. In order to monitor insulin exocytosis, pHluorin, which is brightly fluorescent at approximately pH 7.4, but not at approximately pH 5.0, was attached to the C-terminus of insulin. To monitor the motion of insulin secretory granules throughout exocytosis/endocytosis, pHluorin was inserted between the third and fourth amino acids after the identified signal-peptide cleavage site of rat phogrin cDNA. Using this method of cDNA construction, pHluorin was located in the vesicle lumen, which may enable discrimination of the unfused acidic secretory granules from the fused neutralized ones. In MIN6 cells expressing insulin-pHluorin, time-lapse confocal laser scanning microscopy (5 or 10 s intervals) revealed the appearance of fluorescent spots by depolarization after stimulation with 50 mM KCl and 22 mM glucose. The number of these spots in the image at the indicated times was counted and found to be consistent with the results of insulin release measured by RIA during the time course. In MIN6 cells expressing phogrin-pHluorin, data showed that fluorescent spots appeared following high KCl stimulation and remained stationary for a while, moved on the plasma membrane and then disappeared. Thus we demonstrate the visualized motion of insulin granule exocytosis/endocytosis using the pH-sensitive marker, pHluorin.
Pasquali, Christian; Stolz, Daiana; Tamm, Michael
2017-01-01
Background Bronchial epithelial cells (BEC) are primary target for Rhinovirus infection through attaching to cell membrane proteins. OM-85, a bacterial extract, improves recovery of asthma and COPD patients after viral infections, but only part of the mechanism was addressed, by focusing on defined immune cells. Objective We therefore determined the effect of OM-85 on isolated primary human BEC of controls (n = 8), asthma patients (n = 10) and COPD patients (n = 9). Methods BEC were treated with OM-85 alone (24 hours) or infected with Rhinovirus. BEC survival was monitored by manual cell counting and Rhinovirus replication by lytic activity. Immuno-blotting and ELISA were used to determine the expression of Rhinovirus interacting proteins: intracellular adhesion molecule (ICAM), major histocompatibility complex class II (MHC-2), complement component C1q receptor (C1q-R), inducible T-Cell co-stimulator (ICOS), its ligand ICOSL, and myeloid differentiation primary response gene 88 (Myd88); as well as for signal transducers Erk1/2, p38, JNK mitogen activated protein kinases MAPK), and cAMP. Results OM-85 significantly reduced Rhinovirus-induced BEC death and virus replication. OM-85 significantly increased the expression of virus interacting proteins C1q-R and β-defensin in all 3 probes and groups, which was prevented by either Erk1/2 MAPK or cAMP inhibition. In addition, OM-85 significantly reduced Rhinovirus induced expression of ICAM1 involving p38 MAPK. In BEC OM-85 had no significant effect on the expression of ICOS, ICOSL and MHC-2 membrane proteins nor on the adaptor protein MyD88. Conclusion The OM-85-induced increased of C1q-R and β-defensin, both important for antigen presentation and phagocytosis, supports its activity in host cell’s defence against Rhinovirus infection. PMID:29182620
Roth, Michael; Pasquali, Christian; Stolz, Daiana; Tamm, Michael
2017-01-01
Bronchial epithelial cells (BEC) are primary target for Rhinovirus infection through attaching to cell membrane proteins. OM-85, a bacterial extract, improves recovery of asthma and COPD patients after viral infections, but only part of the mechanism was addressed, by focusing on defined immune cells. We therefore determined the effect of OM-85 on isolated primary human BEC of controls (n = 8), asthma patients (n = 10) and COPD patients (n = 9). BEC were treated with OM-85 alone (24 hours) or infected with Rhinovirus. BEC survival was monitored by manual cell counting and Rhinovirus replication by lytic activity. Immuno-blotting and ELISA were used to determine the expression of Rhinovirus interacting proteins: intracellular adhesion molecule (ICAM), major histocompatibility complex class II (MHC-2), complement component C1q receptor (C1q-R), inducible T-Cell co-stimulator (ICOS), its ligand ICOSL, and myeloid differentiation primary response gene 88 (Myd88); as well as for signal transducers Erk1/2, p38, JNK mitogen activated protein kinases MAPK), and cAMP. OM-85 significantly reduced Rhinovirus-induced BEC death and virus replication. OM-85 significantly increased the expression of virus interacting proteins C1q-R and β-defensin in all 3 probes and groups, which was prevented by either Erk1/2 MAPK or cAMP inhibition. In addition, OM-85 significantly reduced Rhinovirus induced expression of ICAM1 involving p38 MAPK. In BEC OM-85 had no significant effect on the expression of ICOS, ICOSL and MHC-2 membrane proteins nor on the adaptor protein MyD88. The OM-85-induced increased of C1q-R and β-defensin, both important for antigen presentation and phagocytosis, supports its activity in host cell's defence against Rhinovirus infection.
Mendoza-Mendoza, Artemio; Steyaert, Johanna; Nieto-Jacobo, Maria Fernanda; Holyoake, Andrew; Braithwaite, Mark; Stewart, Alison
2015-11-01
Several members of the genus Trichoderma are biocontrol agents of soil-borne fungal plant pathogens. The effectiveness of biocontrol agents depends heavily on how they perform in the complex field environment. Therefore, the ability to monitor and track Trichoderma within the environment is essential to understanding biocontrol efficacy. The objectives of this work were to: (a) identify key genes involved in Trichoderma sp. 'atroviride type B' morphogenesis; (b) develop a robust RNA isolation method from soil; and (c) develop molecular marker assays for characterizing morphogenesis whilst in the soil environment. Four cDNA libraries corresponding to conidia, germination, vegetative growth and conidiogenesis were created, and the genes identified by sequencing. Stage specificity of the different genes was confirmed by either Northern blot or quantitative reverse-transcriptase PCR (qRT-PCR) analysis using RNA from the four stages. con10, a conidial-specific gene, was observed in conidia, as well as one gene also involved in subsequent stages of germination (L-lactate/malate dehydrogenase encoding gene). The germination stage revealed high expression rates of genes involved in amino acid and protein biosynthesis, while in the vegetative-growth stage, genes involved in differentiation, including the mitogen-activated protein kinase kinase similar to Kpp7 from Ustilago maydis and the orthologue to stuA from Aspergillus nidulans, were preferentially expressed. Genes involved in cell-wall synthesis were expressed during conidiogenesis. We standardized total RNA isolation from Trichoderma sp. 'atroviride type B' growing in soil and then examined the expression profiles of selected genes using qRT-PCR. The results suggested that the relative expression patterns were cyclic and not accumulative.
Martínez-Solís, María; Jakubowska, Agata K; Herrero, Salvador
2017-10-01
Baculoviruses are a broad group of viruses infecting insects, predominately of the order Lepidoptera. They are used worldwide as biological insecticides and as expression vectors to produce recombinant proteins. Baculoviruses replicate in their host, although several cell lines have been developed for in vitro replication. Nevertheless, replication of baculoviruses in cell culture involves the generation of defective viruses with a decrease in productivity and virulence. Transcriptional studies of the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infective process revealed differences in the expression patterns when the virus replicated under in vitro (Se301 cells) or in vivo (S. exigua larvae) conditions. The late expression factor 5 (lef5) gene was found to be highly overexpressed when the virus replicates in larvae. To test the possible role of lef5 expression in viral stability, recombinant AcMNPV expressing the lef5 gene from SeMNPV (Se-lef5) was generated and its stability was monitored during successive infection passages in Sf21 cells by evaluating the loss of several essential and non-essential genes. The gfp transgene was more stable in those viruses expressing the Se-LEF5 protein and the GFP-defective viruses were accumulated at a lower level when compared to its control viruses, confirming the positive influence of lef5 in viral stability during the multiplication process. This work describes for the first time a viral factor involved in transgene stability when baculoviruses replicate in cell culture, opening new ways to facilitate the in vitro production of recombinant proteins using baculovirus.
Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics.
Rodrigues, Leandro Nascimento da Silva; Brito, Wesley de Almeida; Parente, Ana Flávia Alves; Weber, Simone Schneider; Bailão, Alexandre Melo; Casaletti, Luciana; Borges, Clayton Luiz; Soares, Célia Maria de Almeida
2016-10-01
The ability to respond to stressful conditions is essential for most living organisms. In pathogenic organisms, this response is required for effective transition from a saprophytic lifestyle to the establishment of pathogenic interactions within a susceptible host. Hyperosmotic stress has been used as a model to study signal transduction and seems to cause many cellular adaptations, including the alteration of protein expression and cellular volume as well as size regulation. In this work, we evaluated the proteomic profile of Paracoccidioides lutzii Pb01 yeast cells during osmotic stress induced by potassium chloride. We performed a high accuracy proteomic technique (NanoUPLC-MS(E)) to identify differentially expressed proteins during osmotic shock. The data describe an osmoadaptative response of this fungus when subjected to this treatment. Proteins involved in the synthesis of cell wall components were modulated, which suggested cell wall remodeling. In addition, alterations in the energy metabolism were observed. Furthermore, proteins involved in amino acid metabolism and hydrogen peroxide detoxification were modulated during osmotic stress. Our study suggests that P. lutzii Pb01. presents a vast osmoadaptative response that is composed of different proteins that act together to minimize the effects caused by osmotic stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Modulation of follistatin and myostatin propeptide by anabolic steroids and gender.
Mosler, S; Geisler, S; Hengevoss, J; Schiffer, T; Piechotta, M; Adler, M; Diel, P
2013-07-01
The purpose of this pilot study was to investigate the impact of training, anabolic steroids and endogenous hormones on myostatin-interacting proteins in order to identify manipulations of myostatin signalling. To identify whether analysis of the myostatin interacting proteins follistatin and myostatin propeptide is suitable to detect the abuse of anabolic steroids, their serum concentrations were monitored in untrained males, bodybuilders using anabolic steroids and natural bodybuilders. In addition, we analysed follistatin and myostatin propeptide serum proteins in females during menstrual cycle. Our results showed increased follistatin concentrations in response to anabolic steroids. Furthermore, variations of sex steroid levels during the menstrual cycle had no impact on the expression of follistatin and myostatin propetide. In addition, we identified gender differences in the basal expression of the investigated proteins. In general, follistatin and myostatin propeptide concentrations were relatively stable within the same individual both in males and females. In conclusion, the current findings provide an insight into gender differences in myostatin-interacting proteins and their regulation in response to anabolic steroids and endogenous hormones. Therefore our data provide new aspects for the development of doping prevention strategies. © Georg Thieme Verlag KG Stuttgart · New York.
Lears, Kimberly A.; Parry, Jesse J.; Andrews, Rebecca; Nguyen, Kim; Wadas, Thaddeus J.; Rogers, Buck E.
2015-01-01
Suicide gene therapy is a process by which cells are administered a gene that encodes a protein capable of converting a nontoxic prodrug into an active toxin. Cytosine deaminase (CD) has been widely investigated as a means of suicide gene therapy due to the enzyme’s ability to convert the prodrug 5-fluorocytosine (5-FC) into the toxic compound 5-fluorouracil (5-FU). However, the extent of gene transfer is a limiting factor in predicting therapeutic outcome. The ability to monitor gene transfer, non-invasively, would strengthen the efficiency of therapy. In this regard, we have constructed and evaluated a replication-deficient adenovirus (Ad) containing the human somatostatin receptor subtype 2 (SSTR2) fused with a C-terminal yeast CD gene for the non-invasive monitoring of gene transfer and therapy. The resulting Ad (AdSSTR2-yCD) was evaluated in vitro in breast cancer cells to determine the function of the fusion protein. These studies demonstrated that the both the SSTR2 and yCD were functional in binding assays, conversion assays, and cytotoxicity assays. In vivo studies similarly demonstrated the functionality using conversion assays, biodistribution studies, and small animal positron-emission tomography (PET) imaging studies. In conclusion, the fusion protein has been validated as useful for the non-invasive imaging of yCD expression and will be evaluated in the future for monitoring yCD-based therapy. PMID:25837665
Mahtout, Hayette; Chandad, Fatiha; Rojo, Jose M; Grenier, Daniel
2011-02-01
Periodontitis is a chronic inflammatory disease that results in the destruction of the supporting tissues of the teeth. Gingival epithelial cells are an important mechanical barrier and participate in the host inflammatory response to periodontopathogens. The aim of the present study is to investigate the capacity of Fusobacterium nucleatum to bind to the complement regulatory protein CD46 expressed by oral epithelial cells and to determine the impact of the binding on the gene expression and protein secretion of interleukin (IL)-6, IL-8, and matrix metalloproteinase (MMP)-9 by oral epithelial cells. Binding of recombinant human CD46 to the surface of F. nucleatum was demonstrated by immunologic assays. After stimulation of oral epithelial cells with F. nucleatum, gene expression was determined by real-time polymerase chain reaction analysis while protein secretion was monitored by enzyme-linked immunosorbent assays. Heat and protease treatments of bacterial cells reduced CD46 binding. F. nucleatum-bound CD46 mediated the cleavage of C3b in the presence of factor I. Stimulating oral epithelial cells with F. nucleatum at a multiplicity of infection of 50 resulted in a significant upregulation of the gene expression and protein secretion of IL-6, IL-8, and MMP-9 by oral epithelial cells. However, pretreating the epithelial cells with an anti-CD46 polyclonal antibody attenuated the production of IL-6, IL-8, and MMP-9 in response to F. nucleatum. Such an inhibitory effect was not observed with non-specific antibodies. The present study demonstrates that F. nucleatum can bind the complement regulatory protein CD46. The interaction of F. nucleatum with epithelial cell surface CD46 may contribute to increasing the levels of proinflammatory mediators and MMPs in periodontal sites and consequently modulate tissue destruction.
Nunoshiba, T; Hidalgo, E; Amábile Cuevas, C F; Demple, B
1992-01-01
Escherichia coli responds to the redox stress imposed by superoxide-generating agents such as paraquat by activating the synthesis of as many as 80 polypeptides. Expression of a key group of these inducible proteins is controlled at the transcriptional level by the soxRS locus (the soxRS regulon). A two-stage control system was hypothesized for soxRS, in which an intracellular redox signal would trigger the SoxR protein as a transcriptional activator of the soxS gene and the resulting increased levels of SoxS protein would activate transcription of the various soxRS regulon genes (B. Demple and C.F. Amábile Cuevas, Cell 67:837-839, 1990). We have constructed operon fusions of the E. coli lac genes to the soxS promoter to monitor soxS transcription. Expression from the soxS promoter is strongly inducible by paraquat in a manner strictly dependent on a functional soxR gene. Several other superoxide-generating agents also trigger soxR(+)-dependent soxS expression, and the inductions by paraquat and phenazine methosulfate were dependent on the presence of oxygen. Numerous other oxidative stress agents (H2O2, gamma rays, heat shock, etc.) failed to induce soxS, while aerobic growth of superoxide dismutase-deficient bacteria triggered soxR-dependent soxS expression. These results indicate a specific redox signal for soxS induction. A direct role for SoxR protein in the activation of the soxS gene is indicated by band-shift and DNase I footprinting experiments that demonstrate specific binding of the SoxR protein in cell extracts to the soxS promoter. The mode of SoxR binding to DNA appears to be similar to that of its homolog MerR in that the SoxR footprint spans the -10 to -35 region of the soxS promoter. Images PMID:1400156
Life and death of proteins: a case study of glucose-starved Staphylococcus aureus.
Michalik, Stephan; Bernhardt, Jörg; Otto, Andreas; Moche, Martin; Becher, Dörte; Meyer, Hanna; Lalk, Michael; Schurmann, Claudia; Schlüter, Rabea; Kock, Holger; Gerth, Ulf; Hecker, Michael
2012-09-01
The cellular amount of proteins not only depends on synthesis but also on degradation. Here, we expand the understanding of differential protein levels by complementing synthesis data with a proteome-wide, mass spectrometry-based stable isotope labeling with amino acids in cell culture analysis of protein degradation in the human pathogen Staphylococcus aureus during glucose starvation. Monitoring protein stability profiles in a wild type and an isogenic clpP protease mutant revealed that 1) proteolysis mainly affected proteins with vegetative functions, anabolic and selected catabolic enzymes, whereas the expression of TCA cycle and gluconeogenesis enzymes increased; 2) most proteins were prone to aggregation in the clpP mutant; 3) the absence of ClpP correlated with protein denaturation and oxidative stress responses, deregulation of virulence factors and a CodY repression. We suggest that degradation of redundant, inactive proteins disintegrated from functional complexes and thereby amenable to proteolytic attack is a fundamental cellular process in all organisms to regain nutrients and guarantee protein homeostasis.
Life and Death of Proteins: A Case Study of Glucose-starved Staphylococcus aureus*
Michalik, Stephan; Bernhardt, Jörg; Otto, Andreas; Moche, Martin; Becher, Dörte; Meyer, Hanna; Lalk, Michael; Schurmann, Claudia; Schlüter, Rabea; Kock, Holger; Gerth, Ulf; Hecker, Michael
2012-01-01
The cellular amount of proteins not only depends on synthesis but also on degradation. Here, we expand the understanding of differential protein levels by complementing synthesis data with a proteome-wide, mass spectrometry-based stable isotope labeling with amino acids in cell culture analysis of protein degradation in the human pathogen Staphylococcus aureus during glucose starvation. Monitoring protein stability profiles in a wild type and an isogenic clpP protease mutant revealed that 1) proteolysis mainly affected proteins with vegetative functions, anabolic and selected catabolic enzymes, whereas the expression of TCA cycle and gluconeogenesis enzymes increased; 2) most proteins were prone to aggregation in the clpP mutant; 3) the absence of ClpP correlated with protein denaturation and oxidative stress responses, deregulation of virulence factors and a CodY repression. We suggest that degradation of redundant, inactive proteins disintegrated from functional complexes and thereby amenable to proteolytic attack is a fundamental cellular process in all organisms to regain nutrients and guarantee protein homeostasis. PMID:22556279
Exosome platform for diagnosis and monitoring of traumatic brain injury
Taylor, Douglas D.; Gercel-Taylor, Cicek
2014-01-01
We have previously demonstrated the release of membranous structures by cells into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. With activation, injury, stress, transformation or infection, cells express proteins and RNAs associated with the cellular responses to these events. The exosomes released by these cells can exhibit an array of proteins, lipids and nucleic acids linked to these physiologic events. This review focuses on exosomes associated with traumatic brain injury, which may be both diagnostic and a causative factor in the progression of the injury. Based on current data, exosomes play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with development, progression and therapeutic failures and cellular stress in a variety of pathologic conditions. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodelling, signal pathway activation through growth factor/receptor transfer, chemoresistance, immunologic activation and genetic exchange. These circulating exosomes not only represent a central mediator of the pro-inflammatory microenvironment linked with secondary brain injury, but their presence in the peripheral circulation may serve as a surrogate for biopsies, enabling real-time diagnosis and monitoring of neurodegenerative progression. PMID:25135964
Zhao, Yuzheng; Wang, Aoxue; Zou, Yejun; Su, Ni; Loscalzo, Joseph; Yang, Yi
2016-08-01
NADH and its oxidized form NAD(+) have a central role in energy metabolism, and their concentrations are often considered to be among the most important readouts of metabolic state. Here, we present a detailed protocol to image and monitor NAD(+)/NADH redox state in living cells and in vivo using a highly responsive, genetically encoded fluorescent sensor known as SoNar (sensor of NAD(H) redox). The chimeric SoNar protein was initially developed by inserting circularly permuted yellow fluorescent protein (cpYFP) into the NADH-binding domain of Rex protein from Thermus aquaticus (T-Rex). It functions by binding to either NAD(+) or NADH, thus inducing protein conformational changes that affect its fluorescent properties. We first describe steps for how to establish SoNar-expressing cells, and then discuss how to use the system to quantify the intracellular redox state. This approach is sensitive, accurate, simple and able to report subtle perturbations of various pathways of energy metabolism in real time. We also detail the application of SoNar to high-throughput chemical screening of candidate compounds targeting cell metabolism in a microplate-reader-based assay, along with in vivo fluorescence imaging of tumor xenografts expressing SoNar in mice. Typically, the approximate time frame for fluorescence imaging of SoNar is 30 min for living cells and 60 min for living mice. For high-throughput chemical screening in a 384-well-plate assay, the whole procedure generally takes no longer than 60 min to assess the effects of 380 compounds on cell metabolism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bayne, M.L.; Cascieri, M.A.; Kelder, B.
1987-05-01
A synthetic gene encoding human insulin-like growth factor I (hIGF-I) was assembled and inserted into an expression vector containing the cytomegalovirus immediate early (CMV-IE) transcriptional regulatory region and portions of the bovine growth hormone gene. The recombinant plasmid encodes a 97 amino acid fusion protein containing the first 27 amino acids of the bovine growth hormone precursor and the 70 amino acids of hIGF-I. This plasmid, when transiently introduced into cultured mouse fibroblasts, directs synthesis of the fusion protein, subsequent proteolytic removal of the bovine growth hormone signal peptide, and secretion of hIGF-I into the culture medium. Conditioned medium frommore » transfected cells inhibits binding of /sup 125/I-labeled IGF-I to type I IGF receptors on human placental membranes and to acid-stable human serum carrier proteins. The recombinant hIGF-I produced is biologically active, as monitored by the stimulation of DNA synthesis in vascular smooth muscle cells.« less
Zinc-finger protein-targeted gene regulation: Genomewide single-gene specificity
Tan, Siyuan; Guschin, Dmitry; Davalos, Albert; Lee, Ya-Li; Snowden, Andrew W.; Jouvenot, Yann; Zhang, H. Steven; Howes, Katherine; McNamara, Andrew R.; Lai, Albert; Ullman, Chris; Reynolds, Lindsey; Moore, Michael; Isalan, Mark; Berg, Lutz-Peter; Campos, Bradley; Qi, Hong; Spratt, S. Kaye; Case, Casey C.; Pabo, Carl O.; Campisi, Judith; Gregory, Philip D.
2003-01-01
Zinc-finger protein transcription factors (ZFP TFs) can be designed to control the expression of any desired target gene, and thus provide potential therapeutic tools for the study and treatment of disease. Here we report that a ZFP TF can repress target gene expression with single-gene specificity within the human genome. A ZFP TF repressor that binds an 18-bp recognition sequence within the promoter of the endogenous CHK2 gene gives a >10-fold reduction in CHK2 mRNA and protein. This level of repression was sufficient to generate a functional phenotype, as demonstrated by the loss of DNA damage-induced CHK2-dependent p53 phosphorylation. We determined the specificity of repression by using DNA microarrays and found that the ZFP TF repressed a single gene (CHK2) within the monitored genome in two different cell types. These data demonstrate the utility of ZFP TFs as precise tools for target validation, and highlight their potential as clinical therapeutics. PMID:14514889
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokoo, Masako; Fujita, Ryosuke; Innate Immunity Laboratory, Graduate School of Life Science and Creative Research Institution, Hokkaido University, Sapporo 001-0021
Highlights: •The baculovirus vector infiltrates the cells of economic important fishes. •Drosophila Mos1 transposase expressed in fish cells maintains its ability to localize to the nucleus. •The baculoviral vector carrying Mos1 is a useful tool to stably transform fish cells. -- Abstract: Drosophila Mos1 belongs to the mariner family of transposons, which are one of the most ubiquitous transposons among eukaryotes. We first determined nuclear transportation of the Drosophila Mos1-EGFP fusion protein in fish cell lines because it is required for a function of transposons. We next constructed recombinant baculoviral vectors harboring the Drosophila Mos1 transposon or marker genes locatedmore » between Mos1 inverted repeats. The infectivity of the recombinant virus to fish cells was assessed by monitoring the expression of a fluorescent protein encoded in the viral genome. We detected transgene expression in CHSE-214, HINAE, and EPC cells, but not in GF or RTG-2 cells. In the co-infection assay of the Mos1-expressing virus and reporter gene-expressing virus, we successfully transformed CHSE-214 and HINAE cells. These results suggest that the combination of a baculovirus and Mos1 transposable element may be a tool for transgenesis in fish cells.« less
Chiarella, Emanuela; Carrà, Giovanna; Scicchitano, Stefania; Codispoti, Bruna; Mega, Tiziana; Lupia, Michela; Pelaggi, Daniela; Marafioti, Maria G.; Aloisio, Annamaria; Giordano, Marco; Nappo, Giovanna; Spoleti, Cristina B.; Grillone, Teresa; Giovannone, Emilia D.; Spina, Raffaella; Bernaudo, Francesca; Moore, Malcolm A. S.; Bond, Heather M.; Mesuraca, Maria; Morrone, Giovanni
2014-01-01
Lentiviral vectors are widely used to investigate the biological properties of regulatory proteins and/or of leukaemia-associated oncogenes by stably enforcing their expression in hematopoietic stem and progenitor cells. In these studies it is critical to be able to monitor and/or sort the infected cells, typically via fluorescent proteins encoded by the modified viral genome. The most popular strategy to ensure co-expression of transgene and reporter gene is to insert between these cDNAs an IRES element, thus generating bi-cistronic mRNAs whose transcription is driven by a single promoter. However, while the product of the gene located upstream of the IRES is generally abundantly expressed, the translation of the downstream cDNA (typically encoding the reporter protein) is often inconsistent, which hinders the detection and the isolation of transduced cells. To overcome these limitations, we developed novel lentiviral dual-promoter vectors (named UMG-LV5 and –LV6) where transgene expression is driven by the potent UBC promoter and that of the reporter protein, EGFP, by the minimal regulatory element of the WASP gene. These vectors, harboring two distinct transgenes, were tested in a variety of human haematopoietic cell lines as well as in primary human CD34+ cells in comparison with the FUIGW vector that contains the expression cassette UBC-transgene-IRES-EGFP. In these experiments both UMG-LV5 and UMG–LV6 yielded moderately lower transgene expression than FUIGW, but dramatically higher levels of EGFP, thereby allowing the easy distinction between transduced and non-transduced cells. An additional construct was produced, in which the cDNA encoding the reporter protein is upstream, and the transgene downstream of the IRES sequence. This vector, named UMG-LV11, proved able to promote abundant expression of both transgene product and EGFP in all cells tested. The UMG-LVs represent therefore useful vectors for gene transfer-based studies in hematopoietic stem and progenitor cells, as well as in non-hematopoietic cells. PMID:25502183
Ishiba, Toshiyuki; Hoffmann, Andreas-Claudius; Usher, Joshua; Elshimali, Yahya; Sturdevant, Todd; Dang, Mai; Jaimes, Yolanda; Tyagi, Rama; Gonzales, Ronald; Grino, Mary; Pinski, Jacek K; Barzi, Afsaneh; Raez, Luis E; Eberhardt, Wilfried E; Theegarten, Dirk; Lenz, Heinz-Josef; Uetake, Hiroyuki; Danenberg, Peter V; Danenberg, Kathleen
2018-06-07
Precision medicine and prediction of therapeutic response requires monitoring potential biomarkers before and after treatment. Liquid biopsies provide noninvasive prognostic markers such as circulating tumor DNA and RNA. Circulating tumor RNA (ctRNA) in blood is also used to identify mutations in genes of interest, but additionally, provides information about relative expression levels of important genes. In this study, we analyzed PD-L1 expression in ctRNA isolated from various cancer types. Tumors inhibit antitumor response by modulating the immune checkpoint proteins programmed death ligand 1 (PD-L1) and its cognate receptor PD1. The expression of these genes has been implicated in evasion of immune response and resistance to targeted therapies. Blood samples were collected from gastric (GC), colorectal (CRC), lung (NSCLC), breast (BC), prostate cancer (PC) patients, and a healthy control group. ctRNA was purified from fractionated plasma, and following reverse transcription, levels of PD-L1 expression were analyzed using qPCR. PD-L1 expression was detected in the plasma ctRNA of all cancer types at varying frequencies but no PD-L1 mRNA was detected in cancer-free individuals. The frequencies of PD-L1 expression were significantly different among the various cancer types but the median relative PD-L1 expression values were not significantly different. In 12 cases where plasma and tumor tissue were available from the same patients, there was a high degree of concordance between expression of PD-L1 protein in tumor tissues and PD-L1 gene expression in plasma, and both methods were equally predictive of response to nivolumab. PD-L1 mRNA can be detected and quantitated in ctRNA of cancer patients. These results pave the way for further studies aimed at determining whether monitoring the levels of PD-L1 mRNA in blood can identify patients who are most likely to benefit from the conventional treatment. Copyright © 2018 Elsevier Inc. All rights reserved.
Chiba, Shinobu; Ito, Koreaki
2015-01-01
The YidC/Oxa1/Alb3 family proteins are involved in membrane protein biogenesis in bacteria, mitochondria, and chloroplasts. Recent studies show that YidC uses a channel-independent mechanism to insert a class of membrane proteins into the membrane. Bacillus subtilis has two YidC homologs, SpoIIIJ (YidC1) and YidC2 (YqjG); the former is expressed constitutively, while the latter is induced when the SpoIIIJ activity is compromised. MifM is a substrate of SpoIIIJ, and its failure in membrane insertion is accompanied by stable ribosome stalling on the mifM-yidC2 mRNA, which ultimately facilitates yidC2 translation. While mutational inactivation of SpoIIIJ has been known to induce yidC2 expression, here, we show that the level of this induction is lower than that observed when the membrane insertion signal of MifM is defective. Moreover, this partial induction of YidC2 translation is lowered further when YidC2 is overexpressed in trans. These results suggest that YidC2 is able to insert MifM into the membrane and to release its translation arrest. Thus, under SpoIIIJ-deficient conditions, YidC2 expression is subject to MifM-mediated autogenous feedback repression. Our results show that YidC2 uses a mechanism that is virtually identical to that used by SpoIIIJ; Arg75 of YidC2 in its intramembrane yet hydrophilic cavity is functionally indispensable and requires negatively charged residues of MifM as an insertion substrate. From these results, we conclude that MifM monitors the total activities of the SpoIIIJ and the YidC2 pathways to control the synthesis of YidC2 and to maintain the cellular capability of the YidC mode of membrane protein biogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivagnanam, Kumaran; Raghavan, Vijaya G. S.; Shah, Manesh B
2012-01-01
Economically viable production of solvents through acetone butanol ethanol (ABE) fermentation requires a detailed understanding of Clostridium acetobutylicum. This study focuses on the proteomic profiling of C. acetobutylicum ATCC 824 from the stationary phase of ABE fermentation using xylose and compares with the exponential growth by shotgun proteomics approach. Comparative proteomic analysis revealed 22.9% of the C. acetobutylicum genome and 18.6% was found to be common in both exponential and stationary phases. The proteomic profile of C. acetobutylicum changed during the ABE fermentation such that 17 proteins were significantly differentially expressed between the two phases. Specifically, the expression of fivemore » proteins namely, CAC2873, CAP0164, CAP0165, CAC3298, and CAC1742 involved in the solvent production pathway were found to be significantly lower in the stationary phase compared to the exponential growth. Similarly, the expression of fucose isomerase (CAC2610), xylulose kinase (CAC2612), and a putative uncharacterized protein (CAC2611) involved in the xylose utilization pathway were also significantly lower in the stationary phase. These findings provide an insight into the metabolic behavior of C. acetobutylicum between different phases of ABE fermentation using xylose.« less
Chimeric parasites as tools to study Plasmodium immunology and assess malaria vaccines.
Cockburn, Ian
2013-01-01
The study of pathogen immunity relies upon being able to track antigen specific immune responses and assess their protective capacity. To study immunity to Plasmodium antigens, chimeric rodent or human malaria parasites that express proteins from other Plasmodium species or unrelated species have been developed. Different types of chimeric parasites have been used to address a range of specific questions. Parasites expressing model T cell epitopes have been used to monitor cellular immune responses to the preerythrocytic and blood stages of malaria. Other parasites have been used to assess the functional significance of immune responses targeting particular proteins. Finally, a number of rodent malaria parasites that express vaccine-candidate antigens from P. falciparum and P. vivax have been used in functional assays of vaccine-induced antibody responses. Here, I review the experimental contributions that have been made using these parasites, and discuss the potential of these approaches to continue advancing our understanding of malaria immunology and vaccine research.
Shan, Sze Wan; Do, Chi Wai; Lam, Thomas Chuen; Kong, Ricky Pak Wing; Li, King Kit; Chun, Ka Man; Stamer, William Daniel; To, Chi Ho
2017-10-06
The molecular pathophysiology of corticosteroid-induced ocular hypertension (CIH) is not well understood. To determine the biological mechanisms of CIH, this study investigated protein expression profiles of human trabecular meshwork (hTM) cells in response to dexamethasone and prednisolone treatment. Both discovery-based sequential windowed data independent acquisition of the total high-resolution mass spectra (SWATH-MS) and targeted based high resolution multiple reaction monitoring (MRM-HR) confirmation were applied using a hybrid quadrupole-time-of-flight mass spectrometer. A comprehensive list of 1759 proteins (1% FDR) was generated from the hTM. Quantitative proteomics revealed 20 differentially expressed proteins (p-value ≤ 0.05 and fold-change ≥ 1.5 or ≤ 0.67) commonly induced by prednisolone and dexamethasone, both at 300 nM. These included connective tissue growth factor (CTGF) and thrombospondin-1 (THBS1), two proteins previously implicated in ocular hypertension, glaucoma, and the transforming growth factor-β pathway. Their gene expressions in response to corticosteroids were further confirmed using reverse-transcription polymerase chain reaction. Together with other novel proteins identified in the data sets, additional pathways implicated by these regulated proteins were the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway, integrin cell surface interaction, extracellular matrix (ECM) proteoglycans, and ECM-receptor interaction. Our results indicated that an integrated platform of SWATH-MS and MRM-HR allows high throughput identification and confirmation of novel and known corticosteroid-regulated proteins in trabecular meshwork cells, demonstrating the power of this technique in extending the current understanding of the pathogenesis of CIH.
Melanopsin resets circadian rhythms in cells by inducing clock gene Period1
NASA Astrophysics Data System (ADS)
Yamashita, Shuhei; Uehara, Tomoe; Matsuo, Minako; Kikuchi, Yo; Numano, Rika
2014-02-01
The biochemical, physiological and behavioral processes are under the control of internal clocks with the period of approximately 24 hr, circadian rhythms. The expression of clock gene Period1 (Per1) oscillates autonomously in cells and is induced immediately after a light pulse. Per1 is an indispensable member of the central clock system to maintain the autonomous oscillator and synchronize environmental light cycle. Per1 expression could be detected by Per1∷luc and Per1∷GFP plasmid DNA in which firefly luciferase and Green Fluorescence Protein were rhythmically expressed under the control of the mouse Per1 promoter in order to monitor mammalian circadian rhythms. Membrane protein, MELANOPSIN is activated by blue light in the morning on the retina and lead to signals transduction to induce Per1 expression and to reset the phase of circadian rhythms. In this report Per1 induction was measured by reporter signal assay in Per1∷luc and Per1∷GFP fibroblast cell at the input process of circadian rhythms. To the result all process to reset the rhythms by Melanopsin is completed in single cell like in the retina projected to the central clock in the brain. Moreover, the phase of circadian rhythm in Per1∷luc cells is synchronized by photo-activated Melanopsin, because the definite peak of luciferase activity in one dish was found one day after light illumination. That is an available means that physiological circadian rhythms could be real-time monitor as calculable reporter (bioluminescent and fluorescent) chronological signal in both single and groups of cells.
NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes.
Maslennikov, Innokentiy; Kefala, Georgia; Johnson, Casey; Riek, Roland; Choe, Senyon; Kwiatkowski, Witek
2007-11-08
Structural studies of integral membrane proteins (IMPs) are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs). The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Seeking an effective and standardized means applicable to genomic approaches for the characterization of PDCs, we chose 1D-NMR spectroscopic analysis to monitor the detergent content throughout their purification: protein extraction, detergent exchange, and sample concentration. We demonstrate that a single NMR measurement combined with a SDS-PAGE of a detergent extracted sample provides a useful gauge of the detergent's extraction potential for a given protein. Furthermore, careful monitoring of the detergent content during the process of IMP production allows for a high level of reproducibility. We also show that in many cases a simple sedimentation velocity measurement provides sufficient data to estimate both the oligomeric state and the detergent-to-protein ratio in PDCs, as well as to evaluate the homogeneity of the samples prior to crystallization screening. The techniques presented here facilitate the screening and selection of the extraction detergent, as well as help to maintain reproducibility in the detergent exchange and PDC concentration procedures. Such reproducibility is particularly important for the optimization of initial crystallization conditions, for which multiple purifications are routinely required.
NMR spectroscopic and analytical ultracentrifuge analysis of membrane protein detergent complexes
Maslennikov, Innokentiy; Kefala, Georgia; Johnson, Casey; Riek, Roland; Choe, Senyon; Kwiatkowski, Witek
2007-01-01
Background Structural studies of integral membrane proteins (IMPs) are hampered by inherent difficulties in their heterologous expression and in the purification of solubilized protein-detergent complexes (PDCs). The choice and concentrations of detergents used in an IMP preparation play a critical role in protein homogeneity and are thus important for successful crystallization. Results Seeking an effective and standardized means applicable to genomic approaches for the characterization of PDCs, we chose 1D-NMR spectroscopic analysis to monitor the detergent content throughout their purification: protein extraction, detergent exchange, and sample concentration. We demonstrate that a single NMR measurement combined with a SDS-PAGE of a detergent extracted sample provides a useful gauge of the detergent's extraction potential for a given protein. Furthermore, careful monitoring of the detergent content during the process of IMP production allows for a high level of reproducibility. We also show that in many cases a simple sedimentation velocity measurement provides sufficient data to estimate both the oligomeric state and the detergent-to-protein ratio in PDCs, as well as to evaluate the homogeneity of the samples prior to crystallization screening. Conclusion The techniques presented here facilitate the screening and selection of the extraction detergent, as well as help to maintain reproducibility in the detergent exchange and PDC concentration procedures. Such reproducibility is particularly important for the optimization of initial crystallization conditions, for which multiple purifications are routinely required. PMID:17988403
Mitprasat, Mashamon; Roytrakul, Sittiruk; Jiemsup, Surasak; Boonseng, Opas; Yokthongwattana, Kittisak
2011-06-01
Tuberization in cassava (Manihot esculenta Crantz) occurs simultaneously with plant development, suggesting competition of photoassimilate partitioning between the shoot and the root organs. In potato, which is the most widely studied tuber crop, there is ample evidence suggesting that metabolism and regulatory processes in leaf may have an impact on tuber formation. To search for leaf proteins putatively involved in regulating tuber generation and/or development in cassava, comparative proteomic approaches have been applied to monitor differentially expressed leaf proteins during root transition from fibrous to tuberous. Stringent cross comparison and statistical analysis between two groups with different plant ages using Student's t test with 95% significance level revealed a number of protein spots whose abundance were significantly altered (P < 0.05) during week 4 to week 8 of growth. Of these, 39 spots were successfully identified by ion trap LC-MS/MS. The proteins span various functional categories from antioxidant and defense, carbohydrate metabolism, cyanogenesis, energy metabolism, miscellaneous and unknown proteins. Results suggested possible metabolic switches in the leaf that may trigger/regulate storage root initiation and growth. This study provides a basis for further functional characterization of differentially expressed leaf proteins, which can help understand how biochemical processes in cassava leaves may be involved in storage root development.
Functional discovery via a compendium of expression profiles.
Hughes, T R; Marton, M J; Jones, A R; Roberts, C J; Stoughton, R; Armour, C D; Bennett, H A; Coffey, E; Dai, H; He, Y D; Kidd, M J; King, A M; Meyer, M R; Slade, D; Lum, P Y; Stepaniants, S B; Shoemaker, D D; Gachotte, D; Chakraburtty, K; Simon, J; Bard, M; Friend, S H
2000-07-07
Ascertaining the impact of uncharacterized perturbations on the cell is a fundamental problem in biology. Here, we describe how a single assay can be used to monitor hundreds of different cellular functions simultaneously. We constructed a reference database or "compendium" of expression profiles corresponding to 300 diverse mutations and chemical treatments in S. cerevisiae, and we show that the cellular pathways affected can be determined by pattern matching, even among very subtle profiles. The utility of this approach is validated by examining profiles caused by deletions of uncharacterized genes: we identify and experimentally confirm that eight uncharacterized open reading frames encode proteins required for sterol metabolism, cell wall function, mitochondrial respiration, or protein synthesis. We also show that the compendium can be used to characterize pharmacological perturbations by identifying a novel target of the commonly used drug dyclonine.
Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan
2016-03-10
Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a constitutive promoter). We evaluated different inducible promoters, as well as an orthologous expression system, for controlled gene expression in L. plantarum. Furthermore, here we provide proof of concept for a T7 RNA polymerase based expression system for L. plantarum. Thereby we expanded the molecular toolbox for an industrial relevant and generally regarded as safe (GRAS) strain.
Iwasaki, T; Yamaguchi-Shinozaki, K; Shinozaki, K
1995-05-20
In Arabidopsis thaliana, the induction of a dehydration-responsive gene, rd22, is mediated by abscisic acid (ABA) but the gene does not include any sequence corresponding to the consensus ABA-responsive element (ABRE), RYACGTGGYR, in its promoter region. The cis-regulatory region of the rd22 promoter was identified by monitoring the expression of beta-glucuronidase (GUS) activity in leaves of transgenic tobacco plants transformed with chimeric gene fusions constructed between 5'-deleted promoters of rd22 and the coding region of the GUS reporter gene. A 67-bp nucleotide fragment corresponding to positions -207 to -141 of the rd22 promoter conferred responsiveness to dehydration and ABA on a non-responsive promoter. The 67-bp fragment contains the sequences of the recognition sites for some transcription factors, such as MYC, MYB, and GT-1. The fact that accumulation of rd22 mRNA requires protein synthesis raises the possibility that the expression of rd22 might be regulated by one of these trans-acting protein factors whose de novo synthesis is induced by dehydration or ABA. Although the structure of the RD22 protein is very similar to that of a non-storage seed protein, USP, of Vicia faba, the expression of the GUS gene driven by the rd22 promoter in non-stressed transgenic Arabidopsis plants was found mainly in flowers and bolted stems rather than in seeds.
Zhang, Wen; Li, Shaojun; Zhao, Yunlong; Guo, Nannan; Li, Yingjie
2016-12-01
Objective To observe the expression of the neural precursor cell expressed, developmentally down-regulated 9 (NEDD9) in esophageal cancer, to investigate the impact of decreased expression of NEDD9 on invasion and migration, and to explicit the function of NEDD9 in EC109 human esophageal cancer cell line. Methods Immunohistochemical staining was used to detect the expression of NEDD9 in human esophageal cancer tissues and paracancerous normal tissues. RNA interfering (RNAi) was used to knockdown NEDD9 in EC109 cells. The interference efficiency was detected by reverse transcription PCR (RT-PCR) and Western blot analysis. Cell proliferation was determined by MTT assay and the invasion and migration abilities of EC109 cells were monitored by Transwell TM assay. The protein levels of proliferating cell nuclear antigen (PCNA), Bax and Bcl-2 were tested by Western blotting. Results The positive expression rate of NEDD9 in esophageal carcinoma tissues was significantly higher compared with that in the paracancerous tissues. After NEDD9 expression was successfully downregulated in EC109 cells by siRNA, the proliferation, invasion and migration rates in transfection group were significantly lower than those in control group; meanwhile, the expression of Bcl-2 was reduced and Bax expression was enhanced. Conclusion The protein expression level of NEDD9 is higher in esophageal carcinoma tissues than that in adjacent normal tissues. Knockdown of NEDD9 expression can restrain the proliferation, invasion and migration of EC109 cells.
Feng, Mao; Ramadan, Haitham; Han, Bin; Fang, Yu; Li, Jianke
2014-07-05
Hemolymph plays key roles in honey bee molecule transport, immune defense, and in monitoring the physiological condition. There is a lack of knowledge regarding how the proteome achieves these biological missions for both the western and eastern honey bees (Apis mellifera and Apis cerana). A time-resolved proteome was compared using two-dimensional electrophoresis-based proteomics to reveal the mechanistic differences by analysis of hemolymph proteome changes between the worker bees of two bee species during the larval to pupal stages. The brood body weight of Apis mellifera was significantly heavier than that of Apis cerana at each developmental stage. Significantly, different protein expression patterns and metabolic pathways were observed in 74 proteins (166 spots) that were differentially abundant between the two bee species. The function of hemolymph in energy storage, odor communication, and antioxidation is of equal importance for the western and eastern bees, indicated by the enhanced expression of different protein species. However, stronger expression of protein folding, cytoskeletal and developmental proteins, and more highly activated energy producing pathways in western bees suggests that the different bee species have developed unique strategies to match their specific physiology using hemolymph to deliver nutrients and in immune defense. Our disparate findings constitute a proof-of-concept of molecular details that the ecologically shaped different physiological conditions of different bee species match with the hemolymph proteome during the brood stage. This also provides a starting point for future research on the specific hemolymph proteins or pathways related to the differential phenotypes or physiology.
Butler, Nathaniel M; Hannapel, David J
2012-12-01
Polypyrimidine tract-binding (PTB) proteins are RNA-binding proteins that target specific RNAs for post-transcriptional processing by binding cytosine/uracil motifs. PTBs have established functions in a range of RNA processes including splicing, translation, stability and long-distance transport. Six PTB-like genes identified in potato have been grouped into two clades based on homology to other known plant PTBs. StPTB1 and StPTB6 are closely related to a PTB protein discovered in pumpkin, designated CmRBP50, and contain four canonical RNA-recognition motifs. CmRBP50 is expressed in phloem tissues and functions as the core protein of a phloem-mobile RNA/protein complex. Sequence from the potato genome database was used to clone the upstream sequence of these two PTB genes and analyzed to identify conserved cis-elements. The promoter of StPTB6 was enriched for regulatory elements for light and sucrose induction and defense. Upstream sequence of both PTB genes was fused to β-glucuronidase and monitored in transgenic potato lines. In whole plants, the StPTB1 promoter was most active in leaf veins and petioles, whereas StPTB6 was most active in leaf mesophyll. Both genes are active in new tubers and tuber sprouts. StPTB6 expression was induced in stems and stolon sections in response to sucrose and in leaves or petioles in response to light, heat, drought and mechanical wounding. These results show that CmRBP50-like genes of potato exhibit distinct expression patterns and respond to both developmental and environmental cues.
Ferritin contains less iron (59Fe) in cells when the protein pores are unfolded by mutation.
Hasan, Mohammad R; Tosha, Takehiko; Theil, Elizabeth C
2008-11-14
Ferric minerals in ferritins are protected from cytoplasmic reductants and Fe2+ release by the protein nanocage until iron need is signaled. Deletion of ferritin genes is lethal; two critical ferritin functions are concentrating iron and oxidant protection (consuming cytoplasmic iron and oxygen in the mineral). In solution, opening/closing (gating) of eight ferritin protein pores controls reactions between external reductant and the ferritin mineral; pore gating is altered by mutation, low heat, and physiological urea (1 mm) and monitored by CD spectroscopy, protein crystallography, and Fe2+ release rates. To study the effects of a ferritin pore gating mutation in living cells, we cloned/expressed human ferritin H and H L138P, homologous to the frog open pore model that was unexpressable in human cells. Human ferritin H L138P behaved like the open pore ferritin model in vitro as follows: (i) normal protein cage assembly and mineralization, (ii) increased iron release (t1/2) decreased 17-fold), and (iii) decreased alpha-helix (8%). Overexpression (> 4-fold), in HeLa cells, showed for ferritin H L138P equal protein expression and total cell 59Fe but increased chelatable iron, 16%, p < 0.01 (59Fe in the deferoxamine-containing medium), and decreased 59Fe in ferritin, 28%, p < 0.01, compared with wild type. The coincidence of decreased 59Fe in open pore ferritin with increased chelatable 59Fe in cells expressing the ferritin open pore mutation suggests that ferritin pore gating influences to the amount of iron (59Fe) in ferritin in vivo.
Lab-on-a-chip technologies for proteomic analysis from isolated cells
Sedgwick, H.; Caron, F.; Monaghan, P.B.; Kolch, W.; Cooper, J.M.
2008-01-01
Lab-on-a-chip systems offer a versatile environment in which low numbers of cells and molecules can be manipulated, captured, detected and analysed. We describe here a microfluidic device that allows the isolation, electroporation and lysis of single cells. A431 human epithelial carcinoma cells, expressing a green fluorescent protein-labelled actin, were trapped by dielectrophoresis within an integrated lab-on-a-chip device containing saw-tooth microelectrodes. Using these same trapping electrodes, on-chip electroporation was performed, resulting in cell lysis. Protein release was monitored by confocal fluorescence microscopy. PMID:18534931
Yang, Ning; Wang, Tai
2017-01-05
The coordination of pollen tube (PT) growth, guidance and timely growth arrest and rupture mediated by PT-pistil interaction is crucial for the PT to transport sperm cells into ovules for double fertilization. The plasma membrane (PM) represents an important interface for cell-cell interaction, and PM proteins of PTs are pioneers for mediating PT integrity and interaction with pistils. Thus, understanding the mechanisms underlying these events is important for proteomics. Using the efficient aqueous polymer two-phase system and alkali buffer treatment, we prepared high-purity PM from mature and germinated pollen of rice. We used iTRAQ quantitative proteomic methods and identified 1,121 PM-related proteins (PMrPs) (matched to 899 loci); 192 showed differential expression in the two pollen cell types, 119 increased and 73 decreased in abundance during germination. The PMrP and differentially expressed PMrP sets all showed a functional skew toward signal transduction, transporters, wall remodeling/metabolism and membrane trafficking. Their genomic loci had strong chromosome bias. We found 37 receptor-like kinases (RLKs) from 8 kinase subfamilies and 209 transporters involved in flux of diversified ions and metabolites. In combination with the rice pollen transcriptome data, we revealed that in general, the protein expression of these PMrPs disagreed with their mRNA expression, with inconsistent mRNA expression for 74% of differentially expressed PMrPs. This study identified genome-wide pollen PMrPs, and provided insights into the membrane profile of receptor-like kinases and transporters important for pollen tube growth and interaction with pistils. These pollen PMrPs and their mRNAs showed discordant expression. This work provides resource and knowledge to further dissect mechanisms by which pollen or the PT controls PMrP abundance and monitors interactions and ion and metabolite exchanges with female cells in rice.
1992-01-01
To elucidate the structural basis for membrane attachment of the alpha subunit of the stimulatory G protein (Gs alpha), mutant Gs alpha cDNAs with deletions of amino acid residues in the amino and/or carboxy termini were transiently expressed in COS-7 cells. The particulate and soluble fractions prepared from these cells were analyzed by immunoblot using peptide specific antibodies to monitor distribution of the expressed proteins. Transfection of mutant forms of Gs alpha with either 26 amino terminal residues deleted (delta 3-28) or with 59 amino terminal residues deleted (delta 1-59) resulted in immunoreactive proteins which localized primarily to the particulate fraction. Similarly, mutants with 10 (delta 385-394), 32 (delta 353-384), or 42 (delta 353-394) amino acid residues deleted from the carboxy terminus also localized to the particulate fraction, as did a mutant form of Gs alpha lacking amino acid residues at both the amino and carboxy termini (delta 3-28)/(delta 353-384). Mutant and wild type forms of Gs alpha demonstrated a similar degree of tightness in their binding to membranes as demonstrated by treatment with 2.5 M NaCl or 6 M urea, but some mutant forms were relatively resistant compared with wild type Gs alpha to solubilization by 15 mM NaOH or 1% sodium cholate. We conclude that: (a) deletion of significant portions of the amino and/or carboxyl terminus of Gs alpha is still compatible with protein expression; (b) deletion of these regions is insufficient to cause cytosolic localization of the expressed protein. The basis of Gs alpha membrane targeting remains to be elucidated. PMID:1400589
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gough, Mallory, E-mail: m.gough1@lancaster.ac.uk; Blanthorn-Hazell, Sophee, E-mail: s.blanthorn-hazell@lancaster.ac.uk; Delury, Craig, E-mail: c.delury@lancaster.ac.uk
Highlights: • Copper levels are elevated in the tumour microenvironment. • APP mitigates copper-induced growth inhibition of DU145 prostate cancer (PCa) cells. • The APP intracellular domain is a prerequisite; soluble forms have no effect. • The E1 CuBD of APP is also a prerequisite. • APP copper binding potentially mitigates copper-induced PCa cell growth inhibition. - Abstract: Copper plays an important role in the aetiology and growth of tumours and levels of the metal are increased in the serum and tumour tissue of patients affected by a range of cancers including prostate cancer (PCa). The molecular mechanisms that enablemore » cancer cells to proliferate in the presence of elevated copper levels are, therefore, of key importance in our understanding of tumour growth progression. In the current study, we have examined the role played by the amyloid precursor protein (APP) in mitigating copper-induced growth inhibition of the PCa cell line, DU145. A range of APP molecular constructs were stably over-expressed in DU145 cells and their effects on cell proliferation in the presence of copper were monitored. Our results show that endogenous APP expression was induced by sub-toxic copper concentrations in DU145 cells and over-expression of the wild-type protein was able to mitigate copper-induced growth inhibition via a mechanism involving the cytosolic and E1 copper binding domains of the full-length protein. APP likely represents one of a range of copper binding proteins that PCa cells employ in order to ensure efficient proliferation despite elevated concentrations of the metal within the tumour microenvironment. Targeting the expression of such proteins may contribute to therapeutic strategies for the treatment of cancers.« less
Lu, Zexun; Tombolini, Riccardo; Woo, Sheridan; Zeilinger, Susanne; Lorito, Matteo; Jansson, Janet K.
2004-01-01
Plant tissue colonization by Trichoderma atroviride plays a critical role in the reduction of diseases caused by phytopathogenic fungi, but this process has not been thoroughly studied in situ. We monitored in situ interactions between gfp-tagged biocontrol strains of T. atroviride and soilborne plant pathogens that were grown in cocultures and on cucumber seeds by confocal scanning laser microscopy and fluorescence stereomicroscopy. Spores of T. atroviride adhered to Pythium ultimum mycelia in coculture experiments. In mycoparasitic interactions of T. atroviride with P. ultimum or Rhizoctonia solani, the mycoparasitic hyphae grew alongside the pathogen mycelia, and this was followed by coiling and formation of specialized structures similar to hooks, appressoria, and papillae. The morphological changes observed depended on the pathogen tested. Branching of T. atroviride mycelium appeared to be an active response to the presence of the pathogenic host. Mycoparasitism of P. ultimum by T. atroviride occurred on cucumber seed surfaces while the seeds were germinating. The interaction of these fungi on the cucumber seeds was similar to the interaction observed in coculture experiments. Green fluorescent protein expression under the control of host-inducible promoters was also studied. The induction of specific Trichoderma genes was monitored visually in cocultures, on plant surfaces, and in soil in the presence of colloidal chitin or Rhizoctonia by confocal microscopy and fluorescence stereomicroscopy. These tools allowed initiation of the mycoparasitic gene expression cascade to be monitored in vivo. PMID:15128569
Imaging of Brain Slices with a Genetically Encoded Voltage Indicator.
Quicke, Peter; Barnes, Samuel J; Knöpfel, Thomas
2017-01-01
Functional fluorescence microscopy of brain slices using voltage sensitive fluorescent proteins (VSFPs) allows large scale electrophysiological monitoring of neuronal excitation and inhibition. We describe the equipment and techniques needed to successfully record functional responses optical voltage signals from cells expressing a voltage indicator such as VSFP Butterfly 1.2. We also discuss the advantages of voltage imaging and the challenges it presents.
Rapacz-Leonard, A; Kankofer, M; Leonard, M; Wawrzykowski, J; Dąbrowska, M; Raś, A; Paździor-Czapula, K; Janowski, T
2015-10-01
In mammals, placenta separation at term may involve degradation of the extracellular matrix by matrix metalloproteinases (MMPs). The activity of MMPs is modulated by TIMPs. We hypothesized that the placentas of mares that deliver fetal membranes physiologically and those that retain fetal membranes (FMR) differ in terms of histology; mRNA expression of MMP-2 and MMP-9; protein expression of MMP-2, MMP-9, and TIMP-2; and the potential activity of both MMPs. Placenta biopsies were taken from mares (n = 9; 4 FMR, 5 controls) immediately after foal expulsion. Retention was defined as failure to expel all fetal membranes within 3 h of expulsion. All mares were monitored for time of expulsion. The degree of allantochorial/endometrial adhesion was determined in FMR mares, and biopsies from all mares were histologically examined. mRNA expression, protein immunolocalization, protein amount and potential enzyme activity were determined with RT-PCR, immunohistochemistry, Western Blotting and zymography, respectively. FMR mares had strong to extremely strong allantochorial/endometrial adhesion, and significantly more connective tissue in the allantochorial villi than controls. The range of MMP-2 mRNA expression levels was more than 13 times greater in FMR mares than in controls. Protein content of both MMPs and TIMP-2 differed significantly between groups. The range of potential MMP-2 and MMP-9 activity was larger in FMR mares, and MMP-2 potential activity was 1.4 times higher in controls (P = 0.02). These results indicate differences in extracellular matrix remodeling in FMR mares and controls, and suggest dysregulation of MMP expression and activation in FMR mares. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wang, Kehua; Zhang, Xunzhong; Goatley, Mike; Ervin, Erik
2014-01-01
Heat stress is a primary factor causing summer bentgrass decline. Changes in gene expression at the transcriptional and/or translational level are thought to be a fundamental mechanism in plant response to environmental stresses. Heat stress redirects protein synthesis in higher plants and results in stress protein synthesis, particularly heat shock proteins (HSPs). The goal of this work was to analyze the expression pattern of major HSPs in creeping bentgrass (Agrostis stolonifera L.) during different heat stress periods and to study the influence of nitrogen (N) on the HSP expression patterns. A growth chamber study on 'Penn-A4' creeping bentgrass subjected to 38/28°C day/night for 50 days, was conducted with four nitrate rates (no N-0, low N-2.5, medium N-7.5, and high N-12.5 kg N ha-1) applied biweekly. Visual turfgrass quality (TQ), normalized difference vegetation index (NDVI), photochemical efficiency of photosystem II (Fv/Fm), shoot electrolyte leakage (ShEL), and root viability (RV) were monitored, along with the expression pattern of HSPs. There was no difference in measured parameters between treatments until week seven, except TQ at week five. At week seven, grass at medium N had better TQ, NDVI, and Fv/Fm accompanied by lower ShEL and higher RV, suggesting a major role in improved heat tolerance. All the investigated HSPs (HSP101, HSP90, HSP70, and sHSPs) were up-regulated by heat stress. Their expression patterns indicated cooperation between different HSPs and their roles in bentgrass thermotolerance. In addition, their production seems to be resource dependent. This study could further improve our understanding about how different N levels affect bentgrass thermotolerance.
Drzewiecka, Hanna; Gałęcki, Bartłomiej; Jarmołowska-Jurczyszyn, Donata; Kluk, Andrzej; Dyszkiewicz, Wojciech; Jagodziński, Paweł P
2016-09-01
Recent studies indicated undisputed contribution of connective tissue growth factor (CTGF) in the development of many cancers, including non-small cell lung cancer (NSCLC). However, the functional role and regulation of CTGF expression during tumorigenesis remain elusive. Our goal was to determine CTGF transcript and protein levels in tumoral and matched control tissues from 98 NSCLC patients, to correlate the results with clinicopathological features and to investigate whether the CTGF expression can be epigenetically regulated in NSCLC. We used quantitative PCR, Western blotting and immunohistochemistry to evaluate CTGF expression in lung cancerous and histopathologically unchanged tissues. We tested the impact of 5-Aza-2'-deoxycytidine (5-dAzaC) and trichostatin A (TSA) on CTGF transcript and protein levels in NSCLC cells (A549, Calu-1). DNA methylation status of the CTGF regulatory region was evaluated by bisulfite sequencing. The influence of 5-dAzaC and TSA on NSCLC cells viability and proliferation was monitored by the trypan blue assay. We found significantly decreased levels of CTGF mRNA and protein (both p < 0.0000001) in cancerous tissues of NSCLC patients. Down-regulation of CTGF occurred regardless of gender in all histological subtypes of NSCLC. Moreover, we showed that 5-dAzaC and TSA were able to restore CTGF mRNA and protein contents in NSCLC cells. However, no methylation within CTGF regulatory region was detected. Both compounds significantly reduced NSCLC cells proliferation. Decreased expression of CTGF is a common feature in NSCLC; however, it can be restored by the chromatin-modifying agents such as 5-dAzaC or TSA and consequently restrain cancer development.
Lin, Juqiang; Xu, Han; Wu, Yangzhe; Tang, Mingjie; McEwen, Gerald D; Liu, Pin; Hansen, Dane R; Gilbertson, Timothy A; Zhou, Anhong
2013-02-05
G-protein-coupled receptor 120 (GPR120) is a previously orphaned G-protein-coupled receptor that apparently functions as a sensor for dietary fat in the gustatory and digestive systems. In this study, a cDNA sequence encoding a doxycycline (Dox)-inducible mature peptide of GPR120 was inserted into an expression vector and transfected in HEK293 cells. We measured Raman spectra of single HEK293 cells as well as GPR120-expressing HEK293-GPR120 cells at a 48 h period following the additions of Dox at several concentrations. We found that the spectral intensity of HEK293-GPR120 cells is dependent upon the dose of Dox, which correlates with the accumulation of GPR120 protein in the cells. However, the amount of the fatty acid activated changes in intracellular calcium (Ca(2+)) as measured by ratiometric calcium imaging was not correlated with Dox concentration. Principal components analysis (PCA) of Raman spectra reveals that the spectra from different treatments of HEK293-GPR120 cells form distinct, completely separated clusters with the receiver operating characteristic (ROC) area of 1, while those spectra for the HEK293 cells form small overlap clusters with the ROC area of 0.836. It was also found that expression of GPR120 altered the physiochemical and biomechanical properties of the parental cell membrane surface, which was quantitated by atomic force microscopy (AFM). These findings demonstrate that the combination of Raman spectroscopy, calcium imaging, and AFM may provide new tools in noninvasive and quantitative monitoring of membrane receptor expression induced alterations in the biophysical and signaling properties of single living cells.
van den Born, Erwin; Posthuma, Clara C; Knoops, Kèvin; Snijder, Eric J
2007-04-01
Thus far, systems developed for heterologous gene expression from the genomes of nidoviruses (arteriviruses and coronaviruses) have relied mainly on the translation of foreign genes from subgenomic mRNAs, whose synthesis is a key feature of the nidovirus life cycle. In general, such expression vectors often suffered from relatively low and unpredictable expression levels, as well as genome instability. In an attempt to circumvent these disadvantages, the possibility to express a foreign gene [encoding enhanced green fluorescent protein (eGFP)] from within the nidovirus replicase gene, which encodes two large polyproteins that are processed proteolytically into the non-structural proteins (nsps) required for viral RNA synthesis, has now been explored. A viable recombinant of the arterivirus Equine arteritis virus, EAV-GFP2, was obtained, which contained the eGFP insert at the site specifying the junction between the two most N-proximal replicase-cleavage products, nsp1 and nsp2. EAV-GFP2 replication could be launched by transfection of cells with either in vitro-generated RNA transcripts or a DNA launch plasmid. EAV-GFP2 displayed growth characteristics similar to those of the wild-type virus and was found to maintain the insert stably for at least eight passages. It is proposed that EAV-GFP2 has potential for arterivirus vector development and as a tool in inhibitor screening. It can also be used for fundamental studies into EAV replication, which was illustrated by the fact that the eGFP signal of EAV-GFP2, which largely originated from an eGFP-nsp2 fusion protein, could be used to monitor the formation of the membrane-bound EAV replication complex in real time.
Development of Next Generation Synthetic Biology Tools for Use in Streptomyces venezuelae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelan, Ryan M.; Sachs, Daniel; Petkiewicz, Shayne J.
Streptomyces have a rich history as producers of important natural products and this genus of bacteria has recently garnered attention for its potential applications in the broader context of synthetic biology. However, the dearth of genetic tools available to control and monitor protein production precludes rapid and predictable metabolic engineering that is possible in hosts such as Escherichia coli or Saccharomyces cerevisiae. In an effort to improve genetic tools for Streptomyces venezuelae, we developed a suite of standardized, orthogonal integration vectors and an improved method to monitor protein production in this host. These tools were applied to characterize heterologous promotersmore » and various attB chromosomal integration sites. A final study leveraged the characterized toolset to demonstrate its use in producing the biofuel precursor bisabolene using a chromosomally integrated expression system. In conclusion, these tools advance S. venezuelae to be a practical host for future metabolic engineering efforts.« less
NASA Astrophysics Data System (ADS)
Chen, Tongsheng; Xing, Da
2005-01-01
Activation of caspase-3 is a central event in apoptosis. A fluorescence techniques, fluorescence resonance energy transfer (FRET), was used to study the dynamic of caspase-3 activation during apoptosis induced by tumor necrosis factor TNF-α in living cells. The FRET probe consists a CFP (cyan fluorescent protein) and a Venus (YFP mutant, yellow fluorescent protein) with a specialized linker containing the caspase-3 cleavage sequence: DEVD (Luo et al., 2001). Human lung adenocarcinoma cell line (ASTC-a-1) were stably expressed with the FRET probe and then were treated by TNF-α, respectively. Experimental results showed that FRET could monitor more insensitively the dynamic of caspase-3 activation in real-time in vivo, and this technique will be highly useful for correlating the caspase-3 activation with other apoptotic events and for rapid-screening of potential drugs that may target the apoptotic process.
Kontostathi, Georgia; Zoidakis, Jerome; Makridakis, Manousos; Lygirou, Vasiliki; Mermelekas, George; Papadopoulos, Theofilos; Vougas, Konstantinos; Vlamis-Gardikas, Alexios; Drakakis, Peter; Loutradis, Dimitrios; Vlahou, Antonia; Anagnou, Nicholas P; Pappa, Kalliopi I
2017-01-01
Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV-), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis.
Orsatti, Laura; Forte, Eleonora; Tomei, Licia; Caterino, Marianna; Pessi, Antonello; Talamo, Fabio
2009-07-01
The protein tyrosine phosphatase PRL-3 is an appealing therapeutic cancer target for its well described involvement in the metastasis progression. Nevertheless, very little is known about PRL-3 role in tumorigenesis. In the attempt to identify the protein target of this phosphatase we have devised a model system based on the use of highly invasive HCT116 colon cancer cells over-expressing PRL-3. We used 2-D difference gel electrophoresis combined with the fluorescence staining Pro-Q Diamond selective for phosphorylated proteins to monitor changes in the phosphorylation status of possible substrates. Proteins whose phosphorylation level was negatively affected by PRL-3 over-expression were identified by MS. Two proteins were found to be significantly dephosphorylated in this condition, the cytoskeletal protein ezrin and elongation factor 2. Ezrin has already been described as having a proactive role in cancer metastasis through control of its phosphorylation status, and the PRL-3-induced modulation of ezrin phosphorylation in HCT116 and human umblical vascular endothelial cells is the subject of a separate paper by Forte et al. [Biochim. Biophys. Acta 2008, 1783, 334-344]. The combination of 2-D difference in gel electrophoresis and Pro-Q Diamond was hence confirmed successful in analyzing changes of protein phosphorylation which enable the identification of kinase/phosphatase targets.
Singh, Kapil Dev; Roschitzki, Bernd; Snoek, L. Basten; Grossmann, Jonas; Zheng, Xue; Elvin, Mark; Kamkina, Polina; Schrimpf, Sabine P.; Poulin, Gino B.; Kammenga, Jan E.; Hengartner, Michael O.
2016-01-01
Complex traits, including common disease-related traits, are affected by many different genes that function in multiple pathways and networks. The apoptosis, MAPK, Notch, and Wnt signalling pathways play important roles in development and disease progression. At the moment we have a poor understanding of how allelic variation affects gene expression in these pathways at the level of translation. Here we report the effect of natural genetic variation on transcript and protein abundance involved in developmental signalling pathways in Caenorhabditis elegans. We used selected reaction monitoring to analyse proteins from the abovementioned four pathways in a set of recombinant inbred lines (RILs) generated from the wild-type strains N2 (Bristol) and CB4856 (Hawaii) to enable quantitative trait locus (QTL) mapping. About half of the cases from the 44 genes tested showed a statistically significant change in protein abundance between various strains, most of these were however very weak (below 1.3-fold change). We detected a distant QTL on the left arm of chromosome II that affected protein abundance of the phosphatidylserine receptor protein PSR-1, and two separate QTLs that influenced embryonic and ionizing radiation-induced apoptosis on chromosome IV. Our results demonstrate that natural variation in C. elegans is sufficient to cause significant changes in signalling pathways both at the gene expression (transcript and protein abundance) and phenotypic levels. PMID:26985669
Stope, Matthias B; Peters, Stefanie; Großebrummel, Hannah; Zimmermann, Uwe; Walther, Reinhard; Burchardt, Martin
2015-03-01
Androgen receptor (AR) networks are predominantly involved in prostate cancer (PCa) progression; consequently, factors of AR regulation represent promising targets for PCa therapy. The ErbB3-binding protein 1 (Ebp1) is linked to AR suppression and chemoresistance by so far unknown mechanisms. In this study, an assumed regulation of Ebp1 by the newly identified AR controlling signaling axis heat-shock protein 27 (HSP27)-microRNA-1 (miR-1) was examined. Transfection experiments were carried out overexpressing and knockdown HSP27 and miR-1, respectively, in LNCaP and PC-3 cells. Afterward, HSP27- and miR-1-triggered Ebp1 protein expression was monitored by Western blotting. AR-positive LNCaP cells and AR-negative PC-3 cells possessed diverse basal expression levels of Ebp1. However, subsequent studies revealed no differences in cellular Ebp1 concentrations after modulation of HSP27 and miR-1. Furthermore, docetaxel incubation experiments exhibited no effects on Ebp1 protein synthesis. In PCa, Ebp1 has been described as a regulator of AR functionality and as an effector of PCa therapy resistance. Our data suggest that Ebp1 functionality is independent from heat-shock-protein-regulated progression networks in PCa.
Zoidakis, Jerome; Makridakis, Manousos; Lygirou, Vasiliki; Mermelekas, George; Vougas, Konstantinos; Drakakis, Peter
2017-01-01
Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV−), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis. PMID:28261610
Chen, Jigang; Guo, Yanhong; Zeng, Wei; Huang, Li; Pang, Qi; Nie, Ling; Mu, Jiao; Yuan, Fahuan; Feng, Bing
2014-04-15
Epigenetics plays a key role in the pathogenesis of diabetic nephropathy (DN), although the precise regulatory mechanism is still unclear. Here, we examined the role of endoplasmic reticulum (ER) stress in histone H3 lysine 4 (H3K4) methyltransferase SET7/9-induced monocyte chemoattractant protein-1 (MCP-1) expression in the kidneys of db/db mice. Our results indicate that the expression of MCP-1 significantly increased in the kidneys of db/db mice in a time-dependent manner. An increased chromatin mark associated with an active gene (H3K4me1) at MCP-1 promoters accompanied this change in expression. The expression of SET7/9 and the recruitment to these promoters were also elevated. SET7/9 gene silencing with small interfering (si) RNAs significantly attenuated the expression of H3K4me1 and MCP-1. Furthermore, expression of signaling regulator glucose-regulated protein 78 (GRP78), a monitor of ER stress, significantly increased in the kidneys of db/db mice. The expression of spliced X-box binding protein 1 (XBP1s), an ER stress-inducible transcription factor, and recruitment to the SET7/9 promoters were also increased. XBP1s gene silencing with siRNAs significantly attenuated the expression of SET7/9, H3K4me1, and MCP-1. The chaperone betaine not only effectively downregulated the GRP78 and XBP1s expression levels but also markedly decreased the SET7/9, H3K4me1, and MCP-1 levels. Luciferase reporter assay demonstrated that XBP1s participated in ER stress-induced SET7/9 transcription, Taken together, these results reveal that ER stress can trigger the expression of MCP-1, in part through the XBP1s-mediated induction of SET7/9.
Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B.; Lattemann, Claus T.
2003-01-01
To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp6074-86), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp6074-86 was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp6074-86-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-γ secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains. PMID:12654812
Kramer, Uwe; Rizos, Konstantin; Apfel, Heiko; Autenrieth, Ingo B; Lattemann, Claus T
2003-04-01
To optimize antigen delivery by Salmonella vaccine strains, a system for surface display of antigenic determinants was established by using the autotransporter secretion pathway of gram-negative bacteria. A modular system for surface display allowed effective targeting of heterologous antigens or fragments thereof to the bacterial surface by the autotransporter domain of AIDA-I, the Escherichia coli adhesin involved in diffuse adherence. A major histocompatibility complex class II-restricted epitope, comprising amino acids 74 to 86 of the Yersinia enterocolitica heat shock protein Hsp60 (Hsp60(74-86)), was fused to the AIDA-I autotransporter domain, and the resulting fusion protein was expressed at high levels on the cell surface of E. coli and Salmonella enterica serovar Typhimurium. Colonization studies in mice vaccinated with Salmonella strains expressing AIDA-I fusion proteins demonstrated high genetic stability of the generated vaccine strain in vivo. Furthermore, a pronounced T-cell response against Yersinia Hsp60(74-86) was induced in mice vaccinated with a Salmonella vaccine strain expressing the Hsp60(74-86)-AIDA-I fusion protein. This was shown by monitoring Yersinia Hsp60-stimulated IFN-gamma secretion and proliferation of splenic T cells isolated from vaccinated mice. These results demonstrate that the surface display of antigenic determinants by the autotransporter pathway deserves special attention regarding the application in live attenuated Salmonella vaccine strains.
Kaur, Prabhjit; Rizk, Nasser M; Ibrahim, Sereen; Younes, Noura; Uppal, Arushi; Dennis, Kevin; Karve, Tejaswita; Blakeslee, Kenneth; Kwagyan, John; Zirie, Mahmoud; Ressom, Habtom W; Cheema, Amrita K
2012-11-02
The pathogenesis of Type 2 diabetes mellitus (T2DM) is complex owing to molecular heterogeneity in the afflicted population. Current diagnostic methods rely on blood glucose measurements, which are noninformative with respect to progression of the disease to other associated pathologies. Thus, predicting the risk and development of T2DM-related complications, such as cardiovascular disease, remains a major challenge. We have used a combination of quantitative methods for characterization of circulating serum biomarkers of T2DM using a cohort of nondiabetic control subjects (n = 76) and patients diagnosed with T2DM (n = 106). In this case-control study, the samples were randomly divided as training and validation data sets. In the first step, iTRAQ (isobaric tagging for relative and absolute quantification) based protein expression profiling was performed for identification of proteins displaying a significant differential expression in the two study groups. Five of these protein markers were selected for validation using multiple reaction-monitoring mass spectrometry (MRM-MS) and further confirmed with Western blot and QPCR analysis. Functional pathway analysis identified perturbations in lipid and small molecule metabolism as well as pathways that lead to disruption of glucose homeostasis and blood coagulation. These putative biomarkers may be clinically useful for subset stratification of T2DM patients as well as for the development of novel therapeutics targeting the specific pathology.
Oncogenic KRAS and BRAF Drive Metabolic Reprogramming in Colorectal Cancer *
Hutton, Josiah E.; Wang, Xiaojing; Zimmerman, Lisa J.; Slebos, Robbert J. C.; Trenary, Irina A.; Young, Jamey D.; Li, Ming; Liebler, Daniel C.
2016-01-01
Metabolic reprogramming, in which altered utilization of glucose and glutamine supports rapid growth, is a hallmark of most cancers. Mutations in the oncogenes KRAS and BRAF drive metabolic reprogramming through enhanced glucose uptake, but the broader impact of these mutations on pathways of carbon metabolism is unknown. Global shotgun proteomic analysis of isogenic DLD-1 and RKO colon cancer cell lines expressing mutant and wild type KRAS or BRAF, respectively, failed to identify significant differences (at least 2-fold) in metabolic protein abundance. However, a multiplexed parallel reaction monitoring (PRM) strategy targeting 73 metabolic proteins identified significant protein abundance increases of 1.25–twofold in glycolysis, the nonoxidative pentose phosphate pathway, glutamine metabolism, and the phosphoserine biosynthetic pathway in cells with KRAS G13D mutations or BRAF V600E mutations. These alterations corresponded to mutant KRAS and BRAF-dependent increases in glucose uptake and lactate production. Metabolic reprogramming and glucose conversion to lactate in RKO cells were proportional to levels of BRAF V600E protein. In DLD-1 cells, these effects were independent of the ratio of KRAS G13D to KRAS wild type protein. A study of 8 KRAS wild type and 8 KRAS mutant human colon tumors confirmed the association of increased expression of glycolytic and glutamine metabolic proteins with KRAS mutant status. Metabolic reprogramming is driven largely by modest (<2-fold) alterations in protein expression, which are not readily detected by the global profiling methods most commonly employed in proteomic studies. The results indicate the superiority of more precise, multiplexed, pathway-targeted analyses to study functional proteome systems. Data are available through MassIVE Accession MSV000079486 at ftp://MSV000079486@massive.ucsd.edu. PMID:27340238
Fluorescence diffuse tomography for tumor detection and monitoring
NASA Astrophysics Data System (ADS)
Balalaeva, Irina V.; Orlova, Anna G.; Shirmanova, Marina V.; Kibraeva, Elena A.; Zagainova, Elena V.; Turchin, Ilya V.
2007-05-01
Strong light scattering and absorption limit visualization of the internal structure of biological tissue. Only special tools for turbid media imaging, such as optical diffuse tomography, enable noninvasive investigation of the internal biological tissues, including visualization and intravital monitoring of deep tumors. In this work the preliminary results of fluorescence diffuse tomography (FDT) of small animals are presented. Using of exogenous fluorophores, targeted specifically at tumor cells, and fluorescent proteins expressed endogenously can significantly increase the contrast of obtained images. Fluorescent compounds of different nature, such as sulphonated aluminium phthalocyanine (Photosens), red fluorescing proteins and CdTe/CdSe-core/shell nanocrystals (quantum dots) were applied. The animal was scanned in the transilluminative configuration by low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the wavelength of 532 nm or semiconductor laser at the wavelength of 655 nm. Photosens was injected intravenously into linear mice with metastazing Lewis lung carcinoma in dose 4 mg/kg. Quantum dots (5x10 -11 M) or protein DsRed2 (1-5x10 -6 M) in glass capsules (inner diameter 2-3 mm) were placed inside the esophagus of 7-day-old hairless rats (18-20 g) to simulate marked tumors. Cells of HEK-293 Phoenix line, transitory transfected with Turbo-RFP protein gene, were injected hypodermically to immunodeficient mice. This work demonstrates potential capabilities of FDT method for detection and monitoring of deep fluorescent-labeled tumors in animal models. Strong advantages of fluorescent proteins and quantum dots over the traditional photosensitizer for FDT imaging are shown.
Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako
2014-01-01
Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps. PMID:25101946
Tsuji, Saori; Kawamura, Fumihiko; Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako
2014-01-01
Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.
Molecular imaging of photodynamic therapy
NASA Astrophysics Data System (ADS)
Chang, Sung K.; Errabelli, Divya; Rizvi, Imran; Solban, Nicolas; O'Riordan, Katherine; Hasan, Tayyaba
2006-02-01
Recent advances in light sources, detectors and other optical imaging technologies coupled with the development of novel optical contrast agents have enabled real-time, high resolution, in vivo monitoring of molecular targets. Noninvasive monitoring of molecular targets is particularly relevant to photodynamic therapy (PDT), including the delivery of photosensitizer in the treatment site and monitoring of molecular and physiological changes following treatment. Our lab has developed optical imaging technologies to investigate these various aspects of photodynamic therapy (PDT). We used a laser scanning confocal microscope to monitor the pharmacokinetics of various photosensitizers in in vitro as well as ex vivo samples, and developed an intravital fluorescence microscope to monitor photosensitizer delivery in vivo in small animals. A molecular specific contrast agent that targets the vascular endothelial growth factor (VEGF) was developed to monitor the changes in the protein expression following PDT. We were then able to study the physiological changes due to post-treatment VEGF upregulation by quantifying vascular permeability with in vivo imaging.
NASA Astrophysics Data System (ADS)
Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas
2016-02-01
Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time scale as the diffusion of the labeled complexes through the detection volume (1- 100 ms). Since the origin of this quenching process is currently unclear, care has to be taken when the Dreiklang label is intended to be used in FCS applications.
NASA Astrophysics Data System (ADS)
Junghans, Cornelia; Schmitt, Franz-Josef; Vukojević, Vladana; Friedrich, Thomas
2015-12-01
Measurement of lateral mobility of membraneembedded proteins in living cells with high spatial and temporal precision is a challenging task of optofluidics. Biological membranes are complex structures, whose physico-chemical properties depend on the local lipid composition, cholesterol content and the presence of integral or peripheral membrane proteins, which may be involved in supramolecular complexes or are linked to cellular matrix proteins or the cytoskeleton. The high proteinto- lipid ratios in biomembranes indicate that membrane proteins are particularly subject to molecular crowding, making it difficult to follow the track of individual molecules carrying a fluorescence label. Novel switchable fluorescence proteins such as Dreiklang [1], are, in principle, promising tools to study the diffusion behavior of individual molecules in situations of molecular crowding due to excellent spectral control of the ON- and OFF-switching process. In this work, we expressed an integral membrane transport protein, the Na,K-ATPase comprising the human α2-subunit carrying an N-terminal eGFP or Dreiklang tag and human β1-subunit, in HEK293T cells and measured autocorrelation curves by fluorescence correlation spectroscopy (FCS). Furthermore,we measured diffusion times and diffusion constants of eGFP and Dreiklang by FCS, first, in aqueous solution after purification of the proteins upon expression in E. coli, and, second, upon expression as soluble proteins in the cytoplasm of HEK293T cells. Our data show that the diffusion behavior of the purified eGFP and Dreiklang in solution as well as the properties of the proteins expressed in the cytoplasm are very similar. However, the autocorrelation curves of eGFP- and Dreiklanglabeled Na,K-ATPase measured in the plasma membrane exhibit marked differences, with the Dreiklang-labeled construct showing shorter diffusion times. This may be related to an additional, as yet unrecognized quenching process that occurs on the same time scale as the diffusion of the labeled complexes through the detection volume (1- 100 ms). Since the origin of this quenching process is currently unclear, care has to be taken when the Dreiklang label is intended to be used in FCS applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Kenji; Fuma, Kazuya; Tabata, Kaori
Magnetic resonance imaging (MRI) is a minimally invasive way to provide high spatial resolution tomograms. However, MRI has been considered to be useless for gene expression imaging compared to optical imaging. In this study, we used a ferritin reporter, binding with biogenic iron, to make it a powerful tool for gene expression imaging in MRI studies. GL261 mouse glioma cells were over-expressed with dual-reporter ferritin-DsRed under {beta}-actin promoter, then gene expression was observed by optical imaging and MRI in a brain tumor model. GL261 cells expressing ferritin-DsRed fusion protein showed enhanced visualizing effect by reducing T2-weighted signal intensity for inmore » vitro and in vivo MRI studies, as well as DsRed fluorescence for optical imaging. Furthermore, a higher contrast was achieved on T2-weighted images when permeating the plasma membrane of ferritin-DsRed-expressing GL261. Thus, a ferritin expression vector can be used as an MRI reporter to monitor in vivo gene expression.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bajenova, Olga, E-mail: o.bazhenova@spbu.ru; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg 199034; Department of Surgery and Biomedical Sciences, Creighton University, Omaha, NE 68178
2014-06-10
Oncomarkers play important roles in the detection and management of human malignancies. Carcinoembryonic antigen (CEA, CEACAM5) and epithelial cadherin (E-cadherin) are considered as independent tumor markers in monitoring metastatic colorectal cancer. They are both expressed by cancer cells and can be detected in the blood serum. We investigated the effect of CEA production by MIP101 colorectal carcinoma cell lines on E-cadherin adherens junction (AJ) protein complexes. No direct interaction between E-cadherin and CEA was detected; however, the functional relationships between E-cadherin and its AJ partners: α-, β- and p120 catenins were impaired. We discovered a novel interaction between CEA andmore » beta-catenin protein in the CEA producing cells. It is shown in the current study that CEA overexpression alters the splicing of p120 catenin and triggers the release of soluble E-cadherin. The influence of CEA production by colorectal cancer cells on the function of E-cadherin junction complexes may explain the link between the elevated levels of CEA and the increase in soluble E-cadherin during the progression of colorectal cancer. - Highlights: • Elevated level of CEA increases the release of soluble E-cadherin during the progression of colorectal cancer. • CEA over-expression alters the binding preferences between E-cadherin and its partners: α-, β- and p120 catenins in adherens junction complexes. • CEA produced by colorectal cancer cells interacts with beta-catenin protein. • CEA over-expression triggers the increase in nuclear beta-catenin. • CEA over-expression alters the splicing of p120 catenin protein.« less
Tadini, Luca; Romani, Isidora; Pribil, Mathias; Jahns, Peter; Leister, Dario; Pesaresi, Paolo
2012-01-01
Perturbations in organellar gene expression (OGE) and the thylakoid redox state (TRS) activate retrograde signaling pathways that adaptively modify nuclear gene expression (NGE), according to developmental and metabolic needs. The prors1-1 mutation in Arabidopsis down-regulates the expression of the nuclear gene Prolyl-tRNA Synthetase1 (PRORS1) which acts in both plastids and mitochondria, thereby impairing protein synthesis in both organelles and triggering OGE-dependent retrograde signaling. Because the mutation also affects thylakoid electron transport, TRS-dependent signals may likewise have an impact on the changes in NGE observed in this genotype. In this study, we have investigated whether signals related to TRS are actually integrated into the OGE-dependent retrograde signaling pathway. To this end, the chaos mutation (for chlorophyll a/b binding protein harvesting-organelle specific), which shows a partial loss of PSII antennae proteins and thus a reduction in PSII light absorption capability, was introduced into the prors1-1 mutant background. The resulting double mutant displayed a prors1-1-like reduction in plastid translation rate and a chaos-like decrease in PSII antenna size, whereas the hyper-reduction of the thylakoid electron transport chain, caused by the prors1-1 mutation, was alleviated, as determined by monitoring chlorophyll (Chl) fluorescence and thylakoid phosphorylation. Interestingly, a substantial fraction of the nucleus-encoded photosynthesis genes down-regulated in the prors1-1 mutant are expressed at nearly wild-type rates in prors1-1 chaos leaves, and this recovery is reflected in the steady-state levels of their protein products in the chloroplast. We therefore conclude that signals related to photosynthetic electron transport and TRS, and indirectly to carbohydrate metabolism and energy balance, are indeed fed into the OGE-dependent retrograde pathway to modulate NGE and adjust the abundance of chloroplast proteins. PMID:23293642
Schvartz, Domitille; Couté, Yohann; Brunner, Yannick; Wollheim, Claes B; Sanchez, Jean-Charles
2012-08-01
Insulin secretory granules are β-cell vesicles dedicated to insulin processing, storage, and release. The secretion of insulin secretory granule content in response to an acute increase of glucose concentration is a highly regulated process allowing normal glycemic homeostasis. Type 2 diabetes is a metabolic disease characterized by chronic hyperglycemia. The consequent prolonged glucose exposure is known to exert deleterious effects on the function of various organs, notably impairment of insulin secretion by pancreatic β-cells and induction of apoptosis. It has also been described as modifying gene and protein expression in β-cells. Therefore, we hypothesized that a modulation of insulin secretory granule protein expression induced by chronic hyperglycemia may partially explain β-cell dysfunction. To identify the potential early molecular mechanisms underlying β-cell dysfunction during chronic hyperglycemia, we performed SILAC and mass spectrometry experiments to monitor changes in the insulin secretory granule proteome from INS-1E rat insulinoma β-cells cultivated either with 11 or 30 mm of glucose for 24 h. Fourteen proteins were found to be differentially expressed between these two conditions, and several of these proteins were not described before to be present in β-cells. Among them, neuronal pentraxin 1 was only described in neurons so far. Here we investigated its expression and intracellular localization in INS-1E cells. Furthermore, its overexpression in glucotoxic conditions was confirmed at the mRNA and protein levels. According to its role in hypoxia-ischemia-induced apoptosis described in neurons, this suggests that neuronal pentraxin 1 might be a new β-cell mediator in the AKT/GSK3 apoptotic pathway. In conclusion, the modification of specific β-cell pathways such as apoptosis and oxidative stress may partially explain the impairment of insulin secretion and β-cell failure, observed after prolonged exposure to high glucose concentrations.
Jin, Y C; Li, Z H; Hong, Z S; Xu, C X; Han, J A; Choi, S H; Yin, J L; Zhang, Q K; Lee, K B; Kang, S K; Song, M K; Kim, Y J; Kang, H S; Choi, Y J; Lee, H G
2012-08-01
This study was conducted to identify proteins associated with the endogenous synthesis of conjugated linoleic acid (CLA) from trans-vaccenic acid (TVA; trans-11 C18:1, a precursor for CLA endogenous synthesis) in mammary tissues. Six lactating goats were divided into 2 groups. One group was given an intravenous bolus injection of TVA (150mg) twice daily over 4 d; the other group received saline injections. Treatment with TVA increased the concentration of cis-9,trans-11 CLA and TVA in goat milk. Additionally, TVA treatment increased the expression of stearoyl-CoA desaturase (SCD) in mammary tissue. Using 2-dimensional gel electrophoresis and electrospray ionization quadrupole time-of-flight mass spectrometry, 3 proteins affected by infusions of TVA were identified. Proteasome (prosome, macropain) subunit α type 5 (PSMA5) was upregulated, whereas peroxiredoxin-1 and translationally controlled tumor protein 1 were downregulated in TVA-treated animals compared with the vehicle-injected controls. Only the effect of TVA on PSMA5 could be confirmed by Western blot analysis. To further explore the regulation of PSMA5 in mammary epithelial cells when TVA is converted into CLA, we used a differentiated bovine mammary epithelial cell line treated with TVA for 6h. Changes in cis-9,trans-11 CLA concentrations and mRNA expression patterns of both SCD and PSMA5 were monitored. The concentration of cis-9,trans-11 CLA increased after TVA treatment. The mRNA expression level of PSMA5 was significantly elevated to 6h, but SCD mRNA expression only increased in 2h after TVA treatment. These results indicate that PSMA5 is highly expressed in goat mammary tissue and bovine mammary epithelial cells when TVA is converted into CLA. Our data suggest that PSMA5 protein is associated with CLA biosynthesis in mammary tissue. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wu, Zhiqiang; Zhao, Jinlin; Qiu, Minghan; Mi, Zeyun; Meng, Maobin; Guo, Yu; Wang, Hui; Yuan, Zhiyong
2018-04-19
Accurately identifying and quantifying cellular autophagy is very important as the significance of autophagy in physiological and pathological processes becomes increasingly evident. Ectopically expressed fluorescent-tagged microtubule-associated protein light chain 3B (MAP1LC3B, LC3) is the most widely used reporter for monitoring autophagy activity thus far. However, this approach ignores the influence of constitutively overexpressed LC3 on autophagy itself and autophagy-related processes and its accuracy in indicating autophagy is questionable. Here, we generated a knock-in GFP-LC3 reporter via the CRISPR/Cas9 system in 293FT cells to add GFP to the N-terminal of and in frame with endogenous LC3. We proved that this knock-in GFP-LC3 was expressed at biological level driven by the endogenous transcriptional regulatory elements as the wild type alleles. Compared with the ectopically expressed GFP-LC3, the endogenous knock-in reporter exhibited much higher sensitivity and signal-to-noise ratio of GFP-LC3 puncta upon the induction or inhibition of autophagy at certain step for monitoring autophagy activity. Thus, according to the previous reported concerning and the results presented here, we suggest that this knock-in GFP-LC3 reporter is better for bona fide monitoring cellular autophagy and should be employed for further study of autophagy in vitro and in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2013-01-01
Proteomics has opened a new horizon in biological sciences. Global proteomic analysis is a promising technology for the discovery of thousands of proteins, post-translational modifications, polymorphisms, and molecular interactions in a variety of biological systems. The activities and roles of the identified proteins must also be elucidated, but this is complicated by the inability of conventional proteomic methods to yield quantitative information for protein expression. Thus, a variety of biological systems remain “black boxes”. Quantitative targeted absolute proteomics (QTAP) enables the determination of absolute expression levels (mol) of any target protein, including low-abundance functional proteins, such as transporters and receptors. Therefore, QTAP will be useful for understanding the activities and roles of individual proteins and their differences, including normal/disease, human/animal, or in vitro/in vivo. Here, we describe the study protocols and precautions for QTAP experiments including in silico target peptide selection, determination of peptide concentration by amino acid analysis, setup of selected/multiple reaction monitoring (SRM/MRM) analysis in liquid chromatography–tandem mass spectrometry, preparation of protein samples (brain capillaries and plasma membrane fractions) followed by the preparation of peptide samples, simultaneous absolute quantification of target proteins by SRM/MRM analysis, data analysis, and troubleshooting. An application of QTAP in biological sciences was introduced that utilizes data from inter-strain differences in the protein expression levels of transporters, receptors, tight junction proteins and marker proteins at the blood–brain barrier in ddY, FVB, and C57BL/6J mice. Among 18 molecules, 13 (abcb1a/mdr1a/P-gp, abcc4/mrp4, abcg2/bcrp, slc2a1/glut1, slc7a5/lat1, slc16a1/mct1, slc22a8/oat3, insr, lrp1, tfr1, claudin-5, Na+/K+-ATPase, and γ-gtp) were detected in the isolated brain capillaries, and their protein expression levels were within a range of 0.637-101 fmol/μg protein. The largest difference in the levels between the three strains was 2.2-fold for 13 molecules, although bcrp and mct1 displayed statistically significant differences between C57BL/6J and the other strain(s). Highly sensitive simultaneous absolute quantification achieved by QTAP will increase the usefulness of proteomics in biological sciences and is expected to advance the new research field of pharmacoproteomics (PPx). PMID:23758935
Warth, Benedikt; Rajkai, György; Mandenius, Carl-Fredrik
2010-05-03
Software sensors for monitoring and on-line estimation of critical bioprocess variables have mainly been used with standard bioreactor sensors, such as electrodes and gas analyzers, where algorithms in the software model have generated the desired state variables. In this article we propose that other on-line instruments, such as NIR probes and on-line HPLC, should be used to make more reliable and flexible software sensors. Five software sensor architectures were compared and evaluated: (1) biomass concentration from an on-line NIR probe, (2) biomass concentration from titrant addition, (3) specific growth rate from titrant addition, (4) specific growth rate from the NIR probe, and (5) specific substrate uptake rate and by-product rate from on-line HPLC and NIR probe signals. The software sensors were demonstrated on an Escherichia coli cultivation expressing a recombinant protein, green fluorescent protein (GFP), but the results could be extrapolated to other production organisms and product proteins. We conclude that well-maintained on-line instrumentation (hardware sensors) can increase the potential of software sensors. This would also strongly support the intentions with process analytical technology and quality-by-design concepts. 2010 Elsevier B.V. All rights reserved.
Cao, Zhen; Zhang, Wei; Ning, Xiangxue; Wang, Baomin; Liu, Yunjun; Li, Qing X
2017-11-22
Bacillus thuringiensis Cry1Ac, Cry1Ia1, and Cry1Ie are δ-endotoxin insecticidal proteins widely implemented in genetically modified organisms (GMO), such as cotton, maize, and potato. Western blot assay integrates electrophoresis separation power and antibody high specificity for monitoring specific exogenous proteins expressed in GMO. Procedures for evoking monoclonal antibody (mAb) for Western blot were poorly documented. In the present study, Cry1Ac partially denatured at 100 °C for 5 min was used as an immunogen to develop mAbs selectively recognizing a linear epitope of Cry1Ac for Western blot. mAb 5E9C6 and 3E6E2 selected with sandwich ELISA strongly recognized the heat semidenatured Cry1Ac. Particularly, 3E6E2 recognized both E. coli and cotton seed expressed Cry1Ac in Western blot. Such strategy of using partially denatured proteins as immunogens and using sandwich ELISA for mAb screening was also successfully demonstrated with production of mAbs against Cry1Ie for Western blot assay in maize.
Transient, Inducible, Placenta-Specific Gene Expression in Mice
Fan, Xiujun; Petitt, Matthew; Gamboa, Matthew; Huang, Mei; Dhal, Sabita; Druzin, Maurice L.; Wu, Joseph C.
2012-01-01
Molecular understanding of placental functions and pregnancy disorders is limited by the absence of methods for placenta-specific gene manipulation. Although persistent placenta-specific gene expression has been achieved by lentivirus-based gene delivery methods, developmentally and physiologically important placental genes have highly stage-specific functions, requiring controllable, transient expression systems for functional analysis. Here, we describe an inducible, placenta-specific gene expression system that enables high-level, transient transgene expression and monitoring of gene expression by live bioluminescence imaging in mouse placenta at different stages of pregnancy. We used the third generation tetracycline-responsive tranactivator protein Tet-On 3G, with 10- to 100-fold increased sensitivity to doxycycline (Dox) compared with previous versions, enabling unusually sensitive on-off control of gene expression in vivo. Transgenic mice expressing Tet-On 3G were created using a new integrase-based, site-specific approach, yielding high-level transgene expression driven by a ubiquitous promoter. Blastocysts from these mice were transduced with the Tet-On 3G-response element promoter-driving firefly luciferase using lentivirus-mediated placenta-specific gene delivery and transferred into wild-type pseudopregnant recipients for placenta-specific, Dox-inducible gene expression. Systemic Dox administration at various time points during pregnancy led to transient, placenta-specific firefly luciferase expression as early as d 5 of pregnancy in a Dox dose-dependent manner. This system enables, for the first time, reliable pregnancy stage-specific induction of gene expression in the placenta and live monitoring of gene expression during pregnancy. It will be widely applicable to studies of both placental development and pregnancy, and the site-specific Tet-On G3 mouse will be valuable for studies in a broad range of tissues. PMID:23011919
Proteolipid Protein Is Required for Transport of Sirtuin 2 into CNS Myelin
Werner, Hauke B.; Kuhlmann, Katja; Shen, Siming; Uecker, Marina; Schardt, Anke; Dimova, Kalina; Orfaniotou, Foteini; Dhaunchak, Ajit; Brinkmann, Bastian G.; Möbius, Wiebke; Guarente, Lenny; Casaccia-Bonnefil, Patrizia; Jahn, Olaf; Nave, Klaus-Armin
2009-01-01
Mice lacking the expression of proteolipid protein (PLP)/DM20 in oligodendrocytes provide a genuine model for spastic paraplegia (SPG-2). Their axons are well myelinated but exhibit impaired axonal transport and progressive degeneration, which is difficult to attribute to the absence of a single myelin protein. We hypothesized that secondary molecular changes in PLPnull myelin contribute to the loss of PLP/DM20-dependent neuroprotection and provide more insight into glia-axonal interactions in this disease model. By gel-based proteome analysis, we identified >160 proteins in purified myelin membranes, which allowed us to systematically monitor the CNS myelin proteome of adult PLPnull mice, before the onset of disease. We identified three proteins of the septin family to be reduced in abundance, but the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin 2 (SIRT2) was virtually absent. SIRT2 is expressed throughout the oligodendrocyte lineage, and immunoelectron microscopy revealed its association with myelin. Loss of SIRT2 in PLPnull was posttranscriptional, suggesting that PLP/DM20 is required for its transport into the myelin compartment. Because normal SIRT2 activity is controlled by the NAD+/NADH ratio, its function may be coupled to the axo-glial metabolism and the long-term support of axons by oligodendrocytes. PMID:17634366
Moesin Is a Biomarker for the Assessment of Genotoxic Carcinogens in Mouse Lymphoma
Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong
2012-01-01
1,2-Dibromoethane and glycidol are well known genotoxic carcinogens, which have been widely used in industry. To identify a specific biomarker for these carcinogens in cells, the cellular proteome of L5178Y mouse lymphoma cells treated with these compounds was analyzed by 2-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry (MS). Of 50 protein spots showing a greater than 1.5-fold increase or decrease in intensity compared to control cells on a 2-D gel, we focused on the candidate biomarker moesin. Western analysis using monoclonal rabbit anti-moesin confirmed the identity of the protein and its increased level of expression upon exposure to the carcinogenic compounds. Moesin expression also increased in cells treated with six additional genotoxic carcinogens, verifying that moesin could serve as a biomarker to monitor phenotypic change upon exposure to genotoxic carcinogens in L5178Y mouse lymphoma cells. PMID:22358511
NASA Technical Reports Server (NTRS)
Desai, N.; Wu, H.; George, K.; Gonda, S. R.; Cucinotta, F. A.; Cucniotta, F. A. (Principal Investigator)
2004-01-01
Space flight results in the exposure of astronauts to a mixed field of radiation composed of energetic particles of varying energies, and biological indicators of space radiation exposure provides a better understanding of the associated long-term health risks. Current methods of biodosimetry have employed the use of cytogenetic analysis for biodosimetry, and more recently the advent of technological progression has led to advanced research in the use of genomic and proteomic expression profiling to simultaneously assess biomarkers of radiation exposure. We describe here the technical advantages of the Luminex(TM) 100 system relative to traditional methods and its potential as a tool to simultaneously profile multiple proteins induced by ionizing radiation. The development of such a bioassay would provide more relevant post-translational dynamics of stress response and will impart important implications in the advancement of space and other radiation contact monitoring. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Moesin is a biomarker for the assessment of genotoxic carcinogens in mouse lymphoma.
Lee, Yoen Jung; Choi, In-Kwon; Sheen, Yhun Yhong; Park, Sue Nie; Kwon, Ho Jeong
2012-02-01
1,2-Dibromoethane and glycidol are well known genotoxic carcinogens, which have been widely used in industry. To identify a specific biomarker for these carcinogens in cells, the cellular proteome of L5178Y mouse lymphoma cells treated with these compounds was analyzed by 2-dimensional gel electrophoresis (2-DE) and MALDI-TOF mass spectrometry (MS). Of 50 protein spots showing a greater than 1.5-fold increase or decrease in intensity compared to control cells on a 2-D gel, we focused on the candidate biomarker moesin. Western analysis using monoclonal rabbit anti-moesin confirmed the identity of the protein and its increased level of expression upon exposure to the carcinogenic compounds. Moesin expression also increased in cells treated with six additional genotoxic carcinogens, verifying that moesin could serve as a biomarker to monitor phenotypic change upon exposure to genotoxic carcinogens in L5178Y mouse lymphoma cells.
Wingfield, P T; Stahl, S J; Payton, M A; Venkatesan, S; Misra, M; Steven, A C
1991-07-30
The high-level expression of HIV-1 Rev in Escherichia coli is described. Protein in crude bacterial extracts was dissociated from bound nucleic acid with urea. A simple purification and renaturation protocol, monitored by circular dichroism, is described which results in high yields of pure protein. The purified protein binds with high affinity to the Rev-responsive element mRNA and has nativelike spectroscopic properties. The protein exhibits concentration-dependent self-association as judged by analytical ultracentrifugation and gel filtration measurements. Purified Rev showed reversible heat-induced aggregation over the temperature range 0-30 degrees C. This hydrophobic-driven and nonspecific protein association was inhibited by low concentrations of sulfate ions. Rev solutions at greater than 80 micrograms/mL, incubated at 0-4 degrees C, slowly polymerized to form long hollow fibers of 20-nm diameter. Filament formation occurs at a lower protein concentration and more rapidly in the presence of Rev-responsive mRNA. The nucleic acid containing filaments are about 8 nm in diameter and up to 0.4 micron in length. On the basis of physical properties of the purified protein, we have suggested that in the nucleus of infected cells, Rev binding to the Rev-responsive region of env mRNA may be followed by helical polymerization of the protein which results in coating of the nucleic acid. Coated nucleic acid could be protected from splicing in the nucleus and exported to the cytoplasm.
Wang, Kun; Wang, Yufei; Wang, Xiuqing; Ren, Qian; Han, Sili; Ding, Longjiang; Li, Zhongcheng; Zhou, Xuedong; Li, Wei; Zhang, Linglin
2018-01-19
Dental caries is a major worldwide oral disease afflicting a large proportion of children. As an important host factor of caries susceptibility, saliva plays a significant role in the occurrence and development of caries. The aim of the present study was to characterize the healthy and cariogenic salivary proteome and determine the changes in salivary protein expression of children with varying degrees of active caries, also to establish salivary proteome profiles with a potential therapeutic use against dental caries. In this study, unstimulated saliva samples were collected from 30 children (age 10-12 years) with no dental caries (NDC, n = 10), low dental caries (LDC, n = 10), and high dental caries (HDC, n = 10). Salivary proteins were extracted, reduced, alkylated, trypsin digested and labeled with isobaric tags for relative and absolute quantitation, and then they were analyzed with GO annotation, biological pathway analysis, hierarchical clustering analysis, and protein-protein interaction analysis. Targeted verifications were then performed using multiple reaction monitoring mass spectrometry. A total of 244 differentially expressed proteins annotated with GO annotation in biological processes, cellular component and molecular function were identified in comparisons among children with varying degrees of active caries. A number of caries-related proteins as well as pathways were identified in this study. As compared with caries-free children, the most significantly enriched pathways involved by the up-regulated proteins in LDC and HDC were the ubiquitin mediated proteolysis pathway and African trypanosomiasis pathway, respectively. Subsequently, we selected 53 target proteins with differential expression in different comparisons, including mucin 7, mucin 5B, histatin 1, cystatin S and cystatin SN, basic salivary proline rich protein 2, for further verification using MRM assays. Protein-protein interaction analysis of these proteins revealed complex protein interaction networks, indicating synergistic action of salivary proteins in caries resistance or cariogenicity. Overall, our results afford new insight into the salivary proteome of children with dental caries. These findings might have bright prospect in future in developing novel biomimetic peptides with preventive and therapeutic benefits for childhood caries.
Zou, Li; Kidwai, Fahad K.; Kopher, Ross A.; Motl, Jason; Kellum, Cory A.; Westendorf, Jennifer J.; Kaufman, Dan S.
2015-01-01
Summary We generated a RUNX2-yellow fluorescent protein (YFP) reporter system to study osteogenic development from human embryonic stem cells (hESCs). Our studies demonstrate the fidelity of YFP expression with expression of RUNX2 and other osteogenic genes in hESC-derived osteoprogenitor cells, as well as the osteogenic specificity of YFP signal. In vitro studies confirm that the hESC-derived YFP+ cells have similar osteogenic phenotypes to osteoprogenitor cells generated from bone-marrow mesenchymal stem cells. In vivo studies demonstrate the hESC-derived YFP+ cells can repair a calvarial defect in immunodeficient mice. Using the engineered hESCs, we monitored the osteogenic development and explored the roles of osteogenic supplements BMP2 and FGF9 in osteogenic differentiation of these hESCs in vitro. Taken together, this reporter system provides a novel system to monitor the osteogenic differentiation of hESCs and becomes useful to identify soluble agents and cell signaling pathways that mediate early stages of human bone development. PMID:25680477
Prospective identification of erythroid elements in cultured peripheral blood.
Miller, J L; Njoroge, J M; Gubin, A N; Rodgers, G P
1999-04-01
We have developed a prospective approach to identify the generation of erythroid cells derived from cultured peripheral blood mononuclear cells (PBMC) by monitoring the expression of the cell surface protein CD48. Unpurified populations of PBMC obtained from the buffy coats of normal volunteers were grown in suspension culture in the absence or presence of erythropoietin. A profile of surface CD48 expression permitted a flow cytometric identification of erythropoietin responsive populations at various stages of their maturation. In the absence of erythropoietin (EPO) supplemented media, the CD48- cells represented <5% of the total population of PBMC remaining in culture. In cultures supplemented with 1 U/mL EPO, the mean percentage of CD48- cells increased to 34.7 + 14.9% (p < 0.01) after 14 days in culture. Coordinated CD34 and CD71 (transferrin receptor) expression, morphology, gamma-globin transcription, and colony formation in methylcellulose were observed during the 14-day culture period. Flow cytometric monitoring of bulk cultured PBMC provides a simple and reliable means for the prospective or real-time study of human erythropoiesis.
Preparation and Extraction of Insoluble (Inclusion-Body) Proteins from Escherichia coli
Palmer, Ira; Wingfield, Paul T.
2013-01-01
High-level expression of many recombinant proteins in Escherichia coli leads to the formation of highly aggregated protein commonly referred to as inclusion bodies. Inclusion bodies are normally formed in the cytoplasm; however, if a secretion vector is used, they can form in the periplasmic space. Inclusion bodies can be recovered from cell lysates by low speed centrifugation. Following preextaction (or washing) protein is extracted from washed pellets using guanidine·HCl. The solubilized and unfolded protein is either directly folded as described in UNIT 6.1 or further purified by gel filtration in the presence of guanidine·HCl as described here. A support protocol describes the removal of guanidine·HCl from column fractions so they can be monitored by SDS-PAGE. High-level expression of many recombinant proteins in Escherichia coli leads to the formation of highly aggregated protein commonly referred to as inclusion bodies (UNITS 5.1 & 6.1). Inclusion bodies are normally formed in the cytoplasm; alternatively, if a secretion vector is used, they can form in the periplasmic space. Inclusion bodies are not restricted to E. coli; they can also form in yeast, mammalian, and insect cells. Inclusion bodies recovered from cell lysates by low-speed centrifugation are heavily contaminated with E. coli cell wall and outer membrane components. The latter are largely removed by selective extraction with detergents and low concentrations of either urea or guanidine·HCl to produce so-called washed pellets. These basic steps result in a significant purification of the recombinant protein, which usually makes up ~60% of the washed pellet protein. The challenge, therefore, is not to purify the recombinant-derived protein, but to solubilize it and then fold it into native and biologically active protein. Basic Protocol 1 describes preparation of washed pellets and solubilization of the protein using guanidine·HCl. The extracted protein, which is unfolded, is either directly folded as described in UNIT 6.5 or further purified by gel filtration in the presence of guanidine·HCl as in basic Protocol 2. A Support Protocol describes the removal of guanidine·HCl from column fractions so they can be monitored by SDS-PAGE (UNIT 10.1). Other methods discussed in the Commentary section of this unit include the direct purification of polyhistidine-tagged proteins solubilized in guanidine·HCl, preparative removal of guanidine·HCl by reversed-phase chromatography as a prelude to protein folding, and the solubilization of inclusion bodies with anionic detergents. PMID:23151747
Preparation and Extraction of Insoluble (Inclusion-Body) Proteins from Escherichia coli
Palmer, Ira; Wingfield, Paul T.
2012-01-01
High-level expression of many recombinant proteins in Escherichia coli leads to the formation of highly aggregated protein commonly referred to as inclusion bodies. Inclusion bodies are normally formed in the cytoplasm; however, if a secretion vector is used, they can form in the periplasmic space. Inclusion bodies can be recovered from cell lysates by low speed centrifugation. Following preextaction (or washing) protein is extracted from washed pellets using guanidine·HCl. The solubilized and unfolded protein is either directly folded as described in UNIT 6.1 or further purified by gel filtration in the presence of guanidine·HCl as described here. A support protocol describes the removal of guanidine·HCl from column fractions so they can be monitored by SDS-PAGE. High-level expression of many recombinant proteins in Escherichia coli leads to the formation of highly aggregated protein commonly referred to as inclusion bodies (UNITS 5.1 & 6.1). Inclusion bodies are normally formed in the cytoplasm; alternatively, if a secretion vector is used, they can form in the periplasmic space. Inclusion bodies are not restricted to E. coli; they can also form in yeast, mammalian, and insect cells. Inclusion bodies recovered from cell lysates by low-speed centrifugation are heavily contaminated with E. coli cell wall and outer membrane components. The latter are largely removed by selective extraction with detergents and low concentrations of either urea or guanidine·HCl to produce so-called washed pellets. These basic steps result in a significant purification of the recombinant protein, which usually makes up ~60% of the washed pellet protein. The challenge, therefore, is not to purify the recombinant-derived protein, but to solubilize it and then fold it into native and biologically active protein. Basic Protocol 1 describes preparation of washed pellets and solubilization of the protein using guanidine·HCl. The extracted protein, which is unfolded, is either directly folded as described in UNIT 6.5 or further purified by gel filtration in the presence of guanidine·HCl as in basic Protocol 2. A Support Protocol describes the removal of guanidine·HCl from column fractions so they can be monitored by SDS-PAGE (UNIT 10.1). Other methods discussed in the Commentary section of this unit include the direct purification of polyhistidine-tagged proteins solubilized in guanidine·HCl, preparative removal of guanidine·HCl by reversed-phase chromatography as a prelude to protein folding, and the solubilization of inclusion bodies with anionic detergents. PMID:18429271
Tse, Brian; Jacob, Francis; Caduff, Rosmarie; Fink, Daniel; Goldstein, Darlene R.; Heinzelmann-Schwarz, Viola
2013-01-01
Seeking new biomarkers for epithelial ovarian cancer, the fifth most common cause of death from all cancers in women and the leading cause of death from gynaecological malignancies, we performed a meta-analysis of three independent studies and compared the results in regard to clinicopathological parameters. This analysis revealed that GAS6 was highly expressed in ovarian cancer and therefore was selected as our candidate of choice. GAS6 encodes a secreted protein involved in physiological processes including cell proliferation, chemotaxis, and cell survival. We performed immunohistochemistry on various ovarian cancer tissues and found that GAS6 expression was elevated in tumour tissue samples compared to healthy control samples (P < 0.0001). In addition, GAS6 expression was also higher in tumours from patients with residual disease compared to those without. Our data propose GAS6 as an independent predictor of poor survival, suggesting GAS6, both on the mRNA and on the protein level, as a potential biomarker for ovarian cancer. In clinical practice, the staining of a tumour biopsy for GAS6 may be useful to assess cancer prognosis and/or to monitor disease progression. PMID:23878800
Monitoring the Assembly of a Secreted Bacterial Virulence Factor Using Site-specific Crosslinking
Pavlova, Olga; Ieva, Raffaele; Bernstein, Harris D
2013-01-01
This article describes a method to detect and analyze dynamic interactions between a protein of interest and other factors in vivo. Our method is based on the amber suppression technology that was originally developed by Peter Schultz and colleagues1. An amber mutation is first introduced at a specific codon of the gene encoding the protein of interest. The amber mutant is then expressed in E. coli together with genes encoding an amber suppressor tRNA and an amino acyl-tRNA synthetase derived from Methanococcus jannaschii. Using this system, the photo activatable amino acid analog p-benzoylphenylalanine (Bpa) is incorporated at the amber codon. Cells are then irradiated with ultraviolet light to covalently link the Bpa residue to proteins that are located within 3-8 Å. Photocrosslinking is performed in combination with pulse-chase labeling and immunoprecipitation of the protein of interest in order to monitor changes in protein-protein interactions that occur over a time scale of seconds to minutes. We optimized the procedure to study the assembly of a bacterial virulence factor that consists of two independent domains, a domain that is integrated into the outer membrane and a domain that is translocated into the extracellular space, but the method can be used to study many different assembly processes and biological pathways in both prokaryotic and eukaryotic cells. In principle interacting factors and even specific residues of interacting factors that bind to a protein of interest can be identified by mass spectrometry. PMID:24378574
Engineering of filamentous bacteriophage for protein sensing
NASA Astrophysics Data System (ADS)
Brasino, Michael
Methods of high throughput, sensitive and cost effective quantification of proteins enables personalized medicine by allowing healthcare professionals to better monitor patient condition and response to treatment. My doctoral research has attempted to advance these methods through the use of filamentous bacteriophage (phage). These bacterial viruses are particularly amenable to both genetic and chemical engineering and can be produced efficiently in large amounts. Here, I discuss several strategies for modifying phage for use in protein sensing assays. These include the expression of bio-orthogonal conjugation handles on the phage coat, the incorporation of specific recognition sequences within the phage genome, and the creation of antibody-phage conjugates via a photo-crosslinking non-canonical amino acid. The physical and chemical characterization of these engineered phage and the results of their use in modified protein sensing assays will be presented.
ERβ inhibits proliferation and invasion of breast cancer cells
Lazennec, Gwendal; Bresson, Damien; Lucas, Annick; Chauveau, Corine; Vignon, Françoise
2001-01-01
Recent studies indicate that the expression of ERβ in breast cancer is lower than in normal breast, suggesting that ERβ could play an important role in carcinogenesis. To investigate this hypothesis, we engineered estrogen-receptor negative MDA-MB-231 breast cancer cells to reintroduce either ERα or ERβ protein with an adenoviral vector. In these cells, ERβ (as ERα) expression was monitored using RT-PCR and Western blot. ERβ protein was localized in the nucleus (immunocytochemistry) and able to transactivate estrogen-responsive reporter constructs in the presence of estradiol. ERβ and ERα induced the expression of several endogenous genes such as pS2, TGFα or the cyclin kinase inhibitor p21, but in contrast to ERα, ERβ was unable to regulate c-myc proto-oncogene expression. The pure antiestrogen ICI 164, 384 completely blocked ERα and ERβ estrogen-induced activities. ERβ inhibited MDA-MB-231 cell proliferation in a ligand-independent manner, whereas ERα inhibition of proliferation is hormone-dependent. Moreover, ERβ and ERα, decreased cell motility and invasion. Our data bring the first evidence that ERβ is an important modulator of proliferation and invasion of breast cancer cells and support the hypothesis that the loss of ERβ expression could be one of the events leading to the development of breast cancer. PMID:11517191
van Beilen, Johan W A; Brul, Stanley
2013-01-01
The internal pH (pHi) of a living cell is one of its most important physiological parameters. To monitor the pH inside Bacillus subtilis during various stages of its life cycle, we constructed an improved version (IpHluorin) of the ratiometric, pH-sensitive fluorescent protein pHluorin by extending it at the 5' end with the first 24 bp of comGA. The new version, which showed an approximate 40% increase in fluorescence intensity, was expressed from developmental phase-specific, native promoters of B. subtilis that are specifically active during vegetative growth on glucose (PptsG) or during sporulation (PspoIIA, PspoIIID, and PsspE). Our results show strong, compartment-specific expression of IpHluorin that allowed accurate pHi measurements of live cultures during exponential growth, early and late sporulation, spore germination, and during subsequent spore outgrowth. Dormant spores were characterized by an pHi of 6.0 ± 0.3. Upon full germination the pHi rose dependent on the medium to 7.0-7.4. The presence of sorbic acid in the germination medium inhibited a rise in the intracellular pH of germinating spores and inhibited germination. Such effects were absent when acetic was added at identical concentrations.
Temperature-dependent resetting of the molecular circadian oscillator in Drosophila
Goda, Tadahiro; Sharp, Brandi; Wijnen, Herman
2014-01-01
Circadian clocks responsible for daily time keeping in a wide range of organisms synchronize to daily temperature cycles via pathways that remain poorly understood. To address this problem from the perspective of the molecular oscillator, we monitored temperature-dependent resetting of four of its core components in the fruitfly Drosophila melanogaster: the transcripts and proteins for the clock genes period (per) and timeless (tim). The molecular circadian cycle in adult heads exhibited parallel responses to temperature-mediated resetting at the levels of per transcript, tim transcript and TIM protein. Early phase adjustment specific to per transcript rhythms was explained by clock-independent temperature-driven transcription of per. The cold-induced expression of Drosophila per contrasts with the previously reported heat-induced regulation of mammalian Period 2. An altered and more readily re-entrainable temperature-synchronized circadian oscillator that featured temperature-driven per transcript rhythms and phase-shifted TIM and PER protein rhythms was found for flies of the ‘Tim 4’ genotype, which lacked daily tim transcript oscillations but maintained post-transcriptional temperature entrainment of tim expression. The accelerated molecular and behavioural temperature entrainment observed for Tim 4 flies indicates that clock-controlled tim expression constrains the rate of temperature cycle-mediated circadian resetting. PMID:25165772
Moon, C; Fraser, S P; Djamgoz, M B
2000-02-01
The GABA(A) receptor and the non-NMDA subtype of the ionotropic glutamate receptor were co-expressed in Xenopus oocytes by injection of quail brain mRNA. The oocytes were treated with various protein kinase (PK) and protein phosphatase (PP) activators and inhibitors and the effects on receptor functioning were monitored. Two phorbol esters, 4-beta-phorbol 12-myristate-13-acetate (PMA) and 4-beta-phorbol 12,13-dibutyrate (PDBu); the cGMP-dependent PK activators sodium nitroprusside (SNP) and S-nitrosoglutathione (SNOG); and the PP inhibitor okadaic acid (OA) reduced the amplitude of the GABA-induced currents, whilst the PK inhibitor staurosporine potentiated it. In addition, PMA, PDBu, SNP, and OA reduced the desensitization of the GABA-induced response. Identical treatments generally had similar but less pronounced effects on responses generated by kainate (KA) but the desensitization characteristic of the non-NMDA receptor was not affected. None of the treatments had any effect on the reversal potentials of the induced currents. Immunoblots revealed that the oocytes express endogenous PKG and guanylate cyclase. The results are discussed in terms of the molecular structures of GABA(A) and non-NMDA receptors and the potential functional consequences of phosphorylation/dephosphorylation.
Jonsson, Henrik; Schiedek, Doris; Goksøyr, Anders; Grøsvik, Bjørn Einar
2006-06-01
The possible use of cytoskeletal components as biomarkers of organic pollution in mussels has been investigated. Responses of non-muscular actin and tropomyosin (TM), two bivalve proteins that were recently demonstrated to cross-react with anti-fish-CYP1A, were analysed in digestive tissue of blue mussels (Mytilus sp.) exposed to a wide range of organic contaminants. The results were evaluated with ELISA and Western blot assays, utilising commercial monoclonal antibodies, and compared with expression of Hsp70, a marker of chemical stress. Furthermore, mussels were sampled from the Baltic Sea at sites with different degrees of pollution to assess the expression of these proteins, and to monitor seasonal changes in relation to energy reserves and water temperature. The results demonstrated that expression of microsomal actin was significantly higher (p<0.02) in mussels exposed to a brominated flame retardant (BDE-47), and lower, however not significantly, in specimens exposed to crude oil, alone and spiked with alkylphenols and PAHs. Hsp70 was strongly induced in all exposure groups, which also included bisphenol A and diallylphthalate. Furthermore, microsomal actin exhibited seasonal variations, and expression was negatively correlated with water temperature. No correlation was seen between actin and the microfilament-binding protein TM, indicating that regulation of these two cytoskeletal components are not coupled. Furthermore, parallel and significant (p<0.05) up-regulations of TM and Hsp70 were seen in individuals sampled from a strongly polluted field site, whereas the seasonal analysis showed that TM expression was positively correlated with energy reserves (total glycogen content) in mussels, suggesting the use of TM as a marker of growth. In conclusion, this study has demonstrated the cytoskeleton to be a target of contaminants in mussels, calling for further attention. Exposure-induced increase of microsomal actin can be interpreted either as stimulated actin synthesis, or re-arrangements of the dynamic microfilaments.
Gottipati, Srinivas
2008-01-01
Purpose 17 β-estradiol (17β-E2) protects human lens epithelial cells against oxidative stress by preserving mitochondrial function in part via the non-genomic rapid activation of prosurvival signal transduction pathways. The study described herein examined whether 17β-E2 also elicits genomic protection by influencing the expression (and activity) of mitochondrial-associated manganese superoxide dismutase (MnSOD) as a possible parallel mechanism by which 17β-E2 protects against oxidative stress. Methods Virally-transformed human lens epithelial cells (HLE-B3) were pre-incubated with 17β-E2, and mRNA or protein lysates were collected over a time course ranging from 90 min to 24 h. Positive expression of lens epithelial cell MnSOD mRNA was determined by semi-quantitative reverse transcriptase polymerase chain reaction (RT–PCR), and its levels were monitored by real-time PCR up to 24 h after 17β-E2 administration. Western blot analysis was used to examine the pattern of protein expression as influenced by 17β-E2 treatment. MnSOD activity as influenced by 17β-E2 was determined by measuring enzymatic activity. Results A significant rapid increase in the activity of MnSOD was observed with HLE-B3 cells by 90 min post-bolus addition of 17β-E2, which returned to control level by 240 min. Neither an increase in MnSOD mRNA nor in protein expression was detected up through 24 h. Conclusions These data demonstrate that 17β-E2 rapidly and transiently increases the activity of MnSOD but influences neither its mRNA expression nor its protein expression. The results suggest that (estrogen-activated) MnSOD plays an important role against mitochondrial oxidative stress by diminishing reactive oxygen species, thus promoting cell survival. PMID:18490963
Van den Hoecke, Silvie; Smet, Anouk; Schotsaert, Michael; Job, Emma R.; Roose, Kenny; Schepens, Bert; Fiers, Walter; Saelens, Xavier
2015-01-01
The severity of influenza-related illness is mediated by many factors, including in vivo cell tropism, timing and magnitude of the immune response, and presence of pre-existing immunity. A direct way to study cell tropism and virus spread in vivo is with an influenza virus expressing a reporter gene. However, reporter gene-expressing influenza viruses are often attenuated in vivo and may be genetically unstable. Here, we describe the generation of an influenza A virus expressing GFP from a tri-cistronic NS segment. To reduce the size of this engineered gene segment, we used a truncated NS1 protein of 73 amino acids combined with a heterologous dimerization domain to increase protein stability. GFP and nuclear export protein coding information were fused in frame with the truncated NS1 open reading frame and separated from each other by 2A self-processing sites. The resulting PR8-NS1(1–73)GFP virus was successfully rescued and replicated as efficiently as the parental PR8 virus in vitro and was slightly attenuated in vivo. Flow cytometry-based monitoring of cells isolated from PR8-NS1(1–73)GFP virus infected BALB/c mice revealed that GFP expression peaked on day two in all cell types tested. In particular respiratory epithelial cells and myeloid cells known to be involved in antigen presentation, including dendritic cells (CD11c+) and inflammatory monocytes (CD11b+ GR1+), became GFP positive following infection. Prophylactic treatment with anti-M2e monoclonal antibody or oseltamivir reduced GFP expression in all cell types studied, demonstrating the usefulness of this reporter virus to analyze the efficacy of antiviral treatments in vivo. Finally, deep sequencing analysis, serial in vitro passages and ex vivo analysis of PR8-NS1(1–73)GFP virus, indicate that this virus is genetically and phenotypically stable. PMID:25816132
De Baets, Sarah; Verhelst, Judith; Van den Hoecke, Silvie; Smet, Anouk; Schotsaert, Michael; Job, Emma R; Roose, Kenny; Schepens, Bert; Fiers, Walter; Saelens, Xavier
2015-01-01
The severity of influenza-related illness is mediated by many factors, including in vivo cell tropism, timing and magnitude of the immune response, and presence of pre-existing immunity. A direct way to study cell tropism and virus spread in vivo is with an influenza virus expressing a reporter gene. However, reporter gene-expressing influenza viruses are often attenuated in vivo and may be genetically unstable. Here, we describe the generation of an influenza A virus expressing GFP from a tri-cistronic NS segment. To reduce the size of this engineered gene segment, we used a truncated NS1 protein of 73 amino acids combined with a heterologous dimerization domain to increase protein stability. GFP and nuclear export protein coding information were fused in frame with the truncated NS1 open reading frame and separated from each other by 2A self-processing sites. The resulting PR8-NS1(1-73)GFP virus was successfully rescued and replicated as efficiently as the parental PR8 virus in vitro and was slightly attenuated in vivo. Flow cytometry-based monitoring of cells isolated from PR8-NS1(1-73)GFP virus infected BALB/c mice revealed that GFP expression peaked on day two in all cell types tested. In particular respiratory epithelial cells and myeloid cells known to be involved in antigen presentation, including dendritic cells (CD11c+) and inflammatory monocytes (CD11b+ GR1+), became GFP positive following infection. Prophylactic treatment with anti-M2e monoclonal antibody or oseltamivir reduced GFP expression in all cell types studied, demonstrating the usefulness of this reporter virus to analyze the efficacy of antiviral treatments in vivo. Finally, deep sequencing analysis, serial in vitro passages and ex vivo analysis of PR8-NS1(1-73)GFP virus, indicate that this virus is genetically and phenotypically stable.
Zhao, Yingxin; Valbuena, Gustavo; Walker, David H; Gazi, Michal; Hidalgo, Marylin; DeSousa, Rita; Oteo, Jose Antonio; Goez, Yenny; Brasier, Allan R
2016-01-01
Rickettsia conorii is the etiologic agent of Mediterranean spotted fever, a re-emerging infectious disease with significant mortality. This Gram-negative, obligately intracellular pathogen is transmitted via tick bites, resulting in disseminated vascular endothelial cell infection with vascular leakage. In the infected human, Rickettsia conorii infects endothelial cells, stimulating expression of cytokines and pro-coagulant factors. However, the integrated proteomic response of human endothelial cells to R. conorii infection is not known. In this study, we performed quantitative proteomic profiling of primary human umbilical vein endothelial cells (HUVECs) with established R conorii infection versus those stimulated with endotoxin (LPS) alone. We observed differential expression of 55 proteins in HUVEC whole cell lysates. Of these, we observed induction of signal transducer and activator of transcription (STAT)1, MX dynamin-like GTPase (MX1), and ISG15 ubiquitin-like modifier, indicating activation of the JAK-STAT signaling pathway occurs in R. conorii-infected HUVECs. The down-regulated proteins included those involved in the pyrimidine and arginine biosynthetic pathways. A highly specific biotinylated cross-linking enrichment protocol was performed to identify dysregulation of 11 integral plasma membrane proteins that included up-regulated expression of a sodium/potassium transporter and down-regulation of α-actin 1. Analysis of Golgi and soluble Golgi fractions identified up-regulated proteins involved in platelet-endothelial adhesion, phospholipase activity, and IFN activity. Thirty four rickettsial proteins were identified with high confidence in the Golgi, plasma membrane, or secreted protein fractions. The host proteins associated with rickettsial infections indicate activation of interferon-STAT signaling pathways; the disruption of cellular adhesion and alteration of antigen presentation pathways in response to rickettsial infections are distinct from those produced by nonspecific LPS stimulation. These patterns of differentially expressed proteins suggest mechanisms of pathogenesis as well as methods for diagnosis and monitoring Rickettsia infections. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Proteomic profiling of non-obese type 2 diabetic skeletal muscle.
Mullen, Edel; Ohlendieck, Kay
2010-03-01
Abnormal glucose handling has emerged as a major clinical problem in millions of diabetic patients worldwide. Insulin resistance affects especially one of the main target organs of this hormone, the skeletal musculature, making impaired glucose metabolism in contractile fibres a major feature of type 2 diabetes. High levels of circulating free fatty acids, an increased intramyocellular lipid content, impaired insulin-mediated glucose uptake, diminished mitochondrial functioning and an overall weakened metabolic flexibility are pathobiochemical hallmarks of diabetic skeletal muscles. In order to increase our cellular understanding of the molecular mechanisms that underlie this complex diabetes-associated skeletal muscle pathology, we initiated herein a mass spectrometry-based proteomic analysis of skeletal muscle preparations from the non-obese Goto-Kakizaki rat model of type 2 diabetes. Following staining of high-resolution two-dimensional gels with colloidal Coomassie Blue, 929 protein spots were detected, whereby 21 proteins showed a moderate differential expression pattern. Decreased proteins included carbonic anhydrase, 3-hydroxyisobutyrate dehydrogenase and enolase. Increased proteins were identified as monoglyceride lipase, adenylate kinase, Cu/Zn superoxide dismutase, phosphoglucomutase, aldolase, isocitrate dehydrogenase, cytochrome c oxidase, small heat shock Hsp27/B1, actin and 3-mercaptopyruvate sulfurtransferase. These proteomic findings suggest that the diabetic phenotype is associated with a generally perturbed protein expression pattern, affecting especially glucose, fatty acid, nucleotide and amino acid metabolism, as well as the contractile apparatus, the cellular stress response, the anti-oxidant defense system and detoxification mechanisms. The altered expression levels of distinct skeletal muscle proteins, as documented in this study, might be helpful for the future establishment of a comprehensive biomarker signature of type 2 diabetes. Reliable markers could be used for improving diagnostics, monitoring of disease progression and therapeutic evaluations.
Inhibitory effect of emodin on fatty acid synthase, colon cancer proliferation and apoptosis.
Lee, Kyung Ha; Lee, Myung Sun; Cha, Eun Young; Sul, Ji Young; Lee, Jin Sun; Kim, Jin Su; Park, Jun Beom; Kim, Ji Yeon
2017-04-01
Fatty acid synthase (FASN) is a key anabolic enzyme for de novo fatty acid synthesis, which is important in the development of colon carcinoma. The high expression of FASN is considered a promising molecular target for colon cancer therapy. Emodin, a naturally occurring anthraquinone, exhibits an anticancer effect in various types of human cancer, including colon cancer; however, the molecular mechanisms remain to be fully elucidated. Cell viability was evaluated using a Cell Counting Kit‑8 assay. The apoptosis rate of cells was quantified via flow cytometry following Annexin V/propidium iodide staining. FASN activity was measured by monitoring oxidation of nicotinamide adenine dinucleotide phosphate at a wavelength of 340 nm, and intracellular free fatty acid levels were detected using a Free Fatty Acid Quantification kit. Western blot analysis and reverse transcription‑polymerase chain reaction were used to detect target gene and protein expression. The present study was performed to investigate whether the gene expression of FASN and its enzymatic activity are regulated by emodin in a human colon cancer cell line. Emodin markedly inhibited the proliferation of HCT116 cells and a higher protein level of FASN was expressed, compared with that in SW480, SNU-C2A or SNU‑C5 cells. Emodin significantly downregulated the protein expression of FASN in HCT116 cells, which was caused by protein degradation due to elevated protein ubiquitination. Emodin also inhibited intracellular FASN enzymatic activity and reduced the levels of intracellular free fatty acids. Emodin enhanced antiproliferation and apoptosis in a dose‑ and time‑dependent manner. The combined treatment of emodin and cerulenin, a commercial FASN inhibitor, had an additive effect on these activities. Palmitate, the final product of the FASN reaction, rescued emodin‑induced viability and apoptosis. In addition, emodin altered FASN‑involved signaling pathways, including phosphatidylinositol 3-kinase/Akt and mitogen‑activated protein kinases/extracellular signal-regulated kinases 1/2. These results suggested that emodin-regulated cell growth and apoptosis were mediated by inhibiting FASN and provide a molecular basis for colon cancer therapy.
Inhibitory effect of emodin on fatty acid synthase, colon cancer proliferation and apoptosis
Lee, Kyung Ha; Lee, Myung Sun; Cha, Eun Young; Sul, Ji Young; Lee, Jin Sun; Kim, Jin Su; Park, Jun Beom; Kim, Ji Yeon
2017-01-01
Fatty acid synthase (FASN) is a key anabolic enzyme for de novo fatty acid synthesis, which is important in the development of colon carcinoma. The high expression of FASN is considered a promising molecular target for colon cancer therapy. Emodin, a naturally occurring anthraquinone, exhibits an anticancer effect in various types of human cancer, including colon cancer; however, the molecular mechanisms remain to be fully elucidated. Cell viability was evaluated using a Cell Counting Kit-8 assay. The apoptosis rate of cells was quantified via flow cytometry following Annexin V/propidium iodide staining. FASN activity was measured by monitoring oxidation of nicotinamide adenine dinucleotide phosphate at a wavelength of 340 nm, and intracellular free fatty acid levels were detected using a Free Fatty Acid Quantification kit. Western blot analysis and reverse transcription-polymerase chain reaction were used to detect target gene and protein expression. The present study was performed to investigate whether the gene expression of FASN and its enzymatic activity are regulated by emodin in a human colon cancer cell line. Emodin markedly inhibited the proliferation of HCT116 cells and a higher protein level of FASN was expressed, compared with that in SW480, SNU-C2A or SNU-C5 cells. Emodin significantly downregulated the protein expression of FASN in HCT116 cells, which was caused by protein degradation due to elevated protein ubiquitination. Emodin also inhibited intracellular FASN enzymatic activity and reduced the levels of intracellular free fatty acids. Emodin enhanced antiproliferation and apoptosis in a dose- and time-dependent manner. The combined treatment of emodin and cerulenin, a commercial FASN inhibitor, had an additive effect on these activities. Palmitate, the final product of the FASN reaction, rescued emodin-induced viability and apoptosis. In addition, emodin altered FASN-involved signaling pathways, including phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinases/extracellular signal-regulated kinases 1/2. These results suggested that emodin-regulated cell growth and apoptosis were mediated by inhibiting FASN and provide a molecular basis for colon cancer therapy. PMID:28260110
A Method for Visualization of Incoming Adenovirus Chromatin Complexes in Fixed and Living Cells
Komatsu, Tetsuro; Dacheux, Denis; Kreppel, Florian; Nagata, Kyosuke; Wodrich, Harald
2015-01-01
Inside the adenovirus virion, the genome forms a chromatin-like structure with viral basic core proteins. Core protein VII is the major DNA binding protein and was shown to remain associated with viral genomes upon virus entry even after nuclear delivery. It has been suggested that protein VII plays a regulatory role in viral gene expression and is a functional component of viral chromatin complexes in host cells. As such, protein VII could be used as a maker to track adenoviral chromatin complexes in vivo. In this study, we characterize a new monoclonal antibody against protein VII that stains incoming viral chromatin complexes following nuclear import. Furthermore, we describe the development of a novel imaging system that uses Template Activating Factor-I (TAF-I/SET), a cellular chromatin protein tightly bound to protein VII upon infection. This setup allows us not only to rapidly visualize protein VII foci in fixed cells but also to monitor their movement in living cells. These powerful tools can provide novel insights into the spatio-temporal regulation of incoming adenoviral chromatin complexes. PMID:26332038
Mendoza-Porras, Omar; Botwright, Natasha A; Reverter, Antonio; Cook, Mathew T; Harris, James O; Wijffels, Gene; Colgrave, Michelle L
2017-12-01
Inefficient control of temperate abalone spawning prevents pair-wise breeding and production of abalone with highly marketable traits. Traditionally, abalone farmers have used a combination of UV irradiation and application of temperature gradients to the tank water to artificially induce spawning. Proteins are known to regulate crucial processes such as respiration, muscle contraction, feeding, growth and reproduction. Spawning as a pre-requisite of abalone reproduction is likely to be regulated, in part, by endogenous proteins. A first step in elucidating the mechanisms that regulate spawning is to identify which proteins are directly involved during spawning. The present study examined protein expression following traditional spawning induction in the Haliotis laevigata female. Gonads were collected from abalone in the following physiological states: (1) spawning; (2) post-spawning; and (3) failed-to-spawn. Differential protein abundance was initially assessed using two-dimensional difference in-gel electrophoresis coupled with mass spectrometry for protein identification. A number of reproductive proteins such as vitellogenin, vitelline envelope zona pellucida domain 29 and prohibitin, and metabolic proteins such as thioredoxin peroxidase, superoxide dismutase and heat shock proteins were identified. Differences in protein abundance levels between physiological states were further assessed using scheduled multiple reaction monitoring mass spectrometry. Positive associations were observed between the abundance of specific proteins, such as heat shock cognate 70 and peroxiredoxin 6, and the propensity or failure to spawn in abalone. These findings have contributed to better understand both the effects of oxidative and heat stress over abalone physiology and their influence on abalone spawning. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Strain, Katherine E; Lydy, Michael J
2015-08-01
Genetically engineered crops expressing insecticidal crystalline proteins derived from Bacillus thuringiensis (Bt), were commercialized almost two decades ago as a means to manage agricultural pests. The Bt proteins are highly specific and only lethal upon ingestion, limiting the scope of toxicity to target insects. However, concern of exposure to non-target organisms and negative public perceptions regarding Bt crops has caused controversy surrounding their use. The objective of this research was to monitor the fate and transport of a Bt protein, Cry1Ab, in a large-scale agricultural field containing maize expressing the Cry1Ab protein and a non-Bt near isoline, and in aquatic microcosms. The highest environmental concentrations of the Cry1Ab protein were found in runoff water and sediment, up to 130ngL(-1) and 143ngg(-1) dry weight, respectively, with the Cry1Ab protein detected in both Bt and non-Bt maize fields. As surface runoff and residual crop debris can transport Bt proteins to waterways adjacent to agricultural fields, a series of laboratory experiments were conducted to determine the potential fate of the Cry1Ab protein under different conditions. The results showed that sediment type and temperature can influence the degradation of the Cry1Ab protein in an aquatic system and that the Cry1Ab protein can persist for up to two months. Although Cry1Ab protein concentrations measured in the field soil indicate little exposure to terrestrial organisms, the consistent input of Bt-contaminated runoff and crop debris into agricultural waterways is relevant to understanding potential consequences to aquatic species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Neubauer, Jonathan D; Lulai, Edward C; Thompson, Asunta L; Suttle, Jeffrey C; Bolton, Melvin D
2012-04-15
Little is known about the coordinate induction of genes that may be involved in agriculturally important wound-healing events. In this study, wound-healing events were determined together with wound-induced expression profiles of selected cell cycle, cell wall protein, and pectin methyl esterase genes using two diverse potato genotypes and two harvests (NDTX4271-5R and Russet Burbank tubers; 2008 and 2009 harvests). By 5 d after wounding, the closing layer and a nascent phellogen had formed. Phellogen cell divisions generated phellem layers until cessation of cell division at 28 d after wounding for both genotypes and harvests. Cell cycle genes encoding epidermal growth factor binding protein (StEBP), cyclin-dependent kinase B (StCDKB) and cyclin-dependent kinase regulatory subunit (StCKS1At) were induced by 1 d after wounding; these expressions coordinated with related phellogen formation and the induction and cessation of phellem cell formation. Genes encoding the structural cell wall proteins extensin (StExt1) and extensin-like (StExtlk) were dramatically up-regulated by 1-5 d after wounding, suggesting involvement with closing layer and later phellem cell layer formation. Wounding up-regulated pectin methyl esterase genes (StPME and StPrePME); StPME expression increased during closing layer and phellem cell formation, whereas maximum expression of StPrePME occurred at 5-14 d after wounding, implicating involvement in later modifications for closing layer and phellem cell formation. The coordinate induction and expression profile of StTLRP, a gene encoding a cell wall strengthening "tyrosine-and lysine-rich protein," suggested a role in the formation of the closing layer followed by phellem cell generation and maturation. Collectively, the genes monitored were wound-inducible and their expression profiles markedly coordinated with closing layer formation and the index for phellogen layer meristematic activity during wound periderm development; results were more influenced by harvest than genotype. Importantly, StTLRP was the only gene examined that may be involved in phellogen cell wall thickening after cessation of phellogen cell division. Published by Elsevier GmbH.
Nozhenko, Yuriy; Rodríguez, Ana M; Palou, Andreu
2015-01-01
Skeletal muscle can experience pronounced metabolic adaptations in response to extrinsic stimuli, and expresses leptin receptor (OB-Rb). We aimed to further the understanding of leptin effects on muscle cells, by studying the expression of key energy metabolism genes in C2C12 myotubes. We performed a dose-time-dependent study with physiological concentrations of leptin: 5, 10 and 50 ng/ml, for 0, 30', 3h, 6h, 12h and 24h, also monitoring time-course changes in non-treated cells. mRNA levels were analyzed by RT-qPCR and peroxisome proliferator activated receptor γ coactivator 1α (PGC1α) protein levels by western blot. The most significant effects were observed with 50 ng/ml leptin. In the short-term (30' and/or 3h), leptin significantly induced the expression of PGC1α, muscle carnitine palmitoyl transferase 1 (mCPT1), uncoupling protein 3 (UCP3), OB-Rb, Insulin receptor (InsR) and interleukins 6 and 15 (IL6, IL15). There was a decrease in mRNA levels of pyruvate dehydrogenase kinase 4 (PDK4) and mCPT1 in the long-term (24h). PGC1α protein levels were increased (24h). Leptin rapidly induces the expression of genes important for its own response and the control of metabolic fuels, with the rapid responses of the genes encoding the master regulator PGC1α, mCPT1, UCP3, PDK4 and the signaling secretory molecule IL6 particularly interesting. © 2015 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Kikuchi, Shoshi
2009-02-01
Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.
Yang, Yi-Ting; Lee, Mi Rong; Lee, Se Jin; Kim, Sihyeon; Nai, Yu-Shin; Kim, Jae Su
2017-05-23
The Toll signaling pathway is responsible for defense against both Gram-positive bacteria and fungi. Gram-negative binding protein 3 (GNBP3) has a strong affinity for the fungal cell wall component, β-1,3-glucan, which can activate the prophenoloxidase (proPO) cascade and induce the Toll signaling pathway. Myeloid differentiation factor 88 (MyD88) is an intracellular adaptor protein involved in the Toll signaling pathway. In this study, we monitored the response of 5 key genes (TmGNBP3, TmMyD88, and Tenecin 1, 2, and 3) in the Toll pathway of the mealworm Tenebrio molitor immune system against the fungus Beauveria bassiana JEF-007 using RT-PCR. TmGNBP3, Tenecin 1, and Tenecin 2 were significantly upregulated after fungal infection. To better understand the roles of the Toll signaling pathway in the mealworm immune system, TmGNBP3 and TmMyD88 were knocked down by RNAi silencing. Target gene expression levels decreased at 2 d postknockdown and were dramatically reduced at 6 d post-dsRNA injection. Therefore, mealworms were compromised by B. bassiana JEF-007 at 6 d post-dsRNA injection. Silencing of TmMyD88 and TmGNBP3 resulted in reduced resistance of the host to fungal infection. Particularly, reducing TmGNBP3 levels obviously downregulated Tenecin 1 and Tenecin 2 expression levels, whereas silencing TmMyD88 expression resulted in decreased Tenecin 2 expression. These results indicate that TmGNBP3 is essential to induce downstream antifungal peptide Tenecin 1 expression against B. bassiana JEF-007. © 2017 Institute of Zoology, Chinese Academy of Sciences.
Winter, Linda E; Barenkamp, Stephen J
2017-10-01
Outer membrane vesicles (OMVs) produced by Gram-negative bacteria are enriched in several outer membrane components, including major and minor outer membrane proteins and lipooligosaccharide. We assessed the functional activity of nontypeable Haemophilus influenzae (NTHi) OMV-specific antisera and the protective ability of NTHi OMVs as vaccine antigens in the chinchilla otitis media model. OMVs were purified from three HMW1/HMW2-expressing NTHi strains, two of which were also engineered to overexpress Hia proteins. OMV-specific antisera raised in guinea pigs were assessed for their ability to mediate killing of representative NTHi in an opsonophagocytic assay. The three OMV-specific antisera mediated killing of 18 of 65, 24 of 65, and 30 of 65 unrelated HMW1/HMW2-expressing NTHi strains. Overall, they mediated killing of 39 of 65 HMW1/HMW2-expressing strains. The two Hia-expressing OMV-specific antisera mediated killing of 17 of 25 and 14 of 25 unrelated Hia-expressing NTHi strains. Overall, they mediated killing of 20 of 25 Hia-expressing strains. OMVs from prototype NTHi strain 12 were used to immunize chinchillas and the course of middle ear infection was monitored following intrabullar challenge with the homologous strain. All control animals developed culture-positive otitis media, as did two of three HMW1/HMW2-immunized animals. All OMV-immunized animals, with or without supplemental HMW1/HMW2 immunization, were completely protected against otitis media. NTHi OMVs are the first immunogens examined in this model that provided complete protection with sterile immunity after NTHi strain 12 challenge. These data suggest that NTHi OMVs hold significant potential as components of protective NTHi vaccines, possibly in combination with HMW1/HMW2 proteins. Copyright © 2017 American Society for Microbiology.
Sierra, Ana; Zhu, Zhiyong; Sapay, Nicolas; Sharotri, Vikas; Kline, Crystal F.; Luczak, Elizabeth D.; Subbotina, Ekaterina; Sivaprasadarao, Asipu; Snyder, Peter M.; Mohler, Peter J.; Anderson, Mark E.; Vivaudou, Michel; Zingman, Leonid V.; Hodgson-Zingman, Denice M.
2013-01-01
Cardiac ATP-sensitive potassium (KATP) channels are key sensors and effectors of the metabolic status of cardiomyocytes. Alteration in their expression impacts their effectiveness in maintaining cellular energy homeostasis and resistance to injury. We sought to determine how activation of calcium/calmodulin-dependent protein kinase II (CaMKII), a central regulator of calcium signaling, translates into reduced membrane expression and current capacity of cardiac KATP channels. We used real-time monitoring of KATP channel current density, immunohistochemistry, and biotinylation studies in isolated hearts and cardiomyocytes from wild-type and transgenic mice as well as HEK cells expressing wild-type and mutant KATP channel subunits to track the dynamics of KATP channel surface expression. Results showed that activation of CaMKII triggered dynamin-dependent internalization of KATP channels. This process required phosphorylation of threonine at 180 and 224 and an intact 330YSKF333 endocytosis motif of the KATP channel Kir6.2 pore-forming subunit. A molecular model of the μ2 subunit of the endocytosis adaptor protein, AP2, complexed with Kir6.2 predicted that μ2 docks by interaction with 330YSKF333 and Thr-180 on one and Thr-224 on the adjacent Kir6.2 subunit. Phosphorylation of Thr-180 and Thr-224 would favor interactions with the corresponding arginine- and lysine-rich loops on μ2. We concluded that calcium-dependent activation of CaMKII results in phosphorylation of Kir6.2, which promotes endocytosis of cardiac KATP channel subunits. This mechanism couples the surface expression of cardiac KATP channels with calcium signaling and reveals new targets to improve cardiac energy efficiency and stress resistance. PMID:23223335
Expression Differentiation Is Constrained to Low-Expression Proteins over Ecological Timescales
Margres, Mark J.; Wray, Kenneth P.; Seavy, Margaret; McGivern, James J.; Herrera, Nathanael D.; Rokyta, Darin R.
2016-01-01
Protein expression level is one of the strongest predictors of protein sequence evolutionary rate, with high-expression protein sequences evolving at slower rates than low-expression protein sequences largely because of constraints on protein folding and function. Expression evolutionary rates also have been shown to be negatively correlated with expression level across human and mouse orthologs over relatively long divergence times (i.e., ∼100 million years). Long-term evolutionary patterns, however, often cannot be extrapolated to microevolutionary processes (and vice versa), and whether this relationship holds for traits evolving under directional selection within a single species over ecological timescales (i.e., <5000 years) is unknown and not necessarily expected. Expression is a metabolically costly process, and the expression level of a particular protein is predicted to be a tradeoff between the benefit of its function and the costs of its expression. Selection should drive the expression level of all proteins close to values that maximize fitness, particularly for high-expression proteins because of the increased energetic cost of production. Therefore, stabilizing selection may reduce the amount of standing expression variation for high-expression proteins, and in combination with physiological constraints that may place an upper bound on the range of beneficial expression variation, these constraints could severely limit the availability of beneficial expression variants. To determine whether rapid-expression evolution was restricted to low-expression proteins owing to these constraints on highly expressed proteins over ecological timescales, we compared venom protein expression levels across mainland and island populations for three species of pit vipers. We detected significant differentiation in protein expression levels in two of the three species and found that rapid-expression differentiation was restricted to low-expression proteins. Our results suggest that various constraints on high-expression proteins reduce the availability of beneficial expression variants relative to low-expression proteins, enabling low-expression proteins to evolve and potentially lead to more rapid adaptation. PMID:26546003
The developmental proteome of Drosophila melanogaster
Casas-Vila, Nuria; Bluhm, Alina; Sayols, Sergi; Dinges, Nadja; Dejung, Mario; Altenhein, Tina; Kappei, Dennis; Altenhein, Benjamin; Roignant, Jean-Yves; Butter, Falk
2017-01-01
Drosophila melanogaster is a widely used genetic model organism in developmental biology. While this model organism has been intensively studied at the RNA level, a comprehensive proteomic study covering the complete life cycle is still missing. Here, we apply label-free quantitative proteomics to explore proteome remodeling across Drosophila’s life cycle, resulting in 7952 proteins, and provide a high temporal-resolved embryogenesis proteome of 5458 proteins. Our proteome data enabled us to monitor isoform-specific expression of 34 genes during development, to identify the pseudogene Cyp9f3Ψ as a protein-coding gene, and to obtain evidence of 268 small proteins. Moreover, the comparison with available transcriptomic data uncovered examples of poor correlation between mRNA and protein, underscoring the importance of proteomics to study developmental progression. Data integration of our embryogenesis proteome with tissue-specific data revealed spatial and temporal information for further functional studies of yet uncharacterized proteins. Overall, our high resolution proteomes provide a powerful resource and can be explored in detail in our interactive web interface. PMID:28381612
Ladner, Tobias; Flitsch, David; Schlepütz, Tino; Büchs, Jochen
2015-10-09
During the past years, new high-throughput screening systems with capabilities of online monitoring turned out to be powerful tools for the characterization of microbial cell cultures. These systems are often easy to use, offer economic advantages compared to larger systems and allow to determine many important process parameters within short time. Fluorescent protein tags tremendously simplified the tracking and observation of cellular activity in vivo. Unfortunately, interferences between established fluorescence based dissolved oxygen tension (DOT) measurement techniques and fluorescence-based protein tags appeared. Therefore, the applicability of new oxygen-sensitive nanoparticles operated within the more suitable infrared wavelength region are introduced and validated for DOT measurement. The biocompatibility of the used dispersed oxygen-sensitive nanoparticles was proven via RAMOS cultivations for Hansenula polymorpha, Gluconobacter oxydans, and Escherichia coli. The applicability of the introduced DOT measurement technique for online monitoring of cultivations was demonstrated and successfully validated. The nanoparticles showed no disturbing effect on the online measurement of the fluorescence intensities of the proteins GFP, mCherry and YFP measured by a BioLector prototype. Additionally, the DOT measurement was not influenced by changing concentrations of these proteins. The kLa values for the applied cultivation conditions were successfully determined based on the measured DOT. The introduced technique appeared to be practically as well as economically advantageous for DOT online measuring in microtiter plates. The disadvantage of limited availability of microtiter plates with immobilized sensor spots (optodes) does not apply for this introduced technique. Due to the infrared wavelength range, used for the DOT measurement, no interferences with biogenic fluorescence or with expressed fluorescent proteins (e.g. YFP, GFP or mCherry) occur.
Compensatory islet response to insulin resistance revealed by quantitative proteomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
El Ouaamari, Abdelfattah; Zhou, Jian -Ying; Liew, Chong Wee
Compensatory islet response is a distinct feature of the pre-diabetic insulin resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from five-month-old male control, high-fat diet fed (HFD) or obese ob/ob mice by LC-MS(/MS) and quantified ~1,100 islet proteins (at least two peptides) with a false discovery rate <1%. Significant alterations in abundance were observed for ~350 proteins between groups. A majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selectedmore » reaction monitoring and Western blots, respectively. The insulin resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin resistant models. In conclusion, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin resistant rodent models that are not overtly diabetic. In conclusion, these data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, with accession MSV000079093.« less
Compensatory islet response to insulin resistance revealed by quantitative proteomics
El Ouaamari, Abdelfattah; Zhou, Jian -Ying; Liew, Chong Wee; ...
2015-07-07
Compensatory islet response is a distinct feature of the pre-diabetic insulin resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from five-month-old male control, high-fat diet fed (HFD) or obese ob/ob mice by LC-MS(/MS) and quantified ~1,100 islet proteins (at least two peptides) with a false discovery rate <1%. Significant alterations in abundance were observed for ~350 proteins between groups. A majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selectedmore » reaction monitoring and Western blots, respectively. The insulin resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin resistant models. In conclusion, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin resistant rodent models that are not overtly diabetic. In conclusion, these data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, with accession MSV000079093.« less
Colangelo, Christopher M.; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L.; Carriero, Nicholas J.; Gulcicek, Erol E.; Lam, TuKiet T.; Wu, Terence; Bjornson, Robert D.; Bruce, Can; Nairn, Angus C.; Rinehart, Jesse; Miller, Perry L.; Williams, Kenneth R.
2015-01-01
We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography–tandem mass spectrometry (LC–MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED’s database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. PMID:25712262
Colangelo, Christopher M; Shifman, Mark; Cheung, Kei-Hoi; Stone, Kathryn L; Carriero, Nicholas J; Gulcicek, Erol E; Lam, TuKiet T; Wu, Terence; Bjornson, Robert D; Bruce, Can; Nairn, Angus C; Rinehart, Jesse; Miller, Perry L; Williams, Kenneth R
2015-02-01
We report a significantly-enhanced bioinformatics suite and database for proteomics research called Yale Protein Expression Database (YPED) that is used by investigators at more than 300 institutions worldwide. YPED meets the data management, archival, and analysis needs of a high-throughput mass spectrometry-based proteomics research ranging from a single laboratory, group of laboratories within and beyond an institution, to the entire proteomics community. The current version is a significant improvement over the first version in that it contains new modules for liquid chromatography-tandem mass spectrometry (LC-MS/MS) database search results, label and label-free quantitative proteomic analysis, and several scoring outputs for phosphopeptide site localization. In addition, we have added both peptide and protein comparative analysis tools to enable pairwise analysis of distinct peptides/proteins in each sample and of overlapping peptides/proteins between all samples in multiple datasets. We have also implemented a targeted proteomics module for automated multiple reaction monitoring (MRM)/selective reaction monitoring (SRM) assay development. We have linked YPED's database search results and both label-based and label-free fold-change analysis to the Skyline Panorama repository for online spectra visualization. In addition, we have built enhanced functionality to curate peptide identifications into an MS/MS peptide spectral library for all of our protein database search identification results. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
Anilkumar, Ujval; Weisová, Petronela; Düssmann, Heiko; Concannon, Caoimhín G; König, Hans-Georg; Prehn, Jochen H M
2013-03-01
Neuronal preconditioning is a phenomenon where a previous exposure to a sub-lethal stress stimulus increases the resistance of neurons towards a second, normally lethal stress stimulus. Activation of the energy stress sensor, AMP-activated protein kinase (AMPK) has been shown to contribute to the protective effects of ischaemic and mitochondrial uncoupling-induced preconditioning in neurons, however, the molecular basis of AMPK-mediated preconditioning has been less well characterized. We investigated the effect of AMPK preconditioning using 5-aminoimidazole-4-carboxamide riboside (AICAR) in a model of NMDA-mediated excitotoxic injury in primary mouse cortical neurons. Activation of AMPK with low concentrations of AICAR (0.1 mM for 2 h) induced a transient increase in AMPK phosphorylation, protecting neurons against NMDA-induced excitotoxicity. Analysing potential targets of AMPK activation, demonstrated a marked increase in mRNA expression and protein levels of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) in AICAR-preconditioned neurons. Interestingly, over-expression of MCL-1 protected neurons against NMDA-induced excitotoxicity while MCL-1 gene silencing abolished the effect of AICAR preconditioning. Monitored intracellular Ca²⁺ levels during NMDA excitation revealed that MCL-1 over-expressing neurons exhibited improved bioenergetics and markedly reduced Ca²⁺ elevations, suggesting a potential mechanism through which MCL-1 confers neuroprotection. This study identifies MCL-1 as a key effector of AMPK-induced preconditioning in neurons. © 2012 International Society for Neurochemistry.
Abskharon, Romany; Dang, Johnny; Elfarash, Ameer; Wang, Zerui; Shen, Pingping; Zou, Lewis S; Hassan, Sedky; Wang, Fei; Fujioka, Hisashi; Steyaert, Jan; Mulaj, Mentor; Surewicz, Witold K; Castilla, Joaquín; Wohlkonig, Alexandre; Zou, Wen-Quan
2017-10-04
The infectious prion protein (PrP Sc or prion) is derived from its cellular form (PrP C ) through a conformational transition in animal and human prion diseases. Studies have shown that the interspecies conversion of PrP C to PrP Sc is largely swayed by species barriers, which is mainly deciphered by the sequence and conformation of the proteins among species. However, the bank vole PrP C (BVPrP) is highly susceptible to PrP Sc from different species. Transgenic mice expressing BVPrP with the polymorphic isoleucine (109I) but methionine (109M) at residue 109 spontaneously develop prion disease. To explore the mechanism underlying the unique susceptibility and convertibility, we generated soluble BVPrP by co-expression of BVPrP with Quiescin sulfhydryl oxidase (QSOX) in Escherichia coli. Interestingly, rBVPrP-109M and rBVPrP-109I exhibited distinct seeded aggregation pathways and aggregate morphologies upon seeding of mouse recombinant PrP fibrils, as monitored by thioflavin T fluorescence and electron microscopy. Moreover, they displayed different aggregation behaviors induced by seeding of hamster and mouse prion strains under real-time quaking-induced conversion. Our results suggest that QSOX facilitates the formation of soluble prion protein and provide further evidence that the polymorphism at residue 109 of QSOX-induced BVPrP may be a determinant in mediating its distinct convertibility and susceptibility.
NASA Astrophysics Data System (ADS)
Xing, Da; Gao, Xuejuan
2007-02-01
Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Investigating the signaling pathways involved in the laser irradiation is important for understanding these processes. The small G protein Ras works as a binary switch in many important intracellular signaling pathways and, therefore, has been one of the focal targets of signal-transduction investigations and drug development. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. On the other hand, Protein kinase Cs (PKCs), the Ca 2+ activated, phospholipid-dependent serine/threonine protein kinases, have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In this report, to monitor the direct activations of Ras and PKCs after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. The direct activation of Ras is predominantly initiated from the different microdomains of the plasma membrane. The results are monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved COS-7 cells expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope. Furthermore, the increasing activation of PKCs is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing CKAR reporter using the similar way. Taken together, the dynamic increases of H-Ras and PKCs activities are observed during the processes of cell proliferation induced by LPLI.
Tak, Hyosun; Kang, Hoin; Ji, Eunbyul; Hong, Youlim; Kim, Wook; Lee, Eun Kyung
2018-03-18
Precise and early diagnosis is critical to improve the survival rate of hepatocellular carcinoma (HCC) patients. Although several genetic and protein markers have been developed and are currently used for diagnosis, prognosis, risk stratification, and therapeutic monitoring, application of these markers still needs to be improved for better specificity and efficacy. In this study, we investigated the relative expression of mitochondrial dynamics-regulating factors including T-cell intercellular antigen protein-1 (TIA-1), mitochondrial fission factor (MFF), microRNA (miR)-200a-3p, and miR-27a/b in the liver tissues from HCC patients. The expressions of TIA-1 and MFF were augmented in the cancerous liver tissues compared to the corresponding non-tumor tissues at mRNA and protein level, while the levels of miR-200a-3p and miR-27a/b were relatively lower in the cancerous liver tissues. In addition, high levels of TIA-1 and MFF mRNA were related to the poor survival rate of HCC patients. Our results indicated that the expressions of TIA-1, MFF, miR-200a-3p, and miR-27a/b in the cancerous liver tissues differed to these in non-cancerous tissues of HCC patients, demonstrating that these gene expressions could be potential markers for the diagnosis and prognosis of HCC. Copyright © 2018 Elsevier Inc. All rights reserved.
Shi, Jian; Wang, Xinwen; Lyu, Lingyun; Jiang, Hui; Zhu, Hao-Jie
2018-04-01
Human hepatic cell lines are widely used as an in vitro model for the study of drug metabolism and liver toxicity. However, the validity of this model is still a subject of debate because the expressions of various proteins in the cell lines, including drug-metabolizing enzymes (DMEs), can differ significantly from those in human livers. In the present study, we first conducted an untargeted proteomics analysis of the microsomes of the cell lines HepG2, Hep3B, and Huh7, and compared them to human livers using a sequential window acquisition of all theoretical mass spectra (SWATH) method. Furthermore, high-resolution multiple reaction monitoring (MRM-HR), a targeted proteomic approach, was utilized to compare the expressions of pre-selected DMEs between human livers and the cell lines. In general, the SWATH quantifications were in good agreement with the MRM-HR analysis. Over 3000 protein groups were quantified in the cells and human livers, and the proteome profiles of human livers significantly differed from the cell lines. Among the 101 DMEs quantified with MRM-HR, most were expressed at substantially lower levels in the cell lines. Thus, appropriate caution must be exercised when using these cell lines for the study of hepatic drug metabolism and toxicity. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Wan, Shen; Johnson, Amanda M; Altosaar, Illimar
2012-01-01
The nitrous oxide (N2O) reduction pathway from a soil bacterium, Pseudomonas stutzeri, was engineered in plants to reduce N2O emissions. As a proof of principle, transgenic plants expressing nitrous oxide reductase (N2OR) from P. stutzeri, encoded by the nosZ gene, and other transgenic plants expressing N2OR along with the more complete operon from P. stutzeri, encoded by nosFLZDY, were generated. Gene constructs were engineered under the control of a root-specific promoter and with a secretion signal peptide. Expression and rhizosecretion of the transgene protein were achieved, and N2OR from transgenic Nicotiana tabacum proved functional using the methyl viologen assay. Transgenic plant line 1.10 showed the highest specific activity of 16.7 µmol N2O reduced min−1 g−1 root protein. Another event, plant line 1.9, also demonstrated high specific activity of N2OR, 13.2 µmol N2O reduced min−1 g−1 root protein. The availability now of these transgenic seed stocks may enable canopy studies in field test plots to monitor whole rhizosphere N flux. By incorporating one bacterial gene into genetically modified organism (GMO) crops (e.g., cotton, corn, and soybean) in this way, it may be possible to reduce the atmospheric concentration of N2O that has continued to increase linearly (about 0.26% year−1) over the past half-century. PMID:22423324
Kita-Matsuo, Hiroko; Barcova, Maria; Prigozhina, Natalie; Salomonis, Nathan; Wei, Karen; Jacot, Jeffrey G.; Nelson, Brandon; Spiering, Sean; Haverslag, René; Kim, Changsung; Talantova, Maria; Bajpai, Ruchi; Calzolari, Diego; Terskikh, Alexey; McCulloch, Andrew D.; Price, Jeffrey H.; Conklin, Bruce R.; Chen, H. S. Vincent; Mercola, Mark
2009-01-01
Background Developmental, physiological and tissue engineering studies critical to the development of successful myocardial regeneration therapies require new ways to effectively visualize and isolate large numbers of fluorescently labeled, functional cardiomyocytes. Methodology/Principal Findings Here we describe methods for the clonal expansion of engineered hESCs and make available a suite of lentiviral vectors for that combine Blasticidin, Neomycin and Puromycin resistance based drug selection of pure populations of stem cells and cardiomyocytes with ubiquitous or lineage-specific promoters that direct expression of fluorescent proteins to visualize and track cardiomyocytes and their progenitors. The phospho-glycerate kinase (PGK) promoter was used to ubiquitously direct expression of histone-2B fused eGFP and mCherry proteins to the nucleus to monitor DNA content and enable tracking of cell migration and lineage. Vectors with T/Brachyury and α-myosin heavy chain (αMHC) promoters targeted fluorescent or drug-resistance proteins to early mesoderm and cardiomyocytes. The drug selection protocol yielded 96% pure cardiomyocytes that could be cultured for over 4 months. Puromycin-selected cardiomyocytes exhibited a gene expression profile similar to that of adult human cardiomyocytes and generated force and action potentials consistent with normal fetal cardiomyocytes, documenting these parameters in hESC-derived cardiomyocytes and validating that the selected cells retained normal differentiation and function. Conclusion/Significance The protocols, vectors and gene expression data comprise tools to enhance cardiomyocyte production for large-scale applications. PMID:19352491
Soman, Kizhake V; Stafford, Susan J; Pazdrak, Konrad; Wu, Zheng; Luo, Xuemei; White, Wendy I; Wiktorowicz, John E; Calhoun, William J; Kurosky, Alexander
2017-08-04
Activated eosinophils contribute to airway dysfunction and tissue remodeling in asthma and thus are considered to be important factors in asthma pathology. We report here comparative proteomic and phosphoproteomic changes upon activation of eosinophils using eight cytokines individually and in selected cytokine combinations in time-course reactions. Differential protein and phosphoprotein expressions were determined by mass spectrometry after 2-dimensional gel electrophoresis (2DGE) and by LC-MS/MS. We found that each cytokine-stimulation produced significantly different changes in the eosinophil proteome and phosphoproteome, with phosphoproteomic changes being more pronounced and having an earlier onset. Furthermore, we observed that IL-5, GM-CSF, and IL-3 showed the greatest change in protein expression and phosphorylation, and this expression differed markedly from those of the other five cytokines evaluated. Comprehensive univariate and multivariate statistical analyses were employed to evaluate the comparative results. We also monitored eosinophil activation using flow cytometry (FC) analysis of CD69. In agreement with our proteomic studies, FC indicated that IL-5, GM-CSF, and IL-3 were more effective than the other five cytokines studied in stimulating a cell surface CD69 increase indicative of eosinophil activation. Moreover, selected combinations of cytokines revealed proteomic patterns with many proteins in common with single cytokine expression patterns but also showed a greater effect of the two cytokines employed, indicating a more complex signaling pathway that was reflective of a more typical inflammatory pathology.
Takahashi, Nagahide; Nielsen, Karin Sandager; Aleksic, Branko; Petersen, Steffen; Ikeda, Masashi; Kushima, Itaru; Vacaresse, Nathalie; Ujike, Hiroshi; Iwata, Nakao; Dubreuil, Véronique; Mirza, Naheed; Sakurai, Takeshi; Ozaki, Norio; Buxbaum, Joseph D.; Sap, Jan
2011-01-01
Background Solid evidence links schizophrenia (SZ) susceptibility to neurodevelopmental processes involving tyrosine phosphorylation-mediated signaling. Mouse studies implicate the Ptpra gene, encoding protein tyrosine phosphatase RPTPα, in the control of radial neuronal migration, cortical cytoarchitecture, and oligodendrocyte differentiation. The human gene encoding RPTPα, PTPRA, maps to a chromosomal region (20p13) associated with susceptibility to psychotic illness. Methods We characterized neurobehavioral parameters, as well as gene expression in the central nervous system, of mice with a null mutation in the Ptpra gene. We searched for genetic association between polymorphisms in PTPRA and schizophrenia risk (2 independent cohorts; total of 1420 cases and 1377 controls), and we monitored PTPRA expression in prefrontal dorsolateral cortex of SZ patients (35 cases, 2 control groups of 35 cases) Results We find that Ptpra−/− mice reproduce neurobehavioral endophenotypes of human SZ: sensitization to metamphetamine-induced hyperactivity, defective sensorimotor gating, and defective habituation to a startle response. Ptpra loss of function also leads to reduced expression of multiple myelination genes, mimicking the hypomyelination-associated changes in gene expression observed in post mortem patient brains. We further report that a polymorphism at the PTPRA locus is genetically associated with SZ, and that PTPRA mRNA levels are reduced in post mortem dorsolateral prefrontal cortex of subjects with SZ. Conclusion The implication of this well-studied signaling protein in SZ risk and endophenotype manifestation provides novel entry points into the etiopathology of this disease. PMID:21831360
Petitbarat, Marie; Rahmati, Mona; Sérazin, Valérie; Dubanchet, Sylvie; Morvan, Corinne; Wainer, Robert; de Mazancourt, Philippe; Chaouat, Gérard; Foidart, Jean-Michel; Munaut, Carine; Lédée, Nathalie
2011-01-01
Background TWEAK (Tumor necrosis factor like WEAK inducer of apoptosis) is highly expressed by different immune cells and triggers multiple cellular responses, including control of angiogenesis. Our objective was to investigate its role in the human endometrium during the implantation window, using an ex-vivo endometrial microhistoculture model. Indeed, previous results suggested that basic TWEAK expression influences the IL-18 related uNK recruitment and local cytotoxicity. Methodology/Principal Findings Endometrial biopsies were performed 7 to 9 days after the ovulation surge of women in monitored natural cycles. Biopsies were cut in micro-pieces and cultured on collagen sponge with appropriate medium. Morphology, functionality and cell death were analysed at different time of the culture. We used this ex vivo model to study mRNA expressions of NKp46 (a uNK cytotoxic receptor) and TGF-beta1 (protein which regulates uNK cytokine production) after adjunction of excess of recombinant IL-18 and either recombinant TWEAK or its antibody. NKp46 protein expression was also detailed by immunohistochemistry in selected patients with high basic mRNA level of IL-18 and either low or high mRNA level of TWEAK. The NKp46 immunostaining was stronger in patients with an IL-18 over-expression and a low TWEAK expression, when compared with patients with both IL-18 and TWEAK high expressions. We did not observe any difference for TWEAK expression when recombinant protein IL-18 or its antibody was added, or conversely, for IL-18 expression when TWEAK or its antibody was added in the culture medium. In a pro-inflammatory environment (obtained by an excess of IL-18), inhibition of TWEAK was able to increase significantly NKp46 and TGF-beta1 mRNA expressions. Conclusions/Significance TWEAK doesn't act on IL-18 expression but seems to control IL-18 related cytotoxicity on uNK cells when IL-18 is over-expressed. Thus, TWEAK appears as a crucial physiological modulator to prevent endometrial uNK cytotoxicity in human. PMID:21249128
Lee, Jinwoo; Jefcoate, Colin
2017-01-01
Recent advances in fluorescence microscopy, coupled with CRISPR/Cas9 gene editing technology, provide opportunities for understanding gene regulation at the single-cell level. The application of direct imaging shown here provides an in situ side-by-side comparison of CRISPR/Cas9-edited cells and adjacent unedited cells. We apply this methodology to the steroidogenic acute regulatory protein (StAR) gene in Y-1 adrenal cells and MA-10 testis cells. StAR is a gatekeeper protein that controls the access of cholesterol from the cytoplasm to the inner mitochondria. The loss of this mitochondrial cholesterol transfer mediator rapidly increases lipid droplets in cells, as seen in StAR−/− mice. Here, we describe a dual CRISPR/Cas9 strategy marked by GFP/mCherry expression that deletes StAR activity within 12 h. We used single-molecule fluorescence in situ hybridization (sm-FISH) imaging to directly monitor the time course of gene editing in single cells. We achieved StAR gene deletion at high efficiency dual gRNA targeting to the proximal promoter and exon 2. Seventy percent of transfected cells showed a slow DNA deletion as measured by PCR, and loss of Br-cAMP stimulated transcription. This DNA deletion was seen by sm-FISH in both loci of individual cells relative to non-target Cyp11a1 and StAR exon 7. sm-FISH also distinguishes two effects on stimulated StAR expression without this deletion. Br-cAMP stimulation of primary and spliced StAR RNA at the gene loci were removed within 4 h in this dual CRISPR/Cas9 strategy before any effect on cytoplasmic mRNA and protein occurred. StAR mRNA disappeared between 12 and 24 h in parallel with this deletion, while cholesterol ester droplets increased fourfold. These alternative changes match distinct StAR expression processes. This dual gRNA and sm-FISH approach to CRISPR/Cas9 editing facilitates rapid testing of editing strategies and immediate assessment of single-cell adaptation responses without the perturbation of clonal expansion procedures. PMID:29118738
Unfolded protein response in filamentous fungi-implications in biotechnology.
Heimel, Kai
2015-01-01
The unfolded protein response (UPR) represents a mechanism to preserve endoplasmic reticulum (ER) homeostasis that is conserved in eukaryotes. ER stress caused by the accumulation of potentially toxic un- or misfolded proteins in the ER triggers UPR activation and the induction of genes important for protein folding in the ER, ER expansion, and transport from and to the ER. Along with this adaptation, the overall capacity for protein secretion is markedly increased by the UPR. In filamentous fungi, various approaches to employ the UPR for improved production of homologous and heterologous proteins have been investigated. As the effects on protein production were strongly dependent on the expressed protein, generally applicable strategies have to be developed. A combination of transcriptomic approaches monitoring secretion stress and basic research on the UPR mechanism provided novel and important insight into the complex regulatory cross-connections between UPR signalling, cellular physiology, and developmental processes. It will be discussed how this increasing knowledge on the UPR might stimulate the development of novel strategies for using the UPR as a tool in biotechnology.
Management of Field-Evolved Resistance to Bt Maize in Argentina: A Multi-Institutional Approach.
Signorini, Ana M; Abratti, Gustavo; Grimi, Damián; Machado, Marcos; Bunge, Florencia F; Parody, Betiana; Ramos, Laura; Cortese, Pablo; Vesprini, Facundo; Whelan, Agustina; Araujo, Mónica P; Podworny, Mariano; Cadile, Alejandro; Malacarne, María F
2018-01-01
Evolution of resistance to control measures in insect populations is a natural process, and management practices are intended to delay or mitigate resistance when it occurs. During the 2012/13 season the first reports of unexpected damage by Diatraea saccharalis on some Bt maize hybrids occurred in the northeast of San Luis province, Argentina. The affected Bt technologies were Herculex I® (HX-TC1507) and VT3PRO® (MON 89034 × MON 88017 * ). Event TC1507 expresses Cry1F and event MON 89034 expresses Cry1A.105 and Cry2Ab2, whichr are all Bt proteins with activity against the lepidopterans D. saccharalis and Spodoptera frugiperda (MON 88017 expresses the protein Cry3Bb1 for control of coleopteran insects and the enzyme CP4EPSPS for glyphosate tolerance). The affected area is an isolated region surrounded by sierra systems to the northeast and west, with a hot semi-arid climate, long frost-free period, warm winters, hot dry summers, and woody shrubs as native flora. To manage and mitigate the development of resistance, joint actions were taken by the industry, growers and Governmental Agencies. Hybrids expressing Vip3A protein (event MIR162) and/or Cry1Ab protein (events MON 810 and Bt11) as single or stacked events are used in early plantings to control the first generations of D. saccharalis , and in later plantings date's technologies with good control of S. frugiperda . A commitment was made to plant the refuge, and pest damage is monitored. As a result, maize production in the area is sustainable and profitable with yields above the average.
Rios-Sicairos, Julian; Betancourt-Lozano, Miguel; Leal-Tarin, Beatriz; Hernandez-Cornejo, Rubi; Aguilar-Zarate, Gabriela; Garcia-De-La-Parra, Luz Maria; Gutierrez, Jesus N; Marquez-Rocha, Facundo; Garcia-Gasca, Alejandra
2010-01-01
Biomarkers have been useful tools to monitor some effects of pollution in coastal environments. Hepatic expression of heat-shock protein 70 (Hsp70) and cytochrome P450 1A (CYP1A) were analyzed in white mullet (Mugil curema) by RT-PCR from July, 2005 until July, 2006 in three coastal lagoons located in the southern Gulf of California, Mexico. These three coastal systems receive contaminants derived from local anthropogenic activities. Heat-shock proteins function to maintain protein integrity in the presence of stressors (such as heat or chemicals) and can be used as biomarkers of homeostatic alterations in polluted environments, whereas cytochrome P450 family members participate in steroid hormone synthesis and metabolism, and in xenobiotic transformation as a detoxification mechanism. The expression levels of both genes showed consistency in time and space, and presented a high overall correlation (r = 0.731, P < 0.001). Regardless of a high individual variability, both genes presented higher expression levels in the Urias Estuary (P < 0.001 and P < 0.05 for CYP1A and Hsp70, respectively), which was considered the most polluted among the three systems, especially during the rainy season (summer to fall). Gene expression levels were significantly associated with non-halogenated hydrocarbon concentrations in sediments during the sampling period (r = 0.686, P = 0.019 for CYP1A and r = 0.91, P < 0.001 for Hsp70), suggesting that both genes respond to chemicals in the environment. The results indicate that Mugil curema is a good candidate species to implement biomonitoring programs in tropical coastal environments.
Management of Field-Evolved Resistance to Bt Maize in Argentina: A Multi-Institutional Approach
Signorini, Ana M.; Abratti, Gustavo; Grimi, Damián; Machado, Marcos; Bunge, Florencia F.; Parody, Betiana; Ramos, Laura; Cortese, Pablo; Vesprini, Facundo; Whelan, Agustina; Araujo, Mónica P.; Podworny, Mariano; Cadile, Alejandro; Malacarne, María F.
2018-01-01
Evolution of resistance to control measures in insect populations is a natural process, and management practices are intended to delay or mitigate resistance when it occurs. During the 2012/13 season the first reports of unexpected damage by Diatraea saccharalis on some Bt maize hybrids occurred in the northeast of San Luis province, Argentina. The affected Bt technologies were Herculex I® (HX-TC1507) and VT3PRO® (MON 89034 × MON 88017*). Event TC1507 expresses Cry1F and event MON 89034 expresses Cry1A.105 and Cry2Ab2, whichr are all Bt proteins with activity against the lepidopterans D. saccharalis and Spodoptera frugiperda (MON 88017 expresses the protein Cry3Bb1 for control of coleopteran insects and the enzyme CP4EPSPS for glyphosate tolerance). The affected area is an isolated region surrounded by sierra systems to the northeast and west, with a hot semi-arid climate, long frost-free period, warm winters, hot dry summers, and woody shrubs as native flora. To manage and mitigate the development of resistance, joint actions were taken by the industry, growers and Governmental Agencies. Hybrids expressing Vip3A protein (event MIR162) and/or Cry1Ab protein (events MON 810 and Bt11) as single or stacked events are used in early plantings to control the first generations of D. saccharalis, and in later plantings date's technologies with good control of S. frugiperda. A commitment was made to plant the refuge, and pest damage is monitored. As a result, maize production in the area is sustainable and profitable with yields above the average. PMID:29888224
Cenciarelli, Carlo; Marei, Hany E; Felsani, Armando; Casalbore, Patrizia; Sica, Gigliola; Puglisi, Maria Ausiliatrice; Cameron, Angus J M; Olivi, Alessandro; Mangiola, Annunziato
2016-08-16
Platelet derived growth factor receptors (PDGFRs) play an important role in tumor pathogenesis, and they are frequently overexpressed in glioblastoma (GBM). Earlier we have shown a higher protein expression of PDGFR isoforms (α and β) in peritumoral-tissue derived cancer stem cells (p-CSC) than in tumor core (c-CSC) of several GBM affected patients. In the current study, in order to assess the activity of PDGFRα/PDGF-AA signaling axis, we performed time course experiments to monitor the effects of exogenous PDGF-AA on the expression of downstream target genes in c-CSC vs p-CSC. Interestingly, in p-CSC we detected the upregulation of Y705-phosphorylated Stat3, concurrent with a decrement of Rb1 protein in its active state, within minutes of PDGF-AA addition. This finding prompted us to elucidate the role of PDGFRα in self-renewal, invasion and differentiation in p-CSC by using short hairpin RNA depletion of PDGFRα expression. Notably, in PDGFRα-depleted cells, protein analysis revealed attenuation of stemness-related and glial markers expression, alongside early activation of the neuronal marker MAP2a/b that correlated with the induction of tumor suppressor Rb1. The in vitro reduction of the invasive capacity of PDGFRα-depleted CSC as compared to parental cells correlated with the downmodulation of markers of epithelial-mesenchymal transition phenotype and angiogenesis. Surprisingly, we observed the induction of anti-apoptotic proteins and compensatory oncogenic signals such as EDN1, EDNRB, PRKCB1, PDGF-C and PDGF-D. To conclude, we hypothesize that the newly discovered PDGFRα/Stat3/Rb1 regulatory axis might represent a potential therapeutic target for GBM treatment.
Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob
2016-01-29
Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.
TRPC3 channels critically regulate hippocampal excitability and contextual fear memory.
Neuner, Sarah M; Wilmott, Lynda A; Hope, Kevin A; Hoffmann, Brian; Chong, Jayhong A; Abramowitz, Joel; Birnbaumer, Lutz; O'Connell, Kristen M; Tryba, Andrew K; Greene, Andrew S; Savio Chan, C; Kaczorowski, Catherine C
2015-03-15
Memory formation requires de novo protein synthesis, and memory disorders may result from misregulated synthesis of critical proteins that remain largely unidentified. Plasma membrane ion channels and receptors are likely candidates given their role in regulating neuron excitability, a candidate memory mechanism. Here we conduct targeted molecular monitoring and quantitation of hippocampal plasma membrane proteins from mice with intact or impaired contextual fear memory to identify putative candidates. Here we report contextual fear memory deficits correspond to increased Trpc3 gene and protein expression, and demonstrate TRPC3 regulates hippocampal neuron excitability associated with memory function. These data provide a mechanistic explanation for enhanced contextual fear memory reported herein following knockdown of TRPC3 in hippocampus. Collectively, TRPC3 modulates memory and may be a feasible target to enhance memory and treat memory disorders. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Rosenberg, Alex; Sinai, Lior; Smith, Yoav; Ben-Yehuda, Sigal
2012-01-01
The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis) as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition. PMID:22848659
Glareosin: a novel sexually dimorphic urinary lipocalin in the bank vole, Myodes glareolus.
Loxley, Grace M; Unsworth, Jennifer; Turton, Michael J; Jebb, Alexandra; Lilley, Kathryn S; Simpson, Deborah M; Rigden, Daniel J; Hurst, Jane L; Beynon, Robert J
2017-09-01
The urine of bank voles ( Myodes glareolus ) contains substantial quantities of a small protein that is expressed at much higher levels in males than females, and at higher levels in males in the breeding season. This protein was purified and completely sequenced at the protein level by mass spectrometry. Leucine/isoleucine ambiguity was completely resolved by metabolic labelling, monitoring the incorporation of dietary deuterated leucine into specific sites in the protein. The predicted mass of the sequenced protein was exactly consonant with the mass of the protein measured in bank vole urine samples, correcting for the formation of two disulfide bonds. The sequence of the protein revealed that it was a lipocalin related to aphrodisin and other odorant-binding proteins (OBPs), but differed from all OBPs previously described. The pattern of secretion in urine used for scent marking by male bank voles, and the similarity to other lipocalins used as chemical signals in rodents, suggest that this protein plays a role in male sexual and/or competitive communication. We propose the name glareosin for this novel protein to reflect the origin of the protein and to emphasize the distinction from known OBPs. © 2017 The Authors.
Burkhart, Annette; Thomsen, Louiza Bohn; Thomsen, Maj Schneider; Lichota, Jacek; Fazakas, Csilla; Krizbai, István; Moos, Torben
2015-08-07
Primary brain capillary endothelial cells (BCECs) are a promising tool to study the blood-brain barrier (BBB) in vitro, as they maintain many important characteristics of the BBB in vivo, especially when co-cultured with pericytes and/or astrocytes. A novel strategy for drug delivery to the brain is to transform BCECs into protein factories by genetic modifications leading to secretion of otherwise BBB impermeable proteins into the central nervous system. However, a huge challenge underlying this strategy is to enable transfection of non-mitotic BCECs, taking a non-viral approach. We therefore aimed to study transfection in primary, non-mitotic BCECs cultured with defined BBB properties without disrupting the cells' integrity. Primary cultures of BCECs, pericytes and astrocytes were generated from rat brains and used in three different in vitro BBB experimental arrangements, which were characterised based on a their expression of tight junction proteins and other BBB specific proteins, high trans-endothelial electrical resistance (TEER), and low passive permeability to radiolabeled mannitol. Recombinant gene expression and protein synthesis were examined in primary BCECs. The BCECs were transfected using a commercially available transfection agent Turbofect™ to express the red fluorescent protein HcRed1-C1. The BCECs were transfected at different time points to monitor transfection in relation to mitotic or non-mitotic cells, as indicated by fluorescence-activated cell sorting analysis after 5-and 6-carboxylfluorescein diacetate succinidyl ester incorporation. The cell cultures exhibited important BBB characteristics judged from their expression of BBB specific proteins, high TEER values, and low passive permeability. Among the three in vitro BBB models, co-culturing with BCECs and astrocytes was well suited for the transfection studies. Transfection was independent of cell division and with equal efficacy between the mitotic and non-mitotic BCECs. Importantly, transfection of BCECs exhibiting BBB characteristics did not alter the integrity of the BCECs cell layer. The data clearly indicate that non-viral gene therapy of BCECs is possible in primary culture conditions with an intact BBB.
Galdieri, Luciano; Gatla, Himavanth; Vancurova, Ivana; Vancura, Ales
2016-01-01
AMP-activated protein kinase (AMPK) is an energy sensor and master regulator of metabolism. AMPK functions as a fuel gauge monitoring systemic and cellular energy status. Activation of AMPK occurs when the intracellular AMP/ATP ratio increases and leads to a metabolic switch from anabolism to catabolism. AMPK phosphorylates and inhibits acetyl-CoA carboxylase (ACC), which catalyzes carboxylation of acetyl-CoA to malonyl-CoA, the first and rate-limiting reaction in de novo synthesis of fatty acids. AMPK thus regulates homeostasis of acetyl-CoA, a key metabolite at the crossroads of metabolism, signaling, chromatin structure, and transcription. Nucleocytosolic concentration of acetyl-CoA affects histone acetylation and links metabolism and chromatin structure. Here we show that activation of AMPK with the widely used antidiabetic drug metformin or with the AMP mimetic 5-aminoimidazole-4-carboxamide ribonucleotide increases the inhibitory phosphorylation of ACC and decreases the conversion of acetyl-CoA to malonyl-CoA, leading to increased protein acetylation and altered gene expression in prostate and ovarian cancer cells. Direct inhibition of ACC with allosteric inhibitor 5-(tetradecyloxy)-2-furoic acid also increases acetylation of histones and non-histone proteins. Because AMPK activation requires liver kinase B1, metformin does not induce protein acetylation in liver kinase B1-deficient cells. Together, our data indicate that AMPK regulates the availability of nucleocytosolic acetyl-CoA for protein acetylation and that AMPK activators, such as metformin, have the capacity to increase protein acetylation and alter patterns of gene expression, further expanding the plethora of metformin's physiological effects. PMID:27733682
Krishnamoorthy, Archana
2015-01-01
Luciferase is a useful, noninvasive reporter of gene regulation that can be continuously monitored over long periods of time; however, its use is problematic in fast-growing microbes like bacteria and yeast because rapidly changing cell numbers and metabolic states also influence bioluminescence, thereby confounding the reporter's signal. Here we show that these problems can be overcome in the budding yeast Saccharomyces cerevisiae by simultaneously monitoring bioluminescence from two different colors of beetle luciferase, where one color (green) reports activity of a gene of interest, while a second color (red) is stably expressed and used to continuously normalize green bioluminescence for fluctuations in signal intensity that are unrelated to gene regulation. We use this dual-luciferase strategy in conjunction with a light-inducible promoter system to test whether different phases of yeast respiratory oscillations are more suitable for heterologous protein production than others. By using pulses of light to activate production of a green luciferase while normalizing signal variation to a red luciferase, we show that the early reductive phase of the yeast metabolic cycle produces more luciferase than other phases. PMID:26162874
Chen, Bin; Wei, Wei; Ma, Li; Yang, Bin; Gill, Ryan M; Chua, Mei-Sze; Butte, Atul J; So, Samuel
2017-06-01
Drug repositioning offers a shorter approval process than new drug development. We therefore searched large public datasets of drug-induced gene expression signatures to identify agents that might be effective against hepatocellular carcinoma (HCC). We searched public databases of messenger RNA expression patterns reported from HCC specimens from patients, HCC cell lines, and cells exposed to various drugs. We identified drugs that might specifically increase expression of genes that are down-regulated in HCCs and reduce expression of genes up-regulated in HCCs using a nonparametric, rank-based pattern-matching strategy based on the Kolmogorov-Smirnov statistic. We evaluated the anti-tumor activity of niclosamide and its ethanolamine salt (NEN) in HCC cell lines (HepG2, Huh7, Hep3B, Hep40, and PLC/PRF/5), primary human hepatocytes, and 2 mouse models of HCC. In one model of HCC, liver tumor development was induced by hydrodynamic delivery of a sleeping beauty transposon expressing an activated form of Ras (v12) and truncated β-catenin (N90). In another mouse model, patient-derived xenografts were established by implanting HCC cells from patients into livers of immunocompromised mice. Tumor growth was monitored by bioluminescence imaging. Tumor-bearing mice were fed a regular chow diet or a chow diet containing niclosamide or NEN. In a separate experiment using patient-derived xenografts, tumor-bearing mice were given sorafenib (the standard of care for patients with advanced HCC), NEN, or niclosamide alone; a combination of sorafenib and NEN; or a combination sorafenib and niclosamide in their drinking water, or regular water (control), and tumor growth was monitored. Based on gene expression signatures, we identified 3 anthelmintics that significantly altered the expression of genes that are up- or down-regulated in HCCs. Niclosamide and NEN specifically reduced the viability of HCC cells: the agents were at least 7-fold more cytotoxic to HCCs than primary hepatocytes. Oral administration of NEN to mice significantly slowed growth of genetically induced liver tumors and patient-derived xenografts, whereas niclosamide did not, coinciding with the observed greater bioavailability of NEN compared with niclosamide. The combination of NEN and sorafenib was more effective at slowing growth of patient-derived xenografts than either agent alone. In HepG2 cells and in patient-derived xenografts, administration of niclosamide or NEN increased expression of 20 genes down-regulated in HCC and reduced expression of 29 genes up-regulated in the 274-gene HCC signature. Administration of NEN to mice with patient-derived xenografts reduced expression of proteins in the Wnt-β-catenin, signal transducer and activator of transcription 3, AKT-mechanistic target of rapamycin, epidermal growth factor receptor-Ras-Raf signaling pathways. Using immunoprecipitation assays, we found NEN to bind cell division cycle 37 protein and disrupt its interaction with heat shock protein 90. In a bioinformatics search for agents that alter the HCC-specific gene expression pattern, we identified the anthelmintic niclosamide as a potential anti-tumor agent. Its ethanolamine salt, with greater bioavailability, was more effective than niclosamide at slowing the growth of genetically induced liver tumors and patient-derived xenografts in mice. Both agents disrupted interaction between cell division cycle 37 and heat shock protein 90 in HCC cells, with concomitant inhibition of their downstream signaling pathways. NEN might be effective for treatment of patients with HCC. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.
Long Term Non-Invasive Imaging of Embryonic Stem Cells Using Reporter Genes
Sun, Ning; Lee, Andrew; Wu, Joseph C.
2013-01-01
Development of non-invasive and accurate methods to track cell fate following delivery will greatly expedite transition of embryonic stem (ES) cell therapy to the clinic. Here we describe a protocol for the in vivo monitoring of stem cell survival, proliferation, and migration using reporter genes. We established stable ES cell lines constitutively expressing double fusion (DF; enhanced green fluorescent protein and firefly luciferase) or triple fusion (TF; monomeric red fluorescent protein, firefly luciferase, and herpes simplex virus thymidine kinase) reporter genes using lentiviral transduction. We used fluorescence activated cell sorting to purify these populations in vitro, bioluminescence imaging and positron emission tomography imaging to track them in vivo, and fluorescence immunostaining to confirm the results ex vivo. Unlike other methods of cell tracking such as iron particle and radionuclide labeling, reporter genes are inherited genetically and can be used to monitor cell proliferation and survival for the lifetime of transplanted cells and their progeny. PMID:19617890
Gene expression profiling in respond to TBT exposure in small abalone Haliotis diversicolor.
Jia, Xiwei; Zou, Zhihua; Wang, Guodong; Wang, Shuhong; Wang, Yilei; Zhang, Ziping
2011-10-01
In this study, we investigated the gene expression profiling of small abalone, Haliotis diversicolor by tributyltin (TBT) exposure using a cDNA microarray containing 2473 unique transcripts. Totally, 107 up-regulated genes and 41 down-regulated genes were found. For further investigation of candidate genes from microarray data and EST analysis, quantitative real-time PCR was performed at 6 h, 24 h, 48 h, 96 h and 192 h TBT exposure. 26 genes were found to be significantly differentially expressed in different time course, 3 of them were unknown. Some gene homologues like cellulose, endo-beta-1,4-glucanase, ferritin subunit 1 and thiolester containing protein II CG7052-PB might be the good biomarker candidate for TBT monitor. The identification of stress response genes and their expression profiles will permit detailed investigation of the defense responses of small abalone genes. Published by Elsevier Ltd.
Optical monitoring of thermal effects in RPE during heating
NASA Astrophysics Data System (ADS)
Schuele, G.; Huie, Ph.; Yellachich, D.; Molnar, F. E.; O'Conell-Rodwell, C.; Vitkin, E.; Perelman, L. T.; Palanker, D.
2005-04-01
Fast and non-invasive detection of cellular stress is useful for fundamental research and practical applications in medicine and biology. Using Light Scattering Spectroscopy we extract information about changes in refractive index and size of the cellular organelles. Particle sizes down to 50nm in diameter can be detected using light within the spectral range of 450-850 nm. We monitor the heat-induced sub-cellular structural changes in human RPE cells and, for comparison, in transfected NIH-3T3 cells which express luciferase linked to the heat shock protein (HSP). Using inverse light scattering fitting algorithm, we reconstruct the size distribution of the sub-micron organelles from the light scattering spectrum. The most significant (up to 70%) and rapid (20sec) temperature-related changes can be linked to an increase of refractive index of the 160nm sized mitochondria. The start of this effect coincides with the onset of HSP expression. This technique provides an insight into metabolic processes within organelles larger than 50nm without exogenous staining and opens doors for non-invasive real-time assessment of cellular stress, which can be used for monitoring of retinal laser treatments like transpupillary thermo therapy or PDT.
Unraveling Molecular Differences of Gastric Cancer by Label-Free Quantitative Proteomics Analysis.
Dai, Peng; Wang, Qin; Wang, Weihua; Jing, Ruirui; Wang, Wei; Wang, Fengqin; Azadzoi, Kazem M; Yang, Jing-Hua; Yan, Zhen
2016-01-21
Gastric cancer (GC) has significant morbidity and mortality worldwide and especially in China. Its molecular pathogenesis has not been thoroughly elaborated. The acknowledged biomarkers for diagnosis, prognosis, recurrence monitoring and treatment are lacking. Proteins from matched pairs of human GC and adjacent tissues were analyzed by a coupled label-free Mass Spectrometry (MS) approach, followed by functional annotation with software analysis. Nano-LC-MS/MS, quantitative real-time polymerase chain reaction (qRT-PCR), western blot and immunohistochemistry were used to validate dysregulated proteins. One hundred forty-six dysregulated proteins with more than twofold expressions were quantified, 22 of which were first reported to be relevant with GC. Most of them were involved in cancers and gastrointestinal disease. The expression of a panel of four upregulated nucleic acid binding proteins, heterogeneous nuclear ribonucleoprotein hnRNPA2B1, hnRNPD, hnRNPL and Y-box binding protein 1 (YBX-1) were validated by Nano-LC-MS/MS, qRT-PCR, western blot and immunohistochemistry assays in ten GC patients' tissues. They were located in the keynotes of a predicted interaction network and might play important roles in abnormal cell growth. The label-free quantitative proteomic approach provides a deeper understanding and novel insight into GC-related molecular changes and possible mechanisms. It also provides some potential biomarkers for clinical diagnosis.
Transcriptional response of Pasteurella multocida to defined iron sources.
Paustian, Michael L; May, Barbara J; Cao, Dongwei; Boley, Daniel; Kapur, Vivek
2002-12-01
Pasteurella multocida was grown in iron-free chemically defined medium supplemented with hemoglobin, transferrin, ferritin, and ferric citrate as iron sources. Whole-genome DNA microarrays were used to monitor global gene expression over seven time points after the addition of the defined iron source to the medium. This resulted in a set of data containing over 338,000 gene expression observations. On average, 12% of P. multocida genes were differentially expressed under any single condition. A majority of these genes encoded P. multocida proteins that were involved in either transport and binding or were annotated as hypothetical proteins. Several trends are evident when the data from different iron sources are compared. In general, only two genes (ptsN and sapD) were expressed at elevated levels under all of the conditions tested. The results also show that genes with increased expression in the presence of hemoglobin did not respond to transferrin or ferritin as an iron source. Correspondingly, genes with increased expression in the transferrin and ferritin experiments were expressed at reduced levels when hemoglobin was supplied as the sole iron source. Finally, the data show that genes that were most responsive to the presence of ferric citrate did not follow a trend similar to that of the other iron sources, suggesting that different pathways respond to inorganic or organic sources of iron in P. multocida. Taken together, our results demonstrate that unique subsets of P. multocida genes are expressed in response to different iron sources and that many of these genes have yet to be functionally characterized.
Prioritizing Popular Proteins in Liver Cancer: Remodelling One-Carbon Metabolism.
Mora, María Isabel; Molina, Manuela; Odriozola, Leticia; Elortza, Félix; Mato, José María; Sitek, Barbara; Zhang, Pumin; He, Fuchu; Latasa, María Uxue; Ávila, Matías Antonio; Corrales, Fernando José
2017-12-01
Primary liver cancer (HCC) is recognized as the fifth most common neoplasm and the second leading cause of cancer death worldwide. Most risk factors are known, and the molecular pathogenesis has been widely studied in the past decade; however, the underlying molecular mechanisms remain to be unveiled, as they will facilitate the definition of novel biomarkers and clinical targets for more effective patient management. We utilize the B/D-HPP popular protein strategy. We report a list of popular proteins that have been highly cocited with the expression "liver cancer". Several enzymes highlight the known metabolic remodeling of liver cancer cells, four of which participate in one-carbon metabolism. This pathway is central to the maintenance of differentiated hepatocytes, as it is considered the connection between intermediate metabolism and epigenetic regulation. We designed a targeted selective reaction monitoring (SRM) method to follow up one-carbon metabolism adaptation in mouse HCC and in regenerating liver following exposure to CCl 4 . This method allows systematic monitoring of one-carbon metabolism and could prove useful in the follow-up of HCC and of chronically liver-diseased patients (cirrhosis) at risk of HCC. The SRM data are available via ProteomeXchange in PASSEL (PASS01060).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.
Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysismore » by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.« less
Young, Jacque C.; Pan, Chongle; Adams, Rachel M.; ...
2015-01-01
The microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. Thus, we employed shotgun proteomics to simultaneously monitor microbial and human proteins in fecal samples from a preterm infant during the first month of life. Microbial community complexity and functions increased over time, with compositional changes that were consistent with previous metagenomic and rRNA gene data indicating three distinct colonization phases. Overall microbial community functions were established relatively early in development andmore » remained stable. Human proteins detected included those responsible for epithelial barrier function and antimicrobial activity. Some neutrophil-derived proteins increased in abundance early in the study period, suggesting activation of the innate immune system. Moreover, abundances of cytoskeletal and mucin proteins increased later in the time course, suggestive of subsequent adjustment to the increased microbial load. Our study provides the first snapshot of coordinated human and microbial protein expression in the infant gut during early development.« less
Abdulla, Maha-Hamadien; Valli-Mohammed, Mansoor-Ali; Al-Khayal, Khayal; Shkieh, Abdulmalik Al; Zubaidi, Ahmad; Ahmad, Rehan; Al-Saleh, Khalid; Al-Obeed, Omar; McKerrow, James
2017-01-01
Cathepsin B (CTSB), is a cysteine protease belonging to the cathepsin (Clan CA) family. The diagnostic and prognostic significance of increased CTSB in the serum of cancer patients have been evaluated for some tumor types. CTSB serum and protein levels have also been reported previously in colorectal cancer (CRC) with contradictory results. The aim of the present study was to investigate CTSB expression in CRC patients and the association of CTSB expression with various tumor stages in a Middle East population. Serum CTSB levels were evaluated in 70 patients and 20 healthy control subjects using enzyme-linked immunosorbant assay (ELISA) technique. CTSB expression was determined in 100 pairs of CRC tumor and adjacent normal colonic tissue using quantitative PCR for mRNA levels. Detection of CTSB protein expression in tissues was carried out using both immunohistochemistry and western blotting techniques. ELISA analysis showed that in sera obtained from CRC patients, the CTSB concentration was significantly higher in late stage patients with lymph node metastases when compared to early stage patients with values of 2.9 and 0.33 ng/ml, respectively (P=0.001). The majority of tumors studied had detectable CTSB protein expression with significant increased positive staining in tumors cells when compared with matched normal colon subjects (P=0.006). The mRNA expression in early stage CRC compared to late stage CRC was 0.04±0.01 and 0.07±0.02, respectively. Increased mRNA expression was more frequently observed in the advanced cancer stages with lymph node metastases when compared with the control (P=0.002). Mann-Whitney test and paired t-test were used to compare serum CTSB and mRNA levels in early and late tumor stage. A subset of four paired tissue extracts were analyzed by western blotting. The result confirmed a consistent increase in the CTSB protein expression level in tumor tissues compared with that noted in the adjacent normal mucosal cells. These findings indicate that CTSB may be an important prognostic biomarker for late stage CRC and cases with lymph node metastases in the Middle Eastern population. Monitoring serum CTSB in CRC patients may predict and/or diagnose cases with lymph node metastases. PMID:28440429
Katz, Ira K; Lamprecht, Raphael
2015-02-01
RNA transcription is needed for memory formation. However, the ability to identify genes whose expression is altered by learning is greatly impaired because of methodological difficulties in profiling gene expression in specific neurons involved in memory formation. Here, we report a novel approach to monitor the expression of genes after learning in neurons in specific brain pathways needed for memory formation. In this study, we aimed to monitor gene expression after fear learning. We retrogradely labeled discrete thalamic neurons that project to the lateral amygdala (LA) of rats. The labeled neurons were dissected, using laser microdissection microscopy, after fear conditioning learning or unpaired training. The RNAs from the dissected neurons were subjected to microarray analysis. The levels of selected RNAs detected by the microarray analysis to be altered by fear conditioning were also assessed by nanostring analysis. We observed that the expression of genes involved in the regulation of translation, maturation and degradation of proteins was increased 6 h after fear conditioning compared to unpaired or naïve trained rats. These genes were not expressed 24 h after training or in cortical neurons that project to the LA. The expression of genes involved in transcription regulation and neuronal development was altered after fear conditioning learning in the cortical-LA pathway. The present study provides key information on the identity of genes expressed in discrete thalamic and cortical neurons that project to the LA after fear conditioning. Such an approach could also serve to identify gene products as targets for the development of a new generation of therapeutic agents that could be aimed to functionally identified brain circuits to treat memory-related disorders. © 2014 International Society for Neurochemistry.
Ali, Mohamed A E; Naka, Kazuhito; Yoshida, Akiyo; Fuse, Kyoko; Kasada, Atsuo; Hoshii, Takayuki; Tadokoro, Yuko; Ueno, Masaya; Ohta, Kumiko; Kobayashi, Masahiko; Takahashi, Chiaki; Hirao, Atsushi
2014-07-18
Acute myeloid leukaemia (AML) is a heterogeneous neoplastic disorder in which a subset of cells function as leukaemia-initiating cells (LICs). In this study, we prospectively evaluated the leukaemia-initiating capacity of AML cells fractionated according to the expression of a nucleolar GTP binding protein, nucleostemin (NS). To monitor NS expression in living AML cells, we generated a mouse AML model in which green fluorescent protein (GFP) is expressed under the control of a region of the NS promoter (NS-GFP). In AML cells, NS-GFP levels were correlated with endogenous NS mRNA. AML cells with the highest expression of NS-GFP were very immature blast-like cells, efficiently formed leukaemia colonies in vitro, and exhibited the highest leukaemia-initiating capacity in vivo. Gene expression profiling analysis revealed that cell cycle regulators and nucleotide metabolism-related genes were highly enriched in a gene set associated with leukaemia-initiating capacity that we termed the 'leukaemia stem cell gene signature'. This gene signature stratified human AML patients into distinct clusters that reflected prognosis, demonstrating that the mouse leukaemia stem cell gene signature is significantly associated with the malignant properties of human AML. Further analyses of gene regulation in leukaemia stem cells could provide novel insights into diagnostic and therapeutic approaches to AML. Copyright © 2014 Elsevier Inc. All rights reserved.
Translational read-through of a nonsense mutation causing Bartter syndrome.
Cho, Hee Yeon; Lee, Beom Hee; Cheong, Hae Il
2013-06-01
Bartter syndrome (BS) is classified into 5 genotypes according to underlying mutant genes and BS III is caused by loss-of-function mutations in the CLCNKB gene encoding for basolateral ClC-Kb. BS III is the most common genotype in Korean patients with BS and W610X is the most common CLCNKB mutation in Korean BS III. In this study, we tested the hypothesis that the CLCNKB W610X mutation can be rescued in vitro using aminoglycoside antibiotics, which are known to induce translational read-through of a nonsense mutation. The CLCNKB cDNA was cloned into a eukaryotic expression vector and the W610X nonsense mutation was generated by site-directed mutagenesis. Cultured polarized MDCK cells were transfected with the vectors, and the read-through was induced using an aminoglycoside derivative, G418. Cellular expression of the target protein was monitored via immunohistochemistry. While cells transfected with the mutant CLCNKB failed to express ClC-Kb, G418 treatment of the cells induced the full-length protein expression, which was localized to the basolateral plasma membranes. It is demonstrated that the W610X mutation in CLCNKB can be a good candidate for trial of translational read-through induction as a therapeutic modality.
Behboodi, E; Ayres, S L; Memili, E; O'Coin, M; Chen, L H; Reggio, B C; Landry, A M; Gavin, W G; Meade, H M; Godke, R A; Echelard, Y
2005-01-01
Nuclear transfer (NT) using transfected primary cells is an efficient approach for the generation of transgenic goats. However, reprogramming abnormalities associated with this process might result in compromised animals. We examined the health, reproductive performance, and milk production of four transgenic does derived from somatic cell NT. Goats were derived from two fetal cell lines, each transfected with a transgene expressing a different version of the MSP-1(42) malaria antigen, either glycosylated or non-glycosylated. Two female kids were produced per cell line. Health and growth of these NT animals were monitored and compared with four age-matched control does. There were no differences in birth and weaning weights between NT and control animals. The NT does were bred and produced a total of nine kids. The control does delivered five kids. The NT does expressing the glycosylated antigen lactated only briefly, probably as a result of over-expression of the MSP-1(42) protein. However, NT does expressing the non-glycosylated antigen had normal milk yields and produced the recombinant protein. These data demonstrated that the production of healthy transgenic founder goats by somatic cell NT is readily achievable and that these animals can be used successfully for the production of a candidate Malaria vaccine.
Tan, Wei Miao; Lau, Seng Fong; Ajat, Mokrish; Mansor, Rozaihan; Abd Rani, Puteri Azaziah Megat; Rahmad, Norasfaliza Binti
2017-03-01
This case study is to report the proteins detected by proteomic analysis of synovial fluid from a dog diagnosed with idiopathic immune-mediated polyarthritis, and to compare it with healthy dogs. Synovial fluid was collected via arthrocentesis from a dog diagnosed with immune-mediated polyarthritis. Protein precipitation was performed on the synovial fluid, followed by isoelectric focusing and 2-dimensional gel electrophoresis. The spots on the 2-dimensional gels were analyzed using MALDI-TOF/MS. The results were then analyzed against the MASCOT database. The results from the proteomic analysis revealed an abundance of several types of immunoglobulins together with the presence of complement C4b-binding protein alpha chain. Actin and keratin were also among the proteins detected. Proteomic studies, facilitate a better understanding of the different levels of proteins expressed during disease activity. Potential disease biomarkers can aid in the diagnosis of disease, as well as help in monitoring treatment efficacy and providing prognosis for the patient. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hundt, Walter; Schink, Christian; Steinbach, Silke; O'Connell-Rodwell, Caitlin E.; Kiessling, Andreas; Librizzi, Damiano; Burbelko, Mykhaylo; Guccione, Samira
2012-06-01
We investigated the effect of targeted gene therapy on heat shock protein 70 expression (Hsp70) and protein production (HSP70) in a melanoma tumor model (M21; M21-L). M21 and M21-L cells transfected with a plasmid containing the Hsp70 (Hspa1b) or the cytomegalovirus (CMV) promoter and the luciferase reporter gene were injected into mice; the resulting tumors grew to a size of 650 mm3. Mice (five per group) were intravenously treated with an Arg-Gly-Asp peptide-nanoparticle/Raf-1 kinase inhibitor protein complex [RGD-NP/RAF(-)] or with a nanoparticle control. Bioluminescence imaging (IVIS®, Xenogen, USA) was performed at 12, 24, 48, and 72 h after the treatment cycle. Western blot analysis of HSP70 protein was performed to monitor protein expression. The size of the treated M21 tumors remained fairly constant (647.8+/-103.4 mm2 at the beginning versus 704.8+/-94.4 mm3 at the end of the experiment). The size of the M21-L tumors increased, similar to the untreated control tumors. Bioluminescent imaging demonstrated that when transcription was controlled by the CMV promoter, luciferase activity decreased to 17.9%+/-4.3% of baseline values in the treated M21 tumors. When transcription was controlled by the Hsp70 promoter, the highest luciferase activity (4.5+/-0.7-fold increase over base-line values) was seen 24 h after injection in the M21 tumors; however, no luciferase activity was seen in the M21-L tumors. In accordance with bioluminescent imaging, western blot analysis showed a peak in HSP70 production at 24 h after the injection of the RGD-NP/RAF(-) complex in the M21 tumors; however, no HSP70 protein induction was seen in the M21-L tumors. Thus, targeted antiangiogenic therapy can induce Hsp70 expression and HSP70 protein in melanoma tumors.
Treerat, Puthayalai; Alwis, Priyangi; D’Cruze, Tanya; Cullinane, Meabh; Vadivelu, Jamunarani; Devenish, Rodney J.; Prescott, Mark; Adler, Ben; Boyce, John D.
2015-01-01
Many Gram-negative pathogens use a type III secretion system (TTSS) for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC)-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness. PMID:26624293
Treerat, Puthayalai; Alwis, Priyangi; D'Cruze, Tanya; Cullinane, Meabh; Vadivelu, Jamunarani; Devenish, Rodney J; Prescott, Mark; Adler, Ben; Boyce, John D
2015-01-01
Many Gram-negative pathogens use a type III secretion system (TTSS) for the injection of bacterial effector proteins into host cells. The injected effector proteins play direct roles in modulation of host cell pathways for bacterial benefit. Burkholderia pseudomallei, the causative agent of melioidosis, expresses three different TTSSs. One of these systems, the TTSS3, is essential for escape from host endosomes and therefore intracellular survival and replication. Here we have characterized three putative TTSS3 proteins; namely BapA, BapB and BapC. By employing a tetracysteine (TC)-FlAsH™ labelling technique to monitor the secretion of TC-tagged fusion proteins, BapA and BapC were shown to be secreted during in vitro growth in a TTSS3-dependant manner, suggesting a role as TTSS3 effectors. Furthermore, we constructed B. pseudomallei bapA, bapB and bapC mutants and used the well-characterized TTSS3 effector BopE as a marker of secretion to show that BapA, BapB and BapC are not essential for the secretion process. However, BopE transcription and secretion were significantly increased in the bapB mutant, suggesting that BapB levels modulate BopE expression. In a BALB/c mouse model of acute melioidosis, the bapA, bapB and bapC mutants showed a minor reduction of in vivo fitness. Thus, this study defines BapA and BapC as novel TTSS3 effectors, BapB as a regulator of BopE production, and all three as necessary for full B. pseudomallei in vivo fitness.
Luger, Anna-Luisa; Sauer, Benedikt; Lorenz, Nadja I; Engel, Anna L; Braun, Yannick; Voss, Martin; Harter, Patrick N; Steinbach, Joachim P; Ronellenfitsch, Michael W
2018-05-17
Inducible gene expression is an important tool in molecular biology research to study protein function. Most frequently, the antibiotic doxycycline is used for regulation of so-called tetracycline (Tet)-inducible systems. In contrast to stable gene overexpression, these systems allow investigation of acute and reversible effects of cellular protein induction. Recent reports have already called for caution when using Tet-inducible systems as the employed antibiotics can disturb mitochondrial function and alter cellular metabolism by interfering with mitochondrial translation. Reprogramming of energy metabolism has lately been recognized as an important emerging hallmark of cancer and is a central focus of cancer research. Therefore, the scope of this study was to systematically analyze dose-dependent metabolic effects of doxycycline on a panel of glioma cell lines with concomitant monitoring of gene expression from Tet-inducible systems. We report that doxycycline doses commonly used with inducible expression systems (0.01⁻1 µg/mL) substantially alter cellular metabolism: Mitochondrial protein synthesis was inhibited accompanied by reduced oxygen and increased glucose consumption. Furthermore, doxycycline protected human glioma cells from hypoxia-induced cell death. An impairment of cell growth was only detectable with higher doxycycline doses (10 µg/mL). Our findings describe settings where doxycycline exerts effects on eukaryotic cellular metabolism, limiting the employment of Tet-inducible systems.
Liu, Yang; Zhang, Qinghua; Wang, Li; Wang, Hui; Sun, Tao; Xia, Hechun; Yang, Yi; Zhang, Li
2017-12-01
This study is to clarify the protective role of α-lipoic acid in high-fat diet-induced cerebral damage mice. The mice were divided into 5 groups: normal control group, high-fat diet (HFD) group, low-dose α-lipoic acid group for prevention, high-dose α-lipoic acid group for prevention, and high-dose α-lipoic acid group for treatment. The groups' weights and blood glucose changes were monitored. We used HE staining to observe morphological changes in the cerebral cortex. The expression levels of the oxidative stress proteins SOD2, catalase, and the inflammatory pathway proteins p-JNK, p-ERK were measured by western blot and immunochemistry. Compared with the control group, the quantity of cortical neurons in the HFD group was decreased, and the samples exhibited retrogression. However, the lipoic acid significantly protected and promoted the cortical neurons survival. Moreover, compared with the HFD group, the expression levels of SOD2 and catalase in the three α-lipoic acid obtained groups were significantly increased. However, the expression levels of the inflammatory pathway proteins p-JNK and p-ERK were significantly decreased. These results indicate that theα-lipoic acid greatly protects the cortical neurons, and inhibited the oxidative stress and inflammatory reactions in the high-fat diet mice. Copyright © 2017 Elsevier B.V. All rights reserved.
Longitudinal in vivo imaging of retinal gliosis in a diabetic mouse model.
Kumar, Saravana; Zhuo, Lang
2010-10-01
In this study, we visualize and quantify retinal gliosis in vivo for monitoring early diabetic retinopathy (DR) in a transgenic mouse model. Onset of diabetes was triggered via intraperitoneal injection of streptozotocin (STZ) into transgenic F1 hybrid (FVB/N × C57BL/6J) mice expressing green fluorescent protein (GFP) under the control of glial fibrillary acidic protein (GFAP) promoter. Retinal glial cells are imaged once pre-STZ treatment followed by weekly post-STZ imaging for five weeks using a confocal scanning laser ophthalmoscope. Mice develop diabetes one week after STZ induction as confirmed from the high blood glucose levels (>13.9 mmol/L). A significant increase is observed in the GFAP-GFP transgene expression from astrocytic cell bodies and processes as early as week 5 for the STZ-treated mice. Retinal astrocytes also undergo hyperplasia progressively from week 0 to 5. This precedes any structural abnormalities to the retinal vasculature. Immunohistochemistry (IHC) on retinal sections as well as quantitative RT-PCR of endogenous and transgene GFAP mRNA supports our in vivo observation. Our in vivo data correlates with clinical reports with regards to retinal gliosis-related inflammatory response during early diabetic retinopathy. This opens up the possibility of using in vivo molecular imaging of retinal glial cells as a platform for monitoring the efficacy of anti-DR drug candidates which intervene at an early stage.
van Beilen, Johan W. A.; Brul, Stanley
2013-01-01
The internal pH (pHi) of a living cell is one of its most important physiological parameters. To monitor the pH inside Bacillus subtilis during various stages of its life cycle, we constructed an improved version (IpHluorin) of the ratiometric, pH-sensitive fluorescent protein pHluorin by extending it at the 5′ end with the first 24 bp of comGA. The new version, which showed an approximate 40% increase in fluorescence intensity, was expressed from developmental phase-specific, native promoters of B. subtilis that are specifically active during vegetative growth on glucose (PptsG) or during sporulation (PspoIIA, PspoIIID, and PsspE). Our results show strong, compartment-specific expression of IpHluorin that allowed accurate pHi measurements of live cultures during exponential growth, early and late sporulation, spore germination, and during subsequent spore outgrowth. Dormant spores were characterized by an pHi of 6.0 ± 0.3. Upon full germination the pHi rose dependent on the medium to 7.0–7.4. The presence of sorbic acid in the germination medium inhibited a rise in the intracellular pH of germinating spores and inhibited germination. Such effects were absent when acetic was added at identical concentrations. PMID:23785365
Cheng, Chao-Wen; Rifai, Abdalla; Ka, Shuk-Man; Shui, Hao-Ai; Lin, Yuh-Feng; Lee, Wei-Hwa; Chen, Ann
2005-12-01
Rise in cellular calcium is associated with acute tubular necrosis, the most common cause of acute renal failure (ARF). The mechanisms that calcium signaling induce in the quiescent tubular cells to proliferate and differentiate during acute tubular necrosis have not been elucidated. Acute tubular necrosis induced in mice by single intravenous injection of uranyl nitrate and examined after 1, 3, 7, and 14 days. Renal function was monitored and kidneys were evaluated by histology, immunohistochemistry, Western blotting, in situ hybridization, and real-time reverse transcription-polymerase chain reaction (RT-PCR). Models of folic acid induced-ARF and ischemic/reperfusion (I/R) injury were similarly investigated. Analysis of mRNA expression of intracellular calcium and phospholipid-binding proteins demonstrated selective expression of S100A6 and Annexin A2 (Anxa2) in the renal cortex with marked elevation on day 3, and gradually decline on day 7 and further attenuation on day 14. Similarly, the expression of both proteins, as demonstrated by immunohistochemistry and Western blot analysis, was increased and reached the peak level on day 7 and then gradually declined by day 14. Vimentin, a marker of dedifferentiated cells, was highly expressed during the recovery phase. Combined in situ hybridization immunohistochemistry revealed colocalization of both S100A6 and Anxa2 with proliferating cell nuclear antigen (PCNA). The universality of this phenomenon was confirmed in two other mouse acute tubular necrosis models, the ischemic-reperfusion injury and folic acid-induced ARF. Collectively, these findings demonstrate that S100A6 and Anxa2 expression, initiated in response to tubular injury, persist in parallel throughout the recovery process of tubular cells in acute renal failure.
Medrano, A I; DiRita, V J; Castillo, G; Sanchez, J
1999-05-01
Vibrio cholerae El Tor require special in vitro culture conditions, consisting of an initial static growth period followed by shift to shaking (AKI conditions), for expression of cholera toxin (CT) and toxin coregulated pili (TCP). ToxT, a regulator whose initial transcription depends on the ToxR regulator, positively modulates expression of CT and TCP. To help understand control of CT and TCP in El Tor vibrios, we monitored ctxAB and ToxR-dependent toxT transcription by time course primer extension assays. AKI conditions stimulated CT synthesis with an absence of ctxAB transcription during static growth followed by induction upon shaking. ToxR-dependent toxT transcription was induced at the end of the static growth period but was transient, stopping shortly after shaking was initiated but, interestingly, also if the static phase was prolonged. Immunoblot assays showed that ToxR protein levels were not coincidentally transient, implying a protein on/off switch mechanism for ToxR. Despite the transient activation by ToxR, transcription of ctxAB was maintained during shaking. This finding suggested continued toxT expression, possibly through relay transcription from another promoter. The 12.6-kb distant upstream tcpA promoter responsible for expression of the TCP operon has been proposed to provide an alternate toxT message by readthrough transcription. Activation of the tcpA promoter is supported by increased expression of TcpA protein during the shaking phase of the culture. Readthrough transcription of toxT from tcpA would be compatible with reverse transcription-PCR evidence for a toxT mRNA at times when ToxR-dependent transcription was no longer detectable by primer extension.
Dutta, Indrajit; Saha, Prasenjit; Majumder, Pralay; Sarkar, Anindya; Chakraborti, Dipankar; Banerjee, Santanu; Das, Sampa
2005-11-01
The homopteran group of polyphagous sucking insect pests causes severe damage to many economically important plants including tobacco. Allium sativum leaf lectin (ASAL), a mannose-binding 25-kDa homodimeric protein, has recently been found to be antagonistic to various sucking insects in the homopteran group through artificial diet bioassay experiments. The present study describes, for the first time, the expression of the ASAL coding sequence under the control of the cauliflower mosaic virus (CaMV) 35S promoter in tobacco by Agrobacterium-mediated transformation technology. Molecular analyses demonstrated the integration of the chimeric ASAL gene in tobacco and its inheritance in the progeny plants. Western blot analysis followed by enzyme-linked immunosorbent assay (ELISA) determined the level of ASAL expression in different lines to be in the range of approximately 0.68%-2% of total soluble plant protein. An in planta bioassay conducted with Myzus persicae, peach potato aphid (a devastating pest of tobacco and many other important plants), revealed that the percentage of insect survival decreased significantly to 16%-20% in T0 plants and T1 progeny, whilst approximately 75% of insects survived on untransformed tobacco plants after 144 h of incubation. Ligand analyses of insect brush border membrane vesicle receptors and expressed ASAL in transgenic tobacco showed that the expressed ASAL binds to the aphid gut receptor in the same manner as native ASAL, pointing to the fact that ASAL maintains the biochemical characteristics even in the transgenic situation. These findings in a model plant open up the possibility of expressing the novel ASAL gene in a wide range of crop plants susceptible to various sap-sucking insects.
Liu, Xin; Zhang, Cuicui; Wang, Xiurong; Liu, Qiaoquan; Yuan, Dingyang; Pan, Gang; Sun, Samuel S M; Tu, Jumin
2016-06-29
Lysine (Lys) is considered to be the first limiting essential amino acid in rice. Although there have been extensive efforts to improve the Lys content of rice through traditional breeding and genetic engineering, no satisfactory products have been achieved to date. We expressed a LYSINE-RICH PROTEIN gene (LRP) from Psophocarpus tetragonolobus (L.) DC using an endosperm-specific GLUTELIN1 promoter (GT1) in Peiai64S (PA64S), an elite photoperiod-thermo sensitive male sterility (PTSMS) line. The expression of the foreign LRP protein was confirmed by Western blot analysis. The Lys level in the transgenic rice seeds increased more than 30 %, the total amount of other amino acids also increased compared to wild-type. Persistent investigation of amino acids in 3 generations showed that the Lys content was significantly increased in seeds of transgenic rice. Furthermore, Lys content in the hybrid of the transgenic plants also had an approximate 20 % increase compared to hybrid control. At the grain-filling stage, we monitored the transcript abundance of many genes encoding key enzymes involved in amino acid metabolism, and the results suggested that reduced amino acid catabolism led to the accumulation of amino acids in the transgenic plants. The genetically engineered rice showed unfavorable grain phenotypes compared to wild-type, however, its hybrid displayed little negative effects on grain. Endosperm-specific expression of foreign LRP significantly increased the Lys content in the seeds of transgenic plant, and the the Lys increase was stably heritable with 3 generation investigation. The hybrid of the transgenic plants also showed significant increases of Lys content in the seeds. These results indicated that expression of LRP in rice seeds may have promising applications in improving Lys levels in rice.
Elzaki, Mohammed Esmail Abdalla; Miah, Mohammad Asaduzzaman; Peng, Yingchuan; Zhang, Haomiao; Jiang, Ling; Wu, Min; Han, Zhaojun
2018-06-01
Cytochrome P450s (CYPs) are known to play a major role in metabolizing a wide range compounds. CYP6FU1 has been found to be over-expressed in a deltamethrin-resistant strain of Laodelphax striatellus. This study was conducted to express CYP6FU1 in Sf9 cells as a recombinant protein, to confirm its ability to degrade deltamethrin, chlorpyrifos, imidacloprid and traditional P450 probing substrates. Carbon monoxide difference spectrum analysis indicated that the intact CYP6FU1 protein was expressed in insect Sf9 cells. Catalytic activity tests with four traditional P450 probing substrates revealed that the expressed CYP6FU1 preferentially metabolized p-nitroanisole and ethoxyresorufin, but not ethoxycoumarin and luciferin-HEGE. The enzyme kinetic parameters were tested using p-nitroanisole. The michaelis constant (K m ) and catalytic constant (K cat ) values were 17.51 ± 4.29 µm and 0.218 ± 0.001 pmol min -1 mg -1 protein, respectively. Furthermore, CYP6FU1 activity for degradation of insecticides was tested by measuring substrate depletion and metabolite formation. The chromatogram analysis showed obvious nicotinamide-adenine dinucleotide phosphate (NADPH)-dependent depletion of deltamethrin, and formation of the unknown metabolite. Mass spectra and the molecular docking model showed that the metabolite was 4-hydroxy-deltamethrin. However, the recombinant CYP6FU1 could not metabolize imidacloprid and chlorpyrifos. These results confirmed that the over-expressed CYP6FU1 contributes to deltamethrin resistance in L. striatellus, and p-nitroanisole might be a potential diagnostic probe for deltamethrin metabolic resistance detection and monitoring. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Okuda, Masahiro; Taniguchi, Tomokuni; Takamiya, Osamu
2012-09-01
Tissue factor (TF), or thromboplastin, is a glycoprotein that triggers the extrinsic coagulation pathway. In blood coagulation testing, TF has been used as a natural source for determining Quick prothrombin time (PT) or the Owren PT (OBT). Currently, natural sources are being replaced with recombinant proteins because of their uniform characteristics and the possibility of stable mass production of PT reagents. Because bovine spongiform encephalopathy (BSE)-infected cows are widespread in Japan, we prepared a recombinant bovine TF (rbTF) with a baculovirus expression system using silkworms. To overcome the limitations of natural TF, especially in bovine brain, we expressed a full-length rbTF protein in Silkworm pupae with a baculovirus expression system. Baculovirus inactivation and the presence of DNA fragments in the rbTF fraction were confirmed using Reed-Muench and polymerase chain reaction methods after inactivation with a detergent. The rbTF fraction prepared by an immobilized anti-Silkworm pupae fluid protein Sepharose 4B column was identified as a visible band on western blots with a polyclonal antibody against human TF with cross-reactivity with TFs. The inhibition of the polyclonal antibody against human TF by the clotting assay for PT was identified, and amidolytic biological activity through activated factor VII on S-2288 substrate was observed. In conclusion, the rbTF expressed by the baculovirus system using Silkworm pupae was uniformly specific for bovine TF. The OBT reagent incorporated by this rbTF was similar to those of commercial reagents. It also showed a suitable International Sensitivity Index and reproducibility precision, thereby allowing for diagnostic use. Copyright © 2012 Elsevier Ltd. All rights reserved.
Zhang, Yunfei; Robertson, J Brian; Xie, Qiguang; Johnson, Carl Hirschie
2016-01-01
"pHlash" is a novel bioluminescence-based pH sensor for measuring intracellular pH, which is developed based on Bioluminescence Resonance Energy Transfer (BRET). pHlash is a fusion protein between a mutant of Renilla luciferase (RLuc) and a Venus fluorophore. The spectral emission of purified pHlash protein exhibits pH dependence in vitro. When expressed in either yeast or mammalian cells, pHlash reports basal pH and cytosolic acidification. In this chapter, we describe an in vitro characterization of pHlash, and also in vivo assays including in yeast cells and in HeLa cells using pHlash as a cytoplasmic pH indicator.
Friedman, Sivan; Linsky, Marika; Lobel, Lior; Rabinovich, Lev; Sigal, Nadejda; Herskovits, Anat A
2017-06-01
Listeria monocytogenes is an environmental saprophyte and intracellular bacterial pathogen. Upon invading mammalian cells, the bacterium senses abrupt changes in its metabolic environment, which are rapidly transduced to regulation of virulence gene expression. To explore the relationship between L. monocytogenes metabolism and virulence, we monitored virulence gene expression dynamics across a library of genetic mutants grown under two metabolic conditions known to activate the virulent state: charcoal-treated rich medium containing glucose-1-phosphate and minimal defined medium containing limiting concentrations of branched-chain amino acids (BCAAs). We identified over 100 distinct mutants that exhibit aberrant virulence gene expression profiles, the majority of which mapped to nonessential metabolic genes. Mutants displayed enhanced, decreased, and early and late virulence gene expression profiles, as well as persistent levels, demonstrating a high plasticity in virulence gene regulation. Among the mutants, one was noteworthy for its particularly low virulence gene expression level and mapped to an X-prolyl aminopeptidase (PepP). We show that this peptidase plays a role in posttranslational activation of the major virulence regulator, PrfA. Specifically, PepP mediates recruitment of PrfA to the cytoplasmic membrane, a step identified as critical for PrfA protein activation. This study establishes a novel step in the complex mechanism of PrfA activation and further highlights the cross regulation of metabolism and virulence. Copyright © 2017 American Society for Microbiology.
Evidence against Resveratrol as a viable therapy for the rescue of defective ΔF508 CFTR
Jai, Ying; Shah, Kalpit; Bridges, Robert J.; Bradbury, Neil A.
2015-01-01
BACKGROUND Resveratrol, a natural phenolic compound, has been reported to rescue mutant ΔF508 CFTR in expression systems and primary epithelial cells. Although this implies a therapeutic benefit to patients with CF, investigations were performed using resveratrol concentrations greatly in excess of those achievable in plasma. We evaluated the efficacy of resveratrol as a CFTR corrector in relevant primary airway cells, using physiologically achievable resveratrol concentrations. METHODS Cells expressing wt or ΔF508 CFTR were exposed to chronic or acute resveratrol. CFTR mRNA and protein expression were monitored. The effects of resveratrol on primary ΔF508 human airway cells were evaluated by equivalent current analysis using modified Ussing chambers. RESULTS Consistent with previously published data in heterologous expression systems, high doses of resveratrol increased CFTR expression; however physiologically relevant concentrations were without effect. In contrast to heterologous expression systems, resveratrol was unable to increase mutant CFTR channel activity in primary airway cells. Elevated amiloride-sensitive currents, indicative of sodium transport and characteristically elevated in CF airway cells, were also unaffected by resveratrol CONCLUSIONS High concentrations of resveratrol can increase CFTR mRNA and protein in some cell types. In addition, acute resveratrol exposure can stimulate CFTR mediated chloride secretion, probably by increasing cellular cAMP levels. Resveratrol at physiologically achievable levels yielded no benefit in primary ΔF508 airway cells, either in terms of amiloride-sensitive currents of CFTR currents. PMID:26342647
Tsimakouridze, Elena V; Straume, Marty; Podobed, Peter S; Chin, Heather; LaMarre, Jonathan; Johnson, Ron; Antenos, Monica; Kirby, Gordon M; Mackay, Allison; Huether, Patsy; Simpson, Jeremy A; Sole, Michael; Gadal, Gerard; Martino, Tami A
2012-08-01
There is critical demand in contemporary medicine for gene expression markers in all areas of human disease, for early detection of disease, classification, prognosis, and response to therapy. The integrity of circadian gene expression underlies cardiovascular health and disease; however time-of-day profiling in heart disease has never been examined. We hypothesized that a time-of-day chronomic approach using samples collected across 24-h cycles and analyzed by microarrays and bioinformatics advances contemporary approaches, because it includes sleep-time and/or wake-time molecular responses. As proof of concept, we demonstrate the value of this approach in cardiovascular disease using a murine Transverse Aortic Constriction (TAC) model of pressure overload-induced cardiac hypertrophy in mice. First, microarrays and a novel algorithm termed DeltaGene were used to identify time-of-day differences in gene expression in cardiac hypertrophy 8 wks post-TAC. The top 300 candidates were further analyzed using knowledge-based platforms, paring the list to 20 candidates, which were then validated by real-time polymerase chain reaction (RTPCR). Next, we tested whether the time-of-day gene expression profiles could be indicative of disease progression by comparing the 1- vs. 8-wk TAC. Lastly, since protein expression is functionally relevant, we monitored time-of-day cycling for the analogous cardiac proteins. This approach is generally applicable and can lead to new understanding of disease.
Khan, Zainul A.; Abdin, Malik Z.; Khan, Jawaid A.
2015-01-01
Cotton leaf curl Burewala virus (CLCuBuV), belonging to the genus Begomovirus, possesses single-stranded monopartite DNA genome. The bidirectional promoters representing Rep and coat protein (CP) genes of CLCuBuV were characterized and their efficacy was assayed. Rep and CP promoters of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV) were fused with β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. GUS activity in individual plant cells driven by Rep, CP and 35S promoters was estimated using real-time PCR and fluorometric GUS assay. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi) leaves showed highest expression driven by Rep promoter followed by 35S promoter and CP promoter. The expression level of GUS driven by Rep promoter in transformed tobacco plants was shown to be two to four-fold higher than that of 35S promoter, while the expression by CP promoter was slightly lower. Further, the expression of GFP was monitored in agroinfiltrated leaves of N. benthamiana, N. tabacum and cotton (Gossypium hirsutum) plants using confocal laser scanning microscopy. Rep promoter showed strong consistent transient expression in tobacco and cotton leaves as compared to 35S promoter. The strong constitutive CLCuBuV Rep promoter developed in this study could be very useful for high level expression of transgenes in a wide variety of plant cells. PMID:25799504
Khan, Zainul A; Abdin, Malik Z; Khan, Jawaid A
2015-01-01
Cotton leaf curl Burewala virus (CLCuBuV), belonging to the genus Begomovirus, possesses single-stranded monopartite DNA genome. The bidirectional promoters representing Rep and coat protein (CP) genes of CLCuBuV were characterized and their efficacy was assayed. Rep and CP promoters of CLCuBuV and 35S promoter of Cauliflower mosaic virus (CaMV) were fused with β-glucuronidase (GUS) and green fluorescent protein (GFP) reporter genes. GUS activity in individual plant cells driven by Rep, CP and 35S promoters was estimated using real-time PCR and fluorometric GUS assay. Histochemical staining of GUS in transformed tobacco (Nicotiana tabacum cv. Xanthi) leaves showed highest expression driven by Rep promoter followed by 35S promoter and CP promoter. The expression level of GUS driven by Rep promoter in transformed tobacco plants was shown to be two to four-fold higher than that of 35S promoter, while the expression by CP promoter was slightly lower. Further, the expression of GFP was monitored in agroinfiltrated leaves of N. benthamiana, N. tabacum and cotton (Gossypium hirsutum) plants using confocal laser scanning microscopy. Rep promoter showed strong consistent transient expression in tobacco and cotton leaves as compared to 35S promoter. The strong constitutive CLCuBuV Rep promoter developed in this study could be very useful for high level expression of transgenes in a wide variety of plant cells.
Homma, Kohei; Usui, Sumiko; Kaneda, Makoto
2017-03-01
Fluorescent reporter gene knock-in induced pluripotent stem cell (iPSC) lines have been used to evaluate the efficiency of differentiation into specific cell lineages. Here, we report a knock-in strategy for the generation of human iPSC reporter lines in which a 2A peptide sequence and a red fluorescent protein (E2-Crimson) gene were inserted at the termination codon of the cone-rod homeobox (Crx) gene, a photoreceptor-specific transcriptional factor gene. The knock-in iPSC lines were differentiated into fluorescence-expressing cells in 3D retinal differentiation culture, and the fluorescent cells also expressed Crx specifically in the nucleus. We found that the fluorescence intensity was positively correlated with the expression levels of Crx mRNA and that fluorescent cells expressed rod photoreceptor-specific genes in the later stage of differentiation. Finally, we treated the fluorescent cells with DAPT, a Notch inhibitor, and found that DAPT-enhanced retinal differentiation was associated with up-regulation of Crx, Otx2 and NeuroD1, and down-regulation of Hes5 and Ngn2. These suggest that this knock-in strategy at the 3'-end of the target gene, combined with the 2A peptide linked to fluorescent proteins, offers a useful tool for labeling specific cell lineages or monitoring expression of any marker genes without affecting the function of the target gene. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Di Girolamo, Francesco; Righetti, Pier Giorgio; Soste, Martin; Feng, Yuehan; Picotti, Paola
2013-08-26
Systems biology studies require the capability to quantify with high precision proteins spanning a broad range of abundances across multiple samples. However, the broad range of protein expression in cells often precludes the detection of low-abundance proteins. Different sample processing techniques can be applied to increase proteome coverage. Among these, combinatorial (hexa)peptide ligand libraries (CPLLs) bound to solid matrices have been used to specifically capture and detect low-abundance proteins in complex samples. To assess whether CPLL capture can be applied in systems biology studies involving the precise quantitation of proteins across a multitude of samples, we evaluated its performance across the whole range of protein abundances in Saccharomyces cerevisiae. We used selected reaction monitoring assays for a set of target proteins covering a broad abundance range to quantitatively evaluate the precision of the approach and its capability to detect low-abundance proteins. Replicated CPLL-isolates showed an average variability of ~10% in the amount of the isolated proteins. The high reproducibility of the technique was not dependent on the abundance of the protein or the amount of beads used for the capture. However, the protein-to-bead ratio affected the enrichment of specific proteins. We did not observe a normalization effect of CPLL beads on protein abundances. However, CPLLs enriched for and depleted specific sets of proteins and thus changed the abundances of proteins from a whole proteome extract. This allowed the identification of ~400 proteins otherwise undetected in an untreated sample, under the experimental conditions used. CPLL capture is thus a useful tool to increase protein identifications in proteomic experiments, but it should be coupled to the analysis of untreated samples, to maximize proteome coverage. Our data also confirms that CPLL capture is reproducible and can be confidently used in quantitative proteomic experiments. Combinatorial hexapeptide ligand libraries (CPLLs) bound to solid matrices have been proposed to specifically capture and detect low-abundance proteins in complex samples. To assess whether the CPLL capture can be confidently applied in systems biology studies involving the precise quantitation of proteins across a broad range of abundances and a multitude of samples, we evaluated its reproducibility and performance features. Using selected reaction monitoring assays for proteins covering the whole range of abundances we show that the technique is reproducible and compatible with quantitative proteomic studies. However, the protein-to-bead ratio affects the enrichment of specific proteins and CPLLs depleted specific sets of proteins from a whole proteome extract. Our results suggest that CPLL-based analyses should be coupled to the analysis of untreated samples, to maximize proteome coverage. Overall, our data confirms the applicability of CPLLs in systems biology research and guides the correct use of this technique. Copyright © 2013 Elsevier B.V. All rights reserved.
[Expression and clinical significance of Pokemon in non-small cell lung cancer].
Zhao, Zhihong; Wang, Shengfa; Zhang, Tiewa
2007-12-20
Proto-oncogene Pokemon is the special transcription inhibitor of ARF,which can regulate cell growth and differentiation by ARF-P53 path.It may be the important monitoring target of tumor because of being upstream region of many tumor suppressor genes and proto-oncogenes.The aim of this study is to explore the clinical significance of Pokemon gene in non-small cell lung cancer(NSCLC). Immunohistochemistry was applied to detect the expression of Pokemon protein in 92 cases of NSCLC and 20 cases of paracancerous lung tissues.Correlation between abnormal expression of Pokemon with pathologic characteristics and prognosis of NSCLC was analyzed. Pokemon was not expressed in paracancerous lung tissues and was found in 66 of 92(71.7%) cases of lung cancer tissues.Expression of Pokemon was closely related to TNM stages(P=0.011).Survival rate of patients with negative Pokemon expression was significantly higher than that of those with positive Pokemon expression(P=0.0015).Pokemon expression was demonstrated as independent prognostic factor of NSCLC. Pokemon is expressed in NSCLC and it may be identified as a new diagnostic marker.High expression of Pokemon may indicate poor prognosis of patients with NSCLC.
Shamekova, Malika; Mendoza, Maria R; Hsieh, Yi-Cheng; Lindbo, John; Omarov, Rustem T; Scholthof, Herman B
2014-03-01
A next generation Tomato bushy stunt virus (TBSV) coat protein gene replacement vector system is described that can be applied by either RNA inoculation or through agroinfiltration. A vector expressing GFP rapidly yields high levels of transient gene expression in inoculated leaves of various plant species, as illustrated for Nicotiana benthamiana, cowpea, tomato, pepper, and lettuce. A start-codon mutation to down-regulate the dose of the P19 silencing suppressor reduces GFP accumulation, whereas mutations that result in undetectable levels of P19 trigger rapid silencing of GFP. Compared to existing virus vectors the TBSV system has a unique combination of a very broad host range, rapid and high levels of replication and gene expression, and the ability to regulate its suppressor. These features are attractive for quick transient assays in numerous plant species for over-expression of genes of interest, or as a sensor to monitor the efficacy of antiviral RNA silencing. Copyright © 2014. Published by Elsevier Inc.
Protein expression changes caused by spaceflight as measured for 18 Russian cosmonauts.
M Larina, Irina; Percy, Andrew J; Yang, Juncong; Borchers, Christoph H; M Nosovsky, Andrei; I Grigoriev, Anatoli; N Nikolaev, Evgeny
2017-08-15
The effects of spaceflight on human physiology is an increasingly studied field, yet the molecular mechanisms driving physiological changes remain unknown. With that in mind, this study was performed to obtain a deeper understanding of changes to the human proteome during space travel, by quantitating a panel of 125 proteins in the blood plasma of 18 Russian cosmonauts who had conducted long-duration missions to the International Space Station. The panel of labeled prototypic tryptic peptides from these proteins covered a concentration range of more than 5 orders of magnitude in human plasma. Quantitation was achieved by a well-established and highly-regarded targeted mass spectrometry approach involving multiple reaction monitoring in conjunction with stable isotope-labeled standards. Linear discriminant function analysis of the quantitative results revealed three distinct groups of proteins: 1) proteins with post-flight protein concentrations remaining stable, 2) proteins whose concentrations recovered slowly, or 3) proteins whose concentrations recovered rapidly to their pre-flight levels. Using a systems biology approach, nearly all of the reacting proteins could be linked to pathways that regulate the activities of proteases, natural immunity, lipid metabolism, coagulation cascades, or extracellular matrix metabolism.
Vernon, Daniel M.; Ostrem, James A.; Schmitt, Juergen M.; Bohnert, Hans J.
1988-01-01
Mesembryanthemum crystallinum plants respond to water stress by changing their pathway of carbon assimilation from C3 to Crassulacean acid metabolism (CAM). Stressed plants are characterized by elevated levels of phosphoenolpyruvate carboxylase (PEPCase) mRNA, protein, and enzyme activity. We wanted to determine whether CAM is a reversible response to environmental conditions or a developmentally programmed adaptation that is irreversibly expressed once induced. Plants were osmotically stressed by irrigation with 500 millimolar NaCl for 12 days to elicit CAM. Salt was then thoroughly flushed from the soil and PEPCase protein and transcript levels were monitored. PEPCase mRNA levels dropped by 77% within 2.5 hours after salt removal. PEPCase activity and polypeptide levels declined more slowly, with a half-life of 2 to 3 days. These results show that PEPCase expression in M. crystallinum is a reversible response to stress that is regulated at the level of transcription or stability of the PEPCase mRNA. Images Fig. 2 Fig. 3 PMID:16666021
Hosseini-Abari, Afrouzossadat; Kim, Byung-Gee; Lee, Sang-Hyuk; Emtiazi, Giti; Kim, Wooil; Kim, June-Hyung
2016-12-01
Tyrosinases, copper-containing monooxygenases, are widely used enzymes for industrial, medical, and environmental applications. We report the first functional surface display of Bacillus megaterium tyrosinase on Bacillus subtilis spores using CotE as an anchor protein. Flow Cytometry was used to verify surface expression of tyrosinase on the purified spores. Moreover, tyrosinase activity of the displayed enzyme on B. subtilis spores was monitored in the presence of L-tyrosine (substrate) and CuSO 4 (inducer). The stability of the spore-displayed tyrosinase was then evaluated after 15 days maintenance of the spores at room temperature, and no significant decrease in the enzyme activity was observed. In addition, the tyrosinase-expressing spores could be repeatedly used with 62% retained enzymatic activity after six times washing with Tris-HCl buffer. This genetically immobilized tyrosinase on the spores would make a new advance in industrial, medical, and environmental applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Yong; Zhang, Nan; Zhao, Ming; Hoffman, Robert M
2015-07-01
Orthotopic implantation of cancer allows metastasis to occur. The most patient-like metastatic orthotopic models are developed with surgical orthotopic implantation using intact tissue in order to preserve the natural tissue structure of the tumor which contains both cancer cells and stroma. In the present study, we performed a simple thoracotomy by making an intercostal incision between the fourth and fifth ribs on the left side of the chest of nude mice. Lung tumor fragments expressing red fluorescent protein were then implanted on the left lung. It was possible to monitor tumor formation in the lung non-invasively by spectral imaging using the Maestro system with a liquid tunable filter. The model described here has high tumorigenicity in the lung (100%) and a low mortality rate (5%). This imageable nude mouse model using surgical orthotopic implantation of lung cancer will be useful for all types of longitudinal studies. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Rasala, Beth A; Muto, Machiko; Lee, Philip A; Jager, Michal; Cardoso, Rosa MF; Behnke, Craig A; Kirk, Peter; Hokanson, Craig A; Crea, Roberto; Mendez, Michael; Mayfield, Stephen P
2010-01-01
Summary Recombinant proteins are widely used today in many industries, including the biopharmaceutical industry, and can be expressed in bacteria, yeasts, mammalian and insect cell cultures, or in transgenic plants and animals. In addition, transgenic algae have also been shown to support recombinant protein expression, both from the nuclear and chloroplast genomes. However, to date, there are only a few reports on recombinant proteins expressed in the algal chloroplast. It is unclear if this is due to few attempts or to limitations of the system that preclude expression of many proteins. Thus, we sought to assess the versatility of transgenic algae as a recombinant protein production platform. To do this, we tested whether the algal chloroplast could support the expression of a diverse set of current or potential human therapeutic proteins. Of the seven proteins chosen, greater than 50% expressed at levels sufficient for commercial production. Three expressed at 2% to 3% of total soluble protein, while a forth protein accumulated to similar levels when translationally fused to a well-expressed serum amyloid protein. All of the algal chloroplast-expressed proteins are soluble and showed biological activity comparable to that of the same proteins expressed using traditional production platforms. Thus, the success rate, expression levels, and bioactivty achieved demonstrate the utility of C. reinhardtii as a robust platform for human therapeutic protein production. PMID:20230484
Proteomics in pharmaceutical research and development.
Cutler, Paul; Voshol, Hans
2015-08-01
In the 20 years since its inception, the evolution of proteomics in pharmaceutical industry has mirrored the developments within academia and indeed other industries. From initial enthusiasm and subsequent disappointment in global protein expression profiling, pharma research saw the biggest impact when relating to more focused approaches, such as those exploring the interaction between proteins and drugs. Nowadays, proteomics technologies have been integrated in many areas of pharmaceutical R&D, ranging from the analysis of therapeutic proteins to the monitoring of clinical trials. Here, we review the development of proteomics in the drug discovery process, placing it in a historical context as well as reviewing the current status in light of the contributions to this special issue, which reflect some of the diverse demands of the drug and biomarker pipelines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
de la Cuesta, Fernando; Baldan-Martin, Montserrat; Moreno-Luna, Rafael; Alvarez-Llamas, Gloria; Gonzalez-Calero, Laura; Mourino-Alvarez, Laura; Sastre-Oliva, Tamara; López, Juan A.; Vázquez, Jesús; Ruiz-Hurtado, Gema; Segura, Julian; Vivanco, Fernando; Ruilope, Luis M.; Barderas, Maria G.
2017-01-01
Despite of the great advances in anti-hypertensive therapies, many patients under Renin-Angiotensin- System (RAS) suppression develop albuminuria, which is a clear indicator of therapeutic inefficiency. Hence, indicators of vascular function are needed to assess patients’ condition and help deciding future therapies. Proteomic analysis of circulating extracellular vesicles (EVs) showed two proteins, kalirin and chromodomain-helicase-DNA-binding protein 7 (CHD7), increased in albuminuric patients. A positive correlation of both with the expression of the endothelial activation marker E-selectin was found in EVs. In vitro analysis using TNFα-treated adult human endothelial cells proved their involvement in endothelial cell activation. Hence, we propose protein levels of kalirin and CHD7 in circulating EVs as novel endothelial dysfunction markers to monitor vascular condition in hypertensive patients with albuminuria. PMID:28152519
SU-G-TeP3-10: Radiation Induces Prompt Live-Cell Metabolic Fluxes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campos, D; Peeters, W; Bussink, J
2016-06-15
Purpose: To compare metabolic dynamics and HIF-1α expression following radiation between a cancerous cell line (UM-SCC-22B) and a normal, immortalized cell line, NOK (Normal Oral Keratinocyte). HIF-1 is a key factor in metabolism and radiosensitivity. A better understanding of how radiation affects the interplay of metabolism and HIF-1 might give a better understanding of the mechanisms responsible for radiosensitivity. Methods: Changes in cellular metabolism in response to radiation are tracked by fluorescence lifetime of NADH. Expression of HIF-1α was measured by immunofluorescence for both cell lines with and without irradiation. Radiation response is also monitored with additional treatment of amore » HIF-1α inhibitor (chrysin) as well as a radical scavenger (glutathione). Changes in oxygen consumption and respiratory capacity are also monitored using the Seahorse XF analyzer. Results: An increase in HIF-1α was found to be in response to radiation for the cancer cell line, but not the normal cell line. Radiation was found to shift metabolism toward glycolytic pathways in cancer cells as measured by oxygen consumption and respiratory capacity. Radiation response was found to be muted by addition of glutathione to cell media. HIF-1α inhibition similarly muted radiation response in cancer. Conclusion: The HIF-1 protein complex is a key regulator cellular metabolism through the regulation of glycolysis and glucose transport enzymes. Moreover, HIF-1 has shown radio-protective effects in tumor vascular endothelia, and has been implicated in metastatic aggression. Monitoring interplay between metabolism and the HIF-1 protein complex can give a more fundamental understanding of radiotherapy response.« less
Xu, Ming-Jiang; Song, Ping; Shirwany, Najeeb; Liang, Bin; Xing, Junjie; Viollet, Benoit; Wang, Xian; Zhu, Yi; Zou, Ming-Hui
2011-01-01
Objective The aim of the present study was to determine whether mitochondrial uncoupling protein (UCP)-2 is required for AMPK-dependent angiogenesis in ischemia in vivo. Methods and Results Angiogenesis was assayed by monitoring endothelial tube formation (a surrogate for angiogenesis) in human umbilical vein endothelial cells (HUVECs), isolated mouse aortic endothelial cells (MAECs), and pulmomary microvascular endothelial cells (PMECs), or in ischemic thigh adductor muscles from wild-type (WT) mice or mice deficient in either AMPKα1 or AMPKα2. AMPK inhibition with pharmacological inhibitor (compound C) or genetic means (transfection of AMPKα-specific siRNA) significantly lowered the tube formation in HUVECs. Consistently, compared with WT mice, tube formation in MAECs isolated from either AMPKα1−/− or AMPKα2−/− mice, which exhibited oxidative stress and reduced expression of UCP2, were significantly impaired. In addition, adenoviral overexpression of UCP2, but not adenoviruses encoding green florescence protein (GFP), normalized tube formation in MAECs from either AMPKα1−/− or AMPKα2−/− mice. Similarly, supplementation with sodium nitroprusside (SNP), a nitric oxide (NO) donor, restored tube formation. Furthermore, ischemia significantly increased angiogenesis, serine 1177 phosphorylation of endothelial NO synthase (eNOS), and UCP2 in ischemic thigh adductor muscles from WT mice, but not from either AMPKα1−/− or AMPKα2−/− mice. Conclusion We conclude that AMPK-dependent UCP2 expression in endothelial cells promotes angiogenesis in vivo. PMID:21597006
Topical N-Acetylcysteine Accelerates Wound Healing in Vitro and in Vivo via the PKC/Stat3 Pathway
Tsai, Min-Ling; Huang, Hui-Pei; Hsu, Jeng-Dong; Lai, Yung-Rung; Hsiao, Yu-Ping; Lu, Fung-Jou; Chang, Horng-Rong
2014-01-01
N-Acetylcysteine (Nac) is an antioxidant administered in both oral and injectable forms. In this study, we used Nac topically to treat burn wounds in vitro and in vivo to investigate mechanisms of action. In vitro, we monitored glutathione levels, cell proliferation, migration, scratch-wound healing activities and the epithelialization-related proteins, matrixmetalloproteinase-1 (MMP-1) and proteins involved in regulating the expression of MMP-1 in CCD-966SK cells treated with Nac. Various Nac concentrations (0.1, 0.5, and 1.0 mM) increased glutathione levels, cell viability, scratch-wound healing activities and migration abilities of CCD-966SK cells in a dose-dependent manner. The MMP-1 expression of CCD-966SK cells treated with 1.0 mM Nac for 24 h was significantly increased. Levels of phosphatidylinositol 3-kinase (PI3K), protein kinase C (PKC), janus kinase 1 (Jak1), signal transducer and activator of transcription 3 (Stat3), c-Fos and Jun, but not extracellular signal-regulated protein kinases 1 and 2 (Erk1/2), were also significantly increased in a dose-dependent manner compared to the controls. In addition, Nac induced collagenous expression of MMP-1 via the PKC/Stat3 signaling pathway. In vivo, a burn wound healing rat model was applied to assess the stimulation activity and histopathological effects of Nac, with 3.0% Nac-treated wounds being found to show better characteristics on re-epithelialization. Our results demonstrated that Nac can potentially promote wound healing activity, and may be a promising drug to accelerate burn wound healing. PMID:24798751
Directed evolution for improved secretion of cancer-testis antigen NY-ESO-1 from yeast.
Piatesi, Andrea; Howland, Shanshan W; Rakestraw, James A; Renner, Christoph; Robson, Neil; Cebon, Jonathan; Maraskovsky, Eugene; Ritter, Gerd; Old, Lloyd; Wittrup, K Dane
2006-08-01
NY-ESO-1 is a highly immunogenic tumor antigen and a promising vaccine candidate in cancer immunotherapy. Access to purified protein both for vaccine formulations and for monitoring antigen-specific immune responses is vital to vaccine development. Currently available recombinant Escherichia coli-derived NY-ESO-1 is isolated from inclusion bodies as a complex protein mixture and efforts to improve the purity of this antigen are required, especially for later-stage clinical trials. Using yeast cell surface display and fluorescence activated cell sorting techniques, we have engineered an NY-ESO-1 variant (NY-ESO-L5; C(75)A C(76)A C(78)A L(153)H) with a 100x improved display level on yeast compared to the wild-type protein. This mutant can be effectively produced as an Aga2p-fusion and purified in soluble form directly from the yeast cell wall. In the process, we have identified the epitope recognized by anti-NY-ESO-1 mAb E978 (79-87, GARGPESRL). The availability of an alternative expression host for this important antigen will help avoid artifactual false positive tests of patient immune response due to reaction against expression-host-specific contaminants.
Plant hormones in arbuscular mycorrhizal symbioses: an emerging role for gibberellins.
Foo, Eloise; Ross, John J; Jones, William T; Reid, James B
2013-05-01
Arbuscular mycorrhizal symbioses are important for nutrient acquisition in >80 % of terrestrial plants. Recently there have been major breakthroughs in understanding the signals that regulate colonization by the fungus, but the roles of the known plant hormones are still emerging. Here our understanding of the roles of abscisic acid, ethylene, auxin, strigolactones, salicylic acid and jasmonic acid is discussed, and the roles of gibberellins and brassinosteroids examined. Pea mutants deficient in gibberellins, DELLA proteins and brassinosteroids are used to determine whether fungal colonization is altered by the level of these hormones or signalling compounds. Expression of genes activated during mycorrhizal colonization is also monitored. Arbuscular mycorrhizal colonization of pea roots is substantially increased in gibberellin-deficient na-1 mutants compared with wild-type plants. This is reversed by application of GA3. Mutant la cry-s, which lacks gibberellin signalling DELLA proteins, shows reduced colonization. These changes were parallelled by changes in the expression of genes associated with mycorrhizal colonization. The brassinosteroid-deficient lkb mutant showed no change in colonization. Biologically active gibberellins suppress arbuscule formation in pea roots, and DELLA proteins are essential for this response, indicating that this role occurs within the root cells.
Proof of the quantitative potential of immunofluorescence by mass spectrometry.
Toki, Maria I; Cecchi, Fabiola; Hembrough, Todd; Syrigos, Konstantinos N; Rimm, David L
2017-03-01
Protein expression in formalin-fixed, paraffin-embedded patient tissue is routinely measured by Immunohistochemistry (IHC). However, IHC has been shown to be subject to variability in sensitivity, specificity and reproducibility, and is generally, at best, considered semi-quantitative. Mass spectrometry (MS) is considered by many to be the criterion standard for protein measurement, offering high sensitivity, specificity, and objective molecular quantification. Here, we seek to show that quantitative immunofluorescence (QIF) with standardization can achieve quantitative results comparable to MS. Epidermal growth factor receptor (EGFR) was measured by quantitative immunofluorescence in 15 cell lines with a wide range of EGFR expression, using different primary antibody concentrations, including the optimal signal-to-noise concentration after quantitative titration. QIF target measurement was then compared to the absolute EGFR concentration measured by Liquid Tissue-selected reaction monitoring mass spectrometry. The best agreement between the two assays was found when the EGFR primary antibody was used at the optimal signal-to-noise concentration, revealing a strong linear regression (R 2 =0.88). This demonstrates that quantitative optimization of titration by calculation of signal-to-noise ratio allows QIF to be standardized to MS and can therefore be used to assess absolute protein concentration in a linear and reproducible manner.
Clavijo, A; Lin, M; Riva, J; Mallory, M; Lin, F; Zhou, E M
2001-02-01
The sequence encoding a truncated E2 glycoprotein of the Alfort/187 strain of classical swine fever virus (CSFV) was expressed in Escherichia coli using the pET expression system and the recombinant product purified by Ni-NTA agarose affinity chromatography. The antigenicity of this recombinant protein was demonstrated by immunoblot using anti- CSFV-specific antibodies. A monoclonal antibody was produced against the truncated E2 protein and used as competitor in an ELISA for the detection of antibodies to CSFV. Specific antibodies were demonstrated by competitive ELISA (C-ELISA) as early as 21 days post-infection (dpi) in experimentally infected pigs. Seroconversion was demonstrated by C-ELISA and neutralising peroxidase-linked assay (NPLA) in all infected animals by 4 weeks. No cross-reaction with antibodies to bovine viral diarrhoea virus (BVDV) was seen in the C-ELISA using sera from experimentally infected pigs. The C-ELISA is not intended as a substitute for the NPLA. However, it is expected it will be useful for monitoring and prevalence studies. It will also assist in testing a large number of samples in the event of an outbreak. Copyright 2001 Harcourt Publishers Ltd.
Slattery, Scott D; Hahn, Klaus M
2014-12-01
Biosensors are valuable tools used to monitor many different protein behaviors in vivo. Demand for new biosensors is high, but their development and characterization can be difficult. During biosensor design, it is necessary to evaluate the effects of different biosensor structures on specificity, brightness, and fluorescence responses. By co-expressing the biosensor with upstream proteins that either stimulate or inhibit the activity reported by the biosensor, one can determine the difference between the biosensor's maximally activated and inactivated state, and examine response to specific proteins. We describe here a method for biosensor validation in a 96-well plate format using an automated microscope. This protocol produces dose-response curves, enables efficient examination of many parameters, and unlike cell suspension assays, allows visual inspection (e.g., for cell health and biosensor or regulator localization). Optimization of single-chain and dual-chain Rho GTPase biosensors is addressed, but the assay is applicable to any biosensor that can be expressed or otherwise loaded in adherent cells. The assay can also be used for purposes other than biosensor validation, using a well-characterized biosensor as a readout for effects of upstream molecules. Copyright © 2014 John Wiley & Sons, Inc.
Tagliavia, Marcello; Cuttitta, Angela
2016-01-01
High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.
In situ microscopy for online monitoring of cell concentration in Pichia pastoris cultivations.
Marquard, D; Enders, A; Roth, G; Rinas, U; Scheper, T; Lindner, P
2016-09-20
In situ Microscopy (ISM) is an optical non-invasive technique to monitor cells in bioprocesses in real-time. Pichia pastoris is one of the most promising protein expression systems. This yeast combines fast growth on simple media and important eukaryotic features such as glycosylation. In this work, the ISM technology was applied to Pichia pastoris cultivations for online monitoring of the cell concentration during cultivation. Different ISM settings were tested. The acquired images were analyzed with two image processing algorithms. In seven cultivations the cell concentration was monitored by the applied algorithms and offline samples were taken to determine optical density (OD) and dry cell mass (DCM). Cell concentrations up to 74g/L dry cell mass could be analyzed via the ISM. Depending on the algorithm and the ISM settings, an accuracy between 0.3 % and 12 % was achieved. The overall results show that for a robust measurement a combination of the two described algorithms is required. Copyright © 2016 Elsevier B.V. All rights reserved.
Nyalwidhe, Julius; Burch, Tanya; Bocca, Silvina; Cazares, Lisa; Green-Mitchell, Shamina; Cooke, Marissa; Birdsall, Paige; Basu, Gaurav; Semmes, O John; Oehninger, Sergio
2013-04-01
The objective of these studies was to identify differentially expressed peptides/proteins in the culture media of embryos grown during in vitro fertilization (IVF) treatment to establish their value as biomarkers predictive of implantation potential and live birth. Micro-droplets of embryo culture media from IVF patients (conditioned) and control media maintained under identical culture conditions were collected and frozen at -80°C on Days 2-3 of in vitro development prior to analysis. The embryos were transferred on Day 3. The peptides were affinity purified based on their physico-chemical properties and profiled by mass spectrometry for differential expression. The identified proteins were further characterized by western blot and ELISA, and absolute quantification was achieved by multiple reaction monitoring (MRM). We identified up to 14 differentially regulated peptides after capture using paramagnetic beads with different affinities. These differentially expressed peptides were used to generate genetic algorithms (GAs) with a recognition capability of 71-84% for embryo transfer cycles resulting in pregnancy and 75-89% for those with failed implantation. Several peptides were further identified as fragments of Apolipoprotein A-1, which showed consistent and significantly reduced expression in the embryo media samples from embryo transfer cycles resulting in viable pregnancies. Western blot and ELISA, as well as quantitative MRM results, were confirmatory. These results demonstrated that peptide/protein profiles from the culture medium during early human in vitro development can discriminate embryos with highest and lowest implantation competence following uterine transfer. Further prospective studies are needed to establish validated thresholds for clinical application.
Quinn, Nicole L; McGowan, Colin R; Cooper, Glenn A; Koop, Ben F; Davidson, William S
2011-09-22
Arctic charr thrive at high densities and can live in freshwater year round, making this species especially suitable for inland, closed containment aquaculture. However, it is a cold-water salmonid, which both limits where the species can be farmed and places wild populations at particular risk to climate change. Previously, we identified genes associated with tolerance and intolerance to acute, lethal temperature stress in Arctic charr. However, there remained a need to examine the genes involved in the stress response to more realistic temperatures that could be experienced during a summer heat wave in grow-out tanks that are not artificially cooled, or under natural conditions. Here, we exposed Arctic charr to sublethal heat stress of 15-18°C for 72 h, and gill tissues extracted before, during (i.e., at 72 h), immediately after cooling and after 72 h of recovery at ambient temperature (6°C) were used for gene expression profiling by microarray and qPCR analyses. The results revealed an expected pattern for heat shock protein expression, which was highest during heat exposure, with significantly reduced expression (approaching control levels) quickly thereafter. We also found that the expression of numerous ribosomal proteins was significantly elevated immediately and 72 h after cooling, suggesting that the gill tissues were undergoing ribosome biogenesis while recovering from damage caused by heat stress. We suggest that these are candidate gene targets for the future development of genetic markers for broodstock development or for monitoring temperature stress and recovery in wild or cultured conditions.
Gene expression in Pseudomonas aeruginosa exposed to hydroxyl-radicals.
Aharoni, Noa; Mamane, Hadas; Biran, Dvora; Lakretz, Anat; Ron, Eliora Z
2018-05-01
Recent studies have shown the efficiency of hydroxyl radicals generated via ultraviolet (UV)-based advanced oxidation processes (AOPs) combined with hydrogen peroxide (UV/H 2 O 2 ) as a treatment process in water. The effects of AOP treatments on bacterial gene expression was examined using Pseudomonas aeruginosa strain PAO1 as a model-organism bacterium. Many bacterial genes are not expressed all the time, but their expression is regulated. The regulation is at the beginning of the gene, in a genetic region called "promoter" and affects the level of transcription (synthesis of messenger RNA) and translation (synthesis of protein). The level of expression of the regulated genes can change as a function of environmental conditions, and they can be expressed more (induced, upregulated) or less (downregulated). Exposure of strain PAO1 to UV/H 2 O 2 treatment resulted in a major change in gene expression, including elevated expression of several genes. One interesting gene is PA3237, which was significantly upregulated under UV/H 2 O 2 as compared to UV or H 2 O 2 treatments alone. The induction of this gene is probably due to formation of radicals, as it is abolished in the presence of the radical scavenger tert-butanol (TBA) and is seen even when the bacteria are added after the treatment (post-treatment exposure). Upregulation of the PA3237 promoter could also be detected using a reporter gene, suggesting the use of such genetic constructs to develop biosensors for monitoring AOPs in water-treatment plants. Currently biosensors for AOPs do not exist, consequently impairing the ability to monitor these processes on-line according to radical exposure in natural waters. Copyright © 2018 Elsevier Ltd. All rights reserved.
Buferne, Michel; Chasson, Lionel; Grange, Magali; Mas, Amandine; Arnoux, Fanny; Bertuzzi, Mélanie; Naquet, Philippe; Leserman, Lee; Schmitt-Verhulst, Anne-Marie; Auphan-Anezin, Nathalie
2015-01-01
Tumors with reduced expression of MHC class I (MHC-I) molecules may be unrecognized by tumor antigen-specific CD8+ T cells and thus constitute a challenge for cancer immunotherapy. Here we monitored development of autochthonous melanomas in TiRP mice that develop tumors expressing a known tumor antigen as well as a red fluorescent protein (RFP) reporter knock in gene. The latter permits non-invasive monitoring of tumor growth by biofluorescence. One developing melanoma was deficient in cell surface expression of MHC-I, but MHC-I expression could be rescued by exposure of these cells to IFNγ. We show that CD8+ T cells specific for tumor antigen/MHC-I were efficient at inducing regression of the MHC-I-deficient melanoma, provided that the T cells were endowed with properties permitting their migration into the tumor and their efficient production of IFNγ. This was the case for CD8+ T cells transfected to express an active form of STAT5 (STAT5CA). The amount of IFNγ produced ex vivo from T cells present in tumors after adoptive transfer of the CD8+ T cells was correlated with an increase in surface expression of MHC-I molecules by the tumor cells. We also show that these CD8+ T cells expressed PD-1 and upregulated its ligand PDL-1 on melanoma cells within the tumor. Despite upregulation of this immunosuppressive pathway, efficient IFNγ production in the melanoma microenvironment was found associated with resistance of STAT5CA-expressing CD8+ T cells to inhibition both by PD-1/PDL-1 engagement and by TGFβ1, two main immune regulatory mechanisms hampering the efficiency of immunotherapy in patients. PMID:25949872
Theranostic Imaging of Cancer Gene Therapy.
Sekar, Thillai V; Paulmurugan, Ramasamy
2016-01-01
Gene-directed enzyme prodrug therapy (GDEPT) is a promising therapeutic approach for treating cancers of various phenotypes. This strategy is independent of various other chemotherapeutic drugs used for treating cancers where the drugs are mainly designed to target endogenous cellular mechanisms, which are different in various cancer subtypes. In GDEPT an external enzyme, which is different from the cellular proteins, is expressed to convert the injected prodrug in to a toxic metabolite, that normally kill cancer cells express this protein. Theranostic imaging is an approach used to directly monitor the expression of these gene therapy enzymes while evaluating therapeutic effect. We recently developed a dual-GDEPT system where we combined mutant human herpes simplex thymidine kinase (HSV1sr39TK) and E. coli nitroreductase (NTR) enzyme, to improve therapeutic efficiency of cancer gene therapy by simultaneously injecting two prodrugs at a lower dose. In this approach we use two different prodrugs such as ganciclovir (GCV) and CB1954 to target two different cellular mechanisms to kill cancer cells. The developed dual GDEPT system was highly efficacious than that of either of the system used independently. In this chapter, we describe the complete protocol involved for in vitro and in vivo imaging of therapeutic cancer gene therapy evaluation.
Knockdown of p62/sequestosome 1 attenuates autophagy and inhibits colorectal cancer cell growth.
Ren, Feng; Shu, Guoshun; Liu, Ganglei; Liu, Dongcai; Zhou, Jiapeng; Yuan, Lianwen; Zhou, Jianping
2014-01-01
p62/sequestosome-1 is a multifunctional adapter protein implicated in selective autophagy, cell signaling pathways, and tumorigenesis, and plays an important role at the crossroad between autophagy and cancer. But, the connection between autophagy and cancer is complex and in some cases contradictory. Human colorectal cancer tissues from patients were analyzed for expression of p62 and Microtubule-associated protein light chain 3 (LC3, an autophagosome marker) using immunostaining, western blotting, real-time PCR, and confocal microscopy. To study the effects of p62 on autophagy and cell growth, shRNA for p62 was applied and cell growth curve was monitored in human colorectal cancer cell. In vivo experiments were done using the mouse xenograft model. We showed that up-regulated expression of p62 and LC3 in colorectal cancer tissues. We also demonstrated that specifically knockdown the expression of p62 showed significantly inhibitory effects not only on autophagy activation, but also on tumor growth both in vitro and xenograft tumors model. The ectopic overexpression of p62 and autophagy activation contributes to colorectal tumorigenesis. p62 and autophagy will be therapy targets for the treatment of colorectal cancer.
Ron, Mily; Kajala, Kaisa; Pauluzzi, Germain; Wang, Dongxue; Reynoso, Mauricio A.; Zumstein, Kristina; Garcha, Jasmine; Winte, Sonja; Masson, Helen; Inagaki, Soichi; Federici, Fernán; Sinha, Neelima; Deal, Roger B.; Bailey-Serres, Julia; Brady, Siobhan M.
2014-01-01
Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato. PMID:24868032
Morrison, T; McQuain, C; McGinnes, L
1991-01-01
The cDNA derived from the fusion gene of the virulent AV strain of Newcastle disease virus (NDV) was expressed in chicken embryo cells by using a retrovirus vector. The fusion protein expressed in this system was transported to the cell surface and was efficiently cleaved into the disulfide-linked F1-F2 form found in infectious virions. The cells expressing the fusion gene grew normally and could be passaged many times. Monolayers of these cells would plaque, in the absence of trypsin, avirulent NDV strains (strains which encode a fusion protein which is not cleaved in tissue culture). Fusion protein-expressing cells would not fuse if mixed with uninfected cells or uninfected cells expressing the hemagglutinin-neuraminidase (HN) protein. However, the fusion protein-expressing cells, if infected with avirulent strains of NDV, would fuse with uninfected cells, suggesting that fusion requires both the fusion protein and another viral protein expressed in the same cell. Fusion was also seen after transfection of the HN protein gene into fusion protein-expressing cells. Thus, the expressed fusion protein gene is capable of complementing the virus infection, providing an active cleaved fusion protein required for the spread of infection. However, the fusion protein does not mediate cell fusion unless the cell also expresses the HN protein. Fusion protein-expressing cells would not plaque influenza virus in the absence of trypsin, nor would influenza virus-infected fusion protein-expressing cells fuse with uninfected cells. Thus, the influenza virus HA protein will not substitute for the NDV HN protein in cell-to-cell fusion. Images PMID:1987376
Anderson, Karen S.; Ramachandran, Niroshan; Wong, Jessica; Raphael, Jacob V.; Hainsworth, Eugenie; Demirkan, Gokhan; Cramer, Daniel; Aronzon, Diana; Hodi, F. Stephen; Harris, Lyndsay; Logvinenko, Tanya; LaBaer, Joshua
2012-01-01
There is strong preclinical evidence that cancer, including breast cancer, undergoes immune surveillance. This continual monitoring, by both the innate and the adaptive immune systems, recognizes changes in protein expression, mutation, folding, glycosylation, and degradation. Local immune responses to tumor antigens are amplified in draining lymph nodes, and then enter the systemic circulation. The antibody response to tumor antigens, such as p53 protein, are robust, stable, and easily detected in serum, may exist in greater concentrations than their cognate antigens, and are potential highly specific biomarkers for cancer. However, antibodies have limited sensitivities as single analytes, and differences in protein purification and assay characteristics have limited their clinical application. For example, p53 autoantibodies in the sera are highly specific for cancer patients, but are only detected in the sera of 10-20% of patients with breast cancer. Detection of p53 autoantibodies is dependent on tumor burden, p53 mutation, rapidly decreases with effective therapy, but is relatively independent of breast cancer subtype. Although antibodies to hundreds of other tumor antigens have been identified in the sera of breast cancer patients, very little is known about the specificity and clinical impact of the antibody immune repertoire to breast cancer. Recent advances in proteomic technologies have the potential for rapid identification of immune response signatures for breast cancer diagnosis and monitoring. We have adapted programmable protein microarrays for the specific detection of autoantibodies in breast cancer. Here, we present the first demonstration of the application of programmable protein microarray ELISAs for the rapid identification of breast cancer autoantibodies. PMID:18311903
Molecular and functional definition of the developing human striatum.
Onorati, Marco; Castiglioni, Valentina; Biasci, Daniele; Cesana, Elisabetta; Menon, Ramesh; Vuono, Romina; Talpo, Francesca; Laguna Goya, Rocio; Lyons, Paul A; Bulfamante, Gaetano P; Muzio, Luca; Martino, Gianvito; Toselli, Mauro; Farina, Cinthia; Barker, Roger A; Biella, Gerardo; Cattaneo, Elena
2014-12-01
The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.
2017-01-01
The changes of protein expression that are monitored in proteomic experiments are a type of biological transformation that also involves changes in chemical composition. Accompanying the myriad molecular-level interactions that underlie any proteomic transformation, there is an overall thermodynamic potential that is sensitive to microenvironmental conditions, including local oxidation and hydration potential. Here, up- and down-expressed proteins identified in 71 comparative proteomics studies were analyzed using the average oxidation state of carbon (ZC) and water demand per residue (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$\\end{document}n¯H2O), calculated using elemental abundances and stoichiometric reactions to form proteins from basis species. Experimental lowering of oxygen availability (hypoxia) or water activity (hyperosmotic stress) generally results in decreased ZC or \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${\\overline{n}}_{{\\mathrm{H}}_{2}\\mathrm{O}}$\\end{document}n¯H2O of up-expressed compared to down-expressed proteins. This correspondence of chemical composition with experimental conditions provides evidence for attraction of the proteomes to a low-energy state. An opposite compositional change, toward higher average oxidation or hydration state, is found for proteomic transformations in colorectal and pancreatic cancer, and in two experiments for adipose-derived stem cells. Calculations of chemical affinity were used to estimate the thermodynamic potentials for proteomic transformations as a function of fugacity of O2 and activity of H2O, which serve as scales of oxidation and hydration potential. Diagrams summarizing the relative potential for formation of up- and down-expressed proteins have predicted equipotential lines that cluster around particular values of oxygen fugacity and water activity for similar datasets. The changes in chemical composition of proteomes are likely linked with reactions among other cellular molecules. A redox balance calculation indicates that an increase in the lipid to protein ratio in cancer cells by 20% over hypoxic cells would generate a large enough electron sink for oxidation of the cancer proteomes. The datasets and computer code used here are made available in a new R package, canprot. PMID:28603672
Rizk, Francine; Laverdure, Sylvain; d'Alençon, Emmanuelle; Bossin, Hervé; Dupressoir, Thierry
2018-01-01
The Lepidopteran ambidensovirus 1 isolated from Junonia coenia (hereafter JcDV) is an invertebrate parvovirus considered as a viral transduction vector as well as a potential tool for the biological control of insect pests. Previous works showed that JcDV-based circular plasmids experimentally integrate into insect cells genomic DNA. In order to approach the natural conditions of infection and possible integration, we generated linear JcDV- gfp based molecules which were transfected into non permissive Spodoptera frugiperda ( Sf9 ) cultured cells. Cells were monitored for the expression of green fluorescent protein (GFP) and DNA was analyzed for integration of transduced viral sequences. Non-structural protein modulation of the VP-gene cassette promoter activity was additionally assayed. We show that linear JcDV-derived molecules are capable of long term genomic integration and sustained transgene expression in Sf9 cells. As expected, only the deletion of both inverted terminal repeats (ITR) or the polyadenylation signals of NS and VP genes dramatically impairs the global transduction/expression efficiency. However, all the integrated viral sequences we characterized appear "scrambled" whatever the viral content of the transfected vector. Despite a strong GFP expression, we were unable to recover any full sequence of the original constructs and found rearranged viral and non-viral sequences as well. Cellular flanking sequences were identified as non-coding ones. On the other hand, the kinetics of GFP expression over time led us to investigate the apparent down-regulation by non-structural proteins of the VP-gene cassette promoter. Altogether, our results show that JcDV-derived sequences included in linear DNA molecules are able to drive efficiently the integration and expression of a foreign gene into the genome of insect cells, whatever their composition, provided that at least one ITR is present. However, the transfected sequences were extensively rearranged with cellular DNA during or after random integration in the host cell genome. Lastly, the non-structural proteins seem to participate in the regulation of p9 promoter activity rather than to the integration of viral sequences.
Epithelial expression of cytokeratins 15 and 19 in vitiligo.
Saleh, Fatma Y; Awad, Sherif S; Nasif, Ghada A; Halim, Christein
2016-12-01
Cytokeratins (CK) belong to the family of intermediate filament proteins, and among them specific epithelial keratins are considered markers for stem cells activation. This study aims to investigate the expression of CK15 and CK19 as possible stem cell markers in vitiligo during phototherapy. The study was conducted on vitiligo patients receiving narrow-band ultraviolet therapy. Immunohistochemical staining for CK15 and CK19 was carried out, and clinical follow-up continued for 4 weeks. Of 28 patients, CK15 expression was demonstrated in 17 cases (61%) while CK19 expression was demonstrated in 11 cases (39%). Cells expressing positive staining were demonstrated in follicular and interfollicular epithelium. Expression was clearly demonstrated in patients younger than 20 years old, with shorter disease duration, with disease stability, and with normally pigmented hairs. Expression of cytokeratins was significantly correlated to improvement of vitiligo lesions. CK15 and CK19 are expressed in vitiligo during UV repigmentation in the follicular and interfollicular epithelium. This expression of cytokeratins was significantly correlated to improvement and can be considered valuable tool to monitor stem cells stimulation for the sake of the repigmentation process in vitiligo. © 2016 Wiley Periodicals, Inc.
Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging.
Ben-Zvi, Anat; Miller, Elizabeth A; Morimoto, Richard I
2009-09-01
Protein damage contributes prominently to cellular aging. To address whether this occurs at a specific period during aging or accumulates gradually, we monitored the biochemical, cellular, and physiological properties of folding sensors expressed in different tissues of C. elegans. We observed the age-dependent misfolding and loss of function of diverse proteins harboring temperature-sensitive missense mutations in all somatic tissues at the permissive condition. This widespread failure in proteostasis occurs rapidly at an early stage of adulthood, and coincides with a severely reduced activation of the cytoprotective heat shock response and the unfolded protein response. Enhancing stress responsive factors HSF-1 or DAF-16 suppresses misfolding of these metastable folding sensors and restores the ability of the cell to maintain a functional proteome. This suggests that a compromise in the regulation of proteostatic stress responses occurs early in adulthood and tips the balance between the load of damaged proteins and the proteostasis machinery. We propose that the collapse of proteostasis represents an early molecular event of aging that amplifies protein damage in age-associated diseases of protein conformation.
Quantitative proteomic analysis in breast cancer.
Tabchy, A; Hennessy, B T; Gonzalez-Angulo, A M; Bernstam, F M; Lu, Y; Mills, G B
2011-02-01
Much progress has recently been made in the genomic and transcriptional characterization of tumors. However, historically the characterization of cells at the protein level has suffered limitations in reproducibility, scalability and robustness. Recent technological advances have made it possible to accurately and reproducibly portray the global levels and active states of cellular proteins. Protein microarrays examine the native post-translational conformations of proteins including activated phosphorylated states, in a comprehensive high-throughput mode, and can map activated pathways and networks of proteins inside the cells. The reverse-phase protein microarray (RPPA) offers a unique opportunity to study signal transduction networks in small biological samples such as human biopsy material and can provide critical information for therapeutic decision-making and the monitoring of patients for targeted molecular medicine. By providing the key missing link to the story generated from genomic and gene expression characterization efforts, functional proteomics offer the promise of a comprehensive understanding of cancer. Several initial successes in breast cancer are showing that such information is clinically relevant. Copyright 2011 Prous Science, S.A.U. or its licensors. All rights reserved.
Kankeu, Cynthia; Clarke, Kylie; Van Haver, Delphi; Gevaert, Kris; Impens, Francis; Dittrich, Anna; Roderick, H Llewelyn; Passante, Egle; Huber, Heinrich J
2018-05-17
The rat cardiomyoblast cell line H9C2 has emerged as a valuable tool for studying cardiac development, mechanisms of disease and toxicology. We present here a rigorous proteomic analysis that monitored the changes in protein expression during differentiation of H9C2 cells into cardiomyocyte-like cells over time. Quantitative mass spectrometry followed by gene ontology (GO) enrichment analysis revealed that early changes in H9C2 differentiation are related to protein pathways of cardiac muscle morphogenesis and sphingolipid synthesis. These changes in the proteome were followed later in the differentiation time-course by alterations in the expression of proteins involved in cation transport and beta-oxidation. Studying the temporal profile of the H9C2 proteome during differentiation in further detail revealed eight clusters of co-regulated proteins that can be associated with early, late, continuous and transient up- and downregulation. Subsequent reactome pathway analysis based on these eight clusters further corroborated and detailed the results of the GO analysis. Specifically, this analysis confirmed that proteins related to pathways in muscle contraction are upregulated early and transiently, and proteins relevant to extracellular matrix organization are downregulated early. In contrast, upregulation of proteins related to cardiac metabolism occurs at later time points. Finally, independent validation of the proteomics results by immunoblotting confirmed hereto unknown regulators of cardiac structure and ionic metabolism. Our results are consistent with a 'function follows form' model of differentiation, whereby early and transient alterations of structural proteins enable subsequent changes that are relevant to the characteristic physiology of cardiomyocytes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Jintang; Sun, Xuefei; Shi, Tujin
2014-10-01
Fusions between the transmembrane protease serine 2 (TMPRSS2) and ETS related gene (ERG) represent one of the most specific biomarkers that define a distinct molecular subtype of prostate cancer. The studies on TMPRSS2-ERG gene fusions have seldom been performed at the protein level, primarily due to the lack of high-quality antibodies or an antibody-independent method that is sufficiently sensitive for detecting the truncated ERG protein products resulting from TMPRSS2-ERG gene fusions and alternative splicing. Herein, we applied a recently developed PRISM (high-pressure high-resolution separations with intelligent selection and multiplexing)-SRM (selected reaction monitoring) strategy for quantifying ERG protein in prostate cancermore » cell lines and tumors. The highly sensitive PRISM-SRM assays led to confident detection of 6 unique ERG peptides in either the TMPRSS2-ERG positive cell lines or tissues but not in the negative controls, indicating that ERG protein expression is highly correlated with TMPRSS2-ERG gene rearrangements. Significantly, our results demonstrated for the first time that at least two groups of ERG protein isoforms were simultaneously expressed at variable levels in TMPRSS2-ERG positive samples as evidenced by concomitant detection of two mutually exclusive peptides. Three peptides shared across almost all fusion protein products were determined to be the most abundant peptides, and hence can be used as “signature” peptides for detecting ERG overexpression resulting from TMPRSS2-ERG gene fusion. These PRISM-SRM assays provide valuable tools for studying TMPRSS2-ERG gene fusion protein products, thus improving our understanding of the role of TMPRSS2-ERG gene fusion in the biology of prostate cancer.« less
Immunohistochemical analysis of macroautophagy: recommendations and limitations.
Martinet, Wim; Schrijvers, Dorien M; Timmermans, Jean-Pierre; Bult, Hidde; De Meyer, Guido R Y
2013-03-01
Transmission electron microscopy (TEM) is an indispensable standard method to monitor macroautophagy in tissue samples. Because TEM is time consuming and not suitable for daily routine, many groups try to identify macroautophagy in tissue by conventional immunohistochemistry. The aim of the present study was to evaluate whether immunohistochemical assessment of macroautophagy-related marker proteins such as LC3, ATG5, CTSD/cathepsin D, BECN1/Beclin 1 or SQSTM1/p62 is feasible and autophagy-specific. For this purpose, livers from starved mice were used as a model because hepatocytes are highly sensitive to autophagy induction. ATG7-deficient mouse livers served as negative control. Our findings indicate that unambiguous immunodetection of LC3 in paraffin-embedded tissue specimens was hampered due to low in situ levels of this protein. Maximum sensitivity could only be obtained using high-quality, isoform-specific antibodies, such as antibody 5F10, in combination with Envision+ signal amplification. Moreover, LC3 stains were optimal in neutral-buffered formalin-fixed tissue, immersed in citrate buffer during antigen retrieval. However, even when using this methodology, LC3 monitoring required overexpression of the protein, e.g., in GFP-LC3 transgenic mice. This was not only the case for the liver but also for other organs including heart, skeletal muscle, kidney and gut. Immunohistochemical detection of the autophagy-related proteins ATG5, CTSD or BECN1 is not recommendable for monitoring autophagy, due to lack of differential gene expression or doubtful specificity. SQSTM1 accumulated in autophagy-deficient liver, thus it is not a useful marker for tissue with autophagic activity. We conclude that TEM remains an indispensable technique for in situ evaluation of macroautophagy, particularly in clinical samples for which genetic manipulation or other in vitro techniques are not feasible.
Immunohistochemical analysis of macroautophagy
Martinet, Wim; Schrijvers, Dorien M.; Timmermans, Jean-Pierre; Bult, Hidde; De Meyer, Guido R.Y.
2013-01-01
Transmission electron microscopy (TEM) is an indispensable standard method to monitor macroautophagy in tissue samples. Because TEM is time consuming and not suitable for daily routine, many groups try to identify macroautophagy in tissue by conventional immunohistochemistry. The aim of the present study was to evaluate whether immunohistochemical assessment of macroautophagy-related marker proteins such as LC3, ATG5, CTSD/cathepsin D, BECN1/Beclin 1 or SQSTM1/p62 is feasible and autophagy-specific. For this purpose, livers from starved mice were used as a model because hepatocytes are highly sensitive to autophagy induction. ATG7-deficient mouse livers served as negative control. Our findings indicate that unambiguous immunodetection of LC3 in paraffin-embedded tissue specimens was hampered due to low in situ levels of this protein. Maximum sensitivity could only be obtained using high-quality, isoform-specific antibodies, such as antibody 5F10, in combination with Envision+ signal amplification. Moreover, LC3 stains were optimal in neutral-buffered formalin-fixed tissue, immersed in citrate buffer during antigen retrieval. However, even when using this methodology, LC3 monitoring required overexpression of the protein, e.g., in GFP-LC3 transgenic mice. This was not only the case for the liver but also for other organs including heart, skeletal muscle, kidney and gut. Immunohistochemical detection of the autophagy-related proteins ATG5, CTSD or BECN1 is not recommendable for monitoring autophagy, due to lack of differential gene expression or doubtful specificity. SQSTM1 accumulated in autophagy-deficient liver, thus it is not a useful marker for tissue with autophagic activity. We conclude that TEM remains an indispensable technique for in situ evaluation of macroautophagy, particularly in clinical samples for which genetic manipulation or other in vitro techniques are not feasible. PMID:23242143
Hewitt, Stephen N.; Choi, Ryan; Kelley, Angela; Crowther, Gregory J.; Napuli, Alberto J.; Van Voorhis, Wesley C.
2011-01-01
Despite recent advances, the expression of heterologous proteins in Escherichia coli for crystallization remains a nontrivial challenge. The present study investigates the efficacy of maltose-binding protein (MBP) fusion as a general strategy for rescuing the expression of target proteins. From a group of sequence-verified clones with undetectable levels of protein expression in an E. coli T7 expression system, 95 clones representing 16 phylogenetically diverse organisms were selected for recloning into a chimeric expression vector with an N-terminal histidine-tagged MBP. PCR-amplified inserts were annealed into an identical ligation-independent cloning region in an MBP-fusion vector and were analyzed for expression and solubility by high-throughput nickel-affinity binding. This approach yielded detectable expression of 72% of the clones; soluble expression was visible in 62%. However, the solubility of most proteins was marginal to poor upon cleavage of the MBP tag. This study offers large-scale evidence that MBP can improve the soluble expression of previously non-expressing proteins from a variety of eukaryotic and prokaryotic organisms. While the behavior of the cleaved proteins was disappointing, further refinements in MBP tagging may permit the more widespread use of MBP-fusion proteins in crystallographic studies. PMID:21904041
In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells.
Hanamata, Shigeru; Kurusu, Takamitsu; Okada, Masaaki; Suda, Akiko; Kawamura, Koki; Tsukada, Emi; Kuchitsu, Kazuyuki
2013-01-01
Autophagy has been shown to play essential roles in the growth, development and survival of eukaryotic cells. However, simple methods for quantification and visualization of autophagic flux remain to be developed in living plant cells. Here, we analyzed the autophagic flux in transgenic tobacco BY-2 cell lines expressing fluorescence-tagged NtATG8a as a marker for autophagosome formation. Under sucrose-starved conditions, the number of punctate signals of YFP-NtATG8a increased, and the fluorescence intensity of the cytoplasm and nucleoplasm decreased. Conversely, these changes were not observed in BY-2 cells expressing a C-terminal glycine deletion mutant of the NtATG8a protein (NtATG8aΔG). To monitor the autophagic flux more easily, we generated a transgenic BY-2 cell line expressing NtATG8a fused to a pH-sensitive fluorescent tag, a tandem fusion of the acid-insensitive RFP and the acid-sensitive YFP. In sucrose-rich conditions, both fluorescent signals were detected in the cytoplasm and only weakly in the vacuole. In contrast, under sucrose-starved conditions, the fluorescence intensity of the cytoplasm decreased, and the RFP signal clearly increased in the vacuole, corresponding to the fusion of the autophagosome to the vacuole and translocation of ATG8 from the cytoplasm to the vacuole. Moreover, we introduce a novel simple easy way to monitor the autophagic flux non-invasively by only measuring the ratio of fluorescence of RFP and YFP in the cell suspension using a fluorescent image analyzer without microscopy. The present in vivo quantitative monitoring system for the autophagic flux offers a powerful tool for determining the physiological functions and molecular mechanisms of plant autophagy induced by environmental stimuli.
In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells
Hanamata, Shigeru; Kurusu, Takamitsu; Okada, Masaaki; Suda, Akiko; Kawamura, Koki; Tsukada, Emi; Kuchitsu, Kazuyuki
2013-01-01
Autophagy has been shown to play essential roles in the growth, development and survival of eukaryotic cells. However, simple methods for quantification and visualization of autophagic flux remain to be developed in living plant cells. Here, we analyzed the autophagic flux in transgenic tobacco BY-2 cell lines expressing fluorescence-tagged NtATG8a as a marker for autophagosome formation. Under sucrose-starved conditions, the number of punctate signals of YFP-NtATG8a increased, and the fluorescence intensity of the cytoplasm and nucleoplasm decreased. Conversely, these changes were not observed in BY-2 cells expressing a C-terminal glycine deletion mutant of the NtATG8a protein (NtATG8aΔG). To monitor the autophagic flux more easily, we generated a transgenic BY-2 cell line expressing NtATG8a fused to a pH-sensitive fluorescent tag, a tandem fusion of the acid-insensitive RFP and the acid-sensitive YFP. In sucrose-rich conditions, both fluorescent signals were detected in the cytoplasm and only weakly in the vacuole. In contrast, under sucrose-starved conditions, the fluorescence intensity of the cytoplasm decreased, and the RFP signal clearly increased in the vacuole, corresponding to the fusion of the autophagosome to the vacuole and translocation of ATG8 from the cytoplasm to the vacuole. Moreover, we introduce a novel simple easy way to monitor the autophagic flux non-invasively by only measuring the ratio of fluorescence of RFP and YFP in the cell suspension using a fluorescent image analyzer without microscopy. The present in vivo quantitative monitoring system for the autophagic flux offers a powerful tool for determining the physiological functions and molecular mechanisms of plant autophagy induced by environmental stimuli. PMID:23123450
Grant, Gavin D.; Gamsby, Joshua; Martyanov, Viktor; Brooks, Lionel; George, Lacy K.; Mahoney, J. Matthew; Loros, Jennifer J.; Dunlap, Jay C.; Whitfield, Michael L.
2012-01-01
We developed a system to monitor periodic luciferase activity from cell cycle–regulated promoters in synchronous cells. Reporters were driven by a minimal human E2F1 promoter with peak expression in G1/S or a basal promoter with six Forkhead DNA-binding sites with peak expression at G2/M. After cell cycle synchronization, luciferase activity was measured in live cells at 10-min intervals across three to four synchronous cell cycles, allowing unprecedented resolution of cell cycle–regulated gene expression. We used this assay to screen Forkhead transcription factors for control of periodic gene expression. We confirmed a role for FOXM1 and identified two novel cell cycle regulators, FOXJ3 and FOXK1. Knockdown of FOXJ3 and FOXK1 eliminated cell cycle–dependent oscillations and resulted in decreased cell proliferation rates. Analysis of genes regulated by FOXJ3 and FOXK1 showed that FOXJ3 may regulate a network of zinc finger proteins and that FOXK1 binds to the promoter and regulates DHFR, TYMS, GSDMD, and the E2F binding partner TFDP1. Chromatin immunoprecipitation followed by high-throughput sequencing analysis identified 4329 genomic loci bound by FOXK1, 83% of which contained a FOXK1-binding motif. We verified that a subset of these loci are activated by wild-type FOXK1 but not by a FOXK1 (H355A) DNA-binding mutant. PMID:22740631
2014-12-03
DNA damage . It is controlled by a complex network involving the RecA and LexA proteins. We have previously shown that the SOS response to DNA damage ...Research Triangle Park, NC 27709-2211 enteric bacterium E. coli, SOS Response, DNA damage REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT...Report Title The Escherichia coli (E. coli) SOS response is the largest, most complex, and best characterized bacterial network induced by DNA damage
Nanobodies and recombinant binders in cell biology
Helma, Jonas; Cardoso, M. Cristina; Muyldermans, Serge
2015-01-01
Antibodies are key reagents to investigate cellular processes. The development of recombinant antibodies and binders derived from natural protein scaffolds has expanded traditional applications, such as immunofluorescence, binding arrays, and immunoprecipitation. In addition, their small size and high stability in ectopic environments have enabled their use in all areas of cell research, including structural biology, advanced microscopy, and intracellular expression. Understanding these novel reagents as genetic modules that can be integrated into cellular pathways opens up a broad experimental spectrum to monitor and manipulate cellular processes. PMID:26056137
2015-08-01
ratio in LNCaP and PC3 cells and suppression of CEBPB sensitized these cells to bortezomib in vitro. PC3 xenografts deficient in CEBPB showed...resistant growth of PCa tumors in a mouse xenograft model. shNTV or shCEBPB LNCaP cells were subcutaneously engrafted into male NSG mice and when tumors...was monitored weekly by caliper measurement for 8-weeks (Fig. 3B). We observed significant suppression of CRPC growth in xenografts expressing shC
Preprocessing and Analysis of LC-MS-Based Proteomic Data
Tsai, Tsung-Heng; Wang, Minkun; Ressom, Habtom W.
2016-01-01
Liquid chromatography coupled with mass spectrometry (LC-MS) has been widely used for profiling protein expression levels. This chapter is focused on LC-MS data preprocessing, which is a crucial step in the analysis of LC-MS based proteomics. We provide a high-level overview, highlight associated challenges, and present a step-by-step example for analysis of data from LC-MS based untargeted proteomic study. Furthermore, key procedures and relevant issues with the subsequent analysis by multiple reaction monitoring (MRM) are discussed. PMID:26519169
Understanding and Targeting Cell Growth Networks in Breast Cancer
2010-04-01
both monitoring and preventing the outbreak of cancer cells. A common target of ARF is the NPM/B23 oncogene, an abundant protein of the nucleolus ...phenotype is dependent on NPM and p68DDX5 expression in the nucleolus , with loss of either capable of completely reversing the phenotype back to...ARF, DDX5, and NPM in the nucleolus of breast epithelial cells and how they impact both ribosome biogenesis and cell growth to prevent and/or promote
The Cloning, Characterization, and Functional Analysis of Murine Pregnancy Specific Glycoproteins
1999-07-23
synergized with LPS to induce secretion ofIL-6 and IL-IO protein. The affect ofPSG18N treatment on expression of IL-I 13, TNF-a, TGF-p, iNOS, and IL...such as spontaneous abortion (8, 9), intrauterine growth retardation (10), fetal hypoxia (11), and pre-eclampsia (12). Funhennore, 1 2 treatment ...moles (23), and invasive moles (24). In fact, PSG levels have been utilized to monitor the treatment of trophoblastic tumors (25). •:.Relationship to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haarmeyer, Carolyn N.; Smith, Matthew D.; Chundawat, Shishir P. S.
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterizedmore » 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Altogether, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases.« less
Haarmeyer, Carolyn N.; Smith, Matthew D.; Chundawat, Shishir P. S.; ...
2016-10-17
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue towards energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterizedmore » 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28 to 0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Altogether, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases.« less
Haarmeyer, Carolyn N; Smith, Matthew D; Chundawat, Shishir P S; Sammond, Deanne; Whitehead, Timothy A
2017-04-01
Biological-mediated conversion of pretreated lignocellulosic biomass to biofuels and biochemicals is a promising avenue toward energy sustainability. However, a critical impediment to the commercialization of cellulosic biofuel production is the high cost of cellulase enzymes needed to deconstruct biomass into fermentable sugars. One major factor driving cost is cellulase adsorption and inactivation in the presence of lignin, yet we currently have a poor understanding of the protein structure-function relationships driving this adsorption. In this work, we have systematically investigated the role of protein surface potential on lignin adsorption using a model monomeric fluorescent protein. We have designed and experimentally characterized 16 model protein variants spanning the physiological range of net charge (-24 to +16 total charges) and total charge density (0.28-0.40 charges per sequence length) typical for natural proteins. Protein designs were expressed, purified, and subjected to in silico and in vitro biophysical measurements to evaluate the relationship between protein surface potential and lignin adsorption properties. The designs were comparable to model fluorescent protein in terms of thermostability and heterologous expression yield, although the majority of the designs unexpectedly formed homodimers. Protein adsorption to lignin was studied at two different temperatures using Quartz Crystal Microbalance with Dissipation Monitoring and a subtractive mass balance assay. We found a weak correlation between protein net charge and protein-binding capacity to lignin. No other single characteristic, including apparent melting temperature and 2nd virial coefficient, showed correlation with lignin binding. Analysis of an unrelated cellulase dataset with mutations localized to a family I carbohydrate-binding module showed a similar correlation between net charge and lignin binding capacity. Overall, our study provides strategies to identify highly active, low lignin-binding cellulases by either rational design or by computational screening genomic databases. Biotechnol. Bioeng. 2017;114: 740-750. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Improving membrane protein expression and function using genomic edits
Jensen, Heather M.; Eng, Thomas; Chubukov, Victor; ...
2017-10-12
Expression of membrane proteins often leads to growth inhibition and perturbs central metabolism and this burden varies with the protein being overexpressed. There are also known strain backgrounds that allow greater expression of membrane proteins but that differ in efficacy across proteins. Here, we hypothesized that for any membrane protein, it may be possible to identify a modified strain background where its expression can be accommodated with less burden. To directly test this hypothesis, we used a bar-coded transposon insertion library in tandem with cell sorting to assess genome-wide impact of gene deletions on membrane protein expression. The expression ofmore » five membrane proteins (CyoB, CydB, MdlB, YidC, and LepI) and one soluble protein (GST), each fused to GFP, was examined. We identified Escherichia coli mutants that demonstrated increased membrane protein expression relative to that in wild type. For two of the proteins (CyoB and CydB), we conducted functional assays to confirm that the increase in protein expression also led to phenotypic improvement in function. This study represents a systematic approach to broadly identify genetic loci that can be used to improve membrane protein expression, and our method can be used to improve expression of any protein that poses a cellular burden.« less
Improving membrane protein expression and function using genomic edits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Heather M.; Eng, Thomas; Chubukov, Victor
Expression of membrane proteins often leads to growth inhibition and perturbs central metabolism and this burden varies with the protein being overexpressed. There are also known strain backgrounds that allow greater expression of membrane proteins but that differ in efficacy across proteins. Here, we hypothesized that for any membrane protein, it may be possible to identify a modified strain background where its expression can be accommodated with less burden. To directly test this hypothesis, we used a bar-coded transposon insertion library in tandem with cell sorting to assess genome-wide impact of gene deletions on membrane protein expression. The expression ofmore » five membrane proteins (CyoB, CydB, MdlB, YidC, and LepI) and one soluble protein (GST), each fused to GFP, was examined. We identified Escherichia coli mutants that demonstrated increased membrane protein expression relative to that in wild type. For two of the proteins (CyoB and CydB), we conducted functional assays to confirm that the increase in protein expression also led to phenotypic improvement in function. This study represents a systematic approach to broadly identify genetic loci that can be used to improve membrane protein expression, and our method can be used to improve expression of any protein that poses a cellular burden.« less
Haskins, Morgan; Jones, Terry E; Lu, Qun; Bareiss, Sonja K
2016-01-01
Exercise has been shown to protect against cognitive decline and Alzheimer's disease (AD) progression, however the dose of exercise required to protect against AD is unknown. Recent studies show that the pathological processes leading to AD cause characteristic alterations in blood and brain inflammatory proteins that are associated with the progression of AD, suggesting that these markers could be used to diagnosis and monitor disease progression. The purpose of this study was to determine the impact of exercise frequency on AD blood chemokine profiles, and correlate these findings with chemokine brain expression changes in the triple transgenic AD (3xTg-AD) mouse model. Three month old 3xTg-AD mice were subjected to 12 weeks of moderate intensity wheel running at a frequency of either 1×/week or 3×/week. Blood and cortical tissue were analyzed for expression of monocyte chemotactic protein-1 (MCP-1) and regulated and normal T cell expressed and secreted (RANTES). Alterations in blood RANTES and MCP-1 expression were evident at 3 and 6 month old animals compared to WT animals. Three times per week exercise but not 1×/week exercise was effective at reversing serum and brain RANTES and MCP-1 expression to the levels of WT controls, revealing a dose dependent response to exercise. Analysis of these chemokines showed a strong negative correlation between blood and brain expression of RANTES. The results indicate that alterations in serum and brain inflammatory chemokines are evident as early signs of Alzheimer's disease pathology and that higher frequency exercise was necessary to restore blood and brain inflammatory expression levels in this AD mouse model. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Miryounesi, Mohammad; Nayernia, Karim; Mobasheri, Maryam Beigom; Dianatpour, Mahdi; Oko, Richard; Savad, Shahram; Modarressi, Mohammad Hossein
2014-10-01
In vitro generation of germ cells introduces a novel approach to male infertility and provides an effective system in gene tracking studies, however many aspects of this process have remained unclear. We aimed to promote mouse embryonic stem cells (mESC) differentiation into germ cells and evaluate its effectiveness with tracking the expression of the Tsga10 during this process. mESCs were differentiated into germ cells in the presence of Retinoic Acid. Based on developmental schedule of the postnatal testis, samples were taken on the 7th, 12th, and 25th days of the culture and were subjected to expression analysis of a panel of germ cell specific genes. Expression of Tsga10 in RNA and protein levels was then analyzed. Transition from mitosis to meiosis occurred between 7th and 12th days of mESC culture and post-meiotic gene expression did not occur until the 25th day of the culture. Results showed low level of Tsga10expression in undifferentiated stem cells. During transition from meiotic to post-meiotic phase, Tsga10 expression increased in 6.6 folds. This finding is in concordance with in vivo changes during transition from pre-pubertal to pubertal stage. Localization of processed and unprocessed forms of the related protein was similar to those in vivo as well. Expression pattern of Tsga10, as a gene with critical function in spermatogenesis, is similar during in vitro and in vivo germ cell generation. The results suggest that in vitro derived germ cells could be a trusted model to study genes behavior during spermatogenesis.
Ng, Grace Hwee Boon; Xu, Hongyan; Pi, Na; Kelly, Barry C; Gong, Zhiyuan
2015-06-01
Heat shock protein 70 (Hsp70) is one of the most widely used biomarker for monitoring environment perturbations in biological systems. To facilitate the analysis of hsp70 expression as a biomarker, we generated a Tg(hsp70:gfp) transgenic medaka line in which green fluorescence protein (GFP) reporter gene was driven by the medaka hsp70 promoter. Here, we characterized Tg(hsp70:gfp) medaka for inducible GFP expression by seven environment-relevant heavy metals, including mercury, arsenic, lead, cadmium, copper, chromium, and zinc. We found that four of them (mercury, arsenic, lead, and cadmium) induced GFP expression in multiple and different organs. In general, the liver, kidney, gut, and skin are among the most frequent organs to show induced GFP expression. In contrast, no detectable GFP induction was observed to copper, chromium, or zinc, indicating that the transgenic line was not responsive to all heavy metals. RT-qPCR determination of hsp70 mRNA showed similar induction and non-induction by these metals, which also correlated with the levels of metal uptake in medaka exposed to these metals. Our observations suggested that these heavy metals have different mechanisms of toxicity and/or differential bioaccumulation in various organs; different patterns of GFP expression induced by different metals may be used to determine or exclude metals in water samples tested. Furthermore, we also tested several non-metal toxicants such as bisphenol A, 2,3,7,8-tetrachlorodibenzo-p-dioxin, 4-introphenol, and lindane; none of them induced significant GFP expression in Tg(hsp70:gfp) medaka, further suggesting that the inducibility of Tg(hsp70:gfp) for GFP expression is specific to a subset of heavy metals.
Ali, Mohamed A E; Fuse, Kyoko; Tadokoro, Yuko; Hoshii, Takayuki; Ueno, Masaya; Kobayashi, Masahiko; Nomura, Naho; Vu, Ha Thi; Peng, Hui; Hegazy, Ahmed M; Masuko, Masayoshi; Sone, Hirohito; Arai, Fumio; Tajima, Atsushi; Hirao, Atsushi
2017-09-12
Hematopoietic stem cells (HSCs) in a steady state can be efficiently purified by selecting for a combination of several cell surface markers; however, such markers do not consistently reflect HSC activity. In this study, we successfully enriched HSCs with a unique stemness-monitoring system using a transgenic mouse in which green florescence protein (GFP) is driven by the promoter/enhancer region of the nucleostemin (NS) gene. We found that the phenotypically defined long-term (LT)-HSC population exhibited the highest level of NS-GFP intensity, whereas NS-GFP intensity was strongly downregulated during differentiation in vitro and in vivo. Within the LT-HSC population, NS-GFP high cells exhibited significantly higher repopulating capacity than NS-GFP low cells. Gene expression analysis revealed that nine genes, including Vwf and Cdkn1c (p57), are highly expressed in NS-GFP high cells and may represent a signature of HSCs, i.e., a stemness signature. When LT-HSCs suffered from remarkable stress, such as transplantation or irradiation, NS-GFP intensity was downregulated. Finally, we found that high levels of NS-GFP identified HSC-like cells even among CD34 + cells, which have been considered progenitor cells without long-term reconstitution ability. Thus, high NS-GFP expression represents stem cell characteristics in hematopoietic cells, making this system useful for identifying previously uncharacterized HSCs.
Huber, Robert; Ritter, Daniel; Hering, Till; Hillmer, Anne-Kathrin; Kensy, Frank; Müller, Carsten; Wang, Le; Büchs, Jochen
2009-08-01
In industry and academic research, there is an increasing demand for flexible automated microfermentation platforms with advanced sensing technology. However, up to now, conventional platforms cannot generate continuous data in high-throughput cultivations, in particular for monitoring biomass and fluorescent proteins. Furthermore, microfermentation platforms are needed that can easily combine cost-effective, disposable microbioreactors with downstream processing and analytical assays. To meet this demand, a novel automated microfermentation platform consisting of a BioLector and a liquid-handling robot (Robo-Lector) was sucessfully built and tested. The BioLector provides a cultivation system that is able to permanently monitor microbial growth and the fluorescence of reporter proteins under defined conditions in microtiter plates. Three examplary methods were programed on the Robo-Lector platform to study in detail high-throughput cultivation processes and especially recombinant protein expression. The host/vector system E. coli BL21(DE3) pRhotHi-2-EcFbFP, expressing the fluorescence protein EcFbFP, was hereby investigated. With the method 'induction profiling' it was possible to conduct 96 different induction experiments (varying inducer concentrations from 0 to 1.5 mM IPTG at 8 different induction times) simultaneously in an automated way. The method 'biomass-specific induction' allowed to automatically induce cultures with different growth kinetics in a microtiter plate at the same biomass concentration, which resulted in a relative standard deviation of the EcFbFP production of only +/- 7%. The third method 'biomass-specific replication' enabled to generate equal initial biomass concentrations in main cultures from precultures with different growth kinetics. This was realized by automatically transferring an appropiate inoculum volume from the different preculture microtiter wells to respective wells of the main culture plate, where subsequently similar growth kinetics could be obtained. The Robo-Lector generates extensive kinetic data in high-throughput cultivations, particularly for biomass and fluorescence protein formation. Based on the non-invasive on-line-monitoring signals, actions of the liquid-handling robot can easily be triggered. This interaction between the robot and the BioLector (Robo-Lector) combines high-content data generation with systematic high-throughput experimentation in an automated fashion, offering new possibilities to study biological production systems. The presented platform uses a standard liquid-handling workstation with widespread automation possibilities. Thus, high-throughput cultivations can now be combined with small-scale downstream processing techniques and analytical assays. Ultimately, this novel versatile platform can accelerate and intensify research and development in the field of systems biology as well as modelling and bioprocess optimization.
Ren, Weibo; Xie, Jihong; Hou, Xiangyang; Li, Xiliang; Guo, Huiqin; Hu, Ningning; Kong, Lingqi; Zhang, Jize; Chang, Chun; Wu, Zinian
2018-05-08
This study was designed to reveal potential molecular mechanisms of long-term overgrazing-induced dwarfism in sheepgrass (Leymus chinensis). An electrospray ionisation mass spectrometry system was used to generate proteomic data of dwarf sheepgrass from a long-term overgrazed rangeland and normal sheepgrass from a long-term enclosed rangeland. Differentially expressed proteins (DEPs) between dwarf and normal sheepgrass were identified, after which their potential functions and interactions with each other were predicted. The expression of key DEPs was confirmed by high-performance liquid chromatography mass spectrometry (HPLC-MS) using a multiple reaction monitoring method. Compared with normal sheepgrass, a total of 51 upregulated and 53 downregulated proteins were identified in dwarf sheepgrass. The amino acids biosynthesis pathway was differentially enriched between the two conditions presenting DEPs, such as SAT5_ARATH and DAPA_MAIZE. The protein-protein interaction (PPI) network revealed a possible interaction between RPOB2_LEPTE, A0A023H9M8_9STRA, ATPB_DIOEL, RBL_AMOTI and DNAK_GRATL. Four modules were also extracted from the PPI network. The HPLC-MS analysis confirmed the upregulation and downregulation of ATPB_DIOEL and DNAK_GRATL, respectively in dwarf samples compared with in the controls. The upregulated ATPB_DIOEL and downregulated DNAK_GRATL as well as proteins that interact with them, such as RPOB2_LEPTE, A0A023H9M8_9STRA and RBL_AMOTI, may be associated with the long-term overgrazing-induced dwarfism in sheepgrass.
A versatile assay for RNA-binding proteins in living cells
Strein, Claudia; Alleaume, Anne-Marie; Rothbauer, Ulrich; Hentze, Matthias W.; Castello, Alfredo
2014-01-01
RNA-binding proteins (RBPs) control RNA fate from synthesis to decay. Since their cellular expression levels frequently do not reflect their in vivo activity, methods are needed to assess the steady state RNA-binding activity of RBPs as well as their responses to stimuli. While electrophoresis mobility shift assays (EMSA) have been used for such determinations, their results serve at best as proxies for the RBP activities in living cells. Here, we describe a quantitative dual fluorescence method to analyze protein–mRNA interactions in vivo. Known or candidate RBPs are fused to fluorescent proteins (eGFP, YFP), expressed in cells, cross-linked in vivo to RNA by ultraviolet light irradiation, and immunoprecipitated, after lysis, with a single chain antibody fragment directed against eGFP (GFP-binding protein, GBP). Polyadenylated RNA-binding activity of fusion proteins is assessed by hybridization with an oligo(DT) probe coupled with a red fluorophore. Since UV light is directly applied to living cells, the assay can be used to monitor dynamic changes in RNA-binding activities in response to biological or pharmacological stimuli. Notably, immunoprecipitation and hybridization can also be performed with commercially available GBP-coupled 96-well plates (GFP-multiTrap), allowing highly parallel RNA-binding measurements in a single experiment. Therefore, this method creates the possibility to conduct in vivo high-throughput RNA-binding assays. We believe that this fast and simple radioactivity-free method will find many useful applications in RNA biology. PMID:24664470
Coppola, Julia M; Hamilton, Christin A; Bhojani, Mahaveer S; Larsen, Martha J; Ross, Brian D; Rehemtulla, Alnawaz
2007-05-01
Noninvasive real-time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease's natural milieu. We developed a protease activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, on protease-mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV as well as in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high-throughput screening of 39,000-compound small molecule libraries, leading to identification of furin inhibitors. Furthermore, this strategy was used to identify inhibitors of another Golgi protease, the beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE). BACE cleavage of the APP leads to formation of the Abeta peptide, a key event that leads to Alzheimer's disease. In conclusion, we describe a customizable noninvasive technology for real-time assessment of Golgi protease activity used to identify inhibitors of furin and BACE.
Coppola, Julia M.; Hamilton, Christin A.; Bhojani, Mahaveer S.; Larsen, Martha J.; Ross, Brian D.; Rehemtulla, Alnawaz
2007-01-01
Non-invasive real time quantification of cellular protease activity allows monitoring of enzymatic activity and identification of activity modulators within the protease’s natural milieu. We developed a protease-activity assay based on differential localization of a recombinant reporter consisting of a Golgi retention signal and a protease cleavage sequence fused to alkaline phosphatase (AP). When expressed in mammalian cells, this protein localizes to Golgi bodies and, upon protease mediated cleavage, AP translocates to the extracellular medium where its activity is measured. We used this system to monitor the Golgi-associated protease furin, a pluripotent enzyme with a key role in tumorigenesis, viral propagation of avian influenza, ebola, and HIV, and in activation of anthrax, pseudomonas, and diphtheria toxins. This technology was adapted for high throughput screening of 30,000 compound small molecule libraries, leading to identification of furin inhibitors. Further, this strategy was utilized to identify inhibitors of another Golgi protease, the β-site APP-cleaving enzyme (BACE). BACE cleavage of the amyloid precursor protein leads to formation of the Aβ peptide, a key event that leads to Alzheimer’s disease. In conclusion, we describe a customizable, non-invasive technology for real time assessment of Golgi protease activity used to identify inhibitors of furin and BACE. PMID:17316541
Yin, Xiaotao; Wang, Wei; Tian, Renli; Xu, Yuanji; Yan, Jinqi; Zhang, Wei; Gao, Jiangping; Yu, Jiyun
2013-08-01
To construct a prokaryotic expression plasmid pET28a-survivin, optimize the recombinant protein expression conditions in E.coli, and purify the survivin recombinant protein and identify its antigenicity. Survivin cDNA segment was amplified by PCR and cloned into prokaryotic expression vector pET28a(+) to construct the recombinant expression vector pET28a-survivin. The expression vector was transformed into BL21 (DE3) and the fusion protein survivin/His was induced by IPTG. The fusion protein was purified through Ni affinity chromatography. The antigenicity of the purified survivin protein was identified by Western blotting and ELISA. The recombinant expression vector was verified successfully by BamHI and HindIII. The fusion protein induced by IPTG was obtained with Mr; about 24 000. The purity of the purified protein reached 90% by SDS-PAGE analysis. And the antigenicity of the survivin protein was validated by Western blotting and ELISA. The prokaryotic expression plasmid pET28a-survivin was successfully constructed and the survivin protein was expressed and purified in E.coli. The antigenicity of the purified survivin protein was demonstrated desirable.
Elucidating the Role of the Complement Control Protein in Monkeypox Pathogenicity
Hudson, Paul N.; Self, Joshua; Weiss, Sonja; Braden, Zachary; Xiao, Yuhong; Girgis, Natasha M.; Emerson, Ginny; Hughes, Christine; Sammons, Scott A.; Isaacs, Stuart N.; Damon, Inger K.; Olson, Victoria A.
2012-01-01
Monkeypox virus (MPXV) causes a smallpox-like disease in humans. Clinical and epidemiological studies provide evidence of pathogenicity differences between two geographically distinct monkeypox virus clades: the West African and Congo Basin. Genomic analysis of strains from both clades identified a ∼10 kbp deletion in the less virulent West African isolates sequenced to date. One absent open reading frame encodes the monkeypox virus homologue of the complement control protein (CCP). This modulatory protein prevents the initiation of both the classical and alternative pathways of complement activation. In monkeypox virus, CCP, also known as MOPICE, is a ∼24 kDa secretory protein with sequence homology to this superfamily of proteins. Here we investigate CCP expression and its role in monkeypox virulence and pathogenesis. CCP was incorporated into the West African strain and removed from the Congo Basin strain by homologous recombination. CCP expression phenotypes were confirmed for both wild type and recombinant monkeypox viruses and CCP activity was confirmed using a C4b binding assay. To characterize the disease, prairie dogs were intranasally infected and disease progression was monitored for 30 days. Removal of CCP from the Congo Basin strain reduced monkeypox disease morbidity and mortality, but did not significantly decrease viral load. The inclusion of CCP in the West African strain produced changes in disease manifestation, but had no apparent effect on disease-associated mortality. This study identifies CCP as an important immuno-modulatory protein in monkeypox pathogenesis but not solely responsible for the increased virulence seen within the Congo Basin clade of monkeypox virus. PMID:22496894
NASA Astrophysics Data System (ADS)
Choi, Sam B.; Zamarbide, Marta; Manzini, M. Chiara; Nemes, Peter
2017-04-01
Ultrasensitive characterization of the proteome raises the potential to understand how differential gene expression orchestrates cell heterogeneity in the brain. Here, we report a microanalytical capillary electrophoresis nano-flow electrospray ionization (CE-nanoESI) interface for mass spectrometry to enable the measurement of limited amounts of proteins in the mouse cortex. Our design integrates a custom-built CE system to a tapered-tip metal emitter in a co-axial sheath-flow configuration. This interface can be constructed in <15 min using readily available components, facilitating broad adaptation. Tapered-tip CE-nanoESI generates stable electrospray by reproducibly anchoring the Taylor cone, minimizes sample dilution in the ion source, and ensures efficient ion generation by sustaining the cone-jet spraying regime. Parallel reaction monitoring provided a 260-zmol lower limit of detection for angiotensin II (156,000 copies). CE was able to resolve a complex mixture of peptides in 330,000 theoretical plates and identify 15 amol ( 1 pg) of BSA or cytochrome c. Over 30 min of separation, 1 ng protein digest from the mouse cortex yielded 217 nonredundant proteins encompassing a 3-log-order concentration range using a quadrupole time-of-flight mass spectrometer. Identified proteins included many products from genes that are traditionally used to mark oligodendrocytes, astrocytes, and microglia. Finally, key proteins involved in neurodegenerative disorders were detected (e.g., parkinsonism and spastic paraplegia). CE-nanoESI-HRMS delivers sufficient sensitivity to detect proteins in limited amounts of tissues and cell populations to help understand how gene expression differences maintain cell heterogeneity in the brain.
Jalali, Sushil K; Yadavalli, Lalitha; Ojha, Rakshit; Kumar, Pradyumn; Sulaikhabeevi, Suby B; Sharma, Reema; Nair, Rupa; Kadanur, Ravi C; Kamath, Subray P; Komarlingam, Mohan S
2015-08-01
Among the major pests of maize in India are two stem borers, Chilo partellus (Swinhoe) and Sesamia inferens (Walker), and an earworm, Helicoverpa armigera (Hübner). As a pest control strategy, transgenic Bacillus thuringiensis (Bt) maize hybrids are undergoing regulatory trials in India. We have determined the sensitivity of the target lepidopterans to the insecticidal Bt proteins expressed in Bt maize, as this determines product efficacy and the resistance management strategy to be adopted. Maize hybrids with event MON89034 express two insecticidal Bt proteins, Cry1A.105 and Cry2Ab2. Sensitivity profiles of 53 populations of C. partellus, 21 populations of S. inferens and 21 populations of H. armigera, collected between 2008 and 2013 from maize-growing areas in India, to Cry1A.105 and Cry2Ab2 proteins were generated through dose-response assays. Cry1A.105 protein was the most effective to neonates of C. partellus (mean MIC90 range 0.30-1.0 µg mL(-1) ) and H. armigera (mean MIC90 range 0.71-8.22 µg mL(-1) ), whereas Cry2Ab2 (mean MIC90 range 0.65-1.70 µg mL(-1) ) was the most effective to S. inferens. Populations of C. partellus, S. inferens and H. armigera were susceptible to the Bt proteins Cry1A.105 and Cry2Ab2. The Bt sensitivity data will serve as precommercialisation benchmarks for resistance monitoring purposes. © 2014 Society of Chemical Industry.
Tools to minimize interlaboratory variability in vitellogenin gene expression monitoring programs
Jastrow, Aaron; Gordon, Denise A.; Auger, Kasie M.; Punska, Elizabeth C.; Arcaro, Kathleen F.; Keteles, Kristen; Winkelman, Dana L.; Lattier, David; Biales, Adam; Lazorchak, James M.
2017-01-01
The egg yolk precursor protein vitellogenin is widely used as a biomarker of estrogen exposure in male fish. However, standardized methodology is lacking and little is known regarding the reproducibility of results among laboratories using different equipment, reagents, protocols, and data analysis programs. To address this data gap we tested the reproducibility across laboratories to evaluate vitellogenin gene (vtg) expression and assessed the value of using a freely available software data analysis program. Samples collected from studies of male fathead minnows (Pimephales promelas) exposed to 17α-ethinylestradiol (EE2) and minnows exposed to processed wastewater effluent were evaluated for vtg expression in 4 laboratories. Our results indicate reasonable consistency among laboratories if the free software for expression analysis LinRegPCR is used, with 3 of 4 laboratories detecting vtg in fish exposed to 5 ng/L EE2 (n = 5). All 4 laboratories detected significantly increased vtg levels in 15 male fish exposed to wastewater effluent compared with 15 male fish held in a control stream. Finally, we were able to determine that the source of high interlaboratory variability from complementary deoxyribonucleic acid (cDNA) to quantitative polymerase chain reaction (qPCR) analyses was the expression analysis software unique to each real-time qPCR machine. We successfully eliminated the interlaboratory variability by reanalyzing raw fluorescence data with independent freeware, which yielded cycle thresholds and polymerase chain reaction (PCR) efficiencies that calculated results independently of proprietary software. Our results suggest that laboratories engaged in monitoring programs should validate their PCR protocols and analyze their gene expression data following the guidelines established in the present study for all gene expression biomarkers.
Nakagawa, Yuko; Nagasawa, Masahiro; Yamada, Satoko; Hara, Akemi; Mogami, Hideo; Nikolaev, Viacheslav O.; Lohse, Martin J.; Shigemura, Noriatsu; Ninomiya, Yuzo; Kojima, Itaru
2009-01-01
Background Sweet taste receptor is expressed in the taste buds and enteroendocrine cells acting as a sugar sensor. We investigated the expression and function of the sweet taste receptor in MIN6 cells and mouse islets. Methodology/Principal Findings The expression of the sweet taste receptor was determined by RT–PCR and immunohistochemistry. Changes in cytoplasmic Ca2+ ([Ca2+]c) and cAMP ([cAMP]c) were monitored in MIN6 cells using fura-2 and Epac1-camps. Activation of protein kinase C was monitored by measuring translocation of MARCKS-GFP. Insulin was measured by radioimmunoassay. mRNA for T1R2, T1R3, and gustducin was expressed in MIN6 cells. In these cells, artificial sweeteners such as sucralose, succharin, and acesulfame-K increased insulin secretion and augmented secretion induced by glucose. Sucralose increased biphasic increase in [Ca2+]c. The second sustained phase was blocked by removal of extracellular calcium and addition of nifedipine. An inhibitor of inositol(1, 4, 5)-trisphophate receptor, 2-aminoethoxydiphenyl borate, blocked both phases of [Ca2+]c response. The effect of sucralose on [Ca2+]c was inhibited by gurmarin, an inhibitor of the sweet taste receptor, but not affected by a Gq inhibitor. Sucralose also induced sustained elevation of [cAMP]c, which was only partially inhibited by removal of extracellular calcium and nifedipine. Finally, mouse islets expressed T1R2 and T1R3, and artificial sweeteners stimulated insulin secretion. Conclusions Sweet taste receptor is expressed in β-cells, and activation of this receptor induces insulin secretion by Ca2+ and cAMP-dependent mechanisms. PMID:19352508
Absolute Quantification of Selected Proteins in the Human Osteoarthritic Secretome
Peffers, Mandy J.; Beynon, Robert J.; Clegg, Peter D.
2013-01-01
Osteoarthritis (OA) is characterized by a loss of extracellular matrix which is driven by catabolic cytokines. Proteomic analysis of the OA cartilage secretome enables the global study of secreted proteins. These are an important class of molecules with roles in numerous pathological mechanisms. Although cartilage studies have identified profiles of secreted proteins, quantitative proteomics techniques have been implemented that would enable further biological questions to be addressed. To overcome this limitation, we used the secretome from human OA cartilage explants stimulated with IL-1β and compared proteins released into the media using a label-free LC-MS/MS-based strategy. We employed QconCAT technology to quantify specific proteins using selected reaction monitoring. A total of 252 proteins were identified, nine were differentially expressed by IL-1 β stimulation. Selected protein candidates were quantified in absolute amounts using QconCAT. These findings confirmed a significant reduction in TIMP-1 in the secretome following IL-1β stimulation. Label-free and QconCAT analysis produced equivocal results indicating no effect of cytokine stimulation on aggrecan, cartilage oligomeric matrix protein, fibromodulin, matrix metalloproteinases 1 and 3 or plasminogen release. This study enabled comparative protein profiling and absolute quantification of proteins involved in molecular pathways pertinent to understanding the pathogenesis of OA. PMID:24132152
Kaieda, Yuya; Masuda, Ryota; Nishida, Ritsuo; Shimell, MaryJane; O’Connor, Michael B.; Ono, Hajime
2018-01-01
Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression. PMID:28782527
Yang, In Jun; Lee, Dong-Ung; Shin, Heung Mook
2016-01-01
Valencene (VAL) isolated from Cyperus rotundus possesses various biological effects such as antiallergic and antimelanogenesis activity. We investigated the effect of VAL on atopic dermatitis (AD) skin lesions and their molecular mechanisms. We topically applied VAL to 1-chloro-2,4-dinitrobenzene (DNCB) sensitized NC/Nga mice. Modified scoring atopic dermatitis index, scratching behavior, and histological/immunohistochemical staining were used to monitor disease severity. RT-PCR, western blotting, and enzyme-linked immunosorbent assay were used to determine the level of IgE, proinflammatory cytokines/chemokines production, and skin barrier proteins expression. Topical application of VAL significantly reduced AD-like symptoms and recovered decreased expression of filaggrin in DNCB-sensitized NC/Nga mice. The levels of serum IgE, IL-1β, IL-6, and IL-13 in skin/splenic tissue were reduced. In vitro studies using TNF-α and IFN-γ treated HaCaT cells revealed that VAL inhibited the exaggerated expression of Th2 chemokines including TARC/CCL17, MDC/CCL22, and proinflammatory chemokines such as CXCL8, GM-CSF, and I-CAM through blockade of the NF-κB pathway. In addition, expression of the skin barrier protein, involucrin, was also increased by VAL treatment. VAL inhibited the production and expression of proinflammatory cytokines IL-1β and IL-6 in LPS-stimulated RAW 264.7 cells. These results suggest that VAL may serve as a potential therapeutic option for AD.
Kaieda, Yuya; Masuda, Ryota; Nishida, Ritsuo; Shimell, MaryJane; O'Connor, Michael B; Ono, Hajime
2017-10-01
Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression. Copyright © 2017 Elsevier Inc. All rights reserved.
Koul, Sweaty; Huang, Meiyi; Bhat, Sidarth; Maroni, Paul; Meacham, Randall B; Koul, Hari K
2008-02-01
We investigated the effects of oxalate on immediate early genes (IEGs) and stress protein HSP 70, commonly induced genes in response to a variety of stresses. LLC-PK1 cells were exposed to oxalate. Gene transcription and translation were monitored by Northern and Western blot analysis. RNA and DNA synthesis were assessed by [(3)H]-uridine and [(3)H]-thymidine incorporation, respectively. Oxalate exposure selectively increased the levels of mRNA encoding IEGs c-myc and c-jun as well as stress protein HSP 70. While expression of c-myc and c-jun was rapid (within 15 min to 2 h) and transient, HSP 70 expression was delayed (approximately 8 h) and stable. Furthermore, oxalate exposure resulted in delayed induction of generalized transcription by 18 h and reinitiation of the DNA synthesis by 24 h of oxalate exposure. Moreover, we show that prior induction of HSP 70 by mild hypertonic exposure protected the cells from oxalate toxicity. To the best of our knowledge this is the first study to demonstrate rapid IEG response and delayed heat-shock response to oxalate toxicity and protective role of HSP 70 against oxalate toxicity to renal epithelial cells. Oxalate, a metabolic end product, induces IEGs c-myc and c-jun and a delayed HSP 70 expression; While IEG expression may regulate additional genetic responses to oxalate, increased HSP 70 expression would serve an early protective role during oxalate stress.
Li, Jinlin; Callegari, Simone; Masucci, Maria G
2017-04-01
Post-translational modification by the Small Ubiquitin-like Modifier (SUMO) regulates a variety of cellular functions, and is hijacked by viruses to remodel the host cell during latent and productive infection. Here we have monitored the activity of the SUMO conjugation machinery in cells productively infected with Epstein-Barr virus (EBV). We found that SUMO2/3 conjugates accumulate during the late phase of the productive virus cycle, and identified several viral proteins as bone fide SUMOylation substrates. Analysis of the mechanism involved in the accumulation of SUMOylated proteins revealed upregulation of several components of the SUMO-conjugation machinery and post-transcriptional downregulation of the SUMO-targeted ubiquitin ligase RNF4. The latter effect was mediated by selective inhibition of RNF4 protein expression by the viral miR-BHRF1-1. Reconstitution of RNF4 in cells expressing an inducible miR-BHRF1-1 sponge or a miR-BHRF1-1 resistant RNF4 was associated with reduced levels of early and late viral proteins and impaired virus release. These findings illustrate a novel strategy for viral interference with the SUMO pathway, and identify the EBV miR-BHRF1-1 and the cellular RNF4 as regulators of the productive virus cycle.
Li, Jinlin; Callegari, Simone
2017-01-01
Post-translational modification by the Small Ubiquitin-like Modifier (SUMO) regulates a variety of cellular functions, and is hijacked by viruses to remodel the host cell during latent and productive infection. Here we have monitored the activity of the SUMO conjugation machinery in cells productively infected with Epstein-Barr virus (EBV). We found that SUMO2/3 conjugates accumulate during the late phase of the productive virus cycle, and identified several viral proteins as bone fide SUMOylation substrates. Analysis of the mechanism involved in the accumulation of SUMOylated proteins revealed upregulation of several components of the SUMO-conjugation machinery and post-transcriptional downregulation of the SUMO-targeted ubiquitin ligase RNF4. The latter effect was mediated by selective inhibition of RNF4 protein expression by the viral miR-BHRF1-1. Reconstitution of RNF4 in cells expressing an inducible miR-BHRF1-1 sponge or a miR-BHRF1-1 resistant RNF4 was associated with reduced levels of early and late viral proteins and impaired virus release. These findings illustrate a novel strategy for viral interference with the SUMO pathway, and identify the EBV miR-BHRF1-1 and the cellular RNF4 as regulators of the productive virus cycle. PMID:28414785
Methods Of Using Chemical Libraries To Search For New Kinase Inhibitors
Gray, Nathanael S. , Schultz, Peter , Wodicka, Lisa , Meijer, Laurent , Lockhart, David J.
2003-06-03
The generation of selective inhibitors for specific protein kinases would provide new tools for analyzing signal transduction pathways and possibly new therapeutic agents. We have invented an approach to the development of selective protein kinase inhibitors based on the unexpected binding mode of 2,6,9-trisubstituted purines to the ATP binding site of human CDK2. The most potent inhibitor, purvalanol B (IC.sub.50 =6 nM), binds with a 30-fold greater affinity than the known CDK2 inhibitor, flavopiridol. The cellular effects of this class of compounds were examined and compared to those of flavopiridol by monitoring changes in mRNA expression levels for all genes in treated cells of Saccharomyces cerevisiae using high-density oligonucleotide probe arrays.
Glu-Phe from onion (Allium Cepa L.) attenuates lipogenesis in hepatocytes.
Lee, Yu Geon; Cho, Jeong-Yong; Hwang, Eom Ji; Jeon, Tae-Il; Moon, Jae-Hak
2017-07-01
A Glu-Phe (EF) was isolated from onion (Allium cepa L. cv. Sunpower). The chemical structure of EF was determined by nuclear magnetic resonance and electrospray ionization-mass (ESI-MS) spectroscopy. We showed that EF reduced lipid accumulation in mouse hepatocytes by inhibiting the expression of sterol regulatory element-binding protein-1c (SREBP-1c) and its lipogenic target genes. We also found that AMP-activated protein kinase (AMPK) was required for the inhibitory effect of EF on lipid accumulation in mouse hepatocytes. Furthermore, EF was qualified in nine onion cultivars by selective multiple reaction-monitoring detection of liquid chromatography-ESI-MS. These results suggest that EF could contribute to the beneficial effect of onion supplement in maintaining hepatic lipid homeostasis.
Leung, Shui-On; Gao, Kai; Wang, Guang Yu; Cheung, Benny Ka-Wa; Lee, Kwan-Yeung; Zhao, Qi; Cheung, Wing-Tai; Wang, Jun Zhi
2015-01-01
SM03, a chimeric antibody that targets the B-cell restricted antigen CD22, is currently being clinically evaluated for the treatment of lymphomas and other autoimmune diseases in China. SM03 binding to surface CD22 leads to rapid internalization, making the development of an appropriate cell-based bioassay for monitoring changes in SM03 bioactivities during production, purification, storage, and clinical trials difficult. We report herein the development of an anti-idiotype antibody against SM03. Apart from its being used as a surrogate antigen for monitoring SM03 binding affinities, the anti-idiotype antibody was engineered to express as fusion proteins on cell surfaces in a non-internalizing manner, and the engineered cells were used as novel "surrogate target cells" for SM03. SM03-induced complement-mediated cytotoxicity (CMC) against these "surrogate target cells" proved to be an effective bioassay for monitoring changes in Fc functions, including those resulting from minor structural modifications borne within the Fc-appended carbohydrates. The approach can be generally applied for antibodies that target rapidly internalizing or non-surface bound antigens. The combined use of the anti-idiotype antibody and the surrogate target cells could help evaluate clinical parameters associated with safety and efficacies, and possibly the mechanisms of action of SM03.
Fluorescence diffuse tomography for detection of RFP-expressed tumors in small animals
NASA Astrophysics Data System (ADS)
Turchin, Ilya V.; Savitsky, Alexander P.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Meerovich, Irina G.; Arslanbaeva, Lyaisan R.; Jerdeva, Viktoria V.; Orlova, Anna G.; Kleshnin, Mikhail S.; Shirmanova, Marina V.; Fiks, Ilya I.
2007-02-01
Conventional optical imaging is restricted with tumor size due to high tissue scattering. Labeling of tumors by fluorescent markers improves sensitivity of tumor detection thus increasing the value of optical imaging dramatically. Creation of tumor cell lines transfected with fluorescent proteins gives the possibility not only to detect tumor, but also to conduct the intravital monitoring studies. Cell lines of human melanomas Mel-P, Mel-Kor and human embryonic kidney HEK-293 Phoenix were transfected with DsRed-Express and TurboRFP genes. Emission of RFP in the long-wave optical range permits detection of the deeply located tumors, which is essential for whole-body imaging. Only special tools for turbid media imaging, such as fluorescent diffusion tomography (FDT), enable noninvasive investigation of the internal structure of biological tissue. FDT setup for monitoring of tumor growth in small animals has been created. An animal is scanned in the transilluminative configuration by low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the 532 nm wavelength. In vivo experiments were conducted immediately after the subcutaneously injection of fluorescing cells into small animals. It was shown that FDT method allows to detect the presence of fluorescent cells in small animals and can be used for monitoring of tumor growth and anticancer drug responce.
Fluorescence diffuse tomography for detection of RFP-expressed tumors in small animals
NASA Astrophysics Data System (ADS)
Turchin, Ilya V.; Savitsky, Alexander P.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Orlova, Anna G.; Kleshnin, Mikhail S.; Shirmanova, Marina V.; Fix, Ilya I.; Popov, Vladimir O.
2007-07-01
Capabilities of tumor detection by different optical methods can be significantly improved by labeling of tumors with fluorescent markers. Creation of tumor cell lines transfected with fluorescent proteins provides the possibility not only to detect tumor, but also to conduct the intravital monitoring studies. Cell lines of human melanomas Mel-P, Mel-Kor and human embryonic kidney HEK-293 Phoenix were transfected with DsRed-Express and Turbo-RFP genes. Emission of RFP in the long-wave optical range permits detection of the deeply located tumors, which is essential for whole-body imaging. Only special tools for turbid media imaging, such as fluorescent diffusion tomography (FDT), enable noninvasive investigation of the internal structure of biological tissue. FDT setup for monitoring of tumor growth in small animals has been created. An animal is scanned in the transilluminative configuration by low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the 532 nm wavelength. An optimizing algorithm for scanning of an experimantal animal is suggested. In vivo experiments were conducted immediately after the subcutaneously injection of fluorescing cells into small animals. It was shown that FDT method allows to detect the presence of fluorescent cells in small animals and can be used for monitoring of tumor growth and anticancer drug responce.