NASA Technical Reports Server (NTRS)
Tatara, J. D.; Perry, J. L.
2004-01-01
Monitoring the atmospheric composition of a crewed spacecraft cabin is central to successfully expanding the breadth and depth of first-hand human knowledge and understanding of space. Highly reliable technologies must be identified and developed to monitor atmospheric composition. This will enable crewed space missions that last weeks, months, and eventually years. Atmospheric composition monitoring is a primary component of any environmental control and life support system. Instrumentation employed to monitor atmospheric composition must be inexpensive, simple, and lightweight and provide robust performance. Such a system will ensure an environment that promotes human safety and health, and that the environment can be maintained with a high degree of confidence. Key to this confidence is the capability for any technology to operate autonomously, with little intervention from the crew or mission control personnel. A study has been conducted using technologies that, with further development, may reach these goals.
MONITORING OF PARTICULATE MATTER OUTDOORS
Recent studies of the size and composition of atmospheric particulate matter (PM) have demonstrated the usefulness of separating atmospheric PM into its fine and coarse components. The need to measure the mass and composition of fine and coarse PM separately has been emphasized b...
Tube bundle system: for monitoring of coal mine atmosphere.
Zipf, R Karl; Marchewka, W; Mohamed, K; Addis, J; Karnack, F
2013-05-01
A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine.
Marchewka, W.; Mohamed, K.; Addis, J.; Karnack, F.
2015-01-01
A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine. The gas samples are drawn via vacuum pump to the surface and are typically analyzed for oxygen, methane, carbon dioxide and carbon monoxide. Results of the gas analyses are displayed and recorded for further analysis. Trends in the composition of the mine atmosphere, such as increasing methane or carbon monoxide concentration, can be detected early, permitting rapid intervention that prevents problems, such as a potentially explosive atmosphere behind seals, fire or spontaneous combustion. TBS is a well-developed technology and has been used in coal mines around the world for more than 50 years. Most longwall coal mines in Australia deploy a TBS, usually with 30 to 40 monitoring points as part of their atmospheric monitoring. The primary uses of a TBS are detecting spontaneous combustion and maintaining sealed areas inert. The TBS might also provide mine atmosphere gas composition data after a catastrophe occurs in an underground mine, if the sampling tubes are not damaged. TBSs are not an alternative to statutory gas and ventilation airflow monitoring by electronic sensors or people; rather, they are an option to consider in an overall mine atmosphere monitoring strategy. This paper describes the hardware, software and operation of a TBS and presents one example of typical data from a longwall coal mine PMID:26306052
14 CFR 460.11 - Environmental control and life support systems.
Code of Federal Regulations, 2014 CFR
2014-01-01
... level of safety— (1) Composition of the atmosphere, which includes oxygen and carbon dioxide, and any... Crew § 460.11 Environmental control and life support systems. (a) An operator must provide atmospheric... or flight crew must monitor and control the following atmospheric conditions in the inhabited areas...
14 CFR 460.11 - Environmental control and life support systems.
Code of Federal Regulations, 2011 CFR
2011-01-01
... level of safety— (1) Composition of the atmosphere, which includes oxygen and carbon dioxide, and any... Crew § 460.11 Environmental control and life support systems. (a) An operator must provide atmospheric... or flight crew must monitor and control the following atmospheric conditions in the inhabited areas...
14 CFR 460.11 - Environmental control and life support systems.
Code of Federal Regulations, 2012 CFR
2012-01-01
... level of safety— (1) Composition of the atmosphere, which includes oxygen and carbon dioxide, and any... Crew § 460.11 Environmental control and life support systems. (a) An operator must provide atmospheric... or flight crew must monitor and control the following atmospheric conditions in the inhabited areas...
Current and future data assimilation development in the Copernicus Atmosphere Monitoring Service
NASA Astrophysics Data System (ADS)
Engelen, R. J.; Ades, M.; Agusti-panareda, A.; Flemming, J.; Inness, A.; Kipling, Z.; Parrington, M.; Peuch, V. H.
2017-12-01
The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The system assimilates observations from more than 60 satellite sensors to constrain both the meteorology and the atmospheric composition species. While an operational forecasting system needs to be robust and reliable, it also needs to stay state-of-the-art to provide the best possible forecasts. Continuous development is therefore an important component of the CAMS systems. We will present on-going efforts on improving the 4D-Var data assimilation system, such as using ensemble data assimilation to improve the background error covariances and more accurate use of satellite observations. We will also outline plans for including emissions in the daily CAMS analyses, which is an area where research activities have a large potential to feed into operational applications.
Workshop established the Northeastern Soil Monitoring Cooperative
Gregory B. Lawrence; Scott W. Bailey
2007-01-01
Environmental monitoring is an essential tool for identifying changes in the biosphere. The need for environmental data has led to national programs to monitor atmospheric deposition, the composition and growth of forests, and the chemistry of lakes and streams in regions affected by acidic deposition. However, there has been no organized effort to monitor changes in...
NASA Astrophysics Data System (ADS)
Peuch, V. H.
2016-12-01
Operational environmental services are a reality today, as exemplified by the Copernicus Atmospheric Monitoring Service in Europe. Air quality forecasts, information on the long-range transport of dust or of fire plumes or on greenhouse gas fluxes have become reliable enough to be considered by decision makers and to be communicated broadly -making our societies more informed about the changing environment and about the direct link between human activities, atmospheric composition, weather and climate. Many aspects of the value-adding information chains that have been built over the years share commonalities with Numerical Weather Prediction: global and regional numerical models, reflecting both the level of understanding of physical and chemical processes in the atmosphere and the contemporary computing capabilities, are used to blend observations from different in situ and, increasingly, Earth Observation sources. Significantly, the World Meteorological Organisation has recently added a new component to the Global Atmospheric Watch programme in the form of a Science Advisory Group on "Applications". The main objectives of this group are to develop a portfolio of products and services related to atmospheric composition and to demonstrate particularly the usefulness of exchanging chemical observational data in Near-Real-Time. Exchanging best practices worldwide and facilitating the set-up of new applications are also among the activities. Having operational applications does not imply that research efforts to improve environmental monitoring and forecasting services have become obsolete. Quite the contrary: feedbacks and increasingly demanding requirements from users are stimulating steady progress. The last part of the talk will support the idea that atmospheric compositions services are not only an application or an extension of weather services but contribute now also to the core of them. Atmospheric composition information has become indeed of high interest for modelling physical processes and assimilation of meteorological information. There are also exciting developments regarding the medium- to extended range prediction skill, with potential sources of predictability yet to be fully understood and harnessed.
On the Nature of Aerosol Particles in the Atmosphere of Irkutsk
NASA Astrophysics Data System (ADS)
Yermakov, A. N.; Golobokova, L. P.; Netsvetaeva, O. G.; Aloyan, A. E.; Arutyunyan, V. O.; Khodzher, T. V.
2018-03-01
Monitoring data on the ion composition of precipitation and the water-soluble fraction of aerosol have been used to identify two types of aerosol particles in the surface atmosphere of Irkutsk ("metal" and "ammonia" groups). The aerosol acidity is basically governed by the acidity of ammonia particles, and the ion composition depends on air relative humidity (RH). Preliminary estimates are given for the distribution of major cations and anions by aerosol groups.
NASA Astrophysics Data System (ADS)
Levelt, P. F.; Veefkind, J. P.
2010-05-01
Dedicated atmospheric chemistry observations from space have been made for over 30 years now, starting with the SBUV and TOMS measurements of the ozone layer. Since then huge progress has been made, improving the accuracy of the measurements, extending the amount of constituents, and by sensing not only the stratosphere, but the last five to ten years also the troposphere. The potential to operational monitor the atmosphere, following the meteorological community, came within reach. At the same time, the importance for society of regular operational environmental measurements, related to the ozone layer, air quality and climate change, became apparent, amongst others resulting in the EU initiative Global Monitoring for Environment and Security (GMES) In order to prepare the operational missions in the context of the GMES, ESA took the initiative to further study the user requirements for the Sentinel 4 and 5 (precursor) missions. The Sentinel 4 and 5 (precursor) missions are dedicated operational missions to monitor the atmospheric composition in the 2013-2020 timeframe and onward. The user requirements for the sentinel missions focus on monitoring the atmosphere from an environmental point of view (ozone layer, air quality and climate). ESA's CAMELOT (Composition of the Atmospheric Mission concEpts and SentineL Observation Techniques) study is the follow-on study to ESA's CAPACITY study finished in 2005. The general objective of the CAMELOT study is to further contribute to the definition of the air quality and climate protocol monitoring parts of the GMES Sentinel 4 and 5 missions. CAMELOT consists of a large European consortium formed by 9 European institutes (KNMI (lead), RAL, U.Leicester, SRON, FMI, BIRA-IASB, CNR-IFAC,NOVELTIS and RIU-U.Koeln). In the presentation an overview will give a short overview of the CAMELOT study, including some specific results for combined retrievals, cloud statistics for different orbit geometries and retrievals for several orbit scenarios. The presentation will elaborate on the potential of the sentinel 4 and 5 missions for atmospheric monitoring and science.
Atmosphere and water quality monitoring on Space Station Freedom
NASA Technical Reports Server (NTRS)
Niu, William
1990-01-01
In Space Station Freedom air and water will be supplied in closed loop systems. The monitoring of air and water qualities will ensure the crew health for the long mission duration. The Atmosphere Composition Monitor consists of the following major instruments: (1) a single focusing mass spectrometer to monitor major air constituents and control the oxygen/nitrogen addition for the Space Station; (2) a gas chromatograph/mass spectrometer to detect trace contaminants; (3) a non-dispersive infrared spectrometer to determine carbon monoxide concentration; and (4) a laser particle counter for measuring particulates in the air. An overview of the design and development concepts for the air and water quality monitors is presented.
NASA Astrophysics Data System (ADS)
Schuetze, C.; Sauer, U.; Dietrich, P.
2015-12-01
Reliable detection and assessment of near-surface CO2 emissions from natural or anthropogenic sources require the application of various monitoring tools at different spatial scales. Especially, optical remote sensing tools for atmospheric monitoring have the potential to measure integrally CO2 emissions over larger scales (> 10.000m2). Within the framework of the MONACO project ("Monitoring approach for geological CO2 storage sites using a hierarchical observation concept"), an integrative hierarchical monitoring concept was developed and validated at different field sites with the aim to establish a modular observation strategy including investigations in the shallow subsurface, at ground surface level and the lower atmospheric boundary layer. The main aims of the atmospheric monitoring using optical remote sensing were the observation of the gas dispersion in to the near-surface atmosphere, the determination of maximum concentration values and identification of the main challenges associated with the monitoring of extended emission sources with the proposed methodological set up under typical environmental conditions. The presentation will give an overview about several case studies using the integrative approach of Open-Path Fourier Transform Infrared spectroscopy (OP FTIR) in combination with in situ measurements. As a main result, the method was validated as possible approach for continuous monitoring of the atmospheric composition, in terms of integral determination of GHG concentrations and to identify target areas which are needed to be investigated more in detail. Especially the data interpretation should closely consider the micrometeorological conditions. Technical aspects concerning robust equipment, experimental set up and fast data processing algorithms have to be taken into account for the enhanced automation of atmospheric monitoring.
Influence of atmospheric properties on detection of wood-warbler nocturnal flight calls
NASA Astrophysics Data System (ADS)
Horton, Kyle G.; Stepanian, Phillip M.; Wainwright, Charlotte E.; Tegeler, Amy K.
2015-10-01
Avian migration monitoring can take on many forms; however, monitoring active nocturnal migration of land birds is limited to a few techniques. Avian nocturnal flight calls are currently the only method for describing migrant composition at the species level. However, as this method develops, more information is needed to understand the sources of variation in call detection. Additionally, few studies examine how detection probabilities differ under varying atmospheric conditions. We use nocturnal flight call recordings from captive individuals to explore the dependence of flight call detection on atmospheric temperature and humidity. Height or distance from origin had the largest influence on call detection, while temperature and humidity also influenced detectability at higher altitudes. Because flight call detection varies with both atmospheric conditions and flight height, improved monitoring across time and space will require correction for these factors to generate standardized metrics of songbird migration.
Yoo, Keunje; Lee, Tae Kwon; Choi, Eun Joo; Yang, Jihoon; Shukla, Sudheer Kumar; Hwang, Sang-Il; Park, Joonhong
2017-01-01
Bioaerosols significantly affect atmospheric processes while they undergo long-range vertical and horizontal transport and influence atmospheric chemistry and physics and climate change. Accumulating evidence suggests that exposure to bioaerosols may cause adverse health effects, including severe disease. Studies of bioaerosols have primarily focused on their chemical composition and largely neglected their biological composition and the negative effects of biological composition on ecosystems and human health. Here, current molecular methods for the identification, quantification, and distribution of bioaerosol agents are reviewed. Modern developments in environmental microbiology technology would be favorable in elucidation of microbial temporal and spatial distribution in the atmosphere at high resolution. In addition, these provide additional supports for growing evidence that microbial diversity or composition in the bioaerosol is an indispensable environmental aspect linking with public health. Copyright © 2016. Published by Elsevier B.V.
Isotopic Recorders of Pollution in Heterogeneous Urban Areas
NASA Astrophysics Data System (ADS)
Pataki, D. E.; Cobley, L.; Smith, R. M.; Ehleringer, J. R.; Chritz, K.
2017-12-01
A significant difficulty in quantifying urban pollution lies in the extreme spatial and temporal heterogeneity of cities. Dense sources of both point and non-point source pollution as well as the dynamic role of human activities, which vary over very short time scales and small spatial scales, complicate efforts to establish long-term urban monitoring networks that are relevant at neighborhood, municipal, and regional scales. Fortunately, the natural abundance of isotopes of carbon, nitrogen, and other elements provides a wealth of information about the sources and fate of urban atmospheric pollution. In particular, soils and plant material integrate pollution sources and cycling over space and time, and have the potential to provide long-term records of pollution dynamics that extend back before atmospheric monitoring data are available. Similarly, sampling organic material at high spatial resolution can provide "isoscapes" that shed light on the spatial heterogeneity of pollutants in different urban parcels and neighborhoods, along roads of varying traffic density, and across neighborhoods of varying affluence and sociodemographic composition. We have compiled numerous datasets of the isotopic composition of urban organic matter that illustrate the potential for isotopic monitoring of urban areas as a means of understanding hot spots and hot moments in urban atmospheric biogeochemistry. Findings to date already reveal the critical role of affluence, economic activity, demographic change, and land management practices in influencing urban pollution sources and sinks, and suggest an important role of stable isotope and radioisotope measurements in urban atmospheric and biogeochemical monitoring.
The Exploration Atmospheres Working Group's Report on Space Radiation Shielding Materials
NASA Technical Reports Server (NTRS)
Barghouty, A. F.; Thibeault, S. A.
2006-01-01
This part of Exploration Atmospheres Working Group analyses focuses on the potential use of nonmetallic composites as the interior walls and structural elements exposed to the atmosphere of the spacecraft or habitat. The primary drive to consider nonmetallic, polymer-based composites as an alternative to aluminum structure is due to their superior radiation shielding properties. But as is shown in this analysis, these composites can also be made to combine superior mechanical properties with superior shielding properties. In addition, these composites can be made safe; i.e., with regard to flammability and toxicity, as well as "smart"; i.e., embedded with sensors for the continuous monitoring of material health and conditions. The analysis main conclusions are that (1) smart polymer-based composites are an enabling technology for safe and reliable exploration missions, and (2) an adaptive, synergetic systems approach is required to meet the missions requirements from structure, properties, and processes to crew health and protection for exploration missions.
Dynamic Sampling of Trace Contaminants During the Mission Operations Test of the Deep Space Habitat
NASA Technical Reports Server (NTRS)
Monje, Oscar; Valling, Simo; Cornish, Jim
2013-01-01
The atmospheric composition inside spacecraft during long duration space missions is dynamic due to changes in the living and working environment of crew members, crew metabolism and payload operations. A portable FTIR gas analyzer was used to monitor the atmospheric composition within the Deep Space Habitat (DSH) during the Mission Operations Test (MOT) conducted at the Johnson Space Center (JSC). The FTIR monitored up to 20 gases in near- real time. The procedures developed for operating the FTIR were successful and data was collected with the FTIR at 5 minute intervals. Not all the 20 gases sampled were detected in all the modules and it was possible to measure dynamic changes in trace contaminant concentrations that were related to crew activities involving exercise and meal preparation.
Towards an exploitation of IAGOS atmospheric composition measurements
NASA Astrophysics Data System (ADS)
Marshall, Julia; Gerbig, Christoph; Petzold, Andreas; Zahn, Andreas
2015-04-01
IAGOS, In-service Aircraft for a Global Observing System, has installed instrumentation on a growing fleet of commercial airliners in order to continuously monitor atmospheric composition around the globe. IAGOS is providing accurate in situ observations of greenhouse gases (GHGs), reactive gases, aerosols, and cloud particles at high spatial resolution in the free atmosphere, thereby covering the essential climate variables (ECVs) for atmospheric composition as designated by the GCOS programme (Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC, 2010). The greenhouse gas measurements made by IAGOS will be submitted to the WMO/GAW World Data Centre for Greenhouse Gases (WDCGG). Within the EU FP7 project IGAS (IAGOS for the GMES Atmospheric Service), the links between this new data stream and scientific users, including the Copernicus Atmosphere Monitoring Service, are being improved. This includes the provision of measurements in both near-real-time and delayed mode, and improved accessibility to the data through linkages to the databases of both the German Aerospace Centre (DLR) flight campaign archive and the Copernicus data archive. Work has been undertaken to investigate the use of the near-real-time profile measurements in order to correct bias in satellite measurements assimilated by the Copernicus Atmosphere Monitoring Service. Documentation of the QA/QC procedures and measurement techniques for each instrument have been formalized and reviewed by external experts, to provide users with a measurement traceable to WMO standards. The representativeness of the measurements has been assessed, to better interpret results in polluted regions and near the tropopause. The potential impact of the GHG measurements on regional scale flux inversions has been quantified, which is relevant for ICOS (Integrated Carbon Observing System). Finally, tools have been developed to use the measurements for validation of satellite column measurements, including collocation with satellite soundings, extension of the profiles to the full column, and convolution with the relevant averaging kernel. This presentation provides an overview of the activities undertaken in order to facilitate the use of the measurements provided by the IAGOS infrastructure. For more details, visit the websites www.iagos.org and www.igas-project.org.
Sentinel-4: the geostationary component of the GMES atmosphere monitoring missions
NASA Astrophysics Data System (ADS)
Bazalgette Courrèges-Lacoste, G.; Arcioni, M.; Meijer, Y.; Bézy, J.-L.; Bensi, P.; Langen, J.
2017-11-01
The implementation of operational atmospheric composition monitoring missions is foreseen in the context of the Global Monitoring for Environment and Security (GMES) initiative. Sentinel-4 will address the geostationary observations and Sentinel-5 the low Earth orbit ones. The two missions are planned to be launched on-board Eumetsat's Meteosat Third Generation (MTG) and Post-EPS satellites, respectively. This paper presents an overview of the GMES Sentinel- 4 mission, which has been assessed at Phase-0 level. It describes the key requirements and outlines the main aspects of the candidate implementation concepts available at completion of Phase-0. The paper will particularly focus on the observation mode, the estimated performance and the related technology developments.
Validation of reactive gases and aerosols in the MACC global analysis and forecast system
NASA Astrophysics Data System (ADS)
Eskes, H.; Huijnen, V.; Arola, A.; Benedictow, A.; Blechschmidt, A.-M.; Botek, E.; Boucher, O.; Bouarar, I.; Chabrillat, S.; Cuevas, E.; Engelen, R.; Flentje, H.; Gaudel, A.; Griesfeller, J.; Jones, L.; Kapsomenakis, J.; Katragkou, E.; Kinne, S.; Langerock, B.; Razinger, M.; Richter, A.; Schultz, M.; Schulz, M.; Sudarchikova, N.; Thouret, V.; Vrekoussis, M.; Wagner, A.; Zerefos, C.
2015-02-01
The European MACC (Monitoring Atmospheric Composition and Climate) project is preparing the operational Copernicus Atmosphere Monitoring Service (CAMS), one of the services of the European Copernicus Programme on Earth observation and environmental services. MACC uses data assimilation to combine in-situ and remote sensing observations with global and regional models of atmospheric reactive gases, aerosols and greenhouse gases, and is based on the Integrated Forecast System of the ECMWF. The global component of the MACC service has a dedicated validation activity to document the quality of the atmospheric composition products. In this paper we discuss the approach to validation that has been developed over the past three years. Topics discussed are the validation requirements, the operational aspects, the measurement data sets used, the structure of the validation reports, the models and assimilation systems validated, the procedure to introduce new upgrades, and the scoring methods. One specific target of the MACC system concerns forecasting special events with high pollution concentrations. Such events receive extra attention in the validation process. Finally, a summary is provided of the results from the validation of the latest set of daily global analysis and forecast products from the MACC system reported in November 2014.
NASA Astrophysics Data System (ADS)
Levelt, P.; Veefkind, P.
2009-04-01
Dedicated atmospheric chemistry observations from space have been made for over 30 years now, starting with the SBUV and TOMS measurements of the ozone layer. Since then huge progress has been made, improving the accuracy of the measurements, extending the amount of constituents, and by sensing not only the stratosphere, but the last five to ten years also the troposphere. The potential to operational monitor the atmosphere, following the meteorological community, came within reach. At the same time, the importance for society of regular operational environmental measurements, related to the ozone layer, air quality and climate change, became apparent, amongst others resulting in the EU initiative Global Monitoring for Environment and Security (GMES) In order to prepare the operational missions in the context of the GMES, ESA took the initiative to further study the user requirements for the Sentinel 4 and 5 (precursor) missions. The Sentinel 4 and 5 (precursor) missions are dedicated operational missions to monitor the atmospheric composition in the 2013-2020 timeframe and onward. The user requirements for the sentinel missions focus on monitoring the atmosphere from an environmental point of view (ozone layer, air quality and climate). ESA's CAMELOT (Composition of the Atmospheric Mission concEpts and SentineL Observation Techniques) study is the follow-on study to ESA's CAPACITY study finished in 2005. The general objective of the CAMELOT study is to further contribute to the definition of the air quality and climate protocol monitoring parts of the GMES Sentinel 4 and 5 missions. Key issues in the CAMELOT study are: • trade-offs between different observation strategies (spectral ranges, polarisation, direction etc) for aerosols and several trace gases • a quantitative assessment of the requirements for spatio-temporal sampling taking into account the contamination of nadir-viewing observations by cloud • optimising several orbit scenario's (leo, inclined leo, geo or any combination) and a contribution from the user's perspective to the trade-off between different orbits. In order to address these issues a large European consortium, lead by KNMI, has been formed by 9 European institutes (KNMI, RAL, U.Leicester, SRON, FMI, BIRA-IASB, CNR-IFAC,NOVELTIS and RIU-U.Koeln). In the presentation an overview will be given of the CAMELOT study, including specific results for combined retrievals, cloud statistics for different orbit geometries and retrievals for several orbit scenarios.
Corrosive effect of environmental change on selected properties of polymer composites
NASA Astrophysics Data System (ADS)
Markovičová, L.; Zatkalíková, V.
2017-11-01
The development of composite materials and the related design and manufacturing technologies is one of the most important advances in the history of materials. Composites are multifunctional materials having unprecedented mechanical and physical properties that can be tailored to meet the requirements of a particular application. Ageing is also important and it is defined as the process of deterioration of engineering materials resulting from the combined effects of atmospheric radiation, heat, oxygen, water, micro-organisms and other atmospheric factors. The present article deals with monitoring the changes in the mechanical properties of composites with polymer matrix. The composite was formed from the PA matrix and glass fibers (GF). The composite contains 10, 20 and 30 % of glass fibers. The mechanical properties were evaluated on samples of the composite before and after UV radiation on the sample. Light microscopy was evaluated distribution of glass fibers in the polymer matrix and the presence of cracks caused by UV radiation.
Brent, Lacey C; Reiner, Jessica L; Dickerson, Russell R; Sander, Lane C
2014-08-05
The structural composition of PM2.5 monitored in the atmosphere is usually divided by the analysis of organic carbon, black (also called elemental) carbon, and inorganic salts. The characterization of the chemical composition of aerosols represents a significant challenge to analysts, and studies are frequently limited to determination of aerosol bulk properties. To better understand the potential health effects and combined interactions of components in aerosols, a variety of measurement techniques for individual analytes in PM2.5 need to be implemented. The method developed here for the measurement of organic acids achieves class separation of aliphatic monoacids, aliphatic diacids, aromatic acids, and polyacids. The selective ion monitoring capability of a triple quadropole mass analyzer was frequently capable of overcoming instances of incomplete separations. Standard Reference Material (SRM) 1649b Urban Dust was characterized; 34 organic acids were qualitatively identified, and 6 organic acids were quantified.
Dynamic Sampling of Cabin VOCs during the Mission Operations Test of the Deep Space Habitat
NASA Technical Reports Server (NTRS)
Monje, Oscar; Rojdev, Kristina
2013-01-01
The atmospheric composition inside spacecraft is dynamic due to changes in crew metabolism and payload operations. A portable FTIR gas analyzer was used to monitor the atmospheric composition of four modules (Core lab, Veggie Plant Atrium, Hygiene module, and Xhab loft) within the Deep Space Habitat '(DSH) during the Mission Operations Test (MOT) conducted at the Johnson Space Center. The FTIR was either physically relocated to a new location or the plumbing was changed so that a different location was monitored. An application composed of 20 gases was used and the FTIR was zeroed using N2 gas every time it was relocated. The procedures developed for operating the FTIR were successful as all data was collected and the FTIR worked during the entire MOT mission. Not all the 20 gases in the application sampled were detected and it was possible to measure dynamic VOC concentrations in each DSH location.
The Issue of transporting pollutants with atmospheric precipitation
NASA Astrophysics Data System (ADS)
Madibekov, A.; Kogutenko, L.
2018-01-01
A research of the pollution of atmospheric precipitation was conducted. The database of the chemical composition of atmospheric precipitation made by National Monitoring Network of the Republic of Kazakhstan for the period from 2000s to 2011 was generalized and analyzed. The research area covers the big territory of Ile-Balkhash river basin in the South-East Kazakhstan. The research shows that pollutants can be transported over long distances with atmospheric precipitation. Based on the results of the air masses tracking we identified that the main sources of emissions is located in the city of Balkhash.
UTLS Drift Analysis for the ACE-FTS and MIPAS CFC-11 and CFC-12 Data Products
NASA Astrophysics Data System (ADS)
Walker, K. A.; Zou, J.; Sheese, P.; Boone, C. D.; Stiller, G. P.; von Clarmann, T.
2017-12-01
To progress from monitoring atmospheric composition to investigating and quantifying atmospheric changes, well-characterized measurements over many years are required. The long lifetime of the Atmospheric Chemistry Experiment (ACE) has provided more than a decade of composition measurements that contribute to our understanding of ozone recovery, climate change and pollutant emissions. To enable the generation of climate data records using multiple data sets, characterization of the "drift" between data sets is required. This study will analyze and compare the time series of chlorofluorocarbon (CFC) measurements from two infrared satellite sensors, the ACE-Fourier Transform Spectrometer (ACE-FTS) and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). With a focus on the upper troposphere-lower stratosphere, the long-term trend as well as annual, semi-annual and quasi-biennial oscillation terms derived from each data set will be compared for different altitude and latitude regions.
Quantifying Energetic Electron Precipitation And Its Effect on Atmospheric Chemistry
NASA Astrophysics Data System (ADS)
Huang, C. L.; Spence, H. E.; Smith, S. S.; Duderstadt, K. A.; Boyd, A. J.; Geoffrey, R.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.; Turner, D. L.; Crew, A. B.; Klumpar, D. M.; Shumko, M.; Johnson, A.; Sample, J. G.
2017-12-01
In this study we quantify the total radiation belt electron loss through precipitation into the atmosphere, and simulate the electrons' contribution to changing the atmospheric composition. We use total radiation belt electron content (TRBEC) calculated from Van Allen Probes ECT/MagEIS data to estimate the precipitation during electron loss events. The new TRBEC index is a high-level quantity for monitoring the entire radiation belt and has the benefit of removing both internal transport and the adiabatic effect. To assess the electron precipitation rate, we select TRBEC loss events that show no outward transport in the phase space density data in order to exclude drift magnetopause loss. Then we use FIREBIRD data to estimate and constrain the precipitation loss when it samples near the loss cone. Finally, we estimate the impact of electron precipitation on the composition of the upper and middle atmosphere using global climate simulations.
NASA Astrophysics Data System (ADS)
Engelen, R. J.; Peuch, V. H.
2017-12-01
The European Copernicus Atmosphere Monitoring Service (CAMS) operationally provides daily forecasts of global atmospheric composition and regional air quality. The global forecasting system is using ECMWF's Integrated Forecasting System (IFS), which is used for numerical weather prediction and which has been extended with modules for atmospheric chemistry, aerosols and greenhouse gases. The regional forecasts are produced by an ensemble of seven operational European air quality models that take their boundary conditions from the global system and provide an ensemble median with ensemble spread as their main output. Both the global and regional forecasting systems are feeding their output into air quality models on a variety of scales in various parts of the world. We will introduce the CAMS service chain and provide illustrations of its use in downstream applications. Both the usage of the daily forecasts and the usage of global and regional reanalyses will be addressed.
Controlled atmosphere storage of wild strawberry fruit (Fragaria vesca L.).
Almenar, Eva; Hernández-Muñoz, Pilar; Lagarón, José M; Catalá, Ramón; Gavara, Rafael
2006-01-11
Controlled atmosphere storage technology to extend the shelf life of "Reina de los Valles" wild strawberry fruit (Fragaria vesca L.) was studied. Fruits were stored at 3 degrees C for three weeks in different atmosphere compositions: 0.05% CO2/21% O2 (air), 3% CO2/18% O2, 6% CO2/15% O2, 10% CO2/11% O2, and 15% CO2/6% O2. The effect of gas composition on soluble solids content, titrable acidity, pH, off-flavor, aroma volatiles, and consumer preference was monitored. The result showed that the 10% CO2/11% O2 combination can efficiently prolong the shelf life of wild strawberries by maintaining the quality parameters within acceptable values, through inhibiting the development of Botrytis cinerea, without significantly modifying consumer acceptance.
Validation of reactive gases and aerosols in the MACC global analysis and forecast system
NASA Astrophysics Data System (ADS)
Eskes, H.; Huijnen, V.; Arola, A.; Benedictow, A.; Blechschmidt, A.-M.; Botek, E.; Boucher, O.; Bouarar, I.; Chabrillat, S.; Cuevas, E.; Engelen, R.; Flentje, H.; Gaudel, A.; Griesfeller, J.; Jones, L.; Kapsomenakis, J.; Katragkou, E.; Kinne, S.; Langerock, B.; Razinger, M.; Richter, A.; Schultz, M.; Schulz, M.; Sudarchikova, N.; Thouret, V.; Vrekoussis, M.; Wagner, A.; Zerefos, C.
2015-11-01
The European MACC (Monitoring Atmospheric Composition and Climate) project is preparing the operational Copernicus Atmosphere Monitoring Service (CAMS), one of the services of the European Copernicus Programme on Earth observation and environmental services. MACC uses data assimilation to combine in situ and remote sensing observations with global and regional models of atmospheric reactive gases, aerosols, and greenhouse gases, and is based on the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF). The global component of the MACC service has a dedicated validation activity to document the quality of the atmospheric composition products. In this paper we discuss the approach to validation that has been developed over the past 3 years. Topics discussed are the validation requirements, the operational aspects, the measurement data sets used, the structure of the validation reports, the models and assimilation systems validated, the procedure to introduce new upgrades, and the scoring methods. One specific target of the MACC system concerns forecasting special events with high-pollution concentrations. Such events receive extra attention in the validation process. Finally, a summary is provided of the results from the validation of the latest set of daily global analysis and forecast products from the MACC system reported in November 2014.
Advances in air quality prediction with the use of integrated systems
NASA Astrophysics Data System (ADS)
Dragani, R.; Benedetti, A.; Engelen, R. J.; Peuch, V. H.
2017-12-01
Recent years have seen the rise of global operational atmospheric composition forecasting systems for several applications including climate monitoring, provision of boundary conditions for regional air quality forecasting, energy sector applications, to mention a few. Typically, global forecasts are provided in the medium-range up to five days ahead and are initialized with an analysis based on satellite data. In this work we present the latest advances in data assimilation using the ECMWF's 4D-Var system extended to atmospheric composition which is currently operational under the Copernicus Atmosphere Monitoring Service of the European Commission. The service is based on acquisition of all relevant data available in near-real-time, the processing of these datasets in the assimilation and the subsequent dissemination of global forecasts at ECMWF. The global forecasts are used by the CAMS regional models as boundary conditions for the European forecasts based on a multi-model ensemble. The global forecasts are also used to provide boundary conditions for other parts of the world (e.g., China) and are freely available to all interested entities. Some of the regional models also perform assimilation of satellite and ground-based observations. All products are assessed, validated and made publicly available on https://atmosphere.copernicus.eu/.
A Little Sensor That Packs a Wallop
NASA Technical Reports Server (NTRS)
2000-01-01
A gas sensor originally built for NASA to measure the composition of the atmosphere of Earth and Mars has been commercialized by SpectraSensors. The commercial tunable diode laser (TDL) gas sensor can be used for oil and gas pipeline monitoring, aircraft safety, environmental monitoring and medicine. The TDL technology is good at detecting low levels of gases from parts-per-million to parts-per-billion.
Photoproducts of carminic acid formed by a composite from Manihot dulcis waste.
Antonio-Cisneros, Cynthia M; Dávila-Jiménez, Martín M; Elizalde-González, María P; García-Díaz, Esmeralda
2015-04-15
Carbon-TiO2 composites were obtained from carbonised Manihot dulcis waste and TiO2 using glycerol as an additive and thermally treating the composites at 800 °C. Furthermore, carbon was obtained from manihot to study the adsorption, desorption and photocatalysis of carminic acid on these materials. Carminic acid, a natural dye extracted from cochineal insects, is a pollutant produced by the food industry and handicrafts. Its photocatalysis was observed under different atmospheres, and kinetic curves were measured by both UV-Vis and HPLC for comparison, yielding interesting differences. The composite was capable of decomposing approximately 50% of the carminic acid under various conditions. The reaction was monitored by UV-Vis spectroscopy and LC-ESI-(Qq)-TOF-MS-DAD, enabling the identification of some intermediate species. The deleterious compound anthracene-9,10-dione was detected both in N2 and air atmospheres. Copyright © 2014 Elsevier Ltd. All rights reserved.
Imaging spectrometers for atmosphere monitoring
NASA Astrophysics Data System (ADS)
Reinert, Thido; Bovensmann, Heinrich; Münzenmayer, Ralf; Weiss, Stefan; Posselt, Winfried
2017-11-01
Atmospheric monitoring missions aim at products like O3, H2O, NO2, SO2, BrO, CH4, CO, CO2 as well as aerosols and cloud information. Depending on the application area (Ozone Monitoring, Green House Gas Monitoring, Tropospheric Composition and Air Quality, Chemistry Climate Interaction etc.) total or tropospheric columns as well as profile information is required. The user community of these data as well as their central requirements w.r.t. the payload aspects will be described. A large range of relevant passive instrument types is available, in particular imaging spectrometer, sounder and polarisation measuring systems in the UV-VIS, SWIR and TIR spectral range. Differences between instruments for dedicated missions are highlighted and evolution of requirements is explained, also in comparison with relevant existing instrumentation partly in orbit today. Aspects of technology roadmaps for instrument implementation as well as synergetic effects of instrument combinations and according mission scopes are discussed.
New Collections of Aura Atmospheric data Products at the GES DISC
NASA Technical Reports Server (NTRS)
Johnson, James; Ahmad, Suraiya; Gerasimov, Irina; Lepthoukh, Gregory
2008-01-01
The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is the primary archive of atmospheric composition data from the Aura Ozone Monitoring Instrument (OMI), Microwave Limb sounder (MLS), and High-Resolution Dynamics Limb Sounder (HIRDLS) instruments. The most recent versions of Aura OMI, MLS and HIRDLS data are available free to the public (http://disc.gsfc.nasa.gov/Aura). TES data are at ASDC (http://eosweb.larc.nasa.gov).
NASA Astrophysics Data System (ADS)
Awasthi, Amit; Hothi, Navjot; Kaur, Prabhjot; Singh, Nirankar; Chakraborty, Monojit; Bansal, Sangeeta
2017-12-01
Atmospheric composition of ambient air consists of different gases in definite proportion that affect the earth's climate and its ecological system. Due to varied anthropogenic reasons, this composition is changed, which ultimately have an impact on the health of living beings. For survival, the human respiratory system is one of the sensitive systems, which is easily and closely affected by the change in atmospheric composition of an external environment. Many studies have been conducted to quantify the effects of atmospheric pollution on human health by using different approaches. This article presents different scenario of studies conducted to evaluate the effects on different human groups. Differences between the studies conducted using spirometry and survey methods are presented in this article to extract a better sequence between these two methodologies. Many studies have been conducted to measure the respiratory status by evaluating the respiratory symptoms and hospital admissions. Limited numbers of studies are found with repeated spirometry on the same subjects for long duration to nullify the error arising due to decrease in efforts by the same subjects during manoeuvre of pulmonary function tests. Present study reveals the importance of methodological sequencing in order to obtain more authentic and reliable results. This study suggests that impacts of deteriorating atmospheric composition on human health can be more significantly studied if spirometry is done after survey analysis. The article also proposes that efficiency and authenticity of surveys involving health impacts will increase, if medical data information of patients is saved in hospitals in a proper format.
Hydrocarbonates in atmospheric precipitation of Moscow: Monitoring data and analysis
NASA Astrophysics Data System (ADS)
Eremina, I. D.; Aloyan, A. E.; Arutyunyan, V. O.; Larin, I. K.; Chubarova, N. E.; Yermakov, A. N.
2017-05-01
Based on atmospheric precipitation monitoring data for Moscow, we have revealed a number of episodes when the content of hydrocarbonates repeatedly surpasses the equilibrium level. These facts are associated with the complex structure of precipitation, which is caused by differences in the chemical composition of condensation nuclei. As a result, the underlying surface involves two groups of drops with acidities of different nature. The acidity of the first ("metal") group is determined by the carbonate equilibrium with atmospheric CO2 and dissolved carbonates of alkaline and alkaline earth metals. The acidity of the second ("ammonium") group is characterized by the balance between ammonia absorbed from the air and atmospheric acids. Because of this, the precipitation acidity measured during the monitoring is regulated not only in the air but also in the condensate collector. The mixing of the metal and ammonium groups of precipitation is accompanied by only a partial conversion of hydrocarbonates into dissolved CO2. Its termination is hindered when CO2 actually ceases to enter the atmosphere due to mass-exchange deceleration. As a result, the content of hydrocarbonates in the collector exceeds the equilibrium level. Some estimates indicate that the acidity of the ammonia component of precipitation can be much higher than the acidity according to monitoring data. This should be taken into account in estimating the health and environmental impacts. The true level of acid rain hazard can be estimated only by measuring the acidity of individual drops, whereas the results obtained with modern tools of monitoring can underestimate this hazard.
An Integrated Global Atmospheric Composition Observing System: Progress and Impediments
NASA Astrophysics Data System (ADS)
Keating, T. J.
2016-12-01
In 2003-2005, a vision of an integrated global observing system for atmospheric composition and air quality emerged through several international forums (IGACO, 2004; GEO, 2005). In the decade since, the potential benefits of such a system for improving our understanding and mitigation of health and climate impacts of air pollution have become clearer and the needs more urgent. Some progress has been made towards the goal: technology has developed, capabilities have been demonstrated, and lessons have been learned. In Europe, the Copernicus Atmospheric Monitoring Service has blazed a trail for other regions to follow. Powerful new components of the emerging global system (e.g. a constellation of geostationary instruments) are expected to come on-line in the near term. But there are important gaps in the emerging system that are likely to keep us from achieving for some time the full benefits that were envisioned more than a decade ago. This presentation will explore the components and benefits of an integrated global observing system for atmospheric composition and air quality, some of the gaps and obstacles that exist in our current capabilities and institutions, and efforts that may be needed to achieve the envisioned system.
NASA Technical Reports Server (NTRS)
Raschke, E. (Editor); Ghazi, A. (Editor); Gower, J. F. R. (Editor); Mccormick, P. (Editor); Gruber, A. (Editor); Hasler, A. F. (Editor)
1989-01-01
Papers are presented on the contribution of space remote sensing observations to the World Climate Research Program and the Global Change Program, covering topics such as space observations for global environmental monitoring, experiments related to land surface fluxes, studies of atmospheric composition, structure, motions, and precipitation, and remote sensing for oceanography, observational studies of the atmosphere, clouds, and the earth radiation budget. Also, papers are given on results from space observations for meteorology, oceanography, and mesoscale atmospheric and ocean processes. The topics include vertical atmospheric soundings, surface water temperature determination, sea level variability, data on the prehurricane atmosphere, linear and circular mesoscale convective systems, Karman vortex clouds, and temporal patterns of phytoplankton abundance.
NASA Astrophysics Data System (ADS)
Boulanger, Damien; Gautron, Benoit; Schultz, Martin; Brötz, Björn; Rauthe-Schöch, Armin; Thouret, Valérie
2015-04-01
IAGOS (In-service Aircraft for a Global Observing System) aims at the provision of long-term, frequent, regular, accurate, and spatially resolved in situ observations of the atmospheric composition. IAGOS observation systems are deployed on a fleet of commercial aircraft. The IAGOS database is an essential part of the global atmospheric monitoring network. Data access is handled by open access policy based on the submission of research requests which are reviewed by the PIs. The IAGOS database (http://www.iagos.fr, damien.boulanger@obs-mip.fr) is part of the French atmospheric chemistry data centre Ether (CNES and CNRS). In the framework of the IGAS project (IAGOS for Copernicus Atmospheric Service) interoperability with international portals or other databases is implemented in order to improve IAGOS data discovery. The IGAS data network is composed of three data centres: the IAGOS database in Toulouse including IAGOS-core data and IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) data since January 2015; the HALO research aircraft database at DLR (https://halo-db.pa.op.dlr.de); and the MACC data centre in Jülich (http://join.iek.fz-juelich.de). The MACC (Monitoring Atmospheric Composition and Climate) project is a prominent user of the IGAS data network. In June 2015 a new version of the IAGOS database will be released providing improved services such as download in NetCDF or NASA Ames formats; graphical tools (maps, scatter plots, etc.); standardized metadata (ISO 19115) and a better users management. The link with the MACC data centre, through JOIN (Jülich OWS Interface), will allow to combine model outputs with IAGOS data for intercomparison. The interoperability within the IGAS data network, implemented thanks to many web services, will improve the functionalities of the web interfaces of each data centre.
NASA Astrophysics Data System (ADS)
Achim, Pascal; Generoso, Sylvia; Morin, Mireille; Gross, Philippe; Le Petit, Gilbert; Moulin, Christophe
2016-05-01
Monitoring atmospheric concentrations of radioxenons is relevant to provide evidence of atmospheric or underground nuclear weapon tests. However, when the design of the International Monitoring Network (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) was set up, the impact of industrial releases was not perceived. It is now well known that industrial radioxenon signature can interfere with that of nuclear tests. Therefore, there is a crucial need to characterize atmospheric distributions of radioxenons from industrial sources—the so-called atmospheric background—in the frame of the CTBT. Two years of Xe-133 atmospheric background have been simulated using 2013 and 2014 meteorological data together with the most comprehensive emission inventory of radiopharmaceutical facilities and nuclear power plants to date. Annual average simulated activity concentrations vary from 0.01 mBq/m3 up to above 5 mBq/m3 nearby major sources. Average measured and simulated concentrations agree on most of the IMS stations, which indicates that the main sources during the time frame are properly captured. Xe-133 atmospheric background simulated at IMS stations turn out to be a complex combination of sources. Stations most impacted are in Europe and North America and can potentially detect Xe-133 every day. Predicted occurrences of detections of atmospheric Xe-133 show seasonal variations, more accentuated in the Northern Hemisphere, where the maximum occurs in winter. To our knowledge, this study presents the first global maps of Xe-133 atmospheric background from industrial sources based on two years of simulation and is a first attempt to analyze its composition in terms of origin at IMS stations.
Symstad, Amy J.; Wienk, Cody L.; Thorstenson, Andy
2006-01-01
The Northern Great Plains Inventory & Monitoring (I&M) Network (Network) of the National Park Service (NPS) consists of 13 NPS units in North Dakota, South Dakota, Nebraska, and eastern Wyoming. The Network is in the planning phase of a long-term program to monitor the health of park ecosystems. Plant community composition is one of the 'Vital Signs,' or indicators, that will be monitored as part of this program for three main reasons. First, plant community composition is information-rich; a single sampling protocol can provide information on the diversity of native and non-native species, the abundance of individual dominant species, and the abundance of groups of plants. Second, plant community composition is of specific management concern. The abundance and diversity of exotic plants, both absolute and relative to native species, is one of the greatest management concerns in almost all Network parks (Symstad 2004). Finally, plant community composition reflects the effects of a variety of current or anticipated stressors on ecosystem health in the Network parks including invasive exotic plants, large ungulate grazing, lack of fire in a fire-adapted system, chemical exotic plant control, nitrogen deposition, increased atmospheric carbon dioxide concentrations, and climate change. Before the Network begins its Vital Signs monitoring, a detailed plan describing specific protocols used for each of the Vital Signs must go through rigorous development and review. The pilot study on which we report here is one of the components of this protocol development. The goal of the work we report on here was to determine a specific method to use for monitoring plant community composition of the herb layer (< 2 m tall).
NASA Astrophysics Data System (ADS)
Rothfuss, Youri; Vereecken, Harry; Brüggemann, Nicolas
2013-04-01
The water stable isotopologues 1H2H16O and 1H218O are powerful tracers of processes occurring in nature. Their slightly different masses as compared to the most abundant water isotopologue (1H216O) affect their thermodynamic (e.g. during chemical equilibrium reactions or physical phase transitions with equilibration) and kinetic (liquid and vapor phases transport processes and chemical reactions without equilibration) properties. This results in measurable differences of the isotopic composition of water within or between the different terrestrial ecosystem compartments (i.e. sub-soil, soil, surface waters, plant, and atmosphere). These differences can help addressing a number of issues, among them water balance closure and flux partitioning from the soil-plant-atmosphere continuum at the field to regional scales. In soils particularly, the isotopic composition of water (δ2H and δ18O) provides qualitative information about whether water has only infiltrated or already been re-evaporated since the last rainfall event or about the location of the evaporation front. From water stable isotope composition profiles measured in soils, it is also possible, under certain hypotheses, to derive quantitative information such as soil evaporation flux and the identification of root water uptake depths. In addition, water stable isotopologues have been well implemented into physically based Soil-Vegetation-Atmosphere Transfer models (e.g. SiSPAT-Isotope; Soil-Litter iso; TOUGHREACT) and have demonstrated their potential. However, the main disadvantage of the isotope methodology is that, contrary to other soil state variables that can be monitored over long time periods, δ2H and δ18O are typically analyzed following destructive sampling. Here, we present a non-destructive method for monitoring soil liquid water δ2H and δ18O over a wide range of water availability conditions and temperatures by sampling and measuring water vapor equilibrated with soil water using gas-permeable polypropylene tubing and a cavity ring-down laser absorption spectrometer. By analyzing water vapor δ2H and δ18O sampled with the tubing from a fine sand for temperatures ranging between 8-24° C, we demonstrate that (i) our new method is capable of monitoring δ2H and δ18O in soils online with high precision and, after calibration, also with high accuracy, (ii) our sampling protocol enabled detecting changes of δ2H and δ18O following non-fractionating addition and removal of liquid water and water vapor of different isotopic compositions, and (iii) the time needed for the tubing to monitor these changes is compatible with the observed variations of δ2H and δ18O in soils under natural conditions.
Evaluation of a new microphysical aerosol module in the ECMWF Integrated Forecasting System
NASA Astrophysics Data System (ADS)
Woodhouse, Matthew; Mann, Graham; Carslaw, Ken; Morcrette, Jean-Jacques; Schulz, Michael; Kinne, Stefan; Boucher, Olivier
2013-04-01
The Monitoring Atmospheric Composition and Climate II (MACC-II) project will provide a system for monitoring and predicting atmospheric composition. As part of the first phase of MACC, the GLOMAP-mode microphysical aerosol scheme (Mann et al., 2010, GMD) was incorporated within the ECMWF Integrated Forecasting System (IFS). The two-moment modal GLOMAP-mode scheme includes new particle formation, condensation, coagulation, cloud-processing, and wet and dry deposition. GLOMAP-mode is already incorporated as a module within the TOMCAT chemistry transport model and within the UK Met Office HadGEM3 general circulation model. The microphysical, process-based GLOMAP-mode scheme allows an improved representation of aerosol size and composition and can simulate aerosol evolution in the troposphere and stratosphere. The new aerosol forecasting and re-analysis system (known as IFS-GLOMAP) will also provide improved boundary conditions for regional air quality forecasts, and will benefit from assimilation of observed aerosol optical depths in near real time. Presented here is an evaluation of the performance of the IFS-GLOMAP system in comparison to in situ aerosol mass and number measurements, and remotely-sensed aerosol optical depth measurements. Future development will provide a fully-coupled chemistry-aerosol scheme, and the capability to resolve nitrate aerosol.
Size-resolved aerosol growth measurements (growth = moist particle diameter/dry particle diameter) and chemical composition monitoring were conducted during a 3 month period in the winter of 1990 at the South Rim of Grand Canyon National Park, AZ as part of the Navajo Generating ...
NASA Astrophysics Data System (ADS)
Louedec, Karim
2015-01-01
Astroparticle physics and cosmology allow us to scan the universe through multiple messengers. It is the combination of these probes that improves our understanding of the universe, both in its composition and its dynamics. Unlike other areas in science, research in astroparticle physics has a real originality in detection techniques, in infrastructure locations, and in the observed physical phenomenon that is not created directly by humans. It is these features that make the minimisation of statistical and systematic errors a perpetual challenge. In all these projects, the environment is turned into a detector medium or a target. The atmosphere is probably the environment component the most common in astroparticle physics and requires a continuous monitoring of its properties to minimise as much as possible the systematic uncertainties associated. This paper introduces the different atmospheric effects to take into account in astroparticle physics measurements and provides a non-exhaustive list of techniques and instruments to monitor the different elements composing the atmosphere. A discussion on the close link between astroparticle physics and Earth sciences ends this paper.
Kristensen, Louise Jane; Taylor, Mark Patrick; Evans, Andrew James
2016-07-01
Air quality data detailing changes to atmospheric composition from Australia's leaded petrol consumption is spatially and temporally limited. In order to address this data gap, wine was investigated as a potential proxy for atmospheric lead conditions. Wine spanning sixty years was collected from two wine regions proximal to the South Australian capital city, Adelaide, and analysed for lead concentration and lead and strontium isotopic composition for source apportionment. Maximum wine lead concentrations (328 μg/L) occur prior to the lead-in-air monitoring in South Australia in the later 1970s. Wine lead concentrations mirror available lead-in-air measurements and show a declining trend reflecting parallel reductions in leaded petrol emissions. Lead from petrol dominated the lead in wine ((206)Pb/(207)Pb: 1.086; (208)Pb/(207)Pb: 2.360) until the introduction of unleaded petrol, which resulted in a shift in the wine lead isotopic composition closer to vineyard soil ((206)Pb/(207)Pb: 1.137; (208)Pb/(207)Pb: 2.421). Current mining activities or vinification processes appear to have no impact with recent wine samples containing less than 4 μg/L of lead. This study demonstrates wine can be used to chronicle changes in environmental lead emissions and is an effective proxy for atmospherically sourced depositions of lead in the absence of air quality data. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Furutani, H.; Inai, Y.; Aoki, S.; Honda, H.; Omori, Y.; Tanimoto, H.; Iwata, T.; Ueda, S.; Miura, K.; Uematsu, M.
2012-12-01
Eastern equatorial Pacific Ocean is a unique oceanic region from several biogeochemical points of view. It is a remote open ocean with relatively high marine biological activity, which would result in limited influence of human activity but enhanced effect of marine natural processes on atmospheric composition. It is also characterized as high nutrient low chlorophyll (HNLC) ocean, in which availability of trace metals such as iron and zinc limits marine primary production and thus atmospheric deposition of these trace elements to the ocean surface is expected to play an important role in regulating marine primary production and defining unique microbial community. High sea surface temperature in the region generates strong vertical air convection which efficiently brings tropospheric atmospheric composition into stratosphere. In this unique eastern equatorial Pacific Ocean, EqPOS (Equatorial Pacific Ocean and Stratospheric/Tropospheric Atmospheric Study) research cruise was organized as a part of SOLAS Japan activity to understand biogeochemical ocean-atmospheric interaction in the region. Coordinated atmospheric, oceanic, and marine biological observations including sampling/characterization of thin air-sea interfacial layer (sea surface microlayer: SML) and launching large stratospheric air sampling balloons were carried out on-board R/V Hakuho Maru starting from 29 January for 39 days. Biogeochemically important trace/long-lived gases such as CO2, dimethyl sulfide (DMS), and some volatile organic carbons (VOCs) both in the atmosphere and seawater were continuously monitored and their air-sea fluxes were also observed using gradient and eddy-covariance techniques. Atmospheric gas measurement of CO2, CH4, N2O, SF6, CO, H2, Ar and isotopic composition of selected gases were further extended to stratospheric air by balloon-born sampling in addition to a vertical profiling of O3, CO2, and H2O with sounding sondes. Physical and chemical properties of marine atmospheric aerosols such as size distribution, total and cloud condensation nuclei concentrations, particle morphology, bulk and single particle chemical composition were also continuously determined to find out potential link between biogenic VOCs emitted from the ocean and aerosol composition. Biological and biogeochemical characterizations of marine microorganisms, suspended particulate matter, dissolved nutrients in seawater and SML were also conducted. In the presentation, brief overview of the research activities during the EqPOS cruise and biogeochemical linkage atmosphere and ocean via atmospheric and oceanic gaseous and particulate matter from ocean surface to stratosphere observed during the cruise and unique importance of SML would be presented.
WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel
2015-07-10
The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Watermore » was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.« less
NASA Astrophysics Data System (ADS)
Kietäväinen, Riikka; Ahonen, Lasse; Wiersberg, Thomas; Korhonen, Kimmo; Pullinen, Arto
2017-04-01
Deep groundwaters within Precambrian shields are characteristically enriched in non-atmospheric gases. High concentrations of methane are frequently observed especially in graphite bearing metasedimentary rocks and accumulation of hydrogen and noble gases due to water-rock interaction and radioactive decay within the U, Th and K containing bedrock takes place. These gases can migrate not only through fractures and faults, but also through tunnels and boreholes, thereby potentially mobilizing hazardous compounds for example from underground nuclear waste repositories. Better understanding on fluid migration may also provide tools to monitor changes in bedrock properties such as fracture density or deterioration and failure of engineered barriers. In order to study gas migration mechanisms and variations with time, we conducted a gas monitoring campaign in eastern Finland within the Precambrian Fennoscandian Shield. At the study site, the Outokumpu Deep Drill Hole (2516 m), spontaneous bubbling of gases at the well head has been on-going since the drilling was completed in 2005, i.e. over a decade. The drill hole is open below 39 m. In the experiment an inflatable packer was placed 15 cm above the water table inside the collar (Ø 32.4 cm), gas from below the packer was collected and the gas flow in the pipe line carefully assisted by pumping (130 ml/min). Composition of gas was monitored on-line for one month using a quadrupole mass spectrometer (QMS) with measurement interval of one minute. Changes in the hydraulic head and in situ temperature were simultaneously recorded with two pressure sensors which were placed 1 m apart from each other below the packer such that they remained above and below the water table. In addition, data was compared with atmospheric pressure data and theoretical effect of Earth tides at the study site. Methane was the dominant gas emanating from the bedrock, however, relative gas composition fluctuated with time. Subsurface derived gases i.e. methane, hydrogen and helium peaked at the same time and temperature within the drill hole remained constant indicating that solubility fractionation could be ruled out. The longest frequency phenomenon of ca. 14 days and daily variation in gas composition which occurred in periods of approximately 12 and 24 hours were clearly correlated with the Earth tides, i.e. dilatation and contraction of the Earth due to gravitational fields of the Moon and Sun such that the non-atmospheric gases peaked during tidal gravitation minima. Earth tides were also reflected in the hydraulic head which, unlike gas composition, closely followed changes in the atmospheric pressure. Thus, dilatation of bedrock porosity and fractures can be more clearly seen in the gas data than changes in the hydraulic head or water table.
NASA Astrophysics Data System (ADS)
Rowland, J.; Budde, M. E.
2010-12-01
The Famine Early Warning Systems Network (FEWS NET) has requirements for near real-time monitoring of vegetation conditions for food security applications. Accurate and timely assessments of crop conditions are an important element of food security decision making. FEWS NET scientists at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center are utilizing a new Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) dataset for operational monitoring of crop and pasture conditions in parts of the world where food availability is highly dependent on subsistence agriculture and animal husbandry. The expedited MODIS, or eMODIS, production system processes NDVI data using MODIS surface reflectance provided by the Land Atmosphere Near-real-time Capability for EOS (LANCE). Benefits of this production system include customized compositing schedules, near real-time data availability, and minimized re-sampling. FEWS NET has implemented a 10-day compositing scheme every five days to accommodate the need for timely information on vegetation conditions. The data are currently being processed at 250-meter spatial resolution for Central America, Hispaniola, and Africa. Data are further enhanced by the application of a temporal smoothing filter which helps remove contamination due to clouds and other atmospheric effects. The results of this near real-time monitoring capability have been the timely provision of NDVI and NDVI anomaly maps for each of the FEWS NET monitoring regions and the availability of a consistently processed dataset to aid crop assessment missions and to facilitate customized analyses of crop production, drought, and agro-pastoral conditions.
Gebert, Julia; Groengroeft, Alexander
2006-01-01
A passively vented landfill site in Northern Germany was monitored for gas emission dynamics through high resolution measurements of landfill gas pressure, flow rate and composition as well as atmospheric pressure and temperature. Landfill gas emission could be directly related to atmospheric pressure changes on all scales as induced by the autooscillation of air, diurnal variations and the passage of pressure highs and lows. Gas flux reversed every 20 h on average, with 50% of emission phases lasting only 10h or less. During gas emission phases, methane loads fed to a connected methane oxidising biofiltration unit varied between near zero and 247 g CH4 h(-1)m(-3) filter material. Emission dynamics not only influenced the amount of methane fed to the biofilter but also the establishment of gas composition profiles within the biofilter, thus being of high relevance for biofilter operation. The duration of the gas emission phase emerged as most significant variable for the distribution of landfill gas components within the biofilter.
Osmium isotopic tracing of atmospheric emissions from an aluminum smelter
NASA Astrophysics Data System (ADS)
Gogot, Julien; Poirier, André; Boullemant, Amiel
2015-09-01
We present for the first time the use of osmium isotopic composition as a tracer of atmospheric emissions from an aluminum smelter, where alumina (extracted from bauxite) is reduced through electrolysis into metallic aluminum using carbonaceous anodes. These anodes are consumed in the process; they are made of petroleum coke and pitch and have high Re/Os elementary ratio. Due to the relatively large geological age of their source material, their osmium shows a high content of radiogenic 187Os produced from in situ187Re radioactive decay. The radiogenic isotopic composition (187Os/188Os ∼ 2.5) of atmospheric particulate emissions from this smelter is different from that of other typical anthropogenic osmium sources (that come from ultramafic geological contexts with unradiogenic Os isotopes, e.g., 187Os/188Os < 0.2) and also different from average eroding continental crust 187Os/188Os ratios (ca. 1.2). This study demonstrates the capacity of osmium measurements to monitor particulate matter emissions from the Al-producing industry.
NASA Astrophysics Data System (ADS)
Kaipov, I. V.
2017-03-01
Anthropogenic and natural factors have increased the power of wildfires in massive Siberian woodlands. As a consequence, the expansion of burned areas and increase in the duration of the forest fire season have led to the release of significant amounts of gases and aerosols. Therefore, it is important to understand the impact of wildland fires on air quality, atmospheric composition, climate and accurately describe the distribution of combustion products in time and space. The most effective research tool is the regional hydrodynamic model of the atmosphere, coupled with the model of pollutants transport and chemical interaction. Taking into account the meteorological parameters and processes of chemical interaction of impurities, complex use of remote sensing techniques for monitoring massive forest fires and mathematical modeling of long-range transport of pollutants in the atmosphere, allow to evaluate spatial and temporal scale of the phenomenon and calculate the quantitative characteristics of pollutants depending on the height and distance of migration.
NASA Astrophysics Data System (ADS)
Te, Yao; Jeseck, Pascal; Hadji-Lazaro, Juliette
2012-11-01
In a growing world with more than 7 billion inhabitants and big emerging countries such as China, Brazil and India, emissions of anthropogenic pollutants are increasing continuously. Monitoring and control of atmospheric pollutants in megacities have become a major challenge for scientists and public health authorities in environmental research area. The QualAir platform at University Pierre et Marie Curie (UPMC), is an innovating experimental research platform dedicated to survey urban atmospheric pollution and air quality. A Bruker Optics IFS 125HR Fourier transform spectrometer belonged to the Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique (LPMAA), was adapted for ground-based atmospheric measurements. As one of the major instruments of the QualAir platform, this ground-based Fourier transform spectrometer (QualAir FTS) analyses the composition of the urban atmosphere of Paris, which is the third largest European megacity. The continuous monitoring of atmospheric pollutants is essential to improve the understanding of urban air pollution processes. Associated with a sun-tracker, the QualAir remote sensing FTS operates in solar infrared absorption and enables to monitor many trace gases, and to follow up their variability in the Ile-de-France region. Concentrations of atmospheric pollutants are retrieved by the radiative transfer model PROFFIT. These ground-based remote sensing measurements are compared to ground in-situ measurements and to satellite data from IASI-MetOp (Infrared Atmospheric Sounding Interferometer). The remote sensing total column of the carbon monoxide (CO) obtained from January 2009 to June 2012, has a seasonal variability with a maximum in April and a minimum in October. While, after 2008, the mean CO level is quite stable (no significant decrease as before 2008).
NASA Astrophysics Data System (ADS)
Ye, Q.; Gu, P.; Li, H.; Robinson, E. S.; Apte, J.; Sullivan, R. C.; Robinson, A. L.; Presto, A. A.; Donahue, N.
2017-12-01
Traditional air quality studies in urban areas have mostly relied on very few monitoring locations either at urban background sites or at roadside sites.However, air pollution is highly complex and dynamic and will undergo complicated transformations. Therefore, results from one or two monitoring sites may not be sufficient to address the spatial gradients of pollutants and their evolution after atmosphere processing on a local scale. Our study, as part of the Center for Air, Climate, and Energy Solutions, performed stratified mobile sampling of atmospheric particulate matter with high spatial resolution to address intra-city variability of atmospheric particle composition and mixing state. A suite of comprehensive real-time instrumentations including a state-of-the-art aerosol mass spectrometer with single particle measurement capability are deployed on the mobile platform. Our sampling locations covered a wide variety of places with substantial differences in emissions and land use types including tunnels, inter-state highways, commercial areas, residential neighborhood, parks, as well as locations upwind and downwind of the city center. Our results show that particles from traffic emissions and restaurant cookings are two major contributors to fresh particles in the urban environment. In addition, there are large spatial variabilities of source-specific particles and we identify the relevant physicochemical processes governing transformation of particle composition, size and mixing state. We also combine our results with demographic data to study population exposure to particles of specific sources. This work will help evaluate the performance of existing modeling tools for air quality and population exposure studies.
Applications of Satellite Observations of Tropospheric Composition
NASA Astrophysics Data System (ADS)
Monks, Paul S.; Beirle, Steffen
A striking feature of the field of tropospheric composition is the sheer number of chemical species that have been detected and measured with satellite instruments. The measurements have found application both in atmospheric chemistry itself, providing evidence, for example, of unexpected cryochemistry in the Arctic regions, and also in environmental monitoring with, for example, the observed growth in NO2 emissions over eastern Asia. Chapter 8 gives an overview of the utility of satellite observations for measuring tropospheric composition, dealing with each of the many compounds seen in detail. A comprehensive compound by compound table of the many studies performed is a most useful feature.
Pinho, P; Barros, C; Augusto, S; Pereira, M J; Máguas, C; Branquinho, C
2017-11-01
Reactive nitrogen (Nr) is an important driver of global change, causing alterations in ecosystem biodiversity and functionality. Environmental assessments require monitoring the emission and deposition of both the amount and types of Nr. This is especially important in heterogeneous landscapes, as different land-cover types emit particular forms of Nr to the atmosphere, which can impact ecosystems distinctively. Such assessments require high spatial resolution maps that also integrate temporal variations, and can only be feasibly achieved by using ecological indicators. Our aim was to rank land-cover types according to the amount and form of emitted atmospheric Nr in a complex landscape with multiple sources of N. To do so, we measured and mapped nitrogen concentration and isotopic composition in lichen thalli, which we then related to land-cover data. Results suggested that, at the landscape scale, intensive agriculture and urban areas were the most important sources of Nr to the atmosphere. Additionally, the ocean greatly influences Nr in land, by providing air with low Nr concentration and a unique isotopic composition. These results have important consequences for managing air pollution at the regional level, as they provide critical information for modeling Nr emission and deposition across regional as well as continental scales. Copyright © 2017 Elsevier Ltd. All rights reserved.
Baldacchini, Chiara; Castanheiro, Ana; Maghakyan, Nairuhi; Sgrigna, Gregorio; Verhelst, Jolien; Alonso, Rocío; Amorim, Jorge H; Bellan, Patrick; Bojović, Danijela Đunisijević; Breuste, Jürgen; Bühler, Oliver; Cântar, Ilie C; Cariñanos, Paloma; Carriero, Giulia; Churkina, Galina; Dinca, Lucian; Esposito, Raffaela; Gawroński, Stanisław W; Kern, Maren; Le Thiec, Didier; Moretti, Marco; Ningal, Tine; Rantzoudi, Eleni C; Sinjur, Iztok; Stojanova, Biljana; Aničić Urošević, Mira; Velikova, Violeta; Živojinović, Ivana; Sahakyan, Lilit; Calfapietra, Carlo; Samson, Roeland
2017-02-07
Particulate matter (PM) deposited on Platanus acerifolia tree leaves has been sampled in the urban areas of 28 European cities, over 20 countries, with the aim of testing leaf deposited particles as indicator of atmospheric PM concentration and composition. Leaves have been collected close to streets characterized by heavy traffic and within urban parks. Leaf surface density, dimensions, and elemental composition of leaf deposited particles have been compared with leaf magnetic content, and discussed in connection with air quality data. The PM quantity and size were mainly dependent on the regional background concentration of particles, while the percentage of iron-based particles emerged as a clear marker of traffic-related pollution in most of the sites. This indicates that Platanus acerifolia is highly suitable to be used in atmospheric PM monitoring studies and that morphological and elemental characteristics of leaf deposited particles, joined with the leaf magnetic content, may successfully allow urban PM source apportionment.
Noble, Stephen R; Horstwood, Matthew S A; Davy, Pamela; Pashley, Vanessa; Spiro, Baruch; Smith, Steve
2008-07-01
Pb isotope compositions of biologically significant PM(10) atmospheric particulates from a busy roadside location in London UK were measured using solution- and laser ablation-mode MC-ICP-MS. The solution-mode data for PM(10) sampled between 1998-2001 document a dramatic shift to increasingly radiogenic compositions as leaded petrol was phased out. LA-MC-ICP-MS isotope analysis, piloted on a subset of the available samples, is shown to be a potential reconnaissance analytical technique. PM(10) particles trapped on quartz filters were liberated from the filter surface, without ablating the filter substrate, using a 266 nm UV laser and a dynamic, large diameter, low-fluence ablation protocol. The Pb isotope evolution noted in the London data set obtained by both analytical protocols is similar to that observed elsewhere in Western Europe following leaded petrol elimination. The data therefore provide important baseline isotope composition information useful for continued UK atmospheric monitoring through the early 21(st) century.
NASA Astrophysics Data System (ADS)
Chassefiere, E.; Jambon, A.; Berthelier, J.-J.; Goulpeau, G.; Leblanc, F.; Montmessin, F.; Sarda, P.; Agrinier, P.; Fouchet, T.; Waite, H.
The technique of GCMS analysis has to be completed by static mass spectrometry for precise in-situ measurements of the isotopic composition of planetary atmospheres (noble gases, stable isotopes), and volatile outgassed products from solid sample pyrolysis. Static mass spectrometry, coupled with gas separation by cryo-separation and gettering, is commonly used in the laboratory to study volatiles extracted from terrestrial and meteoritic samples. Such an instrument (PALOMA) is presently developed in our laboratories, and it will be coupled with a Pyr-GCMS analyzer (MACE), built by a US consortium of science laboratories and industrials (University of Michigan, Southwest Research Institute, JPL, Ball Aerospace). The MACE/PALOMA experiment will be proposed on the NASA Mars Science Laboratory mission, planned to be launched in 2009. The scientific objectives of PALOMA, coupled with MACE, may be listed as follows : (i) search for isotopic signatures of past life in atmosphere, rock, dust and ice samples, with emphasis on carbon, nitrogen and hydrogen; (ii) accurately measure isotopic composition of atmospheric noble gases, and stable isotopes, in order to better constrain past escape, surface interaction, outgassing history and climate evolution; (iii) precisely measure diurnal/ seasonal variations of isotopic ratios of H2O, CO2, and N2, for improving our understanding of present and past climate, and of the role of water cycle. Main measurement objectives are : (i) C, H, O, N isotopic composition in both organic evolved samples (provided by MACE pyrolysis system) and atmosphere with high accuracy (a few per mil at 1-s level); (ii) noble gas (He, Ne, Ar, Kr, Xe) and stable (C, H, O, N) isotope composition in atmosphere with high accuracy (a few per mil at 1-s level); (iii) molecular and isotopic composition of inorganic evolved samples (salts, hydrates, nitrates, {ldots}), including ices; (iv) diurnal and seasonal monitoring of D/H in water vapor, and water ice.
Energy and remote sensing. [satellite exploration, monitoring, siting
NASA Technical Reports Server (NTRS)
Summers, R. A.; Smith, W. L.; Short, N. M.
1977-01-01
Exploration for uranium, thorium, oil, gas and geothermal activity through remote sensing techniques is considered; satellite monitoring of coal-derived CO2 in the atmosphere, and the remote assessment of strip mining and land restoration are also mentioned. Reference is made to color ratio composites based on Landsat data, which may aid in the detection of uranium deposits, and to computer-enhanced black and white airborne scanning imagery, which may locate geothermal anomalies. Other applications of remote sensing to energy resources management, including mapping of transportation networks and power plant siting, are discussed.
The CAMS interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003-2015
NASA Astrophysics Data System (ADS)
Flemming, Johannes; Benedetti, Angela; Inness, Antje; Engelen, Richard J.; Jones, Luke; Huijnen, Vincent; Remy, Samuel; Parrington, Mark; Suttie, Martin; Bozzo, Alessio; Peuch, Vincent-Henri; Akritidis, Dimitris; Katragkou, Eleni
2017-02-01
A new global reanalysis data set of atmospheric composition (AC) for the period 2003-2015 has been produced by the Copernicus Atmosphere Monitoring Service (CAMS). Satellite observations of total column (TC) carbon monoxide (CO) and aerosol optical depth (AOD), as well as several TC and profile observations of ozone, have been assimilated with the Integrated Forecasting System for Composition (C-IFS) of the European Centre for Medium-Range Weather Forecasting. Compared to the previous Monitoring Atmospheric Composition and Climate (MACC) reanalysis (MACCRA), the new CAMS interim reanalysis (CAMSiRA) is of a coarser horizontal resolution of about 110 km, compared to 80 km, but covers a longer period with the intent to be continued to present day. This paper compares CAMSiRA with MACCRA and a control run experiment (CR) without assimilation of AC retrievals. CAMSiRA has smaller biases than the CR with respect to independent observations of CO, AOD and stratospheric ozone. However, ozone at the surface could not be improved by the assimilation because of the strong impact of surface processes such as dry deposition and titration with nitrogen monoxide (NO), which were both unchanged by the assimilation. The assimilation of AOD led to a global reduction of sea salt and desert dust as well as an exaggerated increase in sulfate. Compared to MACCRA, CAMSiRA had smaller biases for AOD, surface CO and TC ozone as well as for upper stratospheric and tropospheric ozone. Finally, the temporal consistency of CAMSiRA was better than the one of MACCRA. This was achieved by using a revised emission data set as well as by applying careful selection and bias correction to the assimilated retrievals. CAMSiRA is therefore better suited than MACCRA for the study of interannual variability, as demonstrated for trends in surface CO.
NASA Astrophysics Data System (ADS)
Hassinen, S.; Balis, D.; Bauer, H.; Begoin, M.; Delcloo, A.; Eleftheratos, K.; Gimeno Garcia, S.; Granville, J.; Grossi, M.; Hao, N.; Hedelt, P.; Hendrick, F.; Hess, M.; Heue, K.-P.; Hovila, J.; Jønch-Sørensen, H.; Kalakoski, N.; Kiemle, S.; Kins, L.; Koukouli, M. E.; Kujanpää, J.; Lambert, J.-C.; Lerot, C.; Loyola, D.; Määttä, A.; Pedergnana, M.; Pinardi, G.; Romahn, F.; van Roozendael, M.; Lutz, R.; De Smedt, I.; Stammes, P.; Steinbrecht, W.; Tamminen, J.; Theys, N.; Tilstra, L. G.; Tuinder, O. N. E.; Valks, P.; Zerefos, C.; Zimmer, W.; Zyrichidou, I.
2015-07-01
The three GOME-2 instruments will provide unique and long data sets for atmospheric research and applications. The complete time period will be 2007-2022, including the period of ozone depletion as well as the beginning of ozone layer recovery. Besides ozone chemistry, the GOME-2 products are important e.g. for air quality studies, climate modeling, policy monitoring and hazard warnings. The heritage for GOME-2 is in the ERS/GOME and Envisat/SCIAMACHY instruments. The current Level 2 (L2) data cover a wide range of products such as trace gas columns (NO2, BrO, H2CO, H2O, SO2), tropospheric columns of NO2, total ozone columns and vertical ozone profiles in high and low spatial resolution, absorbing aerosol indices from the main science channels as well as from the polarization channels (AAI, AAI-PMD), Lambertian-equivalent reflectivity database, clear-sky and cloud-corrected UV indices and surface UV fields with different weightings and photolysis rates. The Ozone Monitoring and Atmospheric Composition Satellite Application Facility (O3M SAF) processing and data dissemination is operational and running 24/7. Data quality is quarantined by the detailed review processes for the algorithms, validation of the products as well as by a continuous quality monitoring of the products and processing. This is an overview paper providing the O3M SAF project background, current status and future plans to utilization of the GOME-2 data. An important focus is the provision of summaries of the GOME-2 products including product principles and validation examples together with the product sample images. Furthermore, this paper collects the references to the detailed product algorithm and validation papers.
Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles
NASA Astrophysics Data System (ADS)
Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.
2015-03-01
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
Atmospheric particulate measurements in Norfolk, Virginia
NASA Technical Reports Server (NTRS)
Storey, R. W., Jr.; Sentell, R. J.; Woods, D. C.; Smith, J. R.; Harris, F. S., Jr.
1975-01-01
Characterization of atmospheric particulates was conducted at a site near the center of Norfolk, Virginia. Air quality was measured in terms of atmospheric mass loading, particle size distribution, and particulate elemental composition for a period of 2 weeks. The objectives of this study were (1) to establish a mean level of air quality and deviations about this mean, (2) to ascertain diurnal changes or special events in air quality, and (3) to evaluate instrumentation and sampling schedules. Simultaneous measurements were made with the following instruments: a quartz crystal microbalance particulate monitor, a light-scattering multirange particle counter, a high-volume air sampler, and polycarbonate membrane filters. To assess the impact of meteorological conditions on air quality variations, continuous data on temperature, relative humidity, wind speed, and wind direction were recorded. Particulate elemental composition was obtained from neutron activation and scanning electron microscopy analyses of polycarbonate membrane filter samples. The measured average mass loading agrees reasonably well with the mass loadings determined by the Virginia State Air Pollution Control Board. There are consistent diurnal increases in atmospheric mass loading in the early morning and a sample time resolution of 1/2 hour seems necessary to detect most of the significant events.
Optical remote sensing of atmospheric compounds
NASA Astrophysics Data System (ADS)
Vazquez, Gabriel J.
1996-02-01
Human activities are altering the earth system at the local, regional, and global scales. It is therefore of the utmost importance to track the workings of mother earth in order to detect any changes at their early stages so that appropriate actions are taken to understand, assess, control or prevent the adverse effects. A number of deleterious effects to the environment can, at least in part, be ascribed to air pollution, namely, the thinning of the ozone layer, the related increase in the occurrence of skin cancer, the warming of the earth system, photochemical smog, acid rain/fog, acidification of soils and waters, forest decline, etc. It is therefore necessary to monitor the most relevant processes of the earth's atmosphere, namely, the energy input, the dynamics and the chemistry. In this contribution I mainly focus on the latter, specifically, on the measurement/monitoring of atmospheric compounds. To understand atmospheric chemistry and air pollution it is necessary to have reliable and accurate values of the mixing ratios of the numerous atmospheric gases and of their diurnal/seasonal variations and long-term trends. In this contribution I present an overview of the most relevant optical remote sensing techniques that are rapidly becoming the methods of choice to probe the chemical composition and physical state of the atmosphere, especially when high selectivity, sensitivity and fast-time response are required.
The monitoring and fatigue behavior of CFCCs at ambient temperature and 1000{degrees}C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miriyala, N.; Liaw, P.K.; McHargue, C.J.
1997-04-01
Metallographically polished flexure bars of Nicalon/SiC and Nicalon/alumina composites were subjected to monotonic and cycle-fatigue loadings, with loading either parallel or normal to the fabric plies. The fabric orientation did not significantly affect the mechanical behavior of the Nicalon/SiC composite at ambient temperature. However, the mechanical behavior of the Nicalon/alumina composite was significantly affected by the fabric orientation at ambient temperature in air and at 1000{degrees}C in argon atmosphere. In addition, there was a significant degradation in the fatigue performance of the alumina matrix composite at the elevated temperature, owing to creep in the material and degradation in the fibermore » strength.« less
2003-09-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Jim Landy, NDE specialist with United Space Alliance (USA), watches a monitor off-screen to examine a Reinforced Carbon Carbon panel using flash thermography. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance worker Dan Kenna (right) positions a Reinforced Carbon Carbon panel on the table to perform flash thermography. In the background, Paul Ogletree observes the monitor. Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
2003-09-09
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, United Space Alliance workers Jim Landy (front), Dan Phillips and Dan Kenna watch a monitor showing results of flash thermography on the Reinforced Carbon Carbon panel on the table (foreground). Attached to the leading edge of the wing of the orbiters, the gray carbon composite RCC panels have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry.
Coordinated Airborne Studies in the Tropics (CAST) Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, Geraint
The last field campaign held at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility site on Manus Island, Papua New Guinea (PNG), was conducted in February 2014 as part of the Co-ordinated Airborne Studies in the Tropics (CAST) campaign. This campaign was a collaboration between the National Aeronautics and Space Administration (NASA), National Center for Atmospheric Research (NCAR), and the United Kingdom’s (UK) Natural Environment Research Council (NERC) to study the composition of the Tropical Tropopause Layer (TTL) and the impact of deep convection on this composition. There are three main areas of interest: i)more » transport of trace gases in the tropical atmosphere (especially short-lived halogenated compounds that can be lifted rapidly into the TTL, where they augment the stratospheric loading of these species); ii) formation of cirrus and its impact on the TTL; and iii) the upper-atmosphere water vapor budget. Overall, the aim was to improve understanding of the dynamical, radiative, and chemical role of the TTL. The Manus operation was a joint experiment between the Universities of Manchester and Cambridge and the UK National Centre for Atmospheric Science (NCAS). It consisted of two elements: an ozonesonde campaign to measure ozone vertical profiles through the TTL, and ground-based monitoring of ozone, halogenated hydrocarbons, and greenhouse gases to determine the composition of lower-boundary-layer air in the Warm Pool region. Thanks to the support from the ARM Climate Research Facility and the exemplary collaboration of ARM staff in the region, the campaign was very successful.« less
NASA Technical Reports Server (NTRS)
Fung, Inez Y.; Tucker, C. J.; Prentice, Katharine C.
1985-01-01
The 'normalized difference vegetation indices' (NVI) derived from AVHRR radiances are combined with field data of soil respiration and a global map of net primary productivity to prescribe, for the globe, the seasonal exchange of CO2 between the atmosphere and the terrestrial biosphere. The monthly fluxes of CO2 thus obtained are used as inputs to a 3-D tracer transport model which uses winds generated by a 3-D atmospheric general circulation model to advect CO2 as an inert constituent. Analysis of the 3-D model results shows reasonable agreement between the simulated and observed annual cycles of atmospheric CO2 at the locations of the remote monitoring stations. The application is shown of atmospheric CO2 distributions to calibrate the NVI in terms of carbon fluxes. The approach suggests that the NVI may be used to provide quantitative information about long term and global scale variations of photosynthetic activity and of atmospheric CO2 concentrations provided that variations in the atmospheric circulation and in atmospheric composition are known.
USAID Expands eMODIS Coverage for Famine Early Warning
NASA Astrophysics Data System (ADS)
Jenkerson, C.; Meyer, D. J.; Evenson, K.; Merritt, M.
2011-12-01
Food security in countries at risk is monitored by U.S. Agency for International Development (USAID) through its Famine Early Warning Systems Network (FEWS NET) using many methods including Moderate Resolution Imaging Spectroradiometer (MODIS) data processed by U.S. Geological Survey (USGS) into eMODIS Normalized Difference Vegetation Index (NDVI) products. Near-real time production is used comparatively with trends derived from the eMODIS archive to operationally monitor vegetation anomalies indicating threatened cropland and rangeland conditions. eMODIS production over Central America and the Caribbean (CAMCAR) began in 2009, and processes 10-day NDVI composites every 5 days from surface reflectance inputs produced using predicted spacecraft and climatology information at Land and Atmosphere Near real time Capability for Earth Observing Systems (EOS) (LANCE). These expedited eMODIS composites are backed by a parallel archive of precision-based NDVI calculated from surface reflectance data ordered through Level 1 and Atmosphere Archive and Distribution System (LAADS). Success in the CAMCAR region led to the recent expansion of eMODIS production to include Africa in 2010, and Central Asia in 2011. Near-real time 250-meter products are available for each region on the last day of an acquisition interval (generally before midnight) from an anonymous file transfer protocol (FTP) distribution site (ftp://emodisftp.cr.usgs.gov/eMODIS). The FTP site concurrently hosts the regional historical collections (2000 to present) which are also searchable using the USGS Earth Explorer (http://edcsns17.cr.usgs.gov/NewEarthExplorer). As eMODIS coverage continues to grow, these geographically gridded, georeferenced tagged image file format (GeoTIFF) NDVI composites increase their utility as effective tools for operational monitoring of near-real time vegetation data against historical trends.
JPRS report: Science and technology. Central Eurasia
NASA Astrophysics Data System (ADS)
1994-08-01
Translated articles cover the following topics: boronizing laser treatment of titanium alloys; argon-arc welding-on titanium dowels to inserts for aircraft structures made of composite materials; method of reducing level of thermally stressed state of gas turbine engine blades by selecting optimum thickness distribution of ceramic heat shield coating; certifying modern ceramics for mechanical properties; superplastic ceramic: possibilities for application in modeling pressworking manufacturing processes; monitoring strength of ceramics by acoustic emission; physical and mechanical properties of Al2O3 + ZrO2:Y2O3 composite produced by directional crystallization from melt; influence that microalloying with rare earth elements has on resistance of steels to deformation and fracture under alternating elastic-plastic loading; conceptions of constructing information management networks for distributed objects; concept of a document information system based on an object-oriented subject-area model; underground future of rocket technologies; geoinformation approach to organizing automated information systems for regional-local monitoring of atmospheric pollutants; and possibility of using lidar wind sounding in climatic-ecologic monitoring of limited areas.
NASA Astrophysics Data System (ADS)
De Rosa, Benedetto; Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Mancini, Ignazio
2016-06-01
In November 2012 the University of BASILicata Raman Lidar system (BASIL) was approved to enter the International Network for the Detection of Atmospheric Composition Change (NDACC). This network includes more than 70 high-quality, remote-sensing research stations for observing and understanding the physical and chemical state of the upper troposphere and stratosphere and for assessing the impact of stratosphere changes on the underlying troposphere and on global climate. As part of this network, more than thirty groundbased Lidars deployed worldwide are routinely operated to monitor atmospheric ozone, temperature, aerosols, water vapour, and polar stratospheric clouds. In the frame of NDACC, BASIL performs measurements on a routine basis each Thursday, typically from local noon to midnight, covering a large portion of the daily cycle. Measurements from BASIL are included in the NDACC database both in terms of water vapour mixing ratio and temperature. This paper illustrates some measurement examples from BASIL, with a specific focus on water vapour measurements, with the goal to try and characterize the system performances.
The Copernicus Climate Change Service (C3S): A European Answer to Climate Change
NASA Astrophysics Data System (ADS)
Thepaut, Jean-Noel
2016-04-01
Copernicus is the European Commission's flagship Earth observation programme that delivers freely accessible operational data and information services. ECMWF has been entrusted to operate two key parts of the Copernicus programme, which will bring a consistent standard to the measurement, forecasting and prediction of atmospheric conditions and climate change: • The Copernicus Atmosphere Monitoring Service, CAMS, provides daily forecasts detailing the makeup composition of the atmosphere from the ground up to the stratosphere. • The Copernicus Climate Change Service (C3S) (in development) will routinely monitor and analyse more than 20 essential climate variables to build a global picture of our climate, from the past to the future, as well as developing customisable climate indicators for relevant economic sectors, such as energy, water management, agriculture, insurance, health…. C3S has now taken off and a number of proof-of-concept sectoral climate services have been initiated. This paper will focus on the description and expected outcome of these proof-of-concept activities as well as the definition of a roadmap towards a fully operational European Climate Change Service.
NASA Astrophysics Data System (ADS)
Chassefière, E.; Paloma Team
2003-04-01
An instrument to analyze the molecular, elemental and isotopic composition of Mars atmosphere from a landed platform is being developed under CNES funding. This instrument, called PALOMA (PAyload for Local Observation of Mars Atmosphere), will be proposed in response to the AO for the instrumentation of the NASA Mars Smart Lander mission, planned to be launched in 2009. It might be part as well of the EXOMARS mission presently studied at ESA in the frame of the Aurora program. Noble gases (He, Ne, Ar, Xr, Xe) and stable isotopes (C, H, O, N) will be analyzed by using a system of gas purification and separation, coupled with a mass spectrometer. The heaviest, radioactive, noble gas (Rn) and its short-lived daughters will be measured using a small additional device (alpha particle detector). Detailed search for trace constituents of astrobiological interest, like CH_4, H_2CO, N_2O, H_2S (abundances, isotopic ratios, time variability) will be done on a regular temporal basis during one Martian year. Isotopic ratios will be measured with an accuracy of about 1 ppm, or better, in order to provide a clear diagnosis of possible life signatures, to allow a detailed comparison of Earth and Mars atmospheric fractionation patterns and, finally, to accurately disentangle escape, climatic, geochemical and hypothesized biological effects. High sensitivity is required for elemental and isotopic compositions of trace gases of interest (a small fraction of ppbv). Such an accurate monitoring of Mars atmosphere volatile composition is expected to provide the necessary reference for future composition studies of minerals, soils, bio-markers, polar cap material, either by in-situ measurement, or from laboratory analyses of returned samples. The PALOMA instrument consists of : a gas purification and separation line, using techniques of chemical and cryogenic trapping, and possibly membrane permeation, a mass spectrometer working in static mode, a turbo-molecular pump that provides the required level of vacuum in the separation line and in the spectrometer, a small additional stand-alone sensor for radon and its short-lived daughters measurement. It is designed to work during one full Martian year, in order to perform accurate measurements of the atmospheric composition and its seasonal, and more generally temporal, variations. The gas is sampled directly from the ambient atmosphere, without need for an external sample distribution system. The main parameters of PALOMA are 6.5 kg, 20 W (peak value : 30 W), 4 kb/day (peak value : 15 kb/day).
NASA Astrophysics Data System (ADS)
Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.
2015-08-01
In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric aging processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.
Wang, Taojun; Zhao, Liang; Sun, Yanan; Ren, Fazheng; Chen, Shanbin; Zhang, Hao; Guo, Huiyuan
2016-11-01
Changes in the microbiota of lamb were investigated under vacuum packaging (VP) and under 20% CO2/80% N2 (LC), 60% CO2/40% N2 (MC), and 100% CO2 (HC) modified atmosphere packaging (MAP) during chilled storage. Viable counts were monitored, and the total microbial communities were assessed by high-throughput sequencing. The starting community had the highest microbial diversity, after which Lactococcus and Carnobacterium spp. outcompeted during the 28-day storage. The relative abundances of Brochothrix spp. in the LC atmosphere were much higher than those of the other groups on days 7 and 28. The bacterial inhibiting effect of the MAP environments on microbial growth was positively correlated with the CO2 concentration. The HC atmosphere inhibited microbial growth and delayed changes in the microbial community composition, extending the lamb's shelf life by approximately 7days compared with the VP atmosphere. Lamb packaged in the VP atmosphere had a more desirable colour but a higher weight loss than lamb packaged in the MAP atmospheres. Copyright © 2016 Elsevier Ltd. All rights reserved.
Comparative study of gas-analyzing systems designed for continuous monitoring of TPP emissions
NASA Astrophysics Data System (ADS)
Kondrat'eva, O. E.; Roslyakov, P. V.
2017-06-01
Determining the composition of combustion products is important in terms of both control of emissions into the atmosphere from thermal power plants and optimization of fuel combustion processes in electric power plants. For this purpose, the concentration of oxygen, carbon monoxide, nitrogen, and sulfur oxides in flue gases is monitored; in case of solid fuel combustion, fly ash concentration is monitored as well. According to the new nature conservation law in Russia, all large TPPs shall be equipped with continuous emission monitoring and measurement systems (CEMMS) into the atmosphere. In order to ensure the continuous monitoring of pollutant emissions, direct round-the-clock measurements are conducted with the use of either domestically produced or imported gas analyzers and analysis systems, the operation of which is based on various physicochemical methods and which can be generally used when introducing CEMMS. Depending on the type and purposes of measurement, various kinds of instruments having different features may be used. This article represents a comparative study of gas-analysis systems for measuring the content of polluting substances in exhaust gases based on various physical and physicochemical analysis methods. It lists basic characteristics of the methods commonly applied in the area of gas analysis. It is proven that, considering the necessity of the long-term, continuous operation of gas analyzers for monitoring and measurement of pollutant emissions into the atmosphere, as well as the requirements for reliability and independence from aggressive components and temperature of the gas flow, it is preferable to use optical gas analyzers for the aforementioned purposes. In order to reduce the costs of equipment comprising a CEMMS at a TPP and optimize the combustion processes, electrochemical and thermomagnetic gas analyzers may also be used.
Composition of air masses in Fuerteventura (Canary Islands) according to their origins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patier, R.F.; Diez Hernandez, P.; Diaz Ramiro, E.
1994-12-31
The Centro Nacional de Sanidad Ambiental has among their duties the background atmospheric pollution monitoring in Spain. To do so, the laboratory has set up 6 field stations in the Iberian Peninsula. In these stations, both gaseous and particulate pollutants are currently analyzed. However, there is a lack of data about the atmospheric pollution in the Canary, where they are a very strong influence of natural emissions from sea and the Saharan desert, mixed with anthropogenic ones. Therefore, during the ASTEX/MAGE project the CNSA established a station in Fuerteventura island, characterized by the nonexistence of man-made emissions, to measure somemore » atmospheric pollutants, in order to foresee their origins. In this study, the authors analyzed some pollutants that are used to obtain a clue about the sources of air masses such as gaseous ozone and metallic compounds (vanadium, iron and manganese) in the atmospheric aerosol fractionated by size.« less
Titan Science with the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Nixon, Conor A.; Achterberg, Richard; Adamkovics, Mate; Bezard, Bruno; Bjoraker, Gordon; Cornet, Thomas; Hayes, Alexander; Lellouch, Emmanuel; Lemmon, Mark; Lopez Puertas, Manuel; Rodriguez, Sebastien; Sotin, Christophe; Teanby, Nicholas; Turtle, Elizabeth; West, Robert
2015-11-01
The James Webb Space Telescope (JWST), scheduled for launch in 2018, is an ambitious next-generation large-aperture (6.5 m) space observatory focused on pushing the boundaries of infrared astronomy (0.6-28.0 μm). This long-wavelength focus gives it very substantial potential for solar system science, since the thermal emissions from the surfaces and atmospheres of many planets, moons and small bodies peak in this part of the spectrum. Here we report the findings of a task team convened to examine the potential for Titan science using JWST. These can be divided into five broad areas: (i) the surface, especially the rotational lightcurve; (ii) clouds in the lower atmosphere from direct imaging and near-IR spectroscopy; (iii) composition of the lower atmosphere, especially methane relative humidity; (iv) composition of the middle atmosphere, including thermal and fluorescent emissions from gases; (v) hazes in the middle atmosphere, including seasonal changes in hemispheric contrast. The capability of the major JWST instruments in each area is considered, and limitations such as potential saturation is noted and mitigation strategies (such as sub-arraying) discussed. Overall we find that JWST can make significant contributions to Titan science in many areas, not least in temporal monitoring of seasonal change after the end of the Cassini mission in 2017, in partnership with other next-generation observing facilities (TMT, GMT, EELT, ALMA).
NASA Astrophysics Data System (ADS)
Smith, D. M.; Fiddler, M. N.; Sexton, K.; Bililign, S.; Dowdell, T. M.
2016-12-01
Biomass burning is recognized as one of the largest sources of absorbing aerosols in the atmosphere and significantly influences the radiative properties of the atmosphere. In the atmosphere, aerosols dynamically change in complex ways. The chemical composition and physical properties of particles evolve during their atmospheric lifetime due to condensation, oxidation reactions, etc. Changes in chemical composition due to aging is likely to change the optical properties of these particles as well. We have built a 9.01m3 indoor smog chamber made of FEP Teflon. Wood and other organic samples are burned in a tube furnace with the exhaust going directly into the chamber. The construction, characterization, and calibration of the smog chamber will be presented, along with preliminary measurements of extinction and scattering of biomass burning aerosols measured using a Cavity Ring-down and Integrating Nephelometry system. This system allows us to measure any changes in the optical properties of the soot as it ages. Injections to the chamber can be controlled to simulate various atmospheric conditions. These include clean (dry) air, laboratory (room) air, water vapor, NOX, and various biogenic and anthropogenic VOCs such as aromatic hydrocarbons. These components and some of their oxidation products can also be monitored and characterized during aging. The authors acknowledge the support from the National Science Foundation through Grant Number NSF-AGS-1555479
NASA Technical Reports Server (NTRS)
Hogan, Kathleen B.; Harriss, Robert C.
1994-01-01
The carefully measured decrease in the growth rate of atmospheric methane (CH4) in 1992 reported by Dlugokencky et al. (1994) is an impressive accomplishment, and testimony for the importance of maintaining high-quality, long-term monitoring of atmospheric composition. The changing growth rate of atmospheric CH4 has important implications for assessing and understanding the potential magnitude and rates of a future greenhouse gas-induced climate change. Furthermore, the CH4 data from the current Climate Monitoring and Diagnostics Laboratory (CMDL) globally-distributed network of cooperative air sampling sites are clearly the best record of global CH4 trends and distribution currently available. However, we argue briefly here that the speculation by Dlugokencky et al. (1994) on possible mechanisms for the decreased growth rate in 1992 is only one scenario of many that could possibly fit with the constraints imposed by the reported data. Our comments are to (1) illustrate the difficulties of deducing small changes in complex, poorly understood, geographically diverse natural and anthropogenic sources of CH4 from measurements at the remotely-located CMDL sampling sites and (2) emphasize that detailed bottoms-up analyses are necessary to really advance the understanding of changes in source strengths; we are not promoting alternative mechanisms to explain the 1992 decrease in atmospheric CH4.
Nimbus-7 Stratospheric and Mesospheric Sounder (SAMS) experiment data user's guide
NASA Technical Reports Server (NTRS)
Taylor, F. W.; Rodgers, C. D.; Nutter, S. T.; Oslik, N.
1989-01-01
The Stratospheric and Mesospheric Sounder (SAMS) aboard Nimbus-7 observes infrared radiation from the atmospheric limb. Global upper atmosphere temperature profiles and vertical concentrations of H2O, NO, N2O, CH4 and CO2 are derived from these measurements. The status of all channels was carefully monitored. Temperature and composition were retrieved from the measurements by linearizing the direct equation about an a priori profile and using an optimum statistical estimator to find the most likely solution. The derived temperature and composition profiles are archived on two tape products whose file structure and record formats are described in detail. The gridded retrieved temperature tape (GRID-T) contains daily day and night average temperatures at 62 pressure levels in a 2.5 degree latitude by 10 degree longitude grid extending from 67.5 degrees N to 50 degrees S. The zonal mean methane and nitrous oxide composition tape (ZMT-G) contains zonal mean day and night average CH4 and N2O mixing ratios at 31 pressure levels for 2.5 degrees latitude zones extending from 67.5 degrees N to 50 degrees S.
NASA Astrophysics Data System (ADS)
Quade, M. E.; Brueggemann, N.; Graf, A.; Rothfuss, Y.
2017-12-01
Water stable isotopes are powerful tools for partitioning net into raw water fluxes such as evapotranspiration (ET) into soil evaporation (E) and plant transpiration (T). The isotopic methodology for ET partitioning is based on the fact that E and T have distinct water stable isotopic compositions, which in turn relies on the fact that each flux is differently affected by isotopic kinetic effects. An important work to be performed in parallel to field measurements is to better characterize these kinetic effects in the laboratory under controlled conditions. A soil evaporation laboratory experiment was conducted to retrieve characteristic values of the kinetic fractionation factor (αK) under varying soil and atmospheric water conditions. For this we used a combined soil and atmosphere column to monitor the soil and atmospheric water isotopic composition profiles at a high temporal and vertical resolution in a nondestructive manner by combining micro-porous membranes and laser spectroscopy. αK was calculated by using a well-known isotopic evaporation model in an inverse mode with the isotopic composition of E as one input variable, which was determined using a micro-Keeling regression plot. Knowledge on αK was further used in the field (Selhausen, North Rhine-Westphalia, Germany) to partition ET of catch crops and sugar beet (Beta vulgaris) during one growing season. Soil and atmospheric water isotopic profiles were measured automatically across depths and heights following a similar modus operandi as in the laboratory experiment. Additionally, a newly developed continuously moving elevator was used to obtain water vapor isotopic composition profiles with a high vertical resolution between soil surface, plant canopy and atmosphere. Finally, soil and plant samples were collected destructively to provide a comparison with the traditional isotopic methods. Our results illustrate the changing proportions of T and E along the growing season and demonstrate the applicability of our new non-destructive approach to field conditions.
NASA Astrophysics Data System (ADS)
Aref'ev, V. N.; Kashin, F. V.; Orozaliev, M. D.; Sizov, N. I.; Sinyakov, V. P.; Sorokina, L. I.
2013-03-01
The results of measurements of the CO content in the atmospheric thickness by the method of solar molecular-absorption spectroscopy are presented. Over 87 months of observations, the annual mean CO content decreased by ˜19% at a mean rate of changes equal to -(0.14 ± 0.02) atm cm per year. Maxima and minima of seasonal variations most often fall on February and September, respectively. The mean overall amplitude of changes in the CO content during the annual cycle is about 50% of the mean value. The Fourier analysis revealed variations in the CO composition with periods from 3 to 84 months. A simple statistical model satisfactorily describes time changes in the CO content in the atmospheric thickness. The results of measurements of the CO content in the atmospheric thickness are compared with the data of CO measurements in samples of surface air at stations of the Global Atmospheric Watch.
SPICAM on Mars Express: A 10 year in-depth survey of the Martian atmosphere
NASA Astrophysics Data System (ADS)
Montmessin, F.; Korablev, O.; Lefèvre, F.; Bertaux, J.-L.; Fedorova, A.; Trokhimovskiy, A.; Chaufray, J. Y.; Lacombe, G.; Reberac, A.; Maltagliati, L.; Willame, Y.; Guslyakova, S.; Gérard, J.-C.; Stiepen, A.; Fussen, D.; Mateshvili, N.; Määttänen, A.; Forget, F.; Witasse, O.; Leblanc, F.; Vandaele, A. C.; Marcq, E.; Sandel, B.; Gondet, B.; Schneider, N.; Chaffin, M.; Chapron, N.
2017-11-01
The SPICAM experiment onboard Mars Express has accumulated during the last decade a wealth of observations that has permitted a detailed characterization of the atmospheric composition and activity from the near-surface up to above the exosphere. The SPICAM climatology is one of the longest assembled to date by an instrument in orbit around Mars, offering the opportunity to study the fate of major volatile species in the Martian atmosphere over a multi-(Mars)year timeframe. With his dual ultraviolet (UV)-near Infrared channels, SPICAM observes spectral ranges encompassing signatures created by a variety atmospheric gases, from major (CO2) to trace species (H2O, O3). Here, we present a synthesis of the observations collected for water vapor, ozone, clouds and dust, carbon dioxide, exospheric hydrogen and airglows. The assembled climatology covers the MY 27-MY 31 period. However, the monitoring of UV-derived species was interrupted at the end of 2014 (MY30) due to failure of the UV channel. A SO2 detection attempt was undertaken, but proved unsuccessful from regional to global scales (with upper limit greater than already published ones). One particular conclusion that stands out from this overview work concerns the way the Martian atmosphere organizes an efficient mass transfer between the lower and the upper atmospheric reservoirs. This highway to space, as we name it, is best illustrated by water and hydrogen, both species having been monitored by SPICAM in their respective atmospheric reservoir. Coupling between the two appear to occur on seasonal timescales, much shorter than theoretical predictions.
Overview of atmospheric aerosol studies in Malaysia: Known and unknown
NASA Astrophysics Data System (ADS)
Kanniah, Kasturi Devi; Kaskaoutis, Dimitris G.; San Lim, Hwee; Latif, Mohd Talib; Kamarul Zaman, Nurul Amalin Fatihah; Liew, Juneng
2016-12-01
Atmospheric aerosols particularly those originated from anthropogenic sources can affect human health, air quality and the regional climate system of Southeast Asia (SEA). Population growth, and rapid urbanization associated with economic development in the SEA countries including Malaysia have resulted in high aerosol concentrations. Moreover, transboundary smoke plumes add more aerosols to the atmosphere in Malaysia. Nevertheless, the aerosol monitoring networks and/or field studies and research campaigns investigating the various aerosol properties are not so widespread over Malaysia. In the present work, we summarize and discuss the results of previous studies that investigated the aerosol properties over Malaysia by means of various instrumentation and techniques, focusing on the use of remote sensing data to examine atmospheric aerosols. Furthermore, we identify gaps in this research field and recommend further studies to bridge these knowledge gaps. More specifically gaps are identified in (i) monitoring aerosol loading and composition over urban areas, (ii) examining the influence of dust, (iii) assessing radiative effects of aerosols, (iv) measuring and modelling fine particles and (v) quantifying the contribution of long range transport of aerosols. Such studies are crucial for understanding the optical, physical and chemical properties of aerosols and their spatio-temporal characteristics over the region, which are useful for modelling and prediction of aerosols' effects on air quality and climate system.
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.
2000-01-01
Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summaries 1997- 1999. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1999 An Assessment Report.
NASA Astrophysics Data System (ADS)
OBrien, R. E.; Ridley, K. J.; Canagaratna, M. R.; Croteau, P.; Budisulistiorini, S. H.; Cui, T.; Green, H. S.; Surratt, J. D.; Jayne, J. T.; Kroll, J. H.
2016-12-01
A thorough understanding of the sources, evolution, and budgets of atmospheric organic aerosol requires widespread measurements of the amount and chemical composition of atmospheric organic carbon in the condensed phase (within particles and water droplets). Collecting such datasets requires substantial spatial and temporal (long term) coverage, which can be challenging when relying on online measurements by state-of-the-art research-grade instrumentation (such as those used in atmospheric chemistry field studies). Instead, samples are routinely collected using relatively low-cost techniques, such as aerosol filters, for offline analysis of their chemical composition. However, measurements made by online and offline instruments can be fundamentally different, leading to disparities between data from field studies and those from more routine monitoring. To better connect these two approaches, and take advantage of the benefits of each, we have developed a method to introduce collected samples into online aerosol instruments using nebulization. Because nebulizers typically require tens to hundreds of milliliters of solution, limiting this technique to large samples, we developed a new, ultrasonic micro-nebulizer that requires only small volumes (tens of microliters) of sample for chemical analysis. The nebulized (resuspended) sample is then sent into a high-resolution Aerosol Mass Spectrometer (AMS), a widely-used instrument that provides key information on the chemical composition of aerosol particulate matter (elemental ratios, carbon oxidation state, etc.), measurements that are not typically made for collected atmospheric samples. Here, we compare AMS data collected using standard on-line techniques with our offline analysis, demonstrating the utility of this new technique to aerosol filter samples. We then apply this approach to organic aerosol filter samples collected in remote regions, as well as rainwater samples from across the US. This data provides information on the sample composition and changes in key chemical characteristics across locations and seasons.
NASA Astrophysics Data System (ADS)
Panov, Alexey; Chi, Xuguang; Winderlich, Jan; Prokushkin, Anatoly; Bryukhanov, Alexander; Korets, Mikhail; Ponomarev, Evgenii; Timokhina, Anastasya; Andreae, Meinrat O.; Heimann, Martin
2014-05-01
Calculations of direct emissions of greenhouse gases from boreal wildfires remain uncertain due to problems with emission factors, available carbon, and imprecise estimates of burned areas. Even more varied and sparse are accurate in situ calculations of temporal changes in boreal forest carbon dynamics following fire. Linking simultaneous instrumental atmospheric observations, GIS-based estimates of burned areas, and ecosystem carbon uptake calculations is vital to fill this knowledge gap. Since 2006 the Zotino Tall Tower Observatory (ZOTTO; www.zottoproject.org) a research platform for large-scale climatic observations is operational in Central Siberia (60°48'N, 89°21'E). The data of ongoing greenhouse gases measurements at the tower are used in atmospheric inversions studies to infer the distribution of carbon sinks and sources over central Northern Eurasia. We present our contribution to reducing uncertainties in estimates of fire influence on atmospheric composition and post-fire ecosystem carbon uptake deduced from the large-scale fires that happened in 2012 in the tall tower footprint area. The burned areas were estimated from Landsat ETM 5,8 satellite images, while fires were detected from Terra/Aqua MODIS satellite data. The magnitude of ecological change caused by fires ("burn severity") was measured and mapped with a Normalized Burn Ratio (NBR) index and further calibrated by a complementary field based Composite Burn Index (CBI). Measures of fire radiative power (FRP) index provided information on fire heat release intensity and on the amount and completeness of biomass combustion. Based on the analyzed GIS data, the system of study plots was established in the 5 dominating ecosystem types for a long-term post-fire monitoring. On the plots the comprehensive estimation of ecosystem parameters and carbon pools and their mapping was organized with a laser-based field instrumentation system. The work was supported financially by ISTC Project # 2757p, project of RFBR # 13-05-98053, and grant of president of RF for young scientists MK-1691.2014.5.
NASA Astrophysics Data System (ADS)
Wagner, A.; Blechschmidt, A.-M.; Bouarar, I.; Brunke, E.-G.; Clerbaux, C.; Cupeiro, M.; Cristofanelli, P.; Eskes, H.; Flemming, J.; Flentje, H.; George, M.; Gilge, S.; Hilboll, A.; Inness, A.; Kapsomenakis, J.; Richter, A.; Ries, L.; Spangl, W.; Stein, O.; Weller, R.; Zerefos, C.
2015-12-01
The Monitoring Atmospheric Composition and Climate (MACC) project represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (
Imprint of CO2 emission in atmosphere and biosphere on the basis of 14C and 13C measurements
NASA Astrophysics Data System (ADS)
Pazdur, Anna; Gabryś, Alicja; Kuc, Tadeusz; Pawełczyk, Sławomira; Piotrowska, Natalia; Rakowski, Andrzej; Różański, Kazimierz; Sensuła, Barbara
2015-04-01
As is shown in the IPCC (Intergovernmental Panel on Climate Change) report, the observed climate changes are caused, among others, by human activity. Mainly emission of CO2 to the atmosphere coming from the burning of fossil fuels, can have dire consequences for life on Earth and development of humankind. The report uses, among others, data obtained from isotopic measurements in the biosphere. Measurements of 14C and 13C concentration in modern atmospheric carbon dioxide and biosphere allow the determination of the decrease of the concentration of this isotope. Furthermore, the magnitude of emission to the atmosphere of carbon dioxide not containing the isotope 14C can be estimated on this basis. Such emission stems from fossil fuel combustion - petroleum, natural gas and black coal. A sensitive bioindicator of the emission are annual tree rings. The measurements of 14C concentration in tree ring material using AMS allow to see its seasonal changes. Trees, treated as an archive of changes in conjunction with information about the isotopic composition of carbon can be used for monitoring of environment as sensitive bioindicators on local, as well as on the global scale. Regular investigations of isotopic composition of carbon in trees have been carried out in the GADAM Centre for the urban areas of both Poland and worldwide. This method can be applied in the study of the emission of CO2 to the atmosphere and its spatial and temporal distribution connected with the production of energy by power plants based on fossil fuel combustion for the area of southern Poland. Modelling of CO2 emission using both 14C and 13C carbon isotopes measured in pine tree rings on the background of climatic changes will be presented. The national ecological policy in the era of global warming requires the manufacturers of energy to get involved in the development of methods suitable for monitoring the state of the environment. Hence, the interest in the area of monitoring the fossil fuel component in CO2 in our region is rising. The measurements of 14C (by AMS method) and 13C isotopes have been carried out in atmospheric CO2 and plants in the Gliwice city centre. A high decrease of both isotopes contents and their short-term seasonal changes during the year caused by human impact during the year are observed.
NASA Astrophysics Data System (ADS)
Röckmann, Thomas; van der Veen, Carina; Chen, Huilin; Scheeren, Bert
2017-04-01
Isotope measurements can help constraining the atmospheric budget of the greenhouse gas methane (CH4) because different sources emit CH4 with slightly different isotopic composition. In the past, high precision isotope measurements have primarily been carried out by isotope ratio mass spectrometry on flask samples that are usually collected at relatively low temporal resolution. We have recently developed a fully automated gas chromatography - isotope ratio mass spectrometry system (GC-IRMS) for autonomous and unattended CH4 isotope measurements (δD and δ13C) in the field. The first deployment at the Cabauw Experimental Site for Atmospheric Research (CESAR) indicated that CH4 emissions from fossil fuel sources are overestimated in this region [1]. To further exploit the potential of this approach, the in situ system has been installed in November 2016 at the Lutjewad atmospheric monitoring and sampling site in the North of the Netherlands. This site is expected to sample also emissions from the large Groningen gas fields. The isotope measurements are expected to allow distinguishing these emissions from the agricultural emissions, which are also strong in this region. We will present the results from these ongoing measurements of δD and δ13C in CH4.. 1. Röckmann, T., et al., In situ observations of the isotopic composition of methane at the Cabauw tall tower site, Atmos. Chem. Phys., 2016. 16: 10469-10487.
Atmospheric deposition in coniferous and deciduous tree stands in Poland
NASA Astrophysics Data System (ADS)
Kowalska, Anna; Astel, Aleksander; Boczoń, Andrzej; Polkowska, Żaneta
2016-05-01
The objective of this study was to assess the transformation of precipitation in terms of quantity and chemical composition following contact with the crown layer in tree stands with varied species composition, to investigate the effect of four predominant forest-forming species (pine, spruce, beech, and oak) on the amount and composition of precipitation reaching forest soils, and to determine the sources of pollution in atmospheric precipitation in forest areas in Poland. The amount and chemical composition (pH, electric conductivity, alkalinity, and chloride, nitrate, sulfate, phosphate, ammonium, calcium, magnesium, sodium, potassium, iron aluminum, manganese, zinc, copper, total nitrogen, and dissolved organic carbon contents) of atmospheric (bulk, BP) and throughfall (TF) precipitation were studied from January to December 2010 on twelve forest monitoring plots representative of Polish conditions. The study results provided the basis for the determination of the fluxes of pollutants in the forest areas of Poland and allowed the comparison of such fluxes with values provided in the literature for European forest areas. The transformation of precipitation in the canopy was compared for different tree stands. The fluxes of substances in an open field and under canopy were influenced by the location of the plot, including the regional meteorological conditions (precipitation amounts), vicinity of the sea (effect of marine aerosols), and local level of anthropogenic pollution. Differences between the plots were higher in TF than in BP. The impact of the vegetation cover on the chemical composition of precipitation depended on the region of the country and dominant species in a given tree stand. Coniferous species tended to cause acidification of precipitation, whereas deciduous species increased the pH of TF. Pine and oak stands enriched precipitation with components that leached from the canopy (potassium, manganese, magnesium) to a higher degree than spruce and beech stands.
Two global data sets of daily fire emission injection heights since 2003
NASA Astrophysics Data System (ADS)
Rémy, Samuel; Veira, Andreas; Paugam, Ronan; Sofiev, Mikhail; Kaiser, Johannes W.; Marenco, Franco; Burton, Sharon P.; Benedetti, Angela; Engelen, Richard J.; Ferrare, Richard; Hair, Jonathan W.
2017-02-01
The Global Fire Assimilation System (GFAS) assimilates fire radiative power (FRP) observations from satellite-based sensors to produce daily estimates of biomass burning emissions. It has been extended to include information about injection heights derived from fire observations and meteorological information from the operational weather forecasts of ECMWF. Injection heights are provided by two distinct methods: the Integrated Monitoring and Modelling System for wildland fires (IS4FIRES) parameterisation and the one-dimensional plume rise model (PRM). A global database of daily biomass burning emissions and injection heights at 0.1° resolution has been produced for 2003-2015 and is continuously extended in near-real time with the operational GFAS service of the Copernicus Atmospheric Monitoring Service (CAMS). In this study, the two injection height data sets were compared with the new MPHP2 (MISR Plume Height Project 2) satellite-based plume height retrievals. The IS4FIRES parameterisation showed a better overall agreement than the observations, while the PRM was better at capturing the variability of injection heights. The performance of both parameterisations is also dependent on the type of vegetation. Furthermore, the use of biomass burning emission heights from GFAS in atmospheric composition forecasts was assessed in two case studies: the South AMerican Biomass Burning Analysis (SAMBBA) campaign which took place in September 2012 in Brazil, and a series of large fire events in the western USA in August 2013. For these case studies, forecasts of biomass burning aerosol species by the Composition Integrated Forecasting System (C-IFS) of CAMS were found to better reproduce the observed vertical distribution when using PRM injection heights from GFAS compared to aerosols emissions being prescribed at the surface. The globally available GFAS injection heights introduced and evaluated in this study provide a comprehensive data set for future fire and atmospheric composition modelling studies.
NASA Astrophysics Data System (ADS)
Tarasova, O. A.; Jalkanen, L.
2010-12-01
The WMO Global Atmosphere Watch (GAW) Programme is the only existing long-term international global programme providing an international coordinated framework for observations and analysis of the chemical composition of the atmosphere. GAW is a partnership involving contributors from about 80 countries. It includes a coordinated global network of observing stations along with supporting facilities (Central Facilities) and expert groups (Scientific Advisory Groups, SAGs and Expert Teams, ETs). Currently GAW coordinates activities and data from 27 Global Stations and a substantial number of Regional and Contributing Stations. Station information is available through the GAW Station Information System GAWSIS (http://gaw.empa.ch/gawsis/). There are six key groups of variables which are addressed by the GAW Programme, namely: ozone, reactive gases, greenhouse gases, aerosols, UV radiation and precipitation chemistry. GAW works to implement integrated observations unifying measurements from different platforms (ground based in situ and remote, balloons, aircraft and satellite) supported by modeling activities. GAW provides data for ozone assessments, Greenhouse Gas Bulletins, Ozone Bulletins and precipitation chemistry assessments published on a regular basis and for early warnings of changes in the chemical composition and related physical characteristics of the atmosphere. To ensure that observations can be used for global assessments, the GAW Programme has developed a Quality Assurance system. Five types of Central Facilities dedicated to the six groups of measurement variables are operated by WMO Members and form the basis of quality assurance and data archiving for the GAW global monitoring network. They include Central Calibration Laboratories (CCLs) that host primary standards (PS), Quality Assurance/Science Activity Centres (QA/SACs), World Calibration Centers (WCCs), Regional Calibration Centers (RCCs), and World Data Centers (WDCs) with responsibility for archiving and access to GAW data. Education, training, workshops, comparison campaigns, station audits/visits and twinning are also provided to build capacities in atmospheric sciences in Member countries.
49 CFR 192.481 - Atmospheric corrosion control: Monitoring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control: Monitoring. 192.481... Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as...
49 CFR 192.481 - Atmospheric corrosion control: Monitoring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control: Monitoring. 192.481... Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as...
49 CFR 192.481 - Atmospheric corrosion control: Monitoring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control: Monitoring. 192.481... Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as...
The future of imaging spectroscopy - Prospective technologies and applications
Schaepman, M.E.; Green, R.O.; Ungar, S.G.; Curtiss, B.; Boardman, J.; Plaza, A.J.; Gao, B.-C.; Ustin, S.; Kokaly, R.; Miller, J.R.; Jacquemoud, S.; Ben-Dor, E.; Clark, R.; Davis, C.; Dozier, J.; Goodenough, D.G.; Roberts, D.; Swayze, G.; Milton, E.J.; Goetz, A.F.H.
2006-01-01
Spectroscopy has existed for more than three centuries now. Nonetheless, significant scientific advances have been achieved. We discuss the history of spectroscopy in relation to emerging technologies and applications. Advanced focal plane arrays, optical design, and intelligent on-board logic are prime prospective technologies. Scalable approaches in pre-processing of imaging spectrometer data will receive additional focus. Finally, we focus on new applications monitoring transitional ecological zones, where human impact and disturbance have highest impact as well as in monitoring changes in our natural resources and environment We conclude that imaging spectroscopy enables mapping of biophysical and biochemical variables of the Earth's surface and atmospheric composition with unprecedented accuracy.
Clark, Deborah A
2004-03-29
How tropical rainforests are responding to the ongoing global changes in atmospheric composition and climate is little studied and poorly understood. Although rising atmospheric carbon dioxide (CO2) could enhance forest productivity, increased temperatures and drought are likely to diminish it. The limited field data have produced conflicting views of the net impacts of these changes so far. One set of studies has seemed to point to enhanced carbon uptake; however, questions have arisen about these findings, and recent experiments with tropical forest trees indicate carbon saturation of canopy leaves and no biomass increase under enhanced CO2. Other field observations indicate decreased forest productivity and increased tree mortality in recent years of peak temperatures and drought (strong El Niño episodes). To determine current climatic responses of forests around the world tropics will require careful annual monitoring of ecosystem performance in representative forests. To develop the necessary process-level understanding of these responses will require intensified experimentation at the whole-tree and stand levels. Finally, a more complete understanding of tropical rainforest carbon cycling is needed for determining whether these ecosystems are carbon sinks or sources now, and how this status might change during the next century.
The CCRUSH study: Characterization of coarse and fine particulate matter in northeastern Colorado
NASA Astrophysics Data System (ADS)
Clements, Nicholas Steven
Particulate matter in the troposphere adversely impacts human health when inhaled and alters climate through cloud formation processes and by absorbing/scattering light. Particles smaller than 2.5 mum in diameter (fine particulate matter; PM2.5), are typically emitted from combustion-related sources and can form and grow through secondary processing in the atmosphere. Coarse particles (PM10-2.5), ranging 2.5 to 10 mum, are typically generated through abrasive processes, such as erosion of road surfaces, entrained via resuspension, and settle quickly out of the atmosphere due to their large size. After deciding against regulating PM10-2.5 in 2006 citing, among other reasons, mixed results from epidemiological studies of the pollutant and lack of knowledge on health impacts in rural areas, the United States Environmental Protection Agency (US EPA) funded a series of studies that investigated the ambient composition, toxicology, and epidemiology of PM10-2.5. One such study, The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study, aimed to characterize the composition, sources, and health effects of PM10-2.5 in semi-arid northeastern Colorado and consisted of two field campaigns and an epidemiological study. Summarized here are the results from the two field campaigns, the first of which included over three years of continuous PM10-2.5 and PM2.5 mass concentration monitoring at multiple sites in urban-Denver and rural-Greeley, Colorado. This data set was used to characterize the spatiotemporal variability of PM10-2.5 and PM2.5. During the second year of continuous monitoring, PM 10-2.5 and PM2.5 filter samples were collected for compositional analyses that included: elemental composition, bulk elemental and organic carbon concentrations, water-soluble organic carbon concentrations, UV-vis absorbance, fluorescence spectroscopy, and endotoxin content. Elemental composition was used to understand enrichment of trace elements in atmospheric particles and to identify sources via positive matrix factorization (PMF). The organic fraction of both particulate size ranges was explored with a variety of bulk characterization techniques commonly utilized in analysis of soil and aquatic natural organic matter. To date, the CCRUSH study is one of the largest research efforts devoted to understanding PM10-2.5 and provides the US EPA with vital information that will be used in future policy making decisions regarding the regulation of this pollutant.
NASA Astrophysics Data System (ADS)
Randerson, J. T.; Still, C. J.; Ballé, J. J.; Fung, I. Y.; Doney, S. C.; Tans, P. P.; Conway, T. J.; White, J. W. C.; Vaughn, B.; Suits, N.; Denning, A. S.
2002-07-01
Estimating discrimination against 13C during photosynthesis at landscape, regional, and biome scales is difficult because of large-scale variability in plant stress, vegetation composition, and photosynthetic pathway. Here we present estimates of 13C discrimination for northern biomes based on a biosphere-atmosphere model and on National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory and Institute of Arctic and Alpine Research remote flask measurements. With our inversion approach, we solved for three ecophysiological parameters of the northern biosphere (13C discrimination, a net primary production light use efficiency, and a temperature sensitivity of heterotrophic respiration (a Q10 factor)) that provided a best fit between modeled and observed δ13C and CO2. In our analysis we attempted to explicitly correct for fossil fuel emissions, remote C4 ecosystem fluxes, ocean exchange, and isotopic disequilibria of terrestrial heterotrophic respiration caused by the Suess effect. We obtained a photosynthetic discrimination for arctic and boreal biomes between 19.0 and 19.6‰. Our inversion analysis suggests that Q10 and light use efficiency values that minimize the cost function covary. The optimal light use efficiency was 0.47 gC MJ-1 photosynthetically active radiation, and the optimal Q10 value was 1.52. Fossil fuel and ocean exchange contributed proportionally more to month-to-month changes in the atmospheric growth rate of δ13C and CO2 during winter months, suggesting that remote atmospheric observations during the summer may yield more precise estimates of the isotopic composition of the biosphere.
A green roof experimental site in the Mediterranean climate: the storm water quality issue.
Gnecco, Ilaria; Palla, Anna; Lanza, Luca G; La Barbera, Paolo
2013-01-01
Since 2007, the University of Genoa has been carrying out a monitoring programme to investigate the hydrologic response of green roofs in the Mediterranean climate by installing a green roof experimental site. In order to assess the influence of green roofs on the storm water runoff quality, water chemistry data have been included in the monitoring programme since 2010, providing rainfall and outflow data. For atmospheric source, the bulk deposition is collected to evaluate the role of the overall atmospheric deposition in storm water runoff quality. For subsurface outflow, a maximum of 24 composite samples are taken on an event basis, thus aiming at a full characterization of the outflow hydrograph. Water chemistry data reveal that the pollutant loads associated with green roof outflow is low; in particular, solids and metal concentrations are lower than values generally observed in storm water runoff from traditional rooftops. The concentration values of chemical oxygen demand, total dissolved solids, Fe, Ca and K measured in the subsurface outflow are significantly higher than those observed in the bulk deposition (p < 0.05). With respect to the atmospheric deposition, the green roof behaviour as a sink/source of pollutants is investigated based on both concentration and mass.
NASA Technical Reports Server (NTRS)
Carle, G. C.
1985-01-01
Gas chromatography (GC) technology was developed for flight experiments in solar system exploration. The GC is a powerful analytical technique with simple devices separating individual components from complex mixtures to make very sensitive quantitative and qualitative measurements. It monitors samples containing mixtures of fixed gases and volatile organic molecules. The GC was used on the Viking mission in support of life detection experiments and on the Pioneer Venus Large Probe to determine the composition of the venusian atmosphere. A flight GC is under development to study the progress and extent of STS astronaut denitrogenation prior to extravehicular activity. Advanced flight GC concepts and systems for future solar system exploration are also studied. Studies include miniature ionization detectors and associated control systems capable of detecting from ppb up to 100% concentration levels. Further miniaturization is investigated using photolithography and controlled chemical etching in silicon wafers. Novel concepts such as ion mobility drift spectroscopy and multiplex gas chromatography are also developed for future flight experiments. These powerful analytical concepts and associated hardware are ideal for the monitoring of cabin atmospheres containing potentially dangerous volatile compounds.
Space Observations for Global Change
NASA Technical Reports Server (NTRS)
Rasool, S. I.
1991-01-01
There is now compelling evidence that man's activities are changing both the composition of the atmospheric and the global landscape quite drastically. The consequences of these changes on the global climate of the 21st century is currently a hotly debated subject. Global models of a coupled Earth-ocean-atmosphere system are still very primitive and progress in this area appears largely data limited, specially over the global biosphere. A concerted effort on monitoring biospheric functions on scales from pixels to global and days to decades needs to be coordinated on an international scale in order to address the questions related to global change. An international program of space observations and ground research was described.
NASA Astrophysics Data System (ADS)
Levelt, P.; Veefkind, J. P.; Kleipool, Q.; Eskes, H.; A, R. V. D.; Mijling, B.; Tamminen, J.; Joiner, J.; Bhartia, P. K.
2015-12-01
In the last three decades the capabilities of measuring the atmospheric composition from space did grow tremendously with ESA's ENVISAT and NASA's Eos-Aura satellite programmes. The potential to operationally monitor the atmospheric composition, like the meteorological community is doing for the physical parameters, is now within reach. At the same time, the importance for society of operational environmental monitoring, related to the ozone layer, air quality and climate change, became apparent. The Ozone Monitoring Instrument (OMI), launched on board of NASA's EOS-Aura spacecraft in on July 15, 2004, provides unique contributions to air quality monitoring from Space. The combination of urban scale resolution (13 x 24 km2 in nadir) and daily global coverage proved to be key features for the air quality community. The OMI data is currently used for improving the air quality forecasts, for inverting high-resolution emission maps, for UV forecast and for volcanic plume warning systems for aviation. Due to its 11 year continuous operation OMI now provides the longest NO2 record from space, which is essential to understand the changes in emissions globally. In 2016 Tropospheric Monitoring Instrument (TROPOMI), will be launched on board ESA's Sentinel 5 Precursor satellite. TROPOMI will have a spatial resolution of 7x7 km2 in nadir; a more than 6 times improvement over OMI. The high spatial resolution serves two goals: (1) emissions sources can be detected with even better accuracy and (2) the number of cloud-free ground pixels will increase substantially. TROPOMI also adds additional spectral bands that allow for better cloud corrections, as well as the retrieval of carbon monoxide and methane. TROPOMI will be an important satellite mission for the Copernicus atmosphere service. TROPOMI will play a key role in the Air Quality Constellation, being the polar instruments that can link the 3 GEO UVN instruments, Sentinel 4, TEMPO and GEMS. Thus, TROPOMI can serve as a travelling standard that allows intercomparison of the calibration of the geostationary instruments. An overview of air quality applications, emission inversions and trend analyses will be presented, based on the 11 years of OMI data. An outlook will be presented on the potentials of TROPOMI, including its role in the Air Quality Constellation.
NASA Astrophysics Data System (ADS)
Haszpra, László; Hidy, Dóra; Taligás, Tímea; Barcza, Zoltán
2018-03-01
Nitrous oxide is one of the atmospheric greenhouse gases whose amount is significantly influenced by human activity. Its major anthropogenic sources are the agricultural soils but the emission is known only with large uncertainty yet. The paper presents a tall tower based measuring system installed in Hungary, which is designed for the long-term monitoring of nitrous oxide emission of a regionally typical composition of agricultural fields by means of eddy covariance technique. Due to the careful calibration of the gas analyzer applied the measuring system is also suitable for the recording of the atmospheric concentration of nitrous oxide on the globally compatible scale (WMO X2006A). The paper reports the results of the first two years of the monitoring program, which is the first of its kind in Central Europe. For the period of July 2015-June 2017 the concentration measurements indicate an increasing trend of 0.91 nmol mol-1 year-1 with an average concentration of 330.64 nmol mol-1. During the two years of the project, the monitoring system recorded a total of 441 ± 195 mg N2O-N m-2 nitrous oxide emission with late spring/early summer maximum. The measurements also revealed the episodic nature of the emission typically triggered by major precipitation events.
Mass spectrometry in the U.S. space program: past, present, and future.
Palmer, P T; Limero, T F
2001-06-01
Recent years have witnessed significant progress on the miniaturization of mass spectrometers for a variety of field applications. This article describes the development and application of mass spectrometry (MS) instrumentation to support of goals of the U.S. space program. Its main focus is on the two most common space-related applications of MS: studying the composition of planetary atmospheres and monitoring air quality on manned space missions. Both sets of applications present special requirements in terms of analytical performance (sensitivity, selectivity, speed, etc.), logistical considerations (space, weight, and power requirements), and deployment in perhaps the harshest of all possible environments (space). The MS instruments deployed on the Pioneer Venus and Mars Viking Lander missions are reviewed for the purposes of illustrating the unique features of the sample introduction systems, mass analyzers, and vacuum systems, and for presenting their specifications which are impressive even by today's standards. The various approaches for monitoring volatile organic compounds (VOCs) in cabin atmospheres are also reviewed. In the past, ground-based GC/MS instruments have been used to identify and quantify VOCs in archival samples collected during the Mercury, Apollo, Skylab, Space Shuttle, and Mir missions. Some of the data from the more recent missions are provided to illustrate the composition data obtained and to underscore the need for instrumentation to perform such monitoring in situ. Lastly, the development of two emerging technologies, Direct Sampling Ion Trap Mass Spectrometry (DSITMS) and GC/Ion Mobility Spectrometry (GC/IMS), will be discussed to illustrate their potential utility for future missions. c 2001 American Society for Mass Spectrometry.
Mass spectrometry in the U.S. space program: past, present, and future
NASA Technical Reports Server (NTRS)
Palmer, P. T.; Limero, T. F.
2001-01-01
Recent years have witnessed significant progress on the miniaturization of mass spectrometers for a variety of field applications. This article describes the development and application of mass spectrometry (MS) instrumentation to support of goals of the U.S. space program. Its main focus is on the two most common space-related applications of MS: studying the composition of planetary atmospheres and monitoring air quality on manned space missions. Both sets of applications present special requirements in terms of analytical performance (sensitivity, selectivity, speed, etc.), logistical considerations (space, weight, and power requirements), and deployment in perhaps the harshest of all possible environments (space). The MS instruments deployed on the Pioneer Venus and Mars Viking Lander missions are reviewed for the purposes of illustrating the unique features of the sample introduction systems, mass analyzers, and vacuum systems, and for presenting their specifications which are impressive even by today's standards. The various approaches for monitoring volatile organic compounds (VOCs) in cabin atmospheres are also reviewed. In the past, ground-based GC/MS instruments have been used to identify and quantify VOCs in archival samples collected during the Mercury, Apollo, Skylab, Space Shuttle, and Mir missions. Some of the data from the more recent missions are provided to illustrate the composition data obtained and to underscore the need for instrumentation to perform such monitoring in situ. Lastly, the development of two emerging technologies, Direct Sampling Ion Trap Mass Spectrometry (DSITMS) and GC/Ion Mobility Spectrometry (GC/IMS), will be discussed to illustrate their potential utility for future missions. c 2001 American Society for Mass Spectrometry.
NASA Astrophysics Data System (ADS)
Stauss, Sven; Ishii, Chikako; Pai, David Z.; Urabe, Keiichiro; Terashima, Kazuo
2014-06-01
Due to their small size, low-power consumption and potential for integration with other devices, microplasmas have been used increasingly for the synthesis of nanomaterials. Here, we have investigated the possibility of using dielectric barrier discharges generated in continuous flow glass microreactors for the synthesis of diamondoids, at temperatures of 300 and 320 K, and applied voltages of 3.2-4.3 kVp-p, at a frequency of 10 kHz. The microplasmas were generated in gas mixtures containing argon, methane, hydrogen and adamantane, which was used as a precursor and seed. The plasmas were monitored by optical emission spectroscopy measurements and the synthesized products were characterized by gas chromatography—mass spectrometry (GC-MS). Depending on the gas composition, the optical emission spectra contained CH and C2 bands of varying intensities. The GC-MS measurements revealed that diamantane can be synthesized by microplasmas generated at atmospheric pressure, and that the yields highly depend on the gas composition and the presence of carbon sources.
Al xGa 1-xN (0⩽ x⩽1) nanocrystalline powder by pyrolysis route
NASA Astrophysics Data System (ADS)
Garcia, R.; Srinivasan, S.; Contreras, O. E.; Thomas, A. C.; Ponce, F. A.
2007-10-01
A novel method to synthesize nanocrystalline Al xGa 1-xN (0⩽ x⩽1) powders is presented in this work. AlGaN nanocrystallites with the wurtzite structure were produced by thermal decomposition of a gallium-aluminum complex compound at 1000 °C in a three-zone horizontal quartz tube reactor under high-purity ammonia atmosphere. The crystallites showed a hexagonal structure, high homogeneity, and a narrow particle-size distribution at around 50 nm. A continuous composition range from 0 to 1 mol fraction can be reached by this method, allowing high control on the gallium and aluminum composition by monitoring the stoichiometry of the reaction between the metal nitrates and carbohydrazide. Low-temperature photoluminescence and cathodoluminescence studies showed that some impurities, such as carbon and oxygen, are unintentionally present in the final product and affect the optical properties. Subsequent thermal treatments between 900 and 1100 °C under an ammonia atmosphere significantly improved the quality of these materials.
The CEOS Atmospheric Composition Constellation: Enhancing the Value of Space-Based Observations
NASA Technical Reports Server (NTRS)
Eckman, Richard; Zehner, Claus; Al-Saadi, Jay
2015-01-01
The Committee on Earth Observation Satellites (CEOS) coordinates civil space-borne observations of the Earth. Participating agencies strive to enhance international coordination and data exchange and to optimize societal benefit. In recent years, CEOS has collaborated closely with the Group on Earth Observations (GEO) in implementing the Global Earth Observing System of Systems (GEOSS) space-based objectives. The goal of the CEOS Atmospheric Composition Constellation (ACC) is to collect and deliver data to improve monitoring, assessment and predictive capabilities for changes in the ozone layer, air quality and climate forcing associated with changes in the environment through coordination of existing and future international space assets. A project to coordinate and enhance the science value of a future constellation of geostationary sensors measuring parameters relevant to air quality supports the forthcoming European Sentinel-4, Korean GEMS, and US TEMPO missions. Recommendations have been developed for harmonization to mutually improve data quality and facilitate widespread use of the data products.
49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false What must I do to monitor atmospheric corrosion... monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as follows: If the pipeline islocated...
49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false What must I do to monitor atmospheric corrosion... monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as follows: If the pipeline islocated...
49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false What must I do to monitor atmospheric corrosion... monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as follows: If the pipeline islocated...
Assessment of CO2-Induced Geochemical Changes in Soil/Mineral-Water Systems
NASA Astrophysics Data System (ADS)
Jeong, H. Y.; Choi, H. J.
2016-12-01
Although the storage of CO2 in deep geological formations is considered the most promising sequestration path, there is still a risk that it may leak into the atmosphere. To ensure the secure operation of CO2 storage sites, thus, it is necessary to implement CO2 leakage monitoring systems. Furthermore, the leakage may alter geochemical properties of overlying geological units to have adverse environmental consequences. By elucidating geochemical changes due to CO2 leakage, it is possible to develop effective CO2 monitoring techniques and predict the influence of CO2 leakage. A series of batch experiments were conducted to simulate CO2-induced geochemical changes in soil/mineral-water systems. Soil samples, obtained from Eumseong basin in Eumseong-gun, Chungcheongbuk-do, were dried for 6 hours at 60° and then divided into two size fractions: < 106 and 106-212 mm. Minerals including mica/illite, vermiculite, and feldspar were purchased and purified if necessary. Prior to batch experiments, soils and minerals were characterized for surface area, mineralogy, elemental composition, carbon and nitrogen contents, pH buffering capacity, and metal extractability. Batch experiments were initiated by reacting 100% CO2 atmosphere with aqueous suspensions of 120 g soils or 50 g minerals in 3,000 mL of 10 mM CsClO4 at room temperature. In parallel, the batches having the same soil/mineral compositions were run under the ambient air as controls. To prevent microbial activities, all batches were sterilized with 0.03% HCHO. To track geochemical changes, pH and electrical conductivity were monitored. Also, while solutions were regularly sampled and analyzed for trace metals as well as main cations and anions, solid phases were sampled to observe changes in mineralogical compositions. Geochemical changes in both solution and solid phases during the initial 6 month reaction will be presented. Acknowledgement: The "R&D Project on Environmental Management of Geologic CO2 Storage" from the KEITI (Project Number: 2014001810003).
NASA Astrophysics Data System (ADS)
Galewsky, J.; Noone, D.; Sharp, Z.; Worden, J.
2009-04-01
The isotopic composition of water vapor (2H/1H and 18O/16 ratios) provides unique information on the transport pathways that link water sources to regional sinks, and thus proves useful in understanding large scale atmospheric humidity budgets. Recent advances in measurement technology allow the monitoring of water vapor isotope composition in ways which has can revolutionize investigations of atmospheric hydrology. Traditional measurement of isotopic composition requires trapping of samples with either large volume vacuum flasks or by trapping liquid samples with cryogens for later analyses using mass spectrometry, and are laborious and seldom span more than just short dedicated observational periods. On the other hand, laser absorption spectroscopy can provide almost continuous and autonomous in situ measurements of isotope abundances with precision almost that of traditional mass spectrometry, and observations from spacecraft can make almost daily maps of the global isotope distributions. In October of 2008 three laser based spectrometers were deployed at the Mauna Loa Laboratory in Hawaii to make continuous measurement of the 2H and 18O abundance of free tropospheric water vapor. These results are compared with traditional measurements and with measurements from two satellite platforms. While providing field validation of the new methodologies, the data show variability which captures the transport processes in the region. The data are used to characterize the role of large scale mixing of dry air, the influence of the boundary layer and the importance of moist convection in controlling the low humidity of subtropical air near Hawaii. Although the record is short, it demonstrates the usefulness of using robust isotope measurements to understand the budgets of the most important greenhouse gas. This work motivates establishing a continuous record of isotopes measurement at baseline sites, like Mauna Loa, such that the changes in water cycle can be understood and monitored as climate changes.
OH-initiated heterogeneous aging of highly oxidized organic aerosol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kessler, Sean H.; Nah, Theodora; Daumit, Kelly E.
2011-12-05
The oxidative evolution (“aging”) of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter, but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicron particles composed of model oxidized organics—1,2,3,4-butanetetracarboxylic acid (C{sub 8}H{sub 10}O{sub 8}), citric acid (C{sub 6}H{sub 8}O{sub 7}), tartaric acid (C{sub 4}H{sub 6}O{sub 6}), and Suwannee River fulvic acid—were oxidized by gas-phase OH in amore » flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1-2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.« less
F Bidleman, Terry; M Jantunen, Liisa; Binnur Kurt-Karakus, Perihan; Wong, Fiona; Hung, Hayley; Ma, Jianmin; Stern, Gary; Rosenberg, Bruno
2013-01-01
Elimination of persistent organic pollutants (POPs) under national and international regulations reduces "primary" emissions, but "secondary" emissions continue from residues deposited in soil, water, ice and vegetation during former years of usage. In a future, secondary source controlled world, POPs will follow the carbon cycle and biogeochemical processes will determine their transport, accumulation and fate. Climate change is likely to affect mobilisation of POPs through e.g., increased temperature, altered precipitation and wind patterns, flooding, loss of ice cover in polar regions, melting glaciers, and changes in soil and water microbiology which affect degradation and transformation. Chiral compounds offer advantages for following transport and fate pathways because of their ability to distinguish racemic (newly released or protected from microbial attack) and nonracemic (microbially degraded) sources. This paper discusses the rationale for this approach and suggests applications where chiral POPs could aid investigation of climate-mediated exchange and degradation processes. Multiyear measurements of two chiral POPs, trans-chlordane and α-HCH, at a Canadian Arctic air monitoring station show enantiomer compositions which cycle seasonally, suggesting varying source contributions which may be under climatic control. Large-scale shifts in the enantioselective metabolism of chiral POPs in soil and water might influence the enantiomer composition of atmospheric residues, and it would be advantageous to include enantiospecific analysis in POPs monitoring programs.
Variation of organic matter quantity and quality in streams at Critical Zone Observatory watersheds
Miller, Matthew P.; Boyer, Elizabeth W.; McKnight, Diane M.; Brown, Michael G.; Gabor, Rachel S.; Hunsaker, Carolyn T.; Iavorivska , Lidiia; Inamdar, Shreeram; Kaplan, Louis A.; Johnson, Dale W.; Lin, Henry; McDowell, William H.; Perdrial, Julia N.
2016-01-01
The quantity and chemical composition of dissolved organic matter (DOM) in surface waters influence ecosystem processes and anthropogenic use of freshwater. However, despite the importance of understanding spatial and temporal patterns in DOM, measures of DOM quality are not routinely included as part of large-scale ecosystem monitoring programs and variations in analytical procedures can introduce artifacts. In this study, we used consistent sampling and analytical methods to meet the objective of defining variability in DOM quantity and quality and other measures of water quality in streamflow issuing from small forested watersheds located within five Critical Zone Observatory sites representing contrasting environmental conditions. Results show distinct separations among sites as a function of water quality constituents. Relationships among rates of atmospheric deposition, water quality conditions, and stream DOM quantity and quality are consistent with the notion that areas with relatively high rates of atmospheric nitrogen and sulfur deposition and high concentrations of divalent cations result in selective transport of DOM derived from microbial sources, including in-stream microbial phototrophs. We suggest that the critical zone as a whole strongly influences the origin, composition, and fate of DOM in streams. This study highlights the value of consistent DOM characterization methods included as part of long-term monitoring programs for improving our understanding of interactions among ecosystem processes as controls on DOM biogeochemistry.
Chiral Chemicals as Tracers of Atmospheric Sources and Fate Processes in a World of Changing Climate
F. Bidleman, Terry; M. Jantunen, Liisa; Binnur Kurt-Karakus, Perihan; Wong, Fiona; Hung, Hayley; Ma, Jianmin; Stern, Gary; Rosenberg, Bruno
2013-01-01
Elimination of persistent organic pollutants (POPs) under national and international regulations reduces “primary” emissions, but “secondary” emissions continue from residues deposited in soil, water, ice and vegetation during former years of usage. In a future, secondary source controlled world, POPs will follow the carbon cycle and biogeochemical processes will determine their transport, accumulation and fate. Climate change is likely to affect mobilisation of POPs through e.g., increased temperature, altered precipitation and wind patterns, flooding, loss of ice cover in polar regions, melting glaciers, and changes in soil and water microbiology which affect degradation and transformation. Chiral compounds offer advantages for following transport and fate pathways because of their ability to distinguish racemic (newly released or protected from microbial attack) and nonracemic (microbially degraded) sources. This paper discusses the rationale for this approach and suggests applications where chiral POPs could aid investigation of climate-mediated exchange and degradation processes. Multiyear measurements of two chiral POPs, trans-chlordane and α-HCH, at a Canadian Arctic air monitoring station show enantiomer compositions which cycle seasonally, suggesting varying source contributions which may be under climatic control. Large-scale shifts in the enantioselective metabolism of chiral POPs in soil and water might influence the enantiomer composition of atmospheric residues, and it would be advantageous to include enantiospecific analysis in POPs monitoring programs. PMID:24349938
Goddard Atmospheric Composition Data Center: Aura Data and Services in One Place
NASA Technical Reports Server (NTRS)
Leptoukh, G.; Kempler, S.; Gerasimov, I.; Ahmad, S.; Johnson, J.
2005-01-01
The Goddard Atmospheric Composition Data and Information Services Center (AC-DISC) is a portal to the Atmospheric Composition specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques for the better science data usage. It provides convenient access to Atmospheric Composition data and information from various remote-sensing missions, from TOMS, UARS, MODIS, and AIRS, to the most recent data from Aura OMI, MLS, HIRDLS (once these datasets are released to the public), as well as Atmospheric Composition datasets residing at other remote archive site.
The Problem of Spectral Mimicry of Supergiants
NASA Astrophysics Data System (ADS)
Klochkova, V. G.; Chentsov, E. L.
2018-01-01
The phenomenon of spectral mimicry refers to the fact that hypergiants and post-AGB supergiants—stars of different masses in fundamentally different stages of their evolution—have similar optical spectra, and also share certain other characteristics (unstable extended atmospheres, expanding dust-gas envelopes, high IR excesses). As a consequence, it is not always possible to distinguish post-AGB stars from hypergiants based on individual spectral observations in the optical. Examples of spectral mimicry are analyzed using uniform, high-quality spectral material obtained on the 6-m telescope of the Special Astrophysical Observatory in the course of long-term monitoring of high-luminosity stars. It is shown that unambiguously resolving the mimicry problem for individual stars requires the determination of a whole set of parameters: luminosity, wind parameters, spectral energy distribution, spectral features, velocity field in the atmosphere and circumstellar medium, behavior of the parameters with time, and the chemical composition of the atmosphere.
NASA Astrophysics Data System (ADS)
Drozd, Greg T.; Worton, David R.; Aeppli, Christoph; Reddy, Christopher M.; Zhang, Haofei; Variano, Evan; Goldstein, Allen H.
2015-11-01
Releases of hydrocarbons from oil spills have large environmental impacts in both the ocean and atmosphere. Oil evaporation is not simply a mechanism of mass loss from the ocean, as it also causes production of atmospheric pollutants. Monitoring atmospheric emissions from oil spills must include a broad range of volatile organic compounds (VOC), including intermediate-volatile and semivolatile compounds (IVOC, SVOC), which cause secondary organic aerosol (SOA) and ozone production. The Deepwater Horizon (DWH) disaster in the northern Gulf of Mexico during Spring/Summer of 2010 presented a unique opportunity to observe SOA production due to an oil spill. To better understand these observations, we conducted measurements and modeled oil evaporation utilizing unprecedented comprehensive composition measurements, achieved by gas chromatography with vacuum ultraviolet time of flight mass spectrometry (GC-VUV-HR-ToFMS). All hydrocarbons with 10-30 carbons were classified by degree of branching, number of cyclic rings, aromaticity, and molecular weight; these hydrocarbons comprise ˜70% of total oil mass. Such detailed and comprehensive characterization of DWH oil allowed bottom-up estimates of oil evaporation kinetics. We developed an evaporative model, using solely our composition measurements and thermodynamic data, that is in excellent agreement with published mass evaporation rates and our wind-tunnel measurements. Using this model, we determine surface slick samples are composed of oil with a distribution of evaporative ages and identify and characterize probable subsurface transport of oil.
Monitoring and control of atmosphere in a closed environment
NASA Technical Reports Server (NTRS)
Humphries, R.; Perry, J.
1991-01-01
Applications requiring new technologies for atmosphere monitoring and control in the closed environment and their principal functions aboard the Space Station Freedom are described. Oxygen loop closure, involving the conversion of carbon dioxide to oxygen; carbon dioxide reduction and removal; and monitoring of atmospheric contamination are discussed. The Trace Contaminant Monitor, the Major Constituent Analyzer, the Carbon Dioxide Monitor, and the Particulate Counter Monitor are discussed.
Chamberlain, Samuel D; Ingraffea, Anthony R; Sparks, Jed P
2016-11-01
Natural gas leakage and combustion are major sources of methane (CH 4 ) and carbon dioxide (CO 2 ), respectively; however, our understanding of emissions from cities is limited. We mapped distribution pipeline leakage using a mobile CH 4 detection system, and continuously monitored atmospheric CO 2 and CH 4 concentrations and carbon isotopes (δ 13 C-CO 2 and δ 13 C-CH 4 ) for one-year above Ithaca, New York. Pipeline leakage rates were low (<0.39 leaks mile -1 ), likely due to the small extent of cast iron and bare steel within the distribution pipeline system (2.6%). Our atmospheric monitoring demonstrated that the isotopic composition of locally emitted CO 2 approached the δ 13 C range of natural gas combustion in winter, correlating to natural gas power generation patterns at Cornell's Combined Heat and Power Plant located 600 m southeast of the monitoring site. Atmospheric CH 4 plumes were primarily of natural gas origin, were observed intermittently throughout the year, and were most frequent in winter and spring. No correlations between the timing of atmospheric natural gas CH 4 plumes and Cornell Plant gas use patterns could be drawn. However, elevated CH 4 and CO 2 concentrations were observed coincident with high winds from the southeast, and the plant is the only major emission source in that wind sector. Our results demonstrate pipeline leakage rates are low in cities with a low extent of leak prone pipe, and natural gas power facilities may be an important source of urban and suburban emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.
How to most effectively expand the global surface ozone observing network
NASA Astrophysics Data System (ADS)
Sofen, E. D.; Bowdalo, D.; Evans, M. J.
2016-02-01
Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12-17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under-observed. The current network is unlikely to see the impact of the El Niño-Southern Oscillation (ENSO) but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which would help to close the gap in our ability to measure global surface ozone. An additional 20 surface ozone monitoring sites (a 20 % increase in the World Meteorological Organization Global Atmosphere Watch (WMO GAW) ozone sites or a 1 % increase in the total background network) located on 10 islands and in 10 continental regions would almost double the area observed. The cost of this addition to the network is small compared to other expenditure on atmospheric composition research infrastructure and would provide a significant long-term benefit to our understanding of the composition of the atmosphere, information which will also be available for consideration by air quality control managers and policy makers.
NASA Astrophysics Data System (ADS)
Edwards, D. P.
2015-12-01
This presentation describes proposed satellite carbon measurements from the CHRONOS mission. The primary goal of this experiment is to measure the atmospheric pollutants carbon monoxide (CO) and methane (CH4) from geostationary orbit, with hourly observations of North America at high spatial resolution. CHRONOS observations would provide measurements not currently available or planned as part of a surface, suborbital and satellite integrated observing system for atmospheric composition over North America. Carbon monoxide is produced by combustion processes such as urban activity and wildfires, and serves as a proxy for other combustion pollutants that are not easily measured. Methane has diverse anthropogenic sources ranging from fossil fuel production, animal husbandry, agriculture and waste management. The impact of gas exploration in the Western States of the USA and oil extraction from the Canadian tar sands will be particular foci of the mission, as will the poorly-quantified natural CH4 emissions from wetlands and thawing permafrost. In addition to characterizing pollutant sources, improved understanding of the domestic CH4 budget is a priority for policy decisions related to short-lived climate forcers. A primary motivation for targeting CO is its value as a tracer of atmospheric pollution, and CHRONOS measurements will provide insight into local and long-range transport across the North American continent, as well as the processes governing the entrainment and venting of pollution in and out of the planetary boundary layer. As a result of significantly improved characterization of diurnal changes in atmospheric composition, CHRONOS observations will find direct societal applications for air quality regulation and forecasting. We present a quantification of this expected improvement in the prediction of near-surface concentrations when CHRONOS measurements are used in Observation System Simulation Experiments (OSSEs). If CHRONOS and the planned NASA Earth Venture TEMPO (Tropospheric Emissions: Monitoring of Pollution) mission were implemented concurrently, the resulting measurement suite would efficiently and expeditiously serve to address the science goals of the Decadal Survey proposed GEO-CAPE mission.
NASA Astrophysics Data System (ADS)
Boulanger, Damien; Gautron, Benoit; Thouret, Valérie; Fontaine, Alain
2016-04-01
IAGOS (In-service Aircraft for a Global Observing System) is a European Research Infrastructure which aims at the provision of long-term, regular and spatially resolved in situ observations of the atmospheric composition. IAGOS observation systems are deployed on a fleet of commercial aircraft. The IAGOS database is an essential part of the global atmospheric monitoring network. It contains IAGOS-core data and IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) data. The IAGOS Database Portal (http://www.iagos.fr, damien.boulanger@obs-mip.fr) is part of the French atmospheric chemistry data center AERIS (http://www.aeris-data.fr). The new IAGOS Database Portal has been released in December 2015. The main improvement is the interoperability implementation with international portals or other databases in order to improve IAGOS data discovery. In the frame of the IGAS project (IAGOS for the Copernicus Atmospheric Service), a data network has been setup. It is composed of three data centers: the IAGOS database in Toulouse; the HALO research aircraft database at DLR (https://halo-db.pa.op.dlr.de); and the CAMS data center in Jülich (http://join.iek.fz-juelich.de). The CAMS (Copernicus Atmospheric Monitoring Service) project is a prominent user of the IGAS data network. The new portal provides improved and new services such as the download in NetCDF or NASA Ames formats, plotting tools (maps, time series, vertical profiles, etc.) and user management. Added value products are available on the portal: back trajectories, origin of air masses, co-location with satellite data, etc. The link with the CAMS data center, through JOIN (Jülich OWS Interface), allows to combine model outputs with IAGOS data for inter-comparison. Finally IAGOS metadata has been standardized (ISO 19115) and now provides complete information about data traceability and quality.
NASA Astrophysics Data System (ADS)
Lopez-Veneroni, D. G.; Vega, E.
2013-05-01
The stable carbon isotope composition of atmospheric particles (PM2.5) was measured at La Merced (MER), a commercial site in the eastern sector, and at Xalostoc (XAL) an industrial site in the NE sector of Mexico City, during three sampling periods in autumn 2003, and spring and autumn 2004. At each site and sampling campaign particle samples were collected daily with minivol samplers during two week periods. Ancillary data included organic and elemental carbon, trace elements and ionic species. This data base was complement with air quality data from the RAMA (Automatic Atmospheric Monitoring Network). In general, particle concentrations, ionic species and some air quality species showed higher concentrations in autumn and lowest values in spring. Moreover, the concentrations of these chemical species were highest at XAL compared to MER. The stable carbon isotope composition of PM2.5 during autumn 2003 and spring 2004 had and average value of -26.04 (± 1.54) ‰ vs. PDB. Differences in the isotopic composition between the two sites were non significant. The average δ13C during these seasons were 1 ‰ lighter relative to data collected previously at these sites during 2000 and 2001, and is consistent with a predominant source of hydrocarbon combustion. In autumn 2004, however, average δ13C at XAL and MER increased to -22.8 (± 0.9) and -20.6 (± 3.1) ‰, respectively. Organic carbon concentrations during this period increased concomitantly at these sites. The shift in the isotopic composition in ambient particles suggests a predominance of soil-derived carbon during this period. The possible causes and implications of this are discussed.
NASA Astrophysics Data System (ADS)
Wagner, A.; Blechschmidt, A.-M.; Bouarar, I.; Brunke, E.-G.; Clerbaux, C.; Cupeiro, M.; Cristofanelli, P.; Eskes, H.; Flemming, J.; Flentje, H.; George, M.; Gilge, S.; Hilboll, A.; Inness, A.; Kapsomenakis, J.; Richter, A.; Ries, L.; Spangl, W.; Stein, O.; Weller, R.; Zerefos, C.
2015-03-01
Monitoring Atmospheric Composition and Climate (MACC/MACCII) currently represents the European Union's Copernicus Atmosphere Monitoring Service (CAMS) (http://www.copernicus.eu), which will become fully operational in the course of 2015. The global near-real-time MACC model production run for aerosol and reactive gases provides daily analyses and 5 day forecasts of atmospheric composition fields. It is the only assimilation system world-wide that is operational to produce global analyses and forecasts of reactive gases and aerosol fields. We have investigated the ability of the MACC analysis system to simulate tropospheric concentrations of reactive gases (CO, O3, and NO2) covering the period between 2009 and 2012. A validation was performed based on CO and O3 surface observations from the Global Atmosphere Watch (GAW) network, O3 surface observations from the European Monitoring and Evaluation Programme (EMEP) and furthermore, NO2 tropospheric columns derived from the satellite sensors SCIAMACHY and GOME-2, and CO total columns derived from the satellite sensor MOPITT. The MACC system proved capable of reproducing reactive gas concentrations in consistent quality, however, with a seasonally dependent bias compared to surface and satellite observations: for northern hemispheric surface O3 mixing ratios, positive biases appear during the warm seasons and negative biases during the cold parts of the years, with monthly Modified Normalised Mean Biases (MNMBs) ranging between -30 and 30% at the surface. Model biases are likely to result from difficulties in the simulation of vertical mixing at night and deficiencies in the model's dry deposition parameterization. Observed tropospheric columns of NO2 and CO could be reproduced correctly during the warm seasons, but are mostly underestimated by the model during the cold seasons, when anthropogenic emissions are at a highest, especially over the US, Europe and Asia. Monthly MNMBs of the satellite data evaluation range between -110 and 40% for NO2 and at most -20% for CO, over the investigated regions. The underestimation is likely to result from a combination of errors concerning the dry deposition parameterization and certain limitations in the current emission inventories, together with an insufficiently established seasonality in the emissions.
NASA Astrophysics Data System (ADS)
Vrancken, D.; Paijmans, B.; Fussen, D.; Neefs, E.; Loodts, N.; Dekemper, E.; Vahellemont, F.; Devos, L.; Moelans, W.; Nevejans, D.; Schroeven-Deceuninck, H.; Bernaerts, D.; Zender, J.
2008-08-01
There is more and more interest in the understanding and the monitoring of the physics and chemistry of the Earth's atmosphere and its impact on the climate change. Currently a significantly high number of sounders provide the required data to monitor the changes in atmosphere composition, but a dramatic drop in operational atmosphere monitoring missions is expected around 2010. This drop is mainly visible in sounders capable of a high vertical resolution. Currently, instruments on ENVISAT and METOP provide relevant data but this is envisaged to be insufficient to ensure full spatial and temporal coverage and redundancy in the measurement data set. ALTIUS (Atmospheric Limb Tracker for the Investigation of the Upcoming Stratosphere) is a remote sounding experiment proposed by the Belgian Institute for Space Aeronomy (BIRA/IASB) for which a feasibility study was initiated with BELSPO (Belgian Science Policy) and ESA support. The main objective of this study phase was to establish a mission concept, to define the required payload and to establish a satellite platform design. The study was led by the BIRA/IASB team and performed in close collaboration with OIP (payload developer) and Verhaert Space (spacecraft developer). The mission scenario includes bright limb observations in basically all directions, solar occultations around the terminator passages and star occultations during eclipse. These observation modes allow imaging the atmosphere with a high vertical resolution. The spacecraft will be operated in a 10:00 sun-synchronous orbit at an altitude of 695 km, allowing a 3-day revisit time. The envisaged payload for the ALTIUS mission is an imaging spectrometer, observing in the UV, the VIS and the NIR spectral ranges. For each spectral range, an AOTF (Acousto-Optical Tunable Filter) will permit to perform observations of selectable small wavelength domains. A typical set of 10 wavelengths will be recorded within 1 second. The different operational modes impose a high agility capability on the platform. Furthermore, the quasi- continuous monitoring by the payload will drive the design of the platform in terms of power and downlink capabilities. The mission will be performed using a derivative of the PROBA platform, developed by Verhaert Space. This paper will present the mission requirements for the ALTIUS mission, the envisaged instrument, the spacecraft concept design and the related mission analysis.
Anatomy of a fumarolic system inferred from a multiphysics approach.
Gresse, Marceau; Vandemeulebrouck, Jean; Byrdina, Svetlana; Chiodini, Giovanni; Roux, Philippe; Rinaldi, Antonio Pio; Wathelet, Marc; Ricci, Tullio; Letort, Jean; Petrillo, Zaccaria; Tuccimei, Paola; Lucchetti, Carlo; Sciarra, Alessandra
2018-05-15
Fumaroles are a common manifestation of volcanic activity that are associated with large emissions of gases into the atmosphere. These gases originate from the magma, and they can provide indirect and unique insights into magmatic processes. Therefore, they are extensively used to monitor and forecast eruptive activity. During their ascent, the magmatic gases interact with the rock and hydrothermal fluids, which modify their geochemical compositions. These interactions can complicate our understanding of the real volcanic dynamics and remain poorly considered. Here, we present the first complete imagery of a fumarolic plumbing system using three-dimensional electrical resistivity tomography and new acoustic noise localization. We delineate a gas reservoir that feeds the fumaroles through distinct channels. Based on this geometry, a thermodynamic model reveals that near-surface mixing between gas and condensed steam explains the distinct geochemical compositions of fumaroles that originate from the same source. Such modeling of fluid interactions will allow for the simulation of dynamic processes of magmatic degassing, which is crucial to the monitoring of volcanic unrest.
NASA Astrophysics Data System (ADS)
Steill, J. D.; Compton, R. N.; Hager, J. S.
2006-12-01
Ground-based solar infrared absorption spectroscopy coupled with open-path spectroscopy provides a means for analysis of the highly variable contribution of the boundary layer to problems of radiative transfer and atmospheric chemistry. This is of particular importance in geographic regions of significant local anthropogenic influence and large tropospheric fluctuations in general. A Bomem DA8 FT-IR integrated with a sun-tracking and open-path system (~0.5 km) is located at The University of Tennessee, in downtown Knoxville and near The Great Smoky Mountains National Park, an area known for problematic air quality. From atmospheric absorption spectra, boundary layer concentrations as well as total column abundances and vertical concentration profiles are derived. A record of more than 1000 solar-sourced atmospheric spectra covering a period greater than three years in duration is under analysis to characterize the limit of precision in total column abundance determinations for many gases such as O3, CO, CH4, N2O, HF and CO2. Initial efforts using atmospheric O2 as a calibration indicate the solar-sourced spectra may not meet the precision required for the highly accurate atmospheric CO2 quantification by such global efforts as the OCO and NDSC. However, the determined variability of CO2 and other gas concentrations is statistically significant and is indicative of local concentration fluxes pertinent to the regional atmospheric chemistry. This is therefore an important data record in the southeastern United States, a somewhat under- sampled geographic region. In addition to providing a means to improve the analysis of solar spectra, the open-path data is useful for elucidation of seasonal and diurnal trends in the trace gas concentrations. This provides an urban air quality monitor in addition to improving the description of the total atmospheric composition, as the open-path system is stable and permanent.
Hofman, Jelle; Maher, Barbara A; Muxworthy, Adrian R; Wuyts, Karen; Castanheiro, Ana; Samson, Roeland
2017-06-20
Biomagnetic monitoring of atmospheric pollution is a growing application in the field of environmental magnetism. Particulate matter (PM) in atmospheric pollution contains readily measurable concentrations of magnetic minerals. Biological surfaces, exposed to atmospheric pollution, accumulate magnetic particles over time, providing a record of location-specific, time-integrated air quality information. This review summarizes current knowledge of biological material ("sensors") used for biomagnetic monitoring purposes. Our work addresses the following: the range of magnetic properties reported for lichens, mosses, leaves, bark, trunk wood, insects, crustaceans, mammal and human tissues; their associations with atmospheric pollutant species (PM, NO x , trace elements, PAHs); the pros and cons of biomagnetic monitoring of atmospheric pollution; current challenges for large-scale implementation of biomagnetic monitoring; and future perspectives. A summary table is presented, with the aim of aiding researchers and policy makers in selecting the most suitable biological sensor for their intended biomagnetic monitoring purpose.
Monitoring of PM10 and PM2.5 around primary particulate anthropogenic emission sources
NASA Astrophysics Data System (ADS)
Querol, Xavier; Alastuey, Andrés; Rodriguez, Sergio; Plana, Felicià; Mantilla, Enrique; Ruiz, Carmen R.
Investigations on the monitoring of ambient air levels of atmospheric particulates were developed around a large source of primary anthropogenic particulate emissions: the industrial ceramic area in the province of Castelló (Eastern Spain). Although these primary particulate emissions have a coarse grain-size distribution, the atmospheric transport dominated by the breeze circulation accounts for a grain-size segregation, which results in ambient air particles occurring mainly in the 2.5-10 μm range. The chemical composition of the ceramic particulate emissions is very similar to the crustal end-member but the use of high Al, Ti and Fe as tracer elements as well as a peculiar grain-size distribution in the insoluble major phases allow us to identify the ceramic input in the bulk particulate matter. PM2.5 instead of PM10 monitoring may avoid the interference of crustal particles without a major reduction in the secondary anthropogenic load, with the exception of nitrate. However, a methodology based in PM2.5 measurement alone is not adequate for monitoring the impact of primary particulate emissions (such as ceramic emissions) on air quality, since the major ambient air particles derived from these emissions are mainly in the range of 2.5-10 μm. Consequently, in areas characterised by major secondary particulate emissions, PM2.5 monitoring should detect anthropogenic particulate pollutants without crustal particulate interference, whereas PM10 measurements should be used in areas with major primary anthropogenic particulate emissions.
NASA Astrophysics Data System (ADS)
Iannone, Rosario Q.; Romanini, Daniele; Cattani, Olivier; Meijer, Harro A. J.; Kerstel, Erik R. Th.
2010-05-01
Water vapor isotopes represent an innovative and excellent tool for understanding complex mechanisms in the atmospheric water cycle over different time scales, and they can be used for a variety of applications in the fields of paleoclimatology, hydrology, oceanography, and ecology. We use an ultrasensitive near-infrared spectrometer, originally designed for use on airborne platforms in the upper troposphere and lower stratosphere, to measure the water deuterium and oxygen-18 isotope ratios in situ, in ground-level tropospheric moisture, with a high temporal resolution (from 300 s down to less than 1 s). We present some examples of continuous monitoring of near-surface atmospheric moisture, demonstrating that our infrared laser spectrometer could be used successfully to record high-concentration atmospheric water vapor mixing ratios in continuous time series, with a data coverage of ˜90%, interrupted only for daily calibration to two isotope ratio mass spectrometry-calibrated local water standards. The atmospheric data show that the water vapor isotopic composition exhibits a high variability that can be related to weather conditions, especially to changes in relative humidity. Besides, the results suggest that observed spatial and temporal variations of the stable isotope content of atmospheric water vapor are strongly related to water vapor transport in the atmosphere.
Boron Dissolved and Particulate Atmospheric Inputs to a Forest Ecosystem (Northeastern France).
Roux, Philippe; Turpault, Marie-Pierre; Kirchen, Gil; Redon, Paul-Olivier; Lemarchand, Damien
2017-12-19
Boron concentrations and isotopic compositions of atmospheric dust and dissolved depositions were monitored over a two-year period (2012-2013) in the forest ecosystem of Montiers (Northeastern France). This time series allows the determination of the boron atmospheric inputs to this forest ecosystem and contributes to refine our understanding of the sources and processes that control the boron atmospheric cycle. Mean annual dust and dissolved boron atmospheric depositions are comparable in size (13 g·ha -1 ·yr -1 and 16 g·ha -1 ·yr -1 , respectively), which however show significant intra- and interannual variations. Boron isotopes in dust differ from dissolved inputs, with an annual mean value of +1 ‰ and +18 ‰ for, respectively. The notable high boron contents (190-390 μg·g -1 ) of the dust samples are interpreted as resulting from localized spreading of boron-rich fertilizers, thus indicating a significant local impact of regional agricultural activities. Boron isotopes in dissolved depositions show a clear seasonal trend. The absence of correlation with marine cyclic solutes contradicts a control of atmospheric boron by dissolution of seasalts. Instead, the boron data from this study are consistent with a Rayleigh-like evolution of the atmospheric gaseous boron reservoir with possible but limited anthropogenic and/or biogenic contributions.
The GMES Sentinel-5 mission for operational atmospheric monitoring: status and developments
NASA Astrophysics Data System (ADS)
Sierk, Bernd; Bezy, Jean-Loup; Caron, Jerôme; Meynard, Roland; Veihelmann, Ben; Ingmann, Paul
2017-11-01
Sentinel-5 is an atmospheric monitoring mission planned in the frame of the joint EU/ESA initiative Global Monitoring for Environment and Security (GMES). The objective of the mission, planned to be launched in 2020, is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications.
Atmospheric Mercury Deposition Monitoring – National Atmospheric Deposition Program (NADP)
The National Atmospheric Deposition Program (NADP) developed and operates a collaborative network of atmospheric mercury monitoring sites based in North America – the Atmospheric Mercury Network (AMNet). The justification for the network was growing interest and demand from many ...
NASA Astrophysics Data System (ADS)
Chao, H. Jasmine; Chan, Chang-Chuan; Rao, Carol Y.; Lee, Chung-Te; Chuang, Ying-Chih; Chiu, Yueh-Hsiu; Hsu, Hsiao-Hsien; Wu, Yi-Hua
2012-03-01
This study was conducted to evaluate the effects of transported Asian dust and other environmental parameters on the levels and compositions of ambient fungi in the atmosphere of northern Taiwan. We monitored Asian dust events in Taipei County, Taiwan from January 2003 to June 2004. We used duplicate Burkard portable air samplers to collect ambient fungi before, during, and after dust events. Six transported Asian dust events were monitored during the study period. Elevated concentrations of Aspergillus ( A. niger, specifically), Coelomycetes, Rhinocladiella, Sporothrix and Verticillium were noted ( p < 0.05) during Asian dust periods. Botryosporium and Trichothecium were only recovered during dust event days. Multiple regression analysis showed that fungal levels were positively associated with temperature, wind speed, rainfall, non-methane hydrocarbons and particulates with aerodynamic diameters ≤10 μm (PM10), and negatively correlated with relative humidity and ozone. Our results demonstrated that Asian dust events affected ambient fungal concentrations and compositions in northern Taiwan. Ambient fungi also had complex dynamics with air pollutants and meteorological factors. Future studies should explore the health impacts of ambient fungi during Asian dust events, adjusting for the synergistic/antagonistic effects of weather and air pollutants.
Flexible wire-shaped strain sensor from cotton thread for human health and motion detection.
Li, Yuan-Qing; Huang, Pei; Zhu, Wei-Bin; Fu, Shao-Yun; Hu, Ning; Liao, Kin
2017-03-21
In this work, a wire-shaped flexible strain sensor was fabricated by encapsulating conductive carbon thread (CT) with polydimethylsiloxane (PDMS) elastomer. The key strain sensitive material, CT, was prepared by pyrolysing cotton thread in N 2 atmosphere. The CT/PDMS composite wire shows a typical piezo-resistive behavior with high strain sensitivity. The gauge factors (GF) calculated at low strain of 0-4% and high strain of 8-10% are 8.7 and 18.5, respectively, which are much higher than that of the traditional metallic strain sensor (GF around 2). The wire-shaped CT/PDMS composite sensor shows excellent response to cyclic tensile loading within the strain range of 0-10%, the frequency range of 0.01-10 Hz, to up to 2000 cycles. The potential of the wire senor as wearable strain sensor is demonstrated by the finger motion and blood pulse monitoring. Featured by the low costs of cotton wire and PDMS resin, the simple structure and fabrication technique, as well as high performance with miniaturized size, the wire-shaped sensor based on CT/PDMS composite is believed to have a great potential for application in wearable electronics for human health and motion monitoring.
Determination of kinetic isotopic fractionation of water during bare soil evaporation
NASA Astrophysics Data System (ADS)
Quade, Maria; Brüggemann, Nicolas; Graf, Alexander; Rothfuss, Youri
2017-04-01
A process-based understanding of the water cycle in the atmosphere is important for improving meteorological and hydrological forecasting models. Usually only net fluxes of evapotranspiration - ET are measured, while land-surface models compute their raw components evaporation -E and transpiration -T. Isotopologues can be used as tracers to partition ET, but this requires knowledge of the isotopic kinetic fractionation factor (αK) which impacts the stable isotopic composition of water pools (e.g., soil and plant waters) during phase change and vapor transport by soil evaporation and plant transpiration. It is defined as a function of the ratio of the transport resistances in air of the less to the most abundant isotopologue. Previous studies determined αK for free evaporating water (Merlivat, 1978) or bare soil evaporation (Braud et al. 2009) at only low temporal resolution. The goal of this study is to provide estimates at higher temporal resolution. We performed a soil evaporation laboratory experiment to determine the αK by applying the Craig and Gordon (1965) model. A 0.7 m high column (0.48 m i.d.) was filled with silt loam (20.1 % sand, 14.9 % loam, 65 % silt) and saturated with water of known isotopic composition. Soil volumetric water content, temperature and the isotopic composition (δ) of the soil water vapor were measured at six different depths. At each depth microporous polypropylene tubing allowed the sampling of soil water vapor and the measurement of its δ in a non-destructive manner with high precision and accuracy as detailed in Rothfuss et al. (2013). In addition, atmospheric water vapor was sampled at seven different heights up to one meter above the surface for isotopic analysis. Results showed that soil and atmospheric δ profiles could be monitored at high temporal and vertical resolutions during the course of the experiment. αK could be calculated by using an inverse modeling approach and the Keeling (1958) plot method at high temporal resolution over a long period. We observed an increasing δ in the evaporating water vapor due to more enriched surface water. This leads to a higher transport resistances and an increasing αK. References Braud, I., Bariac, T., Biron, P., and Vauclin, M.: Isotopic composition of bare soil evaporated water vapor. Part II: Modeling of RUBIC IV experimental results, J. Hydrol., 369, 17-29. Craig, H. et al., 1965. Deuterium and oxygen 18 variations in the ocean and marine atmosphere. In: E. Tongiogi (Editor), Stable Isotopes in Oceanographic Studies and Paleotemperatures. V. Lishi, Spoleto, Italy, pp. 9-130. Keeling, C. D.: The Concentration and Isotopic Abundances of Atmospheric Carbon Dioxide in Rural Areas, Geochim. Cosmochim. Acta, 13, 322-334. Merlivat, L., 1978. Molecular Diffusivities of H216O, HD16O, and H218O in Gases. J Chem Phys, 69, 2864-2871. Rothfuss, Y. et al., 2013. Monitoring water stable isotopic composition in soils using gas-permeable tubing and infrared laser absorption spectroscopy. Water Resour. Res., 49, 1-9.
NASA Astrophysics Data System (ADS)
Birdsall, A.; Krieger, U. K.; Keutsch, F. N.
2017-12-01
Dynamic changes to atmospheric aerosol particle composition (e.g., originating from evaporation/condensation, oxidative aging, or aqueous-phase chemical reactions) impact particle properties with importance for understanding particle effects on climate and human health. These changes can take place over the entire lifetime of an atmospheric particle, which can extend over multiple days. Previous laboratory studies of such processes have included analyzing single particles suspended in a levitation device, such as an electrodynamic balance (EDB), an optical levitator, or an acoustic trap, using optical detection techniques. However, studying chemically complex systems can require an analytical method, such as mass spectrometry, that provides more molecular specificity. Existing work coupling particle levitation with mass spectrometry is more limited and largely has consisted of acoustic levitation of millimeter-sized droplets.In this work an EDB has been coupled with a custom-built ionization source and commercial time-of-flight mass spectrometer (MS) as a platform for laboratory atmospheric chemistry research. Single charged particles (radius 10 μm) have been injected into an EDB, levitated for an arbitrarily long period of time, and then transferred to a vaporization-corona discharge ionization region for MS analysis. By analyzing a series of particles of identical composition, residing in the controlled environment of the EDB for varying times, we can trace the chemical evolution of a particle over hours or days, appropriate timescales for understanding transformations of atmospheric particles.To prove the concept of our EDB-MS system, we have studied the evaporation of particles consisting of polyethylene glycol (PEG) molecules of mixed chain lengths, used as a benchmark system. Our system can quantify the composition of single particles (see Figure for sample spectrum of a single PEG-200 particle: PEG parent ions labeled with m/z, known PEG fragment ions labeled with *). Furthermore, our measured evaporation rates are consistent with a kinetic model. We will discuss future types of experiments enabled by EDB-MS, by allowing detailed chemical changes of a particle in a controlled laboratory environment to be monitored on timescales mimicking those of particles in the atmosphere.
NASA Technical Reports Server (NTRS)
Leblanc, T.; Godin-Beekmann, S.; Payen, Godin-Beekmann; Gabarrot, Franck; vanGijsel, Anne; Bandoro, J.; Sica, R.; Trickl, T.
2012-01-01
The international Network for the Detection of Atmospheric Composition Change (NDACC) is a global network of high-quality, remote-sensing research stations for observing and understanding the physical and chemical state of the Earth atmosphere. As part of NDACC, over 20 ground-based lidar instruments are dedicated to the long-term monitoring of atmospheric composition and to the validation of space-borne measurements of the atmosphere from environmental satellites such as Aura and ENVISAT. One caveat of large networks such as NDACC is the difficulty to archive measurement and analysis information consistently from one research group (or instrument) to another [1][2][3]. Yet the need for consistent definitions has strengthened as datasets of various origin (e.g., satellite and ground-based) are increasingly used for intercomparisons, validation, and ingested together in global assimilation systems.In the framework of the 2010 Call for Proposals by the International Space Science Institute (ISSI) located in Bern, Switzerland, a Team of lidar experts was created to address existing issues in three critical aspects of the NDACC lidar ozone and temperature data retrievals: signal filtering and the vertical filtering of the retrieved profiles, the quantification and propagation of the uncertainties, and the consistent definition and reporting of filtering and uncertainties in the NDACC- archived products. Additional experts from the satellite and global data standards communities complement the team to help address issues specific to the latter aspect.
Atmospheric Phase Delay Correction of D-Insar Based on SENTINEL-1A
NASA Astrophysics Data System (ADS)
Li, X.; Huang, G.; Kong, Q.
2018-04-01
In this paper, we used the Generic Atmospheric Correction Online Service for InSAR (GACOS) tropospheric delay maps to correct the atmospheric phase delay of the differential interferometric synthetic aperture radar (D-InSAR) monitoring, and we improved the accuracy of subsidence monitoring using D-InSAR technology. Atmospheric phase delay, as one of the most important errors that limit the monitoring accuracy of InSAR, would lead to the masking of true phase in subsidence monitoring. For the problem, this paper used the Sentinel-1A images and the tropospheric delay maps got from GACOS to monitor the subsidence of the Yellow River Delta in Shandong Province. The conventional D-InSAR processing was performed using the GAMMA software. The MATLAB codes were used to correct the atmospheric delay of the D-InSAR results. The results before and after the atmospheric phase delay correction were verified and analyzed in the main subsidence area. The experimental results show that atmospheric phase influences the deformation results to a certain extent. After the correction, the measurement error of vertical deformation is reduced by about 18 mm, which proves that the removal of atmospheric effects can improve the accuracy of the D-InSAR monitoring.
Chemical Composition of the Atmosphere
NASA Astrophysics Data System (ADS)
Schlager, Hans; Grewe, Volker; Roiger, Anke
Atmospheric trace gases have an important impact on Earth's radiative budget, the oxidative or cleansing ability of the atmosphere, the formation, growth and properties of aerosols, air quality, and human health. During recent years, the coupling between atmospheric chemistry and climate has received particular attention. Therefore, research is now focused on the composition and processes in the upper troposphere and lower stratosphere, a key region in this respect. In this chapter the chemical composition of the atmosphere is addressed and selected examples of significant advances in this field are presented.
NASA Technical Reports Server (NTRS)
Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.; Sager, J. C. (Principal Investigator)
1997-01-01
A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estunate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.
Marcinkowska-Lesiak, Monika; Poławska, Ewa; Wierzbicka, Agnieszka
2017-03-01
The aim of this study was to determine the influence of different packaging materials on meat quality during cold storage. Therefore pork loins (m. longissimus thoracis et lumborum) obtained from crossbred pigs (Polish Landrance x Duroc, n = 6) were stored at 2 ℃ in modified atmosphere packs (80% O 2 , 20% CO 2 ) in four types of trays, which differ in gas permeability. Physicochemical (headspace gas composition, pH, colour, drip loss, cooking loss, shear force, the basic composition and fatty acid profile) and microbiological ( Salmonella spp., Escherichia coli, Enterobacteriaceae, total aerobic plates count, total psychrotrophic bacteria count, the number of lactic acid bacteria, Pseudomonas spp., the general amount of yeast and mold) parameters were monitored for up to 12 days. At the end of the storage period no differences in most physicochemical properties of pork loin due to type of packaging were found, however trays with high gas permeability had the greatest impact on total aerobic plates count and Pseudomonas spp. growth.
NASA Astrophysics Data System (ADS)
Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.
1997-01-01
A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.
NASA Astrophysics Data System (ADS)
1997-01-01
A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard
Twenty-fourth Lunar and Planetary Science Conference. Part 1: A-F
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: petrology, petrography, meteoritic composition, planetary geology, atmospheric composition, astronomical spectroscopy, lunar geology, Mars (planet), Mars composition, Mars surface, volcanology, Mars volcanoes, Mars craters, lunar craters, mineralogy, mineral deposits, lithology, asteroids, impact melts, planetary composition, planetary atmospheres, planetary mapping, cosmic dust, photogeology, stratigraphy, lunar craters, lunar exploration, space exploration, geochronology, tectonics, atmospheric chemistry, astronomical models, and geochemistry.
NASA Astrophysics Data System (ADS)
Kim-Hak, D.; Hoffnagle, J.; Rella, C.; Sun, M.
2016-12-01
Oxygen is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis. Although atmospheric oxygen is not a greenhouse gas, it can be used as a top-down constraint on the carbon cycle. The variation observations of oxygen in the atmosphere are very small, in the order of the few ppm's. This presents the main technical challenge for measurement as a very high level of precision is required and only few methods including mass spectrometry, fuel cell, and paramagnetic are capable of overcoming it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and oxygen isotope. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-20%. We will present supplemental data acquired from our 10m tower measurements in Santa Clara, CA.
NASA Astrophysics Data System (ADS)
Eddingsaas, Nathan C.; Jewell, Breanna; Thurnherr, Emily
2014-06-01
An estimated 10,000 to 100,000 different compounds have been measured in the atmosphere, each one undergoes many oxidation reactions that may or may not degrade air quality. To date, the fate of even some of the most abundant hydrocarbons in the atmosphere is poorly understood. One difficulty is the detection of atmospheric oxidation products that are very labile and decompose during analysis. To study labile species under atmospheric conditions, a highly sensitive, non-destructive technique is needed. Here we describe a near-IR incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS) setup that we are developing to meet this end. We have chosen to utilize the near-IR, where vibrational overtone absorptions are observed, due to the clean spectral windows and better spectral separation of absorption features. In one spectral window we can simultaneously and continuously monitor the composition of alcohols, hydroperoxides, and carboxylic acids in an air mass. In addition, we have used our CEAS setup to detect organoamines. The long effective path length of CEAS allows for low detection limits, even of the overtone absorption features, at ppb and ppt levels.
Tracking of Environment Changes by Exploitation of Suomi-NPP VIIRS Data
NASA Astrophysics Data System (ADS)
Ibrahim, W.; Greene, E.; van Poollen, C.; Cumpton, D.
2017-12-01
NOAA's next-generation environmental satellite system, Joint Polar Satellite System (JPSS), replaces the current Polar-orbiting Operational Environmental Satellites. JPSS satellites carry sensors which collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The first JPSS satellite, Suomi National Polar-orbiting Partnership (S-NPP), was launched in 2011. The JPSS ground system is the Common Ground System (CGS), and provides command, control, and communications (C3) and data processing (DP). S-NPP satellite includes the Visible Infrared Imaging Radiometer Suite (VIIRS), a 22-band scanning radiometer that provides top-of-atmosphere radiances and reflectances at a range of visible and infrared frequencies. Data collected from VIIRS are output by CGS DP into Raw Data Records (RDRs; Level-0), Sensor Data Records (SDRs; Level-1B) and Environmental Data Records (EDRs; Level-1C). This paper presents a methodology of monitoring and tracking impact of weather conditions on environment changes by exploitation of data from S-NPP VIIRS products. Three different products created from VIIRS data, SDR M-band True-Color (TC) composite visible imagery RGB (M5, M4 and M3), SDR M-band Natural-Color (NC) composite imagery RGB (M10, M7 and M5) and Vegetation Index (VI) EDR, are used to analyze the change in springtime vegetation and snowpack in California, USA, over four years from the height of the drought in 2014 to its end in 2017. While the TC composite images are more appealing to the human observer, utilization of the NC composite images allows for tracking and monitoring the changes in the snowpack in the Sierra Nevada, the reappearance of bodies of water and the changes in the vegetation composite. The VI product uses NDVI to characterize the vegetation temporally. By combining multiple VIIRS products, complex scenes can be visualized and analyzed temporally and spatially more accurately than just using a single product. Assimilation of both imagery and EDR products allows for a better characterization of impact of weather conditions on environment changes. This method can be expanded to characterize impact of weather conditions on environment changes in sea ice, snow, forest, agricultural land, population centers, etc.
Isotopic composition of atmospheric moisture from pan water evaporation measurements.
Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm
2015-01-01
A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.
Sentinel-5: the new generation European operational atmospheric chemistry mission in polar orbit
NASA Astrophysics Data System (ADS)
Pérez Albiñana, Abelardo; Erdmann, Matthias; Wright, Norrie; Martin, Didier; Melf, Markus; Bartsch, Peter; Seefelder, Wolfgang
2017-08-01
Sentinel-5 is an Earth Observation instrument to be flown on the Metop Second Generation (Metop-SG) satellites with the fundamental objective of monitoring atmospheric composition from polar orbit. The Sentinel-5 instrument consists of five spectrometers to measure the solar spectral radiance backscattered by the earth atmosphere in five bands within the UV (270nm) to SWIR (2385nm) spectral range. Data provided by Sentinel-5 will allow obtaining the distribution of important atmospheric constituents such as ozone, on a global daily basis and at a finer spatial resolution than its precursor instruments on the first generation of Metop satellites. The launch of the first Metop-SG satellite is foreseen for 2021. The Sentinel-5 instrument is being developed by Airbus DS under contract to the European Space Agency. The Sentinel-5 mission is part of the Space Component of the Copernicus programme, a joint initiative by ESA, EUMETSAT and the European Commission. The Preliminary Design Review (PDR) for the Sentinel-5 development was successfully completed in 2015. This paper provides a description of the Sentinel-5 instrument design and data calibration.
Urban aerosols harbor diverse and dynamic bacterial populations
Brodie, Eoin L.; DeSantis, Todd Z.; Parker, Jordan P. Moberg; Zubietta, Ingrid X.; Piceno, Yvette M.; Andersen, Gary L.
2007-01-01
Considering the importance of its potential implications for human health, agricultural productivity, and ecosystem stability, surprisingly little is known regarding the composition or dynamics of the atmosphere's microbial inhabitants. Using a custom high-density DNA microarray, we detected and monitored bacterial populations in two U.S. cities over 17 weeks. These urban aerosols contained at least 1,800 diverse bacterial types, a richness approaching that of some soil bacterial communities. We also reveal the consistent presence of bacterial families with pathogenic members including environmental relatives of select agents of bioterrorism significance. Finally, using multivariate regression techniques, we demonstrate that temporal and meteorological influences can be stronger factors than location in shaping the biological composition of the air we breathe. PMID:17182744
Novak, Martin; Sipkova, Adela; Chrastny, Vladislav; Stepanova, Marketa; Voldrichova, Petra; Veselovsky, Frantisek; Prechova, Eva; Blaha, Vladimir; Curik, Jan; Farkas, Juraj; Erbanova, Lucie; Bohdalkova, Leona; Pasava, Jan; Mikova, Jitka; Komarek, Arnost; Krachler, Michael
2016-11-01
Copper (Cu) and zinc (Zn) isotope ratios can be used to fingerprint sources and dispersion pathways of pollutants in the environment. Little is known, however, about the potential of δ 65 Cu and δ 66 Zn values in liquid and solid forms of atmospheric deposition to distinguish between geogenic, industrial, local and remote sources of these potentially toxic base metals. Here we present Cu-Zn deposition fluxes at 10 mountain-top sites in the Czech Republic, a region affected by extremely high industrial emission rates 25 years ago. Additionally, we monitored isotope composition of Cu and Zn in vertical and horizontal atmospheric deposition at two sites. We compared δ 65 Cu and δ 66 Zn values in snow and rime, extracted by diluted HNO 3 and concentrated HF. Cu and Zn isotope signatures of industrial pollution sources were also determined. Cu and Zn deposition fluxes at all study sites were minute. The mean δ 65 Cu value of atmospheric deposition (-0.07‰) was higher than the mean δ 65 Cu value of pollution sources (-1.17‰). The variability in δ 65 Cu values of atmospheric deposition was lower, compared to the pollution sources. The mean δ 66 Zn value of atmospheric deposition (-0.09‰) was slightly higher than the mean δ 66 Zn value of pollution sources (-0.23‰). The variability in δ 66 Zn values of atmospheric deposition was indistinguishable from that of pollution sources. The largest isotope differences (0.35‰) were observed between the insoluble and soluble fractions of atmospheric deposition. These differences may result from different sources of Cu/Zn for each fraction. The difference in isotope composition of soluble and insoluble particles appears to be a promising tool for pollution provenance studies in Central Europe. Copyright © 2016 Elsevier Ltd. All rights reserved.
49 CFR 192.481 - Atmospheric corrosion control: Monitoring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each pipeline...
Methane source identification in Boston, Massachusetts using isotopic and ethane measurements
NASA Astrophysics Data System (ADS)
Down, A.; Jackson, R. B.; Plata, D.; McKain, K.; Wofsy, S. C.; Rella, C.; Crosson, E.; Phillips, N. G.
2012-12-01
Methane has substantial greenhouse warming potential and is the principle component of natural gas. Fugitive natural gas emissions could be a significant source of methane to the atmosphere. However, the cumulative magnitude of natural gas leaks is not yet well constrained. We used a combination of point source measurements and ambient monitoring to characterize the methane sources in the Boston urban area. We developed distinct fingerprints for natural gas and multiple biogenic methane sources based on hydrocarbon concentration and isotopic composition. We combine these data with periodic measurements of atmospheric methane and ethane concentration to estimate the fractional contribution of natural gas and biogenic methane sources to the cumulative urban methane flux in Boston. These results are used to inform an inverse model of urban methane concentration and emissions.
The bulk composition of Titan's atmosphere.
NASA Technical Reports Server (NTRS)
Trafton, L.
1972-01-01
Consideration of the physical constraints for Titan's atmosphere leads to a model which describes the bulk composition of the atmosphere in terms of observable parameters. Intermediate-resolution photometric scans of both Saturn and Titan, including scans of the Q branch of Titan's methane band, constrain these parameters in such a way that the model indicates the presence of another important atmospheric gas, namely, another bulk constituent or a significant thermal opacity. Further progress in determining the composition and state of Titan's atmosphere requires additional observations to eliminate present ambiguities. For this purpose, particular observational targets are suggested.
Development of criteria used to establish a background environmental monitoring station
Fritz, Brad G.; Barnett, J. Matthew; Snyder, Sandra F.; ...
2015-03-02
It is generally considered necessary to measure concentrations of contaminants-of-concern at a background location when conducting atmospheric environmental surveillance. This is because it is recognized that measurements of background concentrations can enhance interpretation of environmental monitoring data. Despite the recognized need for background measurements, there is little published guidance available that describes how to identify an appropriate atmospheric background monitoring location. This paper develops generic criteria that can guide the decision making process for identifying suitable locations for background atmospheric monitoring station. Detailed methods for evaluating some of these criteria are also provided and a case study for establishment ofmore » an atmospheric background surveillance station as part of an environmental surveillance program is described. While the case study focuses on monitoring for radionuclides, the approach is equally valid for any airborne constituent being monitored. The case study shows that implementation of the developed criteria can result in a good, defensible choice for a background atmospheric monitoring location.« less
Clouds Composition in Super-Earth Atmospheres: Chemical Equilibrium Calculations
NASA Astrophysics Data System (ADS)
Kempton, Eliza M.-R.; Mbarek, Rostom
2015-12-01
Attempts to determine the composition of super-Earth atmospheres have so far been plagued by the presence of clouds. Yet the theoretical framework to understand these clouds is still in its infancy. For the super-Earth archetype GJ 1214b, KCl, Na2S, and ZnS have been proposed as condensates that would form under the condition of chemical equilibrium, if the planet’s atmosphere has a bulk composition near solar. Condensation chemistry calculations have not been presented for a wider range of atmospheric bulk composition that is to be expected for super-Earth exoplanets. Here we provide a theoretical context for the formation of super-Earth clouds in atmospheres of varied composition by determining which condensates are likely to form, under the assumption of chemical equilibrium. We model super-Earth atmospheres assuming they are formed by degassing of volatiles from a solid planetary core of chondritic material. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3,000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculations. The super-Earth atmospheres that we study range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a diverse range of atmospheric composition that is appropriate for low-mass exoplanets. Some condensates appear across all of our models. However, the majority of condensed species appear only over specific ranges of H:O and C:O ratios. We find that for GJ 1214b, KCl is the primary cloud-forming condensate at solar composition, in agreement with previous work. However, for oxidizing atmospheres, where H:O is less than unity, K2SO4 clouds form instead. For carbon-rich atmospheres with super-solar C:O ratios, graphite clouds additionally appear. At higher temperatures, clouds are formed from a variety of materials including metals, metal oxides, and aluminosilicates.
Optimization of the sintering atmosphere for high-density hydroxyapatite–carbon nanotube composites
White, Ashley A.; Kinloch, Ian A.; Windle, Alan H.; Best, Serena M.
2010-01-01
Hydroxyapatite–carbon nanotube (HA–CNT) composites have the potential for improved mechanical properties over HA for use in bone graft applications. Finding an appropriate sintering atmosphere for this composite presents a dilemma, as HA requires water in the sintering atmosphere to remain phase pure and well hydroxylated, yet CNTs oxidize at the high temperatures required for sintering. The purpose of this study was to optimize the atmosphere for sintering these composites. While the reaction between carbon and water to form carbon monoxide and hydrogen at high temperatures (known as the ‘water–gas reaction’) would seem to present a problem for sintering these composites, Le Chatelier's principle suggests this reaction can be suppressed by increasing the concentration of carbon monoxide and hydrogen relative to the concentration of carbon and water, so as to retain the CNTs and keep the HA's structure intact. Eight sintering atmospheres were investigated, including standard atmospheres (such as air and wet Ar), as well as atmospheres based on the water–gas reaction. It was found that sintering in an atmosphere of carbon monoxide and hydrogen, with a small amount of water added, resulted in an optimal combination of phase purity, hydroxylation, CNT retention and density. PMID:20573629
Dynamics of the middle atmosphere as observed by the ARISE project
NASA Astrophysics Data System (ADS)
Blanc, E.
2015-12-01
It has been strongly demonstrated that variations in the circulation of the middle atmosphere influence weather and climate all the way to the Earth's surface. A key part of this coupling occurs through the propagation and breaking of planetary and gravity waves. However, limited observations prevent to faithfully reproduce the dynamics of the middle atmosphere in numerical weather prediction and climate models. The main challenge of the ARISE (Atmospheric dynamics InfraStructure in Europe) project is to combine existing national and international observation networks including: the International infrasound monitoring system developed for the CTBT (Comprehensive nuclear-Test-Ban Treaty) verification, the NDACC (Network for the Detection of Atmospheric Composition Changes) lidar network, European observation infrastructures at mid latitudes (OHP observatory), tropics (Maïdo observatory), high latitudes (ALOMAR and EISCAT), infrasound stations which form a dense European network and satellites. The ARISE network is unique by its coverage (polar to equatorial regions in the European longitude sector), its altitude range (from troposphere to mesosphere and ionosphere) and the involved scales both in time (from seconds to tens of years) and space (from tens of meters to thousands of kilometers). Advanced data products are produced with the scope to assimilate data in the Weather Prediction models to improve future forecasts over weeks and seasonal time scales. ARISE observations are especially relevant for the monitoring of extreme events such as thunderstorms, volcanoes, meteors and at larger scales, deep convection and stratospheric warming events for physical processes description and study of long term evolution with climate change. Among the applications, ARISE fosters integration of innovative methods for remote detection of non-instrumented volcanoes including distant eruption characterization to provide notifications with reliable confidence indices to the civil aviation.
NASA Astrophysics Data System (ADS)
Huijnen, V.; Bouarar, I.; Chabrillat, S. H.; Christophe, Y.; Thierno, D.; Karydis, V.; Marecal, V.; Pozzer, A.; Flemming, J.
2017-12-01
Operational atmospheric composition analyses and forecasts such as developed in the Copernicus Atmosphere Monitoring Service (CAMS) rely on modules describing emissions, chemical conversion, transport and removal processing, as well as data assimilation methods. The CAMS forecasts can be used to drive regional air quality models across the world. Critical analyses of uncertainties in any of these processes are continuously needed to advance the quality of such systems on a global scale, ranging from the surface up to the stratosphere. With regard to the atmospheric chemistry to describe the fate of trace gases, the operational system currently relies on a modified version of the CB05 chemistry scheme for the troposphere combined with the Cariolle scheme to describe stratospheric ozone, as integrated in ECMWF's Integrated Forecasting System (IFS). It is further constrained by assimilation of satellite observations of CO, O3 and NO2. As part of CAMS we have recently developed three fully independent schemes to describe the chemical conversion throughout the atmosphere. These parameterizations originate from parent model codes in MOZART, MOCAGE and a combination of TM5/BASCOE. In this contribution we evaluate the correspondence and elemental differences in the performance of the three schemes in an otherwise identical model configuration (excluding data-assimilation) against a large range of in-situ and satellite-based observations of ozone, CO, VOC's and chlorine-containing trace gases for both troposphere and stratosphere. This analysis aims to provide a measure of model uncertainty in the operational system for tracers that are not, or poorly, constrained by data assimilation. It aims also to provide guidance on the directions for further model improvement with regard to the chemical conversion module.
Io: IUE observations of its atmosphere and the plasma torus
NASA Technical Reports Server (NTRS)
Ballester, G. E.; Moos, H. W.; Feldman, P. D.; Strobel, D. F.; Skinner, T. E.; Bertaux, J.-L.; Festou, M. C.
1988-01-01
Two of the main components of the atmosphere of Io, neutral oxygen and sulfur, were detected with the IUE. Four observations yield brightnesses that are similar, regardless of whether the upstream or the downstream sides of the torus plasma flow around Io is observed. A simple model requires the emissions to be produced by the interaction of O and S columns in the exospheric range with 2 eV electrons. Cooling of the 5 eV torus electrons is required prior to their interaction with the atmosphere of Io. Inconsistencies in the characteristics of the spectra that cannot be accounted for in this model require further analysis with improved atomic data. The Io plasma torus was monitored with the IUE. The long-term stability of the warm torus is established. The observed brightnesses were analyzed using a model of the torus, and variations of less than 30 percent in the composition are observed, the quantitative results being model dependent.
NASA Astrophysics Data System (ADS)
Borrás, Esther; Ródenas, Milagros; Vázquez, Mónica; Vera, Teresa; Muñoz, Amalia
2015-12-01
The phosphorothioate structure is highly present in several pesticides. However, there is a lack of information about its degradation process in air and the secondary pollutants formed. Herein, the atmospheric reactions of chlorpyrifos, one of the most world-used insecticide, and its main degradation product - chlorpyrifos-oxon - are described. The photo-oxidation under the presence of NOx was studied in a large outdoor simulation chamber for both chlorpyrifos and chlorpyrifos-oxon, observing a rapid degradation (Half lifetime < 3.5 h for both compounds). Also, the photolysis reactions of both were studied. The formation of particulate matter (aerosol mass yield ranged 6-59%) and gaseous products were monitored. The chemical composition of minor products was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as 3,5,6-trichloropyridin-2-ol and ethyl 3,5,6-trichloropyridin-2-yl hydrogen phosphate. An atmospheric degradation mechanism has been amplified based on an oxidation started with OH-nucleophilic attack to Pdbnd S bond.
Quantitative Measurement of Integrated Band Intensities of Isoprene and Formaldehyde
NASA Astrophysics Data System (ADS)
Brauer, Carolyn S.; Johnson, Timothy J.; Blake, Thomas A.; Sams, Robert L.
2013-06-01
The OH-initiated oxidation of isoprene, which is one of the primary volatile organic compounds produced by vegetation, is a major source of atmospheric formaldehyde and other oxygenated organics. Both molecules are also known products of biomass burning. Absorption coefficients and integrated band intensities for isoprene and formaldehyde are reported in the 600 - 6500 cm^{-1} region. The pressure broadened (1 atmosphere N_2) spectra were recorded at 278, 298 and 323 K in a 19.96 cm path length cell at 0.112 cm^{-1} resolution, using a Bruker 66V FTIR. Composite spectra are composed of a minimum of seven pressures at each temperature for both molecules. These data are part of the PNNL Spectral Database, which contains quantitative spectra of over 600 molecules. These quantitative spectra facilitate atmospheric monitoring for both remote and in situ sensing and such applications will be discussed. Timothy J. Johnson, Luisa T. M. Profeta, Robert L. Sams, David W. T. Griffith, Robert L. Yokelson Vibrational Spectroscopy {53}(1);97-102 (2010).
NASA Technical Reports Server (NTRS)
Lewis, J. S.
1974-01-01
The bulk composition and interior structure of Titan required to explain the presence of a substantial methane atmosphere are shown to imply the presence of solid CH4 - 7H2O in Titan's primitive material. Consideration of the possible composition and structure of the present atmosphere shows plausible grounds for considering models with total atmospheric pressures ranging from approximately 20 mb up to approximately 1 kb. Expectations regarding the physical state of the surface and its chemical composition are strongly conditioned by the mass of atmosphere believed to be present. A surface of solid CH4, liquid CH4 solid, CH4 hydrate, H2O ice, aqueous NH3 solution, or even a non-surface of supercritical H2O-NH3-CH4 fluid could be rationalized.
Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project
NASA Astrophysics Data System (ADS)
Blanc, E.; Ceranna, L.; Hauchecorne, A.; Charlton-Perez, A.; Marchetti, E.; Evers, L. G.; Kvaerna, T.; Lastovicka, J.; Eliasson, L.; Crosby, N. B.; Blanc-Benon, P.; Le Pichon, A.; Brachet, N.; Pilger, C.; Keckhut, P.; Assink, J. D.; Smets, P. S. M.; Lee, C. F.; Kero, J.; Sindelarova, T.; Kämpfer, N.; Rüfenacht, R.; Farges, T.; Millet, C.; Näsholm, S. P.; Gibbons, S. J.; Espy, P. J.; Hibbins, R. E.; Heinrich, P.; Ripepe, M.; Khaykin, S.; Mze, N.; Chum, J.
2018-03-01
This paper reviews recent progress toward understanding the dynamics of the middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and mesosphere, is a crucial region which influences tropospheric weather and climate. Enhancing the understanding of middle atmosphere dynamics requires improved measurement of the propagation and breaking of planetary and gravity waves originating in the lowest levels of the atmosphere. Inter-comparison studies have shown large discrepancies between observations and models, especially during unresolved disturbances such as sudden stratospheric warmings for which model accuracy is poorer due to a lack of observational constraints. Correctly predicting the variability of the middle atmosphere can lead to improvements in tropospheric weather forecasts on timescales of weeks to season. The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound system developed for the Comprehensive Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric Composition Change, complementary meteor radars, wind radiometers, ionospheric sounders and satellites. This paper presents several examples which show how multi-instrument observations can provide a better description of the vertical dynamics structure of the middle atmosphere, especially during large disturbances such as gravity waves activity and stratospheric warming events. The paper then demonstrates the interest of ARISE data in data assimilation for weather forecasting and re-analyzes the determination of dynamics evolution with climate change and the monitoring of atmospheric extreme events which have an atmospheric signature, such as thunderstorms or volcanic eruptions.
NASA Astrophysics Data System (ADS)
Volkmann, T. H. M.; Van Haren, J. L. M.; Kim, M.; Harman, C. J.; Pangle, L.; Meredith, L. K.; Troch, P. A.
2017-12-01
Stable isotope analysis is a powerful tool for tracking flow pathways, residence times, and the partitioning of water resources through catchments. However, the capacity of stable isotopes to characterize catchment hydrological dynamics has not been fully exploited as commonly used methodologies constrain the frequency and extent at which isotopic data is available across hydrologically-relevant compartments (e.g. soil, plants, atmosphere, streams). Here, building upon significant recent developments in laser spectroscopy and sampling techniques, we present a fully automated monitoring network for tracing water isotopes through the three model catchments of the Landscape Evolution Observatory (LEO) at the Biosphere 2, University of Arizona. The network implements state-of-the-art techniques for monitoring in great spatiotemporal detail the stable isotope composition of water in the subsurface soil, the discharge outflow, and the atmosphere above the bare soil surface of each of the 330-m2 catchments. The extensive valving and probing systems facilitate repeated isotope measurements from a total of more than five-hundred locations across the LEO domain, complementing an already dense array of hydrometric and other sensors installed on, within, and above each catchment. The isotope monitoring network is operational and was leveraged during several months of experimentation with deuterium-labelled rain pulse applications. Data obtained during the experiments demonstrate the capacity of the monitoring network to resolve sub-meter to whole-catchment scale flow and transport dynamics in continuous time. Over the years to come, the isotope monitoring network is expected to serve as an essential tool for collaborative interdisciplinary Earth science at LEO, allowing us to disentangle changes in hydrological behavior as the model catchments evolve in time through weathering and colonization by plant communities.
NASA Astrophysics Data System (ADS)
Mazukhina, Svetlana; Sandimirov, Sergey; Pozhilenko, Vladimir; Ivanov, Stanislav; Maksimova, Viktoriia
2017-04-01
Due to the depletion of fresh water supplies and the deterioration of their quality as a result of anthropogenic impact on the Arctic ecosystems, the research questions of forming surface and ground waters, their interactions with the rocks, development of the foundations for their rational use and protection are of great fundamental and practical importance. The aim of the work is to evaluate the influence of the chemical composition of rocks of the northern part of the Fennoscandian (Baltic) shield on forming surface waters chemical composition (Lake Inari, river Paz) using physical-chemical modeling (Chudnenko, 2010, Selector software package). River Paz (Paatsjoki) is the largest river in North Fennoscandia and flows through the territory of three countries - Finland, Russia and Norway. It originates from Lake Inari, which a large number of streams and rivers flow into, coming from the mountain range of the northern Finland (Maanselkä hill). Within the catchment of inflows feeding the lake Inari and river Paz in its upper flow there are mainly diverse early Precambrian metamorphic and intrusive rocks of the Lapland granulite belt and its framing, and to a lesser extent - various gneisses and migmatites with relicts of amphibolites, granitic gneisses, plagioclase and plagio- and plagiomicrocline granites, and quartz diorites of Inari terrane (Meriläinen, 1976, fig 1; Hörmann et al, 1980, fig 1; Geologicalmap, 2001). Basing on the techniques developed earlier (Mazukhina, 2012), and the data of monitoring of the chemical composition of surface waters and investigation of the chemical composition of the rocks, physical-chemical modeling (FCM) (Selector software package) was carried out. FCM includes 34 independent components (Al-B-Br-Ar-He-Ne-C-Ca-Cl-F-Fe-K-Mg-Mn-N-Na-P-S-Si-Sr-Cu-Zn-Ni-Pb-V-Ba-Co-Cr-Hg-As-Cd-H-O-e), 996 dependent components, of them 369 in aqueous solution, 76 in the gas phase, 111 liquid hydrocarbons, and 440 solid phases, organic and mineral substances. A set of solid phases of the multisystem is formed with the mineral composition of the crystalline rocks of the Fennoscandian (Baltic) shield taken into account. The processes of forming the surface waters in the "water - rock - atmosphere" system depending on the degree of interaction (ξ) of rocks with aqueous solutions under open conditions (100 kg of atmosphere, 1000 kg of water, T-5oC, P-1 bar and rock (100 g) - the rock average composition: 1) Inari terrane rocks, 2) granulites of the Lapland granulite belt were investigated. Clarke concentrations of S, C, F, Zn, Ni, Pb, Cu (Vinogradov, 1962) were taken into account in order to determine their influence on forming the chemical composition of water solutions, and water migration coefficients (Perelman, 1989). Comparison of the modeling results with the monitoring results of the source of river Paz shows that the chemical composition of waters of lake Inari as well as the upper flow of river Paz is formed by interactions of surface waters, ground waters, and fissure waters with granulites of the Lapland granulite belt, as well as gneisses, diorites and granitoids of Inari terrane of the northern Fennoscandia. Thermodynamic modeling determined that the chemical composition of surface waters is formed as a result of interaction of atmospheric precipitation with intrusive and sedimentary rocks of the northern Fennoscandia, containing clarke concentrations of S, C, F, Zn, Ni, Pb, Cu. The obtained model solutions indicate that surface waters are formed within the considered system as a result of "water-rock-atmosphere" interaction.
ERIC Educational Resources Information Center
Wallen, Carl C.
1975-01-01
The global atmospheric monitoring plans of the World Meteorological Organization are detailed. Single and multipurpose basic monitoring systems and the monitoring of chemical properties are discussed. The relationship of the World Meteorological Organization with the United Nations environment program is discussed. A map of the World…
49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false What must I do to monitor atmospheric corrosion... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that is...
Tropospheric chemistry in the integrated forecasting system of ECMWF
NASA Astrophysics Data System (ADS)
Flemming, J.; Huijnen, V.; Arteta, J.; Bechtold, P.; Beljaars, A.; Blechschmidt, A.-M.; Josse, B.; Diamantakis, M.; Engelen, R. J.; Gaudel, A.; Inness, A.; Jones, L.; Katragkou, E.; Marecal, V.; Peuch, V.-H.; Richter, A.; Schultz, M. G.; Stein, O.; Tsikerdekis, A.
2014-11-01
A representation of atmospheric chemistry has been included in the Integrated Forecasting System (IFS) of the European Centre for Medium-range Weather Forecasts (ECMWF). The new chemistry modules complement the aerosol modules of the IFS for atmospheric composition, which is named C-IFS. C-IFS for chemistry supersedes a coupled system, in which the Chemical Transport Model (CTM) Model for OZone and Related chemical Tracers 3 was two-way coupled to the IFS (IFS-MOZART). This paper contains a description of the new on-line implementation, an evaluation with observations and a comparison of the performance of C-IFS with MOZART and with a re-analysis of atmospheric composition produced by IFS-MOZART within the Monitoring Atmospheric Composition and Climate (MACC) project. The chemical mechanism of C-IFS is an extended version of the Carbon Bond 2005 (CB05) chemical mechanism as implemented in the CTM Transport Model 5 (TM5). CB05 describes tropospheric chemistry with 54 species and 126 reactions. Wet deposition and lightning nitrogen monoxide (NO) emissions are modelled in C-IFS using the detailed input of the IFS physics package. A one-year simulation by C-IFS, MOZART and the MACC re-analysis is evaluated against ozonesondes, carbon monoxide (CO) aircraft profiles, European surface observations of ozone (O3), CO, sulphur dioxide (SO2) and nitrogen dioxide (NO2) as well as satellite retrievals of CO, tropospheric NO2 and formaldehyde. Anthropogenic emissions from the MACC/CityZen (MACCity) inventory and biomass burning emissions from the Global Fire Assimilation System (GFAS) data set were used in the simulations by both C-IFS and MOZART. C-IFS (CB05) showed an improved performance with respect to MOZART for CO, upper tropospheric O3, winter time SO2 and was of a similar accuracy for other evaluated species. C-IFS (CB05) is about ten times more computationally efficient than IFS-MOZART.
Tropospheric chemistry in the Integrated Forecasting System of ECMWF
NASA Astrophysics Data System (ADS)
Flemming, J.; Huijnen, V.; Arteta, J.; Bechtold, P.; Beljaars, A.; Blechschmidt, A.-M.; Diamantakis, M.; Engelen, R. J.; Gaudel, A.; Inness, A.; Jones, L.; Josse, B.; Katragkou, E.; Marecal, V.; Peuch, V.-H.; Richter, A.; Schultz, M. G.; Stein, O.; Tsikerdekis, A.
2015-04-01
A representation of atmospheric chemistry has been included in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new chemistry modules complement the aerosol modules of the IFS for atmospheric composition, which is named C-IFS. C-IFS for chemistry supersedes a coupled system in which chemical transport model (CTM) Model for OZone and Related chemical Tracers 3 was two-way coupled to the IFS (IFS-MOZART). This paper contains a description of the new on-line implementation, an evaluation with observations and a comparison of the performance of C-IFS with MOZART and with a re-analysis of atmospheric composition produced by IFS-MOZART within the Monitoring Atmospheric Composition and Climate (MACC) project. The chemical mechanism of C-IFS is an extended version of the Carbon Bond 2005 (CB05) chemical mechanism as implemented in CTM Transport Model 5 (TM5). CB05 describes tropospheric chemistry with 54 species and 126 reactions. Wet deposition and lightning nitrogen monoxide (NO) emissions are modelled in C-IFS using the detailed input of the IFS physics package. A 1 year simulation by C-IFS, MOZART and the MACC re-analysis is evaluated against ozonesondes, carbon monoxide (CO) aircraft profiles, European surface observations of ozone (O3), CO, sulfur dioxide (SO2) and nitrogen dioxide (NO2) as well as satellite retrievals of CO, tropospheric NO2 and formaldehyde. Anthropogenic emissions from the MACC/CityZen (MACCity) inventory and biomass burning emissions from the Global Fire Assimilation System (GFAS) data set were used in the simulations by both C-IFS and MOZART. C-IFS (CB05) showed an improved performance with respect to MOZART for CO, upper tropospheric O3, and wintertime SO2, and was of a similar accuracy for other evaluated species. C-IFS (CB05) is about 10 times more computationally efficient than IFS-MOZART.
The CEOS WGISS Atmospheric Composition Portal
NASA Technical Reports Server (NTRS)
Lynnes, Chris
2010-01-01
Goal: Demonstrate the feasibility of connecting distributed atmospheric composition data and analysis tools into a common and shared web framework. Initial effort focused on: a) Collaboratively creating a web application within WDC-RSAT for comparison of satellite derived atmospheric composition datasets accessed from distributed data sources. b) Implementation of data access and interoperability standards. c) Sollicit feedback from paternal users; Especially from ACC participants.
Oxidation and evaporation of sulfur species at atmospheric entry of iron sulfide fine particles
NASA Astrophysics Data System (ADS)
Isobe, H.; Murozono, K.
2017-12-01
Micrometeorites have the most abundant flux in current accumulation of planetary materials to the Earth. Micrometeorites are heated and reacted with upper atmosphere at atmospheric entry. Evaporation of meteoritic materials, especially sulfur species, may have environmental effect at upper atmosphere (e.g. Court and Sephton, 2011; Tomkins et al., 2016). Troilite is typical FeS phase in chondritic meteorites. In this study, quick heating and cooling experiments of FeS reagent particles were carried out with a fine particles free falling apparatus with controlled gas flow (Isobe and Gondo, 2013). Starting material reagent is inhomogeneous mixture of troilite, iron oxide and iron metal. Oxygen fugacity was controlled to FMQ +1.5 log unit. Maximum temperature of the particles was higher than 1400°C for approximately 0.5 seconds. Run products with rounded shape and smooth surface show the particles were completely melted. Chemical compositions of particles analyzed on cross sections are generally well homogenized from inhomogeneous starting materials by complete melting. Molar ratios of Fe in melted regions are close to 0.5, while compositions of S and O are various. Varieties of S and O compositions show various degree of oxidation and evaporation of sulfur. Distribution of compositions of melted regions in Fe-S-O system is plotted in liquidus compositions of FeO and FeS saturated melt. Troilite in micrometeorite is melted and oxidized by atmospheric entry. Compositions of FeS melt in fine spherules are following Fe-S-O phase relations even in a few seconds. Molar ratios of Fe in melt are close to 0.5, while compositions of S and O are various. Varieties of S and O compositions show various degree of oxidation and evaporation of sulfur. Evaporation of sulfur from meteoritic materials in atmospheric entry heating may depend on oxygen fugacity of the upper atmosphere. Sulfur supply from meteoritic materials to atmosphere may be limited on planets with oxygen-free atmosphere.
Advances in edible coatings for fresh fruits and vegetables: a review.
Dhall, R K
2013-01-01
Edible coatings are an environmentally friendly technology that is applied on many products to control moisture transfer, gas exchange or oxidation processes. Edible coatings can provide an additional protective coating to produce and can also give the same effect as modified atmosphere storage in modifying internal gas composition. One major advantage of using edible films and coatings is that several active ingredients can be incorporated into the polymer matrix and consumed with the food, thus enhancing safety or even nutritional and sensory attributes. But, in some cases, edible coatings were not successful. The success of edible coatings for fresh products totally depends on the control of internal gas composition. Quality criteria for fruits and vegetables coated with edible films must be determined carefully and the quality parameters must be monitored throughout the storage period. Color change, firmness loss, ethanol fermentation, decay ratio and weight loss of edible film coated fruits need to be monitored. This review discusses the use of different edible coatings (polysaccharides, proteins, lipids and composite) as carriers of functional ingredients on fresh fruits and vegetables to maximize their quality and shelf life. This also includes the recent advances in the incorporation of antimicrobials, texture enhancers and nutraceuticals to improve quality and functionality of fresh-cut fruits. Sensory implications, regulatory status and future trends are also reviewed.
Atmospheric correction for inland water based on Gordon model
NASA Astrophysics Data System (ADS)
Li, Yunmei; Wang, Haijun; Huang, Jiazhu
2008-04-01
Remote sensing technique is soundly used in water quality monitoring since it can receive area radiation information at the same time. But more than 80% radiance detected by sensors at the top of the atmosphere is contributed by atmosphere not directly by water body. Water radiance information is seriously confused by atmospheric molecular and aerosol scattering and absorption. A slight bias of evaluation for atmospheric influence can deduce large error for water quality evaluation. To inverse water composition accurately we have to separate water and air information firstly. In this paper, we studied on atmospheric correction methods for inland water such as Taihu Lake. Landsat-5 TM image was corrected based on Gordon atmospheric correction model. And two kinds of data were used to calculate Raleigh scattering, aerosol scattering and radiative transmission above Taihu Lake. Meanwhile, the influence of ozone and white cap were revised. One kind of data was synchronization meteorology data, and the other one was synchronization MODIS image. At last, remote sensing reflectance was retrieved from the TM image. The effect of different methods was analyzed using in situ measured water surface spectra. The result indicates that measured and estimated remote sensing reflectance were close for both methods. Compared to the method of using MODIS image, the method of using synchronization meteorology is more accurate. And the bias is close to inland water error criterion accepted by water quality inversing. It shows that this method is suitable for Taihu Lake atmospheric correction for TM image.
NASA Astrophysics Data System (ADS)
Te, Y.; Jeseck, P.; Da Costa, J.; Deutscher, N. M.; Warneke, T.; Notholt, J.
2012-04-01
In a growing world with more than 7 billion inhabitants and big emerging countries such as China, Brazil and India, emissions of anthropogenic pollutants are increasing continuously. Monitoring and control of atmospheric pollutants in megacities have become a major challenge for scientists and public health authorities in environmental research area. The QualAir platform at University Pierre et Marie Curie (UPMC), is an innovating experimental research platform dedicated to survey greenhouse gases (GHGs) and urban air quality. As one of the major instruments of the QualAir platform, the ground-based Fourier transform spectrometer (QualAir FTS, IFS 125HR model) analyses the composition of the urban atmosphere of Paris, which is the third European megacity. The continuous monitoring of atmospheric pollutants is essential to improve the understanding of urban air pollution processes. Associated with a sun-tracker, the QualAir remote sensing FTS operates in solar infrared absorption and enables to monitor many trace gases, and to follow up their variability in the Ile-de-France region. A description of the QualAir FTS will be given. Concentrations of atmospheric GHG, especially CO2 and CH4, are retrieved by the radiative transfer model PROFFIT. Located in the centre of Paris, the QualAir FTS can provide new and complementary urban measurements as compared to unpolluted ground-based stations of existing networks (NDACC and TCCON). The work made by LPMAA to join the TCCON network will also be presented. TCCON-Orléans is a ground-based FTS of the TCCON network located in the forest of Orléans (100 km south of Paris). Preliminary comparisons of GHGs measurements from both sites will be shown. Such ground-based information will help to better characterize regional GHGs, especially regarding anthropogenic emissions and trends.
NASA Astrophysics Data System (ADS)
Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Fayt, Caroline; Maes, Jeroen; Mingireanu, Florin; Mocanu, Ionut; Georgescu, Lucian; Van Roozendael, Michel
2015-04-01
The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is an instrument dedicated to atmospheric trace gas retrieval from an Unmanned Aerial Vehicle (UAV). The payload is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27x12x12 cm3, and 6 W. The custom-built 2.5 m flying wing UAV is electrically powered, has a typical airspeed of 100 km/h, and can operate at a maximum altitude of 3 km. Both the payload and the UAV were developed in the framework of a collaboration between the Belgian Institute for Space Aeronomy (BIRA-IASB) and the Dunarea de Jos University of Galati, Romania. We present here SWING-UAV test flights dedicated to NO2 measurements and performed in Romania on 10 and 11 September 2014, during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign. The UAV performed 5 flights in the vicinity of the large thermal power station of Turceni (44.67° N, 23.4° E). The UAV was operated in visual range during the campaign, up to 900 m AGL , downwind of the plant and crossing its exhaust plume. The spectra recorded on flight are analyzed with the Differential Optical Absorption Spectroscopy (DOAS) method. The retrieved NO2 Differential Slant Column Densities (DSCDs) are up to 1.5e17 molec/cm2 and reveal the horizontal gradients around the plant. The DSCDs are converted to vertical columns and compared with coincident car-based DOAS measurements. We also present the near-future perspective of the SWING-UAV observation system, which includes flights in 2015 above the Black Sea to quantify ship emissions, the addition of SO2 as a target species, and autopilot flights at higher altitudes to cover a typical satellite pixel extent (10x10 km2).
Using stable isotopes to resolve eco-hydrological dynamics of soil-plant-atmosphere feedbacks
NASA Astrophysics Data System (ADS)
Dubbert, M.; Piayda, A.; Kübert, A.; Cuntz, M.; Werner, C.
2016-12-01
Water is the main driver of ecosystem productivity in most terrestrial ecosystems worldwide. Extreme events are predicted to increase in frequency in many regions and dynamic responses in soil-vegetation-atmosphere feedbacks play a privotal role in understanding the ecosystem water balance and functioning. In this regard, more interdisciplinary approaches, bridging hydrology, ecophysiology and atmospheric sciences are needed and particularly water stable isotopes are a powerful tracer of water transfer in soils and at the soil-plant interface (Werner and Dubbert 2016). Here, we present observations 2 different ecosystems. Water fluxes, atmospheric concentrations and their isotopic compositions were measured using laser spectroscopy. Soil moisture and its isotopic composition in several depths as well as further water sources in the ecosystem were monitored throughout the year. Using these isotopic approaches we disentangled soil-plant-atmosphere feedback processes controlling the ecosystem water cycle including vegetation effects on soil water infiltration and distribution, event water use of vegetation and soil fluxes, vegetational soil water uptake depths plasticity and partitioning of ecosystem water fluxes. In this regard, we review current strategies of ET partitioning and highlight pitfalls in the presented strategies (Dubbert et al. 2013, Dubbert et al.2014a). We demonstrate that vegetation strongly influenced water cycling, altering infiltration and distribution of precipitation. In conclusion, application of stable water isotope tracers delivers a process based understanding of interactions between soil, understorey and trees governing ecosystem water cycling necessary for prediction of climate change impact on ecosystem productivity and vulnerability. ReferencesDubbert, M. et al. (2013): Partitioning evapotranspiration - Testing the Craig and Gordon model with field measurements of oxygen isotope ratios of evaporative fluxes. Journal of Hydrology Dubbert, M. et al. (2014a): Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions. New Phytologist. Werner, C. and Dubbert, M. (2016): Resolving rapid dynamics of soil-plant-atmosphere interactions. New Phytologist.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
1999-01-01
Ceramic matrix composites are being developed for elevated-temperature engine applications. A leading material system in this class of materials is silicon carbide (SiC) fiber-reinforced SiC matrix composites. Unfortunately, the nonoxide fibers, matrix, and interphase (boron nitride in this system) can react with oxygen or water vapor in the atmosphere, leading to strength degradation of the composite at elevated temperatures. For this study, constant-load stress-rupture tests were performed in air at temperatures ranging from 815 to 960 C until failure. From these data, predictions can be made for the useful life of such composites under similar stressed-oxidation conditions. During these experiments, the sounds of failure events (matrix cracking and fiber breaking) were monitored with a modal acoustic emission (AE) analyzer through transducers that were attached at the ends of the tensile bars. Such failure events, which are caused by applied stress and oxidation reactions, cause these composites to fail prematurely. Because of the nature of acoustic waveform propagation in thin tensile bars, the location of individual source events and the eventual failure event could be detected accurately.
Overview of Initial Results from CRISM
NASA Astrophysics Data System (ADS)
Seelos, F.; Murchie, S.; Mustard, J.; Pelkey, S.; Roach, L.; Elhmann, B.; Arvidson, R.; Wiseman, S.; Milliken, R.; CRISM Team
2007-05-01
The Mars Reconnaissance Orbiter (MRO) reached 100 days of primary science phase operations on February 15th, 2007. Over this time period, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has acquired high spatial resolution hyperspectral observations and contextual multispectral survey data of type localities that record water-rock interaction through much of the geologic history of Mars. CRISM's primary science objectives are to characterize the mineralogical record of past aqueous environments and to monitor the contemporary spatial and seasonal distributions of volatiles in the surface-atmosphere system. These objectives are accomplished through an observation strategy that includes targeted data acquisition, atmospheric and seasonal monitoring, and global mapping. Targeted observations are acquired by gimbaling the instrument along-track to reduce apparent ground motion, resulting in a spatial resolution of 15-20 m/pixel in 544 wavelengths from 362 to 3920 nm. As a part of each targeted observation 10 additional spatially binned images are acquired at different atmospheric path lengths, creating an emission phase function (EPF) that allows surface-atmosphere separation in the analysis of the observed radiance. The atmospheric and seasonal monitoring campaigns consist of global grids of EPF measurements at regular Ls intervals. In CRISM's global mapping campaign, data are acquired in a push broom observing mode at a reduced spatial and spectral resolution of 200m/pxl and 72 selected spectral channels. Initial data analysis reveals evidence for environmental variability throughout Martian history. Noachian deposits exhibit diverse phyllosilicate mineralogy in a greater number of geologic units than previously recognized. Distinct mineralogic signatures are sometimes separated only by hundreds of meters, indicating variability in alteration environment or parent rock composition. Hesperian layered deposits exhibit strong vertical heterogeneity with different abundances and types of sulfate minerals, suggesting local environmental changes on short geologic timescales. The Amazonian north polar layered deposits exhibit complex vertical layering in the abundance and/or grain size of water ice. The underlying basal unit shows little evidence for ice except in restricted locations where the morphology is consistent with subsequent modification of the deposits by fluid flow. Multispectral mapping is nearly complete at the high northern latitudes and shows evidence for significant hydrated mineral content in portions of the basal unit.
NASA Astrophysics Data System (ADS)
Boulanger, D.; Thouret, V.
2016-12-01
IAGOS (In-service Aircraft for a Global Observing System) is a European Research Infrastructure which aims at the provision of long-term, regular and spatially resolved in situ observations of the atmospheric composition. IAGOS observation systems are deployed on a fleet of commercial aircraft and do measurements of aerosols, cloud particles, greenhouse gases, ozone, water vapor and nitrogen oxides from the surface to the lower stratosphere. The IAGOS database is an essential part of the global atmospheric monitoring network. It contains IAGOS-core and IAGOS-CARIBIC data. The IAGOS Data Portal (http://www.iagos.fr) is part of the French atmospheric chemistry data center AERIS (http://www.aeris-data.fr). In 2016 the new IAGOS Data Portal has been released. In addition to the data download the portal provides improved and new services such as download in NetCDF or NASA Ames formats and plotting tools (maps, time series, vertical profiles). New added value products are available through the portal: back trajectories, origin of air masses, co-location with satellite data. Web services allow to download IAGOS metadata such as flights and airports information. Administration tools have been implemented for users management and instruments monitoring. A major improvement is the interoperability with international portals and other databases in order to improve IAGOS data discovery. In the frame of the IGAS project (IAGOS for the Copernicus Atmospheric Service), a data network has been setup. It is composed of three data centers: the IAGOS database in Toulouse, the HALO research aircraft database at DLR (https://halo-db.pa.op.dlr.de) and the CAMS (Copernicus Atmosphere Monitoring Service) data center in Jülich (http://join.iek.fz-juelich.de). The link with the CAMS data center, through the JOIN interface, allows to combine model outputs with IAGOS data for inter-comparison. The CAMS project is a prominent user of the IGAS data network. Duting the next year IAGOS will improve metadata standardization and dissemination through different collaborations with the AERIS data center, GAW for which IAGOS is a contributing network and the ENVRI+ European project. Measurements traceability and quality metadata will be available and DOI will be implemented.
NASA Astrophysics Data System (ADS)
Stavroulas, Iasonas; Pikridas, Michael; Oikonomou, Kostantina; Vasiliadou, Emily; Savvides, Chrysanthos; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Gros, Valerie; Sciare, Jean
2017-04-01
Particulate matter with diameter smaller than 1{μ}m (PM1) induces direct and indirect effects on local and regional pollution, global climate and health. As of the beginning of 2015, the chemical composition of submicron aerosols, is continuously being monitored at the newly established Cyprus Atmospheric Observatory (CAO, http://www.cyi.ac.cy/index.php/cao.html), a national facility of the ACTRIS Research Infrastructure operated by The Cyprus Institute. Cyprus, an island located in the Eastern Mediterranean Middle East region and influenced by diverse air masses throughout the year, is ideal for monitoring photochemically aged aerosols and gaseous pollutants of both natural and anthropogenic origin. Furthermore this is a unique dataset for this area in such proximity to the Middle East, a poorly documented area in terms of atmospheric aerosol observations. An Aerodyne Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) is currently deployed at the CAO premises (35.04N - 33.06E) situated at the rural area of Agia Marina Xyliatou on the foothill of mount Troodos at an elevation of 532m above sea level (asl). The ACSM delivers chemical composition of the major non-refractory aerosol (PM1) chemical constituents (organics, sulfate, nitrate, ammonium, chloride) with an effective (close to 100{%}) collection efficiency for particles in the diameter range of 65-700 nm at a 30 minute temporal resolution. Black Carbon (BC) was also monitored using both Magee Scientific AE-31 and AE-33 aethalometers. Quality control of the PM chemical dataset was conducted by comparison with chemical analysis performed on collocated 24-h filter samples (PM1) and comparison with 1-h PM2.5 derived from a Thermo Scientific TEOM (1400a) Monitor. Positive Matrix Factorization (PMF) was conducted and different organic aerosol factors were distinguished using the Igor based SoFi toolkit utilizing the ME-2 multilinear engine. Air mass origin was investigated for each measurement day using the Lagrangian dispersion model FLEXPART in backward mode. Analysis of the PMF on the organic mass spectra, based on good agreement with external standard mass spectra, led to the selection of a solution with three factors, an HOA (Hydrocarbon-like Organic Aerosol) factor with relatively low overall contribution (9{%}), a typical Low Volatility (LV-OOA) factor contributing 54{%}, and a factor attributed to Semi-Volatile organics (SV-OOA), contributing 37{%}. The FLEXPART model analysis, led to eight main regions of influence, namely Europe, West Turkey, Anatolia, Middle East, North Africa, Marine, Local and Mixed. Organic content exhibits maximum values when air masses originate from the wider northern sector (West Turkey and Anatolia) and the Middle East. Less aged organic content was identified for air masses originating from the immediate neighboring regions (West Turkey, Anatolia, Middle East and North Africa) while fresh organics peaked when air masses originated from the Middle East, coinciding with elevated BC concentrations, suggesting strong anthropogenic sources for this sector. This project received funding from the ChArMEx (Chemistry Aerosol Mediterranean Experiment) program, the ENVI-MED CyAr project, the European Union's Seventh Framework Programme (FP7) project BACCHUS under grant agreement no. 603445, and the European Union's Horizon 2020 research and innovation programme ACTRIS-2 under grant agreement No 654109.
NASA Astrophysics Data System (ADS)
Burton, E. A.; Pickles, W. L.; Gouveia, F. J.; Bogen, K. T.; Rau, G. H.; Friedmann, J.
2006-12-01
Correct assessment of the potential for CO2 leakage to the atmosphere or near surface is key to managing the risk associated with CO2 storage. Catastrophic, point-source leaks, diffuse seepage, and low leakage rates all merit assessment. Smaller leaks may be early warnings of catastrophic failures, and may be sufficient to damage natural vegetation or crops. Small leaks also may lead to cumulative build-up of lethal levels of CO2 in enclosed spaces, such as basements, groundwater-well head spaces, and caverns. Working with our ZERT partners, we are integrating a variety of monitoring and modeling approaches to understand how to assess potential health, property and environmental risks across this spectrum of leakage types. Remote sensing offers a rapid technique to monitor large areas for adverse environmental effects. If it can be deployed prior to the onset of storage operations, remote sensing also can document baseline conditions against which future claims of environmental damage can be compared. LLNL has been using hyperspectral imaging to detect plant stress associated with CO2 gas leakage, and has begun investigating use of NASA's new satellite or airborne instrumentation that directly measures gas compositions in the atmosphere. While remote sensing techniques have been criticized as lacking the necessary resolution to address environmental problems, new instruments and data processing techniques are demonstrated to resolve environmental changes at the scale associated with gas-leakage scenarios. During the shallow low-flow- CO2 release field experiments planned by ZERT, for the first time, we will have the opportunity to ground- truth hyperspectral data by simultaneous measurement of changes in hyperspectral readings, soil and root zone microbiology, ambient air, soil and aquifer CO2 concentrations. When monitoring data appear to indicate a CO2 leakage event, risk assessment and mitigation of that event requires a robust and nearly real-time method for estimating its associated risk, spatially and temporally. This requires integration of subsurface, surface and atmospheric data and models. To date, we have developed techniques to map risk based on predicted atmospheric plumes and GIS/MT (meteorologic- topographic) risk-indexing tools. This methodology was derived from study of large CO2 releases from an abandoned well penetrating a natural CO2 reservoir at Crystal Geyser, Utah. This integrated approach will provide a powerful tool to screen for high-risk zones at proposed sequestration sites, to design and optimize surface networks for site monitoring and/or to guide setting science-based regulatory compliance requirements for monitoring sequestration sites, as well as to target critical areas for first responders should a catastrophic-release event occur. This work was performed under the auspices of the U.S. Dept. of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Anderson, Molly; McMillin, Summer; Broerman, Craig
2012-01-01
Monitoring carbon dioxide (CO2) concentration within a spacecraft or spacesuit is critically important to ensuring the safety of the crew. Carbon dioxide uniquely absorbs light at wavelengths of 3.95 micrometers and 4.26 micrometers. As a result, non-dispersive infrared (NDIR) spectroscopy can be employed as a reliable and inexpensive method for the quantification of CO2 within the atmosphere. A multitude of commercial off-the-shelf (COTS) NDIR sensors exist for CO2 quantification. The COTS sensors provide reasonable accuracy as long as the measurements are attained under conditions close to the calibration conditions of the sensor (typically 21.1 C (70.0 F) and 1 atmosphere). However, as pressure deviates from atmospheric to the pressures associated with a spacecraft (8.0{10.2 pounds per square inch absolute (psia)) or spacesuit (4.1{8.0 psia), the error in the measurement grows increasingly large. In addition to pressure and temperature dependencies, the infrared transmissivity through a volume of gas also depends on the composition of the gas. As the composition is not known a priori, accurate sub-ambient detection must rely on iterative sensor compensation techniques. This manuscript describes the development of recursive compensation algorithms for sub-ambient detection of CO2 with COTS NDIR sensors. In addition, the source of the exponential loss in accuracy is developed theoretically. The basis of the loss can be explained through thermal, Doppler, and Lorentz broadening effects that arise as a result of the temperature, pressure, and composition of the gas mixture under analysis. This manuscript provides an approach to employing COTS sensors at sub-ambient conditions and may also lend insight into designing future NDIR sensors for aerospace application.
Heterogeneous Oxidation of Laboratory-generated Mixed Composition and Biomass Burning Particles
NASA Astrophysics Data System (ADS)
Lim, C. Y.; Sugrue, R. A.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Browne, E. C.
2016-12-01
Heterogeneous oxidation of organic aerosol (OA) can significantly transform the chemical and physical properties of particulate matter in the atmosphere, leading to changes to the chemical composition of OA and potential volatilization of organic compounds. It has become increasingly apparent that the heterogeneous oxidation kinetics of OA depend on the phase and morphology of the particles. However, most laboratory experiments to date have been performed on single-component, purely organic precursors, which may exhibit fundamentally different behavior than more complex particles in the atmosphere. Here we present laboratory studies of the heterogeneous oxidation of two more complex chemical systems: thin, organic coatings on inorganic seed particles and biomass burning OA. In the first system, squalane (C30H62), a model compound for reduced OA, is coated onto dry ammonium sulfate particles at various thicknesses (10-20 nm) and exposed to hydroxyl radical (OH) in a flow tube reactor. In the second, we use a semi-batch reactor to study the heterogeneous OH-initiated oxidation of biomass burning particles as a part of the 2016 FIREX campaign in Missoula, MT. The resulting changes in chemical composition are monitored with an Aerodyne High Resolution Time-of-flight Aerosol Mass Spectrometer (AMS) and a soot-particle AMS for the non-refractory and refractory systems, respectively. We show that the heterogeneous oxidation kinetics of these multicomponent particles are substantially different than that of the single-component particles. The oxidation of organic coatings is rapid, undergoing dramatic changes to carbon oxidation state and losing a significant amount of organic mass after relatively low OH exposures (equivalent to several days of atmospheric processing). In the case of biomass burning particles, the kinetics are complex, with different components (inferred by aerosol mass spectrometry) undergoing oxidation at different rates.
NASA Astrophysics Data System (ADS)
Barre, J.; Edwards, D. P.; Gaubert, B.; Worden, H. M.; Arellano, A. F.; Anderson, J. L.
2015-12-01
Current satellite observations of tropospheric composition made from low Earth orbit provide at best one or two measurements each day at any given location. Comparisons of Terra/MOPITT carbon monoxide (CO) and IASI/Metop CO observation assimilations will be presented. We use the DART Ensemble Adjustment Kalman Filter to assimilate observations in the CAM-Chem global chemistry-climate model. Data assimilation impacts due to both different instrument capabilities (i.e. vertical sensitivity and global coverage) will be discussed. Coverage is global but sparse, often with large uncertainties in individual measurements that limit examination of local and regional atmospheric composition over short time periods. This has hindered the operational uptake of these data for monitoring air quality and population exposure, and for initializing and evaluating chemical weather forecasts. By the end of the current decade there are planned geostationary Earth orbit (GEO) satellite missions for atmospheric composition over North America, East Asia and Europe with additional missions proposed. Together, these present the possibility of a constellation of geostationary platforms to achieve continuous time-resolved high-density observations of continental domains for mapping pollutant sources and variability on diurnal and local scales. We describe Observing System Simulation Experiments (OSSEs) to evaluate the contributions of these GEO missions to improve knowledge of near-surface air pollution due to intercontinental long-range transport and quantify chemical precursor emissions. Our approach uses an efficient computational method to sample a high-resolution global GEOS-5 chemistry Nature Run over each geographical region of the GEO constellation. The demonstration carbon monoxide (CO) observation simulator, which will be expanded to other chemical pollutants, currently produces multispectral retrievals (MOPITT-like) and captures realistic scene-dependent variation in measurement vertical sensitivity and cloud cover. The impact of observing over each region is evaluated independently. Winter and summer cases studies are investigated i.e. where emissions, cloud cover and CO lifetime significantly change.
What Do Millimeter Continuum and Spectral Line Observations Tell Us about Solar System Bodies?
NASA Technical Reports Server (NTRS)
Milam, Stefanie N.
2013-01-01
Solar system objects are generally cold and radiate at low frequencies and tend to have strong molecular rotational transitions. Millimeter continuum and spectral line observations provide detailed information for nearly all solar system bodies. At these wavelengths, details of the bulk physical composition of icy surfaces, the size and albedo of small objects, the composition of planetary atmospheres can be measured as well as monitoring of time variable phenomena for extended periods (not restricted to nighttime observations), etc. Major issues in solar system science can be addressed by observations in the millimeter/sub-millimeter regime such as the origin of the solar system (isotope ratios, composition) and the evolution of solar system objects (dynamics, atmospheric constituents, etc). ALMA s exceptional sensitivity, large spectral bandwidth, high spectral resolution, and angular resolution (down to 10 milliarcsec) will enable researchers for the first time to better resolve the smallest bodies in the solar system and provide detailed maps of the larger objects. Additionally, measurements with nearly 8 GHz of instantaneous bandwidth to fully characterize solar system object s spectrum and detect trace species. The spatial information and line profiles can be obtained over 800 GHz of bandwidth in 8 receiver bands to not only assist in the identification of spectral lines and emission components for a given species but also to help elucidate the chemistry of the extraterrestrial bodies closest to us.
Airborne Atmospheric Aerosol Measurement System
NASA Astrophysics Data System (ADS)
Ahn, K.; Park, Y.; Eun, H.; Lee, H.
2015-12-01
It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).
Trace Gas Quantification with Small Unmanned Aerial Systems
NASA Astrophysics Data System (ADS)
Schuyler, T. J.; Guzman, M. I.; Bailey, S.; Jacob, J.
2017-12-01
Measurements of atmospheric composition are generally performed with advanced instrumentation from ground stations using tall towers and weather balloons or with manned aircraft. Unmanned aerial systems (UAS) are a promising technology for atmospheric monitoring of trace atmospheric gases as they can bridge the gap between the regions of the atmospheric boundary layer measured by ground stations and aircraft. However, in general, the sophisticated instrumentation required for these measurements are heavy, preventing its deployment with small UAS. In order to successfully detect and quantify these gases, sensor packages aboard UAS must be lightweight, have low-power consumption, and possess limits of detection on the ppm scale or below with reasonably fast response times. Thus, a new generation of portable instrument is being developed in this work to meet these requirements employing new sensing packages. The cross sensitivity of these sensors to several gases is examined through laboratory testing of the instrument under variable environmental conditions prior to performing field measurements. Datasets include timestamps with position, temperature, relative humidity, pressure, along with variable mixing ratio values of important greenhouse gases. The work will present an analysis of the results gathered during authorized flights performed during the second CLOUD-MAP§ field campaign held in June 2017. §CLOUD-MAP: Collaboration Leading Operational UAS Development for Meteorology and Atmospheric Physics, a 4-year NSF funded effort.
Some applications of remote sensing in atmospheric monitoring programs
NASA Technical Reports Server (NTRS)
Heller, A. N.; Bryson, J. C.; Vasuki, N. C.
1972-01-01
The applications of remote sensing in atmospheric monitoring programs are described. The organization, operations, and functions of an air quality monitoring network at New Castle County, Delaware is discussed. The data obtained by the air quality monitoring network ground stations and the equipment used to obtain atmospheric data are explained. It is concluded that correlation of the information obtained by the network will make it possible to anticipate air pollution problems in the Chesapeake Bay area before a crisis develops.
Dron, J; Zheng, W; Marchand, N; Wortham, H
2008-08-01
A functional group analysis method was developed to determine the quantitative content of carbonyl functional groups in atmospheric particulate organic matter (POM) using constant neutral loss scanning-tandem mass spectrometry (CNLS-MS/MS). The neutral loss method consists in monitoring the loss of a neutral fragment produced by the fragmentation of a precursor ion in a collision cell. The only ions detected are the daughter ions resulting from the loss of the neutral fragment under study. Then, scanning the loss of a neutral fragment characteristic of a functional group enables the selective detection of the compounds bearing the chemical function under study within a complex mixture. The selective detection of carbonyl functional groups was achieved after derivatization with pentafluorophenylhydrazine (PFPH) by monitoring the neutral loss of C(6)F(5)N (181 amu), which was characteristic of a large panel of derivatized carbonyl compounds. The method was tested on 25 reference mixtures of different composition, all containing 24 carbonyl compounds at randomly determined concentrations. The repeatability and calibration tests were satisfying as they resulted in a relative standard deviation below 5% and a linear range between 0.01 and 0.65 mM with a calculated detection limit of 0.0035 mM. Also, the relative deviation induced by changing the composition of the mixture while keeping the total concentration of carbonyl functional groups constant was less than 20%. These reliability experiments demonstrate the high robustness of the developed procedure for accurate carbonyl functional group measurement, which was applied to atmospheric POM samples. Copyright (c) 2008 John Wiley & Sons, Ltd.
Smith, Adam D.; Paton, Peter W. C.; McWilliams, Scott R.
2014-01-01
Atmospheric conditions fundamentally influence the timing, intensity, energetics, and geography of avian migration. While radar is typically used to infer the influence of weather on the magnitude and spatiotemporal patterns of nocturnal bird migration, monitoring the flight calls produced by many bird species during nocturnal migration represents an alternative methodology and provides information regarding the species composition of nocturnal migration. We used nocturnal flight call (NFC) recordings of at least 22 migratory songbirds (14 warbler and 8 sparrow species) during fall migration from eight sites along the mainland and island coasts of Rhode Island to evaluate five hypotheses regarding NFC detections. Patterns of warbler and sparrow NFC detections largely supported our expectations in that (1) NFC detections associated positively and strongly with wind conditions that influence the intensity of coastal bird migration and negatively with regional precipitation; (2) NFCs increased during conditions with reduced visibility (e.g., high cloud cover); (3) NFCs decreased with higher wind speeds, presumably due mostly to increased ambient noise; and (4) coastal mainland sites recorded five to nine times more NFCs, on average, than coastal nearshore or offshore island sites. However, we found little evidence that (5) nightly or intra-night patterns of NFCs reflected the well-documented latitudinal patterns of migrant abundance on an offshore island. Despite some potential complications in inferring migration intensity and species composition from NFC data, the acoustic monitoring of NFCs provides a viable and complementary methodology for exploring the spatiotemporal patterns of songbird migration as well as evaluating the atmospheric conditions that shape these patterns. PMID:24643060
Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland
2010-05-25
Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslinger, Paul W.; Bowyer, Ted W.; Achim, Pascal
Abstract The International Monitoring System (IMS) is part of the verification regime for the Comprehensive Nuclear-Test-Ban-Treaty Organization (CTBTO). At entry-into-force, half of the 80 radionuclide stations will be able to measure concentrations of several radioactive xenon isotopes produced in nuclear explosions, and then the full network may be populated with xenon monitoring afterward (Bowyer et al., 2013). Fission-based production of 99Mo for medical purposes also releases radioxenon isotopes to the atmosphere (Saey, 2009). One of the ways to mitigate the effect of emissions from medical isotope production is the use of stack monitoring data, if it were available, so thatmore » the effect of radioactive xenon emissions could be subtracted from the effect from a presumed nuclear explosion, when detected at an IMS station location. To date, no studies have addressed the impacts the time resolution or data accuracy of stack monitoring data have on predicted concentrations at an IMS station location. Recently, participants from seven nations used atmospheric transport modeling to predict the time-history of 133Xe concentration measurements at an IMS station in Germany using stack monitoring data from a medical isotope production facility in Belgium. Participants received only stack monitoring data and used the atmospheric transport model and meteorological data of their choice. Some of the models predicted the highest measured concentrations quite well (a high composite statistical model comparison rank or a small mean square error with the measured values). The results suggest release data on a 15 min time spacing is best. The model comparison rank and ensemble analysis suggests that combining multiple models may provide more accurate predicted concentrations than any single model. Further research is needed to identify optimal methods for selecting ensemble members and those methods may depend on the specific transport problem. None of the submissions based only on the stack monitoring data predicted the small measured concentrations very well. The one submission that best predicted small concentrations also included releases from nuclear power plants. Modeling of sources by other nuclear facilities with smaller releases than medical isotope production facilities may be important in discriminating those releases from releases from a nuclear explosion.« less
Human and natural influences on the changing thermal structure of the atmosphere
Santer, Benjamin D.; Painter, Jeffrey F.; Bonfils, Céline; Mears, Carl A.; Solomon, Susan; Wigley, Tom M. L.; Gleckler, Peter J.; Schmidt, Gavin A.; Doutriaux, Charles; Gillett, Nathan P.; Taylor, Karl E.; Thorne, Peter W.; Wentz, Frank J.
2013-01-01
Since the late 1970s, satellite-based instruments have monitored global changes in atmospheric temperature. These measurements reveal multidecadal tropospheric warming and stratospheric cooling, punctuated by short-term volcanic signals of reverse sign. Similar long- and short-term temperature signals occur in model simulations driven by human-caused changes in atmospheric composition and natural variations in volcanic aerosols. Most previous comparisons of modeled and observed atmospheric temperature changes have used results from individual models and individual observational records. In contrast, we rely on a large multimodel archive and multiple observational datasets. We show that a human-caused latitude/altitude pattern of atmospheric temperature change can be identified with high statistical confidence in satellite data. Results are robust to current uncertainties in models and observations. Virtually all previous research in this area has attempted to discriminate an anthropogenic signal from internal variability. Here, we present evidence that a human-caused signal can also be identified relative to the larger “total” natural variability arising from sources internal to the climate system, solar irradiance changes, and volcanic forcing. Consistent signal identification occurs because both internal and total natural variability (as simulated by state-of-the-art models) cannot produce sustained global-scale tropospheric warming and stratospheric cooling. Our results provide clear evidence for a discernible human influence on the thermal structure of the atmosphere. PMID:24043789
Overview of the LADEE Ultraviolet-visible Spectrometer: Design, Performance and Planned Operations
NASA Technical Reports Server (NTRS)
Colaprete, A.; Elphic, R. C.; Landis, D.; Karcz, J.; Osetinsky, L.; Shirley, M.; Vargo, K.; Wooden, D.
2013-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) is an orbital lunar science mission currently under development to address the goals of the 2003 National Research Council decadal survey, the Lunar Exploration Analysis Group Roadmap, and the "Scientific Context for Exploration of the Moon" (SCEM) report, and has been recommended for execution by the 2011 Planetary Missions Decadal Survey. The mission s focus is to study the pristine state of the lunar atmosphere and dust environment prior to possible lunar exploration activities by countries, including the United States, China, India, and Japan, among others. Activity on the lunar surface has the potential of altering the tenuous lunar atmosphere, but changing the type and concentration of gases in the atmosphere. Before these activities occur it is important to make measurements of the current lunar atmosphere in its unmodified state. LADEE will determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. It will monitor variations in known gases, such as sodium, potassium, argon and helium, and will search for other, as-yet-undetected gases of both lunar and extra-lunar origin. LADEE will also determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability. Launch is planned for August, 2013.
NASA Astrophysics Data System (ADS)
VanBommel, S. J.; Gellert, R.; Clark, B. C.; Ming, D. W.
2018-02-01
The Mars Exploration Rover Opportunity (MER-B) has been exploring the surface of Mars since landing in 2004. Its Alpha Particle X-ray Spectrometer (APXS) is primarily used to interrogate the chemical composition of rocks and soil samples in situ. Additionally, the APXS has measured the atmosphere of Mars with a regular cadence, monitoring the change in relative atmospheric argon density. Atmospheric measurements with the MER-B APXS span over six Mars years providing an unprecedented level of statistics for careful study of the ubiquitous APXS spectral background. Several models were applied to high-frequency long-duration Spirit rover atmospheric APXS measurements. The most stable model with the least uncertainty was applied to the MER-B data set. Seasonal variation of 10-15% in equatorial atmospheric argon density was observed - in agreement with existing literature and global climate models. Unseen in previous work and global climate models, an abrupt deviation from the model-predicted annual mixing ratio was measured by the MER-B APXS around Ls 150. The sharp change, 10% over 10° Ls, provides strong evidence for a northward migrating front, enriched in argon, sourced from the south pole at the end of southern winter. A similar weaker front is possibly observed around Ls 325, sourced from the northern polar region.
The Mars atmosphere as seen from Curiosity
NASA Astrophysics Data System (ADS)
Mischna, Michael
Study of the Mars atmosphere by the Mars Science Laboratory (MSL) has been ongoing since immediately after landing on August 6, 2012 (UTC) at the bottom of Gale Crater. The MSL Rover Environmental Monitoring Station (REMS) has been the primary payload for atmospheric monitoring, while additional observations from the ChemCam, Mastcam, Navcam and Sample Analysis at Mars (SAM) instruments have augmented our understanding of the local martian environment at Gale. The REMS instrument consists of six separate sensor types, observing air and ground temperature, near-surface winds, relative humidity, surface pressure and UV radiation. The standard cadence of REMS observations consists of five-minute observations of 1 Hz frequency at the top of each hour, augmented by several one-hour “extended blocks” each sol, also at 1 Hz frequency, together yielding one of the most richly diverse and detailed samplings of the martian atmosphere. Among the intriguing atmospheric phenomena observed during the first 359 sols of the mission is a substantially greater (˜12% of the diurnal mean) diurnal pressure cycle than found in previous surface measurements by Viking at a similar season (˜3-4%), likely due to the topography of the crater environment. Measurements of air and ground temperature by REMS are seen to reflect both changes in atmospheric opacity as well as transitions in the surface geology (and surface thermal properties) along the rover’s traverse. The REMS UV sensor has provided the first measurements of ultraviolet flux at the martian surface, and identified dust events that reduce solar insolation at the surface. The REMS RH sensor has observed a seasonal change in humidity in addition to the expected diurnal variations in relative humidity; however, no surface frost has been detected through the first 360 sols of the mission. With a weekly cadence, Navcam images the local zenith for purposes of tracking cloud motion and wind direction, and likewise observes the horizon to search (thus far unsuccessfully) for visible dust devil activity. The Mastcam operates with a similar observing frequency for quantifying atmospheric opacity, while ChemCam is used in its ‘passive’ mode, while pointed at the sky, to measure atmospheric water vapor abundance. Lastly, the SAM suite has provided information about atmospheric composition, including trace species abundances and isotopic ratios, which may be used to infer the history and evolution of the martian atmosphere.
NASA Astrophysics Data System (ADS)
Boulanger, Damien; Thouret, Valérie; Brissebrat, Guillaume
2017-04-01
IAGOS (In-service Aircraft for a Global Observing System) is a European Research Infrastructure which aims at the provision of long-term, regular and spatially resolved in situ observations of the atmospheric composition. IAGOS observation systems are deployed on a fleet of commercial aircraft and do measurements of aerosols, cloud particles, greenhouse gases, ozone, water vapor and nitrogen oxides from the surface to the lower stratosphere. The IAGOS database is an essential part of the global atmospheric monitoring network. It contains IAGOS-core data and IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) data. The IAGOS Data Portal http://www.iagos.org, damien.boulanger@obs-mip.fr) is part of the French atmospheric chemistry data center AERIS (http://www.aeris-data.fr). In 2016 the new IAGOS Data Portal has been released. In addition to the data download the portal provides improved and new services such as download in NetCDF or NASA Ames formats and plotting tools (maps, time series, vertical profiles, etc.). New added value products are or will be soon available through the portal: back trajectories, origin of air masses, co-location with satellite data, etc. Web services allow to download IAGOS metadata such as flights and airports information. Administration tools have been implemented for users management and instruments monitoring. A major improvement is the interoperability with international portals or other databases in order to improve IAGOS data discovery. In the frame of the IGAS project (IAGOS for the Copernicus Atmospheric Service), a data network has been setup. It is composed of three data centers: the IAGOS database in Toulouse, the HALO research aircraft database at DLR (https://halo-db.pa.op.dlr.de) and the CAMS (Copernicus Atmosphere Monitoring Service) data center in Jülich (http://join.iek.fz-juelich.de). The link with the CAMS data center, through the JOIN interface, allows to combine model outputs with IAGOS data for inter-comparison. The CAMS project is a prominent user of the IGAS data network. During the year IAGOS will improved metadata standardization and dissemination through different collaborations with the AERIS data center, GAW for which IAGOS is a contributing network and the ENVRI+ European project. Metadata about measurements traceability and quality will be available, DOI will be implemented and interoperability with other European Infrastructures will be set up through standardized web services.
Challenges in Discerning Atmospheric Composition in Directly Imaged Planets
NASA Technical Reports Server (NTRS)
Marley, Mark S.
2017-01-01
One of the justifications motivating efforts to detect and characterize young extrasolar giant planets has been to measure atmospheric composition for comparison with that of the primary star. If the enhancement of heavy elements in the atmospheres of extrasolar giant planets, like it is for their solar system analogs, is inversely proportional to mass, then it is likely that these worlds formed by core accretion. However in practice it has been very difficult to constrain metallicity because of the complex effect of clouds. Cloud opacity varies both vertically and, in some cases, horizontally through the atmosphere. Particle size and composition, both of which impact opacity, are difficult challenges both for forward modeling and retrieval studies. In my presentation I will discuss systematic efforts to improve cloud studies to enable more reliable determinations of atmospheric composition. These efforts are relevant both to discerning composition of directly imaged young planets from ground based telescopes and future space based missions, such as WFIRST and LUVOIR.
A Method to Access Absolute fIPAR fo Vegetation in Spatially Complex Ecosystems
NASA Technical Reports Server (NTRS)
Wessman, Carol A.; Nel, Elizabeth M.; Bateson, C. Ann; Asner, Gregory P.
1998-01-01
Arid and semi-arid lands compose a large fraction of the earth's terrestrial vegetation, and thereby contribute significantly to global atmospheric-biospheric interactions. The thorny shrubs and small trees in these semi-arid shrub lands have counterparts throughout much of the world's tropical and subtropical zones and have captured substantial areas of the world's former grasslands. The objective of our field and remotely sensed measurements in the semi-arid shrublands of Texas is to monitor interannual variability and directional change in landscape structure, ecosystem processes and atmosphere-biosphere exchanges. To understand the role ecosystems play in controlling the composition of the atmosphere, it is necessary to quantify processes such as photosynthesis and primary production, decomposition and soil carbon storage, and trace gas exchanges. Photosynthesis is the link whereby surface-atmosphere exchanges such as the radiation balance and exchange of heat, moisture, and gas can be inferred. It also describes the efficiency of carbon dioxide exchange and is directly related to the primary production of vegetation. Our efforts in this paper focus on the indirect, quantification of photosynthesis, and thereby carbon flux and net primary production, via remote sensing and direct measurements of intercepted photosynthetically active radiation (IPAR).
Metrological traceability of carbon dioxide measurements in atmosphere and seawater
NASA Astrophysics Data System (ADS)
Rolle, F.; Pessana, E.; Sega, M.
2017-05-01
The accurate determination of gaseous pollutants is fundamental for the monitoring of the trends of these analytes in the environment and the application of the metrological concepts to this field is necessary to assure the reliability of the measurement results. In this work, an overview of the activity carried out at Istituto Nazionale di Ricerca Metrologica to establish the metrological traceability of the measurements of gaseous atmospheric pollutants, in particular of carbon dioxide (CO2), is presented. Two primary methods, the gravimetry and the dynamic dilution, are used for the preparation of reference standards for composition which can be used to calibrate sensors and analytical instrumentation. At present, research is carried out to lower the measurement uncertainties of the primary gas mixtures and to extend their application to the oceanic field. The reason of such investigation is due to the evidence of the changes occurring in seawater carbonate chemistry, connected to the rising level of CO2 in the atmosphere. The well established activity to assure the metrological traceability of CO2 in the atmosphere will be applied to the determination of CO2 in seawater, by developing suitable reference materials for calibration and control of the sensors during their routine use.
NASA Astrophysics Data System (ADS)
Yoon, Sung-Young; Yi, Changho; Eom, Sangheum; Park, Seungil; Kim, Seong Bong; Ryu, Seungmin; Yoo, Suk Jae
2017-12-01
In this work, we studied the control of plasma-produced species under a fixed gas composition (i.e., ambient air) in a 10 kHz-driven array-type dielectric barrier atmospheric-pressure plasma discharge. Instead of the gas composition, only the gas velocity was controlled. Thus, the plasma-maintenance cost was considerably lower than methods such as external N2 or O2 injection. The plasma-produced species were monitored using Fourier transformed infrared spectroscopy. The discharge properties were measured using a voltage probe, current probe, infrared camera, and optical emission spectroscopy. The results showed that the major plasma products largely depend on the gas temperature in the plasma discharge layer. The gas temperature in the plasma discharge layer was significantly different to the temperature of the ceramic adjacent to the plasma discharge layer, even in the small discharge power density of ˜15 W/cm2 or ˜100 W/cm3. Because the vibrational excitation of N2 was suppressed by the higher gas flow, the major plasma-produced species shifted from NOx in low flow to O3 in high flow.
NASA Technical Reports Server (NTRS)
1987-01-01
The design course is an eight semester credit multi-disciplinary engineering design course taught primarily to Engineering Science, Aerospace, Electrical and Mechanical Engineering seniors. This year the course project involved the design of the three interrelated loops: atmospheric, liquid nutrient and solid waste management, associated with growing higher plants to support man during long-term space missions. The project is complementary to the NASA Kennedy Space Center Controlled Environmental Life Support System (CELSS) project. The first semester the class worked on a preliminary design for a complete system. This effort included means for monitoring and control of composition, temperature, flow rate, etc., for the atmosphere and liquid nutrient solution; disease and contaminant monitoring and control; plant mechanical support, propagation and harvesting; solid and liquid waste recycling; and system maintenance and refurbishing. The project has significant biological, mechanical, electrical and Al/Robotics aspects. The second semester a small number of subsystems or components, identified as important and interesting during the first semester, were selected for detail design, fabrication, and testing. The class was supported by close cooperation with The Kennedy Space Center and by two teaching assistants. The availability of a dedicated, well equipped project room greatly enhanced the communication and team spirit of the class.
Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets
NASA Astrophysics Data System (ADS)
Zhang, Xi; Showman, Adam P.
2017-02-01
Super Earths and mini Neptunes likely have a wide range of atmospheric compositions, ranging from low molecular mass atmospheres of H2 to higher molecular atmospheres of water, CO2, N2, or other species. Here we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets, using an idealized 3D general circulation model (GCM). The bulk composition effects are characterized in the framework of two independent variables: molecular weight and molar heat capacity. The effect of molecular weight dominates. As the molecular weight increases, the atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal phase curve, and a smaller zonal wind speed. The width of the equatorial super-rotating jet also becomes narrower, and the “jet core” region, where the zonal-mean jet speed maximizes, moves to a greater pressure level. The zonal-mean zonal wind is more prone to exhibit a latitudinally alternating pattern in a higher molecular weight atmosphere. We also present analytical theories that quantitatively explain the above trends and shed light on the underlying dynamical mechanisms. Those trends might be used to indirectly determine the atmospheric compositions on tidally locked sub-Jupiter-sized planets. The effects of the molar heat capacity are generally small. But if the vertical temperature profile is close to adiabatic, molar heat capacity will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere.
Stennis Space Center Verification and Validation Capabilities
NASA Technical Reports Server (NTRS)
O'Neal, Duane; Daehler, Erik
2006-01-01
Topics covered include: Spatial Response; Reflectance Radiometry; Positional Accuracy; Stationary Atmospheric Monitoring; Laboratory Calibration; Thermal Radiometry; Hyperspectral Radiometry; and Portable Atmospheric Monitoring.
Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R
2015-10-06
Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.
Sauer, Uta; Borsdorf, H; Dietrich, P; Liebscher, A; Möller, I; Martens, S; Möller, F; Schlömer, S; Schütze, C
2018-02-03
During a controlled "back-production experiment" in October 2014 at the Ketzin pilot site, formerly injected CO 2 was retrieved from the storage formation and directly released to the atmosphere via a vent-off stack. Open-path Fourier transform infrared (OP FTIR) spectrometers, on-site meteorological parameter acquisition systems, and distributed CO 2 point sensors monitored gas dispersion processes in the near-surface part of the atmospheric boundary layer. The test site provides a complex and challenging mosaic-like surface setting for atmospheric monitoring which can also be found at other storage sites. The main aims of the atmospheric monitoring of this experiment were (1) to quantify temporal and spatial variations in atmospheric CO 2 concentrations around the emitting vent-off stack and (2) to test if and how atmospheric monitoring can cope with typical environmental and operational challenges. A low environmental risk was encountered during the whole CO 2 back-production experiment. The study confirms that turbulent wind conditions favor atmospheric mixing processes and are responsible for rapid dilution of the released CO 2 leading to decreased detectability at all sensors. In contrast, calm and extremely stable wind conditions (especially occurring during the night) caused an accumulation of gases in the near-ground atmospheric layer with the highest amplitudes in measured gas concentration. As an important benefit of OP FTIR spectroscopic measurements and their ability to detect multiple gas species simultaneously, emission sources could be identified to a much higher certainty. Moreover, even simulation models using simplified assumptions help to find suitable monitoring network designs and support data analysis for certain wind conditions in such a complex environment.
Formation and Evolution of the Atmosphere on Early Titan
NASA Astrophysics Data System (ADS)
Marounina, N.; Tobie, G.; Carpy, S.; Monteux, J.; Charnay, B.; Grasset, O.
2014-12-01
The mass and composition of Titan's massive atmosphere, which is dominated by N2 and CH4 at present, have probably varied all along its history owing to a combination of exogenous and endogenous processes. In a recent study, we investigated its fate during the Late Heavy Bombardment (LHB) by modeling the competitive loss and supply of volatiles by cometary impacts and their consequences on the atmospheric balance. We examine the emergence of an atmosphere as well as the evolution of a primitive atmosphere of various sizes and compositions. By considering an impactor population characteristic of the LHB, we showed that an atmosphere with a mass equivalent to the present-day one cannot be formed during the LHB era. Our calculations indicated that the high-velocity impacts during the LHB led to a strong atmospheric erosion, so that the pre-LHB atmosphere should be 5 to 7 times more massive than at present (depending mostly on the albedo), in order to sustain an atmosphere equivalent to the present-day one. This implies that either a massive atmosphere was formed on Titan during its accretion or that the nitrogen-rich atmosphere was generated after the LHB.To investigate the primitive atmosphere of the satellite, we consider chemical exchanges of volatils between a global water ocean at Titan's surface, generated by impact heating during the accretion and an atmosphere. We are currently developing a liquid-vapor equilibrium model for various initial oceanic composition to investigate how a massive atmosphere may be generated during the satellite growth and how it may evolve toward a composition dominated by N2. More generally, our model address how atmosphere may be generated in water-rich objects, which may be common around other stars.
The TROPOMI surface UV algorithm
NASA Astrophysics Data System (ADS)
Lindfors, Anders V.; Kujanpää, Jukka; Kalakoski, Niilo; Heikkilä, Anu; Lakkala, Kaisa; Mielonen, Tero; Sneep, Maarten; Krotkov, Nickolay A.; Arola, Antti; Tamminen, Johanna
2018-02-01
The TROPOspheric Monitoring Instrument (TROPOMI) is the only payload of the Sentinel-5 Precursor (S5P), which is a polar-orbiting satellite mission of the European Space Agency (ESA). TROPOMI is a nadir-viewing spectrometer measuring in the ultraviolet, visible, near-infrared, and the shortwave infrared that provides near-global daily coverage. Among other things, TROPOMI measurements will be used for calculating the UV radiation reaching the Earth's surface. Thus, the TROPOMI surface UV product will contribute to the monitoring of UV radiation by providing daily information on the prevailing UV conditions over the globe. The TROPOMI UV algorithm builds on the heritage of the Ozone Monitoring Instrument (OMI) and the Satellite Application Facility for Atmospheric Composition and UV Radiation (AC SAF) algorithms. This paper provides a description of the algorithm that will be used for estimating surface UV radiation from TROPOMI observations. The TROPOMI surface UV product includes the following UV quantities: the UV irradiance at 305, 310, 324, and 380 nm; the erythemally weighted UV; and the vitamin-D weighted UV. Each of these are available as (i) daily dose or daily accumulated irradiance, (ii) overpass dose rate or irradiance, and (iii) local noon dose rate or irradiance. In addition, all quantities are available corresponding to actual cloud conditions and as clear-sky values, which otherwise correspond to the same conditions but assume a cloud-free atmosphere. This yields 36 UV parameters altogether. The TROPOMI UV algorithm has been tested using input based on OMI and the Global Ozone Monitoring Experiment-2 (GOME-2) satellite measurements. These preliminary results indicate that the algorithm is functioning according to expectations.
Atmospheric Composition Change: Climate-Chemistry Interactions
NASA Technical Reports Server (NTRS)
Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.;
2011-01-01
Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced concentration through reduced biospheric uptake. During the last 510 years, new observational data have been made available and used for model validation and the study of atmospheric processes. Although there are significant uncertainties in the modelling of composition changes, access to new observational data has improved modelling capability. Emission scenarios for the coming decades have a large uncertainty range, in particular with respect to regional trends, leading to a significant uncertainty range in estimated regional composition changes and climate impact.
AVIRIS data and neural networks applied to an urban ecosystem
NASA Technical Reports Server (NTRS)
Ridd, Merrill K.; Ritter, Niles D.; Bryant, Nevin A.; Green, Robert O.
1992-01-01
Urbanization is expanding on every continent. Although urban/industrial areas occupy a small percentage of the total landscape of the earth, their influence extends far beyond their borders, affecting terrestrial, aquatic, and atmospheric systems globally. Yet little has been done to characterize urban ecosystems of their linkages to other systems horizontally or vertically. With remote sensing we now have the tools to characterize, monitor, and model urban landscapes world-wide. However, the remote sensing performed on cities so far has concentrated on land-use patterns as distinct from land-cover or composition. The popular Anderson system is entirely land-use oriented in urban areas. This paper begins with the premise that characterizing the biophysical composition of urban environments is fundamental to understanding urban/industrial ecosystems, and, in turn, supports the modeling of other systems interfacing with urban systems. Further, it is contended that remote sensing is a tool poised to provide the biophysical composition data to characterize urban landscapes.
Method of identifying defective particle coatings
Cohen, Mark E.; Whiting, Carlton D.
1986-01-01
A method for identifying coated particles having defective coatings desig to retain therewithin a build-up of gaseous materials including: (a) Pulling a vacuum on the particles; (b) Backfilling the particles at atmospheric pressure with a liquid capable of wetting the exterior surface of the coated particles, said liquid being a compound which includes an element having an atomic number higher than the highest atomic number of any element in the composition which forms the exterior surface of the particle coating; (c) Drying the particles; and (d) Radiographing the particles. By television monitoring, examination of the radiographs is substantially enhanced.
Friction, wear, and noise of slip ring and brush contacts for synchronous satellite use.
NASA Technical Reports Server (NTRS)
Lewis, N. E.; Cole, S. R.; Glossbrenner, E. W.; Vest, C. E.
1973-01-01
A program is being conducted for testing of slip rings for synchronous orbit application. Instrumentation systems necessary for monitoring electrical noise, friction, and brush wear at atmospheric pressure and at less than 50 nanotorr have been developed. A multiplex scheme necessary for the simultaneous recording of brush displacement, friction, and electrical noise has also been developed. Composite brushes consisting of silver-molybdenum disulfide-graphite and silver-niobium diselenide-graphite have been employed on rings of coin silver and rhodium plate. Brush property measurements made included measurement of density, electrical resistivity, shear strength, and microstructure.
Analysis of Critical Earth Observation Priorities for Societal Benefit
NASA Astrophysics Data System (ADS)
Zell, E. R.; Huff, A. K.; Carpenter, A. T.; Friedl, L.
2011-12-01
To ensure that appropriate near real-time (NRT) and historical Earth observation data are available to benefit society and meet end-user needs, the Group on Earth Observations (GEO) sponsored a multi-disciplinary study to identify a set of critical and common Earth observations associated with 9 Societal Benefit Areas (SBAs): Agriculture, Biodiversity, Climate, Disasters, Ecosystems, Energy, Health, Water, and Weather. GEO is an intergovernmental organization working to improve the availability, access, and use of Earth observations to benefit society through a Global Earth Observation System of Systems (GEOSS). The study, overseen by the GEO User Interface Committee, focused on the "demand" side of Earth observation needs: which users need what types of data, and when? The methodology for the study was a meta-analysis of over 1,700 publicly available documents addressing Earth observation user priorities, under the guidance of expert advisors from around the world. The result was a ranking of 146 Earth observation parameters that are critical and common to multiple SBAs, based on an ensemble of 4 statistically robust methods. Within the results, key details emerged on NRT observations needed to serve a broad community of users. The NRT observation priorities include meteorological parameters, vegetation indices, land cover and soil property observations, water body and snow cover properties, and atmospheric composition. The results of the study and examples of NRT applications will be presented. The applications are as diverse as the list of priority parameters. For example, NRT meteorological and soil moisture information can support monitoring and forecasting for more than 25 infectious diseases, including epidemic diseases, such as malaria, and diseases of major concern in the U.S., such as Lyme disease. Quickly evolving events that impact forests, such as fires and insect outbreaks, can be monitored and forecasted with a combination of vegetation indices, fuel moisture content, burn scars, and meteorological parameters. Impacts to public health and livelihoods due to food insecurity, algal blooms, and air pollution can be addressed through NRT monitoring of specific events utilizing land cover, atmospheric composition, water quality, and meteorological observations. More broadly, the assessment of water availability for drinking and agriculture and the development of floods and storms rely on continuous feeds of NRT meteorological and atmospheric composition observations. Overall, this multi-disciplinary study of user needs for NRT data and products can inform the design and operation of NRT data systems. Follow-on work for this study will also be presented, focusing on the availability of current and future satellite measurements (including NRT) of the 30 most critical Earth observation priorities, as well as a detailed analysis of users' needs for precipitation data. The results of this study summarize the priorities for critical Earth observations utilized globally for societal benefit.
Cosmic Rays in the Earth's Atmosphere and Underground
NASA Astrophysics Data System (ADS)
Dorman, Lev I.
2004-08-01
This book consists of four parts. In the first part (Chapters 1-4) a full overview is given of the theoretical and experimental basis of Cosmic Ray (CR) research in the atmosphere and underground for Geophysics and Space Physics; the development of CR research and a short history of many fundamental discoveries, main properties of primary and secondary CR, methods of transformation of CR observation data in the atmosphere and underground to space, and the experimental basis of CR research underground and on the ground, on balloons and on satellites and space probes. The second part (Chapters 5-9) is devoted to the influence of atmospheric properties on CR, so called CR meteorological effects; pressure, temperature, humidity, snow, wind, gravitation, and atmospheric electric field effects. The inverse problem - the influence of CR properties on the atmosphere and atmospheric processes is considered in the third part (Chapters 10-14); influence on atmospheric, nuclear and chemical compositions, ionization and radio-wave propagation, formation of thunderstorms and lightning, clouds and climate change. The fourth part (Chapters 15-18) describes many realized and potential applications of CR research in different branches of Science and Technology; Meteorology and Aerodrome Service, Geology and Geophysical Prospecting, Hydrology and Agricultural Applications, Archaeology and Medicine, Seismology and Big Earthquakes Forecasting, Space Weather and Environment Monitoring/Forecasting. The book ends with a list providing more than 1,500 full references, a discussion on future developments and unsolved problems, as well as object and author indices. This book will be useful for experts in different branches of Science and Technology, and for students to be used as additional literature to text-books.
Flexible Sensing Arrays Fabricated with Carbon Nanofiber Composite Thin Films for Posture Monitoring
NASA Astrophysics Data System (ADS)
Chang, Fuh-Yu; Wang, Ruoh-Huey; Lin, Yu-Hsien; Chen, Tse-Min; Lee, Yueh-Feng; Huang, Shu-Jiuan; Liu, Chia-Ming
2011-06-01
Faulty posture increases joint stress and causes postural pain syndrome. In this paper, we present a portable strain sensing system with flexible sensor arrays to warn patients to correct inappropriate posture. A 3×3 flexible strain sensing array system was fabricated using patterned surface treatment and the tilted-drop process with carbon nanofiber composite solutions on polyimide substrates. Atmospheric plasma was used to enhance or reduce the surface energy in specific areas for patterned surface treatment. A scanning circuit was also developed to capture the signal from the flexible sensing array. The developed system has been used to measure the bent angle of the human neck from 15 to 60°. The results indicate that human posture can be successfully captured by analyzing the measured strains from a flexible strain sensing array.
Monthly AOD maps combining strengths of remote sensing products
NASA Astrophysics Data System (ADS)
Kinne, Stefan
2010-05-01
The mid-visible aerosol optical depth (AOD) is the most prominent property to quantify aerosol amount the atmospheric column. Almost all aerosol retrievals of satellite sensors provide estimates for this property, however, often with limited success. As sensors differ in capabilities individual retrievals have local and regional strengths and weaknesses. Focusing on individual retrieval strengths a satellite based AOD composite has been constructed. Hereby, every retrieval performance has been assessed in statistical comparisons to ground-based sun-photometry, which provide highly accurate references though only at few globally distributed monitoring sites. Based on these comparisons, which consider bias as well as spatial patterns and seasonality, the regionally best performing satellite AOD products are combined. The resulting remote sensing AOD composite provide a general reference for the spatial and temporal AOD distribution on an (almost) global basis - solely tied to sensor data.
Observations of Titanium, Aluminum and Magnesium in the Lunar Exosphere by LADEE UVS
NASA Technical Reports Server (NTRS)
Colaprete, A.; Wooden, D.; Cook, A.; Shirley, M.; Sarantos, M.
2016-01-01
The Lunar Atmosphere and Dust Environment Explorer (LADEE) was an orbital lunar science mission designed to address the goals of the 2003 National Research Council decadal survey, the Lunar Exploration Analysis Group Roadmap, and the "Scientific Context for Exploration of the Moon" (SCEM) report, and has been recommended for execution by the 2011 Planetary Missions Decadal Survey. The LADEE mission goal was to determine the composition of the lunar atmosphere and investigate the processes that control its distribution and variability, including sources, sinks, and surface interactions. It will monitor variations in known gasses, such as sodium, potassium, argon and helium, and will search for other, as-yet-undetected gasses of both lunar and extra-lunar origin. Another goal of LADEE was to determine whether dust is present in the lunar exosphere, and reveal the processes that contribute to its sources and variability.
Sanguinetti, A M; Del Caro, A; Mangia, N P; Secchi, N; Catzeddu, P; Piga, A
2011-02-01
This study evaluated the shelf life of fresh pasta filled with cheese subjected to modified atmosphere packaging (MAP) or air packaging (AP). After a pasteurization treatment, fresh pasta was packaged under a 50/50 N(2)/CO(2) ratio or in air (air batch). Changes in microbial growth, in-package gas composition, chemical-physical parameters and sensory attributes were monitored for 42 days at 4 (°)C. The pasteurization treatment resulted in suitable microbiological reduction. MAP allowed a mold-free shelf life of the fresh filled pasta of 42 days, whereas air-packaged samples got spoilt between 7 and 14 days. The hurdle approach used (MAP and low storage temperature) prevented the growth of pathogens and alterative microorganisms. MAP samples maintained a high microbiological standard throughout the storage period. The panel judged MAP fresh pasta above the acceptability threshold throughout the shelf life.
Clouds in Super-Earth Atmospheres: Chemical Equilibrium Calculations
NASA Astrophysics Data System (ADS)
Mbarek, Rostom; Kempton, Eliza M.-R.
2016-08-01
Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer & Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solar and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350-3000 K. Clouds should form along the temperature-pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K2SO4 and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.
NASA Astrophysics Data System (ADS)
Zhang, Chengshuang; Li, Cuiyun; Wang, Baiya; Wang, Bin; Cui, Hong
2013-07-01
Poly(p-phenylene benzobisoxazole) (PBO) fiber was modified by atmospheric air plasma treatment. The effects of plasma treatment power and speed on both surface properties of PBO fibers and interfacial properties of PBO/epoxy composites were investigated. Surface chemical composition of PBO fibers were analyzed by X-ray photoelectron spectroscopy (XPS). Surface morphologies of the fibers and interface structures of the composites were examined using scanning electron microscopy (SEM). Interfacial adhesion property of the composites was evaluated by interlaminar shear strength (ILSS). Mechanical properties of PBO multifilament were measured by universal testing machine. The results indicate that atmospheric air plasma treatment introduced some polar or oxygen-containing groups to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. The plasma treatment also improved interfacial adhesion of PBO/epoxy composites but has little effect on tensile properties of PBO multifilament. The ILSS of PBO/epoxy composites increased to 40.0 MPa after atmospheric air plasma treatment with plasma treatment power of 300 W and treatment speed of 6 m/min.
Mineral dynamics in Spanish moss, Tillandsia usneoides L. (Bromeliaceae), from Central Florida, USA.
Husk, George J; Weishampel, John F; Schlesinger, William H
2004-04-05
Epiphytes absorb water and nutrients from the atmosphere through precipitation and dry deposition and from their hosts through stemflow and throughfall. These commensals have been used as biological indicators or monitors of air quality. To measure temporal changes in Spanish moss (Tillandsia usneoides) mineral concentrations, we revisited sites in Central Florida where this epiphyte was collected and analyzed in 1973/1974. After 24-25 years, using comparable methods, concentrations of Ca, Mg, K and Cu decreased in the tissue samples while Fe increased. These declines in base cations corresponded to global atmospheric decreases. In the earlier study, patterns of elemental concentrations in Spanish moss corresponded to the host tree categories primarily reflecting a P gradient that increased from pine (Pinus spp.) to cypress (Taxodium spp.) to hardwood (e.g. Quercus spp.) hosts. Such host-specific associations were mostly absent from the recent study, suggesting that epiphytic preferences based on the chemistry of phorophyte leachates have become less important in this region, perhaps, resulting from local (suburbanization) or regional (atmospheric composition) changes.
NASA Astrophysics Data System (ADS)
Di Giuseppe, Francesca; Rémy, Samuel; Pappenberger, Florian; Wetterhall, Fredrik
2018-04-01
The atmospheric composition analysis and forecast for the European Copernicus Atmosphere Monitoring Services (CAMS) relies on biomass-burning fire emission estimates from the Global Fire Assimilation System (GFAS). The GFAS is a global system and converts fire radiative power (FRP) observations from MODIS satellites into smoke constituents. Missing observations are filled in using persistence, whereby observed FRP values from the previous day are progressed in time until a new observation is recorded. One of the consequences of this assumption is an increase of fire duration, which in turn translates into an increase of emissions estimated from fires compared to what is available from observations. In this study persistence is replaced by modelled predictions using the Canadian Fire Weather Index (FWI), which describes how atmospheric conditions affect the vegetation moisture content and ultimately fire duration. The skill in predicting emissions from biomass burning is improved with the new technique, which indicates that using an FWI-based model to infer emissions from FRP is better than persistence when observations are not available.
NASA Astrophysics Data System (ADS)
Bekaert, David V.; Avice, Guillaume; Marty, Bernard; Henderson, Bryana; Gudipati, Murthy S.
2017-12-01
Despite extensive effort during the last four decades, no clear signature of a lunar indigenous noble gas component has been found. In order to further investigate the possible occurrence of indigenous volatiles in the Moon, we have re-analyzed the noble gas and nitrogen isotopic compositions in three anorthosite samples. Lunar anorthosites 60025, 60215 and 65315 have the lowest exposure duration (∼2 Ma) among Apollo samples and consequently contain only limited cosmogenic (e.g. 124,126Xe) and solar wind (SW) noble gases. Furthermore, anorthosites have negligible contributions of fissiogenic Xe isotopes because of their very low Pu and U contents. As observed in previous studies (Lightner and Marti, 1974; Leich and Niemeyer, 1975), lunar anorthosite Xe presents an isotopic composition very close to that of terrestrial atmospheric Xe, previously attributed to ;anomalous adsorption; of terrestrial Xe after sample return. The presumed atmospheric Xe contamination can only be removed by heating the samples at medium to high temperatures under vacuum, and is therefore different from common adsorption. To test this hypothesis, we monitored the adsorption of Xe onto lunar anorthositic powder using infrared reflectance spectroscopy. A clear shift in the anorthosite IR absorbance peaks is detected when comparing the IR absorbance spectra of the lunar anorthositic powder before and after exposure to a neutral Xe-rich atmosphere. This observation accounts for the chemical bonding (chemisorption) of Xe onto anorthosite, which is stronger than the common physical bonding (physisorption) and could account for the anomalous adsorption of Xe onto lunar samples. Our high precision Xe isotope analyses show slight mass fractionation patterns across 128-136Xe isotopes with systematic deficits in the heavy Xe isotopes (mostly 136Xe and marginally 134Xe) that have not previously been observed. This composition could be the result of mixing between an irreversibly adsorbed terrestrial contaminant that is mostly released at high temperature and an additional signature. Solar Wind (SW) Xe contents, estimated from SW-Ne and SW-Ar concentrations and SW-Ne/Ar/Xe elemental ratios, do not support SW as the additional contribution. Using a χ2 test, the latter is best accounted for by cometary Xe as measured in the coma of Comet 67P/Churyumov-Gerasimenko (Marty et al., 2017) or by the primordial U-Xe composition inferred to be the precursor of atmospheric Xe (Pepin, 1994; Avice et al., 2017). It could have been contributed to the lunar budget by volatile-rich bodies that participated to the building of the terrestrial atmosphere inventory (Marty et al., 2017).
Disturbance observer based model predictive control for accurate atmospheric entry of spacecraft
NASA Astrophysics Data System (ADS)
Wu, Chao; Yang, Jun; Li, Shihua; Li, Qi; Guo, Lei
2018-05-01
Facing the complex aerodynamic environment of Mars atmosphere, a composite atmospheric entry trajectory tracking strategy is investigated in this paper. External disturbances, initial states uncertainties and aerodynamic parameters uncertainties are the main problems. The composite strategy is designed to solve these problems and improve the accuracy of Mars atmospheric entry. This strategy includes a model predictive control for optimized trajectory tracking performance, as well as a disturbance observer based feedforward compensation for external disturbances and uncertainties attenuation. 500-run Monte Carlo simulations show that the proposed composite control scheme achieves more precise Mars atmospheric entry (3.8 km parachute deployment point distribution error) than the baseline control scheme (8.4 km) and integral control scheme (5.8 km).
Mazankova, V; Torokova, L; Krcma, F; Mason, N J; Matejcik, S
2016-11-01
This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO 2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N 2 + CH 4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO 2 reactivity. CO 2 was introduced to the standard N 2 + CH 4 mixture at different mixing ratio up to 5 % CH 4 and 3 % CO 2 . The reaction products were characterized by FTIR spectroscopy. This work shows that CO 2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO 2 on increasing concentration other products as cyanide (HCN) and ammonia (NH 3 ).
A Distinct Magnetic Isotope Effect Measured in Atmospheric Mercury in Epiphytes
NASA Astrophysics Data System (ADS)
Ghosh, S.; Odom, A. L.
2007-12-01
Due to the importance of Mercury as an environmental contaminant, mercury cycling in the atmosphere has been extensively studied. However, there still remain uncertainties in the relative amounts of natural and anthropogenic emissions, atmospheric deposition rates as well as the spatial variation of atmospheric mercury. Part of a study to determine the isotopic composition of mercury deposited from the atmosphere has involved the use of epiphytes as monitors. The greatest advantage of such natural monitors is that a widespread, high-density network is possible at low cost. One of the disadvantages at present is that these monitors likely contain different mercury species (for example both gaseous, elemental mercury trapped by adsorption and Hg (II) by wet deposition). The project began with the understanding that biochemical reactions involving metallothioneins within the epiphytes might have produced an isotopic effect. One such regional network was composed of samples of Tillandsia usenoides (common name: Spanish moss) collected along the eastern Coastal Plain of the U.S. from northern Florida to North Carolina. The isotopic composition of a sample is expressed as permil deviations from a standard. The deviations are defined as δAHg = \\left(\\frac{Rsample}{Rstd}-1 \\right)1000 ‰ , where A represents the atomic mass number. R=\\frac{AHg}{202Hg} were measured for the isotopes 198Hg, 199Hg, 200Hg, 201Hg, 202Hg and 204Hg relative to the mercury standard SRM NIST 3133, by a standard-sample bracketing technique. For all samples, the delta values of the even-N plotted against atomic mass numbers define a linear curve. For the odd-N isotopes, δ199Hg and δ201Hg deviate from this mass-dependent fractionation (MDF) relationship and indicate a mass-independent fractionation (MIF) effect and a negative anomaly, i.e. a depletion in 199Hg and 201Hg relative to the even-N isotopes. These deviations are expressed as Δ199Hg = δ199Hgtotal - δ199HgMDF. A Δ201Hg/Δ199Hg ratio of 1.11 is predicted by isotope fractionation due to the Magnetic Isotope Effect (MIE), because 1.11 is the ratio of the magnetic moments of the two odd-N isotopes. A plot of Δ199Hg versus Δ201Hg values obtained reveals a striking pattern. All samples plot well within analytical uncertainly along a straight line passing through zero and having a slope of 1.11. Based on thermodynamic principles, some have argued that nuclear spin effects are quite insignificant in producing isotopic fractionation. However the MIE is a kinetic one in which those isotopes with non-zero magnetic moments effect the rates of recombination of free radical pairs by nuclear-electron hyperfine interaction and can become enriched or depleted in either reactants or products. In the samples studied here, the nuclear spin is far more important than either nuclear mass or nuclear volume in effecting isotopic fractionation of Mercury.
The Icelandic volcanological data node and data service
NASA Astrophysics Data System (ADS)
Vogfjord, Kristin; Sigmundsson, Freysteinn; Futurevolc Team
2013-04-01
Through funding from the European FP7 programme, the International Civil Aviation Authority (ICAO), as well as the local Icelandic government and RANNÍS research fund, the establishment of the Icelandic volcano observatory (VO) as a cross-disciplinary, international volcanological data node and data service is starting to materialize. At the core of this entity is the close collaboration between the Icelandic Meteorological Office (IMO), a natural hazard monitoring and research institution, and researchers at the Earth Science Institute of the University of Iceland, ensuring long-term sustainable access to research quality data and products. Existing Icelandic Earth science monitoring and research infrastructures are being prepared for integration with the European EPOS infrastructure. Because the VO is located at a Met Office, this infrastructure also includes meteorological infrastructures relevant to volcanology. Furthermore, the FP7 supersite project, FUTUREVOLC cuts across disciplines to bring together European researchers from Earth science, atmospheric science, remote sensing and space science focussed on combined processing of the different data sources and results to generate a multiparametric volcano monitoring and early warning system. Integration with atmospheric and space science is to meet the need for better estimates of the volcanic eruption source term and dispersion, which depend not only on the magma flow rate and composition, but also on atmosphere-plume interaction and dispersion. This should lead to better estimates of distribution of ash in the atmosphere. FUTUREVOLC will significantly expand the existing Icelandic EPOS infrastructure to an even more multidisciplinary volcanological infrastructure. A central and sustainable part of the project is the establishment of a research-quality data centre at the VO. This data centre will be able to serve as a volcanological data node within EPOS, making multidisciplinary data accessible to scientists and stakeholders, and enabling the generation of products and services useful for civil protection, societal infrastructure and international aviation. The 2010 Eyjafjallajökull eruption demonstrated that eruption and dispersion of volcanic ash in the atmosphere can have far-reaching detrimental effects on aviation. The aviation community is therefore an important stakeholder in volcano monitoring, but interaction between the two communities is not well established. Traditionally Met Offices provide services vital to aviation safety and therefore have strong ties to the aviation community, with internationally established protocols for interaction. The co-habitation of a Met Office with a VO establishes a firm connection between these communities and allows adaptation of already established protocols to facilitate access to information and development of services for aviation, as well as sources of support for the VO.
Picque, D; Leclercq-Perlat, M-N; Corrieu, G
2006-08-01
Respiratory activity, weight loss, and appearance of Camembert-type cheeses were studied during chamber ripening in relation to atmospheric composition. Cheese ripening was carried out in chambers under continuously renewed, periodically renewed, or nonrenewed gaseous atmospheres or under a CO(2) concentration kept constant at either 2 or 6% throughout the chamber-ripening process. It was found that overall atmospheric composition, and especially CO(2) concentration, of the ripening chamber affected respiratory activity. When CO(2) was maintained at either 2 or 6%, O(2) consumption and CO(2) production (and their kinetics) were higher compared with ripening trials carried out without regulating CO(2) concentration over time. Global weight loss was maximal under continuously renewed atmospheric conditions. In this case, the airflow increased exchanges between cheeses and the atmosphere. The ratio between water evaporation and CO(2) release also depended on atmospheric composition, especially CO(2) concentration. The thickening of the creamy underrind increased more quickly when CO(2) was present in the chamber from the beginning of the ripening process. However, CO(2) concentrations higher than 2% negatively influenced the appearance of the cheeses.
Optical remote sensing of properties and concentrations of atmospheric trace constituents
NASA Astrophysics Data System (ADS)
Vladutescu, Daniela Viviana
The effect of human activities on the global climate may lead to large disturbances of the economic, social and political circumstances in the middle and long term. Understanding the dynamics of the Earth's climate is therefore of high importance and one of the major scientific challenges of our time. The estimation of the contribution of the Earth's climate system components needs observation and continuous monitoring of various atmospheric physical and chemical parameters. Temperature, water vapor and greenhouse gases concentration, aerosol and clouds loads, and atmospheric dynamics are parameters of particular importance in this respect. The quantification of the anthropogenic influence on the dynamics of these above-mentioned parameters is of crucial importance nowadays but still affected by significant uncertainties. In the present context of these huge uncertainties in our understanding of how these different atmospheric compounds contribute to the radiative forcing, a significant part of my research interest is related to the following topics: (1) Development of lidar (Light Detection and Ranging)-based remote sensing techniques for monitoring atmospheric compounds and processes; (2) Aerosols hygroscopic properties and atmospheric modeling; (3) Water vapor mixing ratio and relative humidity estimation in the troposphere; (4) Characterization of the long-range transported aerosols; (5) Ambient gases detection using Fourier Transform Interferometers (FTIR); (6) Design of inexpensive Fabry Perot Interferometer for visible and near infrared for land and ocean surface remote sensing applications. The lidar-based remote sensing measurement techniques for the monitoring of climate change parameters where implemented at the City College of the City University of New York (CCNY/CUNY) LIDAR station and are presented in the second section of the paper. The geographical location of the CCNY lidar station is 40.86N, -73.86W. Among the lidar retrievals one important application is the detection of water vapor in the atmosphere. Water vapor is an important greenhouse gas due to its high concentration in the atmosphere (parts per thousand), among the trace constituents, and its interaction with tropospheric aerosols particles. The upward convection of water vapor and aerosols due to intense heating of the ground lead to aggregation of water particles or ice on aerosols in the air forming different types of clouds at various altitudes. In this regard a reliable method of retrieving atmospheric water vapor profiles is presented in the third part of the paper. The proposed technique here is the Raman lidar procedure that is calibrated afterwards. The accuracy of the water vapor measurements is obtained by calibration techniques based on different techniques that where compared and validated. The calibration method is based on data fusion from different sources like: GPS (global positioning system) sunphotometer, radiosonde. The condensation of water vapor on aerosols is affecting their size, shape, refractive index and chemical composition. The warming or cooling effect of the clouds hence formed are both possible depending on the cloud location, cover, composition and structure. The effect of these clouds on radiative global forcing and therefore on the short and long term global climate is of high interest in the scientific world. In an effort to understand the hygroscopic properties of aerosols, a major interest is manifested in obtaining accurate vertical water vapor profiles simultaneously with aerosol extinction and backscatter profiles. A reliable method of retrieving atmospheric water vapor profiles and aerosols backscatter and extinction in the same atmospheric volume is presented in the fourth chapter of the paper. As mentioned above the determination of greenhouse gases and other molecular pollutants is important in process control as well as environmental monitoring. Since many molecular vibrational modes are in the infrared, molecules can absorb light from an infrared source (such as the sun or an artificial source such as a glow rod) and therefore, if the source spectrum is known, the absorption spectra of the sample can be measured. Therefore, any spectroscopy method needs a well characterized infrared source as well as an accurate high resolution spectrometer. In the fifth chapter of the paper is presented a standard technique for open-path detection of greenhouse gases which is based on Fourier Transform Infrared Spectroscopy (FTIR). A MIDAC open path FTIR instrument is presented along with measurements and analyses. In the group of spectrometers with a high spatial spectral resolution is found as well the Fabry Perot Interferometer that is presented in chapter 6. A visible-near infrared (VIS-NIR) scanning Fabry Perot Imager design is proposed based on combinations of Fabry Perot etalons and/or broadband interference filters that can in principle be used as a hyperspectral sensors from geostationary spaceborne platforms. Keywords. Lidar, Raman, Mie, water vapor mixing ratio, backscatter, extinction, relative humidity, aerosol hygroscopic properties, atmospheric model, FTIR, FPI, green house gases
NASA Astrophysics Data System (ADS)
Glaze, L. S.; Garvin, J. B.
2017-12-01
Venus provides a natural laboratory to explore an example of terrestrial planet evolution that may be cosmically ubiquitous. By better understanding the composition of the Venus atmosphere and surface, we can better constrain the efficiency of the Venusian greenhouse. VICI is a proposed NASA New Frontiers mission that delivers two landers to Venus on two separate Venus fly-bys. Following six orbital remote sensing missions to Venus (since 1978), VICI would be the first mission to land on the Venus surface since 1985, and the first U.S. mission to enter the Venus atmosphere in 49 years. The four major VICI science objectives are: Atmospheric origin and evolution: Understand the origin of the Venus atmosphere, how it has evolved, including how recently Venus lost its oceans, and how and why it is different from the atmospheres of Earth and Mars, through in situ measurements of key noble gases, nitrogen, and hydrogen. Atmospheric composition and structure: Reveal the unknown chemical processes and structure in Venus' deepest atmosphere that dominate the current climate through two comprehensive, in situ vertical profiles. Surface properties and geologic evolution: For the first time ever, explore the tessera from the surface, specifically to test hypotheses of ancient content-building cycles, erosion, and links to past climates using multi-point mineralogy, elemental chemistry, imaging and topography. Surface-atmosphere interactions: Characterize Venus' surface weathering environment and provide insight into the sulfur cycle at the surface-atmosphere interface by integrating rich atmospheric composition and structure datasets with imaging, surface mineralogy, and elemental rock composition. VICI is designed to study Venus' climate history through detailed atmospheric composition measurements not possible on earlier missions. In addition, VICI images the tessera surface during descent enabling detailed topography to be generated. Finally, VICI makes multiple elemental chemistry measurements, including depth profiles through the weathering rind and subsurface, and the first ever direct mineralogy measurements on the Venus surface. VICI's payloads build on the success of the Mars Science Laboratory (MSL) by carrying the same instrumentation that has delivered high-impact science results on Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolker,A.; Huggins, F.
2007-01-01
Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period ofmore » 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32-1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26-0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O{sub 2} atmosphere; (3) room atmosphere (relative humidity {approx}20-60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and {sup 57}Fe Mossbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. {sup 57}Fe Mossbauer spectroscopy also shows a much greater proportion of Fe{sup 3+} forms (jarosite, Fe{sup 3+} sulfate, FeOOH) for samples stored under wet conditions, but much less difference among samples stored under dry conditions in different atmospheres. The air-wet experiments show evidence of pyrite re-precipitation from soluble ferric sulfates, with As retention in the jarosite phase. Extents of As and Fe oxidation were similar for samples having differing As substitution in pyrite, suggesting that environmental conditions outweigh the composition and amount of pyrite as factors influencing the oxidation rate of Fe sulfides in coal.« less
SiC Fiber-Reinforced Celsian Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
2003-01-01
Celsian is a promising matrix material for fiber-reinforced composites for high temperature structural applications. Processing and fabrication of small diameter multifilament silicon carbide tow reinforced celsian matrix composites are described. Mechanical and microstructural properties of these composites at ambient and elevated temperatures are presented. Effects of high-temperature exposures in air on the mechanical behavior of these composites are also given. The composites show mechanical integrity up to 1100 C but degrade at higher temperatures in oxidizing atmospheres. A model has been proposed for the degradation of these composites in oxidizing atmospheres at high temperatures.
NASA Astrophysics Data System (ADS)
Maione, M.; Giostra, U.; Arduini, J.; Furlani, F.; Bonasoni, P.; Cristofanelli, P.; Laj, P.; Vuillermoz, E.
2011-04-01
A monitoring programme for halogenated climate-altering gases has been established in the frame of the SHARE EV-K2-CNR project at the Nepal Climate Laboratory - Pyramid in the Himalayan range at the altitude of 5079 m a.s.l. The site is very well located to provide important insights on changes in atmospheric composition in a region that is of great significance for emissions of both anthropogenic and biogenic halogenated compounds. Measurements are performed since March 2006, with grab samples collected on a weekly basis. The first three years of data have been analysed. After the identification of the atmospheric background values for fourteen halocarbons, the frequency of occurrence of pollution events have been compared with the same kind of analysis for data collected at other global background stations. The analysis showed the fully halogenated species, whose production and consumption are regulated under the Montreal Protocol, show a significant occurrence of "above the baseline" values, as a consequence of their current use in the developing countries surrounding the region, meanwhile the hydrogenated gases, more recently introduced into the market, show less frequent spikes. Atmospheric concentration trends have been calculated as well, and they showed a fast increase, ranging from 5.7 to 12.6%, of all the hydrogenated species, and a clear decrease of methyl chloroform (-17.7%). The comparison with time series from other stations has also allowed to derive Meridional gradients, which are absent for long living well mixed species, while for the more reactive species, the gradient increases inversely with respect to their atmospheric lifetime. The effect of long range transport and of local events on the atmospheric composition at the station has been analysed as well, allowing the identification of relevant source regions the Northern half of the Indian sub-continent. Also, at finer spatial scales, a smaller, local contribution of forest fires from the Khumbu valley has been detected.
The Earth's Middle Atmosphere: COSPAR Plenary Meeting, 29th, Washington, DC, 28 Aug.-5 Sep., 1992
NASA Technical Reports Server (NTRS)
Grosse, W. L. (Editor); Ghazi, A. (Editor); Geller, M. A. (Editor); Shepherd, G. G. (Editor)
1994-01-01
The conference presented the results from the Upper Atmosphere Research Satellite (UARS) in the areas of wind, temperature, composition, and energy input into the upper atmosphere. Also presented is the current status of validation of the UARS temperature and wind instruments measuring at and above the menopause. The two UARS instruments involved were the High Resolution Doppler Imager (HRDI) and the WIND Imaging Interferometer (WINDII). Papers are presented covering almost all aspects of middle atmospheric science, including dynamics, layering in the middle atmosphere, atmospheric composition, solar and geomagnetic effects, electrodynamics, and the ionosphere.
Magnetic evaluation of TSP-filters for air quality monitoring
NASA Astrophysics Data System (ADS)
Castañeda-Miranda, Ana Gabriela; Böhnel, Harald N.; Molina-Garza, Roberto S.; Chaparro, Marcos A. E.
2014-10-01
We present the magnetic properties of the powders collected by high volume total suspended particle air samplers used to monitor atmospheric pollution in Santiago de Querétaro, a city of one million people in central Mexico. The magnetic measurements have been combined with scanning electron microscopy observations and analysis, in order to characterize the particles captured in the filters as natural and anthropogenic. The main goal of the study is to test if magnetic measurements on the sampled atmospheric dust can be effective, low-cost, proxy to qualitatively estimate the air quality, complementing the traditional analytical methods. The magnetic properties of the powder collected in the filters have been investigated measuring the low field magnetic susceptibility, hysteresis loops, thermomagnetic curves, and isothermal remanent magnetization. The rock magnetism data have been supplemented by energy-dispersive X-ray spectroscopy analysis and Raman spectroscopy. It was found that the main magnetic carrier is low-Ti magnetite in the PSD range with a contribution from SP particles, and small but significant contributions from hematite, maghemite and goethite particles. Total suspended particles in the atmosphere during the monitored days ranged between about 30 and 280 μg/m3. Magnetic susceptibility values are well correlated with the independently determined total suspended particles concentration (R = 0.93), but particle concentration does not correlate as well with IRM1T. This may be attributed to contributions from SP and paramagnetic particles to the susceptibility signal, but not to the remanence. The effects of climate in particle size, composition and concentration were considered in terms of precipitation and wind intensity, but they are actually minor. The main effect of climate appears to be the removal of SP particles during rainy days. There is a contribution to air pollution from natural mineral sources, which we attribute to low vegetation cover in the region's arid climate. The concentration of the magnetic particles and their grain-size vary according to the location of the monitoring station, with higher contributions to anthropogenic Fe-rich particles from vehicle emissions in the city center and other metals in the industrial parks. Metals of interest, usually diagnostic of atmospheric pollution (Fe, As, Sb, Cr, Mo, V, Zn, Ba, Pb, and Cu) were identified by means of electron microscopy.
Wen, Sheng; Yu, Yingxin; Guo, Songjun; Feng, Yanli; Sheng, Guoying; Wang, Xinming; Bi, Xinhui; Fu, Jiamo; Jia, Wanglu
2006-01-01
Through simulation experiments of atmospheric sampling, a method via 2,4-dinitrophenylhydrazine (DNPH) derivatization was developed to measure the carbon isotopic composition of atmospheric acetone. Using acetone and a DNPH reagent of known carbon isotopic compositions, the simulation experiments were performed to show that no carbon isotope fractionation occurred during the processes: the differences between the predicted and measured data of acetone-DNPH derivatives were all less than 0.5 per thousand. The results permitted the calculation of the carbon isotopic compositions of atmospheric acetone using a mass balance equation. In this method, the atmospheric acetone was collected by a DNPH-coated silica cartridge, washed out as acetone-DNPH derivatives, and then analyzed by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using this method, the first available delta13C data of atmospheric acetone are presented. Copyright 2006 John Wiley & Sons, Ltd.
CLOUDS IN SUPER-EARTH ATMOSPHERES: CHEMICAL EQUILIBRIUM CALCULATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mbarek, Rostom; Kempton, Eliza M.-R., E-mail: mbarekro@grinnell.edu, E-mail: kemptone@grinnell.edu
Recent studies have unequivocally proven the existence of clouds in super-Earth atmospheres. Here we provide a theoretical context for the formation of super-Earth clouds by determining which condensates are likely to form under the assumption of chemical equilibrium. We study super-Earth atmospheres of diverse bulk composition, which are assumed to form by outgassing from a solid core of chondritic material, following Schaefer and Fegley. The super-Earth atmospheres that we study arise from planetary cores made up of individual types of chondritic meteorites. They range from highly reducing to oxidizing and have carbon to oxygen (C:O) ratios that are both sub-solarmore » and super-solar, thereby spanning a range of atmospheric composition that is appropriate for low-mass exoplanets. Given the atomic makeup of these atmospheres, we minimize the global Gibbs free energy of formation for over 550 gases and condensates to obtain the molecular composition of the atmospheres over a temperature range of 350–3000 K. Clouds should form along the temperature–pressure boundaries where the condensed species appear in our calculation. We find that the composition of condensate clouds depends strongly on both the H:O and C:O ratios. For the super-Earth archetype GJ 1214b, KCl and ZnS are the primary cloud-forming condensates at solar composition, in agreement with previous work. However, for oxidizing atmospheres, K{sub 2}SO{sub 4} and ZnO condensates are favored instead, and for carbon-rich atmospheres with super-solar C:O ratios, graphite clouds appear. For even hotter planets, clouds form from a wide variety of rock-forming and metallic species.« less
Advances in Satellite Remote Sensing of Particulate Air Pollution: From MISR to MAIA
NASA Astrophysics Data System (ADS)
Diner, D. J.; Burke, K.; Xu, F.; Garay, M. J.; Kalashnikova, O. V.; Liu, Y.; Meng, X.; Wang, J.; Martin, R.; Ostro, B.
2017-12-01
Airborne particulate matter (PM) is a well-known cause of cardiovascular and respiratory disease. To estimate human exposure to PM pollution, satellite instruments such as the Terra Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate resolution Imaging Spectroradiometer (MODIS) have been used in conjunction with surface monitors to map near-surface PM concentrations. The relative toxicity of different size and compositional mixtures of PM is not well understood. To address this, we are developing the Multi-Angle Imager for Aerosols (MAIA) investigation. The satellite instrument extends MISR's multiangular visible and near-infrared (VNIR) spectral coverage to 14 bands in the ultraviolet, VNIR, and shortwave IR; three of the bands are polarimetric to enhance sensitivity to aerosol size and composition. To constrain the retrievals, the observations will be combined with data from surface monitors and the WRF-Chem and GEOS-Chem chemical transport models. Existing surface PM speciation monitors will be supplemented by adding new stations to the Surface PARTiculate mAtter Network (SPARTAN). Unlike MISR, MAIA is a targeting instrument. Primary areas of interest include metropolitan areas in North and South America, Europe, the Middle East, Africa, India, and East Asia. PM retrieval algorithms are being developed using data from MISR and the high-altitude Airborne Multiangle SpectroPolarimetric Imager (AirMSPI). Epidemiologists on the MAIA science team will use the derived PM data products and birth, death, and hospital records to investigate adverse health impacts of different types of airborne particulates. MAIA's earliest possible launch date is mid-2020, making it possible for the data to be complemented by global observations from Terra as well as high temporal resolution atmospheric chemistry measurements from TEMPO (Tropospheric Emissions: Monitoring Pollution), GEMS (Geostationary Environment Monitoring Spectrometer), and Sentinel-4.
NASA Astrophysics Data System (ADS)
Shkolnik, Evgenya L.; Ardila, David; Barman, Travis; Beasley, Matthew; Bowman, Judd D.; Gorjian, Varoujan; Jacobs, Daniel; Jewell, April; Llama, Joe; Meadows, Victoria; Nikzad, Shouleh; Scowen, Paul; Swain, Mark; Zellem, Robert
2018-01-01
Roughly seventy-five billion M dwarfs in our galaxy host at least one small planet in the habitable zone (HZ). The stellar ultraviolet (UV) radiation from M dwarfs is strong and highly variable, and impacts planetary atmospheric loss, composition and habitability. These effects are amplified by the extreme proximity of their HZs (0.1–0.4 AU). Knowing the UV environments of M dwarf planets will be crucial to understanding their atmospheric composition and a key parameter in discriminating between biological and abiotic sources for observed biosignatures. The Star-Planet Activity Research CubeSat (SPARCS) will be a 6U CubeSat devoted to photometric monitoring of M stars in the far-UV and near-UV, measuring the time-dependent spectral slope, intensity and evolution of M dwarf stellar UV radiation. For each target, SPARCS will observe continuously over at least one complete stellar rotation (5 - 45 days). SPARCS will also advance UV detector technology by flying high quantum efficiency, UV-optimized detectors developed at JPL. These Delta-doped detectors have a long history of deployment demonstrating greater than five times the quantum efficiency of the detectors used by GALEX. SPARCS will pave the way for their application in missions like LUVOIR or HabEx, including interim UV-capable missions. SPARCS will also be capable of ‘target-of-opportunity’ UV observations for the rocky planets in M dwarf HZs soon to be discovered by NASA’s TESS mission, providing the needed UV context for the first habitable planets that JWST will characterize.Acknowledgements: Funding for SPARCS is provided by NASA’s Astrophysics Research and Analysis program, NNH16ZDA001N.
NASA Technical Reports Server (NTRS)
Williams, D. J.; Grubb, R. N.; Evans, D. S.; Sauer, H. H.
1975-01-01
Monitoring of earth's atmosphere was conducted for several years utilizing the ITOS series of low-altitude, polar-orbiting weather satellites. A space environment monitoring package was included in these satellites to perform measurements of a portion of earth's charged particle environment. The charged particle observations proposed for the low-altitude weather satellite TIROS N, are described which will provide the capability of routine monitoring of the instantaneous total energy deposition into the upper atmosphere by the precipitation of charged particles from higher altitudes. Such observations may be of use in future studies of the relationships between geomagnetic activity and atmospheric weather pattern developments. Estimates are given to assess the potential importance of this type of energy deposition. Discussion and examples are presented illustrating the importance of distinguishing between solar and geomagnetic activity as possible causative sources. Such differentiation is necessary because of the widely different spatial and time scales involved in the atmospheric energy input resulting from these various sources of activity.
Simulation of the impact of thunderstorm activity on atmospheric gas composition
NASA Astrophysics Data System (ADS)
Smyshlyaev, S. P.; Mareev, E. A.; Galin, V. Ya.
2010-08-01
A chemistry-climate model of the lower and middle atmosphere has been used to estimate the sensitivity of the atmospheric gas composition to the rate of thunderstorm production of nitrogen oxides at upper tropospheric and lower stratospheric altitudes. The impact that nitrogen oxides produced by lightning have on the atmospheric gas composition is treated as a subgrid-scale process and included in the model parametrically. The natural uncertainty in the global production rate of nitrogen oxides in lightning flashes was specified within limits from 2 to 20 Tg N/year. Results of the model experiments have shown that, due to the variability of thunderstorm-produced nitrogen oxides, their concentration in the upper troposphere and lower stratosphere can vary by a factor of 2 or 3, which, given the influence of nitrogen oxides on ozone and other gases, creates the potential for a strong perturbation of the atmospheric gas composition and thermal regime. Model calculations have shown the strong sensitivity of ozone and the OH hydroxyl to the amount of lightning nitrogen oxides at different atmospheric altitudes. These calculations demonstrate the importance of nitrogen oxides of thunderstorm origin for the balance of atmospheric odd ozone and gases linked to it, such as ozone and hydroxyl radicals. Our results demonstrate that one important task is to raise the accuracy of estimates of the rate of nitrogen oxide production by lightning discharges and to use physical parametrizations that take into account the local lightning effects and feedbacks arising in this case rather than climatological data in models of the gas composition and general circulation of the atmosphere.
Climate Prediction Center - Monitoring and Data Index
Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Center Home Site Map News ; Atmospheric Monitoring and Data Monitoring Weather & Climate in Realtime Climate Diagnostics Bulletin Preliminary Climate Diagnostics Bulletin Figures Monthly Atmospheric & Sea Surface Temperature Indices
Karelin, A O; Lomtev, A Yu; Mozzhukhina, N A; Yeremin, G B; Nikonov, V A
Inhalation of fine particulate matters (PM and PM ) poses a threat for the health of population. Purpose of the study the analysis of the monitoring of fine particulate matters in the atmospheric air of Saint-Petersburg and identification of the main problems of the monitoring. Research methods methods of scientific hypothetical deductive cognition, sanitary-statistical methods, general logical methods and approaches of researches: analysis, synthesis, abstracting, generalization, induction. Results. The article represents the analysis of the monitoring of fine particulate matters in the atmospheric air of Saint- Petersburg. Only 11 in automatic monitoring stations out of 22 there is carried out the control of fine particulate matters: in 7 - PM and PM, and in 4 - PM The average year concentrations were below MAC in all the stations. The maximum concentrations achieved 3 MAC, but the repeatance of cases of exceedence of concentrations more than MAC was very rare. On the average of the city concentrations of PM were decreased from 0,8 MAC in 2006 and 1,1 MAC in 2007 to 0,5 MAC in 2013-14. The executed analysis revealed main problems of the monitoring of fine particulate matters in the Russian Federation. They include the absence of the usage 1of the officially approved methods of controlling of PM and PM in the atmospheric air until March 1, 2016, lack of the modern equipment for measurement of fine particulate matters. Conclusions. Therefore, the state of the monitoring of fine particulate matters in the atmospheric air in the Russian Federation fails to be satisfactory. It is necessary to improve system of the monitoring, create modern Russian appliances, methods and means for measurement of fine particulate matters concentrations in the atmospheric air.
Atmospheric Circulation and Composition of GJ1214b
NASA Astrophysics Data System (ADS)
Menou, Kristen
2012-01-01
The exoplanet GJ1214b presents an interesting example of compositional degeneracy for low-mass planets. Its atmosphere may be composed of water, super-solar or solar metallicity material. We present atmospheric circulation models of GJ1214b for these three compositions, with explicit gray radiative transfer and an optional treatment of MHD bottom drag. All models develop strong, superrotating zonal winds (~1-2 km s-1). The degree of eastward heat advection, which can be inferred from secondary eclipse and thermal phase curve measurements, varies greatly between the models. These differences are understood as resulting from variations in the radiative times at the thermal photosphere, caused by separate molecular weight and opacity effects. Our GJ1214b models illustrate how atmospheric circulation can be used as a probe of composition for similar tidally locked exoplanets in the mini-Neptune/waterworld class.
ERIC Educational Resources Information Center
Lopes, Fernando S.; Coelho, Lucia H. G.; Gutz, Ivano G. R.; Vitz, Ed
2010-01-01
Vast quantities, on the order of megatons, of pollutants are emitted monthly to the atmosphere both by natural and anthropogenic sources. The evaluation of rainwater composition has great importance in understanding the atmospheric chemical composition, as water drops scavenge particles and soluble atmospheric pollutants. Most students are aware…
COMPOSITIONAL DIVERSITY IN THE ATMOSPHERES OF HOT NEPTUNES, WITH APPLICATION TO GJ 436b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, J. I.; Line, M. R.; Visscher, C.
2013-11-01
Neptune-sized extrasolar planets that orbit relatively close to their host stars—often called {sup h}ot Neptunes{sup —}are common within the known population of exoplanets and planetary candidates. Similar to our own Uranus and Neptune, inefficient accretion of nebular gas is expected produce hot Neptunes whose masses are dominated by elements heavier than hydrogen and helium. At high atmospheric metallicities of 10-10,000 times solar, hot Neptunes will exhibit an interesting continuum of atmospheric compositions, ranging from more Neptune-like, H{sub 2}-dominated atmospheres to more Venus-like, CO{sub 2}-dominated atmospheres. We explore the predicted equilibrium and disequilibrium chemistry of generic hot Neptunes and find thatmore » the atmospheric composition varies strongly as a function of temperature and bulk atmospheric properties such as metallicity and the C/O ratio. Relatively exotic H{sub 2}O, CO, CO{sub 2}, and even O{sub 2}-dominated atmospheres are possible for hot Neptunes. We apply our models to the case of GJ 436b, where we find that a CO-rich, CH{sub 4}-poor atmosphere can be a natural consequence of a very high atmospheric metallicity. From comparisons of our results with Spitzer eclipse data for GJ 436b, we conclude that although the spectral fit from the high-metallicity forward models is not quite as good as the best fit obtained from pure retrieval methods, the atmospheric composition predicted by these forward models is more physically and chemically plausible in terms of the relative abundance of major constituents. High-metallicity atmospheres (orders of magnitude in excess of solar) should therefore be considered as a possibility for GJ 436b and other hot Neptunes.« less
The Formation of Haze During the Rise of Oxygen in the Atmosphere of the Early Earth
NASA Astrophysics Data System (ADS)
Horst, S. M.; Jellinek, M.; Pierrehumbert, R.; Tolbert, M. A.
2013-12-01
Atmospheric aerosols play an important role in determining the radiation budget of an atmosphere and can also provide a wealth of organic material to the surface. Photochemical hazes are abundant in reducing atmospheres, such as the N2/CH4 atmosphere of Titan, but are unlikely to form in oxidizing atmospheres, such as the N2/O2 atmosphere of present day Earth. However, information about haze formation in mildly oxidizing atmospheres is lacking. Understanding haze formation in mildly oxidizing atmospheres is necessary for models that wish to investigate the atmosphere of the Early Earth as O2 first appeared and then increased in abundance. Previous studies of the atmosphere of the Early Earth have focused on haze formation in N2/CO2/CH4 atmospheres. In this work, we experimentally investigate the effect of the addition of O2 on the formation and composition of aerosols. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [1]) we have obtained in situ composition measurements of aerosol particles produced in N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (deuterium lamp, 115-400 nm) for a range of initial CO2/CH4/O2 mixing ratios. In particular, we studied the effect of O2 ranging from 2 ppm to 2%. The particles were also investigated using a Scanning Mobility Particle Sizer (SMPS), which measures particle size, number density and mass loading. A comparison of the composition of the aerosols will be presented. The effect of variation of O2 mixing ratio on aerosol production, size, and composition will also be discussed. [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326.
2011 Arctic ozone depletion as seen by ESA-ENVISAT Atmospheric-Chemistry sensors
NASA Astrophysics Data System (ADS)
Brizzi, G.; Niro, F.; Saavedra de Miguel, L.; Dehn, A.; Scarpino, G.; Fehr, T.; von Kuhlmann, R.
2011-12-01
Three Atmospheric-Chemistry sensors on-board the ENVISAT satellite (GOMOS, MIPAS, and SCIAMACHY) sound the Earth's atmosphere since about nine years and provide to the science community three separated, but complementary data sets of the most interesting atmospheric trace gases. These extended and coherent data sets, generated with ESA operational processors, give a historical overview over seasonal and long-term trends of geophysical parameters and allow investigating major atmospheric phenomena and natural events. During March 2011, ESA's satellite ENVISAT detected the severe ozone depletion above the Euro-Atlantic sector of the Northern Hemisphere. This record-breaking loss for the ozone layer over the North Pole was mainly caused by unusual polar vortex conditions characterized by very low temperatures in the Arctic stratosphere. This paper presents the chemical ozone depletion over the Arctic regions as detected by SCIAMACHY, MIPAS and GOMOS during spring of 2011. Global maps of total ozone column and vertical ozone profiles along the mission's lifetime clearly show the unprecedented Arctic ozone loss for 2011 with the subsequent migration of ozone depleted air masses towards lower latitudes. ENVISAT's atmospheric measurements reveal changes in the composition of the ozone-related chemical species and permit to point out the chemical correlations of the ozone distribution with nitrogen and chlorine compounds and with the evolution of stratospheric temperatures. The synergistic use of ESA operational data sets from the three instruments allows to closely monitor the occurrence and extension of seasonal ozone depletion events, and to draw a comprehensive picture of all chemistry processes involved in the full atmospheric range.
Atmospheric Visibility Monitoring for planetary optical communications
NASA Technical Reports Server (NTRS)
Cowles, Kelly
1991-01-01
The Atmospheric Visibility Monitoring project endeavors to improve current atmospheric models and generate visibility statistics relevant to prospective earth-satellite optical communications systems. Three autonomous observatories are being used to measure atmospheric conditions on the basis of observed starlight; these data will yield clear-sky and transmission statistics for three sites with high clear-sky probabilities. Ground-based data will be compared with satellite imagery to determine the correlation between satellite data and ground-based observations.
Oxidation of a new Biogenic VOC: Chamber Studies of the Atmospheric Chemistry of Methyl Chavicol
NASA Astrophysics Data System (ADS)
Bloss, William; Alam, Mohammed; Adbul Raheem, Modinah; Rickard, Andrew; Hamilton, Jacqui; Pereira, Kelly; Camredon, Marie; Munoz, Amalia; Vazquez, Monica; Vera, Teresa; Rodenas, Mila
2013-04-01
The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and SOA, with consequences for air quality, health, crop yields, atmospheric chemistry and radiative transfer. Recent observations have identified Methyl Chavicol ("MC": Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA, and oil palm plantations in Malaysian Borneo. Palm oil cultivation, and hence MC emissions, may be expected to increase with societal food and bio fuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE facility, monitoring stable product species, radical intermediates, and aerosol production and composition. We determine rate constants for reaction of MC with OH and O3, and ozonolysis radical yields. Stable product measurements (FTIR, PTRMS, GC-SPME) are used to determine the yields of stable products formed from OH- and O3- initiated oxidation, and to develop an understanding of the initial stages of the MC degradation chemistry. A surrogate mechanism approach is used to simulate MC degradation within the MCM, evaluated in terms of ozone production measured in the chamber experiments, and applied to quantify the role of MC in the real atmosphere.
NASA Astrophysics Data System (ADS)
Smith, D. M.; Fiddler, M. N.; Bililign, S.; Spann, M.
2017-12-01
Biomass burning (BB) is recognized as one of the largest sources of absorbing aerosols in the atmosphere and significantly influences the radiative properties of the atmosphere. The chemical composition and physical properties of particles evolve during their atmospheric lifetime due to condensation, oxidation reactions, etc., which alters their optical properties. To this end, an indoor smog chamber was constructed to study aging BB aerosol in a laboratory setting. Injections to the chamber, including NOx, O3, and various biogenic and anthropogenic VOCs, can simulate a variety of atmospheric conditions. These components and some of their oxidation products are monitored during the aging process. A tube furnace is used for combustion of biomass to be introduced to the chamber, while size distributions are taken as the aerosol ages. Online measurements of optical properties are determined using a Cavity Ring-down Spectrometry and Integrating Nephelometry system. Chemical properties are measured from samples captured on filters and analyzed using Ultra-Performance Liquid Chromatography coupled in-line to both a Diode Array Detector and High-Resolution Time-of-Flight Mass Spectrometer equipped with electrospray ionization. The measured changes in the optical properties as a function of particle size, aging, and chemical properties are presented for fuel sources used in Africa.
Hyperspectral imaging simulation of object under sea-sky background
NASA Astrophysics Data System (ADS)
Wang, Biao; Lin, Jia-xuan; Gao, Wei; Yue, Hui
2016-10-01
Remote sensing image simulation plays an important role in spaceborne/airborne load demonstration and algorithm development. Hyperspectral imaging is valuable in marine monitoring, search and rescue. On the demand of spectral imaging of objects under the complex sea scene, physics based simulation method of spectral image of object under sea scene is proposed. On the development of an imaging simulation model considering object, background, atmosphere conditions, sensor, it is able to examine the influence of wind speed, atmosphere conditions and other environment factors change on spectral image quality under complex sea scene. Firstly, the sea scattering model is established based on the Philips sea spectral model, the rough surface scattering theory and the water volume scattering characteristics. The measured bi directional reflectance distribution function (BRDF) data of objects is fit to the statistical model. MODTRAN software is used to obtain solar illumination on the sea, sky brightness, the atmosphere transmittance from sea to sensor and atmosphere backscattered radiance, and Monte Carlo ray tracing method is used to calculate the sea surface object composite scattering and spectral image. Finally, the object spectrum is acquired by the space transformation, radiation degradation and adding the noise. The model connects the spectrum image with the environmental parameters, the object parameters, and the sensor parameters, which provide a tool for the load demonstration and algorithm development.
NASA Astrophysics Data System (ADS)
Abdelhamid, A.; Stark, H.; Worsnop, D. R.; Nowak, J. B.; Kuang, C.; Bullard, R.; Browne, E. C.
2017-12-01
Atmospheric ions control the electrical properties of the atmosphere, influence chemical composition via ion-molecule and/or ion-catalyzed reactions, and affect new particle formation. Understanding the role of ions in these processes requires knowledge of ionic chemical composition. Due to the low concentration of ions, chemical composition measurements have historically been challenging. Recent advances in mass spectrometry, such as the atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF), are now making these measurements more feasible. Here, we present measurements of ambient cations during the HISCALE II field campaign (August- September 2016) in Lamont, OK. We discuss how the chemical composition of cations varies over the course of the campaign including before, during, and after new particle formation events. We specifically focus on the composition of organic nitrogen ions due to the potential importance of these compounds in atmospheric nucleation. We compare our results to measurements of neutral organic nitrogen compounds in order to gain insight into how organic nitrogen is chemically transformed in the atmosphere and how this influences new particle formation.
Magmatic gas scrubbing: Implications for volcano monitoring
Symonds, R.B.; Gerlach, T.M.; Reed, M.H.
2001-01-01
Despite the abundance of SO2(g) in magmatic gases, precursory increases in magmatic SO2(g) are not always observed prior to volcanic eruption, probably because many terrestrial volcanoes contain abundant groundwater or surface water that scrubs magmatic gases until a dry pathway to the atmosphere is established. To better understand scrubbing and its implications for volcano monitoring, we model thermochemically the reaction of magmatic gases with water. First, we inject a 915??C magmatic gas from Merapi volcano into 25??C air-saturated water (ASW) over a wide range of gas/water mass ratios from 0.0002 to 100 and at a total pressure of 0.1 MPa. Then we model closed-system cooling of the magmatic gas, magmatic gas-ASW mixing at 5.0 MPa, runs with varied temperature and composition of the ASW, a case with a wide range of magmatic-gas compositions, and a reaction of a magmatic gas-ASW mixture with rock. The modeling predicts gas and water compositions, and, in one case, alteration assemblages for a wide range of scrubbing conditions; these results can be compared directly with samples from degassing volcanoes. The modeling suggests that CO2(g) is the main species to monitor when scrubbing exists; another candidate is H2S(g), but it can be affected by reactions with aqueous ferrous iron. In contrast, scrubbing by water will prevent significant SO2(g) and most HCl(g) emissions until dry pathways are established, except for moderate HCl(g) degassing from pH 100 t/d (tons per day) of SO2(g) in addition to CO2(g) and H2S(g) should be taken as a criterion of magma intrusion. Finally, the modeling suggests that the interpretation of gas-ratio data requires a case-by-case evaluation since ratio changes can often be produced by several mechanisms; nevertheless, several gas ratios may provide useful indices for monitoring the drying out of gas pathways. Published by Elsevier Science B.V.
Methods of InSAR atmosphere correction for volcano activity monitoring
Gong, W.; Meyer, F.; Webley, P.W.; Lu, Z.
2011-01-01
When a Synthetic Aperture Radar (SAR) signal propagates through the atmosphere on its path to and from the sensor, it is inevitably affected by atmospheric effects. In particular, the applicability and accuracy of Interferometric SAR (InSAR) techniques for volcano monitoring is limited by atmospheric path delays. Therefore, atmospheric correction of interferograms is required to improve the performance of InSAR for detecting volcanic activity, especially in order to advance its ability to detect subtle pre-eruptive changes in deformation dynamics. In this paper, we focus on InSAR tropospheric mitigation methods and their performance in volcano deformation monitoring. Our study areas include Okmok volcano and Unimak Island located in the eastern Aleutians, AK. We explore two methods to mitigate atmospheric artifacts, namely the numerical weather model simulation and the atmospheric filtering using Persistent Scatterer processing. We investigate the capability of the proposed methods, and investigate their limitations and advantages when applied to determine volcanic processes. ?? 2011 IEEE.
Network for the Detection of Atmospheric Composition Change (NDACC)
, state and local government web resources and services. Home > Network for the Detection of and troposphere, and establishing links between climate change and atmospheric composition. Following
NASA Astrophysics Data System (ADS)
Marshall, Bethany
The Tropospheric Emissions: Monitoring of Pollution (TEMPO) satellite, scheduled to be launched around the year 2020, is the first phase of NASA's next generation of missions that will study the composition of the Earth's atmosphere. TEMPO provides a new set of high-resolution ( 0.4 nm) spectral data in the ultraviolet and visible portion of the electromagnetic spectrum that can be used to measure atmospheric pollutants. Due to its high spectral resolution and hourly temporal resolution covering entire North America, TEMPO data can also be used along with the calculation of spectral indices using the bidirectional reflection distribution functions (BRDF) or albedo to improve crop growth and yield monitoring for regional food security. The objectives of this thesis research were to 1) characterize BRDF/albedo of various land-cover types in Midwestern United States that can be used to remove land surface competent from at-sensor TEMPO radiances for accurate estimation of atmospheric chemistry and 2) evaluation of TEMPO data for regional agro-ecosystem studies. To this end, we: (1) collected 461 upwelling and downwelling solar irradiances and spectral albedo of various land-cover types (e.g., grapevine, maize, soybean, tomato, rock, asphalt road and concrete pave way, clean and turbid waters) at 110 sites in the States of Missouri, Illinois, Indiana, and Colorado using a PSR-3500 hand-held Spectroradiometer; (2) conducted a field and manned aircraft data collection campaign in Maryland Heights, Missouri using the Geo-TASO flight instrument flown onboard the NASA HU-25C Falcon aircraft on August 13, 2014; and (3) utilized Ross-Li Kernel BRDF model and MODTRAN radiative transfer simulations to characterize BRDF/albedo of various land-cover types. TEMPO retrieval of atmospheric gases must account for the effects of surface BRDF/albedo. Since BRDF is an inherent optical properties of surface, this research will contribute to the TEMPO mission by providing high-resolution spectral BRDF/albedo database, which may also promote the use of the TEMPO data for agricultural and ecosystem monitoring.
NASA Astrophysics Data System (ADS)
Moehler, O.; Cziczo, D. J.; DeMott, P. J.; Hiranuma, N.; Petters, M. D.
2015-12-01
The role of aerosol particles for ice formation in clouds is one of the largest uncertainties in understanding the Earth's weather and climate systems, which is related to the poor knowledge of ice nucleation microphysics or of the nature and atmospheric abundance of ice nucleating particles (INPs). During the recent years, new mobile instruments were developed for measuring the concentration, size and chemical composition of INPs, which were tested during the three-part Fifth International Ice Nucleation (FIN) workshop. The FIN activities addressed not only instrument issues, but also important science topics like the nature of atmospheric INP and cloud ice residuals, the ice nucleation activity of relevant atmospheric aerosols, or the parameterization of ice formation in atmospheric weather and climate models. The first activity FIN-1 was conducted during November 2014 at the AIDA cloud chamber. It involved co-locating nine single particle mass spectrometers to evaluate how well they resolve the INP and ice residual composition and how spectra from different instruments compare for relevant atmospheric aerosols. We conducted about 90 experiments with mineral, carbonaceous and biological aerosol types, some also coated with organic and inorganic compounds. The second activity FIN-2 was conducted during March 2015 at the AIDA facility. A total of nine mobile INP instruments directly sampled from the AIDA aerosol chambers. Wet suspension and filter samples were also taken for offline INP processing. A refereed blind intercomparison was conducted during two days of the FIN-2 activity. The third activity FIN-3 will take place at the Desert Research Institute's Storm Peak Laboratory (SPL) in order to test the instruments' performance in the field. This contribution will introduce the FIN activities, summarize first results from the formal part of FIN-2, and discuss selected results, mainly from FIN-1 for the effect of coating on the ice nucleation (IN) by mineral aerosols. The coating with both secondary organic compounds and sulphuric acid was conducted in the AIDA chamber at relevant temperatures and precursor concentrations and was monitored with the particle mass spectrometers. Already very thin, atmospherically relevant coatings reduced deposition IN, but had little effect on immersion freezing.
NASA Astrophysics Data System (ADS)
Steen-Larsen, Hans Christian; Sveinbjörnsdottir, Arny; Masson-Delmotte, Valerie; Werner, Martin; Risi, Camille; Yoshimura, Kei
2016-04-01
We have since 2010 carried out in-situ continuous water vapor isotope observations on top of the Greenland Ice Sheet (3 seasons at NEEM), in Svalbard (1 year), in Iceland (4 years), in Bermuda (4 years). The expansive dataset containing high accuracy and precision measurements of δ18O, δD, and the d-excess allow us to validate and benchmark the treatment of the atmospheric hydrological cycle's processes in General Circulation Models using simulations nudged to reanalysis products. Recent findings from both Antarctica and Greenland have documented strong interaction between the snow surface isotopes and the near surface atmospheric water vapor isotopes on diurnal to synoptic time scales. In fact, it has been shown that the snow surface isotopes take up the synoptic driven atmospheric water vapor isotopic signal in-between precipitation events, erasing the precipitation isotope signal in the surface snow. This highlights the importance of using General or Regional Climate Models, which accurately are able to simulate the atmospheric water vapor isotopic composition, to understand and interpret the ice core isotope signal. With this in mind we have used three isotope-enabled General Circulation Models (isoGSM, ECHAM5-wiso, and LMDZiso) nudged to reanalysis products. We have compared the simulations of daily mean isotope values directly with our in-situ observations. This has allowed us to characterize the variability of the isotopic composition in the models and compared it to our observations. We have specifically focused on the d-excess in order to characterize why both the mean and the variability is significantly lower than our observations. We argue that using water vapor isotopes to benchmark General Circulation Models offers an excellent tool for improving the treatment and parameterization of the atmospheric hydrological cycle. Recent studies have documented a very large inter-model dispersion in the treatment of the Arctic water cycle under a future global warming and greenhouse gas emission scenario. Our results call for action to create an international pan-Arctic monitoring water vapor isotope network in order to improve future projections of Arctic climate.
Yager, Tracy J.B.; McMahon, Peter B.
2012-01-01
Concentrations of dissolved nitrite plus nitrate increased fairly steadily in samples from four shallow groundwater monitoring wells after biosolids applications to nonirrigated farmland began in 1993. The U.S. Geological Survey began a preliminary assessment of sources of nitrogen in shallow groundwater at part of the biosolids-application area near Deer Trail, Colorado, in 2005 in cooperation with the Metro Wastewater Reclamation District. Possible nitrogen sources in the area include biosolids, animal manure, inorganic fertilizer, atmospheric deposition, and geologic materials (bedrock and soil). Biosolids from the Metro Wastewater Reclamation District plant in Denver and biosolids, cow manure, geologic materials (bedrock and soil), and groundwater from the study area were sampled to measure nitrogen content and nitrogen isotopic compositions of nitrate or total nitrogen. Biosolids also were leached, and the leachates were analyzed for nitrogen content and other concentrations. Geologic materials from the study area also were sampled to determine mineralogy. Estimates of nitrogen contributed from inorganic fertilizer and atmospheric deposition were calculated from other published reports. The nitrogen information from the study indicates that each of the sources contain sufficient nitrogen to potentially affect groundwater nitrate concentrations. Natural processes can transform the nitrogen in any of the sources to nitrate in the groundwater. Load calculations indicate that animal manure, inorganic fertilizer, or atmospheric deposition could have contributed the largest nitrogen load to the study area in the 13 years before biosolids applications began, but biosolids likely contributed the largest nitrogen load to the study area in the 13 years after biosolids applications began. Various approaches provided insights into sources of nitrate in the groundwater samples from 2005. The isotopic data indicate that, of the source materials considered, biosolids and (or) animal manure were the most likely sources of nitrate in the wells at the time of sampling (2005), and that inorganic fertilizer, atmospheric deposition, and geologic materials were not substantial sources of nitrate in the wells in 2005. The large total nitrogen content of the biosolids and animal-manure samples and biosolids leachates also indicates that the biosolids and animal manure had potential to leach nitrogen and produce large dissolved nitrate concentrations in groundwater. The available data, however, could not be used to distinguish between biosolids or manure as the dominant source of nitrate in the groundwater because the nitrogen isotopic composition of the two materials is similar. Major-ion data also could not be used to distinguish between biosolids or manure as the dominant source of nitrate in the groundwater because the major-ion composition (as well as the isotopic composition) of the two materials is similar. Without additional data, chloride/bromide mass ratios do not necessarily support or refute the hypothesis that biosolids and (or) animal manure were the primary sources of nitrate in water from the study-area wells in 2005. Concentrations of water-extractable nitrate in the soil indicate that biosolids could be an important source of nitrate in the groundwater recharge. Nitrogen inventories in the soil beneath biosolids-application areas and the nitrogen-input estimates for the study area both support the comparisons of isotopic composition, which indicate that some type of human waste (such as biosolids) and (or) animal manure was the source of nitrate in groundwater sampled from the wells in 2005. The nitrogen-load estimates considered with the nitrogen isotopic data and the soil-nitrogen inventories indicate that biosolids applications likely are a major source of nitrogen to the shallow groundwater at these monitoring wells.
Controlled atmosphere for fabrication of cermet electrodes
Ray, Siba P.; Woods, Robert W.
1998-01-01
A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.
Controlled atmosphere for fabrication of cermet electrodes
Ray, S.P.; Woods, R.W.
1998-08-11
A process is disclosed for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750 C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5--3000 ppm in order to obtain a desired composition in the resulting composite. 2 figs.
The Development of Atmospheric Cherenkov Detectors at Milagro to Measure Cosmic-Ray Composition
NASA Astrophysics Data System (ADS)
Atkins, Robert; Dingus, Brenda; Benbow, Wystan; Coyne, Don; Kelley, Linda; Williams, David; Goodman, Jordan; Haines, Todd; Hoffman, Cyrus; Samuelson, Frank; Sinnis, Gus; McEnery, Julie; Mohanty, Gora; Stephens, Tom; Stochaj, Steve; Tumer, Tumay; Yodh, Gaurang
2002-04-01
Cosmic-ray composition in the region of the knee is being measured with the array of wide angle Cherenkov telescopes (WACT). WACT consists of six atmospheric Cherenkov telescopes (ACTs) located around the Milagro experiment. WACT is at an atmospheric depth of 750 g/cm^2 and is located 40 miles west of Los Alamos National Lab. WACT measures composition by examining the lateral distribution of Cherenkov light produced by cosmic-ray induced extensive air showers. Simulation and preliminary data analysis from the winter 2001/2002 observing campaign will be presented.
Effect of particle in-flight behavior on the composition of thermal barrier coatings
NASA Astrophysics Data System (ADS)
Zhao, L.; Bai, Y.; Tang, J. J.; Liu, K.; Ding, C. H.; Yang, J. F.; Han, Z. H.
2013-12-01
In this work, 6 to 11 mol% YO1.5-stabilized zirconia (YSZ) coatings were deposited by supersonic and conventional atmospheric plasma spraying. During spraying, the surface temperature and velocity of in-flight particles were monitored by Spray Watch 2i on-line system. The phase composition of as-sprayed coatings was analyzed by X-ray diffractometry (XRD). Lattice parameters, tetragonality and the content of YO1.5 (mol%) of as-sprayed coatings were calculated according to the position of (0 0 4) and (4 0 0) diffraction peaks. It was found that the as-sprayed coatings were composed of metastable non-transformable tetragonal phase (t‧). However, the amount of YO1.5 (mol%) in the as-sprayed coatings decreased with the increase of melting index of in-flight particles due to the partial evaporation of YO1.5 during spraying.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, T. R.; Wildung, R. E.; Harbert, H. P.
1979-04-01
Major cations, anions, trace elements and dissolved organic C were measured in percolate from retorted oil shale collected from irrigated lysimeters in the field at Anvil Points, Colorado, over a two year period. The investigations indicated that chemical equilibrium was not established over the monitoring period and major changes occurred in percolate composition as a function of applied water volume and water residence time in the shale. Field and laboratory studies indicated that several factors contributed to changes in the chemistry of the shale on weathering, including recarbonization of the surface horizons with atmospheric CO/sub 2/ and the activities ofmore » microorganisms in surface and subsurface horizons. However, the principal mechanism responsible for the decreases in pH and salt concentrations appeared to be the conversion of major quantities of sulfide in the retorted shale to sulfate through a thiosulfate intermediate.« less
Physical aging and its influence on the reliability of network epoxies and epoxy-matrix composites
NASA Technical Reports Server (NTRS)
Heinemann, K.
1983-01-01
The matrix-dominated physical and mechanical properties of a carbon fiber reinforced epoxy composite and a neat epoxy resin were found to be affected by sub-Tg annealing in nitrogen and dark atmosphere. Postcured specimens of Thornel 300 carbon-fiber/Fiberite 934 epoxy as well as Fiberite 934 epoxy resin were quenched from above Tg and given annealing at 140 C, 110 C, or 80 C, for time up to one-hundred thousand minutes. No weight loss was observed during annealing at these temperatures. Significant variations were found in density, modulus, hardness, damping, moisture absorption ability, thermal expansivity. Moisture-epoxy interactious were also studied. The kinetics of aging as well as the molecular aggregation during this densification process were monitored by differential scanning calorimetry, dynamic mechanical analysis, density gradient column, microhardness tester, Instron, and solid-state nuclear magnetic resonance spectroscopy.
Overview of Aerosol Distribution
NASA Technical Reports Server (NTRS)
Kaufman, Yoram
2005-01-01
Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate. I shall discuss these topics and application of the data to air quality monitoring.
NASA Technical Reports Server (NTRS)
1972-01-01
An instrument for monitoring the carbon monoxide content of the ambient atmosphere is described. The subjects discussed are: (1) theory of operation, (2) system features, (3) controls and monitors, (4) operational procedures, and (5) maintenance and troubleshooting. Block drawings and circuit diagrams are included to clarify the text.
Seasonal Changes in Titan's Southern Stratosphere
NASA Technical Reports Server (NTRS)
Nixon, C. A.; Bjoraker, G. L.; Achterberg, R. K.; Teanby, N. A.; Coustenis, A.; Jennings, D. E.; Cottini, V.; Irwin, P. G.; Flasar, F. M.
2012-01-01
In August 2009 Titan passed through northern spring equinox, and the southern hemisphere passed into fall. Since then, the moon's atmosphere has been closely watched for evidence of the expected seasonal reversal of stratospheric circulation, with increased northern insolation leading to upwelling, and consequent downwelling at southern high latitudes. If the southern winter mirrors the northern winter, this circulation will be traced by increases in short-lived gas species advected downwards from the upper atmosphere to the stratosphere. The Cassini spacecraft in orbit around Saturn carries on board the Composite Infrared Spectrometer (CIRS), which has been actively monitoring the trace gas populations through measurement of the intensity of their infrared emission bands (7-1000 micron). In this presentation we will show fresh evidence from recent CIRS measurements in June 2012, that the shortest-lived and least abundant minor species (C3H4, C4H2, C6H6, HC3N) are indeed increasing dramatically southwards of 50S in the lower stratosphere. Intriguingly, the more stable gases (C2H2, HCN, CO2) have yet to show this trend, and continue to exhibit their 'summer' abundances, decreasing towards the south pole. Possible chemical and dynamical explanations of these results will be discussed , along with the potential of future CIRS measurements to monitor and elucidate these seasonal changes.
NASA Technical Reports Server (NTRS)
Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Schluessel, Peter
2009-01-01
Surface and atmospheric thermodynamic parameters retrieved with advanced ultraspectral remote sensors aboard Earth observing satellites are critical to general atmospheric and Earth science research, climate monitoring, and weather prediction. Ultraspectral resolution infrared radiance obtained from nadir observations provide atmospheric, surface, and cloud information. Presented here is the global surface IR emissivity retrieved from Infrared Atmospheric Sounding Interferometer (IASI) measurements under "clear-sky" conditions. Fast radiative transfer models, applied to the cloud-free (or clouded) atmosphere, are used for atmospheric profile and surface parameter (or cloud parameter) retrieval. The inversion scheme, dealing with cloudy as well as cloud-free radiances observed with ultraspectral infrared sounders, has been developed to simultaneously retrieve atmospheric thermodynamic and surface (or cloud microphysical) parameters. Rapidly produced surface emissivity is initially evaluated through quality control checks on the retrievals of other impacted atmospheric and surface parameters. Surface emissivity and surface skin temperature from the current and future operational satellites can and will reveal critical information on the Earth s ecosystem and land surface type properties, which can be utilized as part of long-term monitoring for the Earth s environment and global climate change.
Long Term Monitoring of Atmospheric Composition at NOAA - Driving Science with 60 Year-old Records
NASA Astrophysics Data System (ADS)
Butler, J. H.
2017-12-01
NOAA's Global Monitoring Division and its precursor organizations have provided some of the longest real-time records of the trends and distributions of climatically relevant substances in the atmosphere, some going back for 60 years (http://www.esrl.noaa.gov/gmd). The focus of these measurements has been on obtaining reliable records of global trends and distributions of these substances, but the experimental design and use of measurements have advanced over time with evolving scientific questions. Today, and into this century, scientific questions continue to progress and the observing systems that address them will need to progress accordingly. Long-term, ground based observing systems in NOAA's Global Monitoring Division focus largely on three sets of questions, two of which align with WCRP grand challenges. These are Carbon Cycle System Feedbacks, Trends in Surface Radiation and Cloud Distributions, and Recovery of Stratospheric Ozone. The data collected and analyzed help us understand radiative forcing, climate sensitivity, air quality, climate modification, renewable energy options, and arctic processes, and they are useful for verifying model output and satellite retrievals. Regional information will become increasingly important for mitigating and adapting to climate change, and this information must be accurate, precise, and without bias. NOAA, with its long-standing networks and its role in providing calibrations for partnering organizations, is well positioned to provide the linkages necessary to assure that regional measurements are comparable. This presentation will identify major, climate-relevant findings that have come from NOAA's networks in the past and will address the long-term monitoring needs to support decision-making over coming decades as society begins to seriously address climate change.
NASA Astrophysics Data System (ADS)
Levelt, P.; Joiner, J.; Tamminen, J.; Veefkind, P.; Bhartia, P. K.; Court, A. J.; Vlemmix, T.
2017-12-01
Keywords: emission monitoring, air quality, climate, atmospheric composition The Ozone Monitoring Instrument (OMI), launched on board of NASA's EOS-Aura spacecraft on July 15, 2004, provides unique contributions to the monitoring of the ozone layer, air quality and climate from space. With a data record of 13 years, OMI provides the longest NO2 and SO2 record from space, which is essential to understand the changes to emissions globally. The combination of urban scale resolution (13 x 24 km2 in nadir) and daily global coverage proved to be key features for the air quality community. Due to the operational Very Fast Delivery (VFD / direct readout) and Near Real Time (NRT) availability of the data, OMI also plays an important role in the early developments of operational services in the atmospheric chemistry domain. For example, OMI data is currently used operationally for improving air quality forecasts, for inverting high-resolution emission maps, the UV forecast and for volcanic plume warning systems for aviation. An overview of air quality applications, emission inventory inversions and trend analyses based on the OMI data record will be presented. An outlook will be given on the potentials of augmenting this record with the high resolution air quality measurements of TROPOMI (3,5 x 7 km2) and new satellite instrumentation entering the imaging domain, such as the TROPOLITE instrument ( 1 x 1 km2). Potential of imaging type of NO2 measurements in the the climate and air quality domain will be given, most notably on the use of high resolution NO2 measurements for pin-pointing anthropogenic CO2 emissions.
A RESTful Service Oriented Architecture for Science Data Processing
NASA Astrophysics Data System (ADS)
Duggan, B.; Tilmes, C.; Durbin, P.; Masuoka, E.
2012-12-01
The Atmospheric Composition Processing System is an implementation of a RESTful Service Oriented Architecture which handles incoming data from the Ozone Monitoring Instrument and the Ozone Monitoring and Profiler Suite aboard the Aura and NPP spacecrafts respectively. The system has been built entirely from open source components, such as Postgres, Perl, and SQLite and has leveraged the vast resources of the Comprehensive Perl Archive Network (CPAN). The modular design of the system also allows for many of the components to be easily released and integrated into the CPAN ecosystem and reused independently. At minimal expense, the CPAN infrastructure and community provide peer review, feedback and continuous testing in a wide variety of environments and architectures. A well defined set of conventions also facilitates dependency management, packaging, and distribution of code. Test driven development also provides a way to ensure stability despite a continuously changing base of dependencies.
The Middle Atmosphere Program: A special project for the Antarctic Middle Atmosphere (AMA)
NASA Technical Reports Server (NTRS)
Hirasawa, T.
1982-01-01
Areas of concern are: dynamics, structure, and atmospheric composition of the middle atmosphere in Antarctica; particle precipitation and interaction of the middle atmosphere with the lower ionosphere; atmospheric pollution; and the difference between the northern and southern polar middle atmosphere.
Possible solar noble-gas component in Hawaiian basalts
Honda, M.; McDougall, I.; Patterson, D.B.; Doulgeris, A.; Clague, D.A.
1991-01-01
THE noble-gas elemental and isotopic composition in the Earth is significantly different from that of the present atmosphere, and provides an important clue to the origin and history of the Earth and its atmosphere. Possible candidates for the noble-gas composition of the primordial Earth include a solar-like component, a planetary-like component (as observed in primitive meteorites) and a component similar in composition to the present atmosphere. In an attempt to identify the contributions of such components, we have measured isotope ratios of helium and neon in fresh basaltic glasses dredged from Loihi seamount and the East Rift Zone of Kilauea1-3. We find a systematic enrichment in 20Ne and 21Ne relative to 22Ne, compared with atmospheric neon. The helium and neon isotope signatures observed in our samples can be explained by mixing of solar, present atmospheric, radiogenic and nucleogenic components. These data suggest that the noble-gas isotopic composition of the mantle source of the Hawaiian plume is different from that of the present atmosphere, and that it includes a significant solar-like component. We infer that this component was acquired during the formation of the Earth.
Global two dimensional chemistry model and simulation of atmospheric chemical composition
NASA Astrophysics Data System (ADS)
Zhang, Renjian; Wang, Mingxing; Zeng, Qingcun
2000-03-01
A global two-dimensional zonally averaged chemistry model is developed to study the chemi-cal composition of atmosphere. The region of the model is from 90°S to 90°N and from the ground to the altitude of 20 km with a resolution of 5° x 1 km. The wind field is residual circulation calcu-lated from diabatic rate. 34 species and 104 chemical and photochemical reactions are considered in the model. The sources of CH4, CO and NOx, which are divided into seasonal sources and non-seasonal sources, are parameterized as a function of latitude and time. The chemical composi-tion of atmosphere was simulated with emission level of CH4, CO and NOx in 1990. The results are compared with observations and other model results, showing that the model is successful to simu-late the atmospheric chemical composition and distribution of CH4.
The importance of atmospheric monitoring at the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Dawson, Bruce R.
The Pierre Auger Observatory is an ultra-high energy cosmic ray experiment employing a giant surface array of particle detectors together with telescopes to image fluorescence light from extensive air showers in the atmosphere. The atmosphere is the medium in which the incoming cosmic rays deposit their energy, and as a result we must monitor the characteristics of the atmosphere, including its density profile and light transmission properties, over the Observatory area of 3000 square kilometres.
NASA Technical Reports Server (NTRS)
Fegley, Bruce, Jr. (Editor); Waenke, Heinrich (Editor)
1992-01-01
The speakers in the first session of the workshop addressed some of the continuing enigmas regarding the atmospheric composition, surface composition, and atmosphere-surface interactions on Mars; provided a description of a database of proposed payloads and instruments for SEI missions that is scheduled to be accessible in 1993; discussed potential uses of atmospheric imaging from landed stations on Mars; and advocated the collection and employment of high-spectral-resolution reflectance and emission data.
NASA Astrophysics Data System (ADS)
Merlaud, Alexis; Tack, Frederik; Constantin, Daniel; Georgescu, Lucian; Maes, Jeroen; Fayt, Caroline; Mingireanu, Florin; Schuettemeyer, Dirk; Meier, Andreas Carlos; Schönardt, Anja; Ruhtz, Thomas; Bellegante, Livio; Nicolae, Doina; Den Hoed, Mirjam; Allaart, Marc; Van Roozendael, Michel
2018-01-01
The Small Whiskbroom Imager for atmospheric compositioN monitorinG (SWING) is a compact remote sensing instrument dedicated to mapping trace gases from an unmanned aerial vehicle (UAV). SWING is based on a compact visible spectrometer and a scanning mirror to collect scattered sunlight. Its weight, size, and power consumption are respectively 920 g, 27 cm × 12 cm × 8 cm, and 6 W. SWING was developed in parallel with a 2.5 m flying-wing UAV. This unmanned aircraft is electrically powered, has a typical airspeed of 100 km h-1, and can operate at a maximum altitude of 3 km. We present SWING-UAV experiments performed in Romania on 11 September 2014 during the Airborne ROmanian Measurements of Aerosols and Trace gases (AROMAT) campaign, which was dedicated to test newly developed instruments in the context of air quality satellite validation. The UAV was operated up to 700 m above ground, in the vicinity of the large power plant of Turceni (44.67° N, 23.41° E; 116 m a. s. l. ). These SWING-UAV flights were coincident with another airborne experiment using the Airborne imaging differential optical absorption spectroscopy (DOAS) instrument for Measurements of Atmospheric Pollution (AirMAP), and with ground-based DOAS, lidar, and balloon-borne in situ observations. The spectra recorded during the SWING-UAV flights are analysed with the DOAS technique. This analysis reveals NO2 differential slant column densities (DSCDs) up to 13±0.6×1016 molec cm-2. These NO2 DSCDs are converted to vertical column densities (VCDs) by estimating air mass factors. The resulting NO2 VCDs are up to 4.7±0.4×1016 molec cm-2. The water vapour DSCD measurements, up to 8±0.15×1022 molec cm-2, are used to estimate a volume mixing ratio of water vapour in the boundary layer of 0.013±0.002 mol mol-1. These geophysical quantities are validated with the coincident measurements.
A Harmonized Landsat-Sentinel-2 Surface Reflectance product: a resource for Agricultural Monitoring
NASA Astrophysics Data System (ADS)
Masek, J. G.; Claverie, M.; Ju, J.; Vermote, E.; Justice, C. O.
2015-12-01
The combination of Landsat and Sentinel-2 data offers a unique opportunity to observe globally the land every 2-3 days at medium (<30m) spatial resolution. The Harmonized Landsat-Sentinel-2 (HLS) project is a NASA initiative aiming to produce surface reflectance data from Landsat and Sentinel-2 missions and to deliver them to the community in a combined, seamless form. The HLS will be beneficial for global agricultural monitoring applications that require medium spatial resolution and weekly or more frequent observations. In particular, the provided opportunity to track crop phenology at the scale of individual fields will support detailed mapping of crop type and type-specific vegetation conditions. To create a compatible set of radiometric measurements, the HLS product relies on rigorous pre- and post-launch cross-calibration (Landsat-8 OLI and Sentinel-2 MSI) activities. The processing chain includes the following components: atmospheric correction, cloud/shadow masking, nadir BRDF-adjustment, spectral-adjustment, regridding, and temporal composite. The atmospheric correction and cloud masking is based on the OLI atmospheric correction developed at NASA-GSFC and has been adapted to the MSI data. The BRDF-adjustment is based on a disaggregation technique using MODIS-based BRDF coefficients. The technique has been evaluated using the multi-angular acquisition from the SPOT 4 and 5 (Take5) experiments. The spectral-adjustment relies on a linear regression that has been calibrated and evaluated using synthetic data and surface reflectance processed from a large number of hyperspectral EO-1 Hyperion scenes. Finally, significant effort is placed on product validation and evaluation. The delivered data set will include surface reflectance products at different levels: Using the native gridding, i.e. UTM, 30m for Landsat-8, and UTM, 10-20m for Sentinel-2 Using a common global gridding (Sinusoidal, 30m) Temporal composite (Sinusoidal, 30m, 5-day) During the first year of operation of Sentinel-2A, the HLS will be prototyped over a selection of 30 sites that includes some of the JECAM sites, Aeronet sites and Cal/Val sites. Then, the HLS spatial coverage will be increased as more Sentinel-2A data become available.
Airborne and Ground-Based Measurements Using a High-Performance Raman Lidar. Part 2; Ground Based
NASA Technical Reports Server (NTRS)
Whiteman, David N.; Cadirola, Martin; Venable, Demetrius; Connell, Rasheen; Rush, Kurt; Leblanc, Thierry; McDermid, Stuart
2009-01-01
The same RASL hardware as described in part I was installed in a ground-based mobile trailer and used in a water vapor lidar intercomparison campaign, hosted at Table Mountain, CA, under the auspices of the Network for the Detection of Atmospheric Composition Change (NDACC). The converted RASL hardware demonstrated high sensitivity to lower stratospheric water vapor indicating that profiling water vapor at those altitudes with sufficient accuracy to monitor climate change is possible. The measurements from Table Mountain also were used to explain the reason, and correct , for sub-optimal airborne aerosol extinction performance during the flight campaign.
NASA Technical Reports Server (NTRS)
Fymat, A. L.
1975-01-01
The determination of the microstructure, chemical nature, and dynamical evolution of scattering particulates in the atmosphere is considered. A description is given of indirect sampling techniques which can circumvent most of the difficulties associated with direct sampling techniques, taking into account methods based on scattering, extinction, and diffraction of an incident light beam. Approaches for reconstructing the particulate size distribution from the direct and the scattered radiation are discussed. A new method is proposed for determining the chemical composition of the particulates and attention is given to the relevance of methods of solution involving first kind Fredholm integral equations.
Atmospheric Composition Data and Information Services Center (ACDISC)
NASA Technical Reports Server (NTRS)
Kempler, S.
2005-01-01
NASA's GSFC Earth Sciences (GES) Data and Information and Data Services Center (DISC) manages the archive, distribution and data access for atmospheric composition data from AURA'S OMI, MLS, and hopefully one day, HIRDLS instruments, as well as heritage datasets from TOMS, UARS, MODIS, and AIRS. This data is currently archived in the GES Distributed Active Archive Center (DAAC). The GES DISC has begun the development of a community driven data management system that's sole purpose is to manage and provide value added services to NASA's Atmospheric Composition (AC) Data. This system, called the Atmospheric Composition Data and Information Services Center (ACDISC) will provide access all AC datasets from the above mentioned instruments, as well as AC datasets residing at remote archive sites (e.g, LaRC DAAC) The goals of the ACDISC are to: 1) Provide a data center for Atmospheric Scientists, guided by Atmospheric Scientists; 2) Be absolutely responsive to the data and data service needs of the Atmospheric Composition (AC) community; 3) Provide services (i.e., expertise) that will facilitate the effortless access to and usage of AC data; 4) Collaborate with AC scientists to facilitate the use of data from multiple sensors for long term atmospheric research. The ACDISC is an AC specific, user driven, multi-sensor, on-line, easy access archive and distribution system employing data analysis and visualization, data mining, and other user requested techniques that facilitate science data usage. The purpose of this presentation is to provide the evolution path that the GES DISC in order to better serve AC data, and also to receive continued community feedback and further foster collaboration with AC data users and providers.
NASA Astrophysics Data System (ADS)
Chen, Xihui; Sun, Zhigang; Sun, Jianfen; Song, Yingdong
2017-12-01
In this paper, a numerical model which incorporates the oxidation damage model and the finite element model of 2D plain woven composites is presented for simulation of the oxidation behaviors of 2D plain woven C/SiC composite under preloading oxidation atmosphere. The equal proportional reduction method is firstly proposed to calculate the residual moduli and strength of unidirectional C/SiC composite. The multi-scale method is developed to simulate the residual elastic moduli and strength of 2D plain woven C/SiC composite. The multi-scale method is able to accurately predict the residual elastic modulus and strength of the composite. Besides, the simulated residual elastic moduli and strength of 2D plain woven C/SiC composites under preloading oxidation atmosphere show good agreements with experimental results. Furthermore, the preload, oxidation time, temperature and fiber volume fractions of the composite are investigated to show their influences upon the residual elastic modulus and strength of 2D plain woven C/SiC composites.
Thermal Curing Process Monitoring of the Composite Material Using the FBG sensor
NASA Astrophysics Data System (ADS)
Zhang, Youhong; Chang, Xinlong; Zhang, Xiaojun; He, Xiangyong
2018-03-01
The raw composite material will suffer complex chemical and morphological changes during the thermal curing process, and it is difficult to monitor the curing process and curing effect. In this paper, the FBG sensor was embedded in the raw composite material to monitor the whole curing process. The experiment results showed that the FBG sensor can monitor the resin transformation and residual deformation of the composite material, and the FBG sensor can be applied to monitor the thermal curing process of the composite structure.
Ion neutral mass spectrometer results from the first flyby of Titan.
Waite, J Hunter; Niemann, Hasso; Yelle, Roger V; Kasprzak, Wayne T; Cravens, Thomas E; Luhmann, Janet G; McNutt, Ralph L; Ip, Wing-Huen; Gell, David; De La Haye, Virginie; Müller-Wordag, Ingo; Magee, Brian; Borggren, Nathan; Ledvina, Steve; Fletcher, Greg; Walter, Erin; Miller, Ryan; Scherer, Stefan; Thorpe, Rob; Xu, Jing; Block, Bruce; Arnett, Ken
2005-05-13
The Cassini Ion Neutral Mass Spectrometer (INMS) has obtained the first in situ composition measurements of the neutral densities of molecular nitrogen, methane, molecular hydrogen, argon, and a host of stable carbon-nitrile compounds in Titan's upper atmosphere. INMS in situ mass spectrometry has also provided evidence for atmospheric waves in the upper atmosphere and the first direct measurements of isotopes of nitrogen, carbon, and argon, which reveal interesting clues about the evolution of the atmosphere. The bulk composition and thermal structure of the moon's upper atmosphere do not appear to have changed considerably since the Voyager 1 flyby.
Chemical kinetics on extrasolar planets.
Moses, Julianne I
2014-04-28
Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets.
NASA Astrophysics Data System (ADS)
Hörst, S. M.; Yoon, Y. H.; Hicks, R. K.; Tolbert, M. A.
2012-09-01
Measurements from the Cassini Plasma Spectrometer (CAPS) have revealed the presence of molecules in Titan's ionosphere with masses in excess of hundreds of amu. Negative ions with mass/charge (m/z) up to 10,000 amu/q [1] and positive ions with m/z up to 400 amu/q [2] have been detected. CAPS has also observed O+ flowing into Titan's upper atmosphere [3], which appears to originate from Enceladus and is likely the source of oxygen bearing molecules in Titan's atmosphere [4]. The observed O+ is deposited in the region now known to contain large organic molecules. A recent Titan atmosphere simulation experiment has shown that incorporation of oxygen into Titan aerosol analogues results in the formation of all five nucleotide bases and the two smallest amino acids, glycine and alanine [5]. Similar chemical processes may have occurred in the atmosphere of the early Earth, or in the atmospheres of extrasolar planets; atmospheric aerosols may be an important source of the building blocks of life. Atmospheric aerosols play an important role in determining the radiation budget of an atmosphere and can also provide a wealth of organic material to the surface. The presence of atmospheric aerosols has been invoked to explain the relatively featureless spectrum of HD 189773b, including the lack of predicted atmospheric Na and K spectral lines [9]. The majority of the O+ precipitating into Titan's atmosphere forms CO (O(3P)+CH3 -> CO+H2+H) [4]. CO has also been detected in the atmospheres of a number of exoplanets including HD 189733b, HD 209458b, and WASP-12b [6-8]. It is therefore important to understand the role CO plays in the formation and composition of hazes in planetary atmospheres. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [10]) we have obtained in situ composition measurements of aerosol particles (so-called "tholins") produced in N2/CH4/CO gas mixtures subjected to either FUV radiation (deuterium lamp, 115-400 nm) or a spark discharge for a range of initial CO mixing ratios. A comparison of the composition of tholins produced using the two different energy sources will be presented. The effect of variation of CO mixing ratio on aerosol production and composition will also be discussed.
NASA's Solar Eclipse Composite Image July 11, 2010
2017-12-08
Eclipse 2010 Composite A solar eclipse photo (gray and white) from the Williams College Expedition to Easter Island in the South Pacific (July 11, 2010) was embedded with an image of the Sun’s outer corona taken by the Large Angle Spectrometric Coronagraph (LASCO) on the SOHO spacecraft and shown in red false color. LASCO uses a disk to blot out the bright sun and the inner corona so that the faint outer corona can be monitored and studied. Further, the dark silhouette of the moon was covered with an image of the Sun taken in extreme ultraviolet light at about the same time by the Atmospheric Imaging Assembly on Solar Dynamics Observatory (SDO). The composite brings out the correlation of structures in the inner and outer corona. Credits: Williams College Eclipse Expedition -- Jay M. Pasachoff, Muzhou Lu, and Craig Malamut; SOHO’s LASCO image courtesy of NASA/ESA; solar disk image from NASA’s SDO; compositing by Steele Hill, NASA Goddard Space Flight Center. NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.
Optical design and development of near-range compact lidar
NASA Astrophysics Data System (ADS)
Shiina, Tatsuo
2011-12-01
There are large demands to monitor the atmosphere in the closed space (hall, factory and so on), to check vegetation remotely and to detect hazardous gases such as explosive gas and bio terror from explosion-proof distance. On the contrary, traditional lidars have blind area, it is hard to monitor the atmosphere and the gas in the near range. In this study, optical designs and concrete developments for the atmosphere monitoring and the certain gas detection in near range were accomplished. Unique optical designs are introduced and their practical setups are explained.
NASA Astrophysics Data System (ADS)
Harris, Eliza; Henne, Stephan; Christoph, Hüglin; Christoph, Zellweger; Béla, Tuzson; Erkan, Ibraim; Lukas, Emmenegger; Joachim, Mohn
2017-04-01
Nitrous oxide (N2O) is a potent greenhouse gas and the strongest ozone-destroying substance emitted this century. The atmospheric N2O mole fraction has been increasing at a rate of 0.2-0.3% per year over the past decades due to anthropogenic emissions; in addition, recent results suggest that the rate of increase is rising - therefore effective mitigation of N2O emissions is a critical point for environmental policy. However, N2O sources are poorly defined and disperse, complicating the development of targeted mitigation strategies. Online isotopic measurements using preconcentration and laser spectroscopy [1,2,3] have great potential to unravel spatial and temporal variations in sources, sinks and chemistry of trace gases such as N2O. Semi-continuous, real-time measurements of N2O isotopic composition (δ18O, site preference [SP = 14N15N16O - 15N14N16O] and δ15Nbulk) were performed at the suburban site of Dübendorf, Switzerland, for 19 months between July 2014 and February 2016. The data precision reached 0.1‰ in the final months, thus the results could clearly identify nocturnal build-up of N2O, with a corresponding decrease in δ18O, SP and δ15Nbulk due to isotopically depleted anthropogenic sources. Daily mean source isotopic composition was calculated by considering the measured and the background mole fraction and isotopic composition. Delta values of the mean emission source were highest in winter, with a seasonal cycle of 12, 8 and 5‰ for δ18O, SP and δ15Nbulk respectively. The chemical and meteorological parameters controlling source isotopic composition were considered using data from the Swiss National Air Pollution Monitoring Network (NABEL) as well as a transport regime cluster analysis. A clear spatial distribution for source isotopic composition was observed for δ18O, as well as a significant relationship with the level of urban pollution, indicating δ18O may be a strong indicator of combustion/industrial vs. agricultural N2O. In contrast, δ15Nbulk and particularly SP appear to vary too strongly in response to other factors affecting emission processes to provide a useful distinction between source categories on a regional scale - these isotopocules may however be useful to distinguish emission pathways on a local scale. For comparison, FLEXPART-COSMO transport simulations [4] were combined with emissions from the EDGAR inventory and estimates of source isotopic composition from literature, to simulate N2O isotopic composition at the sampling site. The model was able to capture variability in N2O mole fraction adequately (R2 = 0.34; p <<0.01). However, the measured variability in source isotopic composition was 1-2 orders of magnitude larger than simulated, illustrating that our knowledge of isotopic source signatures - in particular technical N2O sources - is still too limited to successfully model variations in ambient N2O isotopic composition. [1] Mohn et al. (2012) Atmospheric Measurement Techniques, doi:10.5194/amt-5-1601-2012 [2] Harris et al. (2014) Analytical Chemistry, doi: 10.1021/ac403606u. [3] Röckmann et al. (2016) Atmospheric Chemistry and Physics, doi:10.5194/acp-16-10469-2016. [4] Henne et al. (2016) Atmospheric Chemistry and Physics, doi:10.5194/acp-16-3683-2016.
NASA Astrophysics Data System (ADS)
Haeffelin, Martial
2016-04-01
Radiation fog formation is largely influenced by the chemical composition, size and number concentration of cloud condensation nuclei and by heating/cooling and drying/moistening processes in a shallow mixing layer near the surface. Once a fog water layer is formed, its development and dissipation become predominantly controlled by radiative cooling/heating, turbulent mixing, sedimentation and deposition. Key processes occur in the atmospheric surface layer, directly in contact with the soil and vegetation, and throughout the atmospheric column. Recent publications provide detailed descriptions of these processes for idealized cases using very high-resolution models and proper representation of microphysical processes. Studying these processes in real fog situations require atmospheric profiling capabilities to monitor the temporal evolution of key parameters at several heights (surface, inside the fog, fog top, free troposphere). This could be done with in-situ sensors flown on tethered balloons or drones, during dedicated intensive field campaigns. In addition Backscatter Lidars, Doppler Lidars, Microwave Radiometers and Cloud Doppler Radars can provide more continuous, yet precise monitoring of key parameters throughout the fog life cycle. The presentation will describe how Backscatter Lidars can be used to study the height and kinetics of aerosol activation into fog droplets. Next we will show the potential of Cloud Doppler Radar measurements to characterize the temporal evolution of droplet size, liquid water content, sedimentation and deposition. Contributions from Doppler Lidars and Microwave Radiometers will be discussed. This presentation will conclude on the potential to use Lidar and Radar remote sensing measurements to support operational fog nowcasting.
On-Orbit Measurements of the ISS Atmosphere by the Vehicle Cabin Atmosphere Monitor
NASA Technical Reports Server (NTRS)
Darrach, M. R.; Chutjian, A.; Bornstein, B. J.; Croonquist, A. P.; Garkanian, V.; Haemmerle, V. R.; Hofman, J.; Heinrichs, W. M.; Karmon, D.; Kenny, J.;
2011-01-01
We report on trace gas and major atmospheric constituents results obtained by the Vehicle Cabin Atmosphere Monitor (VCAM) during operations aboard the International Space Station (ISS). VCAM is an autonomous environmental monitor based on a miniature gas chromatograph/mass spectrometer. It was flown to the ISS on shuttle mission STS-131 and commenced operations on 6/10/10. VCAM provides measurements of ppb-to-ppm levels of volatile trace-gas constituents, and of the atmospheric major constituents (nitrogen, oxygen, argon, and carbon dioxide) in a space vehicle or station. It is designed to operate autonomously and maintenance-free, approximately once per day, with a self-contained gas supply sufficient for a one-year lifetime. VCAM is designed to detect and identify 90% of the target compounds at their 180-day Spacecraft Maximum Allowable Concentration levels.
Atmospheric Science Data Center
2016-11-25
Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) is an intensive ... study area encompasses Texas and the northwestern Gulf of Mexico during July, August, September, and October, 2006. The Multi-angle ...
Could Flaring Stars Change Our Views of Their Planets?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-12-01
As the exoplanet count continues to increase, we are making progressively more measurements of exoplanets outer atmospheres through spectroscopy. A new study, however, reveals that these measurements may be influenced by the planets hosts.Spectra From TransitsExoplanet spectra taken as they transit their hosts can tell us about the chemical compositions of their atmospheres. Detailed spectroscopic measurements of planet atmospheres should become even more common with the next generation of missions, such as the James Webb Space Telescope (JWST), or Planetary Transits and Oscillations of Stars (PLATO).But is the spectrum that we measure in the brief moment of a planets transit necessarily representative of its spectrum all of the time? A team of scientists led by Olivia Venot (University of Leuven in Belgium) argue that it might not be, due to the influence of the planets stellar host.Atmospheric composition of a planet before flare impacts (dotted lines), during the steady state reached after a flare impact (dashed lines), and during the steady state reached after a second flare impact (solid lines). [Venot et al. 2016]The team suggests that when a hosts flares impact upon a planets atmosphere (especially likely in the case of active M-dwarfs that commonly harbor planetary systems), this activity may modify the chemical composition of the planets atmosphere. This would in turn alter the spectrum that we measure from the exoplanet.Modeling AtmospheresVenot and collaborators set out to test the effect of stellar flares on exoplanet atmospheres by modeling the atmospheres of two hypothetical planets orbiting the star AD Leo an active and flaring M dwarf located roughly 16 light-years away at two different distances. The team then examined what happened to the atmospheres, and to the resulting spectra that we would observe, when they were hit with a stellar flare typical of AD Leo.The difference in relative absorption between the initial steady-state and the instantaneous transmission spectra, obtained during the different phases of the flare. The left plot examines the impulsive and gradual phases, when the flare first impacts and then starts to pass. The peak photon flux occurs at 912 seconds. The right plot examines the return to a steady state over 1012 seconds, or roughly 30,000 years. [Adapted from Venot et al. 2016]The authors found that the planets atmospheric compositions were significantly affected by the incoming stellar flare. The sudden increase in incoming photon flux changed the chemical abundances of several important molecular species, like hydrogen and ammonia which resulted in changes to the spectrum that would be observed during the planets transit.Permanent ImpactIn addition to demonstrating that a planets atmospheric composition changes during and immediately after a flare impact, Venot and collaborators show that the chemical alteration isnt temporary: the planets atmosphere doesnt fully return to its original state after the flare passes. Instead, the authors find that it settles to a new steady-state composition that can be significantly different from the pre-flare composition.For a planet that is repeatedly hit by stellar flares, therefore, its atmospheric composition never actually settles to a steady state. Instead it is continually and permanently modified by its hosts activity.Venot and collaborators demonstrate that the variations of planetary spectra due to stellar flares should be easily detectable by future missions like JWST. We must therefore be careful about the conclusions we draw about planetary atmospheres from measurements of their spectra.CitationOlivia Venot et al 2016 ApJ 830 77. doi:10.3847/0004-637X/830/2/77
NASA Technical Reports Server (NTRS)
Kendall, Rose (Compiler); Wolfe, Kathy (Compiler)
1997-01-01
Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology, and monitoring of the Earth's upper atmosphere, with emphasis on the stratosphere. This program aims at expanding our understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Science Division in the Office of Mission to Planet Earth at NASA. Significant contributions to this effort are also provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aeronautics. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper atmosphere and their effect on the distribution of chemical species in the stratosphere, such as ozone; understand the relationship of the trace constituent composition of the lower stratosphere and the lower troposphere to the radiative balance and temperature distribution of the Earth's atmosphere; and accurately assess possible perturbations of the upper atmosphere caused by human activities as well as by natural phenomena. In compliance with the Clean Air Act Amendments of 1990, Public Law 101-549, NASA has prepared a report on the state of our knowledge of the Earth's upper atmosphere, particularly the stratosphere, and on the progress of UARP and ACMAP. The report for the year 1996 is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summary 1994-1996. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1996.- An Assessment Report. It consists primarily of the Executive Summary and Chapter Summaries of the World Meteorological Organization Global Ozone Research and Monitoring Project Report No. 37, Scientific Assessment of Ozone Depletion: 1994, sponsored by NASA, the National Oceanic and Atmospheric Administration (NOAA), the UK Department of the Environment, the United Nations Environment Program, and the World Meteorological Organization. Other sections of Part 11 include summaries of the following: an Atmospheric Ozone Research Plan from NASA's Office of Mission to Planet Earth; summaries from a series of Space Shuttle-based missions and two recent airborne measurement campaigns; the Executive Summary of the 1995 Scientific Assessment of the Atmospheric Effects of Stratospheric Aircraft, and the most recent evaluation of photochemical and chemical kinetics data (Evaluation No. 12 of the NASA Panel for Data Evaluation) used as input parameters for atmospheric models.
NASA Technical Reports Server (NTRS)
Whiting, E. E.; Arnold, J. O.; Page, W. A.; Reynolds, R. M.
1973-01-01
A determination of the composition of the earth's atmosphere obtained from onboard radiometer measurements of the spectra emitted from the bow shock layer of a high-speed entry probe is reported. The N2, O2, CO2, and noble gas concentrations in the earth's atmosphere were determined to good accuracy by this technique. The results demonstrate unequivocally the feasibility of determining the composition of an unknown planetary atmosphere by means of a multichannel radiometer viewing optical emission from the heated atmospheric gases in the region between the bow shock wave and the vehicle surface. The spectral locations in this experiment were preselected to enable the observation of CN violet, N2(+) first negative and atomic oxygen emission at 3870, 3910, and 7775 A, respectively. The atmospheric gases were heated and compressed by the shock wave to a peak temperature of about 6100 K and a corresponding pressure of 0.4 atm. Complete descriptions of the data analysis technique and the onboard radiometer and its calibration are given.
Atmospheric circulations required for thick high-altitude clouds and featureless transit spectra
NASA Astrophysics Data System (ADS)
Wang, H.; Wordsworth, R. D.
2017-12-01
The transmission spectra of exoplanet GJ 1214b and GJ 436b are featureless as measured by current instruments. According to the measured density of these planets, we have reason to believe these planets have atmospheres, and the spectroscopy features of the atmospheres are unexpectedly not shown in the transit spectra. An explanation is high-altitude clouds or hazes are optically thick enough to make the transit spectra flat in the current observed wavelength range. We analyze the atmospheric circulations and vertical mixing that are crucial for the possible existence of the thick high-altitude clouds. We perform a series of GCM simulations with different atmospheric compositions and planetary parameters to reveal the conditions that are required for showing featureless spectra, and study the dynamical processes. We also study the role of cloud particles with different sizes, compositions and spectral characteristics with a radiative transfer model and cloud physics models. Varying the compositions and sizes of the cloud particles results in different requirements for the atmospheric circulations.
Silva, H G; Lopes, I
Heliospheric modulation of galactic cosmic rays links solar cycle activity with neutron monitor count rate on earth. A less direct relation holds between neutron monitor count rate and atmospheric electric field because different atmospheric processes, including fluctuations in the ionosphere, are involved. Although a full quantitative model is still lacking, this link is supported by solid statistical evidence. Thus, a connection between the solar cycle activity and atmospheric electric field is expected. To gain a deeper insight into these relations, sunspot area (NOAA, USA), neutron monitor count rate (Climax, Colorado, USA), and atmospheric electric field (Lisbon, Portugal) are presented here in a phase space representation. The period considered covers two solar cycles (21, 22) and extends from 1978 to 1990. Two solar maxima were observed in this dataset, one in 1979 and another in 1989, as well as one solar minimum in 1986. Two main observations of the present study were: (1) similar short-term topological features of the phase space representations of the three variables, (2) a long-term phase space radius synchronization between the solar cycle activity, neutron monitor count rate, and potential gradient (confirmed by absolute correlation values above ~0.8). Finally, the methodology proposed here can be used for obtaining the relations between other atmospheric parameters (e.g., solar radiation) and solar cycle activity.
INFLUENCE OF STELLAR FLARES ON THE CHEMICAL COMPOSITION OF EXOPLANETS AND SPECTRA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venot, Olivia; Decin, Leen; Rocchetto, Marco
More than three thousand exoplanets have been detected so far, and more and more spectroscopic observations of exoplanets are performed. Future instruments ( James Webb Space Telescope ( JWST ), E-ELT, PLATO, Ariel, etc.,) are eagerly awaited, as they will be able to provide spectroscopic data with greater accuracy and sensitivity than what is currently available. This will allow more accurate conclusions to be drawn regarding the chemistry and dynamics of exoplanetary atmospheres, provided that the observational data are carefully processed. One important aspect to consider is temporal stellar atmospheric disturbances that can influence the planetary composition, and hence spectra,more » and potentially can lead to incorrect assumptions about the steady-state atmospheric composition of the planet. In this paper, we focus on perturbations coming from the host star in the form of flare events that significantly increase photon flux impingement on the exoplanets atmosphere. In some cases, particularly for M stars, this sudden increase may last for several hours. We aim to discover to what extent a stellar flare is able to modify the chemical composition of the planetary atmosphere and, therefore, influence the resulting spectra. We use a one-dimensional thermo-photochemical model to study the neutral atmospheric composition of two hypothetical planets located around the star AD Leo. We place the two planets at different distances from the star, which results in effective atmospheric temperatures of 412 and 1303 K. AD Leo is an active star that has already been observed during a flare. Therefore, we use the spectroscopic data from this flare event to simulate the evolution of the chemical composition of the atmospheres of the two hypothetical planets. We compute synthetic spectra to evaluate the implications for observations. The increase in the incoming photon flux affects the chemical abundances of some important species (such as H and NH{sub 3}), down to altitudes associated with an atmospheric pressure of 1 bar, which can lead to variations in planetary spectra (up to 150 ppm) if performed during transit. We find that each exoplanet has a post-flare steady-state composition that is significantly different from the pre-flare steady-state. We predict that these variations could be detectable with both current and future spectroscopic instruments, if sufficiently high signal-to-noise spectra are obtained.« less
NASA Astrophysics Data System (ADS)
Moran, Sarah E.; Horst, Sarah; He, Chao; Flandinet, Laurene; Moses, Julianne I.; Orthous-Daunay, Francois-Regis; Vuitton, Veronique; Wolters, Cedric; Lewis, Nikole
2017-10-01
We present first results of the composition of laboratory-produced exoplanet haze analogues. With the Planetary HAZE Research (PHAZER) Laboratory, we simulated nine exoplanet atmospheres of varying initial gas phase compositions representing increasing metallicities (100x, 1000x, and 10000x solar) and exposed them to three different temperature regimes (600, 400, and 300 K) with two different “instellation” sources (a plasma source and a UV lamp). The PHAZER exoplanet experiments simulate a temperature and atmospheric composition phase space relevant to the expected planetary yield of the Transiting Exoplanet Survey Satellite (TESS) mission as well as recently discovered potentially habitable zone exoplanets in the TRAPPIST-1, LHS-1140, and Proxima Centauri systems. Upon exposure to the energy sources, all of these experiments produced aerosol particles, which were collected in a dry nitrogen glove box and then analyzed with an LTQ Orbitrap XL™ Hybrid Ion Trap-Orbitrap Mass Spectrometer utilizing m/z ranging from 50 to 1000. The collected aerosol samples were found to contain complex organics. Constraining the composition of these aerosols allows us to better understand the photochemical and dynamical processes ongoing in exoplanet atmospheres. Moreover, these data can inform our telescope observations of exoplanets, which is of critical importance as we enter a new era of exoplanet atmosphere observation science with the upcoming launch of the James Webb Space Telescope. The molecular makeup of these haze particles provides key information for understanding exoplanet atmospheric spectra, and constraining the structure and behavior of clouds, hazes, and other aerosols is at the forefront of exoplanet atmosphere science.
NASA Astrophysics Data System (ADS)
Cropper, Paul M.; Overson, Devon K.; Cary, Robert A.; Eatough, Delbert J.; Chow, Judith C.; Hansen, Jaron C.
2017-11-01
Particulate matter (PM) is among the most harmful air pollutants to human health, but due to its complex chemical composition is poorly characterized. A large fraction of PM is composed of organic compounds, but these compounds are not regularly monitored due to limitations in current sampling and analysis techniques. The Organic Aerosol Monitor (GC-MS OAM) combines a collection device with thermal desorption, gas chromatography and mass spectrometry to quantitatively measure the carbonaceous components of PM on an hourly averaged basis. The GC-MS OAM is fully automated and has been successfully deployed in the field. It uses a chemically deactivated filter for collection followed by thermal desorption and GC-MS analysis. Laboratory tests show that detection limits range from 0.2 to 3 ng for 16 atmospherically relevant compounds, with the possibility for hundreds more. The GC-MS OAM was deployed in the field for semi-continuous measurement of the organic markers, levoglucosan, dehydroabietic acid, and polycyclic aromatic hydrocarbons (PAHs) from January to March 2015. Results illustrate the significance of this monitoring technique to characterize the organic components of PM and identify sources of pollution.
NASA Astrophysics Data System (ADS)
McClellan, M. J.; Harris, E. J.; Olszewski, W.; Ono, S.; Prinn, R. G.
2014-12-01
Atmospheric nitrous oxide (N2O) significantly impacts Earth's climate due to its dual role as an inert potent greenhouse gas in the troposphere and as a reactive source of ozone-destroying nitrogen oxides in the stratosphere. However, there remain significant uncertainties in the global budget of this gas. The marked spatial divide in its reactivity means that all stages in the N2O life cycle—emission, transport, and destruction—must be examined to understand the overall effect of N2O on climate. Source and sink processes of N2O lead to varying concentrations of N2O isotopologues (14N14N16O, 14N15N16O, 15N14N16O, and 14N14N18O being measured) due to preferential isotopic production and elimination in different environments. Estimation of source and sink fluxes can be improved by combining isotopically resolved N2O observations with simulations using a chemical transport model with reanalysis meteorology and treatments of isotopic signatures of specific surface sources and stratospheric intrusions. We present the first few months of site-specific nitrogen and oxygen isotopic composition data from the Stheno-TILDAS instrument (Harris et al, 2013) at Mace Head, Ireland and compare these to results from MOZART-4 (Model for Ozone and Related Chemical Tracers, version 4) chemical transport model runs including N2O isotopic fractionation processes and reanalysis meterological fields (NCEP/NCAR, MERRA, and GEOS-5). This study forms the basis for future inverse modeling experiments that will improve the accuracy of isotopically differentiated N2O emission and loss estimates. Ref: Harris, E., D. Nelson, W. Olszewski, M. Zahniser, K. Potter, B. McManus, A. Whitehill, R. Prinn, and S. Ono, Development of a spectroscopic technique for continuous online monitoring of oxygen and site-specific nitrogen isotopic composition of atmospheric nitrous oxide, Analytical Chemistry, 2013; DOI: 10.1021/ac403606u.
The pH Dependence of Brown Carbon Formation in Maillard Chemistry
NASA Astrophysics Data System (ADS)
Hawkins, L. N.; Welsh, H.; Alexander, M. V.
2017-12-01
Secondary organic aerosol (SOA) composes a non-negligible fraction of brown carbon (BrC), and typically appears as small, nitrated aromatics or larger, highly functionalized humic-like substances (HULIS). Both nitrated aromatics and HULIS contain nitrogen, indicating the importance of nitrogen to light-absorbing aerosol. It is therefore unsurprising that BrC, when generated in aqueous phase reactions (aqBrC) between amines and small aldehydes, often resembles atmospheric HULIS. The effects of pH and aqueous phase oxidation on absorptivity and composition were simulated using bulk (microliter) samples under a variety of experimental conditions, including evaporation. The system of amines and small aldehydes included methylamine, ammonium sulfate, glyoxal, and methylglyoxal. Chemical composition of these products was characterized using an Aerosol Chemical Speciation Monitor (ACSM) and a desorption-based atmospheric pressure chemical ionization (APCI) spectrometer. The results of this study indicate that methylamine and methylglyoxal form the most absorptive BrC, cloud processing serves to increase BrC absorptivity, and the generated BrC is highly persistent to oxidative and photodegradation. Lowering the pH to values below 6 reduces absorptivity at shorter wavelengths, but produces a new shoulder beyond 400 nm indicating new chromophore formation. Results of this research also show that evaporation increased formation of large molecular fragments (m/z > 100). Furthermore, the mass spectra showed significant formation of these larger fragments in methylamine systems with little evidence for similar compounds in ammonium sulfate systems. Systems with methylglyoxal had higher absorptivity than all other systems, although in both methylamine and ammonium sulfate systems, glyoxal appeared to result in a higher percentage of large fragments than methylglyoxal. Lastly, hydroxyl radical degradation seemed to have a minimal effect on absorptivity and composition, although longer reaction time may produce a larger effect on both properties. These results may simplify some aspects of atmospheric models (like negligible degradation) but may complicate others (highly variable absorptivity between glyoxal and methylglyoxal).
NASA Astrophysics Data System (ADS)
Zimnoch, M.; Jelen, D.; Galkowski, M.; Kuc, T.; Necki, J.; Chmura, L.; Gorczyca, Z.; Jasek, A.; Rozanski, K.
2012-04-01
The European continent, due to high population density and numerous sources of anthropogenic CO2 emissions, plays an important role in the global carbon budget. Nowadays, precise measurements of CO2 mixing ratios performed by both global and regional monitoring networks, combined with appropriate models of carbon cycle, allow quantification of the European input to the global atmospheric CO2 load. However, measurements of CO2 mixing ratios alone cannot provide the information necessary for the apportionment of fossil-fuel related and biogenic contributions to the total CO2 burden of the regional atmosphere. Additional information is required, for instance obtained through measurements of radiocarbon content in atmospheric carbon dioxide. Radiocarbon is a particularly useful tracer for detecting fossil carbon in the atmosphere on different spatial and temporal scales. Regular observations of atmospheric CO2mixing ratios and their isotope compositions have been performed during the period of 2005-2009 at two sites located in central Europe (southern Poland). The sites, only ca. 100 km apart, represent two extreme environments with respect to the extent of anthropogenic pressure: (i) the city of Krakow, representing typical urban environment with numerous sources of anthropogenic CO2, and (ii) remote mountain site Kasprowy Wierch, relatively free of local influences. Regular, quasi-continuous measurements of CO2 mixing ratios have been performed at both sites. In addition, cumulative samples of atmospheric CO2 have been collected (weekly sampling regime for Krakow and monthly for Kasprowy Wierch) to obtain mean carbon isotope signature (14C/12C and 13C/12C ratios) of atmospheric CO2 at both sampling locations. Partitioning of the local atmospheric CO2 load at both locations has been performed using isotope- and mass balance approach. In Krakow, the average fossil-fuel related contribution to the local atmospheric CO2 load was equal to approximately 3.4%. The biogenic component turned out to be of the same magnitude. Both components revealed a distinct seasonality, with the fossil-fuel related component reaching maximum values during winter months and the biogenic component shifted in phase by ca. 6 months. Seasonality of fossil-fuel related CO2 load in the local atmosphere is linked with seasonality of local CO2sources, mostly burning of fossil fuels for heating purposes. Positive values of biogenic component indicate prevalence of the local respiration and biomass burning processes over local photosynthesis. Summer maxima of biogenic CO2 component represent mostly local respiration activity. Direct measurements of soil CO2 fluxes in the Krakow region showed an approximately 10-fold increase of those fluxes during the summer months. Partitioning of the local CO2 budget for Kasprowy Wierch site revealed large differences in the derived components when compared to urban atmosphere of Krakow: the fossil-fuel related component was ca. 5 times lower whereas the biogenic component was negative in summer, pointing to the importance of photosynthetic sink associated with extensive forests in the neighborhood of the station. The isotope- and mass balance approach was also used to derive mean monthly 13C isotope signature of fossil-fuel related CO2 emissions in Krakow. Although the derived δ13CO2 values revealed large variability, they are confined in the range of 13C isotope composition being reported for various sources of CO2 emissions in the city (burning of coal and oil, burning of methane gas, traffic).
Web technologies for rapid assessment of pollution of the atmosphere of the industrial city
NASA Astrophysics Data System (ADS)
Shaparev, N.; Tokarev, A.; Yakubailik, O.; Soldatov, A.
2018-05-01
The functionality, architectural features, the user interface of the geoinformation web-system of environmental monitoring of Krasnoyarsk is discussed. This system is created in service-oriented architecture. Data collection from the automated stations to monitor the state of atmospheric air has been implemented. An original device to measure the level of contamination of the atmosphere by fine dust PM2.5 has developed. Assessment of the level of air pollution is based on the quality index AQI atmosphere.
Model atmospheres for cool stars. [varying chemical composition
NASA Technical Reports Server (NTRS)
Johnson, H. R.
1974-01-01
This report contains an extensive series of model atmospheres for cool stars having a wide range in chemical composition. Model atmospheres (temperature, pressure, density, etc.) are tabulated, along with emergent energy flux distributions, limb darkening, and information on convection for selected models. The models are calculated under the usual assumptions of hydrostatic equilibrium, constancy of total energy flux (including transport both by radiation and convection) and local thermodynamic equilibrium. Some molecular and atomic line opacity is accounted for as a straight mean. While cool star atmospheres are regimes of complicated physical conditions, and these atmospheres are necessarily approximate, they should be useful for a number of kinds of spectral and atmospheric analysis.
A new comprehensive database of global volcanic gas analyses
NASA Astrophysics Data System (ADS)
Clor, L. E.; Fischer, T. P.; Lehnert, K. A.; McCormick, B.; Hauri, E. H.
2013-12-01
Volcanic volatiles are the driving force behind eruptions, powerful indicators of magma provenance, present localized hazards, and have implications for climate. Studies of volcanic emissions are necessary for understanding volatile cycling from the mantle to the atmosphere. Gas compositions vary with volcanic activity, making it important to track their chemical variability over time. As studies become increasingly interdisciplinary, it is critical to have a mechanism to integrate decades of gas studies across disciplines. Despite the value of this research to a variety of fields, there is currently no integrated network to house all volcanic and hydrothermal gas data, making spatial, temporal, and interdisciplinary comparison studies time-consuming. To remedy this, we are working to establish a comprehensive database of volcanic gas emissions and compositions worldwide, as part of the Deep Carbon Observatory's DECADE (Deep Carbon Degassing) initiative. Volcanic gas data have been divided into two broad categories: 1) chemical analyses from samples collected directly at the volcanic source, and 2) measurements of gas concentrations and fluxes, such as remotely by mini-DOAS or satellite, or in-plume such as by multiGAS. The gas flux database effort is realized by the Global Volcanism Program of the Smithsonian Institution (abstract by Brendan McCormick, this meeting). The direct-sampling data is the subject of this presentation. Data from direct techniques include samples of gases collected at the volcanic source from fumaroles and springs, tephras analyzed for gas contents, filter pack samples of gases collected in a plume, and any other data types that involve collection of a sample. Data are incorporated into the existing framework of the Petrological Database, PetDB. Association with PetDB is advantageous as it will allow volcanic gas data to be linked to chemical data from lava or tephra samples, forming more complete ties between the eruptive products and the source magma. Eventually our goal is to have a seamless gas database that allows the user to easily access all gas data ever collected at volcanoes. This database will be useful in a variety of science applications: 1) correlating volcanic gas composition to volcanic activity; 2) establishing a characteristic gas composition or total volatile budget for a volcano or region in studies of global chemical cycles; 3) better quantifying the flux and source of volcanic carbon to the atmosphere. The World Organization of Volcano Observatories is populating a volcano monitoring database, WOVOdat, which centers on data collected during times of volcanic unrest for monitoring and hazard purposes. The focus of our database is to gain insight into volcanic degassing specifically, during both eruptive and quiescent times. Coordination of the new database with WOVOdat will allow comparison studies of gas compositions with seismic and other monitoring data during times of unrest, as well as promote comprehensive and cross-disciplinary questions about volcanic degassing.
Identifying atmospheric monitoring needs for Space Station Freedom
NASA Technical Reports Server (NTRS)
Casserly, Dennis M.
1989-01-01
The atmospheric monitoring needs for Space Station Freedom were identified by examining the following from an industrial hygiene perspective: the experiences of past missions; ground based tests of proposed life support systems; the unique experimental and manufacturing facilities; the contaminant load model; metabolic production; and a fire. A target list of compounds to be monitored is presented and information is provided relative to the frequency of analysis, concentration ranges, and locations for monitoring probes.
Ground level and Lidar monitoring of volcanic dust and dust from Patagonia
NASA Astrophysics Data System (ADS)
Otero, L. A.; Losno, R.; Salvador, J. O.; Journet, E.; Qu, Z.; Triquet, S.; Monna, F.; Balkanski, Y.; Bulnes, D.; Ristori, P. R.; Quel, E. J.
2013-05-01
A combined approach including ground level aerosol sampling, lidar and sunphotometer measurements is used to monitor suspended particles in the atmosphere at several sites in Patagonia. Motivated by the Puyehue volcanic eruption in June 2011 two aerosol monitoring stations with several passive and active instruments were installed in Bariloche and Comodoro Rivadavia. The main goal which is to monitor ground lifted and transported ashes and dust involving danger to civil aviation, is achieved by measuring continuously aerosol concentration at ground level and aerosol vertical distribution using lidar. In addition, starting from December 2011, continuous series of weekly accumulated aerosol concentrations at Rio Gallegos are being measured to study the impact of Patagonian dust over the open ocean on phytoplankton primary productivity and CO2 removal. These measurements are going to be coupled with LIDAR monitoring and a dust optical response models to test if aerosol extrapolation can be done from the ground to the top of the layer. Laboratory chemical analysis of the aerosols will include elemental composition, solubilisation kinetic and mineralogical determination. Expected deliverables for this study is the estimation of the amount of dust exported from Patagonia towards the South Atlantic, its chemical properties, including bioavailability simulation, from model and comparison to experimental measurements.
The Formation of Haze During the Rise of Oxygen in the Atmosphere of the Early Earth
NASA Astrophysics Data System (ADS)
Horst, S. M.; Jellinek, M.; Pierrehumbert, R.; Tolbert, M. A.
2014-12-01
also provide a wealth of organic material to the surface. Photochemical hazes are abundant in reducing atmospheres, such as the N2/CH4 atmosphere of Titan, but are unlikely to form in oxidizing atmospheres, such as the N2/O2 atmosphere of present day Earth. However, information about haze formation in mildly oxidizing atmospheres is lacking. Understanding haze formation in mildly oxidizing atmospheres is necessary for models that wish to investigate the atmosphere of the Early Earth as O2 first appeared and then increased in abundance. Previous studies of the atmosphere of the Early Earth have focused on haze formation in N2/CO2/CH4 atmospheres. In this work, we experimentally investigate the effect of the addition of O2 on the formation and composition of aerosols. Using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) (see e.g. [1]) we have obtained in situ composition measurements of aerosol particles produced in N2/CO2/CH4/O2 gas mixtures subjected to FUV radiation (deuterium lamp, 115-400 nm) for a range of initial CO2/CH4/O2 mixing ratios. In particular, we studied the effect of O2 ranging from 2 ppm to 2%. The particles were also investigated using a Scanning Mobility Particle Sizer (SMPS), which measures particle size, number density and mass loading. A comparison of the composition of the aerosols will be presented. The effect of variation of O2 mixing ratio on aerosol production, size, and composition will also be discussed. [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326.
Apportionment of urban aerosol sources in Chongqing (China) using synergistic on-line techniques
NASA Astrophysics Data System (ADS)
Chen, Yang; Yang, Fumo
2016-04-01
The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Chongqing (southwestern China) have been determined. Aerosol chemical composition analyses were performed using multiple on-line techniques, such as single particle aerosol mass spectrometer (SPAMS) for single particle chemical composition, on-line elemental carbon-organic carbon analyzer (on-line OC-EC), on-line X-ray fluorescence (XRF) for elements, and in-situ Gas and Aerosol Compositions monitor (IGAC) for water-soluble ions in PM2.5. All the datasets from these techniques have been adjusted to a 1-h time resolution for receptor model input. Positive matrix factorization (PMF) has been used for resolving aerosol sources. At least six sources, including domestic coal burning, biomass burning, dust, traffic, industrial and secondary/aged factors have been resolved and interpreted. The synergistic on-line techniques were helpful for identifying aerosol sources more clearly than when only employing the results from the individual techniques. This results are useful for better understanding of aerosol sources and atmospheric processes.
The Impact of Temporal Aggregation of Land Surface Temperature Data for Urban Heat Island Monitoring
NASA Astrophysics Data System (ADS)
Hu, L.; Brunsell, N. A.
2012-12-01
Temporally composited remote sensing products are widely used in monitoring the urban heat island (UHI). In order to quantify the impact of temporal aggregation for assessing the UHI, we examined MODIS land surface temperature (LST) products for 11 years focusing on Houston, Texas and its surroundings. By using the daily LST from 2000 to 2010, the urban and rural daily LST were presented for the 8-day period and annual comparisons for both day and night. Statistics based on the rural-urban LST differences show that the 8-day composite mean UHI effects are generally more intensive than that calculated by daily UHI images. Moreover, the seasonal pattern shows that the summer daytime UHI has the largest magnitude and variation while nighttime UHI magnitudes are much smaller and less variable. Regression analyses enhance the results showing an apparently higher UHI derived from 8-day composite dataset. The summer mean UHI maps were compared, indicating a land cover related pattern. We introduced yearly MODIS land cover type product to explore the spatial differences caused by temporal aggression of LST product. The mean bias caused by land cover types are calculated about 0.5 ~ 0.7K during the daytime, and less than 0.1K at night. The potential causes of the higher UHI are discussed. The analysis shows that the land-atmosphere interactions, which result in the regional cloud formation, are the primary reason.
NASA Astrophysics Data System (ADS)
Moussallam, Yves; Oppenheimer, Clive; Schipper, Ian C.; Hartley, Magaret; Scaillet, Bruno; Gaillard, Fabrice; Peters, Nial; Kyle, Phil
2015-04-01
The oxidation state of volcanic gases dictates their speciation and hence their reactivity in the atmosphere. It has become increasingly recognized that the oxidation state of a magma can be strongly affected by degassing. The oxidation state of gases will equally be impacted and the composition of gases emitted by volcanoes will therefore be function of the magma degassing history. This presentation will show results from three volcanoes where the oxidation state of the magma has been tracked during degassing. At Erebus and Laki we used Fe X-ray absorption near-edge structure spectroscopy (XANES) on extensive suites of melt inclusions and glasses, while at Surtsey we used S-Kα peak shifts measurements by electron microprobe (EPMA) on melt inclusions, embayment and glasses. At all three locations we found that a strong reduction of both Fe and S is associated with magma ascent. At Erebus this reduction is greatest, corresponding to a fall in magmatic fO2 of more than two log units. We propose that sulfur degassing can explain the observed evolution of the redox state with ascent and show that forward modeling using initial melt composition can successfully predict the composition of the gas phase measured at the surface. We suggest that the redox state of volcanic gases (expressed in term of redox couples: H2O/H2, SO2/H2S and CO2/CO) can be used to monitor the depth of gas-melt segregation at active volcanoes.
Global warming induced hybrid rainy seasons in the Sahel
NASA Astrophysics Data System (ADS)
Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald
2016-10-01
The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.
Robust extraction of baseline signal of atmospheric trace species using local regression
NASA Astrophysics Data System (ADS)
Ruckstuhl, A. F.; Henne, S.; Reimann, S.; Steinbacher, M.; Vollmer, M. K.; O'Doherty, S.; Buchmann, B.; Hueglin, C.
2012-11-01
The identification of atmospheric trace species measurements that are representative of well-mixed background air masses is required for monitoring atmospheric composition change at background sites. We present a statistical method based on robust local regression that is well suited for the selection of background measurements and the estimation of associated baseline curves. The bootstrap technique is applied to calculate the uncertainty in the resulting baseline curve. The non-parametric nature of the proposed approach makes it a very flexible data filtering method. Application to carbon monoxide (CO) measured from 1996 to 2009 at the high-alpine site Jungfraujoch (Switzerland, 3580 m a.s.l.), and to measurements of 1,1-difluoroethane (HFC-152a) from Jungfraujoch (2000 to 2009) and Mace Head (Ireland, 1995 to 2009) demonstrates the feasibility and usefulness of the proposed approach. The determined average annual change of CO at Jungfraujoch for the 1996 to 2009 period as estimated from filtered annual mean CO concentrations is -2.2 ± 1.1 ppb yr-1. For comparison, the linear trend of unfiltered CO measurements at Jungfraujoch for this time period is -2.9 ± 1.3 ppb yr-1.
Global Agricultural Monitoring (GLAM) using MODAPS and LANCE Data Products
NASA Astrophysics Data System (ADS)
Anyamba, A.; Pak, E. E.; Majedi, A. H.; Small, J. L.; Tucker, C. J.; Reynolds, C. A.; Pinzon, J. E.; Smith, M. M.
2012-12-01
The Global Inventory Modeling and Mapping Studies / Global Agricultural Monitoring (GIMMS GLAM) system is a web-based geographic application that offers Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and user interface tools to data query and plot MODIS NDVI time series. The system processes near real-time and science quality Terra and Aqua MODIS 8-day composited datasets. These datasets are derived from the MOD09 and MYD09 surface reflectance products which are generated and provided by NASA/GSFC Land and Atmosphere Near Real-time Capability for EOS (LANCE) and NASA/GSFC MODIS Adaptive Processing System (MODAPS). The GIMMS GLAM system is developed and provided by the NASA/GSFC GIMMS group for the U.S. Department of Agriculture / Foreign Agricultural Service / International Production Assessment Division (USDA/FAS/IPAD) Global Agricultural Monitoring project (GLAM). The USDA/FAS/IPAD mission is to provide objective, timely, and regular assessment of the global agricultural production outlook and conditions affecting global food security. This system was developed to improve USDA/FAS/IPAD capabilities for making operational quantitative estimates for crop production and yield estimates based on satellite-derived data. The GIMMS GLAM system offers 1) web map imagery including Terra & Aqua MODIS 8-day composited NDVI, NDVI percent anomaly, and SWIR-NIR-Red band combinations, 2) web map overlays including administrative and 0.25 degree Land Information System (LIS) shape boundaries, and crop land cover masks, and 3) user interface tools to select features, data query, plot, and download MODIS NDVI time series.
NASA Technical Reports Server (NTRS)
Roman, Monsi C.; Perry, Jay L.; Jan, Darrell L.
2012-01-01
The Advanced Exploration Systems Program's Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project is working to mature optimum atmosphere revitalization and environmental monitoring system architectures. It is the project's objective to enable exploration beyond Lower Earth Orbit (LEO) and improve affordability by focusing on three primary goals: 1) achieving high reliability, 2) reducing dependence on a ground-based logistics resupply model, and 3) maximizing commonality between atmosphere revitalization subsystem components and those needed to support other exploration elements. The ARREM project's strengths include using existing developmental hardware and testing facilities, when possible, and and a well-coordinated effort among the NASA field centers that contributed to past ARS and EMS technology development projects.
Thewes, Fabio Rodrigo; Brackmann, Auri; Anese, Rogerio de Oliveira; Ludwig, Vagner; Schultz, Erani Eliseu; Dos Santos, Luana Ferreira; Wendt, Lucas Mallmann
2017-05-01
The objective of this study was to evaluate the interaction between controlled atmosphere (CA), CA+1-methylcyclopropene (1-MCP) and dynamic controlled atmosphere monitored by respiratory quotient (DCA-RQ) with three fruit maturity stages at harvest (early harvest date, optimal harvest date and late harvest date) on 'Galaxy' apple metabolism and quality after harvest and 9months storage plus 7days of shelf life at 20°C. Fruit stored under dynamic controlled atmosphere monitored by respiratory quotient 1.3 (DCA-RQ 1.3) showed lower ethylene production, respiration rate, mealiness and higher flesh firmness in comparison to CA stored fruit, but did not differ from those treated with 1-MCP. The dynamic controlled atmosphere monitored by respiratory quotient 1.5 (DCA-RQ 1.5) increased the acetaldehyde, ethanol and ethyl acetate concentration, regardless of the fruit maturity at harvest. The storage of 'Galaxy' apple under DCA-RQ 1.3 is efficient in keeping quality regardless of the maturity stage at harvest. Copyright © 2016 Elsevier Ltd. All rights reserved.
Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects
NASA Astrophysics Data System (ADS)
Rajan, Abhijith; Gemini Planet Imager, Extrasolar Planets and Systems Imaging Group
2018-01-01
I study the structure, composition and dynamic evolution of directly imaged exoplanet and brown dwarf atmospheres, using spectrophotometric data collected from a range of ground and space based instrumentation. As part of my dissertation, I led studies exploring the atmospheres of brown dwarfs to search for weather variations, and characterized the near and mid infrared SEDs of imaged exoplanets to estimate their fundamental parameters. To understand the evolution of weather on brown dwarfs we conducted a multi-epoch study monitoring of 4 ultracool, T5 - Y0, brown dwarfs in the J-band to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere. The study found that cool brown dwarfs, fit with higher opacity clouds, were more likely to be variable. Through data taken with the Hubble Space Telescope and Gemini telescope we characterized the atmospheres of directly imaged exoplanets. For HR 8799, in near IR wavelengths unobservable from the ground, we constrained the presence of clouds in the outer planets. As a member of the Gemini Planet Imager Exoplanet Survey team, I analyzed archival HST data and examined the near-infrared colors of HD 106906b as seen with GPI, concluding that the companion shows weak evidence of a circumplanetary dust disk or cloud. Finally, by combining data spanning 1 - 5 um for the low mass Jupiter-like exoplanet, 51 Eri b, we found a cool effective temperature best fit by a patchy cloud atmosphere. This makes the planet an excellent candidate for future variability studies with the James Webb Space Telescope.
Effects of Bulk Composition on the Atmospheric Dynamics on Close-in Exoplanets
NASA Astrophysics Data System (ADS)
Zhang, X.; Showman, A. P.
2015-12-01
Depending on the metallicity of the protoplanetary disk, the details of gas accretion during planetary formation, and atmospheric loss during planetary evolution, the atmospheres of sub-Jupiter-sized planets could exhibit a variety of bulk compositions. Examples include hydrogen-dominated atmospheres like Jupiter, more metal-rich atmospheres like Neptune, evaporated atmospheres dominated by helium, or of course carbon dioxide, water vapor, nitrogen, and other heavy molecules as exhibited by terrestrial planets in the solar system. Here we systematically investigate the effects of atmospheric bulk compositions on temperature and wind distributions for tidally locked sub-Jupiter-sized planets using an idealized three-dimensional general circulation model (GCM). Composition—in particular, the molecular mass and specific heat—affect the sound speed, gravity wave speeds, atmospheric scale height, and Rossby deformation radius, and therefore in principle can exert significant controls on the atmospheric circulation, including the day-night temperature difference and other observables. We performed numerous simulations exploring a wide range of molecular masses and molar specific heats. The effect of molecular weight dominates. We found that a higher-molecular-weight atmosphere tends to have a larger day-night temperature contrast, a smaller eastward phase shift in the thermal light curve, and a narrower equatorial super-rotating jet that occurs in a deeper atmosphere. The zonal-mean zonal wind is smaller and more prone to exhibit a latitudinally alternating pattern in a higher-molecular-weight atmosphere. If the vertical temperature profile is close to adiabatic, molar specific heat will play a significant role in controlling the transition from a divergent flow in the upper atmosphere to a jet-dominated flow in the lower atmosphere. We are also working on analytical theories to explain aspects of the simulations relevant for possible observables on tidally locked exoplanets, such as the day-night temperature difference, thermal phase shift and root-mean-square of the wind speed. Our analytical predictions are quantitatively compared with our numerical simulations and may provide potential indicators for determining the atmospheric compositions in future observations.
Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M
NASA Technical Reports Server (NTRS)
1993-01-01
The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc.
NASA Astrophysics Data System (ADS)
Kita, Kazuyuki; Igarashi, Yasuhiro; Yoshida, Naohiro; Nakajima, Teruyuki
2013-04-01
Following a huge earthquake and tsunami in Eastern Japan on 11 March, 2011, the accident in Fukushima Dai-ichi Nuclear Power Plant (FDNPP) occurred to emit a large amount of artificial radionuclides to the environment. Soon after the FDNPP accident, many Japanese researchers, as well as researchers in other countries, started monitoring radionuclides in various environmental fields and/or model calculations to understand extent and magnitude of radioactive pollution. In this presentation, we overview these activities for the atmospheric radionuclides in Japan as followings: 1. Investigations to evaluate radionuclide emissions by explosions at FNDPP in March 2011 and to estimate the respiration dose of the radiation at this stage. 2. Investigations to evaluate atmospheric transport and deposition processes of atmospheric radionuclide to determine the extent of radionuclide pollution. -- Based on results of the regular and urgent monitoring results, as well as the mapping of the distribution of radionuclide s accumulated by the deposition to the ground, restoration of their time-dependent emission rates has been tried, and processes determining atmospheric concentration and deposition to the ground have been investigated by using the model calculations. 3. Monitoring of the atmospheric concentrations of radionuclide after the initial, surge phase of FNDPP accident. 4. Investigations to evaluate re-suspension of radionuclide from the ground, including the soil and the vegetation. -- Intensive monitoring of the atmospheric concentrations and deposition amount of radionuclide after the initial, surge phase of the accident enable us to evaluate emission history from FNDPP, atmospheric transport and deposition processes, chemical and physical characteristics of atmospheric radionuclide especially of radio cesium, and re-suspension processes which has become dominant process to supply radio cesium to the atmosphere recently.
Atmospheric ammonia and particulate inorganic nitrogen over the United States
We use in situ observations from the Interagency Monitoring of PROtected Visual Environments (IMPROVE) network, the Midwest Ammonia Monitoring Project, 11 surface site campaigns as well as Infrared Atmospheric Sounding Interferometer (IASI) satellite measurements with the GEOS-Ch...
NASA Astrophysics Data System (ADS)
Alpert, Pinhas; David, Noam; Messer, Hagit
2015-04-01
The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As was recently shown, wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be highlighted. References: N. David, O. Sendik, H. Messer and P. Alpert, "Cellular network infrastructure- the future of fog monitoring?", BAMS, (in press, 2015). N. David, P. Alpert and H. Messer, "The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions", Atmospheric Research, 131, 13-21, 2013.
On the Age of Cosmic Rays as Derived from the Abundance of Be-10. Ph.D. Thesis - Maryland Univ.
NASA Technical Reports Server (NTRS)
Hagen, F. A.
1976-01-01
The isotopic composition of cosmic ray Be, B, C, and N was studied using a new range versus total light technique. Special emphasis was placed on the Be isotopes and in particular, on the radioactive isotope Be-10 due to its mean lifetime against decay. The experiment consisted of a thin trigger scintillator, an acrylic plastic Cerenkov detector and a spark chamber, followed by a totally active stack of 14 scintillation detectors. This stack of scintillators made possible the measurement of range, and also permitted the removal of interacting events by continuously monitoring their identities along their trajectories. The experiment was carried by balloon to atmospheric depths ranging from 3.5 to 5.0 g sq cm residual atmosphere for a total exposure time of 23 hr. Results indicate the survival of ( 55 + or -21) % of the Be-10 in the arriving cosmic rays; the data were interpreted using the leaky box model of cosmic ray propagation.
Sobrado, J M; Martín-Soler, J; Martín-Gago, J A
2014-03-01
We have built a Mars environmental simulation chamber, designed to test new electromechanical devices and instruments that could be used in space missions. We have developed this environmental system aiming at validating the meteorological station Rover Environment Monitoring Station of NASA's Mars Science Laboratory mission currently installed on Curiosity rover. The vacuum chamber has been built following a modular configuration and operates at pressures ranging from 1000 to 10(-6) mbars, and it is possible to control the gas composition (the atmosphere) within this pressure range. The device (or sample) under study can be irradiated by an ultraviolet source and its temperature can be controlled in the range from 108 to 423 K. As an important improvement with respect to other simulation chambers, the atmospheric gas into the experimental chamber is cooled at the walls by the use of liquid-nitrogen heat exchangers. This chamber incorporates a dust generation mechanism designed to study Martian-dust deposition while modifying the conditions of temperature, and UV irradiated.
2004-07-15
KENNEDY SPACE CENTER, FLA. - With rockets and main engine firing, the Boeing Delta II launch vehicle leaps off the pad at NASA’s Space Complex 2 on Vandenberg Air Force Base, Calif., carrying the Aura spacecraft. Aura, a mission dedicated to the health of Earth's atmosphere, successfully launched today at 3:01:59 a.m. Pacific Time. Spacecraft separation occurred at 4:06 a.m. Pacific Time, inserting Aura into a 438-mile orbit. NASA’s latest Earth-observing satellite, Aura will help us understand and protect the air we breathe. Aura will also help scientists understand how the composition of the atmosphere affects and responds to Earth's changing climate. The results from this mission will help scientists better understand the processes that connect local and global air quality. With the launch of Aura, the first series of NASA’s Earth Observing System satellites is complete. The other satellites are Terra, which monitors land, and Aqua, which observes Earth’s water cycle. [Photo: Boeing/Thom Baur
2004-07-15
KENNEDY SPACE CENTER, FLA. - - With rockets and main engine firing, the Boeing Delta II launch vehicle leaps off the pad at NASA’s Space Complex 2 on Vandenberg Air Force Base, Calif., carrying the Aura spacecraft. Aura, a mission dedicated to the health of Earth's atmosphere, successfully launched today at 3:01:59 a.m. Pacific Time. Spacecraft separation occurred at 4:06 a.m. Pacific Time, inserting Aura into a 438-mile orbit. NASA’s latest Earth-observing satellite, Aura will help us understand and protect the air we breathe. Aura will also help scientists understand how the composition of the atmosphere affects and responds to Earth's changing climate. The results from this mission will help scientists better understand the processes that connect local and global air quality. With the launch of Aura, the first series of NASA’s Earth Observing System satellites is complete. The other satellites are Terra, which monitors land, and Aqua, which observes Earth’s water cycle. [Photo: Boeing/Thom Baur
Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements
NASA Astrophysics Data System (ADS)
Zellweger, C.; Steinbacher, M.; Buchmann, B.
2012-10-01
Long-term time series of the atmospheric composition are essential for environmental research and thus require compatible, multi-decadal monitoring activities. The current data quality objectives of the World Meteorological Organization (WMO) for carbon monoxide (CO) in the atmosphere are very challenging to meet with the measurement techniques that have been used until recently. During the past few years, new spectroscopic techniques came to market with promising properties for trace gas analytics. The current study compares three instruments that have recently become commercially available (since 2011) with the best currently available technique (Vacuum UV Fluorescence) and provides a link to previous comparison studies. The instruments were investigated for their performance regarding repeatability, reproducibility, drift, temperature dependence, water vapour interference and linearity. Finally, all instruments were examined during a short measurement campaign to assess their applicability for long-term field measurements. It could be shown that the new techniques perform considerably better compared to previous techniques, although some issues, such as temperature influence and cross sensitivities, need further attention.
NASA Technical Reports Server (NTRS)
Pawson, S.; Gunson, M.; Potter, C.; Jucks, K.
2012-01-01
The importance of greenhouse gas increases for climate motivates NASA s observing strategy for CO2 from space, including the forthcoming Orbiting Carbon Observatory (OCO-2) mission. Carbon cycle monitoring, including attribution of atmospheric concentrations to regional emissions and uptake, requires a robust modeling and analysis infrastructure to optimally extract information from the observations. NASA's Carbon-Monitoring System Flux-Pilot Project (FPP) is a prototype for such analysis, combining a set of unique tools to facilitate analysis of atmospheric CO2 along with fluxes between the atmosphere and the terrestrial biosphere or ocean. NASA's analysis system is unique, in that it combines information and expertise from the land, oceanic, and atmospheric branches of the carbon cycle and includes some estimates of uncertainty. Numerous existing space-based missions provide information of relevance to the carbon cycle. This study describes the components of the FPP framework, assessing the realism of computed fluxes, thus providing the basis for research and monitoring applications. Fluxes are computed using data-constrained terrestrial biosphere models and physical ocean models, driven by atmospheric observations and assimilating ocean-color information. Use of two estimates provides a measure of uncertainty in the fluxes. Along with inventories of other emissions, these data-derived fluxes are used in transport models to assess their consistency with atmospheric CO2 observations. Closure is achieved by using a four-dimensional data assimilation (inverse) approach that adjusts the terrestrial biosphere fluxes to make them consistent with the atmospheric CO2 observations. Results will be shown, illustrating the year-to-year variations in land biospheric and oceanic fluxes computed in the FPP. The signals of these surface-flux variations on atmospheric CO2 will be isolated using forward modeling tools, which also incorporate estimates of transport error. The results will be discussed in the context of interannual variability of observed atmospheric CO2 distributions.
Characterisation of electrical resistance for CMC Materials up to 1200 °C
NASA Astrophysics Data System (ADS)
Stäbler, T.; Böhrk, H.; Voggenreiter, H.
2017-12-01
Damage to thermal protection systems (TPS) during atmospheric re-entry is a severe safety issue, especially when considering re-usability of space transportation systems. There is a need for structural health monitoring systems and non-destructive inspection methods. However, damages are hard to detect. When ceramic matrix composites, in this case carbon fibre reinforced silicon carbide (C/C-SiC), are used as a TPS, the electrical properties of the present semiconductor material can be used for health monitoring, since the resistivity changes with damage, strain and temperature. In this work the electrical resistivity as a function of the material temperature is analysed eliminating effects of thermal electricity and the thermal coefficient of electrical resistance is determined. A sensor network is applied for locally and time resolved monitoring of the 300 mm x 120 mm x 3 mm panel shaped samples. Since the material is used for atmospheric re-entry it needs to be characterised for a wide range of temperatures, in this case as high as 1200 °C. Therefore, experiments in an inductively heated test bench were conducted. Firstly, a reference sample was used with thermocouples for characterising the temperature distribution across the sample surface. Secondly, electrical resistance under heat load was measured, time and spatially resolved. Results will be shown and discussed in terms of resistance dependence on temperature, thermal coefficient of electrical resistance, thermal electricity and electrical path orientation including an analysis on effective conducting cross section. Conversely, the thermal coefficient can also be used to determine the material temperature as a function of electrical resistance.
NASA Astrophysics Data System (ADS)
Hall, M.
2016-12-01
The Black Rock Field Office (BRFO) of the Bureau of Land Management manages nearly 2 million acres of public land in NW Nevada. Approximately 1.2 million acres area a National Conservation Area (NCA), and over 700,000 acres are formally designated Wilderness Areas. While imagery from Landsat and MODIS assist in monitoring and making land management decisions, multi-temporal data from atmospheric monitoring and synthetic aperture radar (SAR) satellites are also utilized. The Burning Man Festival since 2007 creates a temporary city of 50,000 to 70,000 people in the NCA. Public concern is being expressed over the event's physical and greenhouse gas footprints. Sub-set L2 and L3 CO2 data were obtained from the ACOS, AQUA (AIRS platform) and OCO-2 satellites. These data sets cover both daily and monthly CO2 concentrations between 2007 and 2015. Each data set was analyzed separately using Bayesian time series methods. While there were statistically significant changes in the CO2concentration in a calendar year, none of the increases coincided with the Burning Man Festival. The ALOS-PALSAR and Sentinel-1 SAR data archives have also been utilized. Interferograms, false-color composites (FCC) of coherence images, and FCC of the processed backscattered images are all useful in monitoring surface changes. Case study summaries will illustrate the seasonal changes at critical riparian areas in the NCA; the post-event recovery of the Burning Man Festival footprint; dune formation on the Black Rock playa, and landscape changes associated with open-pit mining in the BRFO.
Solar cycles and depositional processes in annual 10Be from two varved lake sediment records
NASA Astrophysics Data System (ADS)
Czymzik, Markus; Muscheler, Raimund; Brauer, Achim; Adolphi, Florian; Ott, Florian; Kienel, Ulrike; Dräger, Nadine; Słowiński, Michał; Aldahan, Ala; Possnert, Göran
2015-10-01
Beryllium 10 concentrations (10Becon) were measured at annual resolution from varved sediment cores of Lakes Tiefer See (TSK) and Czechowskie (JC) for the period 1983-2009 (∼solar cycles 22 and 23). Calibrating the 10Becon time-series against complementing proxy records from the same archive as well as local precipitation and neutron monitor data, reflecting solar forced changes in atmospheric radionuclide production, allowed (i) identifying the main depositional processes and (ii) evaluating the potential for solar activity reconstruction. 10Becon in TSK and JC sediments are significantly correlated to varying neutron monitor counts (TSK: r = 0.5, p = 0.05, n = 16; JC: r = 0.46, p = 0.03, n = 22). However, the further correlations with changes in organic carbon contents in TSK as well as varying organic carbon and detrital matter contents in JC point to catchment specific biases in the 10Becon time-series. In an attempt to correct for these biases multiple regression analysis was applied to extract an atmospheric 10Be production signal (10Beatmosphere). To increase the signal to noise ratio a 10Be composite record (10Becomposite) was calculated from the TSK and JC 10Beatmosphere time-series. 10Becomposite is significantly correlated to variations in the neutron monitor record (r = 0.49, p = 0.01, n = 25) and matches the expected amplitude changes in 10Be production between solar cycle minima and maxima. This calibration study on 10Be from two sites indicates the large potential but also, partly site-specific, limitations of 10Be in varved lake sediments for solar activity reconstruction.
A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoerst, S. M.; Brown, M. E., E-mail: sarah.horst@colorado.edu
Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium,more » or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kataria, T.; Showman, A. P.; Fortney, J. J.
We present three-dimensional atmospheric circulation models of GJ 1214b, a 2.7 Earth-radius, 6.5 Earth-mass super Earth detected by the MEarth survey. Here we explore the planet's circulation as a function of atmospheric metallicity and atmospheric composition, modeling atmospheres with a low mean molecular weight (MMW; i.e., H{sub 2}-dominated) and a high MMW (i.e., water- and CO{sub 2}-dominated). We find that atmospheres with a low MMW have strong day-night temperature variations at pressures above the infrared photosphere that lead to equatorial superrotation. For these atmospheres, the enhancement of atmospheric opacities with increasing metallicity lead to shallower atmospheric heating, larger day-night temperaturemore » variations, and hence stronger superrotation. In comparison, atmospheres with a high MMW have larger day-night and equator-to-pole temperature variations than low MMW atmospheres, but differences in opacity structure and energy budget lead to differences in jet structure. The circulation of a water-dominated atmosphere is dominated by equatorial superrotation, while the circulation of a CO{sub 2}-dominated atmosphere is instead dominated by high-latitude jets. By comparing emergent flux spectra and light curves for 50× solar and water-dominated compositions, we show that observations in emission can break the degeneracy in determining the atmospheric composition of GJ 1214b. The variation in opacity with wavelength for the water-dominated atmosphere leads to large phase variations within water bands and small phase variations outside of water bands. The 50× solar atmosphere, however, yields small variations within water bands and large phase variations at other characteristic wavelengths. These observations would be much less sensitive to clouds, condensates, and hazes than transit observations.« less
NASA Technical Reports Server (NTRS)
Harris, F. S., Jr.
1976-01-01
This report contains a summary of 199 recent references on the characterization of atmospheric aerosols with respect to their composition, sources, size distribution, and time changes, and with particular reference to the chemical elements measured by modern techniques, especially activation analysis.
NASA Astrophysics Data System (ADS)
Marounina, N.; Grasset, O.; Tobie, G.; Carpy, S.
2015-12-01
During the accretion of Titan, impact heating may have been sufficient to allow the global melting of water ice (Monteux et al. 2014) and the release of volatile compounds, with CO2 and NH3 as main constituents (Tobie et al. 2012). Thus, on primitive Titan, it is thought that a massive atmosphere was in contact with a global water ocean. Similar configurations may occur on temperate water-rich planets called ocean planets (Léger et al. 2004, Kitzmann et al. 2015).Due to its rather low solubility in liquid water, carbon dioxide is expected to be one of the major components in the atmosphere. The atmospheric amount of CO2 is a key parameter for assessing the thermal evolution of the planetary surface because of its strong greenhouse effect. However, ammonia significantly affects the solubility of CO2 in water and hence the atmosphere-ocean thermo-chemical equilibrium. For primitive Titan, estimating the mass, temperature and composition of the primitive atmosphere is important to determine mechanisms that led to the present-day N2-CH4 dominated atmosphere. Similarly, for ocean planets, the influence of ammonia on the atmospheric abundance in CO2 has consequences for the definition of the habitable zone.To investigate the atmospheric composition of the water-rich worlds for a wide range of initial compositions, we have developed a vapor-liquid equilibrium model of the NH3-CO2-H2O system, where we account for the non-ideal comportment of both vapor and liquid phases and the ion speciation of volatiles dissolved in the aqueous phase. We show that adding NH3 to the CO2-H2O binary system induces an efficient absorption of the CO2 in the liquid phase and thus a lower CO2 partial pressure in the vapor phase. Indeed, the CO2 partial pressure remains low for the CO2/NH3 ratio of liquid concentrations lower than 0.5.Assuming various initial compositions of Titan's global water ocean, we explore the thermal and compositional evolution of a massive primitive atmosphere using the thermodynamical model. We are currently investigating how a massive atmosphere may be generated during the satellite growth and how it may then evolve toward a composition dominated by N2. Applications to ocean planets will also be presented at the conference.
Middle Atmosphere Program. Handbook for MAP, volume 8
NASA Technical Reports Server (NTRS)
Sechrist, C. F., Jr. (Editor)
1983-01-01
Various investigations relative to middle atmosphere research are discussed. Atmospheric warming periods in 1982-83, atmospheric composition, the comparison of irradiance measurement calibration, and molecular absorption processes related to the penetration of ultraviolet solar radiation into the middle atmosphere, are among the topics discussed.
An assessment model for atmospheric composition
NASA Technical Reports Server (NTRS)
Prather, Michael J. (Editor)
1988-01-01
Predicting future perturbations to global air quality and climate requires, as a prerequisite, prognostic models for the composition of the Earth's atmosphere. Such assessment models are needed to evaluate the impact on our environment of different social choices that affect emissions of the photochemically and radiatively important trace gases. Our presentation here of a prototype assessment model is intended to encourage public scientific discussions of the necessary components of the model and their interactions, with the recognition that models similar to this will likely be used by the Environmental Protection Agency and other regulatory agencies in order to assess the effect of changes in atmospheric composition on climate over the next century.
Comparison of multiple atmospheric chemistry schemes in C-IFS
NASA Astrophysics Data System (ADS)
Flemming, Johannes; Huijnen, Vincent; Arteta, Joaquim; Stein, Olaf; Inness, Antje; Josse, Beatrice; Schultz, Martin; Peuch, Vincent-Henri
2013-04-01
As part of the MACCII -project (EU-FP7) ECMWF's integrated forecast system (IFS) is being extended by modules for chemistry, deposition and emission of reactive gases. This integration of the chemistry complements the integration of aerosol processes in IFS (Composition-IFS). C-IFS provides global forecasts and analysis of atmospheric composition. Its main motivation is to utilize the IFS for the assimilation of satellite observation of atmospheric composition. Furthermore, the integration of chemistry packages directly into IFS will achieve better consistency in terms of the treatment of physical processes and has the potential for simulating interactions between atmospheric composition and meteorology. Atmospheric chemistry in C-IFS can be represented by the modified CB05 scheme as implemented in the TM5 model and the RACMOBUS scheme as implemented in the MOCAGE model. An implementation of the scheme of the MOZART 3.5 model is ongoing. We will present the latest progress in the development and application of C-IFS. We will focus on the comparison of the different chemistry schemes in an otherwise identical C-IFS model setup (emissions, meteorology) as well as in their original Chemistry and Transport Model setup.
Liu, Ming; Chen, Laiguo; Xie, Donghai; Sun, Jiaren; He, Qiusheng; Cai, Limei; Gao, Zhiqiang; Zhang, Yiqiang
2016-11-01
Concentrations of gaseous elemental mercury (GEM) were continuously monitored from May 2011 to May 2012 at the Wuzhishan State Atmosphere Background Monitoring Station (109°29'30.2″ E, 18°50'11.0″ N) located in Hainan Island. This station is an ideal site for monitoring long-range transport of atmospheric pollutants from mainland China and Southeast Asia to South China Sea. Annual average GEM concentration was 1.58 ± 0.71 ng m -3 during the monitoring period, which was close to background values in the Northern Hemisphere. GEM concentrations showed a clear seasonal variation with relatively higher levels in autumn (1.86 ± 0.55 ng m -3 ) and winter (1.80 ± 0.62 ng m -3 ) and lower levels in spring (1.16 ± 0.45 ng m -3 ) and summer (1.43 ± 0.46 ng m -3 ). Long-range atmospheric transport dominated by monsoons was a dominant factor influencing the seasonal variations of GEM. The GEM diel trends were related to the wind speed and long-range atmospheric mercury transport. We observed 30 pollution episodes throughout the monitoring period. The analysis of wind direction and backward trajectory suggested that elevated GEM concentrations at the monitoring site were primarily related to the outflows of atmospheric Hg from mainland China and the Indochina peninsula. The △GEM/△CO values also suggested that GEM was significantly affected by the long-range transport from the anthropogenic sources and biomass burning in Asia and Indochina peninsula.
FRAM telescope - monitoring of atmospheric extinction and variable star photometry
NASA Astrophysics Data System (ADS)
Jurysek, J.; Honkova, K.; Masek, M.
2015-02-01
The FRAM (F/(Ph)otometric Robotic Atmospheric Monitor) telescope is a part of the Pierre Auger Observatory (PAO) located near town Malargüe in Argentina. The main task of the FRAM telescope is the continuous night - time monitoring of the atmospheric extinction and its wavelength dependence. The current methodology of the measurement of a atmospheric extinction and for instrumentation properties also allows simultaneous observation of other interesting astronomical targets. The current observations of the FRAM telescope are focused on the photometry of eclipsing binaries, positional refinement of minor bodies of the Solar system and observations of optical counterparts of gamma ray bursts. In this contribution, we briefly describe the main purpose of the FRAM telescope for the PAO and we also present its current astrono mical observing program.
NASA Astrophysics Data System (ADS)
Kim-Hak, David; Leuenberger, Markus; Berhanu, Tesfaye; Nyfeler, Peter; Hoffnagle, John; Sun, Minghua
2017-04-01
Oxygen (O2) is a major and vital component of the Earth atmosphere representing about 21% of its composition. It is consumed or produced through biochemical processes such as combustion, respiration, and photosynthesis and can be used as a top-down constraint on the carbon cycle. The observed variations of oxygen in the atmosphere are relatively small, in the order of a few ppm's. This presents the main technical challenge for the measurement since a very high level of precision on a large background is required. Only few analytical methods including mass spectrometry, fuel, ultraviolet[1] and paramagnetic cells are capable of achieving it. Here we present new developments of a high-precision gas analyzer that utilizes the technique of Cavity Ring-Down Spectroscopy to measure oxygen concentration and its oxygen isotope ratio 18O/16O. Its compact and ruggedness design combined with high precision and long-term stability allows the user to deploy the instrument in the field for continuous monitoring of atmospheric oxygen level. Measurements have a 1-σ 5-minute averaging precision of 1-2 ppm for O2 over a dynamic range of 0-50%. We will present comparative test results of this instrument against the incumbent technologies such as the mass spectrometer and the paramagnetic cell. In addition, we will demonstrate its long-term stability from a field deployment in Switzerland.
Borrás, Esther; Tortajada-Genaro, Luis Antonio; Ródenas, Milagros; Vera, Teresa; Coscollá, Clara; Yusá, Vicent; Muñoz, Amalia
2015-11-01
The phosphorothioate structure is highly present in several organophosphorus pesticides. However, there is insufficient information about its degradation process after the release to the atmosphere and the secondary pollutants formed. Herein, the atmospheric reaction of chlorpyrifos-methyl (o,o-dimethyl o-(3,5,6-trichloropyridin-2-yl) phosphorothioate), is described for semi-urban or rural locations. The photo-oxidation under low NOx conditions (5-55 ppbV) was reproduced in a large outdoor simulation chamber, observing a rapid degradation (lifetime<3.5 h). The formation of gaseous products and particulate matter (aerosol yield 2-8%) was monitored. The chemical composition of minor products (gaseous and particulate) was studied, identifying 15 multi-oxygenated derivatives. The most abundant products were ring-retaining molecules such as o,o-dimethyl o-(3,5,6-trichloropyridin-2-yl) phosphorothioate, dimethyl 3,5,6-trichloropyridin-2-yl phosphate, o-methyl o-(3,5,6-trichloropyridin-2-yl) hydrogen phosphorothioate, 3,5,6-trichloropyridin-2-yl dihydrogen phosphate, 3,5,6-trichloropyridin-2-ol, and 3,5,6-trichloropyridine-2,4-diol. An atmospheric degradation mechanism has been proposed based on an oxidation started with OH-nucleophilic attack to P=S bond. The results have been extrapolated to other organothiophosphorus molecules, such as malathion, parathion, diazinon and methidathion, among many others, to estimate their photo-oxidative degradation and the expected products. Copyright © 2014 Elsevier Ltd. All rights reserved.
Asteroids, Comets, Meteors 1991
NASA Technical Reports Server (NTRS)
Harris, Alan W. (Editor); Bowell, Edward (Editor)
1992-01-01
Papers from the conference are presented and cover the following topics with respect to asteroids, comets, and/or meteors: interplanetary dust, cometary atmospheres, atmospheric composition, comet tails, astronomical photometry, chemical composition, meteoroid showers, cometary nuclei, orbital resonance, orbital mechanics, emission spectra, radio astronomy, astronomical spectroscopy, photodissociation, micrometeoroids, cosmochemistry, and interstellar chemistry.
Models of Mars' atmosphere (1974)
NASA Technical Reports Server (NTRS)
1974-01-01
Atmospheric models for support of design and mission planning of space vehicles that are to orbit the planet Mars, enter its atmosphere, or land on the surface are presented. Quantitative data for the Martian atmosphere were obtained from Earth-base observations and from spacecraft that have orbited Mars or passed within several planetary radii. These data were used in conjunction with existing theories of planetary atmospheres to predict other characteristics of the Martian atmosphere. Earth-based observations provided information on the composition, temperature, and optical properties of Mars with rather coarse spatial resolution, whereas spacecraft measurements yielded data on composition, temperature, pressure, density, and atmospheric structure with moderately good spatial resolution. The models provide the temperature, pressure, and density profiles required to perform basic aerodynamic analyses. The profiles are supplemented by computed values of viscosity, specific heat, and speed of sound.
NASA Astrophysics Data System (ADS)
Fu, Ji-Meng; Winchester, John W.
1994-03-01
Nitrogen in fresh waters of three rivers in northern Florida - the Apalachicola-Chattahoochee-Flint (ACF) River system, Ochlockonee (Och), and Sopchoppy (Sop) - is inferred to be derived mostly from atmospheric deposition. Because the N:P mole ratios in the rivers are nearly three times higher than the Redfield ratio for aquatic photosynthesis, N is saturated in the ecosystems, not a limiting nutrient, although it may be chemically transformed. Absolute principal component analysis (APCA), a receptor model, was applied to many years of monitoring data for Apalachicola River water and rainfall over its basin in order to better understand aquatic chemistry of nitrogen in the watershed. The APCA model describes the river water as mainly a mixture of components with compositions resembling fresh rain, aged rain, and groundwater. In the fresh rain component, the ratio of atmospheric nitrate to sulfate is close to that in rainwater, as if some samples had been collected following very recent rainfall. The aged rain component of the river water is distinguished by a low NO 3-/SO 42- ratio, signifying an atmospheric source but with most of its nitrate having been lost or transformed. The groundwater component, inferred from its concentration to contribute on average about one fourth of the river water, contains abundant Ca 2+ but no detectable nitrogen. Results similar to ACF were obtained for Sop and Och, though Och exhibits some association of NO 3- with the Ca 2+-rich component. Similar APCA of wet precipitation resolves mainly components that represent acid rain, with NO 3-, SO 42- and NH 4+ and sea salt, with Na +, Cl - and Mg 2+. Inland, the acid rain component is relatively more prominent and Cl - is depleted, while at atmospheric monitoring sites nearer the coastal region sea salt tends to be more prominent.
2009-09-16
The annual ozone hole has started developing over the South Pole, and it appears that it will be comparable to ozone depletions over the past decade. This composite image from September 10 depicts ozone concentrations in Dobson units, with purple and blues depicting severe deficits of ozone. "We have observed the ozone hole again in 2009, and it appears to be pretty average so far," said ozone researcher Paul Newman of NASA's Goddard Space Flight Center in Greenbelt, Md. "However, we won't know for another four weeks how this year's ozone hole will fully develop." Scientists are tracking the size and depth of the ozone hole with observations from the Ozone Monitoring Instrument on NASA's Aura spacecraft, the Global Ozone Monitoring Experiment on the European Space Agency's ERS-2 spacecraft, and the Solar Backscatter Ultraviolet instrument on the National Oceanic and Atmospheric Administration's NOAA-16 satellite. The depth and area of the ozone hole are governed by the amount of chlorine and bromine in the Antarctic stratosphere. Over the southern winter, polar stratospheric clouds (PSCs) form in the extreme cold of the atmosphere, and chlorine gases react on the cloud particles to release chlorine into a form that can easily destroy ozone. When the sun rises in August after months of seasonal polar darkness, the sunlight heats the clouds and catalyzes the chemical reactions that deplete the ozone layer. The ozone hole begins to grow in August and reaches its largest area in late September to early October. Recent observations and several studies have shown that the size of the annual ozone hole has stabilized and the level of ozone-depleting substances has decreased by 4 percent since 2001. But since chlorine and bromine compounds have long lifetimes in the atmosphere, a recovery of atmospheric ozone is not likely to be noticeable until 2020 or later. Visit NASA's Ozone Watch page for current imagery and data: ozonewatch.gsfc.nasa.gov/index.html
Tube bundle system studies at Signal Peak Energy Bull Mountains #1 Mine
Zipf, R.K.; Ochsner, R.; Krog, R.; Marchewka, W.; Valente, M.; Jensen, R.
2015-01-01
A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine for analysis and display on the surface. The U.S. National Institute for Occupational Safety and Health (NIOSH), in collaboration with Signal Peak Energy (SPE), LLC, Bull Mountains No. 1 Mine, operated a TBS during mining of two bleederless, longwall panels. This paper describes the gas analysis data and its interpretation. As verified by the TBS, coal at the SPE mine tends to oxidize slowly. It was known that a reservoir of low-oxygen concentration atmosphere developed about 610 m (2,000 ft) behind the longwall face. A bleederless ventilation system facilitates formation of an inert atmosphere in this longwall gob and decreases the likelihood of spontaneous combustion. Connections of the mine atmosphere to the surface through subsidence cracks could allow airflow into the longwall gob, revive coal oxidation and increase spontaneous combustion risk. The atmospheric composition of the sealed areas was homogeneous, except in the immediate vicinity of suspected ingassing points. The TBS verified that gases within the partially sealed, bleederless longwall gob expanded into the longwall tailgate area when barometric pressure decreased. The concentration of carbon dioxide in the back return airflow at the longwall tailgate was observed to increase by a factor of three and possibly up to 10 times the typical background concentration of 0.5 to 1.0%, depending on the size of the longwall gob and the magnitude of barometric pressure decrease. TBS have the inherent disadvantage of slow response time due to travel time of the gas samples and sequential gas analyses. A TBS or similar continuous monitoring system could be beneficial in detecting and providing warning of potentially hazardous gas concentrations, if the slow response time of the system is always understood. PMID:26306075
Tube bundle system studies at Signal Peak Energy Bull Mountains #1 Mine.
Zipf, R K; Ochsner, R; Krog, R; Marchewka, W; Valente, M; Jensen, R
2014-03-01
A tube bundle system (TBS) is a mechanical system for continuously drawing gas samples through tubes from multiple monitoring points located in an underground coal mine for analysis and display on the surface. The U.S. National Institute for Occupational Safety and Health (NIOSH), in collaboration with Signal Peak Energy (SPE), LLC, Bull Mountains No. 1 Mine, operated a TBS during mining of two bleederless, longwall panels. This paper describes the gas analysis data and its interpretation. As verified by the TBS, coal at the SPE mine tends to oxidize slowly. It was known that a reservoir of low-oxygen concentration atmosphere developed about 610 m (2,000 ft) behind the longwall face. A bleederless ventilation system facilitates formation of an inert atmosphere in this longwall gob and decreases the likelihood of spontaneous combustion. Connections of the mine atmosphere to the surface through subsidence cracks could allow airflow into the longwall gob, revive coal oxidation and increase spontaneous combustion risk. The atmospheric composition of the sealed areas was homogeneous, except in the immediate vicinity of suspected ingassing points. The TBS verified that gases within the partially sealed, bleederless longwall gob expanded into the longwall tailgate area when barometric pressure decreased. The concentration of carbon dioxide in the back return airflow at the longwall tailgate was observed to increase by a factor of three and possibly up to 10 times the typical background concentration of 0.5 to 1.0%, depending on the size of the longwall gob and the magnitude of barometric pressure decrease. TBS have the inherent disadvantage of slow response time due to travel time of the gas samples and sequential gas analyses. A TBS or similar continuous monitoring system could be beneficial in detecting and providing warning of potentially hazardous gas concentrations, if the slow response time of the system is always understood.
Multimodal Friction Ignition Tester
NASA Technical Reports Server (NTRS)
Davis, Eddie; Howard, Bill; Herald, Stephen
2009-01-01
The multimodal friction ignition tester (MFIT) is a testbed for experiments on the thermal and mechanical effects of friction on material specimens in pressurized, oxygen-rich atmospheres. In simplest terms, a test involves recording sensory data while rubbing two specimens against each other at a controlled normal force, with either a random stroke or a sinusoidal stroke having controlled amplitude and frequency. The term multimodal in the full name of the apparatus refers to a capability for imposing any combination of widely ranging values of the atmospheric pressure, atmospheric oxygen content, stroke length, stroke frequency, and normal force. The MFIT was designed especially for studying the tendency toward heating and combustion of nonmetallic composite materials and the fretting of metals subjected to dynamic (vibrational) friction forces in the presence of liquid oxygen or pressurized gaseous oxygen test conditions approximating conditions expected to be encountered in proposed composite material oxygen tanks aboard aircraft and spacecraft in flight. The MFIT includes a stainless-steel pressure vessel capable of retaining the required test atmosphere. Mounted atop the vessel is a pneumatic cylinder containing a piston for exerting the specified normal force between the two specimens. Through a shaft seal, the piston shaft extends downward into the vessel. One of the specimens is mounted on a block, denoted the pressure block, at the lower end of the piston shaft. This specimen is pressed down against the other specimen, which is mounted in a recess in another block, denoted the slip block, that can be moved horizontally but not vertically. The slip block is driven in reciprocating horizontal motion by an electrodynamic vibration exciter outside the pressure vessel. The armature of the electrodynamic exciter is connected to the slip block via a horizontal shaft that extends into the pressure vessel via a second shaft seal. The reciprocating horizontal motion can be chosen to be random with a flat spectrum over the frequency range of 10 Hz to 1 kHz, or to be sinusoidal at any peak-to-peak amplitude up to 0.8 in. (.2 cm) and fixed or varying frequency up to 1 kHz. The temperatures of the specimen and of the vessel are measured by thermocouples. A digital video camera mounted outside the pressure vessel is aimed into the vessel through a sapphire window, with its focus fixed on the interface between the two specimens. A position transducer monitors the displacement of the pneumatic-cylinder shaft. The pressure in the vessel is also monitored. During a test, the output of the video camera, the temperatures, and the pneumatic-shaft displacement are monitored and recorded. The test is continued for a predetermined amount of time (typically, 10 minutes) or until either (1) the output of the position transducer shows a sudden change indicative of degradation of either or both specimens, (2) ignition or another significant reaction is observed, or (3) pressure in the vessel increases beyond a pre-set level that triggers an automatic shutdown.
NASA Astrophysics Data System (ADS)
Matrai, P.
2016-02-01
Autonomous, sea ice-tethered O-Buoys have been deployed (2009-2016) across the Arctic sea ice for long-term atmospheric measurements (http://www.o-buoy.org). O-Buoys (15) provide in-situ concentrations of three sentinel atmospheric chemicals, ozone, CO2 and BrO, as well as meteorological parameters and imagery, over the frozen ocean. O-Buoys were designed to transmit daily data over a period of 2 years while deployed in sea ice, as part of automated ice-drifting stations that include snow/ice measurement systems (e.g. Ice Mass Balance buoys) and oceanographic measurements (e.g. Ice Tethered Profilers). Seasonal changes in Arctic atmospheric chemistry are influenced by changes in the characteristics and presence of the sea ice vs. open water as well as air mass trajectories, especially during the winter-spring and summer-fall transitions when sea ice is melting and freezing, respectively. The O-Buoy Chemical Network provides the unique opportunity to observe these transition periods in real-time with high temporal resolution, and to compare them with those collected on land-based monitoring stations located. Due to the logistical challenges of measurements over the Arctic Ocean region, most long term, in-situ observations of atmospheric chemistry have been made at coastal or island sites around the periphery of the Arctic Ocean, leaving large spatial and temporal gaps that O-Buoys overcome. Advances in floatation, communications, power management, and sensor hardware have been made to overcome the challenges of diminished Arctic sea ice. O-Buoy data provide insights into enhanced seasonal, interannual and spatial variability in atmospheric composition, atmospheric boundary layer control on the amount of halogen activation, enhancement of the atmospheric CO2 signal over the more variable and porous pack ice, and to develop an integrated picture of the coupled ocean/ice/atmosphere system. As part of the Arctic Observing Network, we provide data to the community (www.aoncadis.org).
Laboratory Studies Of Titan Haze: Simultaneous In Situ Detection Of Gas And Particle Species
NASA Astrophysics Data System (ADS)
Horst, Sarah; Li, R.; Yoon, H.; Hicks, R.; de Gouw, J.; Tolbert, M.
2012-10-01
Analyses of data obtained by multiple instruments carried by Cassini and Huygens have increased our knowledge of the composition of Titan’s atmosphere. While a wealth of new information about the aerosols in Titan’s atmosphere was obtained, their composition is still not well constrained. Laboratory experiments will therefore play a key role in furthering our understanding of the chemical processes resulting in the formation of haze in Titan’s atmosphere and its possible composition. We have obtained simultaneous in situ measurements of the gas- and particle-phase compositions produced by our Titan atmosphere simulation experiments (see e.g. [1]). The gas phase composition was measured using a Proton-Transfer Ion-Trap Mass Spectrometer (PIT-MS) and the aerosol composition was measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). This complementary set of measurements will allow us to address the partitioning of gas- and aerosol-phase species. Knowledge of the gas phase composition in which the particles in our experiments form allows both for better comparison to the chemistry that is occurring in Titan’s atmosphere and for enabling more accurate determination of the possible pathways involved in the transition from gas phase to aerosol. We will compare the results from experiments that used two different initial gas mixtures (98% N2/2% CH4 and 98%N2/2%CH4/50 ppm CO) and two different energy sources to initiate the chemical reactions that result in particle formation (spark discharge using a Tesla coil or FUV irradiation from a deuterium lamp (115-400 nm)). [1] Trainer, M.G., et al. (2012) Astrobiology, 12, 315-326. SMH is supported by NSF Astronomy and Astrophysics Postdoctoral Fellowship AST-1102827.
LANDSAT-D investigations in snow hydrology. [Sierra Nevada Mountains
NASA Technical Reports Server (NTRS)
Dozier, J.
1983-01-01
Thematic mapper data for the southern Sierra Nevada area were registered to digital topographic data and compared to LANDSAT MSS and NOAA-7 AVHRR data of snow covered areas in order to determine the errors associated with using coarser resolution and to qualify the information lost when high resolution data are not available. Both the zenith and the azimuth variations in the radiative field are considered in an atmospheric radiative transfer model which deals with a plane parallel structured atmosphere composed of different layers, each assumed to be homogeneous in composition and to have a linear in tau temperature profile. Astronomical parameters for each layer are Earth-Sun distance and solar flux at the top of the atmosphere. Atmospheric parameters include pressure temperature, chemical composition of the air molecules, and the composition and size of the aerosol, water droplets, and ice crystals. Outputs of the model are the monochromatic radiance and irradiance at each level. The use of the model in atmospheric correction of remotely sensed data is discussed.
Vallet-Coulomb, Christine; Cartapanis, Olivier; Radakovitch, Olivier; Sonzogni, Corinne; Pichaud, Marc
2010-03-01
A continuous record of atmospheric vapour isotopic composition (delta(A)) can be derived from the isotope mass balance of a water body submitted to natural evaporation. In this paper, we present preliminary results of the application of this method to a drying evaporation pan, located in a Mediterranean wetland, during a two-month summer period. Results seem consistent with few atmospheric vapour data based on the assumption of isotopic equilibrium with precipitation, but we observed a shift between pan-derived delta(A) and the composition of vapour samples collected by cold trapping. These results suggest that further investigations are necessary to evaluate the effect of diurnal variations of atmospheric conditions on the applicability of the pan-evaporation method, and on the representative of grab atmospheric samples. We also propose a sensitivity analysis for evaluating the impact of the different measured components on delta(A) calculation, and show an improvement in the method efficiency as the pan is drying.
Lunar atmospheric composition experiment
NASA Technical Reports Server (NTRS)
Hoffman, J. H.
1975-01-01
Apollo 17 carried a miniature mass spectrometer, called the Lunar Atmospheric Composition Experiment (LACE), to the moon as part of the Apollo Lunar Surface Experiments Package (ALSEP) to study the composition and variations in the lunar atmosphere. The instrument was successfully deployed in the Taurus-Littrow Valley with its entrance aperture oriented upward to intercept and measure the downward flux of gases at the lunar surface. During the ten lunations that the LACE operated, it produced a large base of data on the lunar atmosphere, mainly collected at night time. It was found that thermal escape is the most rapid loss mechanism for hydrogen and helium. For heavier gases, photoionization followed by acceleration through the solar wind electric field accounted for most of the loss. The dominant gases on the moosn were argon and helium, and models formed for their distribution are described in detail. It is concluded that most of the helium in the lunar atmosphere is of solar wind origin, and that there also exist very small amounts of methane, ammonia, and carbon dioxide.
NASA Astrophysics Data System (ADS)
Tsikerdekis, Athanasios; Katragou, Eleni; Zanis, Prodromos; Melas, Dimitrios; Eskes, Henk; Flemming, Johannes; Huijnen, Vincent; Inness, Antje; Kapsomenakis, Ioannis; Schultz, Martin; Stein, Olaf; Zerefos, Christos
2014-05-01
In this work we evaluate near surface ozone concentrations of the MACCii global reanalysis using measurements from the EMEP and AIRBASE database. The eight-year long reanalysis of atmospheric composition data covering the period 2003-2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system (Inness et al., 2013). The study mainly focuses in the differences between the assimilated and the non-assimilated experiments and aims to identify and quantify any improvements achieved by adding data assimilation to the system. Results are analyzed in eight European sub-regions and region-specific Taylor plots illustrate the evaluation and the overall predictive skill of each experiment. The diurnal and annual cycles of near surface ozone are evaluated for both experiments. Furthermore ozone exposure indices for crop growth (AOT40), human health (SOMO35) and the number of days that 8-hour ozone averages exceeded 60ppb and 90ppb have been calculated for each station based on both observed and simulated data. Results indicate mostly improvement of the assimilated experiment with respect to the high near surface ozone concentrations, the diurnal cycle and range and the bias in comparison to the non-assimilated experiment. The limitations of the comparison between assimilated and non-assimilated experiments for near surface ozone are also discussed.
NASA Astrophysics Data System (ADS)
Trainer, Melissa G.; Franz, Heather B.; Mahaffy, Paul R.; Wong, Michael H.; Atreya, Sushil K.; McKay, Christopher P.; Conrad, Pamela G.; Malespin, Charles A.; Brunner, Anna E.; Pepin, Robert O.; Becker, Richard H.; Owen, Tobias C.; Manning, Heidi L.; McConnochie, Timothy H.; Martin-Torres, Javier; Zorzano, María-Paz
2014-11-01
The Sample Analysis at Mars (SAM) instrument on Curiosity has conducted a survey of major (CO2) and minor (Ar, N2, O2) components of the Mars atmosphere over the course of a martian year in Gale Crater. Here we present the volume mixing ratios of these atmospheric species, which have been monitored as a function of season, temperature, and pressure, in conjunction with meteorological measurements conducted by the Mars Science Laboratory (MSL) rover environmental monitoring station (REMS). We will present data on the partial pressure and relative mixing ratio of CO2, which shows a distinct trend with season as a result of transport to, and deposition at, the poles, coinciding with changes in local atmospheric pressure. This is the first comprehensive measurement of composition bridging several seasons that can link the pressure variation to changes in specific atmospheric mixing ratios. We will present results on the 40Ar/N2 ratio, which has remained constant throughout the year, as expected for non-condensable species. The measured ratio of 40Ar/14N ~0.5 is significantly greater than that measured by the Viking Landers (VL), which were reported as Ar/N = 0.3 from the VL2 mass spectrometer and Ar/N = 0.34 from the gas chromatograph experiments. Finally, we will present data that shows a substantial variation in O2, relative to CO2 and Ar, throughout the year. O2 is thought to have a long photochemical lifetime, greater than 10 Mars years, and thus is expected to show a seasonal behavior identical to the other non-condensable inert gases such as Ar and N2. The SAM measurements of O2/Ar, combined with frequent O2 mixing ratio determinations via ChemCam Passive Sky Spectroscopy, show a clear decrease during the Ls = 350° to Ls = 30° period, and then a near-doubling of the mixing ratio during the Ls = 50° to Ls = 130° period. Possible mechanisms for the observed O2 variation will be discussed.
The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Daniel, M. K.; CTA Consortium
2015-04-01
The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as the atmosphere actually forms an intrinsic part of the detector system, with telescopes indirectly detecting very high energy particles by the generation and transport of Cherenkov photons deep within the atmosphere. This means that accurate measurement, characterisation and monitoring of the atmosphere is at the very heart of successfully operating an IACT system. The Cherenkov Telescope Array (CTA) will be the next generation IACT observatory with an ambitious aim to improve the sensitivity of an order of magnitude over current facilities, along with corresponding improvements in angular and energy resolution and extended energy coverage, through an array of Large (23 m), Medium (12 m) and Small (4 m) sized telescopes spread over an area of order ~km2. Whole sky coverage will be achieved by operating at two sites: one in the northern hemisphere and one in the southern hemisphere. This proceedings will cover the characterisation of the candidate sites and the atmospheric calibration strategy. CTA will utilise a suite of instrumentation and analysis techniques for atmospheric modelling and monitoring regarding pointing forecasts, intelligent pointing selection for the observatory operations and for offline data correction.
NASA Astrophysics Data System (ADS)
Boucher, Vincent; Dumoulin, Jean
2014-05-01
Being able to perform easily non-invasive diagnostics for surveillance and monitoring of critical transport infrastructures is a major preoccupation of many technical offices. Among all the existing electromagnetic methods [1], long term thermal monitoring by uncooled infrared camera [2] is a promising technique due to its dissemination potential according to its low cost on the market. Nevertheless, Knowledge of environmental parameters during measurement in outdoor applications is required to carry out accurate measurement corrections induced by atmospheric effects at ground level. Particularly considering atmospheric effects and measurements in foggy conditions close as possible to those that can be encountered around transport infrastructures, both in visible and infrared spectra. In the present study, atmospheric effects are first addressed by using data base available in literature and modelling. Atmospheric attenuation by particles depends greatly of aerosols density, but when relative humidity increases, water vapor condenses onto the particulates suspended in the atmosphere. This condensed water increases the size of the aerosols and changes their composition and their effective refractive index. The resulting effect of the aerosols on the absorption and scattering of radiation will correspondingly be modified. In a first approach, we used aerosols size distributions derived from Shettle and Fenn [3] for urban area which could match some of experimental conditions encountered during trials on transport infrastructures opened to traffic. In order to calculate the influence of relative humidity on refractive index, the Hänel's model [4] could be used. The change in the particulate size is first related to relative humidity through dry particle radius, particle density and water activity. Once the wet aerosol particle size is found, the effective complex refractive index is the volume weighted average of the refractive indexes of the dry aerosol substance and the water. These changes in refractive indexes lead to the evolution of extinction coefficient Kext according to relative humidity. Using such models in very low visibility conditions leads to the following question: Up to which optical depth (i.e. tau=Kext.d) can we use a simple scattering model as Mie Theory? To show the effect of multiple scattering on previous transmission estimation, Monte-Carlo calculations have been performed. Calculations used a software dedicated to photometrical rendering of fog (PROF [5]). Up to an optical depth tau=1, simple and multiple scatterings differ of less than 2%. For tau >1 the simple scattering model is no more available to keep the error less than 10%. Finally, study of fog effect is proposed. Results obtained by numerical simulations but also by experiments carried out in a dedicated fog tunnel are presented and discussed. Perspectives about possible implementation on on site measurement systems are evocated. REFERENCES [1]Proto M. et al., , 2010. Transport infrastructure surveillance and monitoring by electromagnetic sensing: the ISTIMES project. Sensors, 10,10620-10639, doi: 10.3390/s101210620. [2]J. Dumoulin, A. Crinière, R. Averty ," Detection and thermal characterization of the inner structure of the "Musmeci" bridge deck by infrared thermography monitoring ",Journal of Geophysics and Engineering, Volume 10, Number 2, November 2013, IOP Science, doi:10.1088/1742-2132/10/6/064003. [3]Shettle. P. and Fenn R. W., "Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties", Air Force Geophysics Laboratory 79-0214, (1979). [4]30. Hänel, Gottfried, "The properties of atmospheric aerosol particles as functions of the relarive humidity at thermodynamic equilibrium with the surrounding moist air, in Advances in Geophysics, 73-188. Edited by H.E. Landsberg, and J. Van Mieghem, Academic Press, New York, 1976. [5]31. Dumont E., "Semi-Monte Carlo light tracing applied to the study of road visibility in fog", In Monte Carlo and Quasi-Monte Carlo Methods 1998, Spanier & Niederreiter (Eds.), Springer-Verlag (Pub.), pp.177-187, 1998.
Mass spectrometric determination of the composition of the Venus clouds
NASA Technical Reports Server (NTRS)
Herzog, R. F. K.
1973-01-01
The instrumentation is analyzed for determining the composition of the clouds on Venus. Direct analysis of the gas phase atmosphere, and the detection of ferrous chloride with a mass spectrometer are dicussed along with the mass analyzer, and the pre-separation of cloud particles from the ambient atmosphere.
NASA Astrophysics Data System (ADS)
Stein, Olaf; Schultz, Martin G.; Rambadt, Michael; Saini, Rajveer; Hoffmann, Lars; Mallmann, Daniel
2017-04-01
Global model data of atmospheric composition produced by the Copernicus Atmospheric Monitoring Service (CAMS) is collected since 2010 at FZ Jülich and serves as boundary condition for use by Regional Air Quality (RAQ) modellers world-wide. RAQ models need time-resolved meteorological as well as chemical lateral boundary conditions for their individual model domains. While the meteorological data usually come from well-established global forecast systems, the chemical boundary conditions are not always well defined. In the past, many models used 'climatic' boundary conditions for the tracer concentrations, which can lead to significant concentration biases, particularly for tracers with longer lifetimes which can be transported over long distances (e.g. over the whole northern hemisphere) with the mean wind. The Copernicus approach utilizes extensive near-realtime data assimilation of atmospheric composition data observed from space which gives additional reliability to the global modelling data and is well received by the RAQ communities. An existing Web Coverage Service (WCS) for sharing these individually tailored model results is currently being re-engineered to make use of a modern, scalable database technology in order to improve performance, enhance flexibility, and allow the operation of catalogue services. The new Jülich Atmospheric Data Distributions Server (JADDS) adheres to the Web Coverage Service WCS2.0 standard as defined by the Open Geospatial Consortium OGC. This enables the user groups to flexibly define datasets they need by selecting a subset of chemical species or restricting geographical boundaries or the length of the time series. The data is made available in the form of different catalogues stored locally on our server. In addition, the Jülich OWS Interface (JOIN) provides interoperable web services allowing for easy download and visualization of datasets delivered from WCS servers via the internet. We will present the prototype JADDS server and address the major issues identified when relocating large four-dimensional datasets into a RASDAMAN raster array database. So far the RASDAMAN support for data available in netCDF format is limited with respect to metadata related to variables and axes. For community-wide accepted solutions, selected data coverages shall result in downloadable netCDF files including metadata complying with the netCDF CF Metadata Conventions standard (http://cfconventions.org/). This can be achieved by adding custom metadata elements for RASDAMAN bands (model levels) on data ingestion. Furthermore, an optimization strategy for ingestion of several TB of 4D model output data will be outlined.
Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki
2014-10-22
No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric (137)Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12-23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric (137)Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Crist
2008-12-31
As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory’s monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less
Probing Chemical Properties of Interstitial Micro-fluids in Ice
NASA Astrophysics Data System (ADS)
Cheng, J.; Colussi, A. J.; Hoffmann, M. R.
2007-12-01
Liquid is present as microscopic channels in polycrystalline ice at sub-freezing and even sub-eutectic temperatures. Not only do chemicals tend to concentrate substantially in this microscopic liquid phase, but local physicochemical properties may also differ widely from the bulk counterparts, therefore critically affecting the thermodynamics and kinetics of chemical processes occurring in frozen media such as snow, frost, and frost- flowers. This phenomenon has important implications in atmospheric chemistry such as affecting the composition of the atmospheric boundary layer in snow-covered regions. A method using con-focal laser scanning microscope equipped with a cryostat has been developed to measure physicochemical properties of the microscopic liquid phase in ice that are not readily extrapolated from the bulk data. The experimental setup allows for monitoring the freezing process of an aqueous solution with a sub- second time resolution and a submicron 3D spatial resolution. The physicochemical properties (e.g. viscosity, polarity, and acidity) can, in theory, be deduced from features of the fluorescence spectra of particular fluorescent indicators. For example, the acidity change during the freezing and melting process of electrolyte solutions has been monitored in real time by a pH-dependent dual emission fluorescent probe C-SNARF-1. The effects of temperature, freezing rate, and added electrolytes such as ammonium sulfate, sodium chloride and zwitterions are also examined. The findings complement the theory and previous experimental evidence of freezing hydrolysis.
Monitoring of atmospheric nuclear explosions with infrasonic microphone arrays
NASA Astrophysics Data System (ADS)
Wilson, Charles R.
2002-11-01
A review is given of the various United States programs for the infrasonic monitoring of atmospheric nuclear explosions from their inception in 1946 to their termination in 1975. The US Atomic Energy Detection System (USAEDS) monitored all nuclear weapons tests that were conducted by the Soviet Union, France, China, and the US with arrays of sensitive microbarographs in a worldwide network of infrasonic stations. A discussion of the source mechanism for the creation and subsequent propagation around the globe of long wavelength infrasound from explosions (volcanic and nuclear) is given to show the efficacy of infrasonic monitoring for the detection of atmospheric nuclear weapons tests. The equipment that was used for infrasound detection, the design of the sensor arrays, and the data processing techniques that were used by USAEDS are all discussed.
Exploring Multiple Constraints of Anthropogenic Pollution
NASA Astrophysics Data System (ADS)
Arellano, A. F., Jr.; Tang, W.; Silva, S. J.; Raman, A.
2017-12-01
It is imperative that we provide more accurate and consistent analysis of anthropogenic pollution emissions at scales that is relevant to air quality, energy, and environmental policy. Here, we present three proof-of-concept studies that explore observational constraints from ground, aircraft, and satellite-derived measurements of atmospheric composition on bulk characteristics of anthropogenic combustion in megacities and fire regions. We focus on jointly analyzing co-emitted combustion products such as CO2, NO2, CO, SO2, and aerosols from GOSAT, OCO-2, OMI, MOPITT, and MODIS retrievals, in conjunction with USEPA AQS and NASA field campaigns. Each of these constituents exhibit distinct atmospheric signatures that depend on fuel type, combustion technology, process, practices and regulatory policies. Our results show that distinguishable patterns and relationships between the increases in concentrations across the megacity (or enhancements) due to emissions of these constituents enable us to: a) identify trends in combustion activity and efficiency, and b) reconcile discrepancies between state- to country-based emission inventories and modeled concentrations of these constituents. For example, the trends in enhancement ratios of these species reveal combustion emission pathways for China and United States that are not captured by current emission inventories and chemical reanalysis. Analysis of their joint distributions has considerable potential utility in current and future integrated constituent data assimilation and inverse modeling activities for monitoring, verifying, and reporting emissions, particularly for regions with few observations and limited information on local combustion processes. This work also motivates the need for continuous and preferably collocated satellite measurements of atmospheric composition, including CH4 and CO2, and studies related to improving the applicability and integration of these observations with ground- and aircraft- based measurements.
Microclimates of l'Aven d'Orgnac and other French limestone caves (Chauvet, Esparros, Marsoulas)
NASA Astrophysics Data System (ADS)
Bourges, F.; Genthon, P.; Mangin, A.; D'Hulst, D.
2006-10-01
We assess the aerodynamics of the atmosphere in some limestone caves using a 5-year monitoring of the Aven d'Orgnac system, shorter thermal vertical profiling experiments, and comparison with the time series from other French caves. In the first rooms, located under the Aven opening, our records indicate, for each year, a succession of a summer regime characterized by stable parameters (except for the perturbations introduced by tourist visits) and a winter regime, in which the inner air temperature drops and is highly correlated with that outside. Atmospheric composition suggests that during the winter regime the cave is ventilated by the outside air. We show that the onset of the winter regime is governed by a thermo-convective instability involving the inflow of the outside cold and dense air. Atmospheric temperature and composition allow us to follow the stepwise progression of the winter regime toward the adjacent rooms.In the Salle Plane (SP), a far room of the Orgnac-Issirac karstic system, in which the winter regime has never been observed, the air temperature is extremely homogeneous and steady, and is characterized by a half-daily signal of amplitude less than 0.03 °C, which is correlated with the derivative of pressure versus time. This correlation, which is also observed in various other confined caves, may be explained by pressure-induced temperature changes relaxed in less than 1 h by thermal exchanges with a large volume of rock whose temperature is assumed to be constant.The various microclimates of karstic cave systems should be taken into account for the conservation of the caves open to tourists and for the interpretation of growth laminae of speleothems.
NASA Astrophysics Data System (ADS)
Alexandre, Anne; Landais, Amarelle; Vallet-Coulomb, Christine; Piel, Clément; Devidal, Sébastien; Pauchet, Sandrine; Sonzogni, Corinne; Couapel, Martine; Pasturel, Marine; Cornuault, Pauline; Xin, Jingming; Mazur, Jean-Charles; Prié, Frédéric; Bentaleb, Ilhem; Webb, Elizabeth; Chalié, Françoise; Roy, Jacques
2018-05-01
Continental atmospheric relative humidity (RH) is a key climate parameter. Combined with atmospheric temperature, it allows us to estimate the concentration of atmospheric water vapor, which is one of the main components of the global water cycle and the most important gas contributing to the natural greenhouse effect. However, there is a lack of proxies suitable for reconstructing, in a quantitative way, past changes of continental atmospheric humidity. This reduces the possibility of making model-data comparisons necessary for the implementation of climate models. Over the past 10 years, analytical developments have enabled a few laboratories to reach sufficient precision for measuring the triple oxygen isotopes, expressed by the 17O-excess (17O-excess = ln (δ17O + 1) - 0.528 × ln (δ18O + 1)), in water, water vapor and minerals. The 17O-excess represents an alternative to deuterium-excess for investigating relative humidity conditions that prevail during water evaporation. Phytoliths are micrometric amorphous silica particles that form continuously in living plants. Phytolith morphological assemblages from soils and sediments are commonly used as past vegetation and hydrous stress indicators. In the present study, we examine whether changes in atmospheric RH imprint the 17O-excess of phytoliths in a measurable way and whether this imprint offers a potential for reconstructing past RH. For that purpose, we first monitored the 17O-excess evolution of soil water, grass leaf water and grass phytoliths in response to changes in RH (from 40 to 100 %) in a growth chamber experiment where transpiration reached a steady state. Decreasing RH from 80 to 40 % decreases the 17O-excess of phytoliths by 4.1 per meg/% as a result of kinetic fractionation of the leaf water subject to evaporation. In order to model with accuracy the triple oxygen isotope fractionation in play in plant water and in phytoliths we recommend direct and continuous measurements of the triple isotope composition of water vapor. Then, we measured the 17O-excess of 57 phytolith assemblages collected from top soils along a RH and vegetation transect in inter-tropical West and Central Africa. Although scattered, the 17O-excess of phytoliths decreases with RH by 3.4 per meg/%. The similarity of the trends observed in the growth chamber and nature supports that RH is an important control of 17O-excess of phytoliths in the natural environment. However, other parameters such as changes in the triple isotope composition of the soil water or phytolith origin in the plant may come into play. Assessment of these parameters through additional growth chambers experiments and field campaigns will bring us closer to an accurate proxy of changes in relative humidity.
Prediction of moisture and temperature changes in composites during atmospheric exposure
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Tenney, D. R.; Unnan, J.
1978-01-01
The effects of variations in diffusion coefficients, surface properties of the composite, panel tilt, ground reflection, and geographical location on the moisture concentration profiles and average moisture content of composite laminates were studied analytically. A heat balance which included heat input due to direct and sky diffuse solar radiation, ground reflection, and heat loss due to reradiation and convection was used to determine the temperature of composites during atmospheric exposure. The equilibrium moisture content was assumed proportional to the relative humidity of the air in the boundary layer of the composite. Condensation on the surface was neglected. Histograms of composite temperatures were determined and compared with those for the ambient environment.
Operations and Maintenance Manual, Atmospheric Contaminant Sensor, Revision B.
ERIC Educational Resources Information Center
National Aeronautics and Space Administration, Washington, DC.
The sensor is a mass spectrometer system which continuously monitors the atmospheric constituents of hydrogen, water vapor, nitrogen, oxygen, and carbon dioxide, and monitors the Freons on a demand sampling basis. The manual provides a system description, operational procedures, and maintenance and troubleshooting instructions. Circuit diagrams…
Kroll, Jesse H; Cross, Eben S; Hunter, James F; Pai, Sidhant; Wallace, Lisa M M; Croteau, Philip L; Jayne, John T; Worsnop, Douglas R; Heald, Colette L; Murphy, Jennifer G; Frankel, Sheila L
2015-04-07
The high atmospheric concentrations of toxic gases, particulate matter, and acids in the areas immediately surrounding volcanoes can have negative impacts on human and ecological health. To better understand the atmospheric fate of volcanogenic emissions in the near field (in the first few hours after emission), we have carried out real-time measurements of key chemical components of the volcanic plume from Kı̅lauea on the Island of Hawai'i. Measurements were made at two locations, one ∼ 3 km north-northeast of the vent and the other 31 km to the southwest, with sampling at each site spanning a range of meteorological conditions and volcanic influence. Instrumentation included a sulfur dioxide monitor and an Aerosol Chemical Speciation Monitor, allowing for a measurement of the partitioning between the two major sulfur species (gas-phase SO2 and particulate sulfate) every 5 min. During trade wind conditions, which sent the plume toward the southwest site, sulfur partitioning exhibited a clear diurnal pattern, indicating photochemical oxidation of SO2 to sulfate; this enabled the quantitative determination of plume age (5 h) and instantaneous SO2 oxidation rate (2.4 × 10(-6) s(-1) at solar noon). Under stagnant conditions near the crater, the extent of SO2 oxidation was substantially higher, suggesting faster oxidation. The particles within the plume were extremely acidic, with pH values (controlled largely by ambient relative humidity) as low as -0.8 and strong acidity (controlled largely by absolute sulfate levels) up to 2200 nmol/m(3). The high variability of sulfur partitioning and particle composition underscores the chemically dynamic nature of volcanic plumes, which may have important implications for human and ecological health.
NASA Astrophysics Data System (ADS)
Evans, Robert D.; Petropavlovskikh, Irina; McClure-Begley, Audra; McConville, Glen; Quincy, Dorothy; Miyagawa, Koji
2017-10-01
The United States government has operated Dobson ozone spectrophotometers at various sites, starting during the International Geophysical Year (1 July 1957 to 31 December 1958). A network of stations for long-term monitoring of the total column content (thickness of the ozone layer) of the atmosphere was established in the early 1960s and eventually grew to 16 stations, 14 of which are still operational and submit data to the United States of America's National Oceanic and Atmospheric Administration (NOAA). Seven of these sites are also part of the Network for the Detection of Atmospheric Composition Change (NDACC), an organization that maintains its own data archive. Due to recent changes in data processing software the entire dataset was re-evaluated for possible changes. To evaluate and minimize potential changes caused by the new processing software, the reprocessed data record was compared to the original data record archived in the World Ozone and UV Data Center (WOUDC) in Toronto, Canada. The history of the observations at the individual stations, the instruments used for the NOAA network monitoring at the station, the method for reducing zenith-sky observations to total ozone, and calibration procedures were re-evaluated using data quality control tools built into the new software. At the completion of the evaluation, the new datasets are to be published as an update to the WOUDC and NDACC archives, and the entire dataset is to be made available to the scientific community. The procedure for reprocessing Dobson data and the results of the reanalysis on the archived record are presented in this paper. A summary of historical changes to 14 station records is also provided.
Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques
NASA Technical Reports Server (NTRS)
Vincent, R. A. (Editor)
1984-01-01
Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone.
Borehole temperature variability at Hoher Sonnblick, Austria
NASA Astrophysics Data System (ADS)
Heinrich, Georg; Schöner, Wolfgang; Prinz, Rainer; Pfeiler, Stefan; Reisenhofer, Stefan; Riedl, Claudia
2016-04-01
The overarching aim of the project 'Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme events and their relevance for the mean state of the active layer (ATMOperm)' is to improve the understanding of the impacts of atmospheric extreme events on the thermal state of the active layer using a combined measurement and modeling approach as the basis for a long-term monitoring strategy. For this purpose, the Sonnblick Observatory at the summit of Hoher Sonnblick (3106 m.a.s.l) is particularly well-suited due to its comprehensive long-term atmospheric and permafrost monitoring network (i.a. three 20 m deep boreholes since 2007). In ATMOperm, a robust and accurate permanent monitoring of active layer thickness at Hoher Sonnblick will be set up using innovative monitoring approaches by automated electrical resistivity tomography (ERT). The ERT monitoring is further supplemented by additional geophysical measurements such as ground penetrating radar, refraction seismic, electromagnetic induction and transient electromagnetics in order to optimally complement the gained ERT information. On the other hand, atmospheric energy fluxes over permafrost ground and their impact on the thermal state of permafrost and active layer thickness with a particular focus on atmospheric extreme events will be investigated based on physically-based permafrost modeling. For model evaluation, the borehole temperature records will play a key role and, therefore, an in-depth quality control of the borehole temperatures is an important prerequisite. In this study we will show preliminary results regarding the borehole temperature variability at Hoher Sonnblick with focus on the active layer. The borehole temperatures will be related to specific atmospheric conditions using the rich data set of atmospheric measurements of the site in order to detect potential errors in the borehole temperature measurements. Furthermore, we will evaluate the potential of filling gaps in the time series by cross checking all available information of the three boreholes. Furthermore, the already available ERT profiles will serve as additional information source improving the quality of the measured borehole temperatures.
Could Nano-Structured Materials Enable the Improved Pressure Vessels for Deep Atmospheric Probes?
NASA Technical Reports Server (NTRS)
Srivastava, D.; Fuentes, A.; Bienstock, B.; Arnold, J. O.
2005-01-01
A viewgraph presentation on the use of Nano-Structured Materials to enable pressure vessel structures for deep atmospheric probes is shown. The topics include: 1) High Temperature/Pressure in Key X-Environments; 2) The Case for Use of Nano-Structured Materials Pressure Vessel Design; 3) Carbon based Nanomaterials; 4) Nanotube production & purification; 5) Nanomechanics of Carbon Nanotubes; 6) CNT-composites: Example (Polymer); 7) Effect of Loading sequence on Composite with 8% by volume; 8) Models for Particulate Reinforced Composites; 9) Fullerene/Ti Composite for High Strength-Insulating Layer; 10) Fullerene/Epoxy Composite for High Strength-Insulating Layer; 11) Models for Continuous Fiber Reinforced Composites; 12) Tensile Strength for Discontinuous Fiber Composite; 13) Ti + SWNT Composites: Thermal/Mechanical; 14) Ti + SWNT Composites: Tensile Strength; and 15) Nano-structured Shell for Pressure Vessels.
Atmospheric Prebiotic Chemistry and Organic Hazes
Trainer, Melissa G.
2013-01-01
Earth’s atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer – if formed – would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere. PMID:24143126
Atmospheric Prebiotic Chemistry and Organic Hazes.
Trainer, Melissa G
2013-08-01
Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.
Atmospheric Prebiotic Chemistry and Organic Hazes
NASA Technical Reports Server (NTRS)
Trainer, Melissa G.
2012-01-01
Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of pre biotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.
Tunno, Brett J; Dalton, Rebecca; Michanowicz, Drew R; Shmool, Jessie L C; Kinnee, Ellen; Tripathy, Sheila; Cambal, Leah; Clougherty, Jane E
2016-01-01
Health effects of fine particulate matter (PM2.5) vary by chemical composition, and composition can help to identify key PM2.5 sources across urban areas. Further, this intra-urban spatial variation in concentrations and composition may vary with meteorological conditions (e.g., mixing height). Accordingly, we hypothesized that spatial sampling during atmospheric inversions would help to better identify localized source effects, and reveal more distinct spatial patterns in key constituents. We designed a 2-year monitoring campaign to capture fine-scale intra-urban variability in PM2.5 composition across Pittsburgh, PA, and compared both spatial patterns and source effects during “frequent inversion” hours vs 24-h weeklong averages. Using spatially distributed programmable monitors, and a geographic information systems (GIS)-based design, we collected PM2.5 samples across 37 sampling locations per year to capture variation in local pollution sources (e.g., proximity to industry, traffic density) and terrain (e.g., elevation). We used inductively coupled plasma mass spectrometry (ICP-MS) to determine elemental composition, and unconstrained factor analysis to identify source suites by sampling scheme and season. We examined spatial patterning in source factors using land use regression (LUR), wherein GIS-based source indicators served to corroborate factor interpretations. Under both summer sampling regimes, and for winter inversion-focused sampling, we identified six source factors, characterized by tracers associated with brake and tire wear, steel-making, soil and road dust, coal, diesel exhaust, and vehicular emissions. For winter 24-h samples, four factors suggested traffic/fuel oil, traffic emissions, coal/industry, and steel-making sources. In LURs, as hypothesized, GIS-based source terms better explained spatial variability in inversion-focused samples, including a greater contribution from roadway, steel, and coal-related sources. Factor analysis produced source-related constituent suites under both sampling designs, though factors were more distinct under inversion-focused sampling. PMID:26507005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslinger, Paul W.; Bowyer, Ted W.; Cameron, Ian M.
2015-10-01
The International Monitoring System contains up to 80 stations around the world that have aerosol and xenon monitoring systems designed to detect releases of radioactive materials to the atmosphere from nuclear tests. A rule of thumb description of plume concentration and duration versus time and distance from the release point is useful when designing and deploying new sample collection systems. This paper uses plume development from atmospheric transport modeling to provide a power-law rule describing atmospheric dilution factors as a function of distance from the release point.
NASA Astrophysics Data System (ADS)
Goetz, J. Douglas
Gas and particle phase atmospheric pollution are known to impact human and environmental health as well as contribute to climate forcing. While many atmospheric pollutants are regulated or controlled in the developed world uncertainty still remains regarding the impacts from under characterized emission sources, the interaction of anthropogenic and naturally occurring pollution, and the chemical and physical evolution of emissions in the atmosphere, among many other uncertainties. Because of the complexity of atmospheric pollution many types of monitoring have been implemented in the past, but none are capable of perfectly characterizing the atmosphere and each monitoring type has known benefits and disadvantages. Ground-based mobile monitoring with fast-response in-situ instrumentation has been used in the past for a number of applications that fill data gaps not possible with other types of atmospheric monitoring. In this work, ground-based mobile monitoring was implemented to quantify emissions from under characterized emission sources using both moving and portable applications, and used in a novel way for the characterization of ambient concentrations. In the Marcellus Shale region of Pennsylvania two mobile platforms were used to estimate emission rates from infrastructure associated with the production and transmission of natural gas using two unique methods. One campaign investigated emissions of aerosols, volatile organic compounds (VOCs), methane, carbon monoxide (CO), nitrogen dioxide (NO2), and carbon dioxide (CO 2) from natural gas wells, well development practices, and compressor stations using tracer release ratio methods and a developed fenceline tracer release correction factor. Another campaign investigated emissions of methane from Marcellus Shale gas wells and infrastructure associated with two large national transmission pipelines using the "Point Source Gaussian" method described in the EPA OTM-33a. During both campaigns ambient concentrations of methane, CO and other pollutants were continuously monitored while driving throughout the region. A smoothing technique was developed to remove contributions of direct unmixed emissions to produce a dataset that can be used in comparison with other monitoring techniques (e.g. stationary, aircraft). Finally, a portable mobile lab equipped with fast-response aerosol instrumentation including an Aerosol Mass Spectrometer (AMS) was used to characterize non-refractory aerosol and black carbon emissions from common, but under characterized emission sources in South Asia (i.e. brick kilns, cookstoves, open garbage burning, irrigation pumps). Speciated submicron aerosol emission factors, size distributions, and mass spectral profiles were retrieved for each emission source. This work demonstrates that ground-based mobile laboratory measurements are useful for characterizing emissions and ambient concentrations in authentic conditions outside of the conventional laboratory environment, and in ways not possible with other atmospheric monitoring platforms.
[Progressive damage monitoring of corrugated composite skins by the FBG spectral characteristics].
Zhang, Yong; Wang, Bang-Feng; Lu, Ji-Yun; Gu, Li-Li; Su, Yong-Gang
2014-03-01
In the present paper, a method of monitoring progressive damage of composite structures by non-uniform fiber Bragg grating (FBG) reflection spectrum is proposed. Due to the finite element analysis of corrugated composite skins specimens, the failure process under tensile load and corresponding critical failure loads of corrugated composite skin was predicated. Then, the non-uniform reflection spectrum of FBG sensor could be reconstructed and the corresponding relationship between layer failure order sequence of corrugated composite skin and FBG sensor reflection spectrums was acquired. A monitoring system based on FBG non-uniform reflection spectrum, which can be used to monitor progressive damage of corrugated composite skins, was built. The corrugated composite skins were stretched under this FBG non-uniform reflection spectrum monitoring system. The results indicate that real-time spectrums acquired by FBG non-uniform reflection spectrum monitoring system show the same trend with the reconstruction reflection spectrums. The maximum error between the corresponding failure and the predictive value is 8.6%, which proves the feasibility of using FBG sensor to monitor progressive damage of corrugated composite skin. In this method, the real-time changes in the FBG non-uniform reflection spectrum within the scope of failure were acquired through the way of monitoring and predicating, and at the same time, the progressive damage extent and layer failure sequence of corru- gated composite skin was estimated, and without destroying the structure of the specimen, the method is easy and simple to operate. The measurement and transmission section of the system are completely composed of optical fiber, which provides new ideas and experimental reference for the field of dynamic monitoring of smart skin.
Preliminary results seen with Rosetta/ROSINA: early cometary activity of 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Gasc, Sebastien; Altwegg, Kathrin; Jäckel, Annette; Rubin, Martin; Tzou, Chia-Yu; Wurz, Peter; Fiethe, Björn; Korth, Axel; Rème, Henri
2014-11-01
On 1 August 2014, the ROSETTA spacecraft approached the comet 67P/Churyumov-Gerasimenko (67P/CG) close enough to start its detailed characterisation. In this phase, the distance between Rosetta and 67P/CG is below 1’000 km, at a heliocentric distance of less than 3.6 AU. The Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) [1] measures the composition of 67P/CG’s atmosphere and ionosphere, and additionally derives the bulk velocity of gas. ROSINA consists of the COmetary Pressure Sensor (COPS) and two mass spectrometers for the analysis of neutral gas and cometary ions in the coma of the comet: the Double Focusing Mass Spectrometer (DFMS) and the Reflectron Time Of Flight mass spectrometer (RTOF). Since beginning of August, the ROSINA sensors are continuously monitoring the density and chemical composition of the coma of 67P/CG. The goal of this work is not only to determine the abundance of major species like CO2, CO, and H2O, but also to analyse the development of the composition as a function of the heliocentric distance. We will present the first mass spectra of RTOF as well as the total density and the molecular composition measurements obtained at 67P/CG.
Shearing, Paul R.; Brightman, Edward; Brett, Dan J. L.; Brandon, Nigel P.; Cohen, Lesley F.
2016-01-01
The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single‐step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance. PMID:27595058
Maher, Robert C; Shearing, Paul R; Brightman, Edward; Brett, Dan J L; Brandon, Nigel P; Cohen, Lesley F
2016-01-01
The redox properties of gadolinium doped ceria (CGO) and nickel oxide (NiO) composite cermets underpin the operation of solid oxide electrochemical cells. Although these systems have been widely studied, a full comprehension of the reaction dynamics at the interface of these materials is lacking. Here, in situ Raman spectroscopic monitoring of the redox cycle is used to investigate the interplay between the dynamic and competing processes of hydrogen spillover and water dissociation on the doped ceria surface. In order to elucidate these mechanisms, the redox process in pure CGO and NiO is studied when exposed to wet and dry hydrogen and is compared to the cermet behavior. In dry hydrogen, CGO reduces relatively rapidly via a series of intermediate phases, while NiO reduces via a single-step process. In wet reducing atmospheres, however, the oxidation state of pure CGO is initially stabilized due to the dissociation of water by reduced Ce(III) and subsequent incorporation of oxygen into the structure. In the reduction process involving the composite cermet, the close proximity of the NiO improves the efficiency and speed of the composite reduction process. Although NiO is already incorporated into working cells, these observations suggest direct routes to further improve cell performance.
Technical note: Late Pliocene age control and composite depths at ODP Site 982, revisited
NASA Astrophysics Data System (ADS)
Khélifi, N.; Sarnthein, M.; Naafs, B. D. A.
2012-01-01
Ocean Drilling Program (ODP) Site 982 provided a key sediment section at Rockall Plateau for reconstructing northeast Atlantic paleoceanography and monitoring benthic δ18O stratigraphy over the late Pliocene to Quaternary onset of major Northern Hemisphere glaciation. A renewed hole-specific inspection of magnetostratigraphic reversals and the addition of epibenthic δ18O records for short Pliocene sections in holes 982A, B, and C, crossing core breaks in the δ18O record published for Hole 982B, now imply a major revision of composite core depths. After tuning to the orbitally tuned reference record LR04, the new composite δ18O record results in a hiatus, where the Kaena magnetic subchron might have been lost, and in a significant age reduction for all proxy records by 130 to 20 ky over the time span 3.2-2.7 million years ago (Ma). Our study demonstrates the general significance of reliable composite-depth scales and δ18O stratigraphies in ODP sediment records for generating ocean-wide correlations in paleoceanography. The new concept of age control makes the late Pliocene trends in SST (sea surface temperature) and atmospheric pCO2 at Site 982 more consistent with various paleoclimate trends published from elsewhere in the North Atlantic.
The Atmospheric Chemistry of Methyl Chavicol (Estragole)
NASA Astrophysics Data System (ADS)
Bloss, W. J.; Alam, M. S.; Rickard, A. R.; Hamilton, J. F.; Pereira, K. F.; Camredon, M.; Munoz, A.; Vazquez, M.; Alacreu, P.; Rodenas, M.; Vera, T.
2012-12-01
The oxidation of volatile organic compounds (VOCs) leads to formation of ozone and secondary organic aerosols (SOA), with consequences for health, air quality, crop yields, atmospheric chemistry and radiative transfer. It is estimated that ca. 90 % of VOC emissions to the atmosphere originate from biogenic sources (BVOC); such emissions may increase under future climates. Recent field observations have identified Methyl Chavicol ("MC" hereafter, also known as Estragole; 1-allyl-4-methoxybenzene, C10H12O) as a major BVOC above pine forests in the USA [Bouvier-Brown et al., 2009], and within an oil palm plantation in Malaysian Borneo, where it was found that MC could represent the highest single floral contribution of reactive carbon to the atmosphere [Misztal et al., 2010]. Palm oil cultivation, and hence emissions of MC, may be expected to increase with societal food and biofuel demand. We present the results of a series of simulation chamber experiments to assess the atmospheric fate of MC. Experiments were performed in the EUPHORE (European Photoreactor) facility in Valencia, Spain (200 m3 outdoor smog chamber), investigating the degradation of MC by reaction with OH, O3 and NO3. An extensive range of measurement instrumentation was used to monitor precursor and product formation, including stable species (FTIR, PTR-MS, GC-FID and GC-MS), radical intermediates (LIF), inorganic components (NOx, O3, HONO (LOPAP and aerosol production (SMPS) and composition (PILS and filters; analysed offline by LC-MS and FTICR-MS). Experiments were conducted at a range of NOx:VOC ratios, and in the presence and absence of radical (OH) scavenger compounds. This chamber dataset is used to determine the rate constants for reaction of MC with OH, O3 and NO3, the ozonolysis radical yields, and identify the primary degradation products for each initiation route, alongside the aerosol mass yields. Aerosol composition measurements are analysed to identify markers for MC contributions to SOA formation in the ambient atmosphere. The results are compared with the (limited) previous smog chamber results, and discussed in the context of the recent field data on MC production and emissions. References Bouvier-Brown et al., Atmos. Chem. Phys. 9, 2061, 2009 Misztal et al., Atmos. Chem. Phys. 10, 4343, 2010.
R. C. Musselman
1994-01-01
Air quality is monitored continuously at GLEES. Air pollutants are considered an important component of the atmosphere that can have an effect on terrestrial and aquatic ecosystems. Atmospheric deposition of gases, wet deposition of chemicals in precipitation including snow and rain, and dry deposition of chemicals are all monitored at GLEES. Although GLEES is a...
Operations and maintenance manual, atmospheric contaminant sensor, revision B
NASA Technical Reports Server (NTRS)
1972-01-01
The sensor is a mass spectrometer system which continuously monitors the atmospheric constituents of hydrogen, water vapor, nitrogen, oxygen, and carbon dioxide, and monitors the Freons on a demand sampling basis. The manual provides a system description, operational procedures, and maintenance and troubleshooting instructions. Circuit diagrams are included.
77 FR 66073 - Availability of Seats for the Monitor National Marine Sanctuary Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-01
... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Availability of Seats for... (ONMS), National Ocean Service (NOS), National Oceanic and Atmospheric Administration (NOAA), Department.... It is one of 13 sanctuaries and protects the wreck of the famed Civil War ironclad, USS Monitor, best...
NASA Technical Reports Server (NTRS)
Dreschel, Thomas W.; Madsen, Brooks C.; Maull, Lee A.; Hinkle, C. R.; Knott, William M., III
1990-01-01
Rain volume and chemistry monitoring as part of the Kennedy Space Center Long Term Environmental Monitoring Program included the years 1984-1987 as part of the National Atmospheric Deposition Program. Atmospheric deposition in rainfall consisted primarily of sea salt and hydrogen ion, sulfate, nitrate, and ammonium ions. The deposition of nitrogen (a principal plant nutrient) was on the order of 200-300 metric tons per year to the surface waters.
Infrared Laser System for Extended Area Monitoring of Air Pollution
NASA Technical Reports Server (NTRS)
Snowman, L. R.; Gillmeister, R. J.
1971-01-01
An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.
On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia
NASA Astrophysics Data System (ADS)
Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.
2015-07-01
The exchanges of carbon, water and energy between the atmosphere and the Amazon basin have global implications for the current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate (MACC) service is used to study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia during the period 2002-2010. The system assimilated surface measurements of atmospheric CO2 mole fractions made at more than 100 sites over the globe into an atmospheric transport model. The present study adds measurements from four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion are compared to an independent estimate of NEE upscaled from eddy-covariance flux measurements in Amazonia. They are also qualitatively evaluated against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We attempt at assessing the impact on NEE of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons) and the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE are also investigated. While the inversion supports the assumption of strong spatial heterogeneity of these variations, the results reveal critical limitations of the coarse-resolution transport model, the surface observation network in South America during the recent years and the present knowledge of modelling uncertainties in South America that prevent our inversion from capturing the seasonal patterns of fluxes across Amazonia. However, some patterns from the inversion seem consistent with the anomaly of moisture conditions in 2009.
On the ability of a global atmospheric inversion to constrain variations of CO2 fluxes over Amazonia
NASA Astrophysics Data System (ADS)
Molina, L.; Broquet, G.; Imbach, P.; Chevallier, F.; Poulter, B.; Bonal, D.; Burban, B.; Ramonet, M.; Gatti, L. V.; Wofsy, S. C.; Munger, J. W.; Dlugokencky, E.; Ciais, P.
2015-01-01
The exchanges of carbon, water, and energy between the atmosphere and the Amazon Basin have global implications for current and future climate. Here, the global atmospheric inversion system of the Monitoring of Atmospheric Composition and Climate service (MACC) was used to further study the seasonal and interannual variations of biogenic CO2 fluxes in Amazonia. The system assimilated surface measurements of atmospheric CO2 mole fractions made over more than 100 sites over the globe into an atmospheric transport model. This study added four surface stations located in tropical South America, a region poorly covered by CO2 observations. The estimates of net ecosystem exchange (NEE) optimized by the inversion were compared to independent estimates of NEE upscaled from eddy-covariance flux measurements in Amazonia, and against reports on the seasonal and interannual variations of the land sink in South America from the scientific literature. We focused on the impact of the interannual variation of the strong droughts in 2005 and 2010 (due to severe and longer-than-usual dry seasons), and of the extreme rainfall conditions registered in 2009. The spatial variations of the seasonal and interannual variability of optimized NEE were also investigated. While the inversion supported the assumption of strong spatial heterogeneity of these variations, the results revealed critical limitations that prevent global inversion frameworks from capturing the data-driven seasonal patterns of fluxes across Amazonia. In particular, it highlighted issues due to the configuration of the observation network in South America and the lack of continuity of the measurements. However, some robust patterns from the inversion seemed consistent with the abnormal moisture conditions in 2009.
NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space
NASA Technical Reports Server (NTRS)
King, Michael D.
2004-01-01
The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special but not exclusive look at the latest earth observing mission, Aura.
NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space
NASA Technical Reports Server (NTRS)
King, Michael D.
2005-01-01
The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.
Atmospheric correction of AVIRIS data in ocean waters
NASA Technical Reports Server (NTRS)
Terrie, Gregory; Arnone, Robert
1992-01-01
Hyperspectral data offers unique capabilities for characterizing the ocean environment. The spectral characterization of the composition of ocean waters can be organized into biological and terrigenous components. Biological photosynthetic pigments in ocean waters have unique spectral ocean color signatures which can be associated with different biological species. Additionally, suspended sediment has different scattering coefficients which result in ocean color signatures. Measuring the spatial distributions of these components in the maritime environments provides important tools for understanding and monitoring the ocean environment. These tools have significant applications in pollution, carbon cycle, current and water mass detection, location of fronts and eddies, sewage discharge and fate etc. Ocean color was used from satellite for describing the spatial variability of chlorophyll, water clarity (K(sub 490)), suspended sediment concentration, currents etc. Additionally, with improved atmospheric correction methods, ocean color results produced global products of spectral water leaving radiance (L(sub W)). Ocean color results clearly indicated strong applications for characterizing the spatial and temporal variability of bio-optical oceanography. These studies were largely the results of advanced atmospheric correction techniques applied to multispectral imagery. The atmosphere contributes approximately 80 percent - 90 percent of the satellite received radiance in the blue-green portion of the spectrum. In deep ocean waters, maximum transmission of visible radiance is achieved at 490nm. Conversely, nearly all of the light is absorbed by the water at wavelengths greater than about 650nm and thus appears black. These spectral ocean properties are exploited by algorithms developed for the atmospheric correction used in satellite ocean color processing. The objective was to apply atmospheric correction techniques that were used for procesing satellite Coastal Zone Color Scanner (CZCS) data to AVIRIS data. Quantitative measures of L(sub W) from AVIRIS are compared with ship ground truth data and input into bio-optical models.
NASA Technical Reports Server (NTRS)
Owen, T.; Biemann, K.
1976-01-01
The composition of the Martian atmosphere was determined by the mass spectrometer in the molecular analysis experiment. The presence of argon and nitrogen was confirmed and a value of 1 to 2750 plus or minus 500 for the ratio of argon-36 to argon-40 was established. A preliminary interpretation of these results suggests that Mars had a slightly more massive atmosphere in the past, but that much less total outgassing has occurred on Mars than on earth.
Twenty-Fourth Lunar and Planetary Science Conference. Part 2: G-M
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-01-01
The topics covered include the following: meteorites, meteoritic composition, geochemistry, planetary geology, planetary composition, planetary craters, the Moon, Mars, Venus, asteroids, planetary atmospheres, meteorite craters, space exploration, lunar geology, planetary surfaces, lunar surface, lunar rocks, lunar soil, planetary atmospheres, lunar atmosphere, lunar exploration, space missions, geomorphology, lithology, petrology, petrography, planetary evolution, Earth surface, planetary surfaces, volcanology, volcanos, lava, magma, mineralogy, minerals, ejecta, impact damage, meteoritic damage, tectonics, etc. Separate abstracts have been prepared for articles from this report.
The long-term carbon cycle, fossil fuels and atmospheric composition.
Berner, Robert A
2003-11-20
The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.
Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling.
Boone, Eric J; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B; Stirm, Brian H; Pratt, Kerri A
2015-07-21
Cloudwater and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry (HRMS) with nanospray desorption electrospray ionization (nano-DESI) and direct infusion electrospray ionization (ESI) were utilized to compare the organic composition of the particle and cloudwater samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloudwater, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloudwater samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloudwater when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.
Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boone, Eric J.; Laskin, Alexander; Laskin, Julia
2015-07-21
Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influencemore » of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.« less
NASA Technical Reports Server (NTRS)
Irie, H.; Pagan, K. L.; Tabazadeh, A.; Legg, M. J.; Sugita, T.
2004-01-01
Satellite observations of denitrification and ice clouds in the Arctic lower stratosphere in February 1997 are used with Lagrangian microphysical box model calculations to evaluate nucleation mechanisms of solid polar stratospheric cloud (PSC) particles. The occurrences of ice clouds are not correlated in time and space with the locations of back trajectories of denitrified air masses, indicating that ice particle surfaces are not always a prerequisite for the formation of solid PSCs that lead to denitrification. In contrast, the model calculations incorporating a pseudoheterogeneous freezing process occurring at the vapor-liquid interface can quantitatively explain most of the observed denitrification when the nucleation activation free energy for nitric acid dihydrate formation is raised by only approx.10% relative to the current published values. Once nucleated, the conversion of nitric acid dihydrate to the stable trihydrate phase brings the computed levels of denitrification closer to the measurements. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and SblctureC: loud physics and chemistry; 0340 Atmospheric Composition and Structure: Middle atmosphere-composition and chemistry
NASA Astrophysics Data System (ADS)
Kirpes, R.; Rodriguez, B.; Kim, S.; Park, K.; China, S.; Laskin, A.; Pratt, K.
2017-12-01
The Arctic region is rapidly changing due to sea ice loss and increasing oil/gas development and shipping activity. These changes influence aerosol sources and composition, resulting in complex aerosol-cloud-climate feedbacks. Atmospheric particles were collected aboard the R/V Araon in July-August 2016 in the Alaskan Arctic along the Bering Strait and Chukchi Sea. Offline analysis of individual particles by microscopic and spectroscopic techniques provided information on particle size, morphology, and chemical composition. Sea spray aerosol (SSA) and organic aerosol (OA) particles were the most commonly observed particle types, and sulfate was internally mixed with both SSA and OA. Evidence of multiphase sea spray aerosol reactions was observed, with varying degrees of chlorine depletion observed along the cruise. Notably, atmospherically processed SSA, completely depleted in chlorine, and internally mixed organic and sulfate particles, were observed in samples influenced by the central Arctic Ocean. Changes in particle composition due to fog processing were also investigated. Due to the changing aerosol sources and atmospheric processes in the Arctic region, it is crucial to understand aerosol composition in order to predict climate impacts.
Continental land cover classification using meteorological satellite data
NASA Technical Reports Server (NTRS)
Tucker, C. J.; Townshend, J. R. G.; Goff, T. E.
1983-01-01
The use of the National Oceanic and Atmospheric Administration's advanced very high resolution radiometer satellite data for classifying land cover and monitoring of vegetation dynamics over an extremely large area is demonstrated for the continent of Africa. Data from 17 imaging periods of 21 consecutive days each were composited by a technique sensitive to the in situ green-leaf biomass to provide cloud-free imagery for the whole continent. Virtually cloud-free images were obtainable even for equatorial areas. Seasonal variation in the density and extent of green leaf vegetation corresponded to the patterns of rainfall associated with the inter-tropical convergence zone. Regional variations, such as the 1982 drought in east Africa, were also observed. Integration of the weekly satellite data with respect to time produced a remotely sensed assessment of biological activity based upon density and duration of green-leaf biomass. Two of the 21-day composited data sets were used to produce a general land cover classification. The resultant land cover distributions correspond well to those of existing maps.
On the Detection and Characterization of Polluted White Dwarfs
NASA Astrophysics Data System (ADS)
Steele, Amy; Debes, John H.; Deming, Drake
2017-06-01
There is evidence of circumstellar material around main sequence, giant, and white dwarf stars. What happens to this material after the main sequence? With this work, we focus on the characterization of the material around WD 1145+017. The goals are to monitor the white dwarf—which has a transiting, disintegrating planetesimal and determine the composition of the evaporated material for that same white dwarf by looking at high-resolution spectra. We also present preliminary results of follow-up photometric observations of known polluted WDs. If rocky bodies survive red giant branch evolution, then the material raining down on a WD atmosphere is a direct probe of main sequence cosmochemistry. If rocky bodies do not survive the evolution, then this informs the degree of post-main-sequence processing. These case studies will provide the community with further insight about debris disk modeling, the degree of post-main-sequence processing of circumstellar material, and the composition of a disintegrating planetesimal.
NASA Astrophysics Data System (ADS)
Buskop, J.; Joseph, E. P.; Inguaggiato, S.; Varekamp, J. C.; Ku, T.
2017-12-01
The major goals of volcano hydrothermal monitoring are to obtain information on temperature, origin, and changes in chemical composition of volcanic fluids. This data contributes to the baseline geochemical monitoring of volcanic activity and informs on potential volcanic hazards to which the public may be exposed. The origins of hydrothermal fluids are diverse and can be magmatic, crustal and atmospheric. Studies of isotopes, inert gases, and thermodynamic calculations help elucidate the origin in each case and determine provenance of volatiles and a re-evaluation of reservoir temperatures. Sulphur isotope ratio (δ34S) for H2S leached from rock is <0 ‰, of magmatic origin = 0‰ and of marine origin >0 ‰. Low δ15N (-7.3 ‰) is indicative of low sediment addition to source magmas, while high δ15N (+2.1 ‰) indicates greater sediment contribution in magma formation. Baseline monitoring of hydrothermal gases of Dominica for the period 2000 - 2006 show compositions typical of those found in arc-type settings, with N2 excess and low amounts of He and Ar. The dry gas is dominated by CO2 (ranging from 492 to 993 mmol/mol), and has a hydrothermal signature with hydrogen sulphide as the main sulphurous gas. Over the past decade, Dominica has experienced volcanic and tectonic seismicity and a sudden draining episode at the Boiling Lake in November 2016. This study evaluates data obtained in 2017 on gas composition from five (5) hydrothermal areas across the island (Valley of Desolation, Sulphur Spring, Watten Waven, Galion and Penville cold Soufriere) to determine temporal and spatial deviations from baseline geochemical conditions. This study also presents new data, obtained in 2017, on sulphur and nitrogen isotopes to evaluate contributions from various source components. Preliminary results show high CH4/CO2 ratios for gases from Sulphur Springs and Galion, indicative of a significant hydrothermal contribution to these fluids. However, high helium isotope compositions of 7.02 R/Ra signify a clear magmatic origin. This is consistent with the previously established baseline chemistry of the hydrothermal systems on Dominica.
NASA Astrophysics Data System (ADS)
He, M.; Hardin, D. M.; Goodman, M.; Blakeslee, R.
2008-05-01
The Real Time Mission Monitor (RTMM) is an interactive visualization application based on Google Earth, that provides situational awareness and field asset management during NASA field campaigns. The RTMM can integrate data and imagery from numerous sources including GOES-12, GOES-10, and TRMM satellites. Simultaneously, it can display data and imagery from surface observations including Nexrad, NPOL and SMART- R radars. In addition to all these it can display output from models and real-time flight tracks of all aircraft involved in the experiment. In some instances the RTMM can also display measurements from scientific instruments as they are being flown. All data are recorded and archived in an on-line system enabling playback and review of all sorties. This is invaluable in preparing for future deployments and in exercising case studies. The RTMM facilitates pre-flight planning, in-flight monitoring, development of adaptive flight strategies and post- flight data analyses and assessments. Since the RTMM is available via the internet - during the actual experiment - project managers, scientists and mission planners can collaborate no matter where they are located as long as they have a viable internet connection. In addition, the system is open so that the general public can also view the experiment, in-progress, with Google Earth. Predecessors of RTMM were originally deployed in 2002 as part of the Altus Cumulus Electrification Study (ACES) to monitor uninhabited aerial vehicles near thunderstorms. In 2005 an interactive Java-based web prototype supported the airborne Lightning Instrument Package (LIP) during the Tropical Cloud Systems and Processes (TCSP) experiment. In 2006 the technology was adapted to the 3D Google Earth virtual globe and in 2007 its capabilities were extended to support multiple NASA aircraft (ER-2, WB-57, DC-8) during Tropical Composition, Clouds and Climate Coupling (TC4) experiment and 2007 Summer Aerosonde field study. In April 2008 the RTMM will be flown in the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment to study the atmospheric composition in the Arctic.
Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks
NASA Astrophysics Data System (ADS)
Avice, G.; Marty, B.; Burgess, R.; Hofmann, A.; Philippot, P.; Zahnle, K.; Zakharov, D.
2018-07-01
We have analyzed ancient atmospheric gases trapped in fluid inclusions contained in minerals of Archean (3.3 Ga) to Paleozoic (404 Ma) rocks in an attempt to document the evolution of the elemental composition and isotopic signature of the atmosphere with time. Doing so, we aimed at understanding how physical and chemical processes acted over geological time to shape the modern atmosphere. Modern atmospheric xenon is enriched in heavy isotopes by 30-40‰ u-1 relative to Solar or Chondritic xenon. Previous studies demonstrated that, 3.3 Ga ago, atmospheric xenon was isotopically fractionated (enriched in the light isotopes) relative to the modern atmosphere, by 12.9 ± 1.2 (1σ) ‰ u-1, whereas krypton was isotopically identical to modern atmospheric Kr. Details about the specific and progressive isotopic fractionation of Xe during the Archean, originally proposed by Pujol et al. (2011), are now well established by this work. Xe isotope fractionation has evolved from 21‰ u-1 at 3.5 Ga to 12.9‰ u-1 at 3.3 Ga. The current dataset provides some evidence for stabilization of the Xe fractionation between 3.3 and 2.7 Ga. However, further studies will be needed to confirm this observation. After 2.7 Ga, the composition kept evolving and reach the modern-like atmospheric Xe composition at around 2.1 Ga ago. Xenon may be the second atmospheric element, after sulfur, to show a secular isotope evolution during the Archean that ended shortly after the Archean-Proterozoic transition. Fractionation of xenon indicates that xenon escaped from Earth, probably as an ion, and that Xe escape stopped when the atmosphere became oxygen-rich. We speculate that the Xe escape was enabled by a vigorous hydrogen escape on the early anoxic Earth. Organic hazes, scavenging isotopically heavy Xe, could also have played a role in the evolution of atmospheric Xe. For 3.3 Ga-old samples, Ar-N2 correlations are consistent with a partial pressure of nitrogen (pN2) in the Archean atmosphere similar to, or lower than, the modern one, thus requiring other processes than a high pN2 to keep the Earth's surface warm despite a fainter Sun. The nitrogen isotope composition of the atmosphere at 3.3 Ga was already modern-like, attesting to inefficient nitrogen escape to space since that time.
Argentinean outdoor test facility for mirrors
NASA Astrophysics Data System (ADS)
Medina, M. C.; Dipold, J.; García, B.; Mansilla, A.; Maya, J.; Rasztocky, E.; de Souza, V.; Larrarte, J. J.; Benitez, M.
2015-08-01
The Cherenkov Telescope Array (CTA) is planned to be an Observatory for very high energy -ray astronomy and will consist of several tens of telescopes which account for a reflective surface of more than 10000 m. These mirrors will be formed by a set of reflective facets. Different technological solutions, for a fast and cost efficient production of light-weight mirror facets are under test inside the CTA Consortium. Most of them involve composite structures whose behavior under real observing conditions is not yet fully tested. An outdoor test facility has been built in one of the former candidate sites for CTA, in Argentina (San Antonio de los Cobres [SAC], 3600 m a.s.l) in order to monitor the optical and mechanical properties of these facets exposed to the local atmospheric conditions for a given period of time. Four prototype mirrors built with different technologies have been installed and have been monitored for 6 months. In this work we present the preliminary results of this characterization.
NASA Astrophysics Data System (ADS)
Méndez, Alexis
2017-06-01
Over the last few years, fiber optic sensors (FOS) have seen an increased acceptance and widespread use in industrial sensing and in structural monitoring in civil, aerospace, marine, oil & gas, composites and other applications. One of the most prevalent types in use today are fiber Bragg grating (FBG) sensors. Historically, FOS have been an attractive solution because of their EM immunity and suitability for use in harsh environments and rugged applications with extreme temperatures, radiation exposure, EM fields, high voltages, water contact, flammable atmospheres, or other hazards. FBG sensors have demonstrated that can operate reliably in many different harsh environment applications but proper type and fabrication process are needed, along with suitable packaging and installation procedure. In this paper, we review the impact that external factors and environmental conditions play on FBG's performance and reliability, and describe the appropriate sensor types and protection requirements suitable for a variety of harsh environment applications in industrial furnaces, cryogenic coolers, nuclear plants, maritime vessels, oil & gas wells, aerospace crafts, automobiles, and others.
Remote Sensing of Air Pollution from Geo with GEMS and TEMPO
NASA Astrophysics Data System (ADS)
Lasnik, J.; Nicks, D. K., Jr.; Baker, B.; Canova, B.; Chance, K.; Liu, X.; Suleiman, R. M.; Pennington, W. F.; Flittner, D. E.; Al-Saadi, J. A.; Rosenbaum, D. M.
2017-12-01
The Geostationary Environmental Monitoring System (GEMS) and Tropospheric Emissions: Monitoring of Pollution (TEMPO) instruments will provide a new capability for the understanding of air quality and pollution. Ball Aerospace is the instrument developer. The GEMS and TEMPO instruments use well-proven remote sensing techniques and take advantage of a geostationary orbit to take hourly measurements of the same geographical area. The high spatial and temporal resolution of these instruments will allow for measurements of the complex diurnal cycle of pollution driven by the combination of photochemistry, chemical composition and the dynamic nature of the atmosphere. Status of the manufacturing, test and calibration efforts will be presented.The GEMS instrument is being built for the Korea Aerospace Research Institute and their customer the National Institute of Environmental Research (NIER). The TEMPO instrument is being built for NASA under the Earth Venture Instrument EVI Program. NASA Langley Research Center (LaRC) is the managing center and the Principle Investigator (PI) is Kelly Chance of the Smithsonian Astrophysical Observatory (SAO).
Ramos, M.; Vieira, G.; Blanco, J.J.; Hauck, C.; Hidalgo, M.A.; Tome, D.; Nevers, M.; Trindade, A.
2007-01-01
This paper describes results obtained from scientific work and experiments performed on Livingston and Deception Islands. Located in the South Shetland Archipelago, these islands have been some of the most sensitive regions over the last 50 years with respect to climate change with a Mean Annual Air Temperature (MAAT) close to -2 ºC. Three Circumpolar Active Layer Monitoring (CALM) sites were installed to record the thermal regime and the behaviour of the active layer in different places with similar climate, but with different soil composition, porosity, and water content. The study’s ultimate aim is to document the influence of climate change on permafrost degradation. Preliminary results, obtained in 2006, on maximum active-layer thickness (around 40 cm in the CALM of Deception Island), active layer temperature evolution, snow thickness, and air temperatures permit early characterization of energy exchange mechanisms between the ground and the atmosphere in the CALM-S sites.
Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...
Atmospheres and evolution. [of microbial life on earth
NASA Technical Reports Server (NTRS)
Margulis, L.; Lovelock, J. E.
1981-01-01
Studies concerning the regulation of the earth atmosphere and the relation of atmospheric changes to the evolution of microbial life are reviewed. The improbable nature of the composition of the earth atmosphere in light of the atmospheric compositions of Mars and Venus and equilibrium considerations is pointed out, and evidence for the existence of microbial (procaryotic) life on earth as far back as 3.5 billion years ago is presented. The emergence of eucaryotic life in the Phanerozoic due to evolving symbioses between different procaryotic species is discussed with examples given of present-day symbiotic relationships between bacteria and eucaryotes. The idea that atmospheric gases are kept in balance mainly by the actions of bacterial cells is then considered, and it is argued that species diversity is necessary for the maintenance and origin of life on earth in its present form.
Simulation and Comparison of Martian Surface Ionization Radiation
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Zeitlin, Cary; Hassler, Donald M.; Cucinotta, Francis A.
2013-01-01
The spectrum of energetic particle radiation and corresponding doses at the surface of Mars is being characterized by the Radiation Assessment Detector (RAD), one of ten science instruments on the Mars Science Laboratory (MSL) Curiosity Rover. The time series of dose rate for the first 300 Sols after landing on Mars on August 6, 2012 is presented here. For the comparison to RAD measurements of dose rate, Martian surface ionization radiation is simulated by utilizing observed space quantities. The GCR primary radiation spectrum is calculated by using the Badhwar-O'Neill 2011 (BO11) galactic cosmic ray (GCR) model, which has been developed by utilizing all balloon and satellite GCR measurements since 1955 and the newer 1997-2012 Advanced Composition Explorer (ACE) measurements. In the BO11 model, solar modulation of the GCR primary radiation spectrum is described in terms of the international smoothed sunspot number and a time delay function. For the transport of the impingent GCR primary radiation through Mars atmosphere, a vertical distribution of atmospheric thickness at each elevation is calculated using the vertical profiles of atmospheric temperature and pressure made by Mars Global Surveyor measurements. At Gale Crater in the southern hemisphere, the seasonal variation of atmospheric thickness is accounted for the daily atmospheric pressure measurements of the MSL Rover Environmental Monitoring Station (REMS) by using low- and high-density models for cool- and warm-season, respectively. The spherically distributed atmospheric distance is traced along the slant path, and the resultant directional shielding by Martian atmosphere is coupled with Curiosity vehicle for dose estimates. We present predictions of dose rate and comparison to the RAD measurements. The simulation agrees to within +/- 20% with the RAD measurements showing clearly the variation of dose rate by heliospheric conditions, and presenting the sensitivity of dose rate by atmospheric pressure, which has been found from the RAD experiments and driven by thermal tides on Martian surface.
Gas chromatographic concepts for the analysis of planetary atmospheres
NASA Technical Reports Server (NTRS)
Valentin, J. R.; Cullers, D. K.; Hall, K. W.; Krekorian, R. L.; Phillips, J. B.
1991-01-01
Over the last few years, new gas chromatographic (GC) concepts were developed for use on board spacecraft or any other restricted environments for determining the chemical composition of the atmosphere and surface material of various planetary bodies. Future NASA Missions include an entry probe that will be sent to Titan and various spacecraft that will land on Mars. In order to be able to properly respond to the mission science requirements and physical restrictions imposed on the instruments by these missions, GC analytical techniques are being developed. Some of these techniques include hardware and mathematical techniques that will improve GC sensitivity and increase the sampling rate of a GC descending through a planetary atmosphere. The technique of Multiplex Gas Chromatography (MGC) is an example of a technique that was studied in a simulated Titan atmosphere. In such an environment, the atmospheric pressure at instrument deployment is estimated to be a few torr. Thus, at such pressures, the small amount of sample that is acquired might not be enough to satisfy the detection requirements of the gas chromatograph. In MGC, many samples are pseudo-randomly introduced to the chromatograph without regard to elution of preceding components. The resulting data is then reduced using mathematical techniques such as cross-correlation of Fourier Transforms. Advantages realized from this technique include: improvement in detection limits of several orders of magnitude and increase in the number of analyses that can be conducted in a given period of time. Results proving the application of MGC at very low pressures emulating the same atmospheric pressures that a Titan Probe will encounter when the instruments are deployed are presented. The sample used contained hydrocarbons that are expected to be found in Titan's atmosphere. In addition, a new selective modulator was developed to monitor water under Martian atmospheric conditions. Since this modulator is selective only to water, the need for a GC column is eliminated. This results in further simplification of the instrument.
2004-03-10
KENNEDY SPACE CENTER, FLA. - Dan Phillips (left) and Donald Nielen, with United Space Alliance, watch a monitor as Jim Landy, NDE specialist with USA, prepares to examine a Reinforced Carbon Carbon panel (on the table, center) using flash thermography. A relatively new procedure at KSC, thermography uses high intensity light to heat areas of the panels. The panels are then immediately scanned with an infrared camera. As the panels cool, any internal flaws are revealed. The gray carbon composite RCC panels are attached to the leading edge of the wing of the orbiters. They have sufficient strength to withstand the aerodynamic forces experienced during launch and reentry, which can reach as high as 800 pounds per square foot. The operating range of RCC is from minus 250º F to about 3,000º F, the temperature produced by friction with the atmosphere during reentry. The panels will be installed on the orbiter Discovery, designated for the first Return to Flight mission, STS-114.
NASA Astrophysics Data System (ADS)
Sanchez-Murillo, Ricardo; Welsh, Kristin; Birkel, Christian; Esquivel-Hernández, Germain; Corrales-Salazar, Jose; Boll, Jan; Brooks, Erin; Roupsard, Olivier; Katchan, Irina; Arce-Mesén, Rafael; Soulsby, Chris; Araguás-Araguás, Luis
2015-04-01
Costa Rica is located on the Central American Isthmus, which receives direct moisture inputs from the Caribbean Sea and the Pacific Ocean. The relatively narrow, but high relief Central American land bridge is characterized by unique mountainous and lowland microclimates. However, only limited knowledge exists about the impact of relief and regional atmospheric circulation patterns on precipitation origin, transport, and isotopic composition in this tropical region. Therefore, the main scope of this study is to identify the key drivers controlling variations in meteoric waters of Costa Rica using stable isotopes based on daily sample collection for the year 2013. The monitoring sites comprise three strategic locations across Costa Rica: Heredia (Central Valley), Turrialba (Caribbean slope), and Caño Seco (South Pacific slope). Sporadic dry season rain is mostly related to isolated enriched events ranging from -5.8‰ d18O up to -0.9‰ d18O. By mid-May, the Intertropical Convergence Zone reaches Costa Rica resulting in a notable depletion in isotope ratios (up to -18.5‰ d18O). HYSPLIT back air mass trajectories indicate the strong influence on the origin and transport of precipitation of two main moisture transport mechanisms, the Caribbean Low Level Jet and the Colombian Low Level Jet as well as localized convection events. Multiple linear regression models constructed based on Random Forests of surface meteorological information and atmospheric sounding profiles suggest that Lifted Condensation Level and surface relative humidity are the main factors controlling isotopic variations. These findings diverge from the recognized 'amount effect' in monthly composite samples across the tropics. Understanding of stable isotope dynamics in tropical precipitation can be used to enhance catchment and groundwater modeling efforts in ungauged basins where scarcity of long-term monitoring data drastically limit current and future water resources management.
[Quantitative estimation source of urban atmospheric CO2 by carbon isotope composition].
Liu, Wei; Wei, Nan-Nan; Wang, Guang-Hua; Yao, Jian; Zeng, You-Shi; Fan, Xue-Bo; Geng, Yan-Hong; Li, Yan
2012-04-01
To effectively reduce urban carbon emissions and verify the effectiveness of currently project for urban carbon emission reduction, quantitative estimation sources of urban atmospheric CO2 correctly is necessary. Since little fractionation of carbon isotope exists in the transportation from pollution sources to the receptor, the carbon isotope composition can be used for source apportionment. In the present study, a method was established to quantitatively estimate the source of urban atmospheric CO2 by the carbon isotope composition. Both diurnal and height variations of concentrations of CO2 derived from biomass, vehicle exhaust and coal burning were further determined for atmospheric CO2 in Jiading district of Shanghai. Biomass-derived CO2 accounts for the largest portion of atmospheric CO2. The concentrations of CO2 derived from the coal burning are larger in the night-time (00:00, 04:00 and 20:00) than in the daytime (08:00, 12:00 and 16:00), and increase with the increase of height. Those derived from the vehicle exhaust decrease with the height increase. The diurnal and height variations of sources reflect the emission and transport characteristics of atmospheric CO2 in Jiading district of Shanghai.
Investigating the Martian Ionospheric Conductivity Using MAVEN Key Parameter Data
NASA Astrophysics Data System (ADS)
Aleryani, O.; Raftery, C. L.; Fillingim, M. O.; Fogle, A. L.; Dunn, P.; McFadden, J. P.; Connerney, J. E. P.; Mahaffy, P. R.; Ergun, R. E.; Andersson, L.
2015-12-01
Since the Viking orbiters and landers in 1976, the Martian atmospheric composition has scarcely been investigated. New data from the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, launched in 2013, allows for a thorough study of the electrically conductive nature of the Martian ionosphere. Determinations of the electrical conductivity will be made using in-situ atmospheric and ionospheric measurements, rather than scientific models for the first time. The objective of this project is to calculate the conductivity of the Martian atmosphere, whenever possible, throughout the trajectory of the MAVEN spacecraft. MAVEN instrumentation used includes the Neutral Gas and Ion Mass Spectrometer (NGIMS) for neutral species density, the Suprathermal and Thermal Ion Compositions (STATIC) for ion composition, temperature and density, the Magnetometer (MAG) for the magnetic field strength and the Langmuir Probe and Waves (LPW) for electron temperature and density. MAVEN key parameter data are used for these calculations. We compare our results with previous, model-based estimates of the conductivity. These results will allow us to quantify the flow of atmospheric electric currents which can be analyzed further for a deeper understanding of the Martian ionospheric electrodynamics, bringing us closer to understanding the mystery of the loss of the Martian atmosphere.
Finding Atmospheric Composition (AC) Metadata
NASA Technical Reports Server (NTRS)
Strub, Richard F..; Falke, Stefan; Fiakowski, Ed; Kempler, Steve; Lynnes, Chris; Goussev, Oleg
2015-01-01
The Atmospheric Composition Portal (ACP) is an aggregator and curator of information related to remotely sensed atmospheric composition data and analysis. It uses existing tools and technologies and, where needed, enhances those capabilities to provide interoperable access, tools, and contextual guidance for scientists and value-adding organizations using remotely sensed atmospheric composition data. The initial focus is on Essential Climate Variables identified by the Global Climate Observing System CH4, CO, CO2, NO2, O3, SO2 and aerosols. This poster addresses our efforts in building the ACP Data Table, an interface to help discover and understand remotely sensed data that are related to atmospheric composition science and applications. We harvested GCMD, CWIC, GEOSS metadata catalogs using machine to machine technologies - OpenSearch, Web Services. We also manually investigated the plethora of CEOS data providers portals and other catalogs where that data might be aggregated. This poster is our experience of the excellence, variety, and challenges we encountered.Conclusions:1.The significant benefits that the major catalogs provide are their machine to machine tools like OpenSearch and Web Services rather than any GUI usability improvements due to the large amount of data in their catalog.2.There is a trend at the large catalogs towards simulating small data provider portals through advanced services. 3.Populating metadata catalogs using ISO19115 is too complex for users to do in a consistent way, difficult to parse visually or with XML libraries, and too complex for Java XML binders like CASTOR.4.The ability to search for Ids first and then for data (GCMD and ECHO) is better for machine to machine operations rather than the timeouts experienced when returning the entire metadata entry at once. 5.Metadata harvest and export activities between the major catalogs has led to a significant amount of duplication. (This is currently being addressed) 6.Most (if not all) Earth science atmospheric composition data providers store a reference to their data at GCMD.
Automated Atmospheric Composition Dataset Level Metadata Discovery. Difficulties and Surprises
NASA Astrophysics Data System (ADS)
Strub, R. F.; Falke, S. R.; Kempler, S.; Fialkowski, E.; Goussev, O.; Lynnes, C.
2015-12-01
The Atmospheric Composition Portal (ACP) is an aggregator and curator of information related to remotely sensed atmospheric composition data and analysis. It uses existing tools and technologies and, where needed, enhances those capabilities to provide interoperable access, tools, and contextual guidance for scientists and value-adding organizations using remotely sensed atmospheric composition data. The initial focus is on Essential Climate Variables identified by the Global Climate Observing System - CH4, CO, CO2, NO2, O3, SO2 and aerosols. This poster addresses our efforts in building the ACP Data Table, an interface to help discover and understand remotely sensed data that are related to atmospheric composition science and applications. We harvested GCMD, CWIC, GEOSS metadata catalogs using machine to machine technologies - OpenSearch, Web Services. We also manually investigated the plethora of CEOS data providers portals and other catalogs where that data might be aggregated. This poster is our experience of the excellence, variety, and challenges we encountered.Conclusions:1.The significant benefits that the major catalogs provide are their machine to machine tools like OpenSearch and Web Services rather than any GUI usability improvements due to the large amount of data in their catalog.2.There is a trend at the large catalogs towards simulating small data provider portals through advanced services. 3.Populating metadata catalogs using ISO19115 is too complex for users to do in a consistent way, difficult to parse visually or with XML libraries, and too complex for Java XML binders like CASTOR.4.The ability to search for Ids first and then for data (GCMD and ECHO) is better for machine to machine operations rather than the timeouts experienced when returning the entire metadata entry at once. 5.Metadata harvest and export activities between the major catalogs has led to a significant amount of duplication. (This is currently being addressed) 6.Most (if not all) Earth science atmospheric composition data providers store a reference to their data at GCMD.
Direct Detection of Polarized, Scattered Light from Exoplanets
NASA Astrophysics Data System (ADS)
Laughlin, Gregory
We propose to radically advance the state of exoplanet characterization, which lags dramatically behind exoplanet discovery. We propose to directly detect scattered light from the atmospheres of close-in, highly eccentric, and extended/non-spherical exoplanets and thereby determine the following: orbital inclination (and therefore masses free of the M sin i mass ambiguity), geometric albedo, presence or lack of hazes and cloud layers, and scattering particle size and composition. Such measurements are crucial to the understanding of exoplanet atmospheres, because observations with NASA s Hubble, Spitzer, and Kepler space telescopes present the following questions: 1) Do exoplanets have highly reflective haze layers? 2) How does the upper atmospheric composition differ between exoplanets with and without thermal inversions? 3) What are the optical manifestations of the extreme heating of highly eccentric exoplanets? 4) Are the atmospheres of certain exoplanets truly escaping their Roche lobes? Using the POLISH2 polarimeter developed by the Postdoctoral Associate (Wiktorowicz) for the Lick 3-m telescope, we propose to monitor the linear polarization state of exoplanet host stars at the part per million level. POLISH2 consistently delivers nearly photon shot noise limited measurements with this precision. In addition, the simultaneous full-Stokes measurements of POLISH2 and the equatorial mount of the Lick 3-m telescope ensure that systematic effects are mitigated to the part per million level. Indeed, we find the accuracy of the POLISH2 polarimeter to be 0.1 parts per million. This instrument and telescope represent the highest precision polarimeter in the world for exoplanet research. We present potential detection of polarized, scattered light from the HD 189733b, Tau Boo b, and WASP-12b exoplanets. We propose to observe hot Jupiters on circular orbits, highly eccentric exoplanets, exoplanets with extended or non-spherical scattering surfaces, and 55 Cnc e, the super-Earth with the highest expected polarimetric signal-to- noise ratio. These exoplanets should all produce detectable polarization, and they present unique opportunities to study the atmospheres of wildly different exoplanets. Extending the PI s (Laughlin) Monte Carlo ray-tracing code, and utilizing the Co-I s (Fortney) experience in modeling exoplanet atmospheres, we propose to fund a graduate student to model the polarization data obtained from POLISH2 and invert the above variables. This is because they affect the amplitude and shape of the periodic variability in the polarization state of light from the system. Indeed, the discovery of spherical, sulfuric acid droplets suspended in the Venusian atmosphere was made forty years ago with Mie scattering models to fit polarimetric measurements. The PI s ray-tracing code, which has been used to model the rapid heating of the eccentric HD 80606b exoplanet, currently includes Rayleigh scattering and alkali metal absorption in a self-consistent manner. The direct detection of exoplanets as well as characterization of their atmospheric compositions and structure is directly related to the goals of the Origins program and to the NASA 2010 Science Plan, which emphasizes exploration of exoplanets and exoplanetary systems.
NASA Technical Reports Server (NTRS)
Swickrath, Michael J.; Anderson, Molly; McMillin, Summer; Boerman, Craig
2011-01-01
Monitoring carbon dioxide (CO2) concentration within a spacecraft or spacesuit is critically important to ensuring the safety of the crew. Carbon dioxide uniquely absorbs light at wavelengths of 3.95 micrometers and 4.26 micrometers. As a result, non-dispersive infrared (NDIR) spectroscopy can be employed as a reliable and inexpensive method for the quantification of CO2 within the atmosphere. A multitude of commercial-off-the-shelf (COTS) NDIR sensors exist for CO2 quantification. The COTS sensors provide reasonable accuracy so long as the measurements are attained under conditions close to the calibration conditions of the sensor (typically 21.1 C and 1 atm). However, as pressure deviates from atmospheric to the pressures associated with a spacecraft (8.0-10.2 PSIA) or spacesuit (4.1-8.0 PSIA), the error in the measurement grows increasingly large. In addition to pressure and temperature dependencies, the infrared transmissivity through a volume of gas also depends on the composition of the gas. As the composition is not known a priori, accurate sub-ambient detection must rely on iterative sensor compensation techniques. This manuscript describes the development of recursive compensation algorithms for sub-ambient detection of CO2 with COTS NDIR sensors. In addition, the basis of the exponential loss in accuracy is developed theoretically considering thermal, Doppler, and Lorentz broadening effects which arise as a result of the temperature, pressure, and composition of the gas mixture under analysis. As a result, this manuscript provides an approach to employing COTS sensors at sub-ambient conditions and may also lend insight into designing future NDIR sensors for aerospace application.
NASA Astrophysics Data System (ADS)
Zas, Enrique
2018-01-01
The overall picture of the highest energy particles produced in the Universe is changing because of measurements made with the Pierre Auger Observatory. Composition studies of cosmic rays point towards an unexpected mixed composition of intermediate mass nuclei, more isotropic than anticipated, which is reshaping the future of the field and underlining the priority to understand composition at the highest energies. The Observatory is competitive in the search for neutrinos of all flavors above about 100 PeV by looking for very inclined showers produced deep in the atmosphere by neutrinos interacting either in the atmosphere or in the Earth's crust. It covers a large field of view between -85° and 60° declination in equatorial coordinates. Neutrinos are expected because of the existence of ultra high energy cosmic rays. They provide valuable complementary information, their fluxes being sensitive to the primary cosmic ray masses and their directions reflecting the source positions. We report the results of the neutrino search providing competitive bounds to neutrino production and strong constraints to a number of production models including cosmogenic neutrinos due to ultra high energy protons. We also report on two recent contributions of the Observatory to multimessenger studies by searching for correlations of neutrinos both with cosmic rays and with gravitational waves. The correlations of the directions of the highest energy astrophysical neutrinos discovered with IceCube with the highest energy cosmic rays detected with the Auger Observatory and the Telescope Array revealed an excess that is not statistically significant and is being monitored. The targeted search for neutrinos correlated with the discovery of the gravitational wave events GW150914 and GW151226 with advanced LIGO has led to the first bounds on the energy emitted by black hole mergers in Ultra-High Energy Neutrinos.
NASA Astrophysics Data System (ADS)
Noone, D.; Galewsky, J.; Sharp, Z.; Worden, J.
2008-12-01
The isotopic composition of water vapor (2H/1H and 18O/16 ratios) provides unique information on the transport pathways that link the water sources to regional sinks, and thus proves useful in understanding the large scale humidity budgets. Recent advances in measurement technology allow the monitoring of water vapor isotope composition in ways which has can revolutionize investigations of atmospheric hydrology. Traditional measurement of isotopic composition requires trapping of samples with either large volume vacuum flasks or by trapping liquid samples with cryogens for later analyses using mass spectrometry, and are laborious and seldom span more than just short dedicated observational periods. On the other hand, laser absorption spectroscopy can provide almost continuous and autonomous in situ measurements of isotope abundances with precision almost that of traditional mass spectrometry, and observations from spacecraft can make almost daily maps of the global isotope distributions. In October of 2008 three laser based spectrometers were deployed at the Mauna Loa Laboratory in Hawaii to make continuous measurement of the 2H and 18O abundance of free tropospheric water vapor. These results are compared with traditional measurements and with measurements from two satellite platforms. While providing field validation of the new methodologies, the data show variability which captures the transport processes in the region. The data are used to characterize the role of large scale mixing of dry air, the influence of the boundary layer and the importance of moist convection in controlling the low humidity of subtropical air near Hawaii. Although the record is short, it demonstrates the usefulness of using robust isotope measurements to understand the budgets of the most important greenhouse gas. This work motivates establishing a continuous record of isotopes measurement at baseline sites, like Mauna Loa, such that the changes in water cycle can be understood and monitored as climate changes.
NASA Astrophysics Data System (ADS)
Zolotov, Mikhail
2018-01-01
Chemical and phase compositions of Venus's surface could reflect history of gas- and fluid-rock interactions, recent and past climate changes, and a loss of water from the Earth's sister planet. The concept of chemical weathering on Venus through gas-solid type reactions has been established in 1960s after the discovery of hot and dense CO2-rich atmosphere inferred from Earth-based and Mariner 2 radio emission data. Initial works suggested carbonation, hydration, and oxidation of exposed igneous rocks and a control (buffering) of atmospheric gases by solid-gas type chemical equilibria in the near-surface lithosphere. Calcite, quartz, wollastonite, amphiboles, and Fe oxides were considered likely secondary minerals. Since the late 1970s, measurements of trace gases in the sub-cloud atmosphere by Pioneer Venus and Venera entry probes and Earth-based infrared spectroscopy doubted the likelihood of hydration and carbonation. The H2O gas content appeared to be low to allow a stable existence of hydrated and a majority of OH-bearing minerals. The concentration of SO2 was too high to allow the stability of calcite and Ca-rich silicates with respect to sulfatization to CaSO4. In 1980s, the supposed ongoing consumption of atmospheric SO2 to sulfates gained support by the detection of an elevated bulk S content at Venera and Vega landing sites. The induced composition of the near-surface atmosphere implied oxidation of ferrous minerals to magnetite and hematite, consistent with the infrared reflectance of surface materials. The likelihood of sulfatization and oxidation has been illustrated in modeling experiments at simulated Venus conditions. Venus's surface morphology suggests that hot surface rocks and fines of mainly mafic composition contacted atmospheric gases during several hundreds of millions years since a global volcanic resurfacing. Some exposed materials could have reacted at higher and lower temperatures in a presence of diverse gases at different altitudinal, volcanic, impact, and atmospheric settings. On highly deformed tessera terrains, more ancient rocks of unknown composition could reflect interactions with putative water-rich atmospheres and even aqueous solutions. Salt-, Fe oxide, or silica-rich formations would indicate past aqueous processes. The apparent diversity of affected solids, surface temperatures, pressures, and gas/fluid compositions throughout Venus's history implies multiple signs of chemical alteration, which remain to be investigated. The current understanding of chemical weathering is limited by the uncertain composition of the deep atmosphere, by the lack of direct data on the phase composition of surface materials, and by the uncertain data on thermodynamics of minerals and their solid solutions. In the preparation for further entry probe and lander missions, rock alteration needs to be investigated through chemical kinetic experiments and calculations of solid-gas(fluid) equilibria to constrain past and present processes.
Impacts of Species Interactions on Atmospheric Processes
NASA Astrophysics Data System (ADS)
Lerdau, M.; Wang, B.; Cook, B.; Neu, J. L.; Schimel, D.
2016-12-01
The current fascination with interactions between air quality and ecosystems began over 60 years ago with the discovery by Arie Haagen-Smit and colleagues that organic carbon emissions from plants play a role in ozone formation. In the seven decades since, thanks to biochemical and physiological studies of these emissions, their biosynthetic pathways and short-term flux-regulation mechanisms are now well understood. This `metabolic' approach has been invaluable for developing models of VOC emissions and atmospheric oxidant dynamics that function on local spatial scales over time intervals of minutes to days, but it has been of limited value for predicting emissions across larger spatial and temporal scales. This limited success arises in large part from the species-specific nature of volatile organic carbon production by plants. Each plant species produces certain volatile compounds but not others, so predicting emissions through time requires consideration of plant species composition. As the plant species composition of an ecosystem changes through time, so too do its VOC emissions. When VOC impacts on the atmosphere influence species composition by altering inter-specific interactions, there exists the possibility for feedbacks among emissions, atmospheric chemistry, higher order ecological processes such as competition & pollination, and species composition. For example, previous work has demonstrated that VOC emissions may affect ozone, which, in turn, alters competition among trees species, and current efforts suggest that plant reproductive success may be mediated by ozone impacts on floral signals. These changes in ecological processes alter the species composition and future VOC emissions from ecosystems. We present empirical and simulated data demonstrating that biological diversity may be affected by VOC impacts on the atmosphere and that these diversity changes may, in turn, alter the emissions of VOC's and other photochemically active compounds to the atmosphere. We propose a general framework for considering higher order ecological interactions in models of biosphere/atmosphere exchange and air quality. We also demonstrate that secular trends in the global environment, e.g., anthropogenic warming, may alter these interactions and subsequent VOC emissions.
NASA Astrophysics Data System (ADS)
Nastan, A.; Diner, D. J.
2017-12-01
Epidemiological studies have demonstrated convincingly that airborne particulate matter has a major impact on human health, particularly in urban areas. However, providing an accurate picture of the health effects of various particle mixtures — distinguished by size, shape, and composition — is difficult due to the constraints of currently available measurement tools and the heterogeneity of atmospheric chemistry and human activities over space and time. The Multi-Angle Imager for Aerosols (MAIA) investigation, currently in development as part of NASA's Earth Venture Instrument Program, will address this issue through a powerful combination of technologies and informatics. Atmospheric measurements collected by the MAIA satellite instrument featuring multiangle and innovative polarimetric imaging capabilities will be combined with available ground monitor data and a chemical transport model to produce maps of speciated particulate matter at 1 km spatial resolution for a selected set of globally distributed cities. The MAIA investigation is also original in integrating data providers (atmospheric scientists), data users (epidemiologists), and stakeholders (public health experts) into a multidisciplinary science team that will tailor the observation and analysis strategy within each target area to improve our understanding of the linkages between different particle types and adverse human health outcomes.
Quality changes of fresh-cut kohlrabi sticks under modified atmosphere packaging.
Escalona, V H; Aguayo, E; Artés, F
2007-06-01
The aim of this study was to determine the effect of different gas compositions on quality attributes and shelf life of kohlrabi sticks stored in modified atmosphere up to 14 d at 0 degrees C. Two commercial films were tested: oriented polypropylene (OPP) and amide-polyethylene (amide-PE). As a control, a microperforated OPP film was used. In order to study the changes in metabolic activity by minimal processing, the respiration rate and ethylene production at 0 degrees C were monitored for both intact stems and sticks. Changes in color, chemical parameters, sugars and organic acid contents, and sensorial quality of kohlrabi sticks were evaluated. An initial ethylene production of sticks was 13-fold higher than that of intact stems; meanwhile CO(2) production was 2-fold higher. However after 4 d of storage, a similar respiration rate for stems and sticks was found. Also the ethylene production of sticks and stems was steady around 15 to 20 nL/kg(/)h after 10 d. Kohlrabi sticks showed a little change in chemical parameters and very low weight losses during cold storage. Sticks under an equilibrium atmosphere of 7 kPa O(2) and 9 kPa CO(2) at 0 degrees C reached by amide-PE kept an acceptable sensorial quality for 14 d.
NASA Astrophysics Data System (ADS)
Sánchez de la Campa, A. M.; de la Rosa, J. D.
2014-12-01
A temporal series study of atmospheric aerosol was performed over the last ten years (2003-2012) in an urban background monitoring station with ceramic industrial influence, in Bailén, SE Spain. Temporal trends of major and minor chemical components of PM10 for a long term data series were investigated, showing that PM10 concentrations have been steadily decreasing over almost a decade, with a statistical significance. Measurements indicate a reduction of elements and components related to the industrial activity of brick-ceramic production (V, Cd, Rb, La, Cr, Ni, As, Pb and SO42-). Conversely, Cu levels define an increasing trend from the beginning of the study period but with the highest step trend since 2011-2012, coinciding with the beginning of the financial and economic crisis in 2008. A similar time evolution pattern of Cu and OC, EC, and K levels may be a tracer of domestic local combustion source, and a new biomass burning source has been identified. Chemical composition of olive tree logs suggest as the combustion of wood with high concentration of Cu can imply an increase of Cu concentration in the atmospheric particles compared with other sources such as traffic.
Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki
2014-01-01
No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric 137Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12–23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric 137Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models. PMID:25335435
Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2
NASA Astrophysics Data System (ADS)
Nikokavoura, Aspasia; Trapalis, Christos
2017-01-01
The increased concentration of CO2 in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the "Anthropogenic Greenhouse Effect" and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO2 atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO2 concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO2 reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C3N4 composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO2 and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.
40 CFR 60.105 - Monitoring of emissions and operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...
40 CFR 60.105 - Monitoring of emissions and operations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...
40 CFR 60.105 - Monitoring of emissions and operations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...
40 CFR 60.105 - Monitoring of emissions and operations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...
40 CFR 60.105 - Monitoring of emissions and operations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... liquid or solid fossil-fuels and the hours of operation during which liquid or solid fossil-fuels are... the atmosphere. The instrument shall be spanned at 60, 70, or 80 percent opacity. (2) For fluid... monitoring and recording the concentration by volume (dry basis) of CO emissions into the atmosphere, except...
Contributions of Organic Sources to Atmospheric Aerosol Particle Concentrations and Growth
NASA Astrophysics Data System (ADS)
Russell, L. M.
2017-12-01
Organic molecules are important contributors to aerosol particle mass and number concentrations through primary emissions as well as secondary growth in the atmosphere. New techniques for measuring organic aerosol components in atmospheric particles have improved measurements of this contribution in the last 20 years, including Scanning Transmission X-ray Microscopy Near Edge X-ray Absorption Fine Structure (STXM-NEXAFS), Fourier Transform Infrared spectroscopy (FTIR), and High-Resolution Aerosol Mass Spectrometry (AMS). STXM-NEXAFS individual aerosol particle composition illustrated the variety of morphology of organic components in marine aerosols, the inherent relationships between organic composition and shape, and the links between atmospheric aerosol composition and particles produced in smog chambers. This type of single particle microscopy has also added to size distribution measurements by providing evidence of how surface-controlled and bulk-controlled processes contribute to the growth of particles in the atmosphere. FTIR analysis of organic functional groups are sufficient to distinguish combustion, marine, and terrestrial organic particle sources and to show that each of those types of sources has a surprisingly similar organic functional group composition over four different oceans and four different continents. Augmenting the limited sampling of these off-line techniques with side-by-side inter-comparisons to online AMS provides complementary composition information and consistent quantitative attribution to sources (despite some clear method differences). Single-particle AMS techniques using light scattering and event trigger modes have now also characterized the types of particles found in urban, marine, and ship emission aerosols. Most recently, by combining with off-line techniques, single particle composition measurements have separated and quantified the contributions of organic, sulfate and salt components from ocean biogenic and sea spray emissions to particles, addressing the persistent question of the sources of cloud condensation nuclei in clean marine conditions.
Operational trace gas column observations from GOME-2 on MetOp
NASA Astrophysics Data System (ADS)
Valks, Pieter; Hao, Nan; Pinardi, Gaia; Hedelt, Pascal; Liu, Song; Van Roozendael, Michel; De Smedt, Isabelle; Theys, Nicolas; Koukouli, MariLiza; Balis, Dimitris
2017-04-01
This contribution focuses on the operational GOME-2 trace gas column products developed in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Composition Monitoring (AC-SAF). We present an overview of the retrieval algorithms for ozone, OClO, NO2, SO2 and formaldehyde, and we show examples of various applications such as air quality and climate monitoring, using observations from the GOME-2 instruments on MetOp-A and MetOp-B. Total ozone and the minor trace gas columns from GOME-2 are retrieved with the latest version 4.8 of the GOME Data Processor (GDP), which uses an optimized Differential Optical Absorption Spectroscopy (DOAS) algorithm, with air mass factor conversions based on the LIDORT model. Improved total and tropospheric NO2 columns are retrieved in the visible wavelength region between 425 and 497 nm. SO2 emissions from volcanic and anthropogenic sources can be measured by GOME-2 using the UV wavelength region around 320 nm. For formaldehyde, an optimal DOAS fitting window around 335 nm has been determined for GOME-2. The GOME-2 trace gas columns have reached the operational EUMETSAT product status, and are available to the users in near real time (within two hours after sensing by GOME-2). The use of trace gas observations from the GOME-2 instruments on MetOp-A and MetOp-B for air quality purposed will be illustrated, e.g. for South-East Asia and Europe. Furthermore, comparisons of the GOME-2 satellite observations with ground-based measurements will be shown. Finally, the use of GOME-2 trace-gas column data in the Copernicus Atmosphere Monitoring Service (CAMS) will be presented.
2010-2011 Performance of the AirNow Satellite Data Processor
NASA Astrophysics Data System (ADS)
Pasch, A. N.; DeWinter, J. L.; Haderman, M. D.; van Donkelaar, A.; Martin, R. V.; Szykman, J.; White, J. E.; Dickerson, P.; Zahn, P. H.; Dye, T. S.
2012-12-01
The U.S. Environmental Protection Agency's (EPA) AirNow program provides maps of real time hourly Air Quality Index (AQI) conditions and daily AQI forecasts nationwide (http://www.airnow.gov). The public uses these maps to make health-based decisions. The usefulness of the AirNow air quality maps depends on the accuracy and spatial coverage of air quality measurements. Currently, the maps use only ground-based measurements, which have significant gaps in coverage in some parts of the United States. As a result, contoured AQI levels have high uncertainty in regions far from monitors. To improve the usefulness of air quality maps, scientists at EPA, Dalhousie University, and Sonoma Technology, Inc. have been working in collaboration with the National Aeronautics and Space Administration (NASA) and the National Oceanic and Atmospheric Administration (NOAA) to incorporate satellite-estimated surface PM2.5 concentrations into the maps via the AirNow Satellite Data Processor (ASDP). These satellite estimates are derived using NASA/NOAA satellite aerosol optical depth (AOD) retrievals and GEOS-Chem modeled ratios of surface PM2.5 concentrations to AOD. GEOS-Chem is a three-dimensional chemical transport model for atmospheric composition driven by meteorological input from the Goddard Earth Observing System (GOES). The ASDP can fuse multiple PM2.5 concentration data sets to generate AQI maps with improved spatial coverage. The goal of ASDP is to provide more detailed AQI information in monitor-sparse locations and augment monitor-dense locations with more information. We will present a statistical analysis for 2010-2011 of the ASDP predictions of PM2.5 focusing on performance at validation sites. In addition, we will present several case studies evaluating the ASDP's performance for multiple regions and seasons, focusing specifically on days when large spatial gradients in AQI and wildfire smoke impact were observed.
NASA Astrophysics Data System (ADS)
Kashulina, G. M.
2018-04-01
The results of landscape monitoring of the concentrations of acid-extractable Ni, Cu, Co, Mn, and Zn in soils of the local impact zone of the Severonikel industrial complex on the Kola Peninsula are discussed. The aim of monitoring studies was to reveal the spatial and temporal regularities of variation in the degree of soil contamination by heavy metals. In 2001-2011, the concentrations of acid-extractable compounds of the elements in the upper part of organic soil horizons around this plant exceeded their background concentrations by two orders of magnitude for Cu and Co and by three orders of magnitude for Ni. The degree of topsoil contamination with Ni, Cu, and Co generally corresponded to the distance of the plots from the contamination source and to the modern technogenic load. However, because of the long period of the emissions, their extreme amounts, and complex composition, indirect factors—the degree of technogenic soil degradation, the loss of soil organic matter, saturation of the surface soil layers by the contaminating metals, and competitive relationships between the elements—also affect soil contamination level. The concentrations of all the studied metals in the topsoil are characterized by considerable (1.5 to 7 times) variability in their long-term dynamics. The most important factors of this variability for Ni, Cu, and Co are the organic matter content of the samples and the amount of atmospheric precipitation in the year preceding the sampling. An inverse relationship between element concentrations in the soils and the amount of atmospheric precipitation attests to the dynamic nature and reversible character of the accumulation of heavy metals in the soils.
The Thermal Emission and Albedo of Super-Earths with Flat Transmission Spectra
NASA Astrophysics Data System (ADS)
Morley, Caroline; Fortney, Jonathan; Marley, Mark
2014-11-01
Vast resources have been dedicated to characterizing the handful of planets with radii between Earth’s and Neptune’s that are accessible to current telescopes. Observations of their transmission spectra have been inconclusive and do not constrain the atmospheric composition. Here, we present a path forward for understanding this class of small planets: by understanding the thermal emission and reflectivity of small planets, we can break these degeneracies and constrain the atmospheric composition. Of the ~four small planets studied to date, all have radii in the near-IR consistent with being constant in wavelength. This suggests either that these planets all have higher mean molecular weight atmospheres than expected for hydrogen-dominated bulk compositions, or that the atmospheres of small planets are consistently enshrouded in thick hazes and clouds. For the particularly well-studied planet GJ 1214b, the measurements made using HST/WFC3 can rule out atmospheres with high mean molecular weights, leaving clouds as the sole explanation for the flat transmission spectrum. We showed in Morley et al. 2013 that these clouds and hazes can be made of salts and sulfides, which condense in the upper atmosphere of a cool H-rich atmosphere like GJ 1214b, or made of photochemical hazes such as soots, which result from methane photodissociation and subsequent carbon chemistry. Here, we explore how clouds thick enough to obscure the transmission spectrum change both thermal emission spectra and albedo spectra. These observations are complementary to transmission spectra measurements. Thermal emission probes deeper layers of the atmosphere, potentially below the high haze layer obscuring the transmission spectra; albedo spectra probe reflected starlight largely from the cloud particles themselves. Crucially, these complementary observations of planets with flat transmission spectra may allow us to break the degeneracies between cloud materials, cloud height and longitude, and bulk composition of the atmosphere. We make predictions for the observability of known planets for current and future telescopes.
The Thermal Emission and Albedo of Super-Earths with Flat Transmission Spectra
NASA Astrophysics Data System (ADS)
Morley, Caroline; Fortney, Jonathan J.; Marley, Mark
2015-01-01
Vast resources have been dedicated to characterizing the handful of planets with radii between Earth's and Neptune's that are accessible to current telescopes. Observations of their transmission spectra have been inconclusive and do not constrain the atmospheric composition. Here, we present a path forward for understanding this class of small planets: by understanding the thermal emission and reflectivity of small planets, we can break these degeneracies and constrain the atmospheric composition.Of the ~five small planets studied to date, four have radii in the near-IR consistent with being constant in wavelength. This suggests either that these planets all have higher mean molecular weight atmospheres than expected for hydrogen-dominated bulk compositions, or that the atmospheres of small planets are consistently enshrouded in thick hazes and clouds. For the particularly well-studied planet GJ 1214b, the measurements made using HST/WFC3 can rule out atmospheres with high mean molecular weights, leaving clouds as the sole explanation for the flat transmission spectrum. We showed in Morley et al. 2013 that these clouds and hazes can be made of salts and sulfides, which condense in the upper atmosphere of a cool H-rich atmosphere like GJ 1214b, or made of photochemical hazes such as soots, which result from methane photodissociation and subsequent carbon chemistry. Here, we explore how clouds thick enough to obscure the transmission spectrum change both thermal emission spectra and albedo spectra. These observations are complementary to transmission spectra measurements. Thermal emission probes deeper layers of the atmosphere, potentially below the high haze layer obscuring the transmission spectra; albedo spectra probe reflected starlight largely from the cloud particles themselves. Crucially, these complementary observations of planets with flat transmission spectra may allow us to break the degeneracies between cloud materials, cloud height and longitude, and bulk composition of the atmosphere. We make predictions for the observability of known planets for current and future telescopes.
What measurements tell us about air composition and emissions in three US oil and gas fields
NASA Astrophysics Data System (ADS)
Petron, G.; Miller, B. R.; Montzka, S. A.; Dlugokencky, E. J.; Kofler, J.; Sweeney, C.; Karion, A.; Frost, G. J.; Helmig, D.; Hueber, J.; Schnell, R. C.; Conley, S. A.; Tans, P. P.
2013-12-01
In 2012 and 2013, the NOAA Global Monitoring Division and several collaborators conducted intensive airborne and ground campaigns in three US oil and gas plays to study emissions of methane and surface ozone precursors. In this presentation we will focus on the multiple species analysis in discrete air samples collected with the NOAA Mobile Laboratory (ML) and the light aircraft in the Uinta Basin (Utah), Denver Julesburg Basin (Colorado) and Barnett Shale (Texas). Hydrocarbon ratios in samples collected with the ML downwind of specific sources show significantly more variability than the aircraft samples. These surface samples provide some useful information about the composition of various sources in each region. Ratios of the non-methane hydrocarbons on the ground and higher in the boundary layer show some differences between the plays, which could be explained by the different composition of the raw gas being produced or by different mixes of sources contributions. Understanding the speciation of atmospheric emissions is critical to identify emission vectors and to assess their potential air quality and climate impacts. Our measurement results will be compared with data from other studies, including emission inventories.
Faure, Alice; Bruzzese, Laurie; Steinberg, Jean-Guillaume; Jammes, Yves; Torrents, Julia; Berdah, Stephane V; Garnier, Emmanuelle; Legris, Tristan; Loundou, Anderson; Chalopin, Matthieu; Magalon, Guy; Guieu, Regis; Fenouillet, Emmanuel; Lechevallier, Eric
2016-02-04
In kidney transplantation, the conditions of organ preservation following removal influence function recovery. Current static preservation procedures are generally based on immersion in a cold-storage solution used under atmospheric air (approximately 78 kPa N2, 21 kPa O2, 1 kPa Ar). Research on static cold-preservation solutions has stalled, and modifying the gas composition of the storage medium for improving preservation was considered. Organoprotective strategies successfully used noble gases and we addressed here the effects of argon and xenon on graft preservation in an established preclinical pig model of autotransplantation. The preservation solution Celsior saturated with pure argon (Argon-Celsior) or xenon (Xenon-Celsior) at atmospheric pressure was tested versus Celsior saturated with atmospheric air (Air-Celsior). The left kidney was removed, and Air-Celsior (n = 8 pigs), Argon-Celsior (n = 8) or Xenon-Celsior (n = 6) was used at 4 °C to flush and store the transplant for 30 h, a duration that induced ischemic injury in our model when Air-Celsior was used. Heterotopic autotransplantation and contralateral nephrectomy were performed. Animals were followed for 21 days. The use of Argon-Celsior vs. Air-Celsior: (1) improved function recovery as monitored via creatinine clearance, the fraction of excreted sodium and tubulopathy duration; (2) enabled diuresis recovery 2-3 days earlier; (3) improved survival (7/8 vs. 3/8 pigs survived at postoperative day-21); (4) decreased tubular necrosis, interstitial fibrosis, apoptosis and inflammation, and preserved tissue structures as observed after the natural death/euthanasia; (5) stimulated plasma antioxidant defences during the days following transplantation as shown by monitoring the "reduced ascorbic acid/thiobarbituric acid reactive substances" ratio and Hsp27 expression; (6) limited the inflammatory response as shown by expression of TNF-alpha, IL1-beta and IL6 as observed after the natural death/euthanasia. Conversely, Xenon-Celsior was detrimental, no animal surviving by day-8 in a context where functional recovery, renal tissue properties and the antioxidant and inflammation responses were significantly altered. Thus, the positive effects of argon were not attributable to the noble gases as a group. The saturation of Celsior with argon improved early functional recovery, graft quality and survival. Manipulating the gas composition of a preservation medium constitutes therefore a promising approach to improve preservation.
Infrasound: Connecting the Solid Earth, Oceans, and Atmosphere
NASA Astrophysics Data System (ADS)
Hedlin, M. A. H.; Walker, K.; Drob, D. P.; de Groot-Hedlin, C. D.
2012-05-01
The recently reinvigorated field of infrasonics is poised to provide insight into atmospheric structure and the physics of large atmospheric phenomena, just as seismology has shed considerable light on the workings and structure of Earth's solid interior. Although a natural tool to monitor the atmosphere and shallow Earth for nuclear explosions, it is becoming increasingly apparent that infrasound also provides another means to monitor a suite of natural hazards. The frequent observation of geophysical sources—such as the unsteady sea surface, volcanoes, and earthquakes—that radiate energy both up into the atmosphere and down into the liquid or solid Earth and transmission of energy across Earth's boundaries reminds us that Earth is an interconnected system. This review details the rich history of the unheard sound in the atmosphere and the role that infrasonics plays in helping us understand the Earth system.
Atmospheric monitoring and model applications at the Pierre Auger Observatory
NASA Astrophysics Data System (ADS)
Keilhauer, Bianca
2015-03-01
The Pierre Auger Observatory detects high-energy cosmic rays with energies above ˜1017 eV. It is built as a multi-hybrid detector measuring extensive air showers with different techniques. For the reconstruction of extensive air showers, the atmospheric conditions at the site of the Observatory have to be known quite well. This is particularly true for reconstructions based on data obtained by the fluorescence technique. For these data, not only the weather conditions near ground are relevant, most important are altitude-dependent atmospheric profiles. The Pierre Auger Observatory has set up a dedicated atmospheric monitoring programme at the site in the Mendoza province, Argentina. Beyond this, exploratory studies were performed in Colorado, USA, for possible installations in the northern hemisphere. In recent years, the atmospheric monitoring programme at the Pierre Auger Observatory was supplemented by applying data from atmospheric models. Both GDAS and HYSPLIT are developments by the US weather department NOAA and the data are freely available. GDAS is a global model of the atmospheric state parameters on a 1 degree geographical grid, based on real-time measurements and numeric weather predictions, providing a full altitude-dependent data set every 3 hours. HYSPLIT is a powerful tool to track the movement of air masses at various heights, and with it the aerosols. Combining local measurements of the atmospheric state variables and aerosol scattering with the given model data, advanced studies about atmospheric conditions can be performed and high precision air shower reconstructions are achieved.
NASA Astrophysics Data System (ADS)
Satar, Ece; Nyfeler, Peter; Pascale, Céline; Niederhauser, Bernhard; Leuenberger, Markus
2017-04-01
Long term atmospheric monitoring of trace gases requires great attention to precision and accuracy of the measurement setups. For globally integrated and well established greenhouse gas observation networks, the World Meteorological Organization (WMO) has set recommended compatibility goals within the framework of its Global Atmosphere Watch (GAW) Programme [1]. To achieve these challenging limits, the measurement systems are regularly calibrated with standard gases of known composition. Therefore, the stability of the primary and secondary gas standards over time is an essential issue. Past studies have explained the small instabilities in high pressure standard gas cylinders through leakage, diffusion, regulator effects, gravimetric fractionation and surface processes [2, 3]. The latter include adsorption/desorption, which are functions of temperature, pressure and surface properties. For high pressure standard gas mixtures used in atmospheric trace gas analysis, there exists only a limited amount of data and few attempts to quantify the surface processes [4, 5]. Specifically, we have designed a high pressure measurement chamber to investigate trace gases and their affinity for adsorption on different surfaces over various temperature and pressure ranges. Here, we focus on measurements of CO2, CH4 and CO using a cavity ring down spectroscopy analyzer and quantify the concentration changes due to adsorption/desorption. In this study, the first results from these prototype cylinders of steel and aluminum will be presented. References [1] World Meteorological Organization (WMO), Global Atmosphere Watch.(GAW): Report No. 229, 18th WMO/IAEA Meeting on Carbon Dioxide, Other Greenhouse Gases and Related Tracers Measurement Techniques (GGMT-2015), 2016. [2] Keeling, R. F., Manning, A. C., Paplawsky, W. J., and Cox, A. C.: On the long-term stability of reference gases for atmospheric O2 /N2 and CO2 measurements, Tellus B, 59, 10.3402/tellusb.v59i1.16964, 2007. [3] Langenfelds, R. L., van der Schoot, M. V., Francey, R. J., Steele, L. P., Schmidt, M., and Mukai, H.: Modification of air standard composition by diffusive and surface processes, Journal of Geophysical Research: Atmospheres, 110, n/a-n/a, 10.1029/2004JD005482, 2005. [4] Leuenberger, M. C., Schibig, M. F., and Nyfeler, P.: Gas adsorption and desorption effects on cylinders and their importance for long-term gas records, Atmos. Meas. Tech., 8, 5289-5299, 10.5194/amt-8-5289-2015, 2015 [5] Miller, W. R., Rhoderick, G. C., and Guenther, F. R.: Investigating Adsorption/Desorption of Carbon Dioxide in Aluminum Compressed Gas Cylinders, Analytical Chemistry, 87, 1957-1962, 10.1021/ac504351b, 2015.
Chemical vapor deposition of sialon
Landingham, Richard L.; Casey, Alton W.
1982-01-01
A laminated composite and a method for forming the composite by chemical vapor deposition. The composite includes a layer of sialon and a material to which the layer is bonded. The method includes the steps of exposing a surface of the material to an ammonia containing atmosphere; heating the surface to at least about 1200.degree. C.; and impinging a gas containing in a flowing atmosphere of air N.sub.2, SiCl.sub.4, and AlCl.sub.3 on the surface.
Thundat, Thomas G.; Wachter, Eric A.
1998-01-01
An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere.
Thundat, T.G.; Wachter, E.A.
1998-02-17
An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere. 16 figs.
Kong, Deguo; MacLeod, Matthew; Hung, Hayley; Cousins, Ian T
2014-11-04
During recent decades concentrations of persistent organic pollutants (POPs) in the atmosphere have been monitored at multiple stations worldwide. We used three statistical methods to analyze a total of 748 time series of selected POPs in the atmosphere to determine if there are statistically significant reductions in levels of POPs that have had control actions enacted to restrict or eliminate manufacture, use and emissions. Significant decreasing trends were identified in 560 (75%) of the 748 time series collected from the Arctic, North America, and Europe, indicating that the atmospheric concentrations of these POPs are generally decreasing, consistent with the overall effectiveness of emission control actions. Statistically significant trends in synthetic time series could be reliably identified with the improved Mann-Kendall (iMK) test and the digital filtration (DF) technique in time series longer than 5 years. The temporal trends of new (or emerging) POPs in the atmosphere are often unclear because time series are too short. A statistical detrending method based on the iMK test was not able to identify abrupt changes in the rates of decline of atmospheric POP concentrations encoded into synthetic time series.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E.
Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, themore » comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.« less
Titan's Atmospheric Composition from Observations by the Cassini Infrared Spectrometer
NASA Technical Reports Server (NTRS)
Abbas, M. M.; LeClair, A.; Flasar, F. M.; Kunde, V. G.; Conrath, B. J.; Coustenis, A.; Jennings, D. J.; Nixon, C. A.; Brasunas, J.; Achterberg, R. K.
2006-01-01
The Composite Infrared Spectrometer (CIRS) aboard the Cassini spacecraft has been making observations during the fly-bys of Titan since the Saturn-Orbit-Insertion in July 2004. The observations provide infrared them1 emission spectra of Titan s atmosphere in three spectral channels covering the 10/cm to 1400/cm spectral region, with variable spectral resolutions of 0.53/cm and 2.8/cm. The uniquely observed spectra exhibit rotational and vibrational-rotational spectral lines of the molecular constituents of Titan s atmosphere that may be analyzed to retrieve information about the composition, thermal structure, and physical and dynamical processes in the remotely sensed atmosphere. We present an analysis of Titan's infrared spectra observed during July 2004 (TO), December 2004 (Tb) and February 2005 (T3), for retrieval of the stratospheric thermal structure, distribution of the hydrocarbons, nitriles, and oxygen bearing constituents, such as C2H2, C2H4, C2H6, C3H8, HCN, HC3N, CO, and CO2 . Preliminary results on the distribution and opacity of haze in Titan s atmosphere are discussed.
NASA Astrophysics Data System (ADS)
Repasky, K. S.; Hoffman, D. S.; Reagan, J. A.; Carlsten, J.
2010-12-01
Aerosols are an important constituent in atmospheric composition affecting climate, weather, and air quality. Active remote sensing instruments provide tools for in-situ studies of atmospheric aerosols that can help understand the role of aerosols on the radiative forcing of the climate system. In this paper, the design and initial performance of a high spectral resolution lidar (HSRL) based on a unique confocal cavity for optically filtering the aerosol and molecular returns is presented. An injection seeded pulsed Nd:YAG laser with a fundamental and frequency doubled output is used as the laser transmitter for the HSRL. A small portion of fiber coupled injection seeded signal at 1064 nm is split before the laser oscillator and, after modulation using an acousto-optic modulator, is used to produce a discriminating signal for locking a confocal cavity that is resonant at the 1064 and 532 nm wavelengths to the injection seeded source. Light scattered in the atmosphere is collected using a commercial telescope. After the telescope, the 1064 nm light is split from the 532 nm light using a dielectric mirror with the 1064 nm light monitored using a PMT. The 532 nm light is launched into a multimode fiber. The output from the fiber is next incident on a beamsplitter with part of the light sent to a PMT to monitor the total return for the 532 nm channel. The light that passes through the beamsplitter is mode matched into a confocal optical cavity that allows the light scattered by the atmospheric aerosols to be transmitted while the light scattered from the atmospheric molecules is reflected. The transmitted light from the aerosol scattering is incident on a PMT while the reflected molecular signal is incident on a PMT. The transmission of the confocal cavity is monitored before and after the data collection using a continuous wave frequency doubled Nd:YAG laser that is fiber coupled. Data is collected and processed in the following manner. Each of the four voltage signals from the PMT’s are monitored using a high speed A/D card. The inversion of the 1064 nm return signal is completed using the Fernald inversion technique with the additional constraint of the aerosol optical depth. The HSRL 532 nm signal is inverted using a Rayleigh backscatter model along with the inversion techniques described by Shipley et al. (Applied Optics, V22, N23, 3716-3724, 1983) and Sroga et al. (Applied Optics, V22, N23, 3725-3732, 1983). This presentation will focus on the design of the confocal optical filter, the locking of the confocal optical filter to the laser transmitter, and the performance of the high spectral resolution channel at 532 nm. Data will be presented showing the molecular returns, the aerosol returns and the range resolved lidar ratio.
Early Results from TROPOMI on the Copernicus Sentinel 5 Precursor
NASA Astrophysics Data System (ADS)
Veefkind, J. P.; Kleipool, Q.; Ludewig, A.; Stein-Zweers, D.; Aben, I.; De Vries, J.; Loyola, D. G.; Nett, H.; Richter, A.; Van Roozendael, M.; Siddans, R.; Wagner, T.; Dehn, A.; Zehner, C.; Levelt, P.
2017-12-01
The Copernicus Sentinel 5 Precursor (S5P) is the first of the European Sentinels satellites dedicated to monitoring of the atmospheric composition. S5P is planned for launch in the 3rd quarter of 2017. The mission objectives of S5P are to monitor air quality, climate and the ozone layer, in the time period between 2017 and 2023. S5P will fly in a Sun-synchronized polar orbit with a 13:30 hr local equator crossing time. The single payload of the S5P mission is TROPOspheric Monitoring Instrument (TROPOMI), which is developed by The Netherlands in cooperation with the European Space Agency (ESA). TROPOMI is a nadir viewing shortwave spectrometer that measures in the UV-visible wavelength range (267-499 nm), the near infrared (661-775 nm) and the shortwave infrared (2300-2389 nm). With a spatial resolution of better than 7x7 km2 at nadir and almost 20 million measurements per day, TROPOMI will be a major step forward compared to its predecessors OMI (Ozone Monitoring Instrument) and SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric Chartography). The spatial resolution is combined with a wide swath to allow for daily global coverage. The TROPOMI/S5P geophysical (Level 2) operational data products include nitrogen dioxide, carbon monoxide, ozone (total column, tropospheric column & profile), methane, sulfur dioxide, formaldehyde and aerosol and cloud parameters. The S5P will fly in a so-called loose formation with the U.S. Suomi NPP (National Polar-orbiting Partnership) satellite. The primary objective for this formation flying is to use the cloud clearing capabilities of the VIIRS (Visible Infrared Imager Radiometer Suite). The temporal separation between TROPOMI and VIIRS will be less than 5 minutes. Once this formation has been established, it will enable synergistic data products and scientific research potentials.
One step process for producing dense aluminum nitride and composites thereof
Holt, J.B.; Kingman, D.D.; Bianchini, G.M.
1989-10-31
A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1,000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.
NASA Technical Reports Server (NTRS)
Zipf, E. C., Jr.
1974-01-01
Results obtained by rocket-borne optical spectrometry are presented. Composition measurements and auroral studies are reported. The production of N (D-2) atoms by photo-absorption processes, and by electron impact excitation of N2 are discussed along with vibrationally excited CO2(+) ions in planetary atmospheres.
One step process for producing dense aluminum nitride and composites thereof
Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.
1989-01-01
A one step combustion process for the synthesis of dense aluminum nitride compositions is disclosed. The process comprises igniting pure aluminum powder in a nitrogen atmosphere at a pressure of about 1000 atmospheres or higher. The process enables the production of aluminum nitride bodies to be formed directly in a mold of any desired shape.
Photochemistry in Terrestrial Exoplanet Atmospheres. I. Photochemistry Model and Benchmark Cases
NASA Astrophysics Data System (ADS)
Hu, Renyu; Seager, Sara; Bains, William
2012-12-01
We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH4 and CO2) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO2-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the benchmark atmospheres for quickly assessing the lifetime of trace gases in reducing, weakly oxidizing, and highly oxidizing atmospheres on terrestrial exoplanets for the exploration of possible biosignature gases.
Ambient air monitoring of Beijing MSW logistics facilities in 2006.
Li, Chun-Ping; Li, Guo-Xue; Luo, Yi-Ming; Li, Yan-Fu
2008-11-01
In China, "green" integrated waste management methods are being implemented in response to environmental concerns. We measured the air quality at several municipal solid waste (MSW) sites to provide information for the incorporation of logistics facilities within the current integrated waste management system. We monitored ambient air quality at eight MSW collecting stations, five transfer stations, one composting plant, and five disposal sites in Beijing during April 2006. Composite air samples were collected and analyzed for levels of odor, ammonia (NH3), hydrogen sulfide (H2S), total suspended particles (TSPs), carbon monoxide (CO), sulfur dioxide (SO2), and nitrogen dioxide (NO2). The results of our atmospheric monitoring demonstrated that although CO and SO2 were within acceptable emission levels according to ambient standards, levels of H2S, TSP, and NO2 in the ambient air at most MSW logistics facilities far exceeded ambient limits established for China. The primary pollutants in the ambient air at Beijing MSW logistics facilities were H2S, TSPs, NO2, and odor. To improve current environmental conditions at MSW logistics facilities, the Chinese government encourages the separation of biogenic waste from MSW at the source.
Hydrologic and geochemical monitoring in Long Valley Caldera, Mono County, California, 1985
Farrar, C.D.; Sorey, M.L.; Rojstaczer, S.A.; Janik, C.J.; Winnett, T.L.; Clark, M.D.
1987-01-01
Hydrologic and geochemical monitoring, to detect changes caused by magmatic and tectonic processes in the Long Valley caldera has continued through 1985. The monitoring included the collection of the following types of data: chemical and isotopic composition of water and gases from springs, wells, and steam vents; temperatures in wells, springs, and steam vents; flow rates of springs and streams; water levels in wells; and barometric pressure and precipitation at several sites. In addition, reservoir temperatures for the geothermal system were estimated from computations based on chemical geothermometers applied to fluid samples from wells and springs. Estimates of thermal water discharged from springs were made on the basis of boron and chloride fluxes in surface waters for selected sites in the Casa Diablo area and along the Mammoth-Hot Creek drainage. These data are presented in tables and graphs. The Long Valley area was relatively quiescent throughout 1985 in terms of geodetic changes and seismic activity. As a consequence , the hydrologic system varied mainly in response to seasonal influences of temperature, atmospheric pressure, and precipitation. However, spring flows near Casa Diablo were influenced by pumping at the geothermal production well field nearby. (Author 's abstract)
NASA Astrophysics Data System (ADS)
Watson, T.; Sullivan, T.
2013-05-01
The levels of CO2 in the atmosphere have been growing since the beginning of the industrial revolution. The current level is 391 ppm. If there are no efforts to mitigate CO2 emissions, the levels will rise to 750 ppm by 2100. Geologic carbon sequestration is one strategy that may be used to begin to reduce emissions. Sequestration will not be effective unless reservoir leak rates are significantly less than 1%. There must be rigorous monitoring protocols in place to ensure sequestration projects meet regulatory and environmental goals. Monitoring for CO2 leakage directly is difficult because of the large background levels and variability of CO2 in the atmosphere. Using tracers to tag the sequestered CO2 can mitigate some of the difficulties of direct measurement but a tracer monitoring network and the levels of tagging need to be carefully designed. Simple diffusion and dispersion models are used to predict the surface and atmospheric concentrations that would be seen by a network monitoring a sequestration site. Levels of tracer necessary to detect leaks from 0.01 to 1% are presented and suggestions for effective monitoring and protection of global tracer utility are presented.
Burns, Douglas A.
2002-01-01
The Rocky Mountain region of Colorado and southern Wyoming receives as much as 7 kilograms per hectare per year ((kg/ha)/yr) of atmospheric nitrogen (N) deposition, an amount that may have caused changes in aquatic and terrestrial life in otherwise pristine ecosystems. The Rocky Mountain National Park, in its role of protecting air-quality related values under provisions of the Clean Air Act Amendments of 1977, has provided support for this synthesis and critical assessment of published literature on the effects of atmospheric N deposition. Results from published studies indicate a long-term increase in the rate of atmospheric N deposition during the 20th century, but no region-wide increase during the past 2 decades, although the rate of atmospheric N deposition has increased at three sites east of the Continental Divide in the Front Range region since the mid-1980s. Much of the increase in atmospheric N deposition at all three sites has resulted from an increase in the ammonium concentrations of wet deposition; this suggests an increase in contributions from agricultural areas or from vehicle traffic east of the Rocky Mountains. Lakes at two study sites in the Front Range (Loch Vale and Green Lakes Valley) had NO3- concentrations of 30 to 40 micromoles per liter (µmol/L) during early spring snowmelt and remained at 5 to 10 µmol/L during summer. Retention of N in atmospheric wet deposition in some sub-catchments of these lakes was less than 50 percent, which reflects an advanced stage of N saturation. Nitrate concentrations in surface waters west of the Continental Divide were lower—often less than 10 µmol/L during snowmelt and less than 2 µmol/L during summer -- than surface waters east of the Divide, except in areas such as the Mt. Zirkel Wilderness that receive elevated amounts of atmospheric N deposition of 4 to 5 (kg/ha)/yr. Atmospheric N deposition in the Front Range east of the Divide may have altered the composition of alpine tundra-plant communities and lake diatoms, but additional studies would be needed to definitively demonstrate the hypothesized cause-and-effect relations. Rates of N-mineralization and nitrification in soils of the Front Range have increased in response to increased atmospheric N deposition. Projected future population growth and energy use in Colorado and the west increase the likelihood that the subtle effects of atmospheric N deposition now evident in the Front Range will become more pronounced and widespread in the future. The likelihood of future increased N emissions along the Front Range warrants a continuation of existing long-term precipitation and surface-water chemistry monitoring programs, and an expansion of the networks into areas that receive large amounts of atmospheric N deposition, but currently lack adequate monitoring. Long-term study and expanded sampling are needed to address uncertainties about the effects of atmospheric N deposition on terrestrial plant communities, nutrient limitation in lake plankton, shifts of dominant species within diatom communities, and on amphibian response to episodic surface-water acidification.
NASA Astrophysics Data System (ADS)
Salameh, Thérèse; Borbon, Agnès; Afif, Charbel; Sauvage, Stéphane; Leonardis, Thierry; Gaimoz, Cécile; Locoge, Nadine
2017-01-01
The relative importance of eastern Mediterranean emissions is suspected to be largely underestimated compared to other regions worldwide. Here we use detailed speciated measurements of volatile organic compounds (VOCs) to evaluate the spatial heterogeneity of VOC urban emission composition and the consistency of regional and global emission inventories downscaled to Lebanon (European Monitoring and Evaluation Programme, EMEP; Atmospheric Chemistry and Climate Model Intercomparison Project, ACCMIP; and MACCity, Monitoring Atmospheric Composition and Climate and megaCITY Zoom for the Environment). The assessment was conducted through the comparison of the emission ratios (ERs) extracted from the emission inventories to the ones obtained from the hourly observations collected at a suburban site in Beirut, Lebanon, during summer and winter ECOCEM (Emissions and Chemistry of Organic Carbon in the Eastern Mediterranean) campaigns. The observed ERs were calculated using two independent methods. ER values from both methods agree very well and are comparable to the ones of the road transport sector from near-field measurements for more than 80 % of the species. There is no significant seasonality in ER for more than 90 % of the species, unlike the seasonality usually observed in other cities worldwide. Regardless of the season, ERs agree within a factor of 2 between Beirut and other representative cities worldwide, except for the unburned fuel fraction and ethane. ERs of aromatics (except benzene) are higher in Beirut compared to northern post-industrialized countries and even the Middle Eastern city Mecca. The comparison of the observed ER to the ones extracted from the ACCMIP and MACCity global emission inventories suggests that the overall speciation of anthropogenic sources for major hydrocarbons that act as ozone and secondary organic aerosol (SOA) precursors in ACCMIP is better represented than other species. The comparison of the specific road transport ERs, relative to acetylene derived from near-field measurements, to ERs from ACCMIP and EMEP emission inventories for the road transport sector showed that ERs of more reactive species are usually consistent within a factor of 2 with EMEP, while xylenes and toluene are underestimated by over a factor of 2 by ACCMIP. The observed heterogeneity of anthropogenic VOC emission composition between Middle Eastern cities can be significant for reactive VOCs but is not depicted by global emission inventories. This suggests that systematic and detailed measurements are needed in the eastern Mediterranean Basin in order to better constrain emission inventory.
Synergistic Opportunities for the Geostationary Satellite Constellation: Status of the CEOS Activity
NASA Astrophysics Data System (ADS)
Al-Saadi, J. A.; Zehner, C.
2012-12-01
This talk will summarize activities of the Committee on Earth Observation Satellites (CEOS) Atmospheric Composition Constellation (ACC) to collaboratively advance the next generation of air quality monitoring from space. Over the past 2 years, CEOS ACC have developed a position paper describing the benefits to be derived from such collaboration. The resulting ACC recommendations were endorsed by CEOS in May 2011. We will discuss next steps toward implementing this vision, starting with a new 3-year CEOS Action in 2012. Several countries and space agencies are currently planning to launch geostationary Earth orbit (GEO) missions in 2017-2022 to obtain atmospheric composition measurements for characterizing anthropogenic and natural distributions of tropospheric ozone, aerosols, and their precursors. These missions include Europe's ESA Sentinel-4 with EUMETSAT IRS, the United States' NASA GEO-CAPE, Korea's ME/MEST/KARI GEMS, and Japan's JAXA GMAP-Asia. GEO observations offer a quantum advance in air quality monitoring from space by providing measurements many times per day. However, a single GEO satellite views only a portion of the globe. These satellites, positioned to view Europe, East Asia, and North America, will collectively provide hourly coverage of the industrialized Northern Hemisphere at similar spatial resolutions. Planned low Earth orbit (LEO) missions will provide complementary daily global observations. Observations from a single LEO satellite will overlap those from each GEO satellite once per day, providing a means for combining the GEO observations and a necessary perspective for interpreting global impacts of smaller scale processes. The EUMETSAT Metop series, NOAA/NASA JPSS series, and ESA Sentinel-5 Precursor and Sentinel-5 missions will each provide such daily overlap with the GEO missions. The Canadian PCW PHEMOS mission will make an additional unique suite of observations. PCW will provide quasi-geostationary coverage over the Arctic that overlaps with each geostationary satellite over 30N - 60N, adding opportunities for intercalibration many times per day. The development of common data products, data distribution protocols, and calibration strategies will synergistically enable critically needed understanding of the interactions between regional and global atmospheric composition. Common air quality trace gas products will be tropospheric column O3, NO2, HCHO, and SO2 nominally at 8 km spatial resolution and 1 hour temporal frequency. Detection of aerosols in the UV will allow absorbing aerosols to be distinguished from total aerosol optical depth, providing information on aerosol speciation and particularly relevant to the air quality/climate interface associated with aerosol radiative forcing. Such activities directly address societal benefit areas of the Global Earth Observation System of Systems (GEOSS), including Health, Energy, Climate, Disasters, and Ecosystems, and are responsive to the requirements of each mission to provide advanced user services and societal benefits in their own regions.
Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere.
Konopacky, Quinn M; Barman, Travis S; Macintosh, Bruce A; Marois, Christian
2013-03-22
Determining the atmospheric structure and chemical composition of an exoplanet remains a formidable goal. Fortunately, advancements in the study of exoplanets and their atmospheres have come in the form of direct imaging--spatially resolving the planet from its parent star--which enables high-resolution spectroscopy of self-luminous planets in jovian-like orbits. Here, we present a spectrum with numerous, well-resolved molecular lines from both water and carbon monoxide from a massive planet orbiting less than 40 astronomical units from the star HR 8799. These data reveal the planet's chemical composition, atmospheric structure, and surface gravity, confirming that it is indeed a young planet. The spectral lines suggest an atmospheric carbon-to-oxygen ratio that is greater than that of the host star, providing hints about the planet's formation.
Ozone, Climate, and Global Atmospheric Change.
ERIC Educational Resources Information Center
Levine, Joel S.
1992-01-01
Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…
The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of pro...
Planetary Atmospheres and the Search for Life.
ERIC Educational Resources Information Center
Owen, Tobias
1982-01-01
Different ways in which the atmospheres of different planets have originated and evolved are discussed. Includes tables on the atmospheric composition of: (1) Earth; (2) Mars; (3) Venus; (4)Titan (Saturn's Satellite); and (5) the outer planets. (SK)
A regional air quality forecasting system over Europe: the MACC-II daily ensemble production
NASA Astrophysics Data System (ADS)
Marécal, V.; Peuch, V.-H.; Andersson, C.; Andersson, S.; Arteta, J.; Beekmann, M.; Benedictow, A.; Bergström, R.; Bessagnet, B.; Cansado, A.; Chéroux, F.; Colette, A.; Coman, A.; Curier, R. L.; Denier van der Gon, H. A. C.; Drouin, A.; Elbern, H.; Emili, E.; Engelen, R. J.; Eskes, H. J.; Foret, G.; Friese, E.; Gauss, M.; Giannaros, C.; Guth, J.; Joly, M.; Jaumouillé, E.; Josse, B.; Kadygrov, N.; Kaiser, J. W.; Krajsek, K.; Kuenen, J.; Kumar, U.; Liora, N.; Lopez, E.; Malherbe, L.; Martinez, I.; Melas, D.; Meleux, F.; Menut, L.; Moinat, P.; Morales, T.; Parmentier, J.; Piacentini, A.; Plu, M.; Poupkou, A.; Queguiner, S.; Robertson, L.; Rouïl, L.; Schaap, M.; Segers, A.; Sofiev, M.; Thomas, M.; Timmermans, R.; Valdebenito, Á.; van Velthoven, P.; van Versendaal, R.; Vira, J.; Ung, A.
2015-03-01
This paper describes the pre-operational analysis and forecasting system developed during MACC (Monitoring Atmospheric Composition and Climate) and continued in MACC-II (Monitoring Atmospheric Composition and Climate: Interim Implementation) European projects to provide air quality services for the European continent. The paper gives an overall picture of its status at the end of MACC-II (summer 2014). This system is based on seven state-of-the art models developed and run in Europe (CHIMERE, EMEP, EURAD-IM, LOTOS-EUROS, MATCH, MOCAGE and SILAM). These models are used to calculate multi-model ensemble products. The MACC-II system provides daily 96 h forecasts with hourly outputs of 10 chemical species/aerosols (O3, NO2, SO2, CO, PM10, PM2.5, NO, NH3, total NMVOCs and PAN + PAN precursors) over 8 vertical levels from the surface to 5 km height. The hourly analysis at the surface is done a posteriori for the past day using a selection of representative air quality data from European monitoring stations. The performances of the system are assessed daily, weekly and 3 monthly (seasonally) through statistical indicators calculated using the available representative air quality data from European monitoring stations. Results for a case study show the ability of the median ensemble to forecast regional ozone pollution events. The time period of this case study is also used to illustrate that the median ensemble generally outperforms each of the individual models and that it is still robust even if two of the seven models are missing. The seasonal performances of the individual models and of the multi-model ensemble have been monitored since September 2009 for ozone, NO2 and PM10 and show an overall improvement over time. The change of the skills of the ensemble over the past two summers for ozone and the past two winters for PM10 are discussed in the paper. While the evolution of the ozone scores is not significant, there are improvements of PM10 over the past two winters that can be at least partly attributed to new developments on aerosols in the seven individual models. Nevertheless, the year to year changes in the models and ensemble skills are also linked to the variability of the meteorological conditions and of the set of observations used to calculate the statistical indicators. In parallel, a scientific analysis of the results of the seven models and of the ensemble is also done over the Mediterranean area because of the specificity of its meteorology and emissions. The system is robust in terms of the production availability. Major efforts have been done in MACC-II towards the operationalisation of all its components. Foreseen developments and research for improving its performances are discussed in the conclusion.
The Atmospheres of Pluto and Charon
NASA Astrophysics Data System (ADS)
Gladstone, R.; Summers, M. E.; Stern, A.; Ennico Smith, K.; Olkin, C.; Weaver, H. A., Jr.; Young, L. A.; Strobel, D. F.; Hinson, D. P.; Kammer, J.; Parker, A. H.; Steffl, A.; Linscott, I.; Parker, J. W.; Cheng, A. F.; Versteeg, M. H.; Greathouse, T.; Retherford, K. D.; Throop, H.; Woods, W. W.; Singer, K. N.; Tsang, C.; Schindhelm, E.; Wong, M. L.; Yung, Y. L.; Zhu, X.; Curdt, W.; Lavvas, P.; Young, E. F.; Tyler, G. L.
2015-12-01
Major goals of the New Horizons (NH) mission are to explore and characterize the structure and composition of Pluto's atmosphere, and to determine whether Charon has a measurable atmosphere of its own. Several instruments onboard NH contribute to these goals, primarily: 1) the REX instrument, through uplink X-band radio occultations, 2) the Alice instrument, through extreme- and far-ultraviolet solar occultations, and 3) the LORRI panchromatic imager, through high-phase-angle imaging. The associated datasets were obtained following closest approach of NH to Pluto. Pressure and temperature profiles of the lower atmosphere are derived from the REX data, the composition and structure of the extended atmosphere are derived from the Alice data (supported by approach observations of reflected ultraviolet sunlight), and the distribution and properties of Pluto's hazes are derived from the LORRI data. In this talk an overview of the early atmosphere science results will be presented.
Cloud Imagers Offer New Details on Earth's Health
NASA Technical Reports Server (NTRS)
2009-01-01
A stunning red sunset or purple sunrise is an aesthetic treat with a scientific explanation: The colors are a direct result of the absorption or reflectance of solar radiation by atmospheric aerosols, minute particles (either solid or liquid) in the Earth s atmosphere that occur both naturally and because of human activity. At the beginning or end of the day, the Sun s rays travel farther through the atmosphere to reach an observer s eyes and more green and yellow light is scattered, making the Sun appear red. Sunset and sunrise are especially colorful when the concentration of atmospheric particles is high. This ability of aerosols to absorb and reflect sunlight is not just pretty; it also determines the amount of radiation and heat that reaches the Earth s surface, and can profoundly affect climate. In the atmosphere, aerosols are also important as nuclei for the condensation of water droplets and ice crystals. Clouds with fewer aerosols cannot form as many water droplets (called cloud particles), and consequently, do not scatter light well. In this case, more sunlight reaches the Earth s surface. When aerosol levels in clouds are high, however, more nucleation points can form small liquid water droplets. These smaller cloud particles can reflect up to 90 percent of visible radiation to space, keeping the heat from ever reaching Earth s surface. The tendency for these particles to absorb or reflect the Sun s energy - called extinction by astronomers - depends on a number of factors, including chemical composition and the humidity and temperature in the surrounding air; because cloud particles are so small, they are affected quickly by minute changes in the atmosphere. Because of this sensitivity, atmospheric scientists study cloud particles to anticipate patterns and shifts in climate. Until recently, NASA s study of atmospheric aerosols and cloud particles has been focused primarily on satellite images, which, while granting large-scale atmospheric analysis, limited scientists ability to acquire detailed information about individual particles. Now, experiments with specialized equipment can be flown on standard jets, making it possible for researchers to monitor and more accurately anticipate changes in Earth s atmosphere and weather patterns.
Mean Streets: An analysis on street level pollution in NYC
NASA Astrophysics Data System (ADS)
Parker, G.
2017-12-01
The overarching objective of this study is to quantify the spatial and temporal variability in particulatematter concentration (PM 2.5) along crowded streets in New York City. Due to their fine size and lowdensity PM 2.5 stays longer in the atmosphere and could bypass human nose and throat and penetratedeep in to the lungs and even enter the circulatory system. PM 2.5 is a by-product of automobilecombustion and is a primary cause of respiratory malfunction in NYC. The study would monitor streetlevel concentration of PM2.5 across three different routes that witness significant pedestrian traffic;observations will be conducted along these three routes at different time periods. The study will use theAirBeam community air quality monitor. The monitor tracks PM 2.5 concentration along with GPS, airtemperature and relative humidity. The surface level concentration monitored by AirBeam will becompared with atmospheric concentration of PM 2.5 that are monitored at the NOAA CREST facility onCCNY campus. The lower atmospheric values will be correlated with street level values to assess thevalidity of using of lower atmospheric values to predict street level concentrations. The street levelconcentration will be compared to the air quality forecasted by the New York Department ofEnvironment Conservation to estimate its accuracy and applicability.
Recent advances in environmental monitoring using commercial microwave links
NASA Astrophysics Data System (ADS)
Alpert, Pinhas; David, Noam; Messer-Yaron, Hagit; Samuels, Rana
2013-04-01
The propagation of electromagnetic radiation in the lower atmosphere, at centimeter wavelengths, is impaired by atmospheric conditions. Absorption and scattering of the radiation, at frequencies of tens of GHz, are directly related to the atmospheric phenomena, primarily precipitation, oxygen, mist, fog and water vapor. As we have recently shown, commercial wireless communication networks supply high resolution precipitation measurements at ground level while often being situated in flood prone areas, covering large parts of these hazardous regions. On the other hand, at present, there are no satisfactory real time flash flood warning facilities found to cope well with this phenomenon. I will exemplify the flash flood warning potential of the commercial wireless communication system for two different semi-arid region cases when floods occurred in the Judean desert and in the northern Negev in Israel. In addition, I will review our recent improvements in monitoring rainfall as well as other-than-rain phenomena like, atmospheric moisture. Special focus on fog monitoring potential will be discussed. This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No. 173/08) and the PROCEMA VI coordinated by H. Kunstmann. The research was also supported by the by the United States- Israel BINATIONAL SCIENCE FOUNDATION (BSF, Grant No. 2010342). References: N. David, P. Alpert, and H. Messer, "Technical Note: Novel method for water vapour monitoring using wireless communication networks measurements", Atmos. Chem. Phys., 9, 2413-2418, 2009. A. Rayitsfeld, R. Samuels, A. Zinevich, U. Hadar and P. Alpert,"Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system", Atmospheric Research 104-105, 119-127, 2012. N. David, P. Alpert, and H. Messer, "Novel method for fog monitoring using cellular networks infrastructures", Atmos. Meas. Tech. Discuss, 5, 5725-5752, 2012.
NASA Astrophysics Data System (ADS)
Keslake, Tim; Chipperfield, Martyn; Mann, Graham; Flemming, Johannes; Remy, Sam; Dhomse, Sandip; Morgan, Will
2016-04-01
The C-IFS (Composition Integrated Forecast System) developed under the MACC series of projects and to be continued under the Copernicus Atmospheric Monitoring System, provides global operational forecasts and re-analyses of atmospheric composition at high spatial resolution (T255, ~80km). Currently there are 2 aerosol schemes implemented within C-IFS, a mass-based scheme with externally mixed particle types and an aerosol microphysics scheme (GLOMAP-mode). The simpler mass-based scheme is the current operational system, also used in the existing system to assimilate satellite measurements of aerosol optical depth (AOD) for improved forecast capability. The microphysical GLOMAP scheme has now been implemented and evaluated in the latest C-IFS cycle alongside the mass-based scheme. The upgrade to the microphysical scheme provides for higher fidelity aerosol-radiation and aerosol-cloud interactions, accounting for global variations in size distribution and mixing state, and additional aerosol properties such as cloud condensation nuclei concentrations. The new scheme will also provide increased aerosol information when used as lateral boundary conditions for regional air quality models. Here we present a series of experiments highlighting the influence and accuracy of the two different aerosol schemes and the impact of MODIS AOD assimilation. In particular, we focus on the influence of biomass burning emissions on aerosol properties in the Amazon, comparing to ground-based and aircraft observations from the 2012 SAMBBA campaign. Biomass burning can affect regional air quality, human health, regional weather and the local energy budget. Tropical biomass burning generates particles primarily composed of particulate organic matter (POM) and black carbon (BC), the local ratio of these two different constituents often determining the properties and subsequent impacts of the aerosol particles. Therefore, the model's ability to capture the concentrations of these two carbonaceous aerosol types, during the tropical dry season, is essential for quantifying these wide ranging impacts. Comparisons to SAMBBA aircraft observations show that while both schemes underestimate POM and BC mass concentrations, the GLOMAP scheme provides a more accurate simulation. When satellite AOD is assimilated into the GEMS-AER scheme, the model is successfully adjusted, capturing observed mass concentrations to a good degree of accuracy.
NASA Astrophysics Data System (ADS)
Buenning, N. H.; Stott, L. D.; Kanner, L.; Yoshimura, K.
2013-12-01
One of the most robust features of climate model projections for the 21st century includes a poleward shift of middle latitude storm tracks in response to enhanced radiative forcing. This study evaluates how shifts in the middle latitude storm tracks over the North Pacific has been expressed in the stable isotopic composition of atmospheric vapor and precipitation in the past 60 years. Previous work has demonstrated how the isotopic composition of precipitation (δ18Op) in the Pacific Northwest and in atmospheric vapor (δ18Ov) across the western US reflects the large-scale atmospheric circulation. Thus, it is possible to use the isotopic composition of water in these regions to detect shifts in mid-latitude storm tracks. Results from the Isotope-incorporated Global Spectral Model (IsoGSM) are presented to better understand the recent low frequency variations in δ18O values over the western US. The IsoGSM simulations presented here were spectrally nudged every six hours to the NCEP/NCAR Reanalysis wind and temperature fields. The spectral nudging technique allows for realistic isotopic simulations that are consistent with observed large-scale mid-latitude storm systems. Model results suggest that δ18Op has risen over the Pacific Northwest and δ18Ov has increased across the western US since the 1950s (see Figure), an indication of more moisture advection from the tropics and less moisture transported from the middle latitudes. Water tagging simulations reveal that as δ18Ov increased in the western US, the fraction of vapor from the subtropics had also increased, while the fraction from the middle latitudes had decreased. Similarly, the tagging simulations resulted in increased subtropical precipitation falling in the Pacific Northwest and decreased precipitation from the middle latitudes. These model simulations suggest that a northward shift in storm tracks has already taken place over the last 60 years in the western US. Furthermore, the results underscore the potential of using isotopes in vapor and precipitation in certain regions of western North America to monitor middle latitude storm behavior as the climate warms.
Thomassot, Emilie; O'Neil, Jonathan; Francis, Don; Cartigny, Pierre; Wing, Boswell A
2015-01-20
Mass-independent fractionation of sulfur isotopes (S-MIF) results from photochemical reactions involving short-wavelength UV light. The presence of these anomalies in Archean sediments [(4-2.5 billion years ago, (Ga)] implies that the early atmosphere was free of the appropriate UV absorbers, of which ozone is the most important in the modern atmosphere. Consequently, S-MIF is considered some of the strongest evidence for the lack of free atmospheric oxygen before 2.4 Ga. Although temporal variations in the S-MIF record are thought to depend on changes in the abundances of gas and aerosol species, our limited understanding of photochemical mechanisms complicates interpretation of the S-MIF record in terms of atmospheric composition. Multiple sulfur isotope compositions (δ(33)S, δ(34)S, and δ(36)S) of the >3.8 billion-year-old Nuvvuagittuq Greenstone Belt (Ungava peninsula) have been investigated to track the early origins of S-MIF. Anomalous S-isotope compositions (Δ(33)S up to +2.2‰) confirm a sedimentary origin of sulfide-bearing banded iron and silica-rich formations. Sharp isotopic transitions across sedimentary/igneous lithological boundaries indicate that primary surficial S-isotope compositions have been preserved despite a complicated metamorphic history. Furthermore, Nuvvuagittuq metasediments recorded coupled variations in (33)S/(32)S, (34)S/(32)S, and (36)S/(32)S that are statistically indistinguishable from those identified several times later in the Archean. The recurrence of the same S-isotope pattern at both ends of the Archean Eon is unexpected, given the complex atmospheric, geological, and biological pathways involved in producing and preserving this fractionation. It implies that, within 0.8 billion years of Earth's formation, a common mechanism for S-MIF production was established in the atmosphere.
Effects of the Urban Heat Island on Aerosol pH
NASA Astrophysics Data System (ADS)
Battaglia, M., Jr.; Douglas, S.; Hennigan, C. J.
2017-12-01
The urban heat island (UHI) is a widely observed phenomenon whereby urban environments have higher temperature (T) and lower relative humidity (RH) than surrounding suburban and rural areas. Both of these factors affect the partitioning of semi-volatile species found in the atmosphere, such as nitric acid and ammonia. These species are inherently tied to aerosol pH, which is a key parameter driving some atmospheric chemical processes and environmental effects of aerosols. In this study, we characterized the effect of the UHI on aerosol pH in Baltimore, MD and Chicago, IL. These cities were selected based on differences in climatology, source influences, and atmospheric composition. Meteorological and atmospheric composition data from the urban centers and surrounding rural locations were used as inputs to the ISORROPIA-II aerosol thermodynamic model to compute gas/particle partitioning, aerosol liquid water content, and aerosol pH. Dramatic differences in aerosol liquid water (ALW) content were found in both cities and were attributable to the T and RH differences (UHI effect). The urban-rural differences in ALW result in urban aerosol pH that is systematically lower (more acidic) than rural aerosol pH for identical atmospheric composition. The UHI in Baltimore is most intense during the summer and at night, with differences of up to 1 pH unit predicted during these times. Similarly, the UHI in Chicago is most intense during the summer and at night; however, the atmospheric composition in Chicago shows a mediating effect, with differences of up to 0.65 pH units predicted during these times. These results are likely to have broad implications for chemistry occurring in and around urban atmospheres globally, although the magnitude of the effect may differ based on the UHI characteristic of each urban environment.
Observing the Atmospheres of Known Temperate Earth-sized Planets with JWST
NASA Astrophysics Data System (ADS)
Morley, Caroline V.; Kreidberg, Laura; Rustamkulov, Zafar; Robinson, Tyler; Fortney, Jonathan J.
2017-12-01
Nine transiting Earth-sized planets have recently been discovered around nearby late-M dwarfs, including the TRAPPIST-1 planets and two planets discovered by the MEarth survey, GJ 1132b and LHS 1140b. These planets are the smallest known planets that may have atmospheres amenable to detection with the James Webb Space Telescope (JWST). We present model thermal emission and transmission spectra for each planet, varying composition and surface pressure of the atmosphere. We base elemental compositions on those of Earth, Titan, and Venus and calculate the molecular compositions assuming chemical equilibrium, which can strongly depend on temperature. Both thermal emission and transmission spectra are sensitive to the atmospheric composition; thermal emission spectra are sensitive to surface pressure and temperature. We predict the observability of each planet’s atmosphere with JWST. GJ 1132b and TRAPPIST-1b are excellent targets for emission spectroscopy with JWST/MIRI, requiring fewer than 10 eclipse observations. Emission photometry for TRAPPIST-1c requires 5-15 eclipses; LHS 1140b and TRAPPIST-1d, TRAPPIST-1e, and TRAPPIST-1f, which could possibly have surface liquid water, may be accessible with photometry. Seven of the nine planets are strong candidates for transmission spectroscopy measurements with JWST, although the number of transits required depends strongly on the planets’ actual masses. Using the measured masses, fewer than 20 transits are required for a 5σ detection of spectral features for GJ 1132b and six of the TRAPPIST-1 planets. Dedicated campaigns to measure the atmospheres of these nine planets will allow us, for the first time, to probe formation and evolution processes of terrestrial planetary atmospheres beyond our solar system.
Noise and interference study for satellite lightning sensor
NASA Technical Reports Server (NTRS)
Herman, J. R.
1981-01-01
The use of radio frequency techniques for the detection and monitoring of terrestrial thunderstorms from space are discussed. Three major points are assessed: (1) lightning and noise source characteristics; (2) propagation effects imposed by the atmosphere and ionosphere; and (3) the electromagnetic environment in near space within which lightning RF signatures must be detected. A composite frequency spectrum of the peak of amplitude from lightning flashes is developed. Propagation effects (ionospheric cutoff, refraction, absorption, dispersion and scintillation) are considered to modify the lightning spectrum to the geosynchronous case. It is suggested that in comparing the modified spectrum with interfering noise source spectra RF lightning pulses on frequencies up to a few GHz are detectable above the natural noise environment in near space.