Science.gov

Sample records for monitoring acoustically-induced geomagnetic

  1. Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations

    SciTech Connect

    Lewis, J P; Rock, D R; Shaeffer, D L; Warshaw, S I

    1999-10-07

    perturbations. We also present evidence for an acoustically-induced magnetic signal at both magnetic observatories, indicating that magnetometers act as highly sensitive detectors of acoustically-induced ground motion. Further experimental and theoretical work are required to improve confidence in these conclusions.

  2. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  3. The role of SANSA's geomagnetic observation network in space weather monitoring: A review

    NASA Astrophysics Data System (ADS)

    Kotzé, P. B.; Cilliers, P. J.; Sutcliffe, P. R.

    2015-10-01

    Geomagnetic observations play a crucial role in the monitoring of space weather events. In a modern society relying on the efficient functioning of its technology network such observations are important in order to determine the potential hazard for activities and infrastructure. Until recently, it was the perception that geomagnetic storms had no or very little adverse effect on radio communication and electric power infrastructure at middle- and low-latitude regions like southern Africa. The 2003 Halloween storm changed this perception. In this paper we discuss the role of the geomagnetic observation network operated by the South African National Space Agency (SANSA) in space weather monitoring. The primary objective is to describe the geomagnetic data sets available to characterize and monitor the various types of solar-driven disturbances, with the aim to better understand the physics of these processes in the near-Earth space environment and to provide relevant space weather monitoring and prediction.

  4. New idea of geomagnetic monitoring through ENA detection from the International Space Station: ENAMISS project

    NASA Astrophysics Data System (ADS)

    Milillo, Anna; De Angelis, Elisabetta; Orsini, Stefano; Rubini, Alda; Evangelista, Yuri; Mura, Alessandro; Rispoli, Rosanna; Vertolli, Nello; Carrubba, Elisa; Donati, Alessandro; Di Lellis, Andrea Maria; Plainaki, Christina; Lazzarotto, Francesco

    2016-04-01

    Remote sensing of Energetic Neutral Atoms (ENA) in the Earth's environment has been proven to be a successful technique able to provide detailed information on the ring current plasma population at energies below 100 keV. Indeed, the existing space weather databases usually include a good coverage of Sun and solar wind monitoring. The global imaging of the Earth's magnetosphere/ ionosphere is usually obtained by the high-latitudes monitoring of aurorae, ground magnetic field variations and high-latitude radio emissions. The equatorial magnetic field variations on ground, from which the geomagnetic indices like Dst, Sym-H and Asym-H are derived, include the effects of all current systems (i.e. ring current, Chapman -Ferraro current, tails currents, etc...) providing a kind of global information. Nevertheless, the specific information related to the ring current cannot be easily derived from such indices. Only occasional local plasma data are available by orbiting spacecraft. ENA detection is the only way to globally view the ring current populations. Up-to-now this technique has been used mainly from dedicated high altitude polar orbiting spacecraft, which do not allow a continuous and systematic monitoring, and a discrimination of the particle latitude distribution. The Energetic Neutral Atoms Monitor on the International space Station (ENAMISS) project intends to develop an ENA imager and install it on the ISS for continuous monitoring of the spatially distributed ring current plasma population. ISS is the ideal platform to perform continuous ENA monitoring since its particular low altitude and medium/low latitude orbit allows wide-field ENA images of various magnetospheric regions. The calibrated ENA data, the deconvolved ion distributions and ad-hoc ENA-based new geomagnetic indices will be freely distributed to the space weather community. Furthermore, new services based on plasma circulation models, spacecraft surface charging models and radiation dose models

  5. Acoustically-Induced Electrical Signals

    NASA Astrophysics Data System (ADS)

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  6. Magnetospheric effects of cosmic rays. 1. Long-term changes in the geomagnetic cutoff rigidities for the stations of the global network of neutron monitors

    NASA Astrophysics Data System (ADS)

    Gvozdevskii, B. B.; Abunin, A. A.; Kobelev, P. G.; Gushchina, R. T.; Belov, A. V.; Eroshenko, E. A.; Yanke, V. G.

    2016-07-01

    Vertical geomagnetic cutoff rigidities are obtained for the stations of the global network of neutron monitors via trajectory calculations for each year of the period from 1950 to 2020. Geomagnetic cutoff rigidities are found from the model of the Earth's main field International Geomagnetic Reference Field (IGRF) for 1950-2015, and the forecast until 2020 is provided. In addition, the geomagnetic cutoff rigidities for the same period are obtained by Tsyganenko model T89 (Tsyganenko, 1989) with the average annual values of the Kp-index. In each case, the penumbra is taken into account in the approximation of the flat and power spectra of variations of cosmic rays. The calculation results show an overall decrease in geomagnetic cutoff rigidities, which is associated with the overall decrease and restructuring of the geomagnetic field during the reporting period, at almost all points.

  7. Development of Geomagnetic Monitoring System Using a Magnetometer for the Field

    NASA Astrophysics Data System (ADS)

    Lee, Young-Cheol; Kim, Sung-Wook; Choi, Eun-Kyeong; Kim, In-Soo

    2014-05-01

    Three institutes including KMA (Korea Meteorological Administration), KSWC (Korean Space Weather Center) of NRRA (National Radio Research Agency) and KIGAM (Korea Institute of Geoscience and Mineral Resources) are now operating magnetic observatories. Those observatories observe the total intensity and three components of geomagnetic element. This paper comes up with a magnetic monitoring system now under development that uses a magnetometer for field survey. In monitoring magnetic variations in areas (active faults or volcanic regions), more reliable results can be obtained when an array of several magnetometers are used rather than a single magnetometer. In order to establish and operate a magnetometer array, such factors as expenses, convenience of the establishment and operation of the array should be taken into account. This study has come up with a magnetic monitoring system complete with a magnetometer for the field survey of our own designing. A magnetic monitoring system, which is composed of two parts. The one is a field part and the other a data part. The field part is composed of a magnetometer, an external memory module, a power supply and a set of data transmission equipment. The data part is a data server which can store the data transmitted from the field part, analyze the data and provide service to the web. This study has developed an external memory module for ENVI-MAG (Scintrex Ltd.) using an embedded Cortex-M3 board, which can be programmed, attach other functional devices (SD memory cards, GPS antennas for time synchronization, ethernet cards and so forth). The board thus developed can store magnetic measurements up to 8 Gbytes, synchronize with the GPS time and transmit the magnetic measurements to the data server which is now under development. A monitoring system of our own developing was installed in Jeju island, taking measurements throughout Korea. Other parts including a data transfer module, a server and a power supply using solar

  8. 27-day variation of the GCR intensity based on corrected and uncorrected for geomagnetic disturbances data of neutron monitors

    NASA Astrophysics Data System (ADS)

    Alania, M. V.; Modzelewska, R.; Wawrzynczak, A.; Sdobnov, V. E.; Kravtsova, M. V.

    2015-08-01

    We study 27-day variations of the galactic cosmic ray (GCR) intensity for 2005-2008 period of the solar cycle #23. We use neutron monitors (NMs) data corrected and uncorrected for geomagnetic disturbances. Besides the limited time intervals when the 27-day variations are clearly established, always exist some feeble 27-day variations in the GCR intensity related to the constantly present weak heliolongitudinal asymmetry in the heliosphere. We calculate the amplitudes of the 27-day variation of the GCR intensity based on the NMs data corrected and uncorrected for geomagnetic disturbances. We show that these amplitudes do not differ for NMs with cut-off rigidities smaller than 4-5 GV comparing with NMs of higher cut-off rigidities. Rigidity spectrum of the 27-day variation of the GCR intensity found in the uncorrected data is soft while it is hard in the case of the corrected data. For both cases exists definite tendency of softening the temporal changes of the 27-day variation's rigidity spectrum in period of 2005 to 2008 approaching the minimum of solar activity. We believe that a study of the 27-day variation of the GCR intensity based on the data uncorrected for geomagnetic disturbances should be carried out by NMs with cut-off rigidities smaller than 4-5 GV.

  9. A New Polar Magnetic Index of Geomagnetic Activity and its Application to Monitoring Ionospheric Parameters

    NASA Technical Reports Server (NTRS)

    Lyatsky, Wladislaw; Khazanov, George V.

    2008-01-01

    For improving the reliability of Space Weather prediction, we developed a new, Polar Magnetic (PM) index of geomagnetic activity, which shows high correlation with both upstream solar wind data and related events in the magnetosphere and ionosphere. Similarly to the existing polar cap PC index, the new, PM index was computed from data from two near-pole geomagnetic observatories; however, the method for computing the PM index is different. The high correlation of the PM index with both solar wind data and events in Geospace environment makes possible to improve significantly forecasting geomagnetic disturbances and such important parameters as the cross-polar-cap voltage and global Joule heating in high latitude ionosphere, which play an important role in the development of geomagnetic, ionospheric and thermospheric disturbances. We tested the PM index for 10-year period (1995-2004). The correlation between PM index and upstream solar wind data for these years is very high (the average correlation coefficient R approximately equal to 0.86). The PM index also shows the high correlation with the cross-polar-cap voltage and hemispheric Joule heating (the correlation coefficient between the actual and predicted values of these parameters is approximately 0.9), which results in significant increasing the prediction reliability of these parameters. Using the PM index of geomagnetic activity provides a significant increase in the forecasting reliability of geomagnetic disturbances and related events in Geospace environment. The PM index may be also used as an important input parameter in modeling ionospheric, magnetospheric, and thermospheric processes.

  10. Cosmic Ray Monitoring and Space Dangerous Phenomena, 2. Methods of Cosmic Ray Using For Forecasting of Major Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Belov, A. V.; Dorman, L. I.; Eroshenko, E. A.; Iucci, N.; Mavromichalaki, H.; Pustil'Nik, L. A.; Sternlieb, A.; Villoresi, G.; Yanke, V. G.; Zukerman, I. G.

    We present developing of methods (e.g., Dorman et al., 1995, 1999) for forecasting on the basis of neutron monitor hourly on-line data (as well as on-line muon tele- scopes hourly data from different directions) geomagnetic storms of scales G5 (3- hour index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) (according to NOAA Space Weather Scales). These geomagnetic storms are dangerous for peo- ple technology and health (influence on power systems, on spacecraft operations, on HF radio-communications and others). We show that for especially dangerous geo- magnetic storms can be used global-spectrographic method if on-line will be avail- able 35-40 NM and muon telescopes. In this case for each hour can be determined CR anisotropy vector, and the specifically behavior of this vector before SC of ge- omagnetic storms G5, G4 or G3 (according to NOAA Space Weather Scales) can be used as important factor for forecast. The second factor what can be used for SC forecast is specifically behavior of CR density (CR intensity) for about 30-15 hours before SC (caused mainly by galactic CR particles acceleration during interaction with shock wave moved from the Sun). The third factor is effect of cosmic ray pre- decreasing, caused by magnetic connection of the Earth with the region behind the shock wave. We demonstrate developing methods on several examples of major ge- omagnetic storms. REFERENCES: Dorman L.I., et al. "Cosmic-ray forecasting fea- tures for big Forbush-decreases". Nuclear Physics B, Vol. 49A, pp. 136-144. (1995). L.I.Dorman, et al, "Cosmic ray Forbush-decrease as indicators of space dangerous phenomenon and possible use of cosmic ray data for their prediction", Proc. of 26-th Intern. Cosmic Ray Conference, Salt Lake City, Vol. 6, p. 476-479, (1999).

  11. Light diffraction by acoustically induced domains in nematic liquid crystals

    SciTech Connect

    Kapustina, O. A.

    2006-05-15

    The phenomenon of light diffraction by a system of linear domains formed in planar layers of nematic liquid crystals in an oscillating Couette flow, acoustically induced at sound frequencies, is investigated.

  12. Observations of the UARS Particle Environment Monitor and computation of ionization rates in the middle and upper atmosphere during a geomagnetic storm

    NASA Technical Reports Server (NTRS)

    Sharber, J. R.; Frahm, R. A.; Winningham, J. D.; Biard, J. C.; Lummerzheim, D.; Rees, M. H.; Chenette, D. L.; Gaines, E. E.; Nightingale, R. W.; Imhof, W. L.

    1993-01-01

    In this paper we present observations made by the Particle Environment Monitor (PEM) instruments during the geomagnetic storm of 8-9 November, 1991. Ionization and energy deposition rates as functions of altitude in the middle and upper atmosphere by incident electrons and positive ions in the storm interval are computed. The suite of PEM instruments provides a systematic measurement of energetic particles and their associated X-rays over an energy range not fully covered by previous satellite missions.

  13. Geomagnetism applications

    USGS Publications Warehouse

    Campbell, Wallace H.

    1995-01-01

    The social uses of geomagnetism include the physics of the space environment, satellite damage, pipeline corrosion, electric power-grid failure, communication interference, global positioning disruption, mineral-resource detection, interpretation of the Earth's formation and structure, navigation, weather, and magnetoreception in organisms. The need for continuing observations of the geomagnetic field, together with careful archiving of these records and mechanisms for dissemination of these data, is emphasized.

  14. Monitoring of ULF (ultra-low-frequency) Geomagnetic Variations Associated with Earthquakes

    PubMed Central

    Hayakawa, Masashi; Hattori, Katsumi; Ohta, Kenji

    2007-01-01

    ULF (ultra-low-frequency) electromagnetic emission is recently recognized as one of the most promising candidates for short-term earthquake prediction. This paper reviews previous convincing evidence on the presence of ULF emissions before a few large earthquakes. Then, we present our network of ULF monitoring in the Tokyo area by describing our ULF magnetic sensors and we finally present a few, latest results on seismogenic electromagnetic emissions for recent large earthquakes with the use of sophisticated signal processings.

  15. The USGS Geomagnetism Program and its role in Space-Weather Monitoring

    USGS Publications Warehouse

    Love, Jeffrey J.; Finn, Carol A.

    2011-01-01

    Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of global positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space weather starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space weather are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space weather monitoring.

  16. The USGS geomagnetism program and its role in space weather monitoring

    USGS Publications Warehouse

    Love, J.J.; Finn, C.A.

    2011-01-01

    Magnetic storms result from the dynamic interaction of the solar wind with the coupled magnetospheric-ionospheric system. Large storms represent a potential hazard for the activities and infrastructure of a modern, technologically based society [Baker et al., 2008]; they can cause the loss of radio communications, reduce the accuracy of global positioning systems, damage satellite electronics and affect satellite operations, increase pipeline corrosion, and induce voltage surges in electric power grids, causing blackouts. So while space weather starts with the Sun and is driven by the solar wind, it is on, or just above, the surface of the Earth that the practical effects of space weather are realized. Therefore, ground-based sensor networks, including magnetic observatories [Love, 2008], play an important role in space weather monitoring. Copyright 2011 by the American Geophysical Union.

  17. Monitoring the ionospheric total electron content variations over the Korean Peninsula using a GPS network during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Kyu; Lee, Sang-Jeong; Park, Jong-Uk

    2011-06-01

    We have established a regional ionospheric model (RIM) for investigating changes in the total electron content (TEC) over South Korea using 38 Korean GPS reference stations. The inverse distance weighted (IDW) interpolation method was applied to create a two-dimensional ionospheric map of vertical TEC units (TECU) based on a grid. To examine the diurnal patterns of ionospheric TEC over South Korea, we first processed the GPS data from a geomagnetically quiet period of 10 days. In a second step, we compared the estimated GPS-TEC variations with the changes in geomagnetic activity indices (the K p and D st indices) and the auroral electrojet index (AE) as a function of universal time (UT) on 4 and 20 November, 2003. The GPS-TEC responses for those storm events were proportional to the geomagnetic activity at this mid-latitude location. The sudden increases in ionospheric TEC (SITEC) caused by the geomagnetic storms were detected. The variations in GPS-TEC may help reveal the processes of ionospheric disturbances caused by geomagnetic storms.

  18. Incorporation of geomagnetic data and services into EPOS infrastructure

    NASA Astrophysics Data System (ADS)

    Hejda, Pavel; Chambodut, Aude; Curto, Juan-Jose; Flower, Simon; Kozlovskaya, Elena; Kubašta, Petr; Matzka, Jürgen; Tanskanen, Eija; Thomson, Alan

    2016-04-01

    Monitoring of the geomagnetic field has a long history across Europe that dates back to 1830', and is currently experiencing an increased interest within Earth observation and space weather monitoring. Our goals within EPOS-IP are to consolidate the community, modernise data archival and distribution formats for existing services and create new services for magnetotelluric data and geomagnetic models. Specific objectives are: • Enhance existing services providing geomagnetic data (INTERMAGNET- INTErnational Real-time MAGnetic observatory NETwork; World Data Centre for Geomagnetism; IMAGE- International Monitor for Auroral Geomagnetic Effects) and existing services providing geomagnetic indices (ISGI - International Service of Geomagnetic Indices). • Develop and enhance the geomagnetic community's metadata systems by creating a metadata database, filling it and putting in place processes to ensure that it is kept up to date in the future. • Develop and build access to magnetotelluric (MT) data including transfer functions and time series data from temporary, portable MT-arrays in Europe, as well as to lithospheric conductivity models derived from TM-data. • Develop common web and database access points to global and regional geomagnetic field and conductivity models. • Establish links from the geomagnetic data services, products and models to the Integrated Core Services. The immediate task in the current period is to identify data models of existing services, modify them and integrate into a common model of Geomagnetic Thematic Core Services.

  19. Klimovskaya: A new geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Soloviev, A. A.; Sidorov, R. V.; Krasnoperov, R. I.; Grudnev, A. A.; Khokhlov, A. V.

    2016-05-01

    In 2011 Geophysical Center RAS (GC RAS) began to deploy the Klimovskaya geomagnetic observatory in the south of Arkhangelsk region on the territory of the Institute of Physiology of Natural Adaptations, Ural Branch, Russian Academy of Sciences (IPNA UB RAS). The construction works followed the complex of preparatory measures taken in order to confirm that the observatory can be constructed on this territory and to select the optimal configuration of observatory structures. The observatory equipping stages are described in detail, the technological and design solutions are described, and the first results of the registered data quality control are presented. It has been concluded that Klimovskaya observatory can be included in INTERMAGNET network. The observatory can be used to monitor and estimate geomagnetic activity, because it is located at high latitudes and provides data in a timely manner to the scientific community via the web-site of the Russian-Ukrainian Geomagnetic Data Center. The role of ground observatories such as Klimovskaya remains critical for long-term observations of secular variation and for complex monitoring of the geomagnetic field in combination with low-orbiting satellite data.

  20. On the watch for geomagnetic storms

    USGS Publications Warehouse

    Green, Arthur W.; Brown, William M.

    1997-01-01

    Geomagnetic storms, induced by solar activity, pose significant hazards to satellites, electrical power distribution systems, radio communications, navigation, and geophysical surveys. Strong storms can expose astronauts and crews of high-flying aircraft to dangerous levels of radiation. Economic losses from recent geomagnetic storms have run into hundreds of millions of dollars. With the U.S. Geological Survey (USGS) as the lead agency, an international network of geomagnetic observatories monitors the onset of solar-induced storms and gives warnings that help diminish losses to military and commercial operations and facilities.

  1. Monitoring of the mass density profile along the 0° geomagnetic longitude during magnetic storms with the use of ground magnetometers.

    NASA Astrophysics Data System (ADS)

    Romanova, N.; Stepanova, M. V.; Kozyreva, O. V.; Pilipenko, V.; Zesta, E.

    2015-12-01

    Ground magnetometers offer a very cheap and robust means of globally monitoring the magnetospheric mass density, by determining the ULF field line resonant frequency. ULF waves are almost always present in near-Earth environment and are generated by the solar wind interaction with the terrestrial magnetosphere. These waves from the magnetopause propagate through the magnetosphere. When they encounter a field line that resonates at the same frequency, coupling to the Alfven field line oscillations occurs and the resonance can be detected on the ground at that particular latitude. There are different methods for determining resonant frequencies from ground ULF waves. the density profiles along the 0° geomagnetic longitude were obtained using both the gradient and the amplitude-phase methods for the analysis of the magnetic field data from the magnetometer arrays: SAMBA (South American Meridional B-field Array), MAGDAS and American Antarctic bases (Palmer, WAIS-D). We compared the density profiles during quiet magnetic conditions and during strong magnetic storms (recovery phase). It is shown that in the recovery phase of strong magnetic storms (Dst <-150 nT) profile of the equatorial mass density varies greatly in comparison with the density distribution in quiet days.

  2. Improved geomagnetic referencing in the Arctic environment

    USGS Publications Warehouse

    Poedjono, B.; Beck, N.; Buchanan, A. C.; Borri, L.; Maus, S.; Finn, Carol; Worthington, Bill; White, Tim

    2016-01-01

    Geomagnetic referencing uses the Earth’s magnetic field to determine accurate wellbore positioning essential for success in today's complex drilling programs, either as an alternative or a complement to north-seeking gyroscopic referencing. However, fluctuations in the geomagnetic field, especially at high latitudes, make the application of geomagnetic referencing in those areas more challenging. Precise crustal mapping and the monitoring of real-time variations by nearby magnetic observatories is crucial to achieving the required geomagnetic referencing accuracy. The Deadhorse Magnetic Observatory (DED), located at Prudhoe Bay, Alaska, has already played a vital role in the success of several commercial ventures in the area, providing essential, accurate, real-time data to the oilfield drilling industry. Geomagnetic referencing is enhanced with real-time data from DED and other observatories, and has been successfully used for accurate wellbore positioning. The availability of real-time geomagnetic measurements leads to significant cost and time savings in wellbore surveying, improving accuracy and alleviating the need for more expensive surveying techniques. The correct implementation of geomagnetic referencing is particularly critical as we approach the increased activity associated with the upcoming maximum of the 11-year solar cycle. The DED observatory further provides an important service to scientific communities engaged in studies of ionospheric, magnetospheric and space weather phenomena.

  3. Geomagnetic disturbance effects on power systems

    SciTech Connect

    Albertson, V.D.; Bozoki, B.; Feero, W.E.; Kappenman, J.G.; Larsen, E.V.; Nordell, D.E.; Ponder, J.; Prabhakara, F.S.; Thompson, K.; Walling, R.

    1993-07-01

    In the northern hemisphere, the aurora borealis is visual evidence of simultaneous fluctuations in the earth's magnetic field (geomagnetic field). These geomagnetic disturbances (GMD's), or geomagnetic storms, can affect a number of man-made systems, including electric power systems. The GMD's are caused by the electromagnetic interaction of the solar wind plasma of protons and electrons with the geomagnetic field. These dynamic impulses in the solar wind are due to solar flares, coronal holes, and disappearing filaments, and reach the earth from one to six days after being emitted by a solar event. Instances of geomagnetic storms affecting telegraph systems were noted in England in 1846, and power system disturbances linked to GMD's were first reported in the United States in 1940. This Working Group report is a summary of the state of knowledge and research activity to the present time, and covers the GMD/Geomagnetically-induced currents (GIC) phenomena, transformer effects, the impact on generators, protective relay effects, and communication system effects. It also summarizes modeling and predicting GIC, measuring and monitoring GIC, mitigation methods, system operating guidelines during GMD's, and alerting and forecasting procedures and needs for the power industry.

  4. Extreme Geomagnetic Storms - 1868 - 2010

    NASA Astrophysics Data System (ADS)

    Vennerstrom, S.; Lefevre, L.; Dumbović, M.; Crosby, N.; Malandraki, O.; Patsou, I.; Clette, F.; Veronig, A.; Vršnak, B.; Leer, K.; Moretto, T.

    2016-05-01

    We present the first large statistical study of extreme geomagnetic storms based on historical data from the time period 1868 - 2010. This article is the first of two companion papers. Here we describe how the storms were selected and focus on their near-Earth characteristics. The second article presents our investigation of the corresponding solar events and their characteristics. The storms were selected based on their intensity in the aa index, which constitutes the longest existing continuous series of geomagnetic activity. They are analyzed statistically in the context of more well-known geomagnetic indices, such as the Kp and Dcx/Dst index. This reveals that neither Kp nor Dcx/Dst provide a comprehensive geomagnetic measure of the extreme storms. We rank the storms by including long series of single magnetic observatory data. The top storms on the rank list are the New York Railroad storm occurring in May 1921 and the Quebec storm from March 1989. We identify key characteristics of the storms by combining several different available data sources, lists of storm sudden commencements (SSCs) signifying occurrence of interplanetary shocks, solar wind in-situ measurements, neutron monitor data, and associated identifications of Forbush decreases as well as satellite measurements of energetic proton fluxes in the near-Earth space environment. From this we find, among other results, that the extreme storms are very strongly correlated with the occurrence of interplanetary shocks (91 - 100 %), Forbush decreases (100 %), and energetic solar proton events (70 %). A quantitative comparison of these associations relative to less intense storms is also presented. Most notably, we find that most often the extreme storms are characterized by a complexity that is associated with multiple, often interacting, solar wind disturbances and that they frequently occur when the geomagnetic activity is already elevated. We also investigate the semiannual variation in storm occurrence

  5. Acoustically Induced Microparticle Orbiting and Clustering on a Solid Surface

    NASA Astrophysics Data System (ADS)

    Abdel-Fattah, A.; Tarimala, S.; Roberts, P. M.

    2008-12-01

    Behavior of colloidal particles in the bulk solution or at interfaces under the effect of high-frequency acoustics is critical to many seemingly different applications ranging from enhanced oil recovery to improved mixing in microfluidic channels and from accelerated contaminant extractions to surface cleaning, drug delivery and microelectronics. It can be detrimental or beneficial, depending on the application. In medical research, flow cytometry and microfluidics, for example, acoustically induced clustering of tracer particles and/or their sticking to the walls of channels, vessels, or tubes often becomes a problem. On the other hand, it can be tailored to enhance processes such as mixing in microfluidic devices, particle separation and sizing, and power generation microdevices. To better understand the underlying mechanisms, microscopic visualization experiments were performed in which polystyrene fluorescent (468/508 nm wavelength) microspheres with a mean diameter of 2.26-µm and density of 1.05 g/cm3, were suspended in either de-ionized water or a 0.1M NaCl solution. The freshly-prepared colloidal suspension was injected into a parallel-plate glass flow cell, which was subjected to high-frequency acoustics (200-500 kHz) through a piezoelectric transducer attached to one of the cell's outer walls. When the suspending medium is de-ionized water, acoustic stimulation of the cell at 313 kHz induced three distinct particle behaviors: 1) entrainment and bulk transport via wavelength-scale Rayleigh streaming, 2) transport via direct radiation forces to concentrate at nodal or anti-nodal planes, and 3) entrapment via boundary layer vorticular microstreaming resulting in mobile particles orbiting deposited particles. This latter phenomenon is intriguing. It occurs at specific frequencies and the shape of the orbits is determined by the applied frequency, whereas the rotation speed is proportional to the applied amplitude. At the higher ionic strength, on the other

  6. Geomagnetic Workshop, Canberra

    NASA Astrophysics Data System (ADS)

    Barton, C. E.; Lilley, F. E. M.; Milligan, P. R.

    On May 14-15, 1985, 63 discerning geomagnetists flocked to Canberra to attend the Geomagnetic Workshop coorganized by the Australian Bureau of Mineral Resources (BMR) and the Research School of Earth Sciences, Australian National University (ANU). With an aurorally glowing cast that included an International Association of Geomagnetism and Aeronomy (IAGA) president, former president, and division chairman, the Oriental Magneto-Banquet (which was the center of the meeting), was assured of success. As a cunning ploy to mask the true nature of this gastronomic extravagance from the probings of income tax departments, a presentation of scientific papers on Australian geomagnetism in its global setting was arranged.The Australian region, including New Zealand, Papua New Guinea, Indonesia, and a large sector of the Antarctic, covers one eighth of the Earth's surface and historically has played an important role in the study of geomagnetism. The region contains both the south magnetic and geomagnetic poles, and two Australian Antarctic stations (Casey and Davis) are situated in the region of the south polar cusp (see Figure 1).

  7. Geomagnetic storms: Potential economic impacts on electric utilities

    SciTech Connect

    Barnes, P.R.; Van Dyke, J.W.

    1991-03-20

    Geomagnetic storms associated with sunspot and solar flare activity can disturb communications and disrupt electric power. A very severe geomagnetic storm could cause a major blackout with an economic impact of several billion dollars. The vulnerability of electric power systems in the northeast United States will likely increase during the 1990s because of the trend of transmitting large amounts of power over long distance to meet the electricity demands of this region. A comprehensive research program and a warning satellite to monitor the solar wind are needed to enhance the reliability of electric power systems under the influence of geomagnetic storms. 7 refs., 2 figs., 1 tab.

  8. Tsunami related to solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2016-04-01

    The authors of this study wanted to verify the existence of a correlation between earthquakes of high intensity capable of generating tsunami and variations of solar and Earth's geomagnetic activity. To confirming or not the presence of this kind of correlation, the authors analyzed the conditions of Spaceweather "near Earth" and the characteristics of the Earth's geomagnetic field in the hours that preceded the four earthquakes of high intensity that have generated tsunamis: 1) Japan M9 earthquake occurred on March 11, 2011 at 05:46 UTC; 2) Japan M7.1 earthquake occurred on October 25, 2013 at 17:10 UTC; 3) Chile M8.2 earthquake occurred on April 1, 2014 at 23:46 UTC; 4) Chile M8.3 earthquake occurred on September 16, 2015 at 22:54 UTC. The data relating to the four earthquakes were provided by the United States Geological Survey (USGS). The data on ion density used to realize the correlation study are represented by: solar wind ion density variation detected by ACE (Advanced Composition Explorer) Satellite, in orbit near the L1 Lagrange point, at 1.5 million of km from Earth, in direction of the Sun. The instrument used to perform the measurement of the solar wind ion density is the Electron, Proton, and Alpha Monitor (EPAM) instrument, equipped on the ACE Satellite. To conduct the study, the authors have taken in consideration the variation of the solar wind protons density of three different energy fractions: differential proton flux 1060-1900 keV (p/cm^2-sec-ster-MeV); differential proton flux 761-1220 keV (p/cm^2-sec-ster-MeV); differential proton flux 310-580 keV (p/cm^2-sec-ster-MeV). Geomagnetic activity data were provided by Tromsø Geomagnetic Observatory (TGO), Norway; by Scoresbysund Geomagnetic Observatory (SCO), Greenland, Denmark and by Space Weather Prediction Center of Pushkov Institute of terrestrial magnetism, ionosphere and radio wave propagation (IZMIRAN), Troitsk, Moscow Region. The results of the study, in agreement with what already

  9. Introduction to Geomagnetic Fields

    NASA Astrophysics Data System (ADS)

    Hinze, William J.

    Coincidentally, as I sat down in late October 2003 to read and review the second edition of Wallace H. Campbell's text, Introduction to Geomagnetic Fields, we received warnings from the news media of a massive solar flare and its possible effect on power supply systems and satellite communications. News programs briefly explained the source of Sun-Earth interactions. If you are interested in learning more about the physics of the connection between sun spots and power supply systems and their impact on orbiting satellites, I urge you to become acquainted with Campbell's book. It presents an interesting and informative explanation of the geomagnetic field and its applications to a wide variety of topics, including oil exploration, climate change, and fraudulent claims of the utility of magnetic fields for alleviating human pain. Geomagnetism, the study of the nature and processes of the Earth's magnetic fields and its application to the investigation of the Earth, its processes, and history, is a mature science with a well-developed theoretical foundation and a vast array of observations. It is discussed in varied detail in Earth physics books and most entry-level geoscience texts. The latter treatments largely are driven by the need to discuss paleomagnetism as an essential tool in studying plate tectonics. A more thorough explanation of geomagnetism is needed by many interested scientists in related fields and by laypersons. This is the objective of Campbell's book. It is particularly germane in view of a broad range of geomagnetic topics that are at the forefront of today's science, including environmental magnetism, so-called ``jerks'' observed in the Earth's magnetic field, the perplexing magnetic field of Mars, improved satellite magnetic field observations, and the increasing availability of high-quality continental magnetic anomaly maps, to name only a few.

  10. Space radiation enhancement linked to geomagnetic disturbances.

    PubMed

    Tomita, F; Den, M; Doke, T; Hayashi, T; Nagaoka, T; Kato, M

    1997-12-01

    Space radiation dosimetry measurements have been made on board the Space Shuttle. A newly developed active detector called "Real-time Radiation Monitoring Device (RRMD)" was used (Doke et al., 1995; Hayashi et al., 1995). The RRMD results indicate that low Linear Energy Transfer (LET) particles steadily penetrate around the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent and some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions (Doke et al., 1996). We also have been analyzing the space weather during the experiment, and found that the anomalous high-energy particle enhancement was linked to geomagnetic disturbance due to the high speed solar wind from a coronal hole. Additional analysis and other experiments are necessary for clarification of these phenomena. If a penetration of high-energy particles into the low altitude occurs by common geomagnetic disturbances, the prediction of geomagnetic activity becomes more important in the next Space Station's era. PMID:11541771

  11. Space radiation enhancement linked to geomagnetic disturbances.

    PubMed

    Tomita, F; Den, M; Doke, T; Hayashi, T; Nagaoka, T; Kato, M

    1998-01-01

    Space radiation dosimetry measurements have been made on board the Space Shuttle. A newly developed active detector called "Real-time Radiation Monitoring Device (RRMD)" was used (Doke et al., 1995; Hayashi et al., 1995). The RRMD results indicate that low Linear Energy Transfer (LET) particles steadily penetrate around the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent and some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions (Doke et al., 1996). We also have been analyzing the space weather during the experiment, and found that the anomalous high-energy particle enhancement was linked to geomagnetic disturbance due to the high speed solar wind from a coronal hole. Additional analysis and other experiments are necessary for clarification of these phenomena. If a penetration of high-energy particles into the low altitude occurs by common geomagnetic disturbances, the prediction of geomagnetic activity becomes more important in the next Space Station's era. PMID:11541929

  12. Foundations of Geomagnetism

    NASA Astrophysics Data System (ADS)

    Jackson, Andy

    The study of the magnetic field of the Earth, or geomagnetism, is one of the oldest lines of scientific enquiry. Indeed, it has often been said that William Gilbert's De Magnete, published in 1600 and predating Isaac Newton's Principia by 87 years, can claim to be the first true scientific textbook; his study was essentially the first of academic rather than practical interest.What then, we may ask, has been accomplished in the nearly 400 intervening years up to the publication of Foundations of Geomagnetism? In short, a wealth of observational evidence, considerable physical understanding, and a great deal of mathematical apparatus have accrued, placing the subject on a much surer footing.The latter two categories are described in considerable detail, and with attendant rigor, in this book. The sphericity of the Earth means that a frequent theme in the book is the solution of the partial differential equations of electrodynamics in a spherical geometry.

  13. On regional geomagnetic charts

    USGS Publications Warehouse

    Alldredge, L.R.

    1987-01-01

    When regional geomagnetic charts for areas roughly the size of the US were compiled by hand, some large local anomalies were displayed in the isomagnetic lines. Since the late 1960s, when the compilation of charts using computers and mathematical models was started, most of the details available in the hand drawn regional charts have been lost. One exception to this is the Canadian magnetic declination chart for 1980. This chart was constructed using a 180 degrees spherical harmonic model. -from Author

  14. Geomagnetism. Volume I

    SciTech Connect

    Jacobs, J.A.

    1987-01-01

    The latest attempt to summarise the wealth of knowledge now available on geomagnetic phenomena has resulted in this multi-volume treatise, with contributions and reviews from many scientists. The first volume in the series contains a thorough review of all existing information on measuring the Earth's magnetic field, both on land and at sea, and includes a comparative analysis of the techniques available for this purpose.

  15. On extreme geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Cid, Consuelo; Palacios, Judith; Saiz, Elena; Guerrero, Antonio; Cerrato, Yolanda

    2014-10-01

    Extreme geomagnetic storms are considered as one of the major natural hazards for technology-dependent society. Geomagnetic field disturbances can disrupt the operation of critical infrastructures relying on space-based assets, and can also result in terrestrial effects, such as the Quebec electrical disruption in 1989. Forecasting potential hazards is a matter of high priority, but considering large flares as the only criterion for early-warning systems has demonstrated to release a large amount of false alarms and misses. Moreover, the quantification of the severity of the geomagnetic disturbance at the terrestrial surface using indices as Dst cannot be considered as the best approach to give account of the damage in utilities. High temporal resolution local indices come out as a possible solution to this issue, as disturbances recorded at the terrestrial surface differ largely both in latitude and longitude. The recovery phase of extreme storms presents also some peculiar features which make it different from other less intense storms. This paper goes through all these issues related to extreme storms by analysing a few events, highlighting the March 1989 storm, related to the Quebec blackout, and the October 2003 event, when several transformers burnt out in South Africa.

  16. Spiking the Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Constable, C.; Davies, C. J.

    2015-12-01

    Geomagnetic field intensities corresponding to virtual axial dipole moments of up to 200 ZAm2, more than twice the modern value, have been inferred from archeomagnetic measurements on artifacts dated at or shortly after 1000 BC. Anomalously high values occur in the Levant and Georgia, but not in Bulgaria. The origin of this spike is believed to lie in Earth's core: however, its spatio-temporal characteristics and the geomagnetic processes responsible for such a feature remain a mystery. We show that a localized spike in the radial magnetic field at the core-mantle boundary (CMB) must necessarily contribute to the largest scale changes in Earth's surface field, namely the dipole. Even the limiting spike of a delta function at the CMB produces a minimum surface cap size of 60 degrees for a factor of two increase in paleointensity. Combined evidence from modern satellite and millennial scale field modeling suggests that the Levantine Spike is intimately associated with a strong increase in dipole moment prior to 1000 BC and likely the product of north-westward motion of concentrated near equatorial Asian flux patches like those seen in the modern field. New archeomagnetic studies are needed to confirm this interpretation. Minimum estimates of the power dissipated by the spike are comparable to independent estimates of the dissipation associated with the entire steady state geodynamo. This suggests that geomagnetic spikes are either associated with rapid changes in magnetic energy or strong Lorentz forces.

  17. The national geomagnetic initiative

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The Earth's magnetic field, through its variability over a spectrum of spatial and temporal scales, contains fundamental information on the solid Earth and geospace environment (the latter comprising the atmosphere, ionosphere, and magnetosphere). Integrated studies of the geomagnetic field have the potential to address a wide range of important processes in the deep mantle and core, asthenosphere, lithosphere, oceans, and the solar-terrestrial environment. These studies have direct applications to important societal problems, including resource assessment and exploration, natural hazard mitigation, safe navigation, and the maintenance and survivability of communications and power systems on the ground and in space. Studies of the Earth's magnetic field are supported by a variety of federal and state agencies as well as by private industry. Both basic and applied research is presently supported by several federal agencies, including the National Science Foundation (NSF), U.S. Geological Survey (USGS), U.S. Department of Energy (DOE), National Oceanic and Atmospheric Administration (NOAA), National Aeronautics and Space Administration (NASA), and U.S. Department of Defense (DOD) (through the Navy, Air Force, and Defense Mapping Agency). Although each agency has a unique, well-defined mission in geomagnetic studies, many areas of interest overlap. For example, NASA, the Navy, and USGS collaborate closely in the development of main field reference models. NASA, NSF, and the Air Force collaborate in space physics. These interagency linkages need to be strengthened. Over the past decade, new opportunities for fundamental advances in geomagnetic research have emerged as a result of three factors: well-posed, first-order scientific questions; increased interrelation of research activities dealing with geomagnetic phenomena; and recent developments in technology. These new opportunities can be exploited through a national geomagnetic initiative to define objectives and

  18. Review of selected geomagnetic activity indices

    NASA Technical Reports Server (NTRS)

    Allen, J. H.; Feynman, J.

    1979-01-01

    Magnetic activity indexes are reviewed. Classifications of magnetograms from single observatories and the global range of potential associated with the equivalent currents which could have produced the variations monitored at a large array of recording sides are addressed. Principal magnetic activity indexes discussed include: the auroral electrojet index and its associated indexes (AU, AL and AO) useful for auroral zone studies; the Kp, ap, aa and am indexes which are measures of midlatitude geomagnetic activity; and the Dst index of magnetic activity recorded at low latitudes. It is concluded that geomagnetic activity indexes are useful in studies of the interaction between solar activity, the interplanetary magnetic field and solar wind, the magnetosphere, ring current, field aligned currents, and ionospheric currents.

  19. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating.

    PubMed

    Zhang, Wending; Wei, Keyan; Huang, Ligang; Mao, Dong; Jiang, Biqiang; Gao, Feng; Zhang, Guoquan; Mei, Ting; Zhao, Jianlin

    2016-08-22

    We presented a method to actualize the optical vortex generation with wavelength tunability via an acoustically-induced fiber grating (AIFG) driven by a radio frequency source. The circular polarization fundamental mode could be converted to the first-order optical vortex through the AIFG, and its topological charges were verified by the spiral pattern of coaxial interference between the first-order optical vortex and a Gaussian-reference beam. A spectral tuning range from 1540 nm to 1560 nm was demonstrated with a wavelength tunability slope of 4.65 nm/kHz. The mode conversion efficiency was 95% within the whole tuning spectral range. PMID:27557207

  20. Hazards of geomagnetic storms

    USGS Publications Warehouse

    Herzog, D.C.

    1992-01-01

    Geomagnetic storms are large and sometimes rapid fluctuations in the Earth's magnetic field that are related to disturbances on the Sun's surface. Although it is not widely recognized, these transient magnetic disturbances can be a significant hazard to people and property. Many of us know that the intensity of the auroral lights increases during magnetic storms, but few people realize that these storms can also cause massive power outages, interrupt radio communications and satellite operations, increase corrosion in oil and gas pipelines, and lead to spuriously high rejection rates in the manufacture of sensitive electronic equipment. 

  1. Excited and enhanced twinborn acoustic-induced mutual forces in oblique grating structures

    NASA Astrophysics Data System (ADS)

    Lu, Shuifang; Zhang, Xin; Wu, Fugen; Yao, Yuanwei; Chen, Zongwang

    2016-07-01

    We propose a water-immersed geometrically oblique grating structure patterned with a 1D periodic array of oblique rhombuses. Twin acoustic-induced mutual forces (both repulsive and attractive) between coupled steel plates were realized in this system when the external plane wave normally impacted the plates. Calculations showed that the emerging forces are more than an order of magnitude larger than the corresponding induced force of a conventional grating structure. We also found that the strong acoustic-induced mutual forces stem from the resonant excitation of nonleaky flexural Lamb modes in the coupled plates, and that these forces couple more strongly with the external incident acoustic waves. Furthermore, the amplitudes and resonant wavelengths of these forces can be coarsely controlled by changing the symmetry of the system and finely adjusted by varying the slant angle and the edge-length of the oblique rhombus. The proposed acoustic system could potentially be applied in sensors and in the ultrasonic detection of weak signals in water.

  2. Geomagnetic Field Modeling with DMSP

    NASA Astrophysics Data System (ADS)

    Alken, P.; Redmon, R. J.; Rich, F. J.; Maus, S.; Luhr, H.

    2013-12-01

    The Defense Meteorological Satellite Program (DMSP) launches and maintains a network of satellites to monitor the meteorological, oceanographic, and solar-terrestrial physics environments. In the past decade, geomagnetic field modelers have focused much attention on magnetic measurements from missions such as CHAMP, Oersted and SAC-C. With the completion of the CHAMP mission in 2010, there have been limited satellite-based vector and scalar magnetic field measurements available for main field modeling. In this study, we investigate the feasibility of using the Special Sensor Magnetometer (SSM) instrument onboard DMSP for main field modeling. These vector field measurements are calibrated to compute instrument timing shifts, scale factors, offsets, and non-orthogonalities in the fluxgate magnetometer cores. Euler angles are then computed to determine the orientation of the vector magnetometer with respect to a local coordinate system. We fit a degree 12 main field model to the dataset and compare with similar models such as the World Magnetic Model (WMM) and IGRF. Initial results indicate that the DMSP dataset will be a valuable source for main field modeling for the years between CHAMP and the upcoming Swarm mission.

  3. Bracing for the geomagnetic storms

    SciTech Connect

    Kappenman, J.G. ); Albertson, V.D. )

    1990-03-01

    The authors discuss the impact of geomagnetic storms on utility transmission networks. The effects of a recent storm on the Hydro-Quebec transmission system are described in detail. Research into geomagnetic disturbance prediction is discussed. In coming months, geomagnetic field activity will be high as it builds toward a peak, the 22nd since reliable records of the phenomenon began in the mid-1700s. The peaks come in roughly 11-year cycles, and the next is expected later this year or early in 1991. The solar activity has so far risen at one of the fastest rates ever recorded, and solar forecasters expect cycle 22 to have unusually high activity levels.

  4. Bayesian inference in geomagnetism

    NASA Technical Reports Server (NTRS)

    Backus, George E.

    1988-01-01

    The inverse problem in empirical geomagnetic modeling is investigated, with critical examination of recently published studies. Particular attention is given to the use of Bayesian inference (BI) to select the damping parameter lambda in the uniqueness portion of the inverse problem. The mathematical bases of BI and stochastic inversion are explored, with consideration of bound-softening problems and resolution in linear Gaussian BI. The problem of estimating the radial magnetic field B(r) at the earth core-mantle boundary from surface and satellite measurements is then analyzed in detail, with specific attention to the selection of lambda in the studies of Gubbins (1983) and Gubbins and Bloxham (1985). It is argued that the selection method is inappropriate and leads to lambda values much larger than those that would result if a reasonable bound on the heat flow at the CMB were assumed.

  5. Geomagnetic Reversals during the Phanerozoic.

    PubMed

    McElhinny, M W

    1971-04-01

    An antalysis of worldwide paleomagnetic measurements suggests a periodicity of 350 x 10(6) years in the polarity of the geomagnetic field. During the Mesozoic it is predominantly normal, whereas during the Upper Paleozoic it is predominantly reversed. Although geomagnetic reversals occur at different rates throughout the Phanerozoic, there appeaars to be no clear correlation between biological evolutionary rates and reversal frequency. PMID:17735224

  6. The Lewis Research Center geomagnetic substorm simulation facility

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stevens, N. J.; Sturman, J. C.

    1977-01-01

    A simulation facility was established to determine the response of typical spacecraft materials to the geomagnetic substorm environment and to evaluate instrumentation that will be used to monitor spacecraft system response to this environment. Space environment conditions simulated include the thermal-vacuum conditions of space, solar simulation, geomagnetic substorm electron fluxes and energies, and the low energy plasma environment. Measurements for spacecraft material tests include sample currents, sample surface potentials, and the cumulative number of discharges. Discharge transients are measured by means of current probes and oscilloscopes and are verified by a photomultiplier. Details of this facility and typical operating procedures are presented.

  7. Fast reconstruction of a bounded ultrasonic beam using acoustically induced piezo-luminescence

    SciTech Connect

    Kersemans, Mathias Lammens, Nicolas; Degrieck, Joris; Van Paepegem, Wim; Smet, Philippe F.

    2015-12-07

    We report on the conversion of ultrasound into light by the process of piezo-luminescence in epoxy with embedded BaSi{sub 2}O{sub 2}N{sub 2}:Eu as active component. We exploit this acoustically induced piezo-luminescence to visualize several cross-sectional slices of the radiation field of an ultrasonic piston transducer (f = 3.3 MHz) in both the near-field and the far-field. Simply combining multiple slices then leads to a fast representation of the 3D spatial radiation field. We have confronted the luminescent results with both scanning hydrophone experiments and digital acoustic holography results, and obtained a good correlation between the different approaches.

  8. Forecasting Geomagnetic Conditions in near-Earth space

    NASA Astrophysics Data System (ADS)

    Abunina, M.; Papaioannou, A.; Gerontidou, M.; Paschalis, P.; Abunin, A.; Gaidash, S.; Tsepakina, I.; Malimbayev, A.; Belov, A.; Mavromichalaki, H.; Kryakunova, O.; Velinov, P.

    2013-02-01

    Geomagnetic conditions in near-Earth space have been a constantly evolving scientific field, especially during the latest years when the dependence of our everyday life on space environment has significantly increased. The scientific community managed to implement centers for the continuous monitoring of the geomagnetic conditions which resulted into short and long term forecasting of the planetary geomagnetic index Ap. In this work, the centers that have been established and are in operational mode in Russia (IZMIRAN), Greece (Athens), Kazakhstan (Almaty) and Bulgaria (Sofia) are presented. The methods that have been used for the forecasting of Ap index are demonstrated and the forecasted results in comparison to the actual Ap measurements are also discussed.

  9. Report of geomagnetic pulsation indices for space weather applications

    USGS Publications Warehouse

    Xu, Z.; Gannon, Jennifer L.; Rigler, Erin J.

    2013-01-01

    The phenomenon of ultra-low frequency geomagnetic pulsations was first observed in the ground-based measurements of the 1859 Carrington Event and has been studied for over 100 years. Pulsation frequency is considered to be “ultra” low when it is lower than the natural frequencies of the plasma, such as the ion gyrofrequency. Ultra-low frequency pulsations are considered a source of noise in some geophysical analysis techniques, such as aeromagnetic surveys and transient electromagnetics, so it is critical to develop near real-time space weather products to monitor these geomagnetic pulsations. The proper spectral analysis of magnetometer data, such as using wavelet analysis techniques, can also be important to Geomagnetically Induced Current risk assessment.

  10. a Millennium of Geomagnetism

    NASA Astrophysics Data System (ADS)

    Stern, David P.

    2002-11-01

    The history of geomagnetism began around the year 1000 with the discovery in China of the magnetic compass. Methodical studies of the Earth's field started in 1600 with William Gilbert's De Magnete [Gilbert, 1600] and continued with the work of (among others) Edmond Halley, Charles Augustin de Coulomb, Carl Friedrich Gauss, and Edward Sabine. The discovery of electromagnetism by Hans Christian Oersted and André-Marie Ampére led Michael Faraday to the notion of fluid dynamos, and the observation of sunspot magnetism by George Ellery Hale led Sir Joseph Larmor in 1919 to the idea that such dynamos could sustain themselves naturally in convecting conducting fluids. From that came modern dynamo theory, of both the solar and terrestrial magnetic fields. Paleomagnetic studies revealed that the Earth's dipole had undergone reversals in the distant past, and these became the critical evidence in establishing plate tectonics. Finally, the recent availability of scientific spacecraft has demonstrated the intricacy of the Earth's distant magnetic field, as well as the existence of magnetic fields associated with other planets and with satellites in our solar system.

  11. Geomagnetic field effect on cardiovascular regulation.

    PubMed

    Gmitrov, Juraj; Gmitrova, Anna

    2004-02-01

    The goal of the present research was try to explain the physiological mechanism for the influence of the geomagnetic field (GMF) disturbance, reflected by the indices of the geomagnetic activity (K, K(p), A(k), and A(p) indices), on cardiovascular regulation. One hundred forty three experimental runs (one daily) comprising 50 min hemodynamic monitoring sequences were carried out in rabbits sedated by pentobarbital infusion (5 mg/kg/h). We examined the arterial baroreflex effects on the short term blood pressure and heart rate (HR) variabilities reflected by the standard deviation (SD) of the average values of the mean femoral arterial blood pressure (MAP) and the HR. Baroreflex sensitivity (BRS) was estimated from blood pressure/HR response to intravenous (i.v.) bolus injections of vasoconstrictor (phenylephrine) and vasodilator (nitroprusside) drugs. We found a significant negative correlation of increasing GMF disturbance (K(p)) with BRS (P = 0.008), HR SD (P =0.022), and MAP SD (P = 0.002) signifying the involvement of the arterial baroreflex mechanism. The abrupt change in geomagnetic disturbance from low (K = 0) to high (K = 4-5) values was associated with a significant increase in MAP (83 +/- 5 vs. 99 +/- 5 mm Hg, P = 0.045) and myocardial oxygen consumption, measured by MAP and HR product (24100 +/- 1800 vs. 31000 +/- 2500 mm Hg. bpm, P = 0.034), comprising an additional cardiovascular risk. Most likely, GMF affects brainstem and higher neural cardiovascular regulatory centers modulating blood pressure and HR variabilities associated with the arterial baroreflex. PMID:14735558

  12. [Dependence of acoustic-motor reaction of healthy individuals from geomagnetic activity].

    PubMed

    Hryhor'ev, P E; Poskotynova, L V; Tsandekov, P A; Vaĭserman, A M

    2009-01-01

    During February-April, 2008 using special computer test, a daily monitoring of simple acoustic-motor reaction was carried out in 18 healthy tested individuals. We found a significant decrease in the speed of acoustic-motor reaction the day before and the same day geomagnetic disturbance occurred, as well as the same and 2-3 days after a geomagnetic calm occurred. Presumably, either an essential increase or a decreases of geomagnetic activity are adverse factors for the functional state of a central nervous system. PMID:19526866

  13. On the slow time geomagnetic field modulation of galactic cosmic rays

    NASA Astrophysics Data System (ADS)

    Okpala, Kingsley

    2016-07-01

    Cosmic rays of galactic origin are modulated by both heliospheric and geomagnetic conditions. The mutual (and mutually exclusive) contribution of both heliospheric and geomagnetic conditions to galactic cosmic rays (GCR) modulation is still an open question. While the rapid-time association of the galactic cosmic ray variation with different heliophysical and geophysical phenomena has been well studied, not so much attention has been paid to slow-time variations especially with regards to local effects. In this work, we employed monthly means of cosmic ray count rates from two mid latitude (Hermanus and Rome), and two higher latitude (Inuvik and Oulu) neutron monitors (NM), and compared their variability with geomagnetic stations that are in close proximity to the NMs. The data spans 1966 to 2008 and covers four (4) solar cycles. The difference (DeltaCR)between the mean count rate of all days and the mean of the five quietest days for each month was compared with the Dst-related disturbance (DeltaH) derived from the nearby geomagnetic stations. Zeroth- and First- correlation between the cosmic ray parameters and geomagnetic parameters was performed to ascertain statistical association and test for spurious association. Our results show that solar activity is generally strongly correlated (>0.75) with mean strength of GCR count rate and geomagnetic field during individual solar cycles. The correlation between mean strength of cosmic ray intensity and Geomagnetic field strength is spurious and is basically moderated by the solar activity. The signature of convection driven disturbances at high latitude geomagnetic stations was evident during the declining phase of the solar cycles close to the solar minimum. The absence of this feature in the slow-time varying cosmic ray count rates in all stations, and especially in the mid latitude geomagnetic stations suggest that the local geomagnetic disturbance contributes much less in modulating the cosmic ray flux.

  14. Mantle superplumes induce geomagnetic superchrons

    NASA Astrophysics Data System (ADS)

    Olson, Peter; Amit, Hagay

    2015-07-01

    We use polarity reversal systematics from numerical dynamos to quantify the hypothesis that the modulation of geomagnetic reversal frequency, including geomagnetic superchrons, results from changes in core heat flux related to growth and collapse of lower mantle superplumes. We parameterize the reversal frequency sensitivity from numerical dynamos in terms of average core heat flux normalized by the difference between the present-day core heat flux and the core heat flux at geomagnetic superchron onset. A low-order polynomial fit to the 0-300 Ma Geomagnetic Polarity Time Scale (GPTS) reveals that a decrease in core heat flux relative to present-day of approximately 30% can account for the Cretaceous Normal Polarity and Kiaman Reverse Polarity Superchrons, whereas the hyper-reversing periods in the Jurassic require a core heat flux equal to or higher than present-day. Possible links between GPTS transitions, large igneous provinces (LIPs), and the two lower mantle superplumes are explored. Lower mantle superplume growth and collapse induce GPTS transitions by increasing and decreasing core heat flux, respectively. Age clusters of major LIPs postdate transitions from hyper-reversing to superchron geodynamo states by 30-60 Myr, suggesting that superchron onset may be contemporaneous with LIP-forming instabilities produced during collapses of lower mantle superplumes.

  15. Climate determinism or Geomagnetic determinism?

    NASA Astrophysics Data System (ADS)

    Gallet, Y.; Genevey, A.; Le Goff, M.; Fluteau, F.; Courtillot, V.

    2006-12-01

    A number of episodes of sharp geomagnetic field variations (in both intensity and direction), lasting on the order of a century, have been identified in archeomagnetic records from Western Eurasia and have been called "archeomagnetic jerks". These seem to correlate well with multi-decadal cooling episodes detected in the North Atlantic Ocean and Western Europe, suggesting a causal link between both phenomena. A possible mechanism could be a geomagnetic modulation of the cosmic ray flux that would control the nucleation rate of clouds. We wish to underline the remarkable coincidence between archeomagnetic jerks, cooling events in Western Europe and drought periods in tropical and sub-tropical regions of the northern hemisphere. The latter two can be interpreted in terms of global teleconnections among regional climates. It has been suggested that these climatic variations had caused major changes in the history of ancient civilizations, such as in Mesopotamia, which were critically dependent on water supply and particularly vulnerable to lower rainfall amounts. This is one of the foundations of "climate determinism". Our studies, which suggest a geomagnetic origin for at least some of the inferred climatic events, lead us to propose the idea of a "geomagnetic determinism" in the history of humanity.

  16. First results from the first Croatian geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Mandic, Igor; Herak, Davorka; Heilig, Balazs

    2013-04-01

    The first Croatian geomagnetic observatory was established in the area of the Nature Park Lonjsko Polje, after a century of sporadic efforts originating from the proposals of Andrija Mohorovicic. The location was chosen after exhaustive surveys of possible sites. It is located far enough from sources of civilization noise, and was found to be an area without magnetic anomalies and with a low field gradient. The construction of the observatory buildings was completed in the autumn of 2011. The furnishing and installation of instruments and test measurements were completed by the beginning of summer 2012, ever since we have continuous recordings of the geomagnetic elements. In the beginning of December 2012 the fluxgate magnetometer LEMI-035 (H,D,Z orientation) has been installed under the framework of the PLASMON project in cooperation with the Tihany Observatory (Hungary). Permanent data of high quality from our observatory will contribute to the monitoring of the Earth's magnetic field on the regional and global levels, thus enabling further development of geomagnetism in Croatia through collaboration with scientists from the other countries, participation in the international projects, eventual membership in the International Real-time Magnetic Observatory Network (INTERMAGNET), etc. The field elements for the epoch 2012,75 and the baselines are presented together with highlights of some recorded geomagnetic events so far. Furthermore, the comparison between the variation data recorded by the dIdD and the fluxgate LEMI-035 magnetometer is presented.

  17. Cosmic rays flux and geomagnetic field variations at midlatitudes

    NASA Astrophysics Data System (ADS)

    Morozova, Anna; Ribeiro, Paulo; Tragaldabas Collaboration Team

    2014-05-01

    It is well known that the cosmic rays flux is modulated by the solar wind and the Earth's magnetic field. The Earth's magnetic field deflects charged particles in accordance with their momentum and the local field strength and direction. The geomagnetic cutoffs depend both on the internal and the external components of the geomagnetic field, therefore reflecting the geodynamo and the solar activity variations. A new generation, high performance, cosmic ray detector Tragaldabas was recently installed at the University of Santiago de Compostela (Spain). The detector has been acquiring test data since September 2013 with a rate of about 80 events/s over a solid angle of ~5 srad. around the vertical direction. To take full advantage of this new facility for the study of cosmic rays arriving to the Earth, an international collaboration has been organized, of about 20 researchers from 10 laboratories of 5 European countries. The Magnetic Observatory of Coimbra (Portugal) has been measuring the geomagnetic field components for almost 150 years since the first measurements in 1866. It is presently equipped with up-to-date instruments. Here we present a preliminary analysis of the global cosmic ray fluxes acquired by the new Tragaldabas detector in relation to the geomagnetic field variations measured by the Coimbra observatory. We also compare the data from the new cosmic rays detector with results obtained by the Castilla-La Mancha Neutron Monitor (CaLMa, Gadalajara, Spain) that is in operation since October 2011.

  18. Worldwide Geomagnetic Data Collection and Management

    NASA Astrophysics Data System (ADS)

    Mandea, Mioara; Papitashvili, Vladimir

    2009-11-01

    Geomagnetic data provided by different platforms piece together a global picture of Earth's magnetic field and its interaction with geospace. Furthermore, a great diversity of the geomagnetic field changes, from secular (over decades to centuries) to short time variations (down to minutes and seconds), can be detected only through continued observations. An international effort to watch and record geomagnetic changes first began in the 1830s with a network of scientific observers organized by Karl Friedrich Gauss in Germany, and this effort has continued since then. One of the most remarkable achievements in understanding the geomagnetic field morphology and time behavior was made possible by the International Geophysical Year (IGY), an exploration and research effort that lasted for 18 months, starting on 1 July 1957. The IGY encompassed 11 geoscience disciplines, including geomagnetism. The IGY has represented a giant step forward in the quality and quantity of worldwide geomagnetic measurements, as well as in the widespread interest in magnetic measurements. A half century of probing the geomagnetic field spatial and temporal variations has produced a number of outstanding results, and the interested reader can find recent reviews on various geomagnetic field topics (from measurements to modeling) in Encyclopedia of Geomagnetism and Paleomagnetism [Gubbins and Herrero-Bervera, 2007] or Treatise on Geophysics: Geomagnetism [Kono, 2007].

  19. Geomagnetic excursions and climate change

    NASA Technical Reports Server (NTRS)

    Rampino, M. R.

    1983-01-01

    Rampino argues that although Kent (1982) demonstrated that the intensity of natural remanent magnetism (NRM) in deep-sea sediments is sensitive to changes in sediment type, and hence is not an accurate indicator of the true strength of the geomagnetic field, it does not offer an alternative explanation for the proposed connections between excursions, climate, and orbital parameters. Kent replies by illustrating some of the problems associated with geomagnetic excursions by considering the record of proposed excursions in a single critical core. The large departure from an axial dipole field direction seen in a part of the sample is probably due to a distorted record; the drawing and storage of the sample, which is described, could easily have led to disturbance and distortion of the record.

  20. Teaching Geomagnetism in High School

    NASA Astrophysics Data System (ADS)

    Stern, D. P.

    2001-05-01

    Many high school curricula include a one-year course in Earth Sciences, often in the 9th grade (essentially pre-algebra). That is a good time to teach about geomagnetism. Not only are dipole reversals and sea-floor magnetization central to this subject, but this is a good opportunity to introduce students to magnetism and its connection to electric currents. The story of Oersted and Faraday give a fascinating insight into the uneven path of scientific discovery, the magnetic compass and William Gilbert provide a view of the beginnings of the scientific revolution, and even basic concepts of dynamo theory and its connection to solar physics can be included. A resource including all the suitable material now exists on the world-wide web at http://www-spof.gsfc.nasa.gov/earthmag/demagint.htm (home page). A 1-month unit on geomagnetism will be outlined.

  1. Ice ages and geomagnetic reversals

    NASA Technical Reports Server (NTRS)

    Wu, Patrick

    1992-01-01

    There have been speculations on the relationship between climatic cooling and polarity reversals of the earth's magnetic field during the Pleistocene. Two of the common criticisms on this relationship have been the reality of these short duration geomagnetic events and the accuracy of their dates. Champion et al. (1988) have reviewed recent progress in this area. They identified a total of 10 short-duration polarity events in the last 1 Ma and 6 of these events have been found in volcanic rocks, which also have K-Ar dates. Supposing that the speculated relationship between climatic cooling and geomagnetic reversals actually exist, two mechanisms that assume climatic cooling causes short period magnetic reversals will be investigated. These two methods are core-mantle boundary topography and transfer of the rotational energy to the core.

  2. Heart attacks and geomagnetic activity.

    PubMed

    Knox, E G; Armstrong, E; Lancashire, R; Wall, M; Haynes, R

    1979-10-18

    Malin and Srivastava reported a remarkable correlation between daily variations in the geomagnetic field strength and daily admissions to the cardio-thoracic wards of hospitals in Hyderabad and Secunderabad, for cardiac emergencies, during 1967--72. We have now carried out a similar enquiry in the West Midlands region of the UK for the years 1969--70, but were unable to confirm the Indian results.

  3. Global geomagnetic field mapping - from secular variation to geomagnetic excursions

    NASA Astrophysics Data System (ADS)

    Panovska, Sanja; Constable, Catherine

    2015-04-01

    The main source of the geomagnetic field is a self-sustaining dynamo produced by fluid motions in Earth's liquid outer core. We study the spatial and temporal changes in the internal magnetic field by mapping the time-varying geomagnetic field over the past 100 thousand years. This is accomplished using a new global data set of paleomagnetic records drawn from high accumulation rate sediments and from volcanic rocks spanning the past 100 thousand years (Late Pleistocene). Sediment data comprises 105 declination, 117 inclination and 150 relative paleointensity (RPI) records, mainly concentrated in northern mid-latitudes, although some are available in the southern hemisphere. Northern Atlantic and Western Pacific are regions with high concentrations of data. The number of available volcanic/archeomagnetic data is comparitively small on the global scale, especially in the Southern hemisphere. Temporal distributions show that the number of data increases toward more recent times with a good coverage for the past 50 ka. Laschamp excursion (41 ka BP) is well represented for both directional and intensity data. The significant increase in data compared to previous compilations results in an improvement over current geomagnetic field models covering these timescales. Robust aspects of individual sediment records are successfully captured by smoothing spline modeling allowing an estimate of random uncertainties present in the records. This reveals a wide range of fidelities across the sediment magnetic records. Median uncertainties are: 17° for declination (range, 1° to 113°), 6° for inclination (1° to 50°) and 0.4 for standardized relative paleointensity (0.02 to 1.4). The median temporal resolution of the records defined by the smoothing time is 400 years (range, 50 years to about 14 kyr). Using these data, a global, time-varying, geomagnetic field model is constructed covering the past 100 thousand years. The modeling directly uses relative forms of sediment

  4. Geomagnetic Observatory Data for Real-Time Applications

    NASA Astrophysics Data System (ADS)

    Love, J. J.; Finn, C. A.; Rigler, E. J.; Kelbert, A.; Bedrosian, P.

    2015-12-01

    The global network of magnetic observatories represents a unique collective asset for the scientific community. Historically, magnetic observatories have supported global magnetic-field mapping projects and fundamental research of the Earth's interior and surrounding space environment. More recently, real-time data streams from magnetic observatories have become an important contributor to multi-sensor, operational monitoring of evolving space weather conditions, especially during magnetic storms. In this context, the U.S. Geological Survey (1) provides real-time observatory data to allied space weather monitoring projects, including those of NOAA, the U.S. Air Force, NASA, several international agencies, and private industry, (2) collaborates with Schlumberger to provide real-time geomagnetic data needed for directional drilling for oil and gas in Alaska, (3) develops products for real-time evaluation of hazards for the electric-power grid industry that are associated with the storm-time induction of geoelectric fields in the Earth's conducting lithosphere. In order to implement strategic priorities established by the USGS Natural Hazards Mission Area and the National Science and Technology Council, and with a focus on developing new real-time products, the USGS is (1) leveraging data management protocols already developed by the USGS Earthquake Program, (2) developing algorithms for mapping geomagnetic activity, a collaboration with NASA and NOAA, (3) supporting magnetotelluric surveys and developing Earth conductivity models, a collaboration with Oregon State University and the NSF's EarthScope Program, (4) studying the use of geomagnetic activity maps and Earth conductivity models for real-time estimation of geoelectric fields, (5) initiating geoelectric monitoring at several observatories, (6) validating real-time estimation algorithms against historical geomagnetic and geoelectric data. The success of these long-term projects is subject to funding constraints

  5. The effect of cosmic ray intensity variations and geomagnetic disturbances on the physiological state of aviators

    NASA Astrophysics Data System (ADS)

    Papailiou, M.; Mavromichalaki, H.; Kudela, K.; Stetiarova, J.; Dimitrova, S.; Giannaropoulou, E.

    2011-09-01

    Over the last few years various researches have reached the conclusion that cosmic ray variations and geomagnetic disturbances are related to the condition of the human physiological state. In this study medical data regarding 4018 Slovak aviators were analyzed in relation to daily variations of cosmic ray and geomagnetic activity. Specifically daily data concerning mean values of heart rate which were registered during the medical examinations of the Slovak aviators, were related to daily variations of cosmic ray intensity, as measured by the Neutron Monitor Station on Lomnicky Stit (http://neutronmonitor.ta3.sk/realtime.php3) and the high resolution neutron monitor database (http://www.nmdb.eu) and daily variations of Dst and Ap geomagnetic indices. All subjects were men in good health of age 18-60 yrs. This particular study refers to the time period from 1 January 1994 till 31 December 2002. Statistical methods were applied to establish a statistical significance of the effect of geomagnetic activity levels and cosmic ray intensity variations on the aforementioned physiological parameters for the whole group. The Pearson r-coefficients were calculated and the Analysis of Variance (ANOVA) method was applied to establish the statistical significance levels (p-values) of the effect of geomagnetic activity and cosmic ray intensity variations on heart rate up to three days before and three days after the respective events. Results show that there is an underlying effect of geomagnetic activity and cosmic ray intensity variations on the cardiovascular functionality.

  6. Correlative comparison of geomagnetic storms and auroral substorms using geomagnetic indeces. Master's thesis

    SciTech Connect

    Cade, W.B.

    1993-06-01

    Partial contents include the following: (1) Geomagnetic storm and substorm processes; (2) Magnetospheric structure; (3) Substorm processes; (4) Data description; (5) Geomagnetic indices; and (6) Data period and data sets.

  7. The Geomagnetic Field During a Reversal

    NASA Technical Reports Server (NTRS)

    Heirtzler, James R.

    2003-01-01

    By modifying the IGRF it is possible to learn what may happen to the geomagnetic field during a geomagnetic reversal. If the entire IGRF reverses then the declination and inclination only reverse when the field strength is zero. If only the dipole component of the IGRF reverses a large geomagnetic field remains when the dipole component is zero and he direction of the field at the end of the reversal is not exactly reversed from the directions at the beginning of the reversal.

  8. No covariation between the geomagnetic activity and the incidence of acute myocardial infarction in the polar area of northern Sweden

    NASA Astrophysics Data System (ADS)

    Messner, T.; Häggström, I.; Sandahl, I.; Lundberg, V.

    2002-05-01

    This study was undertaken to investigate whether there was any relation between the aurora borealis (measured as the geomagnetic activity) and the number of acute myocardial infarctions (AMI) in the northern, partly polar, area of Sweden. The AMI cases were collected from The Northern Sweden MONICA (multinational MONItoring of trends and determinants of CArdiovascular disease) AMI registry between 1985 and 1998, inclusive, and the information on the geomagnetic activity from continuous measurements at the Swedish Institute of Space Physics, Kiruna. In the analyses, both the relation between the individual AMI case and ambient geomagnetic activity, and the relation between the mean daily K index and the daily number of AMI cases were tested. We found no statistically significant relation between the number of fatal or non-fatal AMI cases, the number of sudden deaths or the number of patients with chest pain without myocardial damage, and geomagnetic activity. Our data do not support a relation between the geomagnetic activity and AMI.

  9. The Causes of Geomagnetic Storms During Solar Maximum

    NASA Technical Reports Server (NTRS)

    Tsurutani, B. T.; Gonzalez, W. D.

    1998-01-01

    One of the oldest mysteries in geomagnetism is the linkage between solar and geomagnetic activity. The 11-year cycles of both the numbers of sunspots and Earth geomagnetic storms were first noted by Sabine (1852).

  10. Day-to-Day Variability of H Component of Geomagnetic Field in Central African Sector Provided by YACM (Yaoundé-Cameroon) Amber Magnetometer Station

    NASA Astrophysics Data System (ADS)

    Etoundi Messanga, Honoré

    2015-04-01

    The geomagnetic data obtained from Amber Network station in Cameroon has been used for this study. The variability of H component of geomagnetic field has been examined by using geomagnetic field data of X and Y components recorded at AMBER magnetometer station hosted by the Department of Physics of University of Yaoundé (3.87°N, 11.52°E). The day-to-day variability of the horizontal intensity of the geomagnetic field has been examined and shows that the scattering of H component of magnetic field variation is more on disturbed than on quiet days. The signatures H of geomagnetic Sq and Sd variations in intensities in the geomagnetic element, has been studied. This paper shows that the daytime variations in intensities of geomagnetic elements H, Sq(H) and Sd(H) respectively are generally greater at diurnal-times than at night-times. This study mainly interests to answer to two questions: 1) how can geomagnetic variations be used to study the equatorial ionosphere electrodynamics and electrojet equatorial over Africa in general and Cameroon in particular? 2) How can geomagnetic variations be used to monitor and predict Space weather events in Cameroon? This study presents and interprets the results of H component of geomagnetic field variations during magnetic storms and on quiet days.

  11. Snowstorm at the geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Čop, R.

    2015-08-01

    The Sinji Vrh Geomagnetic Observatory (hereinafter the Observatory) is situated on Gora above Ajdovščina, a highland karst plateau, in the southwestern part of Slovenia. The Observatory operates in exceptional geological and meteorological conditions due to its location. The very first measurements at the time of initial tests showed that weather fronts induce changes in the local magnetic field. The first measurements intended to determine the value of this influence were carried out at the end of summer 2011. In 2013 the first such measurements were carried out in January. This article presents the results of these measurements, showing how the snowstorm induced changes in Earth's magnetic field.

  12. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W.; Taylor, E.R. Jr.; Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  13. Electric Utility Industry Experience with Geomagnetic Disturbances

    SciTech Connect

    Barnes, P.R.

    1991-01-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as a few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration.

  14. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. ); Taylor, E.R. Jr. ); Tesche, F.M.

    1991-09-01

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  15. Introduction to Geomagnetic Fields: Second Edition

    NASA Astrophysics Data System (ADS)

    Campbell, Wallace H.

    2003-04-01

    Preface; Acknowledgements; 1. The Earth's main field; 2. Quiet-time field variations and dynamo currents; 3. Solar-terrestrial activity; 4. Measurement methods; 5. Applications; Appendix A: mathematical topics; Appendix B: geomagnetic organisations, services and bibliography; Appendix C: utility programs for geomagnetic fields; References; Index.

  16. Geomagnetic Disturbances Caused by Internal Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Sonneman, G.

    1984-01-01

    It is commonly believed that geomagnetic disturbances are caused by external influences connected with the solar wind. The 27-day recurrence of perturbations seems to be a strong hint for this interaction. But frequently geomagnetic disturbances occur without any relation to sunspot numbers or radiowave fluxes. This was one of the reasons for introducing hypothetical M-regions on the Sun and their relation to solar wind activities. Only one half of the variance of the geomagnetic AL-index could be related to the solar wind. Therefore it is concluded that internal processes of the magnetosphere were responsible for additional geomagnetic activity. Arguments, which might lead to the suggestion of geomagnetic disturbances as being caused by internal atmospheric dynamics are discussed and a rather preliminary scenario of those processes is proposed.

  17. Geophysical excitation of nutation and geomagnetic jerks

    NASA Astrophysics Data System (ADS)

    Vondrák, Jan; Ron, Cyril

    2014-05-01

    Recently Zinovy Malkin (2013) proposed that the observed changes of Free Core Nutation parameters (phase, amplitude) might be related to geomagnetic jerks (rapid changes of the secular variations of geomagnetic field). We tested this hypothesis and found that if the numerical integration of Brzezinski broad-band Liouville equations of atmospheric/oceanic excitations is re-initialized at the epochs of geomagnetic jerks, the agreement between the integrated and observed celestial pole offsets is improved significantly. This approach however tacitly assumes that the influence of geomagnetic jerks has a stepwise character, which is physically not acceptable. The present study continues in this effort by introducing a simple continuous excitation function (hypothetically due to geomagnetic jerks). The results of numerical integration of atmospheric/oceanic excitations plus this newly introduced excitation are then compared with the observed celestial pole offsets.

  18. Simultaneous observations of quasi-periodic (QP) VLF wave emissions and related ULF fluctuations of the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Hayosh, Mykhaylo; Santolik, Ondrej; Parrot, Michel; Nemec, Frantisek

    We present case studies of quasi-periodic (QP) VLF emissions detected onboard the DEMETER satellite. The analyzed events with modulation periods from 40 s to 80 s were observed at geomagnetic latitudes larger than 40 degrees. The magnetometers of the CARISMA network along the same geomagnetic longitude (within 5 degrees) were used for monitoring simultaneous fluctuations of the geomagnetic field. Correlated ULF magnetic field pulsations with periods corresponding to the modulation periods of QP emissions are detected. These ULF pulsations in the Pc3 - Pc5 range are likely related to the generation mechanism of the QP emissions. We attempt to define the spatial extent of the disturbed area.

  19. History of the geomagnetic field

    USGS Publications Warehouse

    Doell, Richard R.

    1969-01-01

    Direct measurements of the direction and strength of the earth's magnetic field have provided a knowledge of the field's form and behavior during the last few hundreds of years. For older times, however, it has been necessary to measure the magnetism of certain rocks to learn what the geomagnetic field was like. For example, when a lava flow solidifies (at temperatures near 1000??C) and cools through the Curie point of the magnetic minerals contained in it (around 500??C) it acquires a remanent magnetism that is (1) very weak, (2) very stablel, (3) paralle to the direction of the ambient geomagnetic field, and (4) proportional in intensity to the ambient field. Separating, by various analytical means, this magnetization from other 'unwanted' magnetizations has allowed paleomagnetists to study the historical and prehistorical behavior of the earth's field. It has been learned, for example, that the strength of the field was almost twice its present value 2000 years ago and that it has often completely reversed its polarity. Paleo-magnetists have also confirmed that most oceans are, geologically speaking, relatively new features, and that the continents have markedly changed their positions over the surface of the earth. ?? 1969 The American Institute of Physics.

  20. Recent developments in the global geomagnetic observatory network

    NASA Astrophysics Data System (ADS)

    Chulliat, A.

    2011-12-01

    Magnetic observatories provide precise and continuous measurements of geomagnetic variations over time scales ranging from one second to more than a century. They have been an essential observational infrastructure for geomagnetic research for about 170 years. A large fraction of magnetic observatories belong to INTERMAGNET (International Real-time Magnetic Observatory Network), a global network founded in the late 1980s which now includes about 115 observatories in 45 countries. INTERMAGNET magnetic observatories comply with strict data quality and timeliness standards and distribute their data through an integrated data information system. Recent years have seen a rapid expansion of the global network: new observatories have been installed in remote locations, such as oceanic islands (St Helena, Easter Island, Tristan da Cunha) or Antarctica (Dome C); ancient observatories have been upgraded to international standards (for example in China and Siberia). This has been prompted by the need to have a more geographically homogeneous network. In parallel, new data products (one second data and quasi-definitive data) are being made available, addressing a wide variety of research needs, and real timeliness is being improved for operational purposes such as space weather monitoring and forecasting. This presentation will provide an overview of these recent developments, focusing on those most relevant to the geomagnetic modeling community, and discuss their expected scientific benefits.

  1. Geomagnetic main field modeling with DMSP

    NASA Astrophysics Data System (ADS)

    Alken, P.; Maus, S.; Lühr, H.; Redmon, R. J.; Rich, F.; Bowman, B.; O'Malley, S. M.

    2014-05-01

    The Defense Meteorological Satellite Program (DMSP) launches and maintains a network of satellites to monitor the meteorological, oceanographic, and solar-terrestrial physics environments. In the past decade, geomagnetic field modelers have focused much attention on magnetic measurements from missions such as CHAMP, Ørsted, and SAC-C. With the completion of the CHAMP mission in 2010, there has been a multiyear gap in satellite-based vector magnetic field measurements available for main field modeling. In this study, we calibrate the special sensor magnetometer instrument on board DMSP to create a data set suitable for main field modeling. These vector field measurements are calibrated to compute instrument timing shifts, scale factors, offsets, and nonorthogonality angles of the fluxgate magnetometer cores. Euler angles are then computed to determine the orientation of the vector magnetometer with respect to a local coordinate system. We fit a degree 15 main field model to the data set and compare with the World Magnetic Model and Ørsted scalar measurements. We call this model DMSP-MAG-1, and its coefficients and software are available for download at http://geomag.org/models/dmsp.html. Our results indicate that the DMSP data set will be a valuable source for main field modeling for the years between CHAMP and the recently launched Swarm mission.

  2. Geomagnetic activity: Dependence on solar wind parameters

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1977-01-01

    Current ideas about the interaction between the solar wind and the earth's magnetosphere are reviewed. The solar wind dynamic pressure as well as the influx of interplanetary magnetic field lines are both important for the generation of geomagnetic activity. The influence of the geometry of the situation as well as the variability of the interplanetary magnetic field are both found to be important factors. Semi-annual and universal time variations are discussed as well as the 22-year cycle in geomagnetic activity. All three are found to be explainable by the varying geometry of the interaction. Long term changes in geomagnetic activity are examined.

  3. Multiscale Features of Large Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    De Michelis, P.; Consolini, G.

    2011-12-01

    The present study is focused on the analysis of the multiscale features of four large geomagnetic storms that occurred from 2000 to 2003. In particular, we analyse the fluctuations of these extreme events as recorded along the horizontal component of the geomagnetic field in seven different canadian geomagnetic observatories, by decomposing the signal via the Hilbert-Huang transform (HHT). This empirical method, that is alternative to traditional data-analysis methods, consists in an empirical mode decomposition (EMD) and in the Hilbert spectral analysis, and it is designed specifically for analyzing nonlinear and nonstationary data. The features of the intrinsic mode functions (IMFs) are studied as a function of the magnetic latitude.

  4. Minimax confidence intervals in geomagnetism

    NASA Technical Reports Server (NTRS)

    Stark, Philip B.

    1992-01-01

    The present paper uses theory of Donoho (1989) to find lower bounds on the lengths of optimally short fixed-length confidence intervals (minimax confidence intervals) for Gauss coefficients of the field of degree 1-12 using the heat flow constraint. The bounds on optimal minimax intervals are about 40 percent shorter than Backus' intervals: no procedure for producing fixed-length confidence intervals, linear or nonlinear, can give intervals shorter than about 60 percent the length of Backus' in this problem. While both methods rigorously account for the fact that core field models are infinite-dimensional, the application of the techniques to the geomagnetic problem involves approximations and counterfactual assumptions about the data errors, and so these results are likely to be extremely optimistic estimates of the actual uncertainty in Gauss coefficients.

  5. Frequency of Proterozoic geomagnetic superchrons

    NASA Astrophysics Data System (ADS)

    Driscoll, Peter E.; Evans, David A. D.

    2016-03-01

    Long-term geodynamo evolution is expected to respond to inner core growth and changing patterns of mantle convection. Three geomagnetic superchrons, during which Earth's magnetic field maintained a near-constant polarity state through tens of Myr, are known from the bio/magnetostratigraphic record of Phanerozoic time, perhaps timed according to supercontinental episodicity. Some geodynamo simulations incorporating a much smaller inner core, as would have characterized Proterozoic time, produce field reversals at a much lower rate. Here we compile polarity ratios of site means within a quality-filtered global Proterozoic paleomagnetic database, according to recent plate kinematic models. Various smoothing parameters, optimized to successfully identify the known Phanerozoic superchrons, indicate 3-10 possible Proterozoic superchrons during the 1300 Myr interval studied. Proterozoic geodynamo evolution thus appears to indicate a relatively narrow range of reversal behavior through the last two billion years, implying either remarkable stability of core dynamics over this time or insensitivity of reversal rate to core evolution.

  6. Range indices of geomagnetic activity

    USGS Publications Warehouse

    Stuart, W.F.; Green, A.W.

    1988-01-01

    The simplest index of geomagnetic activity is the range in nT from maximum to minimum value of the field in a given time interval. The hourly range R was recommended by IAGA for use at observatories at latitudes greater than 65??, but was superceded by AE. The most used geomagnetic index K is based on the range of activity in a 3 h interval corrected for the regular daily variation. In order to take advantage of real time data processing, now available at many observatories, it is proposed to introduce a 1 h range index and also a 3 h range index. Both will be computed hourly, i.e. each will have a series of 24 per day, the 3 h values overlapping. The new data will be available as the range (R) of activity in nT and also as a logarithmic index (I) of the range. The exponent relating index to range in nT is based closely on the scale used for computing K values. The new ranges and range indices are available, from June 1987, to users in real time and can be accessed by telephone connection or computer network. Their first year of production is regarded as a trial period during which their value to the scientific and commercial communities will be assessed, together with their potential as indicators of regional and global disturbances' and in which trials will be conducted into ways of eliminating excessive bias at quiet times due to the rate of change of the daily variation field. ?? 1988.

  7. Deciphering records of geomagnetic reversals

    NASA Astrophysics Data System (ADS)

    Valet, Jean-Pierre; Fournier, Alexandre

    2016-06-01

    Polarity reversals of the geomagnetic field are a major feature of the Earth's dynamo. Questions remain regarding the dynamical processes that give rise to reversals and the properties of the geomagnetic field during a polarity transition. A large number of paleomagnetic reversal records have been acquired during the past 50 years in order to better constrain the structure and geometry of the transitional field. In addition, over the past two decades, numerical dynamo simulations have also provided insights into the reversal mechanism. Yet despite the large paleomagnetic database, controversial interpretations of records of the transitional field persist; they result from two characteristics inherent to all reversals, both of which are detrimental to an ambiguous analysis. On the one hand, the reversal process is rapid and requires adequate temporal resolution. On the other hand, weak field intensities during a reversal can affect the fidelity of magnetic recording in sedimentary records. This paper is aimed at reviewing critically the main reversal features derived from paleomagnetic records and at analyzing some of these features in light of numerical simulations. We discuss in detail the fidelity of the signal extracted from paleomagnetic records and pay special attention to their resolution with respect to the timing and mechanisms involved in the magnetization process. Records from marine sediments dominate the database. They give rise to transitional field models that often lead to overinterpret the data. Consequently, we attempt to separate robust results (and their subsequent interpretations) from those that do not stand on a strong observational footing. Finally, we discuss new avenues that should favor progress to better characterize and understand transitional field behavior.

  8. A new regard about Surlari National Geomagnetic Observatory

    NASA Astrophysics Data System (ADS)

    Asimopolos, Laurentiu; Asimopolos, Natalia-Silvia; Pestina, Agata-Monica

    2010-05-01

    Geomagnetic field study in Romanian stations has started with irregular measurements in late XIXth century. In 1943, the foundation of Surlari National Geomagnetic Observatory (SNGO) marks the beginning of a new era in the systematic study of geomagnetic field by a continuous registration of its variations and by carrying out standard absolute measurements in a fundamental station. The location of the observatory meets the highest exigencies, being situated in physical-geological conditions of a uniform local field, at a reasonably long distance from human activities. Its laboratories observe strict conditions of non-magnetism, ensuring the possibility of absolute standard measurements (national magnetic standards) for all the units in the country, civil or military, which are endowed with equipment based on geomagnetic metrology. These basic conditions have allowed the observatory to become by developing its initial preoccupations a centre of complex geomagnetic research, constantly involved in national and international issues, promoting new themes in our country and bringing significant contributions. During the last two decades, infrastructure and equipment used in monitoring geomagnetic field at European and planetary level have experienced a remarkable development. New registering techniques have allowed a complete to automate of data acquisition, and sampling step and their precision increased by two classes of size. Systems of transmitting these data in real time to world collecting centres have resulted in the possibility of approaching globalize studies, suitable for following some phenomena at planetary scale. At the same time, a significant development in the procedures of processing primary data has been registered, based on standardized programmes. The new stage of this fundamental research, largely applicable in various fields, is also marked by the simultaneous observation of space-time distribution of terrestrial electromagnetic field by means of

  9. Plasmaspheric dynamics resulting from the Hallowe'en 2003 geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kale, Z. C.; Mann, I. R.; Waters, C. L.; Vellante, M.; Zhang, T. L.; Honary, F.

    2009-08-01

    Cross-phase-derived plasma mass density trends during the Hallowe'en 2003 geomagnetic storms are presented for 38° $\\lesssim$ magnetic latitude $\\lesssim$ 63° (1.61 ≤ L ≤ 5.10), using data from the SAMNET (Subauroral Magnetometer Network), BGS (British Geological Survey), and SEGMA (South European Geomagnetic Array), ground-based magnetometer arrays in Europe. At all latitudes monitored, a rapid increase of total mass density is observed immediately following the initial storm sudden commencement at 0611 UT on 29 October, believed to be due to rapid ionospheric O+ outflow. Plasmaspheric density depletion to at least 50° magnetic latitude (L ˜ 2.4) took place over the next 3 days. Poststorm refilling began on 2 November. Following the sudden commencement of another storm on 4 November, a density enhancement was monitored at 2.79 ≤ L ≤ 3.84, with subsequent plasmaspheric depletion occurring by 6 November. Plasma mass density values are compared to empirical plasmapause location model predictions, with reasonable agreement for most days, but density depletion and refilling were monitored 1 day after they are predicted. During poststorm plasmaspheric refilling, some extremely low early morning resonance frequencies are monitored and appear be due to quarter mode standing waves. This study also highlights that care must be taken in the choice of assumed geomagnetic field geometry when deriving plasma mass densities from observed field line resonances during severe geomagnetic storms.

  10. Solar-Terrestrial Relations and Geomagnetic Variations

    NASA Astrophysics Data System (ADS)

    Ogunade, S. O.

    1995-01-01

    An overview of the solar environment and terrestrial magnetism is presented. The interactions of the solar environment and terrestrial magnetism are then discussed as they result in the creation of the magnetosphere and ionosphere with their corresponding current systems. Geomagnetic variations resulting from these current systems are discussed with regards to the observations made on the Earth's surface. Some useful and disruptive effects of the geomagnetic variations on navigation, shortwave radio communication, space satellite orbits and other technological systems are discussed.

  11. The International Geomagnetic Reference Field, 2005

    USGS Publications Warehouse

    Rukstales, Kenneth S.; Love, Jeffrey J.

    2007-01-01

    This is a set of five world charts showing the declination, inclination, horizontal intensity, vertical component, and total intensity of the Earth's magnetic field at mean sea level at the beginning of 2005. The charts are based on the International Geomagnetic Reference Field (IGRF) main model for 2005 and secular change model for 2005-2010. The IGRF is referenced to the World Geodetic System 1984 ellipsoid. Additional information about the USGS geomagnetism program is available at: http://geomag.usgs.gov/

  12. How the geomagnetic field vector reverses polarity

    USGS Publications Warehouse

    Prevot, M.; Mankinen, E.A.; Gromme, C.S.; Coe, R.S.

    1985-01-01

    A highly detailed record of both the direction and intensity of the Earth's magnetic field as it reverses has been obtained from a Miocene volcanic sequence. The transitional field is low in intensity and is typically non-axisymmetric. Geomagnetic impulses corresponding to astonishingly high rates of change of the field sometimes occur, suggesting that liquid velocity within the Earth's core increases during geomagnetic reversals. ?? 1985 Nature Publishing Group.

  13. Geomagnetic main field modeling using magnetohydrodynamic constraints

    NASA Technical Reports Server (NTRS)

    Estes, R. H.

    1985-01-01

    The influence of physical constraints are investigated which may be approximately satisfied by the Earth's liquid core on models of the geomagnetic main field and its secular variation. A previous report describes the methodology used to incorporate nonlinear equations of constraint into the main field model. The application of that methodology to the GSFC 12/83 field model to test the frozen-flux hypothesis and the usefulness of incorporating magnetohydrodynamic constraints for obtaining improved geomagnetic field models is described.

  14. The relationship between the human state and external perturbations of atmospheric, geomagnetic and solar origin

    NASA Astrophysics Data System (ADS)

    Gavryuseva, E.; Kroussanova, N.

    2002-12-01

    The relationship between the state of human body and the external factors such as the different phenomena of solar activity, geomagnetic perturbations and local atmospheric characteristics is studied. The monitoring of blood pressure and electro-conductivity of human body in acupuncture points for a group fo 28 people over the period of 1.5 year has been performed daily from February 2001 to August 2002 in Capodimonte Observatory in Naples, Italy. The modified Voll method of electropuncture diagnostics was used. The strong correlation between the human body state and meteo conditions is found and the probable correlation with geomagnetic perturbations is discussed.

  15. Magnetospheric transmissivity for cosmic rays during selected recent events with interplanetary/geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Parnahaj, I.; Bobík, P.; Kudela, K.

    2015-08-01

    The variability of cosmic rays (CRs) observed at selected European neutron monitors (NMs) around moderate geomagnetic disturbances, namely during the intervals (a) DOY 49-51 in 2014, (b) DOY 58-59 in 2014, (c) DOY 238-240 in 2014 and (d) DOY 6-8 in 2015 is discussed. Assuming the primary spectra of the CREME96 model, the yield function and geomagnetic transmissivity changes provided by the Tsyganenko96 model, the expected increases at the mid-latitude station Lomnický štít are compared with the observed ones. The examples stress the importance of including anisotropy of the CR flux in interplanetary space, the use of other geomagnetic field models and other yield functions to the computations in future analysis.

  16. Is the geodynamic process in preparation of strong earthquakes reflected in the geomagnetic field?

    NASA Astrophysics Data System (ADS)

    Finkelstein, M.; Price, C.; Eppelbaum, L.

    2012-10-01

    A methodology of detecting geomagnetic variations caused by dangerous geodynamic processes at depth has been developed. This methodology was tested using data from three Japanese observatories within the network of the International project ‘Intermagnet’ (www.intermagnet.org 2011). Anomalous behaviour of the geomagnetic field was detected during the period of the great Tohoku-oki earthquake on 11 March 2011. Theoretical evaluation of the possible mechanisms of these anomalous geomagnetic variations (AGV) has been examined. The possibility of the emergence of an AGV in the vicinity of earthquake epicentres in Japan and their rapid monitoring (online or with a delay of one day) is demonstrated. The main tool of the developed methodology is delineation of the geodynamic magnetic effect by the use of a differential function.

  17. Response of the H-geocorona to geomagnetic disturbances studied by TWINS Lyman-alpha data

    NASA Astrophysics Data System (ADS)

    Zoennchen, Jochen; Nass, Uwe; Fahr, Hans

    2016-04-01

    We have studied the variation of the exospheric H-density distribution during two geomagnetic storms of different strength in terms of their Dst-index values. This analysis is based on continuously monitored Lyman-alpha data observed by the TWINS1/2-LAD instruments. Since solar Lyman-alpha radiation is resonantly backscattered from geocoronal neutral hydrogen (H), the resulting resonance glow intensity in the optically thin regime is proportional to H-column density along the line of sight (LOS). We quantify the amplitude of the H-density's response to geomagnetic activity for different (observed) angular regions and radial Earth-distances. Interestingly the H-exosphere responded with a comparable density increase to both storms of different strength. Careful analysis of the geomagnetic H-density effect indicates that the temporal density response is well correlated with the Kp-index daily sum, but not with the Dst-index in case of the two analysed storms.

  18. Analysis of Geomagnetic Disturbances and Cosmic Ray Intensity Variations in Relation to Medical Data from Rome

    NASA Astrophysics Data System (ADS)

    Giannaropoulou, E.; Papailiou, M.; Mavromichalaki, H.; Tsipis, A.

    2010-07-01

    Over the last few years many studies have been conducted concerning the possible influence of geomagnetic and solar activity and cosmic ray activity on human physiological state and in particular on human cardio - health state. As it is shown the human organism is sensitive to environmental changes and reacts to them through a series of variations of its physiological parameters such as heart rate, arterial systolic and diastolic blood pressure, etc. In this paper daily mean values of heart rate, as they were registered for a group of 2.028 volunteers during medical examinations in the Polyclinico Tor Vergata, Rome, Italy are analyzed in relation to daily cosmic ray intensity variations, as measured by the Neutron Monitor of the University of Athens and daily variations of the geomagnetic indices Dst, Ap and Kp. The results from this study show that geomagnetic activity changes and cosmic rays intensity variations may regulate the human homeostasis.

  19. Hemodynamic response characteristics of healthy people to changes in meteorological and geomagnetic factors in the north

    NASA Astrophysics Data System (ADS)

    Zenchenko, T. A.; Varlamova, N. G.

    2015-12-01

    This paper analyzes the influence of variations in meteorological and geomagnetic factors on hemodynamic parameters (HP) in 27 healthy volunteers who are residents of Syktyvkar (daily monitoring of blood pressure (BP) and heart rate (HR) and stroke and cardiac output for the period from December 1, 2003, to December 31, 2004). It is shown that temperature variations and geomagnetic activity level (GMA) make the greatest impact on HP changes (85 and 48% cases, respectively). The BP level increases with decreasing temperature and with increasing levels of GMA. The sensitivity of systolic and diastolic blood pressure to the meteorological and geomagnetic factors is approximately twice as high as the sensitivity of other HP to them. The individual values of seasonal changes in BP parameters are 4-9 mmHg for systolic blood pressure and 3-6 mmHg for diastolic blood pressure. The estimates of the characteristics of meteorological and geomagnetic sensitivity in residents of northern latitudes are in good agreement with the results obtained by us earlier for other climatic zones and geomagnetic conditions, logically complementing and enhancing the common space-time picture of the reactions of the human body to external impacts.

  20. Geomagnetically trapped energetic helium nuclei

    SciTech Connect

    Chen, J.; Gregory Guzik, T.; Wefel, J.P.; Roger Pyle, K.; Cooper, J.F.

    1996-07-01

    Geomagnetically trapped helium nuclei, at high energy ({approximately}40{endash}100 MeV/nucleon), have been measured by the ONR-604 instrument during the 1990/1991 CRRES mission. The ONR-604 instrument resolved the isotopes of helium with a mass resolution of 0.1 amu. The energetic helium observed at {ital L}{lt}2.3 have a pitch angle distribution peaking perpendicular to the local magnetic field, which is characteristic of a trapped population. Both the trapped {sup 3}He and {sup 4}He show two peaks at {ital L}=1.2 and 1.9. Each isotope{close_quote}s flux, in each peak, can be characterized by a power law energy spectrum. The energy spectrum of the {sup 3}He is different from that of {sup 4}He, indicating that the {sup 3}He/{sup 4}He ratio is energy dependent. Over the energy range of 51{endash}86 MeV/nucleon, the {sup 3}He/{sup 4}He ratio is 8.7{plus_minus}3.1 at {ital L}=1.1{endash}1.5 and is 2.4{plus_minus}0.6 at {ital L}=1.5{endash}2.3. The trapped helium counting rates decrease gradually with time during the CRRES mission, when the anomalous component is excluded from the inner heliosphere, indicating that these high energy ions were not injected by flares during this time period. The decrease in intensity is attributed mainly to the events around {ital L}=1.9. The helium around {ital L}=1.2, dominated by {sup 3}He, does not show a significant temporal evolution, which implies a long-term energetic trapped {sup 3}He population. Two possible origins of the geomagnetically trapped helium isotopes are the interactions of energetic protons with the upper atmosphere and/or the inward diffusion and acceleration of helium ions due to electric-field fluctuations. {copyright} {ital 1996 American Institute of Physics.}

  1. Geomagnetic substorm association of plasmoids

    SciTech Connect

    Moldwin, M.B.; Hughes, W.J. )

    1993-01-01

    The relationship of geomagnetic substorms and plasmoids is examined by determining the correlation of the 366 plasmoids identified by Moldwin and Hughes (1992) with ground auroral zone magnetograms and geosynchronous particle data signatures of substorm onsets. Over 84% of the plasmoid events occurred between 5 and 60 min after a substorm onset. We also find near one-to-one correlation between large isolated substorm signatures in the near-Earth region and signatures consistent with a passing plasmoid in the distant tail (i.e., a traveling compression region, or an actual plasmoid observation). However, there does not appear to be an absolute correspondence of every substorm onset to a plasmoid signature in the deep tail especially, for periods of prolonged disturbance that have multiple substorm insets. A correlation of inter-planetary magnetic field B. south with plasmoid observations was also found. The locations of the near- and far-Earth reconnection sites are estimated using the time of flight of the plasmoids from substorm onset to their observation at ISEE 3. The estimates of the near- and far-Earth reconnection sites are highly variable and range from 10 to 140 RE, 32 refs., 4 figs. 2 tabs.

  2. On Geomagnetism and Paleomagnetism I

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    2000-01-01

    A partial description of Earth's broad scale, core-source magnetic field has been developed and tested three ways. The description features an expected, or mean, spatial magnetic power spectrum that is approximately inversely proportional to horizontal wavenumber atop Earth's core. This multipole spectrum describes a magnetic energy range; it is not steep enough for Gubbins' magnetic dissipation range. Temporal variations of core multipole powers about mean values are to be expected and are described statistically, via trial probability distribution functions, instead of deterministically, via trial solution of closed transport equations. The distributions considered here are closed and neither require nor prohibit magnetic isotropy. The description is therefore applicable to, and tested against, both dipole and low degree non-dipole fields. In Part 1, a physical basis for an expectation spectrum is developed and checked. The description is then combined with main field models of twentieth century satellite and surface geomagnetic field measurements to make testable predictions of the radius of Earth's core. The predicted core radius is 0.7% above the 3480 km seismological value. Partial descriptions of other planetary dipole fields are noted.

  3. Upper Thermosphere Winds and Temperatures in the Geomagnetic Polar Cap: Solar Cycle, Geomagnetic Activity, and Interplanetary Magnetic Field Dependencies

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Won, Y.-I.; Niciejewski, R. J.; Burns, A. G.

    1995-01-01

    Ground-based Fabry-Perot interferometers located at Thule, Greenland (76.5 deg. N, 69.0 deg. W, lambda = 86 deg.) and at Sondre Stromfjord, Greenland (67.0 deg. N, 50.9 deg. W, lambda = 74 deg.) have monitored the upper thermospheric (approx. 240-km altitude) neutral wind and temperature over the northern hemisphere geomagnetic polar cap since 1983 and 1985, respectively. The thermospheric observations are obtained by determining the Doppler characteristics of the (OI) 15,867-K (630.0-nm) emission of atomic oxygen. The instruments operate on a routine, automatic, (mostly) untended basis during the winter observing seasons, with data coverage limited only by cloud cover and (occasional) instrument failures. This unique database of geomagnetic polar cap measurements now extends over the complete range of solar activity. We present an analysis of the measurements made between 1985 (near solar minimum) and 1991 (near solar maximum), as part of a long-term study of geomagnetic polar cap thermospheric climatology. The measurements from a total of 902 nights of observations are compared with the predictions of two semiempirical models: the Vector Spherical Harmonic (VSH) model of Killeen et al. (1987) and the Horizontal Wind Model (HWM) of Hedin et al. (1991). The results are also analyzed using calculations of thermospheric momentum forcing terms from the Thermosphere-ionosphere General Circulation Model TGCM) of the National Center for Atmospheric Research (NCAR). The experimental results show that upper thermospheric winds in the geomagnetic polar cap have a fundamental diurnal character, with typical wind speeds of about 200 m/s at solar minimum, rising to up to about 800 m/s at solar maximum, depending on geomagnetic activity level. These winds generally blow in the antisunward direction, but are interrupted by episodes of modified wind velocity and altered direction often associated with changes in the orientation of the Interplanetary Magnetic Field (IMF). The

  4. Variations of terrestrial geomagnetic activity correlated to M6+ global seismic activity

    NASA Astrophysics Data System (ADS)

    Cataldi, Gabriele; Cataldi, Daniele; Straser, Valentino

    2013-04-01

    on solar activity: protons and electrons increase in the solar wind; increase of the electromagnetic emissions on Earth's magnetic poles; reducing of the magnetopause standoff distance; intense and sudden changes in the interplanetary magnetic field (IMF). The beginning of the geomagnetic disturbance that precedes the earthquake is activated by an protons and electrons density increase in the solar wind that can be monitored through telemetric data sent by satellite ACE (Advanced Composition Explorer) that currently operating in a Lissajous orbit near the Lagrange point "L1" (between the Sun and Earth, at a distance of approximately 1.5 million km from Earth).

  5. Bats Use Geomagnetic Field: Behavior and Mechanism

    NASA Astrophysics Data System (ADS)

    Pan, Y.; Tian, L.; Zhang, B.; Zhu, R.

    2015-12-01

    It has been known that numerous animals can use the Earth's magnetic field for spatial orientation and long-distance navigation, nevertheless, how animals can respond to the magnetic field remain mostly ambiguous. The intensities of the global geomagnetic field varies between 23 and 66 μT, and the geomagnetic field intensity could drop to 10% during geomagnetic polarity reversals or geomagnetic excursions. Such dramatic changes of the geomagnetic field may pose a significant challenge for the evolution of magnetic compass in animals. For examples, it is vital whether the magnetic compass can still work in such very weak magnetic fields. Our previous experiment has demonstrated that a migratory bat (Nyctalus plancyi) uses a polarity compass for orientation during roosting when exposed to an artificial magnetic field (100 μT). Recently, we experimentally tested whether the N. plancyi can sense very weak magnetic fields that were even lower than those of the present-day geomagnetic field. Results showed: 1) the bats can sense the magnetic north in a field strength of present-day local geomagnetic field (51μT); 2) As the field intensity decreased to only 1/5th of the natural intensity (10 μT), the bats still responded by positioning themselves at the magnetic north. Notably, as the field polarity was artificially reversed, the bats still preferred the new magnetic north, even at the lowest field strength tested (10 μT). Hence, N. plancyi is able to detect the direction of a magnetic field with intensity range from twice to 1/5th of the present-day field strength. This allows them to orient themselves across the entire range of present-day global geomagnetic field strengths and sense very weak magnetic fields. We propose that this high sensitivity might have evolved in bats as the geomagnetic field strength varied and the polarity reversed tens of times over the past fifty million years since the origin of bats. The physiological mechanisms underlying

  6. Principles of major geomagnetic storms forecasting

    NASA Astrophysics Data System (ADS)

    Zagnetko, Alexander; Applbaum, David; Dorman, Lev; Pustil'Nik, Lev; Sternlieb, Abraham; Zukerman, Igor

    According to NOAA Space Weather Scales, geomagnetic storms of scales G5 (3-hour index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) are dangerous for people technology and health (influence on power systems, on spacecraft operations, on HF radio-communications and others). To prevent these serious damages will be very important to forecast dangerous geomagnetic storms. In many papers it was shown that in principle for this forecasting can be used data on CR intensity and CR anisotropy changing before SC of major geomagnetic storms accompanied by sufficient Forbush-decreases (e.g., Dorman et al., 1995, 1999). In this paper we consider all types of observed precursor effects in CR what can be used for forecasting of great geomagnetic storms and possible mechanisms of these precursor effects origin. REFERENCES: Dorman L.I., et al. "Cosmic-ray forecasting features for big Forbush-decreases". Nuclear Physics B, 49A, 136-144 (1995). L.I.Dorman, et al, "Cosmic ray Forbush-decrease as indicators of space dangerous phenomenon and possible use of cosmic ray data for their pre-diction", Proc. of 26-th Intern. Cosmic Ray Conference, Salt Lake City, 6, 476-479 (1999).

  7. The causes of recurrent geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Lepping, R. P.

    1976-01-01

    The causes of recurrent geomagnetic activity were studied by analyzing interplanetary magnetic field and plasma data from earth-orbiting spacecraft in the interval from November 1973 to February 1974. This interval included the start of two long sequences of geomagnetic activity and two corresponding corotating interplanetary streams. In general, the geomagnetic activity was related to an electric field which was due to two factors: (1) the ordered, mesoscale pattern of the stream itself, and (2) random, smaller-scale fluctuations in the southward component of the interplanetary magnetic field Bz. The geomagnetic activity in each recurrent sequence consisted of two successive stages. The first stage was usually the most intense, and it occurred during the passage of the interaction region at the front of a stream. These large amplitudes of Bz were primarily produced in the interplanetary medium by compression of ambient fluctuations as the stream steepened in transit to 1 A.U. The second stage of geomagnetic activity immediately following the first was associated with the highest speeds in the stream.

  8. Ionospheric redistribution during geomagnetic storms

    PubMed Central

    Immel, T J; Mannucci, A J

    2013-01-01

    [1]The abundance of plasma in the daytime ionosphere is often seen to grow greatly during geomagnetic storms. Recent reports suggest that the magnitude of the plasma density enhancement depends on the UT of storm onset. This possibility is investigated over a 7year period using global maps of ionospheric total electron content (TEC) produced at the Jet Propulsion Laboratory. The analysis confirms that the American sector exhibits, on average, larger storm time enhancement in ionospheric plasma content, up to 50% in the afternoon middle-latitude region and 30% in the vicinity of the high-latitude auroral cusp, with largest effect in the Southern Hemisphere. We investigate whether this effect is related to the magnitude of the causative magnetic storms. Using the same advanced Dst index employed to sort the TEC maps into quiet and active (Dst<−100 nT) sets, we find variation in storm strength that corresponds closely to the TEC variation but follows it by 3–6h. For this and other reasons detailed in this report, we conclude that the UT-dependent peak in storm time TEC is likely not related to the magnitude of external storm time forcing but more likely attributable to phenomena such as the low magnetic field in the South American region. The large Dst variation suggests a possible system-level effect of the observed variation in ionospheric storm response on the measured strength of the terrestrial ring current, possibly connected through UT-dependent modulation of ion outflow. PMID:26167429

  9. The latitudinal distribution of the baseline geomagnetic field during the March 17, 2015 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Alberti, Tommaso; Piersanti, Mirko; Lepreti, Fabio; Vecchio, Antonio; De Michelis, Paola; Villante, Umberto; Carbone, Vincenzo

    2016-04-01

    Geomagnetic storms (GS) are global geomagnetic disturbances that result from the interaction between magnetized plasma that propagates from the Sun and plasma and magnetic fields in the near-Earth space plasma environment. The Dst (Disturbance Storm Time) global Ring Current index is still taken to be the definitive representation for geomagnetic storm and is used widely by researcher. Recent in situ measurements by satellites passing through the ring-current region (i.e. Van Allen probes) and computations with magnetospheric field models showed that there are many other field contributions on the geomagnetic storming time variations at middle and low latitudes. Appling the Empirical Mode Decomposition [Huang et al., 1998] to magnetospheric and ground observations, we detect the different magnetic field contributions during a GS and introduce the concepts of modulated baseline and fluctuations of the geomagnetic field. In this work, we apply this method to study the latitudinal distribution of the baseline geomagnetic field during the St. Patrick's Day Geomagnetic Storm 2015 in order to detect physical informations concerning the differences between high-latitude and equatorial ground measurements.

  10. Magnetospheric mapping with quantitative geomagnetic field models

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Mead, G. D.

    1973-01-01

    The Mead-Fairfield geomagnetic field models were used to trace field lines between the outer magnetosphere and the earth's surface. The results are presented in terms of ground latitude and local time contours projected to the equatorial plane and into the geomagnetic tail. With these contours various observations can be mapped along field lines between high and low altitudes. Low altitudes observations of the polar cap boundary, the polar cusp, the energetic electron trapping boundary and the sunward convection region are projected to the equatorial plane and compared with the results of the model and with each other. The results provide quantitative support to the earlier suggestions that the trapping boundary is associated with the last closed field line in the sunward hemisphere, the polar cusp is associated with the region of the last closed field line, and the polar cap projects to the geomagnetic tail and has a low latitude boundary corresponding to the last closed field line.

  11. Scaling laws from geomagnetic time series

    USGS Publications Warehouse

    Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.

    1998-01-01

    The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.

  12. An introduction to quiet daily geomagnetic fields

    USGS Publications Warehouse

    Campbell, W.H.

    1989-01-01

    On days that are quiet with respect to solar-terrestrial activity phenomena, the geomagnetic field has variations, tens of gamma in size, with major spectral components at about 24, 12, 8, and 6 hr in period. These quiet daily field variations are primarily due to the dynamo currents flowing in the E region of the earth's ionosphere, are driven by the global thermotidal wind systems, and are dependent upon the local tensor conductivity and main geomagnetic field vector. The highlights of the behavior and interpretation of these quiet field changes, from their discovery in 1634 until the present, are discussed as an introduction to the special journal issue on Quiet Daily Geomagnetic Fields. ?? 1989 Birkha??user Verlag.

  13. International Geomagnetic Reference Field: the third generation.

    USGS Publications Warehouse

    Peddie, N.W.

    1982-01-01

    In August 1981 the International Association of Geomagnetism and Aeronomy revised the International Geomagnetic Reference Field (IGRF). It is the second revision since the inception of the IGRF in 1968. The revision extends the earlier series of IGRF models from 1980 to 1985, introduces a new series of definitive models for 1965-1976, and defines a provisional reference field for 1975- 1980. The revision consists of: 1) a model of the main geomagnetic field at 1980.0, not continuous with the earlier series of IGRF models together with a forecast model of the secular variation of the main field during 1980-1985; 2) definitive models of the main field at 1965.0, 1970.0, and 1975.0, with linear interpolation of the model coefficients specified for intervening dates; and 3) a provisional reference field for 1975-1980, defined as the linear interpolation of the 1975 and 1980 main-field models.-from Author

  14. Large Geomagnetic Storms: Introduction to Special Section

    NASA Technical Reports Server (NTRS)

    Gopalswamy, N.

    2010-01-01

    Solar cycle 23 witnessed the accumulation of rich data sets that reveal various aspects of geomagnetic storms in unprecedented detail both at the Sun where the storm causing disturbances originate and in geospace where the effects of the storms are directly felt. During two recent coordinated data analysis workshops (CDAWs) the large geomagnetic storms (Dst < or = -100 nT) of solar cycle 23 were studied in order to understand their solar, interplanetary, and geospace connections. This special section grew out of these CDAWs with additional contributions relevant to these storms. Here I provide a brief summary of the results presented in the special section.

  15. Satellite data for geomagnetic field modeling

    NASA Astrophysics Data System (ADS)

    Langel, R. A.; Baldwin, R. T.

    1992-06-01

    Satellite measurements of the geomagnetic fields began with the launch of Sputnik 3 in May of 1958 and have continued sporadically. Spacecraft making significant contributions to main field geomagnetism will be reviewed and the characteristics of their data discussed, including coverage, accuracy, resolution and data availability. Of particular interest are Vanguard 3; Cosmos 49, Ogo's -2, -4, and -6; Magsat; DE-2; and POGS. Spacecraft make measurements on a moving platfrom above the ionosphere as opposed to measurements from fixed observatories and surveys, both below the ionosphere. Possible future missions, such as Aristoteles and GOS are reviewed.

  16. Satellite Data for Geomagnetic Field Modeling

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Baldwin, R. T.

    1992-01-01

    Satellite measurements of the geomagnetic fields began with the launch of Sputnik 3 in May of 1958 and have continued sporadically. Spacecraft making significant contributions to main field geomagnetism will be reviewed and the characteristics of their data discussed, including coverage, accuracy, resolution and data availability. Of particular interest are Vanguard 3; Cosmos 49, Ogo's -2, -4, and -6; Magsat; DE-2; and POGS. Spacecraft make measurements on a moving platfrom above the ionosphere as opposed to measurements from fixed observatories and surveys, both below the ionosphere. Possible future missions, such as Aristoteles and GOS are reviewed.

  17. Anencephalus, drinking water, geomagnetism and cosmic radiation.

    PubMed

    Archer, V E

    1979-01-01

    The mortality rates from anencephalus from 1950-1969 in Canadian cities are shown to be strongly correlated with city growth rate and with horizontal geomagnetic flux, which is directly related to the intensity of cosmic radiation. They are also shown to have some association with the magnesium content of drinking water. Prior work with these data which showed associations with magnesium in drinking water, mean income, latitude and longitude was found to be inadequate because it dismissed the observed geographic associations as having little biological meaning, and because the important variables of geomagnetism and city growth rate were overlooked. PMID:433919

  18. IAGA Geomagnetic Data Analysis format - Analysis_IAGA

    NASA Astrophysics Data System (ADS)

    -Emilian Toader, Victorin; Marmureanu, Alexandru

    2013-04-01

    Geomagnetic research involves a continuous Earth's magnetic field monitoring and software for processing large amounts of data. The Analysis_IAGA program reads and analyses files in IAGA2002 format used within the INTERMAGNET observer network. The data is made available by INTERMAGNET (http://www.intermagnet.org/Data_e.php) and NOAA - National Geophysical Data Center (ftp://ftp.ngdc.noaa.gov/wdc/geomagnetism/data/observatories/definitive) cost free for scientific use. The users of this software are those who study geomagnetism or use this data along with other atmospheric or seismic factors. Analysis_IAGA allows the visualization of files for the same station, with the feature of merging data for analyzing longer time intervals. Each file contains data collected within a 24 hour time interval with a sampling rate of 60 seconds or 1 second. Adding a large number of files may be done by dividing the sampling frequency. Also, the program has the feature of combining data files gathered from multiple stations as long as the sampling rate and time intervals are the same. Different channels may be selected, visualized and filtered individually. Channel properties can be saved and edited in a file. Data can be processed (spectral power, P / F, estimated frequency, Bz/Bx, Bz/By, convolutions and correlations on pairs of axis, discrete differentiation) and visualized along with the original signals on the same panel. With the help of cursors/magnifiers time differences can be calculated. Each channel can be analyzed separately. Signals can be filtered using bandpass, lowpass, highpass (Butterworth, Chebyshev, Inver Chebyshev, Eliptic, Bessel, Median, ZeroPath). Separate graphics visualize the spectral power, frequency spectrum histogram, the evolution of the estimated frequency, P/H, the spectral power. Adaptive JTFA spectrograms can be selected: CSD (Cone-Shaped Distribution), CWD (Choi-Williams Distribution), Gabor, STFT (short-time Fourier transform), WVD (Wigner

  19. Predicted Effect of Geomagnetic Field on CALET Measurements

    NASA Astrophysics Data System (ADS)

    Rauch, Brian

    2014-03-01

    The CALorimetric Electron Telescope (CALET), comprised of the main calorimeter (CAL) and Gamma-ray Burst Monitor (CGBM) subsystem, is under construction for launch to the ISS. CAL consists of a scintillator Charge Detector (CHD), a 3 radiation length (X0) deep scintillating fiber Imaging Calorimeter (IMC), and a 27 X0 deep PWO Total Absorption Calorimeter (TASC). The primary objectives of CAL are to measure energy spectra of electrons from 1GeV to 20 TeV and nuclei through iron up to 1,000 TeV, and to detect gamma-rays above 10 GeV. Earth's geomagnetic field in the 51.6° inclination ISS orbit will affect the observed fluxes of charged particles. Rigidity cutoffs based on geomagnetic latitude and East-West angle will introduce structure to the charged particle energy spectra. They can also be exploited to facilitate the measurement of distinct positron and electron fluxes between ~3-20 GeV, and the relative abundances of the rare ultra-heavy (UH) nuclei (30 <= Z <= 40) by using the cutoffs to select nuclei near and above the CHD minimum ionization threshold so that they can be identified using the CHD and top IMC layers without requiring energy determination in the TASC. In 5-years CAL would collect ~2 × the UH statistics of TIGER. This research was supported by NASA at Washington University under Grant Number NNX11AE02G.

  20. Geomagnetic transmission of solar energetic protons during the geomagnetic disturbances of October 1989

    NASA Technical Reports Server (NTRS)

    Boberg, P. R.; Tylka, A. J.; Adams J. H., JR.; Flueckiger, E. O.; Kobel, E.

    1995-01-01

    Orbit-averaged geomagnetic transmission measurements during the large solar energetic particle events of October 1989 are presented using proton data from the NOAA-10 and GOES-7 satellies. The measurements are compared to geomagnetic transmission calculations determined by tracing particle trajectories through the combination of the International Geomagnetic Reference Field (IGRF) model and the 1989 Tsyganenko magnetospheric magnetic field model. The effective 'ring current' parameter in the 1989 Tsyganenko model based on the Dst data. Results are compared to calculations employing only the IGRF and to a parameterization of geomagnetically quiet-time cutoff rigidities derived from Cosmos/intercosmos observations. The 3-hour orbit-averaged results have approximately 15% accuracy during the October 1989 events.

  1. Effects on the geomagnetic tail at 60 earth radii of the geomagnetic storm of April 9, 1971.

    NASA Technical Reports Server (NTRS)

    Burke, W. J.; Rich, F. J.; Reasoner, D. L.; Colburn, D. S.; Goldstein, B. E.

    1973-01-01

    A geomagnetic storm beginning with an sc occurred on Apr. 9, 1971. During the storm the charged particle lunar environment experiment at the Apollo 14 site, the solar wind spectrometer experiment at the Apollo 12 site, and the Ames magnetometers on Explorer 35 took data in the magnetosheath, at the magnetopause, in the plasma sheet, and in the high-latitude geomagnetic tail. The MIT Faraday cup and Ames magnetometers on board Explorer 33 monitored the solar wind. The data show that the storm was caused by a corotating tangential discontinuity in the solar wind, the magnetopause position is strongly dependent on the attack angle of the solar wind, and the tail field strength was indirectly measured to increase from 10 to 14 gamma after the sc. During the main phase the field strength in the tail was observed to increase to between 28 and 34 gamma. This increase is consistent with a thermal and magnetic compression of the tail radius from about 26 to about 16 earth radii.

  2. Indian Institute of Geomagnetism: Progress in research

    NASA Astrophysics Data System (ADS)

    Progress and aspects is the study of the geomagnetic variations in the Indian region on quiet and disturbed days, equatorial electrojet field, electromagnetic induction in the earth, magnetic pulsations, aeronomy, radio scintillations, magnetosphere and solar wind, and solar-terrestrial relationships were reported.

  3. Helio-geomagnetic influence in cardiological cases

    NASA Astrophysics Data System (ADS)

    Katsavrias, Ch.; Preka-Papadema, P.; Moussas, X.; Apostolou, Th.; Theodoropoulou, A.; Papadima, Th.

    2013-01-01

    The effects of the energetic phenomena of the Sun, flares and coronal mass ejections (CMEs) on the Earth's ionosphere-magnetosphere, through the solar wind, are the sources of the geomagnetic disturbances and storms collectively known as Space Weather. The research on the influence of Space Weather on biological and physiological systems is open. In this work we study the Space Weather impact on Acute Coronary Syndromes (ACS) distinguishing between ST-segment elevation acute coronary syndromes (STE-ACS) and non-ST-segment elevation acute coronary syndromes (NSTE-ACS) cases. We compare detailed patient records from the 2nd Cardiologic Department of the General Hospital of Nicaea (Piraeus, Greece) with characteristics of geomagnetic storms (DST), solar wind speed and statistics of flares and CMEs which cover the entire solar cycle 23 (1997-2007). Our results indicate a relationship of ACS to helio-geomagnetic activity as the maximum of the ACS cases follows closely the maximum of the solar cycle. Furthermore, within very active periods, the ratio NSTE-ACS to STE-ACS, which is almost constant during periods of low to medium activity, changes favouring the NSTE-ACS. Most of the ACS cases exhibit a high degree of association with the recovery phase of the geomagnetic storms; a smaller, yet significant, part was found associated with periods of fast solar wind without a storm.

  4. Geomagnetic referencing in the arctic environment

    USGS Publications Warehouse

    Poedjono, B.; Beck, N.; Buchanan, A. C.; Brink, J.; Longo, J.; Finn, C.A.; Worthington, E.W.

    2011-01-01

    Geomagnetic referencing is becoming an increasingly attractive alternative to north-seeking gyroscopic surveys to achieve the precise wellbore positioning essential for success in today's complex drilling programs. However, the greater magnitude of variations in the geomagnetic environment at higher latitudes makes the application of geomagnetic referencing in those areas more challenging. Precise, real-time data on those variations from relatively nearby magnetic observatories can be crucial to achieving the required accuracy, but constructing and operating an observatory in these often harsh environments poses a number of significant challenges. Operational since March 2010, the Deadhorse Magnetic Observatory (DED), located in Deadhorse, Alaska, was created through collaboration between the United States Geological Survey (USGS) and a leading oilfield services supply company. DED was designed to produce real-time geomagnetic data at the required level of accuracy, and to do so reliably under the extreme temperatures and harsh weather conditions often experienced in the area. The observatory will serve a number of key scientific communities as well as the oilfield drilling industry, and has already played a vital role in the success of several commercial ventures in the area, providing essential, accurate data while offering significant cost and time savings, compared with traditional surveying techniques. Copyright 2011, Society of Petroleum Engineers.

  5. Geomagnetic referencing in the arctic environment

    USGS Publications Warehouse

    Podjono, Benny; Beck, Nathan; Buchanan, Andrew; Brink, Jason; Longo, Joseph; Finn, Carol A.; Worthington, E. William

    2011-01-01

    Geomagnetic referencing is becoming an increasingly attractive alternative to north-seeking gyroscopic surveys to achieve the precise wellbore positioning essential for success in today's complex drilling programs. However, the greater magnitude of variations in the geomagnetic environment at higher latitudes makes the application of geomagnetic referencing in those areas more challenging. Precise, real-time data on those variations from relatively nearby magnetic observatories can be crucial to achieving the required accuracy, but constructing and operating an observatory in these often harsh environments poses a number of significant challenges. Operational since March 2010, the Deadhorse Magnetic Observatory (DED), located in Deadhorse, Alaska, was created through collaboration between the United States Geological Survey (USGS) and a leading oilfield services supply company. DED was designed to produce real-time geomagnetic data at the required level of accuracy, and to do so reliably under the extreme temperatures and harsh weather conditions often experienced in the area. The observatory will serve a number of key scientific communities as well as the oilfield drilling industry, and has already played a vital role in the success of several commercial ventures in the area, providing essential, accurate data while offering significant cost and time savings, compared with traditional surveying techniques.

  6. Power lines and the geomagnetic field

    SciTech Connect

    Liboff, A.R.; McLeod, B.R.

    1995-09-01

    The metric of prime interest in power line epidemiological studies has been AC magnetic intensity. To consider also possible geomagnetic involvement, the orientation of a long straight power line is examined relative to a uniform geomagnetic field (GMF) with dip angle {alpha}. An expression is derived for the component of the total GMF that is parallel, at an elevation {beta}, to the circular magnetic field that surrounds the line. This component is a function of the angles {alpha} and {beta}, the total geomagnetic intensity B{sub T}, and the angle {theta} between the axis of the power line and magnetic north. Plotting these geomagnetic parameters for known leukemia residences allows one to test for possible ion cyclotron resonance or other GMF interactions. This approach, in principle, is an easy addition to existing or planned studies, because residential access is not required to obtain local values for {alpha}, {beta}, {theta}, and B{sub T}. The authors recommend including these parameters in the design of epidemiological studies examining power line fields and childhood leukemia.

  7. Investigation of the Effects of Solar and Geomagnetic Changes on the Total Electron Content: Mid-Latitude Region

    NASA Astrophysics Data System (ADS)

    Ulukavak, Mustafa; Yalcinkaya, Mualla

    2016-04-01

    The Global Positioning System (GPS) is used as an important tool for ionosphere monitoring and obtaining the Total Electron Content (TEC). GPS satellites, positioned in the Earth's orbit, are used as sensors to investigate the space weather conditions. In this study, solar and geomagnetic activity variations were investigated between the dates 1 March-30 June 2015 for the mid-latitude region. GPS-TEC variations were calculated for each selected International GNSS Service (IGS) station in Europe. GNSS data was obtained from Crustal Dynamics Data and Information System (CDDIS) archive. Solar and geomagnetic activity indices (Kp, F10.7 ve Dst) were obtained from the Oceanic and Atmospheric Administration (NOAA), the Canadian Space Weather Forecast Centre (CSWFC) and Data Analysis Center for geomagnetism and Space Magnetism Graduate School of Science, Kyoto University (WDC) archives. GPS-TEC variations were determined for the quiet periods of the solar and geomagnetic activities. GPS-TEC changes were then compared with respect to the quiet periods of the solar and geomagnetic activities. Global Ionosphere Maps (GIM) IONEX files, obtained from the IGS analysis center, was used to check the robustness of the GPS-TEC variations. The investigations revealed that it is possible to use the GPS-TEC data for monitoring the ionospheric disturbances.

  8. What do we mean by accuracy in geomagnetic measurements?

    USGS Publications Warehouse

    Green, A.W.

    1990-01-01

    High accuracy is what distinguishes measurements made at the world's magnetic observatories from other types of geomagnetic measurements. High accuracy in determining the absolute values of the components of the Earth's magnetic field is essential to studying geomagnetic secular variation and processes at the core mantle boundary, as well as some magnetospheric processes. In some applications of geomagnetic data, precision (or resolution) of measurements may also be important. In addition to accuracy and resolution in the amplitude domain, it is necessary to consider these same quantities in the frequency and space domains. New developments in geomagnetic instruments and communications make real-time, high accuracy, global geomagnetic observatory data sets a real possibility. There is a growing realization in the scientific community of the unique relevance of geomagnetic observatory data to the principal contemporary problems in solid Earth and space physics. Together, these factors provide the promise of a 'renaissance' of the world's geomagnetic observatory system. ?? 1990.

  9. Impacts of Geomagnetic Storms on the Terrestrial H-Exosphere Using Twins-Lyman Stereo Data

    NASA Astrophysics Data System (ADS)

    Nass, U.; Zoennchen, J.; Fahr, H. J.; Goldstein, J.

    2015-12-01

    Based on continuously monitored Lyman-alpha data registered by the TWINS1/2-LAD instruments we have studied the impact of a weaker and a stronger geomagnetic storm on the exospheric H-density distribution between heights of 3--8 Earth-radii. As is well known, solar Lyman-alpha radiation is resonantly backscattered from geocoronal neutral hydrogen (H). The resulting resonance glow intensity in the optically thin regime is proportional to H column density along the line of sight (LOS). Here we present the terrestrial exospheric response to geomagnetic storms. We quantify the reaction to geomagnetic activity in form of amplitude and temporal response of the H-density, sampled at different geocentric distances. We find that even in case of a weak storm, the exospheric H-density in regions above the exobase reacts with a suprisingly large increase in a remarkably short time period of less than half a day. Careful analysis of this geomagnetic density effect indicates that it is an expansion in the radial scale height of the exospheric H-density, developing from exobasic heights.

  10. Cross-spectral coherence between geomagnetic disturbance and human cardiovascular variables at non-societal frequencies.

    PubMed

    Watanabe, Y; Hillman, D C; Otsuka, K; Bingham, C; Breus, T K; Cornélissen, G; Halberg, F

    1994-01-01

    A 35-year-old cardiologist monitored himself with an automatic ABPM-630 (Colin Electronics) monitor, mostly at 15-minute intervals around-the-clock for three years with a few interruptions. In this subject with a family history of high blood pressure and stroke, a cross-spectral analysis revealed a statistically significant coherence at 27.7 days between systolic and diastolic blood pressure and heart rate vs. the geomagnetic disturbance index, Kp. A lesser peak in coherence was found for systolic blood pressure with Kp at a trial period of 4.16 days (P = 0.046). These results suggest that changes in geomagnetism may influence the human circulation, at least in the presence of familial cardiovascular disease risk, and they may do so at frequencies that have no precise human-made cyclic worldwide match. PMID:7729242

  11. A Study on local geomagnetic activity trend and singularity with geomagnetic data at Cheongyang Magnetic Observatory, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Jeon, Y.; Ryoo, S.

    2011-12-01

    The KMA(Korea Meteorological Administration) has installed and operated the geomagnetic observatory at Cheongyang-gun, Chungcheongnam-do, Korea which started in April, 2009. As Cheongyang geomagnetic observatory, it has been automatically observing total-, X-, Y- and Z-component data at 1-sec interval and storing in real-time. The National Institute of Meteorological Research, which belongs to KMA, proceeded with their work on the production of K-index that is used for geomagnetic activity observation. In addition, we detect the starting and ending of geomagnetic storm as typical thing of global geomagnetic field change and utilize it for showing current status of geomagnetic storm occurrence. It has been reported that geomagnetic storm occurred seven times during from April, 2010 to July, 2011. It was 5 of the maximum K-index value during geomagnetic storm occurrence period and thought mostly to have been caused by coronal hole and CME(Coronal Mass Ejection). Yet the geomagnetic storm has not been had much of an impact locally. At Cheongyang Observatory, a significantly disturbed geomagnetic data was seen as related to the Tohoku, Japan Earthquake, Mw 9.0, on March 11, 2011. Compared to seismic wave data at Seosan seismic observatory 60km away from Cheongyang geomagnetic observatory, we identified the signal involved to the Tohoku, Japan Earthquake. The power spectral density of the disturbed signal has the dominant frequency band of about 0.05 to 0.1 Hz. We should proceed additional study about this in detail.

  12. Simultaneous Forbush decreases and associated geomagnetic storms during the last three solar cycles

    NASA Astrophysics Data System (ADS)

    Okpala, Kingsley; Okeke, Francisca

    Forbush decrease (FD) are observed reduction in galactic cosmic ray (GCR) intensity as measured by ground neutron monitors. FD is associated with increased activity of the sun as reflected in the size of the interplanetary coronal mass ejections passing around the Earth and the corotating regions in the Heliosphere. Since the interplanetary anisotropy evolves itself during a geomagnetic storm in addition to the reconfiguration of external magnetospheric currents, it is expected that changes in transmissivity of cosmic rays of glactic origin will occur during Geomagnetic storms. In this study we examine over one hundred and fifty (150) FD events and associated geomagnetic storms over the last three solar cycles from 1970 to 2003. The negative peaks of the FDs and the Dst coincided for most of the events ( 70%). There was good correlation (>0.65) between the FDs and Dst. Fresh evidence of the influence of external magnetospheric currents on the count rates of the neutron monitors stations during periods of Forbush decreases (FDs) is provided. This evidence is observed as sudden increases in the count rates during the main phase of simultaneous FD. The magnitude of the sudden rise in the count rates of Neutron monitors and peak dst correlated well (>0.50) both for high latitude and mid latitude stations.

  13. The Lewis Research Center geomagnetic substorm simulation facility. [its function in determining the response of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Berkopec, F. D.; Stevens, N. J.; Sturman, J. C.

    1976-01-01

    A simulation facility was established at the NASA-Lewis Research Center to determine the response of typical spacecraft materials to the geomagnetic substorm environment and to evaluate instrumentation that will be used to monitor spacecraft system response to this environment. Space environment conditions simulated included the thermal-vacuum conditions of space, solar simulation, geomagnetic substorm electron fluxes and energies, and the low energy plasma environment. Measurements for spacecraft material tests included sample currents, sample surface potentials, and the cumulative number of discharges. Discharge transients were measured by means of current probes and oscilloscopes and were verified by a photomultiplier.

  14. Steady induction effects in geomagnetism. Part 1A: Steady motional induction of geomagnetic chaos

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1992-01-01

    Geomagnetic effects of magnetic induction by hypothetically steady fluid motion and steady magnetic flux diffusion near the top of Earth's core are investigated using electromagnetic theory, simple magnetic earth models, and numerical experiments with geomagnetic field models. The problem of estimating a steady fluid velocity field near the top of Earth's core which induces the secular variation indicated by broad-scale models of the observed geomagnetic field is examined and solved. In Part 1, the steady surficial core flow estimation problem is solved in the context of the source-free mantle/frozen-flux core model. In the first paper (IA), the theory underlying such estimates is reviewed and some consequences of various kinematic and dynamic flow hypotheses are derived. For a frozen-flux core, fluid downwelling is required to change the mean square normal magnetic flux density averaged over the core-mantle boundary. For surficially geostrophic flow, downwelling implies poleward flow. The solution of the forward steady motional induction problem at the surface of a frozen-flux core is derived and found to be a fine, easily visualized example of deterministic chaos. Geomagnetic effects of statistically steady core surface flow may well dominate secular variation over several decades. Indeed, effects of persistent, if not steady, surficially geostrophic core flow are described which may help explain certain features of the present broad-scale geomagnetic field and perhaps paleomagnetic secular variation.

  15. The geomagnetic cutoff rigidities at high latitudes for different solar wind and geomagnetic conditions

    NASA Astrophysics Data System (ADS)

    Chu, W.; Qin, G.

    2016-01-01

    Studying the access of the cosmic rays (CRs) into the magnetosphere is important to understand the coupling between the magnetosphere and the solar wind. In this paper we numerically studied CRs' magnetospheric access with vertical geomagnetic cutoff rigidities using the method proposed by Smart and Shea (1999). By the study of CRs' vertical geomagnetic cutoff rigidities at high latitudes we obtain the CRs' window (CRW) whose boundary is determined when the vertical geomagnetic cutoff rigidities drop to a value lower than a threshold value. Furthermore, we studied the area of CRWs and found out they are sensitive to different parameters, such as the z component of interplanetary magnetic field (IMF), the solar wind dynamic pressure, AE index, and Dst index. It was found that both the AE index and Dst index have a strong correlation with the area of CRWs during strong geomagnetic storms. However, during the medium storms, only AE index has a strong correlation with the area of CRWs, while Dst index has a much weaker correlation with the area of CRWs. This result on the CRW can be used for forecasting the variation of the cosmic rays during the geomagnetic storms.

  16. Geomagnetic Indices Variations And Human Physiology

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    2007-12-01

    A group of 86 volunteers was examined on each working day in autumn 2001 and in spring 2002. Systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were registered. Pulse pressure (PP) was calculated. Data about subjective psycho-physiological complaints (SPPC) were also gathered. Altogether 2799 recordings were obtained. ANOVA was employed to check the significance of influence of daily amplitude of H-component of local geomagnetic field, daily planetary Ap-index and hourly planetary Dst-index on the physiological parameters examined. Post hoc analysis was performed to elicit the significance of differences in the factors levels. Average values of SBP, DBP, PP and SPPC of the group were found to increase statistically significantly and biologically considerably with the increase of geomagnetic indices.

  17. Near real-time geomagnetic data for space weather applications in the European sector

    NASA Astrophysics Data System (ADS)

    Johnsen, M. G.; Hansen, T. L.

    2012-12-01

    Tromsø Geophysical Observatory (TGO) is responsible for making and maintaining long time-series of geomagnetic measurements in Norway. TGO is currently operating 3 geomagnetic observatories and 11 variometer stations from southern Norway to Svalbard . Data from these 14 locations are acquired, processed and made available for the user community in near real-time. TGO is participating in several European Union (EU) and European Space Agency (ESA) space weather related projects where both near real-time data and derived products are provided. In addition the petroleum industry is benefiting from our real-time data services for directional drilling. Near real-time data from TGO is freely available for non-commercial purposes. TGO is exchanging data in near real-time with several institutions, enabling the presentation of near real-time geomagnetic data from more than 40 different locations in Fennoscandia and Greenland. The open exchange of non real-time geomagnetic data has been successfully going on for many years through services such as the world data center in Kyoto, SuperMAG, IMAGE and SPIDR. TGO's vision is to take this one step further and make the exchange of near real-time geomagnetic data equally available for the whole community. This presentation contains an overview of TGO, our activities and future aims. We will show how our near real-time data are presented. Our contribution to the space weather forecasting and nowcasting effort in the EU and ESA will be presented with emphasis on our real-time auroral activity index and brand new auroral activity monitor and electrojet tracker.

  18. Influence of geomagnetic disturbance on atmospheric circulation

    NASA Technical Reports Server (NTRS)

    Kodera, K.

    1985-01-01

    The influence of geomagnetic disturbance or passage of the solar sector boundary on the atmospheric circulation was reported. Unfortunately little is known about the general morphology of Sun weather relationships. In order to know the general characteristics, pressure height variations on an isobaric surface over the Northern Hemisphere were analyzed. Although it may be suitable to use some index, or some integrated value for statistical purposes, weather prediction data were used to verify whether the obtained tropospheric response is caused externally or not.

  19. MAGSAT for geomagnetic studies over Indian region

    NASA Technical Reports Server (NTRS)

    Rastogi, R. G.; Bhargava, B. N.; Singh, B. P.; Rao, D. R. K.; Rangarajan, G. K.; Rajaram, R.; Roy, M.; Arora, B. R.; Seth, A. (Principal Investigator)

    1981-01-01

    Progress in the preparation of software for converting data tapes produced on an IBM system to data readable on a DEC-10 system, in the creation of awareness of the utility of MAGSAT data among users in India, and in making computer programs supplied by NASA operational on the DEC-10 system is reported. Papers presented to Indian users, at the IAGA fourth scientific assembly, at a symposium on interdisciplinary approaches to geomagnetism, and a paper published in Science Today are included.

  20. Geomagnetic effects on the average surface temperature

    NASA Astrophysics Data System (ADS)

    Ballatore, P.

    Several results have previously shown as the solar activity can be related to the cloudiness and the surface solar radiation intensity (Svensmark and Friis-Christensen, J. Atmos. Sol. Terr. Phys., 59, 1225, 1997; Veretenenkoand Pudovkin, J. Atmos. Sol. Terr. Phys., 61, 521, 1999). Here, the possible relationships between the averaged surface temperature and the solar wind parameters or geomagnetic activity indices are investigated. The temperature data used are the monthly SST maps (generated at RAL and available from the related ESRIN/ESA database) that represent the averaged surface temperature with a spatial resolution of 0.5°x0.5° and cover the entire globe. The interplanetary data and the geomagnetic data are from the USA National Space Science Data Center. The time interval considered is 1995-2000. Specifically, possible associations and/or correlations of the average temperature with the interplanetary magnetic field Bz component and with the Kp index are considered and differentiated taking into account separate geographic and geomagnetic planetary regions.

  1. Domino model for geomagnetic field reversals.

    PubMed

    Mori, N; Schmitt, D; Wicht, J; Ferriz-Mas, A; Mouri, H; Nakamichi, A; Morikawa, M

    2013-01-01

    We solve the equations of motion of a one-dimensional planar Heisenberg (or Vaks-Larkin) model consisting of a system of interacting macrospins aligned along a ring. Each spin has unit length and is described by its angle with respect to the rotational axis. The orientation of the spins can vary in time due to spin-spin interaction and random forcing. We statistically describe the behavior of the sum of all spins for different parameters. The term "domino model" in the title refers to the interaction among the spins. We compare the model results with geomagnetic field reversals and dynamo simulations and find strikingly similar behavior. The aggregate of all spins keeps the same direction for a long time and, once in a while, begins flipping to change the orientation by almost 180 degrees (mimicking a geomagnetic reversal) or to move back to the original direction (mimicking an excursion). Most of the time the spins are aligned or antialigned and deviate only slightly with respect to the rotational axis (mimicking the secular variation of the geomagnetic pole with respect to the geographic pole). Reversals are fast compared to the times in between and they occur at random times, both in the model and in the case of the Earth's magnetic field. PMID:23410284

  2. Geomagnetic storms and transient depressions in cosmic rays due to coronal mass ejections and corotating interaction regions: A comparative study

    NASA Astrophysics Data System (ADS)

    Kumar, Anand; Badruddin, B.

    We study selected geomagnetic storms and transient depressions (Forbush decreases) in cosmic ray intensity. We use ground-based neutron monitors as a measure of cosmic ray intensity. Geomagnetic index Dst is used as a measure of level of geomagnetic activity. We identify coronal mass ejections (CMEs) and high-speed streams from coronal holes on the solar surface and corresponding structures evolved in the interplanetary space e.g. shock/sheath regions, interplanetary counterpart of CMEs (ICMEs) and corotating interaction regions (CIRs), responsible for these phenomenon e.g. geomagnetic storms (GS) and Forbush decrease (FD) in cosmic ray intensity. An ICME or CIR that is strongly geo-effective is not necessarily effective in producing large depressions in cosmic ray intensity. It is therefore, important to study solar wind plasma/field parameters during the passage of such structures and identify the solar/interplanetary parameters of major importance and physical mechanism responsible for GS and FDs. This has been attempted by detailed study of the observed differences in geomagnetic and cosmic-ray response to same solar sources. Space weather implication of this study is also discussed.

  3. No covariation between the geomagnetic activity and the incidence of acute myocardial infarction in the polar area of northern Sweden.

    PubMed

    Messner, T; Häggström, I; Sandahl, I; Lundberg, V

    2002-05-01

    This study was undertaken to investigate whether there was any relation between the aurora borealis (measured as the geomagnetic activity) and the number of acute myocardial infarctions (AMI) in the northern, partly polar, area of Sweden. The AMI cases were collected from The Northern Sweden MONICA (multinational MONItoring of trends and determinants of CArdiovascular disease) AMI registry between 1985 and 1998, inclusive, and the information on the geomagnetic activity from continuous measurements at the Swedish Institute of Space Physics, Kiruna. In the analyses, both the relation between the individual AMI case and ambient geomagnetic activity, and the relation between the mean daily K index and the daily number of AMI cases were tested. We found no statistically significant relation between the number of fatal or non-fatal AMI cases, the number of sudden deaths or the number of patients with chest pain without myocardial damage, and geomagnetic activity. Our data do not support a relation between the geomagnetic activity and AMI. PMID:12135204

  4. The Vector Matching Method in Geomagnetic Aiding Navigation

    PubMed Central

    Song, Zhongguo; Zhang, Jinsheng; Zhu, Wenqi; Xi, Xiaoli

    2016-01-01

    In this paper, a geomagnetic matching navigation method that utilizes the geomagnetic vector is developed, which can greatly improve the matching probability and positioning precision, even when the geomagnetic entropy information in the matching region is small or the geomagnetic contour line’s variety is obscure. The vector iterative closest contour point (VICCP) algorithm that is proposed here has better adaptability with the positioning error characteristics of the inertial navigation system (INS), where the rigid transformation in ordinary ICCP is replaced with affine transformation. In a subsequent step, a geomagnetic vector information fusion algorithm based on Bayesian statistical analysis is introduced into VICCP to improve matching performance further. Simulations based on the actual geomagnetic reference map have been performed for the validation of the proposed algorithm. PMID:27447645

  5. The Vector Matching Method in Geomagnetic Aiding Navigation.

    PubMed

    Song, Zhongguo; Zhang, Jinsheng; Zhu, Wenqi; Xi, Xiaoli

    2016-01-01

    In this paper, a geomagnetic matching navigation method that utilizes the geomagnetic vector is developed, which can greatly improve the matching probability and positioning precision, even when the geomagnetic entropy information in the matching region is small or the geomagnetic contour line's variety is obscure. The vector iterative closest contour point (VICCP) algorithm that is proposed here has better adaptability with the positioning error characteristics of the inertial navigation system (INS), where the rigid transformation in ordinary ICCP is replaced with affine transformation. In a subsequent step, a geomagnetic vector information fusion algorithm based on Bayesian statistical analysis is introduced into VICCP to improve matching performance further. Simulations based on the actual geomagnetic reference map have been performed for the validation of the proposed algorithm. PMID:27447645

  6. Interplanetary magnetic sector polarity inferred from polar geomagnetic field observations

    NASA Technical Reports Server (NTRS)

    Friis-Christensen, E.; Lassen, K.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1971-01-01

    In order to infer the interplanetary sector polarity from polar geomagnetic field diurnal variations, measurements were carried out at Godhavn and Thule (Denmark) Geomagnetic Observatories. The inferred interplanetary sector polarity was compared with the polarity observed at the same time by Explorer 33 and 35 magnetometers. It is shown that the polarity (toward or away from the sun) of the interplanetary magnetic field can be reliably inferred from observations of the polar cap geomagnetic fields.

  7. Geomagnetic effects modelling for the PJM interconnection system. Part 2; Geomagnetically induced current study results

    SciTech Connect

    Prabhakara, F.S.; Hannett, L.N.; Ringlee, R.J. ); Ponder, J.Z. )

    1992-05-01

    The development of a computer program for calculation of geomagnetically induced current (GIC) and a GIC power system model for the Pennsylvania-New Jersey-Maryland Interconnection is described in this paper. Results of GIC for three different ionospheric source configurations are shown. A new method is presented for estimating GIC in unmetered parts of the system based on a few measurements and precalculated geomagnetic disturbance conditions. The use of an interactive, menu driven GIC program to study mitigation concepts including the effects of line outages, line series capacitors, transformer neutral blocking resistors and transformer neutral blocking capacitors is also presented.

  8. 77 FR 24952 - Staff Technical Conference on Geomagnetic Disturbances to the Bulk-Power System; Technical...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-26

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Staff Technical Conference on Geomagnetic Disturbances to the Bulk-Power... geomagnetic disturbances. The conference will explore the risks and impacts from geomagnetically...

  9. Tracking geomagnetic fluctuations to picotesla accuracy using two superconducting quantum interference device vector magnetometers

    SciTech Connect

    Henry, S.; Pozzo di Borgo, E.; Cavaillou, A.

    2013-02-15

    SQUIDs can be used to monitor the three vector components of the geomagnetic field to a high precision at very low frequencies, yet as they are susceptible to external interference, the accuracy to which they can track changes in the dc field over long periods has been unclear. We have carried out simultaneous measurements of the geomagnetic field recorded using two independent 3-axis SQUID magnetometers at the Laboratoire Souterrain a Bas Bruit (LSBB). We demonstrate a technique to take the difference between a linear transform of the three signals from one magnetometer, and a reference signal from the other, in order to account for any difference in alignment and calibration, and track local signals at a sub-nT level. We confirmed that both systems tracked the same signal with an RMS difference as low as 56pT over a period of 72 h. To our knowledge this is the first such demonstration of the long term accuracy of SQUID magnetometers for monitoring geomagnetic fields.

  10. Tracking geomagnetic fluctuations to picotesla accuracy using two superconducting quantum interference device vector magnetometers.

    PubMed

    Henry, S; Pozzo di Borgo, E; Cavaillou, A

    2013-02-01

    SQUIDs can be used to monitor the three vector components of the geomagnetic field to a high precision at very low frequencies, yet as they are susceptible to external interference, the accuracy to which they can track changes in the dc field over long periods has been unclear. We have carried out simultaneous measurements of the geomagnetic field recorded using two independent 3-axis SQUID magnetometers at the Laboratoire Souterrain à Bas Bruit (LSBB). We demonstrate a technique to take the difference between a linear transform of the three signals from one magnetometer, and a reference signal from the other, in order to account for any difference in alignment and calibration, and track local signals at a sub-nT level. We confirmed that both systems tracked the same signal with an RMS difference as low as 56pT over a period of 72 h. To our knowledge this is the first such demonstration of the long term accuracy of SQUID magnetometers for monitoring geomagnetic fields. PMID:23464230

  11. The effect of variations of geomagnetic activity changing rate on trunk objects

    NASA Astrophysics Data System (ADS)

    Kozlov, V. I.; Mullayarov, V. A.; Grigor'ev, Yu. M.

    2015-11-01

    The frequency of occurrence of a certain level of the rate of change of geomagnetic activity can be expressed as a power law with an exponent of the order -1.7, and the probability of exceedance of a given level can be expressed by the law lg(P) = -0.0517 (dB / dt) - 0.1946. The largest high-frequency variations are noted during the recovery phase of magnetic bay and correspond to geomagnetic pulsations of the Pc5 range (a period of variations of 200-300 s). On a pipeline on these pulsations other high-frequency variations are imposed and they start earlier - from a maximum of bay of disturbance. It is noted the need of monitoring and forecasting of magnetic storms and recommendations on the allocation of periods, during which one cannot disable protection for preventive works.

  12. Geomagnetically Induced Currents, a space weather hazard. Case study - Europe under intense geomagnetic storms of the solar cycle 23

    NASA Astrophysics Data System (ADS)

    Dobrica, V.; Demetrescu, Cr.; Stefan, C.; Greculeasa, R.

    2016-05-01

    The interaction of the solar wind and heliospheric magnetic field with the magnetosphere and ionosphere results in variations of the geomagnetic field that induce hazardous electric currents in grounded technological systems (electric power and hydrocarbon transportation networks), the so-called geomagnetically induced currents (GICs). In order to evaluate the hazard induced on the European continent, we present a study of the surface electric field induced by 16 intense (Dst < -150 nT) geomagnetic storms, based on the analysis of the geomagnetic records from the European network of observatories, study that tend to solve the geophysical part of the problem. The evolution during storm development and the sources of the disturbance field are explored in case of the largest geomagnetic storm in the cycle 23 (Dst = -422 nT, November 20-21, 2003), and the geographical distribution of the maximum induced surface geoelectric field over Europe by the 16 storms considered in the study is presented. As source proxies, the Dst geomagnetic index, showing the disturbed field produced by the magnetospheric ring current at the geomagnetic equator, the AL geomagnetic index, showing the disturbed field produced by the ionospheric electrojet at auroral latitude, and the PC geomagnetic index, showing the disturbed field produced by the polar cap current, were examined.

  13. Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2004-11-23

    The invention provides apparatus and methods which facilitate movement of an instrument relative to an item or location being monitored and/or the item or location relative to the instrument, whilst successfully excluding extraneous ions from the detection location. Thus, ions generated by emissions from the item or location can successfully be monitored during movement. The technique employs sealing to exclude such ions, for instance, through an electro-field which attracts and discharges the ions prior to their entering the detecting location and/or using a magnetic field configured to repel the ions away from the detecting location.

  14. Geomagnetic imprint of the Persani volcanism

    NASA Astrophysics Data System (ADS)

    Besutiu, Lucian; Seghedi, Ioan; Zlagnean, Luminita; Atanasiu, Ligia; Popa, Razvan-Gabriel; Pomeran, Mihai; Visan, Madalina

    2016-04-01

    The Persani small volume volcanism is located in the SE corner of the Transylvanian Depression, at the north-western edge of the intra-mountainous Brasov basin. It represents the south-easternmost segment of the Neogene-Quaternary volcanic chain of the East Carpathians. The alkaline basalt monogenetic volcanic field is partly coeval with the high-K calc-alkaline magmatism south of Harghita Mountains (1-1.6 Ma). Its eruptions post-dated the calc-alkaline volcanism in the Harghita Mountains (5.3-1.6 Ma), but pre-dated the high-K calc-alkaline emissions of Ciomadul volcano (1.0-0.03 Ma). The major volcanic forms have been mapped in previous geological surveys. Still, due to the small size of the volcanoes and large extent of tephra deposits and recent sediments, the location of some vents or other volcanic structures has been incompletely revealed. To overcome this problem, the area was subject to several near-surface geophysical investigations, including paleomagnetic research. However, due to their large-scale features, the previous geophysical surveys proved to be an inappropriate approach to the volcanological issues. Therefore, during the summers of 2014 and 2015, based on the high magnetic contrast between the volcanic rocks and the hosting sedimentary formations, a detailed ground geomagnetic survey has been designed and conducted, within central Persani volcanism area, in order to outline the presence of volcanic structures hidden beneath the overlying deposits. Additionally, information on the rock magnetic properties was also targeted by sampling and analysing several outcrops in the area. Based on the acquired data, a detailed total intensity scalar geomagnetic anomaly map was constructed by using the recent IGRF12 model. The revealed pattern of the geomagnetic field proved to be fully consistent with the direction of magnetisation previously determined on rock samples. In order to enhance the signal/noise ratio, the results were further processed by

  15. Analysis of geomagnetic secular variation during 1980-1985 and 1985- 1990, and geomagnetic models proposed for the 1991 revision of the International Geomagnetic Reference Field

    USGS Publications Warehouse

    Peddie, N.W.

    1992-01-01

    The secular variation of the main geomagnetic field during the periods 1980-1985 and 1985-1990 was analyzed in terms of spherical harmonics up to the eighth degree and order. Data from worldwide magnetic observatories and the Navy's Project MAGNET aerial surveys were used. The resulting pair of secular-variation models was used to update the Definitive Geomagnetic Reference Field (DGRF) model for 1980, resulting in new mainfield models for 1985.0 and 1990.0. These, along with the secular-variation model for 1985-1990, were proposed for the 1991 revision of the International Geomagnetic Reference Field (IGRF). -Author

  16. Geomagnetic field modeling by optimal recursive filtering

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Five individual 5 year mini-batch geomagnetic models were generated and two computer programs were developed to process the models. The first program computes statistics (mean sigma, weighted sigma) on the changes in the first derivatives (linear terms) of the spherical harmonic coefficients between mini-batches. The program ran successfully. The statistics are intended for use in computing the state noise matrix required in the information filter. The second program is the information filter. Most subroutines used in the filter were tested, but the coefficient statistics must be analyzed before the filter is run.

  17. Geomagnetically Induced Currents: Progress and Issues

    NASA Astrophysics Data System (ADS)

    Thomson, Alan

    2010-05-01

    Geomagnetically induced currents (GIC) are a hazard to conducting networks such as high-voltage power and pipeline grids. GIC have been known for decades to affect power systems at higher latitudes (e.g. Europe and North America), although more recently GIC have also been found to affect power networks at middle and lower latitudes. Mitigating the effects of GIC remains an issue for the power and pipeline industries and for governments concerned with the societal and economic implications. To understand, e.g. to model and predict, GIC in conducting grids needs expertise drawn from electrical engineering, geophysics and space weather science - a truly multi-disciplinary undertaking. In terms of geophysics and space physics, issues such as Earth structure (e.g. 3D versus 1D mantle and lithospheric conductivity structure), ocean/continent conductivity contrasts, ionospheric current systems and their variability and Sun-Earth magnetic interactions are all relevant. The start of solar cycle 24 provides an opportune time to consider the status of GIC research and to assess what new studies are required in geophysical modelling and in hazard analysis. What do we need to improve on to better specify/predict GIC flowing in power grids, from ‘up-stream' observations of coronal mass ejections through to geomagnetic field measurements made during magnetic storms? In this invited review we will consider aspects of a) Measurement: how do we measure GIC in grids; b) Analysis: how do measured GIC relate to geophysical and space physics data; c) Modelling: what methods exist for modelling GIC, again in relation to other data, and how accurate are models; and d) Prediction: how predictable are GIC and what are the implications for, e.g., the power industry and national governments. We will review the more recent developments in GIC and related geomagnetism and space weather science. We will outline what issues are widely believed to now be understood and what issues remain to be

  18. Advanced Theory of Deep Geomagnetic Sounding

    NASA Astrophysics Data System (ADS)

    Chave, Alan D.

    Advanced Theory of Deep Geomagnetic Sounding is a specialized treatise that covers recent work, mostly from the Soviet Union, on the theory, analysis, and interpretation of natural source electromagnetic induction processes in complex geological structures, with an emphasis on subsurface conductive anomalies. The scope of the book is limited, as suggested by the title, and the authors stress the application of electromagnetic principles to the study of regional geology and deep earth structure rather than surface exploration. The book is clearly aimed at the practicing specialist rather than the graduate student attempting to learn about the broader field of electromagnetic geophysics.

  19. Geomagnetic field behaviour preceding a Superchron: new evidence for a weak Devonian geomagnetic field

    NASA Astrophysics Data System (ADS)

    Hawkins, L.; Anwar, T.; Scherbakova, V.; Biggin, A. J.; Kravchinsky, V. A.; Shatsillo, A.; Holt, J.; Pavlov, V.

    2015-12-01

    The ~50 million year transition from the peak in reversal frequency in the Middle Jurassic (~170Ma), associated with a weak geomagnetic field, to the stable and apparently strong field during the Cretaceous Normal Superchron (84-121Ma), represents a dramatic change in time-averaged geomagnetic field behaviour during the Mesozoic Era. New evidence from Siberian samples suggests there is a similar transition in geomagnetic field behaviour during the Palaeozoic, with a weak geomagnetic field in the Upper Devonian preceding the Permo-Carboniferous Superchron (262-318Ma). Both sites, the Viluy Traps and the Zharovsk complex of the Patom Margin, have seemingly reliable, published palaeomagnetic directions and new age constraints, 364.4 ± 1.7Ma (40Ar/39A) 371-377Ma (U-Pb) respectively. The samples were measured using the Thermal Thellier-Coe protocol with partial thermo-remanent magnetisation (pTRM) and tail checks and the Microwave Thellier-IZZI protocol with pTRM checks. Accepted Arai plots show positive pTRM checks, a clear relation between distinct primary directional and palaeointensity components and little to no zig-zagging. Three distinct magneto-mineralogical types were identified from SEM and rock magnetic techniques; low Ti- and intermediate Ti- titanomagnetite and possible maghemite, with mineral type affecting the success rate of samples but resulting in no significant variation in palaeointensity results. The Arai plots also commonly have a distinct two-slope concave-up shape, although non-heating, pseudo-Thellier experiments have supported this resulting from a strong overprint component rather than alteration or multi-domain effects. Results from these experiments give low site mean values between 2.3-29.9μT (Virtual Dipole Moments 4-50.6 ZAm2). The apparently periodic (~180 million years) transitions in geomagnetic field behaviour may indicate the influence of mantle convection changing heat flow across the Core Mantle Boundary.

  20. Search for correlation between geomagnetic disturbances and mortality

    NASA Technical Reports Server (NTRS)

    Lipa, B. J.; Barnes, C. W.; Sturrock, P. A.; Feinleib, M.; Rogot, E.

    1975-01-01

    Statistical evaluation of death rates in the U.S.A. from heart diseases or stroke did not show any correlation with measured geomagnetic pulsations and thus do not support a claimed relationship between geomagnetic activity and mortality rates to low frequency fluctuations of the earth's magnetic field.

  1. [Exacerbation of hypertension and disturbances of the geomagnetic field].

    PubMed

    Vershinina, N I; Petrochenko, N A; Shumilov, I S

    1997-01-01

    The authors consider relationships between emergence of acute episodes of essential hypertension (hospital admittances) and disturbance of the geomagnetic field. The authors report male- and female-specific ranges of the geomagnetic field variations which are threatening for hypertensive subjects. PMID:9229606

  2. Major geomagnetic storm due to solar activity (2006-2013).

    NASA Astrophysics Data System (ADS)

    Tiwari, Bhupendra Kumar

    Major geomagnetic storm due to solar activity (2006-2013). Bhupendra Kumar Tiwari Department of Physics, A.P.S.University, Rewa(M.P.) Email: - btiwtari70@yahoo.com mobile 09424981974 Abstract- The geospace environment is dominated by disturbances created by the sun, it is observed that coronal mass ejection (CME) and solar flare events are the causal link to solar activity that produces geomagnetic storm (GMS).CMEs are large scale magneto-plasma structures that erupt from the sun and propagate through the interplanetary medium with speeds ranging from only a few km/s to as large as 4000 km/s. When the interplanetary magnetic field associated with CMEs impinges upon the earth’s magnetosphere and reconnect occur geomagnetic storm. Based on the observation from SOHO/LASCO spacecraft for solar activity and WDC for geomagnetism Kyoto for geomagnetic storm events are characterized by the disturbance storm time (Dst) index during the period 2006-2013. We consider here only intense geomagnetic storm Dst <-100nT, are 12 during 2006-2013.Geomagnetic storm with maximum Dst< -155nT occurred on Dec15, 2006 associated with halo CME with Kp-index 8+ and also verify that halo CME is the main cause to produce large geomagnetic storms.

  3. Do Coronal Holes Cause 27 Day Recurring Geomagnetic Storms?

    NASA Technical Reports Server (NTRS)

    Tsurutani, Bruce T.; Gonzalez, Walter D.; Gonzalez, Alicia L. C.; Tang, Frances; Park, Dan; Okada, Masaki; Arballo, John

    1994-01-01

    We examine 3 years of interplanetary data and geomagnetic activity indices (1973-1975) to determine the causes of geomagnetic storms and substorms during the descending phase of the solar cycle. In this paper, we specifically studied the year 1974 where two long lasting coronating streams existed.

  4. Jerks as chaotic fluctuations of the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Qamili, Enkelejda; De Santis, Angelo; Isac, Anca; Mandea, Mioara; Duka, Bejo; Simonyan, Anahit

    2013-04-01

    The geomagnetic field is chaotic and can be characterised by a mean exponential time scale < ? > of around 6 years after which it is no longer predictable. It is also ergodic, so time analyses can substitute the more difficult phase space analyses. Taking advantage of these two properties of the geomagnetic field, a scheme of processing global geomagnetic models in time is presented, in order to estimate fluctuations of the time scale. Considering that the capability to predict the geomagnetic field is reduced over periods of geomagnetic jerks, here we propose a method to detect these events over a long time-span. This approach considers that epochs characterised by relative minima of fluctuations in time scale ?, i.e., those periods when the geomagnetic field is less predictable, are possible jerk occurrence dates. We analyse the last 400 years of the geomagnetic field (covered by the Gufm1 model) to detect minima of fluctuations, i.e., epochs characterised by lower values of the time scale. Through this method, most of the well known jerks are confirmed and a few others have been detected. Finally we also identify some short periods when the field is less chaotic (more predictable) than usual, naming these as periods of steady-state geomagnetic regime, to underline their opposite behaviour with respect to jerks.

  5. Empirical analytic transformations between geographic and corrected geomagnetic coordinates

    NASA Technical Reports Server (NTRS)

    Comfort, R. H.

    1970-01-01

    Based upon a mathematical model of contours of constant corrected geomagnetic latitude in a polar projection of geographic coordinates, analytic equations are developed for converting geographic coordinates to corrected geomagnetic coordinates and vice versa. The equations were programmed for use on a small computer. This treatment is restricted to the Northern Hemisphere.

  6. Geomagnetic disturbances imprints in ground and satellite altitude observatories

    NASA Astrophysics Data System (ADS)

    Yahiat, Yasmina; Lamara, Souad; Zaourar, Naima; Hamoudi, Mohamed

    2016-04-01

    The temporal evolution of the geomagnetic field and its variations have been repeatedly studied from both ground observatories and near-earth orbiting platforms. With the advent of the space ageand the launches of geomagnetic low altitude orbits satellites, a global coverage has been achieved. Since Magsat mission, more satellites were put into orbit and some of them are still collecting data enhancing the spatial and temporal descriptions of the field. Our study uses new data gathered by the latest SWARM satellite mission launched on November, 22nd 2013. It consists of a constellation of three identical satellites carrying on board high resolution and accuracy scientific equipment. Data from this constellation will allow better understanding the multiscale behavior of the geomagnetic field. Our goal is to analyze and interpret the geomagnetic data collected by this Swarm mission, for a given period and try to separate the external disturbances from internal contributions. We consider in the study the variation of the horizontal component H, for different virtual geomagnetic observatories at the satellite altitude. The analysis of data by Swarm orbital segments shows clearly the external disturbances of the magnetic field like that occurring on 27th of August 2014. This perturbation is shown on geomagnetic indexes and is related to a coronal mass ejection (CME). These results from virtual observatories are confirmed, by the equivalent analysis using ground observatories data for the same geographic positions and same epochs. Key words: Geomagnetic field, external field, geomagnetic index, SWARM mission, virtual observatories.

  7. NM-MT network and space dangerous phenomena, 2. Examples of cosmic ray using for forecasting of major geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Belov, A.; Dorman, L.; Eroshenko, E.; Iucci, N.; Parisi, M.; Pustil Nik, L.; Sternlieb, A.; Villoresi, G.; Yanke, V.; Zukerman, I.

    We present developing of methods (e.g., Dorman et al., 1995, 1999) for forecasting on the basis of neutron monitor hourly on-line data (as well as on-line muon telescopes hourly data from different directions) geomagnetic storms of scales G5 (3- hour index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) (according to NOAA Space Weather Scales). These geomagnetic storms are dangerous for people technology and health (influence on power systems, on spacecraft operations, on HF radio-communications and others). We show that for especially dangerous geomagnetic storms can be used global-spectrographic method if on-line will be available 35-40 NM and muon telescopes. In this case for each hour can be determined CR anisotropy vector, and the specifically behavior of this vector before SC of geomagnetic storms G5, G4 or G3 (according to NOAA Space Weather Scales) can be used as important factor for forecast. The second factor what can be used for SC forecast is specifically behavior of CR density (CR intensity) for about 30-15 hours before SC (caused mainly by galactic CR particles acceleration during interaction with shock wave moved from the Sun). The third factor is effect of cosmic ray pre-decreasing, caused by magnetic connection of the Earth with the region behind the shock wave. We demonstrate developing methods on several examples of major geomagnetic storms. This research is partly supported by the INTAS grant 00-0810. REFERENCES: Dorman L.I., et al. "Cosmic-ray forecasting features for big Forbush-decreases". Nuclear Physics B, 49A, 136-144 (1995). L.I.Dorman, et al, "Cosmic ray Forbush-decrease as indicators of space dangerous phenomenon and possible use of cosmic ray data for their prediction", Proc. of 26-th Intern. Cosmic Ray Conference, Salt Lake City, 6, 476-479 (1999).

  8. Investigation of cosmic ray cutoff rigidity changes caused by the disturbed geomagnetic field of the storm in March 2012

    NASA Astrophysics Data System (ADS)

    Vernova, Elena; Tyasto, Marta; Danilova, Olga; Sdobnov, Valerii

    2016-04-01

    One of important factors determining the space weather are cosmic rays the cutoff rigidities of which vary appreciably under the influence of disturbances in the interplanetary space and the Earth's magnetosphere. This report is concerned with changes in the geomagnetic cutoff rigidities (thresholds) of cosmic rays computed for the period of a strong geomagnetic storm of March 2012. This disturbed period was characterized by the solar wind speed of more than 700 km/s and Dst-index at the minimum Dst-variation equal to -143 nT. The theoretical vertical effective geomagnetic cutoff rigidities were calculated for a number of stations by using the Tsyganenko TS01 model and trajectory tracing method in a magnetic field of a disturbed magnetosphere. The theoretical cutoff rigidities were compared with the experimental ones obtained by the global spectrographic survey method on base of the data from the worldwide neutron monitor network. The correlation coefficients between the theoretical and experimental thresholds for different stations were 0.5 - 0.7. Combined analysis of temporal variations in the theoretical and experimental geomagnetic thresholds and their relations with the solar wind and IMF parameters showed that the change in the theoretical geomagnetic thresholds correlated well with the Dst and Bz variations at all the stations under study. The correlation of the experimental geomagnetic thresholds with the Dst-variation and Bz was much lower. At the same time, the correlation of the solar wind velocity V with the changes in the experimental thresholds was better than with the theoretical thresholds. A similar situation was observed for the storms of November 2004 and September 2005.

  9. The role of high-resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites

    NASA Astrophysics Data System (ADS)

    Stolle, Claudia; Michaelis, Ingo; Rauberg, Jan

    2016-07-01

    Low Earth orbiting geomagnetic satellite missions, such as the Swarm satellite mission, are the only means to monitor and investigate ionospheric currents on a global scale and to make in situ measurements of F region currents. High-precision geomagnetic satellite missions are also able to detect ionospheric currents during quiet-time geomagnetic conditions that only have few nanotesla amplitudes in the magnetic field. An efficient method to isolate the ionospheric signals from satellite magnetic field measurements has been the use of residuals between the observations and predictions from empirical geomagnetic models for other geomagnetic sources, such as the core and lithospheric field or signals from the quiet-time magnetospheric currents. This study aims at highlighting the importance of high-resolution magnetic field models that are able to predict the lithospheric field and that consider the quiet-time magnetosphere for reliably isolating signatures from ionospheric currents during geomagnetically quiet times. The effects on the detection of ionospheric currents arising from neglecting the lithospheric and magnetospheric sources are discussed on the example of four Swarm orbits during very quiet times. The respective orbits show a broad range of typical scenarios, such as strong and weak ionospheric signal (during day- and nighttime, respectively) superimposed over strong and weak lithospheric signals. If predictions from the lithosphere or magnetosphere are not properly considered, the amplitude of the ionospheric currents, such as the midlatitude Sq currents or the equatorial electrojet (EEJ), is modulated by 10-15 % in the examples shown. An analysis from several orbits above the African sector, where the lithospheric field is significant, showed that the peak value of the signatures of the EEJ is in error by 5 % in average when lithospheric contributions are not considered, which is in the range of uncertainties of present empirical models of the EEJ.

  10. Science outreach and capacity building in geomagnetism and space sciences—An Indian Institute of Geomagnetism endeavor

    NASA Astrophysics Data System (ADS)

    Gawali, Praveen; Bhaskar, Ankush; Dhar, Ajay; Ramesh, Durbha Sai

    2016-05-01

    We present an overview of science outreach and capacity building activities at the Indian Institute of Geomagnetism (IIG) against the backdrop of a long history of geomagnetic studies. We also present the future plans of the institute for strengthening these activities.

  11. Study about geomagnetic variations from data recorded at Surlari Geomagnetic Observatory

    NASA Astrophysics Data System (ADS)

    Asimopolos, Laurentiu; Asimopolos, Natalia-Silvia; Sandulescu, Agata Monica; Niculici, Eugen

    2013-04-01

    This paper presents statistical and spectral analysis of data from Surlari Geomagnetic Observatory that contributing to study of geomagnetic variations. Thus were highlighted, for long series of records over several solar cycles, periodicities of 22 years and 11 years. Following the same procedures for medium recording series (multi-annual) have highlighted annual, seasonal and monthly periodicities. For shorter data series, we highlighted diurnal, semidiurnal, 8 hours and even lower periodicities. For very short series with a high sample rate and for few magnetotellurics records, we highlight different types of pulsations (Pc2 - Pc5 and Pi 2). Geomagnetic signals are the convolution product of the atomic stationary signals mono-frequential of different amplitudes associated to phenomena with a very broad band of periodicities and nondeterministic signals associated with geomagnetic disturbances and non-periodic phenomena. Among analysis processes used for discrete series of geomagnetic data with different lengths and sampling rates, can conclude the following: Moving average works as a low pass filter in frequency or high pass in time. By eliminating high frequency components (depending on mobile window size used) can be studied preferential periodicities greater than a given value. Signal linearization (using least squares) provides information on linear trend of the entire series analyzed. Thus, for the very long data series (several decades) we extracted the secular variation slope for each geomagnetic component, separately. The numeric derivative of signal versus time proved to be a very reliable indicator for geomagnetic disturbed periods. Thus, the derivative value may be increased by several orders of magnitude during periods of agitation in comparisons to calm periods. The correlation factor shows significant increases when between two time series a causal relationship exists. Variation of the correlation factor, calculated for a mobile window containing k

  12. Cosmic rays, geomagnetic field and climate changes

    NASA Astrophysics Data System (ADS)

    Shea, M.; Smart, D.

    The possibility of a connection between cosmic radiation and climate has intrigued scientists for the past several decades. The recent studies of Friis -Christensen and Svensmark has shown an observed variation of 3-4% of the global cloud cover between 1980 and 1995 that appeared to be directly correlated with the change in galactic cosmic radiation flux over the solar cycle. However, in studies of this type, not only the solar cycle modulation of cosmic radiation must be considered, but also the changes in the cosmic radiation impinging at the top of the atmosphere as a result of the long term evolution of the geomagnetic field. We present preliminary results of an on-going study of geomagnetic cutoff rigidities over a 400-year interval. These results show (1) the change in cutoff rigidity is sufficient large so that the change in cosmic radiation flux impacting the earth is approximately equal to the relative change in flux over a solar cycle, and (2) the changes in cutoff rigidity are non- uniform over the globe with both significant increases and decreases at mid-latitude locations.

  13. Forecasts of solar and geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Joselyn, Joann

    1987-01-01

    Forecasts of solar and geomagnetic activity are critical since these quantities are such important inputs to the thermospheric density models. At this time in the history of solar science there is no way to make such a forecast from first principles. Physical theory applied to the Sun is developing rapidly, but is still primitive. Techniques used for forecasting depend upon the observations over about 130 years, which is only twelve solar cycles. It has been noted that even-numbered cycles systematically tend to be smaller than the odd-numbered ones by about 20 percent. Another observation is that for the last 12 cycle pairs, an even-numbered sunspot cycle looks rather like the next odd-numbered cycle, but with the top cut off. These observations are examples of approximate periodicities that forecasters try to use to achieve some insight into the nature of an upcoming cycle. Another new and useful forecasting aid is a correlation that has been noted between geomagnetic indices and the size of the next solar cycle. Some best estimates are given concerning both activities.

  14. Geomagnetic excursions reflect an aborted polarity state

    NASA Astrophysics Data System (ADS)

    Valet, Jean-Pierre; Plenier, Guillaume; Herrero-Bervera, E.

    2008-10-01

    Geomagnetic excursions represent short episodes of a few thousand years at most during which the field considerably exceeds its normal range of variability during a polarity state. Paleomagnetic records have now been obtained with extremely high temporal resolution which have improved our knowledge of these short events. We have compiled the most detailed records of excursions that had occurred during the Brunhes and Matuyama chrons. We show that virtual geomagnetic poles (VGPs) of at least one record of each event are able to reach the opposite polarity. In the next step, we have computed different simulations of excursions during which the dipole progressively vanishes before growing back without reversing. This scenario produces very few reversed directions which are only visible at some latitudes. We infer that it is impossible to reach the ratio of reversed to intermediate VGPs present in the paleomagnetic records if the excursions were not associated with a short period of reversed dipole field. Therefore, excursions should be regarded as two successive reversals bracketing an aborted polarity interval. We propose that the same underlying mechanisms prevail in both situations (excursions or reversals) and that below a certain strength the field reaches an unstable position which preludes either the achievement of a reversal or its return to the former polarity.

  15. Solar Wind Charge Exchange During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Robertson, Ina P.; Cravens, Thomas E.; Sibeck, David G.; Collier, Michael R.; Kuntz, K. D.

    2012-01-01

    On March 31st. 2001, a coronal mass ejection pushed the subsolar magnetopause to the vicinity of geosynchronous orbit at 6.6 RE. The NASA/GSFC Community Coordinated Modeling Center (CCMe) employed a global magnetohydrodynamic (MHD) model to simulate the solar wind-magnetosphere interaction during the peak of this geomagnetic storm. Robertson et aL then modeled the expected 50ft X-ray emission due to solar wind charge exchange with geocoronal neutrals in the dayside cusp and magnetosheath. The locations of the bow shock, magnetopause and cusps were clearly evident in their simulations. Another geomagnetic storm took place on July 14, 2000 (Bastille Day). We again modeled X-ray emission due to solar wind charge exchange, but this time as observed from a moving spacecraft. This paper discusses the impact of spacecraft location on observed X-ray emission and the degree to which the locations of the bow shock and magnetopause can be detected in images.

  16. Cosmic Rays during Intense Geomagnetic Conditions and their Solar / Interplanetary features

    NASA Astrophysics Data System (ADS)

    Kaushik, Subhash Chandra

    In this study we discuss the behavior of cosmic rays during the phase of highly intense or ultra intense geomagnetic storms, as shocks driven by energetic coronal mass ejections (CME’s) and other interplanetary (IP) transients are mainly responsible for initiating large and intense geomagnetic storms. Observational results indicate that galactic cosmic rays (CR) coming from deep surface interact with these abnormal solar and IP conditions and suffer modulation effects. In this paper a systematic study has been performed to analyze the CRI variation during super storms i.e. very intense geomagnetic storms with Dst index ≥ -300 nT. The neutron monitor data of three stations Oulu (Rc = 0.77 GV), Climax (Rc = 2.97 GV) and Huancayo (Rc = 13.01 GV) well distributed over different latitudes and hourly values of IMF parameters derived from satellite observations near Earth IP medium from OMNI Data base is used for the period spanning over solar cycles 20, 21, 22 and 23. It is found that AP and AE indices show rise before the forward turnings of IMF, while the Dst index shows a classic storm time decrease. The analysis indicates that the magnitude of all the responses depends on BZ component of IMF being well correlated with solar maximum and minimum periods. Transient decrease in cosmic ray intensity with slow recovery is observed during the storm phase duration.

  17. An Investigation of Geomagnetic Storms and Associated Cosmic Ray Intensity During Recent Solar Cycle

    NASA Astrophysics Data System (ADS)

    Kaushik, Sonia

    2016-07-01

    Shocks driven by energetic coronal mass ejections (CME's) and other interplanetary (IP) transients are mainly responsible for initiating large and intense geomagnetic storms. Observational results indicate that galactic cosmic rays (CR) coming from deep surface interact with these abnormal solar and IP conditions and suffer modulation effects. The current solar cycle has provided a long list of these highly energetic events influencing the Earth's geomagnetic field up to a great extent. We have selected such intense geo-effective CME's occurred during recent solar cycle and studied their possible influence on cosmic ray intensity as well as on Earth' s geomagnetic field using the hourly values of IMF data obtained from the NSSD Center. Solar wind data obtained from various satellites are used in the studies which are available during the selected events period. The super neutron monitor data obtained from Kiel, Oulu and Huancayo stations, well distributed over different latitudes has been used in the present study. It is found that AP and AE indices show rise before the forward turnings of IMF and both the Dst index and cosmic ray intensity show a classic decrease. The analysis further indicates the significant role of the magnitudes of Bz component of IMF substantiating the earlier results. It is further inferred that the magnitude of these responses depends on BZ component of IMF being well correlated with solar maximum and minimum periods. Transient decrease in cosmic ray intensity with slow recovery is observed during the storm phase duration.

  18. Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity.

    PubMed

    Watanabe, Y; Cornélissen, G; Halberg, F; Otsuka, K; Ohkawa, S I

    2001-01-01

    Helio-geomagnetic influences on the human circulation are investigated on the basis of an 11-year-long record from a clinically healthy cardiologist, 35 years of age at the start of monitoring. He measured his blood pressure and heart rate around the clock with an ambulatory monitor programmed to inflate an arm cuff, mostly at intervals of 15-30 minutes, with only few interruptions, starting in August 1987. While monitoring is continuing, data collected up to July 1998 are analyzed herein by cosinor rhythmometry and cross-spectral coherence with matching records of solar activity, gauged by Wolf numbers (WN) and of the geomagnetic disturbance index, Kp. A direct association between heart rate (HR) and WN is found to be solar cycle stage-dependent, whereas an inverse relationship between heart rate variability (HRV) and WN is found consistently. An inverse relation is also observed between WN and the variability in systolic blood pressure (SBP), and to a lesser extent, diastolic blood pressure (DBP). Moreover, HR is cross-spectrally coherent with WN at a frequency of one cycle in about 7.33 months. The results support previously reported associations on morbidity and mortality statistics, extending their scope to human physiology monitored longitudinally. PMID:11774871

  19. Geomagnetic jerks as chaotic fluctuations of the Earth's magnetic field

    NASA Astrophysics Data System (ADS)

    Qamili, E.; de Santis, A.; Isac, A.; Mandea, M.; Duka, B.; Simonyan, A.

    2013-04-01

    The geomagnetic field is chaotic and can be characterized by a mean exponential time scale < τ > after which it is no longer predictable. It is also ergodic, so time analyses can substitute the more difficult phase space analyses. Taking advantage of these two properties of the Earth's magnetic field, a scheme of processing global geomagnetic models in time is presented, to estimate fluctuations of the time scale τ. Here considering that the capability to predict the geomagnetic field is reduced over periods of geomagnetic jerks, we propose a method to detect these events over a long time span. This approach considers that epochs characterized by relative minima of fluctuations in time scale τ, i.e., those periods when a geomagnetic field is less predictable, are possible jerk occurrence dates. We analyze the last 400 years of the geomagnetic field (covered by the Gufm1 model) to detect minima of fluctuations, i.e., epochs characterized by low values of the time scale. Most of the well known jerks are confirmed through this method and a few others have been suggested. Finally, we also identify some short periods when the field is less chaotic (more predictable) than usual, naming these periods as steady state geomagnetic regime, to underline their opposite behavior with respect to jerks.

  20. Is motivation influenced by geomagnetic activity?

    PubMed

    Starbuck, S; Cornélissen, G; Halberg, F

    2002-01-01

    To eventually build a scientific bridge to religion by examining whether non-photic, non-thermic solar effects may influence (religious) motivation, invaluable yearly world wide data on activities from 1950 to 1999 by Jehovah's Witnesses on behalf of their church were analyzed chronobiologically. The time structure (chronome) of these archives, insofar as it is able to be evaluated in yearly means for up to half a century, was assessed. Least squares spectra in a frequency range from one cycle in 42 to one in 2.1 years of data on the average number of hours per month spent in work for the church, available from 103 different geographic locations, as well as grand totals also including other sites, revealed a large peak at one cycle in about 21 years. The non-linear least squares fit of a model consisting of a linear trend and a cosine curve with a trial period of 21.0 years, numerically approximating that of the Hale cycle, validated the about 21.0-year component in about 70% of the data series, with the non-overlap of zero by the 95% confidence interval of the amplitude estimate. Estimates of MESOR (midline-estimating statistic of rhythm, a rhythm (or chronome) adjusted mean), amplitude and period were further regressed with geomagnetic latitude. The period estimate did not depend on geomagnetic latitude. The about 21.0-year amplitude tends to be larger at low and middle than at higher latitudes and the resolution of the about 21.0-year cycle, gauged by the width of 95% confidence intervals for the period and amplitude, is higher (the 95% confidence intervals are statistically significantly smaller) at higher than at lower latitudes. Near-matches of periods in solar activity and human motivation hint that the former may influence the latter, while the dependence on latitude constitutes evidence that geomagnetic activity may affect certain brain areas involved in motivation, just as it was earlier found that it is associated with effects on the electrocardiogram

  1. Solar wind turbulence as a driver of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Ikechukwu Ugwu, Ernest Benjamin; Nneka Okeke, Francisca; Ugonabo, Obiageli Josephine

    2016-07-01

    We carried out simultaneous analyses of interplanetary and geomagnetic datasets for the period of (solar Maunder) least (2009) and maximum (2002) solar activity to determine the nature of solar wind turbulence on geomagnetic activity using AE, ASY-D, and ASY-H indices. We determined the role played by Alfvénic fluctuations in the solar wind so as to find out the nature of the turbulence. Our analyses showed that solar wind turbulence play a role in geomagnetic processes at high latitudes during periods of low and high solaractivity but does not have any effect at mid-low latitudes.

  2. Search for correlation between geomagnetic disturbances and mortality

    NASA Technical Reports Server (NTRS)

    Lipa, B. J.; Sturrock, P. A.; Rogot, F.

    1976-01-01

    A search is conducted for a possible correlation between solar activity and myocardial infarction and stroke in the United States. A statistical analysis is performed using data on geomagnetic activity and the daily U.S. mortality due to coronary heart disease and stroke for the years 1962 through 1966. None of the results are found to yield any evidence of a correlation. It is concluded that correlations claimed by Soviet workers between geomagnetic activity and the incidence of various human diseases are probably not statistically significant or probably are not due to a causal relation between geomagnetic activity and disease.

  3. Investigation of Fast and Slow CMEs Effect on Geomagnetic Activity

    NASA Astrophysics Data System (ADS)

    Donmez, Burcin; Kilcik, Ali

    2016-07-01

    Here we investigate the relationship between the fast (v>800 km/s) and slow (v<400 km/s) coronal mass ejections (CMEs) and geomagnetic Ap and Dst indices during the last two solar cycles (cycle 23 and 24). In result of our analysis we found following results 1) Fast CMEs show much better relationship with geomagnetic Ap and Dst indices compared to slow ones, 2) Similar to geomagnetic indices, the number of fast CMEs decreased seriously during solar cycle 24th, while the number of slow CMEs are almost the same during the investigated whole time interval (1996 through 2016).

  4. Analysis of Changes of Cardiological Parameters at Middle Latitude Region in Relation to Geomagnetic Disturbances and Cosmic Ray Variations

    NASA Astrophysics Data System (ADS)

    Papailiou, M.; Dimitrova, S.; Babayev, E. S.; Mavromichalaki, H.

    2010-01-01

    Collaborating scientific groups from Athens (Greece), Baku (Azerbaijan) and Sofia (Bulgaria) have conducted a research work on the possible effects of geomagnetic field disturbances (GMF) and cosmic ray intensity (CRI) variations on human homeostasis, particularly, the cardio-health state. Electrocardiograms (ECGs) of seven functionally healthy persons were digitally registered at the joint Laboratory of Heliobiology located in the Medical Centre INAM, Baku, on working days and Saturdays. Heart rate values, estimated from ECGs, were analysed in relation to daily values of CRI, as measured by the Neutron Monitor of the University of Athens and daily variations of Dst and Ap geomagnetic indices and some significant results had been revealed in previous studies. Researches were continued by study of additional cardiologic parameters estimated from the same ECG data. In this study digital data of RR interval (the time elapsing between two consecutive R waves in the ECG), namely RRminimum, RRmaximum and RRaverage were analyzed taking into consideration different levels of GMF disturbances (estimated through variations of Dst and Ap indices) and cosmic ray activity (through CRI variations). The data refer to the time period 15 July 2006-31 March 2008. Variations of RR intervals show connection to GMF disturbances and CRI variations. The revealed effects are more pronounced for high levels of geomagnetic activity (when geomagnetic storms occur) and large CRI decreases as well as on the days before and after these variations.

  5. Heliospheric and Geomagnetic Modulation of Galactic Cosmic Ray under Quiet and disturbed interplanetary conditions during Solar cycle 20-23.

    NASA Astrophysics Data System (ADS)

    Kalu, F. D.

    2015-12-01

    The modulation of galactic cosmic rays (GCR) within the heliosphere leads to a reduction in the GCR count rates during period of high solar activity and conversely. Data from three geomagnetic observatories and three Neutron monitors (in close proximity to the geomagnetic stations) have been studied. The monthly residuals of the geomagnetic field components with respect to quiet time conditions from these three stations have been computed and compared with the cosmic ray count rates. The modulations of the GCR during quiet and disturbed interplanetary conditions have been investigated with a view to better understand the role of the global merged interaction regions and coronal mass ejections to the GCR modulation. From first-order partial correlation, we found that removing the influence of the total IMF-B, (especially during quiet conditions), and the influence of SW dynamic pressure (during disturbed conditions) generally enhances the correlation of the residual geomagnetic field with the GCR significantly. The influence of the more subtle parameters like speed, Bz component and proton density were masked by these dominant parameters. Results from this work are important for the modeling of long term GCR variability.

  6. Heliospheric and geomagnetic modulation of galactic cosmic rays under quiet and disturbed interplanetary conditions during solar cycles 20-23

    NASA Astrophysics Data System (ADS)

    Chukwudi Okpala, Kingsley

    2015-08-01

    The modulation of galactic cosmic rays (GCR) within the heliosphere leads to a reduction in the GCR count rates during period of high solar activity and conversely. Data from three geomagnetic observatories and three Neutron monitors (in close proximity to the geomagnetic stations) have been studied. The monthly residuals of the geomagnetic field components with respect to quiet time conditions from these three stations have been computed and compared with the cosmic ray count rates. The modulations of the GCR during quiet and disturbed interplanetary conditions have been investigated with a view to better understand the role of the global merged interaction regions and intense magnetic fields to the GCR modulation. From first-order partial correlation, we found that removing the influence of the total IMF-B, (especially during quiet conditions) and the influence of SW dynamic pressure (during disturbed conditions) generally enhances the correlation of the residual geomagnetic field with the GCR significantly. The influence of the more subtle parameters like speed, Bz component and proton density were masked by these dominant parameters. Results from this work are important for the modeling of long term GCR variability.

  7. Geomagnetic Effect Caused by 1908 Tunguska Event

    NASA Astrophysics Data System (ADS)

    Losseva, T. V.; Kuzmicheva, M. Y.

    2010-12-01

    The analysis of the magnetograms of Irkutsk observatory on the 30th June 1908 showed that the explosion of Tunguska bolide was accompanied by variations of the Earth’s magnetic field, which were being continued for several hours [1]. Irkutsk geophysical observatory is located approximately in 950 km to the southeast from the point of Tunguska explosion and it was nearest point, where the continuous recording of the components of the geomagnetic field was in progress. We suppose that it was caused by magnetic field of the current system, generated in the E-layer of ionosphere by gas dynamical flow after the Tunguska explosion [2]. Plunging through the atmosphere, cosmic body forms a hot rarefied channel behind it; the hydrostatic equilibrium of pressure in the channel becomes broken. The particles of the body vapor and atmospheric air, involved in the motion, lift along this channel upward (so-called plume). In the rarefied layers of the atmosphere they move along the ballistic trajectories in the gravitational field. While falling down gas loses its kinetic energy in dense layers of the atmosphere, which is converted into thermal energy. Then the reflected shock wave is formed. The gas heated in it rises up and all these processes repeat. The effects of heating and ionization of gas at height of 100 km, caused by the oscillations in the atmosphere, can lead to a distortion of the existing current system in ionosphere and generation of new ones. Since the Tunguska body had an oblique trajectory, the plume was ejected in the direction opposite to motion of Tunguska body and provided ionized region at the distance about 700 km from the epicenter at time moment 400 seconds after explosion. Gas dynamical simulation and estimates of the plume parameters have been fulfilled to calculate conductivity profiles and the electric field. Magnetic field of the induced current system has been obtained by the numerical simulation of Maxwell’s equations. Analysis of calculation

  8. Solar activity geomagnetic field and terrestrial weather

    NASA Technical Reports Server (NTRS)

    Knight, J. W.; Sturrock, P. A.

    1976-01-01

    Spectral analysis is used as an independent test of the reported association between interplanetary-magnetic-field structure and terrestrial weather. Spectra of the Ap geomagnetic activity index and the vorticity area index for the years from 1964 to 1970 are examined for common features that may be associated with solar-related phenomena, specifically for peaks in the power spectra of both time series with periods near 27.1 days. The spectra are compared in three ways, and the largest peak with the smallest probability estimate is found to occur at a period of 27.49 days. This result is considered to be statistically significant at the 98% level. It is concluded that the period derived from the Ap spectrum is related to solar rotation and that the analysis provides supporting evidence for a connection between the vorticity area index and solar activity.

  9. Protection against lightning at a geomagnetic observatory

    NASA Astrophysics Data System (ADS)

    Čop, R.; Milev, G.; Deželjin, D.; Kosmač, J.

    2014-08-01

    The Sinji Vrh Geomagnetic Observatory was built on the brow of Gora, the mountain above Ajdovščina, which is a part of Trnovo plateau, and all over Europe one can hardly find an area which is more often struck by lightning than this southwestern part of Slovenia. When the humid air masses of a storm front hit the edge of Gora, they rise up more than 1000 m in a very short time, and this causes an additional electrical charge of stormy clouds. The reliability of operations performed in every section of the observatory could be increased by understanding the formation of lightning in a thunderstorm cloud and the application of already-proven methods of protection against a stroke of lightning and against its secondary effects. To reach this goal the following groups of experts have to cooperate: experts in the field of protection against lightning, constructors and manufacturers of equipment and observatory managers.

  10. Geomagnetism and paleomagnetism 1979-1983

    NASA Astrophysics Data System (ADS)

    Fuller, M.

    My function, in writing these notes, is to bring you up to date in Geomagnetism and Paleomagnetism, in as painless a manner as possible—without tears, as the French language texts for tourists used to promise. In writing this account of progress in the past quadrennium, I must first acknowledge that it is a personal and subjective viewpoint;; another reporter would surely emphasize other developments. Yet, there is some virture in writing of things, about which one knows something, so I leave to future reporters the task of redresssing the balance in matters covered.At the outset, one very sad event must be recorded. On April 3, 1981, Sir Edward Bullard died. His published work alone marks him as one of the leaders of geomagnetism in our times. Yet his contribution was much greater; many an American geophysicist, as well as a whole generation of British colleagues, have felt the benefit of his perceptive advice on their research. To those who saw him in the last few months of his life, his courage in the face of his illness was a remarkable example of fortitude. It is by now well known that the definitive paper, which he wrote with Malin, on secular variation at London, was only completed immediately before his death. The transmittal letter had been typed, but death prevented him from signing it. Bullard returned in this final paper to a topic to which he had contributed much. In it, he notes the role of Halley, who first described the phenomenon of westward drift, to which Bullard gave a new numerical precision, two and a half centuries later. I seem to remember Bullard saying in a lecture years ago that, while the Newtons of this world seem other than mortal, Halley was a scientist whose life and acheivements could encourage one's own efforts. Bullard, like Halley, inspires and encourages us.

  11. Forecasting geomagnetic activities from the Boyle Index

    NASA Astrophysics Data System (ADS)

    Bala, R.; Reiff, P. H.

    2010-12-01

    The Boyle Index (BI), Φ =10-4}( {v{2}/{km/sec) + 11.7({(B)/(nT)})sin 3}{(θ /2) kV, has been successful in predicting the geomagnetic activity since its inception in October 2003. It is available in near-real-time from http://space.rice.edu/ISTP/wind.html and provides space weather predictions of geomagnetic indices (Kp, Dst and the AE) in real time through neural network algorithms. In addition, it provides free email alerts to its 700+ subscribers whenever the magnetospheric activity levels exceed certain pre-defined thresholds. We are constantly improving our algorithms, in the interest of either including more data or improving the accuracy and lead-time of forecasts. For example, with the inclusion of two more years of data (2008 and 2009) in the training, we have the advantage of modeling one of the deepest solar minimums, which has been exceptionally low in terms of the activity level. Our algorithms have been successful in capturing the effects of ``preconditioning" and the non-linearity in the solar wind parameters (for example, see figure 1). This paper presents our new attempts to include the effects of solar turbulence by incorporating the standard deviations in the solar wind parameters along with the BI, for greater the turbulence the higher the energy input into the magnetosphere as some of the previous studies have shown. Furthermore, we will also present how 3-hour averaged 1-hour sliding window scheme have improved our predictions with lead times of 3 hours or longer. Our predictions from a recent activity, 03 August 2010.

  12. Historical records of the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Arneitz, Patrick; Heilig, Balázs; Vadasz, Gergely; Valach, Fridrich; Dolinský, Peter; Hejda, Pavel; Fabian, Karl; Hammerl, Christa; Leonhardt, Roman

    2014-05-01

    Records of historical direct measurements of the geomagnetic field are invaluable sources to reconstruct temporal variations of the Earth's magnetic field. They provide information about the field evolution back to the late Middle Age. We have investigated such records with focus on Austria and some neighbouring countries. A variety of new sources and source types are examined. These include 19th century land survey and observatory records of the Imperial and Royal "Centralanstalt f. Meteorologie und Erdmagnetismus", which are not included in the existing compilations. Daily measurements at the Imperial and Royal Observatory in Prague have been digitized. The Imperial and Royal Navy carried out observations in the Adriatic Sea during several surveys. Declination values have been collected from famous mining areas in the former Austro-Hungarian Empire. In this connection, a time series for Banska Stiavnica has been compiled. In the meteorological yearbooks of the monastery Kremsmünster regular declination measurements for the first half of the 19th century were registered. Marsigli's observations during military mapping works in 1696 are also included in our collection. Moreover, compass roses on historical maps or declination values marked on compasses, sundials or globes also provide information about ancient field declination. An evaluation of church orientations in Lower Austria and Northern Germany did not support the hypothesis that church naves had been aligned along the East-West direction by means of magnetic compasses. Therefore, this potential source of information must be excluded from our collection. The gathered records are integrated into a database together with corresponding metadata, such as the used measurement instruments and methods. This information allows an assessment of quality and reliability of the historical observations. The combination of compilations of historical measurements with high quality archeo- and paleomagnetic data in a

  13. Analysis of geomagnetic data and cosmic ray variations in periods of magnetic perturbations

    NASA Astrophysics Data System (ADS)

    Mandrikova, Oksana; Zalyaev, Timur; Solovev, Igor; Shevtsov, Boris

    indent=0.63cm In the present paper we have suggested a model of the geomagnetic field variation, which allows us to present the characteristic variation of the field and local perturbations formed in periods of increased geomagnetic activity. The model is based on wavelets and has the following form: [ f(t)= sum_n c_{j,n} phi_{j,n} + sum_{(j_{dist},n)in I_1} d_{j_{dist},n}Psi_{j_{dist},n}(t) + sum_{(j_{dist},n)in I_2} d_{j_{dist},n}Psi_{j_{dist},n}(t) + e(t) ] where component sum_n c_{j,n} phi_{j,n} presents the characteristic variation; component \\sum_{(j_{dist},n)in I_1} d_{j_{dist},n}Psi_{j_{dist},n}(t) presents weak geomagnetic perturbations; component \\sum_{(j_{dist},n)in I_2} d_{j_{dist},n}Psi_{j_{dist},n}(t) presents strong geomagnetic perturbations; j is the scale; I_1, I_2 are the sets of indices; e(t) is the noise; Psi_j = \\{Psi_{j,n}\\}_{n in Z} is the wavelet basis; phi_j = \\{phi_{j,n}\\}_{n in Z} is the scaling function; c_{j,n}=< f, phi_{j,n} > ,d_{j,n}=< f, Psi_{j,n} >. Using the proposed model we have developed a technique of identifying the characteristic variation of the geomagnetic field (in periods of quiet magnetosphere) and components presenting different conditions of the field in periods of perturbations. The technique can be used for various data registration stations and is useful for studying the dynamics of electric current systems in the magnetosphere, the interaction between such systems, and their spatial and temporal distribution. We have also created special rules for estimating the storminess degree of the geomagnetic field. The suggested theoretical tools allow us to determine time points when geomagnetic perturbations arise and to obtain quantitative estimates of the storminess degree. Furthermore, it is also possible to implement these rules in the automatic mode. The theoretical tools mentioned above are also aimed at developing and improving mathematical tools for estimating and monitoring the condition of the geomagnetic

  14. Homogenization of the historical records of geomagnetic field components and geomagnetic K-index of the Magnetic Observatory of Coimbra

    NASA Astrophysics Data System (ADS)

    Morozova, Anna; Ribeiro, Paulo; Pais, M. Alexandra

    2013-04-01

    The Coimbra Magnetic Observatory (COI) (Portugal) has a long history of observation of the geomagnetic field, spanning almost 150 years. Measurements of the geomagnetic field components started in 1866 and include the observations of all components: horizontal (H), downward vertical (Z), northward (X), eastward (Y), total field magnitude (F), inclination (I) and declination (D). These long instrumental geomagnetic records provide very important information about variability of measured parameters, their trends and cycles, and can be used to improve our knowledge on the sources that drive variations of the geomagnetic field: liquid core dynamics (internal) and solar forcing (external). However, during the long life of the Coimbra observatory, some inevitable changes in station location, instrument's park and electromagnetic environment took place. These changes affected the quality of the data causing breaks and jumps in the series. Clearly, these inhomogeneities, typically of shift-like (step-like) or trend-like, have to be corrected or, at least, minimized in order for the data to be used in scientific studies or to be submitted to international databases. The homogenization of the monthly and annual averages of geomagnetic field components has been done using visual and statistical tests (e.g. standard normal homogeneity test), allowing to estimate not only the level of inhomogeneity of the studied series, but also to detect the highly probable homogeneity break points. These have been compared with the metadata, reference series from the nearest geomagnetic stations and geomagnetic field models (e.g. CM4 and CHAOS3) in order to find and to set up the indispensable correction factors. Similar methods have been applied to the homogenization of the local geomagnetic K-index series (from 1952 to 2012). As a result, the homogenized geomagnetic monthly and annual averages of the series measured in COI are considered to be essentially free of artificial shifts and

  15. Interplanetary magnetic sector polarity inferred from polar geomagnetic field observations

    NASA Technical Reports Server (NTRS)

    Eriss-Christensen, E.; Lassen, K.; Wilcox, J. M.; Gonzalez, W.; Colburn, D. S.

    1971-01-01

    With the use of a prediction technique it is shown that the polarity (toward or away from the sun) of the interplanetary magnetic field can be reliably inferred from observations of the polar geomagnetic field.

  16. A comprehensive analysis of the geomagnetic storms occurred dur

    NASA Astrophysics Data System (ADS)

    Ghamry, Essam; Lethy, Ahmed; Arafa-Hamed, Tareq; Abd Elaal, Esmat

    2016-06-01

    The Geomagnetic storms are considered as one of the major natural hazards. Egyptian geomagnetic observatories observed multiple geomagnetic storms during 18 February to 2 March 2014. During this period, four interplanetary shocks successively hit the Earth's magnetosphere, leading to four geomagnetic storms. The storm onsets occurred on 18, 20, 23 and 27 February. A non-substorm Pi2 pulsation was observed on 26 February. This Pi2 pulsation was detected in Egyptian observatories (Misallat and Abu Simbel), Kakioka station in Japan and Carson City station in US with nearly identical waveforms. Van Allen Probe missions observed non-compressional Pc4 pulsations on the recovery phase of the third storm. This Pc4 event is may be likely attributed to the decay of the ring current in the recovery phase.

  17. Human physiological reaction to geomagnetic disturbances of solar origin

    NASA Astrophysics Data System (ADS)

    Dimitrova, Sv.; Stoilova, I.

    2002-12-01

    During the last two decades publications about the influence of geomagnetic activity on human health increase but there are not still strong evidences for this relationship. We performed measurements and observations of 86 working volunteers during the period of autumn and spring equinox. We examined systolic, diastolic blood pressure and pulse rate. We also collected data for some personal health condition complaints. Four-way analyses of variance (MANOVA method) were employed and the influence of factors geomagnetic activity level, sequence of the days of measurements with respect to the increased geomagnetic activity, medicaments and sex was investigated. We also performed three-way analyses of variance and investigated influence of atmospheric pressure, medicaments and sex on the physiological parameters under consideration. Our investigations indicate that most of the persons examined irrespectively to their health status could be sensitive to the geomagnetic changes, which influence directly self-confidence and working ability.

  18. Spatial and temporal power spectra of the geomagnetic field

    SciTech Connect

    McLeod, M.G.

    1996-02-10

    This report explores the statistical properties of the geomagnetic field. This research tries to determine the gaussian coefficient covariance from magnetic field measurements of spatial and temporal power spectra and give a theoretical explanation for the nature of these covariances.

  19. A model of geomagnetic secular variation for 1980-1983

    USGS Publications Warehouse

    Peddie, N.W.; Zunde, A.K.

    1987-01-01

    We developed an updated model of the secular variation of the main geomagnetic field during 1980 through 1983 based on annual mean values for that interval from 148 worldwide magnetic observatories. The model consists of a series of 80 spherical harmonics, up to and including those of degree and order 8. We used it to form a proposal for the 1985 revision of the International Geomagnetic Reference Field (IGRF). Comparison of the new model, whose mean epoch is approximately 1982.0, with the Provisional Geomagnetic Reference Field for 1975-1980 (PGRF 1975), indicates that the moment of the centered-dipole part of the geomagnetic field is now decreasing faster than it was 5 years ago. The rate (in field units) indicated by PGRF 1975 was about -25 nT a-1, while for the new model it is -28 nT a-1. ?? 1987.

  20. Geomagnetic Variations of Near-polar Regions and Human Health

    NASA Astrophysics Data System (ADS)

    Tchistova, Z. B.; Kutinov, Y. G.

    In polar region geomagnetic variations play active role to non-linear tectonic processes. This analysis is based on spatial-time spectral representation of geomagnetic variation and wave migration transformation. Many perturbations in electromagnetic fields may because by external factors (e.g. magnetic storms, ionosphere anomalies and other phenomena related to solar activity) "trigging" tectonic processes but having no direct relation to the processes of their preparation. Geophysical processes are responsible for perturbations in Earth's rotation and orientation on wide range of time-scale, from less than a day of millions of years. The geological structure of some sites of Earth's crust promotes occurrence of wave guides a number of geophysical fields (acoustic, seismic, electromagnetic), usually of transportation of acoustic, seismic, electromagnetic energy in Earth's crust are coincide spatially. During last 250 mln years Arctic Segment has been developing as an autonomous region with circumpolar zonality of geomagnetic fields, and mass - and-energy transfer in its bowlers as well as shitting of lithospheric plates and expansion of ocean are caused by rotation forces under of expanding planet. The dynamic structure of the geomagnetic variations may be characteriz ed by the variations of the order-chaos state. The order manifest itself in the rhythmic change of the medium state. Analysis of amplitude and phase of geomagnetic variations can be information on ecological state of regions. Geomagnetic variations is intrincically a multiscale process in time and space. One of the most important features of geomagnetic variations is multicyclic character, whish predetermined both extent and character of geomagnetic show, and specific features. Recently, there are collected many facts, show dependence between the processes in the Earth's biosphere, the elements of it, gelio- geo- physical and meteorological factors. The recent experimental data gives us opportunity

  1. Geomagnetic disturbance and the orientation of nocturnally migrating birds.

    PubMed

    Moore, F R

    1977-05-01

    Free-flying passerine migrants respond to natural fluctuations in the earth's magnetic field. The variability in flight directions of nocturnal migrants is significantly correlated with increasing geomagnetic disturbance as measured by both the K index and various components of the earth's magnetic field. The results indicate that such disturbances influence the orientation of free-flying migrants, but the evidence is not sufficient to show that geomagnetism is a cue in their orientation system. PMID:854743

  2. The Geomagnetic Field and Radiation in Near-Earth Orbits

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    1999-01-01

    This report shows, in detail, how the geomagnetic field interacts with the particle flux of the radiation belts to create a hazard to spacecraft and humans in near-Earth orbit. It illustrates the geometry of the geomagnetic field lines, especially around the area where the field strength is anomalously low in the South Atlantic Ocean. It discusses how the field will probably change in the future and the consequences that may have on hazards in near space.

  3. Environmental and geomagnetic factors in relation to self-destructive ideation and behaviour

    NASA Astrophysics Data System (ADS)

    Bergiannaki, J. D.; Psarros, C.; Nastos, P. Th.; Paparigopoulos, T.; Paliatsos, A. G.; Tritakis, V. P.; Stefanis, C. N.

    2001-09-01

    Besides the individual factors such as the reaction to conflicts, several exogenous factors environmental and social may exert a pathogenic influence on suicidal behavior, suicide attempts and complete suicide on predisposed individuals. In the turn of the century many reports accord for the seasonality of suicides, which seems to have a bimodal distribution with a major peak around the spring-summer (April-May) and a second minor in autumn. On the other hand, the seasonal variation of environmental factors (daylight, sunlight duration, weather, temperature, air pressure, humidity, geomagnetism, solar activity, etc), of biological factors (melatonin, serotonin, serotonin precursors, etc) as also of sociological factors (ethnic events, major holidays, weekends etc) possibly influences the seasonal pattern of self-destructive behavior. Bimodal seasonal variation is also reported for biochemical parameters (L-tryptophan, serotonin, endorphin I fraction) that matches seasonal pattern in the prevalence of violent suicide in the total population and also in the incidence of the affective disorders. The aim of this study is to investigate the relation of environmental factors expressed by the Discomfort Index (DI) and geomagnetic factors expressed by the geomagnetic field Index DST in relation to suicidal behavior. The total number (4803) of patients recorded in the Ambulance of a Phychiatric Hospital (Eginition) throughout 1994 was used along with the records of 2750 patients of the year 1989. The Index DI is a function of dry and wet-bulb temperature. DST is probably one of the geomagnetic indices that expresses and monitors with the greatest accuracy the equatorial ring current variations. Our results show that there is a seasonal variation of suicidal behavior (Fourier analysis) with a major peak during summer (July) and a minor one during spring. A difference in the occurrence of the peaks was observed among genders. A relation of self-destructive behavior and the

  4. Schizophrenia and season of birth: relationship to geomagnetic storms.

    PubMed

    Kay, Ronald W

    2004-01-01

    An excess pattern of winter and spring birth, of those later diagnosed as schizophrenic, has been clearly identified in most Northern Hemisphere samples with none or lesser variation in Equatorial or Southern Hemisphere samples. Pregnancy and birth complications, seasonal variations in light, weather, temperature, nutrition, toxins, body chemistry and gene expression have all been hypothesized as possible causes. In this study, the hypothesis was tested that seasonal variation in the geomagnetic field of the earth primarily as a result of geomagnetic storms (GMS) at crucial periods in intrauterine brain development, during months 2 to 7 of gestation could affect the later rate of development of schizophrenia. The biological plausibility of this hypothesis is also briefly reviewed. A sample of eight representative published studies of schizophrenic monthly birth variation were compared with averaged geomagnetic disturbance using two global indices (AA*) and (aa). Three samples showed a significant negative correlation to both geomagnetic indices, a further three a significant negative correlation to one of the geomagnetic indices, one showed no significant correlation to either index and one showed a significant positive correlation to one index. It is suggested that these findings are all consistent with the hypothesis and that geomagnetic disturbance or factors associated with this disturbance should be further investigated in birth seasonality studies. PMID:14693348

  5. Automated detection of geomagnetic storms with heightened risk of GIC

    NASA Astrophysics Data System (ADS)

    Bailey, Rachel L.; Leonhardt, Roman

    2016-06-01

    Automated detection of geomagnetic storms is of growing importance to operators of technical infrastructure (e.g., power grids, satellites), which is susceptible to damage caused by the consequences of geomagnetic storms. In this study, we compare three methods for automated geomagnetic storm detection: a method analyzing the first derivative of the geomagnetic variations, another looking at the Akaike information criterion, and a third using multi-resolution analysis of the maximal overlap discrete wavelet transform of the variations. These detection methods are used in combination with an algorithm for the detection of coronal mass ejection shock fronts in ACE solar wind data prior to the storm arrival on Earth as an additional constraint for possible storm detection. The maximal overlap discrete wavelet transform is found to be the most accurate of the detection methods. The final storm detection software, implementing analysis of both satellite solar wind and geomagnetic ground data, detects 14 of 15 more powerful geomagnetic storms over a period of 2 years.

  6. Globally strong geomagnetic field intensity circa 3000 years ago

    NASA Astrophysics Data System (ADS)

    Hong, Hoabin; Yu, Yongjae; Lee, Chan Hee; Kim, Ran Hee; Park, Jingyu; Doh, Seong-Jae; Kim, Wonnyon; Sung, Hyongmi

    2013-12-01

    High-fidelity geomagnetic field intensity determination was carried out using 191 baked fragments collected from 20 kilns or hearths with ages ranging between ∼1200 BC and ∼AD 1725 in South Korea. Geomagnetic field intensity variation displayed three narrow minima at ∼800-700 BC, ∼AD 700, and ∼AD 1600 and two maxima at ∼1200-1100 BC and ∼AD 1000-1100. In most time intervals, virtual axial dipole moment (VADM) variation is confined within 20% of the present VADM. However, geomagnetic field intensity circa 3000 yr ago is nearly 40% larger than the present value. Such high VADMs circa 3000 yr ago are in phase with those in other longitudinal bands in northern hemisphere centered at 5E (France), 30E (the Middle East) and 200E (Hawaii). Although strong geomagnetic field intensity circa 3000 yr ago is globally synchronous, the highest VADM occurs at slightly different time intervals in different locations. Hence it is possible that the globally strong geomagnetic field intensity circa 3000 yr ago reflects the migration of persistent hemispheric flux in northern hemisphere or an episode of geomagnetic field hemispheric asymmetry.

  7. Are migrating raptors guided by a geomagnetic compass?

    USGS Publications Warehouse

    Thorup, Kasper; Fuller, Mark R.; Alerstam, T.; Hake, M.; Kjellen, N.; Standberg, R.

    2006-01-01

    We tested whether routes of raptors migrating over areas with homogeneous topography follow constant geomagnetic courses more or less closely than constant geographical courses. We analysed the routes taken over land of 45 individual raptors tracked by satellite-based radiotelemetry: 25 peregrine falcons, Falco peregrinus, on autumn migration between North and South America, and seven honey buzzards, Pernis apivorus, and 13 ospreys, Pandion haliaetus, on autumn migration between Europe and Africa. Overall, migration directions showed a better agreement with constant geographical than constant geomagnetic courses. Tracks deviated significantly from constant geomagnetic courses, but were not significantly different from geographical courses. After we removed movements directed far from the mean direction, which may not be migratory movements, migration directions still showed a better agreement with constant geographical than constant geomagnetic courses, but the directions of honey buzzards and ospreys were not significantly different from constant geomagnetic courses either. That migration routes of raptors followed by satellite telemetry are in closer accordance with constant geographical compass courses than with constant geomagnetic compass courses may indicate that geographical (e.g. based on celestial cues) rather than magnetic compass mechanisms are of dominating importance for the birds' long-distance orientation.

  8. Effect of local perturbations of the geomagnetic field on cosmic ray cutoff rigidities at Jungfraujoch and Kiel

    SciTech Connect

    Flueckiger, E.O.; Smart, D.F.; Shea, M.A.

    1983-09-01

    We have investigated the effect of local perturbations of the geomagnetic field on the vertical cosmic ray cutoff rigidities at Jungfraujoch and Kiel as representative mid-latitude neutron monitor stations. The main, effective, and Stoermer vertical cutoff rigidities and their changes were determined by utilizing the trajectory-tracing technique in a magnetic field which is modeled as a simple dipole field to which the disturbance field is superposed. It was found that the cosmic ray cutoff rigidities are most sensitive to variations of the z component of the geomagnetic field at geomagnetic latitudes -20/sup 0/<..lambda..<+30/sup 0/ and at longitudes within 90/sup 0/ to the east of these northern hemisphere stations. Furthermore, cutoff rigidity variations at Kiel are predominantly due to changes of the geomagnetic field within geocentric distances 2.5R/sub E/geomagnetic perturbations the rigidity corresponding to the first ''discontinuity band'' of the rigidity spectrum is an extremely useful parameter.

  9. A Quaternary Geomagnetic Instability Time Scale

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought

  10. Intensity and Variability of Geomagnetic Time Derivatives

    NASA Astrophysics Data System (ADS)

    Jackel, B. J.; Connors, M. G.; Reiter, K.; Singleton, M.

    2015-12-01

    Time derivatives of the geomagnetic field are studied for more than a decade of observations at more than a dozen sites in northern Canada. In the auroral zone the derivative magnitude observed by 5-second fluxgate magnetometers often has a lognormal distribution. Parameter estimates corresponding to intensity (log-mean) and variability (log-variance) are nearly independent and have very different statistical properties. Variability is essentially a random variable, while intensity autocorrelation times are on the order of tens of minutes. Observed intensities are highly correlated with AE, and increase with solar wind speed and the magnitude of Bz<0. Both variability and intensity have local-time maxima before and after midnight, but with different patterns that combine to produce a larger post-midnight peak. Post-midnight variability is almost completely determined by latitude, with largest values at subauroral sites and smallest values in the polar cap. Intensity depends on latitude, but also has a site-specific element which may be due to local conductivity.

  11. Equatorial airglow and the ionospheric geomagnetic anomaly.

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Reed, E. I.; Troy, B. E., Jr.; Blamont, J. E.

    1973-01-01

    Ogo 4 observations of the O I (6300-A) emissions have revealed a global pattern hitherto undetected from the ground-based observations. It is seen that the postsunset emission of O I (6300 A) in October 1967 is very asymmetrical with respect to the geomagnetic equator in certain longitude regions and shows poor correlation with the electron density measured simultaneously from the same spacecraft. This asymmetry is less marked in the UV airglow, O I (1356 A), which appears to vary as the square of the maximum electron density in the F region. The horizon scan data of the 6300-A airglow reveal that the latitudinal asymmetry is associated with asymmetry in the height of the O I (6300-A) emission and hence with the altitude of the F2 peak. From the correlative studies of the airglow and the ionospheric measurements the mechanisms of the UV and the 6300 A emissions are discussed in terms of the processes involving radiative and dissociative recombination. Theoretical expressions are developed which relate the airglow data to the ionospheric parameters.

  12. The Livingston Island Geomagnetic and Ionospheric Observatory

    NASA Astrophysics Data System (ADS)

    Altadill, David; Marsal, Santiago; Blanch, Estefania; Miquel Torta, J.; Quintana-Seguí, Pere; Germán Solé, J.; Cid, Òscar; José Curto, Juan; Ibáñez, Miguel; Segarra, Antoni; Lluís Pijoan, Joan; Juan, Juan Miguel

    2014-05-01

    The Ebre Observatory Institute manages a geophysical observatory installed at the Spanish Antarctic Station (SAS) Juan Carlos I. It was set up in 1995 and it has been updated yearly by our team throughout several projects carried out since then. Nowadays, it hosts a magnetic station providing 1-second data of the 3 components (X, Y, Z) and the total force (F) during the entire year, and an ionospheric station providing vertical and oblique data during austral summer. This observatory has provided long data series of high scientific value from this remote region of the Earth. They have been used to improve the knowledge of the climate and weather behavior of the geomagnetic field and ionosphere in the area, and to model and expand the capacity of data transmission. This contribution aims to present a brief review of the instruments installed at SAS, the research results obtained from their data, and the developing activities under the current project. Finally, future perspectives are outlined with regard to adapting our geophysical observatory to the evolving needs of observatory practice.

  13. Periodic substorm activity in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Huang, C. Y.; Eastman, T. E.; Frank, L. A.; Williams, D. J.

    1983-01-01

    On 19 May 1978 an anusual series of events is observed with the Quadrispherical LEPEDEA on board the ISEE-1 satellite in the Earth's geomagnetic tail. For 13 hours periodic bursts of both ions and electrons are seen in all the particle detectors on the spacecraft. On this day periodic activity is also seen on the ground, where multiple intensifications of the electrojets are observed. At the same time the latitudinal component of the interplanetary magnetic field shows a number of strong southward deflections. It is concluded that an extended period of substorm activity is occurring, which causes repeated thinnings and recoveries of the plasma sheet. These are detected by ISEE, which is situated in the plasma sheet boundary layer, as periodic dropouts and reappearances of the plasma. Comparisons of the observations at ISEE with those at IMP-8, which for a time is engulfed by the plasma sheet, indicate that the activity is relatively localized in spatial extent. For this series of events it is clear that a global approach to magnetospheric dynamics, e.g., reconnection, is inappropriate.

  14. Geomagnetism during solar cycle 23: Characteristics.

    PubMed

    Zerbo, Jean-Louis; Amory-Mazaudier, Christine; Ouattara, Frédéric

    2013-05-01

    On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996-2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT) and yearly averaged solar wind speed (364 km/s) are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s), associated to the highest value of the yearly averaged aa index (37 nT). We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century) study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum. PMID:25685427

  15. Geomagnetism during solar cycle 23: Characteristics

    PubMed Central

    Zerbo, Jean-Louis; Amory-Mazaudier, Christine; Ouattara, Frédéric

    2012-01-01

    On the basis of more than 48 years of morphological analysis of yearly and monthly values of the sunspot number, the aa index, the solar wind speed and interplanetary magnetic field, we point out the particularities of geomagnetic activity during the period 1996–2009. We especially investigate the last cycle 23 and the long minimum which followed it. During this period, the lowest values of the yearly averaged IMF (3 nT) and yearly averaged solar wind speed (364 km/s) are recorded in 1996, and 2009 respectively. The year 2003 shows itself particular by recording the highest value of the averaged solar wind (568 km/s), associated to the highest value of the yearly averaged aa index (37 nT). We also find that observations during the year 2003 seem to be related to several coronal holes which are known to generate high-speed wind stream. From the long time (more than one century) study of solar variability, the present period is similar to the beginning of twentieth century. We especially present the morphological features of solar cycle 23 which is followed by a deep solar minimum. PMID:25685427

  16. History of the Munich-Maisach-Fürstenfeldbruck Geomagnetic Observatory

    NASA Astrophysics Data System (ADS)

    Soffel, H. C.

    2015-07-01

    The Munich-Maisach-Fürstenfeldbruck Geomagnetic Observatory is one of the observatories with the longest recordings of the geomagnetic field. It started with hourly measurements on 1 August 1840. The founder of the observatory in Munich was Johann von Lamont (1805-1879), the Director of the Royal Bavarian Astronomical Observatory. He had been stimulated to build his own observatory by the initiative of the Göttingen Magnetic Union founded in 1834 by Alexander von Humboldt (1769-1859) and Carl Friedrich Gauss (1777-1855). Before 1840 fewer than five observatories existed; the most prominent ones were those in London and Paris. At the beginning Lamont used equipment delivered by Gauss in Göttingen, but soon started to build instruments of his own design. Among them was a nonmagnetic theodolite which allowed precise geomagnetic measurements to be made also in the field. During the 1850s Lamont carried out geomagnetic surveys and produced geomagnetic maps for Germany and many other European countries. At the end of the nineteenth century accurate geomagnetic measurements in Munich became more and more disturbed by the magnetic stray fields from electric tramways and industry. During this period the quality of the data suffered and the measurements had to be interrupted several times. After a provisional solution in Maisach, a village 25 km west of Munich, a final solution could be found in the vicinity of the nearby city of Fürstenfeldbruck. Here the measurements started again on 1 January 1939. Since the 1980s the observatory has been part of INTERMAGNET, an organization providing almost real-time geomagnetic data of the highest quality.

  17. An interpretation of induced electric currents in long pipelines caused by natural geomagnetic sources of the upper atmosphere

    USGS Publications Warehouse

    Campbell, W.H.

    1986-01-01

    Electric currents in long pipelines can contribute to corrosion effects that limit the pipe's lifetime. One cause of such electric currents is the geomagnetic field variations that have sources in the Earth's upper atmosphere. Knowledge of the general behavior of the sources allows a prediction of the occurrence times, favorable locations for the pipeline effects, and long-term projections of corrosion contributions. The source spectral characteristics, the Earth's conductivity profile, and a corrosion-frequency dependence limit the period range of the natural field changes that affect the pipe. The corrosion contribution by induced currents from geomagnetic sources should be evaluated for pipelines that are located at high and at equatorial latitudes. At midlatitude locations, the times of these natural current maxima should be avoided for the necessary accurate monitoring of the pipe-to-soil potential. ?? 1986 D. Reidel Publishing Company.

  18. Improving geomagnetic observatory data in the South Atlantic Anomaly

    NASA Astrophysics Data System (ADS)

    Matzka, Jürgen; Morschhauser, Achim; Brando Soares, Gabriel; Pinheiro, Katia

    2016-04-01

    The Swarm mission clearly proofs the benefit of coordinated geomagnetic measurements from a well-tailored constellation in order to recover as good as possible the contributions of the various geomagnetic field sources. A similar truth applies to geomagnetic observatories. Their scientific value can be maximised by properly arranging the position of individual observatories with respect to the geometry of the external current systems in the ionosphere and magnetosphere, with respect to regions of particular interest for secular variation, and with respect to regions of anomalous electric conductivity in the ground. Here, we report on our plans and recent efforts to upgrade geomagnetic observatories and to recover unpublished data from geomagnetic observatories at low latitudes in the South Atlantic Anomaly. In particular, we target the magnetic equator with the equatorial electrojet and low latitudes to characterise the Sq- and ring current. The observatory network that we present allows also to study the longitudinal structure of these external current systems. The South Atlantic Anomaly region is very interesting due to its secular variation. We will show newly recovered data and comparisons with existing data sets. On the technical side, we introduce low-power data loggers. In addition, we use mobile phone data transfer, which is rapidly evolving in the region and allows timely data access and quality control at remote sites that previously were not connected to the internet.

  19. Geomagnetic Activity Forecast based on SW-M-I coupling

    NASA Astrophysics Data System (ADS)

    Nagatsuma, T.

    2009-12-01

    The geomagnetic activity shows diurnal and semiannual and solar cycle variations. The cause of these variations consists of two effects. One is the periodical change of the solar wind parameters due to a variation of the geometrical condition between the solar wind and the Earth’s magnetosphere. The other is the periodical change of the SW-M-I coupling efficiency caused by the changing of ionospheric conductivity in the polar cap region. Therefore, operational forecasting model of geomagnetic activity should take into account these variations and dependence. We have developed the empirical model for forecasting geomagnetic activity considering the change of the SW-M-I coupling efficiency. This model can reproduce Equinoctial effect and solar cycle dependence of geomagnetic activity. Further, we have found that the efficiency of SW-M-I coupling tend to be low during the low Alfven Mach number period, from the event analysis of Nov. 2003 storm. Also, we have found that the Alfven Mach number dependence exists independently form the solar wind electric field dependence based on the statistical analysis of PCN index. Since the condition of low Alfven Mach number tend to occur within the ICMEs, we are developing the empirical model with considering the Alfven Mach number dependence. We expect this modification will improve the prediction of severe geomagnetic storm. We also try to examine that our model is valid during the period of recent few years of quiet solar activity.

  20. The Geomagnetic Control Concept of The Ionospheric Long- Term Trends

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.

    The geomagnetic control concept has been developed to explain long-term trends of the electron concentration in the F2 and E ionospheric regions. Periods with negative and positive foF2, hmF2 and foE trends correspond to the periods of increasing or decreasing geomagnetic activity with the turning points around the end of 1950s, 1960s, and 1980s where trends change their signs. Strong latitudinal and diurnal variations revealed for the foF2 and hmF2 trends can be explained by neutral composition, temperature and thermospheric wind changes. Particle precipitation is important in the auroral zone. The newly proposed concept proceeds from a natural origin of the F2-layer trends rather than an artificial one related to the greenhouse effect. Using the proposed method a very long-term foF2 and foE trends related with general increase of geomagnetic activity in the 20th century has been revealed for the first time. The firstly revealed relationship of the foE trends with geomagnetic activity is due to nitric oxide variations at the E-region heights. This "natural" relationship of the foE trends with geomagnetic activity breaks down around 1970 on many stations presumably due to chemical polution of the upper atmosphere. The increasing rate of rocket and satellite launchings in the late 1960s is considered as a reason.

  1. Geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppälä, A.; Randall, C. E.; Clilverd, M. A.; Rozanov, E.; Rodger, C. J.

    2009-10-01

    Here we use the ERA-40 and ECMWF operational surface level air temperature data sets from 1957 to 2006 to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the A p index. Previous modeling work has suggested that NO x produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in surface air temperatures (SATs). We find that during winter months, polar SATs in years with high A p index are different than in years with low A p index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, depending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings (SSWs) are excluded. We take into account solar irradiance variations, unlike previous analyses of geomagnetic effects in ERA-40 and operational data. Although we cannot conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating wintertime surface air temperatures. We tested our SAT results against variation in the Quasi Biennial Oscillation, the El Niño Southern Oscillation and the Southern Annular Mode. The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode, and we cannot robustly exclude a chance linkage between sea surface temperature variability and geomagnetic activity.

  2. Secular trends in storm-level geomagnetic activity

    USGS Publications Warehouse

    Love, J.J.

    2011-01-01

    Analysis is made of K-index data from groups of ground-based geomagnetic observatories in Germany, Britain, and Australia, 1868.0-2009.0, solar cycles 11-23. Methods include nonparametric measures of trends and statistical significance used by the hydrological and climatological research communities. Among the three observatory groups, German K data systematically record the highest disturbance levels, followed by the British and, then, the Australian data. Signals consistently seen in K data from all three observatory groups can be reasonably interpreted as physically meaninginful: (1) geomagnetic activity has generally increased over the past 141 years. However, the detailed secular evolution of geomagnetic activity is not well characterized by either a linear trend nor, even, a monotonic trend. Therefore, simple, phenomenological extrapolations of past trends in solar and geomagnetic activity levels are unlikely to be useful for making quantitative predictions of future trends lasting longer than a solar cycle or so. (2) The well-known tendency for magnetic storms to occur during the declining phase of a sunspot-solar cycles is clearly seen for cycles 14-23; it is not, however, clearly seen for cycles 11-13. Therefore, in addition to an increase in geomagnetic activity, the nature of solar-terrestrial interaction has also apparently changed over the past 141 years. ?? Author(s) 2011.

  3. Airport geomagnetic surveys in the United States

    USGS Publications Warehouse

    Berarducci, A.

    2006-01-01

    The Federal Aviation Administration (FAA) and the United States military have requirements for design, location, and construction of compass calibration pads (compass roses), these having been developed through collaboration with US Geological Survey (USGS) personnel. These requirements are detailed in the FAA Advisory Circular AC 150/5300-13, Appendix 4, and in various military documents, such as Handbook 1021/1, but the major requirement is that the range of declination measured within 75 meters of the center of a compass rose be less than or equal to 30 minutes of arc. The USGS Geomagnetism Group has developed specific methods for conducting a magnetic survey so that existing compass roses can be judged in terms of the needed standards and also that new sites can be evaluated for their suitability as potentially new compass roses. First, a preliminary survey is performed with a total-field magnetometer, with differences over the site area of less than 75nT being sufficient to warrant additional, more detailed surveying. Next, a number of survey points are established over the compass rose area and nearby, where declination is to be measured with an instrument capable of measuring declination to within 1 minute of arc, such as a Gurley transit magnetometer, DI Flux theodolite magnetometer, or Wild T-0. The data are corrected for diurnal and irregular effects of the magnetic field and declination is determined for each survey point, as well as declination range and average of the entire compass rose site. Altogether, a typical survey takes about four days to complete. ?? 2006 Springer.

  4. Dynamical similarity of geomagnetic field reversals.

    PubMed

    Valet, Jean-Pierre; Fournier, Alexandre; Courtillot, Vincent; Herrero-Bervera, Emilio

    2012-10-01

    No consensus has been reached so far on the properties of the geomagnetic field during reversals or on the main features that might reveal its dynamics. A main characteristic of the reversing field is a large decrease in the axial dipole and the dominant role of non-dipole components. Other features strongly depend on whether they are derived from sedimentary or volcanic records. Only thermal remanent magnetization of lava flows can capture faithful records of a rapidly varying non-dipole field, but, because of episodic volcanic activity, sequences of overlying flows yield incomplete records. Here we show that the ten most detailed volcanic records of reversals can be matched in a very satisfactory way, under the assumption of a common duration, revealing common dynamical characteristics. We infer that the reversal process has remained unchanged, with the same time constants and durations, at least since 180 million years ago. We propose that the reversing field is characterized by three successive phases: a precursory event, a 180° polarity switch and a rebound. The first and third phases reflect the emergence of the non-dipole field with large-amplitude secular variation. They are rarely both recorded at the same site owing to the rapidly changing field geometry and last for less than 2,500 years. The actual transit between the two polarities does not last longer than 1,000 years and might therefore result from mechanisms other than those governing normal secular variation. Such changes are too brief to be accurately recorded by most sediments. PMID:23038471

  5. The calculation of corrected geomagnetic coordinates in the high latitude region

    NASA Astrophysics Data System (ADS)

    Alperovich, Leonid; Levitin, Anatoly; Gromova, Lyudmila; Dremukhina, Lyudmila

    Because the real geomagnetic field in Space, especially during geomagnetic perturbations has very complex spatial distribution, we had to use adjusted geomagnetic coordinates. The calculation of these coordinates is connected with the correct calculation of field lines inclusive the internal IGRF (International Geomagnetic Reference Field) and external geomagnetic field. Tables of such coordinates are somewhat incorrect as they do not account for the coordinates' dependency on geomagnetic activity dynamics. We demonstrate how the coordinates vary with geomagnetic activity in high latitude regions. The calculations revealed that during magnetic storms in a major part of the near pole area the field lines are disclosed and for points of this area on the earth's surface the corrected geomagnetic coordinates cannot be calculated.

  6. Solar coronal holes as sources of recurrent geomagnetic disturbances

    NASA Technical Reports Server (NTRS)

    Neupert, W. M.; Pizzo, V.

    1974-01-01

    Observations of the solar corona by Oso 7 have been used in a superposed epoch analysis to study the relationships between classes of coronal features and geomagnetic activity. Both bright coronal regions and regions of less than average brightness were investigated. It was found that for the period from January 1972 through January 1973, a significant enhancement in geomagnetic activity occurred 2-3 days after central meridian passage of large coronal holes that extended to within 5 deg of the solar subearth point when they were on the meridian. Large coronal holes appear to satisfy the requirements for 'M regions' which were hypothesized to be responsible for recurrent geomagnetic disturbances (Bartels, 1934). If solar wind high-speed streams originate preferentially in these regions, their velocity at the base of the corona will be substantially higher than that expected from an axisymmetric solar wind model.

  7. Geomagnetic observations on tristan da cunha, south atlantic ocean

    USGS Publications Warehouse

    Matzka, J.; Olsen, N.; Maule, C.F.; Pedersen, L.W.; Berarducci, A.M.; Macmillan, S.

    2009-01-01

    Few geomagnetic ground observations exist of the Earth's strongest core field anomaly, the South Atlantic Anomaly (SAA). The geomagnetic repeat station on the island Tristan da Cunha, located half-way between South Africa and South America at 37?? 05' S, 12?? 18' W, is therefore of crucial importance. We have conducted several sets of repeat station measurements during magnetically quiet conditions (Kp 2o or less) in 2004. The procedures are described and the results are compared to those from earlier campaigns and to the predictions of various global field models. Features of the local crustal bias field and the solar quiet daily variation are discussed. We also evaluate the benefit of continuous magnetic field recordings from Tristan da Cunha, and argue that such a data set is a very valuable addition to geomagnetic satellite data. Recently, funds were set up to establish and operate a magnetometer station on Tristan da Cunha during the Swarm magnetic satellite mission (2011-2014).

  8. Regional Geomagnetic Field Model for Croatia at 2009.5

    NASA Astrophysics Data System (ADS)

    Vujić, Eugen; Brkić, Mario; Kovács, Peter

    2016-02-01

    Geomagnetic data of north, east, and vertical components at Croatian repeat stations and ground survey sites, as well as European geomagnetic observatories and repeat stations, were used to obtain a regional geomagnetic model over Croatia at 2009.5 epoch. Different models were derived, depending on input data, and three modelling techniques were used: Taylor Polynomial, Adjusted Spherical Harmonic Analysis, and Spherical Harmonic Analysis. It was derived that the most accurate model over Croatia was the one when only Croatian data were used, and by using the Adjusted Spherical Harmonic Analysis. Based on Croatian repeat stations' data in the interval 2007.5-2010.5, and a global Enhanced Magnetic Model, it was possible to estimate the crustal field at those sites. It was also done by taking into account the empirical adjustment for long-term external field variations. The higher crustal field values were found at those stations which are on or close to the Adriatic anomaly.

  9. Role of centennial geomagnetic changes in local atmospheric ionization

    NASA Astrophysics Data System (ADS)

    Usoskin, I. G.; Korte, M.; Kovaltsov, G. A.

    2008-03-01

    Many studies of solar-terrestrial relation are based on globally (or hemispherically) averaged quantities, including the average cosmic ray flux. However, regional effects of cosmic ray induced ionization due to geomagnetic changes may be comparable to or even dominate over the solar signal at mid-latitudes on centennial-to-millennial time scales. We show that local changes of the tropospheric ionization due to fast migration of the geomagnetic axis are crucial on centennial time scale, and the use of global averages may smear an important effect. We conclude that changes of the regional tropospheric ionization at mid-latitudes are defined by both geomagnetic changes and solar activity, and none of the two processes can be neglected. This substantiates a necessity for a careful analysis of the regional, not global, indices at mid-latitudes and offers a new possibility to disentangle direct (solar radiation) and indirect (via cosmic rays) effects in the solar-terrestrial relations.

  10. Electron Radiation Belt Dropouts in the Absence of Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Morley, S.; Henderson, M. G.; Steinberg, J. T.; Turner, D. L.; Li, W.

    2015-12-01

    Most observational studies of electron radiation belt dropouts have presented losses occurring during geomagnetic storms. Some statistical analyses of flux dropouts have included non-storm time events, but examples of non-storm time dropouts are still rarities in the literature. A small, but growing, body of work has led to the current understanding that radiation belt dynamics are not always coupled with geomagnetic storms, and that a number of key features are associated with dropouts: solar wind dynamic pressure tends to be high; the interplanetary magnetic field tends to be southward. We present three case studies of dropouts that occurred under quiet geomagnetic conditions and examine the dynamics of the electron phase spece density, and flux, over a wide range of L using Van Allen Probes and other satellites. The solar wind driving each dropout is shown to have a different categorization, and we investigate the role of substorms in non-storm time radiation belt dynamics.

  11. Extreme geomagnetic disturbances due to shocks within CMEs

    NASA Astrophysics Data System (ADS)

    Lugaz, N.; Farrugia, C. J.; Huang, C.-L.; Spence, H. E.

    2015-06-01

    We report on features of solar wind-magnetosphere coupling elicited by shocks propagating through coronal mass ejections (CMEs) by analyzing the intense geomagnetic storm of 6 August 1998. During this event, the dynamic pressure enhancement at the shock combined with a simultaneous increase in the southward component of the magnetic field resulted in a large earthward retreat of Earth's magnetopause, which remained close to geosynchronous orbit for more than 4 h. This occurred despite the fact that both shock and CME were weak and relatively slow. Another similar example of a weak shock inside a slow CME resulting in an intense geomagnetic storm is the 30 September 2012 event, which strongly depleted the outer radiation belt. We discuss the potential of shocks inside CMEs to cause large geomagnetic effects at Earth, including magnetopause shadowing.

  12. An experimental study of the biological effects of geomagnetic disturbances: The impact of a typical geomagnetic storm and its constituents on plants and animals

    NASA Astrophysics Data System (ADS)

    Krylov, Viacheslav V.; Zotov, Oleg D.; Klain, Boris I.; Ushakova, Natalia V.; Kantserova, Nadezhda P.; Znobisheva, Anna V.; Izyumov, Yuri G.; Kuz'mina, Victoria V.; Morozov, Alexey A.; Lysenko, Liudmila A.; Nemova, Nina N.; Osipova, Elena A.

    2014-04-01

    Naturally occurring geomagnetic storms have been shown to correlate with changes in organisms' biological processes. Changes in the geomagnetic field during a geomagnetic storm are complex and contain both slow changes of the geomagnetic field with frequencies of up to 0.001 Hz, and various geomagnetic pulsations observed in general to be within the range of 0.001-5 Hz. Little is known about what frequency constituent of geomagnetic storms has the strongest effect on living organisms. This paper uses an experimental approach to demonstrate that organisms from different taxa principally respond to slow changes of the geomagnetic field corresponding with the main phase and the initial period of the recovery phase of a geomagnetic storm. Pc1 type pulsations, which are commonly regarded as biologically effective elements of geomagnetic disturbances, did not affect controlled parameters in our experiments. This paper may serve as a starting point for a thorough inquiry into the influence of slow fluctuations of the geomagnetic field on organisms.

  13. Geomagnetic, cosmogenic and climatic changes across the last geomagnetic reversal from Equatorial Indian Ocean sediments

    NASA Astrophysics Data System (ADS)

    Valet, Jean-Pierre; Bassinot, Franck; Bouilloux, Alexandra; Bourlès, Didier; Nomade, Sébastien; Guillou, Valéry; Lopes, Fernand; Thouveny, Nicolas; Dewilde, Fabien

    2014-07-01

    distribution of tektite abundance was used to deconvolve the 10Be/9Be signal. The results confirm that the beryllium changes are concentrated during the transitional period, thus likely in presence of a multipolar geomagnetic field (or in the vicinity of a geomagnetic pole) that favored the penetration of cosmic rays and consequently increased the 10Be production. The absence of 10Be during the precursor indicates that the present site and the Indonesian ones were far away from a geomagnetic pole and that interlatitudinal atmospheric mixing was limited. The geomagnetic pole positions above the Indonesian sites during the precursor would thus be incompatible with the corresponding inclined dipolar field during this period, and suggest the dominance of low-degree harmonics.

  14. Alternating light-darkness-influenced human electrocardiographic magnetoreception in association with geomagnetic pulsations.

    PubMed

    Otsuka, K; Oinuma, S; Cornélissen, G; Weydahl, A; Ichimaru, Y; Kobayashi, M; Yano, S; Holmeslet, B; Hansen, T L; Mitsutake, G; Engebretson, M J; Schwartzkopff, O; Halberg, F

    2001-01-01

    Geomagnetic variations of partly interplanetary origin, with cyclic signatures in human affairs and pathology include the incidence of various diseases, regarding which this study of healthy subjects attempted to determine an underlying mechanism by worldwide archival and physiological monitoring, notably of heart rate variability (HRV). In the past half-century, the possible health and other hazards of natural, solar variability-driven temporal variations in the earth's magnetic field have become a controversial subject in view of the inconsistent results. Some well-documented claims of associations between geomagnetic storms and myocardial infarction or stroke have been rejected by a study based on more comprehensive data analyzed by rigorous methods - covering, however, only part of a solar cycle in only part of a hemisphere. It seems possible that inter-solar cycle and geographic variability, if not geographic differences, may account for discrepancies. Herein, we examine the start of a planetary study on any influence of geomagnetic disturbances that are most pronounced in the auroral oval, on human HRV. The magnetic field variations exhibit complex spectra and include the frequency band between 0.001-10 Hz, which is regarded as ultra-low frequency by physicists. Since the 'ultra-low-frequency' range, like other endpoints used in cardiology, refers to much higher frequencies than the about-yearly changes that are here shown to play a role in environmental-organismic interactions revealed by HRV, the current designations used in cardiology are all placed in quotation marks to indicate the need for possible revision. Whether or not this suggestion has an immediate response, we have pointed to a need for the development of instrumentation and software that renders the assessment of circadian, infradian and even infra-annual (truly low frequency) modulations routinely feasible. HRV was examined on the basis of nearly continuous 7-day records by ECG between

  15. 77 FR 22312 - Geomagnetic Disturbances to the Bulk-Power System; Notice of Technical Conference

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-13

    ... Energy Regulatory Commission Geomagnetic Disturbances to the Bulk-Power System; Notice of Technical... Conference on Geomagnetic Disturbances to the Bulk-Power System on Monday, April 30, 2012, from 11 a.m. to 4... issues related to reliability of the Bulk-Power System as affected by geomagnetic disturbances....

  16. Testing for Links Between Geomagnetic Field Variability and Climate Change

    NASA Astrophysics Data System (ADS)

    Wetter, L.; Acton, G.; Hill, T.

    2006-12-01

    Although orbital forcing controls much of long-term climate change and increases in greenhouse gases are thought to be driving recent global warming, other factors may also play a significant role. Recent studies have hypothesized various forms of links between climate change and solar irradiance, solar activity, and cosmic ray flux. Because changes in geomagnetic field strength affect the cosmic ray flux, it is possible that changes in the geomagnetic field contribute to long- and short-term climate change. Alternatively, it has been hypothesized that geomagnetic field variability is influenced by climate change or solar activity. We test such claims through a paleomagnetic and stable isotope study of Ocean Drilling Program (ODP) sediment cores from the Blake Outer Ridge (BOR), western North Atlantic Ocean. The goal of the study is to create a continuous, high-resolution record of geomagnetic field variability with an accurate, astronomically tuned chronology. Sediment cored on the BOR in four holes at Site 1061 during ODP Leg 172 is being used for this investigation. The high sedimentation rate, averaging 22 cm/k.y. over the Brunhes, and the exceptional paleomagnetic properties of the area make Site 1061 an excellent candidate to test for links between short- term geomagnetic events and climate. The paleomagnetic record, originally constructed mainly from continuous split-core measurements, is being refined and rock magnetic analyses are being conducted on U- channel samples that span the Brunhes. We have also refined the between-hole correlation and constructed a more detailed composite stratigraphic section for Site 1061 in order to improve the continuity and relative chronology of the record and to confirm the existence of distinct geomagnetic excursions and other short-term events in multiple drill holes. Additionally, planktonic forams are being measured for δ18 O variations across, and extending to one meter beyond each observed excursion, allowing for

  17. IMF sector behavior estimated from geomagnetic data at South Pole

    SciTech Connect

    Matsushita, S.; Xu, W.h.

    1981-05-01

    IMF sector behavior which has previously been estimated from the geomagnetic data at Godhavn is confirmed by study of the data at South Pole for 1959--1970 with the same estimation technique, taking the difference between northern and southern hemispheres into consideration. A method to improve (about 18%) the agreement between assigned and actual sector structures by study of the data at the two stations is suggested. Geomagnetic disturbance effects on sector estimation are discussed, and reversed sector effects in winter are given special emphasis.

  18. Very large geomagnetic disturbance during sunspot cycle 21: A prediction

    NASA Technical Reports Server (NTRS)

    Sargent, H. H., III

    1979-01-01

    Evidence is presented which suggests that very large geomagnetic disturbances (350 gammas or greater at an invariant magnetic latitude of 50 degrees) occur once or twice per sunspot cycle, on the average. There is also some tendency for these disturbances to group in large odd numbered sunspot cycles similar to the current cycle, cycle 21. No such disturbance was noted during the past cycle although a series of major solar flares was observed in August 1972. At least one very large geomagnetic disturbance is expected during the current cycle; a prediction with perhaps serious consequences for electric power companies.

  19. GEOMAGNETIC REVERSALS DRIVEN BY ABRUPT SEA LEVEL CHANGES

    SciTech Connect

    Muller, R.A.; Morris, D.E.

    1986-10-01

    Changes in the moment of inertia of the earth, brought about by the redistribution of ocean water from the tropics to ice at high latitudes, couple energy from the spin of the earth into convection in the liquid core. This mechanism may help provide the driving energy for the earth's dynamo. Sufficiently rapid ocean level changes can disrupt the dynamo, resulting (in half of the cases) in a geomagnetic field reversal. The model can account for the previously mysterious correlation reported between geomagnetic reversals and mass extinctions.

  20. Severe ionosphere disturbances caused by the sudden response of evening subequatorial ionospheres to geomagnetic storms

    SciTech Connect

    Tanaka, T.

    1981-12-01

    By monitoring C band beacon signals from geostationary satellites in Japan, we have observed anomalously strong ionospheric scintillations several times during three years from 1978 to 1980. These severe scinitillations occur associated with geomagnetic storms and accompany sudden and intense ionospheric perturbations in the low-latiude region. Through the analysis of these phenomena we have identified a new type of ionospheric disturbances characterized by intensifications of equatorial anomalies and successive severe ionospheric scintillations that extend to the C band range. The events occur only during a limited local time interval after the sunset, when storm time decreases of midlatitude geomagnetic fields in the same meridan take place during the same time interval. From the viewpoint of ionospheric storms, these disturbances precede the occurrence of midlatitude negative phases and storm time depressions of equatorial anomalies to indicate that the cause of the events is different from distrubed thermospheric circulations. The timing and magnitude of substorms at high-latitudes not always correlate with the events. We have concluded that the phenomena are closely related with penetrations toward low-latitudes of electric fields owing to the partial closure of asymmetrical ring currents.

  1. Investigation of Ionospheric response to Geomagnetic Storms over a Low Latitude Station, Ile-Ife, Nigeria

    NASA Astrophysics Data System (ADS)

    Jimoh, Oluwaseyi E.; Yesufu, Thomas K.; Ariyibi, Emmanuel A.

    2016-05-01

    Due to several complexities associated with the equatorial ionosphere, and the significant role which the total electron content (TEC) variability plays in GPS signal transmission, there is the need to monitor irregularities in TEC during storm events. The GPS SCINDA receiver data at Ile-Ife, Nigeria, was analysed with a view to characterizing the ionospheric response to geomagnetic storms on 9 March and 1 October 2012. Presently, positive storm effects, peaks in TEC which were associated with prompt penetration of electric fields and changes in neutral gas composition were observed for the storms. The maximum percentage deviation in TEC of about 120 and 45% were observed for 9 March and 1 October 2012, respectively. An obvious negative percentage TEC deviation subsequent to sudden storm commencement (SSC) was observed and besides a geomagnetic storm does not necessarily suggest a high scintillation intensity (S4) index. The present results show that magnetic storm events at low latitude regions may have an adverse effect on navigation and communication systems.

  2. Laboratory and Field Experiments on Expulsion of Selected Ions along Divergent Polar Geomagnetic Fields

    NASA Astrophysics Data System (ADS)

    Wong, A. Y.; Deng, B.; Quon, B.; Wang, R.; Hartzell, J.; Rosenthal, G.; Hazelton, L. R.

    2007-12-01

    Laboratory and Field Experiments on Expulsion of Selected Ions along Divergent Polar Geomagnetic Fields. Laboratory experiments have shown significant gyro-resonance acceleration of minority ion species in a magnetized plasma. Field aligned elctron drifts can provide free energy needed to make this process efficient. The linear magnetized device has a uniform magnetic field linked to two adjustable mirrors at the ends. Outdoor experiments at HIPAS Facility Ak(1) ( 84 MW ERP ) are used to test this process in the earth's "chimneys" at the two poles. The divergent polar geomagnetic field converts the perpendicular ion velocity into an upward motion. Satellites and ground-based ELF receivers,supplemented by UHF radars, LIDARs and infrared diagnostics , will monitor low-frequency EM waves and upflows of ions. The upward transport of ions in the lower atmosphere by field-induced diffusion and convection and the coupling to the free energy in the auroral region will be discussed. Computer modeling and theoeries complement our experiments. 1. Wong, A.Y. et al. AIP CIP 96-27719, Chap 3, pp 41-75, 1997

  3. On cosmic rays flux variations in midlatitudes and their relations to geomagnetic and atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Morozova, Anna; Blanco, Juan Jose; Mendes Ribeiro, Paulo Fernando

    The cosmic rays flux is globally modulated by the solar cycle and shows anti-correlation with the sunspot number. Near to the Earth it is modulated by the solar wind and the Earth's magnetic field. The analysis of the secondary cosmic rays produced when they interact in the low stratosphere allows extracting information about solar wind structures surrounding Earth's orbit, the magnetic field of the Earth and the temperature of the stratosphere. Recently, a new cosmic ray detector, the TRAGALDABAS, composed by RPC (Resistive Plate Chamber) planes, has been developed and installed to go deeper into the understanding of the cosmic rays arriving to the Earth surface. An international collaboration has been organized for keeping the detector operative and for analyzing the data. Here we present the analysis of the cosmic rays flux variations measured by two cosmic rays detectors of different types located in Spain (Castilla-La Mancha Neutron Monitor - CaLMa - in Guadalajara and TRAGALDABAS in Santiago de Compostela) and their comparison to changes both in the geomagnetic field components measured by the Coimbra Geomagnetic Observatory (Portugal) and in the atmospheric conditions (tropo- and stratosphere) measured by Spanish and Portuguese meteorological stations. The study is focused on a number of recent cosmic rays events and pays specific attention to the comparison of the CaLMa series and the preliminary TRAGALDABAS data.

  4. Sediments fail to record geomagnetic transitions

    NASA Astrophysics Data System (ADS)

    Valet, Jean-Pierre; Meynadier, Laure; Bassinot, Franck; Simon, Quentin; Thouveny, Nicolas

    2016-04-01

    consequence the VGPs follow a simple longitudinal trajectory like expected for a rotation of the dipole. This unrealistic scenario likely results from heavy post-depositional processes that integrated various amounts of pre- and post-transitional magnetic directions within each sample. These results confirm that sediments are mostly inappropriate to extract suitable information about geomagnetic reversals.

  5. Hydro-Quebec and geomagnetic storms: measurement techniques, effects on transmission network and preventive actions since 1989.

    NASA Astrophysics Data System (ADS)

    Beland, J.

    In March 1989 the province of Quebec in Canada suffered an almost complete blackout during a severe geomagnetic storm. Millions of Hydro-Québec's customers have been left without electricity for several hours. Fifteen years later, many changes have been implemented to avoid the repetition of such an event. Among them, we now have two measurement systems (one primary and one backup) monitoring ground induced current (GIC) effects on the grid in real time. Those systems are described and examples of data acquired during major storms (as in late October 2003) are given. To be informed in advance of a probable GIC occurrence, HQ now relies on a specialized organization providing geomagnetic activity alert and forecast. Following an alert or the detection of GIC effects on the network exceeding a minimal threshold, special operation rules become in effect with the objective of ensuring maximum stability and safety margin. Another major improvement is the introduction of series capacitors on several 735 kV lines, which increases network stability and also block GIC circulation. In conclusion, HQ now believes that its network can survive to any realistic geomagnetic storm.

  6. A method of predictions geomagnetic activity based on a coronal model of relations between solar and geomagnetic activities

    NASA Technical Reports Server (NTRS)

    Halenka, J.

    1979-01-01

    A method developed to predict both disturbed and quiet geomagnetic periods is described. The method uses solar situations along the CM with the key role of filaments, giving indirect evidence of types of directly unobservable coronal structures above them. The time lag, not to be interpreted in terms of propagation speed, between the CM activity and the commencement of the geomagnetic response is about one to two days. Solar phenomena serve as indicators within approximately 10 deg of the CM and up to the zone of high latitude filaments.

  7. New insights on geomagnetic storms from observations and modeling

    SciTech Connect

    Jordanova, Vania K

    2009-01-01

    Understanding the response at Earth of the Sun's varying energy output and forecasting geomagnetic activity is of central interest to space science, since intense geomagnetic storms may cause severe damages on technological systems and affect communications. Episodes of southward (Bzgeomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF Bz excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF Bz profiles fluctuating about zero with various amplitudes and duration. We show examples of ring current simulations during two geomagnetic storms representative of each interplanetary condition with our kinetic ring current atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. We find that periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. During the HSS-driven storm the convection potential is highly variable and causes small sporadic injections into the ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ring current injection penetrating to lower L shells and stronger ring current buildup.

  8. The risk characteristics of solar and geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Podolska, Katerina

    2016-04-01

    The main aim of this contribution is a deeper analysis of the influence of solar activity which is expected to have an impact on human health, and therefore on mortality, in particular civilization and degenerative diseases. We have constructed the characteristics that represent the risk of solar and geomagnetic activity on human health on the basis of our previous analysis of association between the daily numbers of death on diseases of the nervous system and diseases of the circulatory system and solar and geomagnetic activity in the Czech Republic during the years 1994 - 2013. We used long period daily time series of numbers of deaths by cause, long period time series of solar activity indices (namely R and F10.7), geomagnetic indicies (Kp planetary index, Dst) and ionospheric parameters (foF2 and TEC). The ionospheric parameters were related to the geographic location of the Czech Republic and adjusted for middle geographic latitudes. The risk characteristics were composed by cluster analysis in time series according to the phases of the solar cycle resp. the seasonal insolation at mid-latitudes or the daily period according to the impact of solar and geomagnetic activity on mortality by cause of death from medical cause groups of death VI. Diseases of the nervous system and IX. Diseases of the circulatory system mortality by 10th Revision of International Classification of Diseases WHO (ICD-10).

  9. An empirical model of the quiet daily geomagnetic field variation

    USGS Publications Warehouse

    Yamazaki, Y.; Yumoto, K.; Cardinal, M.G.; Fraser, B.J.; Hattori, P.; Kakinami, Y.; Liu, J.Y.; Lynn, K.J.W.; Marshall, R.; McNamara, D.; Nagatsuma, T.; Nikiforov, V.M.; Otadoy, R.E.; Ruhimat, M.; Shevtsov, B.M.; Shiokawa, K.; Abe, S.; Uozumi, T.; Yoshikawa, A.

    2011-01-01

    An empirical model of the quiet daily geomagnetic field variation has been constructed based on geomagnetic data obtained from 21 stations along the 210 Magnetic Meridian of the Circum-pan Pacific Magnetometer Network (CPMN) from 1996 to 2007. Using the least squares fitting method for geomagnetically quiet days (Kp ??? 2+), the quiet daily geomagnetic field variation at each station was described as a function of solar activity SA, day of year DOY, lunar age LA, and local time LT. After interpolation in latitude, the model can describe solar-activity dependence and seasonal dependence of solar quiet daily variations (S) and lunar quiet daily variations (L). We performed a spherical harmonic analysis (SHA) on these S and L variations to examine average characteristics of the equivalent external current systems. We found three particularly noteworthy results. First, the total current intensity of the S current system is largely controlled by solar activity while its focus position is not significantly affected by solar activity. Second, we found that seasonal variations of the S current intensity exhibit north-south asymmetry; the current intensity of the northern vortex shows a prominent annual variation while the southern vortex shows a clear semi-annual variation as well as annual variation. Thirdly, we found that the total intensity of the L current system changes depending on solar activity and season; seasonal variations of the L current intensity show an enhancement during the December solstice, independent of the level of solar activity. Copyright 2011 by the American Geophysical Union.

  10. Particle acceleration from reconnection in the geomagnetic tail

    SciTech Connect

    Birn, J.; Borovsky, J.E.; Thomsen, M.F.; McComas, D.J.; Reeves, G.D.; Belian, R.D.; Hesse, M.; Schindler, K.

    1997-08-01

    Acceleration of charged particles in the near geomagnetic tail, associated with a dynamic magnetic reconnection process, was investigated by a combined effort of data analysis, using Los Alamos data from geosynchronous orbit, MHD modeling of the dynamic evolution of the magnetotail, and test particle tracing in the electric and magnetic fields obtained from the MHD simulation.

  11. Geomagnetic cutoffs: a review for space dosimetry applications.

    PubMed

    Smart, D F; Shea, M A

    1994-10-01

    The earth's magnetic field acts as a shield against charged particle radiation from interplanetary space, technically described as the geomagnetic cutoff. The cutoff rigidity problem (except for the dipole special case) has "no solution in closed form". The dipole case yields the Stormer equation which has been repeatedly applied to the earth in hopes of providing useful approximations of cutoff rigidities. Unfortunately the earth's magnetic field has significant deviations from dipole geometry, and the Stormer cutoffs are not adequate for most applications. By application of massive digital computer power it is possible to determine realistic geomagnetic cutoffs derived from high order simulation of the geomagnetic field. Using this technique, "world-grids" of directional cutoffs for the earth's surface and for a limited number of satellite altitudes have been derived. However, this approach is so expensive and time consuming it is impractical for most spacecraft orbits, and approximations must be used. The world grids of cutoff rigidities are extensively used as lookup tables, normalization points and interpolation aids to estimate the effective geomagnetic cutoff rigidity of a specific location in space. We review the various options for estimating the cutoff rigidity for earth-orbiting satellites.

  12. Surface electric fields for North America during historical geomagnetic storms

    USGS Publications Warehouse

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  13. Investigating dynamical complexity of geomagnetic jerks using various entropy measures

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Potirakis, Stelios; Mandea, Mioara

    2016-06-01

    Recently, many novel concepts originated in dynamical systems or information theory have been developed, partly motivated by specific research questions linked to geosciences, and found a variety of different applications. This continuously extending toolbox of nonlinear time series analysis highlights the importance of the dynamical complexity to understand the behavior of the complex Earth's system and its components. Here, we propose to apply such new approaches, mainly a series of entropy methods to the time series of the geomagnetic field. Two datasets provided by Chambon la Foret (France) and Niemegk (Germany) observatories are considered for analysis to detect dynamical complexity changes associated with geomagnetic jerks, the abrupt changes in the second temporal derivative of the Earth's magnetic field. The results clearly demonstrate the ability of Shannon and Tsallis entropies as well as Fisher information to detect events in a regional manner having identified complexities lower than the background in time intervals when geomagnetic jerks have already been reported in the literature. Additionally, these information measures are directly applicable to the original data without having to derive the secular variation or acceleration from the observatory monthly means. The strength of the proposed analysis to reveal dynamical complexity features associated with geomagnetic jerks can be utilized for analyzing not only ground measurements, but also satellite data, as those provided by the current magnetic field mission of Swarm.

  14. (abstract) A Geomagnetic Contribution to Climate Change in this Century

    NASA Technical Reports Server (NTRS)

    Feynman, J.; Ruzmaikin, A.; Lawrence, J.

    1996-01-01

    There is a myth that all solar effects can be parameterized by the sun spot number. This is not true. For example, the level of geomagnetic activity during this century was not proportional to the sunspot number. Instead there is a large systematic increase in geomagnetic activity, not reflected in the sunspot number. This increase occurred gradually over at least 60 years. The 11 year solar cycle variation was superimposed on this systematic increase. Here we show that this systematic increase in activity is well correlated to the simultaneous increase in terrestrial temperature that occurred during the first half of this century. We discuss these findings in terms of mechanisms by which geomagnetics can be coupled to climate. These mechanisms include possible changes in weather patterns and cloud cover due to increased cosmic ray fluxes, or to increased fluxes of high energy electrons. We suggest that this systematic increase in geomagnetic activity contributed (along with anthropogenic effects and possible changes in solar irradiance) to the changes in climate recorded during this period.

  15. The Use of Dispersion Relations For The Geomagnetic Transfer Functions

    NASA Astrophysics Data System (ADS)

    Marcuello, A.; Queralt, P.; Ledo, J. J.

    The magnetotelluric responses are complex magnitudes, where real and imaginary parts contain the same information on the geoelectrical structure. It seems possible, from very general hypotheses on the geoelectrical models (causality, stability and passivity), to apply the Kramers-Krönig dispersion relations to the magnetotelluric responses (impedance, geomagnetic transfer functions,...). In particular, the applica- bility of these relations to the impedance is a current point of discussion, but there are not many examples of their application to the geomagnetic transfer functions (tipper). The aim of this paper is to study how the relations of dispersion are applied to the real and imaginary part of the geomagnetic transfer functions, and to check its validity. For this reason, we have considered data (or responses) from two- and three-dimensional structures, and for these data, we have taken two situations: 1.- Responses that have been synthetically generated from numerical modelling, that allows us to control the quality of the data. 2.- Responses obtained from fieldwork, that are affected by exper- imental error. Additionally, we have also explored the use of these relations to extrap- olate the geomagnetic transfer functions outside the interval of measured frequencies, in order to obtain constrains on the values of these extrapolated data. The results have shown that the dispersion relations are accomplished for the geomag- netic transfer functions, and they can offer information about how these responses are behaved outside (but near) the range of measured frequencies.

  16. Permutation Entropy Analysis of Geomagnetic Indices Time Series

    NASA Astrophysics Data System (ADS)

    De Michelis, Paola; Consolini, Giuseppe

    2013-04-01

    The Earth's magnetospheric dynamics displays a very complex nature in response to solar wind changes as widely documented in the scientific literature. This complex dynamics manifests in various physical processes occurring in different regions of the Earth's magnetosphere as clearly revealed by previous analyses on geomagnetic indices (AE-indices, Dst, Sym-H, ....., etc.). One of the most interesting features of the geomagnetic indices as proxies of the Earth's magnetospheric dynamics is the multifractional nature of the time series of such indices. This aspect has been interpreted as the occurrence of intermittence and dynamical phase transition in the Earth's magnetosphere. Here, we investigate the Markovian nature of different geomagnetic indices (AE-indices, Sym-H, Asy-H) and their fluctuations by means of Permutation Entropy Analysis. The results clearly show the non-Markovian and different nature of the distinct sets of geomagnetic indices, pointing towards diverse underlying physical processes. A discussion in connection with the nature of the physical processes responsible of each set of indices and their multifractional character is attempted.

  17. Solar Activity, Different Geomagnetic Activity Levels and Acute Myocardial Infarction

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla; Jordanova, Malina; Stoilova, Irina; Taseva, Tatiana; Maslarov, Dimitar

    Results on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data covering the period from 1.12.1995 to 31.12.2004 and concerned daily distribution of patients with AMI diagnose (in total 1192 cases) from Sofia region on the day of admission at the hospital. Analysis of variance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms, those caused by Magnetic Clouds (MC) and by High Speed Solar Wind Streams (HSSWS), on AMI morbidity. Relevant correlation coefficients were calculated. Results revealed statistically significant positive correlation between considered GMA indices and AMI. ANOVA revealed that AMI number was signifi- cantly increased from the day before (-1st) till the day after (+1st) geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day.

  18. Surface electric fields for North America during historical geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Wei, Lisa H.; Homeier, Nicole; Gannon, Jennifer L.

    2013-08-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 "Quebec" storm and the 2003 "Halloween" storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  19. Assessment of extreme values in geomagnetic and geoelectric field variations for Canada

    NASA Astrophysics Data System (ADS)

    Nikitina, L.; Trichtchenko, L.; Boteler, D. H.

    2016-07-01

    Disturbances of the geomagnetic field produced by space weather events can have an impact on power systems and other critical infrastructure. To mitigate these risks it is important to determine the extreme values of geomagnetic activity that can occur. More than 40 years of 1 min magnetic data recorded at 13 Canadian geomagnetic observatories have been analyzed to evaluate extreme levels in geomagnetic and geoelectric activities in different locations of Canada. The hourly ranges of geomagnetic field variations and hourly maximum in rate of change of the magnetic variations have been used as measures of geomagnetic activity. Geoelectric activity is estimated by the hourly peak amplitude of the geoelectric fields calculated with the use of Earth resistivity models specified for different locations in Canada. A generalized extreme value distribution was applied to geomagnetic and geoelectric indices to evaluate extreme geomagnetic and geoelectric disturbances, which could happen once per 50 and once per 100 years with 99% confidence interval. Influence of geomagnetic latitude and Earth resistivity models on the results for the extreme geomagnetic and geoelectric activity is discussed. The extreme values provide criteria for assessing the vulnerability of power systems and other technology to geomagnetic activity for design or mitigation purposes.

  20. Empirical evidence for latitude dependence and asymmetry of geomagnetic spatial variation in mainland China

    NASA Astrophysics Data System (ADS)

    Lu, Shikun; Zhang, Hao; Li, Xihai; Liu, Daizhi; Wang, Xiqin

    2016-05-01

    Spatiotemporal geomagnetic variation is a significant research topic of geomagnetism and space physics. Generated by convection and flows within the fluid outer core, latitude dependence and asymmetry, as the inherent spatiotemporal properties of geomagnetic field, have been extensively studied. We apply and modify an extension of existing method, Hidden Markov Model (HMM), which is an efficient tool for modeling the statistical properties of time series. Based on ground magnetic measurement data set in mainland China, first, we find the parameters of HMM can be used as the geomagnetic statistical signature to represent the spatiotemporal geomagnetic variations for each site. The results also support the existence of the geomagnetic latitude dependence more apparently. Furthermore, we provide solid empirical evidence for geomagnetic asymmetry relying on such ground magnetic measurement data set.

  1. On the Possibilities of Predicting Geomagnetic Secular Variation with Geodynamo Modeling

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Tangborn, Andrew; Sabaka, Terrance

    2004-01-01

    We use our MoSST core dynamics model and geomagnetic field at the core-mantle boundary (CMB) continued downward from surface observations to investigate possibilities of geomagnetic data assimilation, so that model results and current geomagnetic observations can be used to predict geomagnetic secular variation in future. As the first attempt, we apply data insertion technique to examine evolution of the model solution that is modified by geomagnetic input. Our study demonstrate that, with a single data insertion, large-scale poloidal magnetic field obtained from subsequent numerical simulation evolves similarly to the observed geomagnetic variation, regardless of the initial choice of the model solution (so long it is a well developed numerical solution). The model solution diverges on the time scales on the order of 60 years, similar to the time scales of the torsional oscillations in the Earth's core. Our numerical test shows that geomagnetic data assimilation is promising with our MoSST model.

  2. Theoretical effects of geomagnetic activity on thermospheric tides

    SciTech Connect

    Fesen, C.G.; Richmond, A.D.; Roble, R.G.

    1993-09-01

    The theoretical effects of auroral activity on thermospheric tides during equinox solar cycle minimum are investigated using simulations from the National Center for Atmospheric Research thermosphere-ionosphere general circulation model. One set of model runs examined the effects of increasing levels of geomagnetic activity on the neutral horizontal winds and temperatures. A second set of model runs examined the generation of diurnal and semidiurnal waves in the neutral horizontal winds and temperatures by solar forcing, auroral forcing, and waves propagating vertically from the lower atmosphere. The model simulations were made for four levels of geomagnetic activity, parameterized principally by the total hemispheric power index and the potential drop across the polar cap. The resulting neutral horizontal wind and temperature fields were examined at geographic latitudes of 17.5{degrees}N, 42.5{degrees}N, and 67.5{degrees}N at 70{degrees}W longitude. The modeled response to the level of geomagnetic activity varies with altitude and latitude: the effects tend to maximize at high altitudes and high latitudes and penetrate lower in altitude as geomagnetic activity increases. The simulated mean temperatures increase and the mean winds become more southward and westward at all latitudes with increasing auroral activity. In the upper thermosphere, the model diurnal temperature amplitudes decrease with increasing activity, while the diurnal meridional wind amplitudes increase. The modeled semidiurnal winds are strongly affected by the level of geomagnetic activity, while the semidiurnal temperatures are not. Analysis of the second set of model simulations focusing on the generation of the tidal waves indicates that the tidal response to auroral activity is largely determined by the interference between the waves due to upward propagating tides and in situ solar forcing and those generated by the auroral momentum and energy sources. 28 refs., 19 figs.

  3. Forecasting Geomagnetic Storm with the Energetic Proton Accompanying CME

    NASA Astrophysics Data System (ADS)

    Xue, B. X.

    Solar flares are popular events on the solar disk while most of them being non-geo-effective The key factors that they could become geo-effective are weather they have CMEs accompanying them and the features of CME as well But among the hundreds of CMEs only few of them could cause significant geomagnetic disturbances which mainly depended on whether they headed the earth Several works have proved that CMEs could accelerate ionized particle in the shock wave in front of them that the amount of accelerated particles were the largest on the direction of CMEs moving The face that most of the SPEs would be followed by geomagnetic storms was a good example As the CMEs that moved toward the earth could accelerate particles the enhancement of energetic particle flux could be an omen for the geomagnetic storm caused by CMEs In this work the relationship between the geomagnetic disturbance and the energetic proton flux ACE-EPAM data together with the parameter of the solar flares that related to the CME was carefully investigated The preliminary result is that more than 90 of the enhancement in of the particle flux followed by shock that could be measured by ACE But the correlation between scale of the particle and that of the geomagnetic disturbance was not much significant Other factors that related to the characters of the CMEs had also to be taken into consideration The position of the flare which may affect the direction of the CMEs the flare scale which may decide the velocity and the duration which could relate to the magnetic

  4. Linking geomagnetic activity and polar surface air temperature variability

    NASA Astrophysics Data System (ADS)

    Seppala, Annika

    ERA-40 and ECMWF operational surface level air temperature (SAT) data sets from 1957 to 2006 were used to examine polar temperature variations during years with different levels of geomagnetic activity, as defined by the Ap index. Previous modelling work has suggested that NOx produced at high latitudes by energetic particle precipitation can eventually lead to detectable changes in polar SATs. We find that during winter months, ERA-40 and ECMWF polar SATs in years with high Ap index are different than in years with low Ap index; the differences are statistically significant at the 2-sigma level and range up to about ±4.5 K, de-pending on location. The temperature differences are larger when years with wintertime Sudden Stratospheric Warmings are excluded. Solar irradiance variations were taken into account in the analysis. Although using the re-analysis and operational data sets it was not possible to conclusively show that the polar SAT patterns are physically linked by geomagnetic activity, we conclude that geomagnetic activity likely plays a role in modulating polar wintertime surface air temperature patterns. The SAT results were tested against variation in the Quasi Biennial Oscillation (QBO), the El Niño Southern Oscillation (ENSO) and the Southern Annular Mode n (SAM). The results suggested that these were not driving the observed polar SAT variability. However, significant uncertainty is introduced by the Northern Annular Mode (NAM) and we could not robustly exclude a chance linkage between sea surface temperature (SST) variability and geomagnetic activity. Examining the physical link between geomagnetic activity and polar surface temperature variability patterns using atmospheric models is an ongoing task.

  5. Geomagnetic Storms and Acute Myocardial Infarctions Morbidity in Middle Latitudes

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.; Babayev, E. S.; Mustafa, F. R.; Stoilova, I.; Taseva, T.; Georgieva, K.

    2009-12-01

    Results of collaborative studies on revealing a possible relationship between solar activity (SA) and geomagnetic activity (GMA) and pre-hospital acute myocardial infarction (AMI) morbidity are presented. Studies were based on medical data from Bulgaria and Azerbaijan. Bulgarian data, covering the period from 01.12.1995 to 31.12.2004, concerned daily distribution of number of patients with AMI diagnose (in total 1192 cases) from Sofia Region on the day of admission at the hospital. Azerbaijani data contained 4479 pre-hospital AMI incidence cases for the period 01.01.2003-31.12.2005 and were collected from 21 emergency and first medical aid stations in Grand Baku Area (including Absheron Economical Region with several millions of inhabitants). Data were "cleaned" as much as possible from social and other factors and were subjected to medical and mathematical/statistical analysis. Medical analysis showed reliability of the used data. Method of ANalysis Of VAriance (ANOVA) was applied to check the significance of GMA intensity effect and the type of geomagnetic storms - those caused by magnetic clouds (MC) and by high speed solar wind streams (HSSWS) - on AMI incidences. Relevant correlation coefficients were calculated. Results were outlined for both considered data. Results obtained for the Sofia data showed statistically significant positive correlation between considered GMA indices and AMI occurrence. ANOVA revealed that AMI incidence number was significantly increased from the day before till the day after geomagnetic storms with different intensities. Geomagnetic storms caused by MC were related to significant increase of AMI number in comparison with the storms caused by HSSWS. There was a trend for such different effects even on -1st and +1st day for the period 1995-2004. Results obtained for the Baku data revealed trends similar to those obtained for Sofia data. AMI morbidity increment was observed on the days with higher GMA intensity and after these days

  6. Are ceramics and bricks reliable absolute geomagnetic intensity carriers?

    NASA Astrophysics Data System (ADS)

    Morales, Juan; Goguitchaichvili, Avto; Aguilar-Reyes, Bertha; Pineda-Duran, Modesto; Camps, Pierre; Carvallo, Claire; Calvo-Rathert, Manuel

    2011-08-01

    A detailed rock-magnetic and archeointensity study was carried out on materials baked by a western Mexican artisan following traditional techniques to produce faithful reproductions of archeological pieces of the Michoacán region (Western Mesoamerica). The field strength at the site (41.0 ± 0.5 μT) was measured with a fluxgate magnetometer and the temperature of the furnace during the baking process was monitored continually by means of a thermocouple placed in the middle of the baking cavity. Rock-magnetic experiments performed on the raw material (clay and paste) and on insitu prepared baked ceramics and bricks included measurement of thermomagnetic curves (susceptibility and strong-field magnetization versus temperature), first-order reversal curves (FORC), anisotropy of magnetic susceptibility (AMS) and anisotropy of thermoremanent magnetization (A-TRM). Magnetite and probably hematite are present in the samples as carriers of the remanence. Hysteresis ratios suggest that the samples fall in the pseudo-single-domain grain size region, which may indicate a mixture of multi-domain and a significant amount of single-domain grains. Ceramic pieces and brick fragments were subjected to the Thellier-Coe archeointensity method and to an alternative paleointensity experiment, with a TRIAXE magnetometer, in order to check whether they are faithful recorders of the local geomagnetic field strength. Mean raw-intensity of sample M1 (pottery) overestimates a 7% the expected site intensity, while those corresponding to the brick samples (LQ1 and LQ2) underestimate it 15%. Brick sample LNQ shows a slightly lower intensity (7%), but agrees with the expected site intensity within the experimental uncertainty. The intensity retrieved from the volcanic fragment also included closely reproduces the expected intensity. After A-TRM and cooling-rate corrections, all mean raw values move closer to the expected intensity. Measurement of temperatures at different parts inside the kiln

  7. Geomagnetic field intensity and inclination records from the Hawaiian long basaltic cores: geomagnetic implications

    NASA Astrophysics Data System (ADS)

    Laj, C. E.; Kissel, C.; Davies, C.; Gubbins, D.

    2009-12-01

    In the long basaltic cores drilled in the Big Island of Hawaii, the sub-horizontal orientation of the flows and their regular accumulation with time, which makes the continuity in time almost comparable with sediments, provides an excellent opportunity to obtain a detailed record of the absolute intensity and inclination of the geomagnetic field from a sequence of lava flows. Here, we report new paleointensity (Thellier and Thellier) and inclination determinations obtained from the analysis of 370 samples from 130 flows in the subaerial part of HSDP2. These new results are combined with previous results obtained from the other long basaltic cores in Hawaii (HSDP1, SOH4 and SOH1) all selected using a set of stringent paleointensity selection criteria (PICRIT-03). In a first step the Sharp and Renne age model was used for correlation of the records. In a second step correlation was refined using some characteristic features of the paleomagnetic records themselves (HSDP 1 and HSDP 2 in particular), which led to a slight modification of the Sharp and Renne age model. The age model was further improved by correlation with the sedimentary SINT-800 record. The results are consistent between these independent records, over the different time intervals where they overlap. This allows construction of the first accurate lava record of absolute intensity and inclination at Hawaii which overlap for almost 75% of this time interval these different records overlap, the results are very consistent and allow to construct an accurate lava record of absolute geomagnetic field intensity and inclination at Hawaii for the last 420 kyr based on at least two independent records over almost. The VADM undergoes large oscillations between about 3 and 16 10^22 A.m*2 with an average values of about 8 10^22 A m^2. When the values corresponding to recognized excursional periods are omitted, the inclination is on the average 29.6°, i.e. about 6° shallower than the GAD value. These results will

  8. An update on the correlation between the cosmic radiation intensity and the geomagnetic AA index

    NASA Technical Reports Server (NTRS)

    Shea, M. A.; Smart, D. F.

    1985-01-01

    A statistical study between the cosmic ray intensity, as observed by a neutron monitor, and of the geomagnetic aa index, as representative of perturbations in the plasma and interplanetary magnetic field in the heliosphere, has been updated to specifically exclude time periods around the reversal of the solar magnetic field. The results of this study show a strong negative correlation for the period 1960 through 1968 with a correlation coefficient of approximately -0.86. However, there is essentially no correlation between the cosmic ray intensity and the aa index for the period 1972-1979 (i.e. correlation coefficient less than 0.16). These results would appear to support the theory of preferential particle propagation into the heliosphere vis the ecliptic during the period 1960-1968 and via the solar polar regions during 1972-1979.

  9. Fifty years of progress in geomagnetic cutoff rigidity determinations

    NASA Astrophysics Data System (ADS)

    Smart, D. F.; Shea, M. A.

    2009-11-01

    This paper is a review of the progress made in geomagnetic cutoff rigidity calculations over the past 50 years. Determinations of cosmic ray trajectories, and hence cutoff rigidities, using digital computers began in 1956 and progressed slowly until 1962 when McCracken developed an efficient computer program to determine cosmic ray trajectories in a high degree simulation of the geomagnetic field. The application of this cosmic ray trajectory technique was limited by the available computer power. As computers became faster it was possible to determine vertical cutoff rigidity values for cosmic ray stations and coarse world grids; however, the computational effort required was formidable for the computers of the 1960s. Since most cosmic ray experiments were conducted on the surface of the Earth, the vertical cutoff rigidity was adopted as a standard reference value. The effective cutoff value derived from trajectory calculations appeared to be adequate for ordering cosmic ray data from latitude surveys. As the geomagnetic field evolution became more apparent, it was found necessary to update the world grid of cutoff rigidity values using more accurate descriptions of the geomagnetic field. In the 1970s and 1980s it became possible to do experimental verification of the accuracy of these cosmic ray cutoff determinations and also to design experiments based on these cutoff rigidity calculations. The extensive trajectory calculations done in conjunction with the HEAO-3 satellite and a comparison between these experimental measurements and the trajectory calculations verified the Störmer theory prediction regarding angular cutoff variations and also confirmed that the structure of the first order penumbra is very stable and could be used for isotope separation. Contemporary work in improving cutoff rigidities seems to be concentrating on utilizing improved magnetospheric models in an effort to determine more accurate geomagnetic cutoff values. When using geomagnetic

  10. Analysis of geomagnetically induced currents at a low-latitude region over the solar cycles 23 and 24: comparison between measurements and calculations

    NASA Astrophysics Data System (ADS)

    Barbosa, Cleiton; Alves, Livia; Caraballo, Ramon; Hartmann, Gelvam A.; Papa, Andres R. R.; Pirjola, Risto J.

    2015-11-01

    Geomagnetically Induced Currents (GIC) are a space weather effect, which affects ground-based technological structures at all latitudes on the Earth's surface. GIC occurrence and amplitudes have been monitored in power grids located at high and middle latitudes since 1970s and 1980s, respectively. This monitoring provides information about the GIC intensity and the frequency of occurrence during geomagnetic storms. In this paper, we investigate GIC occurrence in a power network at low latitudes (in the central Brazilian region) during the solar cycles 23 and 24. Calculated and measured GIC data are compared for the most intense geomagnetic storms (i.e. -50 < Dst < -50 nT) of the solar cycle 24. The results obtained from this comparison show a good agreement. The success of the model employed for the calculation of GIC leads to the possibility of determining GIC for events during the solar cycle 23 as well. Calculated GIC in one transformer reached ca. 30 A during the "Halloween storm" in 2003 whilst most frequent intensities lie below 10 A. The normalized inverse cumulative frequency for GIC data was calculated for the solar cycle 23 in order to perform a statistical analysis. It was found that a q-exponential Tsallis distribution fits the calculated GIC frequency distribution for more than 99% of the data. This analysis provides an overview of the long-term GIC monitoring at low latitudes and suggests new insight into critical phenomena involved in the GIC generation.

  11. Steady induction effects in geomagnetism. Part 1C: Geomagnetic estimation of steady surficial core motions: Application to the definitive geomagnetic reference field models

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1993-01-01

    In the source-free mantle/frozen-flux core magnetic earth model, the non-linear inverse steady motional induction problem was solved using the method presented in Part 1B. How that method was applied to estimate steady, broad-scale fluid velocity fields near the top of Earth's core that induce the secular change indicated by the Definitive Geomagnetic Reference Field (DGRF) models from 1945 to 1980 are described. Special attention is given to the derivation of weight matrices for the DGRF models because the weights determine the apparent significance of the residual secular change. The derived weight matrices also enable estimation of the secular change signal-to-noise ratio characterizing the DGRF models. Two types of weights were derived in 1987-88: radial field weights for fitting the evolution of the broad-scale portion of the radial geomagnetic field component at Earth's surface implied by the DGRF's, and general weights for fitting the evolution of the broad-scale portion of the scalar potential specified by these models. The difference is non-trivial because not all the geomagnetic data represented by the DGRF's constrain the radial field component. For radial field weights (or general weights), a quantitatively acceptable explication of broad-scale secular change relative to the 1980 Magsat epoch must account for 99.94271 percent (or 99.98784 percent) of the total weighted variance accumulated therein. Tolerable normalized root-mean-square weighted residuals of 2.394 percent (or 1.103 percent) are less than the 7 percent errors expected in the source-free mantle/frozen-flux core approximation.

  12. Reduced nocturnal morphine analgesia in mice following a geomagnetic disturbance.

    PubMed

    Ossenkopp, K P; Kavaliers, M; Hirst, M

    1983-10-10

    Latency to respond to an aversive thermal stimulus and the degree of analgesia induced by morphine were examined in mice injected with either isotonic saline or morphine sulfate (10 mg/kg) during midscotophase of a 12:12 h LD cycle. When mean response latencies were compared to the degree of geomagnetic disturbance (Ap index) present on test days, it was found that during the geomagnetic storm on December 17th, 1982, a significant reduction (P less than 0.01) in response latency was evident in both saline- and morphine-treated mice. The reduction in response latencies was greater, and lasted longer in the morphine-treated animals. It is suggested that the pineal gland may mediate this biomagnetic effect. PMID:6646507

  13. Acceleration and loss of relativistic electrons during small geomagnetic storms

    SciTech Connect

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; Friedel, R. H. W.

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  14. The geomagnetic secular variation S parameter: A mathematical artifact

    NASA Astrophysics Data System (ADS)

    Linder, J. M.; Gilder, S. A.

    2011-12-01

    Secular variation, the change in the Earth's magnetic field through time, reflects the energy state of the geodynamo. Secular variation is commonly quantified by the standard deviation of the angular distances of the virtual geomagnetic poles to their mean pole, known as the S value. The S value has long been thought to exhibit latitude dependence [S(λ)] whose origin is widely attributed to a combination of time-varying dipole and non-dipole components. The slope, magnitude and uncertainty of S(λ) are taken as a basis to model the geomagnetic field and understand its evolution. Here we show that variations in S stem from a mathematical aberration of the conversion from directions to poles. A new method to quantify secular variation is proposed.

  15. Study of Tatun Volcanoes by Fluxgate Geomagnetic Data

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yen, H. Y.; Chen, C. H.

    2014-12-01

    Tatun volcanoes, located at northern Taipei city, the capital city of Taiwan, are still active according to the previous studies. Thus, construct the geometry of the volcanic structures of Tatun volcanoes is necessary. We used 3-component geomagnetic data from two temporal fluxgate magnetometers and YMM(Yangming mountain) a permanent station from April to August 2014. The susceptibility of igneous rock is generally larger than metamorphic and sedimentary rocks, thus we use the Parkinson vectors derived from 3-component geomagnetic data through the magnetic transfer function to find out the location and geometry of the igneous rock under Tatun volcanoes. In order to know the depth of the anomalies, we used the magnetotelluric data of previous study that are in the vicinity of three stations to compute the skin depth, which show the relationship between frequency and the penetration depth of the electromagnetic wave. Then, we use the magnetic transfer function to calculate the azimuth of the anomalies at a specific depth.

  16. Simulating Geomagnetically Induced Currents in the Irish Power Network

    NASA Astrophysics Data System (ADS)

    Jones, A. G.; Blake, S. P.; Gallagher, P.; McCauley, J.; Hogg, C.; Beggan, C.; Thomson, A. W. P.; Kelly, G.; Walsh, S.

    2014-12-01

    Geomagnetic storms are known to cause geomagnetically induced currents (GICs) which can damage or destroy transformers on power grids. Previous studies have examined the vulnerability of power networks in countries such as the UK, New Zealand, Canada and South Africa. Here we describe the application of a British Geological Survey (BGS) thin-sheet conductivity model to compute the geo-electric field from the variation of the magnetic field, in order to better quantify the risk of space weather to Ireland's power network. This was achieved using DIAS magnetotelluric data from across Ireland. As part of a near-real-time warning package for Eirgrid (who oversee Ireland's transmission network), severe storm events such as the Halloween 2003 storm and the corresponding GIC flows at transformers are simulated.

  17. SuperDARN backscatter during intense geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Currie, J. L.; Waters, C. L.; Menk, F. W.; Sciffer, M. D.; Bristow, W. A.

    2016-06-01

    It is often stated that high-frequency radars experience a loss of backscatter during geomagnetic storm events. The occurrence of backscatter during 25 intense geomagnetic storms was examined using data from the Bruny Island and Kodiak radars and a superposed epoch analysis. It was found that while a reduction of backscatter occurred in the middle to far ranges, there was an increase in the amount of backscatter from close range following storm onset. Ray tracing showed that an enhanced charge density in the E region can reduce the chance of F region and increase the chance of E region backscatter. It was also shown that reduction in backscatter cannot be explained by D region absorption. Using a normalized SYM-H value, percentage time through recovery phase can be estimated during storm progression which allows a prediction of backscatter return in real time that accounts for varying storm recovery phase duration.

  18. Influence of solar wind variability on geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Garrett, H. B.; Dessler, A. J.; Hill, T. W.

    1974-01-01

    A statistical study of solar wind data from the Explorer 33 satellite shows that interplanetary magnetic field irregularities are enhanced in the interaction region where a fast solar wind stream overtakes a slower solar wind stream. Comparison with geomagnetic AE and ap indexes further shows that these interplanetary irregularities enhance the level of geomagnetic disturbances. Thus while substorm occurrence is highly correlated with the dawn-dusk component of the solar wind electric field, the amplitude of the substorms is an increasing function of the variance in the interplanetary field. This result can be interpreted as a capacitative effect of the magnetopause that allows a time-varying solar wind electric field to penetrate the magnetosphere more effectively than a static solar wind electric field.

  19. Acceleration and loss of relativistic electrons during small geomagnetic storms

    DOE PAGESBeta

    Anderson, Brett R.; Millan, R. M.; Reeves, Geoffrey D.; Friedel, Reinhard Hans W.

    2015-12-02

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > –50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletionmore » than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. As a result, small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.« less

  20. Acceleration and loss of relativistic electrons during small geomagnetic storms

    SciTech Connect

    Anderson, Brett R.; Millan, R. M.; Reeves, Geoffrey D.; Friedel, Reinhard Hans W.

    2015-12-02

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > –50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. As a result, small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  1. Acceleration and loss of relativistic electrons during small geomagnetic storms

    DOE PAGESBeta

    Anderson, B. R.; Millan, R. M.; Reeves, G. D.; Friedel, R. H. W.

    2015-12-02

    We report that past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst >₋50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result inmore » flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.« less

  2. Low-altitude trapped protons at the geomagnetic equator

    NASA Technical Reports Server (NTRS)

    Guzik, T. G.; Miah, M. A.; Mitchell, J. M.; Wefel, J. P.

    1989-01-01

    Geomagnetically trapped protons in the 0.6- to 9-MeV energy range were measured at latitudes near the geomagnetic equator by the Phoenix 1 experiment on board the S81-1 mission from May to November 1982. The protons show a distribution in latitude along the line of minimum magnetic field strength with a full width at half maximum of about 10 deg but with no appreciable longitudinal variation. Between 170 and 290 Km the peak proton flux shows a fifth-power altitude dependence, in contrast to previous measurements at higher altitudes, possibly demonstrating source attenuation. The efficiency of the telescope is calculated as a function of particle pitch angle and used to investigate the time dependence (1969-1982) of the intensity.

  3. Predicting ground electric field due to geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Nair, M. C.; Püthe, C.; Kuvshinov, A. V.

    2013-12-01

    Electric field induced in the ground by geomagnetic disturbances drives currents in the power transmission grids, telecommunication lines or buried pipelines. These currents, known as Geomagnetically Induced Currents (GIC) are known to cause service disruptions. This effect is maximal at high latitudes due to the presence of strong polar electrojet currents. However both observations and models show that GIC caused by ring current intensifications also pose a risk at low- and mid-latitude locations, where majority of systems vulnerable to GIC are installed. A technique to model geoelectric field induced by the magnetospheric currents in a 3D conductivity model of the Earth is presented by Püthe & Kuvshinov (2013). We extend this work by predicting the induced geoelectric field solely based on Disturbance storm time index (Dst), a measure of ring current activity. Two major components of this effort are 1) Pre-computed 3D electromagnetic response of the ground to a unit magnetopsheric (P01) source and 2) Forecasted Dst data (Temerin & Li, 2002; 2006) from Advanced Composition Explorer (ACE) satellite at the L1 Lagrange point. Depending on the solar wind speed, the Dst forecasts are available approximately 1 hour in advance. The pre-computed response function for a site is multiplied by the Dst data in frequency domain to obtain predicted electric field for that location. Validating our approach, the predicted geoelectric field compares favorably with observed data from an ocean bottom electromagnetic array in the Pacific Ocean during the geomagnetic storm of April 2000. We also compare data from USArray magnetotelluric stations operational during the geomagnetic storm of October 2011. In this case, the results are site specific, with varying degrees of model fit. This indicates the influence of local surface conductivity inhomogeneities on the observed geoelectric data. Averaging data from adjacent stations seems to improve the fit with the prediction.

  4. The geomagnetically trapped radiation environment: A radiological point of view

    NASA Technical Reports Server (NTRS)

    Holly, F. E.

    1972-01-01

    The regions of naturally occurring, geomagnetically trapped radiation are briefly reviewed in terms of physical parameters such as; particle types, fluxes, spectrums, and spatial distributions. The major emphasis is placed upon a description of this environment in terms of the radiobiologically relevant parameters of absorbed dose and dose-rate and a discussion of the radiological implications in terms of the possible impact on space vehicle design and mission planning.

  5. Types and Characteristics of Data for Geomagnetic Field Modeling

    NASA Technical Reports Server (NTRS)

    Langel, R. A. (Editor); Baldwin, R. T. (Editor)

    1992-01-01

    Given here is material submitted at a symposium convened on Friday, August 23, 1991, at the General Assembly of the International Union of Geodesy and Geophysics (IUGG) held in Vienna, Austria. Models of the geomagnetic field are only as good as the data upon which they are based, and depend upon correct understanding of data characteristics such as accuracy, correlations, systematic errors, and general statistical properties. This symposium was intended to expose and illuminate these data characteristics.

  6. Transport from chaotic orbits in the geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Horton, W.; Tajima, T.

    1991-01-01

    The rapid change in direction and magnitude of the magnetic field vector in crossing the quasi-neutral sheet in the geomagnetic tail leads to deterministic Hamiltonian chaos. The finite correlation times in the single particle orbits due to the continuum of orbital frequencies leads to well-defined collisionless transport coefficients. The transport coefficients are derived for plasma trapped in the quasi-neutral sheet.

  7. Total electron content behavior over Japan during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kutiev, Ivan; Watanabe, Shigeto; Otsuka, Yoichi; Saito, Akinori

    2005-01-01

    The total electron content (TEC) obtained from GPS signals is used to study ionospheric dynamics over Japan during geomagnetically disturbed conditions. The numerous TEC measurements are averaged in cells with a size 1.5° × 1.5° geographic scale and formatted as time series within the years 2000-2002. To extract the storm time changes of TEC, the diurnal and 27-day periodicities are subsequently removed. Diurnal variations are removed by replacing absolute TEC values in each cell with their relative deviations (RTEC) from medians. The hourly RTEC values from all cells within the central 4°-wide band over Japan area are then approximated by a plane surface. This surface is represented by two parameters: its value at the center (rt) and the slope (b) along the main axis, taken as constants of the linear regression. The 27-day periodicity was approximated by Fourier waves with main period of 640 hours and two harmonics separately for rt and b and subtracted from them. The analysis of rt and b behavior during a number of geomagnetic storms allowed us to reveal several repeatable features of average TEC behavior. It was found that TEC behavior during the storms is similar to that of foF2 at the F region and was local time-dependent. A marked poleward expansion of the equatorial ionosphere (crest region) at the end of recovery phase is persistently observed feature, produced probably by intensified eastward zonal winds. Such an expansion of equatorial ionosphere is observed also during isolated substorms, outside main geomagnetic storms. An oscillation-like change of positive and negative disturbances with period of 24 hours is observed during a 4-day period, following a moderate storm. In the absence of geomagnetic activity driver that effect is probably caused by the alternative expansion and contraction of equatorial ionosphere.

  8. An Impending geomagnetic transition? Hints from the past

    NASA Astrophysics Data System (ADS)

    Laj, Carlo; Kissel, Catherine

    2016-04-01

    The rapid decrease of the geomagnetic field intensity in the last centuries together with a growth of the South Atlantic Anomaly has led to speculations that an attempt to a reversal or an excursion might be under way. Here we investigate this hypothesis by examining past records of geomagnetic field intensity obtained from sedimentary cores and from the study of cosmogenic nuclides. The selected records describe geomagnetic changes with an unprecedented temporal resolution between 20 and 75 kyr B.P. The precise age model and the accurate calibration of intensities on absolute scale allow to calculate the duration and the rate of change of the field during the well documented excursions of Laschamp and Mono Lake. The rate of decay of the field intensity during these excursions is is virtually similar to that observed over the last few centuries and much higher than that observed for other low intensity periods of the same duration but not associated to any polarity change. Although these records do not provide undisputable information on future evolution of the field, we find that some aspects of the present-day geomagnetic field have some similarities with those documented for the Laschamp excursion 41 kyr ago. Under the assumption that the dynamo processes for an eventual future reversal or excursion would be similar to those of the Laschamp excursion, we tentatively suggest that, whilst irreversible processes that will drive the geodynamo into a polarity change may have already started, a reversal or an excursion should not be expected before 500 to 1000 years.

  9. Study of geomagnetic disturbances and ring current variability during storm and quiet times using wavelet analysis and ground-based magnetic data from multiple stations

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghua

    processes. The techniques developed in this dissertation have potential values as space weather monitoring tools for satellite controls, power grids, communication systems, oil pipelines, and other high-tech systems that are vulnerable to the negative impacts of disruptive geomagnetic events.

  10. Signatures of strong geomagnetic storms in the equatorial latitude

    NASA Astrophysics Data System (ADS)

    Olawepo, A. O.; Adeniyi, J. O.

    2014-04-01

    Ionosonde data from two equatorial stations in the African sector have been used to study the signatures of four strong geomagnetic storms on the height - electron density profiles of the equatorial ionosphere with the objective of investigating the effects and extent of the effects on the three layers of the equatorial ionosphere. The results showed that strong geomagnetic storms produced effects of varying degrees on the three layers of the ionosphere. Effect of strong geomagnetic storms on the lower layers of the equatorial ionosphere can be significant when compared with effect at the F2-layer. Fluctuations in the height of ionization within the E-layer were as much as 0% to +20.7% compared to -12.5% to +8.3% for the F2-layer. The 2007 version of the International Reference Ionosphere, IRI-07 storm-time model reproduced responses at the E-layer but overestimated the observed storm profiles for the F1- and F2-layers.

  11. Estimation of cold plasma outflow during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Eriksson, A.; André, M.; Maes, L.; Baddeley, L.; Barakat, A.; Chappell, R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R.; Welling, D.

    2015-12-01

    Low-energy ions of ionospheric origin constitute a significant contributor to the magnetospheric plasma population. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise if continuous longtime observations, such as during a geomagnetic storm, are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near-Earth region during geomagnetic storms.

  12. New hemispheric geomagnetic indices α with 15 min time resolution

    NASA Astrophysics Data System (ADS)

    Chambodut, Aude; Marchaudon, Aurélie; Lathuillère, Chantal; Menvielle, Michel; Foucault, Etienne

    2015-11-01

    New subauroral α15 indices are proposed. They are based on a simple reproducible algorithm which relies on an as dense as possible network of magnetic observatories in each hemisphere. At first, the variation with time of local geomagnetic activity is determined at each magnetic station. Gathering all obtained stations' precomputed values, a normalization with corrected geomagnetic latitude is determined. Then, for each 15 min interval, magnetic activity on the horizontal component is averaged out over 15 min and corrected using this normalization, before a spline modeling of the longitudinal variation in each hemisphere is applied. Hemispheric and planetary 15 min indices are then computed by arithmetic means. Preliminary statistical results, from probability distribution function over a solar cycle and superposed epoch analysis during storms conditions, show, by comparison with am geomagnetic index series, that new α15 indices are reliable in describing subauroral magnetic activity. These new indices will suit any future user, allowing either to choose the spatial description (planetary versus hemispheric) and/or to choose the temporal resolution, knowing unambiguously all their strengths and caveats.

  13. Evidence that pigeons orient to geomagnetic intensity during homing

    PubMed Central

    Dennis, Todd E; Rayner, Matt J; Walker, Michael M

    2007-01-01

    The influence of the Earth's magnetic field on locomotory orientation has been studied in many taxa but is best understood for homing pigeons (Columba livia). Effects of experimentally induced and naturally occurring perturbations in the geomagnetic field suggest that pigeons are sensitive to changes in geomagnetic parameters. However, whether pigeons use the Earth's magnetic field for position determination remains unknown. Here we report an apparent orientation to the intensity gradient of the geomagnetic field observed in pigeons homing from sites in and around a magnetic anomaly. From flight trajectories recorded by GPS-based tracking devices, we noted that many pigeons released at unfamiliar sites initially flew, in some cases up to several kilometres, in directions parallel and/or perpendicular to the bearing of the local intensity field. This behaviour occurred irrespective of the homeward direction and significantly more often than what was expected by random chance. Our study describes a novel behaviour which provides strong evidence that pigeons when homing detect and respond to spatial variation in the Earth's magnetic field—information of potential use for navigation. PMID:17301015

  14. Long-term biases in geomagnetic K and aa indices

    USGS Publications Warehouse

    Love, J.J.

    2011-01-01

    Analysis is made of the geomagnetic-activity aa index and its source K-index data from groups of ground-based observatories in Britain, and Australia, 1868.0-2009.0, solar cycles 11-23. The K data show persistent biases, especially for high (low) K-activity levels at British (Australian) observatories. From examination of multiple subsets of the K data we infer that the biases are not predominantly the result of changes in observatory location, localized induced magnetotelluric currents, changes in magnetometer technology, or the modernization of K-value estimation methods. Instead, the biases appear to be artifacts of the latitude-dependent scaling used to assign K values to particular local levels of geomagnetic activity. The biases are not effectively removed by weighting factors used to estimate aa. We show that long-term averages of the aa index, such as annual averages, are dominated by medium-level geomagnetic activity levels having K values of 3 and 4. ?? 2011 Author(s).

  15. A global geomagnetic model based on historical and paleomagnetic data

    NASA Astrophysics Data System (ADS)

    Arneitz, P.; Leonhardt, R.; Fabian, K.

    2015-12-01

    Two main types of data are available to reconstruct the temporal and spatial geomagnetic field evolution. Historical instrumental measurements (direct data) extend from present day to the late Middle Age, and, prior the 19th century, consist mainly of declination values. Further back in the past, field reconstructions rely exclusively on the magnetization acquired by archaeological artefacts and rocks or sediments (indirect data). The major challenges for a reliable inversion approach are the inhomogeneous data distribution, the highly variable data quality, and inconsistent quality parameters. Available historical, archeomagnetic and volcanic records have been integrated into a single database together with corresponding metadata. This combination of compilations enables a joint evaluation of geomagnetic field records from different origins. In particular, data reliability and quality of indirect records are investigated using a detailed comparison with their direct counterparts. The collection forms the basis for combined inverse modeling of the geomagnetic field evolution. The iterative Bayesian inversion approach targets the implementation of reliable error treatments, which allow to combine data from different sources. Furthermore, a verification method scrutinizing the limitations of the applied inversion scheme and the used datasets is developed. Here, we will present strategies for the integration of different data types into the modeling procedure. The obtained modeling results and their validity will be discussed.

  16. The Blake geomagnetic excursion recorded in a radiometrically dated speleothem

    NASA Astrophysics Data System (ADS)

    Osete, María-Luisa; Martín-Chivelet, Javier; Rossi, Carlos; Edwards, R. Lawrence; Egli, Ramon; Muñoz-García, M. Belén; Wang, Xianfeng; Pavón-Carrasco, F. Javier; Heller, Friedrich

    2012-11-01

    One of the most important developments in geomagnetism has been the recognition of polarity excursions of the Earth's magnetic field. Accurate timing of the excursions is a key point for understanding the geodynamo process and for magnetostratigraphic correlation. One of the best-known excursions is the Blake geomagnetic episode, which occurred during marine isotope stage MIS 5, but its morphology and age remain controversial. Here we show, for the first time, the Blake excursion recorded in a stalagmite which was dated using the uranium-series disequilibrium techniques. The characteristic remanent magnetisation is carried by fine-grained magnetite. The event is documented by two reversed intervals (B1 and B2). The age of the event is estimated to be between 116.5±0.7 kyr BP and 112.0±1.9 kyr BP, slightly younger (∼3-4 kyr) than recent estimations from sedimentary records dated by astronomical tuning. Low values of relative palaeointensity during the Blake episode are estimated, but a relative maximum in the palaeofield intensity coeval with the complete reversal during the B2 interval was observed. Duration of the Blake geomagnetic excursion is 4.5 kyr, two times lower than single excursions and slightly higher than the estimated diffusion time for the inner core (∼3 kyr).

  17. Geomagnetically Induced Currents and Impact on Power Grids

    NASA Astrophysics Data System (ADS)

    Pulkkinen, A. A.

    2015-12-01

    Geomagnetically induced currents (GIC) flowing in long manmade conductor systems have become one of the main space weather concerns. The potential for widespread problems in operating high-voltage power transmission systems during major geomagnetic storms has prompted increasing federal regulatory, science, industry and public interest in the problem. The impact caused by extreme storm events has been of special interest and consequently much of the recent GIC research has been focused on defining extreme GIC event scenarios and quantifying the corresponding transmission system response. In addition, there is an elevated need for developing next generation GIC prediction products for the power industry. In this presentation, I will discuss the key scientific concepts pertaining to GIC and provide a brief review of the recent progress in developing extreme storm scenarios and new predictive techniques. Much of the recent progress in understanding GIC and its impact on power grids has resulted from improved scientific community-power industry interactions. The common language and information exchange interfaces established between the two communities have led to significant progress in transitioning scientific knowledge into detailed impacts analyses. I will provide a few personal reflections on the interactions with the power industry. We also face a number of future challenges in specifying GIC, for example, in terms of more realistic modeling of the three-dimensional geomagnetic induction process. I will discuss briefly some of these future challenges.

  18. Spurious behavior in volcanic records of geomagnetic field reversals

    NASA Astrophysics Data System (ADS)

    Carlut, Julie; Vella, Jerome; Valet, Jean-Pierre; Soler, Vicente; Legoff, Maxime

    2016-04-01

    Very large directional variations of magnetization have been reported in several lava flows recording a geomagnetic reversal. Such behavior could reflect real geomagnetic changes or be caused by artifacts due to post-emplacement alteration and/or non-ideal magnetic behavior. More recently, a high resolution paleomagnetic record from sediments pleads also for an extremely rapid reversal process during the last reversal. Assuming that the geomagnetic field would have moved by tens of degrees during cooling of moderate thickness lava flows implies brief episodes of rapid changes by a few degrees per day that are difficult to reconcile with the rate of liquid motions at the core surface. Systematical mineralogical bias is a most likely explanation to promote such behavior as recently reconsidered by Coe et al., 2014 for the rapid field changes recorded at Steens Mountain. We resampled three lava flows at La Palma island (Canarias) that are sandwiched between reverse polarity and normal polarity flows associated with the last reversal. The results show an evolution of the magnetization direction from top to bottom. Thermal demagnetization experiments were conducted using different heating and cooling rates. Similarly, continuous demagnetization and measurements. In both cases, we did not notice any remagnetization associated with mineralogical transformations during the experiments. Magnetic grain sizes do not show any correlation with the amplitude of the deviations. Microscopic observations indicate poor exsolution, which could suggests post-cooling thermochemical remagnetization processes.

  19. Which Solar and Geomagnetic Drivers Control Earth's Upper Atmosphere Thermostat?

    NASA Astrophysics Data System (ADS)

    Knipp, D.; Mlynczak, M. G.; McGranaghan, R. M.; Kilcommons, L. M.

    2015-12-01

    Nitric Oxide (NO) is a trace component of Earth's upper atmosphere that allows Earth's thermosphere to cool in response to energy input from solar extreme ultraviolet (EUV) photons and geomagnetic activity. When created and excited, NO molecules provide a natural thermostat via infrared radiative emissions [Kockarts, 1980]. A record of this cooling over the last 13 years has been provided by Mlynczak et al. [2014]. Nitric Oxide emissions in concert with EUV photons, auroral particles, and neutral thermosphere circulation determine if geomagnetic storms will deliver a sudden powerful upheaval of Earth's upper atmosphere or a damped event. In this talk I will review recent findings about the forecastability of solar and magnetospheric control of this important thermospheric trace constituent. In particular, I will discuss the role of pseudo-streamers and helmet streamers in the solar wind, and the possible role of magnetic cloud orientation, in determining the extent of thermospheric NO storm response. Anticipating the thermospheric NO response to geomagnetic storms is a next step in improving satellite drag forecasting.

  20. [ON HUMAN BODY REACTION TO A CHANGED GEOMAGNETIC BACKGROUND].

    PubMed

    Sterlikova, I V

    2015-01-01

    Purpose of the work was to test the concept about existence of a heliobiological relation in the Earth's middle-latitude region for which to analyze, as an example, frequency of circulatory disease exacerbation, mental and behavior disorders, and respiratory diseases (bronchial asthma). The subject and object of the experimental statistic survey have been dwellers of city of Murom (Vladimir region) located in middle-latitude geomagnetic region Φ ≈ 53 degrees. The source material in the investigation was medical data of the Murom ambulance service and geophysical data of the Borok geomagnetic observatory (Yaroslavl region). The survey went on 3 years from February, 1985 till December, 1987 and coincided with the rise of the 11th solar cycle. The largest number of calls to the ambulance service due to acute circulatory condition, mental or behavior disorders, respiratory diseases (bronchial asthma particularly) and their fatal outcome fell on periods of long absence of high-frequency geomagnetic pulsation within the frequency range of human biorhythms.

  1. Global structure of ionospheric TEC anomalies driven by geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Pancheva, D.; Mukhtarov, P.; Andonov, B.

    2016-07-01

    This study examines the structure and variability of the ionospheric TEC anomalies driven by geomagnetic storms. For this purpose the CODE global ionospheric TEC data from four geomagnetically disturbed periods (29 October-1 November 2003, 7-10 November 2004, 14-15 December 2006, and 5-6 August 2011) have been considered. By applying the tidal analysis to the geomagnetically forced TEC anomalies we made an attempt to identify the tidal or stationary planetary wave (SPW) signatures that may contribute to the generation of these anomalies. It has been found that three types of positive anomalies with different origin and different latitudinal appearance are observed. These are: (i) anomalies located near latitudes of ±40° and related to the enhancement and poleward moving of the equatorial ionization anomaly (EIA) crests; (ii) anomalies located near latitudes of ±60° and seen predominantly in the night-side ionosphere, and (iii) very high latitude anomalies having mainly zonally symmetric structure and related to the auroral heating and thermospheric expansion. The decomposition analysis revealed that these anomalies can be reconstructed as a result of superposition of the following components: zonal mean (ZM), diurnal migrating (DW1), zonally symmetric diurnal (D0), and stationary planetary wave 1 (SPW1).

  2. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal.

    PubMed

    Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L; Sato, Hiroshi

    2013-01-22

    The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR-cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama-Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to <40% of its present value, for which we estimate >40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux. PMID:23297205

  3. Midlatitude cooling caused by geomagnetic field minimum during polarity reversal

    PubMed Central

    Kitaba, Ikuko; Hyodo, Masayuki; Katoh, Shigehiro; Dettman, David L.; Sato, Hiroshi

    2013-01-01

    The climatic effects of cloud formation induced by galactic cosmic rays (CRs) has recently become a topic of much discussion. The CR–cloud connection suggests that variations in geomagnetic field intensity could change climate through modulation of CR flux. This hypothesis, however, is not well-tested using robust geological evidence. Here we present paleoclimate and paleoenvironment records of five interglacial periods that include two geomagnetic polarity reversals. Marine oxygen isotope stages 19 and 31 contain both anomalous cooling intervals during the sea-level highstands and the Matuyama–Brunhes and Lower Jaramillo reversals, respectively. This contrasts strongly with the typical interglacial climate that has the temperature maximum at the sea-level peak. The cooling occurred when the field intensity dropped to <40% of its present value, for which we estimate >40% increase in CR flux. The climate warmed rapidly when field intensity recovered. We suggest that geomagnetic field intensity can influence global climate through the modulation of CR flux. PMID:23297205

  4. [ON HUMAN BODY REACTION TO A CHANGED GEOMAGNETIC BACKGROUND].

    PubMed

    Sterlikova, I V

    2015-01-01

    Purpose of the work was to test the concept about existence of a heliobiological relation in the Earth's middle-latitude region for which to analyze, as an example, frequency of circulatory disease exacerbation, mental and behavior disorders, and respiratory diseases (bronchial asthma). The subject and object of the experimental statistic survey have been dwellers of city of Murom (Vladimir region) located in middle-latitude geomagnetic region Φ ≈ 53 degrees. The source material in the investigation was medical data of the Murom ambulance service and geophysical data of the Borok geomagnetic observatory (Yaroslavl region). The survey went on 3 years from February, 1985 till December, 1987 and coincided with the rise of the 11th solar cycle. The largest number of calls to the ambulance service due to acute circulatory condition, mental or behavior disorders, respiratory diseases (bronchial asthma particularly) and their fatal outcome fell on periods of long absence of high-frequency geomagnetic pulsation within the frequency range of human biorhythms. PMID:26554135

  5. Sudden death in epileptic rats exposed to nocturnal magnetic fields that simulate the shape and the intensity of sudden changes in geomagnetic activity: an experiment in response to Schnabel, Beblo and May

    NASA Astrophysics Data System (ADS)

    Persinger, M. A.; McKay, B. E.; O'Donovan, C. A.; Koren, S. A.

    2005-03-01

    To test the hypothesis that sudden unexplained death (SUD) in some epileptic patients is related to geomagnetic activity we exposed rats in which limbic epilepsy had been induced to experimentally produced magnetic fields designed to simulate sudden storm commencements (SSCs). Prior studies with rats had shown that sudden death in groups of rats in which epilepsy had been induced months earlier was associated with the occurrence of SSCs and increased geomagnetic activity during the previous night. Schnabel et al. [(2000) Neurology 54:903 908) found no relationship between SUD in human patients and geomagnetic activity. A total of 96 rats were exposed to either 500, 50, 10 40 nT or sham (less than 10 nT) magnetic fields for 6 min every hour between midnight and 0800 hours (local time) for three successive nights. The shape of the complex, amplitude-modulated magnetic fields simulated the shape and structure of an average SSC. The rats were then seized with lithium and pilocarpine and the mortality was monitored. Whereas 10% of the rats that had been exposed to the sham field died within 24 h, 60% of the rats that had been exposed to the experimental magnetic fields simulating natural geomagnetic activity died (P<.001) during this period. These results suggest that correlational analyses between SUD in epileptic patients and increased geomagnetic activity can be simulated experimentally in epileptic rats and that potential mechanisms might be testable directly.

  6. The geomagnetic field - An explanation for the microturbulence in coaxial gun plasmas

    NASA Technical Reports Server (NTRS)

    Mather, J. W.; Ahluwalia, H. S.

    1988-01-01

    The complexity introduced by the geomagnetic field in several regions of a coaxial gun plasma device is described. It is shown that the annihilation of the swept-up geomagnetic flux, trapped within the highly compressed turbulent plasma, provides an explanation for varied performance and experimental results. The results indicate that the device should be aligned along the direction of the local geomagnetic field or enclosed in a mu-metal shield.

  7. Variability modes in core flows inverted from geomagnetic field models

    NASA Astrophysics Data System (ADS)

    Pais, M. A.; Morozova, A. L.; Schaeffer, N.

    2014-01-01

    The flow of liquid metal inside the Earth's core produces the geomagnetic field and its time variations. Understanding the variability of those deep currents is crucial to improve the forecast of geomagnetic field variations and may provide relevant information on the core dynamics. The main goal of this study is to extract and characterize the leading variability modes of core flows over centennial periods, and to assess their statistical robustness. To this end, we use flows that we invert from two geomagnetic field models (`gufm1' and `COV-OBS'), and apply principal component analysis and singular value decomposition of coupled fields. The quasi-geostrophic (QG) flows inverted from both geomagnetic field models show similar features. However, `COV-OBS' flows have a less energetic mean and larger time variability. The statistical significance of flow components is tested from analyses performed on subareas of the whole domain. Bootstrapping methods are also used to extract significant flow features required by both `gufm1' and `COV-OBS'. Three main empirical circulation modes emerge, simultaneously constrained by both geomagnetic field models and expected to be robust against the particular a priori used to build them (large-scale QG dynamics). Mode 1 exhibits three large vortices at medium/high latitudes, with opposite circulation under the Atlantic and the Pacific hemispheres. Mode 2 interestingly accounts for most of the variations of the Earth's core angular momentum. In this mode, the regions close to the tangent cylinder and to the equator are correlated, and oscillate with a period between 80 and 90 yr. Each of these two modes is energetic enough to alter the mean flow, sometimes reinforcing the eccentric gyre, and other times breaking it up into smaller circulations. The three main circulation modes added to the mean flow account for about 70 per cent of the flows variability, 90 per cent of the rms total velocities, and 95 per cent of the secular

  8. Cosmic rays, conditions in interplanetary space and geomagnetic variations during solar cycles 19-24

    NASA Astrophysics Data System (ADS)

    Biktash, Lilia

    2016-07-01

    We have studied conditions in interplanetary space, which can have an influence on galactic and solar cosmic rays (CRs). In this connection the solar wind and interplanetary magnetic field parameters and CRs variations have been compared with geomagnetic activity represented by the equatorial Dst and Kp indices beginning from 1955 to the end 2015. The indices are in common practice in the solar wind-magnetosphere-ionosphere interaction studies and they are the final product of this interaction. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Correlation of sunspot numbers and long-term variations of cosmic rays do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU also. Moreover records of in situ space measurements of the IMF and most other indicators of solar activity cover only a few decades and have a lot of gaps for calculations of long-term variations. Because of this, in such investigations, the geomagnetic indices have some inestimable advantage as continuous series other the solar wind measurements. We have compared the yearly average variations of the indices and of the solar wind parameters with cosmic ray data from Moscow, Climax, Halekala and Oulu neutron monitors during the 20-24 solar cycles. During the descending phases of the solar cycles the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations and had effects on cosmic rays variations. We show that long-term Dst and Kp variations in these solar cycles were correlated with cosmic ray count rates and can be used for prediction of CR variations. Climate change in connection with evolution of CRs variations is discussed.

  9. Comparison of Ionospheric TEC Derived from GPS and IRI 2012 Model during Geomagnetic Storms at Indonesia

    NASA Astrophysics Data System (ADS)

    Marlia, Dessi; Wu, Falin

    2016-07-01

    This paper investigates the variations of vertical Total Electron Content (VTEC) at Manado, Indonesia (geographic coordinates : lat 1.34 ° S and long 124.82 ° E) for period 2013. The GPS measured TEC is compared with the TEC derived from the IRI (International Reference Ionosphere) 2012 model. Vertical TEC measurements obtained from dual frequency GPS receiver that is GISTM (GPS Ionospheric Scintillations and TEC monitor). Variation of TEC validate to IRI 2012 model at Manado station has been compared with the model for three different topside of electron density namely NeQuick, IRI-01-Corr and IRI2001.There is a need to investigation on diurnal, seasonal variations, solar activity dependence of TEC and including effects of space weather related events to TEC and modeling of TEC. In this paper, diurnal and seasonal variations of VTEC and the effect of VTEC due to space weather events like Geomagnetic storms are analyzed. The result show that the TEC prediction using IRI-2001 model overestimated the GPS TEC measurements, while IRI-NeQuick and IRI-01-corr show a tendency to underestimates the observed TEC during the day time particularly in low latitude region in the maximum solar activity period (2013). The variations of VTEC during 17th March, 2013, 29th June, 2013 storms are analyzed. During 17th March,2013 storm enhancement in VTEC with Kp value 6 and Disturbance storm index (DST) -132 nT. During 29th June, 2013 storm VTEC depletion with value 7 and DST -98 nT. Significant deviations in VTEC during the main phase of the storms are observed. It is found that the response of ionospheric TEC consist of effects of both enhancement and depletions in ionospheric structures (positive and negative storm). Keywords: TEC ionosphere, GPS, GISTM, IRI 2012 model, solar activity, geomagnetic storm

  10. Variation of surface electric field during geomagnetic disturbed period at Maitri, Antarctica

    NASA Astrophysics Data System (ADS)

    Victor, N. Jeni; Panneerselvam, C.; Anil Kumar, C. P.

    2015-12-01

    The paper discusses on the variations of the atmospheric vertical electric field measured at sub-auroral station Maitri (70∘75'S, 11∘75'E), and polar station Vostok (78.5∘S, 107∘E) during the geomagnetic disturbances on 25-26 January 2006. Diurnal variation of surface electric field measured at Maitri shows a similar variation with worldwide thunderstorm activity, whereas the departure of the field is observed during disturbed periods. This part of the field corresponds to the magnetospheric/ionospheric (an additional generator in the polar regions) voltage generators. Solar wind parameters and planetary indices represent the temporal variation of the disturbances, and digital fluxgate magnetometer variation continuously monitored to trace the auroral movement at Maitri. We have observed that the electrojet movement leaves its signature on vertical and horizontal components of the DFM in addition; the study infers the position of auroral current wedge with respect to Maitri. To exhibit the auroral oval, OVATION model is obtained with the aid of DMSP satellite and UV measurements. It is noted that the Maitri is almost within the auroral oval during the periods of disturbances. To examine the simultaneous changes in the vertical electric field associated with this magnetic disturbance, the dawn-dusk potential is studied for every UT hours; the potential was obtained from Weimer model and SuperDARN radar. The comparison reveals the plausible situation for the superposition of dawn-dusk potential on surface electric field over Maitri. This observation also shows that the superposition may not be consistent with the phase of the electrojet. Comparison of surface electric field at Maitri and Vostok shows that the parallel variation exhibits with each other, but during the period of geomagnetic disturbances, the influence is not much discerned at Vostok.

  11. Towards more reliable long-term indices of geomagnetic activity: correcting a new inhomogeneity problem in early geomagnetic data

    NASA Astrophysics Data System (ADS)

    Holappa, Lauri; Mursula, Kalevi

    2016-07-01

    For the time before the space era our knowledge of the centennial evolution of solar wind (SW) and interplanetary magnetic field (IMF) is based on proxies derived from geomagnetic indices. The reliability of these proxies is dependent on the homogeneity of magnetic field data. In this paper we study the interhourly (IHV) and interdiurnal (IDV_{1d}) variability indices calculated from the data of two British observatories, Eskdalemuir and Lerwick, and compare them to the corresponding indices of the German Niemegk observatory. We find an excess of about 14 ± 4% (5.8 ± 2%) and 27 ± 10% (15 ± 6%) in the IHV (IDV_{1d}) in the indices of Eskdalemuir and Lerwick in 1935-1969. The timing of this excess accurately coincides with instrument changes made in these observatories, strongly supporting the interpretation that the excess is indeed caused by instrument related inhomogeneities in the data of Eskdalemuir and Lerwick. We show that the detected excess notably modifies the long-term trend of geomagnetic activity and the centennial evolution of IMF strength and solar wind speed estimated using these indices. We note that the detected inhomogeneity problem may not be limited to the data of the two studied observatories, but may be quite common to long series of geomagnetic measurements. These results question the reliability of the present measures of the centennial change in solar wind speed and IMF.

  12. Effects of magnetic fields produced by simulated and real geomagnetic storms on rats

    NASA Astrophysics Data System (ADS)

    Martínez-Bretón, J. L.; Mendoza, B.

    2016-03-01

    In this paper we report experiments of arterial pressure (AP) measurements of ten Wistar rats subjected to geomagnetic field changes and to artificially stimulated magnetic field variations. Environmental electromagnetic effects were screened using a semianechoic chamber, which allowed us to discern the effects associated with geomagnetic storms. We stimulated the subjects with a linear magnetic profile constructed from the average changes of sudden storm commencement (SSC) and principal phases of geomagnetic storms measured between 1996 and 2008 with Dst ⩽ -100 nT. Although we found no statistically significant AP variations, statistically significant AP changes were found when a geomagnetic storm occurred during the experimental period. Using the observed geomagnetic storm variations to construct a geomagnetic profile to stimulate the rats, we found that the geomagnetic field variations associated to the SSC day were capable of increasing the subjects AP between 7% and 9% from the reference value. Under this magnetic variation, the subjects presented a notably restless behavior not seen under other conditions. We conclude that even very small changes in the geomagnetic field associated with a geomagnetic storm can produce a measurable and reproducible physiological response.

  13. Statistical analysis of extreme values for geomagnetic and geoelectric field variations for Canada

    NASA Astrophysics Data System (ADS)

    Nikitina, Lidia; Trichtchenko, Larisa; Boteler, David

    2016-04-01

    Disturbances of the geomagnetic field produced by space weather events cause variable geoelectric fields at Earth's surface which drive electric currents in power systems, resulting in hazardous impacts on electric power transmission. In extreme cases, as during the magnetic storm in March 13, 1989, this can result in burnt-out transformers and power blackouts. To make assessment of geomagnetic and geoelectric activity in Canada during extreme space weather events, extreme value statistical analysis has been applied to more than 40 years of magnetic data from the Canadian geomagnetic observatories network. This network has archived digital data recordings for observatories located in sub-auroral, auroral, and polar zones. Extreme value analysis was applied to hourly ranges of geomagnetic variations as an index of geomagnetic activity and to hourly maximum of rate-of-change of geomagnetic field. To estimate extreme geoelectric fields, the minute geomagnetic data were used together with Earth conductivity models for different Canadian locations to calculate geoelectric fields. The extreme value statistical analysis was applied to hourly maximum values of the horizontal geoelectric field. This assessment provided extreme values of geomagnetic and geoelectric activity which are expected to happen once per 50 years and once per 100 years. The results of this analysis are designed to be used to assess the geomagnetic hazard to power systems and help the power industry mitigate risks from extreme space weather events.

  14. The Development of a Dynamic Geomagnetic Cutoff Rigidity Model for the International Space Station

    NASA Technical Reports Server (NTRS)

    Smart, D. F.; Shea, M. A.

    1999-01-01

    We have developed a computer model of geomagnetic vertical cutoffs applicable to the orbit of the International Space Station. This model accounts for the change in geomagnetic cutoff rigidity as a function of geomagnetic activity level. This model was delivered to NASA Johnson Space Center in July 1999 and tested on the Space Radiation Analysis Group DEC-Alpha computer system to ensure that it will properly interface with other software currently used at NASA JSC. The software was designed for ease of being upgraded as other improved models of geomagnetic cutoff as a function of magnetic activity are developed.

  15. Comparison of outliers and novelty detection to identify ionospheric TEC irregularities during geomagnetic storm and substorm

    NASA Astrophysics Data System (ADS)

    Pattisahusiwa, Asis; Houw Liong, The; Purqon, Acep

    2016-08-01

    In this study, we compare two learning mechanisms: outliers and novelty detection in order to detect ionospheric TEC disturbance by November 2004 geomagnetic storm and January 2005 substorm. The mechanisms are applied by using v-SVR learning algorithm which is a regression version of SVM. Our results show that both mechanisms are quiet accurate in learning TEC data. However, novelty detection is more accurate than outliers detection in extracting anomalies related to geomagnetic events. The detected anomalies by outliers detection are mostly related to trend of data, while novelty detection are associated to geomagnetic events. Novelty detection also shows evidence of LSTID during geomagnetic events.

  16. A comparison of geomagnetic and solar effects on tropospheric circulation in the Northern Hemisphere in winter

    NASA Astrophysics Data System (ADS)

    Huth, Radan; Pokorná, Lucie; Bochníček, Josef; Davídkovová, Hana

    2010-05-01

    Our previous results on solar effects on tropospheric circulation in the Northern Hemisphere in winter, characterized i.a. by modes of low-frequency variability (teleconnections), are extended to the geomagnetic activity. The winter (December to March) months and 10-day periods are stratified by the geomagnetic activity into three classes, low, moderate, and high. The variability modes are determined in the 500 hPa geopotential height field by rotated principal component analysis separately in each class of geomagnetic activity. The effects of geomagnetic activity on winter mid-tropospheric variability modes are significant and considerably differ from those of solar activity. Under high geomagnetic activity, zonal modes (in particular North Atlantic Oscillation, East Atlantic mode, and West Pacific Oscillation) intensify and their eastern flanks become more meridional, which results in a weakened westerly circulation over central Europe. The effect of geomagnetic activity depends on the time scale: it is more pronounced for monthly than 10-day mean data. A time lag introduced between the geomagnetic forcing and tropospheric response contributes to a slight strengthening of the effects detected. The separate analysis conducted for days with a quiet or unsettled geomagnetic field only, suggests that most of the solar effects on tropospheric circulation are direct, that is, not mediated through geomagnetic activity. The research is supported by the Grant Agency of the Czech Academy of Sciences, project A300420805.

  17. Synchronization of human heart-rate indicators and geomagnetic field variations in the frequency range of 0.5-3.0 mHz

    NASA Astrophysics Data System (ADS)

    Zenchenko, T. A.; Medvedeva, A. A.; Khorseva, N. I.; Breus, T. K.

    2014-12-01

    Fifty-seven experiments have been conducted to monitor the minute indicators of heart rate at rest in 38 practically healthy individuals (9 men and 29 women) from 18 to 58 years old. The duration of each observation period is 60 to 200 min. We have measured the heart rate and the minute-averaged cardiac section durations reflecting the passage of electrical excitation over different parts of myocardium. A comparison of the dynamics of minute values of these physiological parameters with variations of the X and Z components of the geomagnetic field has shown that two-thirds of experiments revealed the synchronization of oscillations in the heart rate and variations in the components of the geomagnetic field. We have revealed both the matching of the observed periods of oscillations ranging between 4 and 30 min and an approximate synchronicity in the times of their appearance and disappearance.

  18. Wp index: A new substorm index derived from high-resolution geomagnetic field data at low latitude

    NASA Astrophysics Data System (ADS)

    Nosé, M.; Iyemori, T.; Wang, L.; Hitchman, A.; Matzka, J.; Feller, M.; Egdorf, S.; Gilder, S.; Kumasaka, N.; Koga, K.; Matsumoto, H.; Koshiishi, H.; Cifuentes-Nava, G.; Curto, J. J.; Segarra, A.; ćElik, C.

    2012-08-01

    Geomagnetic field data with high time resolution (typically 1 s) have recently become more commonly acquired by ground stations. Such high time resolution data enable identifying Pi2 pulsations which have periods of 40-150 s and irregular (damped) waveforms. It is well-known that pulsations of this type are clearly observed at mid- and low-latitude ground stations on the nightside at substorm onset. Therefore, with 1-s data from multiple stations distributed in longitude around the Earth's circumference, substorm onset can be regularly monitored. In the present study we propose a new substorm index, the Wp index (Wave and planetary), which reflects Pi2 wave power at low-latitude, using geomagnetic field data from 11 ground stations. We compare the Wp index with the AE and ASY indices as well as the electron flux and magnetic field data at geosynchronous altitudes for 11 March 2010. We find that significant enhancements of the Wp index mostly coincide with those of the other data. Thus the Wp index can be considered a good indicator of substorm onset. The Wp index, other geomagnetic indices, and geosynchronous satellite data are plotted in a stack for quick and easy search of substorm onset. The stack plots and digital data of the Wp index are available at the Web site (http://s-cubed.info) for public use. These products would be useful to investigate and understand space weather events, because substorms cause injection of intense fluxes of energetic electrons into the inner magnetosphere and potentially have deleterious impacts on satellites by inducing surface charging.

  19. Low-power portable geophysical data acquisition system and its use in geomagnetic measurements

    NASA Technical Reports Server (NTRS)

    Medford, L. V.; Maclennan, C. G.; Rosenfeld, P. E.; Lanzerotti, L. J.; Acuna, M. H.

    1981-01-01

    A low-power portable data acquisition system presently in use for geomagnetic measurements is described. The system is composed of a data-processing system containing a low-power microprocessor, a 9-track digital tape recorder, and a rechargeable battery pack. The magnetometer is a low-power three axis fluxgate design. Under program control the data processing system keeps track of time of day and date, samples three analog magnetometer outputs at intervals of either 0.4 or 2 s, digitizes the data to 15-bit resolution, and, depending upon relative magnetic activity, decides upon data compression to increase the tape storage capacity. It also monitors and records internal voltages and provides self-checking functions which may be monitored through a visual readout on the control panel. The system is mounted in a rugged, weather-tight carrying case suitable for use outdoors with minimal protection. The system, including magnetometer, uses 1.6-W power and can store 5.7 Mbytes of data.

  20. Low-power portable geophysical data acquisition system and its use in geomagnetic measurements

    NASA Astrophysics Data System (ADS)

    Medford, L. V.; Maclennan, C. G.; Rosenfeld, P. E.; Lanzerotti, L. J.; Acuna, M. H.

    1981-07-01

    A low-power portable data acquisition system presently in use for geomagnetic measurements is described. The system is composed of a data-processing system containing a low-power microprocessor, a 9-track digital tape recorder, and a rechargeable battery pack. The magnetometer is a low-power three axis fluxgate design. Under program control the data processing system keeps track of time of day and date, samples three analog magnetometer outputs at intervals of either 0.4 or 2 s, digitizes the data to 15-bit resolution, and, depending upon relative magnetic activity, decides upon data compression to increase the tape storage capacity. It also monitors and records internal voltages and provides self-checking functions which may be monitored through a visual readout on the control panel. The system is mounted in a rugged, weather-tight carrying case suitable for use outdoors with minimal protection. The system, including magnetometer, uses 1.6-W power and can store 5.7 Mbytes of data.

  1. Geomagnetic Cutoff Rigidity Computer Program: Theory, Software Description and Example

    NASA Technical Reports Server (NTRS)

    Smart, D. F.; Shea, M. A.

    2001-01-01

    The access of charged particles to the earth from space through the geomagnetic field has been of interest since the discovery of the cosmic radiation. The early cosmic ray measurements found that cosmic ray intensity was ordered by the magnetic latitude and the concept of cutoff rigidity was developed. The pioneering work of Stoermer resulted in the theory of particle motion in the geomagnetic field, but the fundamental mathematical equations developed have 'no solution in closed form'. This difficulty has forced researchers to use the 'brute force' technique of numerical integration of individual trajectories to ascertain the behavior of trajectory families or groups. This requires that many of the trajectories must be traced in order to determine what energy (or rigidity) a charged particle must have to penetrate the magnetic field and arrive at a specified position. It turned out the cutoff rigidity was not a simple quantity but had many unanticipated complexities that required many hundreds if not thousands of individual trajectory calculations to solve. The accurate calculation of particle trajectories in the earth's magnetic field is a fundamental problem that limited the efficient utilization of cosmic ray measurements during the early years of cosmic ray research. As the power of computers has improved over the decades, the numerical integration procedure has grown more tractable, and magnetic field models of increasing accuracy and complexity have been utilized. This report is documentation of a general FORTRAN computer program to trace the trajectory of a charged particle of a specified rigidity from a specified position and direction through a model of the geomagnetic field.

  2. The use of various interplanetary scintillation indices within geomagnetic forecasts

    NASA Astrophysics Data System (ADS)

    Lucek, E. A.; Clark, T. D. G.; Moore, V.

    1996-02-01

    Interplanetary scintillation (IPS), the twinkling of small angular diameter radio sources, is caused by the interaction of the signal with small-scale plasma irregularities in the solar wind. The technique may be used to sense remotely the near-Earth heliosphere and observations of a sufficiently large number of sources may be used to track large-scale disturbances as they propagate from close to the Sun to the Earth. Therefore, such observations have potential for use within geomagnetic forecasts. We use daily data from the Mullard Radio Astronomy Observatory, made available through the World Data Centre, to test the success of geomagnetic forecasts based on IPS observations. The approach discussed here was based on the reduction of the information in a map to a single number or series of numbers. The advantages of an index of this nature are that it may be produced routinely and that it could ideally forecast both the occurrence and intensity of geomagnetic activity. We start from an index that has already been described in the literature, INDEX35. On the basis of visual examination of the data in a full skymap format modifications were made to the way in which the index was calculated. It was hoped that these would lead to an improvement in its forecasting ability. Here we assess the forecasting potential of the index using the value of the correlation coefficient between daily Ap and the IPS index, with IPS leading by 1 day. We also compare the forecast based on the IPS index with forecasts of Ap currently released by the Space Environment Services Center (SESC). Although we find that the maximum improvement achieved is small, and does not represent a significant advance in forecasting ability, the IPS forecasts at this phase of the solar cycle are of a similar quality to those made by SESC.

  3. An overset grid method for global geomagnetic induction

    NASA Astrophysics Data System (ADS)

    Weiss, Chester J.

    2014-07-01

    A new finite difference solution to the global geomagnetic induction problem is developed and tested, based on a modified Lorenz gauge of the magnetic vector and electric scalar potentials and implementing a novel, overset `Yin-Yang' grid that avoids unnecessary mesh refinement at the geographic poles. Previously used in whole-earth mantle convection models, the overset grid is built from a pair of partially overlapping mid-latitude latitude-longitude (lat/lon) grids, one of which is rotated with respect to the other for complete coverage of the sphere. Because of this symmetry, only one set of finite difference templates is required for global discretization of the governing Maxwell equations, a redundancy that is exploited for computational efficiency and multithreaded parallelization. Comparisons between solutions obtained by the proposed method show excellent agreement with those obtained by independent integral equation methods for 1-D, 2-D and 3-D problem geometries. The computational footprint of the method is minimized through a (non-symmetric) matrix-free BiCG-STAB iterative solver which computes finite difference matrix coefficients `on the fly' as needed, rather than pulling stored values from memory. Scaling of the matrix-free BiCG-STAB algorithm with problem size shows behaviour similar to that seen with the (symmetric) QMR algorithm used in the Cartesian case from which the present algorithm is based. The proposed method may therefore provide a competitive addition to the existing body of global-scale geomagnetic induction modelling algorithms, allowing for resource-efficient forward modelling as the kernel for large-scale computing such as inversion of geomagnetic response functions, computational hypothesis testing and parametric studies of mantle geodynamics and physiochemical state.

  4. Dynamic Geomagnetic Hazard Maps in Space Weather Operations

    NASA Astrophysics Data System (ADS)

    Rigler, E. J.; Pulkkinen, A. A.; Balch, C. C.; Wiltberger, M. J.

    2014-12-01

    Traditionally, the use of geomagnetic data in space weather operations has been limited to specific geographic coordinates (i.e., magnetic observatories), or to global indices that average magnetic measurements into latitudinal bands of relatively general space weather interest (e.g., Dst, Kp, AE). However, modern technological systems (e.g., power grids, directional drilling platforms) are beginning to require and request information about ground magnetic variations that is more tailored to a specific locale. One solution is to simply install magnetic observatories near every newly built technological system, but this is both economically and operationally impractical. We have chosen instead to adopt an optimal interpolation scheme that inverts for spherical elementary current systems (SECS, Amm-1997), which in turn are used to fill gaps between magnetic observatories. The SECS technique has undergone extensive scientific vetting over the last decade-and-a-half, and will soon be implemented operationally over the continental U.S. as a joint NASA-NOAA-USGS space weather data product, disseminated by the Space Weather Prediction Center (SWPC). Because it will employ a relatively sparse array of high-quality geomagnetic observatories as input, it is important to characterize its ability to reproduce spatial variations in geomagnetic field at sub-continental scales, so the Lyon-Fedder-Mobarry (LFM) global geospace model is used to generate realistic synthetic observations. These include virtual magnetic observatories as input, and a regular geographic grid to serve as a proxy for "ground truth". We look specifically at LFM output for the Whole Heliosphere Interval (WHI) in order to obtain statistically valid performance measures for a variety of quiet-to-moderate space weather conditions.

  5. Active experiments in the ionosphere and geomagnetic field variations

    NASA Astrophysics Data System (ADS)

    Sivokon, V. P.; Cherneva, N. V.; Khomutov, S. Y.; Serovetnikov, A. S.

    2014-11-01

    Variations of ionospheric-magnetospheric relation energy, as one of the possible outer climatology factors, may be traced on the basis of analysis of natural geophysical phenomena such as ionosphere artificial radio radiation and magnetic storms. Experiments on active impact on the ionosphere have been carried out for quite a long time in Russia as well. The most modern heating stand is located in Alaska; it has been used within the HAARP Program. The possibility of this stand to affect geophysical fields, in particular, the geomagnetic field is of interest.

  6. Geomagnetically induced currents: Present knowledge and future research

    SciTech Connect

    Boteler, D.H. )

    1994-01-01

    The knowledge base regarding the production of geomagnetically induced currents (GIC) in power systems is briefly reviewed. The relationship between electric and magnetic fields for a layered earth is derived and used to calculate the electric fields produced in Quebec during the March 13, 1989, magnetic disturbance. Factors influencing the distribution of GIC throughout a system are also examined. The transfer functions of the earth and of power systems vary with frequency and so the relation between GIC and magnetic field variations is most appropriately examined in the frequency domain. Data collection requirements to allow this in future research are discussed.

  7. Artificial static and geomagnetic field interrelated impact on cardiovascular regulation.

    PubMed

    Gmitrov, Juraj; Ohkubo, Chiyoji

    2002-07-01

    Spreading evidence suggests that environmental and artificial magnetic fields have a significant impact on cardiovascular system. The modulation of cardiovascular regulatory mechanisms may play a key role in observed effects. The objective was to study interrelated impacts of artificial static magnetic field (SMF) and natural geomagnetic field (GMF) on arterial baroreceptors. We studied baroreflex sensitivity (BRS) in conscious rabbits before and after 40 min of sham (n = 20) or application of Nd2-Fe14-B alloy magnets (n = 26) to the sinocarotid baroreceptor region in conjunction with GMF disturbance during the actual experiment, determined by K- and A(k)-indexes from a local geomagnetic observatory. SMF at the position of baroreceptors was 0.35 T. BRS was estimated from peak responses of mean arterial pressure (MAP) and heart rate expressed as percentages of the resting values preceding each pair of pressure (phenylephrine) and depressor drug (nitroprusside) injections. We observed a significant increase in BRS for the nitroprusside depressor test (0.78 +/- 0.1 vs. 1.15 +/- 0.14 bpm/mmHg%, initial value vs. SMF exposure, P <.0002) and a tendency for phenylephrine pressor test to increase in BRS. Prior to SMF exposure, a significant positive correlation was found between actual K index values and MAP (t = 2.33, P =.025, n = 46) and a negative correlation of the K index with BRS (t = -3.6, P =.001, n = 46). After SMF exposure we observed attenuation of the geomagnetic disturbance induced a decrease in BRS. Clinical trials should be performed to support these results, but there is a strong expectation that 0.35 T SMF local exposure to sinocarotid baroreceptors will be effective in cardiovascular conditions with arterial hypertension and decreased BRS, due to a favorable SMF effect on the arterial baroreflex. Magnets to the sinocarotid triangle along with modification of the pharmacotherapy for hypertension should be especially effective on days with intense

  8. Validation of Galactic Cosmic Radiation and Geomagnetic Transmissions

    NASA Technical Reports Server (NTRS)

    Badhwar, Gautam D.; Troung, A.; ONeill, P.; Bman, B.

    2000-01-01

    The Alpha Magnet Spectrometer (AMS) was flown on Shuttle flight STS-91 in June 1998 near solar minimum. This unique spectrometer has provided very high resolution, calibrated data on the galactic hydrogen and helium rigidity spectra form approx. 100 MeV/n to approx. 200 GeV/n as a function of magnetic latitude. This paper describes a comparison of the AMS data with the Badhwar-O'Neill GCR model and the geomagnetic transmission calculated using the quiescent DGRF 1990 cutoffs. The results have strong bearing on radiation modeling for the International Space Station.

  9. Quiet geomagnetic field representation for all days and latitudes

    USGS Publications Warehouse

    Campbell, W.H.; Schiffmacher, E.R.; Arora, B.R.

    1992-01-01

    Describes a technique for obtaining the quiet-time geomagnetic field variation expected for all days of the year and distribution of latitudes from a limited set of selected quiet days within a year at a discrete set of locations. A data set of observatories near 75??E longitude was used as illustration. The method relies upon spatial smoothing of the decomposed spectral components. An evaluation of the fidelity of the resulting model shows correlation coefficients usually above 0.9 at the lower latitudes and near 0.7 at the higher latitudes with variations identified as dependent upon season and field element. -from Authors

  10. Localized sudden changes in the geomagnetic secular variation.

    USGS Publications Warehouse

    Alldredge, L.R.

    1987-01-01

    There is much debate as to whether there was a worldwide geomagnetic jerk in 1969 or 1970. It is agreed that there was an unusual sharp change in the secular variation in the east component, Y, in Europe at that time. This note points out how a localized sudden change in the secular variation pattern of one component in Europe can occur without having any large worldwide effects in any of the components. The accompanying changes in the spherical harmonic coefficients for such a localized change are also discussed. -after Author

  11. Solar daily variation at geomagnetic observatories in Pakistan

    NASA Astrophysics Data System (ADS)

    Rahim, Zain; Kumbher, Abdul Salam

    2016-03-01

    A study of solar daily variation is performed using the famous Chapman-Miller method for solar cycles 22 & 23 (1986-2007). The objective is to study the characteristics of Sq variation at Pakistani geomagnetic observatories using solar harmonics and a more traditional five quietest day's method. The data recorded at the Karachi geomagnetic observatory for SC 22 and 23 and data sets from other Pakistani geomagnetic observatories; Sonmiani, Quetta and Islamabad are analyzed for H, D and Z components of the geomagnetic field. Except for the D and Z components at Karachi and Sonmiani and H component at Islamabad, the two solar daily variations correlated well with each other. Also, the synthesized daily variation from the solar harmonics of H, D and Z components explained the equivalent Sq current system reasonably well for all seasons. For H component, the first solar harmonic (s1) obtained from spherical harmonic analysis of the data, appeared as the largest harmonic with no significant changes for the seasonal division of data. However, for D and Z components, amplitudes are comparable, but undergo distinct variations. s1 for H and D components increases with magnetic activity while for Z component it is the largest for the medium phase of magnetic activity. With the sunspot number division of data, the weighted mean of the Wolf ratio of all three components is in good agreement with the previous studies. The synthesized solar daily variation for D component, S(D), at Karachi, Sonmiani, Quetta and Islamabad did not show any signs of winter anomaly for the period studied. However, S(D) variation at Karachi during winter season showed morning minimum followed by a maximum at local noon and another minimum in the afternoon. We suggest this could be the effects of Equatorial Ionospheric Anomaly (EIA) observable at the Karachi observatory only during the winter season. Similarly, much disturbed in equinoctial and summer months, S(Z) illustrated an unwavering daily

  12. Fine structure of the 2003 geomagnetic jerk near China

    NASA Astrophysics Data System (ADS)

    Ou, J.; Du, A.

    2015-12-01

    The 2003 jerk has an abrupt change in the geomagnetic secular variation (SV), and was recognized as a local phenomenon of internal origin from the satellite observations (Olsen and Mandea, 2007). Notable strength of the 2003 jerk is located near China. The temporal and spatial features at this area are important to resolve the Earth's core fluid flow dynamics at local scale (e.g. Wardinski et al., 2008). We investigate the temporal-spatial development of the 2003 jerk in more detail near China with the ground-based observations and CHAOS-3 core field model. We select the data in the international geomagnetic quiet days to calculate the monthly means. In order to reduce the influence of the external field, we adopt a function comprising the terms associated with the indices of the geomagnetic activity, and the terms of the periodic signals on the observatory monthly means data (Stewart and Whaler, 1992). We then use an empirical AR-2 model to represent the internal field signals in the observatory data. The extreme detection is applied to identify the jerk in the SV time series. The onset time and the strength of the 2003 jerk are obtained through the detection for geomagnetic field component, X, Y and Z. The maximum of the strength of the 2003 jerk is located under the Indian mainland. The onset time of this jerk propagates approximately southeastward. Two jerks in 2001 and 2003 for the Z component are further compared and they are confirmed as independent processes. We suggest the jerk in 2001 identical to the well known 1999 jerk in Europe (Mandea et al., 2000). Our results reveal the fine structures of the 2003 jerk that corroborate the conclusions in previous studies. The larger scale time-spatial structure given by the AR-2 model constructed from ground observatory data (monthly values) is consistent with the results from the CHAOS-3 model. This structure can be applied for further inversion of the local core surface fluid flow motions.

  13. A proposed International Geomagnetic Reference Field for 1965- 1985.

    USGS Publications Warehouse

    Peddie, N.W.; Fabiano, E.B.

    1982-01-01

    A set of spherical harmonic models describing the Earth's main magnetic field from 1965 to 1985 has been developed and is proposed as the next revision of the International Geomagnetic Reference Field (IGRF). A tenth degree and order spherical harmonic model of the main field was derived from Magsat data. A series of eighth degree and order spherical harmonic models of the secular variation of the main field was derived from magnetic observatory annual mean values. Models of the main field at 1965, 1970, 1975, and 1980 were obtained by extrapolating the main-field model using the secular variation models.-Authors spherical harmonic models Earth main magnetic field Magsat data

  14. Is the geomagnetic map imprinted in pre-emergent egg?

    PubMed

    Liboff, A R

    2016-01-01

    Although it is well-accepted that the geomagnetic field (GMF) plays an important role in animal navigation and migration, key problems remain unanswered. To explain the puzzling ability of hatchlings to embark on unexplored migrational journeys we hypothesize that mothers who have previously navigated the trip enable their offspring by direct transfer of route information to their eggs prior to hatching. The freshly hatched animal registers the local GMF as a reference point before embarking on the journey the mother has prepared for it. This process represents a novel type of biological cycle that finesses the need to treat questions such as natal homing and route parameters separately. PMID:26192067

  15. Geomagnetic polarity epochs: new data from Olduvai Gorge, Tanganyika

    USGS Publications Warehouse

    Gromme, C.S.; Hay, R.L.

    1967-01-01

    The lower lava flow of Bed I in Olduvai Gorge, Tanganyika, carries natural remanent magnetization (NRM) having normal polarity. Thermal demagnetization experiments demonstrate the stability of this NRM. Thus the Olduvai geomagnetic polarity event, which was originally named from the upper lava flow in Bed I, is represented in its type locality by two normally magnetized lavas. These lavas have been shown to be 1.9 m.y. old, and although they are distinct from each other in composition and surface structure, their eruptions appear to have been closely spaced in time. ?? 1967.

  16. Real-Time Tracking Method for a Magnetic Target Using Total Geomagnetic Field Intensity

    NASA Astrophysics Data System (ADS)

    Fan, Liming; Kang, Chong; Zhang, Xiaojun; Wan, Shengwei

    2016-06-01

    We propose an efficient and effective method for real-time tracking a long-range magnetic target using total geomagnetic field intensity. This method is based on a scalar magnetometer sensor array and an improved particle swarm optimization algorithm. Due to the effect of the geomagnetic field variations, the detection distance range of the method based on the gradient tensor is short. To increase the detection range, the geomagnetic field variations must be eliminated in the method. In this paper, the geomagnetic quasi-gradient calculated from total geomagnetic field intensity in the sensor array is used. We design a sensor array with five magnetometers and use the geomagnetic quasi-gradient to eliminate the geomagnetic field variations. The improved particle swarm optimization (IPSO) algorithm, which minimizes the errors of total geomagnetic field values between measurements and calculations, is applied in this real-time tracking method to track a long-range magnetic target position. The detailed principle of the method and the steps of the IPSO algorithm are described in detail. The method is validated with a numerical simulation. The results show that the average relative error of position is less than 2 % and the execution time is less than 1.5 s.

  17. Solar activity and human health at middle and low geomagnetic latitudes in Central America

    NASA Astrophysics Data System (ADS)

    Mendoza, Blanca; Sánchez de La Peña, Salvador

    2010-08-01

    The study of the possible effect of solar variability on living organisms is one of the most controversial issues of present day science. It has been firstly and mainly carried on high latitudes, while at middle and low latitudes this study is rare. In the present review we focused on the work developed at middle and low geomagnetic latitudes of America. At these geomagnetic latitudes the groups consistently dedicated to this issue are mainly two, one in Cuba and the other in Mexico. The Cuban and Mexican studies show that at such latitudes there are biological consequences to the solar/geomagnetic activity, coinciding in four points: (1) the male population behave differently from the female population, (2) the most vulnerable age group to geomagnetic perturbations is that of ⩾65 years old, (3) there is a tendency for myocardial infarctions (death or occurrence) to increase one day after a geomagnetic Ap index large value or during the day of the associated Forbush decrease, and (4) the myocardial infarctions (death or occurrence) increase as the geomagnetic perturbation increases. Additionally, the Cuban group found seasonal periodicities from their data, and also that increases of female myocardial infarctions occurred before and after the day of the geomagnetic disturbance. The Mexican group found that the male sex is more vulnerable to geomagnetic perturbations and that the myocardial infarction deaths present the conspicuous cycle of ˜7 days.

  18. Prediction of Geomagnetic Activity and Key Parameters in High-Latitude Ionosphere-Basic Elements

    NASA Technical Reports Server (NTRS)

    Lyatsky, W.; Khazanov, G. V.

    2007-01-01

    Prediction of geomagnetic activity and related events in the Earth's magnetosphere and ionosphere is an important task of the Space Weather program. Prediction reliability is dependent on the prediction method and elements included in the prediction scheme. Two main elements are a suitable geomagnetic activity index and coupling function -- the combination of solar wind parameters providing the best correlation between upstream solar wind data and geomagnetic activity. The appropriate choice of these two elements is imperative for any reliable prediction model. The purpose of this work was to elaborate on these two elements -- the appropriate geomagnetic activity index and the coupling function -- and investigate the opportunity to improve the reliability of the prediction of geomagnetic activity and other events in the Earth's magnetosphere. The new polar magnetic index of geomagnetic activity and the new version of the coupling function lead to a significant increase in the reliability of predicting the geomagnetic activity and some key parameters, such as cross-polar cap voltage and total Joule heating in high-latitude ionosphere, which play a very important role in the development of geomagnetic and other activity in the Earth s magnetosphere, and are widely used as key input parameters in modeling magnetospheric, ionospheric, and thermospheric processes.

  19. Relationship between isolated sleep paralysis and geomagnetic influences: a case study.

    PubMed

    Conesa, J

    1995-06-01

    This preliminary report, of a longitudinal study, looks at the relationship between geomagnetic activity and the incidence of isolated sleep paralysis over a 23.5-mo. period. The author, who has frequently and for the last 24 years experienced isolated sleep paralysis was the subject. In addition, incidence of lucid dreaming, vivid dreams, and total dream frequency were looked at with respect to geomagnetic activity. The data were in the form of dream-recall frequency recorded in a diary. These frequency data were correlated with geomagnetic activity k-index values obtained from two observatories. A significant correlation was obtained between periods of local geomagnetic activity and the incidence of isolated sleep paralysis. Specifically, periods of relatively quiet geomagnetic activity were significantly associated with an increased incidence of episodes. PMID:7478886

  20. Relationship between isolated sleep paralysis and geomagnetic influences: a case study.

    PubMed

    Conesa, J

    1995-06-01

    This preliminary report, of a longitudinal study, looks at the relationship between geomagnetic activity and the incidence of isolated sleep paralysis over a 23.5-mo. period. The author, who has frequently and for the last 24 years experienced isolated sleep paralysis was the subject. In addition, incidence of lucid dreaming, vivid dreams, and total dream frequency were looked at with respect to geomagnetic activity. The data were in the form of dream-recall frequency recorded in a diary. These frequency data were correlated with geomagnetic activity k-index values obtained from two observatories. A significant correlation was obtained between periods of local geomagnetic activity and the incidence of isolated sleep paralysis. Specifically, periods of relatively quiet geomagnetic activity were significantly associated with an increased incidence of episodes.

  1. Magnetic polarity fractions in magnetotactic bacterial populations near the geomagnetic equator.

    PubMed

    de Araujo, F F; Germano, F A; Gonçalves, L L; Pires, M A; Frankel, R B

    1990-08-01

    The relative numbers of North-seeking and South-seeking polarity types in natural populations of magnetotactic bacteria were determined at sites on the coast of Brazil. These sites were South of the geomagnetic equator and had upward geomagnetic inclinations of 1-12 degrees . For upward inclinations >6 degrees , South-seeking cells predominated over North-seeking cells by more than a factor of 10. For upward inclinations <6 degrees , the fraction of North-seeking cells in the population increased with decreasing geomagnetic inclination, approaching 0.5 at the geomagnetic equator. We present a simple statistical model of a stochastic process that qualitatively accounts for the dynamics of the two polarity types in a magnetotactic bacterial population as a function of the geomagnetic field inclination.

  2. Lagged association between geomagnetic activity and diminished nocturnal pain thresholds in mice.

    PubMed

    Galic, M A; Persinger, M A

    2007-10-01

    A wide variety of behaviors in several species has been statistically associated with the natural variations in geomagnetism. To examine whether changes in geomagnetic activity are associated with pain thresholds, adult mice were exposed to a hotplate paradigm once weekly for 52 weeks during the dark cycle. Planetary A index values from the previous 6 days of a given hotplate session were correlated with the mean response latency for subjects to the thermal stimulus. We found that hotplate latency was significantly (P < 0.05) and inversely correlated (rho = -0.25) with the daily geomagnetic intensity 3 days prior to testing. Therefore, if the geomagnetic activity was greater 3 days before a given hotplate trial, subjects tended to exhibit shorter response latencies, suggesting lower pain thresholds or less analgesia. These results are supported by related experimental findings and suggest that natural variations in geomagnetic intensity may influence nociceptive behaviors in mice. PMID:17657732

  3. Empirical Model of Subauroral Polarization Streams (SAPS) During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Landry, R. G.

    2015-12-01

    Subauroral Polarization Streams (SAPS) are important electromagnetic phenomena associated with geomagnetic storms that affect the inner magnetosphere and ionosphere. They are characterized by strong sunward plasma flows caused by poleward-directed electric fields in the region of the ionosphere equatorword of the auroral zone. To examine the effects subauroral electric fields have on ITM coupling and magnetospheric-ionospheric convection we are developing an empirical model of SAPS using data acquired by the Defense Meteorological Satellite Program (DMSP) spacecraft which have made decades of in-situ measurements of ionospheric ion drifts, composition, and precipitating auroral particles. These measurements are used to characterize the subauroral electric fields relative to the location of the auroral boundary at varying magnetic local times and magnetic activity levels. As a critical component of this model, we have developed a model of the nightside zero energy electron precipitation boundary equatorward of the auroral oval parameterized by AE and MLT, using boundary identifications derived from DMSP data. We will use this model to create a global subauroral potential model and perform a superposed epoch study of SAPS fields in relationship to the auroral boundary during selected geomagnetic storms as a function of storm phase. A global empirical model of SAPS electric fields of this kind is required to realistically model thermosphere-ionosphere coupling and inner-magnetospheric convection.

  4. Climate changes associated with high-amplitude Sq geomagnetic variations

    NASA Astrophysics Data System (ADS)

    Rabeh, Taha; Carvalho, Joao; Khalil, Ahmed; El-Aal, Esmat; El-Hemaly, Ibrahim

    2011-10-01

    When the solar irradiance propagates between the outer magnetospheric regions and the ionosphere, dynamic processes of the magnetosphere-ionosphere-thermosphere system are affected at the lower end of their paths by the interaction of radiation with the neutral troposphere. The main target of this work is to investigate the relationship between the diurnal magnetic field variations resulting from solar activities and the variation in the troposphere temperature. Meteorological and geomagnetic data acquired from different observatories located in Egypt, Portugal and Slovakia in a long-term and daily-term scales were analyzed. The long-term results show that there is a close relationship between the diurnal Sq magnetic field variations and the tropospheric temperature. The rate of temperature increase at mid-latitude areas is higher than at high-latitude. During the period of investigation, it is found that the troposphere temperature has increased by about 0.033 °C/year at Helwan, Egypt, 0.03 °C/year at Coimbra, Portugal, and 0.028 °C/year in Hurbanovo/Stará Lesná, Slovakia. The Sq geomagnetic variations depend on the intensity of the electric currents generated by the effect of solar radiation in the ionosphere.

  5. Climate Changes Associated with High Amplitude Sq Geomagnetic Variations

    NASA Astrophysics Data System (ADS)

    Rabeh, Taha; Khalil, Ahmed; Abdel All, Esmat

    2010-05-01

    The Earth's climate has always been changing since the ancient geologic Epochs. When the solar irradiance propagates between the outer magnetospheric regions and the ionosphere, mediate dynamic processes of the magnetosphere-ionosphere-thermosphere system are affected at the lower end of their paths by the interaction of the radiations with the neutral atmosphere. The ionosphere-thermosphere interactions play an important role for explaining the relationship between the magnetic field and the changes in the atmospheric temperature. The main target of this work is to investigate the relationship between the diurnal magnetic field variations resulted from solar activities and the variation in the Earth's temperature. The meteorological and geomagnetic data acquired from different observatories around the globe were analyzed. Three different locations in Egypt, Portugal and Slovakia for long and daily terms were presented. The results show that for long periods, there is a close relationship between the diurnal variations, Sq magnetic field and the atmospheric temperature. The increasing rate of the temperature at mid-latitude areas is higher than at high-latitude areas. During the period of investigation, it is found that the temperature increases at Helwan, Egypt by about 0.033 °C/year, 0.03 °C/year at Coimbra, Portugal and 0.028 °C/year in Hurbanovo/Stará Lesn, Slovakia. The Sq geomagnetic variations depend on the intensity of the electric currents generated by the effect of solar radiations in the Ionosphere.

  6. A Combined Solar and Geomagnetic Index for Thermospheric Climate

    NASA Technical Reports Server (NTRS)

    Hunt, Linda; Mlynczak, Marty

    2015-01-01

    Infrared radiation from nitric oxide (NO) at 5.3 Â is a primary mechanism by which the thermosphere cools to space. The SABER instrument on the NASA TIMED satellite has been measuring thermospheric cooling by NO for over 13 years. Physically, changes in NO emission are due to changes in temperature, atomic oxygen, and the NO density. These physical changes however are driven by changes in solar irradiance and changes in geomagnetic conditions. We show that the SABER time series of globally integrated infrared power (Watts) radiated by NO can be replicated accurately by a multiple linear regression fit using the F10.7, Ap, and Dst indices. This fit enables several fundamental properties of NO cooling to be determined as well as their variability with time, permitting reconstruction of the NO power time series back nearly 70 years with extant databases of these indices. The relative roles of solar ultraviolet and geomagnetic processes in determining the NO cooling are derived and shown to be solar cycle dependent. This reconstruction provides a long-term time series of an integral radiative constraint on thermospheric climate that can be used to test climate models.

  7. Magnetic clouds, geomagnetic disturbances, and cosmic ray decreases

    NASA Technical Reports Server (NTRS)

    Zhang, G.; Burlaga, L. F.

    1988-01-01

    Nineteen magnetic clouds are identified in the years from 1978 through 1982 and studied using superposed epoch analysis. The magnetic-field intensity, proton density and proton temperature are enhanced ahead of magnetic clouds that are preceded by shock, while strong magnetic-field intensity and low proton temperature are observed within the clouds. A relatively large (about 2.5 percent) decrease in cosmic-ray intensity is associated with magnetic clouds that are preceded by a shock, perhaps caused by the turbulent sheath behind an interplanetary shock ahead of the magnetic cloud, whereas only a small (0.5 percent) decrease in intensity is associated with the magnetic cloud itself. Magnetic clouds can produce geomagnetic activity with a decrease in Dst index of the order 100 gamma. The magnitude of the change in the Dst index for the case when southward fields arrive first is comparable to that for the case when northward fields arrive first, and the phase is such that geomagnetic activity is associated with southward fields.

  8. Estimation of cold plasma outflow during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Haaland, S.; Eriksson, A. I.; Andre, M.; Maes, L.; Baddeley, L. J.; Barakat, A. R.; Chappell, C. R.; Eccles, V.; Johnsen, C.; Lybekk, B.; Li, K.; Pedersen, A.; Schunk, R. W.; Welling, D. T.

    2015-12-01

    Low energy ions of ionospheric origin provide a significant contributon to the magnetospheric plasmapopulation. Measuring cold ions is difficult though. Observations have to be done at sufficiently high altitudes and typically in regions of space where spacecraft attain a positive charge due to solar illumination. Cold ions are therefore shielded from the satellite particle detectors. Furthermore, spacecraft can only cover key regions of ion outflow during segments of their orbit, so additional complications arise arise if continuous longtime observations such as the during a geomagnetic storms are needed. In this paper we suggest a new approach, based on a combination of synoptic observations and a novel technique to estimate the flux and total outflow during the various phases of geomagnetic storms. Our results indicate large variations in both outflow rates and transport throughout the storm. Prior to the storm main phase, outflow rates are moderate, and the cold ions are mainly emanating from moderately sized polar cap regions. Throughout the main phase of the storm, outflow rates increase and the polar cap source regions expand. Furthermore, faster transport, resulting from enhanced convection, leads to a much larger supply of cold ions to the near Earth region during gemagnetic storms.

  9. Ionospheric response to great geomagnetic storms during solar cycle 23

    NASA Astrophysics Data System (ADS)

    Merline Matamba, Tshimangadzo; Bosco Habarulema, John

    2016-07-01

    The analyses of ionospheric responses due to great geomagnetic storms i.e. Dst index < 350 nT that occurred during solar cycle 23 are presented. The GPS Total Electron Content (TEC) and ionosonde data over Southern and Northern Hemisphere mid-latitudes were used to study the ionospheric responses. A geomagnetic latitude region of ±30° to ±46° within a longitude sector of 15° to 40° was considered. Using a criteria of Dst < -350 nT, there were only four great storm periods (29 March - 02 April 2001, 27 - 31 October 2003, 18 - 23 November 2003 and 06 - 11 November 2004) in solar cycle 23. Analysis has shown that ionospheric dynamics during these disturbed conditions could be due to a number of dynamic and electrodynamics processes in both Hemispheres. In some instances the ionosphere responds differently to the same storm condition in both Hemispheres. Physical mechanisms related to (but not limited to) composition changes and electric fields will be discussed.

  10. Ionospheric Response During Four Intense Geomagnetic Storms: Similarities and Differences

    NASA Astrophysics Data System (ADS)

    Mannucci, A. J.; Tsurutani, B. T.; Crowley, G.; Verkhoglyadova, O. P.

    2007-05-01

    Large magnitude and hemispheric-scale increases in ionospheric plasma content are observed for daytime local times during intense geomagnetic storms. Ionospheric increases during the main phase of geomagnetic storms were identified many years ago and categorized as the "positive phase" ionospheric response. This talk will explore what we can learn using satellite data and distributed ground-based measurements, to understand the geoeffective processes at work in creating the positive phase for intense storms. The importance of electric fields penetrating to low latitudes on the dayside has received a great deal of attention recently, and is leading to revised theoretical and modeling constructs to account for the observations in a quantitative manner. We will present ground and space-based Global Positioning System (GPS) electron content data for four storms and analyze the data in light of the upstream conditions with a common epoch analysis. Modeling studies of the storm-time ionospheric behavior will be shown, using the ASPEN-TIMEGCM fully-coupled thermosphere- ionosphere (T-I) model with low-latitude electrodynamics. The ASPEN-TIMEGCM model contains storm-time effects such as winds and the resulting dynamo electric fields, but penetration E-fields including shielding are not currently included. The model runs are driven by carefully reconstructed high latitude time-dependent drivers based in part on the AMIE high latitude electrodynamics model. The time history of a modeled storm will be compared with observations. We will highlight outstanding science questions that are revealed in this study.

  11. A combined solar and geomagnetic index for thermospheric climate

    PubMed Central

    Mlynczak, Martin G; Hunt, Linda A; Marshall, B Thomas; Russell, James M; Mertens, Christopher J; Thompson, R Earl; Gordley, Larry L

    2015-01-01

    Infrared radiation from nitric oxide (NO) at 5.3 µm is a primary mechanism by which the thermosphere cools to space. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite has been measuring thermospheric cooling by NO for over 13 years. In this letter we show that the SABER time series of globally integrated infrared power (watts) radiated by NO can be replicated accurately by a multiple linear regression fit using the F10.7, Ap, and Dst indices. This allows reconstruction of the NO power time series back nearly 70 years with extant databases of these indices. The relative roles of solar ultraviolet and geomagnetic processes in determining the NO cooling are derived and shown to vary significantly over the solar cycle. The NO power is a fundamental integral constraint on the thermospheric climate, and the time series presented here can be used to test upper atmosphere models over seven different solar cycles. Key Points F10.7, Ap, and Dst replicate time series of radiative cooling by nitric oxide Quantified relative roles of solar irradiance, geomagnetism in radiative cooling Establish a new index and extend record of thermospheric cooling back 70 years PMID:26709319

  12. Secular trend of geomagnetic elements in the Indian region

    NASA Astrophysics Data System (ADS)

    Bhardwaj, S. K.; Subba Rao, P. B. V.

    2013-12-01

    In the present study, secular trends and jerks in the geomagnetic elements D, H and Z are investigated at the six Indian magnetic observatories using annual and monthly mean values for all days, quiet days and night base (night time mean). The residuals of all-day annual and monthly means are computed by removing a polynomial fit from their best fitting curves. The residuals of D, H and Z curves do not show any parallelism with the 11-year sunspot cycle. At Alibag, the D residual shows a periodicity of 2 solar cycles, whereas the H and Z residuals indicate a quasi-periodicity of 3 solar cycles for the period 1921-2009. At the Indian stations, an in-phase solar cycle component is observed for 2 of the solar cycles in the D and Z residuals, while the H residual shows out-of-phase variations with the sunspot cycle for the period 1958-2009. Two geomagnetic jerks, 1970 and 1991, are well reflected in the monthly and annual mean values in the Indian region, as observed globally.

  13. Geomagnetic responses to the solar wind and the solar activity

    NASA Technical Reports Server (NTRS)

    Svalgaard, L.

    1975-01-01

    Following some historical notes, the formation of the magnetosphere and the magnetospheric tail is discussed. The importance of electric fields is stressed and the magnetospheric convection of plasma and magnetic field lines under the influence of large-scale magnetospheric electric fields is outlined. Ionospheric electric fields and currents are intimately related to electric fields and currents in the magnetosphere and the strong coupling between the two regions is discussed. The energy input of the solar wind to the magnetosphere and upper atmosphere is discussed in terms of the reconnection model where interplanetary magnetic field lines merge or connect with the terrestrial field on the sunward side of the magnetosphere. The merged field lines are then stretched behind earth to form the magnetotail so that kinetic energy from the solar wind is converted into magnetic energy in the field lines in the tail. Localized collapses of the crosstail current, which is driven by the large-scale dawn/dusk electric field in the magnetosphere, divert part of this current along geomagnetic field lines to the ionosphere, causing substorms with auroral activity and magnetic disturbances. The collapses also inject plasma into the radiation belts and build up a ring current. Frequent collapses in rapid succession constitute the geomagnetic storm.

  14. Forbush decreases geomagnetic and atmospheric effects cosmogenic nuclides

    NASA Technical Reports Server (NTRS)

    Flueckiger, E. O.

    1986-01-01

    An overview and synthesis is given of recent developments that have occurred in the areas of Forbush decreases, geomagnetic and atmospheric effects, and cosmogenic nuclides. Experimental evidence has been found for substantial differences in the effects of the various types of interplanetary perturbations on cosmic rays, and for a dependence of these effects on the three-dimensional configuration of the interplanetary medium. In order to fully understand and to be able to simulate the solar cosmic ray particle access to the polar regions of the earth we need accurate models of the magnetospheric magnetic field. These models must include all major magnetospheric current systems (in particular the field aligned currents), and they should represent magnetically quiet time periods as well as different levels of geomagnetic activity. In the evolution of magnetospheric magnetic field models, cosmic ray and magnetospheric physicists should work closely together since cosmic ray measurements are a powerful additional tool in the study of the perturbed magnetosphere. In the field of cosmogenic nuclides, finally, exciting new results and developments follow in rapid succession. Thanks to new techniques and new isotopes the analysis of cosmic ray history has entered into a new dimension.

  15. Geomagnetic response to IMF and solar wind over different latitudes

    NASA Astrophysics Data System (ADS)

    Aslam, A. M.; Tripathi, Sharad Chandra; Mansoori, Azad Ahmad; Waheed, Malik Abdul

    2016-07-01

    In this paper a study on the response of geomagnetic field characteristics to the solar wind variation during three solar cycles (SC 21, SC 22, SC 23) have been conducted in a long term scale. The difference in the response of two different latitudinal characteristic indices has been investigated. For the purpose we have considered the high latitude index AE and the mid-latitude aa index and both gives the knowledge about the perturbations in the geomagnetic field conditions. Eventually we can infer the idea about the ionospheric current system changes in response to the solar wind conditions. The variation found in the AE and aa indices have been found to follow a 11 year cycle as similar to the sunspot variation. Also the correlation between the annual means of the solar wind parameters velocity V, magnetic filed B and the composite parameters BV and BV ^{2 } have been calculated . A difference was found between the correlations obtained for the AE and aa indices. We could also see that the difference in correlation follows a cyclic pattern i.e. the large difference is found during the solar maxima while a small difference is observed during the minima.

  16. Uncovering the nonadiabatic response of geosynchronous electrons to geomagnetic disturbance

    USGS Publications Warehouse

    Gannon, Jennifer; Elkington, Scot R.; Onsager, Terrance G.

    2012-01-01

    We describe an energy spectrum method for scaling electron integral flux, which is measured at a constant energy, to phase space density at a constant value of the first adiabatic invariant which removes much of the variation due to reversible adiabatic effects. Applying this method to nearly a solar cycle (1995 - 2006) of geosynchronous electron integral flux (E>2.0MeV) from the GOES satellites, we see that much of the diurnal variation in electron phase space density at constant energy can be removed by the transformation to phase space density at constant μ (4000 MeV/G). This allows us a clearer picture of underlying non-adiabatic electron population changes due to geomagnetic activity. Using scaled phase space density, we calculate the percentage of geomagnetic storms resulting in an increase, decrease or no change in geosynchronous electrons as 38%, 7%, and 55%, respectively. We also show examples of changes in the electron population that may be different than the unscaled fluxes alone suggest. These examples include sudden electron enhancements during storms which appear during the peak of negative Dst for μ-scaled phase space density, contrary to the slow increase seen during the recovery phase for unscaled phase space density for the same event.

  17. Thermosphere Response to Geomagnetic Variability during Solar Minimum Conditions

    NASA Astrophysics Data System (ADS)

    Forbes, Jeffrey; Gasperini, Federico; Zhang, Xiaoli; Doornbos, Eelco; Bruinsma, Sean; Haeusler, Kathrin; Hagan, Maura

    2015-04-01

    The response of thermosphere mass density to variable geomagnetic activity at solar minimum is revealed as a function of height utilizing accelerometer data from GRACE near 480 km, CHAMP near 320 km, and GOCE near 260 km during the period October-December, 2009. The GOCE data at 260 km, and to some degree the CHAMP measurements at 320 km, reveal the interesting feature that the response maximum occurs at low latitudes, rather than at high latitudes where the geomagnetic energy input is presumed to be deposited. The latitude distribution of the response is opposite to what one might expect based on thermal expansion and/or increase in mean molecular weight due to vertical transport of N2 at high latitudes. We speculate that what is observed reflects the consequences of an equatorward meridional circulation with downward motion and compressional heating at low latitudes. A numerical simulation using the National Center for Atmospheric Research (NCAR) Thermosphere-Ionosphere-Mesosphere Electrodynamics General Circulation Model (TIME-GCM) is used to assist with this diagnosis. At 480 km GRACE reveals maximum density responses at high southern (winter) latitudes, consistent with recent interpretations in terms of compositional versus temperature effects near the oxygen-helium transition altitude during low solar activity.

  18. Distributed Acquisition for Geomagnetic Research (DAGR) for SmallSats

    NASA Astrophysics Data System (ADS)

    Zesta, E.; Bonalsky, T. M.; Wendel, D. E.; Simpson, D. G.; Beach, T. L.; Allen, L.; Clavier, O.

    2015-12-01

    Geomagnetic field measurements are a fundamental, key parameter measurement for any space weather application, particularly for tracking the electromagnetic energy input in the Ionosphere-Thermosphere system and for high latitude dynamics governed by the large-scale field-aligned currents. The full characterization of the Magnetosphere-Ionosphere-Thermosphere coupled system necessitates measurements with higher spatial/temporal resolution and from multiple locations simultaneously. This becomes extremely challenging in the current state of shrinking budgets. Traditionally, including a science-grade magnetometer in a mission necessitates very costly integration and design (sensor on long boom) and imposes magnetic cleanliness restrictions on all components of the bus and payload. Recent advances in Smallsat and Cubesat developments offer a pathway for the proliferation of measurements. However, the Cubesat bus is a small volume in which to include all traditional bus components and payload, and the low cost of such programs makes the acquisition of clean Geomagnetic field observations a challenge. This work presents our approach of combining multiple sensitive onboard sensors with an innovative algorithm approach that enables high quality magnetic field measurements in Cubesats.

  19. The geomagnetic westward drift and Earth's inner core dynamics

    NASA Astrophysics Data System (ADS)

    Pichon, Guillaume; Aubert, Julien; Fournier, Alexandre

    2015-04-01

    Since its initial observation by Halley more than 300 years ago, the geomagnetic westward drift has been documented with increasing accuracy. The picture prevailing at present is that of core-mantle boundary equatorial magnetic flux patches of normal polarity appearing to steadily drift westwards during the last 400 years. Recently we have put forward numerical geodynamo models reproducing this peculiar magnetic field pattern and explaining the geomagnetic westward drift through indirect angular momentum exchanges between the outer core and mantle. These indirect exchanges occur via the inner core, which is magnetically coupled to the base of the outer core and gravitationally coupled to the mantle. Our models naturally highlight the fact that the long-term westward drift and the long-term super-rotation of the inner core respectively to the mantle are two components of Earth's rotational dynamics, and are thus linked together as such. In this presentation we will explore the nature of this link and show that the total amount of shear present in the core is distributed among these two components in accordance with the relative magnitude of indirect core-mantle coupling versus direct coupling at the core-mantle boundary. An application of this theory using reasonable and up-to-date values for geophysical parameters suggests that the long-term westward drift dominates the long-term inner core super-rotation at present by about an order of magnitude.

  20. Global ionospheric dynamics and electrodynamics during geomagnetic storms (Invited)

    NASA Astrophysics Data System (ADS)

    Mannucci, A. J.; Tsurutani, B.; Verkhoglyadova, O. P.; Komjathy, A.; Butala, M. D.

    2013-12-01

    Globally distributed total electron content (TEC) data has become an important tool for exploring the consequences of storm-time electrodynamics. Magnetosphere-ionosphere coupling during the main phase is responsible for the largest ionospheric effects observed during geomagnetic storms, mediated by global scale electrodynamics. Recent research using case studies reveals a complex picture of M-I coupling and its relationship to interplanetary drivers such as the solar wind electric field. Periods of direct coupling exist where the solar wind electric field is strongly correlated with prompt penetration electric fields, observed as enhanced vertical plasma drifts or an enhanced electrojet in the daytime equatorial ionosphere. Periods of decoupling between low latitude electric fields and the solar wind electric field are also observed, but the factors distinguishing these two types of response have not been clearly identified. Recent studies during superstorms suggest a role for the transverse (y-component) of the interplanetary magnetic field, which affects magnetospheric current systems and therefore may affect M-I coupling, with significant ionospheric consequences. Observations of the global ionospheric response to a range of geomagnetic storm intensities are presented. Scientific understanding of the different factors that affect electrodynamic aspects of M-I coupling are discussed.

  1. Geomagnetic dipole moment collapse by convective mixing in the core

    NASA Astrophysics Data System (ADS)

    Liu, Lijun; Olson, Peter

    2009-05-01

    Convective mixing in the fluid outer core can induce rapid transient decrease of the geomagnetic dipole. Here we determine rates of dipole moment decrease as a function of magnetic Reynolds number following convective instability in a numerical dynamo and in axisymmetric kinematic flows. Our calculations show that mixing flows induce reversed magnetic flux on the core-mantle boundary through expulsion of mostly poloidal magnetic field by convective upwellings. The dipole field collapse is accelerated by enhanced radial diffusion and meridional advection of magnetic flux below the core-mantle boundary. Magnetic energy cascades from the dipole to smaller scales during mixing, producing a filamentary magnetic field structure on the core-mantle boundary. We find that the maximum rate of dipole moment decrease on century time scales is weakly sensitive to the mixing flow pattern but varies with the velocity of the flow approximately as cRm β , with Rm the magnetic Reynolds number and (c, β) ≈ (0.2 ± 0.07, 0.78 ± 0.05). According to our calculations, a mixing flow in the outer core with Rm in the range of 200-300 can account for the historically-measured rate of decrease of the geomagnetic dipole moment, although it is unlikely that a single mixing flow event with this intensity would cause a full dipole collapse or polarity reversal.

  2. Geomagnetically induced currents in Uruguay: Sensitivity to modelling parameters

    NASA Astrophysics Data System (ADS)

    Caraballo, R.

    2016-11-01

    According to the traditional wisdom, geomagnetically induced currents (GIC) should occur rarely at mid-to-low latitudes, but in the last decades a growing number of reports have addressed their effects on high-voltage (HV) power grids at mid-to-low latitudes. The growing trend to interconnect national power grids to meet regional integration objectives, may lead to an increase in the size of the present energy transmission networks to form a sort of super-grid at continental scale. Such a broad and heterogeneous super-grid can be exposed to the effects of large GIC if appropriate mitigation actions are not taken into consideration. In the present study, we present GIC estimates for the Uruguayan HV power grid during severe magnetic storm conditions. The GIC intensities are strongly dependent on the rate of variation of the geomagnetic field, conductivity of the ground, power grid resistances and configuration. Calculated GIC are analysed as functions of these parameters. The results show a reasonable agreement with measured data in Brazil and Argentina, thus confirming the reliability of the model. The expansion of the grid leads to a strong increase in GIC intensities in almost all substations. The power grid response to changes in ground conductivity and resistances shows similar results in a minor extent. This leads us to consider GIC as a non-negligible phenomenon in South America. Consequently, GIC must be taken into account in mid-to-low latitude power grids as well.

  3. Comparison of Dst Forecast Models for Intense Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Ji, Eun-Young; Moon, Y.-J.; Gopalswamy, N.; Lee, D.-H.

    2012-01-01

    We have compared six disturbance storm time (Dst) forecast models using 63 intense geomagnetic storms (Dst <=100 nT) that occurred from 1998 to 2006. For comparison, we estimated linear correlation coefficients and RMS errors between the observed Dst data and the predicted Dst during the geomagnetic storm period as well as the difference of the value of minimum Dst (Delta Dst(sub min)) and the difference in the absolute value of Dst minimum time (Delta t(sub Dst)) between the observed and the predicted. As a result, we found that the model by Temerin and Li gives the best prediction for all parameters when all 63 events are considered. The model gives the average values: the linear correlation coefficient of 0.94, the RMS error of 14.8 nT, the Delta Dst(sub min) of 7.7 nT, and the absolute value of Delta t(sub Dst) of 1.5 hour. For further comparison, we classified the storm events into two groups according to the magnitude of Dst. We found that the model of Temerin and Lee is better than the other models for the events having 100 <= Dst < 200 nT, and three recent models (the model of Wang et al., the model of Temerin and Li, and the model of Boynton et al.) are better than the other three models for the events having Dst <= 200 nT.

  4. Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments

    NASA Astrophysics Data System (ADS)

    Nowaczyk, N. R.; Arz, H. W.; Frank, U.; Kind, J.; Plessen, B.

    2012-10-01

    Investigated sediment cores from the southeastern Black Sea provide a high-resolution record from mid latitudes of the Laschamp geomagnetic polarity excursion. Age constraints are provided by 16 AMS 14C ages, identification of the Campanian Ignimbrite tephra (39.28±0.11 ka), and by detailed tuning of sedimentologic parameters of the Black Sea sediments to the oxygen isotope record from the Greenland NGRIP ice core. According to the derived age model, virtual geomagnetic pole (VGP) positions during the Laschamp excursion persisted in Antarctica for an estimated 440 yr, making the Laschamp excursion a short-lived event with fully reversed polarity directions. The reversed phase, centred at 41.0 ka, is associated with a significant field intensity recovery to 20% of the preceding strong field maximum at ˜50 ka. Recorded field reversals of the Laschamp excursion, lasting only an estimated ˜250 yr, are characterized by low relative paleointensities (5% relative to 50 ka). The central, fully reversed phase of the Laschamp excursion is bracketed by VGP excursions to the Sargasso Sea (˜41.9 ka) and to the Labrador Sea (˜39.6 ka). Paleomagnetic results from the Black Sea are in excellent agreement with VGP data from the French type locality which facilitates the chronological ordering of the non-superposed lavas that crop out at Laschamp-Olby. In addition, VGPs between 34 and 35 ka reach low northerly to equatorial latitudes during a clockwise loop, inferred to be the Mono lake excursion.

  5. Driving Plasmaspheric Electron Density Simulations During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    De Pascuale, S.; Kletzing, C.; Jordanova, V.; Goldstein, J.; Wygant, J. R.; Thaller, S. A.

    2015-12-01

    We test global convection electric field models driving plasmaspheric electron density simulations (RAM-CPL) during geomagnetic storms with in situ measurements provided by the Van Allen Probes (RBSP). RAM-CPL is the cold plasma component of the ring-current atmosphere interactions suite (RAM-SCB) and describes the evolution of plasma density in the magnetic equatorial plane near Earth. Geomagnetic events observed by the RBSP satellites in different magnetic local time (MLT) sectors enable a comparison of local asymmetries in the input electric field and output densities of these simulations. Using a fluid MHD approach, RAM-CPL reproduces core plasmaspheric densities (L<4) to less than 1 order of magnitude difference. Approximately 80% of plasmapause crossings, defined by a low-density threshold, are reproduced to within a mean radial difference of 0.6 L. RAM-CPL, in conjunction with a best-fit driver, can be used in other studies as an asset to predict density conditions in locations distant from RBSP orbits of interest.

  6. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    PubMed

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions. PMID:18048345

  7. Homogeneity of geomagnetic variations at the Sodankyla Observatory

    NASA Astrophysics Data System (ADS)

    Kauristie, Kirsti; Ernst, Tomasz; Jankowski, Jerzy; Viljanen, Ari; Kultima, Johannes; Pirjola, Risto; Kataja, Eero

    Geomagnetic variations and the associated electric field were recorded at four temporary stations around the Sodankyla Geophysical Observatory for ten days in August 1988. The distance from each station to the observatory was about 30 km. The main purpose was to study the spatial homogeneity of magnetic variations observed at Sodankyla, i.e., to find out whether there are any local induction effects in the recordings of Sodankyla. Analysis of geomagnetic induction vectors indicates a large-scale induction anomaly but in the 30 km scale the variations are practically homogeneous for periods ranging from 100 to 2500 s. According to magnetotelluric calculations, the conductivity structure at the stations is three-dimensional. The inhomogeneity of the primary source field due to ionospheric currents can be significant in the vicinity of Sodankyla. It causes problems in induction vector and magnetotelluric calculations. Standard deviation between recordings at different stations are calculated using only carefully selected events having a homogenous source field. Theoretical estimates indicate that spatial variations of the primary field may exceed the standard deviations obtained.

  8. [The dynamics of pulse rate and biochemical parameters in blood of healthy individuals in relation to Pc5-6 geomagnetic pulsations].

    PubMed

    Zenchenko, T A; Medvedeva, A A; Potolitsyna, N N; Parshukova, O I; Boiko, E R

    2015-01-01

    Four experiments on long-term monitoring of pulse rate and blood biochemical parameters in four healthy volunteers (women) were conducted. The duration of each experiment was 90 minutes, electrocardiography was performed continuously, taking blood sampling every two minutes. In venous blood the current concentrations of triiodothyronine, cortisol, glucose, stable metabolites of nitrogen oxides (NO(x)) were determined. Synchronicity in oscillations of cortisol and free triiodothyronine levels in the blood of all four volunteers was detected, as well as the presence of the periods of 7-8 min and 15-17 min in the spectra of these biochemical parameters was observed. The periods in the spectra of NO(x) are equal to 7 min, 13 min and 25-30 min. It is shown that the, dynamics of variations in the heart rate is determined mostly by the rhythms of fluctuations in the level of NO(x) in the blood, and the periods in wavelet spectra of these physiological parameters in all four volunteers are close to the periods of their spectra synchronous variations of a. geomagnetic field vector in the frequency range of 0.5-3 mHz. The results obtained in this study indicate that. the presence of nitric oxide and its metabolites in the blood is a biochemical factor, with high probability of its participation in the developmental process of the fine "tuning" of the body to the variations of the geomagnetic field providing synchronization of variations in heart rate and geomagnetic fluctuations in the geomagnetic quiet conditions. PMID:26016037

  9. The response of European Daphnia magna Straus and Australian Daphnia carinata King to changes in geomagnetic field.

    PubMed

    Krylov, Viacheslav V; Bolotovskaya, Irina V; Osipova, Elena A

    2013-03-01

    This study investigates the effects of lifelong exposure to reversed geomagnetic and zero geomagnetic fields (the latter means absence of geomagnetic field) on the life history of Daphnia carinata King from Australia and Daphnia magna Straus from Europe. Considerable deviation in the geomagnetic field from the usual strength, leads to a decrease in daphnia size and life span. Reduced brood sizes and increased body length of neonates are observed in D. magna exposed to unusual magnetic background. The most apparent effects are induced by zero geomagnetic field in both species of Daphnia. A delay in the first reproduction in zero geomagnetic field is observed only in D. magna. No adaptive maternal effects to reversed geomagnetic field are found in a line of D. magna maintained in these magnetic conditions for eight generations. Integrally, the responses of D. magna to unusual geomagnetic conditions are more extensive than that in D. carinata. We suggest that the mechanism of the effects of geomagnetic field reversal on Daphnia may be related to differences in the pattern of distribution of the particles that have a magnetic moment, or to moving charged organic molecules owing to a change in combined outcome and orientation of the geomagnetic field and Earth's gravitational field. The possibility of modulation of self-oscillating processes with changes in geomagnetic field is also discussed.

  10. The response of European Daphnia magna Straus and Australian Daphnia carinata King to changes in geomagnetic field.

    PubMed

    Krylov, Viacheslav V; Bolotovskaya, Irina V; Osipova, Elena A

    2013-03-01

    This study investigates the effects of lifelong exposure to reversed geomagnetic and zero geomagnetic fields (the latter means absence of geomagnetic field) on the life history of Daphnia carinata King from Australia and Daphnia magna Straus from Europe. Considerable deviation in the geomagnetic field from the usual strength, leads to a decrease in daphnia size and life span. Reduced brood sizes and increased body length of neonates are observed in D. magna exposed to unusual magnetic background. The most apparent effects are induced by zero geomagnetic field in both species of Daphnia. A delay in the first reproduction in zero geomagnetic field is observed only in D. magna. No adaptive maternal effects to reversed geomagnetic field are found in a line of D. magna maintained in these magnetic conditions for eight generations. Integrally, the responses of D. magna to unusual geomagnetic conditions are more extensive than that in D. carinata. We suggest that the mechanism of the effects of geomagnetic field reversal on Daphnia may be related to differences in the pattern of distribution of the particles that have a magnetic moment, or to moving charged organic molecules owing to a change in combined outcome and orientation of the geomagnetic field and Earth's gravitational field. The possibility of modulation of self-oscillating processes with changes in geomagnetic field is also discussed. PMID:23320498

  11. Relationships of high-latitude geomagnetic variations to interplanetary plasma conditions

    SciTech Connect

    Wolfe, A. AT T Bell Laboratories, Murray Hill, NJ ); Lanzerotti, L.J.; Maclennan, C.G.; Medford, L.V. )

    1987-01-01

    As an extension of the United States program at South Pole Station to study in detail the southern magnetospheric cusp region, the authors have initiated geomagnetic studies at Iqaluit (formerly Frobisher Bay), Baffin Island, Northwest Territories, Canada. This location is approximately geomagnetically conjugate to South Pole Station under quiet geomagnetic conditions. Both sites are just inside the equatorward boundary of the dayside magnetospheric cusps in their respective hemispheres. This research includes studies of the conjugacy of geometric activity at these high latitudes, studies of the conditions under which conjugacy breaks down, and the relationship of geomagnetic variations to energy sources in the interplanetary plasma. In both hemispheres, variations in the magnetic field are measured with fluxgate magnetometers over the range from 0.0 to approximately 0.5 hertz. The field variations are measured in three orthogonal components: Geomagnetic north-south (H-component), geomagnetic east-west (D-component), and vertical (V-component). The magnetic field data are analyzed using a number of statistical techniques, including power spectra analysis. Presented here are the results of a study of hourly power spectra computed for the the H-component magnetic field data acquired at both South Pole and Iqaluit for the 30-day interval 17 July to 15 August 1985. After computing the spectra, the geomagnetic power is calculated over several different bandwidths corresponding, roughly, to frequencies related to hydromagnetic waves in the Earth's magnetosphere.

  12. Geomagnetic Activity Forecasting Model based on SW-M-I coupling

    NASA Astrophysics Data System (ADS)

    Nagatsuma, Tsutomu; Kunitake, Manabu

    Prediction of geomagnetic activity is one of the fundamental issues of space weather forecast. We are developing geomagnetic activity forecasting model based on the solar wind -magneto-sphere -ionosphere (SW-M-I) coupling. The key point of our forecasting model is ionosphereic conductivity dependence of the coupling function. We have found that the efficiency of SW-M-I coupling is not constant but has a dependence of ionospheric conductivity within the polar cap. Therefore, operational forecasting model of geomagnetic activity should take into account these variations and dependence. Our model can explain the diurnal and semiannual and solar cycle variations of geomagnetic activity from solar wind parameter and F10.7 index. We also examine the possibility of using inner heliospheric solar wind data such as STEREO data for a few days advance of geomagnetic activity forecast. Based on the comparison between ACE and STEREO data, we have found that the solar wind velocity can be predicted from the STEREO data well, but the Bz component of interplanetary magnetic field (IMF) is difficult to predict rather than the magnitude of IMF. This suggests that the probabilistic approach is needed for the mid-term geomagnetic forecast. We will introduce the future direction of our geomagnetic activity forecasting model in our talk.

  13. Effects of substorm electrojet on declination along concurrent geomagnetic latitudes in the northern auroral zone

    NASA Astrophysics Data System (ADS)

    Edvardsen, Inge; Johnsen, Magnar G.; Løvhaug, Unni P.

    2016-10-01

    The geomagnetic field often experiences large fluctuations, especially at high latitudes in the auroral zones. We have found, using simulations, that there are significant differences in the substorm signature, in certain coordinate systems, as a function of longitude. This is confirmed by the analysis of real, measured data from comparable locations. Large geomagnetic fluctuations pose challenges for companies involved in resource exploitation since the Earth's magnetic field is used as the reference when navigating drilling equipment. It is widely known that geomagnetic activity increases with increasing latitude and that the largest fluctuations are caused by substorms. In the auroral zones, substorms are common phenomena, occurring almost every night. In principle, the magnitude of geomagnetic disturbances from two identical substorms along concurrent geomagnetic latitudes around the globe, at different local times, will be the same. However, the signature of a substorm will change as a function of geomagnetic longitude due to varying declination, dipole declination, and horizontal magnetic field along constant geomagnetic latitudes. To investigate and quantify this, we applied a simple substorm current wedge model in combination with a dipole representation of the Earth's magnetic field to simulate magnetic substorms of different morphologies and local times. The results of these simulations were compared to statistical data from observatories and are discussed in the context of resource exploitation in the Arctic. We also attempt to determine and quantify areas in the auroral zone where there is a potential for increased space weather challenges compared to other areas.

  14. Effect of geomagnetic disturbances on physiological parameters: An investigation on aviators

    NASA Astrophysics Data System (ADS)

    Papailiou, M.; Mavromichalaki, H.; Kudela, K.; Stetiarova, J.; Dimitrova, S.

    2011-11-01

    Over the last years the potential effect that the geomagnetic activity may have on human physiological parameters (such as heart rate, arterial diastolic and systolic pressure) is being widely investigated with irrefutable results. As it is suggested, human health can be affected by solar activity and related geophysical changes. In this study a group of 4018 Slovak aviators was examined from January 1, 1994 to December 31, 2002, covering periods with high solar and geomagnetic activity. Specifically, medical data of mean values of arterial diastolic and systolic blood pressure, which were registered during the medical examinations of the Slovak aviators, were related to daily variations of Dst and Ap geomagnetic indices. All subjects were men (from 18 to 60 years old) in good health. Statistical significance levels (p-values) of the effect of geomagnetic activity on the aforementioned parameters up to three days before and three days after the geomagnetic event were established using the statistical method ANalysis Of VAriance (ANOVA). Statistical analysis of the arterial blood pressure variations for different levels of geomagnetic activity revealed that geomagnetic changes are connected to variations of the human physiological parameters.

  15. Geomagnetic Field Reversals and Life on the Earth in Phanerozoic Time

    NASA Astrophysics Data System (ADS)

    Pechersky, D. M.

    2014-10-01

    Global paleomagnetic and biostratigraphic data are generalized. As a result it is found out that the direct connection between geomagnetic reversals, biozones and maxima of mass extinction of a biota is absent. At the same time it is noted close to a synchronous total picture of consistent changes of biozones and geomagnetic polarity. It is explained by the general source - the Earth's diurnal rotation. The reversal polarity of a geomagnetic field prevailed during the Phanerozoic that is agreed with the Earth's counterclockwise rotation. Change of polarity of a field, most likely, is connected with acceleration or deceleration of rotation speed of the internal core relative to the Earth's mantle. Lack of direct interrelation between changes in the biosphere and geomagnetic field indicate a lack of influence of a field on life evolution on Earth. It follows also from the fact that life on Earth developed from primitive unicellular forms to mammals and the man and diversity of biota was grew against a close condition of a geomagnetic field during ~2,5 billion years and irrespective of numerous geomagnetic reversals. Main conclusion: evolutionary development of life on Earth doesn't depend both on large changes of a geomagnetic field, and on the extreme catastrophic events conducting to mass extinction of a biota.

  16. Analysis of the Solar Diameter Variations at July, 1986 and the Geomagnetic Storm of March, 1989

    NASA Astrophysics Data System (ADS)

    Humberto Andrei, Alexandre; Garcia, Marcos A.; Papa, Andres R. R.; Calderari Boscardin, Sergio; Lousada Penna, Jucira; Sigismondi, Costantino

    2015-08-01

    In this work, we have a well-known event in scientific literature used to illustrate our investigation on the viability of the solar diameter variation be a precursor for the occurrence of sets of coronal mass ejections, and thus, for geomagnetic storms, as noted in previous works of our group, but now, in a time scale of a few days. The selected event was that of March 13, 1989, a strong geomagnetic storm that made the Hydro-Quebec power grid fall down by 9 hours, damaging the local economy in millions of dollars. At the same time we have investigated a time interval belonging to a solar minimum period, on July 1986, prior to the rising phase and solar maximum of Solar Cycle 22, to compare with the geomagnetic pattern, as well as with the solar diameter behavior along these periods of low solar and geomagnetic activity. We used the time series of the CERGA’s astrolabe (because its dataset is long enough as to comprise both time periods of the analysis), the geomagnetic index AP and the H geomagnetic component from the Tatuoca Magnetic Observatory (because it is near to the geomagnetic equator and with the extra aim of checking the sensitivity of its magnetometers to global events).

  17. Geomagnetic activity influences the melatonin secretion at latitude 70 degrees N.

    PubMed

    Weydahl, A; Sothern, R B; Cornélissen, G; Wetterberg, L

    2001-01-01

    Factors other than light may affect variations in melatonin, including disturbances in the geomagnetic field. Such a possibility was tested in Alta, Norway, located at latitude 70 degrees N, where the aurora borealis is a result of large changes in the horizontal component (H) of the geomagnetic field. Geomagnetic disturbances are felt more strongly closer to the pole than at lower latitudes. Also noteworthy in Alta is the fact that the sun does not rise above the horizon for several weeks during the winter. To examine whether changes in geomagnetic activity influence the secretion of melatonin, saliva was collected from 25 healthy subjects in Alta several times during the day-night and at different times of the year. Single cosinor analyses yielded individual estimates of.the circadian amplitude and MESOR of melatonin. A 3-hour mean value for the local geomagnetic activity index, K, was used for approximately the same 24-hour span. A circadian rhythm was found to characterize both melatonin and K, the peak in K (23:24) preceding that of melatonin (06:08). During the span of investigation, a circannual variation also characterized both variables. Correlation analyses suggest that changes in geomagnetic activity had to be of a certain magnitude to affect the circadian amplitude of melatonin. If large enough (> 80 nT/3 h), changes in geomagnetic activity also significantly decreased salivary melatonin concentration. PMID:11774869

  18. Further Evaluation of Geomagnetic Dipole Asymmetry in Growth and Decay

    NASA Astrophysics Data System (ADS)

    Avery, M. S.; Constable, C.; Gee, J. S.

    2015-12-01

    Records of past geomagnetic intensity fluctuations provide important constraints on dynamical processes in the outer core. PADM2M is a reconstruction of the 0 to 2 Ma axial dipole moment primarily based on global sediment records, but calibrated by absolute paleointensity data. Ziegler & Constable (2011) showed that for periods longer than 25 kyr the dipole spends more time decaying than growing: thus its average growth rate is greater than its decay rate. The observed asymmetry is not limited to times when the field is reversing, and may reveal a critical dynamic of the outer core. We assess the robustness of the initial result through development of improved analysis methods and explore the possibility of identifying the asymmetry in alternative recording media and at other epochs. Improved low pass filtering is used to identify asymmetry (percent time growing, pg < 50% ) and to quantify its uncertainty via bootstrap methods. The original results are significant and do not depend on the specifics of the filtering process, although the cutoff period corresponding to the peak in asymmetry varies relative to the initial analyses. A long-term record of geomagnetic intensity should also be preserved by the thermoremanence of oceanic crust and stacks of marine magnetic anomalies are inverted to provide an independent means of assessing the asymmetry seen in PADM2M. We first examine a 0 to 780 kyr record from the East Pacific Rise near 19ºS finding that pg departures from 50% are not statistically significant. We believe the record is too short and noisy; comparing the power spectra of the datasets supports this. Overall coherence with PADM2M never rises above 0.4 and, despite the presence of obvious long term geomagnetic signals in the record, the primary signals at periods of 25 - 50ky are almost certainly due to variations in crustal accretion. A better candidate for analysis is a stack of near-bottom records from chron C5 in the NE Pacific. Multiple nearby records

  19. High-resolution geomagnetic field modeling and forecasting

    NASA Astrophysics Data System (ADS)

    Soukhovitskaya, Veronika

    2010-12-01

    We use geomagnetic observatory data, survey data and satellite data from the CHAMP, Oersted, MAGSAT, DE-2 and POGO missions to derive two time-dependent spherical harmonic models of Earth's magnetic field at the core-mantle boundary: one for the years 1957-2009 and the other for the years 2001-2009 (in order to investigate the limits of core field resolution with the most recent, highly accurate data). We pay particular attention to observatory and satellite data analysis and to spatial and temporal data distributions in order to separate external and internal fields. Our approach is to produce models with varying spatial roughness and to examine them with respect to correlations with known structures of core and crustal fields. The final models are consistent with other main field models in their general structure, but show differences predominantly in places where main field features are known to be complex (e.g. the South Atlantic Anomaly). Thus, the models reveal a more detailed spatial and temporal structure of the magnetic field at the core-mantle boundary. Such high-resolution models can be used to infer small-scale core surface flows and core dynamics. We use the 1957-2009 geomagnetic field model to derive time-dependent core flow models and produce hindcasts of the Earth's main magnetic field. The goal of this study is to explore whether we can accurately forecast changes in geomagnetic secular variation by advecting core-surface flows forward in time and accounting for torsional oscillations. We compare hindcasts produced over different time intervals and computed from steady and time-varying core flow models, and also consider differently parametrized core flows (such as steady flow, steadily accelerated flow and steadily accelerated flow with torsional oscillations). We find that the steadily accelerated flow plus torsional oscillations is able to accurately reproduce changes in the Earth's magnetic field for short-term (5 years) and medium-term (13

  20. Geomagnetic activity associated with Earth passage of interplanetary shock disturbances and coronal mass ejections

    SciTech Connect

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Bame, S.J. )

    1991-05-01

    Previous work indicates that virtually all transient shock wave disturbances in the solar wind are driven by fast coronal mass ejection events (CMEs). Using a recently appreciated capability for distinguishing CMEs in solar wind data in the form of counterstreaming solar wind electron events, this paper explores the overall effectiveness of shock wave disturbances and CMEs in general in stimulating geomagnetic activity. The study is confined to the interval from mid-August 1978 through mid-October 1982, spanning the last solar activity maximum, when ISEE 3 was in orbit about the L1 Lagrange point 220 R{sub e} upstream from Earth. The authors find that all but one of the 37 largest geomagnetic storms in that era were associated with Earth passage of CMEs and/or shock disturbances, with the large majority of these storms being associated with interplanetary events where Earth encountered both a shock and the CME driving the shock (shock/CME events). Although CMEs and/or shock disturbances were increasingly the cause of geomagnetic activity as the level of geomagnetic activity increased, many smaller geomagnetic disturbances were unrelated to these events. Further, approximately half of all CMEs and half of all shock disturbances encountered by Earth did not produce any substantial geomagnetic activity as measured by the planetary geomagnetic index Kp. The geomagnetic effectiveness of Earth directed CMEs and shock wave disturbances was directly related to the flow speed, the magnetic field magnitude, and the strength of the southward (GSM) field component associated with the events. The initial speed of a CME close to the Sun appears to be the most crucial factor in determining if an earthward directed event will be effective in exciting a large geomagnetic disturbance.

  1. Monitoring the Earth's Dynamic Magnetic Field

    USGS Publications Warehouse

    Love, Jeffrey J.; Applegate, David; Townshend, John B.

    2008-01-01

    The mission of the U.S. Geological Survey's Geomagnetism Program is to monitor the Earth's magnetic field. Using ground-based observatories, the Program provides continuous records of magnetic field variations covering long timescales; disseminates magnetic data to various governmental, academic, and private institutions; and conducts research into the nature of geomagnetic variations for purposes of scientific understanding and hazard mitigation. The program is an integral part of the U.S. Government's National Space Weather Program (NSWP), which also includes programs in the National Aeronautics and Space Administration (NASA), the Department of Defense (DOD), the National Oceanic and Atmospheric Administration (NOAA), and the National Science Foundation (NSF). The NSWP works to provide timely, accurate, and reliable space weather warnings, observations, specifications, and forecasts, and its work is important for the U.S. economy and national security. Please visit the National Geomagnetism Program?s website, http://geomag.usgs.gov, where you can learn more about the Program and the science of geomagnetism. You can find additional related information at the Intermagnet website, http://www.intermagnet.org.

  2. The effects of solar-geomagnetically induced currents on electrical systems in nuclear power stations

    SciTech Connect

    Subudhi, M.; Carroll, D.P.; Kasturi, S.

    1994-01-01

    This report presents the results of a study to evaluate the potential effects of geomagnetically induced currents (GICs) caused by the solar disturbances on the in-plant electrical distribution system and equipment in nuclear power stations. The plant-specific electrical distribution system for a typical nuclear plant is modeled using the ElectroMagnetic Transient Program (EMTP). The computer model simulates online equipment and loads from the station transformer in the switchyard of the power station to the safety-buses at 120 volts to which all electronic devices are connected for plant monitoring. The analytical model of the plant`s electrical distribution system is studied to identify the transient effects caused by the half-cycle saturation of the station transformers due to GIC. This study provides results of the voltage harmonics levels that have been noted at various electrical buses inside the plant. The emergency circuits appear to be more susceptible to high harmonics due to the normally light load conditions. In addition to steady-state analysis, this model was further analyzed simulating various plant transient conditions (e.g., loss of load or large motor start-up) occurring during GIC events. Detail models of the plant`s protective relaying system employed in bus transfer application were included in this model to study the effects of the harmonic distortion of the voltage input. Potential harmonic effects on the uniterruptable power system (UPS) are qualitatively discussed as well.

  3. Variation of Solar, Interplanetary and Geomagnetic Parameters during Solar Cycles 21-24

    NASA Astrophysics Data System (ADS)

    Oh, Suyeon; Kim, Bogyeong

    2013-06-01

    The length of solar cycle 23 has been prolonged up to about 13 years. Many studies have speculated that the solar cycle 23/24 minimum will indicate the onset of a grand minimum of solar activity, such as the Maunder Minimum. We check the trends of solar (sunspot number, solar magnetic fields, total solar irradiance, solar radio flux, and frequency of solar X-ray flare), interplanetary (interplanetary magnetic field, solar wind and galactic cosmic ray intensity), and geomagnetic (Ap index) parameters (SIG parameters) during solar cycles 21-24. Most SIG parameters during the period of the solar cycle 23/24 minimum have remarkably low values. Since the 1970s, the space environment has been monitored by ground observatories and satellites. Such prevalently low values of SIG parameters have never been seen. We suggest that these unprecedented conditions of SIG parameters originate from the weakened solar magnetic fields. Meanwhile, the deep 23/24 solar cycle minimum might be the portent of a grand minimum in which the global mean temperature of the lower atmosphere is as low as in the period of Dalton or Maunder minimum.

  4. Solar wind monitor satellite

    SciTech Connect

    Kappenman, J.G. ); Albertson, V.D. ); Damsk, B.L. ); Dale, S.J. )

    1990-05-01

    This authors discuss the effects of geomagnetic disturbances on power systems. They also discuss the effects of geomagnetic storms on spacecraft electronics, pipelines, and geophysical surveys for oil and minerals. The current satellite system technology used in geomagnetic disturbance forecasts is described and assessed.

  5. Effect of enhanced geomagnetic activity on hypothermia and mortality in rats

    NASA Astrophysics Data System (ADS)

    Bureau, Y. R. J.; Persinger, M. A.; Parker, G. H.

    1996-12-01

    The hypothesis was investigated that variability in the severity of limbic seizure-induced hypothermia in rats was affected by ambient geomagnetic activity. Data were obtained in support of this hypothesis. The depth of the hypothermia was significantly ( P < 0.001) reduced if the ambient geomagnetic activity exceeded 35 nT to 40 nT. Mortality during the subsequent 5 days was increased when the geomagnetic activity was > 20 nT. The magnitude of the effect was comparable to the difference between exposure to light or to darkness during the 20 h after the induction of limbic seizures.

  6. Some properties of trans-equatorial ion whistlers observed by Isis satellites during geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Watanabe, S.; Ondoh, T.

    1986-01-01

    Several ion whistlers were observed by the polar orbiting satellites, Isis, during geomagnetic storms associated with large solar flares in 1982. It seems that the proton density ratio to the total ions deduced from the crossover frequency of the transequatorial ion whistlers observed at geomagnetic low latitudes during the main phase of the geomagnetic storm on July 14, 1982 was lower than the usual density ratio. An anomalous pattern seen on the time-compressed dynamic spectra of the ion whistlers on September 6, 1982 may suggest the existence of effects by the component He(3+) in a quite small amount.

  7. Detailed Analysis of Solar Data Related to Historical Extreme Geomagnetic Storms: 1868 - 2010

    NASA Astrophysics Data System (ADS)

    Lefèvre, Laure; Vennerstrøm, Susanne; Dumbović, Mateja; Vršnak, Bojan; Sudar, Davor; Arlt, Rainer; Clette, Frédéric; Crosby, Norma

    2016-05-01

    An analysis of historical Sun-Earth connection events in the context of the most extreme space weather events of the last ˜150 years is presented. To identify the key factors leading to these extreme events, a sample of the most important geomagnetic storms was selected based mainly on the well-known aa index and on geomagnetic parameters described in the accompanying paper (Vennerstrøm et al., Solar Phys. in this issue, 2016, hereafter Paper I). This part of the analysis focuses on associating and characterizing the active regions (sunspot groups) that are most likely linked to these major geomagnetic storms.

  8. Do geomagnetic storms change the behaviour of the stingless bee guiruçu ( Schwarziana quadripunctata)?

    NASA Astrophysics Data System (ADS)

    Esquivel, Darci M. S.; Wajnberg, E.; Do Nascimento, F. S.; Pinho, M. B.; de Barros, H. G. P. Lins; Eizemberg, R.

    2007-02-01

    Six behavioural experiments were carried out to investigate the magnetic field effects on the nest-exiting flight directions of the honeybee Schwarziana quadripunctata ( Meliponini). No significant differences resulted during six experiment days under varying geomagnetic field and the applied static inhomogeneous field (about ten times the geomagnetic field) conditions. A surprising statistically significant response was obtained on a unique magnetic storm day. The magnetic nanoparticles in these bees, revealed by ferromagnetic resonance, could be involved in the observed effect of the geomagnetic storm.

  9. Fourier power spectra of the geomagnetic field for circular paths on the Earth's surface.

    USGS Publications Warehouse

    Alldredge, L.R.; Benton, E.R.

    1986-01-01

    The Fourier power spectra of geomagnetic component values, synthesized from spherical harmonic models, have been computed for circular paths on the Earth's surface. They are not found to be more useful than is the spectrum of magnetic energy outside the Earth for the purpose of separating core and crustal sources of the geomagnetic field. The Fourier power spectra of N and E geomagnetic components along nearly polar great circle paths exhibit some unusual characteristics that are explained by the geometric perspective of Fourier series on spheres developed by Yee. -Authors

  10. Estimating the change in asymptotic direction due to secular changes in the geomagnetic field

    NASA Technical Reports Server (NTRS)

    Flueckiger, E. O.; Smart, D. F.; Shea, M. A.; Gentile, L. C.; Bathurat, A. A.

    1985-01-01

    The concept of geomagnetic optics, as described by the asymptotic directions of approach, is extremely useful in the analysis of cosmic radiation data. However, when changes in cutoff occur as a result of evolution in the geomagnetic field, there are corresponding changes in the asymptotic cones of acceptance. A method is introduced of estimating the change in the asymptotic direction of approach for vertically incident cosmic ray particles from a reference set of directions at a specific epoch by considering the change in the geomagnetic cutoff.

  11. Variation of tidal winds in the ionosphere inferred from geomagnetic SQ field

    NASA Technical Reports Server (NTRS)

    Takeda, M.; Araki, T.

    1985-01-01

    The geomagnetic Sq field is mainly generated by the dynamo action of tidal winds in the ionosphere, and therefore some information can be derived from the variation of the Sq field. The geomagnetic Sq field was analyzed during March 1 to 18, 1980, when the geomagnetic activity was exceptionally low, and the equivalent Sq currents calculated every 2 hours by using the spherical harmonics method. Then additional Sq currents were extracted by subtracting the currents averaged through all days in the period from the original currents at each UT. The change of the instantaneous Sq current system by the above-mentioned method is discussed.

  12. The quasi-biennial variation in the geomagnetic field: a global characteristics analysis

    NASA Astrophysics Data System (ADS)

    Ou, Jiaming; Du, Aimin

    2016-04-01

    The periodicity of 1.5-3 years, namely the quasi-biennial oscillation (QBO), has been identified in the solar, geophysical, and atmospheric variability. Sugiura (1976) investigated the observatory annual means over 1900-1970 and confirmed the QBO in the geomagnetic field. At present, studying the quasi-biennial oscillation becomes substantial for separating the internal/external parts in the geomagnetic observations. For the internal field, two typical periodicities, namely the 6-year oscillation in the geomagnetic secular acceleration (SA) and the geomagnetic jerk (occurs in 1-2 years), have close period to the QBO. Recently, a global quasi-biennial fluctuation was identified in the geomagnetic core field model (Silva et al., 2012). Silva et al. speculated this 2.5 years signal to either external source remaining in the core field model or consequence of the methods used to construct the model. As more high-quality data from global observatories are available, it is a good opportunity to characterize the geomagnetic QBO in the global range. In this paper, we investigate the QBO in the observatory monthly geomagnetic field X, Y, and Z components spanning 1985-2010. We employ the observatory hourly means database from the World Data Center for Geomagnetism (WDC) for the investigation. Wavelet analysis is used to detect and identify the QBO, while Fast Fourier Transform (FFT) analysis to obtain the statistics of the QBO. We apply the spherical harmonic analysis on QBO's amplitude, in order to quantify and separate internal and external sources. Three salient periods respectively at 2.9, 2.2, and 1.7 years, are identified in the amplitude spectrum over 1988-2008. The oscillation with the period of ~2.2 years is most prominent in all field components and further studied. In the X component the QBO is attenuated towards the polar regions, while in the Z component the amplitude of QBO increases with increasing of the geomagnetic latitude. At the high latitudes, the QBO

  13. Different geomagnetic indices as an indicator for geo-effective solar storms and human physiological state

    NASA Astrophysics Data System (ADS)

    Dimitrova, Svetla

    2008-02-01

    A group of 86 healthy volunteers were examined on each working day during periods of high solar activity. Data about systolic and diastolic blood pressure, pulse pressure, heart rate and subjective psycho-physiological complaints were gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters. The factors were as follows: (1) geomagnetic activity estimated by daily amplitude of H-component of the local geomagnetic field, Ap- and Dst-index; (2) gender; and (3) the presence of medication. Average values of systolic, diastolic blood pressure, pulse pressure and subjective complaints of the group were found to increase significantly with geomagnetic activity increment.

  14. Geophysical variables and behavior: XXI. Geomagnetic variation as possible enhancement stimuli for UFO reports preceding earthtremors.

    PubMed

    Persinger, M A

    1985-02-01

    The contribution of geomagnetic variation to the occurrence of UFORs (reports of UFOs) within the New Madrid States during the 6-mo. increments before increases in the numbers of IV-V or less intensity earthquakes within the central USA was determined. Although statistically significant zero-order correlations existed between measures of earthquakes, UFORs and geomagnetic variability, the association between the latter two deteriorated markedly when their shared variance with earthquakes was held constant. These outcomes are compatible with the hypothesis that geomagnetic variability (or phenomena associated with it) may enhance UFORs but only if tectonic stress and strain are increasing within the region. PMID:3982943

  15. Geophysical variables and behavior: XXI. Geomagnetic variation as possible enhancement stimuli for UFO reports preceding earthtremors.

    PubMed

    Persinger, M A

    1985-02-01

    The contribution of geomagnetic variation to the occurrence of UFORs (reports of UFOs) within the New Madrid States during the 6-mo. increments before increases in the numbers of IV-V or less intensity earthquakes within the central USA was determined. Although statistically significant zero-order correlations existed between measures of earthquakes, UFORs and geomagnetic variability, the association between the latter two deteriorated markedly when their shared variance with earthquakes was held constant. These outcomes are compatible with the hypothesis that geomagnetic variability (or phenomena associated with it) may enhance UFORs but only if tectonic stress and strain are increasing within the region.

  16. Plasma regimes in the deep geomagnetic tail - ISEE 3

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Anderson, R. C.; Asbridge, J. R.; Baker, D. N.; Feldman, W. C.; Gosling, J. T.; Hones, E. W., Jr.; Mccomas, D. J.; Zwickl, R. D.

    1983-01-01

    The spacecraft remained close to or within a previously unexplored part of the distant (60-220 earth radii) geomagnetic tail nearly continuously from January 1 to March 30, 1983. Analysis of the data reveals that all of the plasma regimes identified previously with near-earth measurements (plasma sheet, low-latitude boundary layer, plasma mantle, lobe, and magnetosheath) remain recognizable in the distant tail. These regimes, however, are found to be intermingled in a more chaotic fashion than near the earth. Within the plasma sheet at approximately 200 earth radii, typical flow velocities are about 500 km/s tailward, considerably higher than in the near-earth plasma sheet. Earthward flow within the plasma sheet is observed occasionally, indicating the temporary presence of a neutral line beyond 220 earth radii. Also found are strong bidirectional electron anisotropies throughout much of the distant plasma sheet, boundary layer, and magnetosheath.

  17. Study of Ring Current Dynamics During Geomagnetic Storms

    NASA Technical Reports Server (NTRS)

    Jordanova, Vania K.

    2000-01-01

    This research program considered modeling the dynamical evolution of the ring current during several geomagnetic storms. The first year (6/01/1997-5/31/1998) of this successful collaborative research between the University of New Hampshire (UNH) and the University of California Los Angeles (UCLA) was supported by NASA grant NAG5-4680. The second and third years (6/01/1998-5/31/2000) were funded at UNH under NASA grant NAG5-7368. Research work at UNH concentrated on further development of a kinetic model to treat all of the important physical processes that affect the ring current ion population during storm conditions. This model was applied to simulate ring current development during several International Solar-Terrestrial Physics (ISTP) events, and the results were directly compared to satellite observations. A brief description of our major accomplishments and a list of the publications and presentations resulting from this effort are given.

  18. On the limitations of geomagnetic measures of interplanetary magnetic polarity

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Rosenberg, R. L.

    1974-01-01

    The maximum attainable accuracy in inferring the interplanetary magnetic polarity from polar cap magnetograms is about 88%. This is achieved in practice, when high-latitude polar cap stations are used during local summer months, and the signature in the ground records is strong. An attempt by Svalgaard (1972) to use this effect to infer an index of interplanetary magnetic polarity back to 1926 has not been so successful. Furthermore, some of the properties of the index have changed with time. Prior to 1963, the inferred polarities are strongly dependent on geomagnetic activity, while after this time they are not. Thus, this index should not be used to separate solar-magnetic from solar-activity effects prior to 1963.

  19. 93 Years of Geomagnetic Data Acquisition at the Huancayo Observatory

    NASA Astrophysics Data System (ADS)

    Ishitsuka, J.

    2015-12-01

    The Department of Terrestrial Magnetism (DTM) of the Carnegie Institution of Washington (CIW) decided to establish a magnetic observatory in Peru in 1917. John A. Fleming, who belonged to the DTM, led the search for an adequate place for magnetic field observation. The Huancayo Magnetic Observatory was constructed from 1919 to 1921 and began its operation on 3 March 1922. The observatory has made important contributions to human knowledge such as the Forbush Decrease Effect and the Equatorial Electrojet. Thousands of scientists have used Huancayo's 93 years of geomagnetic data. In 1947, the DTM left the observatory to the Peruvian Government. A few years later, the Geophysical Institute of Peru (IGP) was established and becomes one of the most important scientific institutions in Peru. Details of past and present achievements of the IGP are presented.

  20. A new plasma regime in the distant geomagnetic tail

    NASA Technical Reports Server (NTRS)

    Hardy, D. A.; Hills, H. K.; Freeman, J. W.

    1975-01-01

    Observations are reported of an extensive region of low-energy plasma particles (LEP) flowing antisunward along the ordered field lines in the lobes of the geomagnetic tail at lunar distances. The flow was detected by three suprathermal ion detectors deployed on the lunar surface during the Apollo 12, 14, and 15 missions. This particle regime is found to be similar to the 'boundary layer' and 'plasma mantle' observed at smaller geocentric distances and to an interior flow region parallel to the magnetopause in the dayside magnetosphere. It is located exterior to the plasma sheet across essentially the entire tail and adjacent to the magnetopause on both the dawn and dusk sides of the magnetosphere. Variations in the integral flux, temperature, and number density are described. It is suggested that this flow and the three similar regimes are simply connected along the inner surface of the magnetopause and are, in fact, the same phenomenon.

  1. The unstable geomagnetic field during the last glacial

    NASA Astrophysics Data System (ADS)

    Nowaczyk, Norbert; Frank, Ute; Kind, Jessica; Plessen, Birgit; Arz, Helge

    2013-04-01

    Detailed stratigraphic analyses of a sediment composite record from three different sites in the southeastern Black Sea yielded a high-resolution, well-dated paleomagnetic record of the past 14 to 68 ka. Age constraints are provided by 16 AMS 14C ages, identification of the Campanian Ignimbrite tephra (39.28±0.11 ka), and by detailed tuning of sedimentologic parameters of the Black Sea sediments to the oxygen isotope record from the Greenland NGRIP ice core. Dansgaard-Oeschger events 3 through 18 are very well expressed in the Black Sea sedimentary records of Ca-content, oxygen isotopes as well as in records of ice-rafted detritus. Though hampered by some larger hiatusses at one site, and patchy contaminations by diagenetically formed greigite, the paleomagnetic composite record obtained from the preserved primary detrital magnetite phase reflects a highly dynamic geomagnetic field during the last glacial period. Relative variations of paleointensity inferred from the sediments' magnetisations were converted into a record of the virtual axial dipole moment (VADM). Thus, the Black Sea paleomagnetic record comprises evidence for the Norwegian-Greenland-Sea excursion at 64.5 ka (VADM = 1.5×1022 Am2), a full reversal of the geomagnetic field during the Laschamp excursion at 41 ka and several subsequent excursions with low northern virtual geomagnetic pole (VGP) latitudes, including the Mono Lake excursion at 34.5 ka (VADM = 3.0×1022 Am2). According to the derived age model, VGP positions during the Laschamp excursion persisted at high southern latitudes in Antarctica for an estimated 440 years, making the Laschamp excursion a short-lived event with fully reversed polarity directions. Recorded field reversals of the Laschamp excursion, lasting only an estimated ~250 years, are characterized by very low paleointensities with VADMs as low as 0.50×1022 Am2. The reversed phase of the Laschamp excursion is associated with a significant field recovery with a VADM of 2.0

  2. Motility of magnetotactic bacteria/MTB to Geomagnetic fields

    NASA Astrophysics Data System (ADS)

    Hidajatullah-Maksoed, Fatahillah

    2016-03-01

    Bacteria with motility directed by a local geomagnetic fields have been observed in marine sediments'' discussed by R. Blakemore, 1975. Magnetotactic bacteria/MTB discovered in 1963 by Salvatore Bellini. For ``off-axis electron holography in the transmission electron microscope was used to correlates the physical & magnetic microstructure of magnetite nanocrystals in magnetotactic bacteria'' sought ``single-domain magnetite in hemopelagic sediments'' from JF Stolz. Otherwise, for potential source of bioproducts- product meant from result to multiplier -of magnetotactic bacteria[ACV Araujo, et.al, 2014 ] of marine drugs retrieved the `measurement of cellular chemotaxis with ECIS/Taxis, from KM Pietrosimone, 2012, whereas after ``earth magnetic field role on small living models'' are other interpretation of ``taxis'' as a movement of a cell instead usual ``tax'' for yew's taxus cuspidate, hired car & taxes in financial realms. Acknowledgements to HE. Mr. H. TUK SETYOHADI, Jl. Sriwijaya Raya 3, South-Jakarta, INDONESIA.

  3. Evolution of the dipole geomagnetic field. Observations and models

    NASA Astrophysics Data System (ADS)

    Reshetnyak, M. Yu.; Pavlov, V. E.

    2016-01-01

    The works on paleomagnetic observations of the dipole geomagnetic field, its variations, and reversals in the last 3.5 billion years have been reviewed. It was noted that characteristic field variations are related to the evolution of the convection processes in the liquid core due to the effect of magnetic convection and solid core growth. Works on the geochemistry and energy budget of the Earth's core, the effect of the solid core on convection and the generation of the magnetic field, dynamo models are also considered. We consider how core growth affects the magnetic dipole generation and variations, as well as the possibility of magnetic field generation up to the appearance of the solid core. We also pay attention to the fact that not only the magnetic field but also its configuration and time variations, which are caused by the convection evolution in the core on geological timescales, are important factors for the biosphere.

  4. A Geomagnetic Precursor Technique for Predicting the Solar Activity Cycle

    NASA Astrophysics Data System (ADS)

    Sobel, E. I.; Rabin, D. M.

    2015-12-01

    The Western hemisphere has been recording sunspot numbers since Galileo discovered sunspots in the early 17th century, and the roughly 11-year solar cycle has been recognized since the 19th century. However, predicting the strength of any particular cycle remains a relatively imprecise task. This project's aim was to update and improve a forecasting technique based on geomagnetic precursors of future solar activity The model is a refinement of R. J. Thompson's 1993 paper that relates the number of geomagnetically disturbed days, as defined by the aa and Ap indices, to the sum of the sunspot number in the current and the previous cycle, Rn + Rn-1.[1] The method exploits the fact that two cycles coexist for some period on the Sun near solar minimum and therefore that the number of sunspots and disturbed days during the declining phase of one cycle gives an indication of the following cycle's strength. We wrote and updated IDL software procedures to define disturbed days with varying threshold values and graphed Rn + Rn-1 against them. The aa threshold was derived from the Ap threshold. After comparing the graphs for Ap values from 20 to 50, an Ap threshold of 30 and the corresponding aa threshold of 44 were chosen as yielding the best correlation. Confidence regions were computed to provide a quantitative uncertainty on future predictions. The 80% confidence region gives a range of ±40 in sunspot number. [1] Thompson, R. J. (1993). A technique for predicting the amplitude of the solar cycle. Solar Physics, 148, 2, 383-388.

  5. Characterization and diagnostic methods for geomagnetic auroral infrasound waves

    NASA Astrophysics Data System (ADS)

    Oldham, Justin J.

    Infrasonic perturbations resulting from auroral activity have been observed since the 1950's. In the last decade advances in infrasonic microphone sensitivity, high latitude sensor coverage, time series analysis methods and computational efficiency have elucidated new types of auroral infrasound. Persistent periods of infrasonic activity associated with geomagnetic sub-storms have been termed geomagnetic auroral infrasound waves [GAIW]. We consider 63 GAIW events recorded by the Fairbanks, AK infrasonic array I53US ranging from 2003 to 2014 and encompassing a complete solar cycle. We make observations of the acoustic features of these events alongside magnetometer, riometer, and all-sky camera data in an effort to quantify the ionospheric conditions suitable for infrasound generation. We find that, on average, the generation mechanism for GAIW is confined to a region centered about ~60 0 longitude east of the anti-Sun-Earth line and at ~770 North latitude. We note furthermore that in all cases considered wherein imaging riometer data are available, that dynamic regions of heightened ionospheric conductivity periodically cross the overhead zenith. Consistent features in concurrent magnetometer conditions are also noted, with irregular oscillations in the horizontal component of the field ubiquitous in all cases. In an effort to produce ionosphere based infrasound free from the clutter and unknowns typical of geophysical observations, an experiment was undertaken at the High Frequency Active Auroral Research Program [HAARP] facility in 2012. Infrasonic signals appearing to originate from a source region overhead were observed briefly on 9 August 2012. The signals were observed during a period when an electrojet current was presumed to have passed overhead and while the facilities radio transmitter was periodically heating the lower ionosphere. Our results suggest dynamic auroral electrojet currents as primary sources of much of the observed infrasound, with

  6. Validation of the galactic cosmic ray and geomagnetic transmission models

    NASA Technical Reports Server (NTRS)

    Badhwar, G. D.; Truong, A. G.; O'Neill, P. M.; Choutko, V.

    2001-01-01

    A very high-momentum resolution particle spectrometer called the Alpha Magnetic Spectrometer (AMS) was flown in the payload bay of the Space Shuttle in a 51.65 degrees x 380-km orbit during the last solar minimum. This spectrometer has provided the first high statistics data set for galactic cosmic radiation protons, and helium, as well as limited spectral data on carbon and oxygen nuclei in the International Space Station orbit. First measurements of the albedo protons at this inclination were also made. Because of the high-momentum resolution and high statistics, the data can be separated as a function of magnetic latitude. A related investigation, the balloon borne experiment with a superconducting solenoid spectrometer (BESS), has been flown from Lynn Lake, Canada and has also provided excellent high-resolution data on protons and helium. These two data sets have been used here to study the validity of two galactic cosmic ray models and the geomagnetic transmission function developed from the 1990 geomagnetic reference field model. The predictions of both the CREME96 and NASA/JSC models are in good agreement with the AMS data. The shape of the AMS measured albedo proton spectrum, up to 2 GeV, is in excellent agreement with the previous balloon and satellite observations. A new LIS spectrum was developed that is consistent with both previous and new BESS 3He observations. Because the astronaut radiation exposures onboard ISS will be highest around the time of the solar minimum, these AMS measurements and these models provide important benchmarks for future radiation studies. AMS-02 slated for launch in September 2003, will provide even better momentum resolution and higher statistics data. Published by Elsevier Science Ltd.

  7. Simulation of Theoretical Most-Extreme Geomagnetic Sudden Commencements

    NASA Astrophysics Data System (ADS)

    Welling, Daniel; Love, Jeffrey; Wiltberger, Michael; Rigler, Erin; Gombosi, Tamas

    2016-04-01

    We report results from a numerical simulation of geomagnetic sudden commencements driven by solar wind conditions given by theoretical-limit extreme coronal-mass ejections (CMEs) estimated by Tsurutani and Lakhina [2014]. The CME characteristics at Earth are a step function that jumps from typical quiet values to 2700 km/s flow speed and a magnetic field magnitude of 127 nT. These values are used to drive three coupled models: a global magnetohydrodynamic (MHD) magnetospheric model (BATS-R-US), a ring current model (the Rice Convection Model, RCM), and a height-integrated ionospheric electrodynamics model (the Ridley Ionosphere Model, RIM), all coupled together using the Space Weather Modeling Framework (SWMF). Additionally, simulations from the Lyon-Fedder-Mobarry MHD model are performed for comparison. The commencement is simulated with both purely northward and southward IMF orientations. Low-latitude ground-level geomagnetic variations, both B and dB/dt, are estimated in response to the storm sudden commencement. For a northward interplanetary magnetic field (IMF) storm, the combined models predict a maximum sudden commencement response, Dst-equivalent of +200 nT and a maximum local dB/dt of ~200nT/s. While this positive Dst response is driven mainly by magnetopause currents, complicated and dynamic Birkeland current patterns also develop, which drive the strong dB/dt responses at high latitude. For southward IMF conditions, erosion of dayside magnetic flux allows magnetopause currents to approach much closer to the Earth, leading to a stronger terrestrial response (Dst-equivalent of +250 nT). Further, high latitude signals from Region 1 Birkeland currents move to lower latitudes during the southward IMF case, increasing the risk to populated areas around the globe. Results inform fundamental understanding of solar-terrestrial interaction and benchmark estimates for induction hazards of interest to the electric-power grid industry.

  8. Calibration of historical geomagnetic observations from Prague-Klementinum

    NASA Astrophysics Data System (ADS)

    Hejda, Pavel

    2015-04-01

    The long tradition of geomagnetic observations on the Czech territory dates back to 1839, when regular observations were started by Karl Kreil at the Astronomical Observatory Prague-Klementinum. Observations were carried out manually, at the beginning more than ten times per day and the frequency later decreased to 5 daily observations. Around the turn of century the observations became to be disturbed by the increasing urban magnetic noise and the observatory was closed down in 1926. The variation measurements were completed by absolute measurements carried out several times per year. Thanks to the diligence and carefulness of Karl Kreil and his followers all results were printed in the yearbooks Magnetische und meteorologische Beobachtungen zu Prag and have thus been saved until presence. The entire collection is kept at the Central Library of the Czech Academy of Sciences. As the oldest geomagnetic data have been recently recognized as an important source of information for Space Weather studies, digitization and analysis of the data have been now started. Although all volumes have been scanned with the OCR option, the low quality of original books does not allow for an automatic transformation to digital form. The data were typed by hand to Excel files with a primary check and further processed. Variation data from 1839 to 1871 were published in measured units (scales of divisions). Their reduction to physical units was not as straight forward as we are used in recent observatories. There were several reasons: (i) the large heavy magnetic rods were not as stable as recent systems, (ii) the absolute measurements of horizontal components were carried out by the genius but rather complicated Gauss method, (iii) the intervals between absolute measurements was on the scale of months and eventual errors were not recognized timely. The presentation will discuss several methods and give examples how to cope with the problem.

  9. Local Geomagnetic Indices and the Prediction of Auroral Power

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Gjerloev, J. W.

    2014-12-01

    As the number of magnetometer stations and data processing power increases, just how auroral power relates to geomagnetic observations becomes a quantitatively more tractable question. This paper compares Polar UVI auroral power observations during 1997 with a variety of geomagnetic indices. Local time (LT) versions of the SuperMAG auroral electojet (SME) are introduced and examined, along with the corresponding upper and lower envelopes (SMU and SML). Also, the East-West component, BE, is investigated. We also consider whether using any of the local indices is actually better at predicting local auroral power than a single global index. Each index is separated into 24 LT indices based on a sliding 3-h MLT window. The ability to predict - or better reconstruct - auroral power varies greatly with LT, peaking at 1900 MLT, where about 75% of the variance (r2) can be predicted at 1-min cadence. The aurora is fairly predictable from 1700 MLT - 0400 MLT, roughly the region in which substorms occur. Auroral power is poorly predicted from auroral electrojet indices from 0500 MLT - 1500 MLT, with the minima at 1000-1300 MLT. In the region of high predictability, the local variable which works best is BE, in contrast to long-standing expectations. However using global SME is better than any local variable. Auroral power is best predicted by combining global SME with a local index: BE from 1500-0200 MLT, and either SMU or SML from 0300-1400 MLT. In the region of the diffuse aurora, it is better to use a 30 min average than the cotemporaneous 1-min SME value, while from 1500-0200 MLT the cotemporaneous 1-min SME works best, suggesting a more direct physical relationship with the auroral circuit. These results suggest a significant role for discrete auroral currents closing locally with Pedersen currents.

  10. Longevity of geomagnetic field features from decades to millennia

    NASA Astrophysics Data System (ADS)

    Korte, M.

    2009-04-01

    Global geomagnetic field models on different time scales offer the possibility to study the longevity of characteristics and outstanding features of the geomagnetic field. Recently developed models based on different sets of archeomagnetic data and/or magnetic sediment records of the past 3000 years provide improved estimates of the reliability of features observed in long-term models. The tilted dipole contribution is clearly standing out in terms of power in spherical harmonic descriptions. Models from the earliest available direct field observations up to today show that the dipole moment has been strongly decreasing for 180 years and the dipole tilt increased from 5 to 11 degrees over the past 400 years. Millennial scale models suggest that while the dipole moment has been higher during the past 3000 years the present rate of change is not exceptional. A general variation of dipole tilt with lower values around AD 100 and 1400 is shown by all the millennial scale models. The models suggest that the maximum tilts observed around 1000 BC and AD 1000 could have been significantly weaker than today (only about 5 degrees), but large uncertainties remain for this field characteristic. Two pairs of distinct magnetic flux lobes in the northern and southern hemisphere field at the core-mantle boundary have been observed in historical and recent field models and a growing patch of reversed flux in the southern hemisphere is causing the so-called South Atlantic Anomaly. Time averages of the 3000 year models suggest a preference for a similar flux lobe configuration and possibly for an intensity minimum in the South Atlantic region, but the features also show clear temporal changes on this time-scale.

  11. Coseismic ionospheric and geomagnetic disturbances caused by great earthquakes

    NASA Astrophysics Data System (ADS)

    Hao, Yongqiang; Zhang, Donghe; Xiao, Zuo

    2016-04-01

    Despite primary energy disturbances from the Sun, oscillations of the Earth surface due to a large earthquake will couple with the atmosphere and therefore the ionosphere, then the so-called coseismic ionospheric disturbances (CIDs) can be detected in the ionosphere. Using a combination of techniques, total electron content, HF Doppler, and ground magnetometer, a new time-sequence of such effects propagation were developed on observational basis and ideas on explanation provided. In the cases of 2008 Wenchuan and 2011 Tohoku earthquakes, infrasonic waves accompanying the propagation of seismic Rayleigh waves were observed in the ionosphere by all the three kinds of techniques. This is the very first report to present CIDs recorded by different techniques at co-located sites and profiled with regard to changes of both ionospheric plasma and current (geomagnetic field) simultaneously. Comparison between the oceanic (2011 Tohoku) and inland (2008 Wenchuan) earthquakes revealed that the main directional lobe of latter case is more distinct which is perpendicular to the direction of the fault rupture. We argue that the different fault slip (inland or submarine) may affect the way of couplings of lithosphere with atmosphere. References Zhao, B., and Y. Hao (2015), Ionospheric and geomagnetic disturbances caused by the 2008 Wenchuan earthquake: A revisit, J. Geophys. Res. Space Physics, 120, doi:10.1002/2015JA021035. Hao, Y. Q., Z. Xiao, and D. H. Zhang (2013), Teleseismic magnetic effects (TMDs) of 2011 Tohoku earthquake, J. Geophys. Res. Space Physics, 118, 3914-3923, doi:10.1002/jgra.50326. Hao, Y. Q., Z. Xiao, and D. H. Zhang (2012), Multi-instrument observation on co-seismic ionospheric effects after great Tohoku earthquake, J. Geophys. Res., 117, A02305, doi:10.1029/2011JA017036.

  12. Validation of the galactic cosmic ray and geomagnetic transmission models.

    PubMed

    Badhwar, G D; Truong, A G; O'Neill, P M; Choutko, V

    2001-06-01

    A very high-momentum resolution particle spectrometer called the Alpha Magnetic Spectrometer (AMS) was flown in the payload bay of the Space Shuttle in a 51.65 degrees x 380-km orbit during the last solar minimum. This spectrometer has provided the first high statistics data set for galactic cosmic radiation protons, and helium, as well as limited spectral data on carbon and oxygen nuclei in the International Space Station orbit. First measurements of the albedo protons at this inclination were also made. Because of the high-momentum resolution and high statistics, the data can be separated as a function of magnetic latitude. A related investigation, the balloon borne experiment with a superconducting solenoid spectrometer (BESS), has been flown from Lynn Lake, Canada and has also provided excellent high-resolution data on protons and helium. These two data sets have been used here to study the validity of two galactic cosmic ray models and the geomagnetic transmission function developed from the 1990 geomagnetic reference field model. The predictions of both the CREME96 and NASA/JSC models are in good agreement with the AMS data. The shape of the AMS measured albedo proton spectrum, up to 2 GeV, is in excellent agreement with the previous balloon and satellite observations. A new LIS spectrum was developed that is consistent with both previous and new BESS 3He observations. Because the astronaut radiation exposures onboard ISS will be highest around the time of the solar minimum, these AMS measurements and these models provide important benchmarks for future radiation studies. AMS-02 slated for launch in September 2003, will provide even better momentum resolution and higher statistics data.

  13. The 1995 revision of the joint US/UK geomagnetic field models - I. Secular variation

    USGS Publications Warehouse

    Macmillan, S.; Barraclough, D.R.; Quinn, J.M.; Coleman, R.J.

    1997-01-01

    We present the methods used to derive mathematical models of global secular variation of the main geomagnetic field for the period 1985 to 2000. These secular-variation models are used in the construction of the candidate US/UK models for the Definitive Geomagnetic Reference Field at 1990, the International Geomagnetic Reference Field for 1995 to 2000, and the World Magnetic Model for 1995 to 2000 (see paper II, Quinn et al., 1997). The main sources of data for the secular-variation models are geomagnetic observatories and repeat stations. Over the areas devoid of these data secular-variation information is extracted from aeromagnetic and satellite data. We describe how secular variation is predicted up to the year 2000 at the observatories and repeat stations, how the aeromagnetic and satellite data are used, and how all the data are combined to produce the required models.

  14. Airborne Geomagnetic Investigations at the Haughton Impact Structure, Devon Island, Nunavut, Canada

    NASA Technical Reports Server (NTRS)

    Glass, B. J.; Lee, P.

    2001-01-01

    This investigation created a broad magnetic map of the 23 Ma Haughton impact structure, in order to characterize its geomagnetic signature. Additional information is contained in the original extended abstract.

  15. Geomagnetic sudden impulses and storm sudden commencements - A note on terminology

    SciTech Connect

    Joselyn, J.A.; Tsurutani, B.T. JPL, Pasadena, CA )

    1990-11-01

    The definitions of and distinctions between storm sudden commencements (SSCs) and geomagnetic sudden impulses (SIs) are examined and present definitions of SIs and SSCs are modernized. Quantitative definitions of the two terms are recommended. 45 refs.

  16. Study of the Relationship Between Forbush Decrease and Geomagnetic Storm Events Using Dst Index.

    NASA Astrophysics Data System (ADS)

    Dominic, Obiegbuna; Okeke, Fransisca; Okpala, Kingsley

    Abstract A study of the relationship between Forbush decreases (FD) and geomagnetic storms have been carried out using the Dst index. Most important space weather effects including FDs are associated with geomagnetic disturbances (storms). The rigidity cut off of cosmic rays, is related to the latitude of measurement and are affected by geomagnetic disturbances. Four (4) stations hosted by the Bartol research institute, University of Delaware provided continuous CR counts for this study. Clear signatures of Forbush decreases associated with storms happening on days of Kp >7 from 1980-1989 were examined to deduce the level of modulation of CR counts during geomagnetic storms. Enhancement of the count rates are observed during simultaneous Forbush decreases associated with large storms. FD correlated well with Dst for all of the stations with no significant difference observed with regards to rigidity. The anomalous enhancement during the simultaneous FD showed stronger association depending on rigidity and the implications of these results

  17. The disturbances of ionospheric Total Electron Content during great geomagnetic storm above Iraq

    NASA Astrophysics Data System (ADS)

    Al-Ubaidi, Najat

    2016-07-01

    Several efforts have been made to study the behavior of Total Electron Content (TEC) with many types of geomagnetic storms; the purpose of this research is to study the disturbances of the ionosphere through the TEC parameter during great geomagnetic storm. TEC data selected for year 2003 (descending solar cycle 23), as available from (www.ngdc.noaa.gov/stp/IONO/USTEC/) for Iraq region (longitude 27-54 degree East, latitude 27-42 degree North) during great geomagnetic storm for 28-30 October 2003. To find out the type of geomagnetic storms the Disturbance storm time (Dst) index was selected for the days selected from Kyoto/Japan website. From data analysis, it is found that in general, there is a good proportionality between disturbance storm time index (Dst) and the total electron contents, the values of TEC in daytime greater than night time, but there is anomaly when the storm continued for several hours from the day.

  18. Interplanetary coronal mass ejections and their geomagnetic consequences during solar cycle 24

    NASA Astrophysics Data System (ADS)

    Maris Muntean, Georgeta; Mierla, Marilena; Besliu-Ionescu, Diana; Lacatus, Dana; Razvan Paraschiv, Alin

    Geomagnetic storms are known to be of great importance to life on Earth through their impact on telecommunications, electric power networks and much more. Our study will analyse in detail two months of solar and geomagnetic activity in March 2012 and, March 2013. There is an ICME (Interplanetary Coronal Mass Ejection) recorded on March 9, 2012 listed in the Richardson and Cane catalogue, correlated with a Halo CME (Coronal Mass Ejection) from March 7. An intense geomagnetic storm (minimum Dst = -131 nT) was registered on March 9, 2012. Out of the two ICMEs recorded on the 17th and 20th March 2013, only the first was clearly associated with a Halo CME from March, 15. March, 17 is a day of intense geomagnetic storm (minimum Dst = -132 nT). We will focus on these events, such that the interaction between ICMEs and interplanetary magnetic field from the Sun to the Earth can be thoroughly described.

  19. Preliminary analyses of solar flare effects on geomagnetic H component at equatorial and low latitudes

    NASA Astrophysics Data System (ADS)

    Ugonabo, Obiageli Josephine; Ugwu, Ernest Benjamin Ikechukwu; Nneka Okeke, Francisca

    The study of solar flare effect (SFE) on geomagnetic H component at mid latitudes was carried out using data from INTERMAGNET website. M and X solar flare effects on three stations, Addis Ababa (AAE), Bangui (BNG), and Tamanrasset (TAM) were investigated. It was found that the ratio is greater than zero for all the three stations used, hence SFE enhances geomagnetic field in the equatorial and low latitudes. It was equally noted that the SFE on geomagnetic field is not just a simple augmentation at the pre-flare ionospheric currents over these stations. It is concluded that both pre-flare and solar flare amplitude variations of H are high in low and equatorial stations. Keywords: Solar flare, geomagnetic component, latitudes.

  20. Experimental evidence in support of Joule heating associated with geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Devries, L. L.

    1971-01-01

    High resolution accelerometer measurements in the altitude region 140 to 300 km from a satellite in a near-polar orbit during a period of extremely high geomagnetic activity indicate that Joule heating is the primary source of energy for atmospheric heating associated with geomagnetic activity. This conclusion is supported by the following observational evidence: (1) There is an atmospheric response in the auroral zone which is nearly simulataneous with the onset of geomagnetic activity, with no significant response in the equatorial region until several hours later; (2) The maximum heating occurs at geographic locations near the maximum current of the auroral electrojet; and (3) There is evidence of atmospheric waves originating near the auroral zone at altitudes where Joule heating would be expected to occur. An analysis of atmospheric response time to this heat shows time delays are apparently independent of altitude but are strongly dependent upon geomagnetic latitude.

  1. Substorms observations over Apatity during geomagnetic storms in the period 2012 - 2016

    NASA Astrophysics Data System (ADS)

    Guineva, Veneta; Werner, Rolf; Despirak, Irina; Kozelov, Boris

    2016-07-01

    In this work we studied substorms, generated during enhanced geomagnetic activity in the period 2012 - 2016. Observations of the Multiscale Aurora Imaging Network (MAIN) in Apatity have been used. Solar wind and interplanetary magnetic field parameters were judged by the 1-min sampled OMNI data base. Substorm onset and further development were verified by the 10-s sampled data of IMAGE magnetometers and by data of the all-sky camera at Apatity. Subject of the study were substorms occurred during geomagnetic storms. The so-called "St. Patrick's day 2015 event" (17-21 March 2015), the events on 17-18 March 2013 and 7-17 March 2012 (a chain of events generated four consecutive storms) which were among the events of strongest geomagnetic activity during the current solar cycle 24, were part of the storms under consideration. The behavior of the substorms developed during different phases of the geomagnetic storms was discussed.

  2. Geomagnetic activity during the previous day is correlated with increased consumption of sucrose during subsequent days: is increased geomagnetic activity aversive?

    PubMed

    Galic, M A; Persinger, M A

    2004-06-01

    In five separate blocks over a period of several months for 33 female rats the amount of geomagnetic activity during the day before ad libitum access to 10% sucrose or water was positively correlated with the volume of sucrose consumed per 24-hr. period. The strength of the correlation (.62 to .77) declined over the subsequent 10 days from between .12 to -.18 and resembled an extinction curve. In a subsequent experiment four rats exposed to 5 nT to 8 nT, 0.5-Hz magnetic fields that ceased for 30 min. once every 4 hr. for 4 days consumed 11% more sucrose than the four rats exposed to no field. We suggest that the initial consumption of 10% sucrose may have been reinforced because it diminished the aversive physiological effects associated with the increased geomagnetic activity. However, over the subsequent days, as geomagnetic activity decreased or habituation occurred, negative reinforcement did not maintain this behavior.

  3. Correction of artificial jumps in the historical geomagnetic measurements of Coimbra Observatory, Portugal

    NASA Astrophysics Data System (ADS)

    Morozova, A. L.; Ribeiro, P.; Pais, M. A.

    2014-01-01

    The Coimbra Magnetic Observatory (International Association of Geomagnetism and Aeronomy code COI) in Portugal has a long history of observation of the geomagnetic field, spanning almost 150 yr since the first geomagnetic measurements in 1866. These long instrumental geomagnetic records provide very important information about variability of geomagnetic elements and indices, their trends and cycles, and can be used to improve our knowledge on the sources that drive variations of the geomagnetic field: liquid core dynamics (internal) and solar forcing (external). However, during the long life of the Coimbra Observatory, some inevitable changes in station location, instrument's park and electromagnetic environment have taken place. These changes affected the quality of the data collected at COI causing breaks and jumps in the series of geomagnetic field components and local K index. Clearly, these inhomogeneities, typically shift-like (step-like) or trend-like, have to be corrected or, at least, minimized in order for the data to be used in scientific studies or to be submitted to international databases. In this study, the series of local K index and declination of the geomagnetic field are analysed: the former because it allows direct application of standard homogenization methods and the latter because it is the longest continuous series produced at COI. For the homogenization, visual and statistical tests (e.g. standard normal homogeneity test) have been applied directly to the local geomagnetic K index series (from 1951 to 2012). The homogenization of the monthly averages of declination (from 1867 to 2012) has been done using visual analysis and statistical tests applied to the time series of the first differences of declination values, as an approximation to the first time derivative. This allowed not only estimating the level of inhomogeneity of the studied series but also detecting the highly probable homogeneity break points. These points have been cross

  4. Coronal holes, solar wind streams, and recurrent geomagnetic disturbances - 1973-1976

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.; Harvey, J. W.; Feldman, W. C.

    1976-01-01

    Observations of coronal holes, solar-wind streams, and geomagnetic disturbances during 1973-1976 are compared in a 27-day pictorial format which shows their long-term evolution. The results leave little doubt that coronal holes are related to the high-speed streams and their associated recurrent geomagnetic disturbances. In particular, these observations strongly support the hypothesis that coronal holes are the solar origin of the high-speed streams observed in the solar wind near the ecliptic plane.

  5. Moderate Geomagnetic Storms: Interplanetary Origins and Coupling Functions (ISEE3 Data)

    NASA Technical Reports Server (NTRS)

    Mendes, Odim, Jr.; Gonzalez, W. D.; Gonzalez, A. L. C.; Pinto, O., Jr.; Tsurutani, B. T.

    1996-01-01

    Geomagnetic storms are related to the ring current intensification, which is driven by energy injection primarily during energetic solar wind-magnetosphere coupling due to reconnection at the magnetopause. This work identified the interplanetary origins of moderate geomagnetic storms (-100nT is less or equal to Dst(sub peak) is less than or equal to -50 nT) and analyzed the coupling processes during the storm main phase at solar maximum (1978-1979).

  6. Solar energetic particle cutoff variations during the 29-31 October 2003 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Kress, B. T.; Mertens, C. J.; Wiltberger, M.

    2010-05-01

    At low latitudes to midlatitudes the Earth's magnetic field usually shields the upper atmosphere and spacecraft in low Earth orbit from solar energetic particles (SEPs). During severe geomagnetic storms, distortion of the Earth's field suppresses geomagnetic shielding, allowing SEPs access to the midlatitudes. A case study of the 26-31 October 2003 solar-geomagnetic event is used to examine how a severe geomagnetic storm affects SEP access to the Earth. Geomagnetic cutoffs are numerically determined in model geomagnetic fields using code developed by the Center for Integrated Space Weather Modeling (CISM) at Dartmouth College. The CISM-Dartmouth geomagnetic cutoff model is being used in conjunction with the High Energy and Charge Transport code (HZETRN) at the NASA Langley Research Center to develop a real-time data-driven prediction of radiation exposure at commercial airline altitudes. In this work, cutoff rigidities are computed on global grids and along several high-latitude flight routes before and during the geomagnetic storm. It is found that significant variations in SEP access to the midlatitudes and high latitudes can occur on time scales of an hour or less in response to changes in the solar wind dynamic pressure and interplanetary magnetic field. The maximum suppression of the cutoff is ˜1 GV occurring in the midlatitudes during the main phase of the storm. The cutoff is also significantly suppressed by the arrival of an interplanetary shock. The maximum suppression of the cutoff due to the shock is approximately one half of the maximum suppression during the main phase of the storm.

  7. Solar, interplanetary and geomagnetic phenomena in March 1991 and their association with spacecraft and terrestrial problems

    SciTech Connect

    Smart, D.F.; Shea, M.A.; Fluekiger, E.O.; Sanahuja, B.

    1995-12-31

    The solar activity that occurred on 22 and 23 March 1991 resulted in major interplanetary and geomagnetic disturbances. In spite of measurements in the earth`s magnetosphere, near Venus, and by the Ulysses spacecraft (at 2.48 AU), it is not possible to identify unambiguously the source of each perturbation. A very powerful shock resulted in large geomagnetic disturbances and contributed to the generation of a third radiation belt, as measured by the CRRES spacecraft.

  8. Stochastic forecasting of the geomagnetic field from the COV-OBS.x1 geomagnetic field model, and candidate models for IGRF-12

    NASA Astrophysics Data System (ADS)

    Gillet, Nicolas; Barrois, Olivier; Finlay, Christopher C.

    2015-05-01

    We present the geomagnetic field model COV-OBS.x1, covering 1840 to 2020, from which have been derived candidate models for the IGRF-12. Towards the most recent epochs, it is primarily constrained by first differences of observatory annual means and measurements from the Oersted, Champ, and Swarm satellite missions. Stochastic information derived from the temporal spectra of geomagnetic series is used to construct the a priori model covariance matrix that complements the constraint brought by the data. This approach makes it possible the use of a posteriori model errors, for instance, to measure the `observations' uncertainties in data assimilation schemes for the study of the outer core dynamics. We also present and illustrate a stochastic algorithm designed to forecast the geomagnetic field. The radial field at the outer core surface is advected by core motions governed by an auto-regressive process of order 1. This particular choice is motivated by the slope observed for the power spectral density of geomagnetic series. Accounting for time-correlated model errors (subgrid processes associated with the unresolved magnetic field) is made possible thanks to the use of an augmented state ensemble Kalman filter algorithm. We show that the envelope of forecasts includes the observed secular variation of the geomagnetic field over 5-year intervals, even in the case of rapid changes. In a purpose of testing hypotheses about the core dynamics, this prototype method could be implemented to build the `state zero' of the ability to forecast the geomagnetic field, by measuring what can be predicted when no deterministic physics is incorporated into the dynamical model.

  9. Reduction of the field-aligned potential drop in the polar cap during large geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Kitamura, N.; Seki, K.; Nishimura, Y.; Hori, T.; Terada, N.; Ono, T.; Strangeway, R. J.

    2013-12-01

    We have studied photoelectron flows and the inferred field-aligned potential drop in the polar cap during 5 large geomagnetic storms that occurred in the periods when the photoelectron observations in the polar cap were available near the apogee of the FAST satellite (~4000 km) at solar maximum, and the footprint of the satellite paths in the polar cap was under sunlit conditions most of the time. In contrast to the ~20 V potential drop during geomagnetically quiet periods at solar maximum identified by Kitamura et al. [JGR, 2012], the field-aligned potential drop frequently became smaller than ~5 V during the main and early recovery phases of the large geomagnetic storms. Because the potential acts to inhibit photoelectron escape, this result indicates that the corresponding acceleration of ions by the field-aligned potential drop in the polar cap and the lobe region is smaller during the main and early recovery phases of large geomagnetic storms compared to during geomagnetically quiet periods. Under small field-aligned current conditions, the number flux of outflowing ions should be nearly equal to the net escaping electron number flux. Since ions with large flux originating from the cusp/cleft ionosphere convect into the polar cap during geomagnetic storms [e.g., Kitamura et al., JGR, 2010], the net escaping electron number flux should increase to balance the enhanced ion outflows. The magnitude of the field-aligned potential drop would be reduced to let a larger fraction of photoelectrons escape.

  10. Do migratory flight paths of raptors follow constant geographical or geomagnetic courses?

    USGS Publications Warehouse

    Thorup, K.; Fuller, M.; Alerstam, T.; Hake, M.; Kjellen, N.; Strandberg, R.

    2006-01-01

    We tested whether routes of raptors migrating over areas with homogeneous topography follow constant geomagnetic courses more or less closely than constant geographical courses. We analysed the routes taken over land of 45 individual raptors tracked by satellite-based radiotelemetry: 25 peregrine falcons, Falco peregrinus, on autumn migration between North and South America, and seven honey buzzards, Pernis apivorus, and 13 ospreys, Pandion haliaetus, on autumn migration between Europe and Africa. Overall, migration directions showed a better agreement with constant geographical than constant geomagnetic courses. Tracks deviated significantly from constant geomagnetic courses, but were not significantly different from geographical courses. After we removed movements directed far from the mean direction, which may not be migratory movements, migration directions still showed a better agreement with constant geographical than constant geomagnetic courses, but the directions of honey buzzards and ospreys were not significantly different from constant geomagnetic courses either. That migration routes of raptors followed by satellite telemetry are in closer accordance with constant geographical compass courses than with constant geomagnetic compass courses may indicate that geographical (e.g. based on celestial cues) rather than magnetic compass mechanisms are of dominating importance for the birds' long-distance orientation.

  11. The response of mesospheric NO to geomagnetic forcing in 2002-2012 as seen by SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Sinnhuber, M.; Friederich, F.; Bender, S.; Burrows, J. P.

    2016-04-01

    Daily NO number density, retrieved from measurements of the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) from 2002 to 2012 for polar summer in the mesosphere, is used to investigate the response of NO to geomagnetic activity, as expressed by the auroral electrojet (AE) index. Applying the superposed epoch analysis, we observe a clear response of NO to strong geomagnetic forcing at geomagnetic latitudes 55-75°N/S and altitudes above 66 km. The 27 day solar rotation cycle is observed, indicating that some of the observed geomagnetic events are related to solar coronal holes. We find a linear relationship between anomalies of AE and NO at geomagnetic latitudes 55-70°N/S and 70-74 km altitude. A clear auroral oval-like structure is observed on days of strong geomagnetic forcing in both hemispheres, with small longitudinal inhomogeneities, which might be related to the South Atlantic Anomaly or the magnetic local time. The NO lifetime and production rate per AE anomaly has been derived from a least squares fit to the observations. Comparisons of results from a simple model using this empirical NO production and a lifetime varying from 1.2 days in summer to 10 days in winter to SCIAMACHY observations show good agreement. In particular, the strength and interannual variability of the wintertime maximum is well captured. This suggests that direct production of NO in the upper mesosphere above 72 km contributes substantially to the so-called energetic particle precipitation indirect effect.

  12. Does the Permo-Triassic Geomagnetic Dipole Low Exist?

    NASA Astrophysics Data System (ADS)

    Blanco, D.; Kravchinsky, V. A.; Valet, J. M.

    2010-12-01

    The Siberian trap basalts erupted during a short period of ~1 Myr at the Permo-Triassic boundary. It provides a unique opportunity to study absolute paleointensity during this one of the best-dated periods of Paleozoic era. Previous studies suggest relatively low paleointensity values (Heunemann et al. 2004), result that leads the authors to propose that the Mesozoic Dipole Low could be extended at least to the Permo-Triassic boundary. In this contribution we present new paleointensity results for sills and dykes from the eastern (areas of the kimberlite pipes Sytikanskaya, Yubileinaya and Aikhal) and north-western (intrusions near Norilsk city) parts of the Siberian platform. A total of 341 samples were subject to a modified Thellier-Thellier technique. In order to assure the reliability of the paleointensity estimates partial thermoremanent magnetization checks and multidomain tail check were applied. North-western (Norilsk) samples did not meet reliability criteria and have been rejected from the paleointensity analysis although paleomagnetic analysis demonstrated matching to the expected Permo-Triassic direction of the Siberian traps. Our paleointensity estimates from the eastern trap occurrences show a virtual dipolar moment (VDM) close to the present geomagnetic field value, 5.71±0.92×1022Am2, 5.89±0.37×1022Am2 and 6.21±0.78×1022Am2 for the three study areas, respectively. Our values are about two times higher than reported in Heunemann et al. (2004). There could be a variety of reasons for the discrepancy between our results and previous studies: (1) Magnetostratigraphy studies on the Siberian trap basalts (Gurevitch et al. 2004) have shown that several reversal processes occurred during the time of their formation. As shown by Valet et al. (2005), a period of time is required for the geomagnetic field to recover after a reversal occurrence. During such period it is still possible to have a stable normal or reverse direction and low paleointensity

  13. Predicting geomagnetic reversals via data assimilation: a feasibility study

    NASA Astrophysics Data System (ADS)

    Morzfeld, Matthias; Fournier, Alexandre; Hulot, Gauthier

    2014-05-01

    The system of three ordinary differential equations (ODE) presented by Gissinger in [1] was shown to exhibit chaotic reversals whose statistics compared well with those from the paleomagnetic record. We explore the geophysical relevance of this low-dimensional model via data assimilation, i.e. we update the solution of the ODE with information from data of the dipole variable. The data set we use is 'SINT' (Valet et al. [2]), and it provides the signed virtual axial dipole moment over the past 2 millions years. We can obtain an accurate reconstruction of these dipole data using implicit sampling (a fully nonlinear Monte Carlo sampling strategy) and assimilating 5 kyr of data per sweep. We confirm our calibration of the model using the PADM2M dipole data set of Ziegler et al. [3]. The Monte Carlo sampling strategy provides us with quantitative information about the uncertainty of our estimates, and -in principal- we can use this information for making (robust) predictions under uncertainty. We perform synthetic data experiments to explore the predictive capability of the ODE model updated by data assimilation. For each experiment, we produce 2 Myr of synthetic data (with error levels similar to the ones found in the SINT data), calibrate the model to this record, and then check if this calibrated model can reliably predict a reversal within the next 5 kyr. By performing a large number of such experiments, we can estimate the statistics that describe how reliably our calibrated model can predict a reversal of the geomagnetic field. It is found that the 1 kyr-ahead predictions of reversals produced by the model appear to be accurate and reliable. These encouraging results prompted us to also test predictions of the five reversals of the SINT (and PADM2M) data set, using a similarly calibrated model. Results will be presented and discussed. References Gissinger, C., 2012, A new deterministic model for chaotic reversals, European Physical Journal B, 85:137 Valet, J

  14. Accurate and Timely Forecasting of CME-Driven Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Chen, J.; Kunkel, V.; Skov, T. M.

    2015-12-01

    Wide-spread and severe geomagnetic storms are primarily caused by theejecta of coronal mass ejections (CMEs) that impose long durations ofstrong southward interplanetary magnetic field (IMF) on themagnetosphere, the duration and magnitude of the southward IMF (Bs)being the main determinants of geoeffectiveness. Another importantquantity to forecast is the arrival time of the expected geoeffectiveCME ejecta. In order to accurately forecast these quantities in atimely manner (say, 24--48 hours of advance warning time), it isnecessary to calculate the evolving CME ejecta---its structure andmagnetic field vector in three dimensions---using remote sensing solardata alone. We discuss a method based on the validated erupting fluxrope (EFR) model of CME dynamics. It has been shown using STEREO datathat the model can calculate the correct size, magnetic field, and theplasma parameters of a CME ejecta detected at 1 AU, using the observedCME position-time data alone as input (Kunkel and Chen 2010). Onedisparity is in the arrival time, which is attributed to thesimplified geometry of circular toroidal axis of the CME flux rope.Accordingly, the model has been extended to self-consistently includethe transverse expansion of the flux rope (Kunkel 2012; Kunkel andChen 2015). We show that the extended formulation provides a betterprediction of arrival time even if the CME apex does not propagatedirectly toward the earth. We apply the new method to a number of CMEevents and compare predicted flux ropes at 1 AU to the observed ejectastructures inferred from in situ magnetic and plasma data. The EFRmodel also predicts the asymptotic ambient solar wind speed (Vsw) foreach event, which has not been validated yet. The predicted Vswvalues are tested using the ENLIL model. We discuss the minimum andsufficient required input data for an operational forecasting systemfor predicting the drivers of large geomagnetic storms.Kunkel, V., and Chen, J., ApJ Lett, 715, L80, 2010. Kunkel, V., Ph

  15. Predicting Solar Cycle 24 Using a Geomagnetic Precursor Pair

    NASA Technical Reports Server (NTRS)

    Pesnell, W. Dean

    2014-01-01

    We describe using Ap and F(10.7) as a geomagnetic-precursor pair to predict the amplitude of Solar Cycle 24. The precursor is created by using F(10.7) to remove the direct solar-activity component of Ap. Four peaks are seen in the precursor function during the decline of Solar Cycle 23. A recurrence index that is generated by a local correlation of Ap is then used to determine which peak is the correct precursor. The earliest peak is the most prominent but coincides with high levels of non-recurrent solar activity associated with the intense solar activity of October and November 2003. The second and third peaks coincide with some recurrent activity on the Sun and show that a weak cycle precursor closely following a period of strong solar activity may be difficult to resolve. A fourth peak, which appears in early 2008 and has recurrent activity similar to precursors of earlier solar cycles, appears to be the "true" precursor peak for Solar Cycle 24 and predicts the smallest amplitude for Solar Cycle 24. To determine the timing of peak activity it is noted that the average time between the precursor peak and the following maximum is approximately equal to 6.4 years. Hence, Solar Cycle 24 would peak during 2014. Several effects contribute to the smaller prediction when compared with other geomagnetic-precursor predictions. During Solar Cycle 23 the correlation between sunspot number and F(10.7) shows that F(10.7) is higher than the equivalent sunspot number over most of the cycle, implying that the sunspot number underestimates the solar-activity component described by F(10.7). During 2003 the correlation between aa and Ap shows that aa is 10 % higher than the value predicted from Ap, leading to an overestimate of the aa precursor for that year. However, the most important difference is the lack of recurrent activity in the first three peaks and the presence of significant recurrent activity in the fourth. While the prediction is for an amplitude of Solar Cycle 24 of

  16. Geomagnetic Storms and EMIC waves: Van Allen Probe observations

    NASA Astrophysics Data System (ADS)

    Wang, D.; Yuan, Z.; Yu, X.; Deng, X.; Zhou, M.; Huang, S.; Li, H.

    2015-12-01

    EMIC waves are believed to play an important role in the dynamics of ring current ions and radiation belt electrons, especially during geomagnetic storms. But, in which phase of the storm do the EMIC waves occur more is still under debate. Ground and some low altitude satellite observations demonstrate that EMIC waves are observed more frequently during the recovery phase, rather than during the main phase. Halford et al. 2010 looked at the occurrences of EMIC waves during 119 storms occurring throughout the CRRES mission. They found that 49 of the 119 (41%) storms observed EMIC waves and the majority, 56.25%, of storm time EMIC waves occurring during the main phase, while 35.57% in the recovery phase. One shortcoming of the CRRES mission is that the apogee of it did not covered the dawn to noon sector during its life time. Therefore, some dayside EMIC waves caused by the compression of magnetosphere may not be included in Halford et al 2010, as they mentioned. The apogee of Van Allen Probes covered all the MLT sectors from their launch to April 2014. Utilizing the data from magnetometer instrument on board the Van Allen Probe A, Wang et al. 2015 studied the occurrence rate of H-band and He-band EMIC waves in different MLT sectors, and Yu et al 2015 reported the O-band EMIC wave observations. In this work, we analysis the occurrence of EMIC waves during storms. According to the criteria of storm in Halford et al. 2010, we find 76 storms in our interested period, 8 September 2012 to 30 April 2014, when the apogee of Van Allen Probe A covered all the MLT sectors. To identify the onset of geomagnetic storm more accurately, we corrected the Sym-H index referred to Zhao and Zong (2011), which is helpful to demonstrate the activity of ring current. 50 of the 76 storms (66%) observed 124 EMIC wave events, in which 80 (64.5%) EMIC wave events are found in the recovery phase, more than the EMIC wave events in the main phase (35, 28.2%). The remaining 9 (7.3%) EMIC wave

  17. Ezekiel's vision: Visual evidence of Sterno-Etrussia geomagnetic excursion?

    NASA Astrophysics Data System (ADS)

    Raspopov, Oleg M.; Dergachev, Valentin A.; Goos'kova, Elena G.

    In the Eos article,“Ezekiel and the Northern Lights: Biblical Aurora Seems Plausible” (16 April 2002), Siscoe et al. presented arguments showing that coronal auroras can occur at low latitudes under the condition of increased geomagnetic dipole field strength. From this standpoint, they give an interpretation of the “reported” Ezekiel's vision (the Bible's Book of Ezekiel in the Old Testament). The site of the Ezekiel's vision was about 100 km south of Babylon (latitude ˜32° N, longitude ˜5°E), and the date of the vision was around 593 B.C. Auroral specialists believe that Ezekiel's vision was inspired by a very strong magnetic storm accompanied by coronal auroras at low latitudes. However, as justly noted by Siscoe et al. [2002],to adopt this interpretation, several questions should be answered. Can auroras be seen at the latitude where Ezekiel reportedly was? More important, can they reach a coronal stage of development, which is what the vision requires? Was the tilt of the dipole axis favorable? Was the general level of solar activity favorable? The principal question is, no doubt, the second one.

  18. Solar and Interplanetary Disturbances Causing Moderate Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Pratap Yadav, Mahendra; Kumar, Santosh

    2003-07-01

    The effect of solar and interplanetary disturbances on geomagnetospheric conditions leading to one hundred twenty one moderate geomagnetic storms (MGSs) with planetary index, Ap ≥ 20 and horizontal component of earth's magnetic field, H ≤ 250γ have been investigated using solar geophysical data (SGD), solar wind plasma (SWP) and interplanetary magnetic field (IMF) data during the period 1978-99. It is observed statistically that 64%, 36%, MGSs have occurred during maximum and minimum phase of solar cycle 21st and 22nd respectively. Further, it is observed that Hα, X-ray solar flares and active prominences and disapp earing filaments (APDFs) have occurred within lower helio latitude region associated with larger number of MGSs. No significant correlation between the intensity of GMSs and importance of Hα, X-ray solar flares have been observed. Maximum number of MGSs are associated with solar flares of lower importance of solar flare faint (SF). The lower importance in association with some specific characteristics i.e. location, region, duration of occurrence of event may also cause MGSs. The correlation coefficient between MGSs and sunspot numbers (SSNs) using Karl Pearson method, has been obtained 0.37 during 1978-99.

  19. Innovative techniques to analyze time series of geomagnetic activity indices

    NASA Astrophysics Data System (ADS)

    Balasis, Georgios; Papadimitriou, Constantinos; Daglis, Ioannis A.; Potirakis, Stelios M.; Eftaxias, Konstantinos

    2016-04-01

    Magnetic storms are undoubtedly among the most important phenomena in space physics and also a central subject of space weather. The non-extensive Tsallis entropy has been recently introduced, as an effective complexity measure for the analysis of the geomagnetic activity Dst index. The Tsallis entropy sensitively shows the complexity dissimilarity among different "physiological" (normal) and "pathological" states (intense magnetic storms). More precisely, the Tsallis entropy implies the emergence of two distinct patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a higher degree of organization, and (ii) a pattern associated with normal periods, which is characterized by a lower degree of organization. Other entropy measures such as Block Entropy, T-Complexity, Approximate Entropy, Sample Entropy and Fuzzy Entropy verify the above mentioned result. Importantly, the wavelet spectral analysis in terms of Hurst exponent, H, also shows the existence of two different patterns: (i) a pattern associated with the intense magnetic storms, which is characterized by a fractional Brownian persistent behavior (ii) a pattern associated with normal periods, which is characterized by a fractional Brownian anti-persistent behavior. Finally, we observe universality in the magnetic storm and earthquake dynamics, on a basis of a modified form of the Gutenberg-Richter law for the Tsallis statistics. This finding suggests a common approach to the interpretation of both phenomena in terms of the same driving physical mechanism. Signatures of discrete scale invariance in Dst time series further supports the aforementioned proposal.

  20. Improvements in short-term forecasting of geomagnetic activity

    NASA Astrophysics Data System (ADS)

    Bala, Ramkumar; Reiff, Patricia

    2012-06-01

    We have improved our space weather forecasting algorithms to now predict Dst and AE in addition to Kp for up to 6 h of forecast times. These predictions can be accessed in real time at http://mms.rice.edu/realtime/forecast.html. In addition, in the event of an ongoing or imminent activity, e-mail "alerts" based on key discriminator levels have been going out to our subscribers since October 2003. The neural network-based algorithms utilize ACE data to generate full 1, 3, and 6 h ahead predictions of these indices from the Boyle index, an empirical approximation that estimates the Earth's polar cap potential using solar wind parameters. Our models yield correlation coefficients of over 0.88, 0.86, and 0.83 for 1 h predictions of Kp, Dst, and AE, respectively, and 0.86, 0.84, and 0.80 when predicting the same but 3 h ahead. Our 6 h ahead predictions, however, have slightly higher uncertainties. Furthermore, the paper also tests other solar wind functions—the Newell driver, the Borovsky control function, and adding solar wind pressure term to the Boyle index—for their ability to predict geomagnetic activity.

  1. Electron precipitation response to geomagnetic pulsations: Riometer revelation

    NASA Astrophysics Data System (ADS)

    Honary, Farideh; Kavanagh, Andrew

    Electron precipitation modulations by geomagnetic pulsation have been observed in cosmic noise absorption (CNA) as early as 1965 by widebeam riometers (Barcus and Rosenberg, 1965). The first observation of pulsation with high m-number was reported by Kikuchi et al.(1988) em-ploying a scanning narrow-beam riometer to investigate the spatial structure in one dimension with a high resolution. However, the advances in high spatial resolution imaging riometers has provided the ability to observe pulsating cosmic noise absorption with azimuthal wave numbers as high as 380 as well as providing the capability of mapping their structures. These waves are commonly observed during the morning and early afternoon and exhibit eastward propagation. In this presentation a complete generating mechanism for these high m-number waves is dis-cussed as a five step process, beginning with the solar wind as a source for the excitation of dayside magnetospheric cavity modes, mode conversion, energisation of drift-bounce protons by Landau damping, followed by inverse Landau damping as a driving mechanism for the high m number secondary waves that ultimately modulate the electron precipitation. This modulation is observed as pulsations in cosmic noise absorption.

  2. An association between geomagnetic activity and dream bizarreness.

    PubMed

    Lipnicki, Darren M

    2009-07-01

    Daily disturbances of the earth's magnetic field produce variations in geomagnetic activity (GMA) that are reportedly associated with widespread effects on human health and behaviour. Some of these effects could be mediated by an established influence of GMA on the secretion of melatonin. There is evidence from unrelated research that melatonin influences dream bizarreness, and it is hypothesised here that there is an association between GMA and dream bizarreness. Also reported is a preliminary test of this hypothesis, a case study in which the dreams recorded over 6.5 years by a young adult male were analysed. Reports of dreams from the second of two consecutive days of either low or high GMA (K index sum < or =6 or > or = 28) were self-rated for bizarreness on a 1-5 scale. Dreams from low GMA periods (n=69, median bizarreness=4) were found to be significantly more bizarre than dreams from high GMA periods (n=85, median bizarreness=3; p=0.006), supporting the hypothesised association between GMA and dream bizarreness. Studies with larger samples are needed to verify this association, and to determine the extent to which melatonin may be involved. Establishing that there is an association between GMA and dream bizarreness would have relevance for neurophysiological theories of dreaming, and for models of psychotic symptoms resembling bizarre dream events.

  3. A gaussian model for simulated geomagnetic field reversals

    NASA Astrophysics Data System (ADS)

    Wicht, Johannes; Meduri, Domenico G.

    2016-10-01

    Field reversals are the most spectacular events in the geomagnetic history but remain little understood. Here we explore the dipole behaviour in particularly long numerical dynamo simulations to reveal statistically significant conditions required for reversals and excursions to happen. We find that changes in the axial dipole moment behaviour are crucial while the equatorial dipole moment plays a negligible role. For small Rayleigh numbers, the axial dipole always remains strong and stable and obeys a clearly Gaussian probability distribution. Only when the Rayleigh number is increased sufficiently the axial dipole can reverse and its distribution becomes decisively non-Gaussian. Increased likelihoods around zero indicate a pronounced lingering in a new low dipole moment state. Reversals and excursions can only happen when axial dipole fluctuations are large enough to drive the system from the high dipole moment state assumed during stable polarity epochs into the low dipole moment state. Since it is just a matter of chance which polarity is amplified during dipole recovery, reversals and grand excursions, i.e. excursions during which the dipole assumes reverse polarity, are equally likely. While the overall reversal behaviour seems Earth-like, a closer comparison to palaeomagnetic findings suggests that the simulated events last too long and that grand excursions are too rare. For a particularly large Ekman number we find a second but less Earth-like type of reversals where the total field decays and recovers after a certain time.

  4. A nonlinear dynamical analogue model of geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Baker, D. N.; Roberts, D. A.; Fairfield, D. H.; Buechner, J.

    1992-01-01

    Consideration is given to the solar wind-magnetosphere interaction within the framework of deterministic nonlinear dynamics. An earlier dripping faucet analog model of the low-dimensional solar wind-magnetosphere system is reviewed, and a plasma physical counterpart to that model is constructed. A Faraday loop in the magnetotail is considered, and the relationship of electric potentials on the loop to changes in the magnetic flux threading the loop is developed. This approach leads to a model of geomagnetic activity which is similar to the earlier mechanical model but described in terms of the geometry and plasma contents of the magnetotail. The model is characterized as an elementary time-dependent global convection model. The convection evolves within a magnetotail shape that varies in a prescribed manner in response to the dynamical evolution of the convection. The result is a nonlinear model capable of exhibiting a transition from regular to chaotic loading and unloading. The model's behavior under steady loading and also some elementary forms of time-dependent loading is discussed.

  5. D'Entrecasteaux, 1792: Celebrating a bicentennial in geomagnetism

    NASA Astrophysics Data System (ADS)

    Lilley, F. E. M. (Ted); Day, Alan A.

    The first surveys of global magnetic intensity, and especially the demonstration of its variation with latitude, are commonly credited (for example, Chapman, [1967]) to Alexander Von Humboldt, who played a major role in developing geomagnetism in the late 18th and 19th centuries. Von Humboldt made intensity measurements in South America from 1798-1803 and later encouraged the establishment of a global magnetic observatory network (see, for example, Malin and Barraclough, [1991]).However, as pointed out by Sabine [1838] in a review of intensity measurements to that time, the earliest surviving survey of global magnetic intensity, showing it to strengthen away from the equator both north and south, was made by Elisabeth Paul Edouard De Rossel during the 1791-1794 expedition of Bruny D'Entrecasteaux. Even earlier measurements seem certain to have been made by the scientist Robert de Paul, chevalier de Lamanon (always referred to as Lamanon) of the La Pérouse expedition [Milet-Mureau, 1799], but any records are evidently lost. Lamanon died when the La Pérouse expedition was in Samoa in 1797, and both ships of that expedition were wrecked on the island of Vanikoro, presumably in 1788 [Marchant, 1967; Spate, 1988]. All such measurements were of relative magnetic intensity until a method for the determination of absolute intensity was invented by Gauss in 1832. For a recent discussion of this latter topic, see Jackson [1992].

  6. Anomalous phenomena on HF radio paths during geomagnetic disturbances

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskii, D. V.

    2016-07-01

    We analyze ionospheric oblique sounding data on three high-latitude and one high-latitude-midlatitude HF radio paths for February 15 and 16, 2014, when two substorms and one magnetic storm occurred. We investigate cases of anomalous propagation of signals: their reflection from sporadic layer Es, lateral reflections, type "M" or "N" modes, the presence of traveling ionospheric disturbances, and the diffusivity of signals and triplets. The most significant results are the following. In geomagnetically undisturbed times, sporadic Es-layers with reduced maximum observed frequencies (MOF Es) on three high-latitude paths were observed in both days. The values of MOF Es during disturbances are large, which leads to the screening of other oblique sounding signals reflected from the ionosphere. On all four paths, the most frequently traveling ionospheric disturbances due to the terminator were observed in quiet hours from 03:00 to 15:00 UT on the first day and from 06:00 to 13:00 UT on the second day of the experiment. In addition, both the sunset terminator and the magnetic storm on the high-latitude-mid-latitude path were found to generate traveling ionospheric disturbances jointly. No such phenomenon was found on high-latitude paths.

  7. An analysis of the fluctuations of the geomagnetic dipole

    NASA Astrophysics Data System (ADS)

    Brendel, K.; Kuipers, J.; Barkema, G. T.; Hoyng, P.

    2007-07-01

    The time evolution of the strength of the Earth's virtual axial dipole moment (VADM) is analyzed by relating it to the Fokker-Planck equation, which describes a random walk with VADM-dependent drift and diffusion coefficients. We demonstrate first that our method is able to retrieve the correct shape of the drift and diffusion coefficients from a time series generated by a test model. Analysis of the Sint-2000 data shows that the geomagnetic dipole mode has a linear growth time of 20-7+13 kyear, and that the nonlinear quenching of the growth rate follows a quadratic function of the type [1-(]. On theoretical grounds, the diffusive motion of the VADM is expected to be driven by multiplicative noise, and the corresponding diffusion coefficient to scale quadratically with dipole strength. However, analysis of the Sint-2000 VADM data reveals a diffusion which depends only very weakly on the dipole strength. This may indicate that the magnetic field quenches the amplitude of the turbulent velocity in the Earth's outer core.

  8. THE DISCOVERY OF GEOMAGNETICALLY TRAPPED COSMIC-RAY ANTIPROTONS

    SciTech Connect

    Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Bruno, A.; Cafagna, F.; Boezio, M.; Bonvicini, V.; Bogomolov, E. A.; Bongi, M.; Bottai, S.; Borisov, S.; Casolino, M.; De Pascale, M. P.; De Santis, C.; Campana, D.; Carbone, R.; Consiglio, L.; Carlson, P.; Castellini, G.

    2011-08-20

    The existence of a significant flux of antiprotons confined to Earth's magnetosphere has been considered in several theoretical works. These antiparticles are produced in nuclear interactions of energetic cosmic rays with the terrestrial atmosphere and accumulate in the geomagnetic field at altitudes of several hundred kilometers. A contribution from the decay of albedo antineutrons has been hypothesized in analogy to proton production by neutron decay, which constitutes the main source of trapped protons at energies above some tens of MeV. This Letter reports the discovery of an antiproton radiation belt around the Earth. The trapped antiproton energy spectrum in the South Atlantic Anomaly (SAA) region has been measured by the PAMELA experiment for the kinetic energy range 60-750 MeV. A measurement of the atmospheric sub-cutoff antiproton spectrum outside the radiation belts is also reported. PAMELA data show that the magnetospheric antiproton flux in the SAA exceeds the cosmic-ray antiproton flux by three orders of magnitude at the present solar minimum, and exceeds the sub-cutoff antiproton flux outside radiation belts by four orders of magnitude, constituting the most abundant source of antiprotons near the Earth.

  9. Geomagnetically induced currents in the New Zealand power network

    NASA Astrophysics Data System (ADS)

    Marshall, R. A.; Dalzell, M.; Waters, C. L.; Goldthorpe, P.; Smith, E. A.

    2012-08-01

    Adverse space weather conditions have been shown to be directly responsible for faults within power networks at high latitudes. A number of studies have also shown space weather to impact power networks at lower latitudes, although most of these studies show increases in GIC activity within networks not directly related to hardware faults. This study examines a GIC event that occurred in New Zealand's South Island power network on 6th November 2001. A transformer failure that occurred during this day is shown to be associated with a change in the solar wind dynamic pressure of nearly 20 nPa. Measurements of GICs recorded on the neutral lines of transformers across the Transpower network during this event show good correlation with a GIC-index, a proxy for the geoelectric field that drives GIC. Comparison of this event with GIC activity observed in the Transpower network during large space weather storms such as the "2003 Halloween storm," suggests that solar wind shocks and associated geomagnetic sudden impulse (SI) events may be as hazardous to middle latitude power networks as GIC activity occurring during the main phase of large storms. Further, this study suggests that the latitudinal dependence of the impacts of SI events on power systems differs from that observed during large main phase storms. This study also highlights the importance of operating procedures for large space weather events, even at middle latitude locations.

  10. Dispersion of meteor trails in the geomagnetic field.

    PubMed

    Robson, R E

    2001-02-01

    A meteor trail is modeled by a long column of weakly ionized plasma, whose dispersion is controlled by the geomagnetic field and the requirement to maintain effective space charge neutrality. First we consider scattering of a radar signal from an underdense trail and derive an expression for the amplitude of the backscattered signal as a function of time. Then, starting from the basic momentum balance equations for electrons and ions in a partially ionized plasma, we require divergences of ion and electron fluxes to be equal, plus assume equality of the flux components along the magnetic field direction. The analysis is really applicable to a whole range of plasma problems, although we focus upon meteor trails for now. It is found that charged particle densities satisfy a diffusion equation and we obtain an expression for the ambipolar diffusion tensor and expressions for the ambipolar electric field, valid for arbitrary relative orientations of the magnetic field and meteor trail axis. Results are somewhat different from previous analyses in the meteor literature.

  11. ISEE 3 observations during the CDAW 8 intervals - Case studies of the distant geomagnetic tail covering a wide range of geomagnetic activity

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Slavin, J. A.; Owen, C. J.; Cowley, S. W. H.; Galvin, A. B.; Sanderson, T. R.; Scholer, M.

    1989-01-01

    Observations made by the ISEE 3 spacecraft in the distant geomagnetic tail during the eight CDAW 8 intervals are discussed, along with their relation to concurrent geomagnetic activity. This extensive multiinstrument case study of distant tail data covers a wide range of geomagnetic conditions from extended intervals of magnetic quiet with isolated substorms to prolonged periods of intense disturbance. Plasmoids are observed in the distant tail following disturbance enhancements, the time of their appearance being generally consistent with disconnection from the near-earth region at the time of the enhancement. Their structure is entirely consistent with the neutral line model. However, not all enhancements in geomagnetic activity result in the observation of plasmoids. In particular, the CDAW 8 data suggest that, during extended intervals of strong activity, a continuous neutral line may reside in the near-earth tail and some disturbance enhancements may then relate to an increase in the reconnection rate at a preexisting neutral line, rather than to new neutral line and plasmoid formation.

  12. Addressing Impacts of Geomagnetic Disturbances on the North American Bulk Power System

    NASA Astrophysics Data System (ADS)

    Rollison, Eric; Moura, John; Lauby, Mark

    2011-08-01

    In a joint report issued in June 2010, the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy (DOE) identified geomagnetic disturbances as a high-impact, low-frequency (HILF) event risk to bulk power system reliability. The potential impact of geomagnetic disturbance events has gained renewed attention as recent studies have suggested that solar storms may be more severe and reach lower geographic latitudes than formerly expected and can affect bulk power system reliability. The most well known power system experience with geomagnetic disturbances in North America was the 13-14 March 1989 storm, which led to the collapse of the Hydro-Québec system in the early morning hours of 13 March 1989, lasting approximately 9 hours. NERC is actively addressing a range of HILF event risks to bulk power system reliability through the efforts of four of its task forces: Geomagnetic Disturbance, Spare Equipment Database, Cyber and Physical Attack, and Severe Impact Resilience. These task forces operate under the direction of three NERC committees: Planning, Operating, and Critical Infrastructure Protection. The NERC Geomagnetic Disturbance Task Force (GMDTF), which was established in September 2010, is charged with investigating the implications of geomagnetic disturbances to the reliability of bulk power systems and developing solutions to help mitigate these risks. The objective of these efforts is to develop models to better understand the nature and effects of coronal mass ejections (CMEs), the vulnerabilities of equipment, bulk power system design considerations, our ability to reduce the operational and real-time impacts of geomagnetic disturbances on the bulk power system, and restoration methods, as well as to inventory long-lead-time equipment. For more information on the current activities of the GMDTF, please visit: www.nerc.com/filez/gmdtf.html

  13. Features of Pc5 pulsations in the geomagnetic field, auroral luminosity, and Riometer absorption

    NASA Astrophysics Data System (ADS)

    Belakhovsky, V. B.; Pilipenko, V. A.; Samsonov, S. N.; Lorentsen, D.

    2016-01-01

    Simultaneous morning Pc5 pulsations ( f ~ 3-5 mHz) in the geomagnetic field, aurora intensities (in the 557.7 and 630.0 nm oxygen emissions and the 471.0 nm nitrogen emission), and riometer absorption, were studied based on the CARISMA, CANMOS, and NORSTAR network data for the event of January 1, 2000. According to the GOES-8 satellite observations, these Pc5 geomagnetic pulsations are observed as incompressible Alfvén waves with toroidal polarization in the magnetosphere. Although the Pc5 pulsation frequencies in auroras, the geomagnetic field, and riometer absorption are close to one another, stable phase relationships are not observed between them. Far from all trains of geomagnetic Pc5 pulsations are accompanied by corresponding auroral pulsations; consequently, geomagnetic pulsations are primary with respect to auroral pulsations. Both geomagnetic and auroral pulsations propagate poleward, and the frequency decreases with increasing geomagnetic latitude. When auroral Pc5 pulsations appear, the ratio of the 557.7/630.0 nm emission intensity sharply increases, which indicates that auroral pulsations result from not simply modulated particle precipitation but also an additional periodic acceleration of auroral electrons by the wave field. A high correlation is not observed between Pc5 pulsations in auroras and the riometer absorption, which indicates that these pulsations have a common source but different generation mechanisms. Auroral luminosity modulation is supposedly related to the interaction between Alfvén waves and the region with the field-aligned potential drop above the auroral ionosphere, and riometer absorption modulation is caused by the scattering of energetic electrons by VLF noise pulsations.

  14. Mid-latitude Geomagnetic Field Analysis Using BOH Magnetometer: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Hwang, Jun-Ga; Choi, Kyu-Cheol; Lee, Jae-Jin; Park, Young-Deuk; Ha, Dong-Hun

    2011-09-01

    Korea Astronomy and Space Science Institute researchers have installed and operated magnetometers at Mt. Bohyun Observatory to measure the Earth's magnetic field variations in South Korea. We, in 2007, installed a fluxgate magnetometer (RFP-523C) to measure H, D, and Z components of the geomagnetic field. In addition, in 2009, we installed a Overhauser proton sensor to measure the absolute total magnetic field F and a three-axis magneto-impedance sensor for spectrum analysis. Currently three types of magnetometer data have been accumulated. In this paper, we provide the preliminary and the first statistical analysis using the BOH magnetometer installed at Mt. Bohyun Observatory. By superposed analysis, we find that daily variations of H, D, and Z shows similar tendency, that is, about 30 minutes before the meridian (11:28) a minimum appears and the time after about 3 hours and 30 minutes (15:28) a maximum appears. Also, a quiet interval start time (19:06) is near the sunset time, and a quiet interval end time (06:40) is near the sunrise time. From the sunset to the sunrise, the value of H has a nearly constant interval, that is, the sun affects the changes in H values. Seasonal variations show similar dependences to the sun. Local time variations show that noon region has the biggest variations and midnight region has the smallest variations. We compare the correlations between geomagnetic variations and activity indices as we expect the geomagnetic variation would contain the effects of geomagnetic activity variations. As a result, the correlation coefficient between H and Dst is the highest (r = 0.947), and other AL, AE, AU index and showed a high correlation. Therefore, the effects of geomagnetic storms and geomagnetic substorms might contribute to the geomagnetic changes significantly.

  15. Proceedings of the XIIIth IAGA Workshop on Geomagnetic Observatory Instruments, Data Acquisition, and Processing

    USGS Publications Warehouse

    Love, Jeffrey J.

    2009-01-01

    The thirteenth biennial International Association of Geomagnetism and Aeronomy (IAGA) Workshop on Geomagnetic Observatory Instruments, Data Acquisition and Processing was held in the United States for the first time on June 9-18, 2008. Hosted by the U.S. Geological Survey's (USGS) Geomagnetism Program, the workshop's measurement session was held at the Boulder Observatory and the scientific session was held on the campus of the Colorado School of Mines in Golden, Colorado. More than 100 participants came from 36 countries and 6 continents. Preparation for the workshop began when the USGS Geomagnetism Program agreed, at the close of the twelfth workshop in Belsk Poland in 2006, to host the next workshop. Working under the leadership of Alan Berarducci, who served as the chairman of the local organizing committee, and Tim White, who served as co-chairman, preparations began in 2007. The Boulder Observatory was extensively renovated and additional observation piers were installed. Meeting space on the Colorado School of Mines campus was arranged, and considerable planning was devoted to managing the many large and small issues that accompany an international meeting. Without the devoted efforts of both Alan and Tim, other Geomagnetism Program staff, and our partners at the Colorado School of Mines, the workshop simply would not have occurred. We express our thanks to Jill McCarthy, the USGS Central Region Geologic Hazards Team Chief Scientist; Carol A. Finn, the Group Leader of the USGS Geomagnetism Program; the USGS International Office; and Melody Francisco of the Office of Special Programs and Continuing Education of the Colorado School of Mines. We also thank the student employees that the Geomagnetism Program has had over the years and leading up to the time of the workshop. For preparation of the proceedings, thanks go to Eddie and Tim. And, finally, we thank our sponsors, the USGS, IAGA, and the Colorado School of Mines.

  16. F2 region response to geomagnetic disturbances across Indian latitudes: O(1S) dayglow emission

    NASA Astrophysics Data System (ADS)

    Upadhayaya, A. K.; Gupta, Sumedha; Brahmanandam, P. S.

    2016-03-01

    The morphology of ionospheric storms has been investigated across equatorial and low latitudes of Indian region. The deviation in F2 region characteristic parameters (foF2 and h'F) along with modeled green line dayglow emission intensities is examined at equatorial station Thiruvananthapuram (8.5°N, 76.8°E, 0.63°S geomagnetic latitude) and low-latitude station Delhi (28.6°N, 77.2°E,19.2°N geomagnetic latitude) during five geomagnetic storm events. Both positive and negative phases have been noticed in this study. The positive storm phase over equatorial station is found to be more frequent, while the drop in ionization in most of the cases was observed at low-latitude station. It is concluded that the reaction as seen at different ionospheric stations may be quite different during the same storm depending on both the geographic and geomagnetic coordinates of the station, storm intensity, and the storm onset time. Modulation in the F2 layer critical frequency at low and equatorial stations during geomagnetic disturbance of 20-23 November 2003 was caused by the storm-induced changes in O/N2. It is also found that International Reference Ionosphere 2012 model predicts the F2 layer characteristic (foF2 and h'F) parameters at both the low and equatorial stations during disturbed days quite reasonably. A simulative approach in GLOW model developed by Solomon is further used to estimate the changes in the volume emission rate of green line dayglow emission under quiet and strong geomagnetic conditions. It is found that the O(1S) dayglow thermospheric emission peak responds to varying geomagnetic conditions.

  17. Study of the mid-latitude ionospheric response to geomagnetic storms in the European region

    NASA Astrophysics Data System (ADS)

    Berényi, Kitti Alexandra; Barta, Veronika; Kis, Arpad

    2016-07-01

    Geomagnetic storms affect the ionospheric regions of the terrestrial upper atmosphere through different physical and atmospheric processes. The phenomena that can be regarded as a result of these processes, generally is named as "ionospheric storm". The processes depend on altitude, segment of the day, the geomagnetic latitude and longitude, strength of solar activity and the type of the geomagnetic storm. We examine the data of ground-based radio wave ionosphere sounding measurements of European ionospheric stations (mainly the data of Nagycenk Geophysical Observatory) in order to determine how and to what extent a geomagnetic disturbance of a certain strength affects the mid-latitude ionospheric regions in winter and in summer. For our analysis we used disturbed time periods between November 2012 and June 2015. Our results show significant changing of the ionospheric F2 layer parameters on strongly disturbed days compared to quiet ones. We show that the critical frequencies (foF2) increase compared to their quiet day value when the ionospheric storm was positive. On the other hand, the critical frequencies become lower, when the storm was negative. In our analysis we determined the magnitude of these changes on the chosen days. For a more complete analysis we compare also the evolution of the F2 layer parameters of the European ionosonde stations on a North-South geographic longitude during a full storm duration. The results present the evolution of an ionospheric storm over a geographic meridian. Furthermore, we compared the two type of geomagnetic storms, namely the CME caused geomagnetic storm - the so-called Sudden impulse (Si) storms- and the HSS (High Speed Solar Wind Streams) caused geomagnetic storms -the so-called Gradual storms (Gs)- impact on the ionospheric F2-layer (foF2 parameter). The results show a significant difference between the effect of Si and of the Gs storms on the ionospheric F2-layer.

  18. Estimating ionospheric currents by inversion from ground-based geomagnetic data and calculating geoelectric fields for studies of geomagnetically induced currents

    NASA Astrophysics Data System (ADS)

    de Villiers, J. S.; Pirjola, R. J.; Cilliers, P. J.

    2016-09-01

    This research focuses on the inversion of geomagnetic variation field measurements to obtain the source currents in the ionosphere and magnetosphere, and to determine the geoelectric fields at the Earth's surface. During geomagnetic storms, the geoelectric fields create geomagnetically induced currents (GIC) in power networks. These GIC may disturb the operation of power systems, cause damage to power transformers, and even result in power blackouts. In this model, line currents running east-west along given latitudes are postulated to exist at a certain height above the Earth's surface. This physical arrangement results in the fields on the ground being composed of a zero magnetic east component and a nonzero electric east component. The line current parameters are estimated by inverting Fourier integrals (over wavenumber) of elementary geomagnetic fields using the Levenberg-Marquardt technique. The output parameters of the model are the ionospheric current strength and the geoelectric east component at the Earth's surface. A conductivity profile of the Earth is adapted from a shallow layered-Earth model for one observatory, together with a deep-layer model derived from satellite observations. This profile is used to obtain the ground surface impedance and therefore the reflection coefficient in the integrals. The inputs for the model are a spectrum of the geomagnetic data for 31 May 2013. The output parameters of the model are spectrums of the ionospheric current strength and of the surface geoelectric field. The inverse Fourier transforms of these spectra provide the time variations on the same day. The geoelectric field data can be used as a proxy for GIC in the prediction of GIC for power utilities. The current strength data can assist in the interpretation of upstream solar wind behaviour.

  19. Geomagnetic Secular Variation in Texas over the Last 17,000 Years: High-Intensity Geomagnetic Field 'Spike' Observed at ca. 3000 cal BP

    NASA Astrophysics Data System (ADS)

    Bourne, M. D.; Feinberg, J. M.; Waters, M. R.; Stafford, T. W., Jr.; Forman, S. L.; Lundelius, E. L.

    2015-12-01

    By observing the fluctuations in direction and intensity of the Earth's magnetic field through time, we increase our understanding of the fluid motions in the Earth's outer core that sustain the geomagnetic field, the geodynamo. Recent archaeomagnetic studies in the Near East have proposed extremely rapid increases - 'spikes' - in geomagnetic field intensity ca. 3000 years ago that have proved problematic for our current understanding of core-flow. However, until now, these geomagnetic spikes had not been observed outside of the Near East, where they have been found in metallurgical slag and mud brick walls. We present a new fully-oriented, geomagnetic secular variation and relative palaeointensity (RPI) record for the last 17,000 years from Hall's Cave, Texas. Sediment washed into the cave has formed a continuous stratigraphic sequence that is at least 3.5 m thick. Within the stable, cool climate of the cave, pedogenic and bioturbation processes are almost non-existent, thereby limiting post-depositional physical and geochemical alteration of the magnetic record. The sub-aerial and subterranean setting of the sedimentary sequence in Hall's Cave enabled us to collect oriented palaeomagnetic cubes from an excavated section through the sequence. The palaeomagnetic samples yielded high-quality vectors. An age model for the sequence, determined using 57 AMS 14C-dates on individual bones from microvertebrate, was combined with the palaeomagnetic data to construct a secular variation record. The record is in broad agreement with predictions by Holocene field models for the site's location. However, at ca. 3000 years ago, the RPI data indicate an almost four-fold increase in geomagnetic field intensity lasting several hundred years and contemporaneous with the more short-lived, decadal-scale spikes reported from the Near East. Evidence for this extreme intensity event outside of the Near East has major implications for our current understanding of core-dynamics.

  20. Ground-based magnetometer arrays and geomagnetically induced currents in power grids: science and operations

    NASA Astrophysics Data System (ADS)

    Thomson, A. W.; Beggan, C.; Kelly, G.

    2012-12-01

    Space weather impacts on worldwide technological infrastructures are likely to be at their greatest between 2012 and 2015, during the peak and early descending phase of the current solar cycle. Examples of infrastructures at risk include power grids, pipelines, railways, communications, satellite operations, high latitude air travel and global navigation satellite systems. For example, severe magnetic storms in March 1989 and October 2003, near the peaks of recent solar cycles, were particularly significant in causing problems for a wide variety of technologies. Further back in time, severe storms in September 1859 and May 1921 are known to have been a problem for the more rudimentary technologies of the time. In this talk we will review how magnetic observatory data can best contribute to ongoing efforts to develop new space weather data products, particularly in aiding the management of electrical power transmission networks. Examples of existing and perhaps some suggestions for new data products and services will be given. Throughout, the need for near to real time data will be emphasised. We will also emphasise the importance of developing regional magnetometer networks and promoting magnetic data sharing to help turn research into operations. Developing research consortia, for example as in the European EURISGIC GIC project (www.eurisgic.eu), where magnetic and other data, as well as expertise, is pooled and shared is also recommended and adds to our ability to monitor the dynamic state of magnetospheric and ionospheric currents. We will discuss how industry currently perceives the space weather hazard, using recent examples from the power industry, where the concerns are with the risk to high voltage transformers and the safe and uninterrupted distribution of electrical power. Industry measurements of geomagnetic induced currents (GIC) are also vital for the validation of scientific models of the flow of GIC in power systems. Examples of GIC data sources and

  1. Relevance vector machines as a tool for forecasting geomagnetic storms during years 1996-2007

    NASA Astrophysics Data System (ADS)

    Andriyas, T.; Andriyas, S.

    2015-04-01

    In this paper, we investigate the use of relevance vector machine (RVM) as a learning tool in order to generate 1-h (one hour) ahead forecasts for geomagnetic storms driven by the interaction of the solar wind with the Earth's magnetosphere during the years 1996-2007. This epoch included solar cycle 23 with storms that were both ICME (interplanetary coronal mass ejection) and CIR (corotating interaction region) driven. Merged plasma and magnetic field measurements of the solar wind from the Advanced Composition Explorer (ACE) and WIND satellites located upstream of the Earth's magnetosphere at 1-h cadence were used as inputs to the model. The magnetospheric response to the solar wind driving measured by the disturbance storm time or the Dst index (measured in nT) was used as the output to be forecasted. The model was first tested on previously reported storms in Wu and Lundstedt (1997) and it gave a linear correlation coefficient, ρ, of above 90% and prediction efficiency (PE) above 80%. During 1996-2007, several storms (within each year) were chosen as test cases to analyze the forecasting robustness of the model. The top three forecasts per year were analyzed to assess the generalization ability of the model. These included storms with varying intensities ranging from weak (-53.01 nT) to strong (-422.02 nT) and durations (119-445 h). The top RVM forecast in a given year had ρ above 85% (87.00-96.85%), PE > 73 % (73.59-93.59%), and a root mean square error (RMSE) ranging from 9.31 to 33.45 nT. A qualitative comparison is made with model forecasts previously reported by Ji et al. (2012). We found that the robustness of the model with regards to fast learning and generating forecasts within acceptable error bounds makes it a very good proposition as a prediction tool (given the solar wind parameters) for space weather monitoring.

  2. One hour neutron monitor and muon telescope on-line CR data and space dangerous phenomena

    NASA Astrophysics Data System (ADS)

    Zagnetko, Alexander; Applbaum, David; Dorman, Lev; Pustil'Nik, Lev; Sternlieb, Abraham; Zukerman, Igor

    We apply developing of methods in Zagnetko et al. (2010) for forecasting on the basis of neutron monitor hourly on-line data (as well as on-line muon telescopes hourly data from different directions) geomagnetic storms of scales G5 (3-hour index of geomagnetic activity Kp=9), G4 (Kp=8) and G3 (Kp=7) (according to NOAA Space Weather Scales). These geo-magnetic storms are dangerous for people technology and health (influence on power systems, on spacecraft operations, on HF radio-communications and others). We show that for espe-cially dangerous geomagnetic storms can be used global-spectrographic method if on-line will be available 35-40 NM and muon telescopes. In this case for each hour can be determined CR anisotropy vector, and the specifically behavior of this vector before SC of geomagnetic storms G5, G4 or G3 (according to NOAA Space Weather Scales) can be used as important factor for forecast. The second factor what can be used for SC forecast is specifically behavior of CR density (CR intensity) for about 30-15 hours before SC (caused mainly by galactic CR parti-cles acceleration during interaction with shock wave moved from the Sun). The third factor is effect of cosmic ray pre-decreasing, caused by magnetic connection of the Earth with the region behind the shock wave. We demonstrate developing methods on several examples of major geomagnetic storms. For each case we analyze hourly data of many NM for 8 days with SC in the 4-st day of 8-days period (so before SC we have at least 3 full days). We determine what part of major geomagnetic storms is accompanied CR intensity and CR anisotropy changing before SC, and what part of major geomagnetic storms does not show any features what can be used for forecasting. We estimate also how these parts depend from the index of geomagnetic activity Kp. REFERENCES: Zagnetko et al. "One hour neutron monitor and muon telescope on-line CR data and space dangerous phenomena, 1. Principles of major geomagnetic storms

  3. Relationship Between Human Physiological Parameters And Geomagnetic Variations Of Solar Origin

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    This study attempts to assess the influence of increased geomagnetic activity on some human physiological parameters. The blood pressure, heart rate and general well-being of 86 volunteers were measured (the latter by means of a standardized questionnaire) on work days in autumn 2001 (01/10 to 09/11) and in spring 2002 (08/04 to 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether, 2799 recordings were obtained and analysed. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The three factors were the following: 1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; 2) gender - males and females; 3) blood pressure degree - persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors' levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure reached 9%, which deserves attention from a medical point of view. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase. During severe geomagnetic storms 30% of the persons examined reported subjective complaints and the highest sensitivity was revealed for the hypertensive females. The results obtained add further evidence that blood pressure seems to be affected by geomagnetic

  4. PAMELA's measurements of geomagnetic cutoff variations during the 14 December 2006 storm

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Barbarino, G. C.; Bazilevskaya, G. A.; Bellotti, R.; Boezio, M.; Bogomolov, E. A.; Bongi, M.; Bonvicini, V.; Bottai, S.; Bruno, A.; Cafagna, F.; Campana, D.; Carlson, P.; Casolino, M.; Castellini, G.; De Donato, C.; Nolfo, G. A.; De Santis, C.; De Simone, N.; Di Felice, V.; Galper, A. M.; Karelin, A. V.; Koldashov, S. V.; Koldobskiy, S.; Krutkov, S. Y.; Kvashnin, A. N.; Leonov, A.; Malakhov, V.; Marcelli, L.; Martucci, M.; Mayorov, A. G.; Menn, W.; Mergé, M.; Mikhailov, V. V.; Mocchiutti, E.; Monaco, A.; Mori, N.; Munini, R.; Osteria, G.; Palma, F.; Panico, B.; Papini, P.; Pearce, M.; Picozza, P.; Ricci, M.; Ricciarini, S. B.; Sarkar, R.; Scotti, V.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stozhkov, Y. I.; Vacchi, A.; Vannuccini, E.; Vasilyev, G. I.; Voronov, S. A.; Yurkin, Y. T.; Zampa, G.; Zampa, N.

    2016-03-01

    Data from the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) satellite experiment were used to measure the geomagnetic cutoff for high-energy (≳ 80MeV) protons during the 14 December 2006 geomagnetic storm. The variations of the cutoff latitude as a function of rigidity were studied on relatively short timescales, corresponding to spacecraft orbital periods (˜94 min). Estimated cutoff values were compared with those obtained by means of a trajectory-tracing approach based on a dynamical empirical modeling of the Earth's magnetosphere. We found significant variations in the cutoff latitude, with a maximum suppression of ˜7° at lowest rigidities during the main phase of the storm. The observed reduction in the geomagnetic shielding and its temporal evolution were related to the changes in the magnetospheric configuration, investigating the role of interplanetary magnetic field, solar wind, and geomagnetic parameters. PAMELA's results represent the first direct measurement of geomagnetic cutoffs for protons with kinetic energies in the sub-GeV and GeV region.

  5. A solar wind-based model of geomagnetic field fluctuations at a mid-latitude station

    NASA Astrophysics Data System (ADS)

    Lotz, S. I.; Cilliers, P. J.

    2015-01-01

    Anomalous quasi-DC currents known as geomagnetically induced currents (GIC), produced in electric power network infrastructure during geomagnetic storms, pose a risk to reliable power transmission and network integrity. The prediction of a geomagnetic field-derived proxy to GIC provides an attractive mitigation technique that does not require changes to network hardware. In this paper we present the development of two artificial neural network based models tasked with predicting variations in the X (northward) and Y (eastward) components of the geomagnetic field at Hermanus, South Africa, with only solar wind plasma and interplanetary magnetic field (IMF) parameters as input. The models are developed by iteratively selecting the best set of solar wind parameters to predict the fluctuations in X and Y. To predict the variation in X, IMF magnitude, solar wind speed, fluctuation in solar wind proton density and a IMF-BZ derived parameter are selected. To predict the variation in Y, IMF-BZ , solar wind speed, and fluctuation in IMF magnitude are selected. The difference between the sets of selected input parameters are explained by the dependence of eastward perturbations in geomagnetic field at middle latitudes on field aligned currents. Model performance is evaluated during three storms in 2012. The onset and main phases of storms are fairly accurately predicted, but in cases where prolonged southward IMF coincides with solar wind parameters that are slowly varying the model fails to predict the observed fluctuations.

  6. Palaeomagnetic evidence for the persistence or recurrence of geomagnetic main field anomalies in the South Atlantic

    NASA Astrophysics Data System (ADS)

    Shah, Jay; Koppers, Anthony A. P.; Leitner, Marko; Leonhardt, Roman; Muxworthy, Adrian R.; Heunemann, Christoph; Bachtadse, Valerian; Ashley, Jack A. D.; Matzka, Jürgen

    2016-05-01

    We present a dataset of a full-vector palaeomagnetic study of Late Pleistocene lavas from the island Tristan da Cunha in the South Atlantic Ocean. The current day geomagnetic field intensity in this region is approximately 25 μT, compared to an expected value of ∼43 μT; this phenomenon is known as the South Atlantic geomagnetic Anomaly (SAA). Geomagnetic field models extending back to the last 10 ka find no evidence for this being a persistent feature of the geomagnetic field, albeit, all models are constructed from data which is particularly sparse in the southern hemisphere. New 40Ar/39Ar incremental heating dating indicates the studied lavas from Tristan da Cunha extruded between 90 and 46 ka. Palaeointensity estimations of eight lava flows made using the Thellier method yield an average palaeointensity of 18 ± 6 μT and virtual axial dipole moment (VADM) of 3.1 ± 1.2 ×1022 Am2. The lava flows demonstrate four time intervals comparable to the present day SAA, where the average VADM of the Tristan da Cunha lavas is weaker than the global VADM average. This suggests a persistent or recurring low intensity anomaly to the main geomagnetic field similar to the SAA existed in the South Atlantic between 46 and 90 ka.

  7. Effect of geomagnetic activity on equatorial radio VHF scintillations and spread F

    SciTech Connect

    Rastogi, R.G.; Mullen, J.P.; MacKenzie, E.

    1981-05-01

    The paper discusses the occurrence of scintillations of ATS 3 (137 MHz) beacons recorded at Huancayo on geomagnetically quiet and disturbed days during the years 1969--1976 and compared the results with the corresponding occurrence of range and frequency spread F at Huancayo. During the equinoctial months and the December solstical months the geomgnetic activity reduces the equatorial scintillations during premidnight hours but increases their occurrence during the postmidnight hours. These features are very similar to the effect of geomagnetic activity on the occurrence of the range type of equatorial spread F rather than on the occurrence of frequency spread, which decreases for any hour of the night during geomagnetic active periods. During the June solsticial months, the occurrence of both scintillations and spread F is very much reduced; however, both the phenomena are more frequent on disturbed than on quiet days for any of the hours of the night. These effects are consistently the same for any of the years within the solar cycle. It is suggested that the equatorial radio scintillations at 137 MHz during the nighttime are produced primarily by the occurrence of the range type of spread F. The geomagnetic effects are due to the modifications of the equatorial electric field by the geomagnetic disturbance and thereby affect the development of F region irregularities causing scintillations.

  8. Possible Cosmic Ray Using for Forecasting of Major Geomagnetic Storms, Accompanied by Forbush-Effects

    NASA Astrophysics Data System (ADS)

    Dorman, L. I.; Belov, A. V.; Eroshenko, E. A.; Pustil'Nik, L. A.; Sternlieb, A.; Yanke, V. G.; Zukerman, I. G.

    2003-07-01

    We present developing of methods for forecasting on the basis of NM hourly on-line data geomagnetic storms accompanied by Forbush-effects. These geomagnetic storms are dangerous for technology (influence on power systems, on spacecraft operations, on HF radio-communications and others) and people health. We show that for esp ecially dangerous geomagnetic storms can be used global-sp ectrographic method if on-line will be available 35-40 NM of world-wide net. In this case for each hour can be determined CR anisotropy vector, and the specifically behavior of this vector before SC of geomagnetic storms can be used as important factor for forecast. The second factor is specifically behavior of CR density for about 30-15 hours before SC (pre-increase effect, caused mainly by galactic CR particles acceleration during interaction with shock wave moved from the Sun). The third factor is effect of cosmic ray pre-decreasing, caused by magnetic connection of the Earth with the region behind the shock wave. We demonstrate developing methods on several examples of ma jor geomagnetic storms. This research is partly supported by the EU INTAS grant 00-0810.

  9. Persistence in recurrent geomagnetic activity and its connection with Space Climate

    NASA Astrophysics Data System (ADS)

    Diego, P.; Storini, M.; Laurenza, M.

    2010-06-01

    Recurrent geomagnetic activity is mainly linked to the passage of interplanetary corotating solar wind structures in the near-Earth space. We studied geomagnetic recurrences for which an enhanced value of the autocorrelation coefficient exists between the data of two adjacent Bartels rotations in aa, Kp, Dst, AE time series, for the period 1954-2007, covering about 5 solar cycles (from cycle 19 to cycle 23). A new index (P), based on autocorrelation analysis, has been introduced to estimate also the duration up to seven Bartels rotations of each solar structure (or group of structures) producing geomagnetic recurrences with high autocorrelation (correlation coefficient ≥ 0.3). We could infer whether recurrent geomagnetic activity is due to successive short-lived (at least 2 Bartels rotations) or to long-lasting corotating structures (up to 7 or more Bartels rotations). Generally, time periods characterized by recurrent geomagnetic activity are longer during the descending phase of even-numbered cycles (20, 22). Nevertheless, we found that recurrences determined by long-lived interplanetary structures are detected mainly in the descending phase of cycles 19 and 23. Finally, we point out that the average levels of the computed indices during the descending phase of each solar cycle show a significant anticorrelation with the sunspot area integrated over the subsequent cycle, giving new insights for Space Climate forecast.

  10. Variations in geomagnetic field and temperature in Spain during the past millennium

    NASA Astrophysics Data System (ADS)

    Nachasova, I. E.; Burakov, K. S.; Pilipenko, O. V.; Markov, G. P.

    2015-07-01

    The archaeomagnetic studies are conducted for the collection of coated ceramic samples from the Albarracin archaeological monument in Spain dated to the 10-20th centuries A.D. The pattern of variations in geomagnetic field intensity during this time interval is identified. The behavior of geomagnetic intensity is dominated by a decreasing trend (from ˜80 to 40 μT). The variation with a characteristic time of a few hundred years is the most striking one. Investigation of the material from this collection by the method of rehydroxylation provided the temperature estimates for this region of Spain for the time interval of pottery production. The temperature variations generally tend to increase, while the main trend in the variations of geomagnetic intensity is decreasing. The time series of temperature and intensity of the main magnetic field contain variations with close characteristic times shifted in time so that the changes in temperature go somewhat ahead of the changes in the geomagnetic field. It was previously suggested to improve the accuracy and resolution of the obtained variations in the past magnetic field using the method of archaeomagnetic dating of the material from archaeological monuments. The method was tested by dating the pottery kiln material from the El Molon monument, Spain, with the use of the virtual geomagnetic pole curve based on the past magnetic field in the East Europe. The method proved to be quite efficient and promising for dating the archaeological material from all over Europe.

  11. A case study of the thermospheric neutral wind response to geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Jiang, Guoying; Zhang, Shunrong; Wang, Wenbin; Yuan, Wei; Wu, Qian; Xu, Jiyao

    A minor geomagnetic storm (Kp=5) occurred on March 27-28, 2012. The response of the thermospheric neutral wind at ~ 250 km to this storm was investigated by the 630.0 nm nightglow measurements of Fabry-Perot interferometers (FPIs) over Xinglong (geographic location: 40.2N, 117.4E; geomagnetic location: 29.8N, 193.2E) and Millstone Hill (geographic location: 42.6N, 71.5W; geomagnetic location: 53.1N, 65.1W). Our results show that the minor storm on March 27-28, 2012 obviously effected on the thermospheric neutral winds over Xinglong and Millstone Hill, especially Millstone Hill had larger response because of its higher geomagnetic latitude. Another interesting result is that a small variation in geomagnetic activity (Kp=2.7) could enough introduce a clear disturbance in the nighttime thermospheric neutral wind over Millstone hill. NCAR-TIME-GCM (National Center for Atmospheric Research-Thermosphere Ionosphere Mesosphere Electrodynamics-General Circulation Model) was employed to study the evolution and mechanism of the thermospheric neutral wind response.

  12. Advantage of wavelet technique to highlight the observed geomagnetic perturbations linked to the Chilean tsunami (2010)

    NASA Astrophysics Data System (ADS)

    Klausner, V.; Mendes, Odim; Domingues, Margarete O.; Papa, Andres R. R.; Tyler, Robert H.; Frick, Peter; Kherani, Esfhan A.

    2014-04-01

    The vertical component (Z) of the geomagnetic field observed by ground-based observatories of the International Real-Time Magnetic Observatory Network has been used to analyze the induced magnetic fields produced by the movement of a tsunami, electrically conducting sea water through the geomagnetic field. We focus on the survey of minutely sampled geomagnetic variations induced by the tsunami of 27 February 2010 at Easter Island (IPM) and Papeete (PPT) observatories. In order to detect the tsunami disturbances in the geomagnetic data, we used wavelet techniques. We have observed an 85% correlation between the Z component variation and the tide gauge measurements in period range of 10 to 30 min which may be due to two physical mechanisms: gravity waves and the electric currents in the sea. As an auxiliary tool to verify the disturbed magnetic fields, we used the maximum variance analysis (MVA). At PPT, the analyses show local magnetic variations associated with the tsunami arriving in advance of sea surface fluctuations by about 2 h. The first interpretation of the results suggests that wavelet techniques and MVA can be effectively used to characterize the tsunami contributions to the geomagnetic field and further used to calibrate tsunami models and implemented to real-time analysis for forecast tsunami scenarios.

  13. Impact of the lower atmosphere on the ionosphere response to a geomagnetic superstorm

    NASA Astrophysics Data System (ADS)

    Pedatella, N. M.

    2016-09-01

    Numerical simulations in the National Center for Atmospheric Research (NCAR) thermosphere-ionosphere-electrodynamics general circulation model (TIE-GCM) are performed to elucidate the impacts of lower atmosphere forcing on the ionosphere response to a geomagnetic superstorm. In particular, how the ionosphere variability due to the October 2003 Halloween storm would be different if it occurred in January coincident with a major sudden stratosphere warming (SSW) event is investigated. The TIE-GCM simulations reveal that the E× B vertical drift velocity and total electron content (TEC) respond differently to the geomagnetic forcing when the lower atmosphere forcing is representative of SSW conditions compared to climatological lower atmosphere forcing conditions. Notably, the storm time variations in the E× B vertical drift velocity differ when the SSW-induced zonal mean and tidal variability in the lower thermosphere are considered, and this is in part due to effects of the SSW on the equatorial ionosphere being potentially misinterpreted as being of geomagnetic origin. Differences in the TEC response to the geomagnetic storm can be up to 100% (˜30 TEC unit (TECU: 1 TECU = 1016 el m-2)) of the storm-induced TEC change, and the temporal variability of the TEC during the storm recovery phase is considerably different if SSW effects are considered. The results demonstrate that even during periods of extreme geomagnetic forcing, it is important to consider the effects of lower atmosphere forcing on the ionosphere variability.

  14. Geomagnetic activity associated with earth passage of interplanetary shock disturbances and coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Mccomas, D. J.; Phillips, J. L.; Bame, S. J.

    1991-01-01

    Coronal mass ejection events (CMEs) are important occasional sources of plasma and magnetic field in the solar wind at 1 AU, accounting for approximately 10 percent of all solar wind measurements in the ecliptic plane during the last solar activity maximum. Using a recently appreciated capability for distinguishing CMEs in solar wind data in the form of counterstreaming solar wind electron events, this paper explores the overall effectiveness of shock wave disturbances and CMFs in general in stimulating geomagnetic activity. The study is confined to the interval from mid-August 1978 through mid-October 1982, spanning the last solar activity maximum, when ISEE 3 was in orbit about the L1 Lagrange point 220 Re upstream from earth. It is found that all but one of the 37 largest geomagnetic storms in that era were associated with earth passage of CMEs and/or shock disturbances, with the large majority of these storms (27 out of 37) being associated with interplanetary events where earth encountered both a shock and the CME driving the shock (shock/CME events). Although CMEs and/or shock disturbances were increasingly the cause of geomagnetic activity as the level of geomagnetic activity increased, many smaller geomagnetic disturbances were unrelated to these events.

  15. Geomagnetic storms, super-storms, and their impacts on GPS-based navigation systems

    NASA Astrophysics Data System (ADS)

    Astafyeva, E.; Yasyukevich, Yu.; Maksikov, A.; Zhivetiev, I.

    2014-07-01

    Using data of GPS receivers located worldwide, we analyze the quality of GPS performance during four geomagnetic storms of different intensity: two super-storms and two intense storms. We show that during super-storms the density of GPS Losses-of-Lock (LoL) increases up to 0.25% at L1 frequency and up to 3% at L2 frequency, and up to 0.15% (at L1) and 1% (at L2) during less intense storms. Also, depending on the intensity of the storm time ionospheric disturbances, the total number of total electron content (TEC) slips can exceed from 4 to 40 times the quiet time level. Both GPS LoL and TEC slips occur during abrupt changes of SYM-H index of geomagnetic activity, i.e., during the main phase of geomagnetic storms and during development of ionospheric storms. The main contribution in the total number of GPS LoL was found to be done by GPS sites located at low and high latitudes, whereas the area of numerous TEC slips seemed to mostly correspond to the boundary of the auroral oval, i.e., region with intensive ionospheric irregularities. Our global maps of TEC slips show where the regions with intense irregularities of electron density occur during geomagnetic storms and will let us in future predict appearance of GPS errors for geomagnetically disturbed conditions.

  16. Solar and geomagnetic precursors of the climate change

    NASA Astrophysics Data System (ADS)

    Lukianova, Renata; Alekseev, Genrikh

    2010-05-01

    Observed climate change and warming are temporary and spatially non-uniform over the globe whereas the global models tend to predict the gradual increase of temperature due to the antropogenic impact. In particular, rapid climate changes in the Arctic in 1990-2000s can not be accounted solely for the anthropogenic effect since the actually observed changes exceed the predictions of the global climate models. Such discrepancy is usually attributed to the intrinsic variability of the climate system. However, the Sun influences the Earth climate through mechanisms that are not fully understood but which can be linked to solar variations of luminosity, magnetic field, UV radiation, solar flares and modulation of the cosmic ray intensity. In this contribution we (re)examined the long-term behavior of some solar proxies and surface air and see temperatures (SAT and SST). The satellite composite of total solar irradiance (TSI) covered approximately three last solar cycles has been used for determination of the inter-annual solar variability. In the spectrum of anomalies relative to 11-yr cycle a strong 12-month harmonic is clearly seen along with some lower (3-4 yr) periodicities. Examination of the long-term behavior of the solar proxy in the individual months of the year reveals the persisted increase of solar irradiance anomalies in December-February. Although the TSI time series has no overall trend, in Nov-Feb the 0.32 W/m2 upward trend is detected. The largest differential anomaly (between 1983 and 2002) is 1.21 W/m2. The natural seasonal weather cycle may play a role of amplifier of solar annual signal. In order to check further the external (solar) forcing-climate hypothesis, comparisons between the geomagnetic aa index and the update SAT and SST have been made over the time interval of 1868-2009. The long-term variability of the 11-yr running average aa index shows the overall upward trend that rises from 1900 to 1950s, decreases until 1960s, rises again to 1990s

  17. Geomagnetic secular variations at the Permo-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Pavlov, Vladimir; Veselovskiy, Roman; Fetisova, Anna; Latyshev, Anton; Fluteau, Frederic

    2014-05-01

    Study of changes in geomagnetic secular variations through geological time is essential to document the Earth's magnetic field evolution and provides an important constraint for geodynamo modeling. Moreover, knowledge of the secular variations value for any specific geological epoch (paleosecular variations - PSV) may give an additional tool to constrain the duration of emplacement and cooling of various magmatic bodies including flows, dykes and sills. In this report we present the result of study of the PSV at the Permo-Triassic boundary (~252 Ma), based on the paleomagnetic data, obtained from numerous (N>100) volcanic flows of the Siberian traps exposed in series of sections located in Norilsk and Maymecha-Kotuy regions in the North-West and North of the Siberian platform. Our data, taken together with similar data from other regions (Sementau, East Kazakhstan; Emeichan, China) indicates that the amplitude of PSV at the Permo-Triassic boundary was about the same or a little lower than in Late Cenozoic during last 5 milllions years. The low (comparing with expected one) value of PSV recorded in several large sills from Angara-Bratsk region (southern Siberian platform) indicates that these sills was formed very fast during the time interval less than, at least, several thousand years. Especially this conclusion is interesting for so called Tolstomyss sill, which, in fact, represents a huge field of associated tuffs, sills, dykes and volcanics, extended over the distance more than 200 km. This result can be considered as a further indication of very fast emplacement of the Siberian traps and their link with the Permo-Triassic catastrophe.

  18. Response of the thermosphere and ionosphere to geomagnetic storms

    SciTech Connect

    Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S.

    1994-03-01

    Four numerical simulations have been performed, at equinox, using a coupled thermosphere-ionosphere model, to illustrate the response of the upper atmosphere to geomagnetic storms. The storms are characterized by an increase in magnetospheric energy input at high latitude for a 12-hour period; each storm commences at a different universal time (UT). The initial response at high latitude is that Joule heating raises the temperature of the upper thermosphere and ion drag drives high-velocity neutral winds. The heat source drives a global wind surge, from both polar regions, which propagates to low latitudes and into the opposite hemisphere. The surge has the character of a large-scale gravity wave with a phase speed of about 600 m s{sup {minus}1}. Behind the surge a global circulation of magnitude 100 m s{sup {minus}1} is established at middle latitudes, indicating that the wave and the onset of global circulation are manifestations of the same phenomena. A dominant feature of the response is the penetration of the surge into the opposite hemisphere where it drives poleward winds for a few hours. The global wind surge has a preference for the night sector and for the longitude of the magnetic pole and therefore depends on the UT start time of the storm. A second phase of the meridional circulation develops after the wave interaction but is also restricted, in this case by the buildup of zonal winds via the Coriolis interaction. Conservation of angular momentum may limit the buildup of zonal wind in extreme cases. The divergent wind field drives upwelling and composition change on both height and pressure surfaces. The composition bulge responds to both the background and the storm-induced horizontal winds; it does not simply rotate with Earth. During the storm the disturbance wind modulates the location of the bulge; during the recovery the background winds induce a diurnal variation in its position. 39 refs., 15 figs.

  19. Statistical signatures of geomagnetic storms with reference to delay distribution

    NASA Astrophysics Data System (ADS)

    Aslam, A. M.; Gwal, Ashok Kumar

    2016-07-01

    This paper presents a statistical study on the nature and association of time delay (between IMF Bz and Dst) with various solar wind parameters and Inter planetary Magnetic field components. The study integrally covers all (634 storms) the geomagnetic storms observed during 1996 to 2011. We have calculated the time delay (∆T) between the peak values of IMF Bz and minimum Dst for each event and statistically investigated its relation with various solar wind parameters and IMF. For this analysis we have taken Solar wind parameters; Velocity, Density, Plasma beta and Temperature as well as IMF Bz, into consideration. We have categorized the storms into three categories based on the Dst Index as weak (-30nT ≤ Dst ≤ -50nT), moderate (-50nT ≤ Dst ≤ -100nT) and intense (Dst ≤ -100nT) storms. The relation of delay with solar wind parameters and IMF components were studied separately for different classes of storms and for different delays viz. 0,1,2,3,4 (hours). From our analysis we are able to draw some interesting inferences. The fact, that the characteristic feature describing the geoeffectiveness of the IMF is its z-component; Bz, and the electric field component -V× Bz, stands true for all delay classes of the storms. The time delay (∆T) between peak values of IMF Bz and minimum Dst can vary in a wide range and mostly varies from 0-10 hours. However, it was found that a major percentage (~80 %) of the storms have a 0 - 4 hour delay. Meanwhile Temperature, density and plasma beta seems to have no significant association with the storm intensity.

  20. A study on precursors leading to geomagnetic storms using artificial neural network

    NASA Astrophysics Data System (ADS)

    Singh, Gaurav; Singh, A. K.

    2016-07-01

    Space weather prediction involves advance forecasting of the magnitude and onset time of major geomagnetic storms on Earth. In this paper, we discuss the development of an artificial neural network-based model to study the precursor leading to intense and moderate geomagnetic storms, following halo coronal mass ejection (CME) and related interplanetary (IP) events. IP inputs were considered within a 5-day time window after the commencement of storm. The artificial neural network (ANN) model training, testing and validation datasets were constructed based on 110 halo CMEs (both full and partial halo and their properties) observed during the ascending phase of the 24th solar cycle between 2009 and 2014. The geomagnetic storm occurrence rate from halo CMEs is estimated at a probability of 79%, by this model.

  1. Modeling of severe geomagnetic storms of solar cycle 23 by means of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Revallo, Milos; Valach, Fridrich; Hejda, Pavel; Bochnicek, Josef

    2015-04-01

    We set up a model for strong geomagnetic storms of solar cycle 23 using the method of artificial neural networks combined with an empirical model of the solar wind magnetosphere interaction. The set of solar wind data obtained from the ACE satellite is considered and the corresponding geomagnetic response is modeled and compared with real data. The discontinuity in magnetic field at the magnetopause is shown to play a key role in this study. The geomagnetic response is evaluated in terms of the Dst index. To assess the model performance, we compute the skill scores, namely the correlation coefficient and the prediction efficiency. We compare the model with previously known similar models based on artificial neural networks.

  2. Ionspheric and thermospheric response to the 27-28 February 2014 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Khalifa, Malki; Benkhaldoun, Zouhair; Vilmer, Nicole; Bounhir, Aziza; Makela, Jonathan J.; Kaab, Mohamed; Lagheryeb, Amine

    2015-08-01

    The present work explores the ionospheric and thermospheric responses to the 27-28 February 2014 geomagnetic storm. This storm was consecutive to CME associated flares that occurred on 25 February. A Fabry Perrot interferometer provides measurements of the neutral winds and temperature based on the observations of the 630 nm redline emission and of a wide angle imaging system which records images of the 630 nm emission.The effects of this geomagnetic storm on the thermosphere are evident from the clear departure of the winds and the temperature from their seasonal behavior. The effects on the ionosphere were also evident through the change observed in the background electric field as shown from the plasma bubbles drifts direction reversal. Attention was paid to the the interplanetary medium ; solar wind, interplanetary magnetic field, shock waves and geomagnetic indices. We also explore RHESSI data of the flare.

  3. Comparison of drag and mass spectrometer measurements during small geomagnetic disturbances

    NASA Technical Reports Server (NTRS)

    Keating, G. M.; Prior, E. J.; Chang, K.; Nicholson, J. Y., III; Von Zahn, U.

    1977-01-01

    During small geomagnetic disturbances, ESRO 4 and OGO 6 gas analyzer measurements at high altitudes suggest that helium and atomic oxygen concentrations in the lower thermosphere decrease, whereas satellite drag measurements indicate that density increases. This discrepancy is explained by the corresponding temperature increases maximizing at high latitudes. ESRO 4 data suggest that at altitudes where atomic oxygen or helium predominates, the temperature increase compensates for the decrease in lower thermospheric concentrations. This yields a net density increase with geomagnetic disturbances. The Explorer 39 drag satellite measurements verify this conclusion. It is felt that the composition variations associated with minor disturbances indicate the upwelling of the polar atmosphere, circulation towards the equator, and subsidence in the equatorial region. ESRO measurements show that at low latitudes the increases in helium concentrations with geomagnetic disturbances are chiefly caused by the circulation from high latitudes and the subsidence at lower latitudes.

  4. Frequency considerations in evaluation of geomagnetically induced currents in transmission lines

    NASA Astrophysics Data System (ADS)

    Trichtchenko, Larisa

    2016-04-01

    Significant impacts of large geomagnetically induced currents on power transmission systems lead to the necessity to properly evaluate the size of these currents. Several simplified assumptions which are used for the modelling of these currents would be clarified in the presentations. The following two classes of possible sources of errors will be discussed: 1. "Geophysical" uncertainties in the evaluation of the earth geoelectric field, such as a) influence of geomagnetic sampling rate on the "true" waveform of the geomagnetic disturbance and b) influence of the uncertainties in the 1-dimensional layered earth models; 2. Assumptions in the power network modelling, such as a) DC-approximation of the response of transmission line and b) not taking into accounts the impacts of the conducting system (transmission lines) on the ambient (geophysical) electric field. The results of presented research will help in proper evaluations of the GIC and, therefore, in preparing the adequate mitigation measures to counteract the space weather impacts on critical infrastructure.

  5. Spherical Elementary Current Systems Method Applied to Geomagnetic Field Modeling for the Adriatic

    NASA Astrophysics Data System (ADS)

    Vujić, Eugen; Brkić, Mario

    2016-08-01

    The aim of this work was to derive an accurate regional model of geomagnetic components on the Adriatic. Data of north, east and vertical geomagnetic components at repeat stations and ground survey sites enclosing the Adriatic Sea were used to obtain a geomagnetic model at 2010.5 epoch. The core field was estimated by use of the global Enhanced Magnetic Model, while the crustal field by a mathematical technique for expanding vector systems on a sphere into basis functions, known as spherical elementary current systems method. The results of this method were presented and compared to the crustal field estimations by the Enhanced Magnetic Model. The maps of isolines of the regional model are also presented.

  6. Proposed geomagnetic control of semiannual waves in the mesospheric zonal wind

    NASA Technical Reports Server (NTRS)

    Belmont, A. D.; Nastrom, G. D.; Mayr, H. G.

    1975-01-01

    The polar semiannual oscillation in zonal wind explains midwinter weakening of the polar vortex and the relatively short stratospheric and mesospheric summer easterlies. The phase of the wind oscillation is equinoctial, as is the phase of the semiannual component in magnetic storm activity. For a given altitude, the contours of amplitude of the semiannual wind oscillation have less variability in geomagnetic than in geographic coordinates. It is suggested that the polar wind oscillations are caused by the semiannual maxima in magnetic storm activity, which lead to electron dissociation of O2 into O, in turn increasing ozone more rapidly than the dissociation of N2 destroys ozone, and inducing a semiannual variation in the thermal and wind fields. This implies that geomagnetic processes may cause or affect the development of sudden warmings. As the tropical semiannual wind oscillation is symmetric about the geomagnetic equator, the same processes may also influence the location of the tropical wind wave.

  7. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes

    NASA Astrophysics Data System (ADS)

    Evans, David A. D.

    2006-11-01

    Palaeomagnetism of climatically sensitive sedimentary rock types, such as glacial deposits and evaporites, can test the uniformitarianism of ancient geomagnetic fields and palaeoclimate zones. Proterozoic glacial deposits laid down in near-equatorial palaeomagnetic latitudes can be explained by `snowball Earth' episodes, high orbital obliquity or markedly non-uniformitarian geomagnetic fields. Here I present a global palaeomagnetic compilation of the Earth's entire basin-scale evaporite record. Magnetic inclinations are consistent with low orbital obliquity and a geocentric-axial-dipole magnetic field for most of the past two billion years, and the snowball Earth hypothesis accordingly remains the most viable model for low-latitude Proterozoic ice ages. Efforts to reconstruct Proterozoic supercontinents are strengthened by this demonstration of a consistently axial and dipolar geomagnetic reference frame, which itself implies stability of geodynamo processes on billion-year timescales.

  8. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes.

    PubMed

    Evans, David A D

    2006-11-01

    Palaeomagnetism of climatically sensitive sedimentary rock types, such as glacial deposits and evaporites, can test the uniformitarianism of ancient geomagnetic fields and palaeoclimate zones. Proterozoic glacial deposits laid down in near-equatorial palaeomagnetic latitudes can be explained by 'snowball Earth' episodes, high orbital obliquity or markedly non-uniformitarian geomagnetic fields. Here I present a global palaeomagnetic compilation of the Earth's entire basin-scale evaporite record. Magnetic inclinations are consistent with low orbital obliquity and a geocentric-axial-dipole magnetic field for most of the past two billion years, and the snowball Earth hypothesis accordingly remains the most viable model for low-latitude Proterozoic ice ages. Efforts to reconstruct Proterozoic supercontinents are strengthened by this demonstration of a consistently axial and dipolar geomagnetic reference frame, which itself implies stability of geodynamo processes on billion-year timescales.

  9. Geomagnetic excursions recorded in Chinese Loess in the last 70,000 years

    NASA Astrophysics Data System (ADS)

    Zhu, Rixiang; Pan, Yongxin; Liu, Qingsong

    Detailed paleomagnetic investigations conducted on the Malan loess (L1) at a well-dated section (Weinan) in the Chinese Loess Plateau revealed two distinct anomalous directional intervals (ADI) accompanied by lower relative paleointensity. Rock magnetic properties and anisotropy of magnetic susceptibility (AMS) of samples taken from sedimentary horizons carrying the anomalous directions are similar to those taken from outside the anomalous directional intervals. Thus, the anomalous directions are interpreted as geomagnetic excursions. Based on 14C and TL data, the excursions occurred at 27.1-26.0 and 46.8-37.4 kyr B.P; the ages are consistent with the ages assigned to the Mono Lake excursion (MLE) and Laschamp excursion (LE), respectively. The result indicates that the MLE and LE were independent geomagnetic excursions. The morphology of LE at this section suggests that the LE might be an aborted geomagnetic reversal.

  10. Comparison of the Brunhes epoch geomagnetic secular variation recorded in the volcanic and sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Shcherbakov, V. P.; Khokhlov, A. V.; Sycheva, N. K.

    2014-03-01

    The results of numerical modeling of the geomagnetic secular variation by the method of the Giant Gaussian Process (GGP) are presented and compared with the information derived from the presentday databases for paleointensity. The variances of the positions of the virtual geomagnetic pole (VGP) calculated from the synthetic and experimental data (Brunhes epoch, effusive rocks) are nearly similar, which supports the validity of the theoretical model. The average value of the virtual axial geomagnetic dipole (VADM) calculated from the PINT world database on paleointensity and the Sint-2000 model is lower than VADM calculated by the GGP model; at the same time, the estimates based on the archaeomagnetic data give the VADM value slightly above the model prediction. The largest difference is observed in the variances of VADM, which is for all the three databases noticeably higher than the value calculated from the GGP model. Most probably, this is due to the contribution of the neglected measurement errors of VADM.

  11. Orbital Noise of the Earth Causes Intensity Fluctuation in the Geomagnetic Field

    NASA Technical Reports Server (NTRS)

    Liu, Han-Shou; Kolenkiewicz, R.; Wade, C., Jr.

    2003-01-01

    Orbital noise of Earth's obliquity can provide an insight into the core of the Earth that causes intensity fluctuations in the geomagnetic field. Here we show that noise spectrum of the obliquity frequency have revealed a series of frequency periods centered at 250-, 1OO-, 50-, 41-, 30-, and 26-kyr which are almost identical with the observed spectral peaks from the composite curve of 33 records of relative paleointensity spanning the past 800 kyr (Sint-800 data). A continuous record for the past two million years also reveals the presence of the major 100 kyr periodicity in obliquity noise and geomagnetic intensity fluctuations. These results of correlation suggest that obliquity noise may power the dynamo, located in the liquid outer core of the Earth, which generates the geomagnetic field.

  12. The responses of the thermosphere due to a geomagnetic storm: A MHD model

    NASA Technical Reports Server (NTRS)

    Wu, S. T.; Chang, S.

    1972-01-01

    A magnetohydrodynamics theory was used to study the dynamic response of the neutral atmosphere to a geomagnetic storm. A full set of magnetohydrodynamic equations appropriate for the present problem is derived and their various orders of approximation are discussed in some detail. In order to demonstrate the usefulness of this theoretical model, the May 1967 geomagnetic storm data were used in the resulting set of nonlinear, time dependent, partial differential magnetohydrodynamic equations to calculate variations of the thermosphere due to the storm. The numerical results are presented for wind speeds, electric field strength, and amount of joule heating at a constant altitude for the data recorded. Data show that the strongest thermospheric responses are at the polar region becoming weaker in the equatorial region. This may lead to the speculation that a thermospheric wave is generated in the polar region due to the geomagnetic storm which propagates towards the equator.

  13. Auroral LSTIDs and SAR Arc Occurrences in Northern California During Geomagnetic Storms

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Kendall, E. A.

    2015-12-01

    A 630nm allsky imager has been operated for two years in northern California at the Hat Creek Radio Observatory. F-region airglow data captured by the imager ranges from approximately L=1.7 -2.7. Since installation of the imager several geomagnetic storms have occurred with varying intensities. Two main manifestations of the geomagnetic storms are observed in the 630 nm airglow data: large-scale traveling ionospheric disturbances that are launched from the auroral zone and Stable Auroral Red (SAR) arcs during more intense geomagnetic storms. We will present a statistical analysis of these storm-time phenomena in northern California for the past eighteen months. This imager is part of a larger all-sky imaging network across the continental United States, termed MANGO (Midlatitude All-sky-imaging Network for Geophysical Observations). Where available, we will add data from networked imagers located at similar L-shell in other states as well.

  14. The effect of solar wind and geomagnetic indices on emissions in the magnetosphere

    NASA Astrophysics Data System (ADS)

    Boynton, Richard; Walker, Simon

    2016-07-01

    In this study, we investigate which of the solar wind parameters or geomagnetic indices have the greatest influence on plasma waves in the radiation belts. We analysed three emission types for this study: Lower Band Chorus (LBC), Hiss and Equatorial MagnetoSonic (EMS) waves. The Error Reduction Ratio (ERR) analysis was used to identify the solar wind parameters or geomagnetic indices with the greatest control over the waves. The ERR analysis plays a key role in structure detection for nonlinear system identification modelling techniques. In this application, the solar wind parameters and geomagnetic indices are the input data, while the wave magnitudes for the three emission types at different locations are considered as the output data. The ERR analysis is able to automatically determine a set of the most influential parameters that explain the variations in the emissions. The results of the analysis were obtained in frame of the PROGRESS project funded by the Horizon 2020 EU program.

  15. Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palaeolatitudes.

    PubMed

    Evans, David A D

    2006-11-01

    Palaeomagnetism of climatically sensitive sedimentary rock types, such as glacial deposits and evaporites, can test the uniformitarianism of ancient geomagnetic fields and palaeoclimate zones. Proterozoic glacial deposits laid down in near-equatorial palaeomagnetic latitudes can be explained by 'snowball Earth' episodes, high orbital obliquity or markedly non-uniformitarian geomagnetic fields. Here I present a global palaeomagnetic compilation of the Earth's entire basin-scale evaporite record. Magnetic inclinations are consistent with low orbital obliquity and a geocentric-axial-dipole magnetic field for most of the past two billion years, and the snowball Earth hypothesis accordingly remains the most viable model for low-latitude Proterozoic ice ages. Efforts to reconstruct Proterozoic supercontinents are strengthened by this demonstration of a consistently axial and dipolar geomagnetic reference frame, which itself implies stability of geodynamo processes on billion-year timescales. PMID:17080082

  16. Paleomagnetic record of a geomagnetic field reversal from late miocene mafic intrusions, southern nevada.

    PubMed

    Ratcliff, C D; Geissman, J W; Perry, F V; Crowe, B M; Zeitler, P K

    1994-10-21

    Late Miocene (about 8.65 million years ago) mafic intrusions and lava flows along with remagnetized host rocks from Paiute Ridge, southern Nevada, provide a high-quality paleomagnetic record of a geomagnetic field reversal. These rocks yield thermoremanent magnetizations with declinations of 227 degrees to 310 degrees and inclinations of -7 degrees to 49 degrees , defining a reasonably continuous virtual geomagnetic pole path over west-central Pacific longitudes. Conductive cooling estimates for the intrusions suggest that this field transition, and mafic magmatism, lasted only a few hundred years. Because this record comes principally from intrusive rocks, rather than sediments or lavas, it is important in demonstrating the longitudinal confinement of the geomagnetic field during a reversal. PMID:17816684

  17. A simple model for geomagnetic field excursions and inferences for palaeomagnetic observations

    NASA Astrophysics Data System (ADS)

    Brown, M. C.; Korte, M.

    2016-05-01

    We explore simple excursion scenarios by imposing changes on the axial dipole component of the Holocene geomagnetic field model CALS10k.2 and investigate implications for our understanding of palaeomagnetic observations of excursions. Our findings indicate that globally observed directions of fully opposing polarity are only possible when the axial dipole reverses: linearly decaying the axial dipole to zero and then reestablishing it with the same sign produces a global intensity minimum, but does not produce fully reversed directions globally. Reversing the axial dipole term increases the intensity of the geomagnetic field observed at Earth's surface across the mid-point of the excursion, which results in a double-dip intensity structure during the excursion. Only a limited number of palaeomagnetic records of excursions contain such a double-dip intensity structure. Rather, the maximum directional change is coeval with a geomagnetic field intensity minimum.

  18. Relationship between human physiological parameters and geomagnetic variations of solar origin

    NASA Astrophysics Data System (ADS)

    Dimitrova, S.

    Results presented concern influence of increased geomagnetic activity on some human physiological parameters. The blood pressure and heart rate of 86 volunteers were measured on working days in autumn 2001 (01/10 09/11) and in spring 2002 (08/04 28/05). These periods were chosen because of maximal expected geomagnetic activity. Altogether 2799 recordings were obtained and analysed. Questionnaire information about subjective psycho-physiological complaints was also gathered. MANOVA was employed to check the significance of the influence of three factors on the physiological parameters under consideration. The factors were the following: (1) planetary geomagnetic activity level estimated by Ap-index and divided into five levels; (2) gender males and females; (3) blood pressure degree persons in the group examined were divided into hypotensive, normotensive and hypertensive. Post hoc analysis was performed to elicit the significance of differences in the factors’ levels. The average arterial blood pressure of the group was found to increase significantly with the increase of geomagnetic activity level. The average increment of systolic and diastolic blood pressure of the group examined reached 9%. This effect was present irrespectively of gender. Results obtained suppose that hypertensive persons have the highest sensitivity and the hypotensive persons have the lowest sensitivity of the arterial blood pressure to increase of geomagnetic activity. The results did not show significant changes in the heart rate. The percentage of the persons who reported subjective psycho-physiological complaints was also found to increase significantly with the geomagnetic activity increase and the highest sensitivity was revealed for the hypertensive females.

  19. Global distributions of storm-time ionospheric currents as seen in geomagnetic field variations

    NASA Astrophysics Data System (ADS)

    Shinbori, A.; Hori, T.; Tanaka, Y.; Koyama, Y.; Kikuchi, T.; Nagatsuma, T.

    2013-12-01

    In order to investigate temporary and spatial evolutions of global geomagnetic field variations from high-latitude to the geomagnetic equator during geomagnetic storms, we analyzed 1-min geomagnetic field data, which are obtained from the CARISMA, GIMA, IMAGE, MACCS, and NSWM networks, and provided by WDC geomagnetism in Kyoto University. During the main phase of geomagnetic storms, the daytime ionospheric equivalent currents showed that two-cell type of ionospheric currents driven by the enhanced region-1 field-aligned currents (R1 FACs) are intensified significantly and expanded to the low-latitude region of ~30 degrees (GMLAT). The centers of the two-cell type of ionospheric currents were located around 70 and 65 degrees in the morning and afternoon, respectively. Corresponding to the intensification of the R1 FACs, an enhancement of the eastward/westward equatorial electrojet occurred at the daytime/nighttime dip equator. This signature suggests that the enhanced convection electric field penetrates to both the daytime and nighttime equator. During the recovery phase, the daytime equivalent current showed that the two new pairs of twin-vortices, which are different from two-cell type of ionospheric currents driven by the R1 FACs, appear in the polar cap and middle latitude. The former led to the enhanced NBZ FACs driven by the lobe reconnection tailward of the cusps due to the northward IMF, while the latter was generated by the enhanced R2 FACs. Associated with these magnetic field variations in the middle latitudes and polar cap, the equatorial magnetic field variation showed a strongly negative signature produced by the westward equatorial electrojet current due to the dusk-to-dawn electric field.

  20. Loss of Geosynchronous Relativistic Electrons By Emic Wave Scattering Under Quiet Geomagnetic Conditions

    NASA Astrophysics Data System (ADS)

    Kim, K. H.; Hyun, K.; Lee, E.; Lee, D. H.

    2014-12-01

    We have examined relativistic electron flux losses at geosynchronous orbit under quiet geomagnetic conditions. One 3-day period, from 11 to 13 October 2007, was chosen for analysis because geomagnetic conditions were very quiet (3-day average of Kp < 1), and significant losses of geosynchronous relativistic electrons were observed. During this interval, there was no geomagnetic storm activity. Thus, the loss processes associated with geomagnetic field modulations caused by ring current buildup can be excluded. The >2 MeV electron flux at geosynchronous orbit shows typical diurnal variations with a maximum near noon and a minimum near midnight for each day. The flux level of the daily variation significantly decreased from first day to third day for the 3-day period by a factor of >10. The total magnetic field strength (BT) of the daily variation on the third day, however, is comparable to that on the first day. Unlike electron flux decreases, the flux of protons with energies between 0.8 and 4 MeV adiabatically responses to the daily variation of BT. That is, there is no significant decrease of the proton flux when the electron flux decreases. During the interval of quiet geomagnetic conditions, well-defined electromagnetic ion cyclotron (EMIC) waves were detected at geosynchronous spacecraft. Low-altitude polar orbiting spacecraft observed the precipitation of energetic protons and relativistic electrons in the interval of EMIC waves enhancement. From these observations, we suggest that the EMIC waves at geosynchronous orbit cause pitch-angle scattering and electron loss to the atmosphere under quiet geomagnetic conditions.