Sample records for monitoring boron distributions

  1. Monitoring the distribution of prompt gamma rays in boron neutron capture therapy using a multiple-scattering Compton camera: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Lee, Taewoong; Lee, Hyounggun; Lee, Wonho

    2015-10-01

    This study evaluated the use of Compton imaging technology to monitor prompt gamma rays emitted by 10B in boron neutron capture therapy (BNCT) applied to a computerized human phantom. The Monte Carlo method, including particle-tracking techniques, was used for simulation. The distribution of prompt gamma rays emitted by the phantom during irradiation with neutron beams is closely associated with the distribution of the boron in the phantom. Maximum likelihood expectation maximization (MLEM) method was applied to the information obtained from the detected prompt gamma rays to reconstruct the distribution of the tumor including the boron uptake regions (BURs). The reconstructed Compton images of the prompt gamma rays were combined with the cross-sectional images of the human phantom. Quantitative analysis of the intensity curves showed that all combined images matched the predetermined conditions of the simulation. The tumors including the BURs were distinguishable if they were more than 2 cm apart.

  2. Boron-coated straws as a replacement for 3He-based neutron detectors

    NASA Astrophysics Data System (ADS)

    Lacy, Jeffrey L.; Athanasiades, Athanasios; Sun, Liang; Martin, Christopher S.; Lyons, Tom D.; Foss, Michael A.; Haygood, Hal B.

    2011-10-01

    US and international government efforts to equip major seaports with large area neutron detectors, aimed to intercept the smuggling of nuclear materials, have precipitated a critical shortage of 3He gas. It is estimated that the annual demand of 3He for US security applications alone is more than the worldwide supply. This is strongly limiting the prospects of neutron science, safeguards, and other applications that rely heavily on 3He-based detectors. Clearly, alternate neutron detection technologies that can support large sensitive areas, and have low gamma sensitivity and low cost must be developed. We propose a low-cost technology based on long copper tubes (straws), coated on the inside with a thin layer of 10B-enriched boron carbide ( 10B 4C). In addition to the high abundance of boron on Earth and low cost of 10B enrichment, the boron-coated straw (BCS) detector offers distinct advantages over conventional 3He-based detectors, and alternate technologies such as 10BF 3 tubes and 10B-coated rigid tubes. These include better distribution inside moderator assemblies, many-times faster electronic signals, no pressurization, improved gamma-ray rejection, no toxic or flammable gases, and ease of serviceability. We present the performance of BCS detectors dispersed in a solid plastic moderator to address the need for portal monitoring. The design adopts the outer dimensions of currently deployed 3He-based monitors, but takes advantage of the small BCS diameter to achieve a more uniform distribution of neutron converter throughout the moderating material. We show that approximately 63 BCS detectors, each 205 cm long, distributed inside the moderator, can match or exceed the detection efficiency of typical monitors fitted with a 5 cm diameter 3He tube, 187 cm long, pressurized to 3 atm.

  3. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabalka, G. W.

    2005-06-28

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharamacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCTagents that could be labeled with radioactive nuclides for the in vivo detection of boron.

  4. Prompt gamma and neutron detection in BNCT utilizing a CdTe detector.

    PubMed

    Winkler, Alexander; Koivunoro, Hanna; Reijonen, Vappu; Auterinen, Iiro; Savolainen, Sauli

    2015-12-01

    In this work, a novel sensor technology based on CdTe detectors was tested for prompt gamma and neutron detection using boronated targets in (epi)thermal neutron beam at FiR1 research reactor in Espoo, Finland. Dedicated neutron filter structures were omitted to enable simultaneous measurement of both gamma and neutron radiation at low reactor power (2.5 kW). Spectra were collected and analyzed in four different setups in order to study the feasibility of the detector to measure 478 keV prompt gamma photons released from the neutron capture reaction of boron-10. The detector proved to have the required sensitivity to detect and separate the signals from both boron neutron and cadmium neutron capture reactions, which makes it a promising candidate for monitoring the spatial and temporal development of in vivo boron distribution in boron neutron capture therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Thermodynamics of Boron Removal from Silicon Using CaO-MgO-Al2O3-SiO2 Slags

    NASA Astrophysics Data System (ADS)

    Jakobsson, Lars Klemet; Tangstad, Merete

    2018-04-01

    Slag refining is one of few metallurgical methods for removal of boron from silicon. It is important to know the thermodynamic properties of boron in slags to understand the refining process. The relation of the distribution coefficient of boron to the activity of silica, partial pressure of oxygen, and capacity of slags for boron oxide was investigated. The link between these parameters explains why the distribution coefficient of boron does not change much with changing slag composition. In addition, the thermodynamic properties of dilute boron oxide in CaO-MgO-Al2O3-SiO2 slags was determined. The ratio of the activity coefficient of boron oxide and silica was found to be the most important parameter for understanding changes in the distribution coefficient of boron for different slags. Finally, the relation between the activity coefficient of boron oxide and slag structure was investigated. It was found that the structure can explain how the distribution coefficient of boron changes depending on slag composition.

  6. Boronate probes as diagnostic tools for real time monitoring of peroxynitrite and hydroperoxides

    PubMed Central

    Zielonka, Jacek; Sikora, Adam; Hardy, Micael; Joseph, Joy; Dranka, Brian P.; Kalyanaraman, Balaraman

    2012-01-01

    Boronates, a group of organic compounds, are emerging as one of the most effective probes for detecting and quantifying peroxynitrite, hypochlorous acid and hydrogen peroxide. Boronates react with peroxynitrite nearly a million times faster than with hydrogen peroxide. Boronate-containing fluorogenic compounds have been used to monitor real time generation of peroxynitrite in cells and for imaging hydrogen peroxide in living animals. This Perspective highlights potential applications of boronates and other fluorescent probes to high-throughput analyses of peroxynitrite and hydroperoxides in toxicological studies. PMID:22731669

  7. Mathematical modeling and experimental validation of the spatial distribution of boron in the root of Arabidopsis thaliana identify high boron accumulation in the tip and predict a distinct root tip uptake function.

    PubMed

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F M; Grieneisen, Verônica A; Fujiwara, Toru

    2015-04-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  8. Mathematical Modeling and Experimental Validation of the Spatial Distribution of Boron in the Root of Arabidopsis thaliana Identify High Boron Accumulation in the Tip and Predict a Distinct Root Tip Uptake Function

    PubMed Central

    Shimotohno, Akie; Sotta, Naoyuki; Sato, Takafumi; De Ruvo, Micol; Marée, Athanasius F.M.; Grieneisen, Verônica A.; Fujiwara, Toru

    2015-01-01

    Boron, an essential micronutrient, is transported in roots of Arabidopsis thaliana mainly by two different types of transporters, BORs and NIPs (nodulin26-like intrinsic proteins). Both are plasma membrane localized, but have distinct transport properties and patterns of cell type-specific accumulation with different polar localizations, which are likely to affect boron distribution. Here, we used mathematical modeling and an experimental determination to address boron distributions in the root. A computational model of the root is created at the cellular level, describing the boron transporters as observed experimentally. Boron is allowed to diffuse into roots, in cells and cell walls, and to be transported over plasma membranes, reflecting the properties of the different transporters. The model predicts that a region around the quiescent center has a higher concentration of soluble boron than other portions. To evaluate this prediction experimentally, we determined the boron distribution in roots using laser ablation-inductivity coupled plasma-mass spectrometry. The analysis indicated that the boron concentration is highest near the tip and is lower in the more proximal region of the meristem zone, similar to the pattern of soluble boron distribution predicted by the model. Our model also predicts that upward boron flux does not continuously increase from the root tip toward the mature region, indicating that boron taken up in the root tip is not efficiently transported to shoots. This suggests that root tip-absorbed boron is probably used for local root growth, and that instead it is the more mature root regions which have a greater role in transporting boron toward the shoots. PMID:25670713

  9. No evidence that boron influences tree species distributions in lowland tropical forests of Panama.

    PubMed

    Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W

    2017-04-01

    It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics. No claim to original US government works New Phytologist © 2016 New Phytologist Trust.

  10. Spatial Burnout in Water Reactors with Nonuniform Startup Distributions of Uranium and Boron

    NASA Technical Reports Server (NTRS)

    Fox, Thomas A.; Bogart, Donald

    1955-01-01

    Spatial burnout calculations have been made of two types of water moderated cylindrical reactor using boron as a burnable poison to increase reactor life. Specific reactors studied were a version of the Submarine Advanced Reactor (sAR) and a supercritical water reactor (SCW) . Burnout characteristics such as reactivity excursion, neutron-flux and heat-generation distributions, and uranium and boron distributions have been determined for core lives corresponding to a burnup of approximately 7 kilograms of fully enriched uranium. All reactivity calculations have been based on the actual nonuniform distribution of absorbers existing during intervals of core life. Spatial burnout of uranium and boron and spatial build-up of fission products and equilibrium xenon have been- considered. Calculations were performed on the NACA nuclear reactor simulator using two-group diff'usion theory. The following reactor burnout characteristics have been demonstrated: 1. A significantly lower excursion in reactivity during core life may be obtained by nonuniform rather than uniform startup distribution of uranium. Results for SCW with uranium distributed to provide constant radial heat generation and a core life corresponding to a uranium burnup of 7 kilograms indicated a maximum excursion in reactivity of 2.5 percent. This compared to a maximum excursion of 4.2 percent obtained for the same core life when w'anium was uniformly distributed at startup. Boron was incorporated uniformly in these cores at startup. 2. It is possible to approach constant radial heat generation during the life of a cylindrical core by means of startup nonuniform radial and axial distributions of uranium and boron. Results for SCW with nonuniform radial distribution of uranium to provide constant radial heat generation at startup and with boron for longevity indicate relatively small departures from the initially constant radial heat generation distribution during core life. Results for SAR with a sinusoidal distribution rather than uniform axial distributions of boron indicate significant improvements in axial heat generation distribution during the greater part of core life. 3. Uranium investments for cylindrical reactors with nonuniform radial uranium distributions which provide constant radial heat generation per unit core volume are somewhat higher than for reactors with uniform uranium concentration at startup. On the other hand, uranium investments for reactors with axial boron distributions which approach constant axial heat generation are somewhat smaller than for reactors with uniform boron distributions at startup.

  11. Development of real-time thermal neutron monitor using boron-loaded plastic scintillator with optical fiber for boron neutron capture therapy.

    PubMed

    Ishikawa, M; Ono, K; Sakurai, Y; Unesaki, H; Uritani, A; Bengua, G; Kobayashi, T; Tanaka, K; Kosako, T

    2004-11-01

    A new thermal neutron monitor for boron neutron capture therapy was developed in this study. We called this monitor equipped boron-loaded plastic scintillator that uses optical fiber for signal transmission as an [scintillator with optical fiber] SOF detector. A water phantom experiment was performed to verify how the SOF detector compared with conventional method of measuring thermal neutron fluence. Measurements with a single SOF detector yielded indistinguishable signals for thermal neutrons and gamma rays. To account for the gamma ray contribution in the signal recorded by the SOF detector, a paired SOF detector system was employed. This was composed of an SOF detector with boron-loaded scintillator and an SOF detector with a boron-free scintillator. The difference between the recorded counts of these paired SOF detectors was used as the measure of the gamma ray contribution in the measured neutron fluence. The paired SOF detectors were ascertained to be effective in measuring thermal neutron flux in the range above 10(6)(n/cm(2)/s). Clinical trials using paired SOF to measure thermal neutron flux during therapy confirmed that paired SOF detectors were effective as a real-time thermal neutron flux monitor.

  12. Nanometer scale composition study of MBE grown BGaN performed by atom probe tomography

    NASA Astrophysics Data System (ADS)

    Bonef, Bastien; Cramer, Richard; Speck, James S.

    2017-06-01

    Laser assisted atom probe tomography is used to characterize the alloy distribution in BGaN. The effect of the evaporation conditions applied on the atom probe specimens on the mass spectrum and the quantification of the III site atoms is first evaluated. The evolution of the Ga++/Ga+ charge state ratio is used to monitor the strength of the applied field. Experiments revealed that applying high electric fields on the specimen results in the loss of gallium atoms, leading to the over-estimation of boron concentration. Moreover, spatial analysis of the surface field revealed a significant loss of atoms at the center of the specimen where high fields are applied. A good agreement between X-ray diffraction and atom probe tomography concentration measurements is obtained when low fields are applied on the tip. A random distribution of boron in the BGaN layer grown by molecular beam epitaxy is obtained by performing accurate and site specific statistical distribution analysis.

  13. OsNIP3;1, a rice boric acid channel, regulates boron distribution and is essential for growth under boron-deficient conditions.

    PubMed

    Hanaoka, Hideki; Uraguchi, Shimpei; Takano, Junpei; Tanaka, Mayuki; Fujiwara, Toru

    2014-06-01

    Boron is an essential micronutrient for higher plants. Boron deficiency is an important agricultural issue because it results in loss of yield quality and/or quantity in cereals and other crops. To understand boron transport mechanisms in cereals, we characterized OsNIP3;1, a member of the major intrinsic protein family in rice (Oryza sativa L.), because OsNIP3;1 is the most similar rice gene to the Arabidopsis thaliana boric acid channel genes AtNIP5;1 and AtNIP6;1. Yeast cells expressing OsNIP3;1 imported more boric acid than control cells. GFP-tagged OsNIP3;1 expressed in tobacco BY2 cells was localized to the plasma membrane. The accumulation of OsNIP3;1 transcript increased fivefold in roots within 6 h of the onset of boron starvation, but not in shoots. Promoter-GUS analysis suggested that OsNIP3;1 is expressed mainly in exodermal cells and steles in roots, as well as in cells around the vascular bundles in leaf sheaths and pericycle cells around the xylem in leaf blades. The growth of OsNIP3;1 RNAi plants was impaired under boron limitation. These results indicate that OsNIP3;1 functions as a boric acid channel, and is required for acclimation to boron limitation. Boron distribution among shoot tissues was altered in OsNIP3;1 knockdown plants, especially under boron-deficient conditions. This result demonstrates that OsNIP3;1 regulates boron distribution among shoot tissues, and that the correct boron distribution is crucial for plant growth. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  14. Feasibility study of single photon emission coupled tomography imaging technique based on prompt gamma ray during antiproton therapy using boron particle

    NASA Astrophysics Data System (ADS)

    Shin, Han-Back; Jung, Joo-Young; Kim, Moo-Sub; Kim, Sunmi; Choi, Yong; Yoon, Do-Kun; Suh, Tae Suk

    2018-06-01

    In this study, we proposed an absorbed-dose monitoring technique using prompt gamma rays emitted from the reaction between an antiproton and a boron particle, and demonstrated the greater physical effect of the antiproton boron fusion therapy in comparison with proton beam using Monte Carlo simulation. The physical effect of the treatment, which was 3.5 times greater, was confirmed from the antiproton beam irradiation compared to the proton beam irradiation. Moreover, the prompt gamma ray image is acquired successfully during antiproton irradiation to boron regions. The results show the application feasibility of absorbed dose monitoring technique proposed in our study.

  15. Cobalt Doping of Semiconducting Boron Carbide Using Cobaltocene

    DTIC Science & Technology

    2007-03-01

    COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Lonnie Carlson, Major...DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE THESIS Presented to the Faculty Department of Engineering Physics Graduate School...DISTRIBUTION UNLIMITED AFIT/GNE/ENP/07-01 COBALT DOPING OF SEMICONDUCTING BORON CARBIDE USING COBALTOCENE Lonnie

  16. Depth resolved investigations of boron implanted silicon

    NASA Astrophysics Data System (ADS)

    Sztucki, M.; Metzger, T. H.; Milita, S.; Berberich, F.; Schell, N.; Rouvière, J. L.; Patel, J.

    2003-01-01

    We have studied the depth distribution and structure of defects in boron implanted silicon (0 0 1). Silicon wafers were implanted with a boron dose of 6×10 15 ions/cm -2 at 32 keV and went through different annealing treatments. Using diffuse X-ray scattering at grazing incidence and exit angles we are able to distinguish between different kinds of defects (point defect clusters and extrinsic stacking faults on {1 1 1} planes) and to determine their depth distribution as a function of the thermal budget. Cross-section transmission electron microscopy was used to gain complementary information. In addition we have determined the strain distribution caused by the boron implantation as a function of depth from rocking curve measurements.

  17. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasneda, Sabriani; Widita, Rena

    2010-06-22

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, {alpha}) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometricalmore » factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg {sup 10}B/g blood.« less

  18. Analysis of boron distribution in vivo for boron neutron capture therapy using two different boron compounds by secondary ion mass spectrometry.

    PubMed

    Yokoyama, Kunio; Miyatake, Shin-Ichi; Kajimoto, Yoshinaga; Kawabata, Shinji; Doi, Atsushi; Yoshida, Toshiko; Okabe, Motonori; Kirihata, Mitsunori; Ono, Koji; Kuroiwa, Toshihiko

    2007-01-01

    The efficiency of boron neutron capture therapy (BNCT) for malignant gliomas depends on the selective and absolute accumulation of (10)B atoms in tumor tissues. Only two boron compounds, BPA and BSH, currently can be used clinically. However, the detailed distributions of these compounds have not been determined. Here we used secondary ion mass spectrometry (SIMS) to determine the histological distribution of (10)B atoms derived from the boron compounds BSH and BPA. C6 tumor-bearing rats were given 500 mg/kg of BPA or 100 mg/kg of BSH intraperitoneally; 2.5 h later, their brains were sectioned and subjected to SIMS. In the main tumor mass, BPA accumulated heterogeneously, while BSH accumulated homogeneously. In the peritumoral area, both BPA and BSH accumulated measurably. Interestingly, in this area, BSH accumulated distinctively in a diffuse manner even 800 microm distant from the interface between the main tumor and normal brain. In the contralateral brain, BPA accumulated measurably, while BSH did not. In conclusion, both BPA and BSH each have advantages and disadvantages. These compounds are considered to be essential as boron delivery agents independently for clinical BNCT. There is some rationale for the simultaneous use of both compounds in clinical BNCT for malignant gliomas.

  19. Application of an ultraminiature thermal neutron monitor for irradiation field study of accelerator-based neutron capture therapy

    PubMed Central

    Ishikawa, Masayori; Tanaka, Kenichi; Endo, Satrou; Hoshi, Masaharu

    2015-01-01

    Abstract Phantom experiments to evaluate thermal neutron flux distribution were performed using the Scintillator with Optical Fiber (SOF) detector, which was developed as a thermal neutron monitor during boron neutron capture therapy (BNCT) irradiation. Compared with the gold wire activation method and Monte Carlo N-particle (MCNP) calculations, it was confirmed that the SOF detector is capable of measuring thermal neutron flux as low as 105 n/cm2/s with sufficient accuracy. The SOF detector will be useful for phantom experiments with BNCT neutron fields from low-current accelerator-based neutron sources. PMID:25589504

  20. Electroextraction of boron from boron carbide scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Ashish; Anthonysamy, S., E-mail: sas@igcar.gov.in; Ghosh, C.

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction processmore » developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.« less

  1. Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.

    PubMed

    Nguyen, Thanh Tat; Kajimoto, Tsuyoshi; Tanaka, Kenichi; Nguyen, Chien Cong; Endo, Satoru

    2016-11-01

    Fast neutron, gamma-ray, and boron doses have different relative biological effectiveness (RBE). In boron neutron capture therapy (BNCT), the clinical dose is the total of these dose components multiplied by their RBE. Clinical dose monitoring is necessary for quality assurance of the irradiation profile; therefore, the fast neutron, gamma-ray, and boron doses should be separately monitored. To estimate these doses separately, and to monitor the boron dose without monitoring the thermal neutron fluence, the authors propose a triple ionization chamber method using graphite-walled carbon dioxide gas (C-CO 2 ), tissue-equivalent plastic-walled tissue-equivalent gas (TE-TE), and boron-loaded tissue-equivalent plastic-walled tissue-equivalent gas [TE(B)-TE] chambers. To use this method for dose monitoring for a neutron and gamma-ray field moderated by D 2 O from a Be-covered Li target (Be-covered Li BNCT field), the relative sensitivities of these ionization chambers are required. The relative sensitivities of the TE-TE, C-CO 2 , and TE(B)-TE chambers to fast neutron, gamma-ray, and boron doses are calculated with the particle and heavy-ion transport code system (PHITS). The relative sensitivity of the TE(B)-TE chamber is calculated with the same method as for the TE-TE and C-CO 2 chambers in the paired chamber method. In the Be-covered Li BNCT field, the relative sensitivities of the ionization chambers to fast neutron, gamma-ray, and boron doses are calculated from the kerma ratios, mass attenuation coefficient tissue-to-wall ratios, and W-values. The Be-covered Li BNCT field consists of neutrons and gamma-rays which are emitted from a Be-covered Li target, and this resultant field is simulated by using PHITS with the cross section library of ENDF-VII. The kerma ratios and mass attenuation coefficient tissue-to-wall ratios are determined from the energy spectra of neutrons and gamma-rays in the Be-covered Li BNCT field. The W-value is calculated from recoil charged particle spectra by the collision of neutrons and gamma-rays with the wall and gas materials of the ionization chambers in the gas cavities of TE-TE, C-CO 2 , and TE(B)-TE chambers ( 10 B concentrations of 10, 50, and 100 ppm in the TE-wall). The calculated relative sensitivity of the C-CO 2 chamber to the fast neutron dose in the Be-covered Li BNCT field is 0.029, and those of the TE-TE and TE(B)-TE chambers are both equal to 0.965. The relative sensitivities of the C-CO 2 , TE-TE, and TE(B)-TE chambers to the gamma-ray dose in the Be-covered Li BNCT field are all 1 within the 1% calculation uncertainty. The relative sensitivities of TE(B)-TE to boron dose with concentrations of 10, 50, and 100 ppm 10 B are calculated to be 0.865 times the ratio of the in-tumor to in-chamber wall boron concentration. The fast neutron, gamma-ray, and boron doses of a tumor in-air can be separately monitored by the triple ionization chamber method in the Be-covered Li BNCT field. The results show that these doses can be easily converted to the clinical dose with the depth correction factor in the body and the RBE.

  2. Friction and transfer behavior of pyrolytic boron nitride in contact with various metals

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted with pyrolytic boron nitride in sliding contact with itself and various metals. Auger emission spectroscopy was used to monitor transfer of pyrolytic boron nitride to metals and metals to pyrolytic boron nitride. Results indicate that the friction coefficient for pyrolytic boron nitride in contact with metals can be related to the chemical activity of the metals and more particularly to the d valence bond character of the metal. Transfer was found to occur to all metals except silver and gold and the amount of transfer was less in the presence than in the absence of metal oxide. Friction was less for pyrolytic boron nitride in contact with a metal in air than in vacuum.

  3. Isotope engineering of van der Waals interactions in hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Vuong, T. Q. P.; Liu, S.; van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J. H.; Cassabois, G.; Gil, B.

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  4. Isotope engineering of van der Waals interactions in hexagonal boron nitride.

    PubMed

    Vuong, T Q P; Liu, S; Van der Lee, A; Cuscó, R; Artús, L; Michel, T; Valvin, P; Edgar, J H; Cassabois, G; Gil, B

    2018-02-01

    Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes ( 10 B and 11 B) compared to those with the natural distribution of boron (20 at% 10 B and 80 at% 11 B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10 BN than in 11 BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

  5. Diols and anions can control the formation of an exciplex between a pyridinium boronic acid with an aryl group connected via a propylene linker.

    PubMed

    Huang, Yan-Jun; Jiang, Yun-Bao; Bull, Steven D; Fossey, John S; James, Tony D

    2010-11-21

    The exciplex formation between a pyridinium boronic acid and phenyl group connected via a propylene linker can be monitored using fluorescence. Addition of pinacol affords a cyclic boronate ester with enhanced Lewis acidity that increases the strength of its cation-π stacking interaction causing a four-fold fluorescence enhancement.

  6. JPRS report: Science and technology. Central Eurasia

    NASA Astrophysics Data System (ADS)

    1994-08-01

    Translated articles cover the following topics: boronizing laser treatment of titanium alloys; argon-arc welding-on titanium dowels to inserts for aircraft structures made of composite materials; method of reducing level of thermally stressed state of gas turbine engine blades by selecting optimum thickness distribution of ceramic heat shield coating; certifying modern ceramics for mechanical properties; superplastic ceramic: possibilities for application in modeling pressworking manufacturing processes; monitoring strength of ceramics by acoustic emission; physical and mechanical properties of Al2O3 + ZrO2:Y2O3 composite produced by directional crystallization from melt; influence that microalloying with rare earth elements has on resistance of steels to deformation and fracture under alternating elastic-plastic loading; conceptions of constructing information management networks for distributed objects; concept of a document information system based on an object-oriented subject-area model; underground future of rocket technologies; geoinformation approach to organizing automated information systems for regional-local monitoring of atmospheric pollutants; and possibility of using lidar wind sounding in climatic-ecologic monitoring of limited areas.

  7. Application of boron/epoxy reinforced aluminum stringers and boron/epoxy skid gear for the CH54B helicopter tail cone. Phase 2: Fabrication, inspection and flight test

    NASA Technical Reports Server (NTRS)

    Welge, R. T.

    1972-01-01

    A CH-54B Skycrane helicopter was fabricated with boron/epoxy reinforced stringers in the tail cone and boron/epoxy tubes in the tail skid. The fabrication of the tail cone was made with conventional tooling, production shop personnel, and no major problems. The flight test program includes a stress and vibration survey using strain gages and vibration transducers located in critical areas. The program to inspect and monitor the reliability of the components is discussed.

  8. Peculiar features of boron distribution in high temperature fracture area of rapidly quenched heat-resistant nickel alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulga, A. V., E-mail: avshulga@mephi.ru

    This article comprises the results of comprehensive study of the structure and distribution in the high temperature fracture area of rapidly quenched heat-resistant superalloy of grade EP741NP after tensile tests. The structure and boron distribution in the fracture area are studied in detail by means of direct track autoradiography in combination with metallography of macro- and microstructure. A rather extensive region of microcracks generation and intensive boron redistribution is detected in the high temperature fracture area of rapidly quenched nickel superalloy of grade EP741NP. A significant decrease in boron content in the fracture area and formation of elliptically arranged boridemore » precipitates are revealed. The mechanism of intense boron migration and stability violation of the structural and phase state in the fracture area of rapidly quenched heat-resistant nickel superalloy of grade EP741NP is proposed on the basis of accounting for deformation occurring in the fracture area and analysis of the stressed state near a crack.« less

  9. Characterization of the distribution of the sintering activator boron in powder metallurgical steels with SIMS.

    PubMed

    Krecar, Dragan; Vassileva, Vassilka; Danninger, Herbert; Hutter, Herbert

    2004-06-01

    Powder metallurgy is a well-established method for manufacturing ferrous precision parts. A very important step is sintering, which can be strongly enhanced by the formation of a liquid phase during the sintering process. Boron activates this process by forming such a liquid phase at about 1200 degrees C. In this work, the sintering of Fe-B was performed under the protective atmospheres of hydrogen, argon or nitrogen. Using different grain sizes of the added ferroboron leads to different formations of pores and to the formation of secondary pores. The effect of boron was investigated by means of Secondary Ion Mass Spectrometry (SIMS) supported by Scanning Electron Microscopy (SEM) and Light Microscopy (LM). To verify the influence of the process parameters on the mechanical properties, the microstructure (pore shape) was examined and impact energy measurements were performed. The concentrations of B in different samples were varied from 0.03-0.6 weight percent (wt%). Higher boron concentrations are detectable by EPMA, whereas the distributions of boron in the samples with interesting overall concentration in the low wt% range are only detectable by means of SIMS. This work shows that the distribution of boron strongly depends on its concentration and the sintering atmosphere used. At low concentration (up to 0.1 wt%) there are boride precipitations; at higher concentration there is a eutectic iron-boron grain boundary network. There is a decrease of the impact energy observed that correlates with the amount of eutectic phase.

  10. Boron Dissolved and Particulate Atmospheric Inputs to a Forest Ecosystem (Northeastern France).

    PubMed

    Roux, Philippe; Turpault, Marie-Pierre; Kirchen, Gil; Redon, Paul-Olivier; Lemarchand, Damien

    2017-12-19

    Boron concentrations and isotopic compositions of atmospheric dust and dissolved depositions were monitored over a two-year period (2012-2013) in the forest ecosystem of Montiers (Northeastern France). This time series allows the determination of the boron atmospheric inputs to this forest ecosystem and contributes to refine our understanding of the sources and processes that control the boron atmospheric cycle. Mean annual dust and dissolved boron atmospheric depositions are comparable in size (13 g·ha -1 ·yr -1 and 16 g·ha -1 ·yr -1 , respectively), which however show significant intra- and interannual variations. Boron isotopes in dust differ from dissolved inputs, with an annual mean value of +1 ‰ and +18 ‰ for, respectively. The notable high boron contents (190-390 μg·g -1 ) of the dust samples are interpreted as resulting from localized spreading of boron-rich fertilizers, thus indicating a significant local impact of regional agricultural activities. Boron isotopes in dissolved depositions show a clear seasonal trend. The absence of correlation with marine cyclic solutes contradicts a control of atmospheric boron by dissolution of seasalts. Instead, the boron data from this study are consistent with a Rayleigh-like evolution of the atmospheric gaseous boron reservoir with possible but limited anthropogenic and/or biogenic contributions.

  11. Combustion Performance of a Staged Hybrid Rocket with Boron addition

    NASA Astrophysics Data System (ADS)

    Lee, D.; Lee, C.

    2018-04-01

    In this paper, the effect of boron on overall system specific impulse was investigated. Additionally, a series of combustion tests was carried out to analyze and evaluate the effect of boron addition on O/F variation and radial temperature profiles. To maintain the hybrid rocket engine advantages, upper limit of boron contents in solid fuel was set to be 10 wt%. The results also suggested that, when adding boron to solid fuel, it helped to provide more uniform radial temperature distribution and also to increase specific impulse by 3.2%.

  12. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapy was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.

  13. Early clinical experience utilizing scintillator with optical fiber (SOF) detector in clinical boron neutron capture therapy: its issues and solutions.

    PubMed

    Ishikawa, Masayori; Yamamoto, Tetsuya; Matsumura, Akira; Hiratsuka, Junichi; Miyatake, Shin-Ichi; Kato, Itsuro; Sakurai, Yoshinori; Kumada, Hiroaki; Shrestha, Shubhechha J; Ono, Koji

    2016-08-09

    Real-time measurement of thermal neutrons in the tumor region is essential for proper evaluation of the absorbed dose in boron neutron capture therapy (BNCT) treatment. The gold wire activation method has been routinely used to measure the neutron flux distribution in BNCT irradiation, but a real-time measurement using gold wire is not possible. To overcome this issue, the scintillator with optical fiber (SOF) detector has been developed. The purpose of this study is to demonstrate the feasibility of the SOF detector as a real-time thermal neutron monitor in clinical BNCT treatment and also to report issues in the use of SOF detectors in clinical practice and their solutions. Clinical measurements using the SOF detector were carried out in 16 BNCT clinical trial patients from December 2002 until end of 2006 at the Japanese Atomic Energy Agency (JAEA) and Kyoto University Research Reactor Institute (KURRI). The SOF detector worked effectively as a real-time thermal neutron monitor. The neutron fluence obtained by the gold wire activation method was found to differ from that obtained by the SOF detector. The neutron fluence obtained by the SOF detector was in better agreement with the expected fluence than with gold wire activation. The estimation error for the SOF detector was small in comparison to the gold wire measurement. In addition, real-time monitoring suggested that the neutron flux distribution and intensity at the region of interest (ROI) may vary due to the reactor condition, patient motion and dislocation of the SOF detector. Clinical measurements using the SOF detector to measure thermal neutron flux during BNCT confirmed that SOF detectors are effective as a real-time thermal neutron monitor. To minimize the estimation error due to the displacement of the SOF probe during treatment, a loop-type SOF probe was developed.

  14. Salinity's influence on boron toxicity in broccoli: I. Impacts on yield, biomass distribution, and water use

    USDA-ARS?s Scientific Manuscript database

    Research addressing the interactive effects of the dual plant stress factors, excess boron and salinity, on crop productivity has expanded considerably over the past few years. The purpose of this research was to determine and quantify the interactive effects of salinity, saltcomposition and boron ...

  15. Boron distribution and the effect of lime on boron uptake by pansy, petunia, and gerbera plants

    USDA-ARS?s Scientific Manuscript database

    Reports of boron (B) deficiency have become more prevalent in pansy (Viola ×wittrockiana), petunia (Petunia ×hybrida), and gerbera (Gerbera jamesonii) plug production. When symptoms are observed in production the presence and severity of symptoms have no pattern, symptomatic plants can be located a...

  16. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    PubMed

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A theranostic approach based on the use of a dual boron/Gd agent to improve the efficacy of Boron Neutron Capture Therapy in the lung cancer treatment.

    PubMed

    Alberti, Diego; Protti, Nicoletta; Toppino, Antonio; Deagostino, Annamaria; Lanzardo, Stefania; Bortolussi, Silva; Altieri, Saverio; Voena, Claudia; Chiarle, Roberto; Geninatti Crich, Simonetta; Aime, Silvio

    2015-04-01

    This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagunova, I.A.

    A characteristic feature of the products of mud-volcano activity in the Kerch-Taman region is their high boron content. Distribution of boron in waters of mud volcanoes is characterized by restriction of anomalously high concentrations of boron to mud volcanoes actively operating at the present time in general, and to the most active period of operation of the individual volcano; there is a direct correlation between boron and the hydrocarbonate ion (r/sub B//HCO/sub 3// = 0.5), and between boron and carbon dioxide from the mud-volcano gases (r/sub B//CO/sub 2// = 0.4). The correlation is lacking between boron and mineralization, and betweenmore » boron and chlorine, the correlation is close to inverse. A spatial connection between areas of development of mud volcanism and belts of boron mineralization has been established. Anomalously high boron concentrations in the products of mud volcanism in the Kerch-Taman region are part of the overall increased boron capacity of the Crimea and the Caucasus, which has been controlled by recent magmatic activity.« less

  19. Temporally and Spatially Resolved Plasma Spectroscopy in Pulsed Laser Deposition of Ultra-Thin Boron Nitride Films (Postprint)

    DTIC Science & Technology

    2015-04-24

    AFRL-RX-WP-JA-2016-0196 TEMPORALLY AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE...AND SPATIALLY RESOLVED PLASMA SPECTROSCOPY IN PULSED LASER DEPOSITION OF ULTRA-THIN BORON NITRIDE FILMS (POSTPRINT) 5a. CONTRACT NUMBER FA8650...distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated

  20. Interpolation Approaches for Characterizing Spatial Variability of Soil Properties in Tuz Lake Basin of Turkey

    NASA Astrophysics Data System (ADS)

    Gorji, Taha; Sertel, Elif; Tanik, Aysegul

    2017-12-01

    Soil management is an essential concern in protecting soil properties, in enhancing appropriate soil quality for plant growth and agricultural productivity, and in preventing soil erosion. Soil scientists and decision makers require accurate and well-distributed spatially continuous soil data across a region for risk assessment and for effectively monitoring and managing soils. Recently, spatial interpolation approaches have been utilized in various disciplines including soil sciences for analysing, predicting and mapping distribution and surface modelling of environmental factors such as soil properties. The study area selected in this research is Tuz Lake Basin in Turkey bearing ecological and economic importance. Fertile soil plays a significant role in agricultural activities, which is one of the main industries having great impact on economy of the region. Loss of trees and bushes due to intense agricultural activities in some parts of the basin lead to soil erosion. Besides, soil salinization due to both human-induced activities and natural factors has exacerbated its condition regarding agricultural land development. This study aims to compare capability of Local Polynomial Interpolation (LPI) and Radial Basis Functions (RBF) as two interpolation methods for mapping spatial pattern of soil properties including organic matter, phosphorus, lime and boron. Both LPI and RBF methods demonstrated promising results for predicting lime, organic matter, phosphorous and boron. Soil samples collected in the field were used for interpolation analysis in which approximately 80% of data was used for interpolation modelling whereas the remaining for validation of the predicted results. Relationship between validation points and their corresponding estimated values in the same location is examined by conducting linear regression analysis. Eight prediction maps generated from two different interpolation methods for soil organic matter, phosphorus, lime and boron parameters were examined based on R2 and RMSE values. The outcomes indicate that RBF performance in predicting lime, organic matter and boron put forth better results than LPI. However, LPI shows better results for predicting phosphorus.

  1. Numerical study on determining formation porosity using a boron capture gamma ray technique and MCNP.

    PubMed

    Liu, Juntao; Zhang, Feng; Wang, Xinguang; Han, Fei; Yuan, Zhelong

    2014-12-01

    Formation porosity can be determined using the boron capture gamma ray counting ratio with a near to far detector in a pulsed neutron-gamma element logging tool. The thermal neutron distribution, boron capture gamma spectroscopy and porosity response for formations with different water salinity and wellbore diameter characteristics were simulated using the Monte Carlo method. We found that a boron lining improves the signal-to-noise ratio and that the boron capture gamma ray counting ratio has a higher sensitivity for determining porosity than total capture gamma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Identification of a Novel System for Boron Transport: Atr1 Is a Main Boron Exporter in Yeast▿ †

    PubMed Central

    Kaya, Alaattin; Karakaya, Huseyin C.; Fomenko, Dmitri E.; Gladyshev, Vadim N.; Koc, Ahmet

    2009-01-01

    Boron is a micronutrient in plants and animals, but its specific roles in cellular processes are not known. To understand boron transport and functions, we screened a yeast genomic DNA library for genes that confer resistance to the element in Saccharomyces cerevisiae. Thirty boron-resistant transformants were isolated, and they all contained the ATR1 (YML116w) gene. Atr1 is a multidrug resistance transport protein belonging to the major facilitator superfamily. C-terminal green fluorescent protein-tagged Atr1 localized to the cell membrane and vacuole, and ATR1 gene expression was upregulated by boron and several stress conditions. We found that atr1Δ mutants were highly sensitive to boron treatment, whereas cells overexpressing ATR1 were boron resistant. In addition, atr1Δ cells accumulated boron, whereas ATR1-overexpressing cells had low intracellular levels of the element. Furthermore, atr1Δ cells showed stronger boron-dependent phenotypes than mutants deficient in genes previously reported to be implicated in boron metabolism. ATR1 is widely distributed in bacteria, archaea, and lower eukaryotes. Our data suggest that Atr1 functions as a boron efflux pump and is required for boron tolerance. PMID:19414602

  3. Fine-tuning the nucleophilic reactivities of boron ate complexes derived from aryl and heteroaryl boronic esters.

    PubMed

    Berionni, Guillaume; Leonov, Artem I; Mayer, Peter; Ofial, Armin R; Mayr, Herbert

    2015-02-23

    Boron ate complexes derived from thienyl and furyl boronic esters and aryllithium compounds have been isolated and characterized by X-ray crystallography. Products and mechanisms of their reactions with carbenium and iminium ions have been analyzed. Kinetics of these reactions were monitored by UV/Vis spectroscopy, and the influence of the aryl substituents, the diol ligands (pinacol, ethylene glycol, neopentyl glycol, catechol), and the counterions on the nucleophilic reactivity of the boron ate complexes were examined. A Hammett correlation confirmed the polar nature of their reactions with benzhydrylium ions, and the correlation lg k(20 °C)=sN (E+N) was employed to determine the nucleophilicities of the boron ate complexes and to compare them with those of other borates and boronates. The neopentyl and ethylene glycol derivatives were found to be 10(4) times more reactive than the pinacol and catechol derivatives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Manufacturing Methods for Process Effects on Aluminum Casting Allowables

    DTIC Science & Technology

    1985-03-01

    silicon ingot (25% Si) 4 . Copper as copper shot 5. Manganese as aluminum manganese ingot (10% Mn) 6 . Titanium and boron as titanium -boron wire 7. Silver...in stock form 4 . Silver in granule form. 5. Manganese (10 percent) in button form 6 . 201 refining salt ( Titanium -Boron) Melt chemistry is adjusted to...FAFB, OH 45433 4 . PERFORIN41N ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMSER(S) NOR 85-119 AFWAL-TR-.84- 4 117 I 6 *. NAME OF

  5. Application of proton boron fusion reaction to radiation therapy: A Monte Carlo simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk, E-mail: suhsanta@catholic.ac.kr

    2014-12-01

    Three alpha particles are emitted from the point of reaction between a proton and boron. The alpha particles are effective in inducing the death of a tumor cell. After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton's maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here, we show that the effectiveness of the proton boron fusion therapymore » was verified using Monte Carlo simulations. We found that a dramatic increase by more than half of the proton's maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton's maximum dose point was located within the boron uptake region. In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.« less

  6. SU-D-304-07: Application of Proton Boron Fusion Reaction to Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, J; Yoon, D; Shin, H

    Purpose: we present the introduction of a therapy method using the proton boron fusion reaction. The purpose of this study is to verify the theoretical validity of proton boron fusion therapy using Monte Carlo simulations. Methods: After boron is accumulated in the tumor region, the emitted from outside the body proton can react with the boron in the tumor region. An increase of the proton’s maximum dose level is caused by the boron and only the tumor cell is damaged more critically. In addition, a prompt gamma ray is emitted from the proton boron reaction point. Here we show thatmore » the effectiveness of the proton boron fusion therapy (PBFT) was verified using Monte Carlo simulations. Results: We found that a dramatic increase by more than half of the proton’s maximum dose level was induced by the boron in the tumor region. This increase occurred only when the proton’s maximum dose point was located within the boron uptake region (BUR). In addition, the 719 keV prompt gamma ray peak produced by the proton boron fusion reaction was positively detected. Conclusion: This therapy method features the advantages such as the application of Bragg-peak to the therapy, the accurate targeting of tumor, improved therapy effects, and the monitoring of the therapy region during treatment.« less

  7. Contribution of first-principles calculations to multinuclear NMR analysis of borosilicate glasses.

    PubMed

    Soleilhavoup, Anne; Delaye, Jean-Marc; Angeli, Frédéric; Caurant, Daniel; Charpentier, Thibault

    2010-12-01

    Boron-11 and silicon-29 NMR spectra of xSiO(2)-(1-x)B(2)O(3) glasses (x=0.40, 0.80 and 0.83) have been calculated using a combination of molecular dynamics (MD) simulations with density functional theory (DFT) calculations of NMR parameters. Structure models of 200 atoms have been generated using classical force fields and subsequently relaxed at the PBE-GGAlevel of DFT theory. The gauge including projector augmented wave (GIPAW) method is then employed for computing the shielding and electric field gradient tensors for each silicon and boron atom. Silicon-29 MAS and boron-11 MQMAS NMR spectra of two glasses (x=0.40 and 0.80) have been acquired and theoretical spectra are found to well agree with the experimental data. For boron-11, the NMR parameter distributions have been analysed using a Kernel density estimation (KDE) approach which is shown to highlight its main features. Accordingly, a new analytical model that incorporates the observed correlations between the NMR parameters is introduced. It significantly improves the fit of the (11)B MQMAS spectra and yields, therefore, more reliable NMR parameter distributions. A new analytical model for a quantitative description of the dependence of the silicon-29 and boron-11 isotropic chemical shift upon the bond angles is proposed, which incorporates possibly the effect of SiO(2)-B(2)O(3) intermixing. Combining all the above procedures, we show how distributions of Si-O-T and B-O-T (T=Si, B) bond angles can be estimated from the distribution of isotropic chemical shift of silicon-29 and boron-11, respectively. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Electrical conductivity enhancement by boron-doping in diamond using first principle calculations

    NASA Astrophysics Data System (ADS)

    Ullah, Mahtab; Ahmed, Ejaz; Hussain, Fayyaz; Rana, Anwar Manzoor; Raza, Rizwan

    2015-04-01

    Boron doping in diamond plays a vital role in enhancing electrical conductivity of diamond by making it a semiconductor, a conductor or even a superconductor. To elucidate this fact, partial and total density of states has been determined as a function of B-content in diamond. Moreover, the orbital charge distributions, B-C bond lengths and their population have been studied for B-doping in pristine diamond thin films by applying density functional theory (DFT). These parameters have been found to be influenced by the addition of different percentages of boron atoms in diamond. The electronic density of states, B-C bond situations as well as variations in electrical conductivities of diamond films with different boron content and determination of some relationship between these parameters were the basic tasks of this study. Diamond with high boron concentration (∼5.88% B-atoms) showed maximum splitting of energy bands (caused by acceptor impurity states) at the Fermi level which resulted in the enhancement of electron/ion conductivities. Because B atoms either substitute carbon atoms and/or assemble at grain boundaries (interstitial sites) inducing impurity levels close to the top of the valence band. At very high B-concentration, impurity states combine to form an impurity band which accesses the top of the valence band yielding metal like conductivity. Moreover, bond length and charge distributions are found to decrease with increase in boron percentage in diamond. It is noted that charge distribution decreased from +1.89 to -1.90 eV whereas bond length reduced by 0.04 Å with increasing boron content in diamond films. These theoretical results support our earlier experimental findings on B-doped diamond polycrystalline films which depict that the addition of boron atoms to diamond films gives a sudden fall in resistivity even up to 105 Ω cm making it a good semiconductor for its applications in electrical devices.

  9. In vivo pH monitoring using boron doped diamond microelectrode and silver needles: Application to stomach disorder diagnosis

    NASA Astrophysics Data System (ADS)

    Fierro, Stéphane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki

    2013-11-01

    This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the results of the in vivo and in vitro experiments, a quantitative analysis of the increase in stomach pH is also presented. It is proposed that the catheter-free pH monitoring system presented in this study could be potentially employed in any biological environment.

  10. In vivo pH monitoring using boron doped diamond microelectrode and silver needles: application to stomach disorder diagnosis.

    PubMed

    Fierro, Stéphane; Seishima, Ryo; Nagano, Osamu; Saya, Hideyuki; Einaga, Yasuaki

    2013-11-19

    This study presents the in vivo electrochemical monitoring of pH using boron doped diamond (BDD) microelectrode and silver needles for potential application in medical diagnosis. Accurate calibration curve for pH determination were obtained through in vitro electrochemical measurements. The increase induced in stomach pH by treatment with pantoprazole was used to demonstrate that it is possible to monitor the pH in vivo using the simple and noninvasive system proposed herein. Using the results of the in vivo and in vitro experiments, a quantitative analysis of the increase in stomach pH is also presented. It is proposed that the catheter-free pH monitoring system presented in this study could be potentially employed in any biological environment.

  11. Boron exposure assessment using drinking water and urine in the North of Chile.

    PubMed

    Cortes, S; Reynaga-Delgado, E; Sancha, A M; Ferreccio, C

    2011-12-01

    Boron is an essential trace element for plants and humans however it is still an open question what levels of boron are actually safe for humans. This study, conducted between 2006 and 2010, measured exposure levels of boron in drinking water and urine of volunteers in Arica, an area in the North of Chile with high levels of naturally occurring boron. Samples were taken of tap and bottled water (173 and 22, respectively), as well as urine from 22 volunteers, and subsequently analyzed by inductively coupled plasma spectroscopy (ICP-OES). Boron varied in public tap water from 0.22 to 11.3mgL(-1), with a median value of 2.9mgL(-1), while concentrations of boron in bottled water varied from 0.01 to 12.2mgL(-1). Neither tap nor bottled water samples had concentrations of boron within WHO recommended limits. The concentration of boron in urine varied between 0.45 and 17.4mgL(-1), with a median of 4.28mgL(-1) and was found to be correlated with tap water sampled from the homes of the volunteers (r=0.64). Authors highly recommend that in northern Chile - where levels of boron are naturally high - that the tap and bottled water supplies be monitored in order to protect public health and that regulatory standards also be established for boron in drinking water in order to limit exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Acoustic emission studies of large advanced composite rocket motor cases.

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.

    1973-01-01

    Acoustic emission (AE) patterns were measured during pressure testing of advanced composite rocket motor cases made of boron/epoxy and graphite/epoxy. Both accelerometers and high frequency AE transducers were used, and both frequency spectrum and amplitude distribution were studied. The AE patterns suggest that precursor emission might be used in certain cases to anticipate failure. The technique of hold-cycle AE monitoring was also evaluated and could become a valuable decision gate for test continuation/termination. Data presented show similarity of accelerometers and AE transducer responses despite the different frequency response, and suggest that structural AE phenomena are broadband.

  13. Thermodynamics and Kinetics of Boron Removal from Metallurgical Grade Silicon by Addition of High Basic Potassium Carbonate to Calcium Silicate Slag

    NASA Astrophysics Data System (ADS)

    Wu, Jijun; Wang, Fanmao; Ma, Wenhui; Lei, Yun; Yang, Bin

    2016-06-01

    In this study, we investigated the thermodynamics and kinetics of boron removal from metallurgical grade silicon (MG-Si) using a calcium silicate slag containing a high basic potassium carbonate. The distribution of boron between slag and silicon was theoretically derived and the distribution coefficients ( L B) of boron with different compositions of CaO, SiO2, and K2CO3 in slag reagents were determined. The maximal value of L B reached 2.08 with a high basicity slag of 40 pctCaO-40 pctSiO2-20 pctK2CO3 (Λ = 0.73). The boron removal rates from MG-Si using CaO-SiO2 and CaO-SiO2-K2CO3 slags at 1823 K (1550 °C) were investigated in an electromagnetic induction furnace. The results showed that the boron concentration in MG-Si can be reduced from 22 to 1.8 ppmw at 1823 K (1550 °C) with 20 pct K2CO3 addition to calcium silicate slag, where the removal efficiency of boron reached 91.8 pct. The mass transfer coefficient ( β S) of boron in binary 50 pctCaO-50 pctSiO2 slag was 3.16 × 10-6 m s-1 at 1823 K (1550 °C) and was 2.43 × 10-5 m s-1 in ternary 40 pctCaO-40 pctSiO2-20 pctK2CO3 slag.

  14. Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth.

    PubMed

    Fang, Kefeng; Zhang, Weiwei; Xing, Yu; Zhang, Qing; Yang, Liu; Cao, Qingqin; Qin, Ling

    2016-01-01

    Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca(2+)]c and induce the disappearance of the [Ca(2+)]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca(2+)]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth.

  15. Boron Toxicity Causes Multiple Effects on Malus domestica Pollen Tube Growth

    PubMed Central

    Fang, Kefeng; Zhang, Weiwei; Xing, Yu; Zhang, Qing; Yang, Liu; Cao, Qingqin; Qin, Ling

    2016-01-01

    Boron is an important micronutrient for plants. However, boron is also toxic to cells at high concentrations, although the mechanism of this toxicity is not known. This study aimed to evaluate the effect of boron toxicity on Malus domestica pollen tube growth and its possible regulatory pathway. Our results showed that a high concentration of boron inhibited pollen germination and tube growth and led to the morphological abnormality of pollen tubes. Fluorescent labeling coupled with a scanning ion-selective electrode technique detected that boron toxicity could decrease [Ca2+]c and induce the disappearance of the [Ca2+]c gradient, which are critical for pollen tube polar growth. Actin filaments were therefore altered by boron toxicity. Immuno-localization and fluorescence labeling, together with fourier-transform infrared analysis, suggested that boron toxicity influenced the accumulation and distribution of callose, de-esterified pectins, esterified pectins, and arabinogalactan proteins in pollen tubes. All of the above results provide new insights into the regulatory role of boron in pollen tube development. In summary, boron likely plays a structural and regulatory role in relation to [Ca2+]c, actin cytoskeleton and cell wall components and thus regulates Malus domestica pollen germination and tube polar growth. PMID:26955377

  16. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: Flight service and inspection

    NASA Technical Reports Server (NTRS)

    Kizer, J. A.

    1981-01-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  17. Advanced Boron Carbide-Based Visual Obscurants for Military Smoke Grenades

    DTIC Science & Technology

    2014-07-13

    determine volume-based diameter distributions of aqueous boron carbide suspensions. Potassium nitrate (MIL-P-156B, 15 μm) and potassium chloride (−50... Potassium chloride was found to be particularly effective in this role. The combustion of certain ternary B4C/KNO3/KCl mixtures (such Distribution A... of unconsolidated mixtures. Five wet binder systems were therefore evaluated. Polyacrylate elastomer and nitro- cellulose (NC) were applied as

  18. The boron implantation in the varied zone MBE MCT epilayer

    NASA Astrophysics Data System (ADS)

    Voitsekhovskii, Alexander V.; Grigor'ev, Denis V.; Kokhanenko, Andrey P.; Korotaev, Alexander G.; Sidorov, Yuriy G.; Varavin, Vasiliy S.; Dvoretsky, Sergey A.; Mikhailov, Nicolay N.; Talipov, Niyaz Kh.

    2005-09-01

    In the paper experimental results on boron implantation of the CdxHg1-xTe epilayers with various composition near surface of the material are discussed. The electron concentration in the surface layer after irradiation vs irradiation dose and ion energy are investigated for range of doses 1011 - 3•1015 cm-2 and energies of 20 - 150 keV. Also the results of the electrical active defects distribution measurement, carried out by differential Hall method, after boron implantation are represented. Consideration of the received data shows, that composition gradient influence mainly on the various dynamics of accumulation of electric active radiation defects. The electric active defects distribution analysis shows, that the other factors are negligible.

  19. Effect of Boron and Titanium Addition on the Hot Ductility of Low-Carbon Nb-Containing Steel

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Jian; Li, Jing; Shi, Cheng-Bin; Huo, Xiang-Dong

    2015-12-01

    The effect of boron and titanium addition on the hot ductility of Nb-containing steel was investigated using hot tensile tests. The fracture surface and the quenched longitudinal microstructure were examined by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that both steel samples had the similar change from 1,100°C to 700°C. The hot ductility of Nb-containing steel with boron and titanium addition was higher than the steel without boron and titanium in the temperature range of 900-750°C. Because the formation of intergranular ferrite was inhibited by solute boron segregating on the grain boundary, the formation of TiN changed the distribution of Nb- and boron-containing precipitates and improved the amount of intragranular ferrite.

  20. 2. CONTROL ROOM INTERIOR, CONSOLE AND MONITORS. Looking west. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTROL ROOM INTERIOR, CONSOLE AND MONITORS. Looking west. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  1. Predicting the structural and electronic properties of two-dimensional single layer boron nitride sheets

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Cheng, Xin-Lu

    2018-02-01

    Three two-dimensional (2D) single layer boron nitride sheets have been predicted based on the first-principles calculations. These 2D boron nitride sheets are comprised of equivalent boron atoms and nitride atoms with sp2 and sp bond hybridization. The geometry optimization reflects that they all possess stable planar crystal structures with the space group P 6 bar 2 m (D3h3) symmetry. The charge density distribution manifests that the B-N bonds in these boron nitride sheets are covalent in nature but with ionic characteristics. The tunable band gaps indicate their potential applications in nanoscale electronic and optoelectronic devices by changing the length of sp-bonded Bsbnd N linkages.

  2. Results of Boron, Surfactant, and Cyanide Investigation, Beale AFB, California

    DTIC Science & Technology

    1991-07-01

    ensure that their discharge does not produce instream toxicity. The Discharger shall carry-out the biotoxicity monitoring program in accordance with...Discharger shall implement the approved biotoxicity monitoring program. d. The Discharger shall submit the results of the biotoxicity monitoring program to

  3. Effect of cooling rate during hot stamping on low cyclic fatigue of boron steel sheet

    NASA Astrophysics Data System (ADS)

    Suh, Chang Hee; Jang, Won Seok; Oh, Sang Kyun; Lee, Rac Gyu; Jung, Yun-Chul; Kim, Young Suk

    2012-08-01

    Boron steel is widely used throughout the automobile industry due to its high tensile strength and hardenability. When boron steel is used for body parts, only high strength is required for crashworthiness. However, when boron steel is used for chassis parts, a high fatigue life is needed. The microstructure of boron steel is mainly affected by the cooling rate during hot stamping. Therefore, this study investigated the low cyclic fatigue life according to the cooling rate. The fatigue life increased at a low strain amplitude when the cooling rate was fast. However, at a high strain amplitude, the fatigue life decreased, due to the low ductility and fracture toughness of the martensite formed by rapid cooling. Martensite formed by a fast cooling rate shows excellent fatigue life at a low total strain amplitude; however, a multiphase microstructure formed by a slow cooling rate is recommended if the parts experience high and low total strain amplitudes alternately. In addition, the cooling rate has little effect on the distribution of solute boron and boron precipitations, so it is expected that boron rarely affects low cyclic fatigue.

  4. Spatial and temporal distribution of specific conductance, boron, and phosphorus in a sewage-contaminated aquifer near Ashumet Pond, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Bussey, K.W.; Walter, D.A.

    1996-01-01

    Spatial and temporal distributions of specific conductance, boron, and phosphorus were determined in a sewage-contaminated sand and gravel aquifer near Ashumet Pond, Cape Cod, Massachusetts. The source of contamination is secondarily treated sewage that has been discharged onto rapid- infiltration sand beds at the Massachusetts Military Reservation since 1936. Contaminated ground water containing as much as 2 milligrams per liter of dissolved phosphorus is discharging into Ashumet Pond, and there is concern that the continued discharge of phosphorus into the pond will accelerate eutrophication of the pond. Water-quality data collected from observation wells and multilevel samplers from June through July 1995 were used to delineate the spatial distributions of specific conductance, boron, and phosphorus. Temporal distributions were determined using sample-interval-weighted average concen- trations calculated from data collected in 1993, 1994, and 1995. Specific conductances were greater than 400 microsiemens per centimeter at 25C as far as 1,200 feet downgradient from the infiltration beds. Boron concentrations were greater than 400 micrograms per liter as far as 1,800 feet down- gradient from the beds and phosphorus concen- trations were greater than 3.0 milligrams per liter as far as 1,200 feet from the beds. Variability in distributions of specific conductance and boron concentrations is attributed to the history and distribution of sewage disposal onto the infiltration beds. The distribution of phosphorus concentrations also is related to the history and distribution of sewage disposal onto the beds but additional variability is caused by chemical interactions with the aquifer materials. Temporal changes in specific conductance and boron from 1993 to 1995 were negligible, except in the lower part of the plume (below an altitude of about 5 feet above sea level), where changes in weighted-average specific conductance were greater than 100 microsiemens per centimeter at 25C. Temporal changes in phosphorus generally were small except in the lower part of the plume, where weighted-average phosphorus concentrations decreased more than 1.3 milligrams per liter from 1993 to 1994. This decrease was accompanied by an increase in specific conductance. High concen- trations of phosphorus associated with low and moderate specific conductances possibly are the result of rapid phosphorus desorption in response to an influx of uncontaminated ground water. As a result of the cessation of sewage disposal in December 1995, clean, oxygenated water moving into contaminated parts of the aquifer may cause rapid desorption of sorbed phosphorus and temporarily result in high dissolved phosphorus concentrations in the aquifer.

  5. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marquez Rossy, Andres E.; Armstrong, Beth L.; Elliott, Amy M.

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to anmore » azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweizer, M.

    This report summarizes progress during the past year on maturing Boron-11 magnetic resonance imaging (MRI) methodology for noninvasive determination of BNCT agents (BSH) spatially in time. Three major areas are excerpted: (1) Boron-11 MRI of BSH distributions in a canine intracranial tumor model and the first human glioblastoma patient, (2) whole body Boron-11 MRI of BSH pharmacokinetics in a rat flank tumor model, and (3) penetration of gadolinium salts through the BBB as a function of tumor growth in the canine brain.

  7. Elucidation of Iron Gettering Mechanisms in Boron-Implanted Silicon Solar Cells

    DOE PAGES

    Laine, Hannu S.; Vahanissi, Ville; Liu, Zhengjun; ...

    2017-12-15

    To facilitate cost-effective manufacturing of boron-implanted silicon solar cells as an alternative to BBr 3 diffusion, we performed a quantitative test of the gettering induced by solar-typical boron-implants with the potential for low saturation current density emitters (< 50 fA/cm 2). We show that depending on the contamination level and the gettering anneal chosen, such boron-implanted emitters can induce more than a 99.9% reduction in bulk iron point defect concentration. The iron point defect results as well as synchrotron-based Nano-X-ray-fluorescence investigations of iron precipitates formed in the implanted layer imply that, with the chosen experimental parameters, iron precipitation is themore » dominant gettering mechanism, with segregation-based gettering playing a smaller role. We reproduce the measured iron point defect and precipitate distributions via kinetics modeling. First, we simulate the structural defect distribution created by the implantation process, and then we model these structural defects as heterogeneous precipitation sites for iron. Unlike previous theoretical work on gettering via boron- or phosphorus-implantation, our model is free of adjustable simulation parameters. The close agreement between the model and experimental results indicates that the model successfully captures the necessary physics to describe the iron gettering mechanisms operating in boron-implanted silicon. Furthermore, this modeling capability allows high-performance, cost-effective implanted silicon solar cells to be designed.« less

  8. Elucidation of Iron Gettering Mechanisms in Boron-Implanted Silicon Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, Hannu S.; Vahanissi, Ville; Liu, Zhengjun

    To facilitate cost-effective manufacturing of boron-implanted silicon solar cells as an alternative to BBr 3 diffusion, we performed a quantitative test of the gettering induced by solar-typical boron-implants with the potential for low saturation current density emitters (< 50 fA/cm 2). We show that depending on the contamination level and the gettering anneal chosen, such boron-implanted emitters can induce more than a 99.9% reduction in bulk iron point defect concentration. The iron point defect results as well as synchrotron-based Nano-X-ray-fluorescence investigations of iron precipitates formed in the implanted layer imply that, with the chosen experimental parameters, iron precipitation is themore » dominant gettering mechanism, with segregation-based gettering playing a smaller role. We reproduce the measured iron point defect and precipitate distributions via kinetics modeling. First, we simulate the structural defect distribution created by the implantation process, and then we model these structural defects as heterogeneous precipitation sites for iron. Unlike previous theoretical work on gettering via boron- or phosphorus-implantation, our model is free of adjustable simulation parameters. The close agreement between the model and experimental results indicates that the model successfully captures the necessary physics to describe the iron gettering mechanisms operating in boron-implanted silicon. Furthermore, this modeling capability allows high-performance, cost-effective implanted silicon solar cells to be designed.« less

  9. An introduction to boron: history, sources, uses, and chemistry.

    PubMed Central

    Woods, W G

    1994-01-01

    Following a brief overview of the terrestrial distribution of boron in rocks, soil, and water, the history of the discovery, early utilization, and geologic origin of borate minerals is summarized. Modern uses of borate-mineral concentrates, borax, boric acid, and other refined products include glass, fiberglass, washing products, alloys and metals, fertilizers, wood treatments, insecticides, and microbiocides. The chemistry of boron is reviewed from the point of view of its possible health effects. It is concluded that boron probably is complexed with hydroxylated species in biologic systems, and that inhibition and stimulation of enzyme and coenzymes are pivotal in its mode of action. Images Figure 1. PMID:7889881

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, H; Yoon, D; Jung, J

    Purpose: The purpose of this study is to suggest a tumor monitoring technique using prompt gamma rays emitted during the reaction between an antiproton and a boron particle, and to verify the increase of the therapeutic effectiveness of the antiproton boron fusion therapy using Monte Carlo simulation code. Methods: We acquired the percentage depth dose of the antiproton beam from a water phantom with and without three boron uptake regions (region A, B, and C) using F6 tally of MCNPX. The tomographic image was reconstructed using prompt gamma ray events from the reaction between the antiproton and boron during themore » treatment from 32 projections (reconstruction algorithm: MLEM). For the image reconstruction, we were performed using a 80 × 80 pixel matrix with a pixel size of 5 mm. The energy window was set as a 10 % energy window. Results: The prompt gamma ray peak for imaging was observed at 719 keV in the energy spectrum using the F8 tally fuction (energy deposition tally) of the MCNPX code. The tomographic image shows that the boron uptake regions were successfully identified from the simulation results. In terms of the receiver operating characteristic curve analysis, the area under the curve values were 0.647 (region A), 0.679 (region B), and 0.632 (region C). The SNR values increased as the tumor diameter increased. The CNR indicated the relative signal intensity within different regions. The CNR values also increased as the different of BURs diamter increased. Conclusion: We confirmed the feasibility of tumor monitoring during the antiproton therapy as well as the superior therapeutic effect of the antiproton boron fusion therapy. This result can be beneficial for the development of a more accurate particle therapy.« less

  11. Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds.

    PubMed

    Wu, Chengtie; Miron, Richard; Sculean, Anton; Kaskel, Stefan; Doert, Thomas; Schulze, Renate; Zhang, Yufeng

    2011-10-01

    Boron is one of the trace elements in the human body which plays an important role in bone growth. Porous mesopore bioactive glass (MBG) scaffolds are proposed as potential bone regeneration materials due to their excellent bioactivity and drug-delivery ability. The aims of the present study were to develop boron-containing MBG (B-MBG) scaffolds by sol-gel method and to evaluate the effect of boron on the physiochemistry of B-MBG scaffolds and the response of osteoblasts to these scaffolds. Furthermore, the effect of dexamethasone (DEX) delivery in B-MBG scaffold system was investigated on the proliferation, differentiation and bone-related gene expression of osteoblasts. The composition, microstructure and mesopore properties (specific surface area, nano-pore volume and nano-pore distribution) of B-MBG scaffolds have been characterized. The effect of boron contents and large-pore porosity on the loading and release of DEX in B-MBG scaffolds were also investigated. The results have shown that the incorporation of boron into MBG scaffolds slightly decreases the specific surface area and pore volume, but maintains well-ordered mesopore structure and high surface area and nano-pore volume compared to non-mesopore bioactive glass. Boron contents in MBG scaffolds did not influence the nano-pore size distribution or the loading and release of DEX. B-MBG scaffolds have the ability to maintain a sustained release of DEX in a long-term span. Incorporating boron into MBG glass scaffolds led to a controllable release of boron ions and significantly improved the proliferation and bone-related gene expression (Col I and Runx2) of osteoblasts. Furthermore, the sustained release of DEX from B-MBG scaffolds significantly enhanced alkaline phosphatase (ALP) activity and gene expressions (Col I, Runx2, ALP and BSP) of osteoblasts. These results suggest that boron plays an important role in enhancing osteoblast proliferation in B-MBG scaffold system and DEX-loaded B-MBG scaffolds show great potential as a release system to enhance osteogenic property for bone tissue engineering application. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  12. Boron-carbide-aluminum and boron-carbide-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Pyzik, Aleksander J.; Aksay, Ilhan A.

    1986-01-01

    Hard, tough, lightweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidation step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modulus of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi.sqroot.in. These composites and methods can be used to form a variety of structural elements.

  13. Boron-carbide-aluminum and boron-carbide-reactive metal cermets. [B/sub 4/C-Al

    DOEpatents

    Halverson, D.C.; Pyzik, A.J.; Aksay, I.A.

    1985-05-06

    Hard, tough, lighweight boron-carbide-reactive metal composites, particularly boron-carbide-aluminum composites, are produced. These composites have compositions with a plurality of phases. A method is provided, including the steps of wetting and reacting the starting materials, by which the microstructures in the resulting composites can be controllably selected. Starting compositions, reaction temperatures, reaction times, and reaction atmospheres are parameters for controlling the process and resulting compositions. The ceramic phases are homogeneously distributed in the metal phases and adhesive forces at ceramic-metal interfaces are maximized. An initial consolidated step is used to achieve fully dense composites. Microstructures of boron-carbide-aluminum cermets have been produced with modules of rupture exceeding 110 ksi and fracture toughness exceeding 12 ksi..sqrt..in. These composites and methods can be used to form a variety of structural elements.

  14. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysismore » of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.« less

  15. Analysis of the electron density features of small boron clusters and the effects of doping with C, P, Al, Si, and Zn: Magic B7P and B8Si clusters

    NASA Astrophysics Data System (ADS)

    Saha, P.; Rahane, A. B.; Kumar, V.; Sukumar, N.

    2016-05-01

    Boron atomic clusters show several interesting and unusual size-dependent features due to the small covalent radius, electron deficiency, and higher coordination number of boron as compared to carbon. These include aromaticity and a diverse array of structures such as quasi-planar, ring or tubular shaped, and fullerene-like. In the present work, we have analyzed features of the computed electron density distributions of small boron clusters having up to 11 boron atoms, and investigated the effect of doping with C, P, Al, Si, and Zn atoms on their structural and physical properties, in order to understand the bonding characteristics and discern trends in bonding and stability. We find that in general there are covalent bonds as well as delocalized charge distribution in these clusters. We associate the strong stability of some of these planar/quasiplanar disc-type clusters with the electronic shell closing with effectively twelve delocalized valence electrons using a disc-shaped jellium model. {{{{B}}}9}-, B10, B7P, and B8Si, in particular, are found to be exceptional with very large gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, and these are suggested to be magic clusters.

  16. In vivo prompt gamma neutron activation analysis for the screening of boron-10 distribution in a rabbit knee: a simulation study

    NASA Astrophysics Data System (ADS)

    Zhu, X.; Clackdoyle, R.; Shortkroff, S.; Yanch, J.

    2008-05-01

    Boron neutron capture synovectomy (BNCS) is under development as a potential treatment modality for rheumatoid arthritis (RA). RA is characterized by the inflammation of the synovium (the membrane lining articular joints), which leads to pain and a restricted range of motion. BNCS is a two-part procedure involving the injection of a boronated compound directly into the diseased joint followed by irradiation with a low-energy neutron beam. The neutron capture reactions taking place in the synovium deliver a local, high-linear energy transfer (LET) dose aimed at destroying the inflamed synovial membrane. For successful treatment via BNCS, a boron-labeled compound exhibiting both high synovial uptake and long retention time is necessary. Currently, the in vivo uptake behavior of potentially useful boronated compounds is evaluated in the knee joints of rabbits in which arthritis has been induced. This strategy involves the sacrifice and dissection of a large number of animals. An in vivo 10B screening approach is therefore under investigation with the goal of significantly reducing the number of animals needed for compound evaluation via dissection studies. The 'in vivo prompt gamma neutron activation analysis' (IVPGNAA) approach uses a narrow neutron beam to irradiate the knee from several angular positions following the intra-articular injection of a boronated compound whose uptake characteristics are unknown. A high-purity germanium detector collects the 478 keV gamma photons produced by the 10B capture reactions. The 10B distribution in the knee is then reconstructed by solving a system of simultaneous equations using a weighted least squares algorithm. To study the practical feasibility of IVPGNAA, simulation data were generated with the Monte Carlo N-particle transport code. The boron-containing region of a rabbit knee was partitioned into 8 compartments, and the 10B prompt gamma signals were tallied from 16 angular positions. Results demonstrate that for this level of spatial resolution, an estimate of 10B distribution inside the joint can be obtained to within 10% uncertainty, under ideal conditions. Variations of the anatomic dimensions among individual rabbit knees and potential knee positioning errors will result in an uncertainty of over 20%. IVPGNAA thus provides sufficient resolution and quantification regarding the in vivo uptake characteristics of boronated pharmaceuticals to serve as a useful means of screening new compounds of potential use in BNCS.

  17. Boron-based nanostructures: Synthesis, functionalization, and characterization

    NASA Astrophysics Data System (ADS)

    Bedasso, Eyrusalam Kifyalew

    Boron-based nanostructures have not been explored in detail; however, these structures have the potential to revolutionize many fields including electronics and biomedicine. The research discussed in this dissertation focuses on synthesis, functionalization, and characterization of boron-based zero-dimensional nanostructures (core/shell and nanoparticles) and one-dimensional nanostructures (nanorods). The first project investigates the synthesis and functionalization of boron-based core/shell nanoparticles. Two boron-containing core/shell nanoparticles, namely boron/iron oxide and boron/silica, were synthesized. Initially, boron nanoparticles with a diameter between 10-100 nm were prepared by decomposition of nido-decaborane (B10H14) followed by formation of a core/shell structure. The core/shell structures were prepared using the appropriate precursor, iron source and silica source, for the shell in the presence of boron nanoparticles. The formation of core/shell nanostructures was confirmed using high resolution TEM. Then, the core/shell nanoparticles underwent a surface modification. Boron/iron oxide core/shell nanoparticles were functionalized with oleic acid, citric acid, amine-terminated polyethylene glycol, folic acid, and dopamine, and boron/silica core/shell nanoparticles were modified with 3-(amino propyl) triethoxy silane, 3-(2-aminoethyleamino)propyltrimethoxysilane), citric acid, folic acid, amine-terminated polyethylene glycol, and O-(2-Carboxyethyl)polyethylene glycol. A UV-Vis and ATR-FTIR analysis established the success of surface modification. The cytotoxicity of water-soluble core/shell nanoparticles was studied in triple negative breast cancer cell line MDA-MB-231 and the result showed the compounds are not toxic. The second project highlights optimization of reaction conditions for the synthesis of boron nanorods. This synthesis, done via reduction of boron oxide with molten lithium, was studied to produce boron nanorods without any contamination and with a uniform size distribution. Various reaction parameters such as temperature, reaction time, and sonication were altered to find the optimal reaction conditions. Once these conditions were determined, boron nanorods were produced then functionalized with amine-terminated polyethylene glycol.

  18. Effects of boron implantation on silicon dioxide passivated HgCdTe

    NASA Astrophysics Data System (ADS)

    Bowman, R. C., Jr.; Marks, J.; Knudsen, J. F.; Downing, R. G.; To, G. A.

    The influence of boron ion implants on the optical and physical properties of photochemically deposited SiO2 films on Hg(O.7)Cd(O.3)Te and silicon has been investigated. The distributions of the boron atoms between the SiO2 film and substrate have been determined by a non-destructive neutron depth profiling method. The implants produce an apparent densification of the SiO2 films, which is accompanied by an increase in refractive index and changes in the infrared vibrational spectra for these films.

  19. Hybrid-PIC Modeling of the Transport of Atomic Boron in a Hall Thruster

    NASA Technical Reports Server (NTRS)

    Smith, Brandon D.; Boyd, Iaian D.; Kamhawi, Hani

    2015-01-01

    Computational analysis of the transport of boron eroded from the walls of a Hall thruster is performed by implementing sputter yields of hexagonal boron nitride and velocity distribution functions of boron within the hybrid-PIC model HPHall. The model is applied to simulate NASA's HiVHAc Hall thruster at a discharge voltage of 500V and discharge powers of 1-3 kW. The number densities of ground- and 4P-state boron are computed. The density of ground-state boron is shown to be a factor of about 30 less than the plasma density. The density of the excited state is shown to be about three orders of magnitude less than that of the ground state, indicating that electron impact excitation does not significantly affect the density of ground-state boron in the discharge channel or near-field plume of a Hall thruster. Comparing the rates of excitation and ionization suggests that ionization has a greater influence on the density of ground-state boron, but is still negligible. The ground-state boron density is then integrated and compared to cavity ring-down spectroscopy (CRDS) measurements for each operating point. The simulation results show good agreement with the measurements for all operating points and provide evidence in support of CRDS as a tool for measuring Hall thruster erosion in situ.

  20. On the Mechanism of Boron Ignition

    NASA Technical Reports Server (NTRS)

    Keil, D. G.; Dreizin, E. L.; Felder, W.; Vicenzi, E. P.

    1997-01-01

    Boron filaments were electrically heated in air and argon/oxygen mixtures while their resistance, temperature, and radiation at the wavelengths of BO and BO2 bands were monitored. The filaments 'burned' in two distinct stages. Samples of the filaments were quenched at different times before and during the burning and analyzed using electron microscopy. The beginning of the first stage combustion characterized by a local resistance minimum, a sharp spike in boron oxide radiation emission, and a rapid rise in temperature, occurred at 1500 +/- 70 deg. C, independent of pre-heating history and oxygen content (540%) in the gas environment. The data suggest that a phase transition occurs in the filaments at this temperature that triggers stage one combustion. Significant amounts of oxygen were found inside quenched filaments. Large spherical voids formed in the boron filaments during their second stage combustion which is interpreted to indicate a crucial role for the gas dissolution processes in the combustion scenario.

  1. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1997-03-18

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  2. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1995-10-03

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  3. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, Michiko; Slatkin, Daniel N.

    1997-08-05

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized. by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na.sub.4 B.sub.12 I.sub.11 SSB.sub.12 I.sub.11, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy.

  4. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1995-10-03

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  5. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1997-03-18

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  6. Halogenated sulfidohydroboranes for nuclear medicine and boron neutron capture therapy

    DOEpatents

    Miura, M.; Slatkin, D.N.

    1997-08-05

    A method for performing boron neutron capture therapy for the treatment of tumors is disclosed. The method includes administering to a patient an iodinated sulfidohydroborane, a boron-10-containing compound. The site of the tumor is localized by visualizing the increased concentration of the iodine labelled compound at the tumor. The targeted tumor is then irradiated with a beam of neutrons having an energy distribution effective for neutron capture. Destruction of the tumor occurs due to high LET particle irradiation of the tissue secondary to the incident neutrons being captured by the boron-10 nuclei. Iodinated sulfidohydroboranes are disclosed which are especially suitable for the method of the invention. In a preferred embodiment, a compound having the formula Na{sub 4}B{sub 12}I{sub 11}SSB{sub 12}I{sub 11}, or another pharmaceutically acceptable salt of the compound, may be administered to a cancer patient for boron neutron capture therapy. 1 fig.

  7. MCNP simulation of the dose distribution in liver cancer treatment for BNC therapy

    NASA Astrophysics Data System (ADS)

    Krstic, Dragana; Jovanovic, Zoran; Markovic, Vladimir; Nikezic, Dragoslav; Urosevic, Vlade

    2014-10-01

    The Boron Neutron Capture Therapy ( BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.

  8. Investigation of the charged particle nuclear reactions on natural boron for the purposes of the thin layer activation (TLA)

    NASA Astrophysics Data System (ADS)

    Ditrói, F.; Takács, S.; Tárkányi, F.; Fenyvesi, A.; Bergman, J.; Heselius, S.-J.; Solin, O.

    1995-12-01

    Boron of natural composition was investigated in the form of NiBSi metallic-glass foil to determine the cross-section functions of the natB(p,x) 7Be and the natB(d,x) 7Be nuclear reactions. These reactions are very important from the point of view of Thin Layer Activation (TLA) technique to monitor the wear of boron-containing superhard materials (e.g. BN), because the 7Be with its half-life of 53 d and gamma-energy of 447 keV is very suitable for wear measurements. The possibility of recoil-implantation of the radioactive nuclei was also studied.

  9. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy

    PubMed Central

    Sun, Ting; Li, Yanyan; Huang, Yulun; Zhang, Zizhu; Yang, Weilian; Du, Ziwei; Zhou, Youxin

    2016-01-01

    The uptake of (10)boron by tumor cells plays an important role for cell damage in boron neutron capture therapy (BNCT). CD133 is frequently expressed in the membrane of glioma stem cells (GSCs), resistant to radiotherapy and chemotherapy, and represents a potential therapeutic target. To increase (10)boron uptake in GSCs, we created a polyamido amine dendrimer, conjugated CD133 monoclonal antibodies, encapsulating mercaptoundecahydrododecaborate (BSH) in void spaces, and monitored the uptake of the bioconjugate nanoparticles by GSCs in vitro and in vivo. Fluorescence microscopy showed the specific uptake of the bioconjugate nanoparticles by CD133-positive GSCs. Treatment with the biconjugate nanoparticles resulted in a significant lethal effect after neutron radiation due to efficient and CD133-independent cellular targeting and uptake in CD133-expressing GSCs. A significantly longer survival occurred in combination with the biconjugate nanoparticles and BSH compared with BSH alone in human intracranial GBM models employing CD133-positive GSCs xenografts. Our data demonstrated that this bioconjugate nanoparticle targets human CD133-positive GSCs and is a potential boron agent in BNCT. PMID:27191269

  10. Targeting glioma stem cells enhances anti-tumor effect of boron neutron capture therapy.

    PubMed

    Sun, Ting; Li, Yanyan; Huang, Yulun; Zhang, Zizhu; Yang, Weilian; Du, Ziwei; Zhou, Youxin

    2016-07-12

    The uptake of (10)boron by tumor cells plays an important role for cell damage in boron neutron capture therapy (BNCT). CD133 is frequently expressed in the membrane of glioma stem cells (GSCs), resistant to radiotherapy and chemotherapy, and represents a potential therapeutic target. To increase (10)boron uptake in GSCs, we created a polyamido amine dendrimer, conjugated CD133 monoclonal antibodies, encapsulating mercaptoundecahydrododecaborate (BSH) in void spaces, and monitored the uptake of the bioconjugate nanoparticles by GSCs in vitro and in vivo. Fluorescence microscopy showed the specific uptake of the bioconjugate nanoparticles by CD133-positive GSCs. Treatment with the biconjugate nanoparticles resulted in a significant lethal effect after neutron radiation due to efficient and CD133-independent cellular targeting and uptake in CD133-expressing GSCs. A significantly longer survival occurred in combination with the biconjugate nanoparticles and BSH compared with BSH alone in human intracranial GBM models employing CD133-positive GSCs xenografts. Our data demonstrated that this bioconjugate nanoparticle targets human CD133-positive GSCs and is a potential boron agent in BNCT.

  11. 3He and BF 3 neutron detector pressure effect and model comparison

    NASA Astrophysics Data System (ADS)

    Lintereur, Azaree; Conlin, Kenneth; Ely, James; Erikson, Luke; Kouzes, Richard; Siciliano, Edward; Stromswold, David; Woodring, Mitchell

    2011-10-01

    Radiation detection systems for homeland security applications must possess the capability of detecting both gamma rays and neutrons. The radiation portal monitor systems that are currently deployed use a plastic scintillator for detecting gamma rays and 3He gas-filled proportional counters for detecting neutrons. Proportional counters filled with 3He are the preferred neutron detectors for use in radiation portal monitor systems because 3He has a large neutron cross-section, is relatively insensitive to gamma-rays, is neither toxic nor corrosive, can withstand extreme environments, and can be operated at a lower voltage than some of the alternative proportional counters. The amount of 3He required for homeland security and science applications has depleted the world supply and there is no longer enough available to fill the demand. Thus, alternative neutron detectors are being explored. Two possible temporary solutions that could be utilized while a more permanent solution is being identified are reducing the 3He pressure in the proportional counters and using boron trifluoride gas-filled proportional counters. Reducing the amount of 3He required in each of the proportional counters would decrease the rate at which 3He is being used; not enough to solve the shortage, but perhaps enough to increase the amount of time available to find a working replacement. Boron trifluoride is not appropriate for all situations as these detectors are less sensitive than 3He, boron trifluoride gas is corrosive, and a much higher voltage is required than what is used with 3He detectors. Measurements of the neutron detection efficiency of 3He and boron trifluoride as a function of tube pressure were made. The experimental results were also used to validate models of the radiation portal monitor systems.

  12. Interaction of boron cluster ions with water: Single collision dynamics and sequential etching

    NASA Astrophysics Data System (ADS)

    Hintz, Paul A.; Ruatta, Stephen A.; Anderson, Scott L.

    1990-01-01

    Reactions of mass-selected, cooled, boron cluster ions (B+n, n=1-14) with water have been studied for collision energies from 0.1 to 6.0 eV. Most work was done with D2O, however isotope effects were examined for selected reactant cluster ions. For all size clusters there are exoergic product channels, which in most cases have no activation barriers. Cross sections are generally large, however there are fluctuations with cluster size in total reactivity, collision energy dependences, and in product distributions. For small cluster ions, there is a multitude of product channels. For clusters larger than B+6, the product distributions are dominated by a single channel: Bn-1D++DBO. Under multiple collision conditions, the primary products undergo a remarkable sequence of secondary ``etching'' reactions. As these occur, boron atoms are continuously replaced by hydrogen, and the intermediate products retain the composition: Bn-mH+m. This highly efficient chemistry appears to continue unchanged as the composition changes from pure boron to mostly hydrogen. Comparison of these results is made with boron cluster ion reactions with O2 and D2, as well as reactions with water of aluminum and silicon cluster ions. Some discussion is given of the thermochemistry for these reactions, and a possible problem with the thermochemical data in the BOD/DBO system is discussed.

  13. Disorder and defects are not intrinsic to boron carbide

    NASA Astrophysics Data System (ADS)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  14. Reproductive toxicity parameters and biological monitoring in occupationally and environmentally boron-exposed persons in Bandirma, Turkey.

    PubMed

    Duydu, Yalçın; Başaran, Nurşen; Üstündağ, Aylin; Aydin, Sevtap; Ündeğer, Ülkü; Ataman, Osman Yavuz; Aydos, Kaan; Düker, Yalçın; Ickstadt, Katja; Waltrup, Britta Schulze; Golka, Klaus; Bolt, Hermann M

    2011-06-01

    Boric acid and sodium borates have been considered as being "toxic to reproduction and development", following results of animal studies with high doses. Experimentally, a NOAEL (no observed adverse effect level) of 17.5 mg B/kg-bw/day has been identified for the (male) reproductive effects of boron in a multigeneration study of rats, and a NOAEL for the developmental effects in rats was identified at 9.6 mg B/kg-bw/day. These values are being taken as the basis of current EU safety assessments. The present study was conducted to investigate the reproductive effects of boron exposure in workers employed in boric acid production plant in Bandirma, Turkey. In order to characterize the external and internal boron exposures, boron was determined in biological samples (blood, urine, semen), in workplace air, in food, and in water sources. Unfavorable effects of boron exposure on the reproductive toxicity indicators (concentration, motility, morphology of the sperm cells and blood levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and total testosterone) were not observed. The mean calculated daily boron exposure (DBE) of the highly exposed group was 14.45 ± 6.57 (3.32-35.62) mg/day. These human exposures represent worst-case exposure conditions to boric acid/borates in Turkey. These exposure levels are considerably lower than exposures, which have previously led to reproductive effects in experimental animals. In conclusion, this means that dose levels of boron associated with developmental and reproductive toxic effects in animals are by far not reachable for humans under conditions of normal handling and use.

  15. Inter-comparison of boron concentration measurements at INFN-University of Pavia (Italy) and CNEA (Argentina).

    PubMed

    Portu, Agustina; Postuma, Ian; Gadan, Mario Alberto; Saint Martin, Gisela; Olivera, María Silvina; Altieri, Saverio; Protti, Nicoletta; Bortolussi, Silva

    2015-11-01

    An inter-comparison of three boron determination techniques was carried out between laboratories from INFN-University of Pavia (Italy) and CNEA (Argentina): alpha spectrometry (alpha-spect), neutron capture radiography (NCR) and quantitative autoradiography (QTA). Samples of different nature were analysed: liquid standards, liver homogenates and tissue samples from different treatment protocols. The techniques showed a good agreement in a concentration range of interest in BNCT (1-100ppm), thus demonstrating their applicability as precise methods to quantify boron and determine its distribution in tissues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Longitudinal residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1976-01-01

    A method of measuring the longitudinal residual stress distribution in boron fibers is presented. The residual stresses in commercial CVD boron on tungsten fibers of 102, 142, and 203 microns (4, 5.6, and 8 mil) diameters were determined. Results for the three sizes show a compressive stress at the surface 800 to -1400 MN/sq m 120 to -200 ksi), changing monotonically to a region of tensile stress within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile 600 to 1000 MN/sq m(90 to 150 ksi) and then decreases to compressive near the tungsten boride core. The core itself is under a compressive stress of approximately -1300 MN/sq m (-190 ksi). The effects of surface removal on core residual stress and core-initiated fracture are discussed.

  17. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation.

    PubMed

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were -4.128kcalmol(-1) and -2457.124kcalmol(-1) respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was -281.937kcalmol(-1) which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (-374.082 and -245.766kcalmol(-1)) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Study of boron behaviour in two Spanish coal combustion power plants.

    PubMed

    Ochoa-González, Raquel; Cuesta, Aida Fuente; Córdoba, Patricia; Díaz-Somoano, Mercedes; Font, Oriol; López-Antón, M Antonia; Querol, Xavier; Martínez-Tarazona, M Rosa; Giménez, Antonio

    2011-10-01

    A full-scale field study was carried out at two Spanish coal-fired power plants equipped with electrostatic precipitator (ESP) and wet flue gas desulfurisation (FGD) systems to investigate the distribution of boron in coals, solid by-products, wastewater streams and flue gases. The results were obtained from the simultaneous sampling of solid, liquid and gaseous streams and their subsequent analysis in two different laboratories for purposes of comparison. Although the final aim of this study was to evaluate the partitioning of boron in a (co-)combustion power plant, special attention was paid to the analytical procedure for boron determination. A sample preparation procedure was optimised for coal and combustion by-products to overcome some specific shortcomings of the currently used acid digestion methods. In addition boron mass balances and removal efficiencies in ESP and FGD devices were calculated. Mass balance closures between 83 and 149% were obtained. During coal combustion, 95% of the incoming boron was collected in the fly ashes. The use of petroleum coke as co-combustible produced a decrease in the removal efficiency of the ESP (87%). Nevertheless, more than 90% of the remaining gaseous boron was eliminated via the FGD in the wastewater discharged from the scrubber, thereby causing environmental problems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Axial residual stresses in boron fibers

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1978-01-01

    The axial residual stress distribution as a function of radius was determined from the fiber surface to the core including the average residual stress in the core. Such measurements on boron on tungsten (B/W) fibers show that the residual stresses for 102, 142, 203, and 366 micron diameter fibers were similar, being compressive at the surface and changing monotonically to a region of tensile within the boron. At approximately 25 percent of the original radius, the stress reaches a maximum tensile stress of about 860 mn/sq.m and then decreases to a compressive stress near the tungsten boride core. Data were presented for 203 micron diameter B/W fibers that show annealing above 900 C reduces the residual stresses. A comparison between 102 micron diameter B/W and boron on carbon (b/C) shows that the residual stresses were similar in the outer regions of the fibers, but that large differences near and in the core were observed. The effects of these residual stresses on the fracture of boron fibers were discussed.

  20. Fine Structure Study of the Plasma Coatings B4C-Ni-P

    NASA Astrophysics Data System (ADS)

    Kornienko, E. E.; Bezrukova, V. A.; Kuz'min, V. I.; Lozhkin, V. S.; Tutunkova, M. K.

    2017-12-01

    The article considers structure of coatings formed of the B4C-Ni-P powder. The coatings were deposited using air-plasma spraying with the unit for annular injection of powder. The pipes from steel 20 (0.2 % C) were used as a substrate. The structure and phase composition of the coatings were studied by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray diffractometry. It is shown that high-density composite coatings consisting of boron carbide particles distributed in the nickel boride metal matrix are formed using air-plasma spraying. The areas with round inclusions characterized by the increased amount of nickel, phosphorus and boron are located around the boron carbide particles. Boron oxides and nickel oxides are also present in the coatings. Thin interlayers with amorphous-crystalline structure are formed around the boron carbide particles. The thickness of these interlayers does not exceed 1 μm. The metal matrix material represents areas with nanocrystalline structure and columnar crystals.

  1. Nuclear magnetic resonance study of Gd-based nanoparticles to tag boron compounds in boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Corti, M.; Bonora, M.; Borsa, F.; Bortolussi, S.; Protti, N.; Santoro, D.; Stella, S.; Altieri, S.; Zonta, C.; Clerici, A. M.; Cansolino, L.; Ferrari, C.; Dionigi, P.; Porta, A.; Zanoni, G.; Vidari, G.

    2011-04-01

    We report the investigation of new organic complexes containing a magnetic moment (Gd-based molecular nanomagnets), which can serve the double purpose of acting as boron neutron capture therapy (BNCT) agents, and at the same time act as contrast agents to detect the molecule in the tissue by a proton magnetic resonance imaging (MRI). We also explore the possibility of monitoring the concentration of the BNCT agent directly via proton and boron NMR relaxation. The absorption of 10B-enriched molecules inside tumoral liver tissues has been shown by NMR measurements and confirmed by α spectroscopy. A new molecular Gd-tagged nanomagnet and BNCT agent (GdBPA) has been synthesized and characterized measuring its relaxivity R1 between 10 kHz and 66 MHz, and its use as a contrast agent in MRI has been demonstrated. The NMR-based evidence of the absorption of GdBPA into living tumoral cells is also shown.

  2. Performance verification of an epithermal neutron flux monitor using accelerator-based BNCT neutron sources

    NASA Astrophysics Data System (ADS)

    Guan, X.; Murata, I.; Wang, T.

    2017-09-01

    The performance of an epithermal neutron flux monitor developed for boron neutron capture therapy (BNCT) is verified by Monte Carlo simulations using accelerator-based neutron sources (ABNSs). The results indicate that the developed epithermal neutron flux monitor works well and it can be efficiently used in practical applications to measure the epithermal neutron fluxes of ABNSs in a high accuracy.

  3. Effect of temperature and thermal history on borosilicate glass structure

    NASA Astrophysics Data System (ADS)

    Angeli, Frédéric; Villain, Olivier; Schuller, Sophie; Charpentier, Thibault; de Ligny, Dominique; Bressel, Lena; Wondraczek, Lothar

    2012-02-01

    The influence of the temperature and quenching rate on the structure of a borosilicate glass was studied by high-resolution solid-state 11B, 23Na, 29Si nuclear magnetic resonance (NMR) and high-temperature Raman spectroscopy. Data were obtained for glass in the solid state after annealing and quenching at cooling rates covering four orders of magnitude as well as in the liquid state from Raman experiments and from calorimetry and rheological data. Nuclear magnetic resonance measurements were used to calibrate the Raman spectra in order to quantify the change in boron coordination with temperature. This result can then be used to determine the fictive temperature of the glass directly from the boron coordination. The fictive temperature, heat capacity, and configurational entropy are extracted from calorimetry and viscosity measurements. Changes in the boron coordination account for only 25% of the configurational heat capacity of the liquid. The structural parameters capable of accounting for the remaining quantity are discussed on the basis of structural data, both local (inhomogeneity of the sodium distribution) and medium-range (from NMR parameter distribution). It has thus been shown that, although the B-O-B angular distributions of the boroxol rings (and probably the Si-O-Si distributions) are not affected by temperature, a structural disorder is identified through the angular distributions of the bonds linking borate and silicate groups.

  4. Structure and Growth of Hexagonal Boron Nitride on Ir(111).

    PubMed

    Farwick Zum Hagen, Ferdinand H; Zimmermann, Domenik M; Silva, Caio C; Schlueter, Christoph; Atodiresei, Nicolae; Jolie, Wouter; Martínez-Galera, Antonio J; Dombrowski, Daniela; Schröder, Ulrike A; Will, Moritz; Lazić, Predrag; Caciuc, Vasile; Blügel, Stefan; Lee, Tien-Lin; Michely, Thomas; Busse, Carsten

    2016-12-27

    Using the X-ray standing wave method, scanning tunneling microscopy, low energy electron diffraction, and density functional theory, we precisely determine the lateral and vertical structure of hexagonal boron nitride on Ir(111). The moiré superstructure leads to a periodic arrangement of strongly chemisorbed valleys in an otherwise rather flat, weakly physisorbed plane. The best commensurate approximation of the moiré unit cell is (12 × 12) boron nitride cells resting on (11 × 11) substrate cells, which is at variance with several earlier studies. We uncover the existence of two fundamentally different mechanisms of layer formation for hexagonal boron nitride, namely, nucleation and growth as opposed to network formation without nucleation. The different pathways are linked to different distributions of rotational domains, and the latter enables selection of a single orientation only.

  5. Integration of Detectors with Optical Waveguide Structures.

    DTIC Science & Technology

    1983-05-15

    OECLASSIFICATION/DOWNGRADING SCHEDULE ____ ___ ___ ___ __ ___ ____ ___ ___ ___ ___ ___ ___ None If. DISTRIBUTION STATEMNT (of Ole RepOr) Approved for public...The polysilicon gate of the depletion mode MOSFET is boron doped and it is covered by a thermally grown silicon dioxide layer on the top. of the... polysilicon electrode. The wafer then undergoes hydrogen annealing with 24 1/min. hydrogen at 10000C for 30 minutes. The boron impurities which are already

  6. Preparation of TiO2-Decorated Boron Particles by Wet Ball Milling and their Photoelectrochemical Hydrogen and Oxygen Evolution Reactions

    PubMed Central

    Jung, Hye Jin; Nam, Kyusuk; Sung, Hong-Gye; Hyun, Hyung Soo; Sohn, Youngku; Shin, Weon Gyu

    2016-01-01

    TiO2-coated boron particles were prepared by a wet ball milling method, with the particle size distribution and average particle size being easily controlled by varying the milling operation time. Based on the results from X-ray photoelectron spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis, and Fourier transform infrared spectroscopy, it was confirmed that the initial oxide layer on the boron particles surface was removed by the wet milling process, and that a new B–O–Ti bond was formed on the boron surface. The uniform TiO2 layer on the 150 nm boron particles was estimated to be 10 nm thick. Based on linear sweep voltammetry, cyclic voltammetry, current-time amperometry, and electrochemical impedance analyses, the potential for the application of TiO2-coated boron particles as a photoelectrochemical catalyst was demonstrated. A current of 250 μA was obtained at a potential of 0.5 V for hydrogen evolution, with an onset potential near to 0.0 V. Finally, a current of 220 μA was obtained at a potential of 1.0 V for oxygen evolution. PMID:28774132

  7. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART II

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  8. BIOLOGICAL MONITORING OF TOXIC TRACE METALS. VOLUME 2. TOXIC TRACE METALS IN PLANTS AND ANIMALS OF THE WORLD. PART I

    EPA Science Inventory

    The needs and priorities in using biological accumulator organisms for monitoring toxic trace metals in plants and animals are analyzed. The toxic trace metals selected for study are antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, copper, lead, mercury, nickel, se...

  9. Quantitative bioimaging of p-boronophenylalanine in thin liver tissue sections as a tool for treatment planning in boron neutron capture therapy.

    PubMed

    Reifschneider, Olga; Schütz, Christian L; Brochhausen, Christoph; Hampel, Gabriele; Ross, Tobias; Sperling, Michael; Karst, Uwe

    2015-03-01

    An analytical method using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was developed and applied to assess enrichment of 10B-containing p-boronophenylalanine-fructose (BPA-f) and its pharmacokinetic distribution in human tissues after application for boron neutron capture therapy (BNCT). High spatial resolution (50 μm) and limits of detection in the low parts-per-billion range were achieved using a Nd:YAG laser of 213 nm wavelength. External calibration by means of 10B-enriched standards based on whole blood proved to yield precise quantification results. Using this calibration method, quantification of 10B in cancerous and healthy tissue was carried out. Additionally, the distribution of 11B was investigated, providing 10B enrichment in the investigated tissues. Quantitative imaging of 10B by means of LA-ICP-MS was demonstrated as a new option to characterise the efficacy of boron compounds for BNCT.

  10. Measurement of excitation function of {sup nat}B(p,x){sup 7}Be nuclear reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ditroi, F.; Fenyvesi, A.; Takacs, S.

    1994-12-31

    Boron of natural composition was irradiated to measure the cross section function of the {sup nat}B(p,x){sup 7}Be nuclear reaction. The reaction is very important from the point of view of Thin Layer Activation (TLA) technique to monitor the wear of boron containing superhard materials (e.g. BN). The aim was to determine the cross section of above reaction in the energy region used in wear measurements because practically there is no cross section data available below 10 MeV.

  11. Development of nanosensors in nuclear technology

    NASA Astrophysics Data System (ADS)

    Hassan, Thamir A. A.

    2017-01-01

    Selectivity, sensitivity, and stability (three S parameters) are developed as a new range of sensor this provided instruments for harsh, radioactive waste polluted environment monitoring. Isotope effect is very effective for nuclear radiation sensors preparation.in this presentation are reviewed of the development of Nanosensors in nuclear technology, such as high temperature boron and its compounds with suitable physical and chemical features as sensitive element for temperature and nuclear sensor, Boron isotopes based semiconductor nanosensors and studies of the mechanism of the removal uranium from radioactive wastewater with graphene oxide (GO).

  12. Intracellular delivery and passive tumor targeting of a self-assembled nanogel containing carborane clusters for boron neutron capture therapy.

    PubMed

    Kawasaki, Riku; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2017-01-29

    Boron neutron capture therapy, based on the release of thermal neutron irradiation from boron, is a targeted radiation therapy for cancer. Targeted and sufficient accumulation of boron in tumor cells to achieve cytotoxic efficacy and reduce off-target effects remains a challenge. Carborane has been investigated for use as a delivery agent in boron neutron capture therapy because of its high boron content and chemical stability; however, it is cytotoxic, making safe delivery difficult. The aim of this study was to investigate the potential of carborane-bearing pullulan nanogels to safely and effectively deliver boron to tumor cells in vitro and in vivo and, consequently, assess their potential as a boron neutron capture therapeutic. Murine fibrosarcoma cells (CMS5a) were used for in vitro investigations of nanogel cytotoxicity, cell uptake. A mouse fibrosarcoma xenograft model was used to investigate the bio-distribution of nanogels after intravenous administration. The nanogels produced no apparent cytotoxicity and underwent cell uptake in CMS5a cells after a 24 h incubation at up to 2000 μg/mL and 400 μg/mL, respectively. The internalized nanogels were localized around the nuclear membrane. The nanogels were administered intravenously to mice bearing fibrosarcoma xenografts. Nanogel tumor localization likely occurred through the enhanced permeation and retention effect. The nanogels successfully reduced the cytotoxicity of carborane, were internalized into tumor cells, acted as a dual-delivery therapeutic and accumulated in tumors in vivo. Consequently, they demonstrate significant potential as a boron neutron capture therapeutic. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krivezhenko, Dina S., E-mail: dinylkaa@yandex.ru; Drobyaz, Ekaterina A., E-mail: ekaterina.drobyaz@yandex.ru; Bataev, Ivan A., E-mail: ivanbataev@ngs.ru

    2015-10-27

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to anmore » enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.« less

  14. Investigation of the structure and properties of boron-containing coatings obtained by electron-beam treatment

    NASA Astrophysics Data System (ADS)

    Krivezhenko, Dina S.; Drobyaz, Ekaterina A.; Bataev, Ivan A.; Chuchkova, Lyubov V.

    2015-10-01

    An investigation of surface-hardened materials obtained by cladding with an electron beam injected into the air atmosphere was carried out. Structural investigations of coatings revealed that an increase in boron carbide concentration in a saturating mixture contributed to a rise of a volume fraction of iron borides in coatings. The maximum hardened depth reached 2 mm. Hardened layers were characterized by the formation of heterogeneous structure which consisted of iron borides and titanium carbides distributed uniformly in the eutectic matrix. Areas of titanium boride conglomerations were detected. It was found that an increase in the boron carbide content led to an enhancement in hardness of the investigated materials. Friction testing against loosely fixed abrasive particles showed that electron-beam cladding of powder mixtures containing boron carbides, titanium, and iron in air atmosphere allowed enhancing a resistance of materials hardened in two times.

  15. Epitaxial growth of hexagonal boron nitride monolayers by a three-step boration-oxidation-nitration process

    NASA Astrophysics Data System (ADS)

    Müller, Frank; Hüfner, Stefan; Sachdev, Hermann; Gsell, Stefan; Schreck, Matthias

    2010-08-01

    The formation of well-ordered monolayers of hexagonal boron nitride on the surface of a Rh/YSZ/Si(111) multilayer substrate via a three-step boration-oxidation-nitration process was investigated by x-ray photoelectron spectroscopy (XPS), x-ray photoelectron diffraction (XPD) and low-energy electron diffraction (LEED). The chemical vapor deposition (CVD) of trimethylborate B(OCH3)3 results in a selective decomposition of the precursor, leading to a dilute distribution of boron within the interstitials of the Rh lattice. After oxidation, the layer of a boron oxygen species of about 1 nm thickness can be transformed into a hexagonal monolayer of BN by annealing in NH3 atmosphere. The results of the present study clearly show that the formation of BN monolayers is also possible when boron and nitrogen are provided successively from separate sources. This procedure represents an alternative routine for the preparation of well-ordered BN monolayers, which benefits from a strong reduction of hazardous potential and economic costs compared to the use of borazine as the current standard precursor.

  16. An innovative technique to synthesize C-doped MgB2 by using chitosan as the carbon source

    NASA Astrophysics Data System (ADS)

    Bovone, G.; Vignolo, M.; Bernini, C.; Kawale, S.; Siri, A. S.

    2014-02-01

    Here, we report a new technique to synthesize carbon-doped MgB2 powder. Chitosan was innovatively used as the carbon source during the synthesis of boron from boron oxide. This allowed the introduction of local defects, which later on served as pinning centers in MgB2, in the boron lattice itself, avoiding the traditional and time consuming ways of ex situ MgB2 doping (e.g. ball milling). Two volume percentages of C-doping have been tried and its effect on the superconducting properties, evaluated by magnetic and transport measurements, are discussed here. Morphological analysis by scanning electron microscopy revealed nano-metric grains’ distribution in the boron and MgB2 powder. Mono-filamentary MgB2 wires have been fabricated by an ex situ powder-in-tube technique by using the thus prepared carbon-doped MgB2 and pure MgB2 powders. Transport property measurements on these wires were made and compared with MgB2 wire produced using commercial boron.

  17. Short-Term Boron Deprivation Inhibits Endocytosis of Cell Wall Pectins in Meristematic Cells of Maize and Wheat Root Apices1

    PubMed Central

    Yu, Qin; Hlavacka, Andrej; Matoh, Toru; Volkmann, Dieter; Menzel, Diedrik; Goldbach, Heiner E.; Baluška, František

    2002-01-01

    By using immunofluorescence microscopy, we observed rapidly altered distribution patterns of cell wall pectins in meristematic cells of maize (Zea mays) and wheat (Triticum aestivum) root apices. This response was shown for homogalacturonan pectins characterized by a low level (up to 40%) of methylesterification and for rhamnogalacturonan II pectins cross-linked by a borate diol diester. Under boron deprivation, abundance of these pectins rapidly increased in cell walls, whereas their internalization was inhibited, as evidenced by a reduced and even blocked accumulation of these cell wall pectins within brefeldin A-induced compartments. In contrast, root cells of species sensitive to the boron deprivation, like zucchini (Cucurbita pepo) and alfalfa (Medicago sativa), do not internalize cell wall pectins into brefeldin A compartments and do not show accumulation of pectins in their cell walls under boron deprivation. For maize and wheat root apices, we favor an apoplastic target for the primary action of boron deprivation, which signals deeper into the cell via endocytosis-mediated pectin signaling along putative cell wall-plasma membrane-cytoskeleton continuum. PMID:12226520

  18. Elements in cottonwood trees as an indicator of ground water contaminated by landfill leachate

    USGS Publications Warehouse

    Erdman, James A.; Christenson, Scott

    2000-01-01

    Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site. Leaf samples of broad-leafed cottonwood, Populus deltoides, were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or “well plant,” functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby. Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.

  19. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2014-12-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B/Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32-, and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the boron isotopic composition and B/Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B/Ca increases with increasing BOH4-/HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B/Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B/Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  20. Environmental Electrometry with Luminescent Carbon Nanotubes.

    PubMed

    Noé, Jonathan C; Nutz, Manuel; Reschauer, Jonathan; Morell, Nicolas; Tsioutsios, Ioannis; Reserbat-Plantey, Antoine; Watanabe, Kenji; Taniguchi, Takashi; Bachtold, Adrian; Högele, Alexander

    2018-06-25

    We demonstrate that localized excitons in luminescent carbon nanotubes can be utilized to study electrostatic fluctuations in the nanotube environment with sensitivity down to the elementary charge. By monitoring the temporal evolution of the cryogenic photoluminescence from individual carbon nanotubes grown on silicon oxide and hexagonal boron nitride, we characterize the dynamics of charge trap defects for both dielectric supports. We find a one order of magnitude reduction in the photoluminescence spectral wandering for nanotubes on extended atomically flat terraces of hexagonal boron nitride. For nanotubes on hexagonal boron nitride with pronounced spectral fluctuations, our analysis suggests proximity to terrace ridges where charge fluctuators agglomerate to exhibit areal densities exceeding those of silicon oxide. Our results establish carbon nanotubes as sensitive probes of environmental charge fluctuations and highlight their potential for applications in electrometric nanodevices with all-optical readout.

  1. Intracellular delivery and passive tumor targeting of a self-assembled nanogel containing carborane clusters for boron neutron capture therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Riku; JST-ERATO, Japan Science and Technology Agency; Sasaki, Yoshihiro

    Boron neutron capture therapy, based on the release of thermal neutron irradiation from boron, is a targeted radiation therapy for cancer. Targeted and sufficient accumulation of boron in tumor cells to achieve cytotoxic efficacy and reduce off-target effects remains a challenge. Carborane has been investigated for use as a delivery agent in boron neutron capture therapy because of its high boron content and chemical stability; however, it is cytotoxic, making safe delivery difficult. The aim of this study was to investigate the potential of carborane-bearing pullulan nanogels to safely and effectively deliver boron to tumor cells in vitro and in vivo and,more » consequently, assess their potential as a boron neutron capture therapeutic. Murine fibrosarcoma cells (CMS5a) were used for in vitro investigations of nanogel cytotoxicity, cell uptake. A mouse fibrosarcoma xenograft model was used to investigate the bio-distribution of nanogels after intravenous administration. The nanogels produced no apparent cytotoxicity and underwent cell uptake in CMS5a cells after a 24 h incubation at up to 2000 μg/mL and 400 μg/mL, respectively. The internalized nanogels were localized around the nuclear membrane. The nanogels were administered intravenously to mice bearing fibrosarcoma xenografts. Nanogel tumor localization likely occurred through the enhanced permeation and retention effect. The nanogels successfully reduced the cytotoxicity of carborane, were internalized into tumor cells, acted as a dual-delivery therapeutic and accumulated in tumors in vivo. Consequently, they demonstrate significant potential as a boron neutron capture therapeutic. - Highlights: • A carborane-bearing pullulan nanogel is developed as a boron delivery agent. • The nanogels are cell-friendly and show effective cell uptake for drug delivery. • The nanogels show passive tumor targeting by enhanced permeation and retention.« less

  2. Spectromicroscopy of boron in human glioblastomas following administration of Na2B12H11SH.

    PubMed

    Gilbert, B; Perfetti, L; Fauchoux, O; Redondo, J; Baudat, P A; Andres, R; Neumann, M; Steen, S; Gabel, D; Mercanti, D; Ciotti, M T; Perfetti, P; Margaritondo, G; De Stasio, G

    2000-07-01

    Boron neutron capture therapy (BNCT) is an experimental, binary treatment for brain cancer which requires as the first step that tumor tissue is targeted with a boron-10 containing compound. Subsequent exposure to a thermal neutron flux results in destructive, short range nuclear reaction within 10 microm of the boron compound. The success of the therapy requires than the BNCT agents be well localized in tumor, rather than healthy tissue. The MEPHISTO spectromicroscope, which performs microchemical analysis by x-ray absorption near edge structure (XANES) spectroscopy from microscopic areas, has been used to study the distribution of trace quantities of boron in human brain cancer tissues surgically removed from patients first administered with the compound Na2B12H11SH (BSH). The interpretation of XANES spectra is complicated by interference from physiologically present sulfur and phosphorus, which contribute structure in the same energy range as boron. We addressed this problem with the present extensive set of spectra from S, B, and P in relevant compounds. We demonstrate that a linear combination of sulfate, phosphate and BSH XANES can be used to reproduce the spectra acquired on boron-treated human brain tumor tissues. We analyzed human glioblastoma tissue from two patients administered and one not administered with BSH. As well as weak signals attributed to BSH, x-ray absorption spectra acquired from tissue samples detected boron in a reduced chemical state with respect to boron in BSH. This chemical state was characterized by a sharp absorption peak at 188.3 eV. Complementary studies on BSH reference samples were not able to reproduce this chemical state of boron, indicating that it is not an artifact produced during sample preparation or x-ray exposure. These data demonstrate that the chemical state of BSH may be altered by in vivo metabolism.

  3. Structural stability and electronic properties of β-tetragonal boron: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayami, Wataru, E-mail: hayami.wataru@nims.go.jp

    2015-01-15

    It is known that elemental boron has five polymorphs: α- and β-rhombohedral, α- and β-tetragonal, and the high-pressure γ phase. β-tetragonal (β-t) boron was first discovered in 1960, but there have been only a few studies since then. We have thoroughly investigated, using first-principles calculations, the atomic and electronic structures of β-t boron, the details of which were not known previously. The difficulty of calculation arises from the fact that β-t boron has a large unit cell that contains between 184 and 196 atoms, with 12 partially-occupied interstitial sites. This makes the number of configurations of interstitial atoms too greatmore » to calculate them all. By introducing assumptions based on symmetry and preliminary calculations, the number of configurations to calculate can be greatly reduced. It was eventually found that β-t boron has the lowest total energy, with 192 atoms (8 interstitial atoms) in an orthorhombic lattice. The total energy per atom was between those of α- and β-rhombohedral boron. Another tetragonal structure with 192 atoms was found to have a very close energy. The valence bands were fully filled and the gaps were about 1.16 to 1.54 eV, making it comparable to that of β-rhombohedral boron. - Graphical abstract: Electronic density distribution for the lowest-energy configuration (N=192) viewed from the 〈1 0 0〉 direction. Left: isosurface (yellow) at d=0.09 electrons/a.u.{sup 3} Right: isosurface (orange) at d=0.12 electrons/a.u.{sup 3}. - Highlights: • β-tetragonal boron was thoroughly investigated using first-principles calculations. • The lowest energy structure contains 192 atoms in an orthorhombic lattice. • Another tetragonal structure with 192 atoms has a very close energy. • The total energy per atom is between those of α- and β-rhombohedral boron. • The band gap of the lowest energy structure is about 1.16 to 1.54 eV.« less

  4. Improving the efficiency of boron application on the vineyards during NPK fertilization

    NASA Astrophysics Data System (ADS)

    Magomadov, Andy; Batukaev, Abdulmalik; Kalinitchenko, Valeriy; Minkina, Tatiana; Sushkova, Svetlana

    2017-04-01

    The effect of different doses and time of boron fertilization on growth and development of grape plants were studied on the soils of Terek-Kumskiy sands of Chechen Republic, Russian Federation. The studies have shown that sandy soils of pilot area have a low content of main macronutrients except of potassium. The boron content in the sandy soils varies within wide limits and characterizes this soil as lack of boron content especially in water-soluble boron distribution through the soil profile. It was developed a technique for roots feeding of grapes for the first time, that allows to control chemical processes the NPK uptake by plant roots. The studied process realized by implementation of optimum amount of boron in plant-available form, introduced in a certain phase of plants growth. It helps to improve the efficiency of nitrogen, phosphate, potassium using. It was found that boron improves the movement of growth substances and ascorbic acid from the leaves to the fertile parts and cannot be replaced by other nutrients. The plants need of boron throughout the growing season. Boron plays an important role in cell division and protein synthesis is an essential component of cell membranes. The use of boric acid as a fertilizer to increase the number of ovaries on grape plants, stimulating the formation of new points of stems and root growth, increased the number of shoots, improved growth, increased the sugar content of the grapes and taste of the fruit, which is a result of more active uptake of boron by grapes. The optimal dose of boron fertilization on the sandy soil and the comparative agroecological and economic evaluation of its application presented in the research. The use of boron fertilizers allowed to increase the sugar content, acidity, tasting score grapes up to 12-38%. The greatest effect of boron fertilization achieved by application to the phase start of sap flow in a dose of 3 kg/ha in the background N90P90K90. The developed technique for sandy soils fertilization allows to increase a quality of grapes, their properties also allow to improve a costs of produced grape material. This research was supported by Project of President of Russian Federation № MK-3476.2017.5, RFBR № 16-35-60051, 16-35-00347.

  5. A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation

    NASA Astrophysics Data System (ADS)

    Yang, Yisu; Zhuang, Linzhou; Lin, Rijia; Li, Mengran; Xu, Xiaoyong; Rufford, Thomas E.; Zhu, Zhonghua

    2017-05-01

    We report a novel magnetic field assisted chemical reduction method for the synthesis of boron-doped Ni/Fe nano-chains as promising catalysts for the oxygen evolution reaction (OER). The boron-doped Ni/Fe nano-chains were synthesised in a one step process at room temperature using NaBH4 as a reducing agent. The addition of boron reduced the magnetic moment of the intermediate synthesis products and produced nano-chains with a high specific surface area of 73.4 m2 g-1. The boron-doped Ni/Fe nano-chains exhibited catalytic performance superior to state-of-the-art Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite and RuO2 noble metal oxide catalysts. The mass normalized activity of the boron-doped Ni/Fe nano-chains measured at an overpotential of 0.35 V was 64.0 A g-1, with a Tafel slope of only 40 mV dec-1. The excellent performance of the boron-doped Ni/Fe nano-chains can be attributed to the uniform elemental distribution and highly amorphous structure of the B-doped nano-chains. These results provide new insights into the effect of doping transition-metal based OER catalysts with non-metallic elements. The study demonstrates a facile approach to prepare transition metal nano-chains using magnetic field assisted chemical reduction method as cheap and highly active catalysts for electrochemical water oxidation.

  6. Nuclear diagnostic for fast alpha particles

    DOEpatents

    Grisham, Larry R.; Post Jr., Douglass E.; Dawson, John M.

    1986-06-03

    Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.

  7. Nuclear diagnostic for fast alpha particles

    DOEpatents

    Grisham, Larry R.; Post, Jr., Douglass E.; Dawson, John M.

    1986-01-01

    Measurement of the velocity distribution of confined energetic alpha particles resulting from deuterium-tritium fusion reactions in a magnetically contained plasma is provided. The fusion plasma is seeded with energetic boron neutrals for producing, by means of the reaction .sup.10 B (.alpha.,n) .sup.13 N reaction, radioactive nitrogen nuclei which are then collected by a probe. The radioactivity of the probe is then measured by conventional techniques in determining the energy distribution of the alpha particles in the plasma. In a preferred embodiment, diborane gas (B.sub.2 H.sub.6) is the source of the boron neutrals to produce .sup.13 N which decays almost exclusively by positron emission with a convenient half-life of 10 minutes.

  8. Boron bridging of rhamnogalacturonan-II, monitored by gel electrophoresis, occurs during polysaccharide synthesis and secretion but not post-secretion

    PubMed Central

    Chormova, Dimitra; Messenger, David J; Fry, Stephen C

    2014-01-01

    The cell-wall pectic domain rhamnogalacturonan-II (RG-II) is cross-linked via borate diester bridges, which influence the expansion, thickness and porosity of the wall. Previously, little was known about the mechanism or subcellular site of this cross-linking. Using polyacrylamide gel electrophoresis (PAGE) to separate monomeric from dimeric (boron-bridged) RG-II, we confirmed that Pb2+ promotes H3BO3-dependent dimerisation in vitro. H3BO3 concentrations as high as 50 mm did not prevent cross-linking. For in-vivo experiments, we successfully cultured ‘Paul's Scarlet’ rose (Rosa sp.) cells in boron-free medium: their wall-bound pectin contained monomeric RG-II domains but no detectable dimers. Thus pectins containing RG-II domains can be held in the wall other than via boron bridges. Re-addition of H3BO3 to 3.3 μm triggered a gradual appearance of RG-II dimer over 24 h but without detectable loss of existing monomers, suggesting that only newly synthesised RG-II was amenable to boron bridging. In agreement with this, Rosa cultures whose polysaccharide biosynthetic machinery had been compromised (by carbon starvation, respiratory inhibitors, anaerobiosis, freezing or boiling) lost the ability to generate RG-II dimers. We conclude that RG-II normally becomes boron-bridged during synthesis or secretion but not post-secretion. Supporting this conclusion, exogenous [3H]RG-II was neither dimerised in the medium nor cross-linked to existing wall-associated RG-II domains when added to Rosa cultures. In conclusion, in cultured Rosa cells RG-II domains have a brief window of opportunity for boron-bridging intraprotoplasmically or during secretion, but secretion into the apoplast is a point of no return beyond which additional boron-bridging does not readily occur. PMID:24320597

  9. Bayesian Nitrate Source Apportionment to Individual Groundwater Wells in the Central Valley by use of Nitrogen, Oxygen, and Boron Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Lockhart, K.; Harter, T.; Grote, M.; Young, M. B.; Eppich, G.; Deinhart, A.; Wimpenny, J.; Yin, Q. Z.

    2014-12-01

    Groundwater quality is a concern in alluvial aquifers underlying agricultural areas worldwide, an example of which is the San Joaquin Valley, California. Nitrate from land applied fertilizers or from animal waste can leach to groundwater and contaminate drinking water resources. Dairy manure and synthetic fertilizers are the major sources of nitrate in groundwater in the San Joaquin Valley, however, septic waste can be a major source in some areas. As in other such regions around the world, the rural population in the San Joaquin Valley relies almost exclusively on shallow domestic wells (≤150 m deep), of which many have been affected by nitrate. Consumption of water containing nitrate above the drinking water limit has been linked to major health effects including low blood oxygen in infants and certain cancers. Knowledge of the proportion of each of the three main nitrate sources (manure, synthetic fertilizer, and septic waste) contributing to individual well nitrate can aid future regulatory decisions. Nitrogen, oxygen, and boron isotopes can be used as tracers to differentiate between the three main nitrate sources. Mixing models quantify the proportional contributions of sources to a mixture by using the concentration of conservative tracers within each source as a source signature. Deterministic mixing models are common, but do not allow for variability in the tracer source concentration or overlap of tracer concentrations between sources. Bayesian statistics used in conjunction with mixing models can incorporate variability in the source signature. We developed a Bayesian mixing model on a pilot network of 32 private domestic wells in the San Joaquin Valley for which nitrate as well as nitrogen, oxygen, and boron isotopes were measured. Probability distributions for nitrogen, oxygen, and boron isotope source signatures for manure, fertilizer, and septic waste were compiled from the literature and from a previous groundwater monitoring project on several dairies in the San Joaquin Valley. Median percent contribution of nitrate to wells from fertilizer, manure, and septic waste generally match the expected source based on land use patterns, with some exceptions.

  10. Concentration comparison of selected constituents between groundwater samples collected within the Missouri River alluvial aquifer using purge and pump and grab-sampling methods, near the city of Independence, Missouri, 2013

    USGS Publications Warehouse

    Krempa, Heather M.

    2015-10-29

    Relative percent differences between methods were greater than 10 percent for most analyzed trace elements. Barium, cobalt, manganese, and boron had concentrations that were significantly different between sampling methods. Barium, molybdenum, boron, and uranium method concentrations indicate a close association between pump and grab samples based on bivariate plots and simple linear regressions. Grab sample concentrations were generally larger than pump concentrations for these elements and may be because of using a larger pore sized filter for grab samples. Analysis of zinc blank samples suggests zinc contamination in filtered grab samples. Variations of analyzed trace elements between pump and grab samples could reduce the ability to monitor temporal changes and potential groundwater contamination threats. The degree of precision necessary for monitoring potential groundwater threats and application objectives need to be considered when determining acceptable variation amounts.

  11. Nanometric Scale Investigation of Phase Transformations in Advanced Steels for Automotive Application

    NASA Astrophysics Data System (ADS)

    Drillet, Josée; Valle, Nathalie; Iung, Thierry

    2012-12-01

    The current trend toward producing lighter vehicles in the automotive industry is driven by the need to conform to the new exhaust emission control regulations. This objective presents a challenge to steel manufacturers. The difficulty lies in designing new alloys with an optimum strength/formability/cost balance for the various components. Here, the key to success lies in controlling the steel microstructure and especially the phase transformations at the smallest possible scale. Among the different alloying elements, light elements such as carbon and boron are of prime importance due to their major effects on the kinetics of phase transformations. Characterization tools combining high spatial and analytical resolution such as secondary ion mass spectrometry (SIMS) and field emission gun-transmission electron microscopy (TEM) were used. In this article, the examples presented are as follows. (1) Boron segregation and precipitation effects to control hardenability in martensitic steels. (2) Local carbon distribution in advanced high-strength steels, with a specific emphasis on martensite tempering. Links have been established between the boron and carbon distribution and the formability.

  12. Relationship of uranium and other trace elements to post-Cretaceous vulcanism

    USGS Publications Warehouse

    Coats, Robert R.

    1955-01-01

    A regional study of the distribution of uranium, boron, tin, beryllium, niobium, lanthanum, lead, zirconium, lithium, and fluorine in 112 samples of Cenozoic volcanic rocks of predominately rhyolitic and dacitic composition has shown that the content of uranium has a significantly high positive correlation with that of niobium, beryllium, and fluorine, a lower but still significant positive correlation with lithium and tin, a significant negative correlation with boron and lanthanum, and no significant correlation with zirconium and lead. A study of the relation of content of the several elements to the geographic provenance shows significant variation with provenance for all these elements, except tin and lanthanum. On the basis of these variations and on patterns of consistency, five comagmatic provinces, one of which is divided into three sub-provinces, have been delimited, in part, on a map of the western United States. The patter of distribution of boron is significantly different from that of the other elements. The regional difference are perhaps best explained by structural control of the effectiveness of vertical transport.

  13. Comparison of the pharmacokinetics between L-BPA and L-FBPA using the same administration dose and protocol: a validation study for the theranostic approach using [18F]-L-FBPA positron emission tomography in boron neutron capture therapy.

    PubMed

    Watanabe, Tsubasa; Hattori, Yoshihide; Ohta, Youichiro; Ishimura, Miki; Nakagawa, Yosuke; Sanada, Yu; Tanaka, Hiroki; Fukutani, Satoshi; Masunaga, Shin-Ichiro; Hiraoka, Masahiro; Ono, Koji; Suzuki, Minoru; Kirihata, Mitsunori

    2016-11-08

    Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. L-p-Boronophenylalanine (L-BPA) is a boron compound now widely used in clinical situations. Determination of the boron distribution is required for successful BNCT prior to neutron irradiation. Thus, positron emission tomography with [ 18 F]-L-FBPA, an 18 F-labelled radiopharmaceutical analogue of L-BPA, was developed. However, several differences between L-BPA and [ 18 F]-L-FBPA have been highlighted, including the different injection doses and administration protocols. The purpose of this study was to clarify the equivalence between L-BPA and [ 19 F]-L-FBPA as alternatives to [ 18 F]-L-FBPA. SCC-VII was subcutaneously inoculated into the legs of C3H/He mice. The same dose of L-BPA or [ 19 F]-L-FBPA was subcutaneously injected. The time courses of the boron concentrations in blood, tumour tissue, and normal tissue were compared between the groups. Next, we administered the therapeutic dose of L-BPA or the same dose of [ 19 F]-L-FBPA by continuous infusion and compared the effects of the administration protocol on boron accumulation in tissues. There were no differences between L-BPA and [ 19 F]-L-FBPA in the transition of boron concentrations in blood, tumour tissue, and normal tissue using the same administration protocol. However, the normal tissue to blood ratio of the boron concentrations in the continuous-infusion group was lower than that in the subcutaneous injection group. No difference was noted in the time course of the boron concentrations in tumour tissue and normal tissues between L-BPA and [ 19 F]-L-FBPA. However, the administration protocol had effects on the normal tissue to blood ratio of the boron concentration. In estimating the BNCT dose in normal tissue by positron emission tomography (PET), we should consider the possible overestimation of the normal tissue to blood ratio of the boron concentrations derived from the values measured by PET on dose calculation.

  14. Investigation of the Microstructure of Laser-Arc Hybrid Welded Boron Steel

    NASA Astrophysics Data System (ADS)

    Son, Seungwoo; Lee, Young Ho; Choi, Dong-Won; Cho, Kuk-Rae; Shin, Seung Man; Lee, Youngseog; Kang, Seong-Hoon; Lee, Zonghoon

    2018-05-01

    The microstructure of boron steel for automotive driving shaft manufacturing after laser-arc hybrid welding was investigated. Laser-arc hybrid welding technology was applied to 3-mm-thick plates of boron steel, ST35MnB. The temperature distribution of the welding pool was analyzed using the finite element method, and the microstructure of the welded boron steel was characterized using optical microscopy and scanning and transmission electron microscopies. The microstructure of the weld joint was classified into the fusion zone, the heat-affected zone (HAZ), and the base material. At the fusion zone, the bainite grains exist in the martensite matrix and show directionality because of heat input from the welding. The HAZ is composed of smaller grains, and the hardness of the HAZ is greater than that of the fusion zone. We discuss that the measured grain size and the hardness of the HAZ originate from undissolved precipitates that retard the grain growth of austenite.

  15. Advances in boronization on NSTX-Upgrade

    DOE PAGES

    Skinner, C. H.; Bedoya, F.; Scotti, F.; ...

    2017-01-27

    Boronization has been effective in reducing plasma impurities and enabling access to higher density, higher confinement plasmas in many magnetic fusion devices. The National Spherical Torus eXperiment, NSTX, has recently undergone a major upgrade to NSTX-U in order to develop the physics basis for a ST-based Fusion Nuclear Science Facility (FNSF) with capability for double the toroidal field, plasma current, and NBI heating power and increased pulse duration from 1–1.5 s to 5–8 s. A new deuterated tri-methyl boron conditioning system was implemented together with a novel surface analysis diagnostic. We report on the spatial distribution of the boron depositionmore » versus discharge pressure, gas injection and electrode location. The oxygen concentration of the plasma facing surface was measured by in-vacuo XPS and increased both with plasma exposure and with exposure to trace residual gases. Furthermore, this increase correlated with the rise of oxygen emission from the plasma.« less

  16. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes.

    PubMed

    Lee, Dongju; Song, Sung Ho; Hwang, Jaewon; Jin, Sung Hwan; Park, Kwang Hyun; Kim, Bo Hyun; Hong, Soon Hyung; Jeon, Seokwoo

    2013-08-12

    The influence of surface modifications on the mechanical properties of epoxy-hexagonal boron nitride nanoflake (BNNF) nanocomposites is investigated. Homogeneous distributions of boron nitride nanoflakes in a polymer matrix, preserving intrinsic material properties of boron nitride nanoflakes, is the key to successful composite applications. Here, a method is suggested to obtain noncovalently functionalized BNNFs with 1-pyrenebutyric acid (PBA) molecules and to synthesize epoxy-BNNF nanocomposites with enhanced mechanical properties. The incorporation of noncovalently functionalized BNNFs into epoxy resin yields an elastic modulus of 3.34 GPa, and 71.9 MPa ultimate tensile strength at 0.3 wt%. The toughening enhancement is as high as 107% compared to the value of neat epoxy. The creep strain and the creep compliance of the noncovalently functionalized BNNF nanocomposite is significantly less than the neat epoxy and the nonfunctionalized BNNF nanocomposite. Noncovalent functionalization of BNNFs is effective to increase mechanical properties by strong affinity between the fillers and the matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Methods to assess reproductive effects of environmental chemicals: studies of cadmium and boron administered orally.

    PubMed Central

    Dixon, R L; Lee, I P; Sherins, R J

    1976-01-01

    Results of a U.S.S.R.--U.S. cooperative laboratory effort to improve and validate experimental techniques used to assess subtle reproductive effects in male laboratory animals are reported. The present studies attempted to evaluate the reproductive toxicity of cadmium as cadmium chloride and boron as borax (Na2B4O7) and to investigate the mechanism of toxicity in the rat following acute and subchronic oral exposure. In vitro cell separation techniques, in vivo serial mating tests, and plasma assays for hormones were utilized. Effects on the seminal vesicle and prostate were evaluated with chemical and enzyme assays. Clinical chemistry was monitored routinely. Acute oral doses, expressed as boron were 45, 150, and 450 mg/kg while doses for cadmium equivalent were 6.25, 12.5, and 25 mg/kg. Rats were also allowed free access to drinking water containing either boron (0.3, 1.0, and 6.0 mg/l.) or cadmium (0.001, and 0.l mg/l.) for 90 days. Randomly selected animals were studied following 30, 60, and 90 days of treatment. These initial studies, utilizing a variety of methods to assess the reproductive toxicity of environmental substances in male animals, suggest that cadmium and boron at the concentrations and dose regimens tested are without significant reproductive toxicity. PMID:1269508

  18. A Theoretical Approach to the Calculation of Annealed Impurity Profiles of Ion Implanted Boron into Silicon.

    DTIC Science & Technology

    1977-06-01

    determined experimentally) and the distribution of energy deposited into nuclear processes by the boron ions. Damage is a product of this energy distri...energy deposited into nuclear processes, k is a constant adjusted to produce the total number of vacancies calculated in Fig. 11, and Tda m in the...profile computed from the energy depos- ited into nuclear processes = time constant for the release of vacancies fr( ,-, vacancy 1.- t ers C (liilibriul

  19. Optimizing Grain Boundary Complexions to Produce Dense Pressure-Less Sintered Boron Carbide (B4C)

    DTIC Science & Technology

    2008-11-14

    discontinuous distribution of the yttria. At this stage it is difficult to determine if the discontinuity is genuine or results from dewetting upon cooling...sample. However, the tendency of the film to form beads indicates a dewetting behavior. The weak interface between the yttria and the boron carbide...conform to the dewetting behavior. There is a possibility of a complexion transition as the sample is cooled down in the furnace. At high temperature the

  20. Boron incorporation in the foraminifer Amphistegina lessonii under a decoupled carbonate chemistry

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Langer, G.; Nehrke, G.; Horn, I.; Misra, S.; Janse, M.; Bijma, J.

    2015-03-01

    A number of studies have shown that the boron isotopic composition (δ11B) and the B / Ca ratio of biogenic carbonates (mostly foraminifers) can serve as proxies for two parameters of the ocean's carbonate chemistry, rendering it possible to calculate the entire carbonate system. However, the B incorporation mechanism into marine carbonates is still not fully understood and analyses of field samples show species-specific and hydrographic effects on the B proxies complicating their application. Identifying the carbonate system parameter influencing boron incorporation is difficult due to the co-variation of pH, CO32- and B(OH)4-. To shed light on the question which parameter of the carbonate system is related to the boron incorporation, we performed culture experiments with the benthic symbiont-bearing foraminifer Amphistegina lessonii using a decoupled pH-CO32- chemistry. The determination of the δ11B and B / Ca ratios was performed simultaneously by means of a new in situ technique combining optical emission spectroscopy and laser ablation MC-ICP-MS. The boron isotopic composition in the tests gets heavier with increasing pH and B / Ca increases with increasing B(OH)4- / HCO3- of the culture media. The latter indicates that boron uptake of A. lessonii features a competition between B(OH)4- and HCO3-. Furthermore, the simultaneous determination of B / Ca and δ11B on single specimens allows for assessing the relative variability of these parameters. Among different treatments the B / Ca shows an increasing variability with increasing boron concentration in the test whereas the variability in the isotope distribution is constant.

  1. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farías, R. O.; Trivillin, V. A.; Portu, A. M.

    Purpose: Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (L)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Methods: Twomore » kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Results: Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect quantification of the estimated value in the explanted healthy lung. The proposed preclinical animal model allowed for the study of the explanted lung. As expected, the boron concentration values fell as a result of the application of the preservation protocol required to preserve the lung function. The distribution of the boron concentration retention factor was obtained for healthy lung, with a mean value of 0.46 ± 0.14 consistent with that reported for metastatic colon carcinoma model in rat perfused lung. Considering the human lung model and suitable tumor control probability for lung cancer, a promising average fraction of controlled lesions higher than 85% was obtained even for a low tumor-to-normal boron concentration ratio of 2. Conclusions: This work reports for the first time data supporting the validity of the ovine model as an adequate human surrogate in terms of boron kinetics and uptake in clinically relevant tissues. Collectively, the results and analysis presented would strongly suggest that ex situ whole lung BNCT irradiation is a feasible and highly promising technique that could greatly contribute to the treatment of metastatic lung disease in those patients without extrapulmonary spread, increasing not only the expected overall survival but also the resulting quality of life.« less

  2. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina.

    PubMed

    Farías, R O; Garabalino, M A; Ferraris, S; Santa María, J; Rovati, O; Lange, F; Trivillin, V A; Monti Hughes, A; Pozzi, E C C; Thorp, S I; Curotto, P; Miller, M E; Santa Cruz, G A; Bortolussi, S; Altieri, S; Portu, A M; Saint Martin, G; Schwint, A E; González, S J

    2015-07-01

    Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (l)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect quantification of the estimated value in the explanted healthy lung. The proposed preclinical animal model allowed for the study of the explanted lung. As expected, the boron concentration values fell as a result of the application of the preservation protocol required to preserve the lung function. The distribution of the boron concentration retention factor was obtained for healthy lung, with a mean value of 0.46 ± 0.14 consistent with that reported for metastatic colon carcinoma model in rat perfused lung. Considering the human lung model and suitable tumor control probability for lung cancer, a promising average fraction of controlled lesions higher than 85% was obtained even for a low tumor-to-normal boron concentration ratio of 2. This work reports for the first time data supporting the validity of the ovine model as an adequate human surrogate in terms of boron kinetics and uptake in clinically relevant tissues. Collectively, the results and analysis presented would strongly suggest that ex situ whole lung BNCT irradiation is a feasible and highly promising technique that could greatly contribute to the treatment of metastatic lung disease in those patients without extrapulmonary spread, increasing not only the expected overall survival but also the resulting quality of life.

  3. A Study of the Effect of Adhesive and Matrix Stiffnesses on the Axial, Normal, and Shear Stress Distributions of a Boron-epoxy Reinforced Composite Joint. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Howell, W. E.

    1974-01-01

    The mechanical properties of a symmetrical, eight-step, titanium-boron-epoxy joint are discussed. A study of the effect of adhesive and matrix stiffnesses on the axial, normal, and shear stress distributions was made using the finite element method. The NASA Structural Analysis Program (NASTRAN) was used for the analysis. The elastic modulus of the adhesive was varied from 345 MPa to 3100 MPa with the nominal value of 1030 MPa as a standard. The nominal values were used to analyze the stability of the joint. The elastic moduli were varied to determine their effect on the stresses in the joint.

  4. Distributed reacceleration of cosmic rays

    NASA Technical Reports Server (NTRS)

    Wandel, Amri; Eichler, David; Letaw, John R.; Silberberg, Rein; Tsao, C. H.

    1985-01-01

    A model is developed in which cosmic rays, in addition to their initial acceleration by a strong shock, are continuously reaccelerated while propagating through the Galaxy. The equations describing this acceleration scheme are solved analytically and numerically. Solutions for the spectra of primary and secondary cosmic rays are given in a closed analytic form, allowing a rapid search in parameter space for viable propagation models with distributed reeacceleration included. The observed boron-to-carbon ratio can be reproduced by the reacceleration theory over a range of escape parameters, some of them quite different from the standard leaky-box model. It is also shown that even a very modest amount of reacceleration by strong shocks causes the boron-to-carbon ratio to level off at sufficiently high energies.

  5. Neutron Microtomography of MgB2 Superconducting Multifilament Wire

    NASA Astrophysics Data System (ADS)

    Trtik, Pavel; Scheuerlein, Christian; Alknes, Patrick; Meyer, Michael; Schmid, Florian; Lehmann, Eberhard

    Neutron imaging of sub-10-micrometres spatial resolution has been recently achieved in 2D mode within the framework of the Neutron Microscope project at the Paul Scherrer Institut. Here we report on the development of the PSI Neutron Microscope instrument and the results of the first microtomographic imaging experiment of multifilament superconducting MgB2 wire. The sample of MgB2 superconducting 37 multifilaments embedded in copper-nickel matrix was investigated -in microtomographic mode- with the scientific interest regarding the distribution of boron within the individual superconducting filaments (about 40 μm in diameter). The resulting tomographic dataset revealed the distribution of boron within the entire 0.8 mm thick multifilamental wire with the isotropic voxel size of 2.6 micrometres.

  6. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    PubMed

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. 11. Credit BG. Interior of control and observation room at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Credit BG. Interior of control and observation room at Control and Recording Center, showing detail of switchboard and closed circuit television monitors. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA

  8. Ground-State Charge-Density Distribution in a Crystal of the Luminescent ortho-Phenylenediboronic Acid Complex with 8-Hydroxyquinoline.

    PubMed

    Jarzembska, Katarzyna N; Kamiński, Radosław; Durka, Krzysztof; Woźniak, Krzysztof

    2018-05-10

    This contribution is devoted to the first electron density studies of a luminescent oxyquinolinato boron complex in the solid state. ortho-Phenylenediboronic acid mixed with 8-hydroxyquinoline in dioxane forms high-quality single crystals via slow solvent evaporation, which allows successful high resolution data collection (sin θ/λ = 1.2 Å -1 ) and charge density distribution modeling. Particular attention has been paid to the boron-oxygen fragment connecting the two parts of the complex, and to the solvent species exhibiting anharmonic thermal motion. The experiment and theory compared rather well in terms of atomic charges and volumes, except for the boron centers. Boron atoms, as expected, constitute the most electron-deficient species in the complex molecule, whereas the neighboring oxygen and carbon atoms are the most significantly negatively charged ones. This part of the molecule appears to be very much involved in the charge transfer occurring between the acid fragment and oxyquinoline moiety leading to the observed fluorescence, as supported by the time-dependent density functional theory (TDDFT) results and the generated transition density maps. TDDFT calculations indicated that p-type atomic orbitals contributing to the HOMO-1, HOMO, and LUMO play the major role in the lowest energy transitions, and enabled further comparison with the charge density features, which is discussed in details. Furthermore, the results confirmed the known fact the Q ligand character is most important for the spectroscopic properties of this class of complexes.

  9. Synergistic methods for the production of high-strength and low-cost boron carbide

    NASA Astrophysics Data System (ADS)

    Wiley, Charles Schenck

    2011-12-01

    Boron carbide (B4C) is a non-oxide ceramic in the same class of nonmetallic hard materials as silicon carbide and diamond. The high hardness, high elastic modulus and low density of B4C make it a nearly ideal material for personnel and vehicular armor. B4C plates formed via hot-pressing are currently issued to U.S. soldiers and have exhibited excellent performance; however, hot-pressed articles contain inherent processing defects and are limited to simple geometries such as low-curvature plates. Recent advances in the pressureless sintering of B4C have produced theoretically-dense and complex-shape articles that also exhibit superior ballistic performance. However, the cost of this material is currently high due to the powder shape, size, and size distribution that are required, which limits the economic feasibility of producing such a product. Additionally, the low fracture toughness of pure boron carbide may have resulted in historically lower transition velocities (the projectile velocity range at which armor begins to fail) than competing silicon carbide ceramics in high-velocity long-rod tungsten penetrator tests. Lower fracture toughness also limits multi-hit protection capability. Consequently, these requirements motivated research into methods for improving the densification and fracture toughness of inexpensive boron carbide composites that could result in the development of a superior armor material that would also be cost-competitive with other high-performance ceramics. The primary objective of this research was to study the effect of titanium and carbon additives on the sintering and mechanical properties of inexpensive B4C powders. The boron carbide powder examined in this study was a sub-micron (0.6 mum median particle size) boron carbide powder produced by H.C. Starck GmbH via a jet milling process. A carbon source in the form of phenolic resin, and titanium additives in the form of 32 nm and 0.9 mum TiO2 powders were selected. Parametric studies of sintering behavior were performed via high-temperature dilatometry in order to measure the in-situ sample contraction and thereby measure the influence of the additives and their amounts on the overall densification rate. Additionally, broad composition and sintering/post-HIPing studies followed by characterization and mechanical testing elucidated the effects of these additives on sample densification, microstructure de- velopment, and mechanical properties such as Vickers hardness and microindentation fracture toughness. Based upon this research, a process has been developed for the sintering of boron carbide that yielded end products with high relative densities (i.e., 100%, or theoretical density), microstructures with a fine (˜2-3 mum) grain size, and high Vickers microindentation hardness values. In addition to possessing these improved physical properties, the costs of producing this material were substantially lower (by a factor of 5 or more) than recently patented work on the pressureless sintering and post-HIPing of phase-pure boron carbide powder. This recently patented work developed out of our laboratory utilized an optimized powder distribution and yielded samples with high relative densities and high hardness values. The current work employed the use of titanium and carbon additives in specific ratios to activate the sintering of boron carbide powder possessing an approximately mono-modal particle size distribution. Upon heating to high temperatures, these additives produced fine-scale TiB2 and graphite inclusions that served to hinder grain growth and substantially improve overall sintered and post-HIPed densities when added in sufficient concentrations. The fine boron carbide grain size manifested as a result of these second phase inclusions caused a substantial increase in hardness; the highest hardness specimen yielded a hardness value (2884.5 kg/mm2) approaching that of phase-pure and theoretically-dense boron carbide (2939 kg/mm2). Additionally, the same high-hardness composition exhibited a noticeably higher fracture toughness (3.04 MPa˙m1/2) compared to phase-pure boron carbide (2.42 MPa˙m1/2), representing a 25.6% improvement. A potential consequence of this study would be the development of a superior armor material that is sufficiently affordable, allowing it to be incorporated into the general soldier's armor chassis.

  10. Boron-doped graphene as promising support for platinum catalyst with superior activity towards the methanol electrooxidation reaction

    NASA Astrophysics Data System (ADS)

    Sun, Yongrong; Du, Chunyu; An, Meichen; Du, Lei; Tan, Qiang; Liu, Chuntao; Gao, Yunzhi; Yin, Geping

    2015-12-01

    We report the synthesis of boron-doped graphene by thermally annealing the mixture of graphene oxide and boric acid, and its usage as the support of Pt catalyst towards the methanol oxidation reaction. The composition, structure and morphology of boron-doped graphene and its supported Pt nanoparticles (Pt/BG) are characterized by transmission electron microscopy, inductively coupled plasma mass spectrometry, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. It is revealed that boron atoms are doped into graphene network in the form of BC2O and BCO2 bonds, which lead to the increase in defect sites and facilitate the subsequent deposition of Pt nanoparticles. Therefore, the Pt/BG catalyst presents smaller particle size and narrower size distribution than the graphene supported Pt (Pt/G) catalyst. When evaluated as the electrocatalyst for the methanol oxidation reaction, the Pt/BG catalyst exhibits excellent electrochemical activity and stability demonstrated by cyclic voltammetry and chronoamperometry tests. The enhanced activity is mainly ascribed to the electronic interaction between boron-doped graphene and Pt nanoparticles, which lowers the d-band center of Pt and thus weakens the absorption of the poisoning intermediate CO. Our work provides an alternative approach of improving the reaction kinetics for the oxidation of small organic molecules.

  11. Pharmacokinetics of Chlorin e6-Cobalt Bis(Dicarbollide) Conjugate in Balb/c Mice with Engrafted Carcinoma

    PubMed Central

    Volovetsky, Arthur B.; Balalaeva, Irina V.; Dudenkova, Varvara V.; Shilyagina, Natalia Yu.; Feofanov, Аlexey V.; Efremenko, Anastasija V.; Grin, Mikhail A.; Mironov, Andrey F.; Bregadze, Vladimir I.; Maslennikova, Anna V.

    2017-01-01

    The necessary precondition for efficient boron neutron capture therapy (BNCT) is control over the content of isotope 10B in the tumor and normal tissues. In the case of boron-containing porphyrins, the fluorescent part of molecule can be used for quantitative assessment of the boron content. Study Objective: We performed a study of the biodistribution of the chlorin e6-Cobalt bis(dicarbollide) conjugate in carcinoma-bearing Balb/c mice using ex vivo fluorescence imaging, and developed a mathematical model describing boron accumulation and release based on the obtained experimental data. Materials and Methods: The study was performed on Balb/c tumor-bearing mice (CT-26 tumor model). A solution of the chlorin e6-Cobalt bis(dicarbollide) conjugate (CCDC) was injected into the blood at a dose of 10 mg/kg of the animal’s weight. Analysis of the fluorescence signal intensity was performed at several time points by spectrofluorimetry in blood and by laser scanning microscopy in muscle, liver, and tumor tissues. The boron content in the same samples was determined by mass spectroscopy with inductively coupled plasma. Results: Analysis of a linear approximation between the fluorescence intensity and boron content in the tissues demonstrated a satisfactory value of approximation reliability with a Spearman’s rank correlation coefficient of r = 0.938, p < 0.01. The dynamics of the boron concentration change in various organs, calculated on the basis of the fluorescence intensity, enabled the development of a model describing the accumulation of the studied compound and its distribution in tissues. The obtained results reveal a high level of correspondence between the model and experimental data. PMID:29182594

  12. Pharmacokinetics of Chlorin e₆-Cobalt Bis(Dicarbollide) Conjugate in Balb/c Mice with Engrafted Carcinoma.

    PubMed

    Volovetsky, Arthur B; Sukhov, Vladimir S; Balalaeva, Irina V; Dudenkova, Varvara V; Shilyagina, Natalia Yu; Feofanov, Аlexey V; Efremenko, Anastasija V; Grin, Mikhail A; Mironov, Andrey F; Sivaev, Igor B; Bregadze, Vladimir I; Maslennikova, Anna V

    2017-11-28

    The necessary precondition for efficient boron neutron capture therapy (BNCT) is control over the content of isotope 10 B in the tumor and normal tissues. In the case of boron-containing porphyrins, the fluorescent part of molecule can be used for quantitative assessment of the boron content. Study Objective: We performed a study of the biodistribution of the chlorin e ₆-Cobalt bis(dicarbollide) conjugate in carcinoma-bearing Balb/c mice using ex vivo fluorescence imaging, and developed a mathematical model describing boron accumulation and release based on the obtained experimental data. Materials and Methods: The study was performed on Balb/c tumor-bearing mice (CT-26 tumor model). A solution of the chlorin e ₆-Cobalt bis(dicarbollide) conjugate (CCDC) was injected into the blood at a dose of 10 mg/kg of the animal's weight. Analysis of the fluorescence signal intensity was performed at several time points by spectrofluorimetry in blood and by laser scanning microscopy in muscle, liver, and tumor tissues. The boron content in the same samples was determined by mass spectroscopy with inductively coupled plasma. Results: Analysis of a linear approximation between the fluorescence intensity and boron content in the tissues demonstrated a satisfactory value of approximation reliability with a Spearman's rank correlation coefficient of r = 0.938, p < 0.01. The dynamics of the boron concentration change in various organs, calculated on the basis of the fluorescence intensity, enabled the development of a model describing the accumulation of the studied compound and its distribution in tissues. The obtained results reveal a high level of correspondence between the model and experimental data.

  13. Determination of glycated albumin using boronic acid-derived agarose beads on paper-based devices.

    PubMed

    Ko, Euna; Tran, Van-Khue; Geng, Yanfang; Kim, Min Ki; Jin, Ga Hyun; Son, Seong Eun; Hur, Won; Seong, Gi Hun

    2018-01-01

    Self-monitoring of glycated albumin (GA), a useful glycemic marker, is an established method for preventing diabetes complications. Here, the paper-based lateral flow assay devices were developed for the sensitive detection of GA and the total human serum albumin (tHSA) in self-monitoring diabetes patients. Boronic acid-derived agarose beads were packed into a hole on a lateral flow channel. These well-coordinated agarose beads were used to capture GA through specific cis-diol interactions and to enhance the colorimetric signals by concentrating the target molecules. The devices exhibited large dynamic ranges (from 10  μ g/ml to 10 mg/ml for GA and from 10 mg/ml to 50 mg/ml for tHSA) and low detection limits (7.1  μ g/ml for GA and 4.7 mg/ml for tHSA), which cover the range of GA concentration in healthy plasma, which is 0.21-1.65 mg/ml (0.6%-3%). In determining the unknown GA concentrations in two commercial human plasma samples, the relative percentage difference between the values found by a standard ELISA kit and those found by our developed devices was 2.62% and 8.80%, which are within an acceptable range. The measurements of GA and tHSA were completed within 20 min for the total sample-to-answer diagnosis, fulfilling the demand for rapid analysis. Furthermore, the recovery values ranged from 99.4% to 110% in device accuracy tests. These results indicate that the developed paper-based device with boronic acid-derived agarose beads is a promising platform for GA and tHSA detection as applied to self-monitoring systems.

  14. Microdosimetric evaluation of the neutron field for BNCT at Kyoto University reactor by using the PHITS code.

    PubMed

    Baba, H; Onizuka, Y; Nakao, M; Fukahori, M; Sato, T; Sakurai, Y; Tanaka, H; Endo, S

    2011-02-01

    In this study, microdosimetric energy distributions of secondary charged particles from the (10)B(n,α)(7)Li reaction in boron-neutron capture therapy (BNCT) field were calculated using the Particle and Heavy Ion Transport code System (PHITS). The PHITS simulation was performed to reproduce the geometrical set-up of an experiment that measured the microdosimetric energy distributions at the Kyoto University Reactor where two types of tissue-equivalent proportional counters were used, one with A-150 wall alone and another with a 50-ppm-boron-loaded A-150 wall. It was found that the PHITS code is a useful tool for the simulation of the energy deposited in tissue in BNCT based on the comparisons with experimental results.

  15. Pressure-dependent boron isotopic fractionation observed by column chromatography

    NASA Astrophysics Data System (ADS)

    Musashi, M.; Oi, T.; Matsuo, M.; Nomura, M.

    2007-12-01

    Boron isotopic fractionation factor ( S ) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25°C, using 0.1 mmol/L boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at atmospheric pressure at 25°C with the boron concentration of 10 mmol/L, but were larger than the values at the same condition with much higher concentration of 100 and 501 mmol/L, indicating that borate-polymerization reducing the isotopic fractionation was negligible. However, calculations based on the theory of isotope distribution between two phases estimated that 21% (5MPa) and 47% (17MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)3-form, instead of in the four-coordinated B(OH)4--form, at high pressures even with the very diluted solution. We discussed this discrepancy by introducing (1) hydration or (2) a partial molar volume difference between isotopic molecules. It was inferred that borate ions were partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Alternatively, it was likely that the S value decreased with increasing pressure, because the difference of the partial isotopic molar volumes between 10B(OH)3 and 11B(OH)3 was larger than that between 10B(OH)4- and 11B(OH)4-. If either will be the case, the influence of a pressure upon the isotope effect may not be negligible for boron isotopic exchange equilibrium. This knowledge is crucial for the principle of the boron isotopic pH-metry reconstructing a chemical variation at the paleo-deep oceanic environment where the early life may have been evolved.

  16. All-boron fullerene exhibits a strong affinity to inorganic anions

    NASA Astrophysics Data System (ADS)

    Colherinhas, Guilherme; Fileti, Eudes Eterno; Chaban, Vitaly V.

    2017-03-01

    Experimentally observed all-boron fullerene, B-80, inspires systematic investigation of its physical chemical properties and search for possible applications. We hereby report density functional theory calculations to characterize interactions of B-80 with the selected imidazolium room-temperature ionic liquids (RTILs), dimethylimidazolium nitrate and dimethylimidazolium hexafluorophosphate. Whereas the imidazolium cation exhibits a rather poor affinity to B-80, the inorganic anions form polar covalent bonds with the boron atom occupying a central position within a B-6 hexagon. Attachment of the RTIL ion pairs leads to a significant alteration of the electronic spectra, charge density distribution, valence and conduction molecular orbitals. The total binding energies keeping the RTIL@B80 complexes together range 200-250 kcal mol-1, being higher than the energies of many interactions in chemistry. The observed phenomenon predicts an excellent solubility of B-80 in the considered RTILs, but may also reveal a poor stability of B-80 in the polar media. Our results motivate further efforts in studying the behavior of the all-boron fullerene in polar environments.

  17. Double helix boron-10 powder thermal neutron detector

    DOEpatents

    Wang, Zhehui; Morris, Christopher L.; Bacon, Jeffrey D.

    2015-06-02

    A double-helix Boron-10 powder detector having intrinsic thermal neutron detection efficiency comparable to 36'' long, 2-in diameter, 2-bar Helium-3 detectors, and which can be used to replace such detectors for use in portal monitoring, is described. An embodiment of the detector includes a metallic plate coated with Boron-10 powder for generating alpha and Lithium-7 particles responsive to neutrons impinging thereon supported by insulators affixed to at least two opposing edges; a grounded first wire wound in a helical manner around two opposing insulators; and a second wire having a smaller diameter than that of the first wire, wound in a helical manner around the same insulators and spaced apart from the first wire, the second wire being positively biased. A gas, disposed within a gas-tight container enclosing the plate, insulators and wires, and capable of stopping alpha and Lithium-7 particles and generating electrons produces a signal on the second wire which is detected and subsequently related to the number of neutrons impinging on the plate.

  18. Experimental validation and testing of a NaI boron-lined neutron detector

    NASA Astrophysics Data System (ADS)

    Metwally, Walid A.; Emam, Amira G.

    2018-05-01

    Effective neutron detection systems are critical in various nuclear fields. Most of the current detection systems rely on He-3 detectors due to their high neutron cross section. However, the limited sizes and worldwide scarcity of He-3 lead to major research efforts to find alternative neutron detectors. One of the proposed cost-effective alternatives is using boron-lined NaI detectors to detect the gamma ray resulting from the 10B(n,α)7Li reaction. The proposed detector assembly has been experimentally tested and its results were compared with those from a He-3 detector. In addition to detecting the gamma rays from the source and surrounding medium, the boron-lined NaI detector showed a good sensitivity to changes in neutron flux distributions and a higher efficiency when compared to the He-3 detector used.

  19. Boron doped GaN and InN: Potential candidates for spintronics

    NASA Astrophysics Data System (ADS)

    Fan, S. W.; Huang, X. N.; Yao, K. L.

    2017-02-01

    The full potential linearized augmented plane wave method together with the Tran-Blaha modified Becke-Johnson potential is utilized to investigate the electronic structures and magnetism for boron doped GaN and InN. Calculations show the boron substituting nitrogen (BN defects) could induce the GaN and InN to be half-metallic ferromagnets. The magnetic moments mainly come from the BN defects, and each BN defect would produce the 2.00 μB total magnetic moment. The electronic structures indicate the carriers-mediated double exchange interaction plays a crucial role in forming the ferromagnetism. Positive chemical pair interactions imply the BN defects would form the homogeneous distribution in GaN and InN matrix. Moderate formation energies suggest that GaN and InN with BN defects could be fabricated experimentally.

  20. The neutron flux monitors from 20 keV to 1 MeV for BNCT: performance study using accelerator-based neutron sources

    NASA Astrophysics Data System (ADS)

    Guan, X. C.; Gong, Y.; Murata, I.; Wang, T. S.

    2018-05-01

    The performance of the neutron flux monitors from 20 keV to 1 MeV developed for boron neutron capture therapy (BNCT) is studied by Monte Carlo simulations using accelerator-based neutron sources (ABNSs). The results show that the performance of the neutron flux monitors is very satisfactory and they can be efficiently used in practical applications to measure the neutron fluxes from 20 keV to 1 MeV of ABNSs for BNCT to high accuracy.

  1. Molecular dynamics investigation of hexagonal boron nitride sputtering and sputtered particle characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brandon D., E-mail: bradenis@umich.edu; Boyd, Iain D.

    The sputtering of hexagonal boron nitride (h-BN) by impacts of energetic xenon ions is investigated using a molecular dynamics (MD) model. The model is implemented within an open-source MD framework that utilizes graphics processing units to accelerate its calculations, allowing the sputtering process to be studied in much greater detail than has been feasible in the past. Integrated sputter yields are computed over a range of ion energies from 20 eV to 300 eV, and incidence angles from 0° to 75°. Sputtering of boron is shown to occur at energies as low as 40 eV at normal incidence, and sputtering of nitrogen atmore » as low as 30 eV at normal incidence, suggesting a threshold energy between 20 eV and 40 eV. The sputter yields at 0° incidence are compared to existing experimental data and are shown to agree well over the range of ion energies investigated. The semi-empirical Bohdansky curve and an empirical exponential function are fit to the data at normal incidence, and the threshold energy for sputtering is calculated from the Bohdansky curve fit as 35 ± 2 eV. These results are shown to compare well with experimental observations that the threshold energy lies between 20 eV and 40 eV. It is demonstrated that h-BN sputters predominantly as atomic boron and diatomic nitrogen, and the velocity distribution function (VDF) of sputtered boron atoms is investigated. The calculated VDFs are found to reproduce the Sigmund-Thompson distribution predicted by Sigmund's linear cascade theory of sputtering. The average surface binding energy computed from Sigmund-Thompson curve fits is found to be 4.5 eV for ion energies of 100 eV and greater. This compares well to the value of 4.8 eV determined from independent experiments.« less

  2. Catalyst-free one step synthesis of large area vertically stacked N-doped graphene-boron nitride heterostructures from biomass source.

    PubMed

    Esteve-Adell, Ivan; He, Jinbao; Ramiro, Fernando; Atienzar, Pedro; Primo, Ana; García, Hermenegildo

    2018-03-01

    A procedure for the one-step preparation of films of few-layer N-doped graphene on top of nanometric hexagonal boron nitride sheets ((N)graphene/h-BN) based on the pyrolysis at 900 °C under an inert atmosphere of a film of chitosan containing about 20 wt% of ammonium borate salt as a precursor is reported. During the pyrolysis a spontaneous segregation of (N)graphene and boron nitride layers takes place. The films were characterized by optical microscopy that shows a thin graphene overlayer covering the boron nitride layer, the latter showing characteristic cracks, and by XPS measurements at different monitoring angles from 0° to 50° where an increase in the proportion of C vs. B and N was observed. The resulting (N)graphene/h-BN films were also characterized by Raman, HRTEM, SEM, FIB-SEM and AFM. The thickness of the (N)graphene and h-BN layers can be controlled by varying the concentration of precursors and the spin coating rate and is typically below 5 nm. Electrical conductivity measurements using microelectrodes can cause the burning of the graphene layer at high intensities, while lower intensities show that (N)graphene/h-BN films behave as capacitors in the range of positive voltages.

  3. Integral window/photon beam position monitor and beam flux detectors for x-ray beams

    DOEpatents

    Shu, Deming; Kuzay, Tuncer M.

    1995-01-01

    A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

  4. Effects of boron supplementation on the severity and duration of pain in primary dysmenorrhea.

    PubMed

    Nikkhah, Somayeh; Dolatian, Mahrokh; Naghii, Mohammad Reza; Zaeri, Farid; Taheri, Seyed Mojtaba

    2015-05-01

    Primary dysmenorrhea refers to painful menstrual cramps without pelvic pathology. The condition is highly prevalent among women and exerts negative effects on their quality of life. Considering the evidence for anti-inflammatory properties of Boron, the present study aimed to determine the effects of Boron supplementation on the severity and duration of menstrual pain in female university students. This triple-blind randomized clinical trial study recruited 113 university students. The participants were matched for the severity and duration of dysmenorrhea and randomly allocated into the case and control groups (n = 58 and 55, respectively). The case group consumed 10 mg/day Boron from two days before the menstrual flow until its third day. The control group received placebo capsules (similar to those distributed among the cases). All subjects were asked to take the capsules for two consecutive menstrual cycles. Pain severity (measured on a visual analog scale) and duration (in hours) were measured at baseline and during the two cycles. The two groups had no significant differences in the severity and duration of pain at baseline. After the intervention, however, the severity and duration of pain were significantly lower in the case group than in the control group (P < 0.05). Based on our findings, Boron supplementation can reduce the severity and duration of menstrual pain through exerting anti-inflammatory effects. In order to clarify the effects of Boron on dysmenorrhea, future studies are required to measure the levels of hormones and inflammatory biomarkers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Dose distributions in phantoms irradiated in thermal columns of two different nuclear reactors.

    PubMed

    Gambarini, G; Agosteo, S; Altieri, S; Bortolussi, S; Carrara, M; Gay, S; Nava, E; Petrovich, C; Rosi, G; Valente, M

    2007-01-01

    In-phantom dosimetry studies have been carried out at the thermal columns of a thermal- and a fast-nuclear reactor for investigating: (a) the spatial distribution of the gamma dose and the thermal neutron fluence and (b) the accuracy at which the boron concentration should be estimated in an explanted organ of a boron neutron capture therapy patient. The phantom was a cylinder (11 cm in diameter and 12 cm in height) of tissue-equivalent gel. Dose images were acquired with gel dosemeters across the axial section of the phantom. The thermal neutron fluence rate was measured with activation foils in a few positions of this phantom. Dose and fluence rate profiles were also calculated with Monte Carlo simulations. The trend of these profiles do not show significant differences for the thermal columns considered in this work.

  6. Design, process development, manufacture, test and evaluation of boron-aluminum for space shuttle components

    NASA Technical Reports Server (NTRS)

    Garrett, R. A.; Niemann, J. T.; Otto, O. R.; Brown, N. M.; Heinrich, R. E.

    1973-01-01

    A multi phase boron-aluminum design and evaluation program for space shuttle components was conducted, culminating in the fabrication of a 1.22 m (48 inch) x 1.83 m (72 inch) boron-aluminum compression panel capable of distributing a point load of 1555 kN (350,000 lbs) into a uniform running load at a temperature of 589 K (600 F). This panel was of the skin-stringer construction with two intermediate frame supports; seven unidirectional stringers varied in thickness from 5 plies to 52 plies and the skin was contoured to thicknesses ranging from 10 plies to 62 plies. Both the stringers and the skin incorporated Ti-6Al-4V titanium interleaves to increase bearing and in-plane shear strength. The discrete program phases were materials evaluation, design studies, process technology development, fabrication and assembly, and test and evaluation.

  7. Investigation of catalytic activity towards oxygen reduction reaction of Pt dispersed on boron doped graphene in acid medium.

    PubMed

    Pullamsetty, Ashok; Sundara, Ramaprabhu

    2016-10-01

    Boron doped graphene was prepared by a facile method and platinum (Pt) decoration over boron doped graphene was done in various chemical reduction methods such as sodium borohydride (NaBH4), polyol and modified polyol. X-ray diffraction analysis indicates that the synthesized catalyst particles are present in a nanocrystalline structure and transmission and scanning electron microscopy were employed to investigate the morphology and particle distribution. The electrochemical properties were investigated with the help of the rotating disk electrode (RDE) technique and cyclic voltammetry. The results show that the oxygen reduction reaction (ORR) takes place by a four-electron process. The kinetics of the ORR was evaluated using K-L and Tafel plots. The electrocatalyst obtained in modified polyol reduction method has shown the better catalytic activity compared to other two electrocatalysts. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Detection of boron, cobalt, and other weak interstellar lines toward Zeta Ophiuchi

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Sheffer, Y.; Lambert, D. L.; Gilliland, R. L.

    1993-01-01

    Numerous weak lines from interstellar atomic species toward Zeta Ophiuchi were observed with the Goddard High-Resolution Spectrograph. Of particular note are the first interstellar detection of cobalt and the detection of boron in this sight line. These measurements provide estimates for the amount of depletion for the two elements. Boron, a volatile, and cobalt, a refractory element, display the depletion pattern found by Savage et al. (1992). The abundance of phosphorus in the H II region associated with the star was obtained from a detection of P III. Additional weak lines from S I, C I, Ni II, and Cu II were detected for the first time; these lines provide the basis for refinements in oscillator strength and column density. Analysis of the neutral sulfur data indicates that the atomic gas is more widely distributed than the molecular material in the main component.

  9. Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model.

    PubMed

    Iguchi, Yoshiya; Michiue, Hiroyuki; Kitamatsu, Mizuki; Hayashi, Yuri; Takenaka, Fumiaki; Nishiki, Tei-Ichi; Matsui, Hideki

    2015-07-01

    Glioblastoma, a malignant brain tumor with poor disease outcomes, is managed in modern medicine by multimodality therapy. Boron neutron capture therapy (BNCT) is an encouraging treatment under clinical investigation. In malignant cells, BNCT consists of two major factors: neutron radiation and boron uptake. To increase boron uptake in cells, we created a mercapto-closo-undecahydrododecaborate ([B12HnSH](2-)2Na(+), BSH) fused with a short arginine peptide (1R, 2R, 3R) and checked cellular uptake in vitro and in vivo. In a mouse brain tumor model, only BSH with at least three arginine domains could penetrate cell membranes of glioma cells in vitro and in vivo. Furthermore, to monitor the pharmacokinetic properties of these agents in vivo, we fused BSH and BSH-3R with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA); DOTA is a metal chelating agent for labeling positron emission tomography (PET) probe with (64)Cu. We administered BSH-DOTA-(64)Cu and BSH-3R-DOTA-(64)Cu to the tumor model through a mouse tail vein and determined the drugs' pharmacokinetics by PET imaging. BSH-3R showed a high uptake in the tumor area on PET imaging. We concluded that BSH-3R is the ideal boron compound for clinical use during BNCT and that in developing this compound for clinical use, the BSH-3R PET probe is essential for pharmacokinetic imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. New Isotopic Tracers for Shale Gas and Hydraulic Fracturing Fluids

    EPA Pesticide Factsheets

    The combined application of geochemistry, stable isotopes (δ18O, δ2H), strontium isotopes (87Sr/86Sr), boron isotopes (δ11B), and radium isotopes (228Ra/226Ra) provides a unique methodology for tracing and monitoring shale gas and fracking fluids in the environment.

  11. 1. West elevations of barrier (Building 4216/E17) and Monitor Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. West elevations of barrier (Building 4216/E-17) and Monitor Building (4203/E-4). Barrier is built of wood infilled with earth, intended to protect Monitor Building from flying debris should anything at Test Stand 'A' explode. Building 4203/E-4 is built of reinforced concrete; equipment on top of it is cooling tower for refrigeration equipment in Test Stand 'A' machinery room. Electrical utility poles are typical at the facility, and carry 4,800 volts 3-phase alternating current. - Jet Propulsion Laboratory Edwards Facility, Test Stand A, Control Center, Edwards Air Force Base, Boron, Kern County, CA

  12. The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study

    NASA Astrophysics Data System (ADS)

    Thomas, Rainer; Förster, Hans-Jürgen; Heinrich, Wilhelm

    2002-09-01

    Detailed analyses of melt and fluid inclusions combined with an electron-microprobe survey of boron-bearing minerals reveal the evolution of boron in a highly evolved peraluminous granite-pegmatite complex and the associated high- and medium-temperature ore-forming hydrothermal fluids (Ehrenfriedersdorf, Erzgebirge, Germany). Melt inclusions in granite represent embryonic pegmatite-forming melts containing about 10 wt% H2O and 1.8 wt% B2O3. These melts are also enriched in F, P, and other incompatible elements such as Be, Sn, Rb, and Cs. Ongoing differentiation and volatile enrichment drove the system into a solvus, where two pegmatite-forming melts coexisted. The critical point is at about 712 °C, 100 MPa, 20 wt% H2O and 4.1 wt% B2O3. Cooling and concomitant fractional crystallisation from 700 to 500 °C induced development of two conjugate melts, an H2O-poor (A-melt) and an H2O-rich melt (B-melt) along the opening solvus. Boron is a major element in both melts and is preferentially partitioned into the H2O-rich melt. Temperature-dependent distribution coefficients $ D{boron}{{B - melt/A - melt}} $ are 1.3 at 650 °C, 1.5 at 600 °C, and 1.8 at 500 °C. In both melts, boron concentrations decreased during cooling because of exsolution of a boron-rich hypersaline brine throughout the pegmatitic stage. Boromuscovite containing up to 8.5 wt% was another sink for boron at this stage. The end of the melt-dominated pegmatitic stage was attained at a solidus temperature of around 490 °C. Fluid inclusions of the hydrothermal stage reveal trapping temperatures of 480 to 370 °C, along with varying densities and highly variable B2O3 contents ranging from 0.20 to 2.94 wt%. A boiling system evolved, indicating a complex interplay between closed- and open-system behaviour. Pressure switched from lithostatic to hydrostatic and back, generating hydrothermal convection cells where meteoric waters were introduced and mixed with magmatic fluids. Boron-rich solutions originated from magmatic fluids, whereas boron-depleted fluids were mainly of meteoric origin. This highlights the potential of boron for discriminating fluids of different origin. Tin is continuously enriched during the evolution because tin and boron are cross-linked by formation of boron-, fluorine- and tin-fluorine-bearing complexes and is finally deposited within quartz-cassiterite veins during the transition from closed- to open-system behaviour. Boron does not only trace the complex evolution of the Ehrenfriedersdorf complex but exerts, together with H2O, F and P, an important control on the physical and chemical properties of pegmatite-forming melts, and particularly on the formation of a two-melt solvus at low pressure. We discuss this with respect to experimental results on H2O solubility and the critical behaviour of the haplogranite-water system which contained variable concentrations of volatiles.

  13. The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study

    NASA Astrophysics Data System (ADS)

    Thomas, Rainer; Förster, Hans-Jürgen; Heinrich, Wilhelm

    Detailed analyses of melt and fluid inclusions combined with an electron-microprobe survey of boron-bearing minerals reveal the evolution of boron in a highly evolved peraluminous granite-pegmatite complex and the associated high- and medium-temperature ore-forming hydrothermal fluids (Ehrenfriedersdorf, Erzgebirge, Germany). Melt inclusions in granite represent embryonic pegmatite-forming melts containing about 10 wt% H2O and 1.8 wt% B2O3. These melts are also enriched in F, P, and other incompatible elements such as Be, Sn, Rb, and Cs. Ongoing differentiation and volatile enrichment drove the system into a solvus, where two pegmatite-forming melts coexisted. The critical point is at about 712 °C, 100 MPa, 20 wt% H2O and 4.1 wt% B2O3. Cooling and concomitant fractional crystallisation from 700 to 500 °C induced development of two conjugate melts, an H2O-poor (A-melt) and an H2O-rich melt (B-melt) along the opening solvus. Boron is a major element in both melts and is preferentially partitioned into the H2O-rich melt. Temperature-dependent distribution coefficients $ D{boron}{{B - melt/A - melt}} $ are 1.3 at 650 °C, 1.5 at 600 °C, and 1.8 at 500 °C. In both melts, boron concentrations decreased during cooling because of exsolution of a boron-rich hypersaline brine throughout the pegmatitic stage. Boromuscovite containing up to 8.5 wt% was another sink for boron at this stage. The end of the melt-dominated pegmatitic stage was attained at a solidus temperature of around 490 °C. Fluid inclusions of the hydrothermal stage reveal trapping temperatures of 480 to 370 °C, along with varying densities and highly variable B2O3 contents ranging from 0.20 to 2.94 wt%. A boiling system evolved, indicating a complex interplay between closed- and open-system behaviour. Pressure switched from lithostatic to hydrostatic and back, generating hydrothermal convection cells where meteoric waters were introduced and mixed with magmatic fluids. Boron-rich solutions originated from magmatic fluids, whereas boron-depleted fluids were mainly of meteoric origin. This highlights the potential of boron for discriminating fluids of different origin. Tin is continuously enriched during the evolution because tin and boron are cross-linked by formation of boron-, fluorine- and tin-fluorine-bearing complexes and is finally deposited within quartz-cassiterite veins during the transition from closed- to open-system behaviour. Boron does not only trace the complex evolution of the Ehrenfriedersdorf complex but exerts, together with H2O, F and P, an important control on the physical and chemical properties of pegmatite-forming melts, and particularly on the formation of a two-melt solvus at low pressure. We discuss this with respect to experimental results on H2O solubility and the critical behaviour of the haplogranite-water system which contained variable concentrations of volatiles.

  14. Convection enhanced delivery of boronated EGF as a molecular targeting agent for neutron capture therapy of brain tumors

    PubMed Central

    Yang, Weilian; Wu, Gong; Huo, Tianyao; Tjarks, Werner; Ciesielski, Michael; Fenstermaker, Robert A.; Ross, Brain D.; Wikstrand, Carol J.; Riley, Kent J.; Binns, Peter J.

    2010-01-01

    In the present study, we have evaluated a boronated dendrimer-epidermal growth factor (BD-EGF) bioconjugate as a molecular targeting agent for boron neutron capture therapy (BNCT) of the human EGFR gene-transfected F98 rat glioma, designated F98EGFR. EGF was chemically linked to a heavily boronated polyamidoamine dendrimer (BD) by means of the heterobifunctional reagent, mMBS. Biodistribution studies were carried out at 6 h and 24 h following intratumoral (i.t.) injection or intracerebral (i.c.) convection enhanced delivery (CED) of 125I-labeled or unlabeled BD-EGF (40 μg 10B/10 μg EGF) to F98 glioma bearing rats. At 24 h. there was 43% more radioactivity in EGFR(+) tumors following CED compared to i.t. injection, and a doubling of the tumor boron concentration (22.3 μg/g vs. 11.7 μg/g). CED of BD-EGF resulted in a 7.2× increase in the volume of distribution within the infused cerebral hemisphere and a 1.9× increase in tumor uptake of BD-EGF compared with i.t. injection. Based on these favorable bio-distribution data, BNCT was carried out at the Massachusetts Institute of Technology nuclear reactor 14 days following i.c. tumor implantation and 24 h. after CED of BD-EGF. These animals had a MST of 54.1 ± 4.7 days compared to 43.0 ± 2.8 days following i.t. injection. Rats that received BD-EGF by CED in combination with i.v. boronophenylalanine (BPA), which has been used in both experimental and clinical studies, had a MST of 86.0 ± 28.1 days compared to 39.8 ± 1.6 days for i.v. BPA alone (P < 0.01), 30.9 ± 1.4 days for irradiated controls and 25.1 ± 1.0 days for untreated controls (overall P < 0.0001). These data have demonstrated that the efficacy of BNCT was significantly increased (P < 0.006), following i.c CED of BD-EGF compared to i.t injection, and that the survival data were equivalent to those previously reported by us using the boronated anti-human-EGF mAb, C225 (cetuximab). PMID:19588228

  15. Mid-infrared polaritonic coupling between boron nitride nanotubes and graphene.

    PubMed

    Xu, Xiaoji G; Jiang, Jian-Hua; Gilburd, Leonid; Rensing, Rachel G; Burch, Kenneth S; Zhi, Chunyi; Bando, Yoshio; Golberg, Dmitri; Walker, Gilbert C

    2014-11-25

    Boron nitride (BN) is considered to be a promising substrate for graphene-based devices in part because its large band gap can serve to insulate graphene in layered heterostructures. At mid-infrared frequencies, graphene supports surface plasmon polaritons (SPPs), whereas hexagonal-BN (h-BN) is found to support surface phonon polaritons (SPhPs). We report on the observation of infrared polaritonic coupling between graphene SPPs and boron nitride nanotube (BNNT) SPhPs. Infrared scattering type scanning near-field optical microscopy is used to obtain spatial distribution of the two types of polaritons at the nanoscale. The observation suggests that those polaritons interact at the nanoscale in a one-dimensional/two-dimensional (1D/2D) geometry, exchanging energy in a nonplanar configuration at the nanoscale. Control of the polaritonic interaction is achieved by adjustment of the graphene Fermi level through voltage gating. Our observation suggests that boron nitride nanotubes and graphene can interact at mid-infrared frequencies and coherently exchange their energies at the nanoscale through the overlap of mutual electric near field of surface phonon polaritons and surface plasmon polaritons. Such interaction enables the design of nano-optical devices based on BNNT-graphene polaritonics in the mid-infrared range.

  16. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    PubMed

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.

  17. Boronate-functionalized hydrogel as a novel biosensing interface for the glycated hemoglobin A1c (HbA1c) based on the competitive binding with signaling glycoprotein.

    PubMed

    Han, Yong Duk; Kim, Ka Ram; Park, Yoo Min; Song, Seung Yeon; Yang, Yong Ju; Lee, Kangsun; Ku, Yunhee; Yoon, Hyun C

    2017-08-01

    According to recent increases in public healthcare costs associated with diabetes mellitus, the development of new glycemic monitoring techniques based on the biosensing of glycated hemoglobin A1c (HbA 1c ), a promising long-term glycemic biomarker, has become a major challenge. In the development of HbA 1c biosensors for point-of-care applications, the selection of an effective biorecognition layer that provides a high reaction yield and specificity toward HbA 1c is regarded as the most significant issue. To address this, we developed a novel HbA 1c biosensing interfacial material by the integration of boronate hydrogel with glass fiber membrane. In the present study, a new boronate-functionalized hydrogel was designed and spatio-selectively photopolymerized on a hydrophilic glass fiber membrane by using N-hydroxyethyl acrylamide, 3-(acrylamido)phenylboronic acid, and bis(N,N'-methylene-bis-acrylamide). Using this approach, the boronic acid group, which specifically recognizes the cis-diol residue of glucose on the HbA 1c molecule, can be three-dimensionally coated on the surface of the glass fiber network with a high density. Because this network structure of boronate hydrogel-grafted fibers enables capillary-driven fluid control, facile HbA 1c biosensing in a lateral flow assay concept could be accomplished. On the proposed HbA 1c biosensing interface, various concentrations of HbA 1c (5-15%) in blood-originated samples were sensitively measured by a colorimetric assay using horseradish peroxidase, a glycoenzyme can generate chromogenic signal after the competitive binding against HbA 1c to the boronic acid residues. Based on the demonstrated advantages of boronate hydrogel-modified membrane including high analytical performance, easy operation, and cost-effectiveness, we expect that the proposed biorecognition interfacial material can be applied not only to point-of-care HbA 1c biosensors, but also to the quantitative analysis of other glycoprotein biomarkers. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Ionization equilibrium at the transition from valence-band to acceptor-band migration of holes in boron-doped diamond

    NASA Astrophysics Data System (ADS)

    Poklonski, N. A.; Vyrko, S. A.; Poklonskaya, O. N.; Kovalev, A. I.; Zabrodskii, A. G.

    2016-06-01

    A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator-metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atoms with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature Tj is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature Tj, the concentration of "free" holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3Tj/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to Tj hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (-1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the range from 3 × 1017 to 3 × 1020 cm-3, i.e., up to the Mott transition. The model uses no fitting parameters.

  19. Stochastic approaches for time series forecasting of boron: a case study of Western Turkey.

    PubMed

    Durdu, Omer Faruk

    2010-10-01

    In the present study, a seasonal and non-seasonal prediction of boron concentrations time series data for the period of 1996-2004 from Büyük Menderes river in western Turkey are addressed by means of linear stochastic models. The methodology presented here is to develop adequate linear stochastic models known as autoregressive integrated moving average (ARIMA) and multiplicative seasonal autoregressive integrated moving average (SARIMA) to predict boron content in the Büyük Menderes catchment. Initially, the Box-Whisker plots and Kendall's tau test are used to identify the trends during the study period. The measurements locations do not show significant overall trend in boron concentrations, though marginal increasing and decreasing trends are observed for certain periods at some locations. ARIMA modeling approach involves the following three steps: model identification, parameter estimation, and diagnostic checking. In the model identification step, considering the autocorrelation function (ACF) and partial autocorrelation function (PACF) results of boron data series, different ARIMA models are identified. The model gives the minimum Akaike information criterion (AIC) is selected as the best-fit model. The parameter estimation step indicates that the estimated model parameters are significantly different from zero. The diagnostic check step is applied to the residuals of the selected ARIMA models and the results indicate that the residuals are independent, normally distributed, and homoscadastic. For the model validation purposes, the predicted results using the best ARIMA models are compared to the observed data. The predicted data show reasonably good agreement with the actual data. The comparison of the mean and variance of 3-year (2002-2004) observed data vs predicted data from the selected best models show that the boron model from ARIMA modeling approaches could be used in a safe manner since the predicted values from these models preserve the basic statistics of observed data in terms of mean. The ARIMA modeling approach is recommended for predicting boron concentration series of a river.

  20. Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma.

    PubMed

    Yeh, Chun-Nan; Chang, Chi-Wei; Chung, Yi-Hsiu; Tien, Shi-Wei; Chen, Yong-Ren; Chen, Tsung-Wen; Huang, Ying-Cheng; Wang, Hsin-Ell; Chou, You-Cheng; Chen, Ming-Huang; Chiang, Kun-Chun; Huang, Wen-Sheng; Yu, Chung-Shan

    2017-09-30

    Boron neutron capture therapy (BNCT) is a binary therapy that employs neutron irradiation on the boron agents to release high-energy helium and alpha particles to kill cancer cells. An optimal response to BNCT depends critically on the time point of maximal 10 B accumulation and highest tumor to normal ratio (T/N) for performing the neutron irradiation. The aggressive cholangiocarcinoma (CCA) representing a liver cancer that overexpresses COX-2 enzyme is aimed to be targeted by COX-2 selective boron carrier, fenbufen boronopinacol (FBPin). Two main works were performed including: 1) chemical synthesis of FBPin as the boron carrier and 2) radiochemical labeling with F-18 to provide the radiofluoro congener, m-[ 18 F]fluorofenbufen ester boronopinacol (m-[ 18 F]FFBPin), to assess the binding affinity, cellular accumulation level and distribution profile in CCA rats. FBPin was prepared from bromofenbufen via 3 steps with 82% yield. The binding assay employed [ 18 F]FFBPin to compete FBPin for binding to COX-1 (IC 50 =0.91±0.68μM) and COX-2 (IC 50 =0.33±0.24μM). [ 18 F]FFBPin-derived 60-min dynamic PET scans predict the 10 B-accumulation of 0.8-1.2ppm in liver and 1.2-1.8ppm in tumor and tumor to normal ratio=1.38±0.12. BNCT was performed 40-55min post intravenous administration of FBPin (20-30mg) in the CCA rats. CCA rats treated with BNCT display more tumor reduction than that by NCT with respect of 2-[ 18 F]fluoro-2-deoxy glucose uptake in the tumor region of interest, 20.83±3.00% (n=12) vs. 12.83±3.79% (n=10), P=0.05. The visualizing agent [ 18 F]FFBPin resembles FBPin to generate the time-dependent boron concentration profile. Optimal neutron irradiation period is thus determinable for BNCT. A boron-substituted agent based on COX-2-binding features has been prepared. The moderate COX-2/COX-1 selectivity index of 2.78 allows a fair tumor selectivity index of 1.38 with a mild cardiovascular effect. The therapeutic effect from FBPin with BNCT warrants a proper COX-2 targeting of boron NSAIDs. Copyright © 2017. Published by Elsevier B.V.

  1. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models

    DOE PAGES

    Maitz, Charles A.; Khan, Aslam A.; Kueffer, Peter J.; ...

    2017-08-01

    Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. We implanted mice with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH 3(CH 2) 15–7,8-C 2B 9H 11] in the lipid bilayer and encapsulated Na 3[1-(2`-B 10H 9)-2-NH 3B 10H 8] within the liposomal core. Mice were irradiated 30 hours after the second injection inmore » a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. In spite of relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.« less

  2. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitz, Charles A.; Khan, Aslam A.; Kueffer, Peter J.

    Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. We implanted mice with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH 3(CH 2) 15–7,8-C 2B 9H 11] in the lipid bilayer and encapsulated Na 3[1-(2`-B 10H 9)-2-NH 3B 10H 8] within the liposomal core. Mice were irradiated 30 hours after the second injection inmore » a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. In spite of relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.« less

  3. Effect of occupational safety measures on micronucleus frequency in semiconductor workers.

    PubMed

    Winker, Robert; Roos, Gerhard; Pilger, Alexander; Rüdiger, Hugo W

    2008-02-01

    To examine whether semiconductor workers exposed to complex mixtures of chemical waste show an increase in genotoxic effects, and, if so, whether occupational safety measures protect these workers. To assess chemical exposure in the workplace, air monitoring of boron trifluoride and boron trichloride was performed and urinary concentrations of fluoride were measured. The cytokinesis-block micronucleus test on isolated lymphocytes was used for the detection of genotoxic effects. Two series of monitoring have been performed in order to assess the effect of implemented protection measures. We found a significantly higher mean frequency of micronuclei in exposed workers than in controls, whereas air monitoring and measurement of urinary fluoride failed to detect chemical exposure of these workers. Twelve years after implementation of protective measures, the mean level of micronuclei in exposed individuals was found to be as low as those from controls. These findings indicate that exposed workers in the semiconductor industry may have an increased risk of genotoxic effects from complex mixtures of chemical waste products. The decline of the mean level of micronuclei in exposed workers down to the base level of controls after implementation of protective measures points to the significance of adequate safety standards to protect against chromosomal damage in semiconductor personnel.

  4. Complex shaped boron carbides from negative additive manufacturing

    DOE PAGES

    Lu, Ryan; Chandrasekaran, Swetha; Du Frane, Wyatt L.; ...

    2018-03-13

    In this paper, complex shaped boron carbide with carbon (B 4C/C) at near-full densities were achieved for the first time using negative additive manufacturing techniques via gelcasting. Negative additive manufacturing involves 3D printing of sacrificial molds used for casting negative copies. B 4C powder distributions and rheology of suspensions were optimized to successfully cast complex shapes. In addition to demonstrating scalability of these complex geometries, hierarchically meso-porous structures were also shown to be possible from this technique. Resorcinol-Formaldehyde (RF) polymer was selected as the gelling agent and can also pyrolyze into a carbon aerogel network to act as the sinteringmore » aid for B 4C. Finally, due to the highly effective distribution of in situ carbon for the B 4C matrix, near-full sintered density of 97–98% of theoretical maximum density was achieved.« less

  5. Complex shaped boron carbides from negative additive manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ryan; Chandrasekaran, Swetha; Du Frane, Wyatt L.

    In this paper, complex shaped boron carbide with carbon (B 4C/C) at near-full densities were achieved for the first time using negative additive manufacturing techniques via gelcasting. Negative additive manufacturing involves 3D printing of sacrificial molds used for casting negative copies. B 4C powder distributions and rheology of suspensions were optimized to successfully cast complex shapes. In addition to demonstrating scalability of these complex geometries, hierarchically meso-porous structures were also shown to be possible from this technique. Resorcinol-Formaldehyde (RF) polymer was selected as the gelling agent and can also pyrolyze into a carbon aerogel network to act as the sinteringmore » aid for B 4C. Finally, due to the highly effective distribution of in situ carbon for the B 4C matrix, near-full sintered density of 97–98% of theoretical maximum density was achieved.« less

  6. Imaging in living cells using νB-H Raman spectroscopy: monitoring COSAN uptake.

    PubMed

    Tarrés, Màrius; Canetta, Elisabetta; Viñas, Clara; Teixidor, Francesc; Harwood, Adrian J

    2014-03-28

    The boron-rich cobaltabisdicarbollide (COSAN) and its 8,8'-I2 derivative (I2-COSAN), both of purely inorganic nature, are shown to accumulate within living cells, where they can be detected using νB-H Raman microspectroscopy. This demonstrates an alternative method for cell labelling and detection.

  7. Monitoring the evolution of boron doped porous diamond electrode on flexible retinal implant by OCT and in vivo impedance spectroscopy.

    PubMed

    Hébert, Clément; Cottance, Myline; Degardin, Julie; Scorsone, Emmanuel; Rousseau, Lionel; Lissorgues, Gaelle; Bergonzo, Philippe; Picaud, Serge

    2016-12-01

    Nanocrystalline Boron doped Diamond proved to be a very attractive material for neural interfacing, especially with the retina, where reduce glia growth is observed with respect to other materials, thus facilitating neuro-stimulation over long terms. In the present study, we integrated diamond microelectrodes on a polyimide substrate and investigated their performances for the development of neural prosthesis. A full description of the microfabrication of the implants is provided and their functionalities are assessed using cyclic voltammetry and electrochemical impedance spectroscopy. A porous structure of the electrode surface was thus revealed and showed promising properties for neural recording or stimulation. Using the flexible implant, we showed that is possible to follow in vivo the evolution of the electric contact between the diamond electrodes and the retina over 4months by using electrochemical impedance spectroscopy. The position of the implant was also monitored by optical coherence tomography to corroborate the information given by the impedance measurements. The results suggest that diamond microelectrodes are very good candidates for retinal prosthesis. Copyright © 2016. Published by Elsevier B.V.

  8. Salt stress aggravates boron toxicity symptoms in banana leaves by impairing guttation.

    PubMed

    Shapira, O R; Israeli, Yair; Shani, Uri; Schwartz, Amnon

    2013-02-01

    Boron (B) is known to accumulate in the leaf margins of different plant species, arguably a passive consequence of enhanced transpiration at the ends of the vascular system. However, transpiration rate is not the only factor affecting ion distribution. We examine an alternative hypothesis, suggesting the participation of the leaf bundle sheath in controlling radial water and solute transport from the xylem to the mesophyll in analogy to the root endodermis. In banana, excess B that remains confined to the vascular system is effectively disposed of via dissolution in the guttation fluid; therefore, impairing guttation should aggravate B damage to the leaf margins. Banana plants were subjected to increasing B concentrations. Guttation rates were manipulated by imposing a moderate osmotic stress. Guttation fluid was collected and analysed continuously. The distribution of ions across the lamina was determined. Impairing guttation indeed led to increased B damage to the leaf margins. The kinetics of ion concentration in guttation samples revealed major differences between ion species, corresponding to their distribution in the lamina dry matter. We provide evidence that the distribution pattern of B and other ions across banana leaves depends on active filtration of the transpiration stream and on guttation. © 2012 Blackwell Publishing Ltd.

  9. In-phantom two-dimensional thermal neutron distribution for intraoperative boron neutron capture therapy of brain tumours

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Matsumura, A.; Yamamoto, K.; Kumada, H.; Shibata, Y.; Nose, T.

    2002-07-01

    The aim of this study was to determine the in-phantom thermal neutron distribution derived from neutron beams for intraoperative boron neutron capture therapy (IOBNCT). Gold activation wires arranged in a cylindrical water phantom with (void-in-phantom) or without (standard phantom) a cylinder styrene form placed inside were irradiated by using the epithermal beam (ENB) and the mixed thermal-epithermal beam (TNB-1) at the Japan Research Reactor No 4. With ENB, we observed a flattened distribution of thermal neutron flux and a significantly enhanced thermal flux delivery at a depth compared with the results of using TNB-1. The thermal neutron distribution derived from both the ENB and TNB-1 was significantly improved in the void-in-phantom, and a double high dose area was formed lateral to the void. The flattened distribution in the circumference of the void was observed with the combination of ENB and the void-in-phantom. The measurement data suggest that the ENB may provide a clinical advantage in the form of an enhanced and flattened dose delivery to the marginal tissue of a post-operative cavity in which a residual and/or microscopically infiltrating tumour often occurs. The combination of the epithermal neutron beam and IOBNCT will improve the clinical results of BNCT for brain tumours.

  10. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1997-09-23

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition. 6 figs.

  11. Boron containing multilayer coatings and method of fabrication

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1997-01-01

    Hard coatings are fabricated from multilayer boron/boron carbide, boron carbide/cubic boron nitride, and boron/boron nitride/boron carbide, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron and boron carbide used in forming the multilayers are formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/boron carbide, and boron carbide/cubic boron nitride is produced by depositing alternate layers of boron, cubic boron nitride or boron carbide, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be of a discrete or a blended or graded composition.

  12. Effects of effluents from a coal-fired, electric-generating powerplant on local ground water near Hayden, Colorado

    USGS Publications Warehouse

    Ellis, S.R.; Mann, P.G.

    1981-01-01

    Data were collected at the Hayden, Colo., powerplant for about a year during 1978-79 to monitor the effects of effluent and raw-water storage ponds on the local ground water, Sage Creek, and the Yampa River. The concentration of boron in wells downgradient from the effluent ponds indicated that the ponds were leaking, increasing the average boron concentrations in the ground water to a level in excess of the standards for agricultural use of water. Water from seeps, probably the best indicators of downgradient water quality, had average concentrations of boron two times that of the Colorado Department of Health (1977) standard for agricultural use of water. Chemical analyses of water from wells and the discharge weir downgradient from the raw-water storage ponds indicated these ponds are leaking. The effect of this leakage is that the water in wells downgradient from these ponds has a lower specific conductance and a lower boron concentration than the water in wells downgradient from the effluent ponds. The concentration of trace elements in the water from the wells and the discharge weir generally declined during the study, probably because the ground water was recovering from the effects of a plume from the raw-water pond previously used for fly-ash disposal. The effluents from the Hayden powerplant lowered the specific conductance and the iron and manganese concentrations, increased the concentration of boron, and had little or no effect on the selenium concentration in Sage Creek. Sage Creek had no discernible effect on the Yampa River because the volume of water in the Yampa River was so much greater. The effluents from the powerplant also had no discernible effect on the Yampa River. (USGS)

  13. Analysis of a boron-carbide-drum-controlled critical reactor experiment

    NASA Technical Reports Server (NTRS)

    Mayo, W. T.

    1972-01-01

    In order to validate methods and cross sections used in the neutronic design of compact fast-spectrum reactors for generating electric power in space, an analysis of a boron-carbide-drum-controlled critical reactor was made. For this reactor the transport analysis gave generally satisfactory results. The calculated multiplication factor for the most detailed calculation was only 0.7-percent Delta k too high. Calculated reactivity worth of the control drums was $11.61 compared to measurements of $11.58 by the inverse kinetics methods and $11.98 by the inverse counting method. Calculated radial and axial power distributions were in good agreement with experiment.

  14. Methods of forming boron nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trowbridge, Tammy L; Wertsching, Alan K; Pinhero, Patrick J

    A method of forming a boron nitride. The method comprises contacting a metal article with a monomeric boron-nitrogen compound and converting the monomeric boron-nitrogen compound to a boron nitride. The boron nitride is formed on the same or a different metal article. The monomeric boron-nitrogen compound is borazine, cycloborazane, trimethylcycloborazane, polyborazylene, B-vinylborazine, poly(B-vinylborazine), or combinations thereof. The monomeric boron-nitrogen compound is polymerized to form the boron nitride by exposure to a temperature greater than approximately 100.degree. C. The boron nitride is amorphous boron nitride, hexagonal boron nitride, rhombohedral boron nitride, turbostratic boron nitride, wurzite boron nitride, combinations thereof, or boronmore » nitride and carbon. A method of conditioning a ballistic weapon and a metal article coated with the monomeric boron-nitrogen compound are also disclosed.« less

  15. Trace metals in corals--hind casting environmental chemical changes in the tropical Atlantic waters

    NASA Astrophysics Data System (ADS)

    Holmes, C. W.; Koenig, A.; Ridley, W. I.; Wilson, S. A.

    2002-12-01

    As corals grow, they secrete a calcareous skeleton with the aid of photosynthetic activity of endosymbiotic dinoflagellates (zooxanthellae). The rate of this secretion varies inter-annually. Entrapped with the carbonate are trace substances that record the chemistry of the surrounding ocean. Detailing changes in chemistry requires careful and very tedious high-resolution sampling. The advent of laser ablation inductive couple plasma/mass spectroscopy (LA-ICP/MS) circumvents this sampling problem. This method also permits a continuous scan of the entire coral skeleton. Another problem has been the lack of a carbonate standard which appears to be resolved with the creation of an artificial carbonate standard (USGS MAC-1). This standard is presently undergoing rigorous analysis, but preliminary results are very positive. The LA-ICP/MS data of three Atlantic corals reveals an intriguing distribution of trace metals and boron that may be related to climatic driven chemical changes during the last hundred years. The distribution of the trace metals appears to have an association with three climate signals: 1. the strength of the North Atlantic Oscillation (NAO), 2. the local effects of El Nino in the Florida region and 3. change in oceanic chemistry, possibly due to rising CO2. Aluminum and titanium levels vary with the strength of the NAO. The highest concentrations occur at the time of strong positive NOA when there is large amount of sediment transported off the deserts of North Africa. This relationship is particularly strong in the coral from the Cape Verde Islands. Along the eastern seaboard of the Atlantic, the relationship is not as pronounced but still observable. Nutrients and anthropogenic trace metals, such as zinc, lead, and mercury appear to correlate with local conditions and show a weak correspondence to the El Nino as it affects south Florida. Boron variation is directly related to the high-density bands of the corals. The long-term record of boron concentrations in a coral collected at Looe Key shows an increase of approximately 25 percent from 1885 to a peak in the early 1970s. From the peak until 1983, the time of collection, boron decreases about 15 percent. Boron in the twenty-year record in the Cape Verde coral shows a similar decrease. Hemming and others (1986) found that the boron concentration and the heavy isotope of carbon, 13C are concentrated in the annual high-density bands. They proposed that this phenomenon is the result of the physiological processes leading to the precipitation of the carbonate structure. Assuming that the zooanthellae are driving the photosynthetic processes, the explanation of high boron and associated high δ13C is the result of increased primary productivity. As a result, 12C is preferentially utilized within the cell leaving the extracelluar fluids in the region between the basal ectoderm and exoskeleton enriched in 13C. In addition, this increased activity increases HCO3^{-} leading to the higher pH in these fluids. This increase in pH, favors an increase in the reactive species, B(OH)_{4}$-which leads to increased boron precipitation within the carbonate structure. If this model is correct, our data suggest that increases in boron reflect increases in photosynthesis from the 1800s till about 1970, then have slightly decreased.

  16. From coherent quasi-irreversible quantum dynamics towards the second law of thermodynamics: The model boron rotor B13+

    NASA Astrophysics Data System (ADS)

    Jia, Dongming; Manz, Jörn; Yang, Yonggang

    2018-04-01

    The planar boron cluster B13+ provides a model to investigate the microscopic origin of the second law of thermodynamics in a small system. It is a molecular rotor with an inner wheel that rotates in an outer bearing. The cyclic reaction path of B13+ passes along thirty equivalent global minimum structures (GMi, i = 1, 2, ..., 30). The GMs are embedded in a cyclic thirty-well potential. They are separated by thirty equivalent transition states with potential barrier Vb. If the boron rotor B13+ is prepared initially in one of the thirty GMs, with energy below Vb, then it tunnels sequentially to its nearest, next-nearest etc. neighbors (520 fs per step) such that all the other GMs get populated. As a consequence, the entropy of occupying the GMs takes about 6 ps to increases from zero to a value close to the maximum value for equi-distribution. Perfect recurrences are practically not observable.

  17. Boron-rich plasma by high power impulse magnetron sputtering of lanthanum hexaboride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oks, Efim M.; Anders, Andre

    2012-10-15

    Boron-rich plasmas have been obtained using a LaB{sub 6} target in a high power impulse sputtering (HiPIMS) system. The presence of {sup 10}B{sup +}, {sup 11}B{sup +}, Ar{sup 2+}, Ar{sup +}, La{sup 2+}, and La{sup +} and traces of La{sup 3+}, {sup 12}C{sup +}, {sup 14}N{sup +}, and {sup 16}O{sup +} have been detected using an integrated mass and energy spectrometer. Peak currents as low as 20 A were sufficient to obtain plasma dominated by {sup 11}B{sup +} from a 5 cm planar magnetron. The ion energy distribution function for boron exhibits an energetic tail extending over several 10 eV,more » while argon shows a pronounced peak at low energy (some eV). This is in agreement with models that consider sputtering (B, La) and gas supply (from background and 'recycling'). Strong voltage oscillations develop at high current, greatly affecting power dissipation and plasma properties.« less

  18. Application of neutron capture autoradiography to Boron Delivery seeking techniques for selective accumulation of boron compounds to tumor with intra-arterial administration of boron entrapped water-in-oil-in-water emulsion

    NASA Astrophysics Data System (ADS)

    Mikado, S.; Yanagie, H.; Yasuda, N.; Higashi, S.; Ikushima, I.; Mizumachi, R.; Murata, Y.; Morishita, Y.; Nishimura, R.; Shinohara, A.; Ogura, K.; Sugiyama, H.; Iikura, H.; Ando, H.; Ishimoto, M.; Takamoto, S.; Eriguchi, M.; Takahashi, H.; Kimura, M.

    2009-06-01

    It is necessary to accumulate the 10B atoms selectively to the tumor cells for effective Boron Neutron Capture Therapy (BNCT). In order to achieve an accurate measurement of 10B accumulations in the biological samples, we employed a technique of neutron capture autoradiography (NCAR) of sliced samples of tumor tissues using CR-39 plastic track detectors. The CR-39 track detectors attached with the biological samples were exposed to thermal neutrons in the thermal column of the JRR3 of Japan Atomic Energy Agency (JAEA). We obtained quantitative NCAR images of the samples for VX-2 tumor in rabbit liver after injection of 10BSH entrapped water-in-oil-in-water (WOW) emulsion by intra-arterial injection via proper hepatic artery. The 10B accumulations and distributions in VX-2 tumor and normal liver of rabbit were investigated by means of alpha-track density measurements. In this study, we showed the selective accumulation of 10B atoms in the VX-2 tumor by intra-arterial injection of 10B entrapped WOW emulsion until 3 days after injection by using digitized NCAR images (i.e. alpha-track mapping).

  19. Boron nitride nanotubes for gene silencing.

    PubMed

    Şen, Özlem; Çobandede, Zehra; Emanet, Melis; Bayrak, Ömer Faruk; Çulha, Mustafa

    2017-09-01

    Non-viral gene delivery is increasingly investigated as an alternative to viral vectors due to low toxicity and immunogenicity, easy preparation, tissue specificity, and ability to transfer larger sizes of genes. In this study, boron nitride nanotubes (BNNTs) are functionalized with oligonucleotides (oligo-BNNTs). The morpholinos complementary to the oligonucleotides attached to the BNNTs (morpholino/oligo-BNNTs) are hybridized to silence the luciferase gene. The morpholino/oligo-BNNTs conjugates are administered to luciferase-expressing cells (MDA-MB-231-luc2) and the luciferase activity is monitored. The luciferase activity is decreased when MDA-MB-231-luc2 cells were treated with morpholino/oligo-BNNTs. The study suggests that BNNTs can be used as a potential vector to transfect cells. BNNTs are potential new nanocarriers for gene delivery applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Boron-doped diamond microdisc arrays: electrochemical characterisation and their use as a substrate for the production of microelectrode arrays of diverse metals (Ag, Au, Cu)via electrodeposition.

    PubMed

    Simm, Andrew O; Banks, Craig E; Ward-Jones, Sarah; Davies, Trevor J; Lawrence, Nathan S; Jones, Timothy G J; Jiang, Li; Compton, Richard G

    2005-09-01

    A novel boron-doped diamond (BDD) microelectrode array is characterised with electrochemical and atomic force microscopic techniques. The array consists of 40 micron-diameter sized BDD discs which are separated by 250 microns from their nearest neighbour in a hexagonal arrangement. The conducting discs can be electroplated to produce arrays of copper, silver or gold for analytical purposes in addition to operating as an array of BDD-microelectrodes. Proof-of-concept is shown for four separate examples; a gold plated array for arsenic detection, a copper plated array for nitrate analysis, a silver plated array for hydrogen peroxide monitoring and last, cathodic stripping voltammetry for lead at the bare BDD-array.

  1. Arsenic, Boron, and Fluoride Concentrations in Ground Water in and Near Diabase Intrusions, Newark Basin, Southeastern Pennsylvania

    USGS Publications Warehouse

    Senior, Lisa A.; Sloto, Ronald A.

    2006-01-01

    During an investigation in 2000 by the U.S. Environmental Protection Agency (USEPA) of possible contaminant releases from an industrial facility on Congo Road near Gilbertsville in Berks and Montgomery Counties, southeastern Pennsylvania, concentrations of arsenic and fluoride above USEPA drinking-water standards of 10 ?g/L and 4 mg/L, respectively, and of boron above the USEPA health advisory level of 600 ?g/L were measured in ground water in an area along the northwestern edge of the Newark Basin. In 2003, the USEPA requested technical assistance from the U.S. Geological Survey (USGS) to help identify sources of arsenic, boron, and fluoride in the ground water in the Congo Road area, which included possible anthropogenic releases and naturally occurring mineralization in the local bedrock aquifer, and to identify other areas in the Newark Basin of southeastern Pennsylvania with similarly elevated concentrations of these constituents. The USGS reviewed available data and collected additional ground-water samples in the Congo Road area and four similar hydrogeologic settings. The Newark Basin is the largest of the 13 major exposed Mesozoic rift basins that stretch from Nova Scotia to South Carolina. Rocks in the Newark Basin include Triassic through Jurassic-age sedimentary sequences of sandstones and shales that were intruded by diabase. Mineral deposits of hydrothermal origin are associated with alteration zones bordering intrusions of diabase and also occur as strata-bound replacement deposits of copper and zinc in sedimentary rocks. The USGS review of data available in 2003 showed that water from about 10 percent of wells throughout the Newark Basin of southeastern Pennsylvania had concentrations of arsenic greater than the USEPA maximum contaminant level (MCL) of 10 ?g/L; the highest reported arsenic concentration was at about 70 ?g/L. Few data on boron were available, and the highest reported boron concentration in well-water samples was 60 ?g/L in contrast to concentrations over 5,000 ?g/L in the Congo Road area. Although concentrations of fluoride up to 4 mg/L were reported for a few well-water samples collected throughout the Newark Basin, about 90 percent of the samples had concentrations of 0.5 mg/L or less. The USGS sampled 58 wells primarily in 5 areas in the Newark Basin, southeastern Pennsylvania, from February 2004 through April 2005 to identify other possible areas of elevated arsenic, boron, and fluoride and to characterize the geochemical environment associated with elevated concentrations of these constituents. Sampled wells included 12 monitor wells at an industrial facility near Congo Road, 45 private-supply wells in Berks, Montgomery, and Bucks Counties, and 1 private-supply well near Dillsburg, York County, an area where elevated fluoride in ground water had been reported in the adjacent Gettysburg Basin. Wells were sampled in transects from the diabase through the adjacent hornfels and into the unaltered shales of the Brunswick Group. Field measurements were made of pH, temperature, dissolved oxygen concentration, and specific conductance. Samples were analyzed in the laboratory for major ions, nutrients, total organic carbon, dissolved and total concentrations of selected trace elements, and boron isotopic composition. Generally, the ground water from the 46 private-supply wells had relatively neutral to alkaline pH (ranging from 6.1 to 9.1) and moderate concentrations of dissolved oxygen. Most water samples were of the calcium-bicarbonate type. Concentrations of arsenic up to 60 ?g/L, boron up to 3,950 ?g/L, and fluoride up to 0.70 mg/L were measured. Drinking-water standards or health advisories (for constituents that do not have standards established) were exceeded most frequently (about 20 percent of samples) for arsenic and boron and less frequently (6 percent or less of samples) for total iron, manganese, sulfate, nitrate, lead, molybdenum, and strontium. In water from 12 monitor

  2. Crystalline boron nitride aerogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.

    This disclosure provides methods and materials related to boron nitride aerogels. For example, one aspect relates to a method for making an aerogel comprising boron nitride, comprising: (a) providing boron oxide and an aerogel comprising carbon; (b) heating the boron oxide to melt the boron oxide and heating the aerogel; (c) mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide; and (d) converting at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride. Another aspect relates to a method for making an aerogel comprising boron nitride, comprising heating boron oxidemore » and an aerogel comprising carbon under flow of a nitrogen-containing gas, wherein boron oxide vapor and the nitrogen-containing gas convert at least a portion of the carbon to boron nitride to obtain the aerogel comprising boron nitride.« less

  3. Credit BG. Interior view of Building 4316, showing internal construction ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Interior view of Building 4316, showing internal construction of water reservoir, roof, and monitor. View looks southeast (142°). The pipe which hangs from the roof structure and turns downward under the monitor supplies water to the reservoir; the plate suspended on chains beneath the pipe end deflects water stream so it does not erode the bottom of the reservoir. The intake pipe for the pumps is not visible in this view - Edwards Air Force Base, North Base, Deluge Water Storage Building, Near Second & D Streets, Boron, Kern County, CA

  4. Ionization equilibrium at the transition from valence-band to acceptor-band migration of holes in boron-doped diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poklonski, N. A., E-mail: poklonski@bsu.by; Vyrko, S. A.; Poklonskaya, O. N.

    A quasi-classical model of ionization equilibrium in the p-type diamond between hydrogen-like acceptors (boron atoms which substitute carbon atoms in the crystal lattice) and holes in the valence band (v-band) is proposed. The model is applicable on the insulator side of the insulator–metal concentration phase transition (Mott transition) in p-Dia:B crystals. The densities of the spatial distributions of impurity atoms (acceptors and donors) and of holes in the crystal are considered to be Poissonian, and the fluctuations of their electrostatic potential energy are considered to be Gaussian. The model accounts for the decrease in thermal ionization energy of boron atomsmore » with increasing concentration, as well as for electrostatic fluctuations due to the Coulomb interaction limited to two nearest point charges (impurity ions and holes). The mobility edge of holes in the v-band is assumed to be equal to the sum of the threshold energy for diffusion percolation and the exchange energy of the holes. On the basis of the virial theorem, the temperature T{sub j} is determined, in the vicinity of which the dc band-like conductivity of holes in the v-band is approximately equal to the hopping conductivity of holes via the boron atoms. For compensation ratio (hydrogen-like donor to acceptor concentration ratio) K ≈ 0.15 and temperature T{sub j}, the concentration of “free” holes in the v-band and their jumping (turbulent) drift mobility are calculated. Dependence of the differential energy of thermal ionization of boron atoms (at the temperature 3T{sub j}/2) as a function of their concentration N is calculated. The estimates of the extrapolated into the temperature region close to T{sub j} hopping drift mobility of holes hopping from the boron atoms in the charge states (0) to the boron atoms in the charge states (−1) are given. Calculations based on the model show good agreement with electrical conductivity and Hall effect measurements for p-type diamond with boron atom concentrations in the range from 3 × 10{sup 17} to 3 × 10{sup 20 }cm{sup −3}, i.e., up to the Mott transition. The model uses no fitting parameters.« less

  5. Structure and reactivity of boron-ate complexes derived from primary and secondary boronic esters.

    PubMed

    Feeney, Kathryn; Berionni, Guillaume; Mayr, Herbert; Aggarwal, Varinder K

    2015-06-05

    Boron-ate complexes derived from primary and secondary boronic esters and aryllithiums have been isolated, and the kinetics of their reactions with carbenium ions studied. The second-order rate constants have been used to derive nucleophilicity parameters for the boron-ate complexes, revealing that nucleophilicity increased with (i) electron-donating aromatics on boron, (ii) neopentyl glycol over pinacol boronic esters, and (iii) 12-crown-4 ether.

  6. Practical salinity management for leachate irrigation to poplar trees.

    PubMed

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a fifteen year record of monitoring and operational data are presented that can be used by others in managing irrigation of saline water to poplar trees. When salinity is carefully managed, tree systems can help to provide sustainable leachate management solutions for landfills.

  7. Monte Carlo calculations of lung dose in ORNL phantom for boron neutron capture therapy.

    PubMed

    Krstic, D; Markovic, V M; Jovanovic, Z; Milenkovic, B; Nikezic, D; Atanackovic, J

    2014-10-01

    Monte Carlo simulations were performed to evaluate dose for possible treatment of cancers by boron neutron capture therapy (BNCT). The computational model of male Oak Ridge National Laboratory (ORNL) phantom was used to simulate tumours in the lung. Calculations have been performed by means of the MCNP5/X code. In this simulation, two opposite neutron beams were considered, in order to obtain uniform neutron flux distribution inside the lung. The obtained results indicate that the lung cancer could be treated by BNCT under the assumptions of calculations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Boric acid inhibits human prostate cancer cell proliferation.

    PubMed

    Barranco, Wade T; Eckhert, Curtis D

    2004-12-08

    The role of boron in biology includes coordinated regulation of gene expression in mixed bacterial populations and the growth and proliferation of higher plants and lower animals. Here we report that boric acid, the dominant form of boron in plasma, inhibits the proliferation of prostate cancer cell lines, DU-145 and LNCaP, in a dose-dependent manner. Non-tumorigenic prostate cell lines, PWR-1E and RWPE-1, and the cancer line PC-3 were also inhibited, but required concentrations higher than observed human blood levels. Studies using DU-145 cells showed that boric acid induced a cell death-independent proliferative inhibition, with little effect on cell cycle stage distribution and mitochondrial function.

  9. JAGUAR Procedures for Detonation Behavior of Explosives Containing Boron

    NASA Astrophysics Data System (ADS)

    Stiel, Leonard; Baker, Ernest; Capellos, Christos

    2009-06-01

    The JAGUAR product library was expanded to include boron and boron containing products. Relationships of the Murnaghan form for molar volumes and derived properties were implemented in JAGUAR. Available Hugoniot and static volumertic data were analyzed to obtain constants of the Murnaghan relationship for solid boron, boron oxide, boron nitride, boron carbide, and boric acid. Experimental melting points were also utilized with optimization procedures to obtain the constants of the volumetric relationships for liquid boron and boron oxide. Detonation velocities for HMX - boron mixtures calculated with these relationships using JAGUAR are in closer agreement with literature values at high initial densities for inert (unreacted) boron than with the completely reacted metal. These results indicate that boron mixtures may exhibit eigenvalue detonation behavior, as observed by aluminized combined effects explosives, with higher detonation velocities than would be achieved by a classical Chapman-Jouguet detonation. Analyses of calorimetric measurements for RDX - boron mixtures indicate that at high boron contents the formation of side products, including boron nitride and boron carbide, inhibits the energy output obtained from the detonation of the formulation.

  10. Temperature Dependence of Wavelength Selectable Zero-Phonon Emission from Single Defects in Hexagonal Boron Nitride.

    PubMed

    Jungwirth, Nicholas R; Calderon, Brian; Ji, Yanxin; Spencer, Michael G; Flatté, Michael E; Fuchs, Gregory D

    2016-10-12

    We investigate the distribution and temperature-dependent optical properties of sharp, zero-phonon emission from defect-based single photon sources in multilayer hexagonal boron nitride (h-BN) flakes. We observe sharp emission lines from optically active defects distributed across an energy range that exceeds 500 meV. Spectrally resolved photon-correlation measurements verify single photon emission, even when multiple emission lines are simultaneously excited within the same h-BN flake. We also present a detailed study of the temperature-dependent line width, spectral energy shift, and intensity for two different zero-phonon lines centered at 575 and 682 nm, which reveals a nearly identical temperature dependence despite a large difference in transition energy. Our temperature-dependent results are well described by a lattice vibration model that considers piezoelectric coupling to in-plane phonons. Finally, polarization spectroscopy measurements suggest that whereas the 575 nm emission line is directly excited by 532 nm excitation, the 682 nm line is excited indirectly.

  11. Peculiar Features of Thermal Aging and Degradation of Rapidly Quenched Stainless Steels under High-Temperature Exposures

    NASA Astrophysics Data System (ADS)

    Shulga, A. V.

    2017-12-01

    This article presents the results of comparative studies of mechanical properties and microstructure of nuclear fuel tubes and semifinished stainless steel items fabricated by consolidation of rapidly quenched powders and by conventional technology after high-temperature exposures at 600 and 700°C. Tensile tests of nuclear fuel tube ring specimens of stainless austenitic steel of grade AISI 316 and ferritic-martensitic steel are performed at room temperature. The microstructure and distribution of carbon and boron are analyzed by metallography and autoradiography in nuclear fuel tubes and semifinished items. Rapidly quenched powders of the considered steels are obtained by the plasma rotating electrode process. Positive influence of consolidation of rapidly quenched powders on mechanical properties after high-temperature aging is confirmed. The correlation between homogeneous distribution of carbon and boron and mechanical properties of the considered steel is determined. The effects of thermal aging and degradation of the considered steels are determined at 600°C and 700°C, respectively.

  12. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, C.E.; Morrow, M.S.

    1993-10-12

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  13. Process for microwave sintering boron carbide

    DOEpatents

    Holcombe, Cressie E.; Morrow, Marvin S.

    1993-01-01

    A method of microwave sintering boron carbide comprises leaching boron carbide powder with an aqueous solution of nitric acid to form a leached boron carbide powder. The leached boron carbide powder is coated with a glassy carbon precursor to form a coated boron carbide powder. The coated boron carbide powder is consolidated in an enclosure of boron nitride particles coated with a layer of glassy carbon within a container for microwave heating to form an enclosed coated boron carbide powder. The enclosed coated boron carbide powder is sintered within the container for microwave heating with microwave energy.

  14. Use of Phenylboronic Acids to Investigate Boron Function in Plants. Possible Role of Boron in Transvacuolar Cytoplasmic Strands and Cell-to-Wall Adhesion

    PubMed Central

    Bassil, Elias; Hu, Hening; Brown, Patrick H.

    2004-01-01

    The only defined physiological role of boron in plants is as a cross-linking molecule involving reversible covalent bonds with cis-diols on either side of borate. Boronic acids, which form the same reversible bonds with cis-diols but cannot cross-link two molecules, were used to selectively disrupt boron function in plants. In cultured tobacco (Nicotiana tabacum cv BY-2) cells, addition of boronic acids caused the disruption of cytoplasmic strands and cell-to-cell wall detachment. The effect of the boronic acids could be relieved by the addition of boron-complexing sugars and was proportional to the boronic acid-binding strength of the sugar. Experiments with germinating petunia (Petunia hybrida) pollen and boronate-affinity chromatography showed that boronic acids and boron compete for the same binding sites. The boronic acids appear to specifically disrupt or prevent borate-dependent cross-links important for the structural integrity of the cell, including the organization of transvacuolar cytoplasmic strands. Boron likely plays a structural role in the plant cytoskeleton. We conclude that boronic acids can be used to rapidly and reversibly induce boron deficiency-like responses and therefore are useful tools for investigating boron function in plants. PMID:15466241

  15. Thermophoretically driven water droplets on graphene and boron nitride surfaces

    NASA Astrophysics Data System (ADS)

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P.

    2018-05-01

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  16. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1999-01-01

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition.

  17. Method of fabricating boron containing coatings

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1999-04-27

    Hard coatings are fabricated from boron nitride, cubic boron nitride, and multilayer boron/cubic boron nitride, and the fabrication thereof involves magnetron sputtering in a selected atmosphere. These hard coatings may be applied to tools and engine and other parts, as well to reduce wear on tribological surfaces and electronic devices. These boron coatings contain no morphological growth features. For example, the boron is formed in an inert (e.g. argon) atmosphere, while the cubic boron nitride is formed in a reactive (e.g. nitrogen) atmosphere. The multilayer boron/cubic boron nitride, is produced by depositing alternate layers of boron and cubic boron nitride, with the alternate layers having a thickness of 1 nanometer to 1 micrometer, and at least the interfaces of the layers may be discrete or of a blended or graded composition. 3 figs.

  18. Microdosimetric Modeling of Biological Effectiveness for Boron Neutron Capture Therapy Considering Intra- and Intercellular Heterogeneity in 10B Distribution.

    PubMed

    Sato, Tatsuhiko; Masunaga, Shin-Ichiro; Kumada, Hiroaki; Hamada, Nobuyuki

    2018-01-17

    We here propose a new model for estimating the biological effectiveness for boron neutron capture therapy (BNCT) considering intra- and intercellular heterogeneity in 10 B distribution. The new model was developed from our previously established stochastic microdosimetric kinetic model that determines the surviving fraction of cells irradiated with any radiations. In the model, the probability density of the absorbed doses in microscopic scales is the fundamental physical index for characterizing the radiation fields. A new computational method was established to determine the probability density for application to BNCT using the Particle and Heavy Ion Transport code System PHITS. The parameters used in the model were determined from the measured surviving fraction of tumor cells administrated with two kinds of 10 B compounds. The model quantitatively highlighted the indispensable need to consider the synergetic effect and the dose dependence of the biological effectiveness in the estimate of the therapeutic effect of BNCT. The model can predict the biological effectiveness of newly developed 10 B compounds based on their intra- and intercellular distributions, and thus, it can play important roles not only in treatment planning but also in drug discovery research for future BNCT.

  19. Boron nitride converted carbon fiber

    DOEpatents

    Rousseas, Michael; Mickelson, William; Zettl, Alexander K.

    2016-04-05

    This disclosure provides systems, methods, and apparatus related to boron nitride converted carbon fiber. In one aspect, a method may include the operations of providing boron oxide and carbon fiber, heating the boron oxide to melt the boron oxide and heating the carbon fiber, mixing a nitrogen-containing gas with boron oxide vapor from molten boron oxide, and converting at least a portion of the carbon fiber to boron nitride.

  20. Mechanism for amorphization of boron carbide B{sub 4}C under uniaxial compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aryal, Sitaram; Rulis, Paul; Ching, W. Y.

    2011-11-01

    Boron carbide undergoes an amorphization transition under high-velocity impacts, causing it to suffer a catastrophic loss in strength. The failure mechanism is not clear and this limits the ways to improve its resistance to impact. To help uncover the failure mechanism, we used ab initio methods to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B{sub 4}C), B{sub 11}C-CBC, and B{sub 12}-CCC, where B{sub 11}C or B{sub 12} is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms. Our results indicate that themore » B{sub 11}C-CBC (B{sub 12}-CCC) polytype becomes amorphous at a uniaxial strain s = 0.23 (0.22) and with a maximum stress of 168 (151) GPa. In both cases, the amorphous state is the consequence of structural collapse associated with the bending of the three-atom chain. Careful analysis of the structures after amorphization shows that the B{sub 11}C and B{sub 12} icosahedra are highly distorted but still identifiable. Calculations of the elastic coefficients (C{sub ij}) at different uniaxial strains indicate that both polytypes may collapse under a much smaller shear strain (stress) than the uniaxial strain (stress). On the other hand, separate simulations of both models under hydrostatic compression up to a pressure of 180 GPa show no signs of amorphization, in agreement with experimental observation. The amorphized nature of both models is confirmed by detailed analysis of the evolution of the radial pair distribution function, total density of states, and distribution of effective charges on atoms. The electronic structure and bonding of the boron carbide structures before and after amorphization are calculated to further elucidate the mechanism of amorphization and to help form the proper rationalization of experimental observations.« less

  1. A new and effective approach to boron removal by using novel boron-specific fungi isolated from boron mining wastewater.

    PubMed

    Taştan, Burcu Ertit; Çakir, Dilara Nur; Dönmez, Gönül

    2016-01-01

    Boron-resistant fungi were isolated from the wastewater of a boron mine in Turkey. Boron removal efficiencies of Penicillium crustosum and Rhodotorula mucilaginosa were detected in different media compositions. Minimal Salt Medium (MSM) and two different waste media containing molasses (WM-1) or whey + molasses (WM-2) were tested to make this process cost effective when scaled up. Both isolates achieved high boron removal yields at the highest boron concentrations tested in MSM and WM-1. The maximum boron removal yield by P. crustosum was 45.68% at 33.95 mg l(-1) initial boron concentration in MSM, and was 38.97% at 42.76 mg l(-1) boron for R. mucilaginosa, which seemed to offer an economically feasible method of removing boron from the effluents.

  2. All-Diamond Microelectrodes as Solid State Probes for Localized Electrochemical Sensing.

    PubMed

    Silva, Eduardo L; Gouvêa, Cristol P; Quevedo, Marcela C; Neto, Miguel A; Archanjo, Braulio S; Fernandes, António J S; Achete, Carlos A; Silva, Rui F; Zheludkevich, Mikhail L; Oliveira, Filipe J

    2015-07-07

    The fabrication of an all-diamond microprobe is demonstrated for the first time. This ME (microelectrode) assembly consists of an inner boron doped diamond (BDD) layer and an outer undoped diamond layer. Both layers were grown on a sharp tungsten tip by chemical vapor deposition (CVD) in a stepwise manner within a single deposition run. BDD is a material with proven potential as an electrochemical sensor. Undoped CVD diamond is an insulating material with superior chemical stability in comparison to conventional insulators. Focused ion beam (FIB) cutting of the apex of the ME was used to expose an electroactive BDD disk. By cyclic voltammetry, the redox reaction of ferrocenemethanol was shown to take place at the BDD microdisk surface. In order to ensure that the outer layer was nonelectrically conductive, a diffusion barrier for boron atoms was established seeking the formation of boron-hydrogen complexes at the interface between the doped and the undoped diamond layers. The applicability of the microelectrodes in localized corrosion was demonstrated by scanning amperometric measurements of oxygen distribution above an Al-Cu-CFRP (Carbon Fiber Reinforced Polymer) galvanic corrosion cell.

  3. Synergistic effects of Lewis bases and substituents on the electronic structure and reactivity of boryl radicals.

    PubMed

    Lu, Dongmei; Wu, Chao; Li, Pengfei

    2014-02-03

    Boryl radicals have the potential for the development of new molecular entities and for application in new radical reactions. However, the effects of the substituents and coordinating Lewis bases on the reactivity of boryl radicals are not fully understood. By using first-principles methods, we investigated the spin-density distribution and reactivity of a series of boryl radicals with various substituents and Lewis bases. The substituents, along with the Lewis bases, only affect the radical reactivity when an unpaired electron is in the boron pz orbital, that is, for three-coordinate radicals. We found evidence of synergistic effects between the substituents and the Lewis bases that can substantially broaden the tunability of the reactivity of the boryl radicals. Among Lewis bases, pyridine and imidazol-2-ylidene show a similar capacity for stabilization by delocalizing the spin density. Electron-donating substituents, such as nitrogen, more efficiently stabilize boryl radicals than oxygen and carbon atoms. The reactivity of a boryl radical is always boron based, irrespective of the spin density on boron. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality.

    PubMed

    Sergeeva, Alina P; Popov, Ivan A; Piazza, Zachary A; Li, Wei-Li; Romanescu, Constantin; Wang, Lai-Sheng; Boldyrev, Alexander I

    2014-04-15

    Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center-two-electron (2c-2e) σ bonds on the periphery and delocalized multicenter-two-electron (nc-2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron's electron deficiency and leads to fluxional behavior, which has been observed in B13(+) and B19(-). A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiation has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B(-), formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B(-)/C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors' laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.

  5. Direct current sputtering of boron from boron/boron mixtures

    DOEpatents

    Timberlake, J.R.; Manos, D.; Nartowitz, E.

    1994-12-13

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod. 2 figures.

  6. Recent developments with boron as a platform for novel drug design.

    PubMed

    Leśnikowski, Zbigniew J

    2016-06-01

    After decades of development, the medicinal chemistry of compounds that contain a single boron atom has matured to the present status of having equal rights with other branches of drug discovery, although it remains a relative newcomer. In contrast, the medicinal chemistry of boron clusters is less advanced, but it is expanding and may soon become a productive area of drug discovery. The author reviews the current developments of medicinal chemistry of boron and its applications in drug design. First generation boron drugs that bear a single boron atom and second generation boron drugs that utilize boron clusters as pharmacophores or modulators of bioactive molecules are discussed. The advantages and gaps in our current understanding of boron medicinal chemistry, with a special focus on boron clusters, are highlighted. Boron is not a panacea for every drug discovery problem, but there is a good chance that it will become a useful addition to the medicinal chemistry tool box. The present status of boron resembles the medicinal chemistry status of fluorine three decades ago; indeed, currently, approximately 20% of pharmaceuticals on the market contain fluorine. The fact that novel boron compounds, especially those based on abiotic polyhedral boron hydrides, are currently unfamiliar could be advantageous because organisms may be less prone to developing resistance against boron cluster-based drugs.

  7. Understanding Boron through Size-Selected Clusters: Structure, Chemical Bonding, and Fluxionality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergeeva, Alina P.; Popov, Ivan A.; Piazza, Zachary A.

    Conspectus Boron is an interesting element with unusual polymorphism. While three-dimensional (3D) structural motifs are prevalent in bulk boron, atomic boron clusters are found to have planar or quasi-planar structures, stabilized by localized two-center–two-electron (2c–2e) σ bonds on the periphery and delocalized multicenter–two-electron (nc–2e) bonds in both σ and π frameworks. Electron delocalization is a result of boron’s electron deficiency and leads to fluxional behavior, which has been observed in B13+ and B19–. A unique capability of the in-plane rotation of the inner atoms against the periphery of the cluster in a chosen direction by employing circularly polarized infrared radiationmore » has been suggested. Such fluxional behaviors in boron clusters are interesting and have been proposed as molecular Wankel motors. The concepts of aromaticity and antiaromaticity have been extended beyond organic chemistry to planar boron clusters. The validity of these concepts in understanding the electronic structures of boron clusters is evident in the striking similarities of the π-systems of planar boron clusters to those of polycyclic aromatic hydrocarbons, such as benzene, naphthalene, coronene, anthracene, or phenanthrene. Chemical bonding models developed for boron clusters not only allowed the rationalization of the stability of boron clusters but also lead to the design of novel metal-centered boron wheels with a record-setting planar coordination number of 10. The unprecedented highly coordinated borometallic molecular wheels provide insights into the interactions between transition metals and boron and expand the frontier of boron chemistry. Another interesting feature discovered through cluster studies is boron transmutation. Even though it is well-known that B–, formed by adding one electron to boron, is isoelectronic to carbon, cluster studies have considerably expanded the possibilities of new structures and new materials using the B–/C analogy. It is believed that the electronic transmutation concept will be effective and valuable in aiding the design of new boride materials with predictable properties. The study of boron clusters with intermediate properties between those of individual atoms and bulk solids has given rise to a unique opportunity to broaden the frontier of boron chemistry. Understanding boron clusters has spurred experimentalists and theoreticians to find new boron-based nanomaterials, such as boron fullerenes, nanotubes, two-dimensional boron, and new compounds containing boron clusters as building blocks. Here, a brief and timely overview is presented addressing the recent progress made on boron clusters and the approaches used in the authors’ laboratories to determine the structure, stability, and chemical bonding of size-selected boron clusters by joint photoelectron spectroscopy and theoretical studies. Specifically, key findings on all-boron hydrocarbon analogues, metal-centered boron wheels, and electronic transmutation in boron clusters are summarized.« less

  8. Hybrid-PIC Simulation of Backsputtered Carbon Transport in the Near-Field Plume of a Hall Thruster

    NASA Technical Reports Server (NTRS)

    Choi, Maria; Yim, John T.; Williams, George J.; Herman, Daniel A.; Gilland, James H.

    2017-01-01

    Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for AEPS thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.

  9. Synthesis micro-scale boron nitride nanotubes at low substrate temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajjad, Muhammad, E-mail: msajjadd@gmail.com; Makarov, Vladimir; Morell, Gerardo

    2016-07-15

    High temperature synthesis methods produce defects in 1D nanomaterials, which ultimately limit their applications. We report here the synthesis of micro-scale boron nitride nanotubes (BNNT) at low substrate temperature (300 {sup o}C) using a pulsed CO{sub 2} laser deposition technique in the presence of catalyst. The electron microscopic analyses have shown the nanotubes distributed randomly on the surface of the substrate. The average diameter (∼0.25 μm) of a nanotube, which is the highest reported value to date, is estimated by SEM data and confirmed by TEM measurements. These nanotubes are promising for high response deep-UV photo-luminescent devices. A detailed synthesismore » mechanism is presented and correlated with the experimental results.« less

  10. Efficient Boron-Carbon-Nitrogen Nanotube Formation Via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin (Inventor)

    2015-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula BxCyNz.

  11. From bulk soil to intracrystalline investigation of plant-mineral interaction

    NASA Astrophysics Data System (ADS)

    Lemarchand, D.; Voinot, A.; Chabaux, F.; Turpault, M.

    2011-12-01

    Understanding the controls and feedbacks regulating the flux of matter between bio-geochemical reservoirs in forest ecosystems receives a fast growing interest for the last decades. A complex question is to understand how minerals and vegetation interact in soils to sustain life and, to a broader scope, how forest ecosystems may respond to human activity (acid rain, harvesting,...) and climate perturbations (temperature, precipitation,...). Many mineralogical and biogeochemical approaches have longtime been developed, and occasionally coupled, in order to investigate the mechanisms by which chemical elements either are exchanged between soil particles and solutions, or are transferred to plants or to deeper soil layers and finally leave the system. But the characterization of particular processes like the contribution of minor reactive minerals to plant nutrition and global fluxes or the mechanisms by which biology can modify reaction rates and balance the bioavailability of nutrients in response to environmental perturbation sometimes fails because of the lack of suitable tracers. Recent analytical and conceptual advances have opened new perspectives for the use of light "non traditional" stable isotopes. Showing a wild range of concentrations and isotopic compositions between biogeochemical reservoirs in forest ecosystem, boron has physico-chemical properties particularly relevant to the investigation of water/rock interactions even when evolving biologically-mediated reactions. In this study, we focused on the distribution of boron isotopes from intracrystalline to bulk soil scales. An overview of the boron distribution and annual fluxes in the soil-plant system clearly indicates that the vegetation cycling largely controls the mobility of boron. We also observe that the mineral and biological B pools have drastically different isotopic signature that makes the transfer of B between them very easy to follow. In particular, the podzol soil we analyzed shows a clear contribution of vegetation-recycled B to neoformed mineral phases, whereas B in minerals from the brown acidic soil rather indicates predominant mineral dissolution with little or even no B supply from the soil solution. If B isotopes thus proved their sensitivity to the soil forming conditions, a simple isotopic budget also demonstrates that the isotopic signature shown by the vegetation cannot result from fractionation during boron absorption. Analyses of B isotopes within intracrystalline phyllosilicate minerals further identify the interfoliar layers as the major source of B during plant nutrition. Additionally, weathering experiments placing phyllosilicates in contact with various alteration agents (protons, organic acid or siderophore) point to the role of the latters as likely responsible for the boron liberation from the phyllosilicate interfoliar layers. This scenario gives the phyllosilicate interfoliar layers a central function in the plant nutrition in context studied here of soils developed on granitic bedrocks. It also implies a very dynamic system in which plants and minerals can exchange matter over very short periods of time.

  12. Boron Arsenide and Boron Phosphide for High Temperature and Luminescent Devices. [semiconductor devices - crystal growth/crystal structure

    NASA Technical Reports Server (NTRS)

    Chu, T. L.

    1975-01-01

    The crystal growth of boron arsenide and boron phosphide in the form of bulk crystals and epitaxial layers on suitable substrates is discussed. The physical, chemical, and electrical properties of the crystals and epitaxial layers are examined. Bulk crystals of boron arsenide were prepared by the chemical transport technique, and their carrier concentration and Hall mobility were measured. The growth of boron arsenide crystals from high temperature solutions was attempted without success. Bulk crystals of boron phosphide were also prepared by chemical transport and solution growth techniques. Techniques required for the fabrication of boron phosphide devices such as junction shaping, diffusion, and contact formation were investigated. Alloying techniques were developed for the formation of low-resistance ohmic contacts to boron phosphide. Four types of boron phosphide devices were fabricated: (1) metal-insulator-boron phosphide structures, (2) Schottky barriers; (3) boron phosphide-silicon carbide heterojunctions; and (4) p-n homojunctions. Easily visible red electroluminescence was observed from both epitaxial and solution grown p-n junctions.

  13. Structural stability and electronic properties of an octagonal allotrope of two dimensional boron nitride.

    PubMed

    Takahashi, Lauren; Takahashi, Keisuke

    2017-03-27

    An octagonal allotrope of two dimensional boron nitride is explored through first principles calculations. Calculations show that two dimensional octagonal boron nitride can be formed with a binding energy comparable to two dimensional hexagonal boron nitride. In addition, two dimensional octagonal boron nitride is found to have a band gap smaller than two dimensional hexagonal boron nitride, suggesting the possibility of semiconductive attributes. Two dimensional octagonal boron nitride also has the ability to layer through physisorption. Defects present within two dimensional octagonal boron nitride also lead toward the introduction of a magnetic moment through the absence of boron atoms. The presence of defects is also found to render both hexagonal and octagonal boron nitrides reactive against hydrogen, where greater reactivity is seen in the presence of nitrogen. Thus, two dimensional octagonal boron nitride is confirmed with potential to tailor properties and reactivity through lattice shape and purposeful introduction of defects.

  14. In vivo and in vitro effects of boron and boronated compounds.

    PubMed

    Benderdour, M; Bui-Van, T; Dicko, A; Belleville, F

    1998-03-01

    Boron is ubiquitously present in soils and water. Associated with pectin it is essential for vascular plants as a component of cell walls, and it stabilizes cell membranes. It is required for the growth of pollen tubes and is involved in membrane transport, stimulating H(+)-pumping ATPase activity and K+ uptake. However, a high boron concentration in the soils is toxic to plants and some boronated derivatives are used as herbicides. An absolute requirement for boron has not been definitively demonstrated in animals and humans. However, experiments with boron supplementation or deprivation show that boron is involved in calcium and bone metabolism, and its effects are more marked when other nutrients (cholecalciferol, magnesium) are deficient. Boron supplementation increases the serum concentration of 17 beta-estradiol and testosterone but boron excess has toxic effects on reproductive function. Boron may be involved in cerebral function via its effects on the transport across membranes. It affects the synthesis of the extracellular matrix and is beneficial in wound healing. Usual dietary boron consumption in humans is 1-2 mg/day for adults. As boron has been shown to have biological activity, research into the chemistry of boronated compounds has increased. Boronated compounds have been shown to be potent anti-osteoporotic, anti-inflammatory, hypolipemic, anti-coagulant and anti-neoplastic agents both in vitro and in vivo in animals.

  15. A sensing approach for dopamine determination by boronic acid-functionalized molecularly imprinted graphene quantum dots composite

    NASA Astrophysics Data System (ADS)

    Zhou, Xi; Gao, Xuexia; Song, Fengyan; Wang, Chunpeng; Chu, Fuxiang; Wu, Shishan

    2017-11-01

    A novel fluorescence sensor was developed for dopamine (DA) determination based on molecularly imprinted graphene quantum dots and poly(indolylboronic acid) composite (MIPs@ PIn-BAc/GQDs). When the DA is added to the system, it leads to an aggregation and fluorescence quenching of the MIPs@ PIn-BAc/GQDs because of the covalent binding between the catechol group of DA and boronic acid. Such fluorescence behaviors are used for well testing DA in a range from 5 × 10-9 to 1.2 × 10-6 M with the detection limit of 2.5 × 10-9 M. Furthermore, the prepared sensors could well against the interferences from various biomolecules and be successfully used for the assay of DA in human biological samples, exhibiting excellent specificity. It is believed that the prepared MIPs@ PIn-BAc/GQDs hold great promise as a practical platform that can monitor DA level change.

  16. Thermophoretically driven water droplets on graphene and boron nitride surfaces.

    PubMed

    Rajegowda, Rakesh; Kannam, Sridhar Kumar; Hartkamp, Remco; Sathian, Sarith P

    2018-05-25

    We investigate thermally driven water droplet transport on graphene and hexagonal boron nitride (h-BN) surfaces using molecular dynamics simulations. The two surfaces considered here have different wettabilities with a significant difference in the mode of droplet transport. The water droplet travels along a straighter path on the h-BN sheet than on graphene. The h-BN surface produced a higher driving force on the droplet than the graphene surface. The water droplet is found to move faster on h-BN surface compared to graphene surface. The instantaneous contact angle was monitored as a measure of droplet deformation during thermal transport. The characteristics of the droplet motion on both surfaces is determined through the moment scaling spectrum. The water droplet on h-BN surface showed the attributes of the super-diffusive process, whereas it was sub-diffusive on the graphene surface.

  17. In Situ Formation of Carbon Nanotubes Encapsulated within Boron Nitride Nanotubes via Electron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenal, Raul; Lopez-Bezanilla, Alejandro

    2014-07-25

    We report experimental evidence of the formation by in situ electron-irradiation of single-walled carbon nanotubes (C NT) confined within boron nitride nanotubes (BN-NT). The electron radiation stemming from the microscope supplies the energy required by the amorphous carbonaceous structures to crystallize in a tubular form in a catalyst free procedure, at room temperature and high vacuum. The structural defects resulting from the interaction of the shapeless carbon with the BN nanotube are corrected in a self-healing process throughout the crystallinization. Structural changes developed during the irradiation process such as defects formation and evolution, shrinkage, and shortness of the BN-NT weremore » in situ monitored. The outer BN wall provides a protective and insulating shell against environmental Perturbations to the inner C-NT without affecting their electronic properties, as demonstrated by first principles calculations.« less

  18. Experimental and analytical investigation of the fracture processes of boron/aluminum laminates containing notches

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Bigelow, C. A.; Bahei-El-din, Y. A.

    1983-01-01

    Experimental results for five laminate orientations of boron/aluminum composites containing either circular holes or crack-like slits are presented. Specimen stress-strain behavior, stress at first fiber failure, and ultimate strength were determined. Radiographs were used to monitor the fracture process. The specimens were analyzed with a three-dimensional elastic-elastic finite-element model. The first fiber failures in notched specimens with laminate orientation occurred at or very near the specimen ultimate strength. For notched unidirectional specimens, the first fiber failure occurred at approximately one-half of the specimen ultimate strength. Acoustic emission events correlated with fiber breaks in unidirectional composites, but did not for other laminates. Circular holes and crack-like slits of the same characteristic length were found to produce approximately the same strength reduction. The predicted stress-strain responses and stress at first fiber failure compared very well with test data for laminates containing 0 deg fibers.

  19. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film.

    PubMed

    Zehani, Nedjla; Fortgang, Philippe; Saddek Lachgar, Mohamed; Baraket, Abdoullatif; Arab, Madjid; Dzyadevych, Sergei V; Kherrat, Rochdi; Jaffrezic-Renault, Nicole

    2015-12-15

    A highly sensitive electrochemical biosensor for the detection of Bisphenol A (BPA) in water has been developed by immobilizing tyrosinase onto a diazonium-functionalized boron doped diamond electrode (BDD) modified with multi-walled carbon nanotubes (MWCNTs). The fabricated biosensor exhibits excellent electroactivity towards o-quinone, a product of this enzymatic reaction of BPA oxidation catalyzed by tyrosinase. The developed BPA biosensor displays a large linear range from 0.01 nM to 100 nM, with a detection limit (LOD) of 10 pM. The feasibility of the proposed biosensor has been demonstrated on BPA spiked water river samples. Therefore, it could be a promising and reliable analytical tool for on-site monitoring of BPA in waste water. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Efficient boron-carbon-nitrogen nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R Roy; Jordan, Kevin; Smith, Michael W

    2015-03-24

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  1. Efficient boron nitride nanotube formation via combined laser-gas flow levitation

    DOEpatents

    Whitney, R. Roy; Jordan, Kevin; Smith, Michael

    2014-03-18

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z. The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B.sub.xC.sub.yN.sub.z.

  2. Efficient Boron Nitride Nanotube Formation via Combined Laser-Gas Flow Levitation

    NASA Technical Reports Server (NTRS)

    Whitney, R. Roy (Inventor); Jordan, Kevin (Inventor); Smith, Michael W. (Inventor)

    2014-01-01

    A process for producing boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z) The process utilizes a combination of laser light and nitrogen gas flow to support a boron ball target during heating of the boron ball target and production of a boron vapor plume which reacts with nitrogen or nitrogen and carbon to produce boron nitride nanotubes and/or boron-carbon-nitrogen nanotubes of the general formula B(sub x)C(sub y)N(sub z).

  3. Direct current sputtering of boron from boron/coron mixtures

    DOEpatents

    Timberlake, John R.; Manos, Dennis; Nartowitz, Ed

    1994-01-01

    A method for coating a substrate with boron by sputtering includes lowering the electrical resistance of a boron-containing rod to allow electrical conduction in the rod; placing the boron-containing rod inside a vacuum chamber containing substrate material to be coated; applying an electrical potential between the boron target material and the vacuum chamber; countering a current avalanche that commences when the conduction heating rate exceeds the cooling rate, and until a steady equilibrium heating current is reached; and, coating the substrate material with boron by sputtering from the boron-containing rod.

  4. Boron stress response and accumulation potential of the extremely tolerant species Puccinellia frigida.

    PubMed

    Rámila, Consuelo D P; Contreras, Samuel A; Di Domenico, Camila; Molina-Montenegro, Marco A; Vega, Andrea; Handford, Michael; Bonilla, Carlos A; Pizarro, Gonzalo E

    2016-11-05

    Phytoremediation is a promising technology to tackle boron toxicity, which restricts agricultural activities in many arid and semi-arid areas. Puccinellia frigida is a perennial grass that was reported to hyperaccumulate boron in extremely boron-contaminated sites. To further investigate its potential for phytoremediation, we determined its response to boron stress under controlled conditions (hydroponic culture). Also, as a first step towards understanding the mechanisms underlying its extreme tolerance, we evaluated the presence and expression of genes related with boron tolerance. We found that P. frigida grew normally even at highly toxic boron concentrations in the medium (500mg/L), and within its tissues (>5000mg/kg DW). We postulate that the strategies conferring this extreme tolerance involve both restricting boron accumulation and an internal tolerance mechanism; this is consistent with the identification of putative genes involved in both mechanisms, including the expression of a possible boron efflux transporter. We also found that P. frigida hyperaccumulated boron over a wide range of boron concentrations. We propose that P. frigida could be used for boron phytoremediation strategies in places with different soil characteristics and boron concentrations. Further studies should pave the way for the development of clean and low-cost solutions to boron toxicity problems. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Atmospheric contribution to boron enrichment in aboveground wheat tissues.

    PubMed

    Wang, Cheng; Ji, Junfeng; Chen, Mindong; Zhong, Cong; Yang, Zhongfang; Browne, Patrick

    2017-05-01

    Boron is an essential trace element for all organisms and has both beneficial and harmful biological functions. A particular amount of boron is discharged into the environment every year because of industrial activities; however, the effects of environmental boron emissions on boron accumulation in cereals has not yet been estimated. The present study characterized the accumulation of boron in wheat under different ecological conditions in the Yangtze River Delta (YRD) area. This study aimed to estimate the effects of atmospheric boron that is associated with industrial activities on boron accumulation in wheat. The results showed that the concentrations of boron in aboveground wheat tissues from the highly industrialized region were significantly higher than those from the agriculture-dominated region, even though there was no significant difference in boron content in soils. Using the model based on the translocation coefficients of boron in the soil-wheat system, we estimated that the contribution of atmosphere to boron accumulation in wheat straw in the highly industrialized region exceeded that in the agriculture-dominated region by 36%. In addition, from the environmental implication of the model, it was estimated that the development of boron-utilizing industries had elevated the concentration of boron in aboveground wheat tissues by 28-53%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours

    NASA Astrophysics Data System (ADS)

    Medina, Daniel C.; Li, Xin; Springer, Charles S., Jr.

    2005-05-01

    In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value <0.001) was observed in the rat brain—this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ~10% in the presence of a 9% water volume increase (oedema). All three authors have contributed equally to this work.

  7. Spatiotemporal Oxygen Sensing Using Dual Emissive Boron Dye–Polylactide Nanofibers

    PubMed Central

    2015-01-01

    Oxygenation in tissue scaffolds continues to be a limiting factor in regenerative medicine despite efforts to induce neovascularization or to use oxygen-generating materials. Unfortunately, many established methods to measure oxygen concentration, such as using electrodes, require mechanical disturbance of the tissue structure. To address the need for scaffold-based oxygen concentration monitoring, a single-component, self-referenced oxygen sensor was made into nanofibers. Electrospinning process parameters were tuned to produce a biomaterial scaffold with specific morphological features. The ratio of an oxygen sensitive phosphorescence signal to an oxygen insensitive fluorescence signal was calculated at each image pixel to determine an oxygenation value. A single component boron dye–polymer conjugate was chosen for additional investigation due to improved resistance to degradation in aqueous media compared to a boron dye polymer blend. Standardization curves show that in fully supplemented media, the fibers are responsive to dissolved oxygen concentrations less than 15 ppm. Spatial (millimeters) and temporal (minutes) ratiometric gradients were observed in vitro radiating outward from the center of a dense adherent cell grouping on scaffolds. Sensor activation in ischemia and cell transplant models in vivo show oxygenation decreases on the scale of minutes. The nanofiber construct offers a robust approach to biomaterial scaffold oxygen sensing. PMID:25426706

  8. Sensitive colorimetric visualization of dihydronicotinamide adenine dinucleotide based on anti-aggregation of gold nanoparticles via boronic acid-diol binding.

    PubMed

    Liu, Shufeng; Du, Zongfeng; Li, Peng; Li, Feng

    2012-05-15

    A facile, highly sensitive colorimetric strategy for dihydronicotinamide adenine dinucleotide (NADH) detection is proposed based on anti-aggregation of gold nanoparticles (AuNPs) via boronic acid-diol binding chemistry. The aggregation agent, 4-mercaptophenylboronic acid (MPBA), has specific affinity for AuNPs through Au-S interaction, leading to the aggregation of AuNPs by self-dehydration condensation at a certain concentration, which is responsible for a visible color change of AuNPs from wine red to blue. With the addition of NADH, MPBA would prefer reacting with NADH to form stable borate ester via boronic acid-diol binding dependent on the pH and solvent, revealing an obvious color change from blue to red with increasing the concentration of NADH. The anti-aggregation effect of NADH on AuNPs was seen by the naked eye and monitored by UV-vis extinction spectra. The linear range of the colorimetric sensor for NADH is from 8.0 × 10(-9)M to 8.0 × 10(-6)M, with a low detection limit of 2.0 nM. The as-established colorimetric strategy opened a new avenue for NADH determination. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Alkynyl Moiety for Triggering 1,2‐Metallate Shifts: Enantiospecific sp2–sp3 Coupling of Boronic Esters with p‐Arylacetylenes

    PubMed Central

    Ganesh, Venkataraman; Odachowski, Marcin

    2017-01-01

    Abstract The enantiospecific coupling of secondary and tertiary boronic esters to aromatics has been investigated. Using p‐lithiated phenylacetylenes and a range of boronic esters coupling has been achieved by the addition of N‐bromosuccinimide (NBS). The alkyne functionality of the intermediate boronate complex reacts with NBS triggering the 1,2‐migration of the group on boron to carbon giving a dearomatized bromoallene intermediate. At this point elimination and rearomatization occurs with neopentyl boronic esters, giving the coupled products. However, using pinacol boronic esters, the boron moiety migrates to the adjacent carbon resulting in formation of ortho boron‐incorporated coupled products. The synthetic utility of the boron incorporated product has been demonstrated by orthogonal transformation of both the alkyne and boronic ester functionalities. PMID:28618129

  10. Methods of producing continuous boron carbide fibers

    DOEpatents

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  11. In Vivo Boron Uptake Determination for Boron Neutron Capture Synovectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binello, Emanuela; Shortkroff, Sonya; Yanch, Jacquelyn C.

    1999-06-06

    Boron neutron capture synovectomy (BNCS) has been proposed as a new application of the boron neutron capture reaction for the treatment of rheumatoid arthritis. In BNCS, a boron compound is injected into the joint space, where it is taken up by the synovium. The joint is then irradiated with neutrons of a desired energy range, inducing the boron neutron capture reaction in boron-loaded cells. Boron uptake by the synovium is an important parameter in the assessment of the potential of BNCS and in the determination of whether to proceed to animal irradiations for the testing of therapeutic efficacy. We presentmore » results from an investigation of boron uptake in vivo by the synovium.« less

  12. Synthesis of Large and Few Atomic Layers of Hexagonal Boron Nitride on Melted Copper

    PubMed Central

    Khan, Majharul Haque; Huang, Zhenguo; Xiao, Feng; Casillas, Gilberto; Chen, Zhixin; Molino, Paul J.; Liu, Hua Kun

    2015-01-01

    Hexagonal boron nitride nanosheets (h-BNNS) have been proposed as an ideal substrate for graphene-based electronic devices, but the synthesis of large and homogeneous h-BNNS is still challenging. In this contribution, we report a facile synthesis of few-layer h-BNNS on melted copper via an atmospheric pressure chemical vapor deposition process. Comparative studies confirm the advantage of using melted copper over solid copper as a catalyst substrate. The former leads to the formation of single crystalline h-BNNS that is several microns in size and mostly in mono- and bi-layer forms, in contrast to the polycrystalline and mixed multiple layers (1–10) yielded by the latter. This difference is likely to be due to the significantly reduced and uniformly distributed nucleation sites on the smooth melted surface, in contrast to the large amounts of unevenly distributed nucleation sites that are associated with grain boundaries and other defects on the solid surface. This synthesis is expected to contribute to the development of large-scale manufacturing of h-BNNS/graphene-based electronics. PMID:25582557

  13. Experimental and DFT studies on the vibrational spectra of 1H-indene-2-boronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgur; Kaya, Mehmet Fatih

    2014-11-01

    Stable conformers and geometrical molecular structures of 1H-indene-2-boronic acid (I-2B(OH)2) were studied experimentally and theoretically using FT-IR and FT-Raman spectroscopic methods. FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1, and 3700-400 cm-1, respectively. The optimized geometric structures were searched by Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d,p) basis set. Vibrational wavenumbers of I-2B(OH)2 were calculated using B3LYP density functional methods including 6-31++G(d,p) basis set. Experimental and theoretical results show that density functional B3LYP method gives satisfactory results for predicting vibrational wavenumbers except OH stretching modes which is probably due to increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges. To support the assigned vibrational wavenumbers, the potential energy distribution (PED) values were also calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  14. MAGIC polymer gel for dosimetric verification in boron neutron capture therapy

    PubMed Central

    Heikkinen, Sami; Kotiluoto, Petri; Serén, Tom; Seppälä, Tiina; Auterinen, Iiro; Savolainen, Sauli

    2007-01-01

    Radiation‐sensitive polymer gels are among the most promising three‐dimensional dose verification tools developed to date. We tested the normoxic polymer gel dosimeter known by the acronym MAGIC (methacrylic and ascorbic acid in gelatin initiated by copper) to evaluate its use in boron neutron capture therapy (BNCT) dosimetry. We irradiated a large cylindrical gel phantom (diameter: 10 cm; length: 20 cm) in the epithermal neutron beam of the Finnish BNCT facility at the FiR 1 nuclear reactor. Neutron irradiation was simulated with a Monte Carlo radiation transport code MCNP. To compare dose–response, gel samples from the same production batch were also irradiated with 6 MV photons from a medical linear accelerator. Irradiated gel phantoms then underwent magnetic resonance imaging to determine their R2 relaxation rate maps. The measured and normalized dose distribution in the epithermal neutron beam was compared with the dose distribution calculated by computer simulation. The results support the feasibility of using MAGIC gel in BNCT dosimetry. PACS numbers: 87.53.Qc, 87.53.Wz, 87.66.Ff PMID:17592463

  15. Synthesis of large and few atomic layers of hexagonal boron nitride on melted copper.

    PubMed

    Khan, Majharul Haque; Huang, Zhenguo; Xiao, Feng; Casillas, Gilberto; Chen, Zhixin; Molino, Paul J; Liu, Hua Kun

    2015-01-13

    Hexagonal boron nitride nanosheets (h-BNNS) have been proposed as an ideal substrate for graphene-based electronic devices, but the synthesis of large and homogeneous h-BNNS is still challenging. In this contribution, we report a facile synthesis of few-layer h-BNNS on melted copper via an atmospheric pressure chemical vapor deposition process. Comparative studies confirm the advantage of using melted copper over solid copper as a catalyst substrate. The former leads to the formation of single crystalline h-BNNS that is several microns in size and mostly in mono- and bi-layer forms, in contrast to the polycrystalline and mixed multiple layers (1-10) yielded by the latter. This difference is likely to be due to the significantly reduced and uniformly distributed nucleation sites on the smooth melted surface, in contrast to the large amounts of unevenly distributed nucleation sites that are associated with grain boundaries and other defects on the solid surface. This synthesis is expected to contribute to the development of large-scale manufacturing of h-BNNS/graphene-based electronics.

  16. Photosynthetic antenna-reaction center mimicry with a covalently linked monostyryl boron-dipyrromethene-aza-boron-dipyrromethene-C60 triad.

    PubMed

    Shi, Wen-Jing; El-Khouly, Mohamed E; Ohkubo, Kei; Fukuzumi, Shunichi; Ng, Dennis K P

    2013-08-19

    An efficient functional mimic of the photosynthetic antenna-reaction center has been designed and synthesized. The model contains a near-infrared-absorbing aza-boron-dipyrromethene (ADP) that is connected to a monostyryl boron-dipyrromethene (BDP) by a click reaction and to a fullerene (C60 ) using the Prato reaction. The intramolecular photoinduced energy and electron-transfer processes of this triad as well as the corresponding dyads BDP-ADP and ADP-C60 have been studied with steady-state and time-resolved absorption and fluorescence spectroscopic methods in benzonitrile. Upon excitation, the BDP moiety of the triad is significantly quenched due to energy transfer to the ADP core, which subsequently transfers an electron to the fullerene unit. Cyclic and differential pulse voltammetric studies have revealed the redox states of the components, which allow estimation of the energies of the charge-separated states. Such calculations show that electron transfer from the singlet excited ADP ((1) ADP*) to C60 yielding ADP(.+) -C60 (.-) is energetically favorable. By using femtosecond laser flash photolysis, concrete evidence has been obtained for the occurrence of energy transfer from (1) BDP* to ADP in the dyad BDP-ADP and electron transfer from (1) ADP* to C60 in the dyad ADP-C60 . Sequential energy and electron transfer have also been clearly observed in the triad BDP-ADP-C60 . By monitoring the rise of ADP emission, it has been found that the rate of energy transfer is fast (≈10(11)  s(-1) ). The dynamics of electron transfer through (1) ADP* has also been studied by monitoring the formation of C60 radical anion at 1000 nm. A fast charge-separation process from (1) ADP* to C60 has been detected, which gives the relatively long-lived BDP-ADP(.+) C60 (.-) with a lifetime of 1.47 ns. As shown by nanosecond transient absorption measurements, the charge-separated state decays slowly to populate mainly the triplet state of ADP before returning to the ground state. These findings show that the dyads BDP-ADP and ADP-C60 , and the triad BDP-ADP-C60 are interesting artificial analogues that can mimic the antenna and reaction center of the natural photosynthetic systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fragment approach to the electronic structure of τ -boron allotrope

    NASA Astrophysics Data System (ADS)

    Karmodak, Naiwrit; Jemmis, Eluvathingal D.

    2017-04-01

    The presence of nonconventional bonding features is an intriguing part of elemental boron. The recent addition of τ boron to the family of three-dimensional boron allotropes is no exception. We provide an understanding of the electronic structure of τ boron using a fragment molecular approach, where the effect of symmetry reduction on skeletal bands of B12 and the B57 fragments are examined qualitatively by analyzing the projected density of states of these fragments. In spite of the structural resemblance to β boron, the reduction of symmetry from a rhombohedral space group to the orthorhombic one destabilizes the bands and reduces the electronic requirements. This suggests the presence of the partially occupied boron sites, as seen for a β boron unit cell, and draws the possibility for the existence of different energetically similar polymorphs. τ boron has a lower binding energy than β boron.

  18. The boron transporter BnaC4.BOR1;1c is critical for inflorescence development and fertility under boron limitation in Brassica napus.

    PubMed

    Zhang, Quan; Chen, Haifei; He, Mingliang; Zhao, Zhuqing; Cai, Hongmei; Ding, Guangda; Shi, Lei; Xu, Fangsen

    2017-09-01

    Boron (B) is an essential micronutrient for plants, but the molecular mechanisms underlying the uptake and distribution of B in allotetraploid rapeseed (Brassica napus) are unclear. Here, we identified a B transporter of rapeseed, BnaC4.BOR1;1c, which is expressed in shoot nodes and involved in distributing B to the reproductive organs. Transgenic Arabidopsis plants containing a BnaC4.BOR1;1c promoter-driven GUS reporter gene showed strong GUS activity in roots, nodal regions of the shoots and immature floral buds. Overexpressing BnaC4.BOR1;1c in Arabidopsis wild type or in bor1-1 mutants promoted wild-type growth and rescued the bor1-1 mutant phenotype. Conversely, knockdown of BnaC4.BOR1;1c in a B-efficient rapeseed line reduced B accumulation in flower organs, eventually resulting in severe sterility and seed yield loss. BnaC4.BOR1;1c RNAi plants exhibited large amounts of disintegrated stigma papilla cells with thickened cell walls accompanied by abnormal proliferation of lignification under low-B conditions, indicating that the sterility may be a result of altered cell wall properties in flower organs. Taken together, our results demonstrate that BnaC4.BOR1;1c is a AtBOR1-homologous B transporter gene expressing in both roots and shoot nodes that is essential for the developing inflorescence tissues, which highlights its diverse functions in allotetraploid rapeseed compared with diploid model plant Arabidopsis. © 2017 John Wiley & Sons Ltd.

  19. Effects of hexagonal boron nitride on dry compression mixture of Avicel DG and Starch 1500.

    PubMed

    Uğurlu, Timuçin; Halaçoğlu, Mekin Doğa

    2016-01-01

    The objective of this study was to investigate the lubrication properties of hexagonal boron nitride (HBN) on a (1:1) binary mixture of Avicel DG and Starch 1500 after using the dry granulation-slugging method and compare it with conventional lubricants, such as magnesium stearate (MGST), glyceryl behenate (COMP) and stearic acid (STAC). MGST is one of the most commonly used lubricants in the pharmaceutical industry. However, it has several adverse effects on tablet properties. In our current study, we employed various methods to eradicate the work hardening phenomenon in dry granulation, and used HBN as a new lubricant to overcome the adverse effects of other lubricants on tablet properties. HBN was found to be as effective as MGST and did not show any significant adverse effects on the crushing strength or work hardening. From the scanning electron microscope (SEM) images, it was concluded that HBN distributed better than MGST. As well as showing better distribution, HBN's effect on disintegration was the least pronounced. Semi-quantitative weight percent distribution of B and N elements in the tablets was obtained using EDS (energy dispersive spectroscopy). Based on atomic force microscope (AFM) surface roughness images, formulations prepared with 1% HBN showed better plastic character than those prepared with MGST.

  20. The Physiological Role of Boron on Health.

    PubMed

    Khaliq, Haseeb; Juming, Zhong; Ke-Mei, Peng

    2018-03-15

    Boron is an essential mineral that plays an important role in several biological processes. Boron is required for growth of plants, animals, and humans. There are increasing evidences of this nutrient showing a variety of pleiotropic effects, ranging from anti-inflammatory and antioxidant effects to the modulation of different body systems. In the past few years, the trials showed disease-related polymorphisms of boron in different species, which has drawn attention of scientists to the significance of boron to health. Low boron profile has been related with poor immune function, increased risk of mortality, osteoporosis, and cognitive deterioration. High boron status revealed injury to cell and toxicity in different animals and humans. Some studies have shown some benefits of higher boron status, but findings have been generally mixed, which perhaps accentuates the fact that dietary intake will benefit only if supplemental amount is appropriate. The health benefits of boron are numerous in animals and humans; for instance, it affects the growth at safe intake. Central nervous system shows improvement and immune organs exhibit enhanced immunity with boron supplementation. Hepatic metabolism also shows positive changes in response to dietary boron intake. Furthermore, animals and human fed diets supplemented with boron reveal improved bone density and other benefits including embryonic development, wound healing, and cancer therapy. It has also been reported that boron affects the metabolism of several enzymes and minerals. In the background of these health benefits, low or high boron status is giving cause for concern. Additionally, researches are needed to further elucidate the mechanisms of boron effects, and determine the requirements in different species.

  1. Boron nitride composites

    DOEpatents

    Kuntz, Joshua D.; Ellsworth, German F.; Swenson, Fritz J.; Allen, Patrick G.

    2017-02-21

    According to one embodiment, a composite product includes: a matrix material including hexagonal boron nitride and one or more borate binders; and a plurality of cubic boron nitride particles dispersed in the matrix material. According to another embodiment, a composite product includes: a matrix material including hexagonal boron nitride and amorphous boron nitride; and a plurality of cubic boron nitride particles dispersed in the matrix material.

  2. The major facilitator superfamily transporter Knq1p modulates boron homeostasis in Kluyveromyces lactis.

    PubMed

    Svrbicka, Alexandra; Toth Hervay, Nora; Gbelska, Yvetta

    2016-03-01

    Boron is an essential micronutrient for living cells, yet its excess causes toxicity. To date, the mechanisms of boron toxicity are poorly understood. Recently, the ScATR1 gene has been identified encoding the main boron efflux pump in Saccharomyces cerevisiae. In this study, we analyzed the ScATR1 ortholog in Kluyveromyces lactis--the KNQ1 gene, to understand whether it participates in boron stress tolerance. We found that the KNQ1 gene, encoding a permease belonging to the major facilitator superfamily, is required for K. lactis boron tolerance. Deletion of the KNQ1 gene led to boron sensitivity and its overexpression increased K. lactis boron tolerance. The KNQ1 expression was induced by boron and the intracellular boron concentration was controlled by Knq1p. The KNQ1 promoter contains two putative binding motifs for the AP-1-like transcription factor KlYap1p playing a central role in oxidative stress defense. Our results indicate that the induction of the KNQ1 expression requires the presence of KlYap1p and that Knq1p like its ortholog ScAtr1p in S. cerevisiae functions as a boron efflux pump providing boron resistance in K. lactis.

  3. Anode performance of boron-doped graphites prepared from shot and sponge cokes

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Luo, Ruiying; Yoon, Seong-Ho; Mochida, Isao

    The structures and anode performances of graphitized pristine and boron-doped shot and sponge cokes have been comparatively studied by means of scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and galvanostatic measurement. The results show that high degree of graphitization can be obtained by the substituted boron atom in the carbon lattice, and boron in the resultant boron-doped graphites mainly exist in the form of boron carbide and boron substituted in the carbon lattice. Both of boron-doped graphites from shot and sponge cokes obtain discharge capacity of 350 mAh g -1 and coulombic efficiency above 90%. Apart from commonly observed discharge plateau for graphite, boron-doped samples in this study also show a small plateau at ca. 0.06 V. This phenomenon can be explained that Li ion stores in the site to be void-like spaces that are produced by "molecular bridging" between the edge sites of graphene layer stack with a release of boron atoms substituted at the edge of graphene layer. The effect of the amount of boron dopant and graphitization temperature on the anode performance of boron-doped graphite are also investigated in this paper.

  4. Hybrid-Particle-In-Cell Simulation of Backsputtered Carbon Transport in the Near-Field Plume of a Hall Thruster

    NASA Technical Reports Server (NTRS)

    Choi, Maria; Yim, John T.; Williams, George J.; Herman, Daniel A.; Gilland, James H.

    2018-01-01

    Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for Advanced Electric Propulsion System thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.

  5. [Preparation and photocatalytic activity of boron doped CeO2/TiO2 mixed oxides].

    PubMed

    Tang, Xin-hu; Wei, Chao-hai; Liang, Jie-rong; Wang, Bo-guang

    2006-07-01

    Boron doped CeO2/TiO2 mixed oxides photocatalysts were prepared by adding boric acid and cerous nitrate during the hydrolyzation of titanium trichloride and tetrabutyl titanate. XRD, UV-Vis DRS and XPS techniques were used to characterize the crystalline structure, light absorbing ability and the chemical state of Boron element in the photocatalyst sample. The photocatalytic activities were evaluated by monitoring the degradation of acid red B under UV irradiation. These results indicate that the wavelengths at adsorbing edge are affected by the content of cerous nitrate and the maximum absorption wavelength is about 481 nm when the mole ratio of Ce/Ti is 1.0. For higher dosage of Cerium, the absorbance edge shifts to blue slightly. The prepared photocatalyst is composed of anatase TiO2 and cubic CeO2 when calcined at 500 degrees C. An increase in the calcination temperature transforms the crystalline structure of the titanium oxides from anatase to rutile, and has no obvious influence on crystalline structure of CeO2 but crystallites growth up. The absorbance edge decreases drastically with the increase of calcination temperature. With a view to the stability of photocatalyst and utilization of sun energy, 500 degrees C of calcination temperature is recommended. The XP spectrum for B1s exhibits that only a few boron ions dope into titania and ceria matrix, others exist in B2O3. The photocatalytic activity increases with increase of cerous nitrate dosage, and decreases drastically due to higher dosage (the mol ratio of Ce/Ti > 0.5). After 10 min UV irradiation, 96% of acid red B is degraded completely over photocatalyst under optimum reaction condition.

  6. Electron paramagnetic resonance of deep boron in silicon carbide

    NASA Astrophysics Data System (ADS)

    Baranov, P. G.; Mokhov, E. N.

    1996-04-01

    In this article we report the first EPR observation of deep boron centres in silicon carbide. A direct identification of the boron atom involved in the defect centre, considered as deep boron, has been established by the presence of a hyperfine interaction with 0268-1242/11/4/005/img1 and 0268-1242/11/4/005/img2 nuclei in isotope-enriched 6H-SiC:B crystals. Deep boron centres were shown from EPR spectra to have axial symmetry along the hexagonal axis. A correspondence between the EPR spectra and the luminescence, ODMR and DLTS spectra of deep boron centres has been indicated. The structural model for a deep boron centre as a boron - vacancy pair is presented and the evidence for bistable behaviour of deep boron centres is discussed.

  7. Method of manufacture of atomically thin boron nitride

    DOEpatents

    Zettl, Alexander K

    2013-08-06

    The present invention provides a method of fabricating at least one single layer hexagonal boron nitride (h-BN). In an exemplary embodiment, the method includes (1) suspending at least one multilayer boron nitride across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure. The present invention also provides a method of fabricating single layer hexagonal boron nitride. In an exemplary embodiment, the method includes (1) providing multilayer boron nitride suspended across a gap of a support structure and (2) performing a reactive ion etch upon the multilayer boron nitride to produce the single layer hexagonal boron nitride suspended across the gap of the support structure.

  8. Alizarin Complexone Functionalized Mesoporous Silica Nanoparticles: A Smart System Integrating Glucose-Responsive Double-Drugs Release and Real-Time Monitoring Capabilities.

    PubMed

    Zou, Zhen; He, Dinggeng; Cai, Linli; He, Xiaoxiao; Wang, Kemin; Yang, Xue; Li, Liling; Li, Siqi; Su, Xiaoya

    2016-04-06

    The outstanding progress of nanoparticles-based delivery systems capable of releasing hypoglycemic drugs in response to glucose has dramatically changed the outlook of diabetes management. However, the developed glucose-responsive systems have not offered real-time monitoring capabilities for accurate quantifying hypoglycemic drugs released. In this study, we present a multifunctional delivery system that integrates both delivery and monitoring issues using glucose-triggered competitive binding scheme on alizarin complexone (ALC) functionalized mesoporous silica nanoparticles (MSN). In this system, ALC is modified on the surface of MSN as the signal reporter. Gluconated insulin (G-Ins) is then introduced onto MSN-ALC via benzene-1,4-diboronic acid (BA) mediated esterification reaction, where G-Ins not only blocks drugs inside the mesopores but also works as a hypoglycemic drug. In the absence of glucose, the sandwich-type boronate ester structure formed by BA binding to the diols of ALC and G-Ins remains intact, resulting in an fluorescence emission peak at 570 nm and blockage of pores. Following a competitive binding, the presence of glucose cause the dissociation of boronate ester between ALC and BA, which lead to the pores opening and disappearance of fluorescence. As proof of concept, rosiglitazone maleate (RSM), an insulin-sensitizing agent, was doped into the MSN to form a multifunctional MSN (RSM@MSN-ALC-BA-Ins), integrating with double-drugs loading, glucose-responsive performance, and real-time monitoring capability. It has been demonstrated that the glucose-responsive release behaviors of insulin and RSM in buffer or in human serum can be quantified in real-time through evaluating the changes of fluorescence signal. We believe that this developed multifunctional system can shed light on the invention of a new generation of smart nanoformulations for optical diagnosis, individualized treatment, and noninvasive monitoring of diabetes management.

  9. Boron removal from aqueous solution by direct contact membrane distillation.

    PubMed

    Hou, Deyin; Wang, Jun; Sun, Xiangcheng; Luan, Zhaokun; Zhao, Changwei; Ren, Xiaojing

    2010-05-15

    The removal of boron from aqueous solution by direct contact membrane distillation (DCMD) was studied with self-prepared polyvinylidene fluoride (PVDF) hollow fiber membranes in the present work. The effect of pH, boron concentration, temperature and salt concentration of the feed solution on the boron rejection was investigated. The experimental results indicated that boron rejection was less dependent on the feed pH and salt concentration. DCMD process had high boron removal efficiency (>99.8%) and the permeate boron was below the maximum permissible level even at feed concentration as high as 750 mg/L. Although the permeate flux was enhanced exponentially with the feed temperature increasing, the influence of feed temperature on the boron rejection could be neglected. Finally, the natural groundwater sample containing 12.7 mg/L of boron was treated by DCMD process. The permeate boron kept below 20 microg/L whether the feed was acidified or not, but pre-acidification was helpful to maintain the permeate flux stability. All the experimental results indicated that DCMD could be efficiently used for boron removal from aqueous solution. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  10. Effects on environment and agriculture of geothermal wastewater and boron pollution in great Menderes basin.

    PubMed

    Koç, Cengiz

    2007-02-01

    Boron toxicity is an important disorder that can be limit plant growth on soils of arid and semi arid environments through the world. High concentrations of Boron may occur naturally in the soil or in groundwater, or be added to the soil from mining, fertilizers, or irrigation water. Off all the potential resources, irrigation water is the most important contributor to high levels of soil boron, boron is often found in high concentrations in association with saline soil and saline well water. Although of considerable agronomic importance, our understanding of Boron toxicity is rather fragment and limited. In this study, Boron content of Great Menderes River and Basin was researched. Great Menderes Basin is one of the consequence basins having agricultural potential, aspect of water and soil resources in Turkey. Great Menderes River, water resource of the basin was to be polluted by geothermal wastewater and thermal springs including Boron element. Great Menderes Basin has abundant geothermal water resources which contain high amounts of Boron and these ground water are brought to surface and used for various purposes such as power generation, heating or thermal spring and than discharged to Great Menderes River. In order to prevent Boron pollution and hence unproductively in soils, it is necessary not to discharged water with Boron to irrigation water. According to results, it was obtained that Boron content of River was as high in particular Upper Basin where there was a ground thermal water reservoir. Boron has been accumulated more than plant requirement in this area irrigated by this water. Boron content of River was relatively low in rainy months and irrigation season while it was high in dry season. Boron concentration in the River was to decrease from upstream to downstream. If it is no taken measure presently, about 130,000 ha irrigation areas which was constructed irrigation scheme in the Great Menderes basin will expose the Boron pollution and salinity. Even though Boron concentration of river water is under 0.5 ppm limit value, Boron element will store in basin soils, decrease in crop yields, and occur problematic soils in basin.

  11. Phase composition and magnetic properties in hot deformed magnets based on Misch-metal

    NASA Astrophysics Data System (ADS)

    Ma, Q.; Zhang, Z. Y.; Zhang, X. F.; Hu, Z. F.; Liu, Y. L.; Liu, F.; Jv, X. M.; Wang, J.; Li, Y. F.; Zhang, J. X.

    2018-04-01

    In this paper, the Rare-earth Iron Boron (RE-Fe-B) magnets were fabricated successfully by using the double main phase method through mixing the Neodymium Iron Boron (Nd-Fe-B) powders and Misch-metal Iron Boron (MM-Fe-B) powders with different ratio. Aiming at the nanocrystalline RE2Fe14B magnets prepared by using spark plasma sintering technology, phase structure and magnetic properties were investigated. It is found that the Misch-metal (MM) alloys promote the domain nucleation during the the process of magnetization reversal and then damage the coercivity (Hcj) of isotropic RE2Fe14B magnets, while the Hcj could still remain more than 1114.08 kA/m when the mass proportion of MM (simplified as: "a") is 30%. Curie temperature and phase structure were also researched. Two kinds of mixed-solid-solution (MSS) main phases with different Lanthanum (La) and Cerium (Ce) content were believed to be responsible for the two curie temperature of the RE2Fe14B magnets with "a" ≥20%. This is resulted from the inhomogeneous elemental distribution of RE2Fe14B phase.

  12. White-beam X-ray diffraction and radiography studies on high-boron-containing borosilicate glass at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, Kathryn J.; Vohra, Yogesh K.; Kono, Yoshio

    Multi-angle energy-dispersive X-ray diffraction studies and white-beam X-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron-content borosilicate glass sample (17.6% B 2O 3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å –1 is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed anmore » overall uniaxial compression of 22.5% at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si–O, O–O and Si–Si bond distances were measured as a function of pressure. Lastly, Raman spectroscopy of the pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and four-coordinated boron.« less

  13. White-beam X-ray diffraction and radiography studies on high-boron-containing borosilicate glass at high pressures

    DOE PAGES

    Ham, Kathryn J.; Vohra, Yogesh K.; Kono, Yoshio; ...

    2017-02-06

    Multi-angle energy-dispersive X-ray diffraction studies and white-beam X-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron-content borosilicate glass sample (17.6% B 2O 3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å –1 is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed anmore » overall uniaxial compression of 22.5% at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si–O, O–O and Si–Si bond distances were measured as a function of pressure. Lastly, Raman spectroscopy of the pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and four-coordinated boron.« less

  14. Boron exposure through drinking water during pregnancy and birth size.

    PubMed

    Igra, Annachiara Malin; Harari, Florencia; Lu, Ying; Casimiro, Esperanza; Vahter, Marie

    2016-10-01

    Boron is a metalloid found at highly varying concentrations in soil and water. Experimental data indicate that boron is a developmental toxicant, but the few human toxicity data available concern mostly male reproduction. To evaluate potential effects of boron exposure through drinking water on pregnancy outcomes. In a mother-child cohort in northern Argentina (n=194), 1-3 samples of serum, whole blood and urine were collected per woman during pregnancy and analyzed for boron and other elements to which exposure occurred, using inductively coupled plasma mass spectrometry. Infant weight, length and head circumference were measured at birth. Drinking water boron ranged 377-10,929μg/L. The serum boron concentrations during pregnancy ranged 0.73-605μg/L (median 133μg/L) and correlated strongly with whole-blood and urinary boron, and, to a lesser extent, with water boron. In multivariable-adjusted linear spline regression analysis (non-linear association), we found that serum boron concentrations above 80μg/L were inversely associated with birth length (B-0.69cm, 95% CI -1.4; -0.024, p=0.043, per 100μg/L increase in serum boron). The impact of boron appeared stronger when we restricted the exposure to the third trimester, when the serum boron concentrations were the highest (0.73-447μg/L). An increase in serum boron of 100μg/L in the third trimester corresponded to 0.9cm shorter and 120g lighter newborns (p=0.001 and 0.021, respectively). Considering that elevated boron concentrations in drinking water are common in many areas of the world, although more screening is warranted, our novel findings warrant additional research on early-life exposure in other populations. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.

    1995-01-01

    A process for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B.sub.4 C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil.

  16. Structure prediction of boron-doped graphene by machine learning

    NASA Astrophysics Data System (ADS)

    M. Dieb, Thaer; Hou, Zhufeng; Tsuda, Koji

    2018-06-01

    Heteroatom doping has endowed graphene with manifold aspects of material properties and boosted its applications. The atomic structure determination of doped graphene is vital to understand its material properties. Motivated by the recently synthesized boron-doped graphene with relatively high concentration, here we employ machine learning methods to search the most stable structures of doped boron atoms in graphene, in conjunction with the atomistic simulations. From the determined stable structures, we find that in the free-standing pristine graphene, the doped boron atoms energetically prefer to substitute for the carbon atoms at different sublattice sites and that the para configuration of boron-boron pair is dominant in the cases of high boron concentrations. The boron doping can increase the work function of graphene by 0.7 eV for a boron content higher than 3.1%.

  17. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    PubMed

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. METHOD OF COATING SURFACES WITH BORON

    DOEpatents

    Martin, G.R.

    1949-10-11

    A method of forming a thin coating of boron on metallic, glass, or other surfaces is described. The method comprises heating the article to be coated to a temperature of about 550 d C in an evacuated chamber and passing trimethyl boron, triethyl boron, or tripropyl boron in the vapor phase and under reduced pressure into contact with the heated surface causing boron to be deposited in a thin film.

  19. Insights into the Mechanisms Underlying Boron Homeostasis in Plants

    PubMed Central

    Yoshinari, Akira; Takano, Junpei

    2017-01-01

    Boron is an essential element for plants but is toxic in excess. Therefore, plants must adapt to both limiting and excess boron conditions for normal growth. Boron transport in plants is primarily based on three transport mechanisms across the plasma membrane: passive diffusion of boric acid, facilitated diffusion of boric acid via channels, and export of borate anion via transporters. Under boron -limiting conditions, boric acid channels and borate exporters function in the uptake and translocation of boron to support growth of various plant species. In Arabidopsis thaliana, NIP5;1 and BOR1 are located in the plasma membrane and polarized toward soil and stele, respectively, in various root cells, for efficient transport of boron from the soil to the stele. Importantly, sufficient levels of boron induce downregulation of NIP5;1 and BOR1 through mRNA degradation and proteolysis through endocytosis, respectively. In addition, borate exporters, such as Arabidopsis BOR4 and barley Bot1, function in boron exclusion from tissues and cells under conditions of excess boron. Thus, plants actively regulate intracellular localization and abundance of transport proteins to maintain boron homeostasis. In this review, the physiological roles and regulatory mechanisms of intracellular localization and abundance of boron transport proteins are discussed. PMID:29204148

  20. Boron sorption from aqueous solution by hydrotalcite and its preliminary application in geothermal water deboronation.

    PubMed

    Guo, Qinghai; Zhang, Yin; Cao, Yaowu; Wang, Yanxin; Yan, Weide

    2013-11-01

    Hydrotalcite and its calcination product were used to treat pure water spiked with various concentrations of boron and geothermal water containing boron as a major undesirable element. The kinetics process of boron sorption by uncalcined hydrotalcite is controlled by the diffusion of boron from bulk solution to sorbent-solution boundary film and its exchange with interlayer chloride of hydrotalcite, whereas the removal rate of boron by calcined hydrotalcite rests with the restoration process of its layered structure. The results of isotherm sorption experiments reveal that calcined hydrotalcite generally has much stronger ability to lower solution boron concentration than uncalcined hydrotalcite. The combination of adsorption of boron on the residue of MgO-Al2O3 solid solution and intercalation of boron into the reconstructed hydrotalcite structure due to "structural memory effect" is the basic mechanism based on which the greater boron removal by calcined hydrotalcite was achieved. As 15 geothermal water samples were used to test the deboronation ability of calcined hydrotalcite at 65 °C, much lower boron removal efficiencies were observed. The competitive sorption of the other anions in geothermal water, such as HCO3-, SO4(2-), and F-, is the reason why calcined hydrotalcite could not remove boron from geothermal water as effectively as from pure boron solution. However, boron removal percents ranging from 89.3 to 99.0% could be obtained if 50 times of sorbent were added to the geothermal water samples. Calcined hydrotalcite is a good candidate for deboronation of geothermal water.

  1. A custom-tailored FAMOS burn-up meter for VVER 440 fuel assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, G.G.; Golochtchapov, S.; Glazov, A.G.

    1995-12-31

    The FAMOS fuel assembly monitoring system had been originally developed for monitoring irradiated fuel assemblies of the Karlsruhe Nuclear Research Center concentrating on neutron detection systems for special applications.The measurements in the past had demonstrated that FAMOS can perform precise measurements to control or measure with accuracy the main physical parameters of spent fuel. The FAMOS 3 system is specialized for burn-up determination of fuel assemblies. Thus it is possible to take into account the burn-up for the purposes of storage and transportation. The Kola NPP VVER 440 requirements necessitated developing an especially adopted FAMOS 3 system. In addition tomore » the passive neutron measurement, a gross gamma detection and a boron concentration monitoring system are implemented. The new system was constructed as well as tested in laboratory experiments. The monitoring system has been delivered to the customer and is ready for use.« less

  2. An Overview on the Developments and Improvements of a Treatment Planning System for BNCT

    NASA Astrophysics Data System (ADS)

    Cerullo, N.; Daquino, G. G.; Muzi, L.

    2006-06-01

    Boron Neutron Capture Therapy (BNCT) is a radiation therapy for cancer that employs a neutron beam and a /sup 10/B-loaded drug to selectively kill tumor cells whilst sparing surrounding healthy tissues (HT). In conventional radiation therapy, treatment planning systems (TPSs) implementing simplified models of radiation transport and dose deposition allow to efficiently optimize all the relevant parameters prior to the patient's irradiation. This simplified approach is not feasible in BNCT, because the presence of neutrons requires the use of more complex radiation transport models. For this reason, current BNCT TPSs routinely perform several radiation transport simulations based on the Monte Carlo method. Our team has been involved in BNCT TPS research since 1996, introducing the original trait of employing in the simulation a three-dimensional map of the highly heterogeneous boron distribution in tissues, obtained through PET scanning of the target region. This approach differs markedly from the standard one, in which boron concentration is assumed to be uniform in each "macro region" within the patient's head, and its value is estimated on the basis of blood sampling. The first result of this research was the prototype software CARONTE, employed to test the feasibility of the new approach and to carry out a comparative study by applying the two different approaches to the same test case. The results, presented in this paper in terms of the computed physical dose rate due to the /sup 10/B reaction, show how the different assumptions made in the two approaches can significantly influence important TP parameters. This led to the development of Boron Distribution TP Software (BDTPS), an original and complete TPS. The different phases of the experimental validation of BDTPS, which included the design and construction of an ad hoc phantom able to host a number of vials loaded with /sup 10/B solutions, is presented here. The phantom, which subsequently underwent computed tomography (CT) and positron emission tomography (PET) scanning, was irradiated in the High Flux Reactor (HFR) at JRC, Petten, The Netherlands.

  3. New functionalized mercaptoundecahydrododecaborate derivatives for potential application in boron neutron capture therapy: synthesis, characterization and dynamic visualization in cells.

    PubMed

    Genady, Afaf R; Ioppolo, Joseph A; Azaam, Mohamed M; El-Zaria, Mohamed E

    2015-03-26

    A series of mercaptoundecahydrododecaborate (B12H11SH(2-), BSH) bearing mono- and dicarboxyalkyl derivatives was prepared, characterized, and their reactivity towards amidation and esterification in DMF was evaluated. Symmetrical alkylation of BSH was achieved by treatment with primary haloalkyl carboxylic acids in aqueous acetonitrile to produce S,S-bis(carboxyalkyl)sulfonium-undecahydro-closo-dodecaborate tetramethylammonium salts. Unsymmetrically substituted sulfonium salts were obtained through a similar treatment of cyanoethylthioether-undecahydro-closo-dodecaborate tetramethylammonium salt with haloalkyl carboxylic acid. Selective removal of the remaining cyanoethyl group upon treatment with tetramethylammonium hydroxide yielded S-carboxyalkyl-thioether-undecahydro-closo-dodecaborate ditetramethylammonium salts. N,N'-dicyclohexylcarbodiimide (DCC) activated amidation of S,S-bis(carboxyalkyl)sulfonium-undecahydro-closo-dodecaborate or S-carboxyalkyl-thioether-undecahydro-closo-dodecaborate tetramethylammonium salts with propargylamine provided the opportunity to install terminal acetylene groups for further conjugation. These compounds acted as powerful building blocks for the synthesis of a broad range of 1,4-disubstituted 1,2,3-triazole products in high yields, utilizing the Cu(I)-mediated click cycloaddition reaction. The synthesis of BSH-lipid with a two-tailed moiety was also achieved, by esterification of S,S-bis(carboxyethyl)sulfoniumundecahydro-closo-dodecaborate(1-) tetramethylammonium salt with 1,2-O-distearoyl-sn-3-glycerol, which may prove useful in the liposomal boron delivery system. The bio-compatibility of the azide-alkyne click reaction was then utilized by performing this reaction in cell culture. The distribution of BSH in HeLa cells could be visualized by treating the cells first with a BSH-alkyne compound and then with Alexa Fluor 488(®) azide dye. The BSH-dye conjugate, which did not wash out, revealed the distribution of boron in the HeLa cells. Cytotoxicity assays of these BSH derivatives revealed that the synthesized BSH-conjugated triazoles possessed low cytotoxicity in HeLa cancer cells. Of these compounds, BSH conjugated triazole 15 induced a significant increase in the level of boron accumulation in HeLa cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Development of magnetic resonance technology for noninvasive boron quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, K.M.

    1990-11-01

    Boron magnetic resonance imaging (MRI) and spectroscopy (MRS) were developed in support of the noninvasive boron quantification task of the Idaho National Engineering Laboratory (INEL) Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNCT) program. The hardware and software described in this report are modifications specific to a GE Signa{trademark} MRI system, release 3.X and are necessary for boron magnetic resonance operation. The technology developed in this task has been applied to obtaining animal pharmacokinetic data of boron compounds (drug time response) and the in-vivo localization of boron in animal tissue noninvasively. 9 refs., 21 figs.

  5. Special features of the technology of boronizing steel in a calcium chloride melt

    NASA Astrophysics Data System (ADS)

    Chernov, Ya. B.; Anfinogenov, A. I.; Veselov, I. N.

    1999-12-01

    A technology for hardening machine parts and tools by boronizing in molten calcium chloride with amorphous-boron powder in electrode salt baths has been developed with the aim of creating a closed cycle of utilizing the raw materials and the washing water. A process of boronizing that includes quenching and tempering of the boronized articles is described. The quenching medium is an ecologically safe and readily available aqueous solution of calcium chloride. The process envisages return of the melt components to the boronizing bath. Boronizing by the suggested method was tested for different classes of steel, namely, structural and tool steels for cold and hot deformation. The wear resistance of the boronized steels was studied.

  6. Fabrication of boron sputter targets

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.

    1995-02-28

    A process is disclosed for fabricating high density boron sputtering targets with sufficient mechanical strength to function reliably at typical magnetron sputtering power densities and at normal process parameters. The process involves the fabrication of a high density boron monolithe by hot isostatically compacting high purity (99.9%) boron powder, machining the boron monolithe into the final dimensions, and brazing the finished boron piece to a matching boron carbide (B{sub 4}C) piece, by placing aluminum foil there between and applying pressure and heat in a vacuum. An alternative is the application of aluminum metallization to the back of the boron monolithe by vacuum deposition. Also, a titanium based vacuum braze alloy can be used in place of the aluminum foil. 7 figs.

  7. Process of Making Boron-Fiber Reinforced Composite Tape

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor); Johnston, Norman J. (Inventor); Marchello, Joseph M. (Inventor)

    2002-01-01

    The invention is an apparatus and method for producing a hybrid boron reinforced polymer matrix composition from powder pre-impregnated fiber tow bundles and a linear array of boron fibers. The boron fibers are applied onto the powder pre-impregnated fiber tow bundles and then are processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the powder pre-impregnated fiber tow bundles with the boron fibers become a hybrid boron reinforced polymer matrix composite tape. A driving mechanism pulls the powder pre-impregnated fiber tow bundles with boron fibers through the processing line of the apparatus and a take-up spool collects the formed hybrid boron-fiber reinforced polymer matrix composite tape.

  8. Experimental Study on Application of Boron Mud Secondary Resource to Oxidized Pellets Production

    NASA Astrophysics Data System (ADS)

    Fu, Xiao-Jiao; Chu, Man-Sheng; Zhao, Jia-Qi; Chen, Shuang-Yin; Liu, Zheng-Gen; Wang, Si-Yuan

    2017-07-01

    In order to realize comprehensive and massive treatment of boron mud secondary resource, fundamental study on boron mud applied to oxidized pellets production as additive was carried out in the paper under laboratory conditions. The effects of boron mud on the performance of oxidized pellets were investigated systemically, and boron mud was combined with other boron-rich material innovatively. The results showed that, within certain limits, boron mud can improve properties of oxidized pellets. The bentonite content decreased to 0.3 % when adding 1.0 % boron mud additive and the pellets met blast furnace requirements. With the combination additive content 0.8 %, bentonite content can be further decreased to 0.2 %, and the pellets properties were better than base pellet. Therefore, it was an effective way to reduce environmental pollution and optimize blast furnace operation by developing boron mud secondary resource as pellets additive.

  9. Boron removal in radioactive liquid waste by forward osmosis membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doo Seong Hwang; Hei Min Choi; Kune Woo Lee

    2013-07-01

    This study investigated the treatment of boric acid contained in liquid radioactive waste using a forward osmosis membrane. The boron permeation through the membrane depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7 and increases with an increase of the osmotic driving force. The boron flux decreases slightly with the salt concentration, but is not heavily influenced by a low salt concentration. The boron flux increases linearly with the concentration of boron.more » No element except for boron was permeated through the FO membrane in the multi-component system. The maximum boron flux is obtained in an active layer facing a draw solution orientation of the CTA-ES membrane under conditions of less than pH 7 and high osmotic pressure. (authors)« less

  10. Doped Boron Carbide-Based Polymers: Fundamental Studies of a Novel Class of Materials for Enhanced Neutron Detection

    DTIC Science & Technology

    2016-03-01

    CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9...SPONSORING / MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12

  11. Metal-matrix radiation-protective composite materials based on aluminum

    NASA Astrophysics Data System (ADS)

    Cherdyntsev, V. V.; Gorshenkov, M. V.; Danilov, V. D.; Kaloshkin, S. D.; Gul'bin, V. N.

    2013-05-01

    A method of mechanical activation providing a homogeneous distribution of reinforcing boron-bearing components and tungsten nanopowder in the matrix is recommended for making an aluminum-based radiation- protective material. Joint mechanical activation and subsequent extrusion are used to produce aluminum- based composites. The structure and the physical, mechanical and tribological characteristics of the composite materials are studied.

  12. Temporally and spatially resolved plasma spectroscopy in pulsed laser deposition of ultra-thin boron nitride films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glavin, Nicholas R., E-mail: nicholas.glavin.1@us.af.mil, E-mail: andrey.voevodin@us.af.mil; School of Mechanical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907; Muratore, Christopher

    2015-04-28

    Physical vapor deposition (PVD) has recently been investigated as a viable, alternative growth technique for two-dimensional materials with multiple benefits over other vapor deposition synthesis methods. The high kinetic energies and chemical reactivities of the condensing species formed from PVD processes can facilitate growth over large areas and at reduced substrate temperatures. In this study, chemistry, kinetic energies, time of flight data, and spatial distributions within a PVD plasma plume ablated from a boron nitride (BN) target by a KrF laser at different pressures of nitrogen gas were investigated. Time resolved spectroscopy and wavelength specific imaging were used to identifymore » and track atomic neutral and ionized species including B{sup +}, B*, N{sup +}, N*, and molecular species including N{sub 2}*, N{sub 2}{sup +}, and BN. Formation and decay of these species formed both from ablation of the target and from interactions with the background gas were investigated and provided insights into fundamental growth mechanisms of continuous, amorphous boron nitride thin films. The correlation of the plasma diagnostic results with film chemical composition and thickness uniformity studies helped to identify that a predominant mechanism for BN film formation is condensation surface recombination of boron ions and neutral atomic nitrogen species. These species arrive nearly simultaneously to the substrate location, and BN formation occurs microseconds before arrival of majority of N{sup +} ions generated by plume collisions with background molecular nitrogen. The energetic nature and extended dwelling time of incident N{sup +} ions at the substrate location was found to negatively impact resulting BN film stoichiometry and thickness. Growth of stoichiometric films was optimized at enriched concentrations of ionized boron and neutral atomic nitrogen in plasma near the condensation surface, providing few nanometer thick films with 1:1 BN stoichiometry and good thicknesses uniformity over macroscopic areas.« less

  13. Ferromagnetism and semiconducting of boron nanowires

    PubMed Central

    2012-01-01

    More recently, motivated by extensively technical applications of carbon nanostructures, there is a growing interest in exploring novel non-carbon nanostructures. As the nearest neighbor of carbon in the periodic table, boron has exceptional properties of low volatility and high melting point and is stronger than steel, harder than corundum, and lighter than aluminum. Boron nanostructures thus are expected to have broad applications in various circumstances. In this contribution, we have performed a systematical study of the stability and electronic and magnetic properties of boron nanowires using the spin-polarized density functional calculations. Our calculations have revealed that there are six stable configurations of boron nanowires obtained by growing along different base vectors from the unit cell of the bulk α-rhombohedral boron (α-B) and β-rhombohedral boron (β-B). Well known, the boron bulk is usually metallic without magnetism. However, theoretical results about the magnetic and electronic properties showed that, whether for the α-B-based or the β-B-based nanowires, their magnetism is dependent on the growing direction. When the boron nanowires grow along the base vector [001], they exhibit ferromagnetism and have the magnetic moments of 1.98 and 2.62 μB, respectively, for the α-c [001] and β-c [001] directions. Electronically, when the boron nanowire grows along the α-c [001] direction, it shows semiconducting and has the direct bandgap of 0.19 eV. These results showed that boron nanowires possess the unique direction dependence of the magnetic and semiconducting behaviors, which are distinctly different from that of the bulk boron. Therefore, these theoretical findings would bring boron nanowires to have many promising applications that are novel for the boron bulk. PMID:23244063

  14. Boron and silicon: Effects on growth, plasma lipids, urinary cyclic AMP and bone and brain mineral composition of male rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaborn, C.D.; Nielsen, F.H.

    1994-06-01

    Because boron resembles silicon in its chemical properties, an experiment was performed to determine if excessive dietary boron would affect the response to silicon deprivation and, conversely, if silicon would influence the effects of an excessive intake of boron. Male weanling Sprague-Dawley rats were assigned to groups of 6 or 12 in a two-by-two factorially arranged experiment. Supplemented to a ground corn/casein diet containing 1.2 [mu]g silicon and 3 [mu]g boron per gram were silicon as sodium metasilicate at 0 or 50 [mu]g/g and boron as orthoboric acid at 0 or 500 [mu]g/g diet. At nine weeks, animals fed highmore » dietary boron had significantly decreased final body weights, liver-weight-to-body-weight ratios, urinary cAMP concentrations, plasma triglyceride, cholesterol, glycine, valine, leucine, and lysine concentrations and skull copper, sodium, and manganese concentrations. High dietary boron also significantly increased brain-weight-to-body-weight ratios, magnesium concentrations of femur, brain, and plasma, zinc concentration of femur, and iron concentration of skull. The bone mineral findings suggest that excess dietary boron exerts subtle effects on bone composition. Dietary silicon affected blood urea nitrogen, hematocrit, hemoglobin, and the concentrations of plasma threonine and aspartic acid in animals fed excess boron. Depression of the testes-weight-to-body-weight ratio of animals fed 500 [mu]g boron per gram diet was most marked in animals not fed silicon. Although excessive dietary boron did not markedly enhanced the response of rats to silicon deprivation, dietary silicon affected their response to high dietary boron. Thus, dietary silicon apparently can influence boron toxicity.« less

  15. Boron Nitride Nanotubes

    NASA Technical Reports Server (NTRS)

    Jordan, Kevin (Inventor); Smith, Michael W. (Inventor); Park, Cheol (Inventor)

    2012-01-01

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  16. Boron nitride nanotubes

    DOEpatents

    Smith, Michael W [Newport News, VA; Jordan, Kevin [Newport News, VA; Park, Cheol [Yorktown, VA

    2012-06-06

    Boron nitride nanotubes are prepared by a process which includes: (a) creating a source of boron vapor; (b) mixing the boron vapor with nitrogen gas so that a mixture of boron vapor and nitrogen gas is present at a nucleation site, which is a surface, the nitrogen gas being provided at a pressure elevated above atmospheric, e.g., from greater than about 2 atmospheres up to about 250 atmospheres; and (c) harvesting boron nitride nanotubes, which are formed at the nucleation site.

  17. Plasma boron and the effects of boron supplementation in males.

    PubMed Central

    Green, N R; Ferrando, A A

    1994-01-01

    Recently, a proliferation of athletic supplements has been marketed touting boron as an ergogenic aid capable of increasing testosterone. The effect of boron supplementation was investigated in male bodybuilders. Ten male bodybuilders (aged 20 to 26) were given a 2.5-mg boron supplement, while nine male bodybuilders (aged 21 to 27) were given a placebo for 7 weeks. Plasma total and free testosterone, plasma boron, lean body mass, and strength measurements were determined on day 1 and day 49 of the study. A microwave digestion procedure followed by inductively coupled argon plasma spectroscopy was used for boron determination. Twelve subjects had boron values at or above the detection limit with median value of 25 ng/ml (16 ng/ml lower quartile and 33 ng/ml upper quartile). Of the ten subjects receiving boron supplements, six had an increase in their plasma boron. Analysis of variance indicated no significant effect of boron supplementation on any of the other dependent variables. Both groups demonstrated significant increases in total testosterone (p < 0.01), lean body mass (p < 0.01), and one repetition maximum (RM) squat (p < 0.001) and one RM bench press (p < 0.01). The findings suggest that 7 weeks of bodybuilding can increase total testosterone, lean body mass, and strength in lesser-trained bodybuilders, but boron supplementation affects these variables not at all. PMID:7889885

  18. Microwave sintering of boron carbide

    DOEpatents

    Blake, R.D.; Katz, J.D.; Petrovic, J.J.; Sheinberg, H.

    1988-06-10

    A method for forming boron carbide into a particular shape and densifying the green boron carbide shape. Boron carbide in powder form is pressed into a green shape and then sintered, using a microwave oven, to obtain a dense boron carbide body. Densities of greater than 95% of theoretical density have been obtained. 1 tab.

  19. Hydrogen adsorption capacities of multi-walled boron nitride nanotubes and nanotube arrays: a grand canonical Monte Carlo study.

    PubMed

    Ahadi, Zohreh; Shadman, Muhammad; Yeganegi, Saeed; Asgari, Farid

    2012-07-01

    Hydrogen adsorption in multi-walled boron nitride nanotubes and their arrays was studied using grand canonical Monte Carlo simulation. The results show that hydrogen storage increases with tube diameter and the distance between the tubes in multi-walled boron nitride nanotube arrays. Also, triple-walled boron nitride nanotubes present the lowest level of hydrogen physisorption, double-walled boron nitride nanotubes adsorb hydrogen better when the diameter of the inner tube diameter is sufficiently large, and single-walled boron nitride nanotubes adsorb hydrogen well when the tube diameter is small enough. Boron nitride nanotube arrays adsorb hydrogen, but the percentage of adsorbed hydrogen (by weight) in boron nitride nanotube arrays is rather similar to that found in multi-walled boron nitride nanotubes. Also, when the Langmuir and Langmuir-Freundlich equations were fitted to the simulated data, it was found that multi-layer adsorptivity occurs more prominently as the number of walls and the tube diameter increase. However, in single-walled boron nitride nanotubes with a small diameter, the dominant mechanism is monolayer adsorptivity.

  20. Removal of boron (B) from waste liquors.

    PubMed

    Jiang, J Q; Xu, Y; Simon, J; Quill, K; Shettle, K

    2006-01-01

    This paper explores the use of electrocoagulation to remove boron from waste effluent in comparison with alum coagulation. In treating model test wastes, greater boron removals were achieved with electrocoagulation at low doses than conventional alum coagulation when reaction was undertaken for the same conditions (pH 8.5, and initial boron concentration was 500 mg/L). Al electrocoagulation can achieve good boron removal performance (68.3%) at a dose of 2.1 (as molar ratio of Al:B, and for current density of 62.1 A/m2), while alum coagulation can only achieve the maximum boron removal of 56% at a dose of 2.4. Also, Al electrocoagulation can remove 15-20% more boron than alum coagulation for the same dose compared in the treatment of both model test wastes and industry effluent. The estimation of running costs shows that to achieve 75% boron removal from industry waste effluent, i.e. removing 150 g of boron from 1 m3 of effluent, electrocoagulation was 6.2 times cheaper than alum coagulation. The economic advantage of electrocoagulation in the treatment of boron-containing waste effluent is thus significant.

  1. Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    PubMed Central

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  2. Morphological Transition in Diamond Thin-Films Induced by Boron in a Microwave Plasma Deposition Process.

    PubMed

    Baker, Paul A; Goodloe, David R; Vohra, Yogesh K

    2017-11-14

    The purpose of this study is to understand the basic mechanisms responsible for the synthesis of nanostructured diamond films in a microwave plasma chemical vapor deposition (MPCVD) process and to identify plasma chemistry suitable for controlling the morphology and electrical properties of deposited films. The nanostructured diamond films were synthesized by MPCVD on Ti-6Al-4V alloy substrates using H₂/CH₄/N₂ precursor gases and the plasma chemistry was monitored by the optical emission spectroscopy (OES). The synthesized thin-films were characterized by x -ray diffraction and scanning electron microscopy. The addition of B₂H₆ to the feedgas during MPCVD of diamond thin-films changes the crystal grain size from nanometer to micron scale. Nanostructured diamond films grown with H₂/CH₄/N₂ gases demonstrate a broad (111) Bragg x -ray diffraction peak (Full-Width at Half-Maximum (FWHM) = 0.93° 2θ), indicating a small grain size, whereas scans show a definite sharpening of the diamond (111) peak (FWHM = 0.30° 2θ) with the addition of boron. OES showed a decrease in CN (carbon-nitrogen) radical in the plasma with B₂H₆ addition to the gas mixture. Our study indicates that CN radical plays a critical role in the synthesis of nanostructured diamond films and suppression of CN radical by boron-addition in the plasma causes a morphological transition to microcrystalline diamond.

  3. Direct separation of boron from Na- and Ca-rich matrices by sublimation for stable isotope measurement by MC-ICP-MS.

    PubMed

    Wang, Bo-Shian; You, Chen-Feng; Huang, Kuo-Fang; Wu, Shein-Fu; Aggarwal, Suresh Kumar; Chung, Chuan-Hsiung; Lin, Pei-Ying

    2010-09-15

    An improved technique for precise and accurate determination of boron isotopic composition in Na-rich natural waters (groundwater, seawater) and marine biogenic carbonates was developed. This study used a 'micro-sublimation' technique to separate B from natural sample matrices in place of the conventional ion-exchange extraction. By adjusting analyte to appropriate pH, quantitative recovery of boron can be achieved (>98%) and the B procedural blank is limited to <8 pg. An additional mass bias effect in MC-ICP-MS was observed which could not be improved via the standard-sample-standard bracketing or the 'pseudo internal' normalization by Li. Therefore a standard other than NBS SRM 951 was used to monitor plasma condition in order to maintain analytical accuracy. An isotope cross-calibration with results from TIMS shows that the space-charge mass bias on MC-ICP-MS can be successfully corrected using off-line mathematical manipulation. Several reference materials, including the seawater IAPSO and two groundwater standards IAEA-B-2 and IAEA-B-3, were used to validate this approach. We found that the delta(11)B of the reference coral JCp-1 was 24.22+/-0.28 per thousand, corresponding to seawater pH based on the coral delta(11)B-pH function. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Method for preparing boron-carbide articles

    DOEpatents

    Benton, S.T.; Masters, D.R.

    1975-10-21

    The invention is directed to the preparation of boron carbide articles of various configurations. A stoichiometric mixture of particulate boron and carbon is confined in a suitable mold, heated to a temperature in the range of about 1250 to 1500$sup 0$C for effecting a solid state diffusion reaction between the boron and carbon for forming the boron carbide (B$sub 4$C), and thereafter the resulting boron-carbide particles are hot-pressed at a temperature in the range of about 1800 to 2200$sup 0$C and a pressure in the range of about 1000 to 4000 psi for densifying and sintering the boron carbide into the desired article.

  5. Boron coating on boron nitride coated nuclear fuels by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Durmazuçar, Hasan H.; Gündüz, Güngör

    2000-12-01

    Uranium dioxide-only and uranium dioxide-gadolinium oxide (5% and 10%) ceramic nuclear fuel pellets which were already coated with boron nitride were coated with thin boron layer by chemical vapor deposition to increase the burn-up efficiency of the fuel during reactor operation. Coating was accomplished from the reaction of boron trichloride with hydrogen at 1250 K in a tube furnace, and then sintering at 1400 and 1525 K. The deposited boron was identified by infrared spectrum. The morphology of the coating was studied by using scanning electron microscope. The plate, grainy and string (fiber)-like boron structures were observed.

  6. Excellent electrical conductivity of the exfoliated and fluorinated hexagonal boron nitride nanosheets.

    PubMed

    Xue, Yafang; Liu, Qian; He, Guanjie; Xu, Kaibing; Jiang, Lin; Hu, Xianghua; Hu, Junqing

    2013-01-24

    The insulator characteristic of hexagonal boron nitride limits its applications in microelectronics. In this paper, the fluorinated hexagonal boron nitride nanosheets were prepared by doping fluorine into the boron nitride nanosheets exfoliated from the bulk boron nitride in isopropanol via a facile chemical solution method with fluoboric acid; interestingly, these boron nitride nanosheets demonstrate a typical semiconductor characteristic which were studied on a new scanning tunneling microscope-transmission electron microscope holder. Since this property changes from an insulator to a semiconductor of the boron nitride, these nanosheets will be able to extend their applications in designing and fabricating electronic nanodevices.

  7. Boron nitride - Composition, optical properties, and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at. percent. The carbon and oxygen impurities were in the 5 to 8 at. percent range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  8. Boron nitride: Composition, optical properties and mechanical behavior

    NASA Technical Reports Server (NTRS)

    Pouch, John J.; Alterovitz, Samuel A.; Miyoshi, Kazuhisa; Warner, Joseph D.

    1987-01-01

    A low energy ion beam deposition technique was used to grow boron nitride films on quartz, germanium, silicon, gallium arsenide, and indium phosphate. The film structure was amorphous with evidence of a hexagonal phase. The peak boron concentration was 82 at %. The carbon and oxygen impurities were in the 5 to 8 at % range. Boron-nitrogen and boron-boron bonds were revealed by X-ray photoelectron spectroscopy. The index of refraction varied from 1.65 to 1.67 for films deposited on III-V compound semiconductors. The coefficient of friction for boron nitride in sliding contact with diamond was less than 0.1. The substrate was silicon.

  9. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  10. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  11. Effect of low temperature oxidation (LTO) in reducing boron skin in boron spin on dopant diffused emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singha, Bandana; Solanki, Chetan Singh

    Formation of boron skin is an unavoidable phenomenon in p-type emitter formation with boron dopant source. The boron skin thickness is generally less than 100 nm and difficult to remove by chemical and physical means. Low temperature oxidation (LTO) used in this work is useful in removing boron skin thickness up to 30 nm and improves the emitter performance. The effective minority carrier lifetime gets improved by more than 30% after using LTO and leakage current of the emitter gets lowered by 100 times thereby showing the importance of low temperature oxidation in boron spin on dopant diffused emitters.

  12. Sewage plume in a sand and gravel aquifer, Cape Cod, Massachusetts

    USGS Publications Warehouse

    LeBlanc, D.R.

    1982-01-01

    Secondarily treated domestic sewage has been disposed of to a sand and gravel aquifer by infiltration through sand beds at Otis Air Force Base, Massachusetts, since 1936. The disposal has formed a plume of contaminated ground water that is more than 11 ,000 feet long, is 2,500 to 3,500 feet wide and 75 feet thick, and is overlain by 20 to 50 feet of uncontaminated ground water derived from precipitation. The distributions of specific conductance, temperature, boron chloride, sodium, phosphorus, nitrogen, ammonia, nitrate, dissolved oxygen, and detergents are used to delineate the plume. The center of the plume contains up to 2.6 milligrams per liter detergents as MBAS (methylene blue active substances), 0.4 milligram per liter boron, 20 milligrams per liter ammonia-nitrogen, and specific conductance as high as 405 micromhos per centimeter. Corresponding levels in uncontaminated ground water are less than 0.1 milligram per liter detergents, less than 0.1 ammonia-nitrogen, less than 0.05 milligram per liter boron, and less than 80 micromhos per centimeter specific conductance. Chloride, sodium, and boron concentrations seem to be affected only by hydrodynamic dispersion. Phosphorus movement is greatly retarded by sorption. Detergent concentrations exceed 0.5 milligram per liter from 3 ,000 to 10,000 feet from the sand beds and reflect the use of nonbiodegradable detergents from 1946 through 1964. The center of the plume as far as 5,000 feet from the sand beds contains nitrogen as ammonia, no nitrate, and no dissolved oxygen. Ammonia is oxidized to nitrate gradually with distance from the center of the plume. (USGS)

  13. [Citrus boron nutrient level and its impact factors in the Three Gorges Reservoir region of Chongqing, China].

    PubMed

    Zhou, Wei; Peng, Liang-Zhi; Chun, Chang-Pin; Jiang, Cai-Lun; Ling, Li-Li; Wang, Nan-Qi; Xing, Fei; Huang, Yi

    2014-04-01

    To investigate the level of boron nutrient in citrus and its impact factors, a total of 954 citrus leaf samples and 302 soil samples were collected from representative orchards in the 12 main citrus production counties in the Three Gorges Reservoir region of Chongqing to determine the boron content in citrus leaves, as well as the relationships between leaf boron content with soil available boron content, soil pH value, cultivar, rootstock and the age of tree. Results indicated that the leaf samples from 41.6% orchards (< 35 mg x kg(-1)) and the soil samples from 89.4% orchards (< 0.5 mg x kg(-1)) were boron insufficient. The correlation of leaf boron content and soil available boron content was not significant. The soil pH, cultivar, rootstock and the age of tree did affect the leaf boron content. The leaves from the orchards with soil pH of 4.5-6.4 demonstrated significantly higher boron contents than with the soil pH of 6.5-8.5. The leaf boron contents in the different cultivars was ranged as Satsuma mandarin > pomelo > valencia orange > sweet orange > tangor > navel orange. The citrus on trifoliate orange and sour pomelo rootstocks had significantly higher leaf boron contents than on Carrizo citrange and red tangerine rootstocks. Compared with the adult citrus trees (above 8 year-old), 6.6% more of leaf samples of younger trees (3 to 8 year-old) contained boron contents in the optimum range (35-100 mg x kg(-1)).

  14. BN Bonded BN fiber article and method of manufacture

    DOEpatents

    Hamilton, Robert S.

    1981-08-18

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising a bonding compound selected from boron oxide and boric acid and a structural fiber selected from the group consisting of boron oxide, boron nitride and partially nitrided boron oxide fibers, heating the composition in an anhydrous gas to a temperature above the melting point of the compound and nitriding the resulting article in ammonia gas.

  15. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, R.K.; Bystroff, R.I.; Miller, D.E.

    1986-08-27

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  16. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2001-01-01

    A process for producing polycrystalline silicon carbide by heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  17. Boron hydride polymer coated substrates

    DOEpatents

    Pearson, Richard K.; Bystroff, Roman I.; Miller, Dale E.

    1987-01-01

    A method is disclosed for coating a substrate with a uniformly smooth layer of a boron hydride polymer. The method comprises providing a reaction chamber which contains the substrate and the boron hydride plasma. A boron hydride feed stock is introduced into the chamber simultaneously with the generation of a plasma discharge within the chamber. A boron hydride plasma of ions, electrons and free radicals which is generated by the plasma discharge interacts to form a uniformly smooth boron hydride polymer which is deposited on the substrate.

  18. Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor

    NASA Technical Reports Server (NTRS)

    Barnard, Thomas Duncan (Inventor); Lipowitz, Jonathan (Inventor); Nguyen, Kimmai Thi (Inventor)

    2000-01-01

    A process for producing polycrystalline silicon carbide includes heating an amorphous ceramic fiber that contains silicon and carbon in an environment containing boron oxide vapor. The boron oxide vapor is produced in situ by the reaction of a boron containing material such as boron carbide and an oxidizing agent such as carbon dioxide, and the amount of boron oxide vapor can be controlled by varying the amount and rate of addition of the oxidizing agent.

  19. Proposed physiologic functions of boron in plants pertinent to animal and human metabolism.

    PubMed Central

    Blevins, D G; Lukaszewski, K M

    1994-01-01

    Boron has been recognized since 1923 as an essential micronutrient element for higher plants. Over the years, many roles for boron in plants have been proposed, including functions in sugar transport, cell wall synthesis and lignification, cell wall structure, carbohydrate metabolism, RNA metabolism, respiration, indole acetic acid metabolism, phenol metabolism and membrane transport. However, the mechanism of boron involvement in each case remains unclear. Recent work has focused on two major plant-cell components: cell walls and membranes. In both, boron could play a structural role by bridging hydroxyl groups. In membranes, it could also be involved in ion transport and redox reactions by stimulating enzymes like nicotinamide adenine dinucleotide and reduced (NADH) oxidase. There is a very narrow window between the levels of boron required by and toxic to plants. The mechanisms of boron toxicity are also unknown. In nitrogen-fixing leguminous plants, foliarly applied boron causes up to a 1000% increase in the concentration of allantoic acid in leaves. In vitro studies show that boron inhibits the manganese-dependent allantoate amidohydrolase, and foliar application of manganese prior to application of boron eliminates allantoic acid accumulation in leaves. Interaction between borate and divalent cations like manganese may alter metabolic pathways, which could explain why higher concentrations of boron can be toxic to plants. PMID:7889877

  20. Monte Carlo based dosimetry for neutron capture therapy of brain tumors

    NASA Astrophysics Data System (ADS)

    Zaidi, Lilia; Belgaid, Mohamed; Khelifi, Rachid

    2016-11-01

    Boron Neutron Capture Therapy (BNCT) is a biologically targeted, radiation therapy for cancer which combines neutron irradiation with a tumor targeting agent labeled with a boron10 having a high thermal neutron capture cross section. The tumor area is subjected to the neutron irradiation. After a thermal neutron capture, the excited 11B nucleus fissions into an alpha particle and lithium recoil nucleus. The high Linear Energy Transfer (LET) emitted particles deposit their energy in a range of about 10μm, which is of the same order of cell diameter [1], at the same time other reactions due to neutron activation with body component are produced. In-phantom measurement of physical dose distribution is very important for BNCT planning validation. Determination of total absorbed dose requires complex calculations which were carried out using the Monte Carlo MCNP code [2].

  1. Final Stage in the Design of a Boron Neutron Capture Therapy facility at CEADEN, Cuba

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabal, F. Padilla; Martin, G.

    A neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of Boron Neutron Capture Therapy (BNCT). Two figures-of-merit, the therapeutic gain and the neutron fluence are utilized as beam assessment parameters. An irradiation cavity is used instead of a parallel beam port for the therapy. Calculations are performed using the MCNP5 code. After the optimization of our beam-shaper a study of the dose distribution in the head, neck, tyroids, lungs and upper and middle spine had been made. The therapeutic gain is increased whilemore » the current required for one hour treatment is decreased in comparison with the trading prototypes of NG used for BNCT.« less

  2. Boron absorption imaging in rat lung colon adenocarcinoma metastases

    NASA Astrophysics Data System (ADS)

    Altieri, S.; Bortolussi, S.; Bruschi, P.; Fossati, F.; Vittor, K.; Nano, R.; Facoetti, A.; Chiari, P.; Bakeine, J.; Clerici, A.; Ferrari, C.; Salvucci, O.

    2006-05-01

    Given the encouraging results from our previous work on the clinical application of BNCT on non-resectable, chemotherapy resistant liver metastases, we explore the possibility to extend our technique to lung metastases. A fundamental requirement for BNCT is achieving higher 10B concentrations in the metastases compared to those in healthy tissue. For this reason we developed a rat model with lung metastases in order to study the temporal distribution of 10B concentration in tissues and tumoral cells. Rats with induced lung metastases from colon adenocarcinoma were sacrificed two hours after intraperitoneal Boronphenylalanine infusion. The lungs were harvested, frozen in liquid nitrogen and subsequently histological sections underwent neutron autoradiography in the nuclear reactor Triga Mark II, University of Pavia. Our findings demonstrate higher Boron uptake in tumoral nodules compared to healthy lung parenchyma 2 hours after Boronphenylalanine infusion.

  3. Thermal neutron shield and method of manufacture

    DOEpatents

    Metzger, Bert Clayton; Brindza, Paul Daniel

    2014-03-04

    A thermal neutron shield comprising boron shielding panels with a high percentage of the element Boron. The panel is least 46% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of boron shielding panels which includes enriching the pre-cursor mixture with varying grit sizes of Boron Carbide.

  4. Synthesis, salvage, and catabolism of uridine nucleotides in boron-deficient squash roots.

    PubMed

    Lovatt, C J; Albert, L S; Tremblay, G C

    1981-12-01

    Previous work has provided evidence that plants may require boron to maintain adequate levels of pyrimidine nucleotides, suggesting that the state of boron deficiency may actually be one of pyrimidine starvation. Since the availability of pyrimidine nucleotides is influenced by their rates of synthesis, salvage, and catabolism, we compared these activities in the terminal 3 centimeters of roots excised from boron-deficient and -sufficient squash plants (Cucurbita pepo L.). Transferring 5-day-old squash plants to a boron-deficient nutrient solution resulted in cessation of root elongation within 18 hours. However, withholding boron for up to 30 hours did not result in either impaired de novo pyrimidine biosynthesis or a change in the sensitivity of the de novo pathway to regulation by end product inhibition. Boron deprivation had no significant effect on pyrimidine salvage or catabolism. These results provide evidence that boron-deficient plants are not starved for uridine nucleotides collectively. Whether a particular pyrimidine nucleotide or derivative is limiting during boron deprivation remains to be examined.

  5. Three-chain B{sub 6n+14} cages as possible precursors for the syntheses of boron fullerenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Haigang, E-mail: luhg@sxu.edu.cn; Li, Si-Dian

    Using the first principle methods, we proposed a series of three-chain boron cages B{sub 6n+14} (n = 1–12) which are mainly built by fusing three boron semi-double-rings. Their simple geometric structures (approximate D{sub 3} or C{sub 3} symmetry) facilitate their bottom-up syntheses from the hexagonal B{sub 7} and the double-chain boron clusters, such as B{sub 2}, B{sub 4}, B{sub 6}, B{sub 8}H{sub 2}, B{sub 10}H{sub 2}, B{sub 12}H{sub 2}, and the double ring B{sub 20}. The spherical shapes of these three-chain boron cages show that they could be taken as the possible precursors to further synthesize the boron fullerenes, suchmore » as B{sub 80}. Therefore, these three-chain boron cages provide a possible synthesis pathway of the boron fullerenes from the experimentally synthesized small planar boron clusters.« less

  6. Asymmetric homologation of boronic esters bearing azido and silyloxy substituents.

    PubMed

    Singh, R P; Matteson, D S

    2000-10-06

    In the asymmetric homologation of boronic esters with a (dihalomethyl)lithium, substituents that can bind metal cations tend to interfere. Accordingly, we undertook the introduction of weakly basic oxygen and nitrogen substituents into boronic esters in order to maximize the efficiency of multistep syntheses utilizing this chemistry. Silyloxy boronic esters cannot be made efficiently by direct substitution, but a (hydroxymethyl)boronic ester has been silylated in the usual manner. Conversion of alpha-halo boronic esters to alpha-azido boronic esters has been carried out with sodium azide and a tetrabutylammonium salt as phase-transfer catalyst in a two-phase system with water and either nitromethane or ethyl acetate. These are safer solvents than the previously used dichloromethane, which can form an explosive byproduct with azide ion. Boronic esters containing silyloxy or alkoxy and azido substituents have been shown to react efficiently with (dihalomethyl)lithiums, resulting in efficient asymmetric insertion of the halomethyl group into the carbon-boron bond.

  7. Boron chemicals in diagnosis and therapeutics

    PubMed Central

    Das, Bhaskar C; Thapa, Pritam; Karki, Radha; Schinke, Caroline; Das, Sasmita; Kambhampati, Suman; Banerjee, Sushanta K; Van Veldhuizen, Peter; Verma, Amit; Weiss, Louis M; Evans, Todd

    2013-01-01

    Advances in the field of boron chemistry have expanded the application of boron from material use to medicine. Boron-based drugs represent a new class of molecules that possess several biomedical applications including use as imaging agents for both optical and nuclear imaging as well as therapeutic agents with anticancer, antiviral, antibacterial, antifungal and other disease-specific activities. For example, bortezomib (Velcade®), the only drug in clinical use with boron as an active element, was approved in 2003 as a proteasome inhibitor for the treatment of multiple myeloma and non-Hodgkin’s lymphoma. Several other boron-based compounds are in various phases of clinical trials, which illustrates the promise of this approach for medicinal chemists working in the area of boron chemistry. It is expected that in the near future, several boron-containing drugs should become available in the market with better efficacy and potency than existing drugs. This article discusses the current status of the development of boron-based compounds as diagnostic and therapeutic agents in humans. PMID:23617429

  8. Lateral gas phase diffusion length of boron atoms over Si/B surfaces during CVD of pure boron layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammadi, V., E-mail: V.Mohammadi@tudelft.nl; Nihtianov, S.

    The lateral gas phase diffusion length of boron atoms, L{sub B}, along silicon and boron surfaces during chemical vapor deposition (CVD) using diborane (B{sub 2}H{sub 6}) is reported. The value of L{sub B} is critical for reliable and uniform boron layer coverage. The presented information was obtained experimentally and confirmed analytically in the boron deposition temperature range from 700 °C down to 400 °C. For this temperature range the local loading effect of the boron deposition is investigated on the micro scale. A L{sub B} = 2.2 mm was determined for boron deposition at 700 °C, while a L{sub B}more » of less than 1 mm was observed at temperatures lower than 500 °C.« less

  9. The versatility of boron in biological target engagement

    NASA Astrophysics Data System (ADS)

    Diaz, Diego B.; Yudin, Andrei K.

    2017-08-01

    Boron-containing molecules have been extensively used for the purposes of chemical sensing, biological probe development and drug discovery. Due to boron's empty p orbital, it can coordinate to heteroatoms such as oxygen and nitrogen. This reversible covalent mode of interaction has led to the use of boron as bait for nucleophilic residues in disease-associated proteins, culminating in the approval of new therapeutics that work by covalent mechanisms. Our analysis of a wide range of covalent inhibitors with electrophilic groups suggests that boron is a unique electrophile in its chameleonic ability to engage protein targets. Here we review boron's interactions with a range of protein side-chain residues and reveal that boron's properties are nuanced and arise from its uncommon coordination preferences. These mechanistic and structural insights should serve as a guide for the development of selective boron-based bioactive molecules.

  10. Methylboronic acid fertilization alleviates boron deficiency symptoms in Arabidopsis thaliana.

    PubMed

    Duran, Catherine; Arce-Johnson, Patricio; Aquea, Felipe

    2018-07-01

    Our results showed that methylboronic acid is capable of alleviating boron deficiency, enhancing plant growth, and is less toxic than boric acid at higher concentrations. Boron is an essential plant micronutrient and its deficiency occurs in several regions globally, resulting in impaired plant growth. Boron fertilization is a common agricultural practice, but the action range of boron is narrow, sharply transitioning from deficiency to toxicity. Boric acid (BA) is the most common chemical form used in agriculture. In this work, we describe that methylboronic acid (MBA) is capable of alleviating boron deficiency in Arabidopsis. MBA is a boronic acid, but does not naturally occur in soils, necessitating synthesis. Other boronic acids have been described as boron competitors in plants, inhibiting auxin biosynthesis and root development. MBA is more water-soluble than BA and delivers the same amount of boron per molecule. We observed that Arabidopsis seedlings grown in the presence of MBA presented higher numbers of lateral roots and greater main root length compared to plants grown in BA. In addition, root hair length and leaf surface area were increased using MBA as a boron fertilizer. Finally, MBA was less toxic than BA at high concentrations, producing a slight reduction in the main root length but no decrease in total chlorophyll. Our results open a new opportunity to explore the use of a synthetic form of boron in agriculture, providing a tool for future research for plant nutrition.

  11. Boron supercapacitors

    DOE PAGES

    Zhan, Cheng; Zhang, Pengfei; Dai, Sheng; ...

    2016-11-16

    Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less

  12. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    PubMed

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal. Copyright © 2015, American Association for the Advancement of Science.

  13. Boron supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Cheng; Zhang, Pengfei; Dai, Sheng

    Supercapacitors based on the electric double-layer mechanism use porous carbons or graphene as electrodes. To move beyond this paradigm, we propose boron supercapacitors to leverage two-dimensional (2D) boron sheets’ metallicity and low weight. Six 2D boron sheets from both previous theoretical design and experimental growth are chosen as test electrodes. By applying joint density functional theory (JDFT) to the electrode–electrolyte system, we examine how the 2D boron sheets charge up against applied potential. JDFT predicts that these 2D boron sheets exhibit specific capacitance on the order of 400 F/g, about four times that of graphene. As a result, our workmore » suggests that 2D boron sheets are promising electrodes for supercapacitor applications.« less

  14. Crystalline boron nitride aerogels

    DOEpatents

    Zettl, Alexander K.; Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta

    2017-04-04

    This disclosure provides methods and materials related to boron nitride aerogels. In one aspect, a material comprises an aerogel comprising boron nitride. The boron nitride has an ordered crystalline structure. The ordered crystalline structure may include atomic layers of hexagonal boron nitride lying on top of one another, with atoms contained in a first layer being superimposed on atoms contained in a second layer.

  15. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-02-06

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  16. Process for making boron nitride using sodium cyanide and boron

    DOEpatents

    Bamberger, Carlos E.

    1990-01-01

    This a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

  17. Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials.

    PubMed

    Maybeck, Vanessa; Edgington, Robert; Bongrain, Alexandre; Welch, Joseph O; Scorsone, Emanuel; Bergonzo, Philippe; Jackman, Richard B; Offenhäusser, Andreas

    2014-02-01

    The expansion of diamond-based electronics in the area of biological interfacing has not been as thoroughly explored as applications in electrochemical sensing. However, the biocompatibility of diamond, large safe electrochemical window, stability, and tunable electronic properties provide opportunities to develop new devices for interfacing with electrogenic cells. Here, the fabrication of microelectrode arrays (MEAs) with boron-doped nanocrystalline diamond (BNCD) electrodes and their interfacing with cardiomyocyte-like HL-1 cells to detect cardiac action potentials are presented. A nonreductive means of structuring doped and undoped diamond on the same substrate is shown. The resulting BNCD electrodes show high stability under mechanical stress generated by the cells. It is shown that by fabricating the entire surface of the MEA with NCD, in patterns of conductive doped, and isolating undoped regions, signal detection may be improved up to four-fold over BNCD electrodes passivated with traditional isolators. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. XPS study of ruthenium tris-bipyridine electrografted from diazonium salt derivative on microcrystalline boron doped diamond.

    PubMed

    Agnès, Charles; Arnault, Jean-Charles; Omnès, Franck; Jousselme, Bruno; Billon, Martial; Bidan, Gérard; Mailley, Pascal

    2009-12-28

    Boron doped diamond (BDD) functionalization has received an increasing interest during the last few years. Such an infatuation comes from the original properties of BDD, including chemical stability or an electrochemical window, that opens the way for the design of (bio)sensors or smart interfaces. In such a context, diazonium salts appear to be well suited for BDD functionalization as they enable covalent immobilization of functional entities such as enzymes or DNA. In this study we report microcrystalline BDD functionalization with a metallic complex, ruthenium tris(bipyridine), using the p-(tris(bipyridine)Ru(2+))phenyl diazonium salt. Electrografting using cyclic voltammetry (CV) allowed the formation of a ruthenium complex film that was finely characterized using electrochemistry and X-ray photoelectron spectroscopy (XPS). Moreover, we showed that chronopotentiometry (CP) is a convenient tool to monitor Ru complex film deposition through the control of the electrochemical pulse parameters (i.e. current density and pulse duration). Finally, such a control was demonstrated through the correlation between electrochemical and XPS characterizations.

  19. Boronate-Based Fluorescent Probes: Imaging Hydrogen Peroxide in Living Systems

    PubMed Central

    Lin, Vivian S.; Dickinson, Bryan C.; Chang, Christopher J.

    2014-01-01

    Hydrogen peroxide, a reactive oxygen species with unique chemical properties, is produced endogenously in living systems as a destructive oxidant to ward off pathogens or as a finely tuned second messenger in dynamic cellular signaling pathways. In order to understand the complex roles that hydrogen peroxide can play in biological systems, new tools to monitor hydrogen peroxide in its native settings, with high selectivity and sensitivity, are needed. Knowledge of organic synthetic reactivity provides the foundation for the molecular design of selective, functional hydrogen peroxide probes. A palette of fluorescent and luminescent probes that react chemoselectively with hydrogen peroxide has been developed, utilizing a boronate oxidation trigger. These indicators offer a variety of colors and in cellulo characteristics and have been used to examine hydrogen peroxide in a number of experimental setups, including in vitro fluorometry, confocal fluorescence microscopy, and flow cytometry. In this chapter, we provide an overview of the chemical features of these probes and information on their behavior to help researchers select the optimal probe and application. PMID:23791092

  20. Simultaneous Voltammetric Detection of Carbaryl and Paraquat Pesticides on Graphene-Modified Boron-Doped Diamond Electrode

    PubMed Central

    Pop, Aniela; Manea, Florica; Flueras, Adriana; Schoonman, Joop

    2017-01-01

    Monitoring of pesticide residues in food, beverages, and the environment requires fast, versatile, and sensitive analyzing methods. Direct electrochemical detection of pesticides could represent an efficient solution. Adequate electrode material, electrochemical technique, and optimal operation parameters define the detection method for practical application. In this study, cyclic voltammetric and differential pulse voltammetric techniques were used in order to individually and simultaneously detect two pesticides, i.e., carbaryl (CR) and paraquat (PQ), from an acetate buffer solution and also from natural apple juice. A graphene-modified boron-doped diamond electrode, denoted BDDGR, was obtained and successfully applied in the simultaneous detection of CR and PQ pesticides, using the differential pulse voltammetric technique with remarkable electroanalytical parameters in terms of sensitivity: 33.27 μA μM−1 cm−2 for CR and 31.83 μA μM−1 cm−2 for PQ. These outstanding results obtained in the acetate buffer supporting electrolyte allowed us to simultaneously detect the targeted pesticides in natural apple juice. PMID:28878151

  1. Characterization of Boron Contamination in Fluorine Implantation using Boron Trifluoride as a Source Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmeide, Matthias; Kondratenko, Serguei

    2011-01-07

    Fluorine implantation process purity was considered on different types of high current implanters. It was found that implanters equipped with an indirectly heated cathode ion source show an enhanced deep boron contamination compared to a high current implanter using a cold RF-driven multicusp ion source when boron trifluoride is used for fluorine implantations. This contamination is directly related to the source technology and thus, should be considered potentially for any implanter design using hot cathode/hot filament ion source, independently of the manufacturer.The boron contamination results from the generation of double charged boron ions in the arc chamber and the subsequentmore » charge exchange reaction to single charged boron ions taking place between the arc chamber and the extraction electrode. The generation of the double charged boron ions depends mostly on the source parameters, whereas the pressure in the region between the arc chamber and the extraction electrode is mostly responsible for the charge exchange from double charged to single charged ions. The apparent mass covers a wide range, starting at mass 11. A portion of boron ions with energies of (19/11) times higher than fluorine energy has the same magnetic rigidity as fluorine beam and cannot be separated by the analyzer magnet. The earlier described charge exchange effects between the extraction electrode and the entrance to the analyzer magnet, however, generates boron beam with a higher magnetic rigidity compared to fluorine beam and cannot cause boron contamination after mass-separation.The energetic boron contamination was studied as a function of the ion source parameters, such as gas flow, arc voltage, and source magnet settings, as well as analyzing magnet aperture resolution. This allows process optimization reducing boron contamination to the level acceptable for device performance.« less

  2. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems.

    PubMed

    Ping, Qingyun; Abu-Reesh, Ibrahim M; He, Zhen

    2016-11-01

    Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level <2mgL(-1). The ratio between the anolyte and the catholyte flow rates should be kept >22.2 in order to avoid boron accumulation in the anolyte effluent. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Biological effects of tolerable level chronic boron intake on transcription factors.

    PubMed

    Orenay Boyacioglu, Seda; Korkmaz, Mehmet; Kahraman, Erkan; Yildirim, Hatice; Bora, Selin; Ataman, Osman Yavuz

    2017-01-01

    The mechanism of boron effect on human transcription and translation has not been fully understood. In the current study it was aimed to reveal the role of boron on the expression of certain transcription factors that play key roles in many cellular pathways on human subjects chronically exposed to low amounts of boron. The boron concentrations in drinking water samples were 1.57±0.06mg/l for boron group while the corresponding value for the control group was 0.016±0.002mg/l. RNA isolation was performed using PAX gene RNA kit on the blood samples from the subjects. The RNA was then reverse transcribed into cDNA and analyzed using the Human Transcription Factors RT 2 Profiler™ PCR Arrays. While the boron amount in urine was detected as 3.56±1.47mg/day in the boron group, it was 0.72±0.30mg/day in the control group. Daily boron intake of the boron and control groups were calculated to be 6.98±3.39 and 1.18±0.41mg/day, respectively. The expression levels of the transcription factor genes were compared between the boron and control groups and no statistically significant difference was detected (P>0.05). The data suggest that boron intake at 6.98±3.39mg/day, which is the dose at which beneficial effects might be seen, does not result in toxicity at molecular level since the expression levels of transcription factors are not changed. Although boron intake over this level will seem to increase RNA synthesis, further examination of the topic is needed using new molecular epidemiological data. Copyright © 2016 Elsevier GmbH. All rights reserved.

  4. Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet.

    PubMed

    Hakki, Sema S; Dundar, Niyazi; Kayis, Seyit Ali; Hakki, Erdogan E; Hamurcu, Mehmet; Kerimoglu, Ulku; Baspinar, Nuri; Basoglu, Abdullah; Nielsen, Forrest H

    2013-04-01

    An experiment was performed to determine whether boron had a beneficial effect on bone strength and composition in rabbits with apparent adiposity induced by a high energy diet. Sixty female New Zealand rabbits, aged 8 months, were randomly divided into five groups with the following treatments for seven months: control 1, fed alfalfa hay only (5.91 MJ/kg); control 2, high energy diet (11.76 MJ and 3.88 mg boron/kg); B10, high energy diet+10 mg/kg body weight boron gavage/96 h; B30, high energy diet+30 mg/kg body weight boron gavage/96 h; B50, high energy diet+50mg/kg body weight boron gavage/96 h. Bone boron concentrations were lowest in rabbits fed the high energy diet without boron supplementation, which suggested an inferior boron status. Femur maximum breaking force was highest in the B50 rabbits. Tibia compression strength was highest in B30 and B50 rabbits. All boron treatments significantly increased calcium and magnesium concentrations, and the B30 and B50 treatments increased the phosphorus concentration in tibia of rabbits fed the high energy diet. The B30 treatment significantly increased calcium, phosphorus and magnesium concentrations in femur of rabbits fed the high energy diet. Principal component analysis of the tibia minerals showed that the three boron treatments formed a separate cluster from controls. Discriminant analysis suggested that the concentrations of the minerals in femur could predict boron treatment. The findings indicate boron has beneficial effects on bone strength and mineral composition in rabbits fed a high energy diet. Copyright © 2012 Elsevier GmbH. All rights reserved.

  5. Decreasing boron concentrations in UK rivers: insights into reductions in detergent formulations since the 1990s and within-catchment storage issues.

    PubMed

    Neal, Colin; Williams, Richard J; Bowes, Michael J; Harrass, Michael C; Neal, Margaret; Rowland, Philip; Wickham, Heather; Thacker, Sarah; Harman, Sarah; Vincent, Colin; Jarvie, Helen P

    2010-02-15

    The changing patterns of riverine boron concentration are examined for the Thames catchment in southern/southeastern England using data from 1997 to 2007. Boron concentrations are related to an independent marker for sewage effluent, sodium. The results show that boron concentrations in the main river channels have declined with time especially under baseflow conditions when sewage effluent dilution potential is at its lowest. While boron concentrations have reduced, especially under low-flow conditions, this does not fully translate to a corresponding reduction in boron flux and it seems that the "within-catchment" supplies of boron to the river are contaminated by urban sources. The estimated boron reduction in the effluent input to the river based on the changes in river chemistry is typically around 60% and this figure matches with an initial survey of more limited data for the industrial north of England. Data for effluent concentrations at eight sewage treatment works within the Kennet also indicate substantial reductions in boron concentrations: 80% reduction occurred between 2001 and 2008. For the more contaminated rivers there are issues of localised rather than catchment-wide sources and uncertainties over the extent and nature of water/boron stores. Atmospheric sources average around 32 to 61% for the cleaner and 4 to 14% for the more polluted parts. The substantial decreases in the boron concentrations correspond extremely well with the timing and extent of European wide trends for reductions in the industrial and domestic usage of boron-bearing compounds. It clearly indicates that such reductions have translated into lower average and peak concentrations of boron in the river although the full extent of these reductions has probably not yet occurred due to localised stores that are still to deplete.

  6. Boron Nanoparticles with High Hydrogen Loading: Mechanism for B-H Binding, Size Reduction, and Potential for Improved Combustibility and Specific Impulse

    DTIC Science & Technology

    2014-05-01

    particles in the sample. Mass spectrometry was, therefore, used to look for the signature of boranes in the milling jar headspace gas , and also in gases... headspace gas collected from the jar after milling in H2. For this experiment, argon was added to the initial gas mixture at a 12:1 H2:Ar ratio, in...Distribution A: approved for public release; distribution unlimited. 29    Mass spectrometry analysis. After milling selected samples, headspace gas

  7. 4. "TEST CONDUCTORS PANEL AT TEST STAND 1A, DIRECTORATE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. "TEST CONDUCTORS PANEL AT TEST STAND 1-A, DIRECTORATE OF MISSILE CAPTIVE TEST, EDWARDS AFB, 15 JAN 58, 3098.58." A photograph of the control room, with seven men watching monitors and instrument panels. Photo no. "3098 58; G-AFFTC 15 JAN 58; Test Conductors Panel T.S. 1-A". - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA

  8. An empirical model for parameters affecting energy consumption in boron removal from boron-containing wastewaters by electrocoagulation.

    PubMed

    Yilmaz, A Erdem; Boncukcuoğlu, Recep; Kocakerim, M Muhtar

    2007-06-01

    In this study, it was investigated parameters affecting energy consumption in boron removal from boron containing wastewaters prepared synthetically, via electrocoagulation method. The solution pH, initial boron concentration, dose of supporting electrolyte, current density and temperature of solution were selected as experimental parameters affecting energy consumption. The obtained experimental results showed that boron removal efficiency reached up to 99% under optimum conditions, in which solution pH was 8.0, current density 6.0 mA/cm(2), initial boron concentration 100mg/L and solution temperature 293 K. The current density was an important parameter affecting energy consumption too. High current density applied to electrocoagulation cell increased energy consumption. Increasing solution temperature caused to decrease energy consumption that high temperature decreased potential applied under constant current density. That increasing initial boron concentration and dose of supporting electrolyte caused to increase specific conductivity of solution decreased energy consumption. As a result, it was seen that energy consumption for boron removal via electrocoagulation method could be minimized at optimum conditions. An empirical model was predicted by statistically. Experimentally obtained values were fitted with values predicted from empirical model being as following; [formula in text]. Unfortunately, the conditions obtained for optimum boron removal were not the conditions obtained for minimum energy consumption. It was determined that support electrolyte must be used for increase boron removal and decrease electrical energy consumption.

  9. Evaluation of Ground-Water and Boron Sources by Use of Boron Stable-Isotope Ratios, Tritium, and Selected Water-Chemistry Constituents near Beverly Shores, Northwestern Indiana, 2004

    USGS Publications Warehouse

    Buszka, Paul M.; Fitzpatrick, John A.; Watson, Lee R.; Kay, Robert T.

    2007-01-01

    Concentrations of boron greater than the U.S. Environmental Protection Agency (USEPA) 900 ?g/L removal action level (RAL) standard were detected in water sampled by the USEPA in 2004 from three domestic wells near Beverly Shores, Indiana. The RAL regulates only human-affected concentrations of a constituent. A lack of well logs and screened depth information precluded identification of whether water from sampled wells, and their boron sources, were from human-affected or natural sources in the surficial aquifer, or associated with a previously defined natural, confined aquifer source of boron from the subtill or basal sand aquifers. A geochemically-based classification of the source of boron in ground water could potentially determine the similarity of boron to known sources or mixtures between known sources, or classify whether the relative age of the ground water predated the potential sources of contamination. The U.S. Geological Survey (USGS), in cooperation with the USEPA, investigated the use of a geochemical method that applied boron stable isotopes, and concentrations of boron, tritium, and other constituents to distinguish between natural and human-affected sources of boron in ground water and thereby determine if the RAL was applicable to the situation. Boron stable-isotope ratios and concentrations of boron in 17 ground-water samples and tritium concentrations in 9 ground-water samples collected in 2004 were used to identify geochemical differences between potential sources of boron in ground water near Beverly Shores, Indiana. Boron and d11B analyses for this investigation were made on unacidified samples to assure consistency of the result with unacidified analyses of d11B values from other investigations. Potential sources of boron included surficial-aquifer water affected by coal-combustion products (CCP) or domestic-wastewater, upward discharge of ground water from confined aquifers, and unaffected water from the surficial aquifer that was distant from human-affected boron sources. Boron concentrations in potential ground-water sources of boron were largest (15,700 to 24,400 ?g/L) in samples of CCP-affected surficial aquifer water from four wells at a CCP landfill and smallest (27 to 63 ?g/L) in three wells in the surficial aquifer that were distant from human-affected boron sources. Boron concentrations in water from the basal sand aquifer ranged from 656 ?g/L to 1,800 ?g/L. Boron concentrations in water from three domestic-wastewater-affected surficial aquifer wells ranged from 84 to 387 ?g/L. Among the representative ground-water samples, boron concentrations from all four samples of CCP-affected surficial aquifer water and four of five samples of water from the basal sand aquifer had concentrations greater than the RAL. A comparison of boron concentrations in acid-preserved and unacidified samples indicated that boron concentrations reported for this investigation may be from about 11 to 16 percent less than would be reported in a standard analysis of an acidified sample. The stable isotope boron-11 was most enriched in comparison to boron-10 in ground water from a confined aquifer, the basal sand aquifer (d11B, 24.6 to 34.0 per mil, five samples); it was most depleted in CCP-affected water from the surficial aquifer (d11B, 0.1 to 6.6 per mil, four samples). Domestic-wastewater-affected water from the surficial aquifer (d11B, 8.7 to 11.7 per mil, four samples) was enriched in boron-11, in comparison to individual samples of a borax detergent additive and a detergent with perborate bleach; it was intermediate in composition between basal sand aquifer water and CCP-affected water from the surficial aquifer. The similarity between a ground-water sample from the surficial aquifer and a hypothetical mixture of unaffected surficial aquifer and basal sand aquifer waters indicates the potential for long-term upward discharge of ground water into the surficial aquifer from one or more confined aquifers. Est

  10. The Effect of Boronizing on Metallic Alloys for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Petrova, Roumiana S.; Suwattananont, Naruemon; Samardzic, Veljko

    2008-06-01

    In this study the wear resistance, corrosion resistance, and oxidation resistance of boronized metallic alloys were investigated. Thermochemical treatment was performed by powder pack boronizing process at temperature 850-950 °C for 4 h. Saw-tooth morphology and smooth interface microstructures were observed with an optical microscope; microhardness was measured across the coating depth. The phases present in the boron coatings depend on the substrate material. High-temperature oxidation resistance was investigated and it was found that boron coating on ferrous alloys can resist temperatures up to 800 °C. The corrosion resistance of the boronized samples was improved and the corrosion rate was calculated for boronized and plain specimens. Wear testing was conducted by following the procedures of ASTM G99, ASTM D2526, and ASTM D4060. The obtained experimental results revealed that boronizing significantly improves the wear-resistance, corrosion-resistance, and oxidation resistance of metallic alloys.

  11. Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts

    NASA Astrophysics Data System (ADS)

    Lei, Zhidan; Chen, Hongbiao; Yang, Mei; Yang, Duanguang; Li, Huaming

    2017-12-01

    A low-cost boron- and oxygen-codoped porous carbon electrocatalyst towards oxygen reduction reaction (ORR) has been fabricated by a facile one-step pyrolysis approach, while a boron- and oxygen-rich polymer network was used as precursor. The boron- and oxygen-codoped carbon catalyst with high ORR electrocatalytic activity is comparable to that of Pt/C and is superior to that of catalysts doped solely with boron atoms or with oxygen atoms. Furthermore, the optimized boron- and oxygen-codoped carbon catalyst possesses excellent methanol tolerance and long-term durability in alkaline media. The high electrocatalytic activity of the dual-doped carbon catalysts can be attributed to the synergistic effects of high surface area, predominant mesostructure, abundant active oxygen-containing groups, and effective boron doping. The present results show that this boron- and oxygen-codoping strategy could be as a promising way for the preparation of highly efficient ORR catalysts.

  12. Wafer-Scale and Wrinkle-Free Epitaxial Growth of Single-Orientated Multilayer Hexagonal Boron Nitride on Sapphire.

    PubMed

    Jang, A-Rang; Hong, Seokmo; Hyun, Chohee; Yoon, Seong In; Kim, Gwangwoo; Jeong, Hu Young; Shin, Tae Joo; Park, Sung O; Wong, Kester; Kwak, Sang Kyu; Park, Noejung; Yu, Kwangnam; Choi, Eunjip; Mishchenko, Artem; Withers, Freddie; Novoselov, Kostya S; Lim, Hyunseob; Shin, Hyeon Suk

    2016-05-11

    Large-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order. A facile method for transferring hexagonal boron nitride onto other target substrates was developed, which provides the opportunity for using hexagonal boron nitride as a substrate in practical electronic circuits. A graphene field effect transistor fabricated on our hexagonal boron nitride sheets shows clear quantum oscillation and highly improved carrier mobility because the ultraflatness of the hexagonal boron nitride surface can reduce the substrate-induced degradation of the carrier mobility of two-dimensional materials.

  13. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    PubMed

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer.

  14. Stability of boron-doped graphene/copper interface: DFT, XPS and OSEE studies

    NASA Astrophysics Data System (ADS)

    Boukhvalov, D. W.; Zhidkov, I. S.; Kukharenko, A. I.; Slesarev, A. I.; Zatsepin, A. F.; Cholakh, S. O.; Kurmaev, E. Z.

    2018-05-01

    Two different types of boron-doped graphene/copper interfaces synthesized using two different flow rates of Ar through the bubbler containing the boron source were studied. X-ray photoelectron spectra (XPS) and optically stimulated electron emission (OSEE) measurements have demonstrated that boron-doped graphene coating provides a high corrosion resistivity of Cu-substrate with the light traces of the oxidation of carbon cover. The density functional theory calculations suggest that for the case of substitutional (graphitic) boron-defect only the oxidation near boron impurity is energetically favorable and creation of the vacancies that can induce the oxidation of copper substrate is energetically unfavorable. In the case of non-graphitic boron defects oxidation of the area, a nearby impurity is metastable that not only prevent oxidation but makes boron-doped graphene. Modeling of oxygen reduction reaction demonstrates high catalytic performance of these materials.

  15. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    NASA Astrophysics Data System (ADS)

    Herrera, María S.; González, Sara J.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a real patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.

  16. Treatment Planning for Accelerator-Based Boron Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrera, Maria S.; Gonzalez, Sara J.; Minsky, Daniel M.

    2010-08-04

    Glioblastoma multiforme and metastatic melanoma are frequent brain tumors in adults and presently still incurable diseases. Boron Neutron Capture Therapy (BNCT) is a promising alternative for this kind of pathologies. Accelerators have been proposed for BNCT as a way to circumvent the problem of siting reactors in hospitals and for their relative simplicity and lower cost among other advantages. Considerable effort is going into the development of accelerator-based BNCT neutron sources in Argentina. Epithermal neutron beams will be produced through appropriate proton-induced nuclear reactions and optimized beam shaping assemblies. Using these sources, computational dose distributions were evaluated in a realmore » patient with diagnosed glioblastoma treated with BNCT. The simulated irradiation was delivered in order to optimize dose to the tumors within the normal tissue constraints. Using Monte Carlo radiation transport calculations, dose distributions were generated for brain, skin and tumor. Also, the dosimetry was studied by computing cumulative dose-volume histograms for volumes of interest. The results suggest acceptable skin average dose and a significant dose delivered to tumor with low average whole brain dose for irradiation times less than 60 minutes, indicating a good performance of an accelerator-based BNCT treatment.« less

  17. Atomic-level spatial distributions of dopants on silicon surfaces: toward a microscopic understanding of surface chemical reactivity

    NASA Astrophysics Data System (ADS)

    Hamers, Robert J.; Wang, Yajun; Shan, Jun

    1996-11-01

    We have investigated the interaction of phosphine (PH 3) and diborane (B 2H 6) with the Si(001) surface using scanning tunneling microscopy, infrared spectroscopy, and ab initio molecular orbital calculations. Experiment and theory show that the formation of PSi heterodimers is energetically favorable compared with formation of PP dimers. The stability of the heterodimers arises from a large strain energy associated with formation of PP dimers. At moderate P coverages, the formation of PSi heterodimers leaves the surface with few locations where there are two adjacent reactive sites. This in turn modifies the chemical reactivity toward species such as PH 3, which require only one site to adsorb but require two adjacent sites to dissociate. Boron on Si(001) strongly segregates into localized regions of high boron concentration, separated by large regions of clean Si. This leads to a spatially-modulated chemical reactivity which during subsequent growth by chemical vapor deposition (CVD) leads to formation of a rough surface. The implications of the atomic-level spatial distribution of dopants on the rates and mechanisms of CVD growth processes are discussed.

  18. Boron- and salt-tolerant trees and shrubs for northern Nevada

    Treesearch

    Heidi Kratsch

    2012-01-01

    Boron is a mineral that, in small quantities, is essential for plant growth and development , but becomes toxic at levels above 0.5 to 1 part per million (ppm) in the soil. Excess boron may be naturally present in the soil, and it can accumulate by irrigating with water high in boron. Boron occurs naturally in arid soils originating from geologically young deposits. It...

  19. Characterization of boron carbide with an electron microprobe

    NASA Technical Reports Server (NTRS)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  20. Chemical disposition of boron in animals and humans.

    PubMed Central

    Moseman, R F

    1994-01-01

    Elemental boron was isolated in 1808. It typically occurs in nature as borates hydrated with varying amounts of water. Important compounds are boric acid and borax. Boron compounds are also used in the production of metals, enamels, and glasses. In trace amounts, boron is essential for the growth of many plants, and is found in animal and human tissues at low concentrations. Poisoning in humans has been reported as the result of accidental ingestion or use of large amounts in the treatment of burns. Boron as boric acid is fairly rapidly absorbed and excreted from the body via urine. The half-life of boric acid in humans is on the order of 1 day. Boron does not appear to accumulate in soft tissues of animals, but does accumulate in bone. Normal levels of boron in soft tissues, urine, and blood generally range from less than 0.05 ppm to no more than 10 ppm. In poisoning incidents, the amount of boric acid in brain and liver tissue has been reported to be as high as 2000 ppm. Recent studies at the National Institute of Environmental Health Sciences have indicated that boron may contribute to reduced fertility in male rodents fed 9000 ppm of boric acid in feed. Within a few days, boron levels in blood and most soft tissues quickly reached a plateau of about 15 ppm. Boron in bone did not appear to plateau, reaching 47 ppm after 7 days on the diet. Cessation of exposure to dietary boron resulted in a rapid drop in bone boron.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7889870

  1. Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components.

    PubMed

    Moghaddasi, Leyla; Bezak, Eva

    2018-03-01

    Boron neutron capture therapy (BNCT) is a biochemically-targeted type of radiotherapy, selectively delivering localized dose to tumour cells diffused in normal tissue, while minimizing normal tissue toxicity. BNCT is based on thermal neutron capture by stable [Formula: see text]B nuclei resulting in emission of short-ranged alpha particles and recoil [Formula: see text]Li nuclei. The purpose of the current work was to develop and validate a Monte Carlo BNCT beam model and to investigate contribution of individual dose components resulting of neutron interactions. A neutron beam model was developed in Geant4 and validated against published data. The neutron beam spectrum, obtained from literature for a cyclotron-produced beam, was irradiated to a water phantom with boron concentrations of 100 μg/g. The calculated percentage depth dose curves (PDDs) in the phantom were compared with published data to validate the beam model in terms of total and boron depth dose deposition. Subsequently, two sensitivity studies were conducted to quantify the impact of: (1) neutron beam spectrum, and (2) various boron concentrations on the boron dose component. Good agreement was achieved between the calculated and measured neutron beam PDDs (within 1%). The resulting boron depth dose deposition was also in agreement with measured data. The sensitivity study of several boron concentrations showed that the calculated boron dose gradually converged beyond 100 μg/g boron concentration. This results suggest that 100μg/g tumour boron concentration may be optimal and above this value limited increase in boron dose is expected for a given neutron flux.

  2. Dietary Boron and Hormone Replacement Therapy as Risk Factors for Lung Cancer in Women

    PubMed Central

    Mahabir, S.; Spitz, M. R.; Barrera, S. L.; Dong, Y. Q.; Eastham, C.; Forman, M. R.

    2012-01-01

    Hormone replacement therapy (HRT) may reduce lung cancer risk. Dietary boron may have actions similar to those of HRT; however, no previous study has reported the associations between dietary boron intake and lung cancer risk or the joint effects of boron intake and HRT use on lung cancer risk. The authors examined the associations between boron intake and the joint effects of boron intake and HRT on lung cancer risk in women. In an ongoing case-control study in Houston, Texas (July 1995 through April 2005, end date for this analysis), 763 women were diagnosed with lung cancer, and 838 were matched healthy controls with data on both diet and HRT. Multiple logistic regression analyses were conducted to assess the associations between dietary boron and HRT with lung cancer risk. After adjustment for potential confounders, the odds ratios for lung cancer with decreasing quartiles of dietary boron intake were 1.0, 1.39 (95% confidence interval (CI): 1.02, 1.90), 1.64 (95% CI: 1.20, 2.24), and 1.95 (95% CI: 1.42, 2.68) mg/day, respectively, for all women (ptrend < 0.0001). In joint-effects analyses, compared with women with high dietary boron intake who used HRT, the odds ratio for lung cancer for low dietary boron intake and no HRT use was 2.07 (95% CI: 1.53, 2.81). Boron intake was inversely associated with lung cancer in women, whereas women who consumed low boron and did not use HRT were at substantial increased odds. PMID:18343880

  3. Boron

    USDA-ARS?s Scientific Manuscript database

    Boron is an essential micronutrient element required for plant growth. Boron deficiency is wide-spread in crop plants throughout the world especially in coarse-textured soils in humid areas. Boron toxicity can also occur, especially in arid regions under irrigation. Plants respond directly to the...

  4. Ignition kinetics of boron in primary combustion products of propellant based on its unique characteristics

    NASA Astrophysics Data System (ADS)

    Ao, Wen; Wang, Yang; Wu, Shixi

    2017-07-01

    Study on the boron-based primary combustion products can bridge the gap between primary combustion and secondary combustion in solid rocket ramjets. To clarify the initial state and ignition characteristics of boron particles in the after-burning chamber of solid rocket ramjets, the elemental, composition and morphology of the primary combustion products collected under gas generator chamber pressure of 0.2 MPa and 6 MPa were investigated by energy dispersive (EDS), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy dispersive (SEM-EDS) individually. The ignition times of boron particles among the primary combustion products were determined using a high temperature tube furnace system. The BD model was adopted for numerical verification. The numerical solution procedure of boron ignition model in a real afterburner chamber was modified. The results show that the sum of B, C, O elements in the primary combustion products reaches approximately 90%. The primary combustion products are mainly consisted of B, C, and B2O3. Images of the primary combustion products present highly agglomeration, indicating an oxidation of boron surface. Numerous spherical carbon particles with a diameter around 100 nm are observed in the products. Three features of the boron in the primary combustion products are obtained, compared to virgin boron. First most of the boron lumps are covered by carbon particles on the surface. Second the mean particle size is five times larger than that of virgin boron. Third the overall initial oxide layer covered on boron surface increases its thickness by above 0.1 μm. The ignition time of boron in the primary combustion products reaches 20-30 ms under 1673-1873 K, which is quite different from virgin boron of 4 ms. Numerical calculation results show the key reason leading to such a long ignition time is the variation of the initial oxide layer thickness. In conclusion, the physicochemical properties of boron particles are found to differ with virgin boron after primary combustion process. The accurate evaluation of the initial oxide layer thickness and initial particle radius is a crucial procedure before the numerical calculation of boron ignition kinetics. Results of our study are expected to provide better insight in the simulation of solid rocket ramjets working process.

  5. Effect of Heat Treatment on Borides Precipitation and Mechanical Properties of CoCrFeNiAl1.8Cu0.7B0.3Si0.1 High-Entropy Alloy Prepared by Arc-Melting and Laser-Cladding

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Tang, H.; He, Y. Z.; Zhang, J. L.; Li, W. H.; Guo, S.

    2017-11-01

    Effects of heat treatment on borides precipitation and mechanical properties of arc-melted and laser-cladded CoCrNiFeAl1.8Cu0.7B0.3Si0.1 high-entropy alloys were comparatively studied. The arc-melted alloy contains lots of long strip borides distributed in the body-centered cubic phase, with a hardness about 643 HV0.5. Laser-cladding can effectively inhibit the boride precipitation and the laser-cladded alloy is mainly composed of a simple bcc solid solution, with a high hardness about 769 HV0.5, indicating the strengthening effect by interstitial boron atoms is greater than the strengthening by borides precipitation. Heat treatments between 800°C and 1200°C can simultaneously improve the hardness and fracture toughness of arc-melted alloys, owing to the boride spheroidization, dissolution, re-precipitation, and hence the increased boron solubility and nano-precipitation in the bcc solid solution. By contrast, the hardness of laser-cladded alloys reduce after heat treatments in the same temperature range, due to the decreased boron solubility in the matrix.

  6. Experimental set up for the irradiation of biological samples and nuclear track detectors with UV C

    PubMed Central

    Portu, Agustina Mariana; Rossini, Andrés Eugenio; Gadan, Mario Alberto; Bernaola, Omar Alberto; Thorp, Silvia Inés; Curotto, Paula; Pozzi, Emiliano César Cayetano; Cabrini, Rómulo Luis; Martin, Gisela Saint

    2016-01-01

    Aim In this work we present a methodology to produce an “imprint” of cells cultivated on a polycarbonate detector by exposure of the detector to UV C radiation. Background The distribution and concentration of 10B atoms in tissue samples coming from BNCT (Boron Neutron Capture Therapy) protocols can be determined through the quantification and analysis of the tracks forming its autoradiography image on a nuclear track detector. The location of boron atoms in the cell structure could be known more accurately by the simultaneous observation of the nuclear tracks and the sample image on the detector. Materials and Methods A UV C irradiator was constructed. The irradiance was measured along the lamp direction and at different distances. Melanoma cells were cultured on polycarbonate foils, incubated with borophenylalanine, irradiated with thermal neutrons and exposed to UV C radiation. The samples were chemically attacked with a KOH solution. Results A uniform irradiation field was established to expose the detector foils to UV C light. Cells could be seeded on the polycarbonate surface. Both imprints from cells and nuclear tracks were obtained after chemical etching. Conclusions It is possible to yield cellular imprints in polycarbonate. The nuclear tracks were mostly present inside the cells, indicating a preferential boron uptake. PMID:26933396

  7. Long-term thermal degradation and alloying constituent effects on five boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Olsen, G. C.

    1982-01-01

    Thermal exposure effects on the properties of five boron/aluminum composite systems were experimentally investigated. The composite systems were 49 volume percent boron fibers (203 micron diameter) in aluminum-alloy matrices 1100 Al, 2024 Al, 3003 Al, 5052 Al, and 6061 Al. Specimens were thermally exposed up to 10,000 hours at 500 K and 590 K, up to 500 hours at 730 K, and up to 10,000 hours at 500 K and 590 K, up to 500 hours at 730 K, and up to 2000 thermal cycles between 200 K and 590 K. Composite longitudinal and transverse tensile strengths, longitudinal compression strength, and in-plane shear strength were determined. None of the systems was severely degraded by exposure at 590 K. The best performing system was B-2024 Al. Effects of matrix alloys on degradation mechanisms were experimentally investigated. Composite specimens and individual fibers were metallurgically analyzed with a scanning electron microscope and an electron microprobe to determine failure characteristics, chemical element distribution, and reaction layer morphology. Alloying constituents were found to be affect the composite degradation mechanisms as follows: alloys containing iron, but without manganese as a stabilizer, caused increased low-temperature degradation; alloys containing magnesium, iron, or manganese caused increased degradation; and alloys containing copper caused increased fiber strength.

  8. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  9. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  10. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  11. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  12. Study of the effects of focused high-energy boron ion implantation in diamond

    NASA Astrophysics Data System (ADS)

    Ynsa, M. D.; Agulló-Rueda, F.; Gordillo, N.; Maira, A.; Moreno-Cerrada, D.; Ramos, M. A.

    2017-08-01

    Boron-doped diamond is a material with a great technological and industrial interest because of its exceptional chemical, physical and structural properties. At modest boron concentrations, insulating diamond becomes a p-type semiconductor and at higher concentrations a superconducting metal at low temperature. The most conventional preparation method used so far, has been the homogeneous incorporation of boron doping during the diamond synthesis carried out either with high-pressure sintering of crystals or by chemical vapour deposition (CVD) of films. With these methods, high boron concentration can be included without distorting significantly the diamond crystalline lattice. However, it is complicated to manufacture boron-doped microstructures. A promising alternative to produce such microstructures could be the implantation of focused high-energy boron ions, although boron fluences are limited by the damage produced in diamond. In this work, the effect of focused high-energy boron ion implantation in single crystals of diamond is studied under different irradiation fluences and conditions. Micro-Raman spectra of the sample were measured before and after annealing at 1000 °C as a function of irradiation fluence, for both superficial and buried boron implantation, to assess the changes in the diamond lattice by the creation of vacancies and defects and their degree of recovery after annealing.

  13. Chemical and structural characterization of boron carbide powders and ceramics

    NASA Astrophysics Data System (ADS)

    Kuwelkar, Kanak Anant

    Boron carbide is the material of choice for lightweight armor applications due to its extreme hardness, high Young's modulus and low specific weight. The homogeneity range in boron carbide extends from 9 to 20 at% carbon with the solubility limits not uniquely defined in literature. Over the homogeneity range, the exact lattice positions of boron and carbon atoms have not been unambiguously established, and this topic has been the consideration of significant debate over the last 60 years. The atomic configuration and positions of the boron and carbon atoms play a key role in the crystal structure of the boron carbide phases. Depending on the atomic structure, boron carbide exhibits different mechanical properties which may alter its ballistic performance under extreme dynamic conditions. This work focusses on refinement and development of analytical and chemical methods for an accurate determination of the boron carbide stoichiometry. These methods were then utilized to link structural changes of boron carbide across the solubility range to variations in mechanical properties. After an extensive assessment of the currently employed characterization techniques, it was discerned that the largest source of uncertainty in the determination of the boron carbide stoichiometry was found to arise from the method utilized to evaluate the free carbon concentration. To this end, a modified spiking technique was introduced for free carbon determination where curve fitting techniques were employed to model the asymmetry of the 002 free carbon diffraction peak based on the amorphous, disordered and graphitic nature of carbon. A relationship was then established between the relative intensities of the carbon and boron carbide peaks to the percentage of added carbon and the free-carbon content was obtained by extrapolation. Samples with varying chemistry and high purity were synthesized across the solubility range by hot pressing mixtures of amorphous boron and boron carbide. Vibrational mode frequencies and lattice parameter measurements from Rietveld refinement were correlated to the respective B:C ratios calculated using the developed characterization techniques. An expansion of the unit cell and change in slope in the lattice parameter-stoichiometry relationship were observed at more boron rich stoichiometries. These observations were justified through the proposal of a simplified structural model considering preferential substitution of boron atoms for carbon atoms in the icosahedra from 20 at% to 13.3 at% carbon, followed by formation of B-B bonds from 13.3 at % C to 9 at% C. Hardness measurements uncovered decreased hardness values in boron rich boron carbide which was attributed to the formation of weaker unit cells. Load induced amorphization was also detected in all the indented materials. Finally, experimental observations have shown that failure in boron carbide may be governed by a mechanism other than amorphization and synthesizing boron carbide with a modified microstructure at stoichiometries close to B4C may be the way forward to attain improved ballistic performance.

  14. Chemical and mechanical analysis of boron-rich boron carbide processed via spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Munhollon, Tyler Lee

    Boron carbide is a material of choice for many industrial and specialty applications due to the exceptional properties it exhibits such as high hardness, chemical inertness, low specific gravity, high neutron cross section and more. The combination of high hardness and low specific gravity makes it especially attractive for high pressure/high strain rate applications. However, boron carbide exhibits anomalous behavior when high pressures are applied. Impact pressures over the Hugoniot elastic limit result in catastrophic failure of the material. This failure has been linked to amorphization in cleavage planes and loss of shear strength. Atomistic modeling has suggested boron-rich boron carbide (B13C2) may be a better performing material than the commonly used B4C due to the elimination of amorphization and an increase in shear strength. Therefore, a clear experimental understanding of the factors that lead to the degradation of mechanical properties as well as the effects of chemistry changes in boron carbide is needed. For this reason, the goal of this thesis was to produce high purity boron carbide with varying stoichiometries for chemical and mechanical property characterization. Utilizing rapid carbothermal reduction and pressure assisted sintering, dense boron carbides with varying stoichiometries were produced. Microstructural characteristics such as impurity inclusions, porosity and grain size were controlled. The chemistry and common static mechanical properties that are of importance to superhard materials including elastic moduli, hardness and fracture toughness of the resulting boron-rich boron carbides were characterized. A series of six boron carbide samples were processed with varying amounts of amorphous boron (up to 45 wt. % amorphous boron). Samples with greater than 40 wt.% boron additions were shown to exhibit abnormal sintering behavior, making it difficult to characterize these samples. Near theoretical densities were achieved in samples with less than 40 wt. % amorphous boron additions. X-ray diffraction analysis revealed the samples to be phase pure and boron-rich. Carbon content was determined to be at or near expected values with exception of samples with greater than 40 wt. % amorphous boron additions. Raman microspectroscopy further confirmed the changes in chemistry as well as revealed the chemical homogeneity of the samples. Microstructural analysis carried out using both optical and electron imaging showed clean and consistent microstructures. The changes in the chemistry of the boron carbide samples has been shown to significantly affect the static mechanical properties. Ultrasonic wave speed measurements were used to calculate the elastic moduli which showed a clear decrease in the Young's and shear moduli with a slight increase in bulk modulus. Berkovich nano-indentation revealed a similar trend, as the hardness and fracture toughness of the material decreased with decreasing carbon content. Amorphization within 1 kg Knoop indents was shown to diminish in intensity and extent as carbon content decreased, signifying a mechanism for amorphization mitigation.

  15. The Importance of Slag Structure to Boron Removal from Silicon during the Refining Process: Insights from Raman and Nuclear Magnetic Resonance Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Qian, Guoyu; Wang, Zhi; Gong, Xuzhong; Sun, Liyuan

    2017-12-01

    Slag structure plays an important role in determining the relative ease of boron removal from silicon. Correlation between slag structure and boron removal thermodynamics was experimentally studied by Raman and nuclear magnetic resonance (NMR) spectroscopy using CaO-SiO2-Na2O slags with different optical basicities (0.6 to 0.71). Optimization of slag depolymerization leads to efficient removal of boron. The extent of nonbridged oxygen content (NBO/T) and boron removal gradually increased with an increase in optical basicity from 0.6 to 0.66: B2O3 derived from boron oxidation captured nonbridging oxygens of Q 0(Si), Q 1(Si), and Q 2(Si), and was incorporated into the silicate network in the form of Q 3(Si and B). When optical basicity increased to 0.71, NBO/T rapidly increased and boron removal decreased considerably. Quick depolymerization of Q 3(Si and B) deteriorated the stability of boron. Various structural forms of boron in the silicate network were successfully detected: the BO3 trihedrons [3]B-3Si, [3]B-2Si-1NBO, and BO3 (nonring), and the BO4 tetrahedrons BO4 (1B, 3Si) and BO4 (0B, 4Si). BO4 (1B, 3Si) was the main structure contributing to the increase of boron capacity; BO3 (nonring), detected under higher optical basicity conditions, may cause deterioration of boron removal by suppressing its oxidation.

  16. Recent progress in boron nanomaterials

    PubMed Central

    Kondo, Takahiro

    2017-01-01

    Abstract Various types of zero, one, and two-dimensional boron nanomaterials such as nanoclusters, nanowires, nanotubes, nanobelts, nanoribbons, nanosheets, and monolayer crystalline sheets named borophene have been experimentally synthesized and identified in the last 20 years. Owing to their low dimensionality, boron nanomaterials have different bonding configurations from those of three-dimensional bulk boron crystals composed of icosahedra or icosahedral fragments. The resulting intriguing physical and chemical properties of boron nanomaterials are fascinating from the viewpoint of material science. Moreover, the wide variety of boron nanomaterials themselves could be the building blocks for combining with other existing nanomaterials, molecules, atoms, and/or ions to design and create materials with new functionalities and properties. Here, the progress of the boron nanomaterials is reviewed and perspectives and future directions are described. PMID:29152014

  17. Ceramic silicon-boron-carbon fibers from organic silicon-boron-polymers

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R. (Inventor); Hsu, Ming-Ta S. (Inventor); Chen, Timothy S. (Inventor)

    1993-01-01

    Novel high strength ceramic fibers derived from boron, silicon, and carbon organic precursor polymers are discussed. The ceramic fibers are thermally stable up to and beyond 1200 C in air. The method of preparation of the boron-silicon-carbon fibers from a low oxygen content organosilicon boron precursor polymer of the general formula Si(R2)BR(sup 1) includes melt-spinning, crosslinking, and pyrolysis. Specifically, the crosslinked (or cured) precursor organic polymer fibers do not melt or deform during pyrolysis to form the silicon-boron-carbon ceramic fiber. These novel silicon-boron-carbon ceramic fibers are useful in high temperature applications because they retain tensile and other properties up to 1200 C, from 1200 to 1300 C, and in some cases higher than 1300 C.

  18. Transcriptomic analysis of boron hyperaccumulation mechanisms in Puccinellia distans.

    PubMed

    Öztürk, Saniye Elvan; Göktay, Mehmet; Has, Canan; Babaoğlu, Mehmet; Allmer, Jens; Doğanlar, Sami; Frary, Anne

    2018-05-01

    Puccinellia distans, common alkali grass, is found throughout the world and can survive in soils with boron concentrations that are lethal for other plant species. Indeed, P. distans accumulates very high levels of this element. Despite these interesting features, very little research has been performed to elucidate the boron tolerance mechanism in this species. In this study, P. distans samples were treated for three weeks with normal (0.5 mg L -1 ) and elevated (500 mg L -1 ) boron levels in hydroponic solution. Expressed sequence tags (ESTs) derived from shoot tissue were analyzed by RNA sequencing to identify genes up and down-regulated under boron stress. In this way, 3312 differentially expressed transcripts were detected, 67.7% of which were up-regulated and 32.3% of which were down-regulated in boron-treated plants. To partially confirm the RNA sequencing results, 32 randomly selected transcripts were analyzed for their expression levels in boron-treated plants. The results agreed with the expected direction of change (up or down-regulation). A total of 1652 transcripts had homologs in A. thaliana and/or O. sativa and mapped to 1107 different proteins. Functional annotation of these proteins indicated that the boron tolerance and hyperaccumulation mechanisms of P. distans involve many transcriptomic changes including: alterations in the malate pathway, changes in cell wall components that may allow sequestration of excess boron without toxic effects, and increased expression of at least one putative boron transporter and two putative aquaporins. Elucidation of the boron accumulation mechanism is important in developing approaches for bioremediation of boron contaminated soils. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Processing and characterization of boron carbide-hafnium diboride ceramics

    NASA Astrophysics Data System (ADS)

    Brown-Shaklee, Harlan James

    Hafnium diboride based ceramics are promising candidate materials for advanced aerospace and nuclear reactor components. The effectiveness of boron carbide and carbon as HfB2 sintering additives was systematically evaluated. In the first stage of the research, boron carbide and carbon additives were found to improve the densification behavior of milled HfB2 powder in part by removing oxides at the HfB2 surface during processing. Boron carbide additives reduced the hot pressing temperature of HfB2 by 150°C compared to carbon, which reduced the hot pressing temperature by ˜50°C. Reduction of oxide impurities alone could not explain the difference in sintering enhancement, however, and other mechanisms of enhancement were evaluated. Boron carbides throughout the homogeneity range were characterized to understand other mechanisms of sintering enhancement in HfB2. Heavily faulted carbon rich and boron rich boron carbides were synthesized for addition to HfB2. The greatest enhancement to densification was observed in samples containing boron- and carbon-rich compositions whereas B6.5 C provided the least enhancement to densification. It is proposed that carbon rich and boron rich boron carbides create boron and hafnium point defects in HfB2, respectively, which facilitate densification. Evaluation of the thermal conductivity (kth) between room temperature and 2000°C suggested that the stoichiometry of the boron carbide additives did not significantly affect kth of HfB2-BxC composites. The improved sinterability and the high kth (˜110 W/m-K at 300K and ˜90 W/m-K at 1000°C ) of HfB2-BxC ceramics make them excellent candidates for isotopically enriched reactor control materials.

  20. Estimation of αL, velocity, Kd and confidence limits from tracer injection test data

    USGS Publications Warehouse

    Broermann, James; Bassett, R.L.; Weeks, Edwin P.; Borgstrom, Mark

    1997-01-01

    Bromide and boron were used as tracers during an injection experiment conducted at an artificial recharge facility near Stanton, Texas. The Ogallala aquifer at the Stanton site represents a heterogeneous alluvial environment and provides the opportunity to report scale dependent dispersivities at observation distances of 2 to 15 m in this setting. Values of longitudinal dispersivities are compared with other published values. Water samples were collected at selected depths both from piezometers and from fully screened observation wells at radii of 2, 5, 10 and 15 m. An exact analytical solution is used to simulate the concentration breakthrough curves and estimate longitudinal dispersivities and velocity parameters. Greater confidence can be placed on these data because the estimated parameters are error bounded using the bootstrap method. The non-conservative behavior of boron transport in clay rich sections of the aquifer were quantified with distribution coefficients by using bromide as a conservative reference tracer.

  1. Estimation of αL, velocity, Kd, and confidence limits from tracer injection data

    USGS Publications Warehouse

    Broermann, James; Bassett, R.L.; Weeks, Edwin P.; Borgstrom, Mark

    1997-01-01

    Bromide and boron were used as tracers during an injection experiment conducted at an artificial recharge facility near Stanton, Texas. The Ogallala aquifer at the Stanton site represents a heterogeneous alluvial environment and provides the opportunity to report scale dependent dispersivities at observation distances of 2 to 15 m in this setting. Values of longitudinal dispersivities are compared with other published values. Water samples were collected at selected depths both from piezometers and from fully screened observation wells at radii of 2, 5, 10 and 15 m. An exact analytical solution is used to simulate the concentration breakthrough curves and estimate longitudinal dispersivities and velocity parameters. Greater confidence can be placed on these data because the estimated parameters are error bounded using the bootstrap method. The non-conservative behavior of boron transport in clay rich sections of the aquifer were quantified with distribution coefficients by using bromide as a conservative reference tracer.

  2. DFT, FT-IR, FT-Raman and vibrational studies of 3-methoxyphenyl boronic acid

    NASA Astrophysics Data System (ADS)

    Patil, N. R.; Hiremath, Sudhir M.; Hiremath, C. S.

    2018-05-01

    The aim of this work is to study the possible stable, geometrical molecular structure, experimental and theoretical FT-IR and FT-Raman spectroscopic methods of 3-Methoxyphenyl boronic acid (3MPBA). FT-IR and FT-Raman spectra were recorded in the region of 4000-400 cm-1 and 40000-50 cm-1 respectively. The optimized geometric structure and vibrational wavenumbers of the title compound were searched by B3LYP hybrid density functional theory method with 6-311++G (d, p) basis set. The Selectedexperimentalbandswereassignedandcharacterizedonthebasisofthescaledtheoreticalwavenumbersby their potential energy distribution (PED) of the vibrational modes obtained from VEDA 4 program. Finally, the predicted calculation results were applied to simulated FT-IR and FT-Raman spectra of the title compound, which show agreement with the observed spectra. Whereas, it is observed that, the theoretical frequencies are more than the experimental one for O-H stretching vibration modes of the title molecule.

  3. MCNP study for epithermal neutron irradiation of an isolated liver at the Finnish BNCT facility.

    PubMed

    Kotiluoto, P; Auterinen, I

    2004-11-01

    A successful boron neutron capture treatment (BNCT) of a patient with multiple liver metastases has been first given in Italy, by placing the removed organ into the thermal neutron column of the Triga research reactor of the University of Pavia. In Finland, FiR 1 Triga reactor with an epithermal neutron beam well suited for BNCT has been extensively used to irradiate patients with brain tumors such as glioblastoma and recently also head and neck tumors. In this work we have studied by MCNP Monte Carlo simulations, whether it would be beneficial to treat an isolated liver with epithermal neutrons instead of thermal ones. The results show, that the epithermal field penetrates deeper into the liver and creates a build-up distribution of the boron dose. Our results strongly encourage further studying of irradiation arrangement of an isolated liver with epithermal neutron fields.

  4. Oven rack having integral lubricious, dry porcelain surface

    DOEpatents

    Ambrose, Jeffrey A; Mackiewicz-Ludtka, Gail; Sikka, Vinod K; Qu, Jun

    2014-06-03

    A lubricious glass-coated metal cooking article capable of withstanding repeated heating and cooling between room temperature and at least 500.degree. F. without chipping or cracking the glass coating, wherein the glass coating includes about 0.1 to about 20% by weight of a homogeneously distributed dry refractory lubricant material having a particle size less than about 200 .mu.m. The lubricant material is selected from the group consisting of carbon; graphite; boron nitride; cubic boron nitride; molybdenum (FV) sulfide; molybdenum sulfide; molybdenum (IV) selenide; molybdenum selenide, tungsten (IV) sulfide; tungsten disulfide; tungsten sulfide; silicon nitride (Si.sub.3N.sub.4); TiN; TiC; TiCN; TiO.sub.2; TiAlN; CrN; SiC; diamond-like carbon; tungsten carbide (WC); zirconium oxide (ZrO.sub.2); zirconium oxide and 0.1 to 40 weight % aluminum oxide; alumina-zirconia; antimony; antimony oxide; antimony trioxide; and mixtures thereof.

  5. New approach to statistical description of fluctuating particle fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saenko, V. V.

    2009-01-15

    The probability density functions (PDFs) of the increments of fluctuating particle fluxes are investigated. It is found that the PDFs have heavy power-law tails decreasing as x{sup -{alpha}-1} at x {yields} {infinity}. This makes it possible to describe these PDFs in terms of fractionally stable distributions (FSDs) q(x; {alpha}, {beta}, {theta}, {lambda}). The parameters {alpha}, {beta}, {gamma}, and {lambda} were estimated statistically using as an example the time samples of fluctuating particle fluxes measured in the edge plasma of the L-2M stellarator. Two series of fluctuating fluxes measured before and after boronization of the vacuum chamber were processed. It ismore » shown that the increments of fluctuating fluxes are well described by DSDs. The effect of boronization on the parameters of FSDs is analyzed. An algorithm for statistically estimating the FSD parameters and a procedure for processing experimental data are described.« less

  6. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2004-06-01

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13C and 15N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13C15N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39K, 23Na and 40Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.

  7. Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feakes, D.A.; Shelly, K.; Hawthorne, M.F.

    1995-02-28

    The nido-carborane species K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] has been synthesized for use as an addend for the bilayer membrane of liposomes. Small unilamellar vesicles, composed of distearoylphosphatidylcholine/cholesterol, 1:1, and incorporating K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] in the bilayer, have been investigated in vivo. The time-course biodistribution of boron delivered by these liposomes was determined by inductively coupled plasma-atomic emission spectroscopy analyses after the injection of liposomal suspensions in BALB/c mice bearing EMT6 mammary adenocarcinomas. At the low injected doses normally used ({approx}5-10 mg of boron per kg of body weight), peak tumor boron concentrations ofmore » {approx}35 {mu}g of boron per g of tissue and tumor/blood boron ratios of {approx}8 were achieved. These values are sufficiently high for the successful application of boron neutron capture therapy. The bilayer-embedded boron compound may provide the sole boron source or, alternatively, a concentrated aqueous solution of a hydrophilic boron compound may also be encapsulated within the liposomes to provide a dose enhancement. Thus, the incorporation of both K[nido-7-CH{sub 3}(CH{sub 2}){sub 15}-7,8-C{sub 2}B{sub 9}H{sub 11}] and the hydrophilic species, Na{sub 3}[1-(2{prime}-B{sub 10}H{sub 9})-2-NH{sub 3}B{sub 10}H{sub 8}], within the same liposomes demonstrated significantly enhanced biodistribution characteristics, exemplified by maximum tumor boron concentrations of {approx} 50 {mu}g of boron per g of tissue and tumor/blood boron ratios of {approx} 6. 18 refs., 1 fig.« less

  8. Boron isotopes at the catchment scale, a new potential tool to infer critical zone processes.

    NASA Astrophysics Data System (ADS)

    Gaillardet, J.; Noireaux, J.; Braun, J. J.; Riotte, J.; Louvat, P.; Bouchez, J.; Lemarchand, D.; Muddu, S.; Mohan Kumar, M.; Candaudap, F.

    2017-12-01

    Boron is a mid-mass element that has two isotopes, 10B and 11B. These isotopes are largely fractioned by a number of chemical, biological and physical processes. Boron as a great affinity for clays and is useful for life, making it a double tracer of critical zone processes. This study focuses on the Mule Hole Critical Zone Observatory in South India. This is part of the French Research Infrastructure OZCAR and has benefited from the fruitful Indo-French collaboration (Indo-French Cell for Water Sciences) for more that 15 years. Boron and its isotopes were measured in the different compartment of the CZ in Mule Hole, vegetation, atmosphere, throughfall, soil, soil water, river water and compared to the behavior of other elements. The well constrained hydrology in Mule Hole allowed us to calculate the main fluxes affecting boron in the Critical Zone and came to the first order conclusion that the recycling of boron by vegetation is by far the most important flux within the system, reaching 15-20 times the catchment outlet flux. From an isotopic point of view, the total range of variation is measured between -3 ‰ and 77‰, with a bedrock value at 10‰ in classical delta unit, making boron a well suited tracer for constraining CZ processes. The flux of boron most enriched in heavy boron is the throughfall, showing the importance of biological processes in controlling the boron isotopic composition of the stream. Boron in soils in depleted in the heavy isotope but is enriched in boron compared to the bedrock, a surprising situation that we interpret as the legacy of a previous stage of transient weathering. These results indicate a strong decoupling between the behaviors of boron at the surface of the CZ and at depth.

  9. Growth and characterization of boron doped graphene by Hot Filament Chemical Vapor Deposition Technique (HFCVD)

    NASA Astrophysics Data System (ADS)

    Jafari, A.; Ghoranneviss, M.; Salar Elahi, A.

    2016-03-01

    Large-area boron doped graphene was synthesized on Cu foil (as a catalyst) by Hot Filament Chemical Vapor Deposition (HFCVD) using boron oxide powder and ethanol vapor. To investigate the effect of different boron percentages, grow time and the growth mechanism of boron-doped graphene, scanning electron microscopy (SEM), Raman scattering and X-ray photoelectron spectroscopy (XPS) were applied. Also in this experiment, the I-V characteristic carried out for study of electrical property of graphene with keithley 2361 system. Nucleation of graphene domains with an average domain size of ~20 μm was observed when the growth time is 9 min that has full covered on the Cu surface. The Raman spectroscopy show that the frequency of the 2D band down-shifts with B doping, consistent with the increase of the in-plane lattice constant, and a weakening of the B-C in-plane bond strength relative to that of C-C bond. Also the shifts of the G-band frequencies can be interpreted in terms of the size of the C-C ring and the changes in the electronic structure of graphene in the presence of boron atoms. The study of electrical property shows that by increasing the grow time the conductance increases which this result in agree with SEM images and graphene grain boundary. Also by increasing the boron percentage in gas mixer the conductance decreases since doping graphene with boron creates a band-gap in graphene band structure. The XPS results of B doped graphene confirm the existence of boron in doped graphene, which indicates the boron atoms doped in the graphene lattice are mainly in the form of BC3. The results showed that boron-doped graphene can be successfully synthesized using boron oxide powder and ethanol vapor via a HFCVD method and also chemical boron doping can be change the electrical conductivity of the graphene.

  10. An improved procedure for separation/purification of boron from complex matrices and high-precision measurement of boron isotopes by positive thermal ionization and multicollector inductively coupled plasma mass spectrometry.

    PubMed

    Wei, Hai-Zhen; Jiang, Shao-Yong; Hemming, N Gary; Yang, Jing-Hong; Yang, Tao; Wu, He-Pin; Yang, Tang-Li; Yan, Xiong; Pu, Wei

    2014-06-01

    In order to eliminate boron loss and potential isotopic fractionation during chemical pretreatment of natural samples with complex matrices, a three-column ion-exchange separation/purification procedure has been modified, which ensures more than 98% recovery of boron from each step for a wide range of sample matrices, and is applicable for boron isotope analysis by both TIMS and MC-ICP-MS. The PTIMS-Cs2BO2(+)-static double collection method was developed, ensuring simultaneous collection of (133)Cs2(11)B(16)O2(+)(m/z 309) and (133)Cs2(10)B(16)O2(+) (m/z 308) ions in adjacent H3-H4 Faraday cups with typical zoom optics parameters (Focus Quad: 15 V, Dispersion Quad: -85 V). The external reproducibilities of the measured (11)B/(10)B ratios of the NIST 951 boron standard solutions of 1000 ng, 100 ng and 10 ng of boron by PTIMS method are ±0.06‰, ±0.16‰ and ±0.25‰, respectively, which indicates excellent precision can be achieved for boron isotope measurement at nanogram level boron in natural samples. An on-peak zero blank correction procedure was employed to correct the residual boron signals effect in MC-ICP-MS, which gives consistent δ(11)B values with a mean of 39.66±0.35‰ for seawater in the whole range of boron content from 5 ppb to 200 ppb, ensuring accurate boron isotope analysis in few ppb boron. With the improved protocol, consistent results between TIMS and MC-ICP-MS data were obtained in typical geological materials within a wide span of δ(11)B values ranging from -25‰ to +40‰. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Dietary boron: possible roles in human and animal physiology

    USDA-ARS?s Scientific Manuscript database

    Boron is a bioactive element of low molecular weight. Since discovery of the first boron biomolecule, boromycin, in 1967, several other similar biomolecules are now well-characterized. Most recently described was a bacterial cell-to-cell communication signal that requires boron, autoinducer-II. Boro...

  12. Properties of vacuum-evaporated boron films

    NASA Technical Reports Server (NTRS)

    Feakes, F.

    1973-01-01

    The work on the properties of thin boron films made by vacuum evaporation of elemental boron using an electron beam as the energy source is reported. The program aimed at characterizing the properties of vacuum evaporated films. The work was directed toward those variables considered to be important in affecting the tensile strength of the boron films. In general, the thickness of the films was less than 0.002 in. The temperature of the substrate on which the boron was condensed was found to be most important. Three distinctly different forms of boron deposit were produced. Although the transition temperature was not sharply defined, at substrate temperatures of less than approximately 600 deg C the boron deposits were amorphous to X-ray. If the substrate were highly polished, the deposits were black and mirror-like. For substrates with coefficients of thermal expansion close to that of boron, the deposits were then continuous and uncracked. The studies suggest that the potential continues to exist for film-type composites to have both high strength and high modulus.

  13. Mechanisms implicated in the effects of boron on wound healing.

    PubMed

    Nzietchueng, Rosine Mayap; Dousset, Brigitte; Franck, Patricia; Benderdour, Mohamed; Nabet, Pierre; Hess, Ketsia

    2002-01-01

    Recently, we demonstrated that boron modulates the turnover of the extracellular matrix and increases TNFalpha release. In the present study, we used an in vitro test to investigate the direct effect of boron on specific enzymes (elastase, trypsin-like enzymes, collagenase and alkaline phosphatase) implicated in extracellular matrix turnover. Boron decreased the elastase and alkaline phosphatase activity, but had no effect on trypsin and collagenase activities. The effect of boron on the enzyme activities was also tested in fibroblasts considered as an in vivo test. In contrast to the results obtained in vitro, boron enhanced the trypsin-like, collagenase, and cathepsin D activities in fibroblasts. Boron did not modify the generation of free radicals compared to the control and did not seem to act on the intracellular alkaline phosphatase activity, However, as it did enhance phosphorylation, it can be hypothesized that boron may affect living cells via a mediator, which could be TNFalpha whose transduction signal involves a cascade of phosphorylations.

  14. Global transport of light elements boron and carbon in the full-W ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    ASDEX Upgrade Team; Hakola, A.; Likonen, J.; Koivuranta, S.; Krieger, K.; Mayer, M.; Neu, R.; Rohde, V.; Sugiyama, K.

    2011-08-01

    Transport of carbon and boron has been investigated in the full-W ASDEX Upgrade after experimental campaigns with (2008) and without (2007) boronizations. For this purpose, poloidal deposition profiles of the two elements on tungsten and graphite regions of lower-divertor tiles have been determined. Carbon is mainly deposited in the inner divertor - 80-90% of the determined 12C and 13C inventories on W - while boron shows a much more symmetric deposition profile. In the unboronized machine, the boron inventories are a factor of 10 smaller than in the boronized case and result from residual boron atoms left in the torus prior to the 2007 campaign. Both carbon and boron are deposited more efficiently and/or show less erosion on graphite than on tungsten, particularly in the outer divertor. For 13C, the difference is 10-100 in favor of graphite. This is most probably caused by a higher re-erosion from tungsten surfaces.

  15. Controlling the Morphology and Oxidation Resistance of Boron Carbide Synthesized Via Carbothermic Reduction Reaction

    NASA Astrophysics Data System (ADS)

    Ahmed, Yasser M. Z.; El-Sheikh, Said M.; Ewais, Emad M. M.; Abd-Allah, Asmaa A.; Sayed, Said A.

    2017-03-01

    Boron carbide powder was synthesized from boric acid and lactose mixtures via easy procedure. Boric acid and lactose solution mixtures were roasted in stainless steel pot at 280 °C for 24 h. Boron carbide was obtained by heating the roasted samples under flowing of industrial argon gas at 1500 °C for 3 h. The amount of borate ester compound in the roasted samples was highly influenced by the boron/carbon ratio in the starting mixtures and plays a versatile role in the produced boron carbide. The high-purity boron carbide powder was produced with a sample composed of lowest boron/carbon ratio of 1:1 without calcination step. Particle morphology was changed from nano-needles like structure of 8-10 nm size with highest carbon ratio mixture to spherical shape of >150 nm size with lowest one. The oxidation resistance performance of boron carbide is highly dependent on the morphology and grain size of the synthesized powder.

  16. Influence of Neutron Sources and 10B Concentration on Boron Neutron Capture Therapy for Shallow and Deeper Non-small Cell Lung Cancer.

    PubMed

    Yu, Haiyan; Tang, Xiaobin; Shu, Diyun; Liu, Yuanhao; Geng, Changran; Gong, Chunhui; Hang, Shuang; Chen, Da

    2017-03-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapy that combines biological targeting and high Linear Energy Transfer (LET). It is considered a potential therapeutic approach for non-small cell lung cancer (NSCLC). It could avoid the inaccurate treatment caused by the lung motion during radiotherapy, because the dose deposition mainly depends on the boron localization and neutron source. Thus, B concentration and neutron sources are both principal factors of BNCT, and they play significant roles in the curative effect of BNCT for different cases. The purpose was to explore the feasibility of BNCT treatment for NSCLC with either of two neutron sources (the epithermal reactor at the Massachusetts Institute of Technology named "MIT source" and the accelerator neutron source designed in Argentina named "MEC source") and various boron concentrations. Shallow and deeper lung tumors were defined in the Chinese hybrid radiation phantom, and the Monte Carlo method was used to calculate the dose to tumors and healthy organs. The MEC source was more appropriate to treat the shallow tumor (depth of 6 cm) with a shorter treatment time. However, the MIT source was more suitable for deep lung tumor (depth of 9 cm) treatment, as the MEC source is more likely to exceed the skin dose limit. Thus, a neutron source consisting of more fast neutrons is not necessarily suitable for deep treatment of lung tumors. Theoretical distribution of B in tumors and organs at risk (especially skin) was obtained to meet the treatable requirement of BNCT, which may provide the references to identify the feasibility of BNCT for the treatment of lung cancer using these two neutron sources in future clinical applications.

  17. X-ray method shows fibers fail during fatigue of boron-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.; Whitcomb, J. D.

    1975-01-01

    A method proposed for studying progressive fiber fracture in boron-epoxy laminates during fatigue tests is described. It is based on the intensity of X-ray absorption of the tungsten core in the boron filaments as contrasted with that of the boron and epoxy matrix. When the laminate is X-rayed, the image of the tungsten in the born filaments is recorded on a photographic plate. Breaks in the boron laminates can be easily identified by magnifying the photographic plates. The method is suitable for studying broken boron filaments in most matrix materials, and may supply key information for developing realistic fatigue and fracture models.

  18. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases.

    PubMed

    Trivillin, V A; Garabalino, M A; Colombo, L L; González, S J; Farías, R O; Monti Hughes, A; Pozzi, E C C; Bortolussi, S; Altieri, S; Itoiz, M E; Aromando, R F; Nigg, D W; Schwint, A E

    2014-06-01

    BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25-76ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung. © 2013 Published by Elsevier Ltd.

  19. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.W. Nigg; Various Others

    BNCT was proposed for the treatment of diffuse, non-resectable tumors in the lung. We performed boron biodistribution studies with 5 administration protocols employing the boron carriers BPA and/or GB-10 in an experimental model of disseminated lung metastases in rats. All 5 protocols were non-toxic and showed preferential tumor boron uptake versus lung. Absolute tumor boron concentration values were therapeutically useful (25–76 ppm) for 3 protocols. Dosimetric calculations indicate that BNCT at RA-3 would be potentially therapeutic without exceeding radiotolerance in the lung.

  20. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  1. Low pressure growth of cubic boron nitride films

    NASA Technical Reports Server (NTRS)

    Ong, Tiong P. (Inventor); Shing, Yuh-Han (Inventor)

    1997-01-01

    A method for forming thin films of cubic boron nitride on substrates at low pressures and temperatures. A substrate is first coated with polycrystalline diamond to provide a uniform surface upon which cubic boron nitride can be deposited by chemical vapor deposition. The cubic boron nitride film is useful as a substitute for diamond coatings for a variety of applications in which diamond is not suitable. any tetragonal or hexagonal boron nitride. The cubic boron nitride produced in accordance with the preceding example is particularly well-suited for use as a coating for ultra hard tool bits and abrasives, especially those intended to use in cutting or otherwise fabricating iron.

  2. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  3. Matrix Transformation in Boron Containing High-Temperature Co-Re-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Strunz, Pavel; Mukherji, Debashis; Beran, Přemysl; Gilles, Ralph; Karge, Lukas; Hofmann, Michael; Hoelzel, Markus; Rösler, Joachim; Farkas, Gergely

    2018-03-01

    An addition of boron largely increases the ductility in polycrystalline high-temperature Co-Re alloys. Therefore, the effect of boron on the alloy structural characteristics is of high importance for the stability of the matrix at operational temperatures. Volume fractions of ɛ (hexagonal close-packed—hcp), γ (face-centered cubic—fcc) and σ (Cr2Re3 type) phases were measured at ambient and high temperatures (up to 1500 °C) for a boron-containing Co-17Re-23Cr alloy using neutron diffraction. The matrix phase undergoes an allotropic transformation from ɛ to γ structure at high temperatures, similar to pure cobalt and to the previously investigated, more complex Co-17Re-23Cr-1.2Ta-2.6C alloy. It was determined in this study that the transformation temperature depends on the boron content (0-1000 wt. ppm). Nevertheless, the transformation temperature did not change monotonically with the increase in the boron content but reached a minimum at approximately 200 ppm of boron. A probable reason is the interplay between the amount of boron in the matrix and the amount of σ phase, which binds hcp-stabilizing elements (Cr and Re). Moreover, borides were identified in alloys with high boron content.

  4. β-Rhombohedral Boron: At the Crossroads of the Chemistry of Boron and the Physics of Frustration [Boron: a frustrated element

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogitsu, Tadashi; Schwegler, Eric; Galli, Giulia

    2013-05-08

    In the periodic table boron occupies a peculiar, crossover position: on the first row, it is surrounded by metal forming elements on the left and by non-metals on the right. In addition, it is the only non-metal of the third column. Therefore it is perhaps not surprising that the crystallographic structure and topology of its stable allotrope at room temperature (β-boron) are not shared by any other element, and are extremely complex. The formidable intricacy of β- boron, with interconnecting icosahedra, partially occupied sites, and an unusually large number of atoms per unit cell (more than 300) has been knownmore » for more than 40 years. Nevertheless boron remains the only element purified in significant quantities whose ground state geometry has not been completely determined by experiments. However theoretical progress reported in the last decade has shed light on numerous properties of elemental boron, leading to a thorough characterization of its structure at ambient conditions, as well as of its electronic and thermodynamic properties. This review discusses in detail the properties of β-boron, as inferred from experiments and the ab-initio theories developed in the last decade.« less

  5. Boron removal and its concentration in aqueous solution through progressive freeze concentration.

    PubMed

    Wang, Li Pang

    2017-09-01

    This study explored the feasibility of progressive freeze concentration in boron removal and its concentration in aqueous solution. The influence of three key parameters in progressive freeze concentration on boron removal and concentration, namely, the advance speed of the ice front, the circumferential velocity of the stirrer, and the initial boron concentration, are investigated by conducting batch experiments. The results show that the effectiveness of boron removal increases with a lower advance speed of the ice front, a higher circumferential velocity of the stirrer, and a lower initial boron concentration. For a model boron solution with an initial concentration of 100 mg/L, the boron concentration in the ice phase after progressive freeze concentration is below 1 mg/L when the advance speed of the ice front is lower than 1 cm/h and the circumferential velocity of the stirrer is higher than 0.12 m/s. In addition, the concentration of boron in the liquid phase occurs simultaneously with progressive freeze concentration. Furthermore, the results also suggest that this method can be applied to the purification and concentration of not only organic molecules but also inorganic ions.

  6. Morphological transformations of BNCO nanomaterials: Role of intermediates

    NASA Astrophysics Data System (ADS)

    Wang, B. B.; Qu, X. L.; Zhu, M. K.; Levchenko, I.; Baranov, O.; Zhong, X. X.; Xu, S.; Ostrikov, K.

    2018-06-01

    Highly controllable structural transformation of various doped carbon and boron nitride nanomaterials have been achieved with the perspective of their application in microelectronics, optoelectronics, energy devices and catalytic reactions. Specifically, the syntheses of one-dimensional (1D) boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets on silicon coated with gold films in N2-H2 plasma was demonstrated. During the synthesis of nanomaterials, boron carbide was used as carbon and boron sources. The results of characterizations by scanning and transmission electron microscopes, as well as micro-Raman and X-ray photoelectron spectroscopes indicate that the formation of different nanomaterials relates to the growth temperature and quantity of boron carbide. Specifically, 1D tube-like carbon nanorods doped with boron and nitrogen are formed at ∼910 °C using a small quantity of boron carbide, while 2D vertical boron nitride nanosheets doped with carbon and oxygen are grown at ∼870 °C using a large quantity of boron carbide. These studies indicate that the behaviors of a reactive intermediate product B2O3 on surfaces of Au nanoparticles play an important role in the formation of different nanomaterials, i.e., whether the B2O3 molecules deposited on Au nanoparticles are desorbed mainly determines the formation of different nanomaterials. The formation of 2D vertical carbon and oxygen co-doped boron nitride nanosheets is related to the high growth rate of edges of nanosheets. Furthermore, the photoluminescence (PL) properties of 1D boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets were studied at room temperature. The PL results show that all the nanomaterials generate the ultraviolet, blue, green and red PL bands, but the 2D vertical carbon and oxygen co-doped boron nitride nanosheets emit more and stronger PL bands than the 1D boron and nitrogen co-doped tube-like carbon nanorods. The significant differences in the PL properties can be attributed to different carbon structures in these nanomaterials. These achievements can be used to synthesize and control the structures of nanomaterials and contribute to the development of the next generation optoelectronic nanodevices based on 1D and 2D nanomaterials.

  7. 40 CFR Appendix A to Part 68 - Table of Toxic Endpoints

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Arsenous trichloride 0.010 7784-42-1 Arsine 0.0019 10294-34-5 Boron trichloride [Borane, trichloro-] 0.010 7637-07-2 Boron trifluoride [Borane, trifluoro-] 0.028 353-42-4 Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro[oxybis[methane

  8. 40 CFR Appendix A to Part 68 - Table of Toxic Endpoints

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Arsenous trichloride 0.010 7784-42-1 Arsine 0.0019 10294-34-5 Boron trichloride [Borane, trichloro-] 0.010 7637-07-2 Boron trifluoride [Borane, trifluoro-] 0.028 353-42-4 Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro[oxybis[methane

  9. 40 CFR Appendix A to Part 68 - Table of Toxic Endpoints

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Arsenous trichloride 0.010 7784-42-1 Arsine 0.0019 10294-34-5 Boron trichloride [Borane, trichloro-] 0.010 7637-07-2 Boron trifluoride [Borane, trifluoro-] 0.028 353-42-4 Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro[oxybis[methane

  10. THE BORON-CURCUMIN COMPLEX IN TRACE BORON DETERMINATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heyes, M.R.; Metcalfe, J.

    1963-01-01

    A simple and robust method for the formation of the complex of boron with curcumin is described. The sensitivity of the method is 6.6 x 10/sup -5/ g/cm/sup 2/. Formation of the complex is believed to be quantitative under the conditions used and some evidence is given for a 1: 3 boron; curcumin ratio. Methods are outlined for the determination of boron in a number of metals, compounds, and organic materials. (auth)

  11. Method for production of free-standing polycrystalline boron phosphide film

    DOEpatents

    Baughman, Richard J.; Ginley, David S.

    1985-01-01

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  12. Methods for boron delivery to mammalian tissue

    DOEpatents

    Hawthorne, M. Frederick; Feaks, Debra A.; Shelly, Kenneth J.

    2003-01-01

    Boron neutron capture therapy can be used to destroy tumors. This treatment modality is enhanced by delivering compounds to the tumor site where the compounds have high concentrations of boron, the boron compounds being encapsulated in the bilayer of a liposome or in the bilayer as well as the internal space of the liposomes. Preferred compounds, include carborane units with multiple boron atoms within the carborane cage structure. Liposomes with increased tumor specificity may also be used.

  13. Lipase-catalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols.

    PubMed

    Andrade, Leandro H; Barcellos, Thiago

    2009-07-16

    The first application of enzymes as catalysts to obtain optically pure boron compounds is described. The kinetic resolution of boron-containing chiral alcohols via enantioselective transesterification catalyzed by lipases was studied. Aromatic, allylic, and aliphatic secondary alcohols containing a boronate ester or boronic acid group were resolved by lipase from Candida antartica (CALB), and excellent E values (E > 200) and high enantiomeric excesses (up to >99%) of both remaining substrates and acetylated product were obtained.

  14. Functional characterization of Citrus macrophylla BOR1 as a boron transporter.

    PubMed

    Cañon, Paola; Aquea, Felipe; Rodríguez-Hoces de la Guardia, Amparo; Arce-Johnson, Patricio

    2013-11-01

    Plants have evolved to develop an efficient system of boron uptake and transport using a range of efflux carriers named BOR proteins. In this work we isolated and characterized a boron transporter of citrus (Citrus macrophylla), which was named CmBOR1 for its high homology to AtBOR1. CmBOR1 has 4403 bp and 12 exons. Its coding region has 2145 bp and encodes for a protein of 714 amino acids. CmBOR1 possesses the molecular features of BORs such as an anion exchanger domain and the presence of 10 transmembrane domains. Functional analysis in yeast indicated that CmBOR1 has an efflux boron transporter activity, and transformants have increased tolerance to excess boron. CmBOR1 is expressed in leaves, stem and flowers and shows the greatest accumulation in roots. The transcript accumulation was significantly increased under boron deficiency conditions in shoots. In contrast, the accumulation of the transcript did not change in boron toxicity conditions. Finally, we observed that constitutive expression of CmBOR1 was able to increase tolerance to boron deficiency conditions in Arabidopsis thaliana, suggesting that CmBOR1 is a xylem loading boron transporter. Based on these results, it was determined that CmBOR1 encodes a boric acid/borate transporter involved in tolerance to boron deficiency in plants. © 2013 Scandinavian Plant Physiology Society.

  15. The Combined Action of Duplicated Boron Transporters Is Required for Maize Growth in Boron-Deficient Conditions.

    PubMed

    Chatterjee, Mithu; Liu, Qiujie; Menello, Caitlin; Galli, Mary; Gallavotti, Andrea

    2017-08-01

    The micronutrient boron is essential in maintaining the structure of plant cell walls and is critical for high yields in crop species. Boron can move into plants by diffusion or by active and facilitated transport mechanisms. We recently showed that mutations in the maize boron efflux transporter ROTTEN EAR (RTE) cause severe developmental defects and sterility. RTE is part of a small gene family containing five additional members ( RTE2 - RTE6 ) that show tissue-specific expression. The close paralogous gene RTE2 encodes a protein with 95% amino acid identity with RTE and is similarly expressed in shoot and root cells surrounding the vasculature. Despite sharing a similar function with RTE , mutations in the RTE2 gene do not cause growth defects in the shoot, even in boron-deficient conditions. However, rte2 mutants strongly enhance the rte phenotype in soils with low boron content, producing shorter plants that fail to form all reproductive structures. The joint action of RTE and RTE2 is also required in root development. These defects can be fully complemented by supplying boric acid, suggesting that diffusion or additional transport mechanisms overcome active boron transport deficiencies in the presence of an excess of boron. Overall, these results suggest that RTE2 and RTE function are essential for maize shoot and root growth in boron-deficient conditions. Copyright © 2017 by the Genetics Society of America.

  16. CHEMICAL METHODS FOR THE DETERMINATION OF BORON IN REACTOR MATERIALS. PART I. ION-EXCHANGE SEPARATION OF BORON FROM COKES, PITCHES AND GRAPHITES AND ITS COLORIMETRIC DETERMINATION BY THE CURCUMIN-TRI-CHLORACETIC ACID METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, H.B.; Desai, S.R.; Nadkarni, M.N.

    1961-01-01

    A procedure has been standardized for the determination of boron in cokes, pitches, and graphites. The method consists of fixing the boron present in the sample as calcium borate, ion-exchange separation of boric acid from the associated cations, and the colorimetric determination of boron using the curcumin-trichloracetic acid method. Sulfur which is usually present in pitches and cokes is expected to be oxidized to sulfate during the fixation of boron and hence its effect on the colorimetry has been studied. Application of the procedure to the determination of 0.50 and 1.00 microgram amounts of boron, has given coefficients of variationmore » of l0.0 and 6.7% respectively. (auth)« less

  17. Examining soil parent material influence over Douglas-fir stem growth response to fertilization: Taking advantage of information from spatiotemporally distributed experiments

    Treesearch

    Kevin P. White; Mark Coleman; Deborah S. Page-Dumroese; Paul E. Gessler; Mark Kimsey; Terry Shaw

    2012-01-01

    Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) in the Inland Northwest region of the USA are nitrogen (N) deficient; however stem growth responses to N fertilizers are unpredictable, which may be due to poor accounting of other limiting nutrients. Screening trial experiments, including potassium (K), sulfur (S), and boron (B) multiple nutrient treatments, have been...

  18. Characterization of boron tolerant bacteria isolated from a fly ash dumping site for bacterial boron remediation.

    PubMed

    Edward Raja, Chellaiah; Omine, Kiyoshi

    2013-08-01

    Boron is an essential micronutrient for plants, but can above certain concentrations be toxic to living organisms. A major environmental concern is the removal of boron from contaminated water and fly ash. For this purpose, the samples were collected from a fly ash dumping site, Nagasaki prefecture, Japan. The chemical characteristics and heavy metal concentration of the samples were performed by X-ray fluorescent analysis and leaching test. For bacterial analysis, samples were collected in sterile plastic sheets and isolation was carried out by serial dilution method. The boron tolerant isolates that showed values of maximum inhibitory concentration toward boron ranging from 100 to 260 mM level were screened. Based on 16S rRNA sequencing and phylogenetic analysis, the isolates were most closely related to the genera Bacillus, Lysinibacillus, Microbacterium and Ralstonia. The boron tolerance of these strains was also associated with resistant to several heavy metals, such as As (III), Cr (VI), Cd, Cu, Pb, Ni, Se (III) and Zn. Indeed, these strains were arsenic oxidizing bacteria confirmed by silver nitrate test. These strains exhibited their salt resistances ranging from 4 to 15 % were determined in Trypticase soy agar medium. The boron tolerant strains were capable of removing 0.1-2.0 and 2.7-3.7 mg l(-1) boron from the medium and fly ash at 168 h. Thus, we have successfully identified the boron tolerant and removal bacteria from a fly ash dumping site for boron remediation.

  19. Lead detection using micro/nanocrystalline boron-doped diamond by square-wave anodic stripping voltammetry.

    PubMed

    Arantes, Tatiane M; Sardinha, André; Baldan, Mauricio R; Cristovan, Fernando H; Ferreira, Neidenei G

    2014-10-01

    Monitoring heavy metal ion levels in water is essential for human health and safety. Electroanalytical techniques have presented important features to detect toxic trace heavy metals in the environment due to their high sensitivity associated with their easy operational procedures. Square-wave voltammetry is a powerful electrochemical technique that may be applied to both electrokinetic and analytical measurements, and the analysis of the characteristic parameters of this technique also enables the mechanism and kinetic evaluation of the electrochemical process under study. In this work, we present a complete optimized study on the heavy metal detection using diamond electrodes. It was analyzed the influence of the morphology characteristics as well as the doping level on micro/nanocrystalline boron-doped diamond films by means of square-wave anodic stripping voltammetry (SWASV) technique. The SWASV parameters were optimized for all films, considering that their kinetic response is dependent on the morphology and/or doping level. The films presented reversible results for the Lead [Pb (II)] system studied. The Pb (II) analysis was performed in ammonium acetate buffer at pH 4.5, varying the lead concentration in the range from 1 to 10 μg L(-1). The analytical responses were obtained for the four electrodes. However, the best low limit detection and reproducibility was found for boron doped nanocrystalline diamond electrodes (BDND) doped with 2000 mg L(-1) in B/C ratio. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, M. Frederick

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer,more » incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are amphiphilic unimolecular nanoparticles presenting several advantages: tunable size through functionalization and branching, spherical shape due to the icosahedral B122 core, promising water solubility resulting from degradation of all pendant closo-carborane groups to their hydrophilic nido anion substituents, and efficient boron delivery owing to the presence of 120 boron atoms which gives rise to a boron content as high as 40% by weight. Keeping the new objective in mind, we have focused on the design, synthesis and evaluation of new and very boron-rich closomer species. Additionally, progress has also been made toward the evaluation of a newly synthesized boron-rich lipid as a substitute for DSPC in bilayer construction, and the boron content of the resulting liposomes has been greatly enhanced. Related research involving the synthesis and self-assembly of carborane-containing amphiphiles has been systematically studied. Combined hydrophobic and hydrophilic properties of the single-chain amphiphiles allow their spontaneous self-assembly to form rods under a variety of variable conditions, such as concentration in the bilayer, carborane cage structure, chain-length, counterion identity, solvents, methods of preparation, and the ionic charge. On the other hand, the number of attached chains affects the self-assembly process. Particles having totally different shapes have been observed for dual-chain amphiphiles.« less

  1. Screening of Wheat Genotypes for Boron Efficiency in Bangladesh

    USDA-ARS?s Scientific Manuscript database

    A number of Bangladeshi wheat genotypes (varieties and advanced lines) have been tested for boron efficiency through sand culture experiments over two years (2007-08 & 2008-09) against two Thai check varieties ‘Fang 60’ (boron efficient) and ‘SW41’ (boron inefficient). Performances of the genotypes ...

  2. 40 CFR 68.130 - List of substances.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane

  3. 40 CFR 68.130 - List of substances.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane

  4. 40 CFR 68.130 - List of substances.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane

  5. 40 CFR 68.130 - List of substances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane

  6. 40 CFR 68.130 - List of substances.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...,000 a, b Arsenous trichloride 7784-34-1 15,000 b Arsine 7784-42-1 1,000 b Boron trichloride [Borane, trichloro-] 10294-34-5 5,000 b Boron trifluoride [Borane, trifluoro-] 7637-07-2 5,000 b Boron trifluoride compound with methyl ether (1:1) [Boron, trifluoro [oxybis [metane

  7. Synthesis and in vitro evaluation of thiododecaborated α, α- cycloalkylamino acids for the treatment of malignant brain tumors by boron neutron capture therapy.

    PubMed

    Hattori, Yoshihide; Kusaka, Shintaro; Mukumoto, Mari; Ishimura, Miki; Ohta, Yoichiro; Takenaka, Hiroshi; Uehara, Kouki; Asano, Tomoyuki; Suzuki, Minoru; Masunaga, Shin-Ichiro; Ono, Koji; Tanimori, Shinji; Kirihata, Mitsunori

    2014-12-01

    Boron-neutron capture therapy (BNCT) is an attractive technique for cancer treatment. As such, α, α-cycloalkyl amino acids containing thiododecaborate ([B12H11](2-)-S-) units were designed and synthesized as novel boron delivery agents for BNCT. In the present study, new thiododecaborate α, α-cycloalkyl amino acids were synthesized, and biological evaluation of the boron compounds as boron carrier for BNCT was carried out.

  8. Retrospective Study of Selected DoD Materials and Structures Research and Development Programs. Phase 1. Case History Data Collection

    DTIC Science & Technology

    1979-03-01

    made in continuous form by reducing boron trichloride with hydrogen and depositing the elemental boron formed on an electrically heated, continuously...filament take-up unit. A stoichio- metric mixture of boron trichloride and hydrogen is introduced at the top of the reactor. These react at the surface of...fibers are tungsten wire, boron trichloride , and hydrogen gas. The fine diameter tungsten wire on which boron is deposited is an imported product and is

  9. THE BORON-CURCUMIN COMPLEX IN THE DETERMINATION OF TRACE AMOUNTS OF BORON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, M.R.; Metcalfe, J.

    1962-12-01

    A simple and robust method is described for the formation of the complex of boron with curcumin. The sensitivity of the method is 8.0 to 8.5 x 10/sup -5/ mu g per sq. cm by Sandell's definition. Formation of the complex is believed to be quartitative under the conditions used, and some evidence is given for a ratio of boron to curcumin of 1 to 3. Methods are outlined for determining boron in some metals, compounds, and organic materials. (auth)

  10. Free-standing polycrystalline boron phosphide film and method for production thereof

    DOEpatents

    Baughman, R.J.; Ginley, D.S.

    1982-09-09

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  11. Mineral resource of the month: boron

    USGS Publications Warehouse

    Crangle, Robert D.

    2012-01-01

    The article offers information on the mineral, boron. Boron compounds, particularly borates, have more commercial applications than its elemental relative which is a metalloid. Making up the 90% of the borates that are used worldwide are colemanite, kernite, tincal, and ulexite. The main borate deposits are located in the Mojave Desert of the U.S., the Tethyan belt in southern Asia, and the Andean belt of South America. Underground and surface mining are being used in gathering boron compounds. INSETS: Fun facts;Boron production and consumption.

  12. Protodeboronation of ortho- and para-phenol boronic acids and application to ortho and meta functionalization of phenols using boronic acids as blocking and directing groups.

    PubMed

    Lee, Chun-Young; Ahn, Su-Jin; Cheon, Cheol-Hong

    2013-12-06

    The first metal-free thermal protodeboronation of ortho- and para-phenol boronic acids in DMSO was developed. The protodeboronation was successfully applied to the synthesis of ortho- and meta-functionalized phenols using the boronic acid moiety as a blocking group and a directing group, respectively. Mechanistic studies suggested that this protodeboronation proceeds through the coordination of water to the boron atom followed by σ-bond metathesis.

  13. Single-Walled Carbon Nanotube-Based Near-Infrared Optical Glucose Sensors toward In Vivo Continuous Glucose Monitoring

    PubMed Central

    Yum, Kyungsuk; McNicholas, Thomas P.; Mu, Bin; Strano, Michael S.

    2013-01-01

    This article reviews research efforts on developing single-walled carbon nanotube (SWNT)-based near-infrared (NIR) optical glucose sensors toward long-term in vivo continuous glucose monitoring (CGM). We first discuss the unique optical properties of SWNTs and compare SWNTs with traditional organic and nanoparticle fluorophores regarding in vivo glucose-sensing applications. We then present our development of SWNT-based glucose sensors that use glucose-binding proteins and boronic acids as a high-affinity molecular receptor for glucose and transduce binding events on the receptors to modulate SWNT fluorescence. Finally, we discuss opportunities and challenges in translating the emerging technology of SWNT-based NIR optical glucose sensors into in vivo CGM for practical clinical use. PMID:23439162

  14. Dispersible shortened boron nitride nanotubes with improved molecule-loading capacity.

    PubMed

    Zhi, Chunyi; Hanagata, Nobutaka; Bando, Yoshio; Golberg, Dmitri

    2011-09-05

    The oxidation process of boron nitride nanotubes was thoroughly investigated, and a slow oxidation characteristic was clearly revealed. Subsequently, the controllable oxidation process was utilized to break the sturdy structure of the boron nitride nanotubes to fabricate shortened nanotubes. The shortened boron nitride nanotubes were found to possess good solubility in water and many organic solvents. Further experiments demonstrated remarkably improved molecule-loading capacity of the shortened boron nitride nanotubes. These dispersible shortened boron nitride nanotubes might have the potential to be developed as effective delivery systems for various molecules, which may find applications in bio-related fields. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Magnetron sputtered boron films for increasing hardness of a metal surface

    DOEpatents

    Makowiecki, Daniel M [Livermore, CA; Jankowski, Alan F [Livermore, CA

    2003-05-27

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  16. Biodistribution of boron after intravenous 4-dihydroxyborylphenylalanine-fructose (BPA-F) infusion in meningioma and schwannoma patients: A feasibility study for boron neutron capture therapy.

    PubMed

    Kulvik, Martti; Kallio, Merja; Laakso, Juha; Vähätalo, Jyrki; Hermans, Raine; Järviluoma, Eija; Paetau, Anders; Rasilainen, Merja; Ruokonen, Inkeri; Seppälä, Matti; Jääskeläinen, Juha

    2015-12-01

    We studied the uptake of boron after 100 mg/kg BPA infusion in three meningioma and five schwannoma patients as a pre-BNCT feasibility study. With average tumour-to-whole blood boron concentrations of 2.5, we discuss why BNCT could, and probably should, be developed to treat severe forms of the studied tumours. However, analysing 72 tumour and 250 blood samples yielded another finding: the plasma-to-whole blood boron concentrations varied with time, suggesting that the assumed constant boron ratio of 1:1 between normal brain tissue and whole blood deserves re-assessment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Thermal expansion of boron subnitrides

    NASA Astrophysics Data System (ADS)

    Cherednichenko, Kirill A.; Gigli, Lara; Solozhenko, Vladimir L.

    2018-07-01

    The lattice parameters of two boron subnitrides, B13N2 and B50N2, have been measured as a function of temperature between 298 and 1273 K, and the corresponding thermal expansion coefficients have been determined. Thermal expansion of both boron subnitrides was found to be quasi-linear, and the volume thermal expansion coefficients of B50N2 (15.7 (2) × 10-6 K-1) and B13N2 (21.3 (2) × 10-6 K-1) are of the same order of magnitude as those of boron-rich compounds with structure related to α-rhombohedral boron. For both boron subnitrides no temperature-induced phase transitions have been observed in the temperature range under study.

  18. Thermal insulation for high temperature microwave sintering operations and method thereof

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1995-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  19. Method of preparing thermal insulation for high temperature microwave sintering operations

    DOEpatents

    Holcombe, Cressie E.; Dykes, Norman L.; Morrow, Marvin S.

    1996-01-01

    Superior microwave transparent thermal insulations for high temperature microwave sintering operations were prepared. One embodiment of the thermal insulation comprises granules of boron nitride coated with a very thin layer of glassy carbon made by preparing a glassy carbon precursor and blending it with boron nitride powder to form a mixture. The blended mixture is granulated to form a grit which is dried and heated to form the granules of boron nitride coated with a glassy carbon. Alternatively, grains of glassy carbon are coated with boron nitride by blending a mixture of a slurry comprising boron nitride, boric acid binder, and methyl alcohol with glassy carbon grains to form a blended mixture. The blended mixture is dried to form grains of glassy carbon coated with boron nitride. In addition, a physical mixture of boron nitride powder and glassy carbon grains has also been shown to be an excellent thermal insulation material for microwave processing and sintering.

  20. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    NASA Astrophysics Data System (ADS)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  1. Catalytic CVD synthesis of boron nitride and carbon nanomaterials - synergies between experiment and theory.

    PubMed

    McLean, Ben; Eveleens, Clothilde A; Mitchell, Izaac; Webber, Grant B; Page, Alister J

    2017-10-11

    Low-dimensional carbon and boron nitride nanomaterials - hexagonal boron nitride, graphene, boron nitride nanotubes and carbon nanotubes - remain at the forefront of advanced materials research. Catalytic chemical vapour deposition has become an invaluable technique for reliably and cost-effectively synthesising these materials. In this review, we will emphasise how a synergy between experimental and theoretical methods has enhanced the understanding and optimisation of this synthetic technique. This review examines recent advances in the application of CVD to synthesising boron nitride and carbon nanomaterials and highlights where, in many cases, molecular simulations and quantum chemistry have provided key insights complementary to experimental investigation. This synergy is particularly prominent in the field of carbon nanotube and graphene CVD synthesis, and we propose here it will be the key to future advances in optimisation of CVD synthesis of boron nitride nanomaterials, boron nitride - carbon composite materials, and other nanomaterials generally.

  2. Combined effect of boron and salinity on water transport: The role of aquaporins.

    PubMed

    Del Carmen Martínez-Ballesta, Maria; Bastías, Elizabeth; Carvajal, Micaela

    2008-10-01

    Boron toxicity is an important disorder that can limit plant growth on soils of arid and semi arid environments throughout the world. Although there are several reports about the combined effect of salinity and boron toxicity on plant growth and yield, there is no consensus about the experimental results. A general antagonistic relationship between boron excess and salinity has been observed, however the mechanisms for this interaction is not clear and several options can be discussed. In addition, there is no information, concerning the interaction between boron toxicity and salinity with respect to water transport and aquaporins function in the plants. We recently documented in the highly boron- and salt-tolerant the ecotype of Zea mays L. amylacea from Lluta valley in Northern Chile that under salt stress, the activity of specific membrane components can be influenced directly by boron, regulating the water uptake and water transport through the functions of certain aquaporin isoforms.

  3. Effects of Boron-Based Gel on Radiation-Induced Dermatitis in Breast Cancer: A Double-Blind, Placebo-Controlled Trial.

    PubMed

    Aysan, Erhan; Idiz, Ufuk Oguz; Elmas, Leyla; Saglam, Esra Kaytan; Akgun, Zuleyha; Yucel, Serap Baskaya

    2017-06-01

    This study is aimed to evaluate the effects of boron on radiation-induced skin reactions (RISR) in breast cancer patients. After 47 patients with invasive ductal carcinoma underwent radiotherapy, 23 (49%) received a boron-based gel, and 24 (51%) received placebo. Assessments were performed according to the Radiation Therapy Oncology Group (RTOG) skin scale and a Five-Point Horizontal Scale (FPHS). At the end of the fifth week of radiotherapy, the RTOG scores in the boron group were significantly lower than those in the placebo group (p = .024). The FPHS score was higher in the placebo group than in the boron group, and this difference was not statistically significant (p = .079). Using the RTOG scoring system, we revealed that the application of a boron-based gel diminished RISR. The mechanism of action is unclear but may be related to antioxidant, wound healing, and thermal degradation effects of boron.

  4. Rapid transporter regulation prevents substrate flow traffic jams in boron transport

    PubMed Central

    Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi

    2017-01-01

    Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana, boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow. PMID:28870285

  5. Rapid transporter regulation prevents substrate flow traffic jams in boron transport.

    PubMed

    Sotta, Naoyuki; Duncan, Susan; Tanaka, Mayuki; Sato, Takafumi; Marée, Athanasius Fm; Fujiwara, Toru; Grieneisen, Verônica A

    2017-09-05

    Nutrient uptake by roots often involves substrate-dependent regulated nutrient transporters. For robust uptake, the system requires a regulatory circuit within cells and a collective, coordinated behaviour across the tissue. A paradigm for such systems is boron uptake, known for its directional transport and homeostasis, as boron is essential for plant growth but toxic at high concentrations. In Arabidopsis thaliana , boron uptake occurs via diffusion facilitators (NIPs) and exporters (BORs), each presenting distinct polarity. Intriguingly, although boron soil concentrations are homogenous and stable, both transporters manifest strikingly swift boron-dependent regulation. Through mathematical modelling, we demonstrate that slower regulation of these transporters leads to physiologically detrimental oscillatory behaviour. Cells become periodically exposed to potentially cytotoxic boron levels, and nutrient throughput to the xylem becomes hampered. We conclude that, while maintaining homeostasis, swift transporter regulation within a polarised tissue context is critical to prevent intrinsic traffic-jam like behaviour of nutrient flow.

  6. Boron-containing amino carboxylic acid compounds and uses thereof

    DOEpatents

    Kabalka, George W.; Srivastava, Rajiv R.

    2000-03-14

    Novel compounds which are useful for boron neutron capture therapy (BNCT) are disclosed. The compounds comprise a stable boron-containing group and an aminocycloalkane carboxylic acid group or a boronated acyclic hydrocarbon-linked amino carboxylic acid. Methods for synthesis of the compounds and for use of the compounds in BNCT are disclosed.

  7. Thermal neutron shield and method of manufacture

    DOEpatents

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2013-05-28

    A thermal neutron shield comprising concrete with a high percentage of the element Boron. The concrete is least 54% Boron by weight which maximizes the effectiveness of the shielding against thermal neutrons. The accompanying method discloses the manufacture of Boron loaded concrete which includes enriching the concrete mixture with varying grit sizes of Boron Carbide.

  8. Spatial Distribution of Amorphization Intensity in Boron Carbide During Rate-Dependent Indentation and Impact Processes

    NASA Astrophysics Data System (ADS)

    Parsard, Gregory G.

    Boron carbide is a lightweight ceramic commonly used in applications requiring high hardness. At sufficiently high stresses, the material experiences a localized phase transformation (amorphization) which seemingly weakens its structure. Raman spectroscopy is used to distinguish these transformed regions from crystalline material based on the evolution of new peaks in collected Raman spectra. Vickers indentations of various loads were created at quasistatic and dynamic strain rates to trigger amorphization. The resulting imprints and subsurface regions were scanned with Raman spectroscopy to map amorphization intensity at several depths to generate three-dimensional representations of the amorphized zones, which were analyzed to determine the influence of load and strain rate upon amorphized zone characteristics. The square of amorphized zone depth beneath Vickers indentations increases linearly with load and shows little to no strain rate dependence. Sudden decreases in amorphization intensity at certain depths coincided with the presence of lateral cracks, suggesting that lateral cracks may lead to a loss of amorphized material during mechanical polishing. Experimental results were compared against finite element simulations to estimate critical values of stress and strain associated with amorphization. Raman spectra were also analyzed to determine the indentation-induced residual compressive pressure in crystalline boron carbide. In unstressed crystalline boron carbide, a peak exists near 1088 cm-1 which shifts to higher wavenumbers with the application of compressive pressure. The change in position of this crystalline peak was tracked across surfaces at various depths beneath the indentations and then converted into pressure using the piezospectroscopic coefficient of boron carbide. Residual compressive pressures on the order of gigapascals were found near the indentations, with stress relaxation near regions affected by radial cracks, spall, and graphitic inclusions. These measured residual compressive pressures were consistently higher than those predicted by finite element simulations at various loads, suggesting that amorphization, which was not accounted for by the simulations, may increase compressive residual stress in the crystalline material. Amorphization may cause affected regions to expand relative to their formerly crystalline state and exerting radial compressive forces upon the surrounding crystalline regions and circumferential tension along its boundary, thus promoting crack propagation within the amorphized region.

  9. Is Boron a Prebiotic Element? A Mini-review of the Essentiality of Boron for the Appearance of Life on Earth

    NASA Astrophysics Data System (ADS)

    Scorei, Romulus

    2012-02-01

    Boron is probably a prebiotic element with special importance in the so-called "sugars world". Boron is not present on Earth in its elemental form. It is found only in compounds, e.g., borax, boric acid, kernite, ulexite, colemanite and other borates. Volcanic spring waters sometimes contain boron-based acids (e.g., boric, metaboric, tetraboric and pyroboric acid). Borates influence the formation of ribofuranose from formaldehyde that feeds the "prebiotic metabolic cycle". The importance of boron in the living world is strongly related to its implications in the prebiotic origins of genetic material; consequently, we believe that throughout the evolution of life, the primary role of boron has been to provide thermal and chemical stability in hostile environments. The complexation of boric acid and borates with organic cis-diols remains the most probable chemical mechanism for the role of this element in the evolution of the living world. Because borates can stabilize ribose and form borate ester nucleotides, boron may have provided an essential contribution to the "pre-RNA world".

  10. Where Boron? Mars Rover Detects It

    NASA Image and Video Library

    2016-12-13

    This map shows the route driven by NASA's Curiosity Mars rover (blue line) and locations where the rover's Chemistry and Camera (ChemCam) instrument detected the element boron (dots, colored by abundance of boron according to the key at right). The main map shows the traverse from landing day (Sol 0) in August 2012 to the rover's location in September 2016, with boron detections through September 2015. The inset at upper left shows a magnified version of the most recent portion of that traverse, with boron detections during that portion. Overlapping dots represent cases when boron was detected in multiple ChemCam observation points in the same target and non-overlapping dots represent cases where two different targets in the same location have boron. Most of the mission's detections of boron have been made in the most recent seven months (about 200 sols) of the rover's uphill traverse. The base image for the map is from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. North is up. The scale bar at lower right represents one kilometer (0.62 mile). http://photojournal.jpl.nasa.gov/catalog/PIA21150

  11. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu., E-mail: gyushkov@mail.ru

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereasmore » for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.« less

  12. Boron investigation survey, March Air Force Base, California. Final report, 27 Jan-7 Feb 92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garland III , J.G.

    1992-07-01

    Armstrong Laboratory conducted a field survey to investigate the source of boron in the March AFB CA wastewater treatment plant effluent. The survey measured boron contributions from drinking water, domestic sources, and industrial sources over a 10-day period. The survey also evaluated the effluent to the treatment plant over the same 10 days. Boron results at the regulatory discharge point averaged 0.48 mg/1, which complies with the base permit. The results also showed drinking water levels averaged 0.225 mg/1, domestic contribution combined with drinking water levels averaged 0.396 mg/1, and mixed industrial and domestic levels ranged from 0.246 mg/1 tomore » 1.84 mg/1. The report presents bulk boron sample results from a variety of soaps and bleaches. Recommendations include further investigation into industrial activity generating high boron levels, discouraging the use of boron-containing products by military, contract, and domestic users and negotiating with the regulating agency for permitting boron at a higher level.« less

  13. Effect of time period after boric acid injection on 10B absorption in different regions of adult male rat's brain.

    PubMed

    Khojasteh, Nasrin Baghban; Pazirandeh, Ali; Jameie, Behnam; Goodarzi, Samereh

    2012-06-01

    Distribution of (10)B in different regions of rat normal brain was studied. Two groups were chosen as control and trial. Trial group received 2 ml of neutral boron compound. 2, 4 and 6 h after the injection brain removed, coronal sections of forebrain, midbrain and hindbrain were sandwiched between two pieces of polycarbonate. Autoradiography plots of (10)B distribution showed significant differences in three regions with the highest (10)B concentration in the forebrain during 4 h after injection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The Boron Efflux Transporter ROTTEN EAR Is Required for Maize Inflorescence Development and Fertility[C][W][OPEN

    PubMed Central

    Chatterjee, Mithu; Tabi, Zara; Galli, Mary; Malcomber, Simon; Buck, Amy; Muszynski, Michael; Gallavotti, Andrea

    2014-01-01

    Although boron has a relatively low natural abundance, it is an essential plant micronutrient. Boron deficiencies cause major crop losses in several areas of the world, affecting reproduction and yield in diverse plant species. Despite the importance of boron in crop productivity, surprisingly little is known about its effects on developing reproductive organs. We isolated a maize (Zea mays) mutant, called rotten ear (rte), that shows distinct defects in vegetative and reproductive development, eventually causing widespread sterility in its inflorescences, the tassel and the ear. Positional cloning revealed that rte encodes a membrane-localized boron efflux transporter, co-orthologous to the Arabidopsis thaliana BOR1 protein. Depending on the availability of boron in the soil, rte plants show a wide range of phenotypic defects that can be fully rescued by supplementing the soil with exogenous boric acid, indicating that rte is crucial for boron transport into aerial tissues. rte is expressed in cells surrounding the xylem in both vegetative and reproductive tissues and is required for meristem activity and organ development. We show that low boron supply to the inflorescences results in widespread defects in cell and cell wall integrity, highlighting the structural importance of boron in the formation of fully fertile reproductive organs. PMID:25035400

  15. The boron content of selected foods and the estimation of its daily intake among free-living subjects.

    PubMed

    Naghii, M R; Wall, P M; Samman, S

    1996-12-01

    Boron is an essential micronutrient for higher plants. The results of studies in animals and humans have suggested a potential role for boron as a modulator of the steroid hormone pathway. As part of a study to obtain baseline information on boron in humans, the boron content of selected foods (66 items) consumed in Australia was determined. Mean values are presented for the element per 100 g or 100 ml of food and per serving. Major sources of the element were nuts, dried fruits, legumes, fresh vegetables and fruits. The boron content of these foods correlated positively and strongly with values provided by the comprehensive Finnish Tables of mineral composition of foods and with the US Food and Drug Administration Total Diet Study. Because of the similarity in methods employed by this study and that used for the comprehensive Finnish Tables, the latter was used to analyze the boron content in 7-day weighed food records of 32 subjects. Using data obtained from the food records and assigning the corresponding values from the Finnish Tables for the boron content of foods, the average daily consumption of boron for a selected group of Australians was found to be 2.23 +/- 1.23 mg/day.

  16. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  17. Controlled growth of semiconductor crystals

    DOEpatents

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  18. Fillers for improved graphite fiber retention by polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Sheppard, C. H.

    1981-01-01

    The results of a program designed to determine the extent to which elemental boron and boron containing fillers added to the matrix resin of graphite/epoxy composites prevent the release of graphite fibers when the composites are exposed to fire and impact conditions are described. The fillers evaluated were boron, boron carbide and aluminum boride. The conditions evaluated were laboratory simulations of those that could exist in the event of an aircraft crash and burn situation. The baseline (i.e., unfilled) laminates evaluated were prepared from commercially available graphite/epoxy. The baseline and filled laminates' mechanical properties, before and after isothermal and humidity aging, also were compared. It was found that a small amount of graphite fiber was released from the baseline graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that the addition of boron and boron containing fillers to the resin matrix eliminated this fiber release. Mechanical properties of laminates containing the boron and boron containing fillers were lower than those of the baseline laminates. These property degradations for two systems: boron (5 micron) at 2.5 percent filler loading, and boron (5 micron) at 5.0 percent filler loading do not appear severe enough to preclude their use in structural composite applications.

  19. Production and Characterization of Bulk MgB2 Material made by the Combination of Crystalline and Carbon Coated Amorphous Boron Powders

    NASA Astrophysics Data System (ADS)

    Hiroki, K.; Muralidhar, M.; Koblischka, M. R.; Murakami, M.

    2017-07-01

    The object of this investigation is to reduce the cost of bulk production and in the same time to increase the critical current performance of bulk MgB2 material. High-purity commercial powders of Mg metal (99.9% purity) and two types of crystalline (99% purity) and 16.5 wt% carbon-coated, nanometer-sized amorphous boron powders (98.5% purity) were mixed in a nominal composition of MgB2 to reduce the boron cost and to see the effect on the superconducting and magnetic properties. Several samples were produced mixing the crystalline boron and carbon-coated, nanometer-sized amorphous boron powders in varying ratios (50:50, 60:40, 70:30, 80:20, 90:10) and synthesized using a single-step process using the solid state reaction around 800 °C for 3 h in pure argon atmosphere. The magnetization measurements exhibited a sharp superconducting transition temperature with T c, onset around 38.6 K to 37.2 K for the bulk samples prepared utilizing the mixture of crystalline boron and 16.5% carbon-coated amorphous boron. The critical current density at higher magnetic field was improved with addition of carbon-coated boron to crystalline boron in a ratio of 80:20. The highest self-field Jc around 215,000 A/cm2 and 37,000 A/cm2 were recorded at 20 K, self-field and 2 T for the sample with a ratio of 80:10. The present results clearly demonstrate that the bulk MgB2 performance can be improved by adding carbon-coated nano boron to crystalline boron, which will be attractive to reduce the cost of bulk MgB2 material for several industrial applications.

  20. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    NASA Astrophysics Data System (ADS)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  1. SU-F-T-140: Assessment of the Proton Boron Fusion Reaction for Practical Radiation Therapy Applications Using MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, D; Bednarz, B

    Purpose: The proton boron fusion reaction is a reaction that describes the creation of three alpha particles as the result of the interaction of a proton incident upon a 11B target. Theoretically, the proton boron fusion reaction is a desirable reaction for radiation therapy applications in that, with the appropriate boron delivery agent, it could potentially combine the localized dose delivery protons exhibit (Bragg peak) and the local deposition of high LET alpha particles in cancerous sites. Previous efforts have shown significant dose enhancement using the proton boron fusion reaction; the overarching purpose of this work is an attempt tomore » validate previous Monte Carlo results of the proton boron fusion reaction. Methods: The proton boron fusion reaction, 11B(p, 3α), is investigated using MCNP6 to assess the viability for potential use in radiation therapy. Simple simulations of a proton pencil beam incident upon both a water phantom and a water phantom with an axial region containing 100ppm boron were modeled using MCNP6 in order to determine the extent of the impact boron had upon the calculated energy deposition. Results: The maximum dose increase calculated was 0.026% for the incident 250 MeV proton beam scenario. The MCNP simulations performed demonstrated that the proton boron fusion reaction rate at clinically relevant boron concentrations was too small in order to have any measurable impact on the absorbed dose. Conclusion: For all MCNP6 simulations conducted, the increase of absorbed dose of a simple water phantom due to the 11B(p, 3α) reaction was found to be inconsequential. In addition, it was determined that there are no good evaluations of the 11B(p, 3α) reaction for use in MCNPX/6 and further work should be conducted in cross section evaluations in order to definitively evaluate the feasibility of the proton boron fusion reaction for use in radiation therapy applications.« less

  2. Effect of Boron on Thymic Cytokine Expression, Hormone Secretion, Antioxidant Functions, Cell Proliferation, and Apoptosis Potential via the Extracellular Signal-Regulated Kinases 1 and 2 Signaling Pathway.

    PubMed

    Jin, Erhui; Ren, Man; Liu, Wenwen; Liang, Shuang; Hu, Qianqian; Gu, Youfang; Li, Shenghe

    2017-12-27

    Boron is an essential trace element in animals. Appropriate boron supplementation can promote thymus development; however, a high dose of boron can lead to adverse effects and cause toxicity. The influencing mechanism of boron on the animal body remains unclear. In this study, we examined the effect of boron on cytokine expression, thymosin and thymopoietin secretion, antioxidant function, cell proliferation and apoptosis, and extracellular signal-regulated kinases 1 and 2 (ERK1/2) pathway in the thymus of rats. We found that supplementation with 10 and 20 mg/L boron to the drinking water significantly elevated levels of interleukin 2 (IL-2), interferon γ (IFN-γ), interleukin 4 (IL-4), and thymosin α1 in the thymus of rats (p < 0.05), increased the number of positive proliferating cell nuclear antigen (PCNA + ) cells and concentrations of glutathione peroxidase (GSH-Px) and phosphorylated extracellular signal-regulated kinase (p-ERK) (p < 0.05), and promoted mRNA expression of PCNA and ERK1/2 in thymocytes (p < 0.05). However, the number of caspase-3 + cells and the expression level of caspase-3 mRNA were reduced (p < 0.05). Supplementation with 40, 80, and 160 mg/L boron had no apparent effect on many of the above indicators. In contrast, supplementation with 480 and 640 mg/L boron had the opposite effect on the above indicators in rats and elevated levels of pro-inflammatory cytokines, such as interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor α (TNF-α) (p < 0.05). Our study showed that supplementation of various doses of boron to the drinking water had a U-shaped dose-effect relationship with thymic cytokine expression, hormone secretion, antioxidant function, cell proliferation, and apoptosis. Specifically, supplementation with 10 and 20 mg/L boron promoted thymocyte proliferation and enhanced thymic functions. However, supplementation with 480 and 640 mg/L boron inhibited thymic functions and increased the number of apoptotic thymocytes, suggesting that the effects of boron on thymic functions may be caused via the ERK1/2 signaling pathway.

  3. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    PubMed

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were reduced to 3 mg/L and 5 mg/L respectively, satisfying the discharge requirement by Malaysia Department of Environment (DOE). The modeling study shows that the adsorption isotherm of boron onto POMB bottom ash conformed to the Freundlich Isotherm. The proposed method is suitable for boron removal in ceramic wastewater especially in regions where POMB bottom ash is abundant.

  4. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    PubMed Central

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. PMID:24684609

  5. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS).

    PubMed

    Chandra, S; Ahmad, T; Barth, R F; Kabalka, G W

    2014-06-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 ((10)B) atoms to individual tumour cells. Cell killing results from the (10)B (n, α)(7) Li neutron capture and fission reactions that occur if a sufficient number of (10)B atoms are localized in the tumour cells. Intranuclear (10)B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of (10)B atoms reflects both bound and free pools of boron in individual tumour cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular-scale resolution by clinically applicable techniques such as positron emission tomography and magnetic resonance imaging. In this study, a secondary ion mass spectrometry based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high-grade gliomas, recurrent tumours of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumour cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a low phenylalanine diet prior to the initiation of BNCT. Since BPA currently is used clinically for BNCT, our observations may have direct relevance to future clinical studies utilizing this agent and provides support for individualized treatment planning regimens rather than the use of fixed BPA infusion protocols. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawthorne, M.F.

    The boronated liposome development and evaluation effort consists of two separate tasks. The first is the development of new boron compounds and the synthesis of known boron species with BNCT potential. These compounds are then encapsulated within liposomes for the second task, biodistribution testing in tumor-bearing mice, which examines the potential for the liposomes and their contents to concentrate boron in cancerous tissues.

  7. Salinity’s influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations.

    USDA-ARS?s Scientific Manuscript database

    Limited research has been conducted on the interactive effects of salinity and boron stresses on plants despite their common occurrence in natural systems. The purpose of this research was to determine and quantify the interactive effects of salinity, salt composition and boron on broccoli (Brassica...

  8. Mineral of the month: boron

    USGS Publications Warehouse

    Lyday, Phyllis A.

    2005-01-01

    What does boron have to do with baseball, apple pie, motherhood and Chevrolet? Boron minerals and chemicals are used in the tanning of leather baseballs and gloves; in micro-fertilizer to grow apples and in the glass and enamels of bakewares to cook apple pie; in boron detergents for soaking baby clothes and diapers; and in fiberglass parts for the Chevrolet Corvette.

  9. Dispersion toughened silicon carbon ceramics

    DOEpatents

    Wei, G.C.

    1984-01-01

    Fracture resistant silicon carbide ceramics are provided by incorporating therein a particulate dispersoid selected from the group consisting of (a) a mixture of boron, carbon and tungsten, (b) a mixture of boron, carbon and molybdenum, (c) a mixture of boron, carbon and titanium carbide, (d) a mixture of aluminum oxide and zirconium oxide, and (e) boron nitride. 4 figures.

  10. pH dependent salinity-boron interactions impact yield, biomass, evapotranspiration and boron uptake in broccoli (Brassica oleracea L.)

    USDA-ARS?s Scientific Manuscript database

    Soil pH is known to influence many important biochemical processes in plants and soils, however its role in salinity - boron interactions affecting plant growth and ion relations has not been examined. The purpose of this research was to evaluate the interactive effects of salinity, boron and soil ...

  11. Role of boron nutrient in nodules growth and nitrogen fixation rates in soybean genotypes under water stress conditions

    USDA-ARS?s Scientific Manuscript database

    Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...

  12. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  13. Development and application of colorimetric microassay for determining boron-containing compounds

    Treesearch

    S. Nami Kartal; Frederick Green

    2002-01-01

    This paper describes the development of a microsssay for boron and the application of this microassay for evaluating leachability of boron by post-treatment of southern pine with the calcium precipitating agent NHA (N'N-napthaloylhydroxylamine). The microsssay method for quantitative estimation of boron content in treated wood and leachates is a microadaptation of...

  14. The prospects for composites based on boron fibers

    NASA Technical Reports Server (NTRS)

    Naslain, R.

    1978-01-01

    The fabrication of boron filaments and the production of composite materials consisting of boron filaments and organic or metallic matrices are discussed. Problem involving the use of tungsten substrates in the filament fabrication process, the protection of boron fibers with diffusion barrier cladings, and the application of alloy additives in the matrix to lessen the effects of diffusion are considered. Data on the kinetics of the boron fiber/matrix interaction at high temperatures, and the influence of the fiber/matrix interaction on the mechanical properties of the composite are presented.

  15. Experimental observation of boron nitride chains.

    PubMed

    Cretu, Ovidiu; Komsa, Hannu-Pekka; Lehtinen, Ossi; Algara-Siller, Gerardo; Kaiser, Ute; Suenaga, Kazu; Krasheninnikov, Arkady V

    2014-12-23

    We report the formation and characterization of boron nitride atomic chains. The chains were made from hexagonal boron nitride sheets using the electron beam inside a transmission electron microscope. We find that the stability and lifetime of the chains are significantly improved when they are supported by another boron nitride layer. With the help of first-principles calculations, we prove the heteroatomic structure of the chains and determine their mechanical and electronic properties. Our study completes the analogy between various boron nitride and carbon polymorphs, in accordance with earlier theoretical predictions.

  16. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, Michael J.; Swanson, Lynwood W.; Bell, Anthony E.; Clark Jr., William M.; Utlaut, Mark W.; Storms, Edmund K.

    1999-01-01

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B.sub.4 C and thus to promote wetting of an associated carbon support substrate.

  17. Enhanced-wetting, boron-based liquid-metal ion source and method

    DOEpatents

    Bozack, M.J.; Swanson, L.W.; Bell, A.E.; Clark, W.M. Jr.; Utlaut, M.W.; Storms, E.K.

    1999-02-16

    A binary, boron-based alloy as a source for field-emission-type, ion-beam generating devices, wherein boron predominates in the alloy, preferably with a presence of about 60 atomic percent is disclosed. The other constituent in the alloy is selected from the group of elements consisting of nickel, palladium and platinum. Predominance of boron in these alloys, during operation, promotes combining of boron with trace impurities of carbon in the alloys to form B{sub 4}C and thus to promote wetting of an associated carbon support substrate. 1 fig.

  18. Producing carbon stripper foils containing boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoner, J. O. Jr.

    2012-12-19

    Parameters being actively tested by the accelerator community for the purpose of extending carbon stripper foil lifetimes in fast ion beams include methods of deposition, parting agents, mounting techniques, support (fork) materials, and inclusion of alloying elements, particularly boron. Specialized production apparatus is required for either sequential deposition or co-deposition of boron in carbon foils. A dual-use vacuum evaporator for arc evaporation of carbon and electron-beam evaporation of boron and other materials has been built for such development. Production of both carbon and boron foils has begun and improvements are in progress.

  19. Boron isotope fractionation in liquid chromatography with boron-specific resins as column packing material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oi, Takao; Shimazaki, Hiromi; Ishii, Reiko

    1997-07-01

    Boron-specific resins with n-methyl glucamine as the functional group were used as column packing material of liquid chromatography for boron isotope separation. The shapes of chromatograms in reverse breakthrough experiments were heavily dependent on the pH of the eluents, and there existed a pH value at which a chromatogram of the displacement type was realized nearly ideally. The value of the single-stage separation factor for the boron isotopes varied between 1.010 and 1.022, depending on the temperature and the form of the resins. The existence of the three-coordinate boron species in addition to the four-coordinate species in the resin phasemore » is suggested.« less

  20. Safety Assessment of Boron Nitride as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of boron nitride which functions in cosmetics as a slip modifier (ie, it has a lubricating effect). Boron nitride is an inorganic compound with a crystalline form that can be hexagonal, spherical, or cubic; the hexagonal form is presumed to be used in cosmetics. The highest reported concentration of use of boron nitride is 25% in eye shadow formulations. Although boron nitride nanotubes are produced, boron nitride is not listed as a nanomaterial used in cosmetic formulations. The Panel reviewed available chemistry, animal data, and clinical data and concluded that this ingredient is safe in the present practices of use and concentration in cosmetic formulations. © The Author(s) 2015.

  1. Calculation of residual principal stresses in CVD boron on carbon filaments

    NASA Technical Reports Server (NTRS)

    Behrendt, D. R.

    1980-01-01

    A three-dimensional finite element model of the chemical vapor deposition of boron on a carbon substrate (B/C) is developed. The model includes an expansion of the boron after deposition due to atomic rearrangement and includes creep of the boron and carbon. Curves are presented showing the variation of the principal residual stresses and the filament elongation with the parameters defining deposition strain and creep. The calculated results are compared with experimental axial residual stress and elongation measurements made on B/C filaments. For good agreement between calculated and experimental results, the deposited boron must continue to expand after deposition, and the build up of residual stresses must be limited by significant boron and carbon creep rates.

  2. Elemental distribution in seaweed, Gelidium abbottiorum along the KwaZulu-Natal Coastline, South Africa.

    PubMed

    Misheer, Natasha; Kindness, Andrew; Jonnalagadda, Sreekanth B

    2006-01-01

    The total concentrations of 7 selected metals, namely manganese, iron, zinc, titanium, boron, arsenic and mercury, were monitored for one annual cycle covering four seasons in the seaweed, Gelidium abbottiorum, at four sampling sites at Zinkwasi, Ballito, Treasure beach and Park Rynie along the South-East coastline of KwaZulu-Natal, South Africa to assess the current status of the marine environment. Inductively Coupled Plasma Optical Emission Spectrophotometry, Mercury Cold Vapour AAS, and Hydride Generation AAS were used for the determination of metal concentrations. Mn concentrations were particularly high in the G. abbottiorum species, followed by Fe, As and B concentrations which were in the 3-8 ppm range. Ti and Zn were in the 100-400 ppb range, while Hg was low and below 100 ppb. A typical sample of G. abbottiorum at Treasure beach, a site close to Durban metropolis in winter had Mn (8.6 ppm), Fe (4.6 ppm), As (5.6 ppm), B (3.0 ppm), Ti (420 ppb), Zn (167 ppb) and Hg (7.5 ppb). All metals recorded a decrease in concentrations from winter to spring with the exception of Hg. The Hg levels increased considerably from winter to spring.

  3. Electron Energy Distribution and Transfer Phenomena in Non-Equilibrium Gases

    DTIC Science & Technology

    2016-09-01

    and quantitative determination of species difficult. In a mass spectrometry study on boron chemistry a few decade ago, a technique of isotopic...In this FTMS study on TEB, by means of the high-mass-resolution spectrum to distinguish the isobaric ions, we have identified and quantitatively ...reproduce, release, perform, display, or disclose the work. 14. ABSTRACT During this 3-year in-house experimental research task, researchers in the

  4. A Weibull characterization for tensile fracture of multicomponent brittle fibers

    NASA Technical Reports Server (NTRS)

    Barrows, R. G.

    1977-01-01

    A statistical characterization for multicomponent brittle fibers in presented. The method, which is an extension of usual Weibull distribution procedures, statistically considers the components making up a fiber (e.g., substrate, sheath, and surface) as separate entities and taken together as in a fiber. Tensile data for silicon carbide fiber and for an experimental carbon-boron alloy fiber are evaluated in terms of the proposed multicomponent Weibull characterization.

  5. Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-ichi; Maruhashi, Akira

    2006-03-01

    Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.

  6. Improvement effect on the depth-dose distribution by CSF drainage and air infusion of a tumour-removed cavity in boron neutron capture therapy for malignant brain tumours.

    PubMed

    Sakurai, Yoshinori; Ono, Koji; Miyatake, Shin-Ichi; Maruhashi, Akira

    2006-03-07

    Boron neutron capture therapy (BNCT) without craniotomy for malignant brain tumours was started using an epi-thermal neutron beam at the Kyoto University Reactor in June 2002. We have tried some techniques to overcome the treatable-depth limit in BNCT. One of the effective techniques is void formation utilizing a tumour-removed cavity. The tumorous part is removed by craniotomy about 1 week before a BNCT treatment in our protocol. Just before the BNCT irradiation, the cerebro-spinal fluid (CSF) in the tumour-removed cavity is drained out, air is infused to the cavity and then the void is made. This void improves the neutron penetration, and the thermal neutron flux at depth increases. The phantom experiments and survey simulations modelling the CSF drainage and air infusion of the tumour-removed cavity were performed for the size and shape of the void. The advantage of the CSF drainage and air infusion is confirmed for the improvement in the depth-dose distribution. From the parametric surveys, it was confirmed that the cavity volume had good correlation with the improvement effect, and the larger effect was expected as the cavity volume was larger.

  7. Progress In The Development Of A Tomographic SPECT System For Online Dosimetry In BNCT

    NASA Astrophysics Data System (ADS)

    Minsky, D. M.; Valda, A.; Kreiner, A. J.; Burlon, A. A.; Green, S.; Wojnecki, C.; Ghani, Z.

    2010-08-01

    In boron neutron capture therapy (BNCT) the delivered dose to the patient depends both on the neutron beam characteristics and on the 10B body distribution which, in turn, is governed by the tumor specificity of the 10B drug-carrier. BNCT dosimetry is a complex matter due to the several interactions that neutrons can undergo with the different nuclei present in tissue. However the boron capture reaction 10B(n,α)7Li accounts for about 80 % of the total dose in a tumor with 40 ppm in 10B concentration. Present dosimetric methods are indirect, based on drug biodistribution statistical data and subjected to inter and intra-patient variability. In order to overcome the consequences of the concomitant high dosimetric uncertainties, we propose a SPECT (Single Photon Emission Tomography) approach based on the detection of the prompt gamma-ray (478 keV) emitted in 94 % of the cases from 7Li. For this purpose we designed, built and tested a prototype based on LaBr3(Ce) scintillators. Measurements on a head and tumor phantom were performed in the accelerator-based BNCT facility of the University of Birmingham (UK). They result in the first tomographic image of the 10B capture distribution obtained in a BNCT facility.

  8. Scattering of low-energetic atoms and molecules from a boron-doped CVD diamond surface

    NASA Astrophysics Data System (ADS)

    Allenbach, M.; Neuland, M. B.; Riedo, A.; Wurz, P.

    2018-01-01

    For the detection of low energetic neutral atoms for the remote sensing of space plasmas, charge state conversion surfaces are used to ionize the neutrals for their subsequent measurement. We investigated a boron-doped Chemical Vapor Deposition (CVD) diamond sample for its suitability to serve as a conversion surface on future space missions, such as NASA's Interstellar Mapping and Acceleration Probe. For H and O atoms incident on conversion surface with energies ranging from 195 to 1000 eV and impact angles from 6° to 15° we measured the angular scattering distributions and the ionization yields. Atomic force microscope and laser ablation ionization mass spectrometry analyses were applied to further characterize the sample. Based on a figure-of-merit, which included the ionization yield and angular scatter distribution, the B-doped CVD surface was compared to other, previously characterized conversion surfaces, including e.g. an undoped CVD diamond with a metallized backside. For particle energies below 390 eV the performance of the B-doped CVD conversion surfaces is comparable to surfaces studied before. For higher energies the figure-of-merit indicates a superior performance. From our studies we conclude that the B-doped CVD diamond sample is well suited for its application on future space missions.

  9. Development of An Epi-thermal Neutron Field for Fundamental Researches for BNCT with A DT Neutron Source

    NASA Astrophysics Data System (ADS)

    Osawa, Yuta; Imoto, Shoichi; Kusaka, Sachie; Sato, Fuminobu; Tanoshita, Masahiro; Murata, Isao

    2017-09-01

    Boron Neutron Capture Therapy (BNCT) is known to be a new promising cancer therapy suppressing influence against normal cells. In Japan, Accelerator Based Neutron Sources (ABNS) are being developed for BNCT. For the spread of ABNS based BNCT, we should characterize the neutron field beforehand. For this purpose, we have been developing a low-energy neutron spectrometer based on 3He position sensitive proportional counter. In this study, a new intense epi-thermal neutron field was developed with a DT neutron source for verification of validity of the spectrometer. After the development, the neutron field characteristics were experimentally evaluated by using activation foils. As a result, we confirmed that an epi-thermal neutron field was successfully developed suppressing fast neutrons substantially. Thereafter, the neutron spectrometer was verified experimentally. In the verification, although a measured detection depth distribution agreed well with the calculated distribution by MCNP, the unfolded spectrum was significantly different from the calculated neutron spectrum due to contribution of the side neutron incidence. Therefore, we designed a new neutron collimator consisting of a polyethylene pre-collimator and boron carbide neutron absorber and confirmed numerically that it could suppress the side incident neutrons and shape the neutron flux to be like a pencil beam.

  10. Energy release properties of amorphous boron and boron-based propellant primary combustion products

    NASA Astrophysics Data System (ADS)

    Liang, Daolun; Liu, Jianzhong; Xiao, Jinwu; Xi, Jianfei; Wang, Yang; Zhang, Yanwei; Zhou, Junhu

    2015-07-01

    The microstructure of amorphous boron and the primary combustion products of boron-based fuel-rich propellant (hereafter referred to as primary combustion products) was analyzed by scanning electron microscope. Composition analysis of the primary combustion products was carried out by X-ray diffraction and X-ray photoelectron spectroscopy. The energy release properties of amorphous boron and the primary combustion products were comparatively studied by laser ignition experimental system and thermogravimetry-differential scanning calorimetry. The primary combustion products contain B, C, Mg, Al, B4C, B13C2, BN, B2O3, NH4Cl, H2O, and so on. The energy release properties of primary combustion products are different from amorphous boron, significantly. The full-time spectral intensity of primary combustion products at a wavelength of 580 nm is ~2% lower than that of amorphous boron. The maximum spectral intensity of the former at full wave is ~5% higher than that of the latter. The ignition delay time of primary combustion products is ~150 ms shorter than that of amorphous boron, and the self-sustaining combustion time of the former is ~200 ms longer than that of the latter. The thermal oxidation process of amorphous boron involves water evaporation (weight loss) and boron oxidation (weight gain). The thermal oxidation process of primary combustion products involves two additional steps: NH4Cl decomposition (weight loss) and carbon oxidation (weight loss). CL-20 shows better combustion-supporting effect than KClO4 in both the laser ignition experiments and the thermal oxidation experiments.

  11. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vajo, John J.

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slowmore » rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.« less

  12. Structural and mechanical characterization of boron doped biphasic calcium phosphate produced by wet chemical method and subsequent thermal treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albayrak, Onder, E-mail: albayrakonder@mersin.edu.tr

    In the current study, boron doped biphasic calcium phosphate bioceramics consisting of a mixture of boron doped hydroxyapatite (BHA) and beta tricalcium phosphate (β-TCP) of varying BHA/β-TCP ratios were obtained after sintering stage. The effects of varying boron contents and different sintering temperatures on the BHA/β-TCP ratios and on the sinterability of the final products were investigated. Particle sizes and morphologies of the obtained precipitates were determined using SEM. XRD and FTIR investigation were conducted to detect the boron formation in the structure of HA and quantitative analysis was performed to determine the BHA/β-TCP ratio before and after sintering stage.more » In order to determine the sinterability of the obtained powders, pellets were prepared and sintered; the rates of densification were calculated and obtained results were correlated by SEM images. Also Vickers microhardness values of the sintered samples were determined. The experimental results verified that boron doped hydroxyapatite powders were obtained after sintering stage and the structure consists of a mixture of BHA and β-TCP. As the boron content used in the precipitation stage increases, β-TCP content of the BHA/β-TCP ratio increases but sinterability, density and microhardness deteriorate. As the sintering temperature increases, β-TCP content, density and microhardness of the samples increase and sinterability improves. - Highlights: • This is the first paper about boron doped biphasic calcium phosphate bioceramics. • Boron doping affects the structural and mechanical properties. • BHA/β-TCP ratio can be adjustable with boron content and sintering temperature.« less

  13. Solid state, thermal synthesis of site-specific protein-boron cluster conjugates and their physicochemical and biochemical properties.

    PubMed

    Goszczyński, Tomasz M; Kowalski, Konrad; Leśnikowski, Zbigniew J; Boratyński, Janusz

    2015-02-01

    Boron clusters represent a vast family of boron-rich compounds with extraordinary properties that provide the opportunity of exploitation in different areas of chemistry and biology. In addition, boron clusters are clinically used in boron neutron capture therapy (BNCT) of tumors. In this paper, a novel, in solid state (solvent free), thermal method for protein modification with boron clusters has been proposed. The method is based on a cyclic ether ring opening in oxonium adduct of cyclic ether and a boron cluster with nucleophilic centers of the protein. Lysozyme was used as the model protein, and the physicochemical and biological properties of the obtained conjugates were characterized. The main residues of modification were identified as arginine-128 and threonine-51. No significant changes in the secondary or tertiary structures of the protein after tethering of the boron cluster were found using mass spectrometry and circular dichroism measurements. However, some changes in the intermolecular interactions and hydrodynamic and catalytic properties were observed. To the best of our knowledge, we have described the first example of an application of cyclic ether ring opening in the oxonium adducts of a boron cluster for protein modification. In addition, a distinctive feature of the proposed approach is performing the reaction in solid state and at elevated temperature. The proposed methodology provides a new route to protein modification with boron clusters and extends the range of innovative molecules available for biological and medical testing. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Relationship Not Found Between Blood and Urine Concentrations and Body Mass Index in Humans With Apparently Adequate Boron Status.

    PubMed

    Koc, Fulya; Aysan, Erhan; Hasbahceci, Mustafa; Arpaci, Beyza; Gecer, Salih; Demirci, Selami; Sahin, Fikrettin

    2016-06-01

    The impact of boron on the development of obesity remains controversial in the analysis of experimental and clinical data. The objective of this study was to investigate the relationship between blood and urine boron concentrations and obesity in normal, overweight, obese, and morbidly obese subjects in different age groups. A total of 105 subjects were categorized into 12 groups based on body mass index and three different age levels: as young adult (18 to 34 years old), adult (35 to 54 years old), and older adult (greater than 55 years old). Age, gender, body mass index, and blood and urine boron concentrations were recorded for each subject. There were 50 women and 55 men, with a mean age of 44.63 ± 17.9 years. Blood and urine boron concentrations were similar among the groups (p = 0.510 and p = 0.228, respectively). However, a positive correlation between age and blood boron concentration (p = 0.001) was detected in contrast to the presence of a negative correlation between age and urine boron concentration (p = 0.027). Multiple linear regression analysis showed that there was no significant relationship between gender, age, and quantitative values of body mass index for each subject, and blood and urine boron concentrations. Although the relationship between boron and obesity has not been confirmed, changes of blood and urine boron concentrations with age may have some physiologic sequences to cause obesity.

  15. Effect of thermal and thermo-mechanical cycling on the boron segregation behavior in the coarse-grained heat-affected zone of low-alloy steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sanghoon; Kang, Yongjoon; Lee, Changhee, E-mail: chlee@hanyang.ac.kr

    The boron segregation behavior in the coarse-grained heat-affected zone (CGHAZ) of 10 ppm boron-added low-alloy steel during the welding cycle was investigated by taking the changes in the microstructure and hardness into account. Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress, and the boron segregation behavior was analyzed by secondary ion mass spectrometry (SIMS) and particle tracking autoradiography (PTA). The segregation of boron was found to initially increase, and then decrease with an increase in the heat input. This is believed to be due to the back-diffusion of boron withmore » an increase in the exposure time at high temperature after non-equilibrium grain boundary segregation. The grain boundary segregation of boron could be decreased by an external stress applied during the welding cycle. Such behavior may be due to an increase in the grain boundary area as a result of the grain size reduction induced by the external stress. - Highlights: • Boron segregation behavior in the CGHAZ of low-alloy steel during a welding cycle was investigated. • Various CGHAZs were simulated with a Gleeble system as a function of the heat input and external stress. • Boron segregation behavior was analyzed using SIMS and PTA techniques.« less

  16. Mineral resource of the month: boron

    USGS Publications Warehouse

    Lyday, Phyllis A.

    2005-01-01

    What does boron have to do with baseball, apple pie, motherhood and Chevrolet? Boron minerals and chemicals are used in the tanning of leather baseballs and gloves; in micro-fertilizer to grow apples and in the glass and enamels of bakewares to cook apple pie; in boron detergents for soaking baby clothes and diapers; and in fiberglass parts for the Chevrolet Corvette.

  17. The effect of boron deficiency on gene expression and boron compartmentalization in sugarbeet

    USDA-ARS?s Scientific Manuscript database

    NIP5, BOR1, NIP6, and WRKY6 genes were investigated for their role in boron deficiency in sugar beet, each with a proposed role in boron use in model plant species. All genes showed evidence of polymorphism in fragment size and gene expression in the target genomic DNA and cDNA libraries, with no co...

  18. Boron compounds as anion binding agents for nonaqueous battery electrolytes

    DOEpatents

    Lee, Hung Sui; Yang, Xia-Oing; McBreen, James; Xiang, Caili

    2000-02-08

    Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.

  19. Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes

    DOEpatents

    Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James; Sun, Xuehui

    2002-01-01

    Novel fluorinated boronate-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boronate-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boronate-based anion receptors include different fluorinated alkyl and aryl groups.

  20. BIO-PRECIPITATES PRODUCED BY TWO AUTOCHTHONOUS BORON TOLERANT STREPTOMYCES STRAINS.

    PubMed

    Moraga, Norma Beatriz; Irazusta, Verónica; Amoroso, María Julia; Rajal, Verónica Beatriz

    2017-08-01

    Boron is widespread in the environment. Although contaminated soils are hard to recover different strategies have been investigated in the recent years. Bioremediation is one of the most studied because it is eco-friendly and less costly than other techniques. The aim of this research was to evaluate whether two Streptomyces strains isolated from boron contaminated soils in Salta, Argentina, may help remove boron from such soils. For this, they were grown in different liquid media with two boric acid concentrations and their specific growth rate and specific boric acid consumption rate were determined. Both strains showed great capacity to remove boron from the media. Increasing boric acid concentrations affected negatively the specific growth rate, however the specific boric acid consumption rate was superior. Boron bio-precipitates were observed when the strains grew in the presence of boric acid, probably due to an adaptive response developed by the cells to the exposure, for which many proteins were differentially synthetized. This strategy to tolerate high concentrations of boron by immobilizing it in bio-precipitates has not been previously described, to the best of our knowledge, and may have a great potential application in remediating soils contaminated with boron compounds.

Top