Sample records for monitoring current technologies

  1. Education technology with continuous real time monitoring of the current functional and emotional students' states

    NASA Astrophysics Data System (ADS)

    Alyushin, M. V.; Kolobashkina, L. V.

    2017-01-01

    The education technology with continuous monitoring of the current functional and emotional students' states is suggested. The application of this technology allows one to increase the effectiveness of practice through informed planning of the training load. For monitoring the current functional and emotional students' states non-contact remote technologies of person bioparameters registration are encouraged to use. These technologies are based on recording and processing in real time the main person bioparameters in a purely passive mode. Experimental testing of this technology has confirmed its effectiveness.

  2. A review of electrostatic monitoring technology: The state of the art and future research directions

    NASA Astrophysics Data System (ADS)

    Wen, Zhenhua; Hou, Junxing; Atkin, Jason

    2017-10-01

    Electrostatic monitoring technology is a useful tool for monitoring and detecting component faults and degradation, which is necessary for system health management. It encompasses three key research areas: sensor technology; signal detection, processing and feature extraction; and verification experimentation. It has received considerable recent attention for condition monitoring due to its ability to provide warning information and non-obstructive measurements on-line. A number of papers in recent years have covered specific aspects of the technology, including sensor design optimization, sensor characteristic analysis, signal de-noising and practical applications of the technology. This paper provides a review of the recent research and of the development of electrostatic monitoring technology, with a primary emphasis on its application for the aero-engine gas path. The paper also presents a summary of some of the current applications of electrostatic monitoring technology in other industries, before concluding with a brief discussion of the current research situation and possible future challenges and research gaps in this field. The aim of this paper is to promote further research into this promising technology by increasing awareness of both the potential benefits of the technology and the current research gaps.

  3. Advanced Environmental Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Jan, Darrell

    2004-01-01

    Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.

  4. Sensor Technologies on Flexible Substrates

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica

    2016-01-01

    NASA Ames has developed sensor technologies on flexible substrates integrated into textiles for personalized environment monitoring and human performance evaluation. Current technologies include chemical sensing for gas leak and event monitoring and biological sensors for human health and performance monitoring. Targeted integration include next generation EVA suits and flexible habitats.

  5. An overview of ecological monitoring based on geographic information system (GIS) and remote sensing (RS) technology in China

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Jia; Du, Xiangyang; Kang, Hou; Qiao, Minjuan

    2017-11-01

    Due to the rapid development of human economy and society, the resulting ecological problems are becoming more and more prominent, and the dynamic monitoring of the various elements in the ecosystem has become the focus of the current research. For the complex structure and function of the ecological environment monitoring, advanced technical means should be adopted. With the development of spatial information technology, the ecological monitoring technology based on GIS and RS is becoming more and more perfect, and spatial analysis will play an important role in the field of environmental protection. Based on the GIS and RS technology, this paper analyzes the general centralized ecological monitoring model, and makes an objective analysis of the current ecological monitoring trend of China. These are important for the protection and management of ecological environment in China.

  6. Is Technology-Mediated Parental Monitoring Related to Adolescent Substance Use?

    PubMed

    Rudi, Jessie; Dworkin, Jodi

    2018-01-03

    Prevention researchers have identified parental monitoring leading to parental knowledge to be a protective factor against adolescent substance use. In today's digital society, parental monitoring can occur using technology-mediated communication methods, such as text messaging, email, and social networking sites. The current study aimed to identify patterns, or clusters, of in-person and technology-mediated monitoring behaviors, and examine differences between the patterns (clusters) in adolescent substance use. Cross-sectional survey data were collected from 289 parents of adolescents using Facebook and Amazon Mechanical Turk (MTurk). Cluster analyses were computed to identify patterns of in-person and technology-mediated monitoring behaviors, and chi-square analyses were computed to examine differences in substance use between the identified clusters. Three monitoring clusters were identified: a moderate in-person and moderate technology-mediated monitoring cluster (moderate-moderate), a high in-person and high technology-mediated monitoring cluster (high-high), and a high in-person and low technology-mediated monitoring cluster (high-low). Higher frequency of technology-mediated parental monitoring was not associated with lower levels of substance use. Results show that higher levels of technology-mediated parental monitoring may not be associated with adolescent substance use.

  7. Technology platforms for remote monitoring of vital signs in the new era of telemedicine.

    PubMed

    Zhao, Fang; Li, Meng; Tsien, Joe Z

    2015-07-01

    Driven by healthcare cost and home healthcare need, the development of remote monitoring technologies is poised to improve and revolutionize healthcare delivery and accessibility. This paper reviews the recent progress in the field of remote monitoring technologies that may have the potential to become the basic platforms for telemedicine. In particular, key techniques and devices for monitoring cardiorespiratory activity, blood pressure and blood glucose concentration are summarized and discussed. In addition, the US FDA approved remote vital signs monitoring devices currently available on the market are presented.

  8. Gear Damage Detection Integrating Oil Debris and Vibration Measurement Technologies Developed

    NASA Technical Reports Server (NTRS)

    Gyekeyeski, Andrew L.; Sawicki, Jerzy T.

    2001-01-01

    The development of highly reliable health-monitoring systems is one technology area recommended for reducing the number of helicopter accidents. Helicopter transmission diagnostics are an important part of a helicopter health-monitoring system because helicopters depend on the power train for propulsion, lift, and flight maneuvering. One technique currently being tested for increasing the reliability and decreasing the false alarm rate of current transmission diagnostic tools is the replacement of simple single-sensor limits with multisensor systems integrating different measurement technologies.

  9. Emerging role of digital technology and remote monitoring in the care of cardiac patients.

    PubMed

    Banchs, Javier E; Scher, David Lee

    2015-07-01

    Current available mobile health technologies make possible earlier diagnosis and long-term monitoring of patients with cardiovascular diseases. Remote monitoring of patients with implantable devices and chronic diseases has resulted in better outcomes reducing health care costs and hospital admissions. New care models, which shift point of care to the outpatient setting and the patient's home, necessitate innovations in technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Wireless technology in disease management and medicine.

    PubMed

    Clifford, Gari D; Clifton, David

    2012-01-01

    Healthcare information, and to some extent patient management, is progressing toward a wireless digital future. This change is driven partly by a desire to improve the current state of medicine using new technologies, partly by supply-and-demand economics, and partly by the utility of wireless devices. Wired technology can be cumbersome for patient monitoring and can restrict the behavior of the monitored patients, introducing bias or artifacts. However, wireless technologies, while mitigating some of these issues, have introduced new problems such as data dropout and "information overload" for the clinical team. This review provides an overview of current wireless technology used for patient monitoring and disease management. We identify some of the major related issues and describe some existing and possible solutions. In particular, we discuss the rapidly evolving fields of telemedicine and mHealth in the context of increasingly resource-constrained healthcare systems.

  11. Professionals' views of fetal-monitoring support the development of devices to provide objective longer-term assessment of fetal wellbeing.

    PubMed

    Brown, Rebecca; Johnstone, Edward D; Heazell, Alexander E P

    2016-01-01

    Continuous longer-term fetal monitoring has been proposed to address limitations of current technologies in the detection of fetal compromise. We aimed to assess professionals' views regarding current fetal-monitoring techniques and proposed longer-term continuous fetal monitoring. A questionnaire was designed and validated to assess obstetricians' and midwives' use of current fetal-monitoring techniques and their views towards continuous monitoring. 125 of 173 received responses (72% obstetricians, 28% midwives) were analysed. Professionals had the strongest views about supporting evidence for the most commonly employed fetal-monitoring techniques (maternal awareness of fetal movements, ultrasound assessment of fetal growth and umbilical artery Doppler). 45.1% of professionals agreed that a continuous monitoring device would be beneficial (versus 28.7% who disagreed); this perceived benefit was not influenced by professionals' views regarding current techniques or professional background. Professionals have limited experience of continuous fetal monitoring, but most respondents believed that it would increase maternal anxiety (64.3%) and would have concerns with its use in clinical practice (81.7%). Continuous fetal monitoring would be acceptable to the majority of professionals. However, development of these technologies must be accompanied by extended examination of professionals' and women's views to determine barriers to its introduction.

  12. A Survey of Current Rotorcraft Propulsion Health Monitoring Technologies

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Dempsey, Paula J.; Simon, Donald L.

    2012-01-01

    A brief review is presented on the state-of-the-art in rotorcraft engine health monitoring technologies including summaries on current practices in the area of sensors, data acquisition, monitoring and analysis. Also, presented are guidelines for verification and validation of Health Usage Monitoring System (HUMS) and specifically for maintenance credits to extend part life. Finally, a number of new efforts in HUMS are summarized as well as lessons learned and future challenges. In particular, gaps are identified to supporting maintenance credits to extend rotorcraft engine part life. A number of data sources were consulted and include results from a survey from the HUMS community, Society of Automotive Engineers (SAE) documents, American Helicopter Society (AHS) papers, as well as references from Defence Science & Technology Organization (DSTO), Civil Aviation Authority (CAA), and Federal Aviation Administration (FAA).

  13. Migration monitoring with automated technology

    Treesearch

    Rhonda L. Millikin

    2005-01-01

    Automated technology can supplement ground-based methods of migration monitoring by providing: (1) unbiased and automated sampling; (2) independent validation of current methods; (3) a larger sample area for landscape-level analysis of habitat selection for stopover, and (4) an opportunity to study flight behavior. In particular, radar-acoustic sensor fusion can...

  14. A study of mass data storage technology for rocket engine data

    NASA Technical Reports Server (NTRS)

    Ready, John F.; Benser, Earl T.; Fritz, Bernard S.; Nelson, Scott A.; Stauffer, Donald R.; Volna, William M.

    1990-01-01

    The results of a nine month study program on mass data storage technology for rocket engine (especially the Space Shuttle Main Engine) health monitoring and control are summarized. The program had the objective of recommending a candidate mass data storage technology development for rocket engine health monitoring and control and of formulating a project plan and specification for that technology development. The work was divided into three major technical tasks: (1) development of requirements; (2) survey of mass data storage technologies; and (3) definition of a project plan and specification for technology development. The first of these tasks reviewed current data storage technology and developed a prioritized set of requirements for the health monitoring and control applications. The second task included a survey of state-of-the-art and newly developing technologies and a matrix-based ranking of the technologies. It culminated in a recommendation of optical disk technology as the best candidate for technology development. The final task defined a proof-of-concept demonstration, including tasks required to develop, test, analyze, and demonstrate the technology advancement, plus an estimate of the level of effort required. The recommended demonstration emphasizes development of an optical disk system which incorporates an order-of-magnitude increase in writing speed above the current state of the art.

  15. Remote patient monitoring in chronic heart failure.

    PubMed

    Palaniswamy, Chandrasekar; Mishkin, Aaron; Aronow, Wilbert S; Kalra, Ankur; Frishman, William H

    2013-01-01

    Heart failure (HF) poses a significant economic burden on our health-care resources with very high readmission rates. Remote monitoring has a substantial potential to improve the management and outcome of patients with HF. Readmission for decompensated HF is often preceded by a stage of subclinical hemodynamic decompensation, where therapeutic interventions would prevent subsequent clinical decompensation and hospitalization. Various methods of remote patient monitoring include structured telephone support, advanced telemonitoring technologies, remote monitoring of patients with implanted cardiac devices such as pacemakers and defibrillators, and implantable hemodynamic monitors. Current data examining the efficacy of remote monitoring technologies in improving outcomes have shown inconsistent results. Various medicolegal and financial issues need to be addressed before widespread implementation of this exciting technology can take place.

  16. Actualities and Development of Heavy-Duty CNC Machine Tool Thermal Error Monitoring Technology

    NASA Astrophysics Data System (ADS)

    Zhou, Zu-De; Gui, Lin; Tan, Yue-Gang; Liu, Ming-Yao; Liu, Yi; Li, Rui-Ya

    2017-09-01

    Thermal error monitoring technology is the key technological support to solve the thermal error problem of heavy-duty CNC (computer numerical control) machine tools. Currently, there are many review literatures introducing the thermal error research of CNC machine tools, but those mainly focus on the thermal issues in small and medium-sized CNC machine tools and seldom introduce thermal error monitoring technologies. This paper gives an overview of the research on the thermal error of CNC machine tools and emphasizes the study of thermal error of the heavy-duty CNC machine tool in three areas. These areas are the causes of thermal error of heavy-duty CNC machine tool and the issues with the temperature monitoring technology and thermal deformation monitoring technology. A new optical measurement technology called the "fiber Bragg grating (FBG) distributed sensing technology" for heavy-duty CNC machine tools is introduced in detail. This technology forms an intelligent sensing and monitoring system for heavy-duty CNC machine tools. This paper fills in the blank of this kind of review articles to guide the development of this industry field and opens up new areas of research on the heavy-duty CNC machine tool thermal error.

  17. Status and Needs Research for On-line Monitoring of VOCs Emissions from Stationary Sources

    NASA Astrophysics Data System (ADS)

    Zhou, Gang; Wang, Qiang; Zhong, Qi; Zhao, Jinbao; Yang, Kai

    2018-01-01

    Based on atmospheric volatile organic compounds (VOCs) pollution control requirements during the twelfth-five year plan and the current status of monitoring and management at home and abroad, instrumental architecture and technical characteristics of continuous emission monitoring systems (CEMS) for VOCs emission from stationary sources are investigated and researched. Technological development needs of VOCs emission on-line monitoring techniques for stationary sources in china are proposed from the system sampling pretreatment technology and analytical measurement techniques.

  18. JPRS Report, Science & Technology, China, Remote Sensing Systems, Applications.

    DTIC Science & Technology

    1991-01-17

    Partial Contents: Short Introduction to Nation’s Remote Sensing Units, Domestic Airborne Remote - Sensing System, Applications in Monitoring Natural...Disasters, Applications of Imagery From Experimental Satellites Launched in 1985, 1986, Current Status, Future Prospects for Domestic Remote - Sensing -Satellite...Ground Station, and Radar Remote - Sensing Technology Used to Monitor Yellow River Delta,

  19. Miniature Biosensor with Health Risk Assessment Feedback

    NASA Technical Reports Server (NTRS)

    Hanson, Andrea; Downs, Meghan; Kalogera, Kent; Buxton, Roxanne; Cooper, Tommy; Cooper, Alan; Cooper, Ross

    2016-01-01

    Heart rate (HR) monitoring is a medical requirement during exercise on the International Space Station (ISS), fitness tests, and extravehicular activity (EVA); however, NASA does not currently have the technology to consistently and accurately monitor HR and other physiological data during these activities. Performance of currently available HR monitor technologies is dependent on uninterrupted contact with the torso and are prone to data drop-out and motion artifact. Here, we seek an alternative to the chest strap and electrode based sensors currently in use on ISS today. This project aims to develop a high performance, robust earbud based biosensor with focused efforts on improved HR data quality during exercise or EVA. A health risk assessment algorithm will further advance the goals of autonomous crew health care for exploration missions.

  20. Development of ship structure health monitoring system based on IOT technology

    NASA Astrophysics Data System (ADS)

    Yang, Sujun; Shi, Lei; Chen, Demin; Dong, Yuqing; Hu, Zhenyi

    2017-06-01

    It is very important to monitor the ship structure, because ships are affected by all kinds of wind wave and current environment factor. At the same time, internet of things (IOT) technology plays more and more important role of in the development of industrial process. In the paper, real-time online monitoring of the ship can be realized by means of IOT technology. Ship stress, vibration and dynamic parameters are measured. Meanwhile, data is transmitted to remote monitoring system through intelligent data gateway. Timely remote support can be realized for dangerous stage of ship. Safe navigation of ships is guaranteed through application of the system.

  1. Technologies for Metabolic Monitoring Military Section Editorials in Diabetes Technologies and Therapeutics

    DTIC Science & Technology

    2004-12-01

    monitoring, diabetes, IGF-I, patient decision assist, hyperspectral imaging, actigraphy, accelerometry, foot contact time, Con A-glucose sensing, lactate...was reduced in both con - mottling, and rebound of a skin fold could all ditions. contribute to a diagnosis. Current technologies Hyperspectral imaging...information such as ambient con - responses in the context of various external ditions, meals and recent activity, and specific challenges ("green light

  2. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems

    PubMed Central

    Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael

    2012-01-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided. PMID:23201999

  3. Ion-specific nutrient management in closed systems: the necessity for ion-selective sensors in terrestrial and space-based agriculture and water management systems.

    PubMed

    Bamsey, Matthew; Graham, Thomas; Thompson, Cody; Berinstain, Alain; Scott, Alan; Dixon, Michael

    2012-10-01

    The ability to monitor and control plant nutrient ions in fertigation solutions, on an ion-specific basis, is critical to the future of controlled environment agriculture crop production, be it in traditional terrestrial settings (e.g., greenhouse crop production) or as a component of bioregenerative life support systems for long duration space exploration. Several technologies are currently available that can provide the required measurement of ion-specific activities in solution. The greenhouse sector has invested in research examining the potential of a number of these technologies to meet the industry's demanding requirements, and although no ideal solution yet exists for on-line measurement, growers do utilize technologies such as high-performance liquid chromatography to provide off-line measurements. An analogous situation exists on the International Space Station where, technological solutions are sought, but currently on-orbit water quality monitoring is considerably restricted. This paper examines the specific advantages that on-line ion-selective sensors could provide to plant production systems both terrestrially and when utilized in space-based biological life support systems and how similar technologies could be applied to nominal on-orbit water quality monitoring. A historical development and technical review of the various ion-selective monitoring technologies is provided.

  4. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review.

    PubMed

    Sanders, James P; Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart J H; Esliger, Dale W

    2016-05-04

    It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma). There are a large number of devices that self-monitor PA; however, there is a greater need for the development of tools to self-monitor sedentary time. The novelty of these devices means they have yet to be used in behavior change interventions, although the growing field of wearable technology may facilitate this to change.

  5. Devices for Self-Monitoring Sedentary Time or Physical Activity: A Scoping Review

    PubMed Central

    Loveday, Adam; Pearson, Natalie; Edwardson, Charlotte; Yates, Thomas; Biddle, Stuart JH; Esliger, Dale W

    2016-01-01

    Background It is well documented that meeting the guideline levels (150 minutes per week) of moderate-to-vigorous physical activity (PA) is protective against chronic disease. Conversely, emerging evidence indicates the deleterious effects of prolonged sitting. Therefore, there is a need to change both behaviors. Self-monitoring of behavior is one of the most robust behavior-change techniques available. The growing number of technologies in the consumer electronics sector provides a unique opportunity for individuals to self-monitor their behavior. Objective The aim of this study is to review the characteristics and measurement properties of currently available self-monitoring devices for sedentary time and/or PA. Methods To identify technologies, four scientific databases were systematically searched using key terms related to behavior, measurement, and population. Articles published through October 2015 were identified. To identify technologies from the consumer electronic sector, systematic searches of three Internet search engines were also performed through to October 1, 2015. Results The initial database searches identified 46 devices and the Internet search engines identified 100 devices yielding a total of 146 technologies. Of these, 64 were further removed because they were currently unavailable for purchase or there was no evidence that they were designed for, had been used in, or could readily be modified for self-monitoring purposes. The remaining 82 technologies were included in this review (73 devices self-monitored PA, 9 devices self-monitored sedentary time). Of the 82 devices included, this review identified no published articles in which these devices were used for the purpose of self-monitoring PA and/or sedentary behavior; however, a number of technologies were found via Internet searches that matched the criteria for self-monitoring and provided immediate feedback on PA (ActiGraph Link, Microsoft Band, and Garmin Vivofit) and sedentary time (activPAL VT, the Lumo Back, and Darma). Conclusions There are a large number of devices that self-monitor PA; however, there is a greater need for the development of tools to self-monitor sedentary time. The novelty of these devices means they have yet to be used in behavior change interventions, although the growing field of wearable technology may facilitate this to change. PMID:27145905

  6. The reflection of evolving bearing faults in the stator current's extended park vector approach for induction machines

    NASA Astrophysics Data System (ADS)

    Corne, Bram; Vervisch, Bram; Derammelaere, Stijn; Knockaert, Jos; Desmet, Jan

    2018-07-01

    Stator current analysis has the potential of becoming the most cost-effective condition monitoring technology regarding electric rotating machinery. Since both electrical and mechanical faults are detected by inexpensive and robust current-sensors, measuring current is advantageous on other techniques such as vibration, acoustic or temperature analysis. However, this technology is struggling to breach into the market of condition monitoring as the electrical interpretation of mechanical machine-problems is highly complicated. Recently, the authors built a test-rig which facilitates the emulation of several representative mechanical faults on an 11 kW induction machine with high accuracy and reproducibility. Operating this test-rig, the stator current of the induction machine under test can be analyzed while mechanical faults are emulated. Furthermore, while emulating, the fault-severity can be manipulated adaptively under controllable environmental conditions. This creates the opportunity of examining the relation between the magnitude of the well-known current fault components and the corresponding fault-severity. This paper presents the emulation of evolving bearing faults and their reflection in the Extended Park Vector Approach for the 11 kW induction machine under test. The results confirm the strong relation between the bearing faults and the stator current fault components in both identification and fault-severity. Conclusively, stator current analysis increases reliability in the application as a complete, robust, on-line condition monitoring technology.

  7. Privacy versus autonomy: a tradeoff model for smart home monitoring technologies.

    PubMed

    Townsend, Daphne; Knoefel, Frank; Goubran, Rafik

    2011-01-01

    Smart homes are proposed as a new location for the delivery of healthcare services. They provide healthcare monitoring and communication services, by using integrated sensor network technologies. We validate a hypothesis regarding older adults' adoption of home monitoring technologies by conducting a literature review of articles studying older adults' attitudes and perceptions of sensor technologies. Using current literature to support the hypothesis, this paper applies the tradeoff model to decisions about sensor acceptance. Older adults are willing to trade privacy (by accepting a monitoring technology), for autonomy. As the information captured by the sensor becomes more intrusive and the infringement on privacy increases, sensors are accepted if the loss in privacy is traded for autonomy. Even video cameras, the most intrusive sensor type were accepted in exchange for the height of autonomy which is to remain in the home.

  8. Exploring morally relevant issues facing families in their decisions to monitor the health-related behaviours of loved ones.

    PubMed

    Gammon, D; Christiansen, E K; Wynn, R

    2009-07-01

    Patient self-management of disease is increasingly supported by technologies that can monitor a wide range of behavioural and biomedical parameters. Incorporated into everyday devices such as cell phones and clothes, these technologies become integral to the psychosocial aspects of everyday life. Many technologies are likely to be marketed directly to families with ill members, and families may enlist the support of clinicians in shaping use. Current ethical frameworks are mainly conceptualised from the perspective of caregivers, researchers, developers and regulators in order to ensure the ethics of their own practices. This paper focuses on families as autonomous decision-makers outside the regulated context of healthcare. We discuss some morally relevant issues facing families in their decisions to monitor the health-related behaviours of loved ones. An example - remote parental monitoring of adolescent blood glucose - is presented and discussed through the lens of two contrasting accounts of ethics; one reflecting the predominant focus on health outcomes within the health technology assessment (HTA) framework and the other that attends to the broader sociocultural contexts shaping technologies and their implications. Issues discussed include the focus of assessments, informed consent and child assent, and family co-creation of system characteristics and implications. The parents' decisions to remotely monitor their child has relational implications that are likely to influence conflict levels and thus also health outcomes. Current efforts to better integrate outcome assessments with social and ethical assessments are particularly relevant for informed decision-making about health monitoring technologies in families.

  9. Technological advances in perioperative monitoring: Current concepts and clinical perspectives

    PubMed Central

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any. PMID:25788767

  10. Technological advances in perioperative monitoring: Current concepts and clinical perspectives.

    PubMed

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any.

  11. Nurse-Technology Interactions and Patient Safety.

    PubMed

    Ruppel, Halley; Funk, Marjorie

    2018-06-01

    Nurses are the end-users of most technology in intensive care units, and the ways in which they interact with technology affect quality of care and patient safety. Nurses' interactions include the processes of ensuring proper input of data into the technology as well as extracting and interpreting the output (clinical data, technical data, alarms). Current challenges in nurse-technology interactions for physiologic monitoring include issues regarding alarm management, workflow interruptions, and monitor surveillance. Patient safety concepts, like high reliability organizations and human factors, can advance efforts to enhance nurse-technology interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Emerging Point-of-Care Technologies for Sickle Cell Disease Screening and Monitoring

    PubMed Central

    Alapan, Yunus; Fraiwan, Arwa; Kucukal, Erdem; Hasan, M. Noman; Ung, Ryan; Kim, Myeongseop; Odame, Isaac; Little, Jane A.; Gurkan, Umut A.

    2016-01-01

    Introduction Sickle Cell Disease (SCD) affects 100,000 Americans and more than 14 million people globally, mostly in economically disadvantaged populations, requires early diagnosis after birth and constant monitoring throughout the life-span of the patient. Areas Covered Early diagnosis of SCD still remains a challenge in preventing childhood mortality in the developing world due to requirements of skilled personnel and high-cost of currently available modalities. On the other hand, SCD monitoring presents insurmountable challenges due to heterogeneities among patient populations, as well as in the same individual longitudinally. Here, we describe emerging point-of-care micro/nano platform technologies for SCD screening and monitoring, and critically discuss current state-of-the-art, potential challenges associated with these technologies, and future directions. Expert Commentary Recently developed microtechnologies offer simple, rapid, and affordable screening of SCD and have the potential to facilitate universal screening in resource-limited settings and developing countries. On the other hand, monitoring of SCD is more complicated compared to diagnosis and requires comprehensive validation of efficacy. Early use of novel microdevices for patient monitoring might come in especially handy in new clinical trial designs of emerging therapies. PMID:27785945

  13. Microelectrode-based technology for the detection of low levels of bacteria

    NASA Technical Reports Server (NTRS)

    Rogers, Tom D.; Hitchens, G. D.; Mishra, S. K.; Pierson, D. L.

    1992-01-01

    A microelectrode-based electrochemical detection method was used for quantitation of bacteria in water samples. The redox mediator, benzoquinone, was used to accept electrons from the bacterial metabolic pathway to create a flow of electrons by reducing the mediator. Electrochemical monitoring electrodes detected the reduced mediator as it diffused out of the cells and produced a small electrical current. By using a combination of microelectrodes and monitoring instrumentation, the cumulative current generated by a particular bacterial population could be monitored. Using commercially available components, an electrochemical detection system was assembled and tested to evaluate its potential as an emerging technology for rapid detection and quantitation of bacteria in water samples.

  14. SMALL DRINKING WATER SYSTEMS: STATE OF THE INDUSTRY AND TREATMENT TECHNOLOGIES TO MEET THE SAFE DRINKING WATER ACT REQUIREMENTS

    EPA Science Inventory

    This report reviews current national data for small drinking water treatment systems, regulations pertaining to small systems, current treatment technologies, disposal of wastes, source water protection, security, and monitoring. The document serves as a roadmap for future small...

  15. Summary of Activities for Health Monitoring of Composite Overwrapped Pressure Vessels

    NASA Technical Reports Server (NTRS)

    Russell, Rick

    2012-01-01

    This new start project (FY12-14) will design and demonstrate the ability of nondestructive evaluation sensors for the measurement of stresses on the inner diameter of a Composite Overwrapped Pressure Vessel overwrap. Results will be correlated with other nondestructive evaluation technologies such as Acoustic Emission. The project will build upon a proof of concept study performed at KSC which demonstrated the ability of Magnetic Stress Gages to measure stresses at internal overwraps and upon current acoustic emission research being performed at WSTF; The gages will be produced utilizing Maundering Winding Magnetometer and/or Maundering Winding Magnetometer-array eddy current technology. The proof-of-concept study demonstrated a correlation between the sensor response and pressure or strain. The study also demonstrated the ability of Maundering Winding Magnetometer technology to monitor the stresses in a Composite Overwrapped Pressure Vessel at different orientations and depths. The ultimate goal is to utilize this technology for the health monitoring of Composite Overwrapped Pressure Vessels for all future flight programs.

  16. Tool path strategy and cutting process monitoring in intelligent machining

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Wang, Chengdong; An, Qinglong; Ming, Weiwei

    2018-06-01

    Intelligent machining is a current focus in advanced manufacturing technology, and is characterized by high accuracy and efficiency. A central technology of intelligent machining—the cutting process online monitoring and optimization—is urgently needed for mass production. In this research, the cutting process online monitoring and optimization in jet engine impeller machining, cranio-maxillofacial surgery, and hydraulic servo valve deburring are introduced as examples of intelligent machining. Results show that intelligent tool path optimization and cutting process online monitoring are efficient techniques for improving the efficiency, quality, and reliability of machining.

  17. Integrated structural health monitoring

    NASA Astrophysics Data System (ADS)

    Farrar, Charles R.; Sohn, Hoon; Fugate, Michael L.; Czarnecki, Jerry J.

    2001-07-01

    Structural health monitoring is the implementation of a damage detection strategy for aerospace, civil and mechanical engineering infrastructure. Typical damage experienced by this infrastructure might be the development of fatigue cracks, degradation of structural connections, or bearing wear in rotating machinery. The goal of the research effort reported herein is to develop a robust and cost-effective structural health monitoring solution by integrating and extending technologies from various engineering and information technology disciplines. It is the author's opinion that all structural health monitoring systems must be application specific. Therefore, a specific application, monitoring welded moment resisting steel frame connections in structures subjected to seismic excitation, is described along with the motivation for choosing this application. The structural health monitoring solution for this application will integrate structural dynamics, wireless data acquisition, local actuation, micro-electromechanical systems (MEMS) technology, and statistical pattern recognition algorithms. The proposed system is based on an assessment of the deficiencies associated with many current structural health monitoring technologies including past efforts by the authors. This paper provides an example of the integrated approach to structural health monitoring being undertaken at Los Alamos National Laboratory and summarizes progress to date on various aspects of the technology development.

  18. Application of structural health monitoring technologies to bio-systems: current status and path forward

    NASA Astrophysics Data System (ADS)

    Bhalla, Suresh; Srivastava, Shashank; Suresh, Rupali; Moharana, Sumedha; Kaur, Naveet; Gupta, Ashok

    2015-03-01

    This paper presents a case for extension of structural health monitoring (SHM) technologies to offer solutions for biomedical problems. SHM research has made remarkable progress during the last two/ three decades. These technologies are now being extended for possible applications in the bio-medical field. Especially, smart materials, such as piezoelectric ceramic (PZT) patches and fibre-Bragg grating (FBG) sensors, offer a new set of possibilities to the bio-medical community to augment their conventional set of sensors, tools and equipment. The paper presents some of the recent extensions of SHM, such as condition monitoring of bones, monitoring of dental implant post surgery and foot pressure measurement. Latest developments, such as non-bonded configuration of PZT patches for monitoring bones and possible applications in osteoporosis detection, are also discussed. In essence, there is a whole new gamut of new possibilities for SHM technologies making their foray into the bi-medical sector.

  19. CCTV Data Management for Effective Condition Assessment of Wastewater Collection Systems - slides

    EPA Science Inventory

    The project objectives are: Research current state of condition assessment technology for wastewater collection systems; Evaluate performance and cost of innovative and advanced infrastructure monitoring technologies; Identify and evaluate innovative CCTV technologies; and Prepar...

  20. Using wheel temperature detector technology to monitor railcar brake system effectiveness.

    DOT National Transportation Integrated Search

    2013-12-01

    Wheel temperature detector technology has been used extensively in the railroad industry for the past several decades. The : technology has traditionally been used to identify wheels with elevated temperatures. There is currently a movement in the : ...

  1. KEA-71 Smart Current Signature Sensor (SCSS)

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2010-01-01

    This slide presentation reviews the development and uses of the Smart Current Signature Sensor (SCSS), also known as the Valve Health Monitor (VHM) system. SCSS provides a way to not only monitor real-time the valve's operation in a non invasive manner, but also to monitor its health (Fault Detection and Isolation) and identify potential faults and/or degradation in the near future (Prediction/Prognosis). This technology approach is not only applicable for solenoid valves, and it could be extrapolated to other electrical components with repeatable electrical current signatures such as motors.

  2. Applicability of interferometric SAR technology to ground movement and pipeline monitoring

    NASA Astrophysics Data System (ADS)

    Grivas, Dimitri A.; Bhagvati, Chakravarthy; Schultz, B. C.; Trigg, Alan; Rizkalla, Moness

    1998-03-01

    This paper summarizes the findings of a cooperative effort between NOVA Gas Transmission Ltd. (NGTL), the Italian Natural Gas Transmission Company (SNAM), and Arista International, Inc., to determine whether current remote sensing technologies can be utilized to monitor small-scale ground movements over vast geographical areas. This topic is of interest due to the potential for small ground movements to cause strain accumulation in buried pipeline facilities. Ground movements are difficult to monitor continuously, but their cumulative effect over time can have a significant impact on the safety of buried pipelines. Interferometric synthetic aperture radar (InSAR or SARI) is identified as the most promising technique of those considered. InSAR analysis involves combining multiple images from consecutive passes of a radar imaging platform. The resulting composite image can detect changes as small as 2.5 to 5.0 centimeters (based on current analysis methods and radar satellite data of 5 centimeter wavelength). Research currently in progress shows potential for measuring ground movements as small as a few millimeters. Data needed for InSAR analysis is currently commercially available from four satellites, and additional satellites are planned for launch in the near future. A major conclusion of the present study is that InSAR technology is potentially useful for pipeline integrity monitoring. A pilot project is planned to test operational issues.

  3. Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol.

    PubMed

    Klonoff, David C; Lias, Courtney; Beck, Stayce; Parkes, Joan Lee; Kovatchev, Boris; Vigersky, Robert A; Arreaza-Rubin, Guillermo; Burk, Robert D; Kowalski, Aaron; Little, Randie; Nichols, James; Petersen, Matt; Rawlings, Kelly; Sacks, David B; Sampson, Eric; Scott, Steve; Seley, Jane Jeffrie; Slingerland, Robbert; Vesper, Hubert W

    2016-05-01

    Inaccurate blood glucsoe monitoring systems (BGMSs) can lead to adverse health effects. The Diabetes Technology Society (DTS) Surveillance Program for cleared BGMSs is intended to protect people with diabetes from inaccurate, unreliable BGMS products that are currently on the market in the United States. The Surveillance Program will provide an independent assessment of the analytical performance of cleared BGMSs. The DTS BGMS Surveillance Program Steering Committee included experts in glucose monitoring, surveillance testing, and regulatory science. Over one year, the committee engaged in meetings and teleconferences aiming to describe how to conduct BGMS surveillance studies in a scientifically sound manner that is in compliance with good clinical practice and all relevant regulations. A clinical surveillance protocol was created that contains performance targets and analytical accuracy-testing studies with marketed BGMS products conducted by qualified clinical and laboratory sites. This protocol entitled "Protocol for the Diabetes Technology Society Blood Glucose Monitor System Surveillance Program" is attached as supplementary material. This program is needed because currently once a BGMS product has been cleared for use by the FDA, no systematic postmarket Surveillance Program exists that can monitor analytical performance and detect potential problems. This protocol will allow identification of inaccurate and unreliable BGMSs currently available on the US market. The DTS Surveillance Program will provide BGMS manufacturers a benchmark to understand the postmarket analytical performance of their products. Furthermore, patients, health care professionals, payers, and regulatory agencies will be able to use the results of the study to make informed decisions to, respectively, select, prescribe, finance, and regulate BGMSs on the market. © 2015 Diabetes Technology Society.

  4. Configurable technology development for reusable control and monitor ground systems

    NASA Technical Reports Server (NTRS)

    Uhrlaub, David R.

    1994-01-01

    The control monitor unit (CMU) uses configurable software technology for real-time mission command and control, telemetry processing, simulation, data acquisition, data archiving, and ground operations automation. The base technology is currently planned for the following control and monitor systems: portable Space Station checkout systems; ecological life support systems; Space Station logistics carrier system; and the ground system of the Delta Clipper (SX-2) in the Single-Stage Rocket Technology program. The CMU makes extensive use of commercial technology to increase capability and reduce development and life-cycle costs. The concepts and technology are being developed by McDonnell Douglas Space and Defense Systems for the Real-Time Systems Laboratory at NASA's Kennedy Space Center under the Payload Ground Operations Contract. A second function of the Real-Time Systems Laboratory is development and utilization of advanced software development practices.

  5. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments

    PubMed Central

    Ghamari, Mohammad; Janko, Balazs; Sherratt, R. Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna

    2016-01-01

    Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments. PMID:27338377

  6. A Survey on Wireless Body Area Networks for eHealthcare Systems in Residential Environments.

    PubMed

    Ghamari, Mohammad; Janko, Balazs; Sherratt, R Simon; Harwin, William; Piechockic, Robert; Soltanpur, Cinna

    2016-06-07

    Current progress in wearable and implanted health monitoring technologies has strong potential to alter the future of healthcare services by enabling ubiquitous monitoring of patients. A typical health monitoring system consists of a network of wearable or implanted sensors that constantly monitor physiological parameters. Collected data are relayed using existing wireless communication protocols to a base station for additional processing. This article provides researchers with information to compare the existing low-power communication technologies that can potentially support the rapid development and deployment of WBAN systems, and mainly focuses on remote monitoring of elderly or chronically ill patients in residential environments.

  7. Wearable activity monitors in oncology trials: Current use of an emerging technology.

    PubMed

    Gresham, Gillian; Schrack, Jennifer; Gresham, Louise M; Shinde, Arvind M; Hendifar, Andrew E; Tuli, Richard; Rimel, B J; Figlin, Robert; Meinert, Curtis L; Piantadosi, Steven

    2018-01-01

    Physical activity is an important outcome in oncology trials. Physical activity is commonly assessed using self-reported questionnaires, which are limited by recall and response biases. Recent advancements in wearable technology have provided oncologists with new opportunities to obtain real-time, objective physical activity data. The purpose of this review was to describe current uses of wearable activity monitors in oncology trials. We searched Pubmed, Embase, and the Cochrane Central Register of Controlled Trials for oncology trials involving wearable activity monitors published between 2005 and 2016. We extracted details on study design, types of activity monitors used, and purpose for their use. We summarized activity monitor metrics including step counts, sleep and sedentary time, and time spent in moderate-to-vigorous activity. We identified 41 trials of which 26 (63%) involved cancer survivors (post-treatment) and 15 trials (37%) involved patients with active cancer. Most trials (65%) involved breast cancer patients. Wearable activity monitors were commonly used in exercise (54%) or behavioral (29%) trials. Cancer survivors take between 4660 and 11,000 steps/day and those undergoing treatment take 2885 to 8300steps/day. Wearable activity monitors are increasingly being used to obtain objective measures of physical activity in oncology trials. There is potential for their use to expand to evaluate and predict clinical outcomes such as survival, quality of life, and treatment tolerance in future studies. Currently, there remains a lack of standardization in the types of monitors being used and how their data are being collected, analyzed, and interpreted. Recent advancements in wearable activity monitor technology have provided oncologists with new opportunities to monitor their patients' daily activity in real-world settings. The integration of wearable activity monitors into cancer care will help increase our understanding of the associations between physical activity and the prevention and management of the disease, in addition to other important cancer outcomes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Applying next-generation DNA sequencing technology to aquatic bioassessment

    EPA Science Inventory

    The growing challenges for environmental monitoring and assessment have pushed standard techniques to the limits of their application. Current biological monitoring programs often require considerable time and workload to provide environmental condition assessments. New molecular...

  9. Monitoring global vegetation

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Houston, A. G.; Heydorn, R. P.; Botkin, D. B.; Estes, J. E.; Strahler, A. H.

    1981-01-01

    An attempt is made to identify the need for, and the current capability of, a technology which could aid in monitoring the Earth's vegetation resource on a global scale. Vegetation is one of our most critical natural resources, and accurate timely information on its current status and temporal dynamics is essential to understand many basic and applied environmental interrelationships which exist on the small but complex planet Earth.

  10. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults].

    PubMed

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C

    2018-06-01

    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as studies evaluating alternatives to the finger for capturing the raw signals for hemodynamic assessment, and, finally, studies evaluating technologies based on a flow time measurement are current topics of clinical research.

  11. Assessment of the use of space technology in the monitoring of oil spills and ocean pollution: Executive summary

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R. (Editor)

    1980-01-01

    The adequacy of current technology in terms of stage of maturity, of sensing, support systems, and information extraction was assessed relative to oil spills, waste pollution, and inputs to pollution trajectory models. Needs for advanced techniques are defined and the characteristics of a future satellite system are determined based on the requirements of U.S. agencies involved in pollution monitoring.

  12. Monitoring highway assets with remote technology.

    DOT National Transportation Integrated Search

    2014-07-01

    The purpose of this research was to evaluate the benefits and costs of various remote sensing : technology options and compare them to the currently used manual data collection alternative. : The DMGs evaluation was used to determine how useful an...

  13. Liquid-propellant rocket engines health-monitoring—a survey

    NASA Astrophysics Data System (ADS)

    Wu, Jianjun

    2005-02-01

    This paper is intended to give a summary on the health-monitoring technology, which is one of the key technologies both for improving and enhancing the reliability and safety of current rocket engines and for developing new-generation high reliable reusable rocket engines. The implication of health-monitoring and the fundamental principle obeyed by the fault detection and diagnostics are elucidated. The main aspects of health-monitoring such as system frameworks, failure modes analysis, algorithms of fault detection and diagnosis, control means and advanced sensor techniques are illustrated in some detail. At last, the evolution trend of health-monitoring techniques of liquid-propellant rocket engines is set out.

  14. Mobile health in cardiology: a review of currently available medical apps and equipment for remote monitoring.

    PubMed

    Treskes, Roderick Willem; van der Velde, Enno Tjeerd; Barendse, Rogier; Bruining, Nico

    2016-09-01

    Recent developments in implantable cardioverter-defibrillators (ICDs) and smartphone technology have increased the possibilities for remote monitoring. It is the purpose of this review to give an overview of these new possibilities. Remote monitoring in ICD allows for early detection of lead fractures and remote follow-up of patients. Possible limitations are the lack of standardization and the possible unsafety of the data stored on the ICD. Secondly, remote monitoring of health parameters using smartphone compatible wearables and smartphone medical apps is addressed. Possible limitations include the fact that the majority of smartphone apps are unregulated by the regulatory authorities and privacy issues such as selling of app-generated data to third parties. Lastly, clinical studies with smartphone apps are discussed. Expert commentary: New technologies in ICDs and smartphones have the potential to be used for remote monitoring. However, unreliability of smartphone technology, inadequate legislation and lack of reimbursement impede implementation.

  15. Improving the effectiveness of traffic monitoring based on wireless location technology.

    DOT National Transportation Integrated Search

    2004-01-01

    A fundamental requirement for effectively monitoring and operating transportation facilities is reliable, accurate data on traffic flow. The current state of the practice is to use networks of point detectors to gather information on traffic flow at ...

  16. Trends in Health Information Technology Safety: From Technology-Induced Errors to Current Approaches for Ensuring Technology Safety

    PubMed Central

    2013-01-01

    Objectives Health information technology (HIT) research findings suggested that new healthcare technologies could reduce some types of medical errors while at the same time introducing classes of medical errors (i.e., technology-induced errors). Technology-induced errors have their origins in HIT, and/or HIT contribute to their occurrence. The objective of this paper is to review current trends in the published literature on HIT safety. Methods A review and synthesis of the medical and life sciences literature focusing on the area of technology-induced error was conducted. Results There were four main trends in the literature on technology-induced error. The following areas were addressed in the literature: definitions of technology-induced errors; models, frameworks and evidence for understanding how technology-induced errors occur; a discussion of monitoring; and methods for preventing and learning about technology-induced errors. Conclusions The literature focusing on technology-induced errors continues to grow. Research has focused on the defining what an error is, models and frameworks used to understand these new types of errors, monitoring of such errors and methods that can be used to prevent these errors. More research will be needed to better understand and mitigate these types of errors. PMID:23882411

  17. A Survey of Geosensor Networks: Advances in Dynamic Environmental Monitoring

    PubMed Central

    Nittel, Silvia

    2009-01-01

    In the recent decade, several technology trends have influenced the field of geosciences in significant ways. The first trend is the more readily available technology of ubiquitous wireless communication networks and progress in the development of low-power, short-range radio-based communication networks, the miniaturization of computing and storage platforms as well as the development of novel microsensors and sensor materials. All three trends have changed the type of dynamic environmental phenomena that can be detected, monitored and reacted to. Another important aspect is the real-time data delivery of novel platforms today. In this paper, I will survey the field of geosensor networks, and mainly focus on the technology of small-scale geosensor networks, example applications and their feasibility and lessons learnt as well as the current research questions posed by using this technology today. Furthermore, my objective is to investigate how this technology can be embedded in the current landscape of intelligent sensor platforms in the geosciences and identify its place and purpose. PMID:22346721

  18. Expansion of Microbial Monitoring Capabilities on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Khodadad, Christina L.; Oubre, Cherie; Castro, Victoria; Flint, Stephanie; Melendez, Orlando; Ott, C. Mark; Roman, Monsi

    2017-01-01

    Microbial monitoring is one of the tools that the National Aeronautics and Space Administration (NASA) uses on the International Space Station (ISS) to help maintain crew health and safety. In combination with regular housekeeping and disinfection when needed, microbial monitoring provides important information to the crew about the quality of the environment. Rotation of astronauts, equipment, and cargo on the ISS can affect the microbial load in the air, surfaces, and water. The current ISS microbial monitoring methods are focused on culture-based enumeration during flight and require a significant amount of crew time as well as long incubation periods of up to 5 days there by proliferating potential pathogens. In addition, the samples require return to Earth for complete identification of the microorganisms cultivated. Although the current approach assess the quality of the ISS environment, molecular technology offers faster turn-around of information particularly beneficial in an off-nominal situation. In 2011, subject matter experts from industry and academia recommended implementation of molecular-based technologies such as quantitative real-time polymerase chain reaction (qPCR) for evaluation to replace current, culture-based technologies. The RAZOR EX (BioFire Defense, Inc, Salt Lake City, UT) a ruggedized, compact, COTS (commercial off the shelf) qPCR instrument was tested, evaluated and selected in the 2 X 2015 JSC rapid flight hardware demonstration initiative as part of the Water Monitoring Suite. RAZOR EX was launched to ISS on SpaceX-9 in July 2016 to evaluate the precision and accuracy of the hardware by testing various concentrations of DNA in microgravity compared to ground controls. Flight testing was completed between September 2016 and March 2017. Data presented will detail the hardware performance of flight testing results compared to ground controls. Future goals include additional operational ground-based testing and assay development to determine if this technology can meet spaceflight microbial monitoring requirements.

  19. MERCURY CEMS: TECHNOLOGY UPDATE

    EPA Science Inventory

    The paper reviews the technologies involved with continuous emission monitors (CEMs) for mercury (Hg) which are receiving incresed attention and focus. Their potential use as a compliance assurance tool is of particular interest. While Hg CEMs are currently used in Europe for com...

  20. Market analysis of seismic security systems

    NASA Technical Reports Server (NTRS)

    Taglio, S.

    1981-01-01

    This report provides information on the commercialization potential of the NASA Activity Monitor. Data on current commercially available products, market size, and growth are combined with information on the NASA technology and the projected impact of this technology on the market.

  1. The technological future of 7 T MRI hardware.

    PubMed

    Webb, A G; Van de Moortele, P F

    2016-09-01

    In this article we present our projections of future hardware developments on 7 T human MRI systems. These include compact cryogen-light magnets, improved gradient performance, integrated RF-receive and direct current shimming coil arrays, new RF technology with adaptive impedance matching, patient-specific specific absorption rate estimation and monitoring, and increased integration of physiological monitoring systems. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Single-Event Effect Testing of the Linear Technology LTC6103HMS8#PBF Current Sense Amplifier

    NASA Technical Reports Server (NTRS)

    Yau, Ka-Yen; Campola, Michael J.; Wilcox, Edward

    2016-01-01

    The LTC6103HMS8#PBF (henceforth abbreviated as LTC6103) current sense amplifier from Linear Technology was tested for both destructive and non-destructive single-event effects (SEE) using the heavy-ion cyclotron accelerator beam at Lawrence Berkeley National Laboratory (LBNL) Berkeley Accelerator Effects (BASE) facility. During testing, the input voltages and output currents were monitored to detect single event latch-up (SEL) and single-event transients (SETs).

  3. IDENTIFYING AND MONITORING ENVIRONMENTAL TOXICITY USING CERIODAPHNIA MICROARRAYS - PHASE I

    EPA Science Inventory

    The current U.S. Environmental Protection Agency (EPA) SBIR solicitation states that “technology is needed to better identify and monitor sources of pollution and protect water quality.” Microarrays may be particularly well suited to identifying environmental toxic...

  4. Highlights from the Air Sensors 2014 Workshop

    EPA Science Inventory

    In June 2014, the U.S. Environmental Protection Agency (EPA) hosted its fourth next-generation air monitoring workshop to discuss the current state of the science in air sensor technologies and their applications for environmental monitoring, Air Sensors 2014: A New Frontier. Th...

  5. Science at the policy interface: volcano-monitoring technologies and volcanic hazard management

    NASA Astrophysics Data System (ADS)

    Donovan, Amy; Oppenheimer, Clive; Bravo, Michael

    2012-07-01

    This paper discusses results from a survey of volcanologists carried out on the Volcano Listserv during late 2008 and early 2009. In particular, it examines the status of volcano monitoring technologies and their relative perceived value at persistently and potentially active volcanoes. It also examines the role of different types of knowledge in hazard assessment on active volcanoes, as reported by scientists engaged in this area, and interviewees with experience from the current eruption on Montserrat. Conclusions are drawn about the current state of monitoring and the likely future research directions, and also about the roles of expertise and experience in risk assessment on active volcanoes; while local knowledge is important, it must be balanced with fresh ideas and expertise in a combination of disciplines to produce an advisory context that is conducive to high-level scientific discussion.

  6. Non-Intrusive Load Monitoring Assessment: Literature Review and Laboratory Protocol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butner, R. Scott; Reid, Douglas J.; Hoffman, Michael G.

    2013-07-01

    To evaluate the accuracy of NILM technologies, a literature review was conducted to identify any test protocols or standardized testing approaches currently in use. The literature review indicated that no consistent conventions were currently in place for measuring the accuracy of these technologies. Consequently, PNNL developed a testing protocol and metrics to provide the basis for quantifying and analyzing the accuracy of commercially available NILM technologies. This report discusses the results of the literature review and the proposed test protocol and metrics in more detail.

  7. Mass spectrometry based proteomics profiling as diagnostic tool in oncology: current status and future perspective.

    PubMed

    Findeisen, Peter; Neumaier, Michael

    2009-01-01

    Proteomics analysis has been heralded as a novel tool for identifying new and specific biomarkers that may improve diagnosis and monitoring of various disease states. Recent years have brought a number of proteomics profiling technologies. Although proteomics profiling has resulted in the detection of disease-associated differences and modification of proteins, current proteomics technologies display certain limitations that are hampering the introduction of these new technologies into clinical laboratory diagnostics and routine applications. In this review, we summarize current advances in mass spectrometry based biomarker discovery. The promises and challenges of this new technology are discussed with particular emphasis on diagnostic perspectives of mass-spectrometry based proteomics profiling for malignant diseases.

  8. Human factors and ergonomics in home care: Current concerns and future considerations for health information technology

    PubMed Central

    Or, Calvin K.L.; Valdez, Rupa S.; Casper, Gail R.; Carayon, Pascale; Burke, Laura J.; Brennan, Patricia Flatley; Karsh, Ben-Tzion

    2010-01-01

    Sicker patients with greater care needs are being discharged to their homes to assume responsibility for their own care with fewer nurses available to aid them. This situation brings with it a host of human factors and ergonomic (HFE) concerns, both for the home care nurse and the home dwelling patient, that can affect quality of care and patient safety. Many of these concerns are related to the critical home care tasks of information access, communication, and patient self-monitoring and self-management. Currently, a variety of health information technologies (HITs) are being promoted as possible solutions to those problems, but those same technologies bring with them a new set of HFE concerns. This paper reviews the HFE considerations for information access, communication, and patients self-monitoring and self-management, discusses how HIT can potentially mitigate current problems, and explains how the design and implementation of HIT itself requires careful HFE attention. PMID:19713630

  9. Wireless body sensor networks for health-monitoring applications.

    PubMed

    Hao, Yang; Foster, Robert

    2008-11-01

    Current wireless technologies, such as wireless body area networks and wireless personal area networks, provide promising applications in medical monitoring systems to measure specified physiological data and also provide location-based information, if required. With the increasing sophistication of wearable and implantable medical devices and their integration with wireless sensors, an ever-expanding range of therapeutic and diagnostic applications is being pursued by research and commercial organizations. This paper aims to provide a comprehensive review of recent developments in wireless sensor technology for monitoring behaviour related to human physiological responses. It presents background information on the use of wireless technology and sensors to develop a wireless physiological measurement system. A generic miniature platform and other available technologies for wireless sensors have been studied in terms of hardware and software structural requirements for a low-cost, low-power, non-invasive and unobtrusive system.

  10. Wireless sensor and data transmission needs and technologies for patient monitoring in the operating room and intensive care unit.

    PubMed

    Paksuniemi, M; Sorvoja, H; Alasaarela, E; Myllyla, R

    2005-01-01

    In the intensive care unit, or during anesthesia, patients are attached to monitors by cables. These cables obstruct nursing staff and hinder the patients from moving freely in the hospital. However, rapidly developing wireless technologies are expected to solve these problems. To this end, this study revealed problem areas in current patient monitoring and established the most important medical parameters to monitor. In addition, usable wireless techniques for short-range data transmission were explored and currently employed wireless applications in the hospital environment were studied. The most important parameters measured of the patient include blood pressures, electrocardiography, respiration rate, heart rate and temperature. Currently used wireless techniques in hospitals are based on the WMTS and WLAN standards. There are no viable solutions for short-range data transmission from patient sensors to patient monitors, but potentially usable techniques in the future are based on the WPAN standards. These techniques include Bluetooth, ZigBee and UWB. Other suitable techniques might be based on capacitive or inductive coupling. The establishing of wireless techniques depends on ensuring the reliability of data transmission, eliminating disturbance by other wireless devices, ensuring patient data security and patient safety, and lowering the power consumption and price.

  11. Final Technical Report Recovery Act: Online Nonintrusive Condition Monitoring and Fault Detection for Wind Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Qiao

    2012-05-29

    The penetration of wind power has increased greatly over the last decade in the United States and across the world. The U.S. wind power industry installed 1,118 MW of new capacity in the first quarter of 2011 alone and entered the second quarter with another 5,600 MW under construction. By 2030, wind energy is expected to provide 20% of the U.S. electricity needs. As the number of wind turbines continues to grow, the need for effective condition monitoring and fault detection (CMFD) systems becomes increasingly important [3]. Online CMFD is an effective means of not only improving the reliability, capacitymore » factor, and lifetime, but it also reduces the downtime, energy loss, and operation and maintenance (O&M) of wind turbines. The goal of this project is to develop novel online nonintrusive CMFD technologies for wind turbines. The proposed technologies use only the current measurements that have been used by the control and protection system of a wind turbine generator (WTG); no additional sensors or data acquisition devices are needed. Current signals are reliable and easily accessible from the ground without intruding on the wind turbine generators (WTGs) that are situated on high towers and installed in remote areas. Therefore, current-based CMFD techniques have great economic benefits and the potential to be adopted by the wind energy industry. Specifically, the following objectives and results have been achieved in this project: (1) Analyzed the effects of faults in a WTG on the generator currents of the WTG operating at variable rotating speed conditions from the perspective of amplitude and frequency modulations of the current measurements; (2) Developed effective amplitude and frequency demodulation methods for appropriate signal conditioning of the current measurements to improve the accuracy and reliability of wind turbine CMFD; (3) Developed a 1P-invariant power spectrum density (PSD) method for effective signature extraction of wind turbine faults with characteristic frequencies in the current or current demodulated signals, where 1P stands for the shaft rotating frequency of a WTG; (4) Developed a wavelet filter for effective signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (5) Developed an effective adaptive noise cancellation method as an alternative to the wavelet filter method for signature extraction of wind turbine faults without characteristic frequencies in the current or current demodulated signals; (6) Developed a statistical analysis-based impulse detection method for effective fault signature extraction and evaluation of WTGs based on the 1P-invariant PSD of the current or current demodulated signals; (7) Validated the proposed current-based wind turbine CMFD technologies through extensive computer simulations and experiments for small direct-drive WTGs without gearboxes; and (8) Showed, through extensive experiments for small direct-drive WTGs, that the performance of the proposed current-based wind turbine CMFD technologies is comparable to traditional vibration-based methods. The proposed technologies have been successfully applied for detection of major failures in blades, shafts, bearings, and generators of small direct-drive WTGs. The proposed technologies can be easily integrated into existing wind turbine control, protection, and monitoring systems and can be implemented remotely from the wind turbines being monitored. The proposed technologies provide an alternative to vibration-sensor-based CMFD. This will reduce the cost and hardware complexity of wind turbine CMFD systems. The proposed technologies can also be combined with vibration-sensor-based methods to improve the accuracy and reliability of wind turbine CMFD systems. When there are problems with sensors, the proposed technologies will ensure proper CMFD for the wind turbines, including their sensing systems. In conclusion, the proposed technologies offer an effective means to achieve condition-based smart maintenance for wind turbines and have a great potential to be adopted by the wind energy industry due to their almost no-cost, nonintrusive features. Although only validated for small direct-drive wind turbines without gearboxes, the proposed technologies are also applicable for CMFD of large-size wind turbines with and without gearboxes. However, additional investigations are recommended in order to apply the proposed technologies to those large-size wind turbines.« less

  12. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Daniel M.

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors withmore » a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and instrumented a 64-pixel-cell detector to specifications for the Cold-Neutron Chopper Spectrometer and POWGEN instruments, (3) investigated the general characteristics of this technology, (4) studied pixel-cell configurations and arrived at an optimized modular design, and (5) evaluated fabrication costs of mass production for these configurations. The resulting technology will enable a complete line of pixel-cell-based neutron detectors to be commercially under available. ORDELA, Inc has a good track history of application of innovative technology into the marketplace. Our commercialization record reflects this. For additional information, please contact Daniel Kopp at ORDELA, Inc. at +1 (865) 483-8675 or check our website at www.ordela.com.« less

  13. An Incubatable Direct Current Stimulation System for In Vitro Studies of Mammalian Cells

    PubMed Central

    Panitch, Alyssa; Caplan, Michael; Sweeney, James D.

    2012-01-01

    Abstract The purpose of this study was to provide a simplified alternative technology and format for direct current stimulation of mammalian cells. An incubatable reusable stimulator was developed that effectively delivers a regulated current and does not require constant monitoring. PMID:23514694

  14. Development of the Diabetes Technology Society Blood Glucose Monitor System Surveillance Protocol

    PubMed Central

    Klonoff, David C.; Lias, Courtney; Beck, Stayce; Parkes, Joan Lee; Kovatchev, Boris; Vigersky, Robert A.; Arreaza-Rubin, Guillermo; Burk, Robert D.; Kowalski, Aaron; Little, Randie; Nichols, James; Petersen, Matt; Rawlings, Kelly; Sacks, David B.; Sampson, Eric; Scott, Steve; Seley, Jane Jeffrie; Slingerland, Robbert; Vesper, Hubert W.

    2015-01-01

    Background: Inaccurate blood glucsoe monitoring systems (BGMSs) can lead to adverse health effects. The Diabetes Technology Society (DTS) Surveillance Program for cleared BGMSs is intended to protect people with diabetes from inaccurate, unreliable BGMS products that are currently on the market in the United States. The Surveillance Program will provide an independent assessment of the analytical performance of cleared BGMSs. Methods: The DTS BGMS Surveillance Program Steering Committee included experts in glucose monitoring, surveillance testing, and regulatory science. Over one year, the committee engaged in meetings and teleconferences aiming to describe how to conduct BGMS surveillance studies in a scientifically sound manner that is in compliance with good clinical practice and all relevant regulations. Results: A clinical surveillance protocol was created that contains performance targets and analytical accuracy-testing studies with marketed BGMS products conducted by qualified clinical and laboratory sites. This protocol entitled “Protocol for the Diabetes Technology Society Blood Glucose Monitor System Surveillance Program” is attached as supplementary material. Conclusion: This program is needed because currently once a BGMS product has been cleared for use by the FDA, no systematic postmarket Surveillance Program exists that can monitor analytical performance and detect potential problems. This protocol will allow identification of inaccurate and unreliable BGMSs currently available on the US market. The DTS Surveillance Program will provide BGMS manufacturers a benchmark to understand the postmarket analytical performance of their products. Furthermore, patients, health care professionals, payers, and regulatory agencies will be able to use the results of the study to make informed decisions to, respectively, select, prescribe, finance, and regulate BGMSs on the market. PMID:26481642

  15. Reusable rocket engine turbopump condition monitoring

    NASA Technical Reports Server (NTRS)

    Hampson, M. E.; Barkhoudarian, S.

    1985-01-01

    Significant improvements in engine readiness with attendant reductions in maintenance costs and turnaround times can be achieved with an engine condition monitoring system (CMS). The CMS provides real time health status of critical engine components, without disassembly, through component monitoring with advanced sensor technologies. Three technologies were selected to monitor the rotor bearings and turbine blades: the isotope wear detector and fiber optic deflectometer (bearings), and the fiber optic pyrometer (blades). Signal processing algorithms were evaluated and ranked for their utility in providing useful component health data to unskilled maintenance personnel. Design modifications to current configuration Space Shuttle Main Engine (SSME) high pressure turbopumps and the MK48-F turbopump were developed to incorporate the sensors.

  16. A Remote Monitoring System for Voltage, Current, Power and Temperature Measurements

    NASA Astrophysics Data System (ADS)

    Barakat, E.; Sinno, N.; Keyrouz, C.

    This paper presents a study and design of a monitoring system for the continuous measurement of electrical energy parameters such as voltage, current, power and temperature. This system is designed to monitor the data remotely over internet. The electronic power meter is based on a microcontroller from Microchip Technology Inc. PIC family. The design takes into consideration the correct operation in the event of an outage or brown out by recording the electrical values and the temperatures in EEPROM internally available in the microcontroller. Also a digital display is used to show the acquired measurements. A computer will remotely monitor the data over internet.

  17. Microcirculatory monitoring in septic patients: Where do we stand?

    PubMed

    Gruartmoner, G; Mesquida, J; Ince, C

    Microcirculatory alterations play a pivotal role in sepsis-related morbidity and mortality. However, since the microcirculation has been a "black box", current hemodynamic management of septic patients is still guided by macrocirculatory parameters. In the last decades, the development of several technologies has shed some light on microcirculatory evaluation and monitoring, and the possibility of incorporating microcirculatory variables to clinical practice no longer seems to be beyond reach. The present review provides a brief summary of the current technologies for microcirculatory evaluation, and attempts to explore the potential role and benefits of their integration to the resuscitation process in critically ill septic patients. Copyright © 2016 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  18. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A compilation of summary portions of each of the Research and Technology Objectives and Plans (RTOPS) used for management review and control of research currently in progress throughout NASA is presented. Subject, technical monitors, responsible NASA organization, and RTOP number indexes are included.

  19. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A compilation of the summary portions of each of the Research and Technology Objective Plans (RTOP) used for management review and control of research currently in progress throughout NASA is presented. Indexes include: subject, technical monitor, responsible NASA organization, and RTOP number.

  20. Research and Technology Objectives and Plans (RTOP), summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A compilation of summary portions of each of the Research and Technology Operating Plans (RTOPS) used for management review and control of research currently in progress throughout NASA is presented. Subject, technical monitor, responsible NASA organization, and RTOP number indexes are included.

  1. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A compilation of the summary portions of each of the Research and Technology Objectives and Plans (RTOPS) used for management review and control research currently in progress throughout NASA is presented. Indexes include: subject, technical monitor, responsible NASA organization, and RTOP number.

  2. Sensor Technology and Performance Characteristics

    EPA Science Inventory

    The US EPA is currently involved in detailed laboratory and/or field studies involving a wide variety of low cost air quality sensors currently being made available to potential citizen scientists. These devices include sensors associated with the monitoring of nitrogen dioxide (...

  3. WLCG Transfers Dashboard: a Unified Monitoring Tool for Heterogeneous Data Transfers

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Beche, A.; Belov, S.; Kadochnikov, I.; Saiz, P.; Tuckett, D.

    2014-06-01

    The Worldwide LHC Computing Grid provides resources for the four main virtual organizations. Along with data processing, data distribution is the key computing activity on the WLCG infrastructure. The scale of this activity is very large, the ATLAS virtual organization (VO) alone generates and distributes more than 40 PB of data in 100 million files per year. Another challenge is the heterogeneity of data transfer technologies. Currently there are two main alternatives for data transfers on the WLCG: File Transfer Service and XRootD protocol. Each LHC VO has its own monitoring system which is limited to the scope of that particular VO. There is a need for a global system which would provide a complete cross-VO and cross-technology picture of all WLCG data transfers. We present a unified monitoring tool - WLCG Transfers Dashboard - where all the VOs and technologies coexist and are monitored together. The scale of the activity and the heterogeneity of the system raise a number of technical challenges. Each technology comes with its own monitoring specificities and some of the VOs use several of these technologies. This paper describes the implementation of the system with particular focus on the design principles applied to ensure the necessary scalability and performance, and to easily integrate any new technology providing additional functionality which might be specific to that technology.

  4. Instantaneous Project Controls: Current Status, State of the Art, Benefits, and Strategies

    ERIC Educational Resources Information Center

    Abbaszadegan, Amin

    2016-01-01

    Despite advancements in construction and construction-related technology, capital project performance deviations, typically overruns, remain endemic within the capital projects industry. Currently, management is generally unaware of the current status of their projects, and thus monitoring and control of projects are not achieved effectively. In…

  5. DEVELOPING TOOLS FOR MONITORED NATURAL RECOVERY OF PCB-CONTAMINATED SEDIMENTS AT LAKE HARTWELL, SC

    EPA Science Inventory

    Contaminated sediments pose a risk to human health and the environment . The management of this risk is currently limited practically to three technologies: dredging, capping, and natural recovery. Monitored natural recovery relies on the natural burial and removal mechanisms to...

  6. Field application of smart SHM using field programmable gate array technology to monitor an RC bridge in New Mexico

    NASA Astrophysics Data System (ADS)

    Azarbayejani, M.; Jalalpour, M.; El-Osery, A. I.; Reda Taha, M. M.

    2011-08-01

    In this paper, an innovative field application of a structural health monitoring (SHM) system using field programmable gate array (FPGA) technology and wireless communication is presented. The new SHM system was installed to monitor a reinforced concrete (RC) bridge on Interstate 40 (I-40) in Tucumcari, New Mexico. This newly installed system allows continuous remote monitoring of this bridge using solar power. Details of the SHM component design and installation are discussed. The integration of FPGA and solar power technologies make it possible to remotely monitor infrastructure with limited access to power. Furthermore, the use of FPGA technology enables smart monitoring where data communication takes place on-need (when damage warning signs are met) and on-demand for periodic monitoring of the bridge. Such a system enables a significant cut in communication cost and power demands which are two challenges during SHM operation. Finally, a three-dimensional finite element (FE) model of the bridge was developed and calibrated using a static loading field test. This model is then used for simulating damage occurrence on the bridge. Using the proposed automation process for SHM will reduce human intervention significantly and can save millions of dollars currently spent on prescheduled inspection of critical infrastructure worldwide.

  7. Corrosion probe. Innovative technology summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less

  8. Current Research Activities in Drive System Technology in Support of the NASA Rotorcraft Program

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zakrajsek, James J.

    2006-01-01

    Drive system technology is a key area for improving rotorcraft performance, noise/vibration reduction, and reducing operational and manufacturing costs. An overview of current research areas that support the NASA Rotorcraft Program will be provided. Work in drive system technology is mainly focused within three research areas: advanced components, thermal behavior/emergency lubrication system operation, and diagnostics/prognostics (also known as Health and Usage Monitoring Systems (HUMS)). Current research activities in each of these activities will be presented. Also, an overview of the conceptual drive system requirements and possible arrangements for the Heavy Lift Rotorcraft program will be reviewed.

  9. Technological Advances in the Study of Reading: An Introduction.

    ERIC Educational Resources Information Center

    Henk, William A.

    1991-01-01

    Describes the purpose and functional operation of new computer-driven technologies such as computerized axial tomography, positron emissions transaxial tomography, regional cerebral blood flow monitoring, magnetic resonance imaging, and brain electrical activity mapping. Outlines their current contribution to the knowledge base. Speculates on the…

  10. A review on architectures and communications technologies for wearable health-monitoring systems.

    PubMed

    Custodio, Víctor; Herrera, Francisco J; López, Gregorio; Moreno, José Ignacio

    2012-10-16

    Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in "LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments", published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications.

  11. A Review on Architectures and Communications Technologies for Wearable Health-Monitoring Systems

    PubMed Central

    Custodio, Víctor; Herrera, Francisco J.; López, Gregorio; Moreno, José Ignacio

    2012-01-01

    Nowadays society is demanding more and more smart healthcare services that allow monitoring patient status in a non-invasive way, anywhere and anytime. Thus, healthcare applications are currently facing important challenges guided by the u-health (ubiquitous health) and p-health (pervasive health) paradigms. New emerging technologies can be combined with other widely deployed ones to develop such next-generation healthcare systems. The main objective of this paper is to review and provide more details on the work presented in “LOBIN: E-Textile and Wireless-Sensor-Network-Based Platform for Healthcare Monitoring in Future Hospital Environments”, published in the IEEE Transactions on Information Technology in Biomedicine, as well as to extend and update the comparison with other similar systems. As a result, the paper discusses the main advantages and disadvantages of using different architectures and communications technologies to develop wearable systems for pervasive healthcare applications. PMID:23202028

  12. Staying alive! Sensors used for monitoring cell health in bioreactors.

    PubMed

    O'Mara, P; Farrell, A; Bones, J; Twomey, K

    2018-01-01

    Current and next generation sensors such as pH, dissolved oxygen (dO) and temperature sensors that will help drive the use of single-use bioreactors in industry are reviewed. The current trend in bioreactor use is shifting from the traditional fixed bioreactors to the use of single-use bioreactors (SUBs). However as the shift in paradigm occurs there is now a greater need for sensor technology to play 'catch up' with the innovation of bioreactor technology. Many of the sensors still in use today rely on technology created in the 1960's such as the Clark-type dissolved oxygen sensor or glass pH electrodes. This is due to the strict requirements of sensors to monitor bioprocesses resulting in the use of traditional well understood methods, making it difficult to incorporate new sensor technology into industry. A number of advances in sensor technology have been achieved in recent years, a few of these advances and future research will also be discussed in this review. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Proceedings of the NASA Microbiology Workshop

    NASA Technical Reports Server (NTRS)

    Roman, M. C.; Jan, D. L.

    2012-01-01

    Long-term spaceflight is characterized by extraordinary challenges to maintain the life-supporting instrumentation free from microbial contamination and the crew healthy. The methodology currently employed for microbial monitoring in space stations or short spaceflights within the orbit of Earth have been instrumental in safeguarding the success of the missions, but suffers certain shortcomings that are critical for long spaceflights. This workshop addressed current practices and methodologies for microbial monitoring in space systems, and identified and discussed promising alternative methodologies and cutting-edge technologies for pursuit in the microbial monitoring that hold promise for supporting future NASA long-duration space missions.

  14. A Review of Avian Monitoring and Mitigation Information at Existing Utility-Scale Solar Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walston, Leroy J.; Rollins, Katherine E.; Smith, Karen P.

    2015-01-01

    There are two basic types of solar energy technology: photovoltaic and concentrating solar power. As the number of utility-scale solar energy facilities using these technologies is expected to increase in the United States, so are the potential impacts on wildlife and their habitats. Recent attention is on the risk of fatality to birds. Understanding the current rates of avian mortality and existing monitoring requirements is an important first step in developing science-based mitigation and minimization protocols. The resulting information also allows a comparison of the avian mortality rates of utility-scale solar energy facilities with those from other technologies and sources,more » as well as the identification of data gaps and research needs. This report will present and discuss the current state of knowledge regarding avian issues at utility-scale solar energy facilities.« less

  15. A Structural Health Monitoring Software Tool for Optimization, Diagnostics and Prognostics

    DTIC Science & Technology

    2011-01-01

    A Structural Health Monitoring Software Tool for Optimization, Diagnostics and Prognostics Seth S . Kessler1, Eric B. Flynn2, Christopher T...technology more accessible, and commercially practical. 1. INTRODUCTION Currently successful laboratory non- destructive testing and monitoring...PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES

  16. A review of the developments of radioxenon detectors for nuclear explosion monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sivels, Ciara B.; McIntyre, Justin I.; Bowyer, Theodore W.

    Developments in radioxenon monitoring since the implementation of the International Monitoring System are reviewed with emphasis on the most current technologies to improve detector sensitivity and resolution. The nuclear detectors reviewed include combinations of plastic and NaI(Tl) detectors, high purity germanium detectors, silicon detectors, and phoswich detectors. The minimum detectable activity and calibration methods for the various detectors are also discussed.

  17. Continuous glucose monitoring: A review of the technology and clinical use.

    PubMed

    Klonoff, David C; Ahn, David; Drincic, Andjela

    2017-11-01

    Continuous glucose monitoring (CGM) is an increasingly adopted technology for insulin-requiring patients that provides insights into glycemic fluctuations. CGM can assist patients in managing their diabetes with lifestyle and medication adjustments. This article provides an overview of the technical and clinical features of CGM based on a review of articles in PubMed on CGM from 1999 through January 31, 2017. A detailed description is presented of three professional (retrospective), three personal (real-time) continuous glucose monitors, and three sensor integrated pumps (consisting of a sensor and pump that communicate with each other to determine an optimal insulin dose and adjust the delivery of insulin) that are currently available in United States. We have reviewed outpatient CGM outcomes, focusing on hemoglobin A1c (A1C), hypoglycemia, and quality of life. Issues affecting accuracy, detection of glycemic variability, strategies for optimal use, as well as cybersecurity and future directions for sensor design and use are discussed. In conclusion, CGM is an important tool for monitoring diabetes that has been shown to improve outcomes in patients with type 1 diabetes mellitus. Given currently available data and technological developments, we believe that with appropriate patient education, CGM can also be considered for other patient populations. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Prognostics and Health Management in Nuclear Power Plants: A Review of Technologies and Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coble, Jamie B.; Ramuhalli, Pradeep; Bond, Leonard J.

    This report reviews the current state of the art of prognostics and health management (PHM) for nuclear power systems and related technology currently applied in field or under development in other technological application areas, as well as key research needs and technical gaps for increased use of PHM in nuclear power systems. The historical approach to monitoring and maintenance in nuclear power plants (NPPs), including the Maintenance Rule for active components and Aging Management Plans for passive components, are reviewed. An outline is given for the technical and economic challenges that make PHM attractive for both legacy plants through Lightmore » Water Reactor Sustainability (LWRS) and new plant designs. There is a general introduction to PHM systems for monitoring, fault detection and diagnostics, and prognostics in other, non-nuclear fields. The state of the art for health monitoring in nuclear power systems is reviewed. A discussion of related technologies that support the application of PHM systems in NPPs, including digital instrumentation and control systems, wired and wireless sensor technology, and PHM software architectures is provided. Appropriate codes and standards for PHM are discussed, along with a description of the ongoing work in developing additional necessary standards. Finally, an outline of key research needs and opportunities that must be addressed in order to support the application of PHM in legacy and new NPPs is presented.« less

  19. Remote monitoring to Improve long-term prognosis in heart failure patients with implantable cardioverter-defibrillators.

    PubMed

    Ono, Maki; Varma, Niraj

    2017-05-01

    Strong evidence exists for the utility of remote monitoring in cardiac implantable electronic devices for early detection of arrhythmias and evaluation of system performance. The application of remote monitoring for the management of chronic disease such as heart failure has been an active area of research. Areas covered: This review aims to cover the latest evidence of remote monitoring of implantable cardiac defibrillators in terms of heart failure prognosis. This article also updates the current technology relating to the method and discusses key factors to be addressed in order to better use the approach. PubMed and internet searches were conducted to acquire most recent data and technology information. Expert commentary: Multiparameter monitoring with automatic transmission is useful for heart failure management. Improved adherence to remote monitoring and an optimal algorithm for transmitted alerts and their management are warranted in the management of heart failure.

  20. Fractional exhaled nitric oxide-measuring devices: technology update

    PubMed Central

    Maniscalco, Mauro; Vitale, Carolina; Vatrella, Alessandro; Molino, Antonio; Bianco, Andrea; Mazzarella, Gennaro

    2016-01-01

    The measurement of exhaled nitric oxide (NO) has been employed in the diagnosis of specific types of airway inflammation, guiding treatment monitoring by predicting and assessing response to anti-inflammatory therapy and monitoring for compliance and detecting relapse. Various techniques are currently used to analyze exhaled NO concentrations under a range of conditions for both health and disease. These include chemiluminescence and electrochemical sensor devices. The cost effectiveness and ability to achieve adequate flexibility in sensitivity and selectivity of NO measurement for these methods are evaluated alongside the potential for use of laser-based technology. This review explores the technologies involved in the measurement of exhaled NO. PMID:27382340

  1. Fiberoptic sensors for rocket engine applications

    NASA Technical Reports Server (NTRS)

    Ballard, R. O.

    1992-01-01

    A research effort was completed to summarize and evaluate the current level of technology in fiberoptic sensors for possible applications in integrated control and health monitoring (ICHM) systems in liquid propellant engines. The environment within a rocket engine is particuarly severe with very high temperatures and pressures present combined with extremely rapid fluid and gas flows, and high-velocity and high-intensity acoustc waves. Application of fiberoptic technology to rocket engine health monitoring is a logical evolutionary step in ICHM development and presents a significant challenge. In this extremely harsh environment, the additional flexibility of fiberoptic techniques to augment conventional sensor technologies offer abundant future potential.

  2. Health Monitoring and Evaluation of Long-Span Bridges Based on Sensing and Data Analysis: A Survey

    PubMed Central

    Zhou, Jianting; Li, Xiaogang; Xia, Runchuan; Yang, Jun; Zhang, Hong

    2017-01-01

    Aimed at the health monitoring and evaluation of bridges based on sensing technology, the monitoring contents of different structural types of long-span bridges were defined. Then, the definition, classification, selection principle, and installation requirements of the sensors were summarized. The concept was proposed that new adaptable long-life sensors could be developed by new theories and new effects. The principle and methods to select controlled sections and optimize the layout design of measuring points were illustrated. The functional requirements were elaborated on about the acquisition, transmission, processing, and management of sensing information. Some advanced concepts about the method of bridge safety evaluation were demonstrated and technology bottlenecks in the current safety evaluation were also put forward. Ultimately, combined with engineering practices, an application was carried out. The results showed that new, intelligent, and reliable sensor technology would be one of the main future development directions in the long-span bridge health monitoring and evaluation field. Also, it was imperative to optimize the design of the health monitoring system and realize its standardization. Moreover, it is a heavy responsibility to explore new thoughts and new concepts regarding practical bridge safety and evaluation technology. PMID:28300785

  3. Advanced Environmental Monitoring and Control Program: Technology Development Requirements

    NASA Technical Reports Server (NTRS)

    Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)

    1996-01-01

    Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.

  4. Change in practice: a qualitative exploration of midwives' and doctors' views about the introduction of STan monitoring in an Australian hospital.

    PubMed

    Mayes, M E; Wilkinson, C; Kuah, S; Matthews, G; Turnbull, D

    2018-02-17

    The present study examines the introduction of an innovation in intrapartum foetal monitoring practice in Australia. ST-Analysis (STan) is a technology that adds information to conventional fetal monitoring (cardiotocography) during labour, with the aim of reducing unnecessary obstetric intervention. Adoption of this technology has been controversial amongst obstetricians and midwives, particularly as its use necessitates a more invasive means of monitoring (a scalp clip), compared to external monitoring from cardiotocography alone. If adoption of this technology is going to be successful, then understanding staff opinions about the implementation of STan in an Australian setting is an important issue for maternity care providers and policy makers. Using a maximum variation purposive sampling method, 18 interviews were conducted with 10 midwives and 8 doctors from the Women's and Children's Hospital, South Australia to explore views about the introduction of the new technology. The data were analysed using Framework Analysis. Midwives and doctors indicated four important areas of consideration when introducing STan: 1) philosophy of care; 2) the implementation process including training and education; 3) the existence of research evidence; and 4) attitudes towards the new technology. Views were expressed about the management of change process, the fit of the new technology within the current models of care, the need for ongoing training and the importance of having local evidence. These findings, coupled with the general literature about introducing innovation and change, can be used by other centres looking to introduce STan technology.

  5. Caregivers’ Willingness to Pay for Technologies to Support Caregiving

    PubMed Central

    Schulz, Richard; Beach, Scott R.; Matthews, Judith T.; Courtney, Karen; De Vito Dabbs, Annette; Mecca, Laurel Person

    2016-01-01

    Purpose of the Study: We report the results of a study designed to assess whether and how much informal caregivers are willing to pay for technologies designed to help monitor and support care recipients (CRs) in performing kitchen and personal care tasks. Design and Methods: We carried out a web survey of a national sample of adult caregivers (age 18–64) caring for an older adult (N = 512). Respondents completed a 25min online survey that included questions about their caregiving situation, current use of everyday technology, use of specific caregiving technologies, general attitudes toward technology, and questions about technologies designed to help them monitor and provide assistance for CRs’ kitchen and self-care activities. Results: About 20% of caregivers were not willing to pay anything for kitchen and self-care technologies. Among those willing to pay something, the mean amount was approximately $50 per month for monitoring technologies and $70 per month for technologies that both monitored and provided some assistance. Younger caregivers, those caring for a person with Alzheimer’s disease, and caregivers with more positive attitudes toward and experience with technology were willing to pay more. Most caregivers feel that the government or private insurance should help pay for these technologies. Implications: Caregivers are receptive and willing to pay for technologies that help them care for their CR, although the amount they are willing to pay is capped at around $70 per month. The combination of private pay and government subsidy may facilitate development and dissemination of caregiver technologies. PMID:26035899

  6. Teaching Responsibly with Technology-Mediated Communication

    ERIC Educational Resources Information Center

    Veltsos, Jennifer R.; Veltsos, Christophe

    2010-01-01

    Technology-mediated communication, or "new media," such as blogs, Twitter, wikis, and social network sites, can be an endless source of ideas for activities or inspiration for classroom discussion. Many instructors ask students to monitor current events by following keywords and industry leaders on Twitter and reading both corporate and…

  7. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A compilation of the summary portions of each of the Research and Technology Operating Plans (RTOP) used for management review and control of research currently in progress throughout NASA is presented along with citations and abstracts of the RTOPs. Indexes include: subject; technical monitor; responsible NASA organization; and RTOP number.

  8. Use of near-infrared spectroscopy (NIRS) in cerebral tissue oxygenation monitoring in neonates.

    PubMed

    Gumulak, Rene; Lucanova, Lucia Casnocha; Zibolen, Mirko

    2017-06-01

    Near-infrared spectroscopy (NIRS) is a technology capable of non-invasive, continuous measuring of regional tissue oxygen saturation (StO 2 ). StO 2 represents a state of hemodynamic stability, which is influenced by many factors. Extensive research has been done in the field of measuring StO 2 of various organs. The current clinical availability of several NIRS-based devices reflects an important development in prevention, detection and correction of discrepancy in oxygen delivery to the brain and vital organs. Managing cerebral ischemia remains a significant issue in the neonatal intensive care units (NICU). Cerebral tissue oxygenation (cStO 2 ) and cerebral fractional tissue extraction (cFTOE) are reported in a large number of clinical studies. This review provides a summary of the concept of function, current variability of NIRS-based devices used in neonatology, clinical applications in continuous cStO 2 monitoring, limitations, disadvantages, and the potential of current technology.

  9. Future technologies for monitoring HIV drug resistance and cure.

    PubMed

    Parikh, Urvi M; McCormick, Kevin; van Zyl, Gert; Mellors, John W

    2017-03-01

    Sensitive, scalable and affordable assays are critically needed for monitoring the success of interventions for preventing, treating and attempting to cure HIV infection. This review evaluates current and emerging technologies that are applicable for both surveillance of HIV drug resistance (HIVDR) and characterization of HIV reservoirs that persist despite antiretroviral therapy and are obstacles to curing HIV infection. Next-generation sequencing (NGS) has the potential to be adapted into high-throughput, cost-efficient approaches for HIVDR surveillance and monitoring during continued scale-up of antiretroviral therapy and rollout of preexposure prophylaxis. Similarly, improvements in PCR and NGS are resulting in higher throughput single genome sequencing to detect intact proviruses and to characterize HIV integration sites and clonal expansions of infected cells. Current population genotyping methods for resistance monitoring are high cost and low throughput. NGS, combined with simpler sample collection and storage matrices (e.g. dried blood spots), has considerable potential to broaden global surveillance and patient monitoring for HIVDR. Recent adaptions of NGS to identify integration sites of HIV in the human genome and to characterize the integrated HIV proviruses are likely to facilitate investigations of the impact of experimental 'curative' interventions on HIV reservoirs.

  10. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    NASA Technical Reports Server (NTRS)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced substantially by combining it with other technologies for automated, miniaturized, high-throughput biological measurements, such as fast sequencing, protein identification (proteomics) and metabolite profiling (metabolomics). Thus, the system can be integrated with other biomedical instruments in order to support and enhance telemedicine capability onboard ISS. NASA's mission includes sustained investment in critical research leading to effective countermeasures to minimize the risks associated with human spaceflight, and the use of appropriate technology to sustain space exploration at reasonable cost. Our integrated microarray technology is expected to fulfill these two critical requirements and to enable the scientific community to better understand and monitor the effects of the space environment on microorganisms and on the astronaut, in the process leveraging current capabilities and overcoming present limitations.

  11. Microbial Monitoring from the Frontlines to Space: Department of Defense Small Business Innovation Research Technology Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Oubre, Cherie M.; Khodadad, Christina L.; Castro, Victoria A.; Ott, C. Mark; Flint, Stephanie; Pollack, Lawrence P.; Roman, Monserrate C.

    2017-01-01

    The RAZOR (trademark) EX, a quantitative Polymerase Chain Reaction (qPCR) instrument, is a portable, ruggedized unit that was designed for the Department of Defense (DoD) with its reagent chemistries traceable to a Small Business Innovation Research (SBIR) contract beginning in 2002. The PCR instrument's primary function post 9/11 was to enable frontline soldiers and first responders to detect biological threat agents and bioterrorism activities in remote locations to include field environments. With its success for DoD, the instrument has also been employed by other governmental agencies including Department of Homeland Security (DHS). The RAZOR (Trademark) EX underwent stringent testing by the vendor, as well as through the DoD, and was certified in 2005. In addition, the RAZOR (trademark) EX passed DHS security sponsored Stakeholder Panel on Agent Detection Assays (SPADA) rigorous evaluation in 2011. The identification and quantitation of microbial pathogens is necessary both on the ground as well as during spaceflight to maintain the health of astronauts and to prevent biofouling of equipment. Currently, culture-based monitoring technology has been adequate for short-term spaceflight missions but may not be robust enough to meet the requirements for long-duration missions. During a NASA-sponsored workshop in 2011, it was determined that the more traditional culture-based method should be replaced or supplemented with more robust technologies. NASA scientists began investigating innovative molecular technologies for future space exploration and as a result, PCR was recommended. Shortly after, NASA sponsored market research in 2012 to identify and review current, commercial, cutting edge PCR technologies for potential applicability to spaceflight operations. Scientists identified and extensively evaluated three candidate technologies with the potential to function in microgravity. After a thorough voice-of-the-customer trade study and extensive functional and safety evaluations, the RAZOR (trademark) EX PCR instrument(Bio-Fire Defense, Salt Lake City, UT) was selected as the most promising current technology for spaceflight monitoring applications.

  12. Indoor location-aware medical systems for smart homecare and telehealth monitoring: state-of-the-art.

    PubMed

    Santoso, Fendy; Redmond, Stephen J

    2015-10-01

    This paper presents a comprehensive literature review of current progress in the application of state-of-the-art indoor positioning systems for telecare and telehealth monitoring. This review is the first in the literature that provides a comprehensive discussion on how existing wireless indoor positioning systems can benefit the development of home-based care systems. More specifically, this review provides an in-depth comparative study of how both system users and medical practitioners can get benefit from indoor positioning technologies; e.g. for real-time monitoring of patients suffering chronic cardiovascular conditions, general monitoring of activities of daily living (ADLs), fall detection systems for the elderly as well as indoor navigation systems for those suffering from visual impairments. Furthermore, it also details various aspects worth considering when choosing a certain technology for a specific healthcare application; e.g. the spatial precision demanded by the application, trade-offs between unobtrusiveness and complexity, and issues surrounding compliance and adherence with the use of wearable tags. Beyond the current state-of-the-art, this review also rigorously discusses several research opportunities and the challenges associated with each.

  13. A wireless PDA-based physiological monitoring system for patient transport.

    PubMed

    Lin, Yuan-Hsiang; Jan, I-Chien; Ko, Patrick Chow-In; Chen, Yen-Yu; Wong, Jau-Min; Jan, Gwo-Jen

    2004-12-01

    This paper proposes a mobile patient monitoring system, which integrates current personal digital assistant (PDA) technology and wireless local area network (WLAN) technology. At the patient's location, a wireless PDA-based monitor is used to acquire continuously the patient's vital signs, including heart rate, three-lead electrocardiography, and SpO2. Through the WLAN, the patient's biosignals can be transmitted in real-time to a remote central management unit, and authorized medical staffs can access the data and the case history of the patient, either by the central management unit or the wireless devices. A prototype of this system has been developed and implemented. The system has been evaluated by technical verification, clinical test, and user survey. The evaluation of performance yields a high degree of satisfaction (mean = 4.64, standard deviation--SD = 0.53 in a five-point Likert scale) of users who used the PDA-based system for intrahospital transport. The results also show that the wireless PDA model is superior to the currently used monitors both in mobility and in usability, and is, therefore, better suited to patient transport.

  14. Availability and performance of image/video-based vital signs monitoring methods: a systematic review protocol.

    PubMed

    Harford, Mirae; Catherall, Jacqueline; Gerry, Stephen; Young, Duncan; Watkinson, Peter

    2017-10-25

    For many vital signs, monitoring methods require contact with the patient and/or are invasive in nature. There is increasing interest in developing still and video image-guided monitoring methods that are non-contact and non-invasive. We will undertake a systematic review of still and video image-based monitoring methods. We will perform searches in multiple databases which include MEDLINE, Embase, CINAHL, Cochrane library, IEEE Xplore and ACM Digital Library. We will use OpenGrey and Google searches to access unpublished or commercial data. We will not use language or publication date restrictions. The primary goal is to summarise current image-based vital signs monitoring methods, limited to heart rate, respiratory rate, oxygen saturations and blood pressure. Of particular interest will be the effectiveness of image-based methods compared to reference devices. Other outcomes of interest include the quality of the method comparison studies with respect to published reporting guidelines, any limitations of non-contact non-invasive technology and application in different populations. To the best of our knowledge, this is the first systematic review of image-based non-contact methods of vital signs monitoring. Synthesis of currently available technology will facilitate future research in this highly topical area. PROSPERO CRD42016029167.

  15. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, International Space Station, Uninhabited Aerial Vehicles, and Expandable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  16. NASA Applications of Structural Health Monitoring Technology

    NASA Technical Reports Server (NTRS)

    Richards, W Lance; Madaras, Eric I.; Prosser, William H.; Studor, George

    2013-01-01

    This presentation provides examples of research and development that has recently or is currently being conducted at NASA, with a special emphasis on the application of structural health monitoring (SHM) of aerospace vehicles. SHM applications on several vehicle programs are highlighted, including Space Shuttle Orbiter, the International Space Station, Uninhabited Aerial Vehicles, and Expendable Launch Vehicles. Examples of current and previous work are presented in the following categories: acoustic emission impact detection, multi-parameter fiber optic strain-based sensing, wireless sensor system development, and distributed leak detection.

  17. Testing telehealth using technology-enhanced nurse monitoring.

    PubMed

    Grant, Leslie A; Rockwood, Todd; Stennes, Leif

    2014-10-01

    Technology-enhanced nurse monitoring is a telehealth solution that helps nurses with assessment, diagnosis, and triage of older adults living in community-based settings. This technology links biometric and nonbiometric sensors to a data management system that is monitored remotely by RNs and unlicensed support staff. Nurses faced a number of challenges related to data interpretation, including making clinical inferences from nonbiometric data, integrating data generated by three different telehealth applications into a clinically meaningful cognitive framework, and figuring out how best to use nursing judgment to make valid inferences from online reporting systems. Nurses developed expertise over the course of the current study. The sponsoring organization achieved a high degree of organizational knowledge about how to use these systems more effectively. Nurses saw tremendous value in the telehealth applications. The challenges, learning curve, and organizational improvements are described. Copyright 2014, SLACK Incorporated.

  18. Expert systems for real-time monitoring and fault diagnosis

    NASA Technical Reports Server (NTRS)

    Edwards, S. J.; Caglayan, A. K.

    1989-01-01

    Methods for building real-time onboard expert systems were investigated, and the use of expert systems technology was demonstrated in improving the performance of current real-time onboard monitoring and fault diagnosis applications. The potential applications of the proposed research include an expert system environment allowing the integration of expert systems into conventional time-critical application solutions, a grammar for describing the discrete event behavior of monitoring and fault diagnosis systems, and their applications to new real-time hardware fault diagnosis and monitoring systems for aircraft.

  19. Characteristics and applications of small, portable gaseous air pollution monitors.

    PubMed

    McKercher, Grant R; Salmond, Jennifer A; Vanos, Jennifer K

    2017-04-01

    Traditional approaches for measuring air quality based on fixed measurements are inadequate for personal exposure monitoring. To combat this issue, the use of small, portable gas-sensing air pollution monitoring technologies is increasing, with researchers and individuals employing portable and mobile methods to obtain more spatially and temporally representative air pollution data. However, many commercially available options are built for various applications and based on different technologies, assumptions, and limitations. A review of the monitor characteristics of small, gaseous monitors is missing from current scientific literature. A state-of-the-art review of small, portable monitors that measure ambient gaseous outdoor pollutants was developed to address broad trends during the last 5-10 years, and to help future experimenters interested in studying gaseous air pollutants choose monitors appropriate for their application and sampling needs. Trends in small, portable gaseous air pollution monitor uses and technologies were first identified and discussed in a review of literature. Next, searches of online databases were performed for articles containing specific information related to performance, characteristics, and use of such monitors that measure one or more of three criteria gaseous air pollutants: ozone, nitrogen dioxide, and carbon monoxide. All data were summarized into reference tables for comparison between applications, physical features, sensing capabilities, and costs of the devices. Recent portable monitoring trends are strongly related to associated applications and audiences. Fundamental research requires monitors with the best individual performance, and thus the highest cost technology. Monitor networking favors real-time capabilities and moderate cost for greater reproduction. Citizen science and crowdsourcing applications allow for lower-cost components; however important strengths and limitations for each application must be addressed or acknowledged for the given use. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Standing on the Shoulders of Giants: Where Do We Go from Here to Bring the Fire Service into the Domestic Intelligence Community?

    DTIC Science & Technology

    2012-09-01

    49 B. AREAS FOR FURTHER STUDY ...............................................................49 C. LEVERAGING CURRENT TECHNOLOGY AND THE FUTURE...Working Group also monitored network governance developments necessary to renovate existing DHS computer-based communication channels and technological ... technology ? b. What role does suspicious activity reporting play? 24 With these questions in mind, policies and plans related to intelligence

  1. Research and technology operating plan summary: Fiscal year 1975 research and technology program. [space programs, energy technology, and aerospace sciences

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Summaries are presented of Research and Technology Operating Plans currently in progress throughout NASA. Citations and abstracts of the operating plans are presented along with a subject index, technical monitor index, and responsible NASA organization index. Research programs presented include those carried out in the Office of Aeronautics and Space Technology, Office of Energy Programs, Office of Applications, Office of Space Sciences, Office of Tracking and Data Acquisition, and the Office of Manned Space Flight.

  2. Demonstration of array eddy current technology for real-time monitoring of laser powder bed fusion additive manufacturing process

    NASA Astrophysics Data System (ADS)

    Todorov, Evgueni; Boulware, Paul; Gaah, Kingsley

    2018-03-01

    Nondestructive evaluation (NDE) at various fabrication stages is required to assure quality of feedstock and solid builds. Industry efforts are shifting towards solutions that can provide real-time monitoring of additive manufacturing (AM) fabrication process layer-by-layer while the component is being built to reduce or eliminate dependence on post-process inspection. Array eddy current (AEC), electromagnetic NDE technique was developed and implemented to directly scan the component without physical contact with the powder and fused layer surfaces at elevated temperatures inside a LPBF chamber. The technique can detect discontinuities, surface irregularities, and undesirable metallurgical phase transformations in magnetic and nonmagnetic conductive materials used for laser fusion. The AEC hardware and software were integrated with the L-PBF test bed. Two layer-by-layer tests of Inconel 625 coupons with AM built discontinuities and lack of fusion were conducted inside the L-PBF chamber. The AEC technology demonstrated excellent sensitivity to seeded, natural surface, and near-surface-embedded discontinuities, while also detecting surface topography. The data was acquired and imaged in a layer-by-layer sequence demonstrating the real-time monitoring capabilities of this new technology.

  3. Future Issues and Approaches to Health Monitoring and Failure Prevention for Oil-Free Gas Turbines

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2004-01-01

    Recent technology advances in foil air bearings, high temperature solid lubricants and computer based modeling has enabled the development of small Oil-Free gas turbines. These turbomachines are currently commercialized as small (<100 kW) microturbine generators and larger machines are being developed. Based upon these successes and the high potential payoffs offered by Oil-Free systems, NASA, industry, and other government entities are anticipating Oil-Free gas turbine propulsion systems to proliferate future markets. Since an Oil-Free engine has no oil system, traditional approaches to health monitoring and diagnostics, such as chip detection, oil analysis, and possibly vibration signature analyses (e.g., ball pass frequency) will be unavailable. As such, new approaches will need to be considered. These could include shaft orbit analyses, foil bearing temperature measurements, embedded wear sensors and start-up/coast down speed analysis. In addition, novel, as yet undeveloped techniques may emerge based upon concurrent developments in MEMS technology. This paper introduces Oil-Free technology, reviews the current state of the art and potential for future turbomachinery applications and discusses possible approaches to health monitoring, diagnostics and failure prevention.

  4. Design of an expert-system flight status monitor

    NASA Technical Reports Server (NTRS)

    Regenie, V. A.; Duke, E. L.

    1985-01-01

    The modern advanced avionics in new high-performance aircraft strains the capability of current technology to safely monitor these systems for flight test prior to their generalized use. New techniques are needed to improve the ability of systems engineers to understand and analyze complex systems in the limited time available during crucial periods of the flight test. The Dryden Flight Research Facility of NASA's Ames Research Center is involved in the design and implementation of an expert system to provide expertise and knowledge to aid the flight systems engineer. The need for new techniques in monitoring flight systems and the conceptual design of an expert-system flight status monitor is discussed. The status of the current project and its goals are described.

  5. Overview of 'Omics Technologies for Military Occupational Health Surveillance and Medicine.

    PubMed

    Bradburne, Christopher; Graham, David; Kingston, H M; Brenner, Ruth; Pamuku, Matt; Carruth, Lucy

    2015-10-01

    Systems biology ('omics) technologies are emerging as tools for the comprehensive analysis and monitoring of human health. In order for these tools to be used in military medicine, clinical sampling and biobanking will need to be optimized to be compatible with downstream processing and analysis for each class of molecule measured. This article provides an overview of 'omics technologies, including instrumentation, tools, and methods, and their potential application for warfighter exposure monitoring. We discuss the current state and the potential utility of personalized data from a variety of 'omics sources including genomics, epigenomics, transcriptomics, metabolomics, proteomics, lipidomics, and efforts to combine their use. Issues in the "sample-to-answer" workflow, including collection and biobanking are discussed, as well as national efforts for standardization and clinical interpretation. Establishment of these emerging capabilities, along with accurate xenobiotic monitoring, for the Department of Defense could provide new and effective tools for environmental health monitoring at all duty stations, including deployed locations. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  6. Security and privacy issues with health care information technology.

    PubMed

    Meingast, Marci; Roosta, Tanya; Sastry, Shankar

    2006-01-01

    The face of health care is changing as new technologies are being incorporated into the existing infrastructure. Electronic patient records and sensor networks for in-home patient monitoring are at the current forefront of new technologies. Paper-based patient records are being put in electronic format enabling patients to access their records via the Internet. Remote patient monitoring is becoming more feasible as specialized sensors can be placed inside homes. The combination of these technologies will improve the quality of health care by making it more personalized and reducing costs and medical errors. While there are benefits to technologies, associated privacy and security issues need to be analyzed to make these systems socially acceptable. In this paper we explore the privacy and security implications of these next-generation health care technologies. We describe existing methods for handling issues as well as discussing which issues need further consideration.

  7. Applications of Remote Sensing to Emergency Management.

    DTIC Science & Technology

    1980-02-15

    Contents: Foundations of Remote Sensing : Data Acquisition and Interpretation; Availability of Remote Sensing Technology for Disaster Response...Imaging Systems, Current and Near Future Satellite and Aircraft Remote Sensing Systems; Utilization of Remote Sensing in Disaster Response: Categories of...Disasters, Phases of Monitoring Activities; Recommendations for Utilization of Remote Sensing Technology in Disaster Response; Selected Reading List.

  8. Biomechanical monitoring of healing bone based on acoustic emission technology.

    PubMed

    Hirasawa, Yasusuke; Takai, Shinro; Kim, Wook-Cheol; Takenaka, Nobuyuki; Yoshino, Nobuyuki; Watanabe, Yoshinobu

    2002-09-01

    Acoustic emission testing is a well-established method for assessment of the mechanical integrity of general construction projects. The purpose of the current study was to investigate the usefulness of acoustic emission technology in monitoring the yield strength of healing callus during external fixation. Thirty-five patients with 39 long bones treated with external fixation were evaluated for fracture healing by monitoring load for the initiation of acoustic emission signal (yield strength) under axial loading. The major criteria for functional bone union based on acoustic emission testing were (1) no acoustic emission signal on full weightbearing, and (2) a higher estimated strength than body weight. The yield strength monitored by acoustic emission testing increased with the time of healing. The external fixator could be removed safely and successfully in 97% of the patients. Thus, the acoustic emission method has good potential as a reliable method for monitoring the mechanical status of healing bone.

  9. Reusable Rocket Engine Advanced Health Management System. Architecture and Technology Evaluation: Summary

    NASA Technical Reports Server (NTRS)

    Pettit, C. D.; Barkhoudarian, S.; Daumann, A. G., Jr.; Provan, G. M.; ElFattah, Y. M.; Glover, D. E.

    1999-01-01

    In this study, we proposed an Advanced Health Management System (AHMS) functional architecture and conducted a technology assessment for liquid propellant rocket engine lifecycle health management. The purpose of the AHMS is to improve reusable rocket engine safety and to reduce between-flight maintenance. During the study, past and current reusable rocket engine health management-related projects were reviewed, data structures and health management processes of current rocket engine programs were assessed, and in-depth interviews with rocket engine lifecycle and system experts were conducted. A generic AHMS functional architecture, with primary focus on real-time health monitoring, was developed. Fourteen categories of technology tasks and development needs for implementation of the AHMS were identified, based on the functional architecture and our assessment of current rocket engine programs. Five key technology areas were recommended for immediate development, which (1) would provide immediate benefits to current engine programs, and (2) could be implemented with minimal impact on the current Space Shuttle Main Engine (SSME) and Reusable Launch Vehicle (RLV) engine controllers.

  10. OverView of Space Applications for Environment (SAFE) initiative

    NASA Astrophysics Data System (ADS)

    Hamamoto, Ko; Fukuda, Toru; Tajima, Yoshimitsu; Takeuchi, Wataru; Sobue, Shinichi; Nukui, Tomoyuki

    2014-06-01

    Climate change and human activities have a direc or indirect influence on the acceleration of environmental problems and natural hazards such as forest fires, draughts and floods in the Asia-Pacific countries. Satellite technology has become one of the key information sources in assessment, monitoring and mitigation of these disasters and related phenomenon. However, there are still gaps between science and application of satellite technology in real-world usage. Asia-Pacific Regional Space Agency Forum (APRSAF) recommended to initiate the Space Applications for Environment (SAFE) proposal providing opportunity to potential user agencies in the Asia Pacific region to develop prototype applications of satellite technology for number of key issues including forest resources management, coastal monitoring and management, agriculture and food security, water resource management and development user-friendly tools for application of satellite technology. This paper describes the overview of SAFE initiative and outcomes of two selected prototypes; agricultural drought monitoring in Indonesia and coastal management in Sri Lanka, as well as the current status of on-going prototypes.

  11. E-health blood pressure control program.

    PubMed

    Ahern, David K; Stinson, Lynda J; Uebelacker, Lisa A; Wroblewski, Joseph P; McMurray, Jerome H; Eaton, Charles B

    2012-01-01

    Both technological and human factors design requirements for integration of home blood pressure monitoring (HBPM) into a patient centered medical home (PCMH) model primary care practice are described. Patients with uncontrolled hypertension were given home blood pressure (BP) monitors, and after a three-month run-in period introduced to either a high-tech only (HBPM connectivity to personal health record and tailored Web portal access) or a high-tech/"high-touch" (high-tech solution plus patient navigator [PN]) solution. Features of the Web portal included: BP graphing function, traffic-light feedback system of BP goal attainment, economic incentives for self-monitoring, and dual patient-facing and care-team-facing dashboard functions. The e-health BP control system with PN support was well received by patients, providers, and the healthcare team. Current e-health technology and limited technological literacy of many patients suggest that a PN or some other personnel resource may be required for the adoption of patient-facing technology in primary care.

  12. Caregivers' Willingness to Pay for Technologies to Support Caregiving.

    PubMed

    Schulz, Richard; Beach, Scott R; Matthews, Judith T; Courtney, Karen; De Vito Dabbs, Annette; Mecca, Laurel Person

    2016-10-01

    We report the results of a study designed to assess whether and how much informal caregivers are willing to pay for technologies designed to help monitor and support care recipients (CRs) in performing kitchen and personal care tasks. We carried out a web survey of a national sample of adult caregivers (age 18-64) caring for an older adult (N = 512). Respondents completed a 25min online survey that included questions about their caregiving situation, current use of everyday technology, use of specific caregiving technologies, general attitudes toward technology, and questions about technologies designed to help them monitor and provide assistance for CRs' kitchen and self-care activities. About 20% of caregivers were not willing to pay anything for kitchen and self-care technologies. Among those willing to pay something, the mean amount was approximately $50 per month for monitoring technologies and $70 per month for technologies that both monitored and provided some assistance. Younger caregivers, those caring for a person with Alzheimer's disease, and caregivers with more positive attitudes toward and experience with technology were willing to pay more. Most caregivers feel that the government or private insurance should help pay for these technologies. Caregivers are receptive and willing to pay for technologies that help them care for their CR, although the amount they are willing to pay is capped at around $70 per month. The combination of private pay and government subsidy may facilitate development and dissemination of caregiver technologies. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Digital Signal Processing and Generation for a DC Current Transformer for Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorzetti, Silvia

    2013-01-01

    The thesis topic, digital signal processing and generation for a DC current transformer, focuses on the most fundamental beam diagnostics in the field of particle accelerators, the measurement of the beam intensity, or beam current. The technology of a DC current transformer (DCCT) is well known, and used in many areas, including particle accelerator beam instrumentation, as non-invasive (shunt-free) method to monitor the DC current in a conducting wire, or in our case, the current of charged particles travelling inside an evacuated metal pipe. So far, custom and commercial DCCTs are entirely based on analog technologies and signal processing, whichmore » makes them inflexible, sensitive to component aging, and difficult to maintain and calibrate.« less

  14. Atmospheric Monitoring Strategy for Ground Testing of Closed Ecological Life Support Systems

    NASA Technical Reports Server (NTRS)

    Feighery, John; Cavenall, Ivan; Knight, Amanda

    2004-01-01

    This paper reviews the evolution and current state of atmospheric monitoring on the International Space Station to provide context from which we can imagine a more advanced and integrated system. The unique environmental hazards of human space flight are identified and categorized into groups, taking into consideration the time required for the hazard to become a threat to human health or performance. The key functions of a comprehensive monitoring strategy for a closed ecological life support system are derived from past experience and a survey of currently available technologies for monitoring air quality. Finally, a system architecture is developed incorporating the lessons learned from ISS and other analogous closed life support systems. The paper concludes by presenting recommendations on how to proceed with requirements definition and conceptual design of an air monitoring system for exploration missions.

  15. Orbit Transfer Rocket Engine Technology Program: Advanced engine study, task D.1/D.3

    NASA Technical Reports Server (NTRS)

    Martinez, A.; Erickson, C.; Hines, B.

    1986-01-01

    Concepts for space maintainability of OTV engines were examined. An engine design was developed which was driven by space maintenance requirements and by a failure mode and effects (FME) analysis. Modularity within the engine was shown to offer cost benefits and improved space maintenance capabilities. Space operable disconnects were conceptualized for both engine change-out and for module replacement. Through FME mitigation the modules were conceptualized to contain the least reliable and most often replaced engine components. A preliminary space maintenance plan was developed around a controls and condition monitoring system using advanced sensors, controls, and condition monitoring concepts. A complete engine layout was prepared satisfying current vehicle requirements and utilizing projected component advanced technologies. A technology plan for developing the required technology was assembled.

  16. Research and Technology Operating Plan. Summary: Fiscal year 1976 research and technology program

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A compilation of the summary portions of each of the Research and Technology Operating Plans (RTOP) used for management review and control of research currently in progress throughout NASA was presented. The document is arranged in five sections. The first one contains citations and abstracts of the RTOP. This is followed by four indexes: subject, technical monitor, responsible NASA organization, and RTOP number.

  17. World Wind Tools Reveal Environmental Change

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Originally developed under NASA's Learning Technologies program as a tool to engage and inspire students, World Wind software was released under the NASA Open Source Agreement license. Honolulu, Hawaii based Intelesense Technologies is one of the companies currently making use of the technology for environmental, public health, and other monitoring applications for nonprofit organizations and Government agencies. The company saved about $1 million in development costs by using the NASA software.

  18. Sensor Systems for Space Life Sciences

    NASA Technical Reports Server (NTRS)

    Somps, Chris J.; Hines, John W.; Connolly, John P. (Technical Monitor)

    1995-01-01

    Sensors 2000! (S2K!) is a NASA Ames Research Center engineering initiative designed to provide biosensor and bio-instrumentation systems technology expertise to NASA's life sciences spaceflight programs. S2K! covers the full spectrum of sensor technology applications, ranging from spaceflight hardware design and fabrication to advanced technology development, transfer and commercialization. S2K! is currently developing sensor systems for space biomedical applications on BION (a Russian biosatellite focused on Rhesus Monkey physiology) and NEUROLAB (a Space Shuttle flight devoted to neuroscience). It's Advanced Technology Development-Biosensors (ATD-B) project focuses efforts in five principle areas: biotelemetry Systems, chemical and biological sensors, physiological sensors, advanced instrumentation architectures, and data and information management. Technologies already developed and tested included, application-specific sensors, preamplifier hybrids, modular programmable signal conditioners, power conditioning and distribution systems, and a fully implantable dual channel biotelemeter. Systems currently under development include a portable receiver system compatible with an off-the-shelf analog biotelemeter, a 4 channel digital biotelemetry system which monitors pH, a multichannel, g-processor based PCM biotelemetry system, and hand-held personal monitoring systems. S2K! technology easily lends itself to telescience and telemedicine applications as a front-end measurement and data acquisition device, suitable for obtaining and configuring physiological information, and processing that information under control from a remote location.

  19. High Data Rate Satellite Communications for Environmental Remote Sensing

    NASA Astrophysics Data System (ADS)

    Jackson, J. M.; Munger, J.; Emch, P. G.; Sen, B.; Gu, D.

    2014-12-01

    Satellite to ground communication bandwidth limitations place constraints on current earth remote sensing instruments which limit the spatial and spectral resolution of data transmitted to the ground for processing. Instruments such as VIIRS, CrIS and OMPS on the Soumi-NPP spacecraft must aggregate data both spatially and spectrally in order to fit inside current data rate constraints limiting the optimal use of the as-built sensors. Future planned missions such as HyspIRI, SLI, PACE, and NISAR will have to trade spatial and spectral resolution if increased communication band width is not made available. A number of high-impact, environmental remote sensing disciplines such as hurricane observation, mega-city air quality, wild fire detection and monitoring, and monitoring of coastal oceans would benefit dramatically from enabling the downlinking of sensor data at higher spatial and spectral resolutions. The enabling technologies of multi-Gbps Ka-Band communication, flexible high speed on-board processing, and multi-Terabit SSRs are currently available with high technological maturity enabling high data volume mission requirements to be met with minimal mission constraints while utilizing a limited set of ground sites from NASA's Near Earth Network (NEN) or TDRSS. These enabling technologies will be described in detail with emphasis on benefits to future remote sensing missions currently under consideration by government agencies.

  20. SMS-Based Medical Diagnostic Telemetry Data Transmission Protocol for Medical Sensors

    PubMed Central

    Townsend, Ben; Abawajy, Jemal; Kim, Tai-Hoon

    2011-01-01

    People with special medical monitoring needs can, these days, be sent home and remotely monitored through the use of data logging medical sensors and a transmission base-station. While this can improve quality of life by allowing the patient to spend most of their time at home, most current technologies rely on hardwired landline technology or expensive mobile data transmissions to transmit data to a medical facility. The aim of this paper is to investigate and develop an approach to increase the freedom of a monitored patient and decrease costs by utilising mobile technologies and SMS messaging to transmit data from patient to medico. To this end, we evaluated the capabilities of SMS and propose a generic communications protocol which can work within the constraints of the SMS format, but provide the necessary redundancy and robustness to be used for the transmission of non-critical medical telemetry from data logging medical sensors. PMID:22163845

  1. Impact of government regulation on health care technology

    NASA Astrophysics Data System (ADS)

    Berkowitz, Robert D.

    1994-12-01

    Increased government regulation of the medical device industry produces higher expenses, a longer time to return investment capital, and greater uncertainty. As a result there are fewer new ventures and reduced efforts to develop new technology in established companies. The current federal regulatory framework has shifted from monitoring the product to monitoring the process. The inability to reach perfect performance in such a regulated environment subject to continuous and fluid interpretation guarantees non-compliance and growing ethical tension. Without new medical technology, we may be unable to maintain quality medical coverage in the face of rising demand. The author proposes risk assessment to set regulatory priorities; the conversion of a national weapons lab to a national device testing lab; the establishment of device standards and the monitoring of in-use performance against these standards; and the education of patients and users as to the results of these examinations.

  2. Modeling Natural Attenuation of an Industrial Facility in Houston

    NASA Astrophysics Data System (ADS)

    Sun, D.

    2016-12-01

    Groundwater monitoring is currently ongoing at a commercial/industrial facility located in Deer Park, Texas (the site). The subject site is an approximate 10 acre commercial/industrial facility that began operation in the late-1970s. Operations have historically consisted of vehicle maintenance services, administrative, and equipment storage. Assessment and groundwater monitoring activities have been conducted at the site to evaluate the magnitude and extent of groundwater affected with chlorinated volatile organic compounds (VOCs). Groundwater data has been collected at this site since the mid-2000s on a quarterly basis. Presently, VOC constituents tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride (VC) are the only chemicals of concern (COCs) detected at concentrations exceeding the TCEQ Actions Levels established by the state of Texas. The goal is that one day the site will receive a certificate of completion from the state, which states that all non-responsible parties are released from all liability to the state for cleanup. The remediation technology that is currently being used at this site is Monitoring Natural Attenuation (MNA). A significant question is whether MNA is efficiently removing COCs in groundwater and how long will this process take to achieve the remediation goals. The objective of this study is to provide an estimate of concentrations of COCs in groundwater at the site using the Biochlor model. The Biochlor model will help answer the question as to whether or not natural attenuation is occurring at the site efficiently. Results show that Monitored Natural Attenuation may not be the optimal remediation technology to use at this site. Other remedial technologies are needed to clean up chemical in the site. Groundwater monitoring is currently ongoing at a commercial/industrial facility located in Deer Park, Texas (the site). The subject site is an approximate 10 acre commercial/industrial facility that began operation in the late-1970s. Operations have historically consisted of vehicle maintenance services, administrative, and equipment storage. Assessment and groundwater monitoring activities have been conducted at the site to evaluate the magnitude and extent of groundwater affected with chlorinated volatile organic compounds (VOCs). Groundwater data has been collected at this site since the mid-2000s on a quarterly basis. Presently, VOC constituents tetrachloroethene (PCE), trichloroethene (TCE), cis-1,2-dichloroethene (DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride (VC) are the only chemicals of concern (COCs) detected at concentrations exceeding the TCEQ Actions Levels established by the state of Texas. The goal is that one day the site will receive a certificate of completion from the state, which states that all non-responsible parties are released from all liability to the state for cleanup. The remediation technology that is currently being used at this site is Monitoring Natural Attenuation (MNA). A significant question is whether MNA is efficiently removing COCs in groundwater and how long will this process take to achieve the remediation goals. The objective of this study is to provide an estimate of concentrations of COCs in groundwater at the site using the Biochlor model. The Biochlor model will help answer the question as to whether or not natural attenuation is occurring at the site efficiently. Results show that Monitored Natural Attenuation may not be the optimal remediation technology to use at this site. Other remedial technologies are needed to clean up chemical in the site.

  3. Software framework for prognostic health monitoring of ocean-based power generation

    NASA Astrophysics Data System (ADS)

    Bowren, Mark

    On August 5, 2010 the U.S. Department of Energy (DOE) has designated the Center for Ocean Energy Technology (COET) at Florida Atlantic University (FAU) as a national center for ocean energy research and development of prototypes for open-ocean power generation. Maintenance on ocean-based machinery can be very costly. To avoid unnecessary maintenance it is necessary to monitor the condition of each machine in order to predict problems. This kind of prognostic health monitoring (PHM) requires a condition-based maintenance (CBM) system that supports diagnostic and prognostic analysis of large amounts of data. Research in this field led to the creation of ISO13374 and the development of a standard open-architecture for machine condition monitoring. This thesis explores an implementation of such a system for ocean-based machinery using this framework and current open-standard technologies.

  4. A wearable physiological sensor suite for unobtrusive monitoring of physiological and cognitive state.

    PubMed

    Matthews, Robert; McDonald, Neil J; Hervieux, Paul; Turner, Peter J; Steindorf, Martin A

    2007-01-01

    This paper describes an integrated Physiological Sensor Suite (PSS) based upon QUASAR's innovative non-invasive bioelectric sensor technologies that will provide, for the first time, a fully integrated, noninvasive methodology for physiological sensing. The PSS currently under development at QUASAR is a state-of-the-art multimodal array of sensors that, along with an ultra-low power personal area wireless network, form a comprehensive body-worn system for real-time monitoring of subject physiology and cognitive status. Applications of the PSS extend from monitoring of military personnel to long-term monitoring of patients diagnosed with cardiac or neurological conditions. Results for side-by-side comparisons between QUASAR's biosensor technology and conventional wet electrodes are presented. The signal fidelity for bioelectric measurements using QUASAR's biosensors is comparable to that for wet electrodes.

  5. Development of Meandering Winding Magnetometer (MWM (Register Trademark)) Eddy Current Sensors for the Health Monitoring, Modeling and Damage Detection of High Temperature Composite Materials

    NASA Technical Reports Server (NTRS)

    Russell, Richard; Washabaugh, Andy; Sheiretov, Yanko; Martin, Christopher; Goldfine, Neil

    2011-01-01

    The increased use of high-temperature composite materials in modern and next generation aircraft and spacecraft have led to the need for improved nondestructive evaluation and health monitoring techniques. Such technologies are desirable to improve quality control, damage detection, stress evaluation and temperature measurement capabilities. Novel eddy current sensors and sensor arrays, such as Meandering Winding Magnetometers (MWMs) have provided alternate or complimentary techniques to ultrasound and thermography for both nondestructive evaluation (NDE) and structural health monitoring (SHM). This includes imaging of composite material quality, damage detection and .the monitoring of fiber temperatures and multidirectional stresses. Historically, implementation of MWM technology for the inspection of the Space Shuttle Orbiter Reinforced Carbon-Carbon Composite (RCC) leading edge panels was developed by JENTEK Sensors and was subsequently transitioned by NASA as an operational pre and post flight in-situ inspection at the Kennedy Space Center. A manual scanner, which conformed'automatically to the curvature of the RCC panels was developed and used as a secondary technique if a defect was found during an infrared thermography screening, During a recent proof of concept study on composite overwrapped pressure vessels (COPV's), three different MWM sensors were tested at three orientations to demonstrate the ability of the technology to measure stresses at various fiber orientations and depths. These results showed excellent correlation with actual surface strain gage measurements. Recent advancements of this technology have been made applying MWM sensor technology for scanning COPVs for mechanical damage. This presentation will outline the recent advance in the MWM.technology and the development of MWM techniques for NDE and SHM of carbon wraped composite overwrapped pressure vessels (COPVs) including the measurement of internal stresses via a surface mounted sensor array. In addition, this paper will outline recent efforts to produce sensors capable of making real-time measurements at temperatures up to 850 C, and discuss previous results demonstrating capability to monitor carbon fiber temperature changes within a composite material.

  6. Bedload-surrogate monitoring technologies

    USGS Publications Warehouse

    Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    Advances in technologies for quantifying bedload fluxes and in some cases bedload size distributions in rivers show promise toward supplanting traditional physical samplers and sampling methods predicated on the collection and analysis of physical bedload samples. Four workshops held from 2002 to 2007 directly or peripherally addressed bedload-surrogate technologies, and results from these workshops have been compiled to evaluate the state-of-the-art in bedload monitoring. Papers from the 2007 workshop are published for the first time with this report. Selected research and publications since the 2007 workshop also are presented. Traditional samplers used for some or all of the last eight decades include box or basket samplers, pan or tray samplers, pressure-difference samplers, and trough or pit samplers. Although still useful, the future niche of these devices may be as a means for calibrating bedload-surrogate technologies operating with active- and passive-type sensors, in many cases continuously and automatically at a river site. Active sensors include acoustic Doppler current profilers (ADCPs), sonar, radar, and smart sensors. Passive sensors include geophones (pipes or plates) in direct contact with the streambed, hydrophones deployed in the water column, impact columns, and magnetic detection. The ADCP for sand and geophones for gravel are currently the most developed techniques, several of which have been calibrated under both laboratory and field conditions. Although none of the bedload-surrogate technologies described herein are broadly accepted for use in large-scale monitoring programs, several are under evaluation. The benefits of verifying and operationally deploying selected bedload-surrogate monitoring technologies could be considerable, providing for more frequent and consistent, less expensive, and arguably more accurate bedload data obtained with reduced personal risk for use in managing the world's sedimentary resources. Twenty-six papers are published for the first time as part of the 2007 International Bedload-Surrogate Monitoring Workshop (listed in table 2 in alphabetical order by name of first author). Sequential page numbering of the papers begins on page 38, after the last page of the report. The report plus the 26 papers comprise 430 pages.

  7. Expert Water Quality Panel Review of Responses to the NASA Request for Information for the International Space Station On-Board Environmental Monitoring System

    NASA Technical Reports Server (NTRS)

    Fishman, Julianna L.; Mudgett, Paul D.; Packham, Nigel J.; Schultz, John R.; Straub, John E., II

    2005-01-01

    On August 9, 2003, NASA, with the cooperative support of the Vehicle Office of the International Space Station Program, the Advanced Human Support Technology Program, and the Johnson Space Center Habitability and Environmental Factors Office released a Request for Information, or RFI, to identify next-generation environmental monitoring systems that have demonstrated ability or the potential to meet defined requirements for monitoring air and water quality onboard the International Space Station. This report summarizes the review and analysis of the proposed solutions submitted to meet the water quality monitoring requirements. Proposals were to improve upon the functionality of the existing Space Station Total Organic Carbon Analyzer (TOCA) and monitor additional contaminants in water samples. The TOCA is responsible for in-flight measurement of total organic carbon, total inorganic carbon, total carbon, pH, and conductivity in the Space Station potable water supplies. The current TOCA requires hazardous reagents to accomplish the carbon analyses. NASA is using the request for information process to investigate new technologies that may improve upon existing capabilities, as well as reduce or eliminate the need for hazardous reagents. Ideally, a replacement for the TOCA would be deployed in conjunction with the delivery of the Node 3 water recovery system currently scheduled for November 2007.

  8. Remote Monitoring of Cardiac Implantable Electronic Devices.

    PubMed

    Cheung, Christopher C; Deyell, Marc W

    2018-01-08

    Over the past decade, technological advancements have transformed the delivery of care for arrhythmia patients. From early transtelephonic monitoring to new devices capable of wireless and cellular transmission, remote monitoring has revolutionized device care. In this article, we review the current evolution and evidence for remote monitoring in patients with cardiac implantable electronic devices. From passive transmission of device diagnostics, to active transmission of patient- and device-triggered alerts, remote monitoring can shorten the time to diagnosis and treatment. Studies have shown that remote monitoring can reduce hospitalization and emergency room visits, and improve survival. Remote monitoring can also reduce the health care costs, while providing increased access to patients living in rural or marginalized communities. Unfortunately, as many as two-thirds of patients with remote monitoring-capable devices do not use, or are not offered, this feature. Current guidelines recommend remote monitoring and interrogation, combined with annual in-person evaluation in all cardiac device patients. Remote monitoring should be considered in all eligible device patients and should be considered standard of care. Copyright © 2018 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  9. Fast-mode duplex qPCR for BCR-ABL1 molecular monitoring: innovation, automation, and harmonization.

    PubMed

    Gerrard, Gareth; Mudge, Katherine; Foskett, Pierre; Stevens, David; Alikian, Mary; White, Helen E; Cross, Nicholas C P; Apperley, Jane; Foroni, Letizia

    2012-07-01

    Reverse transcription quantitative polymerase chain reaction (RTqPCR)is currently the most sensitive tool available for the routine monitoring of disease level in patients undergoing treatment for BCRABL1 associated malignancies. Considerable effort has been invested at both the local and international levels to standardise the methodology and reporting criteria used to assess this critical metric. In an effort to accommodate the demands of increasing sample throughput and greater standardization, we adapted the current best-practice guidelines to encompass automation platforms and improved multiplex RT-qPCR technology.

  10. Evaluating public education messages aimed at monitoring and responding to social interactive technology on smartphones among young drivers.

    PubMed

    Gauld, Cassandra S; Lewis, Ioni; White, Katherine M; Fleiter, Judy J; Watson, Barry

    2017-07-01

    Young drivers are more likely than any other age group to access social interactive technology (e.g., Facebook, E-mail) on a smartphone while driving. The current study formed part of a larger investigation and was guided by The Step Approach to Message Design and Testing (SatMDT) to evaluate the relative effectiveness of three different public education messages aimed at reducing smartphone use among young drivers. The messages were each adapted to the specific behaviours of monitoring/reading and responding to social interactive technology on smartphones. Participants (n=288; 199F, 89M) were drivers aged 17-25 years who resided in the Australian state of Queensland. Message acceptance (i.e., intention and effectiveness) and message rejection were both assessed using a self-report survey. Multivariate analyses found that, overall, the messages targeting monitoring/reading behaviour were considered more effective than those targeting responding behaviour. The message that challenged the underlying motivation that believing you are a good driver makes it easier to monitor/read social interactive technology while driving was considered particularly effective by young male drivers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    PubMed Central

    Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang

    2008-01-01

    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation. PMID:18604301

  12. Ubiquitous computing for remote cardiac patient monitoring: a survey.

    PubMed

    Kumar, Sunil; Kambhatla, Kashyap; Hu, Fei; Lifson, Mark; Xiao, Yang

    2008-01-01

    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation.

  13. On the use of multi-agent systems for the monitoring of industrial systems

    NASA Astrophysics Data System (ADS)

    Rezki, Nafissa; Kazar, Okba; Mouss, Leila Hayet; Kahloul, Laid; Rezki, Djamil

    2016-03-01

    The objective of the current paper is to present an intelligent system for complex process monitoring, based on artificial intelligence technologies. This system aims to realize with success all the complex process monitoring tasks that are: detection, diagnosis, identification and reconfiguration. For this purpose, the development of a multi-agent system that combines multiple intelligences such as: multivariate control charts, neural networks, Bayesian networks and expert systems has became a necessity. The proposed system is evaluated in the monitoring of the complex process Tennessee Eastman process.

  14. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A compilation of the summary portion of each of the Research and Technology Operating Plans (RTOP) used for management review and control of research currently in progress throughout NASA is presented along with citations and abstracts of the RTOPs. Four indexes are included: (1) subject; (2) technical monitor; (3) responsible NASA organization; and (4) RTOP number.

  15. OTVE turbopump condition monitoring, task E.5

    NASA Technical Reports Server (NTRS)

    Coleman, Paul T.; Collins, J. J.

    1989-01-01

    Recent work has been carried out on development of isotope wear analysis and optical and eddy current technologies to provide bearing wear measurements and real time monitoring of shaft speed, shaft axial displacement and shaft orbit of the Orbit Transfer Vehicle hydrostatic bearing tester. Results show shaft axial displacement can be optically measured (at the same time as shaft orbital motion and speed) to within 0.3 mils by two fiberoptic deflectometers. Evaluation of eddy current probes showed that, in addition to measuring shaft orbital motion, they can be used to measure shaft speed without having to machine grooves on the shaft surface as is the usual practice for turbomachinery. The interim results of this condition monitoring effort are presented.

  16. [From insulin pump and continuous glucose monitoring to the artificial pancreas].

    PubMed

    Apablaza, Pamela; Soto, Néstor; Codner, Ethel

    2017-05-01

    Technology for diabetes care has undergone major development during recent decades. These technological advances include continuous subcutaneous insulin infusion (CSII), also known as insulin pumps, and real-time continuous glucose monitoring system (RT-CGMS). The integration of CSII and RT-CGMS into a single device has led to sensor-augmented pump therapy and more recently, a technology that has automated delivery of basal insulin therapy, known as hybrid system. These new technologies have led to benefits in attaining better metabolic control and decreasing the incidence of severe hypoglycemia, especially in patients with type 1 diabetes. This review describes the types of technologies currently available or under investigation for these purposes, their benefits and disadvantages, recommendations and the appropriate patient selection for their use. The clinical use of the hybrid system and artificial pancreas seem to be possible in the near future.

  17. Summary of Research 2000: Department of Oceanography

    DTIC Science & Technology

    2001-12-01

    Castro, R., A. S. Mascarenhas, R. Durazo and C. Collins, "Variaci6n estacional de la temperatura y salinidad en la entrada del Golfo de California...AREAS: Sensors , Battlespace Environments KEYWORDS: Littoral, Acoustics, Nowcast, Shelfbreak Fronts NAVAL POSTGRADUATE SCHOOL OAO TEST-BAN TREATY...Organization. DoD KEY TECHNOLOGY AREAS: Sensors KEYWORDS: Nuclear Test-Ban Treaty Monitoring OCEAN ACOUSTIC FEDERATION: CALIFORNIA CURRENT MONITORING

  18. Cognitive Technologies for Teams 711HPW/RHCPT

    DTIC Science & Technology

    2010-09-01

    robust physiological indices of team workload, with a particular interest in minimally invasive measures such as EEG, EOG , ECG eye movement data and...cerebral hemodynamics. Current research directions for the CTT program will be discussed. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17...collections of individuals TRACE Monitor 12 Cerebral Hemodynamics • Transcranial Doppler Sonography (TCD) – Utilizes ultrasound signals to monitor

  19. Advance Care Planning: Medical Issues to Consider

    MedlinePlus

    ... deliver oxygen to the bloodstream; cardioversion (passing an electrical current through the heart to restart it or ... occur. This person will benefit from very invasive technology to reverse critical illness. Close monitoring of the ...

  20. High-precision GPS vehicle tracking to improve safety.

    DOT National Transportation Integrated Search

    2016-09-01

    Commercial Global Positioning System (GPS) devices are being used in transportation for applications : including vehicle navigation, traffic monitoring, and tracking commercial and public transit vehicles. The : current state-of-practice technology i...

  1. New Criteria for Assessing the Accuracy of Blood Glucose Monitors meeting, October 28, 2011.

    PubMed

    Walsh, John; Roberts, Ruth; Vigersky, Robert A; Schwartz, Frank

    2012-03-01

    Glucose meters (GMs) are routinely used for self-monitoring of blood glucose by patients and for point-of-care glucose monitoring by health care providers in outpatient and inpatient settings. Although widely assumed to be accurate, numerous reports of inaccuracies with resulting morbidity and mortality have been noted. Insulin dosing errors based on inaccurate GMs are most critical. On October 28, 2011, the Diabetes Technology Society invited 45 diabetes technology clinicians who were attending the 2011 Diabetes Technology Meeting to participate in a closed-door meeting entitled New Criteria for Assessing the Accuracy of Blood Glucose Monitors. This report reflects the opinions of most of the attendees of that meeting. The Food and Drug Administration (FDA), the public, and several medical societies are currently in dialogue to establish a new standard for GM accuracy. This update to the FDA standard is driven by improved meter accuracy, technological advances (pumps, bolus calculators, continuous glucose monitors, and insulin pens), reports of hospital and outpatient deaths, consumer complaints about inaccuracy, and research studies showing that several approved GMs failed to meet FDA or International Organization for Standardization standards in postapproval testing. These circumstances mandate a set of new GM standards that appropriately match the GMs' analytical accuracy to the clinical accuracy required for their intended use, as well as ensuring their ongoing accuracy following approval. The attendees of the New Criteria for Assessing the Accuracy of Blood Glucose Monitors meeting proposed a graduated standard and other methods to improve GM performance, which are discussed in this meeting report. © 2012 Diabetes Technology Society.

  2. [Development of a wearable electrocardiogram monitor with recognition of physical activity scene].

    PubMed

    Wang, Zihong; Wu, Baoming; Yin, Jian; Gong, Yushun

    2012-10-01

    To overcome the problems of current electrocardiogram (ECG) tele-monitoring devices used for daily life, according to information fusion thought and by means of wearable technology, we developed a new type of wearable ECG monitor with the capability of physical activity recognition in this paper. The ECG monitor synchronously detected electrocardiogram signal and body acceleration signal, and recognized the scene information of physical activity, and finally determined the health status of the heart. With the advantages of accuracy for measurement, easy to use, comfort to wear, private feelings and long-term continuous in monitoring, this ECG monitor is quite fit for the heart-health monitoring in daily life.

  3. Link monitor and control operator assistant: A prototype demonstrating semiautomated monitor and control

    NASA Technical Reports Server (NTRS)

    Lee, L. F.; Cooper, L. P.

    1993-01-01

    This article describes the approach, results, and lessons learned from an applied research project demonstrating how artificial intelligence (AI) technology can be used to improve Deep Space Network operations. Configuring antenna and associated equipment necessary to support a communications link is a time-consuming process. The time spent configuring the equipment is essentially overhead and results in reduced time for actual mission support operations. The NASA Office of Space Communications (Code O) and the NASA Office of Advanced Concepts and Technology (Code C) jointly funded an applied research project to investigate technologies which can be used to reduce configuration time. This resulted in the development and application of AI-based automated operations technology in a prototype system, the Link Monitor and Control Operator Assistant (LMC OA). The LMC OA was tested over the course of three months in a parallel experimental mode on very long baseline interferometry (VLBI) operations at the Goldstone Deep Space Communications Center. The tests demonstrated a 44 percent reduction in pre-calibration time for a VLBI pass on the 70-m antenna. Currently, this technology is being developed further under Research and Technology Operating Plan (RTOP)-72 to demonstrate the applicability of the technology to operations in the entire Deep Space Network.

  4. Recent advances in nanomaterials for water protection and monitoring.

    PubMed

    Das, Rasel; Vecitis, Chad D; Schulze, Agnes; Cao, Bin; Ismail, Ahmad Fauzi; Lu, Xianbo; Chen, Jiping; Ramakrishna, Seeram

    2017-11-13

    The efficient handling of wastewater pollutants is a must, since they are continuously defiling limited fresh water resources, seriously affecting the terrestrial, aquatic, and aerial flora and fauna. Our vision is to undertake an exhaustive examination of current research trends with a focus on nanomaterials (NMs) to considerably improve the performance of classical wastewater treatment technologies, e.g. adsorption, catalysis, separation, and disinfection. Additionally, NM-based sensor technologies are considered, since they have been significantly used for monitoring water contaminants. We also suggest future directions to inform investigators of potentially disruptive NM technologies that have to be investigated in more detail. The fate and environmental transformations of NMs, which need to be addressed before large-scale implementation of NMs for water purification, are also highlighted.

  5. FutureGen 2.0 Monitoring Program: An Overview of the Monitoring Approach and Technologies Selected for Implementation

    DOE PAGES

    Vermeul, Vince R.; Strickland, Chris E.; Thorne, Paul D.; ...

    2014-12-31

    The FutureGen 2.0 Project will design and build a first-of-its-kind, near-zero emissions coal-fueled power plant with carbon capture and storage (CCS). To assess storage site performance and meet the regulatory requirements of the Class VI Underground Injection Control (UIC) Program for CO2 Geologic Sequestration, the FutureGen 2.0 project will implement a suite of monitoring technologies designed to 1) evaluate CO2 mass balance and 2) detect any unforeseen loss in CO2 containment. The monitoring program will include direct monitoring of the injection stream and reservoir, and early-leak-detection monitoring directly above the primary confining zone. It will also implement an adaptive monitoringmore » strategy whereby monitoring results are continually evaluated and the monitoring network is modified as required, including the option to drill additional wells in out-years. Wells will be monitored for changes in CO2 concentration and formation pressure, and other geochemical/isotopic signatures that provide indication of CO2 or brine leakage. Indirect geophysical monitoring technologies that were selected for implementation include passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture logging. Near-surface monitoring approaches that have been initiated include surficial aquifer and surface- water monitoring, soil-gas monitoring, atmospheric monitoring, and hyperspectral data acquisition for assessment of vegetation conditions. Initially, only the collection of baseline data sets is planned; the need for additional near- surface monitoring will be continually evaluated throughout the design and operational phases of the project, and selected approaches may be reinstituted if conditions warrant. Given the current conceptual understanding of the subsurface environment, early and appreciable impacts to near-surface environments are not expected.« less

  6. The expanding scope of air pollution monitoring can facilitate sustainable development.

    PubMed

    Knox, Andrew; Mykhaylova, Natalia; Evans, Greg J; Lee, Colin J; Karney, Bryan; Brook, Jeffrey R

    2013-03-15

    This paper explores technologies currently expanding the physical scope of air pollution monitoring and their potential contributions to the assessment of sustainable development. This potential lies largely in the ability of these technologies to address issues typically on the fringe of the air pollution agenda. Air pollution monitoring tends to be primarily focused on human health, and largely neglects other aspects of sustainable development. Sensor networks, with their relatively inexpensive monitoring nodes, allow for monitoring with finer spatiotemporal resolution. This resolution can support more conclusive studies of air pollution's effect on socio-ecological justice and human quality of life. Satellite observation of air pollution allows for wider geographical scope, and in doing so can facilitate studies of air pollution's effects on natural capital and ecosystem resilience. Many air pollution-related aspects of the sustainability of development in human systems are not being given their due attention. Opportunities exist for air pollution monitoring to attend more to these issues. Improvements to the resolution and scale of monitoring make these opportunities realizable. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Advanced Sensors and Controls for Building Applications: Market Assessment and Potential R&D Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brambley, Michael R.; Haves, Philip; McDonald, Sean C.

    2005-04-13

    Significant energy savings can be achieved in commercial building operation, along with increased comfort and control for occupants, through the implementation of advanced technologies. This document provides a market assessment of existing building sensors and controls and presents a range of technology pathways (R&D options) for pursuing advanced sensors and building control strategies. This paper is actually a synthesis of five other white papers: the first describes the market assessment including estimates of market potential and energy savings for sensors and control strategies currently on the market as well as a discussion of market barriers to these technologies. The othermore » four cover technology pathways: (1) current applications and strategies for new applications, (2) sensors and controls, (3) networking, security, and protocols and standards, and (4) automated diagnostics, performance monitoring, commissioning, optimal control and tools. Each technology pathway chapter gives an overview of the technology or application. This is followed by a discussion of needs and the current status of the technology. Finally, a series of research topics is proposed.« less

  8. Hardware Specific Integration Strategy for Impedance-Based Structural Health Monitoring of Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Owen, Robert B.; Gyekenyesi, Andrew L.; Inman, Daniel J.; Ha, Dong S.

    2011-01-01

    The Integrated Vehicle Health Management (IVHM) Project, sponsored by NASA's Aeronautics Research Mission Directorate, is conducting research to advance the state of highly integrated and complex flight-critical health management technologies and systems. An effective IVHM system requires Structural Health Monitoring (SHM). The impedance method is one such SHM technique for detection and monitoring complex structures for damage. This position paper on the impedance method presents the current state of the art, future directions, applications and possible flight test demonstrations.

  9. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plotnikov, Yuri, E-mail: plotnikov@ge.com; Karp, Jason, E-mail: plotnikov@ge.com; Knobloch, Aaron, E-mail: plotnikov@ge.com

    2015-03-31

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of testsmore » have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.« less

  10. Eddy current sensor for in-situ monitoring of swelling of Li-ion prismatic cells

    NASA Astrophysics Data System (ADS)

    Plotnikov, Yuri; Karp, Jason; Knobloch, Aaron; Kapusta, Chris; Lin, David

    2015-03-01

    In-situ monitoring an on-board rechargeable battery in hybrid cars can be used to ensure a long operating life of the battery and safe operation of the vehicle. Intercalations of ions in the electrode material during charge and discharge of a Lithium Ion battery cause periodic stress and strain of the electrode materials that can ultimately lead to fatigue resulting in capacity loss and potential battery failure. Currently this process is not monitored directly on the cells. This work is focused on development technologies that would quantify battery swelling and provide in-situ monitoring for onboard vehicle applications. Several rounds of tests have been performed to spatially characterize cell expansion of a 5 Ah cell with a nickel/manganese/cobalt-oxide cathode (Sanyo, Japan) used by Ford in their Fusion HEV battery pack. A collaborative team of researchers from GE and the University of Michigan has characterized the free expansion of these cells to be in the range of 100×125 microns (1% of total cell thickness) at the center point of the cell. GE proposed to use a thin eddy current (EC) coil to monitor these expansions on the cells while inside the package. The photolithography manufacturing process previously developed for EC arrays for detecting cracks in aircraft engine components was used to build test coils for gap monitoring. These sensors are thin enough to be placed safely between neighboring cells and capable of monitoring small variations in the gap between the cells. Preliminary investigations showed that these coils can be less than 100 micron thick and have sufficient sensitivity in a range from 0 to 2 mm. Laboratory tests revealed good correlation between EC and optical gap measurements in the desired range. Further technology development could lead to establishing a sensor network for a low cost solution for the in-situ monitoring of cell swelling during battery operation.

  11. Innovative Technologies for Efficient Pharmacotherapeutic Management in Space

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Daniels, Vernie

    2014-01-01

    Current and future Space exploration missions and extended human presence in space aboard the ISS will expose crew to risks that differ both quantitatively and qualitatively from those encountered before by space travelers and will impose an unknown risk of safety and crew health. The technology development challenges for optimizing therapeutics in space must include the development of pharmaceuticals with extended stability, optimal efficacy and bioavailability with minimal toxicity and side effects. Innovative technology development goals may include sustained/chronic delivery preventive health care products and vaccines, low-cost high-efficiency noninvasive, non-oral dosage forms with radio-protective formulation matrices and dispensing technologies coupled with self-reliant tracking technologies for quality assurance and quality control assessment. These revolutionary advances in pharmaceutical technology will assure human presence in space and healthy living on Earth. Additionally, the Joint Commission on Accreditation of Healthcare Organizations advocates the use of health information technologies to effectively execute all aspects of medication management (prescribing, dispensing, and administration). The advent of personalized medicine and highly streamlined treatment regimens stimulated interest in new technologies for medication management. Intelligent monitoring devices enhance medication accountability compliance, enable effective drug use, and offer appropriate storage and security conditions for dangerous drug and controlled substance medications in remote sites where traditional pharmacies are unavailable. These features are ideal for Exploration Medical Capabilities. This presentation will highlight current novel commercial off-the-shelf (COTS) intelligent medication management devices for the unique dispensing, therapeutic drug monitoring, medication tracking, and drug delivery demands of exploration space medical operations.

  12. Automated pavement analysis in Missouri using ground penetrating radar

    DOT National Transportation Integrated Search

    2003-02-01

    Current geotechnical procedures for monitoring the condition of roadways are time consuming and can be disruptive to traffic, often requiring extensive invasive procedures (e.g., coring). Ground penetrating radar (GPR) technology offers a methodology...

  13. Refinery evaluation of optical imaging to locate fugitive emissions.

    PubMed

    Robinson, Donald R; Luke-Boone, Ronke; Aggarwal, Vineet; Harris, Buzz; Anderson, Eric; Ranum, David; Kulp, Thomas J; Armstrong, Karla; Sommers, Ricky; McRae, Thomas G; Ritter, Karin; Siegell, Jeffrey H; Van Pelt, Doug; Smylie, Mike

    2007-07-01

    Fugitive emissions account for approximately 50% of total hydrocarbon emissions from process plants. Federal and state regulations aiming at controlling these emissions require refineries and petrochemical plants in the United States to implement a Leak Detection and Repair Program (LDAR). The current regulatory work practice, U.S. Environment Protection Agency Method 21, requires designated components to be monitored individually at regular intervals. The annual costs of these LDAR programs in a typical refinery can exceed US$1,000,000. Previous studies have shown that a majority of controllable fugitive emissions come from a very small fraction of components. The Smart LDAR program aims to find cost-effective methods to monitor and reduce emissions from these large leakers. Optical gas imaging has been identified as one such technology that can help achieve this objective. This paper discusses a refinery evaluation of an instrument based on backscatter absorption gas imaging technology. This portable camera allows an operator to scan components more quickly and image gas leaks in real time. During the evaluation, the instrument was able to identify leaking components that were the source of 97% of the total mass emissions from leaks detected. More than 27,000 components were monitored. This was achieved in far less time than it would have taken using Method 21. In addition, the instrument was able to find leaks from components that are not required to be monitored by the current LDAR regulations. The technology principles and the parameters that affect instrument performance are also discussed in the paper.

  14. Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring.

    PubMed

    Sharma, Sanjiv; Saeed, Anwer; Johnson, Christopher; Gadegaard, Nikolaj; Cass, Anthony Eg

    2017-04-01

    The next generation of devices for personal healthcare monitoring will comprise molecular sensors to monitor analytes of interest in the skin compartment. Transdermal devices based on microneedles offer an excellent opportunity to explore the dynamics of molecular markers in the interstitial fluid, however good acceptability of these next generation devices will require several technical problems associated with current commercially available wearable sensors to be overcome. These particularly include reliability, comfort and cost. An essential pre-requisite for transdermal molecular sensing devices is that they can be fabricated using scalable technologies which are cost effective. We present here a minimally invasive microneedle array as a continuous monitoring platform technology. Method for scalable fabrication of these structures is presented. The microneedle arrays were characterised mechanically and were shown to penetrate human skin under moderate thumb pressure. They were then functionalised and evaluated as glucose, lactate and theophylline biosensors. The results suggest that this technology can be employed in the measurement of metabolites, therapeutic drugs and biomarkers and could have an important role to play in the management of chronic diseases.

  15. Investigating User Identification in Remote Patient Monitoring Devices.

    PubMed

    Ondiege, Brian; Clarke, Malcolm

    2017-09-13

    With the increase in the number of people having a chronic disease, there is an increase in households having more than a single person suffering from the same chronic illness. One problem of monitoring such patients in their own home is that current devices have a limitation in the number of people who can use a single device. This study investigates the use of Near Field Communication (NFC) for identification in a multi-user environment. A mixed-method qualitative and quantitative approach was adopted, including focus groups, observations and a field trial. Data were collected in three phases. In Phase 1, five focus groups were conducted with patients to determine their beliefs, concerns and issues with using identification in remote patient monitoring devices. In Phase 2, participants were given a blood pressure monitor modified to include an NFC reader to enable identification. The modified device was given to patients living as a couple in the same household and both suffering from hypertension. Both patients used the device for a period of two weeks to observe their acceptance of the technology and determine their experience of usage. A total of 40 (20 couples) patients participated in the trial. Non-adherence to the full monitoring regimen was low and was mainly due to usability issues or commitments taking them away from the home and thus unable to take readings. After the trial period participants were invited to discuss their experiences with the technology in a focus group discussion (Phase 3), a total of five focus groups were conducted. Focus group discussions with the patients revealed that most participants liked using the system and were not apprehensive towards Healthcare Information Technology (HIT). The participants also had suggestions for improvements that could be made to the modified blood pressure monitor (such as, rechargeable in place batteries, integrate the components, easier to use cuff, and increased sensitivity of the NFC reader) that might improve the overall experience of the proposed technology and its acceptance. The study proposes a new framework, the Senior Patient Technology Acceptance Model (SPTAM) that offers an understanding of the needs of the elderly towards technology use and the factors that influence its acceptance. SPTAM emphasises that involving the patient in the early stages of development can lead to a more user-centred technology and help in identifying any underlying issues at an early stage, thus avoiding adding features which patients do not need. The findings from this empirical research can be used as recommendations to improve current RPM devices, save the NHS costs, inform standardization groups.

  16. Investigating User Identification in Remote Patient Monitoring Devices

    PubMed Central

    Clarke, Malcolm

    2017-01-01

    With the increase in the number of people having a chronic disease, there is an increase in households having more than a single person suffering from the same chronic illness. One problem of monitoring such patients in their own home is that current devices have a limitation in the number of people who can use a single device. This study investigates the use of Near Field Communication (NFC) for identification in a multi-user environment. Methods: A mixed-method qualitative and quantitative approach was adopted, including focus groups, observations and a field trial. Data were collected in three phases. In Phase 1, five focus groups were conducted with patients to determine their beliefs, concerns and issues with using identification in remote patient monitoring devices. In Phase 2, participants were given a blood pressure monitor modified to include an NFC reader to enable identification. The modified device was given to patients living as a couple in the same household and both suffering from hypertension. Both patients used the device for a period of two weeks to observe their acceptance of the technology and determine their experience of usage. A total of 40 (20 couples) patients participated in the trial. Non-adherence to the full monitoring regimen was low and was mainly due to usability issues or commitments taking them away from the home and thus unable to take readings. After the trial period participants were invited to discuss their experiences with the technology in a focus group discussion (Phase 3), a total of five focus groups were conducted. Focus group discussions with the patients revealed that most participants liked using the system and were not apprehensive towards Healthcare Information Technology (HIT). The participants also had suggestions for improvements that could be made to the modified blood pressure monitor (such as, rechargeable in place batteries, integrate the components, easier to use cuff, and increased sensitivity of the NFC reader) that might improve the overall experience of the proposed technology and its acceptance. Conclusion: The study proposes a new framework, the Senior Patient Technology Acceptance Model (SPTAM) that offers an understanding of the needs of the elderly towards technology use and the factors that influence its acceptance. SPTAM emphasises that involving the patient in the early stages of development can lead to a more user-centred technology and help in identifying any underlying issues at an early stage, thus avoiding adding features which patients do not need. The findings from this empirical research can be used as recommendations to improve current RPM devices, save the NHS costs, inform standardization groups. PMID:28952556

  17. Advances in Audio-Based Systems to Monitor Patient Adherence and Inhaler Drug Delivery.

    PubMed

    Taylor, Terence E; Zigel, Yaniv; De Looze, Céline; Sulaiman, Imran; Costello, Richard W; Reilly, Richard B

    2018-03-01

    Hundreds of millions of people worldwide have asthma and COPD. Current medications to control these chronic respiratory diseases can be administered using inhaler devices, such as the pressurized metered dose inhaler and the dry powder inhaler. Provided that they are used as prescribed, inhalers can improve patient clinical outcomes and quality of life. Poor patient inhaler adherence (both time of use and user technique) is, however, a major clinical concern and is associated with poor disease control, increased hospital admissions, and increased mortality rates, particularly in low- and middle-income countries. There are currently limited methods available to health-care professionals to objectively and remotely monitor patient inhaler adherence. This review describes recent sensor-based technologies that use audio-based approaches that show promising opportunities for monitoring inhaler adherence in clinical practice. This review discusses how one form of sensor-based technology, audio-based monitoring systems, can provide clinically pertinent information regarding patient inhaler use over the course of treatment. Audio-based monitoring can provide health-care professionals with quantitative measurements of the drug delivery of inhalers, signifying a clear clinical advantage over other methods of assessment. Furthermore, objective audio-based adherence measures can improve the predictability of patient outcomes to treatment compared with current standard methods of adherence assessment used in clinical practice. Objective feedback on patient inhaler adherence can be used to personalize treatment to the patient, which may enhance precision medicine in the treatment of chronic respiratory diseases. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  18. Advanced Inverter Technology.

    DTIC Science & Technology

    1985-10-01

    is no longer employed by your organization , please notify AFWAL/POOC, W-PAFB, OH 45433-6563 to help us maintain a current mailing list. Copies of...2b. OECLASSIFICATION/OOWNGRAOING SCHEDULE Distribution unlimited. 4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER...S) MCR-85-613 AFWAL-TR-85-2065 G& NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATIONr(If apptlcablej Martin Marietta

  19. Design and realization of high voltage disconnector condition monitoring system

    NASA Astrophysics Data System (ADS)

    Shi, Jinrui; Xu, Tianyang; Yang, Shuixian; Li, Buoyang

    2017-08-01

    The operation status of the high voltage disconnector directly affects the safe and stable operation of the power system. This article uses the wireless frequency hopping communication technology of the communication module to achieve the temperature acquisition of the switch contacts and high voltage bus, to introduce the current value of the loop in ECS, and judge the operation status of the disconnector by considering the ambient temperature, calculating the temperature rise; And through the acquisition of the current of drive motor in the process of switch closing and opening, and fault diagnosis of the disconnector by analyzing the change rule of the drive motor current, the condition monitoring of the high voltage disconnector is realized.

  20. A review on remote monitoring technology applied to implantable electronic cardiovascular devices.

    PubMed

    Costa, Paulo Dias; Rodrigues, Pedro Pereira; Reis, António Hipólito; Costa-Pereira, Altamiro

    2010-12-01

    Implantable electronic cardiovascular devices (IECD) include a broad spectrum of devices that have the ability to maintain rhythm, provide cardiac resynchronization therapy, and/or prevent sudden cardiac death. The incidence of bradyarrhythmias and other cardiac problems led to a broader use of IECD, which turned traditional follow-up into an extremely heavy burden for healthcare systems to support. Our aim was to assess the impact of remote monitoring on the follow-up of patients with IECD. We performed a review through PubMed using a specific query. The paper selection process included a three-step approach in which title, abstract, and cross-references were analyzed. Studies were then selected using previously defined inclusion criteria and analyzed according to the country of origin of the study, year, and journal of publication; type of study; and main issues covered. Twenty articles were included in this review. Eighty percent of the selected papers addressed clinical issues, from which 94% referred clinical events identification, clinical stability, time savings, or physician satisfaction as advantages, whereas 38% referred disadvantages that included both legal and technical issues. Forty-five percent of the papers referred patient issues, from which 89% presented advantages, focusing on patient acceptance/satisfaction, and patient time-savings. The main downsides were technical issues but patient privacy was also addressed. All the papers dealing with economic issues (20%) referred both advantages and disadvantages equally. Remote monitoring is presently a safe technology, widely accepted by patients and physicians, for its convenience, reassurance, and diagnostic potential. This review summarizes the principles of remote IECD monitoring presenting the current state-of-the-art. Patient safety and device interaction, applicability of current technology, and limitations of remote IECD monitoring are also addressed. The use of remote monitor should consider the selection of patients, the type of disease, and centers' availability to receive, interpret and respond to device alerts. Before remote IECD monitoring can be routinely used, technical, procedure, and ethical/legal issues should be addressed.

  1. Continuous Glucose Monitoring in Female NOD Mice Reveals Daily Rhythms and a Negative Correlation With Body Temperature.

    PubMed

    Korstanje, Ron; Ryan, Jennifer L; Savage, Holly S; Lyons, Bonnie L; Kane, Kevin G; Sukoff Rizzo, Stacey J

    2017-09-01

    Previous studies with continuous glucose monitoring in mice have been limited to several days or weeks, with the mouse's physical attachment to the equipment affecting behavior and measurements. In the current study, we measured blood glucose and body temperature at 10-second intervals for 12 weeks in a cohort of NOD/ShiLtJ female mice using wireless telemetry. This allowed us to obtain a high-resolution profile of the circadian rhythm of these two parameters and the onset of hyperglycemic development in real time. The most striking observations were the elevated nocturnal concentrations of glucose into the diabetic range days before elevations in diurnal glucose (when glucose concentrations are historically measured) and the strong, negative correlation between elevated blood glucose concentrations and body temperature with a steady decline of the body temperature with diabetes development. Taken together, this technological advancement provides improved resolution in the study of the disease trajectory of diabetes in mouse models, including relevant translatability to the current technologies of continuous glucose monitoring now regularly used in patients. Copyright © 2017 Endocrine Society.

  2. Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancements, and Future Prospects.

    PubMed

    Brown, Matthew S; Ashley, Brandon; Koh, Ahyeon

    2018-01-01

    Chronic non-healing wounds challenge tissue regeneration and impair infection regulation for patients afflicted with this condition. Next generation wound care technology capable of in situ physiological surveillance which can diagnose wound parameters, treat various chronic wound symptoms, and reduce infection at the wound noninvasively with the use of a closed loop therapeutic system would provide patients with an improved standard of care and an accelerated wound repair mechanism. The indicating biomarkers specific to chronic wounds include blood pressure, temperature, oxygen, pH, lactate, glucose, interleukin-6 (IL-6), and infection status. A wound monitoring device would help decrease prolonged hospitalization, multiple doctors' visits, and the expensive lab testing associated with the diagnosis and treatment of chronic wounds. A device capable of monitoring the wound status and stimulating the healing process is highly desirable. In this review, we discuss the impaired physiological states of chronic wounds and explain the current treatment methods. Specifically, we focus on improvements in materials, platforms, fabrication methods for wearable devices, and quantitative analysis of various biomarkers vital to wound healing progress.

  3. Wearable Technology for Chronic Wound Monitoring: Current Dressings, Advancements, and Future Prospects

    PubMed Central

    Brown, Matthew S.; Ashley, Brandon; Koh, Ahyeon

    2018-01-01

    Chronic non-healing wounds challenge tissue regeneration and impair infection regulation for patients afflicted with this condition. Next generation wound care technology capable of in situ physiological surveillance which can diagnose wound parameters, treat various chronic wound symptoms, and reduce infection at the wound noninvasively with the use of a closed loop therapeutic system would provide patients with an improved standard of care and an accelerated wound repair mechanism. The indicating biomarkers specific to chronic wounds include blood pressure, temperature, oxygen, pH, lactate, glucose, interleukin-6 (IL-6), and infection status. A wound monitoring device would help decrease prolonged hospitalization, multiple doctors' visits, and the expensive lab testing associated with the diagnosis and treatment of chronic wounds. A device capable of monitoring the wound status and stimulating the healing process is highly desirable. In this review, we discuss the impaired physiological states of chronic wounds and explain the current treatment methods. Specifically, we focus on improvements in materials, platforms, fabrication methods for wearable devices, and quantitative analysis of various biomarkers vital to wound healing progress. PMID:29755977

  4. Methodology of Dynamic Monitoring of Structures in the Vicinity of Hydrotechnical Works - Selected Case Studies

    NASA Astrophysics Data System (ADS)

    Wyjadłowski, Marek

    2017-12-01

    The constant development of geotechnical technologies imposes the necessity of monitoring techniques to provide a proper quality and the safe execution of geotechnical works. Several monitoring methods enable the preliminary design of work process and current control of hydrotechnical works (pile driving, sheet piling, ground improvement methods). Wave parameter measurements and/or continuous histogram recording of shocks and vibrations and its dynamic impact on engineering structures in the close vicinity of the building site enable the modification of the technology parameters, such as vibrator frequency or hammer drop height. Many examples of practical applications have already been published and provide a basis for the formulation of guidelines, for work on the following sites. In the current work the author's experience gained during sheet piling works for the reconstruction of City Channel in Wrocław (Poland) was presented. The examples chosen describe ways of proceedings in the case of new and old residential buildings where the concrete or masonry walls were exposed to vibrations and in the case of the hydrotechnical structures (sluices, bridges).

  5. Home monitoring of patients with Parkinson's disease via wearable technology and a web-based application.

    PubMed

    Patel, Shyamal; Chen, Bor-Rong; Buckley, Thomas; Rednic, Ramona; McClure, Doug; Tarsy, Daniel; Shih, Ludy; Dy, Jennifer; Welsh, Matt; Bonato, Paolo

    2010-01-01

    Objective long-term health monitoring can improve the clinical management of several medical conditions ranging from cardiopulmonary diseases to motor disorders. In this paper, we present our work toward the development of a home-monitoring system. The system is currently used to monitor patients with Parkinson's disease who experience severe motor fluctuations. Monitoring is achieved using wireless wearable sensors whose data are relayed to a remote clinical site via a web-based application. The work herein presented shows that wearable sensors combined with a web-based application provide reliable quantitative information that can be used for clinical decision making.

  6. Research and Technology Operating Plan Summary: Fiscal Year 1973 Research and Technology Program

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Abstracts are presented of each of the Research and Technology Operating Plans (RTOP) used for management review and control of research currently in progress throughout NASA. This RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, industry, and universities. The summary is arranged in five sections consisting of citations and abstracts of the RTOPs and subject, technical monitor, responsible NASA organization, and RTOP number indexes.

  7. Framework for Structural Online Health Monitoring of Aging and Degradation of Secondary Systems due to some Aspects of Erosion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gribok, Andrei; Patnaik, Sobhan; Williams, Christian

    This report describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants. The report also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies that couldmore » be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real-time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long-range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.« less

  8. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    PubMed Central

    Chouler, Jon; Di Lorenzo, Mirella

    2015-01-01

    The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries. PMID:26193327

  9. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?

    PubMed

    Chouler, Jon; Di Lorenzo, Mirella

    2015-07-16

    The provision of safe water and adequate sanitation in developing countries is a must. A range of chemical and biological methods are currently used to ensure the safety of water for consumption. These methods however suffer from high costs, complexity of use and inability to function onsite and in real time. The microbial fuel cell (MFC) technology has great potential for the rapid and simple testing of the quality of water sources. MFCs have the advantages of high simplicity and possibility for onsite and real time monitoring. Depending on the choice of manufacturing materials, this technology can also be highly cost effective. This review covers the state-of-the-art research on MFC sensors for water quality monitoring, and explores enabling factors for their use in developing countries.

  10. Analysis of the performance of the CONTOUR® TS Blood Glucose Monitoring System: when regulatory performance criteria are met, should we have confidence to use a medical device with all patients?

    PubMed

    Lyon, Martha E; Lyon, Andrew W

    2011-01-01

    The article entitled, Performance of the CONTOUR® TS Blood Glucose Monitoring System, by Frank and colleagues in this issue of Journal of Diabetes Science and Technology, demonstrates that the CONTOUR® TS glucose meter exceeds current regulatory expectations for glucose meter performance. However, the appropriateness of current regulatory expectations, such as International Organization for Standardization (ISO) 15197:2003, is being reevaluated because of increasing concern regarding the reliability of glucose meters in ambulatory and hospitalized environments. Between 2004 and 2008, 12,673 serious adverse events with glucose meters that met the ISO 15197 expectations were reported in the Food and Drug Administration-Manufacturer and User Facility Device Experience surveillance database. Should different glucose meter performance criteria be applied to ambulatory versus critical care patients? © 2010 Diabetes Technology Society.

  11. Current Technologies and its Trends of Machine Vision in the Field of Security and Disaster Prevention

    NASA Astrophysics Data System (ADS)

    Hashimoto, Manabu; Fujino, Yozo

    Image sensing technologies are expected as useful and effective way to suppress damages by criminals and disasters in highly safe and relieved society. In this paper, we describe current important subjects, required functions, technical trends, and a couple of real examples of developed system. As for the video surveillance, recognition of human trajectory and human behavior using image processing techniques are introduced with real examples about the violence detection for elevators. In the field of facility monitoring technologies as civil engineering, useful machine vision applications such as automatic detection of concrete cracks on walls of a building or recognition of crowded people on bridge for effective guidance in emergency are shown.

  12. Small Autonomous Aircraft Servo Health Monitoring

    NASA Technical Reports Server (NTRS)

    Quintero, Steven

    2008-01-01

    Small air vehicles offer challenging power, weight, and volume constraints when considering implementation of system health monitoring technologies. In order to develop a testbed for monitoring the health and integrity of control surface servos and linkages, the Autonomous Aircraft Servo Health Monitoring system has been designed for small Uninhabited Aerial Vehicle (UAV) platforms to detect problematic behavior from servos and the air craft structures they control, This system will serve to verify the structural integrity of an aircraft's servos and linkages and thereby, through early detection of a problematic situation, minimize the chances of an aircraft accident. Embry-Riddle Aeronautical University's rotary-winged UAV has an Airborne Power management unit that is responsible for regulating, distributing, and monitoring the power supplied to the UAV's avionics. The current sensing technology utilized by the Airborne Power Management system is also the basis for the Servo Health system. The Servo Health system measures the current draw of the servos while the servos are in Motion in order to quantify the servo health. During a preflight check, deviations from a known baseline behavior can be logged and their causes found upon closer inspection of the aircraft. The erratic behavior nay include binding as a result of dirt buildup or backlash caused by looseness in the mechanical linkages. Moreover, the Servo Health system will allow elusive problems to be identified and preventative measures taken to avoid unnecessary hazardous conditions in small autonomous aircraft.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrall, K.D.

    The purpose of this project was to demonstrate the ``Exposure-to- Risk`` monitoring system in an actual occupational environment. The system is a unique combination of existing hardware with proprietary software to create an integrated means of assessing occupational exposures to volatile organic compounds. One component of this system utilizes a portable mass spectrometer developed by Teledyne Electronic Technologies. Integration of the system was accomplished under Laboratory Directed Research and Development (LDRD) funding. Commercialization of the system will take place following demonstration in an actual occupational environment, and will include, in part, Teledyne Electronic Technologies. The Exposure-to-Risk monitoring system will benefitmore » DOE by overcoming present-day limitations in worker health protection monitoring. There are numerous sites within the` DOE complex where many different hazardous chemicals are used on a routine basis. These chemicals range from paint stripers and cleaning solvents to chemical warfare agents, each having its own degree of potential adverse health risk to a worker. Thus, a real concern for DOE is to ensure that a worker is properly monitored to assess any adverse health risk from exposure to potentially hazardous chemicals. With current industrial hygiene technologies, this is an arduous task. The Exposure-to-Risk monitoring system integrates a patented breath-inlet device connecting a subject`s exhaled breath directly with a field-portable mass spectrometer with physiologically based pharmacokinetic (PBPK) modeling to estimate the target tissue dose following a chemical exposure. Estimation of the adverse health risk prediction follows from the exposure/dose calculation based on currently accepted methodologies. This new system can determine, in the field, the possible adverse health risks on a daily basis to an individual worker.« less

  14. Prospects for Geostationary Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Tanelli, Simone; Fang, Houfei; Durden, Stephen L.; Im, Eastwood; Rhamat-Samii, Yahya

    2009-01-01

    A novel mission concept, namely NEXRAD in Space (NIS), was developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit. This mission concept requires a space deployable 35-m diameter reflector that operates at 35-GHz with a surface figure accuracy requirement of 0.21 mm RMS. This reflector is well beyond the current state-of-the-art. To implement this mission concept, several potential technologies associated with large, lightweight, spaceborne reflectors have been investigated by this study. These spaceborne reflector technologies include mesh reflector technology, inflatable membrane reflector technology and Shape Memory Polymer reflector technology.

  15. FBG-Based Monitoring of Geohazards: Current Status and Trends

    PubMed Central

    Zhu, Hong-Hu; Shi, Bin; Zhang, Cheng-Cheng

    2017-01-01

    In recent years, natural and anthropogenic geohazards have occured frequently all over the world, and field monitoring is becoming an increasingly important task to mitigate these risks. However, conventional geotechnical instrumentations for monitoring geohazards have a number of weaknesses, such as low accuracy, poor durability, and high sensitivity to environmental interferences. In this aspect, fiber Bragg grating (FBG), as a popular fiber optic sensing technology, has gained an explosive amount of attention. Based on this technology, quasi-distributed sensing systems have been established to perform real-time monitoring and early warning of landslides, debris flows, land subsidence, earth fissures and so on. In this paper, the recent research and development activities of applying FBG systems to monitor different types of geohazards, especially those triggered by human activities, are critically reviewed. The working principles of newly developed FBG sensors are briefly introduced, and their features are summarized. This is followed by a discussion of recent case studies and lessons learned, and some critical problems associated with field implementation of FBG-based monitoring systems. Finally the challenges and future trends in this research area are presented. PMID:28245551

  16. FBG-Based Monitoring of Geohazards: Current Status and Trends.

    PubMed

    Zhu, Hong-Hu; Shi, Bin; Zhang, Cheng-Cheng

    2017-02-24

    In recent years, natural and anthropogenic geohazards have occured frequently all over the world, and field monitoring is becoming an increasingly important task to mitigate these risks. However, conventional geotechnical instrumentations for monitoring geohazards have a number of weaknesses, such as low accuracy, poor durability, and high sensitivity to environmental interferences. In this aspect, fiber Bragg grating (FBG), as a popular fiber optic sensing technology, has gained an explosive amount of attention. Based on this technology, quasi-distributed sensing systems have been established to perform real-time monitoring and early warning of landslides, debris flows, land subsidence, earth fissures and so on. In this paper, the recent research and development activities of applying FBG systems to monitor different types of geohazards, especially those triggered by human activities, are critically reviewed. The working principles of newly developed FBG sensors are briefly introduced, and their features are summarized. This is followed by a discussion of recent case studies and lessons learned, and some critical problems associated with field implementation of FBG-based monitoring systems. Finally the challenges and future trends in this research area are presented.

  17. Monitoring of Crew Activity with FAMOS

    NASA Astrophysics Data System (ADS)

    Wolf, L.; Cajochen, C.; Bromundt, V.

    2007-10-01

    The success of long duration space missions, such as manned missions to Mars, depends on high and sustained levels of vigilance and performance of astronauts and operators working in the technology rich environment of a spacecraft. Experiment 'Monitoring of Crew Activity with FAMOS' was set up to obtain operational experience with complimentary methods / technologies to assess the alertness / sleepiness status of selected AustroMars crewmembers on a daily basis. We applied a neurobehavioral test battery consisting of 1) Karolinska Sleepiness Scale KSS, 2) Karolinska Drowsiness Test KDT, 3) Psychomotor Vigilance Task PVT, combined with 4) left eye video recordings with an early prototype of the FAMOS Fatigue Monitoring System headset currently being developed by Sowoon Technologies (CH), and 5) Actiwatches that were worn continuously. A test battery required approximately 15 minutes and was repeated up to 4 times daily by 2 to 4 subjects. Here we present the data analysis of methods 1, 2, 3, and 5, while data analysis of method 4 is still in progress.

  18. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    PubMed Central

    Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Wei-Jun; Smith, Richard D.

    2012-01-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the low ng/mL to pg/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides including posttranslational modifications (PTMs), as well as advances in MS instrumentation which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed. PMID:22577010

  19. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Su, Dian; Liu, Tao

    2012-04-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, whichmore » have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.« less

  20. Lightweight UDP Pervasive Protocol in Smart Home Environment Based on Labview

    NASA Astrophysics Data System (ADS)

    Kurniawan, Wijaya; Hannats Hanafi Ichsan, Mochammad; Rizqika Akbar, Sabriansyah; Arwani, Issa

    2017-04-01

    TCP (Transmission Control Protocol) technology in a reliable environment was not a problem, but not in an environment where the entire Smart Home network connected locally. Currently employing pervasive protocols using TCP technology, when data transmission is sent, it would be slower because they have to perform handshaking process in advance and could not broadcast the data. On smart home environment, it does not need large size and complex data transmission between monitoring site and monitoring center required in Smart home strain monitoring system. UDP (User Datagram Protocol) technology is quick and simple on data transmission process. UDP can broadcast messages because the UDP did not require handshaking and with more efficient memory usage. LabVIEW is a programming language software for processing and visualization of data in the field of data acquisition. This paper proposes to examine Pervasive UDP protocol implementations in smart home environment based on LabVIEW. UDP coded in LabVIEW and experiments were performed on a PC and can work properly.

  1. Analysis of the new health management based on health internet of things and cloud computing

    NASA Astrophysics Data System (ADS)

    Liu, Shaogang

    2018-05-01

    With the development and application of Internet of things and cloud technology in the medical field, it provides a higher level of exploration space for human health management. By analyzing the Internet of things technology and cloud technology, this paper studies a new form of health management system which conforms to the current social and technical level, and explores its system architecture, system characteristics and application. The new health management platform for networking and cloud can achieve the real-time monitoring and prediction of human health through a variety of sensors and wireless networks based on information and can be transmitted to the monitoring system, and then through the software analysis model, and gives the targeted prevention and treatment measures, to achieve real-time, intelligent health management.

  2. A Systematic Review of Wearable Patient Monitoring Systems - Current Challenges and Opportunities for Clinical Adoption.

    PubMed

    Baig, Mirza Mansoor; GholamHosseini, Hamid; Moqeem, Aasia A; Mirza, Farhaan; Lindén, Maria

    2017-07-01

    The aim of this review is to investigate barriers and challenges of wearable patient monitoring (WPM) solutions adopted by clinicians in acute, as well as in community, care settings. Currently, healthcare providers are coping with ever-growing healthcare challenges including an ageing population, chronic diseases, the cost of hospitalization, and the risk of medical errors. WPM systems are a potential solution for addressing some of these challenges by enabling advanced sensors, wearable technology, and secure and effective communication platforms between the clinicians and patients. A total of 791 articles were screened and 20 were selected for this review. The most common publication venue was conference proceedings (13, 54%). This review only considered recent studies published between 2015 and 2017. The identified studies involved chronic conditions (6, 30%), rehabilitation (7, 35%), cardiovascular diseases (4, 20%), falls (2, 10%) and mental health (1, 5%). Most studies focussed on the system aspects of WPM solutions including advanced sensors, wireless data collection, communication platform and clinical usability based on a specific area or disease. The current studies are progressing with localized sensor-software integration to solve a specific use-case/health area using non-scalable and 'silo' solutions. There is further work required regarding interoperability and clinical acceptance challenges. The advancement of wearable technology and possibilities of using machine learning and artificial intelligence in healthcare is a concept that has been investigated by many studies. We believe future patient monitoring and medical treatments will build upon efficient and affordable solutions of wearable technology.

  3. PRISM: A DATA-DRIVEN PLATFORM FOR MONITORING MENTAL HEALTH

    PubMed Central

    KAMDAR, MAULIK R.; WU, MICHELLE J.

    2018-01-01

    Neuropsychiatric disorders are the leading cause of disability worldwide and there is no gold standard currently available for the measurement of mental health. This issue is exacerbated by the fact that the information physicians use to diagnose these disorders is episodic and often subjective. Current methods to monitor mental health involve the use of subjective DSM-5 guidelines, and advances in EEG and video monitoring technologies have not been widely adopted due to invasiveness and inconvenience. Wearable technologies have surfaced as a ubiquitous and unobtrusive method for providing continuous, quantitative data about a patient. Here, we introduce PRISM — Passive, Real-time Information for Sensing Mental Health. This platform integrates motion, light and heart rate data from a smart watch application with user interactions and text insights from a web application. We have demonstrated a proof of concept by collecting preliminary data through a pilot study of 13 subjects. We have engineered appropriate features and applied both unsupervised and supervised learning to develop models that can recapitulate user-reported ratings of their emotional state. This demonstrates that the data has the potential to be useful for evaluating mental health. This platform will allow us to leverage continuous streams of passive data for early and accurate diagnosis as well as constant monitoring of patients suffering from mental disorders. PMID:26776198

  4. Genetic engineered molecular imaging probes for applications in cell therapy: emphasis on MRI approach

    PubMed Central

    Cho, In K; Wang, Silun; Mao, Hui; Chan, Anthony WS

    2016-01-01

    Recent advances in stem cell-based regenerative medicine, cell replacement therapy, and genome editing technologies (i.e. CRISPR-Cas 9) have sparked great interest in in vivo cell monitoring. Molecular imaging promises a unique approach to noninvasively monitor cellular and molecular phenomena, including cell survival, migration, proliferation, and even differentiation at the whole organismal level. Several imaging modalities and strategies have been explored for monitoring cell grafts in vivo. We begin this review with an introduction describing the progress in stem cell technology, with a perspective toward cell replacement therapy. The importance of molecular imaging in reporting and assessing the status of cell grafts and their relation to the local microenvironment is highlighted since the current knowledge gap is one of the major obstacles in clinical translation of stem cell therapy. Based on currently available imaging techniques, we provide a brief discussion on the pros and cons of each imaging modality used for monitoring cell grafts with particular emphasis on magnetic resonance imaging (MRI) and the reporter gene approach. Finally, we conclude with a comprehensive discussion of future directions of applying molecular imaging in regenerative medicine to emphasize further the importance of correlating cell graft conditions and clinical outcomes to advance regenerative medicine. PMID:27766183

  5. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The NASA research and technology program for FY 1990 is presented. The summary portions is compiled of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP summary is designed to facilitate communication and coordination among concerned technical personnel in government, industry, and universities. The first section containing citations and abstracts of the RTOPs is followed by four indices: Subject; Technical Monitor; Responsible NASA Organization; and RTOP number.

  6. NASA Stennis Space Center Test Technology Branch Activities

    NASA Technical Reports Server (NTRS)

    Solano, Wanda M.

    2000-01-01

    This paper provides a short history of NASA Stennis Space Center's Test Technology Laboratory and briefly describes the variety of engine test technology activities and developmental project initiatives. Theoretical rocket exhaust plume modeling, acoustic monitoring and analysis, hand held fire imaging, heat flux radiometry, thermal imaging and exhaust plume spectroscopy are all examples of current and past test activities that are briefly described. In addition, recent efforts and visions focused on accomodating second, third, and fourth generation flight vehicle engine test requirements are discussed.

  7. Cardiac patients show high interest in technology enabled cardiovascular rehabilitation.

    PubMed

    Buys, Roselien; Claes, Jomme; Walsh, Deirdre; Cornelis, Nils; Moran, Kieran; Budts, Werner; Woods, Catherine; Cornelissen, Véronique A

    2016-07-19

    Cardiac rehabilitation (CR) can slow or reverse the progression of cardiovascular disease (CVD). However, uptake of community-based CR is very low. E-cardiology, e-health and technology solutions for physical activity uptake and monitoring have evolved rapidly and have potential in CVD management. However, it is unclear what the current technology usage is of CVD patients, and their needs and interests for technology enabled CR. A technology usage questionnaire was developed and completed by patients from a supervised ambulatory CR program and an adult congenital heart disease clinic and from two community-based CR programs. Results were described and related with age, gender and educational level by Spearman correlations. Of 310 patients, 298 patients (77 % male; mean age 61,7 ± 14,5 years) completed at least 25 questions of the survey and were included in the analysis (completion rate 96 %). Most (97 %) patients had a mobile phone and used the internet (91 %). Heart rate monitors were used by 35 % and 68 % reported to find heart rate monitoring important when exercising at home. Physical activity monitoring was reported by 12 % of the respondents. Respondents were interested in CR support through internet (77 %) and mobile phone (68 %). Many patients reported interest in game-based CR (67 %) and virtual rehabilitation (58 %). At least medium interest in technology enabled CR was reported by 75 % of the patients. Interest decreased with increasing age (r = -0.16; p = 0.005). CVD patients show interest for technology enabled home-based CR. Our results could guide the design of a technology-based, virtual CR intervention.

  8. Triggers and monitoring in intelligent personal health record.

    PubMed

    Luo, Gang

    2012-10-01

    Although Web-based personal health records (PHRs) have been widely deployed, the existing ones have limited intelligence. Previously, we introduced expert system technology and Web search technology into the PHR domain and proposed the concept of an intelligent PHR (iPHR). iPHR provides personalized healthcare information to facilitate users' daily activities of living. The current iPHR is passive and follows the pull model of information distribution. This paper introduces triggers and monitoring into iPHR to make iPHR become active. Our idea is to let medical professionals pre-compile triggers and store them in iPHR's knowledge base. Each trigger corresponds to an abnormal event that may have potential medical impact. iPHR keeps collecting, processing, and analyzing the user's medical data from various sources such as wearable sensors. Whenever an abnormal event is detected from the user's medical data, the corresponding trigger fires and the related personalized healthcare information is pushed to the user using natural language generation technology, expert system technology, and Web search technology.

  9. Transforming health care delivery through consumer engagement, health data transparency, and patient-generated health information.

    PubMed

    Sands, D Z; Wald, J S

    2014-08-15

    Address current topics in consumer health informatics. Literature review. Current health care delivery systems need to be more effective in the management of chronic conditions as the population turns older and experiences escalating chronic illness that threatens to consume more health care resources than countries can afford. Most health care systems are positioned poorly to accommodate this. Meanwhile, the availability of ever more powerful and cheaper information and communication technology, both for professionals and consumers, has raised the capacity to gather and process information, communicate more effectively, and monitor the quality of care processes. Adapting health care systems to serve current and future needs requires new streams of data to enable better self-management, improve shared decision making, and provide more virtual care. Changes in reimbursement for health care services, increased adoption of relevant technologies, patient engagement, and calls for data transparency raise the importance of patient-generated health information, remote monitoring, non-visit based care, and other innovative care approaches that foster more frequent contact with patients and better management of chronic conditions.

  10. New Criteria for Assessing the Accuracy of Blood Glucose Monitors Meeting, October 28, 2011

    PubMed Central

    Walsh, John; Roberts, Ruth; Vigersky, Robert A.; Schwartz, Frank

    2012-01-01

    Glucose meters (GMs) are routinely used for self-monitoring of blood glucose by patients and for point-of-care glucose monitoring by health care providers in outpatient and inpatient settings. Although widely assumed to be accurate, numerous reports of inaccuracies with resulting morbidity and mortality have been noted. Insulin dosing errors based on inaccurate GMs are most critical. On October 28, 2011, the Diabetes Technology Society invited 45 diabetes technology clinicians who were attending the 2011 Diabetes Technology Meeting to participate in a closed-door meeting entitled New Criteria for Assessing the Accuracy of Blood Glucose Monitors. This report reflects the opinions of most of the attendees of that meeting. The Food and Drug Administration (FDA), the public, and several medical societies are currently in dialogue to establish a new standard for GM accuracy. This update to the FDA standard is driven by improved meter accuracy, technological advances (pumps, bolus calculators, continuous glucose monitors, and insulin pens), reports of hospital and outpatient deaths, consumer complaints about inaccuracy, and research studies showing that several approved GMs failed to meet FDA or International Organization for Standardization standards in post-approval testing. These circumstances mandate a set of new GM standards that appropriately match the GMs’ analytical accuracy to the clinical accuracy required for their intended use, as well as ensuring their ongoing accuracy following approval. The attendees of the New Criteria for Assessing the Accuracy of Blood Glucose Monitors meeting proposed a graduated standard and other methods to improve GM performance, which are discussed in this meeting report. PMID:22538160

  11. From LACIE to GEOGLAM: Integrating Earth Observations into Operational Agricultural Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Becker-Reshef, I.; Justice, C. O.

    2012-12-01

    Earth observation data, owing to their synoptic, timely and repetitive coverage, have long been recognized as an indispensible tool for agricultural monitoring at local to global scales. Research and development over the past several decades in the field of agricultural remote sensing has led to considerable capacity for crop monitoring within the current operational monitoring systems. These systems are relied upon nationally and internationally to provide crop outlooks and production forecasts as the growing season progresses. This talk will discuss the legacy and current state of operational agricultural monitoring using earth observations. In the US, the National Aeronautics and Space Administration (NASA) and the US Department of Agriculture (USDA) have been collaborating to monitor global agriculture from space since the 1970s. In 1974, the USDA, NASA and National Oceanic and Atmospheric Administration (NOAA) initiated the Large Area Crop Inventory Experiment (LACIE) which demonstrated that earth observations could provide vital information on crop production, with unprecedented accuracy and timeliness, prior to harvest. This experiment spurred many agencies and researchers around the world to further develop and evaluate remote sensing technologies for timely, large area, crop monitoring. The USDA and NASA continue to closely collaborate. More recently they jointly initiated the Global Agricultural Monitoring Project (GLAM) to enhance the agricultural monitoring and the crop-production estimation capabilities of the USDA Foreign Agricultural Service by using the new generation of NASA satellite observations including from MODIS and the Visible Infrared Imaging Radiometer Suite (VIIRS) instruments. Internationally, in response to the growing calls for improved agricultural information, the Group on Earth Observations (partnership of governments and international organizations) developed the Global Agricultural Monitoring (GEOGLAM) initiative which was adopted by the G20 as part of the action plan on food price volatility and agriculture. The goal of GEOGLAM is to enhance agricultural production estimates through leveraging advances in the research domain and in satellite technologies, and integrating these into the existing operational monitoring systems.

  12. ICT and the future of healthcare: Aspects of pervasive health monitoring.

    PubMed

    Haluza, Daniela; Jungwirth, David

    2018-01-01

    Along with the digital revolution, information and communication technology applications are currently transforming the delivery of health and social care services. This paper investigates prevailing opinions toward future technology-based healthcare solutions among Austrian healthcare professionals. During a biphasic online Delphi survey, panelists rated expected outcomes of two future scenarios describing pervasive health monitoring applications. Experts perceived that the scenarios were highly innovative, but only moderately desirable, and that their implementation could especially improve patients' knowledge, quality of healthcare, and living standard. Contrarily, monetary aspects, technical prerequisites, and data security were identified as key obstacles. We further compared the impact of professional affiliation. Clearly, opinions toward pervasive healthcare differed between the interest groups, medical professionals, patient advocates, and administrative personnel. These data suggest closer collaborations between stakeholder groups to harmonize differences in expectations regarding pervasive health monitoring.

  13. Current methods of monitoring radiation exposure from CT.

    PubMed

    Talati, Ronak K; Dunkin, Jared; Parikh, Shrujal; Moore, William H

    2013-09-01

    Increased public and regulatory scrutiny of imaging-related radiation exposure requires familiarity with current dose-monitoring techniques and best practices. CT-related ionizing radiation exposure has been cited as the largest and fastest growing source of population-wide iatrogenic ionizing radiation exposure. Upcoming federal regulations require imaging centers to familiarize themselves with available dose-monitoring techniques and implement comprehensive strategies to track patient dose, with particular emphasis on CT. Because of institution-specific and vendor-specific technologies, there are significant barriers to adoption and implementation. In this article, the authors outline the core components of a universal dose-monitoring strategy and detail a few of the many available commercial platforms. In addition, the authors introduce a cloud-based hybrid model dose-tracking system with the goal of rapid implementation, multicenter scalability, real-time dose feedback for technologists, cumulative dose monitoring, and optional dose communication to patients and into the record; doing so results in improved patient loyalty, referring physician satisfaction, and opportunity for repeat business. Copyright © 2013 American College of Radiology. All rights reserved.

  14. The workshop on signatures of medical and industrial isotope production - WOSMIP; Strassoldo, Italy, 1-3 July 2009.

    PubMed

    Matthews, K M; Bowyer, T W; Saey, P R J; Payne, R F

    2012-08-01

    Radiopharmaceuticals make contributions of inestimable value to medical practice. With growing demand new technologies are being developed and applied worldwide. Most diagnostic procedures rely on (99m)Tc and the use of uranium targets in reactors is currently the favored method of production, with 95% of the necessary (99)Mo parent currently being produced by four major global suppliers. Coincidentally there are growing concerns for nuclear security and proliferation. New disarmament treaties such as the Comprehensive Nuclear-Test-Ban Treaty (CTBT) are coming into effect and treaty compliance-verification monitoring is gaining momentum. Radioxenon emissions (isotopes Xe-131, 133, 133m and 135) from radiopharmaceutical production facilities are of concern in this context because radioxenon is a highly sensitive tracer for detecting nuclear explosions. There exists, therefore, a potential for confusing source attribution, with emissions from radiopharmaceutical-production facilities regularly being detected in treaty compliance-verification networks. The CTBT radioxenon network currently under installation is highly sensitive with detection limits approaching 0.1 mBq/m³ and, depending on transport conditions and background, able to detect industrial release signatures from sites thousands of kilometers away. The method currently employed to distinguish between industrial and military radioxenon sources involves plots of isotope ratios (133m)Xe/(131m)Xe versus (135)Xe/(133)Xe, but source attribution can be ambiguous. Through the WOSMIP Workshop the environmental monitoring community is gaining a better understanding of the complexities of the processes at production facilities, and the production community is recognizing the impact their operations have on monitoring systems and their goal of nuclear non-proliferation. Further collaboration and discussion are needed, together with advances in Xe trapping technology and monitoring systems. Such initiatives will help in addressing the dichotomy which exists between expanding production and improving monitoring sensitivity, with the ultimate aim of enabling unambiguous distinction between different nuclide signatures. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. [Bioimpedance means of skin condition monitoring during therapeutic and cosmetic procedures].

    PubMed

    Alekseenko, V A; Kus'min, A A; Filist, S A

    2008-01-01

    Engineering and technological problems of bioimpedance skin surface mapping are considered. A typical design of a device based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, probing current generator with programmed frequency tuning, and units for probing current monitoring and bioimpedance measurement. The electrode matrix of the device is constructed using nanotechnology. A microcontroller-controlled multiplexor provides scanning of interelectrode impedance, which makes it possible to obtain the impedance image of the skin surface under the electrode matrix. The microcontroller controls the probing signal generator frequency and allows layer-by-layer images of skin under the electrode matrix to be obtained. This makes it possible to use reconstruction tomography methods for analysis and monitoring of the skin condition during therapeutic and cosmetic procedures.

  16. Current and Developing Technologies for Monitoring Agents of Bioterrorism and Biowarfare

    PubMed Central

    Lim, Daniel V.; Simpson, Joyce M.; Kearns, Elizabeth A.; Kramer, Marianne F.

    2005-01-01

    Recent events have made public health officials acutely aware of the importance of rapidly and accurately detecting acts of bioterrorism. Because bioterrorism is difficult to predict or prevent, reliable platforms to rapidly detect and identify biothreat agents are important to minimize the spread of these agents and to protect the public health. These platforms must not only be sensitive and specific, but must also be able to accurately detect a variety of pathogens, including modified or previously uncharacterized agents, directly from complex sample matrices. Various commercial tests utilizing biochemical, immunological, nucleic acid, and bioluminescence procedures are currently available to identify biological threat agents. Newer tests have also been developed to identify such agents using aptamers, biochips, evanescent wave biosensors, cantilevers, living cells, and other innovative technologies. This review describes these current and developing technologies and considers challenges to rapid, accurate detection of biothreat agents. Although there is no ideal platform, many of these technologies have proved invaluable for the detection and identification of biothreat agents. PMID:16223949

  17. Multi-satellite Mission in China for Monitoring Natural Hazards (Invited)

    NASA Astrophysics Data System (ADS)

    Guo, H.

    2013-12-01

    The impacts of natural hazards are continuing to increase around the world, and mitigation of the damages caused by natural hazards like floods, droughts, earthquakes, and cyclones has been a global challenge. Current evidence demonstrates there are many kinds of technologies for natural hazard management, but space technology is recognized as one of the most effective means. After 30 years of development, China has become an important member of the global remote sensing community. China has successfully developed an Earth observation system consisting of meteorological satellites, resources satellites, ocean satellites, environment and disaster monitoring satellites, micro-satellites, navigation satellites, and manned spacecraft. In this presentation, a short overview of China's Earth observation satellite missions will be presented. Specifically, the Small Satellite Constellation for Environment and Disaster Monitoring and Forecasting (SSCEDMF) will be introduced and discussed. SSCEDMF is a follow-up '4+4' satellite constellation including four optical satellites and four radar satellites, meant to improve disaster management capability in China. At the current stage, two optical satellites and an s-band synthetic aperture radar satellite have successfully launched. Disasters are a global issue that no country can address individually, requiring sharing and collaboration. China has benefited greatly from international collaboration in disaster mitigation, and has actively worked with international partners. To share our experience in dealing with the risk of disasters, some achievements and progress in space technology applications for disaster management will be introduced. In addition, collaborative activities with IRDR, the UN-SPIDER Beijing Office, and the CAS-TWAS Centre of Excellence on Space Technology for Disaster Mitigation (STDM) will be described.

  18. Circulating Cell-Free Tumour DNA in the Management of Cancer

    PubMed Central

    Francis, Glenn; Stein, Sandra

    2015-01-01

    With the development of new sensitive molecular techniques, circulating cell-free tumour DNA containing mutations can be identified in the plasma of cancer patients. The applications of this technology may result in significant changes to the care and management of cancer patients. Whilst, currently, these “liquid biopsies” are used to supplement the histological diagnosis of cancer and metastatic disease, in the future these assays may replace the need for invasive procedures. Applications include the monitoring of tumour burden, the monitoring of minimal residual disease, monitoring of tumour heterogeneity, monitoring of molecular resistance and early diagnosis of tumours and metastatic disease. PMID:26101870

  19. Sensing Disaster: The Use of Wearable Sensor Technology to Decrease Firefighter Line-of-Duty Deaths

    DTIC Science & Technology

    2015-12-01

    peripheral oxygen or SpO2), and temperature , to name but a few.164 The current GTWM allows these sensors to be plugged in anywhere on the shirt, although...desired monitoring parameters included the “heart rate, respiratory rate, body temperature , blood oxygen saturation levels, environmental...physiological tests and parameters of firefighters that should be monitored are the EKG, heart rate (HR), body temperature , blood oxygen saturation

  20. Nuclear propulsion control and health monitoring

    NASA Technical Reports Server (NTRS)

    Walter, P. B.; Edwards, R. M.

    1993-01-01

    An integrated control and health monitoring architecture is being developed for the Pratt & Whitney XNR2000 nuclear rocket. Current work includes further development of the dynamic simulation modeling and the identification and configuration of low level controllers to give desirable performance for the various operating modes and faulted conditions. Artificial intelligence and knowledge processing technologies need to be investigated and applied in the development of an intelligent supervisory controller module for this control architecture.

  1. Nuclear propulsion control and health monitoring

    NASA Astrophysics Data System (ADS)

    Walter, P. B.; Edwards, R. M.

    1993-11-01

    An integrated control and health monitoring architecture is being developed for the Pratt & Whitney XNR2000 nuclear rocket. Current work includes further development of the dynamic simulation modeling and the identification and configuration of low level controllers to give desirable performance for the various operating modes and faulted conditions. Artificial intelligence and knowledge processing technologies need to be investigated and applied in the development of an intelligent supervisory controller module for this control architecture.

  2. Enabling Data Access for Environmental Monitoring: SERVIR West Africa

    NASA Astrophysics Data System (ADS)

    Yetman, G.; de Sherbinin, A. M.

    2017-12-01

    SERVIR is a join effort between NASA and the U.S. Agency for International Development to form regional partnerships and bring satellite-based earth monitoring and geographic information technologies to bear on environmental issues. The recently established SERVIR node for West Africa aims to "connect space to villages" and enable response to environmental change at the national and local level through partnering with a network of organizations in the region. Comprehensive services—data streams, analysis methods and algorithms, and information products for decision making—to support environmental monitoring of five critical issues identified by West African network members are being designed and developed: ephemeral water, charcoal production, locusts, groundwater, and land use/land cover change. Additionally, climate change information is critical for planning and context in each of these issues. The selection of data and methods is a collaborative effort, with experts in the region working with experts at NASA and the scientific community to best meet information monitoring requirements. Design and delivery of these services requires capacity development in a number of areas, including best practices in data management, analysis methods for combining multiple data streams, and information technology infrastructure. Two research centers at Columbia University are implementing partners for SERVIR West Africa, acting to support capacity development in network members through a combination of workshops, training, and implementation of technologies in the region. The presentation will focus on efforts by these centers to assess current capabilities and improve capacity through gathering requirements, system design, technology selection, technology deployment, training, and workshops.

  3. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    DOE PAGES

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are neededmore » to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.« less

  4. Design and implementation of a GPS guidance system for agricultural tractors using augmented reality technology.

    PubMed

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor's position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems.

  5. Design and Implementation of a GPS Guidance System for Agricultural Tractors Using Augmented Reality Technology

    PubMed Central

    Santana-Fernández, Javier; Gómez-Gil, Jaime; del-Pozo-San-Cirilo, Laura

    2010-01-01

    Current commercial tractor guidance systems present to the driver information to perform agricultural tasks in the best way. This information generally includes a treated zones map referenced to the tractor’s position. Unlike actual guidance systems where the tractor driver must mentally associate treated zone maps and the plot layout, this paper presents a guidance system that using Augmented Reality (AR) technology, allows the tractor driver to see the real plot though eye monitor glasses with the treated zones in a different color. The paper includes a description of the system hardware and software, a real test done with image captures seen by the tractor driver, and a discussion predicting that the historical evolution of guidance systems could involve the use of AR technology in the agricultural guidance and monitoring systems. PMID:22163479

  6. Application of harmonic detection technology in methane telemetry

    NASA Astrophysics Data System (ADS)

    Huo, Yuehua; Fan, Weiqiang

    2017-08-01

    Methane telemetry plays a vital role in ensuring the safe production of coal mines and monitoring the leakage of natural gas pipelines. Harmonic detection is the key technology of methane telemetry accuracy and sensitivity, but the current telemetry distance is short, the relationship between different modulation parameters is complex, and the harmonic signal is affected by noise interference. These factors seriously affect the development of harmonic detection technology. In this paper, the principle of methane telemetry based on harmonic detection technology is introduced. The present situation and characteristics of harmonic detection technology are expounded. The problems existing in harmonic detection are analyzed. Finally, the future development trend is discussed.

  7. Ubiquitous computing in sports: A review and analysis.

    PubMed

    Baca, Arnold; Dabnichki, Peter; Heller, Mario; Kornfeind, Philipp

    2009-10-01

    Ubiquitous (pervasive) computing is a term for a synergetic use of sensing, communication and computing. Pervasive use of computing has seen a rapid increase in the current decade. This development has propagated in applied sport science and everyday life. The work presents a survey of recent developments in sport and leisure with emphasis on technology and computational techniques. A detailed analysis on new technological developments is performed. Sensors for position and motion detection, and such for equipment and physiological monitoring are discussed. Aspects of novel trends in communication technologies and data processing are outlined. Computational advancements have started a new trend - development of smart and intelligent systems for a wide range of applications - from model-based posture recognition to context awareness algorithms for nutrition monitoring. Examples particular to coaching and training are discussed. Selected tools for monitoring rules' compliance and automatic decision-making are outlined. Finally, applications in leisure and entertainment are presented, from systems supporting physical activity to systems providing motivation. It is concluded that the emphasis in future will shift from technologies to intelligent systems that allow for enhanced social interaction as efforts need to be made to improve user-friendliness and standardisation of measurement and transmission protocols.

  8. Emerging technologies to support independent living of older adults at risk.

    PubMed

    Hanson, Gregory J; Takahashi, Paul Y; Pecina, Jennifer L

    2013-01-01

    The aging of the population is expected to place an unprecedented strain on health care systems over the next two decades and beyond. Emerging electronic monitoring technologies provide opportunities to learn about the aging process, age-related diseases, and contribute to new, cost effective care models that preserve independence at home for older adults at risk. The goals of this article are to familiarize the reader with emerging technologies and potential applications to older adults' at-risk, review the current literature about the clinical and economic outcomes of emerging technologies, and to outline future directions and challenges.

  9. Satellite applications to electric-utility communications needs. [land mobile satellite service

    NASA Technical Reports Server (NTRS)

    Horstein, M.; Barnett, R.

    1981-01-01

    Significant changes in the Nation's electric power systems are expected to result from the integration of new technology, possible during the next decade. Digital communications for monitor and control, exclusive of protective relaying, are expected to double or triple current traffic. A nationwide estimate of 13 Mb/s traffic is projected. Of this total, 8 Mb/s is attributed to the bulk-power system as it is now being operated (4 Mb/s). This traffic could be accommodated by current communications satellites using 3- to 4.5-m-diameter ground terminals costing $35,000 to $70,000 each. The remaining 5-Mb/s traffic is attributed to new technology concepts integrated into the distribution system. Such traffic is not compatible with current satellite technology because it requires small, low-cost ground terminals. Therefore, a high effective isotropic radiated power satellite, such as the one being planned by NASA for the Land Mobile Satellite Service, is required.

  10. Professional and patient attitudes to using mobile phone technology to monitor asthma: questionnaire survey.

    PubMed

    Pinnock, Hilary; Slack, Roger; Pagliari, Claudia; Price, David; Sheikh, Aziz

    2006-08-01

    There is increasing international interest in using emerging technologies to enhance chronic disease management. We aimed to explore the attitudes of patients and primary care professionals to using mobile technology in order to monitor asthma. A piloted questionnaire containing closed and open-ended questions assessing attitudes to using electronic self-monitoring was posted to a random sample of general practitioners, asthma nurses, and people with asthma (12 years and over) in Lothian and Kent, UK, with 2 reminders. In addition to descriptive statistics, patient and clinician responses were compared using Chi-squared or independent sample t-tests. Free-text responses were analysed thematically. Responses were obtained from 130/300 professionals (43%) and 202/389 patients (52%). Patients rated the technology positively and considered that it may help clinicians to provide care, especially during acute attacks. Although rated similarly, professionals were more sceptical about benefits. Both professionals and patients had concerns about the time and cost implications. Of the respondents, 28 professionals (10%) and 62 patients (16%) returned uncompleted questionnaires citing lack of perceived relevance. The low completion rate probably reflects the current status of mobile phone-facilitated care as a minority interest for 'early adopters' of technology. Even for the enthusiastic minority, using mobile phone technology raised questions of clinical benefit, impact on self-management, and concerns about workload and cost, which will need to be addressed prior to wider acceptance.

  11. Health technology reassessment of non-drug technologies: current practices.

    PubMed

    Leggett, Laura; Noseworthy, Tom W; Zarrabi, Mahmood; Lorenzetti, Diane; Sutherland, Lloyd R; Clement, Fiona M

    2012-07-01

    Obsolescence is a natural phase of the lifecycle of health technologies. Given increasing cost of health expenditures worldwide, health organizations have little choice but to engage in health technology reassessment (HTR); a structured, evidence-based assessment of the medical, social, ethical, and economic effects of a technology, currently used within the healthcare system, to inform optimal use of that technology in comparison to its alternatives. This research was completed to identify and summarize international HTR initiatives for non-drug technologies. A systematic review was performed using the terms disinvestment, obsolescence, obsolete technology, ineffective, reassessment, reinvestment, reallocation, program budgeting, and marginal analysis to search PubMED, MEDLINE, EMBASE, and CINAHL until November 2011. Websites of organizations listed as members of INAHTA and HTAi were hand-searched for gray literature. Documents were excluded if they were unavailable in English, if the title/abstract was irrelevant to HTR, and/or if the document made no mention of current practices. All citations were screened in duplicate with disagreements resolved by consensus. Sixty full-text documents were reviewed and forty were included. One model for reassessment was identified; however, it has never been put into practice. Eight countries have some evidence of past or current work related to reassessment; seven have shown evidence of continued work in HTR. There is negligible focus on monitoring and implementation. HTR is in its infancy. Although health technology reassessments are being conducted, there is no standardized approach. Future work should focus on developing and piloting a comprehensive methodology for completing HTR.

  12. A design of wireless sensor networks for a power quality monitoring system.

    PubMed

    Lim, Yujin; Kim, Hak-Man; Kang, Sanggil

    2010-01-01

    Power grids deal with the business of generation, transmission, and distribution of electric power. Recently, interest in power quality in electrical distribution systems has increased rapidly. In Korea, the communication network to deliver voltage, current, and temperature measurements gathered from pole transformers to remote monitoring centers employs cellular mobile technology. Due to high cost of the cellular mobile technology, power quality monitoring measurements are limited and data gathering intervals are large. This causes difficulties in providing the power quality monitoring service. To alleviate the problems, in this paper we present a communication infrastructure to provide low cost, reliable data delivery. The communication infrastructure consists of wired connections between substations and monitoring centers, and wireless connections between pole transformers and substations. For the wireless connection, we employ a wireless sensor network and design its corresponding data forwarding protocol to improve the quality of data delivery. For the design, we adopt a tree-based data forwarding protocol in order to customize the distribution pattern of the power quality information. We verify the performance of the proposed data forwarding protocol quantitatively using the NS-2 network simulator.

  13. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies

    PubMed Central

    Makaram, Prashanth; Owens, Dawn; Aceros, Juan

    2014-01-01

    Blood glucose monitoring is considered the gold standard for diabetes diagnostics and self-monitoring. However, the underlying process is invasive and highly uncomfortable for patients. Furthermore, the process must be completed several times a day to successfully manage the disease, which greatly contributes to the massive need for non-invasive monitoring options. Human serums, such as saliva, sweat, breath, urine and tears, contain traces of glucose and are easily accessible. Therefore, they allow minimal to non-invasive glucose monitoring, making them attractive alternatives to blood measurements. Numerous developments regarding noninvasive glucose detection techniques have taken place over the years, but recently, they have gained recognition as viable alternatives, due to the advent of nanotechnology-based sensors. Such sensors are optimal for testing the amount of glucose in serums other than blood thanks to their enhanced sensitivity and selectivity ranges, in addition to their size and compatibility with electronic circuitry. These nanotechnology approaches are rapidly evolving, and new techniques are constantly emerging. Hence, this manuscript aims to review current and future nanomaterial-based technologies utilizing saliva, sweat, breath and tears as a diagnostic medium for diabetes monitoring. PMID:26852676

  14. Trends in Nanomaterial-Based Non-Invasive Diabetes Sensing Technologies.

    PubMed

    Makaram, Prashanth; Owens, Dawn; Aceros, Juan

    2014-04-21

    Blood glucose monitoring is considered the gold standard for diabetes diagnostics and self-monitoring. However, the underlying process is invasive and highly uncomfortable for patients. Furthermore, the process must be completed several times a day to successfully manage the disease, which greatly contributes to the massive need for non-invasive monitoring options. Human serums, such as saliva, sweat, breath, urine and tears, contain traces of glucose and are easily accessible. Therefore, they allow minimal to non-invasive glucose monitoring, making them attractive alternatives to blood measurements. Numerous developments regarding noninvasive glucose detection techniques have taken place over the years, but recently, they have gained recognition as viable alternatives, due to the advent of nanotechnology-based sensors. Such sensors are optimal for testing the amount of glucose in serums other than blood thanks to their enhanced sensitivity and selectivity ranges, in addition to their size and compatibility with electronic circuitry. These nanotechnology approaches are rapidly evolving, and new techniques are constantly emerging. Hence, this manuscript aims to review current and future nanomaterial-based technologies utilizing saliva, sweat, breath and tears as a diagnostic medium for diabetes monitoring.

  15. EVALUATION OF A PERSONAL NEPHELOMETER FOR HUMAN EXPOSURE MONITORING

    EPA Science Inventory

    Current particulate matter (PM) exposure studies are using continuous personal nephelometers (pDR-1000, MIE, Inc.) to measure human exposure to PM. The personal nephelometer is a passive sampler which uses light scattering technology to measure particles ranging in size from 0....

  16. Monitoring WLCG with lambda-architecture: a new scalable data store and analytics platform for monitoring at petabyte scale.

    NASA Astrophysics Data System (ADS)

    Magnoni, L.; Suthakar, U.; Cordeiro, C.; Georgiou, M.; Andreeva, J.; Khan, A.; Smith, D. R.

    2015-12-01

    Monitoring the WLCG infrastructure requires the gathering and analysis of a high volume of heterogeneous data (e.g. data transfers, job monitoring, site tests) coming from different services and experiment-specific frameworks to provide a uniform and flexible interface for scientists and sites. The current architecture, where relational database systems are used to store, to process and to serve monitoring data, has limitations in coping with the foreseen increase in the volume (e.g. higher LHC luminosity) and the variety (e.g. new data-transfer protocols and new resource-types, as cloud-computing) of WLCG monitoring events. This paper presents a new scalable data store and analytics platform designed by the Support for Distributed Computing (SDC) group, at the CERN IT department, which uses a variety of technologies each one targeting specific aspects of big-scale distributed data-processing (commonly referred as lambda-architecture approach). Results of data processing on Hadoop for WLCG data activities monitoring are presented, showing how the new architecture can easily analyze hundreds of millions of transfer logs in a few minutes. Moreover, a comparison of data partitioning, compression and file format (e.g. CSV, Avro) is presented, with particular attention given to how the file structure impacts the overall MapReduce performance. In conclusion, the evolution of the current implementation, which focuses on data storage and batch processing, towards a complete lambda-architecture is discussed, with consideration of candidate technology for the serving layer (e.g. Elasticsearch) and a description of a proof of concept implementation, based on Apache Spark and Esper, for the real-time part which compensates for batch-processing latency and automates problem detection and failures.

  17. Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia.

    PubMed

    Teipel, Stefan; König, Alexandra; Hoey, Jesse; Kaye, Jeff; Krüger, Frank; Robillard, Julie M; Kirste, Thomas; Babiloni, Claudio

    2018-06-21

    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials. Copyright © 2018. Published by Elsevier Inc.

  18. Lessons Learned During Implementation and Early Operations of the DS1 Beacon Monitor Experiment

    NASA Technical Reports Server (NTRS)

    Sherwood, Rob; Wyatt, Jay; Hotz, Henry; Schlutsmeyer, Alan; Sue, Miles

    1998-01-01

    A new approach to mission operations will be flight validated on NASA's New Millennium Program Deep Space One (DS1) mission which launched in October 1998. The Beacon Monitor Operations Technology is aimed at decreasing the total volume of downlinked engineering telemetry by reducing the frequency of downlink and the volume of data received per pass. Cost savings are achieved by reducing the amount of routine telemetry processing and analysis performed by ground staff. The technology is required for upcoming NASA missions to Pluto, Europa, and possibly some other missions. With beacon monitoring, the spacecraft will assess its own health and will transmit one of four beacon messages each representing a unique frequency tone to inform the ground how urgent it is to track the spacecraft for telemetry. If all conditions are nominal, the tone provides periodic assurance to ground personnel that the mission is proceeding as planned without having to receive and analyze downlinked telemetry. If there is a problem, the tone will indicate that tracking is required and the resulting telemetry will contain a concise summary of what has occurred since the last telemetry pass. The primary components of the technology are a tone monitoring technology, AI-based software for onboard engineering data summarization, and a ground response system. In addition, there is a ground visualization system for telemetry summaries. This paper includes a description of the Beacon monitor concept, the trade-offs with adapting that concept as a technology experiment, the current state of the resulting implementation on DS1, and our lessons learned during the initial checkout phase of the mission. Applicability to future missions is also included.

  19. Monitoring of well-controlled turbidity currents using the latest technology and a dredger

    NASA Astrophysics Data System (ADS)

    Vellinga, A. J.; Cartigny, M.; Clare, M. A.; Mastbergen, D. R.; Van den Ham, G.; Koelewijn, A. R.; de Kleine, M.; Hizzett, J. L.; Azpiroz, M.; Simmons, S.; Parsons, D. R.

    2017-12-01

    Recent advances in technology enable monitoring of turbidity currents at field scale. This now allows us to test models developed at small-scale in the laboratory. However, interpretation of field measurements is complicated, as the instruments used are not bespoke for monitoring turbidity currents. For example, Acoustic Doppler Current Profiles (ADCPs) are developed to measure clear water flows, and 3D multimode multibeam echosounders (M3s) are made to find shoals of fish. Calibration of field-scale measurements is complicated, as we often do not know fundamental information about the measured flows, such as grain size and initial sediment volume. We present field-scale measurements of two turbidity currents for which the pre- and post-flow bathymetry, grain size and initial sediment volume is known precisely. A dredger created two turbidity currents by twice discharging 500m3 of sediment on a slope in the Western Scheldt Estuary, the Netherlands. Flow velocity and echo intensity were directly measured using three frequencies of ADCPs, and two M3 sonars imaged the flow morphology in 3D. This experiment was part of the IJkdijk research program. The turbidity currents formed upstream-migrating crescentic shaped bedforms. The ADCPs measured peak flow velocities of 1-1.5 m/s. The M3s however suggest head velocities are 2-4 m/s. The two measured turbidity currents have thicknesses of about 3m, are up to 50m in width and travel downslope for about 150m. Flow dimensions, duration, and sediment discharge indicate a mean sediment concentration of 1-5 vol. %. Flow morphology evolves from a fast but thin, snout-like head, to a thicker body, and a dilute tail. The initial flow dynamics contrast with many laboratory experiments, but are coherent with direct measurements of much larger flows in the Congo Canyon. Well-constrained field studies, like this one, thus help to understand the validity of scaling from the laboratory to the deep sea.

  20. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This publication represents the NASA research and technology program for FY92. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOP's is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  1. Research and technology objectives and plans: Summary fiscal year 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This publication represents the NASA research and technology program for FY 1991. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, industry, and in universities. The first section contains citations and abstracts of the RTOP's and is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  2. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This publication represents the NASA research and technology program for FY-93. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOP's is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  3. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This publication represents the NASA research and technology program for FY88. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  4. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This publication represents the NASA research and technology program for FY89. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  5. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This publication represents the NASA research and technology program for FY 1985. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP number.

  6. Research and Technology Objectives and Plans Summary (RTOPS)

    NASA Technical Reports Server (NTRS)

    1987-01-01

    This publication represents the NASA research and technology program for FY87. It is a compilation of the Summary portions of each of the RTOPs (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOPs is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number.

  7. "It's Like a Cyber-Security Blanket": The Utility of Remote Activity Monitoring in Family Dementia Care.

    PubMed

    Mitchell, Lauren L; Peterson, Colleen M; Rud, Shaina R; Jutkowitz, Eric; Sarkinen, Andrielle; Trost, Sierra; Porta, Carolyn M; Finlay, Jessica M; Gaugler, Joseph E

    2018-03-01

    Technologies have emerged that aim to help older persons with Alzheimer's disease and related dementias (ADRDs) remain at home while also supporting their caregiving family members. However, the usefulness of these innovations, particularly in home-based care contexts, remains underexplored. The current study evaluated the acceptability and utility of an in-home remote activity monitoring (RAM) system for 30 family caregivers of persons with ADRD via quantitative survey data collected over a 6-month period and qualitative survey and interview data collected for up to 18 months. A parallel convergent mixed methods design was employed. The integrated qualitative and quantitative data suggested that RAM technology offered ongoing monitoring and provided caregivers with a sense of security. Considerable customization was needed so that RAM was most appropriate for persons with ADRD. The findings have important clinical implications when considering how RAM can supplement, or potentially substitute for, ADRD family care.

  8. Recent advances in immunosensor for narcotic drug detection

    PubMed Central

    Gandhi, Sonu; Suman, Pankaj; Kumar, Ashok; Sharma, Prince; Capalash, Neena; Suri, C. Raman

    2015-01-01

    Introduction: Immunosensor for illicit drugs have gained immense interest and have found several applications for drug abuse monitoring. This technology has offered a low cost detection of narcotics; thereby, providing a confirmatory platform to compliment the existing analytical methods. Methods: In this minireview, we define the basic concept of transducer for immunosensor development that utilizes antibodies and low molecular mass hapten (opiate) molecules. Results: This article emphasizes on recent advances in immunoanalytical techniques for monitoring of opiate drugs. Our results demonstrate that high quality antibodies can be used for immunosensor development against target analyte with greater sensitivity, specificity and precision than other available analytical methods. Conclusion: In this review we highlight the fundamentals of different transducer technologies and its applications for immunosensor development currently being developed in our laboratory using rapid screening via immunochromatographic kit, label free optical detection via enzyme, fluorescence, gold nanoparticles and carbon nanotubes based immunosensing for sensitive and specific monitoring of opiates. PMID:26929925

  9. Colorimetric Solid Phase Extraction for the Measurement of Total I (Iodine, Iodide, and Triiodide) in Spacecraft Drinking Water

    NASA Technical Reports Server (NTRS)

    Lipert, Robert J.; Porter, Marc D.; Siperko, Lorraine M.; Gazda, Daniel B.; Rutz, Jeff A.; Schultz, John R.; Carrizales, Stephanie M.; McCoy, J. Torin

    2009-01-01

    An experimental drinking water monitoring kit for the measurement of iodine and silver(I) was recently delivered to the International Space Station (ISS). The kit is based on Colorimetric Solid Phase Extraction (CSPE) technology, which measures the change in diffuse reflectance of indicator disks following exposure to a water sample. To satisfy additional spacecraft water monitoring requirements, CSPE has now been extended to encompass the measurement of total I (iodine, iodide, and triiodide) through the introduction of an oxidizing agent, which converts iodide and triiodide to iodine, for measurement using the same indicator disks currently being tested on ISS. These disks detect iodine, but are insensitive to iodide and triiodide. We report here the operational considerations, design, and ground-based performance of the CSPE method for total I. The results demonstrate that CSPE technology is poised to meet NASA's total I monitoring requirements.

  10. Monitoring grasshopper and locust habitats in Sahelian Africa using GIS and remote sensing technology

    USGS Publications Warehouse

    Tappan, G. Gray; Moore, Donald G.; Knauseberger, Walter I.

    1991-01-01

    Development programmes in Sahelian Africa are beginning to use geographic information system (GIS) technology. One of the GIS and remote sensing programmes introduced to the region in the late 1980s was the use of seasonal vegetation maps made from satellite data to support grasshopper and locust control. Following serious outbreaks of these pests in 1987, the programme addressed a critical need, by national and international crop protection organizations, to monitor site-specific dynamic vegetation conditions associated with grasshopper and locust breeding. The primary products used in assessing vegetation conditions were vegetation index (greenness) image maps derived from National Oceanic and Atmospheric Administration satellite imagery. Vegetation index data were integrated in a GIS with digital cartographic data of individual Sahelian countries. These near-real-time image maps were used regularly in 10 countries for locating potential grasshopper and locust habitats. The programme to monitor vegetation conditions is currently being institutionalized in the Sahel.

  11. Clinical potential of implantable wireless sensors for orthopedic treatments.

    PubMed

    Karipott, Salil Sidharthan; Nelson, Bradley D; Guldberg, Robert E; Ong, Keat Ghee

    2018-04-01

    Implantable wireless sensors have been used for real-time monitoring of chemicals and physical conditions of bones, tendons and muscles to diagnose and study orthopedic diseases and injuries. Due to the importance of these sensors in orthopedic care, a critical review, which not only analyzes the underlying technologies but also their clinical implementations and challenges, will provide a landscape view on their current state and their future clinical role. Areas covered: By conducting an extensive literature search and following the leaders of orthopedic implantable wireless sensors, this review covers the battery-powered and battery-free wireless implantable sensor technologies, and describes their implementation for hips, knees, spine, and shoulder stress/strain monitoring. Their advantages, limitations, and clinical challenges are also described. Expert commentary: Currently, implantable wireless sensors are mostly limited for scientific investigations and demonstrative experiments. Although rapid advancement in sensors and wireless technologies will push the reliability and practicality of these sensors for clinical realization, regulatory constraints and financial viability in medical device industry may curtail their continuous adoption for clinical orthopedic applications. In the next five years, these sensors are expected to gain increased interest from researchers, but wide clinical adoption is still unlikely.

  12. Remote monitoring of cardiovascular implanted electronic devices: a paradigm shift for the 21st century.

    PubMed

    Cronin, Edmond M; Varma, Niraj

    2012-07-01

    Traditional follow-up of cardiac implantable electronic devices involves the intermittent download of largely nonactionable data. Remote monitoring represents a paradigm shift from episodic office-based follow-up to continuous monitoring of device performance and patient and disease state. This lessens device clinical burden and may also lead to cost savings, although data on economic impact are only beginning to emerge. Remote monitoring technology has the potential to improve the outcomes through earlier detection of arrhythmias and compromised device integrity, and possibly predict heart failure hospitalizations through integration of heart failure diagnostics and hemodynamic monitors. Remote monitoring platforms are also huge databases of patients and devices, offering unprecedented opportunities to investigate real-world outcomes. Here, the current status of the field is described and future directions are predicted.

  13. NASDA activities in space solar power system research, development and applications

    NASA Technical Reports Server (NTRS)

    Matsuda, Sumio; Yamamoto, Yasunari; Uesugi, Masato

    1993-01-01

    NASDA activities in solar cell research, development, and applications are described. First, current technologies for space solar cells such as Si, GaAs, and InP are reviewed. Second, future space solar cell technologies intended to be used on satellites of 21st century are discussed. Next, the flight data of solar cell monitor on ETS-V is shown. Finally, establishing the universal space solar cell calibration system is proposed.

  14. Guidelines for Applying Video Simulation Technology to Training Land Design

    DTIC Science & Technology

    1993-02-01

    Training Land Design for Realism." The technical monitor was Dr. Victor Diersing, CEHSC-FN. This study was performed by the Environmental Resources...technology to their land management activities. 5 Objective The objective of this study was to provide a general overview of the use of video simulation...4). A market study of currently available hardware and software provided the basis for descriptions of hardware and software systems, and their

  15. Integrating Sensor Monitoring Technology into the Current Air Pollution Regulatory Support Paradigm: Practical Considerations

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) along with state, local, and tribal governments operate Federal Reference Method (FRM) and Federal Equivalent Method (FEM) instruments to assess compliance with US air pollution standards designed to protect human and ecosystem health....

  16. Testing of cavity attenuation phase shift technology for siting near-road NO2 monitors.

    DOT National Transportation Integrated Search

    2015-07-01

    Recent research has identified the public health importance of air pollution exposures : near busy roadways. As a result, EPA significantly revised its NO2 air quality standard in 2010. : The current regulatory focus has shifted from assessment of lo...

  17. Arctic BioMap: Building Participatory Technologies for Community-Specific Environmental Monitoring and Decision Making in the North

    NASA Astrophysics Data System (ADS)

    Murray, M. S.; Panikkar, B.; Liang, S.; Kutz, S.

    2016-12-01

    The Arctic continues to undergo unprecedented and accelerated system-wide environmental change. For people who live in the north this presents challenges to resource management, subsistence, health and well-being, and yet, there is very little community-specific data on wildlife (including wildlife health), local environmental conditions and emerging hazards in Northern Canada. A novel approach that integrates community expertise with developing technologies can simplify data collection and improve understanding of current and future conditions. It can also improve our ability to manage and adapt to the rapidly transforming Arctic. Arctic BioMap is a data platform for real-time monitoring and a geospatial informational database of wildlife and environmental information useful for assessment, research, management, and education. It enables monitoring of wildlife and environmental variables including hazards to inform decision-making at multiples scales. Using participatory technologies Arctic BioMap incorporates indigenous research needs and the ensuing data can be used to inform policy making. Arctic BioMap provides a forum for continuous exchange and communication among community members, scientists, resources managers, and other stakeholders.

  18. Wireless connectivity for health and sports monitoring: a review.

    PubMed

    Armstrong, S

    2007-05-01

    This is a review of health and sports monitoring research that uses or could benefit from wireless connectivity. New, enabling wireless connectivity standards are evaluated for their suitability, and an assessment of current exploitation of these technologies is summarised. An example of the application is given, highlighting the capabilities of a network of wireless sensors. Issues of timing and power consumption in a battery-powered system are addressed to highlight the benefits networking can provide, and a suggestion of how monitoring different biometric signals might allow one to gain additional information about an athlete or patient is made.

  19. Wireless connectivity for health and sports monitoring: a review

    PubMed Central

    Armstrong, S

    2007-01-01

    This is a review of health and sports monitoring research that uses or could benefit from wireless connectivity. New, enabling wireless connectivity standards are evaluated for their suitability, and an assessment of current exploitation of these technologies is summarised. An example of the application is given, highlighting the capabilities of a network of wireless sensors. Issues of timing and power consumption in a battery‐powered system are addressed to highlight the benefits networking can provide, and a suggestion of how monitoring different biometric signals might allow one to gain additional information about an athlete or patient is made. PMID:17224446

  20. A Review of Monitoring Technologies for Trace Air Contaminants in the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.; McCoy, J. Torin

    2004-01-01

    NASA issued a Request For Information (RFI) to identify technologies that might be available to monitor a list of air pollutants in the ISS atmosphere. After NASA received responses to the RFI, an expert panel was assembled to hear presentations from 9 technology proponents. The goal of the panel was to identify technologies that might be suitable for replacement of the current Volatile Organics Analyzer (VOA) within several years. The panelists consisted of 8 experts in analytical chemistry without any links to NASA and 7 people with specific expertise because of their roles in NASA programs. Each technology was scored using a tool that enabled rating of many specific aspects of the technology on a 4-point system. The maturity of the technologies ranged from well-tested instrument packages that had been designed for space applications and were nearly ready for flight to technologies that were untested and speculative in nature. All but one technology involved the use of gas chromatography for separation, and there were various detectors proposed including several mass spectrometers and ion mobility spectrometers. In general there was a tradeoff between large systems with considerable capability to address the target list and smaller systems that had much more limited capability.

  1. New technologies in the management of risk and violence in forensic settings.

    PubMed

    Tully, John; Larkin, Fintan; Fahy, Thomas

    2015-06-01

    Novel technological interventions are increasingly used in mental health settings. In this article, we describe 3 novel technological strategies in use for management of risk and violence in 2 forensic psychiatry settings in the United Kingdom: electronic monitoring by GPS-based tracking devices of patients on leave from a medium secure service in London, and closed circuit television (CCTV) monitoring and motion sensor technology at Broadmoor high secure hospital. A common theme is the use of these technologies to improve the completeness and accuracy of data used by clinicians to make clinical decisions. Another common thread is that each of these strategies supports and improves current clinical approaches rather than drastically changing them. The technologies offer a broad range of benefits. These include less restrictive options for patients, improved accountability of both staff and patients, less invasive testing, improved automated record-keeping, and better assurance reporting. Services utilizing technologies need also be aware of limitations. Technologies may be seen as unduly restrictive by patients and advocates, and technical issues may reduce effectiveness. It is vital that the types of technological innovations described in this article should be subject to thorough evaluation that addresses cost effectiveness, qualitative analysis of patients' attitudes, safety, and ethical considerations.

  2. A Current Sensor Based on the Giant Magnetoresistance Effect: Design and Potential Smart Grid Applications

    PubMed Central

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X.

    2012-01-01

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221

  3. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    PubMed

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  4. Operational efficiency subpanel advanced mission control

    NASA Technical Reports Server (NTRS)

    Friedland, Peter

    1990-01-01

    Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.

  5. Eddy-Current Non-Inertial Displacement Sensing for Underwater Infrasound Measurements

    DTIC Science & Technology

    2011-05-01

    Eddy-current non-inertial displacement sensing for underwater infrasound measurements Dimitri M. Donskoy Stevens Institute of Technology, 711 Hudson...geophysicists have an ongoing interest in exploring underwater acous- tic processes at infrasound frequencies, for example, for monitoring natural events...underwater infrasound measurements 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f

  6. Cognitive fiber Bragg grating sensors system based on fiber Fabry-Perot tunable filter technology

    NASA Astrophysics Data System (ADS)

    Zhang, Hongtao; Wang, Pengfei; Zou, Jilin; Xie, Jing; Cui, Hong-Liang

    2011-05-01

    The wavelength demodulation based on a Fiber Fabry-Pérot Tunable Filter (FFP-TF) is a common method for multiplexing Fiber Bragg Grating (FBG) sensors. But this method cannot be used to detect high frequency signals due to the limitation by the highest scanning rate that the FFP-TF can achieve. To overcome this disadvantage, in this paper we present a scheme of cognitive sensors network based on FFP-TF technology. By perceiving the sensing environment, system can automatically switch into monitoring signals in two modes to obtain better measurement results: multi measurement points, low frequency (<1 KHz) signal, and few measurement points but high frequency (~50 KHz) signals. This cognitive sensors network can be realized in current technology and satisfy current most industrial requirements.

  7. Injector for the University of Maryland Electron Ring (UMER)

    NASA Astrophysics Data System (ADS)

    Kehne, D.; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O'Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I.

    2001-05-01

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  8. Non-invasive monitoring of pulmonary artery pressure from timing information by EIT: experimental evaluation during induced hypoxia.

    PubMed

    Proença, Martin; Braun, Fabian; Solà, Josep; Adler, Andy; Lemay, Mathieu; Thiran, Jean-Philippe; Rimoldi, Stefano F

    2016-06-01

    Monitoring of pulmonary artery pressure (PAP) in pulmonary hypertensive patients is currently limited to invasive solutions. We investigate a novel non-invasive approach for continuous monitoring of PAP, based on electrical impedance tomography (EIT), a safe, low-cost and non-invasive imaging technology. EIT recordings were performed in three healthy subjects undergoing hypoxia-induced PAP variations. The pulmonary pulse arrival time (PAT), a timing parameter physiologically linked to the PAP, was automatically calculated from the EIT signals. Values were compared to systolic PAP values from Doppler echocardiography, and yielded strong correlation scores ([Formula: see text]) for all three subjects. Results suggest the feasibility of non-invasive, unsupervised monitoring of PAP.

  9. Bed Bug Detection: Current Technologies and Future Directions

    PubMed Central

    Vaidyanathan, Rajeev; Feldlaufer, Mark F.

    2013-01-01

    Technologies to detect bed bugs have not kept pace with their global resurgence. Early detection is critical to prevent infestations from spreading. Detection based exclusively on bites is inadequate, because reactions to insect bites are non-specific and often misdiagnosed. Visual inspections are commonly used and depend on identifying live bugs, exuviae, or fecal droplets. Visual inspections are inexpensive, but they are time-consuming and unreliable when only a few bugs are present. Use of a dog to detect bed bugs is gaining in popularity, but it can be expensive, may unintentionally advertise a bed bug problem, and is not foolproof. Passive monitors mimic natural harborages; they are discreet and typically use an adhesive to trap bugs. Active monitors generate carbon dioxide, heat, a pheromone, or a combination to attract bed bugs to a trap. New technologies using DNA analysis, mass spectrometry, and electronic noses are innovative but impractical and expensive for widespread use. PMID:23553226

  10. The Real-Time Monitoring Service Platform for Land Supervision Based on Cloud Integration

    NASA Astrophysics Data System (ADS)

    Sun, J.; Mao, M.; Xiang, H.; Wang, G.; Liang, Y.

    2018-04-01

    Remote sensing monitoring has become the important means for land and resources departments to strengthen supervision. Aiming at the problems of low monitoring frequency and poor data currency in current remote sensing monitoring, this paper researched and developed the cloud-integrated real-time monitoring service platform for land supervision which enhanced the monitoring frequency by acquiring the domestic satellite image data overall and accelerated the remote sensing image data processing efficiency by exploiting the intelligent dynamic processing technology of multi-source images. Through the pilot application in Jinan Bureau of State Land Supervision, it has been proved that the real-time monitoring technical method for land supervision is feasible. In addition, the functions of real-time monitoring and early warning are carried out on illegal land use, permanent basic farmland protection and boundary breakthrough in urban development. The application has achieved remarkable results.

  11. Continuous remote monitoring of COPD patients-justification and explanation of the requirements and a survey of the available technologies.

    PubMed

    Tomasic, Ivan; Tomasic, Nikica; Trobec, Roman; Krpan, Miroslav; Kelava, Tomislav

    2018-04-01

    Remote patient monitoring should reduce mortality rates, improve care, and reduce costs. We present an overview of the available technologies for the remote monitoring of chronic obstructive pulmonary disease (COPD) patients, together with the most important medical information regarding COPD in a language that is adapted for engineers. Our aim is to bridge the gap between the technical and medical worlds and to facilitate and motivate future research in the field. We also present a justification, motivation, and explanation of how to monitor the most important parameters for COPD patients, together with pointers for the challenges that remain. Additionally, we propose and justify the importance of electrocardiograms (ECGs) and the arterial carbon dioxide partial pressure (PaCO 2 ) as two crucial physiological parameters that have not been used so far to any great extent in the monitoring of COPD patients. We cover four possibilities for the remote monitoring of COPD patients: continuous monitoring during normal daily activities for the prediction and early detection of exacerbations and life-threatening events, monitoring during the home treatment of mild exacerbations, monitoring oxygen therapy applications, and monitoring exercise. We also present and discuss the current approaches to decision support at remote locations and list the normal and pathological values/ranges for all the relevant physiological parameters. The paper concludes with our insights into the future developments and remaining challenges for improvements to continuous remote monitoring systems. Graphical abstract ᅟ.

  12. Using Labor Market Information in Program Development and Evaluation

    ERIC Educational Resources Information Center

    Lebesch, Anna M.

    2012-01-01

    The community college environment is complex and dynamic, requiring constant monitoring. To ensure that workforce education, a core component of community colleges' missions, remains aligned with colleges' environments, responsive to employers' needs, suited to students' interests and abilities, and current in content and technology, it is…

  13. Compressed television transmission: A market survey

    NASA Technical Reports Server (NTRS)

    Lizak, R. M.; Cagan, L. Q.

    1981-01-01

    NASA's compressed television transmission technology is described, and its potential market is considered; a market that encompasses teleconferencing, remote medical diagnosis, patient monitoring, transit station surveillance, as well as traffic management and control. In addition, current and potential television transmission systems and their costs and potential manufacturers are considered.

  14. Applications of remote-sensing technology to environmental problems of Delaware and Delaware Bay

    NASA Technical Reports Server (NTRS)

    Bartlett, D.; Klemas, V.; Philpot, W.; Rogers, R.

    1975-01-01

    Digital processing of multispectral LANDSAT data was used to develop a computerized model for predicting oil slick movement within the Delaware Bay. LANDSAT imagery was also used to monitor offshore waste disposal sites for mapping of wetlands, and charting of tidal currents.

  15. Exploring JavaScript and ROOT technologies to create Web-based ATLAS analysis and monitoring tools

    NASA Astrophysics Data System (ADS)

    Sánchez Pineda, A.

    2015-12-01

    We explore the potential of current web applications to create online interfaces that allow the visualization, interaction and real cut-based physics analysis and monitoring of processes through a web browser. The project consists in the initial development of web- based and cloud computing services to allow students and researchers to perform fast and very useful cut-based analysis on a browser, reading and using real data and official Monte- Carlo simulations stored in ATLAS computing facilities. Several tools are considered: ROOT, JavaScript and HTML. Our study case is the current cut-based H → ZZ → llqq analysis of the ATLAS experiment. Preliminary but satisfactory results have been obtained online.

  16. Real-time nutrient monitoring in rivers: adaptive sampling strategies, technological challenges and future directions

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Khamis, Kieran; Lloyd, Charlotte; Bradley, Chris

    2016-04-01

    Excessive nutrient concentrations in river waters threaten aquatic ecosystem functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive spatiotemporal patterns in nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of continuous in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. However, such instruments can be costly to run and difficult to maintain (e.g. due to high power consumption and memory requirements), leading to trade-offs between temporal and spatial monitoring resolutions. Here, we highlight how adaptive monitoring strategies, comprising a mixture of temporal sample frequencies controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid environmental changes. In addition, we discuss the advantages and disadvantages of current nutrient monitoring techniques, and suggest new research directions based on emerging technologies and highlight how these might improve: 1) monitoring strategies, and 2) understanding of linkages between catchment processes and river nutrient fluxes.

  17. Geophysical monitoring in a hydrocarbon reservoir

    NASA Astrophysics Data System (ADS)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the environmental footprint of the shale-gas exploration and exploitation.

  18. Comprehensive assessment of toxic emissions from coal-fired power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, T D; Schmidt, C E; Radziwon, A S

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS)more » to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program.« less

  19. Assessment of the use of space technology in the monitoring of oil spills and ocean pollution: Technical volume. Executive summary

    NASA Technical Reports Server (NTRS)

    Alvarado, U. R. (Editor); Chafaris, G.; Chestek, J.; Contrad, J.; Frippel, G.; Gulatsi, R.; Heath, A.; Hodara, H.; Kritikos, H.; Tamiyasu, K.

    1980-01-01

    The potential of space systems and technology for detecting and monitoring ocean oil spills and waste pollution was assessed as well as the impact of this application on communication and data handling systems. Agencies charged with responsibilities in this area were identified and their measurement requirements were ascertained in order to determine the spatial resolution needed to characterize operational and accidental discharges. Microwave and optical sensors and sensing techniques were evaluated as candidate system elements. Capabilities are described for the following: synthetic aperture radar, microwave scatterometer, passive microwave radiometer, microwave altimeter, electro-optical sensors currently used in airborne detection, existing space-based optical sensors, the thematic mapper, and the pointable optical linear array.

  20. Active electrode monitoring. How to prevent unintentional thermal injury associated with monopolar electrosurgery at laparoscopy.

    PubMed

    Vancaillie, T G

    1998-08-01

    In recent years, the use of minimally invasive surgery (MIS) has expanded to a wide variety of surgical specialties. The increased popularity of the procedure, however, has been accompanied by its share of complications, including trocar lacerations and inadvertent thermal injuries to nontargeted tissues during monopolar electrosurgery. A survey on electrosurgical thermal injuries and three case studies are presented. The new technology of active electrode monitoring (AEM) is described. AEM eliminates stray currents generated by insulation failure and capacitive coupling. To reduce the incidence of injury by monopolar electrosurgery at laparoscopy, there is a need for advanced technology, such as AEM. In addition, laparoscopic surgeons should be encouraged to study the basic concepts of the biophysics of electrosurgery.

  1. The case for reassessment of health care technology. Once is not enough.

    PubMed

    Banta, H D; Thacker, S B

    1990-07-11

    Assessment of health care technologies should be an iterative process, not a single event. In the United States there are an increasing number of organized attempts at reassessment of technologies by the health industry, professional societies, and national government agencies, such as the Medical Necessity Project of Blue Cross/Blue Shield, the Clinical Efficacy Assessment Project of the American College of Physicians, and the work of the US Preventive Services Task Force. We examine four clinical practices--electronic fetal monitoring, episiotomy, electroencephalography, and hysterectomy--to illustrate the need to continuously reassess existing technologies and to challenge our current inertia in this critical arena of health practice.

  2. RE-DEFINING THE ROLES OF SENSORS IN OBJECTIVE PHYSICAL ACTIVITY MONITORING

    PubMed Central

    Chen, Kong Y.; Janz, Kathleen F.; Zhu, Weimo; Brychta, Robert J.

    2011-01-01

    Background As physical activity researchers are increasingly using objective portable devices, this review describes current state of the technology to assess physical activity, with a focus on specific sensors and sensor properties currently used in monitors and their strengths and weakness. Additional sensors and sensor properties desirable for activity measurement and best practices for users and developers also are discussed. Best Practices We grouped current sensors into three broad categories for objectively measuring physical activity: associated body movement, physiology, and context. Desirable sensor properties for measuring physical activity and the importance of these properties in relationship to specific applications are addressed, and the specific roles of transducers and data acquisition systems within the monitoring devices are defined. Technical advancements in sensors, microcomputer processors, memory storage, batteries, wireless communication, and digital filters have made monitors more usable for subjects (smaller, more stable, and longer running time) and for researchers (less costly, higher time resolution and memory storage, shorter download time, and user-defined data features). Future Directions Users and developers of physical activity monitors should learn about the basic properties of their sensors, such as range, accuracy, precision, while considering the data acquisition/filtering steps that may be critical to data quality and may influence the desirable measurement outcome(s). PMID:22157770

  3. Feasibility of absolute cerebral tissue oxygen saturation during cardiopulmonary resuscitation.

    PubMed

    Meex, Ingrid; De Deyne, Cathy; Dens, Jo; Scheyltjens, Simon; Lathouwers, Kevin; Boer, Willem; Vundelinckx, Guy; Heylen, René; Jans, Frank

    2013-03-01

    Current monitoring during cardiopulmonary resuscitation (CPR) is limited to clinical observation of consciousness, breathing pattern and presence of a pulse. At the same time, the adequacy of cerebral oxygenation during CPR is critical for neurological outcome and thus survival. Cerebral oximetry, based on near-infrared spectroscopy (NIRS), provides a measure of brain oxygen saturation. Therefore, we examined the feasibility of using NIRS during CPR. Recent technologies (FORE-SIGHT™ and EQUANOX™) enable the monitoring of absolute cerebral tissue oxygen saturation (SctO2) values without the need for pre-calibration. We tested both FORE-SIGHT™ (five patients) and EQUANOX Advance™ (nine patients) technologies in the in-hospital as well as the out-of-hospital CPR setting. In this observational study, values were not utilized in any treatment protocol or therapeutic decision. An independent t-test was used for statistical analysis. Our data demonstrate the feasibility of both technologies to measure cerebral oxygen saturation during CPR. With the continuous, pulseless near-infrared wave analysis of both FORE-SIGHT™ and EQUANOX™ technology, we obtained SctO2 values in the absence of spontaneous circulation. Both technologies were able to assess the efficacy of CPR efforts: improved resuscitation efforts (improved quality of chest compressions with switch of caregivers) resulted in higher SctO2 values. Until now, the ability of CPR to provide adequate tissue oxygenation was difficult to quantify or to assess clinically due to a lack of specific technology. With both technologies, any change in hemodynamics (for example, ventricular fibrillation) results in a reciprocal change in SctO2. In some patients, a sudden drop in SctO2 was the first warning sign of reoccurring ventricular fibrillation. Both the FORE-SIGHT™ and EQUANOX™ technology allow non-invasive monitoring of the cerebral oxygen saturation during CPR. Moreover, changes in SctO2 values might be used to monitor the efficacy of CPR efforts.

  4. NEW HORIZONS IN SENSOR DEVELOPMENT

    PubMed Central

    Intille, Stephen S.; Lester, Jonathan; Sallis, James F.; Duncan, Glen

    2011-01-01

    Background Accelerometery and other sensing technologies are important tools for physical activity measurement. Engineering advances have allowed developers to transform clunky, uncomfortable, and conspicuous monitors into relatively small, ergonomic, and convenient research tools. New devices can be used to collect data on overall physical activity and in some cases posture, physiological state, and location, for many days or weeks from subjects during their everyday lives. In this review article, we identify emerging trends in several types of monitoring technologies and gaps in the current state of knowledge. Best practices The only certainty about the future of activity sensing technologies is that researchers must anticipate and plan for change. We propose a set of best practices that may accelerate adoption of new devices and increase the likelihood that data being collected and used today will be compatible with new datasets and methods likely to appear on the horizon. Future directions We describe several technology-driven trends, ranging from continued miniaturization of devices that provide gross summary information about activity levels and energy expenditure, to new devices that provide highly detailed information about the specific type, amount, and location of physical activity. Some devices will take advantage of consumer technologies, such as mobile phones, to detect and respond to physical activity in real time, creating new opportunities in measurement, remote compliance monitoring, data-driven discovery, and intervention. PMID:22157771

  5. Configurations and calibration methods for passive sampling techniques.

    PubMed

    Ouyang, Gangfeng; Pawliszyn, Janusz

    2007-10-19

    Passive sampling technology has developed very quickly in the past 15 years, and is widely used for the monitoring of pollutants in different environments. The design and quantification of passive sampling devices require an appropriate calibration method. Current calibration methods that exist for passive sampling, including equilibrium extraction, linear uptake, and kinetic calibration, are presented in this review. A number of state-of-the-art passive sampling devices that can be used for aqueous and air monitoring are introduced according to their calibration methods.

  6. Precision segmented reflector, figure verification sensor

    NASA Technical Reports Server (NTRS)

    Manhart, Paul K.; Macenka, Steve A.

    1989-01-01

    The Precision Segmented Reflector (PSR) program currently under way at the Jet Propulsion Laboratory is a test bed and technology demonstration program designed to develop and study the structural and material technologies required for lightweight, precision segmented reflectors. A Figure Verification Sensor (FVS) which is designed to monitor the active control system of the segments is described, a best fit surface is defined, and an image or wavefront quality of the assembled array of reflecting panels is assessed

  7. What are the current challenges of managing cancer pain and could digital technologies help?

    PubMed

    Adam, Rosalind; de Bruin, Marijn; Burton, Christopher David; Bond, Christine M; Giatsi Clausen, Maria; Murchie, Peter

    2018-06-01

    Pain remains a problem for people with cancer despite effective treatments being available. We aimed to explore current pain management strategies used by patients, caregivers and professionals and to investigate opportunities for digital technologies to enhance cancer pain management. A qualitative study comprising semistructured interviews and focus groups. Patients with cancer pain, their caregivers and health professionals from Northeast Scotland were recruited from a purposive sample of general practices. Professionals were recruited from regional networks. Fifty one participants took part in 33 interviews (eight patients alone, six patient/caregiver dyads and 19 professionals) and two focus groups (12 professionals). Living with cancer was hard work for patients and caregivers and comparable to a 'full-time job'. Patients had personal goals which involved controlling pain intensity and balancing this with analgesic use, side effects, overall symptom burden and social/physical activities.Digital technologies were embraced by most patients, and made living life with advanced cancer easier and richer (eg, video calls with family). Technology was underutilised for pain and symptom management. There were suggestions that technology could support self-monitoring and communicating problems to professionals, but patients and professionals were concerned about technological monitoring adding to the work of managing illness. Cancer pain management takes place in the context of multiple, sometimes competing personal goals. It is possible that technology could be used to help patients share individual symptom experiences and goals, thus enhancing tailored care. The challenge is for digital solutions to add value without adding undue burden. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  8. Current Grid operation and future role of the Grid

    NASA Astrophysics Data System (ADS)

    Smirnova, O.

    2012-12-01

    Grid-like technologies and approaches became an integral part of HEP experiments. Some other scientific communities also use similar technologies for data-intensive computations. The distinct feature of Grid computing is the ability to federate heterogeneous resources of different ownership into a seamless infrastructure, accessible via a single log-on. Like other infrastructures of similar nature, Grid functioning requires not only technologically sound basis, but also reliable operation procedures, monitoring and accounting. The two aspects, technological and operational, are closely related: weaker is the technology, more burden is on operations, and other way around. As of today, Grid technologies are still evolving: at CERN alone, every LHC experiment uses an own Grid-like system. This inevitably creates a heavy load on operations. Infrastructure maintenance, monitoring and incident response are done on several levels, from local system administrators to large international organisations, involving massive human effort worldwide. The necessity to commit substantial resources is one of the obstacles faced by smaller research communities when moving computing to the Grid. Moreover, most current Grid solutions were developed under significant influence of HEP use cases, and thus need additional effort to adapt them to other applications. Reluctance of many non-HEP researchers to use Grid negatively affects the outlook for national Grid organisations, which strive to provide multi-science services. We started from the situation where Grid organisations were fused with HEP laboratories and national HEP research programmes; we hope to move towards the world where Grid will ultimately reach the status of generic public computing and storage service provider and permanent national and international Grid infrastructures will be established. How far will we be able to advance along this path, depends on us. If no standardisation and convergence efforts will take place, Grid will become limited to HEP; if however the current multitude of Grid-like systems will converge to a generic, modular and extensible solution, Grid will become true to its name.

  9. Monitoring of large-scale federated data storage: XRootD and beyond

    NASA Astrophysics Data System (ADS)

    Andreeva, J.; Beche, A.; Belov, S.; Diguez Arias, D.; Giordano, D.; Oleynik, D.; Petrosyan, A.; Saiz, P.; Tadel, M.; Tuckett, D.; Vukotic, I.

    2014-06-01

    The computing models of the LHC experiments are gradually moving from hierarchical data models with centrally managed data pre-placement towards federated storage which provides seamless access to data files independently of their location and dramatically improve recovery due to fail-over mechanisms. Construction of the data federations and understanding the impact of the new approach to data management on user analysis requires complete and detailed monitoring. Monitoring functionality should cover the status of all components of the federated storage, measuring data traffic and data access performance, as well as being able to detect any kind of inefficiencies and to provide hints for resource optimization and effective data distribution policy. Data mining of the collected monitoring data provides a deep insight into new usage patterns. In the WLCG context, there are several federations currently based on the XRootD technology. This paper will focus on monitoring for the ATLAS and CMS XRootD federations implemented in the Experiment Dashboard monitoring framework. Both federations consist of many dozens of sites accessed by many hundreds of clients and they continue to grow in size. Handling of the monitoring flow generated by these systems has to be well optimized in order to achieve the required performance. Furthermore, this paper demonstrates the XRootD monitoring architecture is sufficiently generic to be easily adapted for other technologies, such as HTTP/WebDAV dynamic federations.

  10. A review of wearable sensors and systems with application in rehabilitation

    PubMed Central

    2012-01-01

    The aim of this review paper is to summarize recent developments in the field of wearable sensors and systems that are relevant to the field of rehabilitation. The growing body of work focused on the application of wearable technology to monitor older adults and subjects with chronic conditions in the home and community settings justifies the emphasis of this review paper on summarizing clinical applications of wearable technology currently undergoing assessment rather than describing the development of new wearable sensors and systems. A short description of key enabling technologies (i.e. sensor technology, communication technology, and data analysis techniques) that have allowed researchers to implement wearable systems is followed by a detailed description of major areas of application of wearable technology. Applications described in this review paper include those that focus on health and wellness, safety, home rehabilitation, assessment of treatment efficacy, and early detection of disorders. The integration of wearable and ambient sensors is discussed in the context of achieving home monitoring of older adults and subjects with chronic conditions. Future work required to advance the field toward clinical deployment of wearable sensors and systems is discussed. PMID:22520559

  11. Hybrid Modeling Improves Health and Performance Monitoring

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.

  12. Real Time, On Line Crop Monitoring and Analysis with Near Global Landsat-class Mosaics

    NASA Astrophysics Data System (ADS)

    Varlyguin, D.; Hulina, S.; Crutchfield, J.; Reynolds, C. A.; Frantz, R.

    2015-12-01

    The presentation will discuss the current status of GDA technology for operational, automated generation of 10-30 meter near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A imagery will be added once it is operationally available. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world and 16 day time window. 2014-most current dates are supported. The mosaics are updated in real-time, as soon as GDA downloads Landsat imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics can be used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform. The imagery is of great value for improved, persistent monitoring of global croplands and for the operational in-season analysis and mapping of crops across the globe in USDA FAS purview as mandated by the US government. The presentation will overview operational processing of Landsat-class mosaics in support of USDA FAS efforts and will look into 2015 and beyond.

  13. Measuring the respiratory gas exchange of grazing cattle using the GreenFeed emissions monitoring system

    USDA-ARS?s Scientific Manuscript database

    Ruminants are a significant source of enteric methane, which has been identified as a powerful greenhouse gas that contributes to climate change. With interest in developing technologies to decrease enteric methane emission, systems are currently being developed to measure the methane emission by c...

  14. Mobile Technology to Support the Interactive Classroom

    ERIC Educational Resources Information Center

    Fardoun, Habib M.; Awada, Hachem

    2017-01-01

    At the current classrooms, teachers continue using traditional techniques for monitoring the class. However, there are more participation of mobile devices, and concretely, the tablets. In addition, the network access by both students and teachers in daily life is something usual and a routine work. For this reason, the authors propose the…

  15. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  16. A real time study on condition monitoring of distribution transformer using thermal imager

    NASA Astrophysics Data System (ADS)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  17. Systematic Review of the Performance of HIV Viral Load Technologies on Plasma Samples

    PubMed Central

    Sollis, Kimberly A.; Smit, Pieter W.; Fiscus, Susan; Ford, Nathan; Vitoria, Marco; Essajee, Shaffiq; Barnett, David; Cheng, Ben; Crowe, Suzanne M.; Denny, Thomas; Landay, Alan; Stevens, Wendy; Habiyambere, Vincent; Perrins, Jos; Peeling, Rosanna W.

    2014-01-01

    Background Viral load (VL) monitoring is the standard of care in developing country settings for detecting HIV treatment failure. Since 2010 the World Health Organization has recommended a phase-in approach to VL monitoring in resource-limited settings. We conducted a systematic review of the accuracy and precision of HIV VL technologies for treatment monitoring. Methods and Findings A search of Medline and Embase was conducted for studies evaluating the accuracy or reproducibility of commercially available HIV VL assays. 37 studies were included for review including evaluations of the Amplicor Monitor HIV-1 v1.5 (n = 25), Cobas TaqMan v2.0 (n = 11), Abbott RealTime HIV-1 (n = 23), Versant HIV-1 RNA bDNA 3.0 (n = 15), Versant HIV-1 RNA kPCR 1.0 (n = 2), ExaVir Load v3 (n = 2), and NucliSens EasyQ v2.0 (n = 1). All currently available HIV VL assays are of sufficient sensitivity to detect plasma virus levels at a lower detection limit of 1,000 copies/mL. Bias data comparing the Abbott RealTime HIV-1, TaqMan v2.0 to the Amplicor Monitor v1.5 showed a tendency of the Abbott RealTime HIV-1 to under-estimate results while the TaqMan v2.0 overestimated VL counts. Compared to the Amplicor Monitor v1.5, 2–26% and 9–70% of results from the Versant bDNA 3.0 and Abbott RealTime HIV-1 differed by greater than 0.5log10. The average intra and inter-assay variation of the Abbott RealTime HIV-1 were 2.95% (range 2.0–5.1%) and 5.44% (range 1.17–30.00%) across the range of VL counts (2log10–7log10). Conclusions This review found that all currently available HIV VL assays are of sufficient sensitivity to detect plasma VL of 1,000 copies/mL as a threshold to initiate investigations of treatment adherence or possible treatment failure. Sources of variability between VL assays include differences in technology platform, plasma input volume, and ability to detect HIV-1 subtypes. Monitoring of individual patients should be performed on the same technology platform to ensure appropriate interpretation of changes in VL. Prospero registration # CD42013003603. PMID:24558359

  18. LACIE - A look to the future. [Large Area Crop Inventory Experiment

    NASA Technical Reports Server (NTRS)

    Macdonald, R. B.; Hall, F. G.

    1977-01-01

    The Large Area Crop Inventory Experiment (LACIE) is a 'proof of concept' project designed to demonstrate the applicability of remote sensing technology to the global monitoring of wheat. This paper discusses the need for more timely and reliable monitoring of food and fiber supplies, reviews the monitoring systems currently utilized by the USDA and United Nations Food and Agriculture Organization in the United States and in foreign countries, and elucidates the fundamentals involved in assessing the impact of variable weather and economic conditions on wheat acreage, yield, and production. The experiment's approach to production monitoring is described briefly, and its status is reviewed as of the conclusion of 2 years of successful operation. Examples of acreage and yield monitoring in the Soviet Union are used to illustrate the experiment's approach.

  19. Self-Organizing Peer-To-Peer Middleware for Healthcare Monitoring in Real-Time

    PubMed Central

    Kim, Hyun Ho; Jo, Hyeong Gon

    2017-01-01

    As the number of elderly persons with chronic illnesses increases, a new public infrastructure for their care is becoming increasingly necessary. In particular, technologies that can monitoring bio-signals in real-time have been receiving significant attention. Currently, most healthcare monitoring services are implemented by wireless carrier through centralized servers. These services are vulnerable to data concentration because all data are sent to a remote server. To solve these problems, we propose self-organizing P2P middleware for healthcare monitoring that enables a real-time multi bio-signal streaming without any central server by connecting the caregiver and care recipient. To verify the performance of the proposed middleware, we evaluated the monitoring service matching time based on a monitoring request. We also confirmed that it is possible to provide an effective monitoring service by evaluating the connectivity between Peer-to-Peer and average jitter. PMID:29149045

  20. Self-Organizing Peer-To-Peer Middleware for Healthcare Monitoring in Real-Time.

    PubMed

    Kim, Hyun Ho; Jo, Hyeong Gon; Kang, Soon Ju

    2017-11-17

    As the number of elderly persons with chronic illnesses increases, a new public infrastructure for their care is becoming increasingly necessary. In particular, technologies that can monitoring bio-signals in real-time have been receiving significant attention. Currently, most healthcare monitoring services are implemented by wireless carrier through centralized servers. These services are vulnerable to data concentration because all data are sent to a remote server. To solve these problems, we propose self-organizing P2P middleware for healthcare monitoring that enables a real-time multi bio-signal streaming without any central server by connecting the caregiver and care recipient. To verify the performance of the proposed middleware, we evaluated the monitoring service matching time based on a monitoring request. We also confirmed that it is possible to provide an effective monitoring service by evaluating the connectivity between Peer-to-Peer and average jitter.

  1. RETScreen Plus Software Tutorial

    NASA Technical Reports Server (NTRS)

    Ganoe, Rene D.; Stackhouse, Paul W., Jr.; DeYoung, Russell J.

    2014-01-01

    Greater emphasis is being placed on reducing both the carbon footprint and energy cost of buildings. A building's energy usage depends upon many factors one of the most important is the local weather and climate conditions to which it's electrical, heating and air conditioning systems must respond. Incorporating renewable energy systems, including solar systems, to supplement energy supplies and increase energy efficiency is important to saving costs and reducing emissions. Also retrofitting technologies to buildings requires knowledge of building performance in its current state, potential future climate state, projection of potential savings with capital investment, and then monitoring the performance once the improvements are made. RETScreen Plus is a performance analysis software module that supplies the needed functions of monitoring current building performance, targeting projected energy efficiency improvements and verifying improvements once completed. This tutorial defines the functions of RETScreen Plus as well as outlines the general procedure for monitoring and reporting building energy performance.

  2. Developing a monitoring and verification plan with reference to the Australian Otway CO2 pilot project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dodds, K.; Daley, T.; Freifeld, B.

    2009-05-01

    The Australian Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) is currently injecting 100,000 tons of CO{sub 2} in a large-scale test of storage technology in a pilot project in southeastern Australia called the CO2CRC Otway Project. The Otway Basin, with its natural CO{sub 2} accumulations and many depleted gas fields, offers an appropriate site for such a pilot project. An 80% CO{sub 2} stream is produced from a well (Buttress) near the depleted gas reservoir (Naylor) used for storage (Figure 1). The goal of this project is to demonstrate that CO{sub 2} can be safely transported, stored underground, andmore » its behavior tracked and monitored. The monitoring and verification framework has been developed to monitor for the presence and behavior of CO{sub 2} in the subsurface reservoir, near surface, and atmosphere. This monitoring framework addresses areas, identified by a rigorous risk assessment, to verify conformance to clearly identifiable performance criteria. These criteria have been agreed with the regulatory authorities to manage the project through all phases addressing responsibilities, liabilities, and to assure the public of safe storage.« less

  3. Application of data fusion techniques and technologies for wearable health monitoring.

    PubMed

    King, Rachel C; Villeneuve, Emma; White, Ruth J; Sherratt, R Simon; Holderbaum, William; Harwin, William S

    2017-04-01

    Technological advances in sensors and communications have enabled discrete integration into everyday objects, both in the home and about the person. Information gathered by monitoring physiological, behavioural, and social aspects of our lives, can be used to achieve a positive impact on quality of life, health, and well-being. Wearable sensors are at the cusp of becoming truly pervasive, and could be woven into the clothes and accessories that we wear such that they become ubiquitous and transparent. To interpret the complex multidimensional information provided by these sensors, data fusion techniques are employed to provide a meaningful representation of the sensor outputs. This paper is intended to provide a short overview of data fusion techniques and algorithms that can be used to interpret wearable sensor data in the context of health monitoring applications. The application of these techniques are then described in the context of healthcare including activity and ambulatory monitoring, gait analysis, fall detection, and biometric monitoring. A snap-shot of current commercially available sensors is also provided, focusing on their sensing capability, and a commentary on the gaps that need to be bridged to bring research to market. Copyright © 2017. Published by Elsevier Ltd.

  4. Sensor Placement Optimization using Chama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Nicholson, Bethany L.; Laird, Carl Damon

    Continuous or regularly scheduled monitoring has the potential to quickly identify changes in the environment. However, even with low - cost sensors, only a limited number of sensors can be deployed. The physical placement of these sensors, along with the sensor technology and operating conditions, can have a large impact on the performance of a monitoring strategy. Chama is an open source Python package which includes mixed - integer, stochastic programming formulations to determine sensor locations and technology that maximize monitoring effectiveness. The methods in Chama are general and can be applied to a wide range of applications. Chama ismore » currently being used to design sensor networks to monitor airborne pollutants and to monitor water quality in water distribution systems. The following documentation includes installation instructions and examples, description of software features, and software license. The software is intended to be used by regulatory agencies, industry, and the research community. It is assumed that the reader is familiar with the Python Programming Language. References are included for addit ional background on software components. Online documentation, hosted at http://chama.readthedocs.io/, will be updated as new features are added. The online version includes API documentation .« less

  5. Heart failure patients' perceptions and use of technology to manage disease symptoms.

    PubMed

    Hall, Amanda K; Dodd, Virginia; Harris, Amy; McArthur, Kara; Dacso, Clifford; Colton, Lara M

    2014-04-01

    Technology use for symptom management is beneficial for both patients and physicians. Widespread acceptance of technology use in healthcare fuels continued development of technology with ever-increasing sophistication. Although acceptance of technology use in healthcare by medical professionals is evident, less is known about the perceptions, preferences, and use of technology by heart failure (HF) patients. This study explores patients' perceptions and current use of technology for managing HF symptoms (MHFS). A qualitative analysis of in-depth individual interviews using a constant comparative approach for emerging themes was conducted. Fifteen participants (mean age, 64.43 years) with HF were recruited from hospitals, cardiology clinics, and community groups. All study participants reported use of a home monitoring device, such as an ambulatory blood pressure device or bathroom scale. The majority of participants reported not accessing online resources for additional MHFS information. However, several participants stated their belief that technology would be useful for MHFS. Participants reported increased access to care, earlier indication of a worsening condition, increased knowledge, and greater convenience as potential benefits of technology use while managing HF symptoms. For most participants financial cost, access issues, satisfaction with current self-care routine, mistrust of technology, and reliance on routine management by their current healthcare provider precluded their use of technology for MHFS. Knowledge about HF patients' perceptions of technology use for self-care and better understanding of issues associated with technology access can aid in the development of effective health behavior interventions for individuals who are MHFS and may result in increased compliance, better outcomes, and lower healthcare costs.

  6. Young drivers' engagement with social interactive technology on their smartphone: Critical beliefs to target in public education messages.

    PubMed

    Gauld, Cassandra S; Lewis, Ioni M; White, Katherine M; Watson, Barry

    2016-11-01

    The current study forms part of a larger study based on the Step Approach to Message Design and Testing (SatMDT), a new and innovative framework designed to guide the development and evaluation of health communication messages, including road safety messages. This four step framework is based on several theories, including the Theory of Planned Behaviour. The current study followed steps one and two of the SatMDT framework and utilised a quantitative survey to validate salient beliefs (behavioural, normative, and control) about initiating, monitoring/reading, and responding to social interactive technology on smartphones by N=114 (88F, 26M) young drivers aged 17-25 years. These beliefs had been elicited in a prior in-depth qualitative study. A subsequent critical beliefs analysis identified seven beliefs as potential targets for public education messages, including, 'slow-moving traffic' (control belief - facilitator) for both monitoring/reading and responding behaviours; 'feeling at ease that you had received an expected communication' (behavioural belief -advantage) for monitoring/reading behaviour; and 'friends/peers more likely to approve' (normative belief) for responding behaviour. Potential message content targeting these seven critical beliefs is discussed in accordance with the SatMDT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. The Implementation Internet of Things(IoT) Technology in Real Time Monitoring of Electrical Quantities

    NASA Astrophysics Data System (ADS)

    Despa, D.; Nama, G. F.; Muhammad, M. A.; Anwar, K.

    2018-04-01

    Electrical quantities such as Voltage, Current, Power, Power Factor, Energy, and Frequency in electrical power system tends to fluctuate, as a result of load changes, disturbances, or other abnormal states. The change-state in electrical quantities should be identify immediately, otherwise it can lead to serious problem for whole system. Therefore a necessity is required to determine the condition of electricity change-state quickly and appropriately in order to make effective decisions. Online monitoring of power distribution system based on Internet of Things (IoT) technology was deploy and implemented on Department of Mechanical Engineering University of Lampung (Unila), especially at three-phase main distribution panel H-building. The measurement system involve multiple sensors such current sensors and voltage sensors, while data processing conducted by Arduino, the measurement data stored in to the database server and shown in a real-time through a web-based application. This measurement system has several important features especially for realtime monitoring, robust data acquisition and logging, system reporting, so it will produce an important information that can be used for various purposes of future power analysis such estimation and planning. The result of this research shown that the condition of electrical power system at H-building performed unbalanced load, which often leads to drop-voltage condition

  8. Efficiency improvements in US Office equipment: Expected policy impacts and uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koomey, J.G.; Cramer, M.; Piette, M.A.

    This report describes a detailed end-use forecast of office equipment energy use for the US commercial sector. We explore the likely impacts of the US Environmental Protection Agency`s ENERGY STAR office equipment program and the potential impacts of advanced technologies. The ENERGY STAR program encourages manufacturers to voluntarily incorporate power saving features into personal computers, monitors, printers, copiers, and fax machines in exchange for allowing manufacturers to use the EPA ENERGY STAR logo in their advertising campaigns. The Advanced technology case assumes that the most energy efficient current technologies are implemented regardless of cost.

  9. Vital signs monitoring on general wards: clinical staff perceptions of current practices and the planned introduction of continuous monitoring technology.

    PubMed

    Prgomet, Mirela; Cardona-Morrell, Magnolia; Nicholson, Margaret; Lake, Rebecca; Long, Janet; Westbrook, Johanna; Braithwaite, Jeffrey; Hillman, Ken

    2016-09-01

    Early detection of patient deterioration and prevention of adverse events are key challenges to patient safety. This study investigated clinical staff perceptions of current monitoring practices and the planned introduction of continuous monitoring devices on general wards. Multi-method study comprising structured surveys, in-depth interviews and device trial with log book feedback. Two general wards in a large urban teaching hospital in Sydney, Australia. Respiratory and neurosurgery nursing staff and two doctors. Nurses were confident about their abilities to identify patients at risk of deterioration, using a combination of vital signs and visual assessment. There were concerns about the accuracy of current vital signs monitoring equipment and frequency of intermittent observation. Both the nurses and the doctors were enthusiastic about the prospect of continuous monitoring and perceived it would allow earlier identification of patient deterioration; provide reassurance to patients; and support interdisciplinary communication. There were also reservations about continuous monitoring, including potential decrease in bedside nurse-patient interactions; increase in inappropriate escalations of patient care; and discomfort to patients. While continuous monitoring devices were seen as a potentially positive tool to support the identification of patient deterioration, drawbacks, such as the potential for reduced patient contact, revealed key areas that will require close surveillance following the implementation of devices. Training and improved interdisciplinary communication were identified as key requisites for successful implementation. © The Author 2016. Published by Oxford University Press in association with the International Society for Quality in Health Care. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Sentinel 2 MMFU: The first European Mass Memory System Based on NAND-Flash Storage Technology

    NASA Astrophysics Data System (ADS)

    Staehle, M.; Cassel, M.; Lonsdorfer, U.; Gliem, F.; Walter, D.; Fichna, T.

    2011-08-01

    Sentinel-2 is the multispectral optical mission of the EU-ESA GMES (Global Monitoring for Environment and Security) program, currently under development by Astrium-GmbH in Friedrichshafen (Germany) for a launch in 2013. The mission features a 490 Mbit/s optical sensor operating at high duty cycles, requiring in turn a large 2.4 Tbit on-board storage capacity.The required storage capacity motivated the selection of the NAND-Flash technology which was already secured by a lengthy period (2004-2009) of detailed testing, analysis and qualification by Astrium GmbH, IDA and ESTEC. The mass memory system is currently being realized by Astrium GmbH.

  11. [Telemetry in the clinical setting].

    PubMed

    Hilbel, Thomas; Helms, Thomas M; Mikus, Gerd; Katus, Hugo A; Zugck, Christian

    2008-09-01

    Telemetric cardiac monitoring was invented in 1949 by Norman J Holter. Its clinical use started in the early 1960s. In the hospital, biotelemetry allows early mobilization of patients with cardiovascular risk and addresses the need for arrhythmia or oxygen saturation monitoring. Nowadays telemetry either uses vendor-specific UHF band broadcasting or the digital ISM band (Industrial, Scientific, and Medical Band) standardized Wi-Fi network technology. Modern telemetry radio transmitters can measure and send multiple physiological parameters like multi-channel ECG, NIPB and oxygen saturation. The continuous measurement of oxygen saturation is mandatory for the remote monitoring of patients with cardiac pacemakers. Real 12-lead ECG systems with diagnostic quality are an advantage for monitoring patients with chest pain syndromes or in drug testing wards. Modern systems are light-weight and deliver a maximum of carrying comfort due to optimized cable design. Important for the system selection is a sophisticated detection algorithm with a maximum reduction of artifacts. Home-monitoring of implantable cardiac devices with telemetric functionalities are becoming popular because it allows remote diagnosis of proper device functionality and also optimization of the device settings. Continuous real-time monitoring at home for patients with chronic disease may be possible in the future using Digital Video Broadcasting Terrestrial (DVB-T) technology in Europe, but is currently not yet available.

  12. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-01

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Early Monitoring Stations, The Radiation Monitoring Stations(RMS's) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS's. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS).

  13. Printing Insecurity? The Security Implications of 3D-Printing of Weapons.

    PubMed

    Walther, Gerald

    2015-12-01

    In 2013, the first gun printed out of plastic by a 3D-printer was successfully fired in the U.S. This event caused a major media hype about the dangers of being able to print a gun. Law enforcement agencies worldwide were concerned about this development and the potentially huge security implications of these functional plastic guns. As a result, politicians called for a ban of these weapons and a control of 3D-printing technology. This paper reviews the security implications of 3D-printing technology and 3D guns. It argues that current arms control and transfer policies are adequate to cover 3D-printed guns as well. However, while this analysis may hold up currently, progress in printing technology needs to be monitored to deal with future dangers pre-emptively.

  14. The Promise of Information and Communication Technology in Healthcare: Extracting Value From the Chaos.

    PubMed

    Mamlin, Burke W; Tierney, William M

    2016-01-01

    Healthcare is an information business with expanding use of information and communication technologies (ICTs). Current ICT tools are immature, but a brighter future looms. We examine 7 areas of ICT in healthcare: electronic health records (EHRs), health information exchange (HIE), patient portals, telemedicine, social media, mobile devices and wearable sensors and monitors, and privacy and security. In each of these areas, we examine the current status and future promise, highlighting how each might reach its promise. Steps to better EHRs include a universal programming interface, universal patient identifiers, improved documentation and improved data analysis. HIEs require federal subsidies for sustainability and support from EHR vendors, targeting seamless sharing of EHR data. Patient portals must bring patients into the EHR with better design and training, greater provider engagement and leveraging HIEs. Telemedicine needs sustainable payment models, clear rules of engagement, quality measures and monitoring. Social media needs consensus on rules of engagement for providers, better data mining tools and approaches to counter disinformation. Mobile and wearable devices benefit from a universal programming interface, improved infrastructure, more rigorous research and integration with EHRs and HIEs. Laws for privacy and security need updating to match current technologies, and data stewards should share information on breaches and standardize best practices. ICT tools are evolving quickly in healthcare and require a rational and well-funded national agenda for development, use and assessment. Copyright © 2016 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  15. The architecture of a network level intrusion detection system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heady, R.; Luger, G.; Maccabe, A.

    1990-08-15

    This paper presents the preliminary architecture of a network level intrusion detection system. The proposed system will monitor base level information in network packets (source, destination, packet size, and time), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

  16. US Army Soldiers With Type 1 Diabetes Mellitus.

    PubMed

    Choi, Y Sammy; Cucura, Jon

    2018-04-01

    US Army soldiers diagnosed with type 1 diabetes were previously considered unfit for duty. For highly motivated soldiers, current advanced technologies allow the possibility of not only retention on active duty, but military deployment. We present our experience at Fort Bragg, North Carolina, taking care of soldiers newly diagnosed with type 1 diabetes mellitus. Through intensive diabetes education, extensive military and physical training, optimization of diabetes technology, and remote real-time monitoring, soldiers are able to continue to serve their country in the most specialized roles.

  17. Developing mHealth Remote Monitoring Technology for Attention Deficit Hyperactivity Disorder: A Qualitative Study Eliciting User Priorities and Needs.

    PubMed

    Simons, Lucy; Valentine, Althea Z; Falconer, Caroline J; Groom, Madeleine; Daley, David; Craven, Michael P; Young, Zoe; Hall, Charlotte; Hollis, Chris

    2016-03-23

    Guidelines in the United Kingdom recommend that medication titration for attention deficit hyperactivity disorder (ADHD) should be completed within 4-6 weeks and include regular reviews. However, most clinicians think that weekly clinic contact is infeasible, and audits have shown that this timeline is rarely achieved. Thus, a more effective monitoring and review system is needed; remote monitoring technology (RMT) may be one way to improve current practice. However, little is known about whether patients with ADHD, their families, and clinicians would be interested in using RMT. To explore patients', parents', and health care professionals' views and attitudes toward using digital technology for remote monitoring during titration for ADHD. This was a qualitative study, and data were collected through 11 focus groups with adults and young people with ADHD, parents of children with ADHD, and health care professionals (N=59). All participant groups were positive about using RMT in the treatment of ADHD, but they were also aware of barriers to its use, especially around access to technology and integrating RMT into clinical care. They identified that RMT had the most potential for use in the ongoing management and support of ADHD, rather than during the distinct titration period. Participants identified features of RMT that could improve the quality of consultations and support greater self-management. RMT has the potential to augment support and care for ADHD, but it needs to go beyond the titration period and offer more to patients and families than monitoring through outcome measures. Developing and evaluating an mHealth app that incorporates the key features identified by end users is required.

  18. Living Labs: overview of ecological approaches for health promotion and rehabilitation.

    PubMed

    Korman, M; Weiss, P L; Kizony, R

    2016-01-01

    The term "Living Lab" was coined to reflect the use of sensors to monitor human behavior in real life environments. Until recently such measurements had been feasible only within experimental laboratory settings. The objective of this paper is to highlight research on health care sensing and monitoring devices that enable direct, objective and accurate capture of real-world functioning. Selected articles exemplifying the key technologies that allow monitoring of the motor-cognitive activity of persons with disabilities during naturally occurring daily experiences in real-life settings are discussed in terms of (1) the ways in which the Living Lab approach has been used to date, (2) limitations related to clinical assessment in rehabilitation settings and (3) three categories of the instruments most commonly used for this purpose: personal technologies, ambient technologies and external assistive systems. Technology's most important influences on clinical practice and rehabilitation are in a shift from laboratory-based to field-centered research and a transition between in-clinic performance to daily life activities. Numerous applications show its potential for real-time clinical assessment. Current technological solutions that may provide clinicians with objective, unobtrusive measurements of health and function, as well as tools that support rehabilitation on an individual basis in natural environments provide an important asset to standard clinical measures. Until recently objective clinical assessment could not be readily performed in a client's daily functional environment. Novel technologies enable health care sensing and monitoring devices that enable direct, objective and accurate capture of real-world functioning. Such technologies are referred to as a "Living Lab" approach since they enable the capture of objective and non-obtrusive data that clinicians can use to assess performance. Research and development in this field help clinicians support maintain independence and quality of life for people who have disabilities or who are aging, and to promote more effective methods of long-term rehabilitation and maintenance of a healthy life style.

  19. Feeling the digital pulse: Consumer-centered approach to individual health profiling.

    PubMed

    Wong, Thomas K S

    2006-01-01

    New technologies from the new digital era are overcoming temporal, spatial and physical hurdles in the development and realization of individual health profiling and consumer health monitoring devices. Mature wireless and networking technologies promise more accessibility and portability of health data and records, and health monitoring. The increase in convenience and efficiency underlie the technological foundation for development of telehealth systems, which make personal health care available anytime, anywhere. On the one hand, advances in information technology are aiding in the creation of lifelong health records and hence in the tracking and understanding of the health history of individuals, which in turn will help shift the public health care delivery model toward more primary and secondary care and prevention from the current emphasis on curing. On the other, health monitoring devices are also benefiting from technological progress, and are increasingly moving toward more self-assistive, compact and appealing to consumers. However, although most of the necessary hardware and technologies are already mature and widely available, they have yet to be fully exploited for personal health care, and the general public also need to be educated and encouraged to adopt the concepts of individual health profiling and regular health monitoring into their lives. In this regard, the School of Nursing at The Hong Kong Polytechnic University has been working proactively on two fronts. First, a telehealth system has been installed in community-based venues such as clinics, hospitals and, most important, schools and youth centers in order to promote lifelong health profiling for all individuals. Second, the School of Nursing is committed to utilizing advanced technologies for developing more compact and user-friendly consumer health monitoring devices such as non-invasive meters. This is with a view to encourage individuals to take more responsibility for their own health and behavior, which fits in with the Hong Kong government's aim of shifting the burden of public health care provision away from hospitals to community-based primary and secondary care. The ultimate goal of the School of Nursing's efforts in telehealth and consumer health monitoring devices is the wide adoption of home-based telehealth systems that will subsequently spur individual health profiling, which will in turn encourage personal responsibility for improving one's health.

  20. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices

    PubMed Central

    Thurow, Kerstin; Stoll, Regina

    2017-01-01

    Objectives Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. Methods MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Results Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Conclusions Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization. PMID:28261526

  1. Wearable Devices in Medical Internet of Things: Scientific Research and Commercially Available Devices.

    PubMed

    Haghi, Mostafa; Thurow, Kerstin; Stoll, Regina

    2017-01-01

    Wearable devices are currently at the heart of just about every discussion related to the Internet of Things. The requirement for self-health monitoring and preventive medicine is increasing due to the projected dramatic increase in the number of elderly people until 2020. Developed technologies are truly able to reduce the overall costs for prevention and monitoring. This is possible by constantly monitoring health indicators in various areas, and in particular, wearable devices are considered to carry this task out. These wearable devices and mobile apps now have been integrated with telemedicine and telehealth efficiently, to structure the medical Internet of Things. This paper reviews wearable health care devices both in scientific papers and commercial efforts. MIoT is demonstrated through a defined architecture design, including hardware and software dealing with wearable devices, sensors, smart phones, medical application, and medical station analyzers for further diagnosis and data storage. Wearables, with the help of improved technology have been developed greatly and are considered reliable tools for long-term health monitoring systems. These are applied in the observation of a large variety of health monitoring indicators in the environment, vital signs, and fitness. Wearable devices are now used for a wide range of healthcare observation. One of the most important elements essential in data collection is the sensor. During recent years with improvement in semiconductor technology, sensors have made investigation of a full range of parameters closer to realization.

  2. Infusion of innovative technologies for mission operations

    NASA Astrophysics Data System (ADS)

    Donati, Alessandro

    2010-11-01

    The Advanced Mission Concepts and Technologies Office (Mission Technologies Office, MTO for short) at the European Space Operations Centre (ESOC) of ESA is entrusted with research and development of innovative mission operations concepts systems and provides operations support to special projects. Visions of future missions and requests for improvements from currently flying missions are the two major sources of inspiration to conceptualize innovative or improved mission operations processes. They include monitoring and diagnostics, planning and scheduling, resource management and optimization. The newly identified operations concepts are then proved by means of prototypes, built with embedded, enabling technology and deployed as shadow applications in mission operations for an extended validation phase. The technology so far exploited includes informatics, artificial intelligence and operational research branches. Recent outstanding results include artificial intelligence planning and scheduling applications for Mars Express, advanced integrated space weather monitoring system for the Integral space telescope and a suite of growing client applications for MUST (Mission Utilities Support Tools). The research, development and validation activities at the Mission technologies office are performed together with a network of research institutes across Europe. The objective is narrowing the gap between enabling and innovative technology and space mission operations. The paper first addresses samples of technology infusion cases with their lessons learnt. The second part is focused on the process and the methodology used at the Mission technologies office to fulfill its objectives.

  3. Advanced technology needs for a global change science program: Perspective of the Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Swissler, Thomas J.

    1991-01-01

    The focus of the NASA program in remote sensing is primarily the Earth system science and the monitoring of the Earth global changes. One of NASA's roles is the identification and development of advanced sensing techniques, operational spacecraft, and the many supporting technologies necessary to meet the stringent science requirements. Langley Research Center has identified the elements of its current and proposed advanced technology development program that are relevant to global change science according to three categories: sensors, spacecraft, and information system technologies. These technology proposals are presented as one-page synopses covering scope, objective, approach, readiness timeline, deliverables, and estimated funding. In addition, the global change science requirements and their measurement histories are briefly discussed.

  4. A Review of Player Monitoring Approaches in Basketball: Current Trends and Future Directions.

    PubMed

    Fox, Jordan L; Scanlan, Aaron T; Stanton, Robert

    2017-07-01

    Fox, JL, Scanlan, AT, and Stanton, R. A review of player monitoring approaches in basketball: current trends and future directions. J Strength Cond Res 31(7): 2021-2029, 2017-Effective monitoring of players in team sports such as basketball requires an understanding of the external demands and internal responses, as they relate to training phases and competition. Monitoring of external demands and internal responses allows coaching staff to determine the dose-response associated with the imposed training load (TL), and subsequently, if players are adequately prepared for competition. This review discusses measures reported in the literature for monitoring the external demands and internal responses of basketball players during training and competition. The external demands of training and competition were primarily monitored using time-motion analysis, with limited use of microtechnology being reported. Internal responses during training were typically measured using hematological markers, heart rate, various TL models, and perceptual responses such as rating of perceived exertion (RPE). Heart rate was the most commonly reported indicator of internal responses during competition with limited reporting of hematological markers or RPE. These findings show a large discrepancy between the reporting of external and internal measures and training and competition demands. Microsensors, however, may be a practical and convenient method of player monitoring in basketball to overcome the limitations associated with current approaches while allowing for external demands and internal responses to be recorded simultaneously. The triaxial accelerometers of microsensors seem well suited for basketball and warrant validation to definitively determine their place in the monitoring of basketball players. Coaching staff should make use of this technology by tracking individual player responses across the annual plan and using real-time monitoring to minimize factors such as fatigue and injury risk.

  5. Building capacity in biodiversity monitoring at the global scale

    USGS Publications Warehouse

    Schmeller, Dirk S.; Bohm, Monika; Arvanitidis, Christos; Barber-Meyer, Shannon; Brummitt, Neil; Chandler, Mark; Chatzinikolaou, Eva; Costello, Mark J.; Ding, Hui; García-Moreno, Jaime; Gill, Michael J.; Haase, Peter; Jones, Miranda; Juillard, Romain; Magnusson, William E.; Martin, Corinne S.; McGeoch, Melodie A.; Mihoub, Jean-Baptiste; Pettorelli, Nathalie; Proença, Vânia; Peng, Cui; Regan, Eugenie; Schmiedel, Ute; Simsika, John P.; Weatherdon, Lauren; Waterman, Carly; Xu, Haigen; Belnap, Jayne

    2017-01-01

    Human-driven global change is causing ongoing declines in biodiversity worldwide. In order to address these declines, decision-makers need accurate assessments of the status of and pressures on biodiversity. However, these are heavily constrained by incomplete and uneven spatial, temporal and taxonomic coverage. For instance, data from regions such as Europe and North America are currently used overwhelmingly for large-scale biodiversity assessments due to lesser availability of suitable data from other, more biodiversity-rich, regions. These data-poor regions are often those experiencing the strongest threats to biodiversity, however. There is therefore an urgent need to fill the existing gaps in global biodiversity monitoring. Here, we review current knowledge on best practice in capacity building for biodiversity monitoring and provide an overview of existing means to improve biodiversity data collection considering the different types of biodiversity monitoring data. Our review comprises insights from work in Africa, South America, Polar Regions and Europe; in government-funded, volunteer and citizen-based monitoring in terrestrial, freshwater and marine ecosystems. The key steps to effectively building capacity in biodiversity monitoring are: identifying monitoring questions and aims; identifying the key components, functions, and processes to monitor; identifying the most suitable monitoring methods for these elements, carrying out monitoring activities; managing the resultant data; and interpreting monitoring data. Additionally, biodiversity monitoring should use multiple approaches including extensive and intensive monitoring through volunteers and professional scientists but also harnessing new technologies. Finally, we call on the scientific community to share biodiversity monitoring data, knowledge and tools to ensure the accessibility, interoperability, and reporting of biodiversity data at a global scale.

  6. Residential area streetlight intelligent monitoring management system based on ZigBee and GPRS

    NASA Astrophysics Data System (ADS)

    Liang, Guozhuang; Xu, Xiaoyu

    2017-05-01

    According to current situation of green environmental protection lighting policy and traditional residential lighting system automation degree, low energy efficiency, difficult to management and other problems, the residential area streetlight monitoring management system based on ZigBee and GPRS is proposed. This design is put forward by using sensor technology, ZigBee and GPRS wireless communication technology network. To realize intelligent lighting parameters adjustment, coordination control method of various kinds of sensors is used. The system through multiple ZigBee nodes topology network to collect street light's information, each subnet through the ZigBee coordinator and GPRS network to transmit data. The street lamps can be put on or off, or be adjusted the brightness automatic ally according to the surrounding environmental illumination.

  7. Analysis on energy consumption index system of thermal power plant

    NASA Astrophysics Data System (ADS)

    Qian, J. B.; Zhang, N.; Li, H. F.

    2017-05-01

    Currently, the increasingly tense situation in the context of resources, energy conservation is a realistic choice to ease the energy constraint contradictions, reduce energy consumption thermal power plants has become an inevitable development direction. And combined with computer network technology to build thermal power “small index” to monitor and optimize the management system, the power plant is the application of information technology and to meet the power requirements of the product market competition. This paper, first described the research status of thermal power saving theory, then attempted to establish the small index system and build “small index” monitoring and optimization management system in thermal power plant. Finally elaborated key issues in the field of small thermal power plant technical and economic indicators to be further studied and resolved.

  8. Empowered citizen 'health hackers' who are not waiting.

    PubMed

    Omer, Timothy

    2016-08-17

    Due to the easier access to information, the availability of low cost technologies and the involvement of well educated, passionate patients, a group of citizen 'Health Hackers', who are building their own medical systems to help them overcome the unmet needs of their conditions, is emerging. This has recently been the case in the type 1 diabetes community, under the movement #WeAreNotWaiting, with innovative use of current medical devices hacked to access data and Open-Source code producing solutions ranging from remote monitoring of diabetic children to producing an Artificial Pancreas System to automate the management and monitoring of a patient's condition. Timothy Omer is working with the community to utilise the technology already in his pocket to build a mobile- and smartwatch-based Artificial Pancreas System.

  9. Emerging technologies for pediatric and adult trauma care.

    PubMed

    Moulton, Steven L; Haley-Andrews, Stephanie; Mulligan, Jane

    2010-06-01

    Current Emergency Medical Service protocols rely on provider-directed care for evaluation, management and triage of injured patients from the field to a trauma center. New methods to quickly diagnose, support and coordinate the movement of trauma patients from the field to the most appropriate trauma center are in development. These methods will enhance trauma care and promote trauma system development. Recent advances in machine learning, statistical methods, device integration and wireless communication are giving rise to new methods for vital sign data analysis and a new generation of transport monitors. These monitors will collect and synchronize exponentially growing amounts of vital sign data with electronic patient care information. The application of advanced statistical methods to these complex clinical data sets has the potential to reveal many important physiological relationships and treatment effects. Several emerging technologies are converging to yield a new generation of smart sensors and tightly integrated transport monitors. These technologies will assist prehospital providers in quickly identifying and triaging the most severely injured children and adults to the most appropriate trauma centers. They will enable the development of real-time clinical support systems of increasing complexity, able to provide timelier, more cost-effective, autonomous care.

  10. Wireless online position monitoring of manual valve types for plant configuration management in nuclear power plants

    DOE PAGES

    Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.; ...

    2016-10-05

    In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less

  11. Wireless online position monitoring of manual valve types for plant configuration management in nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek; Buttles, John W.; Beaty, Lawrence H.

    In the current competitive energy market, the nuclear industry is committed to lower the operations and maintenance cost; increase productivity and efficiency while maintaining safe and reliable operation. The present operating model of nuclear power plants is dependent on large technical staffs that put the nuclear industry at long-term economic disadvantage. Technology can play a key role in nuclear power plant configuration management in offsetting labor costs by automating manually performed plant activities. The technology being developed, tested, and demonstrated in this paper will enable the continued safe operation of today’s fleet of light water reactors by providing the technicalmore » means to monitor components in plants today that are only routinely monitored through manual activities. The wireless enabled valve position indicators that are the subject of this paper are able to provide a valid position indication available continuously, rather than only periodically. As a result, a real-time (online) availability of valve positions using an affordable technologies are vital to plant configuration when compared with long-term labor rates, and provide information that can be used for a variety of plant engineering, maintenance, and management applications.« less

  12. IMS: a new technology to develop a telemedicine system.

    PubMed

    Uceda, J D; Elena, M; Blasco, S; Tarrida, C L; Quero, J M

    2008-01-01

    The emergent IMS (Internet Protocol Multimedia Subsystem) technology appears to improve the current communication technologies. Its characteristics, such as Quality of Service (QoS), make it an advantageous system for innovative applications. Providing integrated services to users is one of the main reasons for the existence of IMS. Operators provide the technology as an open source, to be able to use services developed by researchers. Combining and integrating them, users will receive completely new services. Our proposal of use for IMS is the development of a telemedicine platform, designed to support not only remote biological signal monitoring, but value-added services for diagnosis and medical care, both of these working in real time.

  13. Review on the Traction System Sensor Technology of a Rail Transit Train.

    PubMed

    Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong

    2017-06-11

    The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed.

  14. Review on the Traction System Sensor Technology of a Rail Transit Train

    PubMed Central

    Feng, Jianghua; Xu, Junfeng; Liao, Wu; Liu, Yong

    2017-01-01

    The development of high-speed intelligent rail transit has increased the number of sensors applied on trains. These play an important role in train state control and monitoring. These sensors generally work in a severe environment, so the key problem for sensor data acquisition is to ensure data accuracy and reliability. In this paper, we follow the sequence of sensor signal flow, present sensor signal sensing technology, sensor data acquisition, and processing technology, as well as sensor fault diagnosis technology based on the voltage, current, speed, and temperature sensors which are commonly used in train traction systems. Finally, intelligent sensors and future research directions of rail transit train sensors are discussed. PMID:28604615

  15. Analysis of Unmanned Aerial Vehicle (UAV) hyperspectral remote sensing monitoring key technology in coastal wetland

    NASA Astrophysics Data System (ADS)

    Ma, Yi; Zhang, Jie; Zhang, Jingyu

    2016-01-01

    The coastal wetland, a transitional zone between terrestrial ecosystems and marine ecosystems, is the type of great value to ecosystem services. For the recent 3 decades, area of the coastal wetland is decreasing and the ecological function is gradually degraded with the rapid development of economy, which restricts the sustainable development of economy and society in the coastal areas of China in turn. It is a major demand of the national reality to carry out the monitoring of coastal wetlands, to master the distribution and dynamic change. UAV, namely unmanned aerial vehicle, is a new platform for remote sensing. Compared with the traditional satellite and manned aerial remote sensing, it has the advantage of flexible implementation, no cloud cover, strong initiative and low cost. Image-spectrum merging is one character of high spectral remote sensing. At the same time of imaging, the spectral curve of each pixel is obtained, which is suitable for quantitative remote sensing, fine classification and target detection. Aimed at the frontier and hotspot of remote sensing monitoring technology, and faced the demand of the coastal wetland monitoring, this paper used UAV and the new remote sensor of high spectral imaging instrument to carry out the analysis of the key technologies of monitoring coastal wetlands by UAV on the basis of the current situation in overseas and domestic and the analysis of developing trend. According to the characteristic of airborne hyperspectral data on UAV, that is "three high and one many", the key technology research that should develop are promoted as follows: 1) the atmosphere correction of the UAV hyperspectral in coastal wetlands under the circumstance of complex underlying surface and variable geometry, 2) the best observation scale and scale transformation method of the UAV platform while monitoring the coastal wetland features, 3) the classification and detection method of typical features with high precision from multi scale hyperspectral images based on time sequence. The research results of this paper will help to break the traditional concept of remote sensing monitoring coastal wetlands by satellite and manned aerial vehicle, lead the trend of this monitoring technology, and put forward a new technical proposal for grasping the distribution of the coastal wetland and the changing trend and carrying out the protection and management of the coastal wetland.

  16. The role of optical sensors in environmental applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulter, S.L.; Klainer, S.M.; Saini, D.

    1995-12-31

    With the ever increasing regulations and public consciousness on pollution control there is an increasing demand for effective monitors for field use. The specifications for an effective field monitor are that it be an in situ sensor which presents real time data; that data are received without sampling or testing artifacts; and, that there is a low cost associated with running multiple tests. Fiber optic chemical sensors have been designed by FCI Environmental, Inc. which meet these specifications for the detection of hydrocarbons in air, water or soil. Recent developments at FCI Environmental in the field of optic chemical sensorsmore » include the development of a chip level waveguide sensor. With the improvements in the size and function of the sensor, which impacts the manufacturability and cost of the sensors, this new technology presents new opportunities in the fields of in situ monitoring. Current activities in the development of this technology and applications of specific solid-state immunoassay are discussed.« less

  17. Smart telemedicine support for continuous glucose monitoring: the embryo of a future global agent for diabetes care.

    PubMed

    Rigla, Mercedes

    2011-01-01

    Although current systems for continuous glucose monitoring (CGM) are the result of progressive technological improvement, and although a beneficial effect on glucose control has been demonstrated, few patients are using them. Something similar has happened to telemedicine (TM); in spite of the long-term experience, which began in the early 1980s, no TM system has been widely adopted, and presential visits are still almost the only way diabetologists and patients communicate. The hypothesis developed in this article is that neither CGM nor TM will ever be routinely implemented separately, and their consideration as essential elements for standard diabetes care will one day come from their integration as parts of a telemedical monitoring platform. This platform, which should include artificial intelligence for giving decision support to patients and physicians, will represent the core of a more complex global agent for diabetes care, which will provide control algorithms and risk analysis among other essential functions. © 2010 Diabetes Technology Society.

  18. Contrastive Analysis and Research on Negative Pressure Beam Tube System and Positive Pressure Beam Tube System for Mine Use

    NASA Astrophysics Data System (ADS)

    Wang, Xinyi; Shen, Jialong; Liu, Xinbo

    2018-01-01

    Against the technical defects of universally applicable beam tube monitoring system at present, such as air suction in the beam tube, line clogging, long sampling time, etc., the paper analyzes the current situation of the spontaneous combustion fire disaster forecast of mine in our country and these defects one by one. On this basis, the paper proposes a research thought that improving the positive pressure beam tube so as to substitute the negative pressure beam tube. Then, the paper introduces the beam tube monitoring system based on positive pressure technology through theoretical analysis and experiment. In the comparison with negative pressure beam tube, the paper concludes the advantage of the new system and draws the conclusion that the positive pressure beam tube is superior to the negative pressure beam tube system both in test result and test time. At last, the paper proposes prospect of the beam tube monitoring system based on positive pressure technology.

  19. Large Area Crop Inventory Experiment (LACIE). An overview of the Large Area Crop Inventory Experiment and the outlook for a satellite crop inventory. [Great Plains Corridor (North America), Canada, U.S.S.R., Brazil, China, India, and Australia

    NASA Technical Reports Server (NTRS)

    Erb, R. B. (Principal Investigator)

    1979-01-01

    The author has identified the following significant results. The most important LACIE finding was that the technology worked very well in estimating wheat production in important geographic locations. Based on working through the many successes and shortcomings of LACIE, it can be stated with confidence that: (1) the current technology can successfully monitor what production in regions having similar characteristics to those of the U.S.S.R. wheat areas and the U.S. hard red winter wheat areas; (2) with additional applied research, significant improvements in capabilities to monitor wheat in these and other important production regions can be expected in the near future; (3) the remote sensing and weather effects modeling technology approached used by LACIE is generally applicable to other major crops and crop-producing regions of the world; and (4) with suitable effort, this technology can now advance rapidly and could be widespread use in the late 1980's.

  20. [Research Progress in Technology of Using Soil Micro-organisms to Generate Electricity and Its Potential Applications].

    PubMed

    Deng, Huan; Xue, Hong-jing; Jiang, Yun-bin; Zhong, Wen-hui

    2015-10-01

    Microbial fuel cells ( microbial fuel cells, MFCs) are devices in which micro-organisms convert chemical energy into electrical power. Soil has electrogenic bacteria and organic substrates, thus can generate electrical current in MFCs. Soil MFCs can be operated and applied to real-time and continuously monitor soil pollution, remove soil pollutants and to reduce methane emitted from flooded rice paddy, without energy consumption and the application of chemical reagents to the soil. Instead, the operation of soil MFCs generates small amount of electrical power. Therefore, soil MFCs are useful in the development of environment-friendly technology for monitoring and remediating soil pollution, which have potential value for applications in the domain of environmental science and engineering. However, much of advanced technology hasn't been applied into soil MFCs since the studies on soil MFCs was not started until recently. This paper summarized the research progress in related to soil MFCs combining with the frontier of MFCs technology, and brought forward the possible direction in studies on soil MFCs.

  1. U. S. drinking-water regulations: Treatment technologies and cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lykins, B.W. Jr.; Clark, R.M.

    The Safe Drinking Water Act and its Amendments have imposed a large number of new regulations on the US drinking-water industry. A major set of regulations currently under consideration will control disinfectants and disinfection by-products. Included in the development of these regulations is an Information Collection Rule and an Enhanced Surface Water Treatment Rule. These rules will require monitoring for microorganisms such as Giardia, Cryptosporidium, and viruses. Certain surface-water systems may be required to remove microbiological contaminants above levels currently required by the Surface Water Treatment Rule. Also included in these rules will be monitoring requirements for disinfection by-products andmore » evaluation of precursor removal technologies. As various regulations are promulgated, regulators and those associated with the drinking-water industry need to be cognizant of the potential impact of treatment to control one contaminant or group of contaminants on control of other contaminants. Compliance with drinking-water regulations mandated under the Safe Drinking Water Act and its amendments has been estimated to cost about $1.6 billion.« less

  2. An Overview Of NASA's Solar Sail Propulsion Project

    NASA Technical Reports Server (NTRS)

    Garbe, Gregory; Montgomery, Edward E., IV

    2003-01-01

    Research conducted by the In-Space Propulsion (ISP) Technologies Projects is at the forefront of NASA's efforts to mature propulsion technologies that will enable or enhance a variety of space science missions. The ISP Program is developing technologies from a Technology Readiness Level (TRL) of 3 through TRL 6. Activities under the different technology areas are selected through the NASA Research Announcement (NRA) process. The ISP Program goal is to mature a suite of reliable advanced propulsion technologies that will promote more cost efficient missions through the reduction of interplanetary mission trip time, increased scientific payload mass fraction, and allowing for longer on-station operations. These propulsion technologies will also enable missions with previously inaccessible orbits (e.g., non-Keplerian, high solar latitudes). The ISP Program technology suite has been prioritized by an agency wide study. Solar Sail propulsion is one of ISP's three high-priority technology areas. Solar sail propulsion systems will be required to meet the challenge of monitoring and predicting space weather by the Office of Space Science s (OSS) Living with a Star (LWS) program. Near-to-mid-term mission needs include monitoring of solar activity and observations at high solar latitudes. Near-term work funded by the ISP solar sail propulsion project is centered around the quantitative demonstration of scalability of present solar sail subsystem designs and concepts to future mission requirements through ground testing, computer modeling and analytical simulations. This talk will review the solar sail technology roadmap, current funded technology development work, future funding opportunities, and mission applications.

  3. Field testing of new-technology ambient air ozone monitors.

    PubMed

    Ollison, Will M; Crow, Walt; Spicer, Chester W

    2013-07-01

    Multibillion-dollar strategies control ambient air ozone (O3) levels in the United States, so it is essential that the measurements made to assess compliance with regulations be accurate. The predominant method employed to monitor O3 is ultraviolet (UV) photometry. Instruments employ a selective manganese dioxide or heated silver wool "scrubber" to remove O3 to provide a zero reference signal. Unfortunately, such scrubbers remove atmospheric constituents that absorb 254-nm light, causing measurement interference. Water vapor also interferes with the measurement under some circumstances. We report results of a 3-month field test of two new instruments designed to minimize interferences (2B Technologies model 211; Teledyne-API model 265E) that were operated in parallel with a conventional Thermo Scientific model 49C O3 monitor. The field test was hosted by the Houston Regional Monitoring Corporation (HRM). The model 211 photometer scrubs O3 with excess nitric oxide (NO) generated in situ by photolysis of added nitrous oxide (N2O) to provide a reference signal, eliminating the need for a conventional O3 scrubber. The model 265E analyzer directly measures O3-NO chemiluminescence from added excess NO to quantify O3 in the sample stream. Extensive quality control (QC) and collocated monitoring data are assessed to evaluate potential improvements to the accuracy of O3 compliance monitoring. Two new-technology ozone monitors were compared with a conventional monitor under field conditions. Over 3 months the conventional monitor reported more exceedances of the current standard than the new instruments, which could potentially result in an area being misjudged as "nonattainment." Instrument drift can affect O3 data accuracy, and the same degree of drift has a proportionally greater compliance effect as standard stringency is increased. Enhanced data quality assurance and data adjustment may be necessary to achieve the improved accuracy required to judge compliance with tighter standards.

  4. Monitoring in traumatic brain injury.

    PubMed

    Matz, P G; Pitts, L

    1997-01-01

    In the past several years, improvements in technology have advanced the monitoring capabilities for patients with TBI. The primary goal of monitoring the patient with TBI is to prevent secondary insults to the brain, primarily cerebral ischemia. Cerebral ischemia may occur early and without clinical correlation and portends a poor outcome. Measurement of ICP is the cornerstone of monitoring in the patient with TBI. Monitoring of ICP provides a measurement of CPP and a rough estimation of CBF. However, with alterations in pressure autoregulation, measurement of CPP does not always allow for determination of CBF. To circumvent this problem, direct measurements of CBF can be performed using clearance techniques (133Xe, N2O, Xe-CT) or invasive monitoring techniques (LDF, TDF, NIRS). Although direct and quantitative, clearance techniques do not allow for continuous monitoring. Invasive CBF monitoring techniques are new, and artifactual results can be problematic. The techniques of jugular venous saturation monitoring and TCD are well established and are powerful adjuncts to ICP monitoring. They allow the clinician to monitor cerebral oxygen extraction and blood flow velocity, respectively, for any given CPP. Use of TCD may predict posttraumatic vasospasm before clinical sequelae. Jugular venous saturation monitoring may detect clinically occult episodes of cerebral ischemia and increased oxygen extraction. Jugular venous saturation monitoring optimizes the use of hyperventilation in the treatment of intracranial hypertension. Although PET and SPECT scanning allow direct measurement of CMRO2, these techniques have limited application currently. Similarly, microdialysis is in its infancy but has demonstrated great promise for metabolic monitoring. EEG and SEP are excellent adjuncts to the monitoring arsenal and provide immediate information on current brain function. With improvements in electronic telemetry, functional monitoring by EEG or SEP may become an important part of routine monitoring in TBI.

  5. Regional Cerebral Oximetry During Cardiopulmonary Resuscitation: Useful or Useless?

    PubMed

    Genbrugge, Cornelia; Dens, Jo; Meex, Ingrid; Boer, Willem; Eertmans, Ward; Sabbe, Marc; Jans, Frank; De Deyne, Cathy

    2016-01-01

    Approximately 375,000 people annually experience sudden cardiac arrest (CA) in Europe. Most patients who survive the initial hours and days after CA die of postanoxic brain damage. Current monitors, such as electrocardiography and end-tidal capnography, provide only indirect information about the condition of the brain during cardiopulmonary resuscitation (CPR). In contrast, cerebral near-infrared spectroscopy provides continuous, noninvasive, real-time information about brain oxygenation without the need for a pulsatile blood flow. It measures transcutaneous cerebral tissue oxygen saturation (rSO2). This information could supplement currently used monitors. Moreover, an evolution in rSO2 monitoring technology has made it easier to assess rSO2 in CA conditions. We give an overview of the literature regarding rSO2 measurements during CPR and the current commercially available devices. We highlight the feasibility of cerebral saturation measurement during CPR, its role as a quality parameter of CPR, predictor of return of spontaneous circulation (ROSC) and neurologic outcome, and its monitoring function during transport. rSO2 is feasible in the setting of CA and has the potential to measure the quality of CPR, predict ROSC and neurologic outcome, and monitor post-CA patients during transport. The literature shows that rSO2 has the potential to serve multiple roles as a neuromonitoring tool during CPR and also to guide neuroprotective therapeutic strategies. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The research and application of green computer room environmental monitoring system based on internet of things technology

    NASA Astrophysics Data System (ADS)

    Wei, Wang; Chongchao, Pan; Yikai, Liang; Gang, Li

    2017-11-01

    With the rapid development of information technology, the scale of data center increases quickly, and the energy consumption of computer room also increases rapidly, among which, energy consumption of air conditioning cooling makes up a large proportion. How to apply new technology to reduce the energy consumption of the computer room becomes an important topic of energy saving in the current research. This paper study internet of things technology, and design a kind of green computer room environmental monitoring system. In the system, we can get the real-time environment data from the application of wireless sensor network technology, which will be showed in a creative way of three-dimensional effect. In the environment monitor, we can get the computer room assets view, temperature cloud view, humidity cloud view, microenvironment view and so on. Thus according to the condition of the microenvironment, we can adjust the air volume, temperature and humidity parameters of the air conditioning for the individual equipment cabinet to realize the precise air conditioning refrigeration. And this can reduce the energy consumption of air conditioning, as a result, the overall energy consumption of the green computer room will reduce greatly. At the same time, we apply this project in the computer center of Weihai, and after a year of test and running, we find that it took a good energy saving effect, which fully verified the effectiveness of this project on the energy conservation of the computer room.

  7. Meeting the challenges--the role of medical informatics in an ageing society.

    PubMed

    Koch, Sabine

    2006-01-01

    The objective of this paper is to identify trends and new technological developments that appear due to an ageing society and to relate them to current research in the field of medical informatics. A survey of the current literature reveals that recent technological advances have been made in the fields of "telecare and home-monitoring", "smart homes and robotics" and "health information systems and knowledge management". Innovative technologies such as wearable devices, bio- and environmental sensors and mobile, humanoid robots do already exist and ambient assistant living environments are being created for an ageing society. However, those technologies have to be adapted to older people's self-care processes and coping strategies, and to support new ways of healthcare delivery. Medical informatics can support this process by providing the necessary information infrastructure, contribute to standardisation, interoperability and security issues and provide modelling and simulation techniques for educational purposes. Research fields of increasing importance with regard to an ageing society are, moreover, the fields of knowledge management, ubiquitous computing and human-computer interaction.

  8. [Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].

    PubMed

    Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling

    2011-04-01

    The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.

  9. Monitoring osseointegration and developing intelligent systems (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Salvino, Liming W.

    2017-05-01

    Effective monitoring of structural and biological systems is an extremely important research area that enables technology development for future intelligent devices, platforms, and systems. This presentation provides an overview of research efforts funded by the Office of Naval Research (ONR) to establish structural health monitoring (SHM) methodologies in the human domain. Basic science efforts are needed to utilize SHM sensing, data analysis, modeling, and algorithms to obtain the relevant physiological and biological information for human-specific health and performance conditions. This overview of current research efforts is based on the Monitoring Osseointegrated Prosthesis (MOIP) program. MOIP develops implantable and intelligent prosthetics that are directly anchored to the bone of residual limbs. Through real-time monitoring, sensing, and responding to osseointegration of bones and implants as well as interface conditions and environment, our research program aims to obtain individualized actionable information for implant failure identification, load estimation, infection mitigation and treatment, as well as healing assessment. Looking ahead to achieve ultimate goals of SHM, we seek to expand our research areas to cover monitoring human, biological and engineered systems, as well as human-machine interfaces. Examples of such include 1) brainwave monitoring and neurological control, 2) detecting and evaluating brain injuries, 3) monitoring and maximizing human-technological object teaming, and 4) closed-loop setups in which actions can be triggered automatically based on sensors, actuators, and data signatures. Finally, some ongoing and future collaborations across different disciplines for the development of knowledge automation and intelligent systems will be discussed.

  10. Implementing Speed and Separation Monitoring in Collaborative Robot Workcells.

    PubMed

    Marvel, Jeremy A; Norcross, Rick

    2017-04-01

    We provide an overview and guidance for the Speed and Separation Monitoring methodology as presented in the International Organization of Standardization's technical specification 15066 on collaborative robot safety. Such functionality is provided by external, intelligent observer systems integrated into a robotic workcell. The SSM minimum protective distance function equation is discussed in detail, with consideration for the input values, implementation specifications, and performance expectations. We provide analytical analyses and test results of the current equation, discuss considerations for implementing SSM in human-occupied environments, and provide directions for technological advancements toward standardization.

  11. Implementing Speed and Separation Monitoring in Collaborative Robot Workcells

    PubMed Central

    Marvel, Jeremy A.; Norcross, Rick

    2016-01-01

    We provide an overview and guidance for the Speed and Separation Monitoring methodology as presented in the International Organization of Standardization's technical specification 15066 on collaborative robot safety. Such functionality is provided by external, intelligent observer systems integrated into a robotic workcell. The SSM minimum protective distance function equation is discussed in detail, with consideration for the input values, implementation specifications, and performance expectations. We provide analytical analyses and test results of the current equation, discuss considerations for implementing SSM in human-occupied environments, and provide directions for technological advancements toward standardization. PMID:27885312

  12. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    NASA Astrophysics Data System (ADS)

    Baumbick, Robert J.

    1991-02-01

    Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.

  13. FRAMEWORK FOR STRUCTURAL ONLINE HEALTH MONITORING OF AGING AND DEGRADATION OF SECONDARY PIPING SYSTEMS DUE TO SOME ASPECTS OF EROSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gribok, Andrei V.; Agarwal, Vivek

    This paper describes the current state of research related to critical aspects of erosion and selected aspects of degradation of secondary components in nuclear power plants (NPPs). The paper also proposes a framework for online health monitoring of aging and degradation of secondary components. The framework consists of an integrated multi-sensor modality system, which can be used to monitor different piping configurations under different degradation conditions. The report analyses the currently known degradation mechanisms and available predictive models. Based on this analysis, the structural health monitoring framework is proposed. The Light Water Reactor Sustainability Program began to evaluate technologies thatmore » could be used to perform online monitoring of piping and other secondary system structural components in commercial NPPs. These online monitoring systems have the potential to identify when a more detailed inspection is needed using real time measurements, rather than at a pre-determined inspection interval. This transition to condition-based, risk-informed automated maintenance will contribute to a significant reduction of operations and maintenance costs that account for the majority of nuclear power generation costs. Furthermore, of the operations and maintenance costs in U.S. plants, approximately 80% are labor costs. To address the issue of rising operating costs and economic viability, in 2017, companies that operate the national nuclear energy fleet started the Delivering the Nuclear Promise Initiative, which is a 3 year program aimed at maintaining operational focus, increasing value, and improving efficiency. There is unanimous agreement between industry experts and academic researchers that identifying and prioritizing inspection locations in secondary piping systems (for example, in raw water piping or diesel piping) would eliminate many excessive in-service inspections. The proposed structural health monitoring framework takes aim at answering this challenge by combining long range guided wave technologies with other monitoring techniques, which can significantly increase the inspection length and pinpoint the locations that degraded the most. More widely, the report suggests research efforts aimed at developing, validating, and deploying online corrosion monitoring techniques for complex geometries, which are pervasive in NPPs.« less

  14. Literature review on monitoring technologies and their outcomes in independently living elderly people.

    PubMed

    Peetoom, Kirsten K B; Lexis, Monique A S; Joore, Manuela; Dirksen, Carmen D; De Witte, Luc P

    2015-07-01

    To obtain insight into what kind of monitoring technologies exist to monitor activity in-home, what the characteristics and aims of applying these technologies are, what kind of research has been conducted on their effects and what kind of outcomes are reported. A systematic document search was conducted within the scientific databases Pubmed, Embase, Cochrane, PsycINFO and Cinahl, complemented by Google Scholar. Documents were included in this review if they reported on monitoring technologies that detect activities of daily living (ADL) or significant events, e.g. falls, of elderly people in-home, with the aim of prolonging independent living. Five main types of monitoring technologies were identified: PIR motion sensors, body-worn sensors, pressure sensors, video monitoring and sound recognition. In addition, multicomponent technologies and smart home technologies were identified. Research into the use of monitoring technologies is widespread, but in its infancy, consisting mainly of small-scale studies and including few longitudinal studies. Monitoring technology is a promising field, with applications to the long-term care of elderly persons. However, monitoring technologies have to be brought to the next level, with longitudinal studies that evaluate their (cost-) effectiveness to demonstrate the potential to prolong independent living of elderly persons. [Box: see text].

  15. THE DOE OFFICE OF ENVIRONMENTAL MANAGEMENT INTERNATIONAL COOPERATIVE PROGRAM: OVERVIEW OF TECHNICAL TASKS AND RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marra, J.; Fox, K.; Farfan, E.

    2009-12-08

    The DOE Office of Environmental Management (DOE-EM) Office of Engineering and Technology is responsible for implementing EM's International Cooperative Program. Over the past 15 years, collaborative work has been conducted through this program with researchers in Russia, Ukraine, France, United Kingdom and Republic of Korea. Currently, work is being conducted with researchers in Russia and Ukraine. Efforts aimed at evaluating and advancing technologies to support U.S. high-level waste (HLW) vitrification initiatives are being conducted in collaboration with Russian researchers. Work at Khlopin Radium Institute (KRI) is targeted at improving the throughput of current vitrification processes by increasing melting rate. Thesemore » efforts are specifically targeted at challenging waste types identified at the Savannah River Site (SRS) and Hanford Site. The objectives of current efforts at SIA Radon are to gain insight into vitrification process limits for the cold crucible induction melter (CCIM) technology. Previous demonstration testing has shown that the CCIM offers the potential for dramatic increases in waste loading and waste throughput. However, little information is known regarding operational limits that could affect long-term, efficient CCIM operations. Collaborative work with the Russian Electrotechnical University (ETU) 'LETI' is aimed at advancing CCIM process monitoring, process control and design. The goal is to further mature the CCIM technology and to establish it as a viable HLW vitrification technology. The greater than two year effort conducted with the International Radioecology Laboratory in the Ukraine recently completed. The objectives of this study were: to assess the long-term impacts to the environment from radiation exposure in the Chernobyl Exclusion Zone (ChEZ); and to provide information on remediation guidelines and ecological risk assessment within radioactively contaminated territories around the Chernobyl Nuclear Power Plant (ChNPP) based on the results of long-term field monitoring, analytical measurements, and numerical modeling of soils and groundwater radioactive contamination.« less

  16. Autostereoscopic three-dimensional viewer evaluation through comparison with conventional interfaces in laparoscopic surgery.

    PubMed

    Silvestri, Michele; Simi, Massimiliano; Cavallotti, Carmela; Vatteroni, Monica; Ferrari, Vincenzo; Freschi, Cinzia; Valdastri, Pietro; Menciassi, Arianna; Dario, Paolo

    2011-09-01

    In the near future, it is likely that 3-dimensional (3D) surgical endoscopes will replace current 2D imaging systems given the rapid spreading of stereoscopy in the consumer market. In this evaluation study, an emerging technology, the autostereoscopic monitor, is compared with the visualization systems mainly used in laparoscopic surgery: a binocular visor, technically equivalent from the viewer's point of view to the da Vinci 3D console, and a standard 2D monitor. A total of 16 physicians with no experience in 3D interfaces performed 5 different tasks, and the execution time and accuracy of the tasks were evaluated. Moreover, subjective preferences were recorded to qualitatively evaluate the different technologies at the end of each trial. This study demonstrated that the autostereoscopic display is equally effective as the binocular visor for both low- and high-complexity tasks and that it guarantees better performance in terms of execution time than the standard 2D monitor. Moreover, an unconventional task, included to provide the same conditions to the surgeons regardless of their experience, was performed 22% faster when using the autostereoscopic monitor than the binocular visor. However, the final questionnaires demonstrated that 60% of participants preferred the user-friendliness of the binocular visor. These results are greatly heartening because autostereoscopic technology is still in its early stages and offers potential improvement. As a consequence, the authors expect that the increasing interest in autostereoscopy could improve its friendliness in the future and allow the technology to be widely accepted in surgery.

  17. Caries assessment: establishing mathematical link of clinical and benchtop method

    NASA Astrophysics Data System (ADS)

    Amaechi, Bennett T.

    2009-02-01

    It is well established that the development of new technologies for early detection and quantitative monitoring of dental caries at its early stage could provide health and economic benefits ranging from timely preventive interventions to reduction of the time required for clinical trials of anti-caries agents. However, the new technologies currently used in clinical setting cannot assess and monitor caries using the actual mineral concentration within the lesion, while a laboratory-based microcomputed tomography (MCT) has been shown to possess this capability. Thus we envision the establishment of mathematical equations relating the measurements of each of the clinical technologies to that of MCT will enable the mineral concentration of lesions detected and assessed in clinical practice to be extrapolated from the equation, and this will facilitate preventitive care in dentistry to lower treatment cost. We utilize MCT and the two prominent clinical caries assessment devices (Quantitative Light-induced Fluorescence [QLF] and Diagnodent) to longitudinally monitor the development of caries in a continuous flow mixed-organisms biofilm model (artificial mouth), and then used the collected data to establish mathematical equation relating the measurements of each of the clinical technologies to that of MCT. A linear correlation was observed between the measurements of MicroCT and that of QLF and Diagnodent. Thus mineral density in a carious lesion detected and measured using QLF or Diagnodent can be extrapolated using the developed equation. This highlights the usefulness of MCT for monitoring the progress of an early caries being treated with therapeutic agents in clinical practice or trials.

  18. Persuasive Performance Feedback: The Effect of Framing on Self-Efficacy

    PubMed Central

    Choe, Eun Kyoung; Lee, Bongshin; Munson, Sean; Pratt, Wanda; Kientz, Julie A.

    2013-01-01

    Self-monitoring technologies have proliferated in recent years as they offer excellent potential for promoting healthy behaviors. Although these technologies have varied ways of providing real-time feedback on a user’s current progress, we have a dearth of knowledge of the framing effects on the performance feedback these tools provide. With an aim to create influential, persuasive performance feedback that will nudge people toward healthy behaviors, we conducted an online experiment to investigate the effect of framing on an individual’s self-efficacy. We identified 3 different types of framing that can be applicable in presenting performance feedback: (1) the valence of performance (remaining vs. achieved framing), (2) presentation type (text-only vs. text with visual), and (3) data unit (raw vs. percentage). Results show that the achieved framing could lead to an increased perception of individual’s performance capabilities. This work provides empirical guidance for creating persuasive performance feedback, thereby helping people designing self-monitoring technologies to promote healthy behaviors. PMID:24551378

  19. Persuasive performance feedback: the effect of framing on self-efficacy.

    PubMed

    Choe, Eun Kyoung; Lee, Bongshin; Munson, Sean; Pratt, Wanda; Kientz, Julie A

    2013-01-01

    Self-monitoring technologies have proliferated in recent years as they offer excellent potential for promoting healthy behaviors. Although these technologies have varied ways of providing real-time feedback on a user's current progress, we have a dearth of knowledge of the framing effects on the performance feedback these tools provide. With an aim to create influential, persuasive performance feedback that will nudge people toward healthy behaviors, we conducted an online experiment to investigate the effect of framing on an individual's self-efficacy. We identified 3 different types of framing that can be applicable in presenting performance feedback: (1) the valence of performance (remaining vs. achieved framing), (2) presentation type (text-only vs. text with visual), and (3) data unit (raw vs. percentage). Results show that the achieved framing could lead to an increased perception of individual's performance capabilities. This work provides empirical guidance for creating persuasive performance feedback, thereby helping people designing self-monitoring technologies to promote healthy behaviors.

  20. Radiation-Hardened Circuitry Using Mask-Programmable Analog Arrays. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britton, Jr., Charles L.; Ericson, Milton Nance; Bobrek, Miljko

    As the recent accident at Fukushima Daiichi so vividly demonstrated, telerobotic technologies capable of withstanding high radiation environments need to be readily available to enable operations, repair, and recovery under severe accident scenarios where human entry is extremely dangerous or not possible. Telerobotic technologies that enable remote operation in high dose rate environments have undergone revolutionary improvement over the past few decades. However, much of this technology cannot be employed in nuclear power environments due the radiation sensitivity of the electronics and the organic insulator materials currently in use. This is the final report of the activities involving the NEETmore » 2 project Radiation Hardened Circuitry Using Mask-Programmable Analog Arrays. We present a detailed functional block diagram of the proposed data acquisition system, the thought process leading to technical decisions, the implemented system, and the tested results from the systems. This system will be capable of monitoring at least three parameters of importance to nuclear reactor monitoring: temperature, radiation level, and pressure.« less

  1. Emerging Trends in Healthcare Adoption of Wireless Body Area Networks.

    PubMed

    Rangarajan, Anuradha

    2016-01-01

    Real-time personal health monitoring is gaining new ground with advances in wireless communications. Wireless body area networks (WBANs) provide a means for low-powered sensors, affixed either on the human body or in vivo, to communicate with each other and with external telecommunication networks. The healthcare benefits of WBANs include continuous monitoring of patient vitals, measuring postacute rehabilitation time, and improving quality of medical care provided in medical emergencies. This study sought to examine emerging trends in WBAN adoption in healthcare. To that end, a systematic literature survey was undertaken against the PubMed database. The search criteria focused on peer-reviewed articles that contained the keywords "wireless body area network" and "healthcare" or "wireless body area network" and "health care." A comprehensive review of these articles was performed to identify adoption dimensions, including underlying technology framework, healthcare subdomain, and applicable lessons-learned. This article benefits healthcare technology professionals by identifying gaps in implementation of current technology and highlighting opportunities for improving products and services.

  2. Update on wide- and ultra-widefield retinal imaging

    PubMed Central

    Shoughy, Samir S; Arevalo, J Fernando; Kozak, Igor

    2015-01-01

    The peripheral retina is the site of pathology in many ocular diseases and ultra-widefield (UWF) imaging is one of the new technologies available to ophthalmologists to manage some of these diseases. Currently, there are several imaging systems used in practice for the purpose of diagnostic, monitoring disease progression or response to therapy, and telemedicine. These include modalities for both adults and pediatric patients. The current systems are capable of producing wide- and UWF color fundus photographs, fluorescein and indocyanine green angiograms, and autofluorescence images. Using this technology, important clinical observations have been made in diseases such as diabetic retinopathy, uveitides, retinal vascular occlusions and tumors, intraocular tumors, retinopathy of prematurity, and age-related macular degeneration. Widefield imaging offers excellent postoperative documentation of retinal detachment surgery. New applications will soon be available to integrate this technology into large volume routine clinical practice. PMID:26458474

  3. High-frequency, long-duration water sampling in acid mine drainage studies: a short review of current methods and recent advances in automated water samplers

    USGS Publications Warehouse

    Chapin, Thomas

    2015-01-01

    Hand-collected grab samples are the most common water sampling method but using grab sampling to monitor temporally variable aquatic processes such as diel metal cycling or episodic events is rarely feasible or cost-effective. Currently available automated samplers are a proven, widely used technology and typically collect up to 24 samples during a deployment. However, these automated samplers are not well suited for long-term sampling in remote areas or in freezing conditions. There is a critical need for low-cost, long-duration, high-frequency water sampling technology to improve our understanding of the geochemical response to temporally variable processes. This review article will examine recent developments in automated water sampler technology and utilize selected field data from acid mine drainage studies to illustrate the utility of high-frequency, long-duration water sampling.

  4. Technology-based interventions for weight management: current randomized controlled trial evidence and future directions

    PubMed Central

    Buscemi, Joanna; Hawkins, Misty A. W.; Wang, Monica L.; Breland, Jessica Y.; Ross, Kathryn M.; Kommu, Anupama

    2018-01-01

    Obesity is a prevalent health care issue associated with disability, premature morality, and high costs. Behavioral weight management interventions lead to clinically significant weight losses in overweight and obese individuals; however, many individuals are not able to participate in these face-to-face treatments due to limited access, cost, and/or time constraints. Technological advances such as widespread access to the Internet, increased use of smartphones, and newer behavioral self-monitoring tools have resulted in the development of a variety of eHealth weight management programs. In the present paper, a summary of the most current literature is provided along with potential solutions to methodological challenges (e.g., high attrition, minimal participant racial/ethnic diversity, heterogeneity of technology delivery modes). Dissemination and policy implications will be highlighted as future directions for the field of eHealth weight management. PMID:27783259

  5. Disruption in the diabetic device care market

    PubMed Central

    Mohammed, Raihan

    2018-01-01

    As diabetes mellitus (DM) has approached pandemic proportions, the pressure for effective glycemic management is mounting. The starting point for managing and living well with DM involves early diagnosis and monitoring blood glucose levels. Therefore, self-monitoring of blood glucose (SMBG) can help patients maintain their blood glucose levels within the appropriate range. The general principle behind the current SMBG method involves a finger prick test to obtain a blood drop, which is applied onto a reagent strip and read by an automated device. Novel techniques are currently under evaluation to create the next generation of painless and accurate glucose monitoring for DM. We began by outlining how the emerging technology of the noninvasive glucose monitoring devices (NIGMDs) provides both economic and clinical benefits for health systems and patients. We further explored the engineering and techniques behind these upcoming devices. Finally, we evaluated how the NIGMDs disrupt the diabetic device care market and drive health care consumerism. We postulated that the NIGMDs play a pivotal role in the implementation of next generation of diabetes prevention strategies. PMID:29440935

  6. Banting Memorial Lecture 2014* Technology and diabetes care: appropriate and personalized.

    PubMed

    Pickup, J C

    2015-01-01

    Continuous subcutaneous insulin infusion was initially developed as a research procedure in the 1970s but quickly became a routine treatment for selected people with Type 1 diabetes. Continuous subcutaneous insulin infusion and other diabetes technologies, such as continuous glucose monitoring, are now an established and evidence-based part of diabetes care, but there has been some confusion about effectiveness and best use, particularly because of conflicting results from meta-analyses. This is because literature summary meta-analyses (including all trials) are inappropriate for therapeutic and economic decision-making; such meta-analyses should only include trials representative of groups likely to benefit. For example, for continuous subcutaneous insulin infusion, this would be those with continued disabling hypoglycaemia or elevated HbA1c levels. Alternatively, individual patient data meta-analysis allows modelling of covariates that determine effect size, e.g. in the case of continuous glucose monitoring, baseline HbA1c and frequency of sensor usage. Diabetes technology is therefore an example of personalized medicine, where evaluation and use should be both appropriate and targeted. This will also apply to future technologies such as new 'patch' pumps for Type 2 diabetes, closed-loop insulin delivery systems and nanomedicine applications in diabetes that we are currently researching. These include fluorescence lifetime-based non-invasive glucose monitoring and nanoencapsulation of islets for improved post-transplant survival. © 2014 The Author. Diabetic Medicine © 2014 Diabetes UK.

  7. Food Safety Informatics: A Public Health Imperative

    PubMed Central

    Tucker, Cynthia A.; Larkin, Stephanie N.; Akers, Timothy A.

    2011-01-01

    To date, little has been written about the implementation of utilizing food safety informatics as a technological tool to protect consumers, in real-time, against foodborne illnesses. Food safety outbreaks have become a major public health problem, causing an estimated 48 million illnesses, 128,000 hospitalizations, and 3,000 deaths in the U.S. each year. Yet, government inspectors/regulators that monitor foodservice operations struggle with how to collect, organize, and analyze data; implement, monitor, and enforce safe food systems. Currently, standardized technologies have not been implemented to efficiently establish “near-in-time” or “just-in-time” electronic awareness to enhance early detection of public health threats regarding food safety. To address the potential impact of collection, organization and analyses of data in a foodservice operation, a wireless food safety informatics (FSI) tool was pilot tested at a university student foodservice center. The technological platform in this test collected data every six minutes over a 24 hour period, across two primary domains: time and temperatures within freezers, walk-in refrigerators and dry storage areas. The results of this pilot study briefly illustrated how technology can assist in food safety surveillance and monitoring by efficiently detecting food safety abnormalities related to time and temperatures so that efficient and proper response in “real time” can be addressed to prevent potential foodborne illnesses. PMID:23569605

  8. The evolution of ambulatory ECG monitoring.

    PubMed

    Kennedy, Harold L

    2013-01-01

    Ambulatory Holter electrocardiographic (ECG) monitoring has undergone continuous technological evolution since its invention and development in the 1950s era. With commercial introduction in 1963, there has been an evolution of Holter recorders from 1 channel to 12 channel recorders with increasingly smaller storage media, and there has evolved Holter analysis systems employing increasingly technologically advanced electronics providing a myriad of data displays. This evolution of smaller physical instruments with increasing technological capacity has characterized the development of electronics over the past 50 years. Currently the technology has been focused upon the conventional continuous 24 to 48 hour ambulatory ECG examination, and conventional extended ambulatory monitoring strategies for infrequent to rare arrhythmic events. However, the emergence of the Internet, Wi-Fi, cellular networks, and broad-band transmission has positioned these modalities at the doorway of the digital world. This has led to an adoption of more cost-effective strategies to these conventional methods of performing the examination. As a result, the emergence of the mobile smartphone coupled with this digital capacity is leading to the recent development of Holter smartphone applications. The potential of point-of-care applications utilizing the Holter smartphone and a vast array of new non-invasive sensors is evident in the not too distant future. The Holter smartphone is anticipated to contribute significantly in the future to the field of global health. © 2013.

  9. Integrated passive flux measurement in groundwater: design and performance of iFLUX samplers

    NASA Astrophysics Data System (ADS)

    Verreydt, Goedele; Razaei, Meisam; Meire, Patrick; Van Keer, Ilse; Bronders, Jan; Seuntjens, Piet

    2017-04-01

    The monitoring and management of soil and groundwater is a challenge. Current methods for the determination of movement or flux of pollution in groundwater use no direct measurements but only simulations based on concentration measurements and Darcy velocity estimations. This entails large uncertainties which cause remediation failures and higher costs for contaminated site owners. On top of that, the lack of useful data makes it difficult to get approval for a risk-based management approach which completely avoids costly remedial actions. The iFLUX technology is a key development of Dr. Goedele Verreydt at the University of Antwerp and VITO. It is supported by the passive flux measurement technology as invented by Prof. Mike Annable and his team at the University of Florida. The iFLUX technology includes an in situ measurement device for capturing dynamic groundwater quality and quantity, the iFLUX sampler, and an associated interpretation and visualization method. The iFLUX sampler is a modular passive sampler that provides simultaneous in situ point determinations of a time-averaged target compound mass flux and water flux. The sampler is typically installed in a monitoring well where it intercepts the groundwater flow and captures the compounds of interest. The sampler consists of permeable cartridges which are each packed with a specific sorbent matrix. The sorbent matrix of the water flux cartridge is impregnated with known amounts of water soluble resident tracers. These tracers are leached from the matrix at rates proportional to the groundwater flux. The measurements of the contaminants and the remaining resident tracer are used to determine groundwater and target compound fluxes. Exposure times range from 1 week to 6 months, depending on the expected concentration and groundwater flow velocity. The iFLUX sampler technology has been validated and tested at several field projects. Currently, 4 cartridges are tested and available: 1 waterflux cartridge to monitor speed and direction of flow and 3 cartridges to monitor different sources of pollution - VOC's, heavy metals and nutrients. The modular design enables to sample several types of pollution at the same time. The principles and the design of the iFLUX technology will be presented, together with the results from performance and sensitivity analysis for different field scenarios and several field cases.

  10. ROBUST ONLINE MONITORING FOR CALIBRATION ASSESSMENT OF TRANSMITTERS AND INSTRUMENTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramuhalli, Pradeep; Tipireddy, Ramakrishna; Lerchen, Megan E.

    Robust online monitoring (OLM) technologies are expected to enable the extension or elimination of periodic sensor calibration intervals in operating and new reactors. Specifically, the next generation of OLM technology is expected to include newly developed advanced algorithms that improve monitoring of sensor/system performance and enable the use of plant data to derive information that currently cannot be measured. These advances in OLM technologies will improve the safety and reliability of current and planned nuclear power systems through improved accuracy and increased reliability of sensors used to monitor key parameters. In this paper, we discuss an overview of research beingmore » performed within the Nuclear Energy Enabling Technologies (NEET)/Advanced Sensors and Instrumentation (ASI) program, for the development of OLM algorithms to use sensor outputs and, in combination with other available information, 1) determine whether one or more sensors are out of calibration or failing and 2) replace a failing sensor with reliable, accurate sensor outputs. Algorithm development is focused on the following OLM functions: • Signal validation – fault detection and selection of acceptance criteria • Virtual sensing – signal value prediction and acceptance criteria • Response-time assessment – fault detection and acceptance criteria selection A GP-based uncertainty quantification (UQ) method previously developed for UQ in OLM, was adapted for use in sensor-fault detection and virtual sensing. For signal validation, the various components to the OLM residual (which is computed using an AAKR model) were explicitly defined and modeled using a GP. Evaluation was conducted using flow loop data from multiple sources. Results using experimental data from laboratory-scale flow loops indicate that the approach, while capable of detecting sensor drift, may be incapable of discriminating between sensor drift and model inadequacy. This may be due to a simplification applied in the initial modeling, where the sensor degradation is assumed to be stationary. In the case of virtual sensors, the GP model was used in a predictive mode to estimate the correct sensor reading for sensors that may have failed. Results have indicated the viability of using this approach for virtual sensing. However, the GP model has proven to be computationally expensive, and so alternative algorithms for virtual sensing are being evaluated. Finally, automated approaches to performing noise analysis for extracting sensor response time were developed. Evaluation of this technique using laboratory-scale data indicates that it compares well with manual techniques previously used for noise analysis. Moreover, the automated and manual approaches for noise analysis also compare well with the current “gold standard”, hydraulic ramp testing, for response time monitoring. Ongoing research in this project is focused on further evaluation of the algorithms, optimization for accuracy and computational efficiency, and integration into a suite of tools for robust OLM that are applicable to monitoring sensor calibration state in nuclear power plants.« less

  11. Wireless Instrumentation Use on Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Sherman, Aaron

    2010-01-01

    This slide presentation reviews the results of a study on the use of wireless instrumentation and sensors on future launch vehicles. The use of wireless technologies would if feasible would allow for fewer wires, and allow for more flexibility. However, it was generally concluded that wireless solutions are not currently ready to replace wired technologies for launch vehicles. The recommendations of the study were to continue to use wired sensors as the primary choice for vehicle instrumentation, and to continue to assess needs and use wireless instrumentation where appropriate. The future work includes support efforts for wireless technologies, and continue to monitor the development of wireless solutions.

  12. Meeting the challenges of case management with remote patient monitoring technology.

    PubMed

    Cherry, J C; Colliflower, S J; Tsiperfal, A

    2000-01-01

    The article presents an overview of some of the current trends in health care and the challenges faced by nurse case managers who are providing disease management services. It discusses some of the emerging technologies available today for innovative case management. In particular, this article describes a program run by a healthcare system in Sacramento, California that uses an Internet-based technology to enhance their nurse case management model. The article demonstrates how the Health Hero platform enables interactive communication between nurse case managers and their patients, thereby meeting some of the challenges the nurse case managers are faced with in the modern disease-management world.

  13. Digital imaging technology assessment: Digital document storage project

    NASA Technical Reports Server (NTRS)

    1989-01-01

    An ongoing technical assessment and requirements definition project is examining the potential role of digital imaging technology at NASA's STI facility. The focus is on the basic components of imaging technology in today's marketplace as well as the components anticipated in the near future. Presented is a requirement specification for a prototype project, an initial examination of current image processing at the STI facility, and an initial summary of image processing projects at other sites. Operational imaging systems incorporate scanners, optical storage, high resolution monitors, processing nodes, magnetic storage, jukeboxes, specialized boards, optical character recognition gear, pixel addressable printers, communications, and complex software processes.

  14. Optical sensors based on plastic fibers.

    PubMed

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented.

  15. How Can We Better Detect Unauthorized GMOs in Food and Feed Chains?

    PubMed

    Fraiture, Marie-Alice; Herman, Philippe; De Loose, Marc; Debode, Frédéric; Roosens, Nancy H

    2017-06-01

    Current GMO detection systems have limited abilities to detect unauthorized genetically modified organisms (GMOs). Here, we propose a new workflow, based on next-generation sequencing (NGS) technology, to overcome this problem. In providing information about DNA sequences, this high-throughput workflow can distinguish authorized and unauthorized GMOs by strengthening the tools commonly used by enforcement laboratories with the help of NGS technology. In addition, thanks to its massive sequencing capacity, this workflow could be used to monitor GMOs present in the food and feed chain. In view of its potential implementation by enforcement laboratories, we discuss this innovative approach, its current limitations, and its sustainability of use over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Digital Platforms in the Assessment and Monitoring of Patients with Bipolar Disorder

    PubMed Central

    Rajagopalan, Arvind; Shah, Pooja; Zhang, Melvyn W.; Ho, Roger C.

    2017-01-01

    This paper aims to review the application of digital platforms in the assessment and monitoring of patients with Bipolar Disorder (BPD). We will detail the current clinical criteria for the diagnosis of BPD and the tools available for patient assessment in the clinic setting. We will go on to highlight the difficulties in the assessment and monitoring of BPD patients in the clinical context. Finally, we will elaborate upon the impact that diital platforms have made, and have the potential to make, on healthcare, mental health, and specifically the management of BPD, before going on to evaluate the benefits and drawbacks of the use of such technology. PMID:29137156

  17. Current trends in molecular sensing

    NASA Astrophysics Data System (ADS)

    Wlodarski, Wojtek

    1992-08-01

    The biosphere contains a myriad of substances which can influence or stimulate various aspects of the health and behavior of living organisms. Not surprisingly, in the last decade or so researchers have appreciated the potential of developing a range of molecular sensor technologies, designed to estimate and monitor biological and chemical substances with a view to eventually controlling the biological processes themselves. This development has been accelerated recently by the realization that molecular sensors offer considerable commercial potential. At the same time, it was quickly appreciated that such sensors could revolutionize several areas, including health care, pollution and contamination monitoring, agriculture, on-line monitoring and control of industrial chemical processing, and strategic and tactical monitoring of chemical warfare. This brief review considers the changing scene in molecular sensor research by reference to a few key examples.

  18. Application research on land use remote sensing dynamic monitoring: A case study of Anning district, Lanzhou

    NASA Astrophysics Data System (ADS)

    Zhu, Yunqiang; Zhu, Huazhong; Lu, Heli; Ni, Jianguang; Zhu, Shaoxia

    2005-10-01

    Remote sensing dynamic monitoring of land use can detect the change information of land use and update the current land use map, which is important for rational utilization and scientific management of land resources. This paper discusses the technological procedure of remote sensing dynamic monitoring of land use including the process of remote sensing images, the extraction of annual change information of land use, field survey, indoor post processing and accuracy assessment. Especially, we emphasize on comparative research on the choice of remote sensing rectifying models, image fusion algorithms and accuracy assessment methods. Taking Anning district in Lanzhou as an example, we extract the land use change information of the district during 2002-2003, access monitoring accuracy and analyze the reason of land use change.

  19. Technical note: Validation of a commercial system for the continuous and automated monitoring of dairy cow activity.

    PubMed

    Tullo, E; Fontana, I; Gottardo, D; Sloth, K H; Guarino, M

    2016-09-01

    Current farm sizes do not allow the precise identification and tracking of individual cows and their health and behavioral records. Currently, the application of information technology within intensive dairy farming takes a key role in proper routine management to improve animal welfare and to enhance the comfort of dairy cows. An existing application based on information technology is represented by the GEA CowView system (GEA Farm Technologies, Bönen, Germany). This system is able to detect and monitor animal behavioral activities based on positioning, through the creation of a virtual map of the barn that outlines all the areas where cows have access. The aim of this study was to validate the accuracy, sensitivity, and specificity of data provided by the CowView system. The validation was performed by comparing data automatically obtained from the CowView system with those obtained by a manual labeling procedure performed on video recordings. Data used for the comparisons were represented by the zone-related activities performed by the selected dairy cows and were classified into 2 categories: activity and localization. The duration in seconds of each of the activities/localizations detected both with the manual labeling and with the automated system were used to evaluate the correlation coefficients among data; and subsequently the accuracy, sensitivity, specificity, and positive and negative predictive values of the automated monitoring system were calculated. The results of this validation study showed that the CowView automated monitoring system is able to identify the cow localization/position (alley, trough, cubicles) with high reliability in relation to the zone-related activities performed by dairy cows (accuracy higher than 95%). The results obtained support the CowView system as an innovative potential solution for the easier management of dairy cows. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. The status and prospective of environmental radiation monitoring stations in Saudi Arabia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Kheliewi, Abdullah S.; Holzheimer, Clous

    2014-09-30

    The use of nuclear technology requires an environmental monitoring program to ensure the safety of the environment, and to protect people from the hazards of radioactive materials, and nuclear accidents. Nuclear accidents are unique, for they incur effects that surpass international frontiers, and can even have a long lasting impact on Earth. Such was the case of the Chernobyl accident in the Ukraine on April 6, 1986. For that purpose, international and national efforts come together to observe for any nuclear or radioactive accident. Many states, including Saudi Arabia which oversees the operation of the National Radiation, Environmental and Earlymore » Monitoring Stations, The Radiation Monitoring Stations(RMS’s) are currently scattered across 35 cities in the country,. These locations are evaluated based on various technological criteria such as border cities, cities of high population density, wind direction, etc. For new nuclear power plants hovering around, it is strongly recommended to increase the number of radiation monitoring stations to warn against any threat that may arise from a nuclear leak or accident and to improve the performance of the existing RMS’s. SARA (Spectroscopic Monitoring Station for air) should be implemented due to the high sensitivity to artificial radiation, automatic isotope identification, free of maintenance, and fully independent due to solar power supply (incl. battery backup) and wireless communication (GPRS)« less

  1. Global, Frequent Landsat-class Mosaics for Real Time Crop Monitoring and Analysis

    NASA Astrophysics Data System (ADS)

    Varlyguin, D.; Crutchfield, J.; Hulina, S.; Reynolds, C. A.; Frantz, R.; Tetrault, R. L.

    2016-12-01

    The presentation will discuss the current status of GDA technology for operational, automated generation of near global mosaics of Landsat-class data for visualization, monitoring, and analysis. Current version of the mosaic combines Landsat 8 and Landsat 7. Sentinel-2A and ASTER imagery are to be added shortly. The mosaics are surface reflectance calibrated and are analysis ready. They offer full spatial resolution and all multi-spectral bands of the source imagery. Each mosaic covers all major agricultural regions of the world for the last 18 months with a 16 day frequency. The mosaics are updated in real-time, as soon as GDA downloads the imagery, calibrates it to the surface reflectances, and generates data gap masks (all typically under 10 minutes for a Landsat scene). Best pixel value from available opportunities is selected during the mosaic update. The technology eliminates the complex, multi-step, hands-on process of data preparation and provides imagery ready for repetitive, field-to-country analysis of crop conditions, progress, acreages, yield, and production. The mosaics are used for real-time, on-line interactive mapping and time series drilling via GeoSynergy webGIS platform and for off line in-season crop mapping. USDA FAS uses this product for persistent monitoring of selected countries and their croplands and for in-season crop analysis. The presentation will overview Landsat-class mosaics and their use in support of USDA FAS efforts.

  2. Use of Savitzky-Golay Filter for Performances Improvement of SHM Systems Based on Neural Networks and Distributed PZT Sensors.

    PubMed

    de Oliveira, Mario A; Araujo, Nelcileno V S; da Silva, Rodolfo N; da Silva, Tony I; Epaarachchi, Jayantha

    2018-01-08

    A considerable amount of research has focused on monitoring structural damage using Structural Health Monitoring (SHM) technologies, which has had recent advances. However, it is important to note the challenges and unresolved problems that disqualify currently developed monitoring systems. One of the frontline SHM technologies, the Electromechanical Impedance (EMI) technique, has shown its potential to overcome remaining problems and challenges. Unfortunately, the recently developed neural network algorithms have not shown significant improvements in the accuracy of rate and the required processing time. In order to fill this gap in advanced neural networks used with EMI techniques, this paper proposes an enhanced and reliable strategy for improving the structural damage detection via: (1) Savitzky-Golay (SG) filter, using both first and second derivatives; (2) Probabilistic Neural Network (PNN); and, (3) Simplified Fuzzy ARTMAP Network (SFAN). Those three methods were employed to analyze the EMI data experimentally obtained from an aluminum plate containing three attached PZT (Lead Zirconate Titanate) patches. In this present study, the damage scenarios were simulated by attaching a small metallic nut at three different positions in the aluminum plate. We found that the proposed method achieves a hit rate of more than 83%, which is significantly higher than current state-of-the-art approaches. Furthermore, this approach results in an improvement of 93% when considering the best case scenario.

  3. Use of Savitzky–Golay Filter for Performances Improvement of SHM Systems Based on Neural Networks and Distributed PZT Sensors

    PubMed Central

    Araujo, Nelcileno V. S.; da Silva, Rodolfo N.; da Silva, Tony I.; Epaarachchi, Jayantha

    2018-01-01

    A considerable amount of research has focused on monitoring structural damage using Structural Health Monitoring (SHM) technologies, which has had recent advances. However, it is important to note the challenges and unresolved problems that disqualify currently developed monitoring systems. One of the frontline SHM technologies, the Electromechanical Impedance (EMI) technique, has shown its potential to overcome remaining problems and challenges. Unfortunately, the recently developed neural network algorithms have not shown significant improvements in the accuracy of rate and the required processing time. In order to fill this gap in advanced neural networks used with EMI techniques, this paper proposes an enhanced and reliable strategy for improving the structural damage detection via: (1) Savitzky–Golay (SG) filter, using both first and second derivatives; (2) Probabilistic Neural Network (PNN); and, (3) Simplified Fuzzy ARTMAP Network (SFAN). Those three methods were employed to analyze the EMI data experimentally obtained from an aluminum plate containing three attached PZT (Lead Zirconate Titanate) patches. In this present study, the damage scenarios were simulated by attaching a small metallic nut at three different positions in the aluminum plate. We found that the proposed method achieves a hit rate of more than 83%, which is significantly higher than current state-of-the-art approaches. Furthermore, this approach results in an improvement of 93% when considering the best case scenario. PMID:29316693

  4. Microalgal process-monitoring based on high-selectivity spectroscopy tools: status and future perspectives.

    PubMed

    Podevin, Michael; Fotidis, Ioannis A; Angelidaki, Irini

    2018-08-01

    Microalgae are well known for their ability to accumulate lipids intracellularly, which can be used for biofuels and mitigate CO 2 emissions. However, due to economic challenges, microalgae bioprocesses have maneuvered towards the simultaneous production of food, feed, fuel, and various high-value chemicals in a biorefinery concept. On-line and in-line monitoring of macromolecules such as lipids, proteins, carbohydrates, and high-value pigments will be more critical to maintain product quality and consistency for downstream processing in a biorefinery to maintain and valorize these markets. The main contribution of this review is to present current and prospective advances of on-line and in-line process analytical technology (PAT), with high-selectivity - the capability of monitoring several analytes simultaneously - in the interest of improving product quality, productivity, and process automation of a microalgal biorefinery. The high-selectivity PAT under consideration are mid-infrared (MIR), near-infrared (NIR), and Raman vibrational spectroscopies. The current review contains a critical assessment of these technologies in the context of recent advances in software and hardware in order to move microalgae production towards process automation through multivariate process control (MVPC) and software sensors trained on "big data". The paper will also include a comprehensive overview of off-line implementations of vibrational spectroscopy in microalgal research as it pertains to spectral interpretation and process automation to aid and motivate development.

  5. Application of GIS technologies to monitor secondary radioactive contamination in the Delegen mountain massif

    NASA Astrophysics Data System (ADS)

    Alipbeki, O.; Kabzhanova, G.; Kurmanova, G.; Alipbekova, Ch.

    2016-06-01

    The territory of the Degelen mountain massif is located within territory of the former Semipalatinsk nuclear test site and it is an area of ecological disaster. Currently there is a process of secondary radioactive contamination that is caused by geodynamic processes activated at the Degelen array, violation of underground hydrological cycles and as a consequence, water seepage into the tunnels. One of the methods of monitoring of geodynamic processes is the modern technology of geographic information systems (GIS), methods of satellite radar interferometry and high accuracy satellite navigation system in conjunction with radioecological methods. This paper discusses on the creation of a GIS-project for the Degelen array, facilitated by quality geospatial analysis of the situation and simulation of the phenomena, in order to maximize an objective assessment of the radiation situation in this protected area.

  6. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    NASA Technical Reports Server (NTRS)

    Gat, N.; Subramanian, S.; Barhen, J.; Toomarian, N.

    1996-01-01

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  7. Nanomaterial-enabled Rapid Detection of Water Contaminants.

    PubMed

    Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong

    2015-10-28

    Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Impact of new technologies on diabetes care.

    PubMed

    Giani, Elisa; Scaramuzza, Andrea Enzo; Zuccotti, Gian Vincenzo

    2015-07-25

    Technologies for diabetes management, such as continuous subcutaneous insulin infusion (CSII) and continuous glucose monitoring (CGM) systems, have improved remarkably over the last decades. These developments are impacting the capacity to achieve recommended hemoglobin A1c levels and assisting in preventing the development and progression of micro- and macro vascular complications. While improvements in metabolic control and decreases in risk of severe and moderate hypoglycemia have been described with use of these technologies, large epidemiological international studies show that many patients are still unable to meet their glycemic goals, even when these technologies are used. This editorial will review the impact of technology on glycemic control, hypoglycemia and quality of life in children and youth with type 1 diabetes. Technologies reviewed include CSII, CGM systems and sensor-augmented insulin pumps. In addition, the usefulness of advanced functions such as bolus profiles, bolus calculators and threshold-suspend features will be also discussed. Moreover, the current editorial will explore the challenges of using these technologies. Indeed, despite the evidence currently available of the potential benefits of using advanced technologies in diabetes management, many patients still report barriers to using them. Finally this article will highlight the importance of future studies tailored toward overcome these barriers to optimizing glycemic control and avoiding severe hypoglycemia.

  9. Optimisation of techniques for quantification of Botrytis cinerea in grape berries and receptacles by quantitative polymerase chain reaction

    USDA-ARS?s Scientific Manuscript database

    Quantitative PCR (qPCR) can be used to detect and monitor pathogen colonization, but early attempts to apply the technology to Botrytis cinerea infection of grape berries have identified limitations to current techniques. In this study, four DNA extraction methods, two grinding methods, two grape or...

  10. Invited Review: Measuring the respiratory gas exchange by grazing cattle using the GreenFeed emissions monitoring system

    USDA-ARS?s Scientific Manuscript database

    Ruminants are a source of enteric methane (CH4), which has been identified as a greenhouse gas that contributes to climate change. With interest in developing technologies to decrease enteric CH4 emission, systems are currently being developed to measure the CH4 emission by cattle. An issue with g...

  11. Monitoring Technology: The Qualimetric Foundations of the Educational Process of the University

    ERIC Educational Resources Information Center

    Krokhina, Julia A.; Aleksandrova, Natalia S.; Buldakova, Natalya V.; Ashrafullina, Gulnaz S.; Shinkaruk, Vladimir M.

    2016-01-01

    The relevance of the research problem is determined by the current discrepancy between the requirements of society to quality of students' training--future specialists with higher education, on the one hand, and level of training received by graduates on the other hand. The tendency of the discrepancies noted is a consequence of the properties of…

  12. Increasing Reliability with Wireless Instrumentation Systems from Space Shuttle to 'Fly-By-Wireless'

    NASA Technical Reports Server (NTRS)

    Studor, George

    2004-01-01

    This slide presentation discusses some of the requirements to allow for "Fly by Wireless". Included in the discussion are: a review of new technologies by decades starting with the 1930's and going through the current decade, structural health monitoring, the requisite system designs, and the vision of flying by wireless.

  13. Modelling the passive microwave signature from land surfaces: a review of recent results and application to the SMOS & SMAP soil moisture retrieval algorithms

    USDA-ARS?s Scientific Manuscript database

    Two passive microwave missions are currently operating at L-band to monitor surface soil moisture (SM) over continental surfaces. The SMOS sensor, based on an innovative interferometric technology enabling multi-angular signatures of surfaces to be measured, was launched in November 2009....

  14. Land cover change map comparisons using open source web mapping technologies

    Treesearch

    Erik Lindblom; Ian Housman; Tony Guay; Mark Finco; Kevin Megown

    2015-01-01

    The USDA Forest Service is evaluating the status of current landscape change maps and assessing gaps in their information content. These activities have been occurring under the auspices of the Landscape Change Monitoring System (LCMS) project, which is a joint effort between USFS Research, USFS Remote Sensing Applications Center (RSAC), USGS Earth Resources...

  15. Army requirements for micro and nanotechnology-based sensors in weapons health and battlefield environmental monitoring applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul; Brantley, Christina; Edwards, Eugene; Hutcheson, Guilford

    2006-03-01

    The Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) and the Army Research Laboratory (ARL) have initiated a joint advanced technology demonstration program entitled "Prognostics/Diagnostics for the Future Force (PDFF)" with a key objective of developing low or no power embedded sensor suites for harsh environmental monitoring. The most critical challenge of the program is to specify requirements for the embedded sensor suites which will perform on-board diagnostics, maintain a history of sensor data, and forecast weapon health. The authors are currently collaborating with the PDFF program managers and potential customers to quantify the requirements for remotely operated, micro/nano-technology-based sensors for a host of candidate weapon systems. After requirements are finalized, current micro/nanotechnology-based temperature, humidity, g-shock, vibration and chemical sensors for monitoring the out-gassing of weapons propellant, as well as hazardous gaseous species on the battlefield and in urban environments will be improved to meet the full requirements of the PDFF program. In this paper, performance requirements such as power consumption, reliability, maintainability, survivability, size, and cost, along with the associated technical challenges for micro/nanotechnology-based sensor systems operating in military environments, are discussed. In addition, laboratory results from the design and testing of a wireless sensor array, which was developed using a thin film of functionalized carbon nanotube materials, are presented. Conclusions from the research indicate that the detection of bio-hazardous materials is possible using passive and active wireless sensors based on monitoring the reflected phase from the sensor.

  16. Soil moisture monitoring for crop management

    NASA Astrophysics Data System (ADS)

    Boyd, Dale

    2015-07-01

    The 'Risk management through soil moisture monitoring' project has demonstrated the capability of current technology to remotely monitor and communicate real time soil moisture data. The project investigated whether capacitance probes would assist making informed pre- and in-crop decisions. Crop potential and cropping inputs are increasingly being subject to greater instability and uncertainty due to seasonal variability. In a targeted survey of those who received regular correspondence from the Department of Primary Industries it was found that i) 50% of the audience found the information generated relevant for them and less than 10% indicted with was not relevant; ii) 85% have improved their knowledge/ability to assess soil moisture compared to prior to the project, with the most used indicator of soil moisture still being rain fall records; and iii) 100% have indicated they will continue to use some form of the technology to monitor soil moisture levels in the future. It is hoped that continued access to this information will assist informed input decisions. This will minimise inputs in low decile years with a low soil moisture base and maximise yield potential in more favourable conditions based on soil moisture and positive seasonal forecasts

  17. International Consensus on Use of Continuous Glucose Monitoring.

    PubMed

    Danne, Thomas; Nimri, Revital; Battelino, Tadej; Bergenstal, Richard M; Close, Kelly L; DeVries, J Hans; Garg, Satish; Heinemann, Lutz; Hirsch, Irl; Amiel, Stephanie A; Beck, Roy; Bosi, Emanuele; Buckingham, Bruce; Cobelli, Claudio; Dassau, Eyal; Doyle, Francis J; Heller, Simon; Hovorka, Roman; Jia, Weiping; Jones, Tim; Kordonouri, Olga; Kovatchev, Boris; Kowalski, Aaron; Laffel, Lori; Maahs, David; Murphy, Helen R; Nørgaard, Kirsten; Parkin, Christopher G; Renard, Eric; Saboo, Banshi; Scharf, Mauro; Tamborlane, William V; Weinzimer, Stuart A; Phillip, Moshe

    2017-12-01

    Measurement of glycated hemoglobin (HbA 1c ) has been the traditional method for assessing glycemic control. However, it does not reflect intra- and interday glycemic excursions that may lead to acute events (such as hypoglycemia) or postprandial hyperglycemia, which have been linked to both microvascular and macrovascular complications. Continuous glucose monitoring (CGM), either from real-time use (rtCGM) or intermittently viewed (iCGM), addresses many of the limitations inherent in HbA 1c testing and self-monitoring of blood glucose. Although both provide the means to move beyond the HbA 1c measurement as the sole marker of glycemic control, standardized metrics for analyzing CGM data are lacking. Moreover, clear criteria for matching people with diabetes to the most appropriate glucose monitoring methodologies, as well as standardized advice about how best to use the new information they provide, have yet to be established. In February 2017, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address these issues. This article summarizes the ATTD consensus recommendations and represents the current understanding of how CGM results can affect outcomes. © 2017 by the American Diabetes Association.

  18. Molecular neuroanatomy: a generation of progress.

    PubMed

    Pollock, Jonathan D; Wu, Da-Yu; Satterlee, John S

    2014-02-01

    The neuroscience research landscape has changed dramatically over the past decade. Specifically, an impressive array of new tools and technologies have been generated, including but not limited to: brain gene expression atlases, genetically encoded proteins to monitor and manipulate neuronal activity, and new methods for imaging and mapping circuits. However, despite these technological advances, several significant challenges must be overcome to enable a better understanding of brain function and to develop cell type-targeted therapeutics to treat brain disorders. This review provides an overview of some of the tools and technologies currently being used to advance the field of molecular neuroanatomy, and also discusses emerging technologies that may enable neuroscientists to address these crucial scientific challenges over the coming decade. Published by Elsevier Ltd.

  19. Graphic products used in the evaluation of traditional and emerging remote sensing technologies for the detection of fugitive contamination at selected superfund hazardous waste sites

    USGS Publications Warehouse

    Slonecker, E. Terrence; Fisher, Gary B.

    2011-01-01

    This report presents the overhead imagery and field sampling results used to prepare U.S. Geological Survey Open-File Report 2011-1050, 'Evaluation of Traditional and Emerging Remote Sensing Technologies for the Detection of Fugitive Contamination at Selected Superfund Hazardous Waste Sites'. These graphic products were used in the evaluation of remote sensing technology in postclosure monitoring of hazardous waste sites and represent an ongoing research effort. Soil sampling results presented here were accomplished with field portable x-ray fluoresence (XRF) technology and are used as screening tools only representing the current conditions of metals and other contaminants at selected Superfund hazardous waste sites.

  20. Distal technologies and type 1 diabetes management.

    PubMed

    Duke, Danny C; Barry, Samantha; Wagner, David V; Speight, Jane; Choudhary, Pratik; Harris, Michael A

    2018-02-01

    Type 1 diabetes requires intensive self-management to avoid acute and long-term health complications. In the past two decades, substantial advances in technology have enabled more effective and convenient self-management of type 1 diabetes. Although proximal technologies (eg, insulin pumps, continuous glucose monitors, closed-loop and artificial pancreas systems) have been the subject of frequent systematic and narrative reviews, distal technologies have received scant attention. Distal technologies refer to electronic systems designed to provide a service remotely and include heterogeneous systems such as telehealth, mobile health applications, game-based support, social platforms, and patient portals. In this Review, we summarise the empirical literature to provide current information about the effectiveness of available distal technologies to improve type 1 diabetes management. We also discuss privacy, ethics, and regulatory considerations, issues of global adoption, knowledge gaps in distal technology, and recommendations for future directions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Design of a Parachute Canopy Instrumentation Platform

    NASA Technical Reports Server (NTRS)

    Alshahin, Wahab M.; Daum, Jared S.; Holley, James J.; Litteken, Douglas A.; Vandewalle, Michael T.

    2015-01-01

    This paper discusses the current technology available to design and develop a reliable and compact instrumentation platform for parachute system data collection and command actuation. Wireless communication with a parachute canopy will be an advancement to the state of the art of parachute design, development, and testing. Embedded instrumentation of the parachute canopy will provide reefing line tension, skirt position data, parachute health monitoring, and other telemetry, further validating computer models and giving engineering insight into parachute dynamics for both Earth and Mars entry that is currently unavailable. This will allow for more robust designs which are more optimally designed in terms of structural loading, less susceptible to adverse dynamics, and may eventually pave the way to currently unattainable advanced concepts of operations. The development of this technology has dual use potential for a variety of other applications including inflatable habitats, aerodynamic decelerators, heat shields, and other high stress environments.

  2. A prototype implementation of a network-level intrusion detection system. Technical report number CS91-11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heady, R.; Luger, G.F.; Maccabe, A.B.

    1991-05-15

    This paper presents the implementation of a prototype network level intrusion detection system. The prototype system monitors base level information in network packets (source, destination, packet size, time, and network protocol), learning the normal patterns and announcing anomalies as they occur. The goal of this research is to determine the applicability of current intrusion detection technology to the detection of network level intrusions. In particular, the authors are investigating the possibility of using this technology to detect and react to worm programs.

  3. LANDSAT-4 TM image data quality analysis for energy-related applications

    NASA Technical Reports Server (NTRS)

    Wukelic, G. E.; Foote, H. P.

    1983-01-01

    LANDSAT-4 Thematic Mapper (TM) data performance and utility characteristics from an energy research and technology perspective is evaluated. The program focuses on evaluating applicational implications of using such data, in combination with other digital data, for current and future energy research and technology activities. Prime interest is in using TM data for siting, developing and operating federal energy facilities. Secondary interests involve the use of such data for resource exploration, environmental monitoring and basic scientific initiatives such as in support of the Continental Scientific Drilling Program.

  4. Active Satellite Sensors for the needs of Cultural Heritage: Introducing SAR applications in Cyprus through ATHENA project

    NASA Astrophysics Data System (ADS)

    Kouhartsiouk, Demetris; Agapiou, Athos; Lynsadrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Hadjimitsis, Diofantos G.; Lasaponara, Rosa; Masini, Nicola; Brcic, Ramon; Eineder, Michael; Krauss, Thomas; Cerra, Daniele; Gessner, Ursula; Schreier, Gunter

    2017-04-01

    Non-invasive landscape investigation for archaeological purposes includes a wide range of survey techniques, most of which include in-situ methods. In the recent years, a major advance in the non-invasive surveying techniques has been the introduction of active remote sensing technologies. One of such technologies is spaceborne radar, known as Synthetic Aperture Radar (SAR). SAR has proven to be a valuable tool in the analysis of potential archaeological marks and in the systematic cultural heritage site monitoring. With the use of SAR, it is possible to monitor slight variations in vegetation and soil often interpreted as archaeological signs, while radar sensors frequently having penetrating capabilities offering an insight into shallow underground remains. Radar remote sensing for immovable cultural heritage and archaeological applications has been recently introduced to Cyprus through the currently ongoing ATHENA project. ATHENA project, under the Horizon 2020 programme, aims at building a bridge between research institutions of the low performing Member States and internationally-leading counterparts at EU level, mainly through training workshops and a series of knowledge transfer activities, frequently taking place on the basis of capacity development. The project is formed as the consortium of the Remote Sensing and Geo-Environment Research Laboratory of the Cyprus University of Technology (CUT), the National Research Council of Italy (CNR) and the German Aerospace Centre (DLR). As part of the project, a number of cultural heritage sites in Cyprus have been studied testing different methodologies involving SAR imagery such as Amplitude Change Detection, Coherence Calculation and fusion techniques. The ATHENA's prospective agenda includes the continuation of the capacity building programme with upcoming training workshops to take place while expanding the knowledge of radar applications on conservation and risk monitoring of cultural heritage sites through SAR Interferometry. The current paper presents some preliminary results from the archaeological site of "Nea Paphos", addressing the potential use of the radar technology.

  5. Continuous Glucose Monitoring: Impact on Hypoglycemia.

    PubMed

    van Beers, Cornelis A J; DeVries, J Hans

    2016-11-01

    The necessity of strict glycemic control is unquestionable. However, hypoglycemia remains a major limiting factor in achieving satisfactory glucose control, and evidence is mounting to show that hypoglycemia is not benign. Over the past decade, evidence has consistently shown that real-time continuous glucose monitoring improves glycemic control in terms of lowering glycated hemoglobin levels. However, real-time continuous glucose monitoring has not met the expectations of the diabetes community with regard to hypoglycemia prevention. The earlier trials did not demonstrate any effect on either mild or severe hypoglycemia and the effect of real-time continuous glucose monitoring on nocturnal hypoglycemia was often not reported. However, trials specifically designed to reduce hypoglycemia in patients with a high hypoglycemia risk have demonstrated a reduction in hypoglycemia, suggesting that real-time continuous glucose monitoring can prevent hypoglycemia when it is specifically used for that purpose. Moreover, the newest generation of diabetes technology currently available commercially, namely sensor-augmented pump therapy with a (predictive) low glucose suspend feature, has provided more convincing evidence for hypoglycemia prevention. This article provides an overview of the hypoglycemia outcomes of randomized controlled trials that investigate the effect of real-time continuous glucose monitoring alone or sensor-augmented pump therapy with a (predictive) low glucose suspend feature. Furthermore, several possible explanations are provided why trials have not shown a reduction in severe hypoglycemia. In addition, existing evidence is presented of real-time continuous glucose monitoring in patients with impaired awareness of hypoglycemia who have the highest risk of severe hypoglycemia. © 2016 Diabetes Technology Society.

  6. Wearable physiological systems and technologies for metabolic monitoring.

    PubMed

    Gao, Wei; Brooks, George A; Klonoff, David C

    2018-03-01

    Wearable sensors allow continuous monitoring of metabolites for diabetes, sports medicine, exercise science, and physiology research. These sensors can continuously detect target analytes in skin interstitial fluid (ISF), tears, saliva, and sweat. In this review, we will summarize developments on wearable devices and their potential applications in research, clinical practice, and recreational and sporting activities. Sampling skin ISF can require insertion of a needle into the skin, whereas sweat, tears, and saliva can be sampled by devices worn outside the body. The most widely sampled metabolite from a wearable device is glucose in skin ISF for monitoring diabetes patients. Continuous ISF glucose monitoring allows estimation of the glucose concentration in blood without the pain, inconvenience, and blood waste of fingerstick capillary blood glucose testing. This tool is currently used by diabetes patients to provide information for dosing insulin and determining a diet and exercise plan. Similar technologies for measuring concentrations of other analytes in skin ISF could be used to monitor athletes, emergency responders, warfighters, and others in states of extreme physiological stress. Sweat is a potentially useful substrate for sampling analytes for metabolic monitoring during exercise. Lactate, sodium, potassium, and hydrogen ions can be measured in sweat. Tools for converting the concentrations of these analytes sampled from sweat, tears, and saliva into blood concentrations are being developed. As an understanding of the relationships between the concentrations of analytes in blood and easily sampled body fluid increases, then the benefits of new wearable devices for metabolic monitoring will also increase.

  7. Charge Characteristics of Rechargeable Batteries

    NASA Astrophysics Data System (ADS)

    Maheswaranathan, Ponn; Kelly, Cormac

    2014-03-01

    Rechargeable batteries play important role in technologies today and they are critical for the future. They are used in many electronic devices and their capabilities need to keep up with the accelerated pace of technology. Efficient energy capture and storage is necessary for the future rechargeable batteries. Charging and discharging characteristics of three popular commercially available re-chargeable batteries (NiCd, NiMH, and Li Ion) are investigated and compared with regular alkaline batteries. Pasco's 850 interface and their voltage & current sensors are used to monitor the current through and the potential difference across the battery. The discharge current and voltage stayed fairly constant until the end, with a slightly larger drop in voltage than current, which is more pronounced in the alkaline batteries. After 25 charge/discharge cycling there is no appreciable loss of charge capacities in the Li Ion battery. Energy densities, cycle characteristics, and memory effects will also be presented. Sponsored by the South Carolina Governor's school for Science and Mathematics under the Summer Program for Research Interns program.

  8. Diabetes Educators' Intended and Reported Use of Common Diabetes-Related Technologies: Discrepancies and Dissonance.

    PubMed

    James, Steven; Perry, Lin; Gallagher, Robyn; Lowe, Julia

    2016-11-01

    Technology provides adjuvant and/or alternative approaches to care and may promote self-care, communication, and engagement with health care services. Common recent technologies for diabetes include continuous subcutaneous insulin infusions (insulin pumps), continuous glucose monitoring systems, smartphone and tablet applications, and telehealth (video conferencing). This study reports Australian diabetes educators' intentions and reported professional use of these technologies for people with type 1 diabetes, and factors predictive of this. An anonymous, web-based questionnaire based on the technology acceptance model was distributed to members of the Australian Diabetes Educators Association through their electronic newsletter. Exploratory factor analysis revealed a 5-factor solution comprising confidence and competence, improving clinical practice, preparation (intentions and training), ease of use, and subjective norms. Logistic regression analyses identified factors predicting intention and use of technology. Respondents (n = 228) had high intentions to use technology. The majority reported using continuous subcutaneous insulin infusions, continuous glucose monitoring systems, and applications with patients, but usage was occasional. Confidence and competence independently predicted both intentions and use of all 4 technologies. Preparation (intentions and training) independently predicted use of each technology also. Discrepancies and dissonance appear between diabetes educators' intentions and behavior (intentions to use and reported technology use). Intentions were higher than current use, which was relatively low and not likely to provide significant support to people with type 1 diabetes for disease management, communication, and engagement with health care services. Continuing education and experiential learning may be key in supporting diabetes educators to align their intentions with their practice. © 2016 Diabetes Technology Society.

  9. Technologies for Continuous Glucose Monitoring: Current Problems and Future Promises

    PubMed Central

    Vaddiraju, Santhisagar; Burgess, Diane J; Tomazos, Ioannis; Jain, Faquir C; Papadimitrakopoulos, Fotios

    2010-01-01

    Devices for continuous glucose monitoring (CGM) are currently a major focus of research in the area of diabetes management. It is envisioned that such devices will have the ability to alert a diabetes patient (or the parent or medical care giver of a diabetes patient) of impending hypoglycemic/hyperglycemic events and thereby enable the patient to avoid extreme hypoglycemic/hyperglycemic excursions as well as minimize deviations outside the normal glucose range, thus preventing both life-threatening events and the debilitating complications associated with diabetes. It is anticipated that CGM devices will utilize constant feedback of analytical information from a glucose sensor to activate an insulin delivery pump, thereby ultimately realizing the concept of an artificial pancreas. Depending on whether the CGM device penetrates/breaks the skin and/or the sample is measured extracorporeally, these devices can be categorized as totally invasive, minimally invasive, and noninvasive. In addition, CGM devices are further classified according to the transduction mechanisms used for glucose sensing (i.e., electrochemical, optical, and piezoelectric). However, at present, most of these technologies are plagued by a variety of issues that affect their accuracy and long-term performance. This article presents a critical comparison of existing CGM technologies, highlighting critical issues of device accuracy, foreign body response, calibration, and miniaturization. An outlook on future developments with an emphasis on long-term reliability and performance is also presented. PMID:21129353

  10. Mobile devices for community-based REDD+ monitoring: a case study for Central Vietnam.

    PubMed

    Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M; Ribbe, Lars

    2012-12-20

    Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery.

  11. Mobile Devices for Community-Based REDD+ Monitoring: A Case Study for Central Vietnam

    PubMed Central

    Pratihast, Arun Kumar; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; Bartholomeus, Harm; Souza, Carlos M.; Ribbe, Lars

    2013-01-01

    Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task. Recently, the advancement in Information and Communications Technologies (ICT) and mobile devices has enabled local communities to monitor their forest in a basic resource setting such as no or slow internet connection link, limited power supply, etc. Despite the potential, the use of mobile device system for community based monitoring (CBM) is still exceptional and faces implementation challenges. This paper presents an integrated data collection system based on mobile devices that streamlines the community-based forest monitoring data collection, transmission and visualization process. This paper also assesses the accuracy and reliability of CBM data and proposes a way to fit them into national REDD+ Monitoring, Reporting and Verification (MRV) scheme. The system performance is evaluated at Tra Bui commune, Quang Nam province, Central Vietnam, where forest carbon and change activities were tracked. The results show that the local community is able to provide data with accuracy comparable to expert measurements (index of agreement greater than 0.88), but against lower costs. Furthermore, the results confirm that communities are more effective to monitor small scale forest degradation due to subsistence fuel wood collection and selective logging, than high resolution remote sensing SPOT imagery. PMID:23344371

  12. Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques

    PubMed Central

    Markides, Andreas; Skillman, Severin; Acton, Sahr Thomas; Elsaleh, Tarek; Hassanpour, Masoud; Ahrabian, Alireza; Kenny, Mark; Klein, Stuart; Rostill, Helen; Nilforooshan, Ramin; Barnaghi, Payam

    2018-01-01

    The number of people diagnosed with dementia is expected to rise in the coming years. Given that there is currently no definite cure for dementia and the cost of care for this condition soars dramatically, slowing the decline and maintaining independent living are important goals for supporting people with dementia. This paper discusses a study that is called Technology Integrated Health Management (TIHM). TIHM is a technology assisted monitoring system that uses Internet of Things (IoT) enabled solutions for continuous monitoring of people with dementia in their own homes. We have developed machine learning algorithms to analyse the correlation between environmental data collected by IoT technologies in TIHM in order to monitor and facilitate the physical well-being of people with dementia. The algorithms are developed with different temporal granularity to process the data for long-term and short-term analysis. We extract higher-level activity patterns which are then used to detect any change in patients’ routines. We have also developed a hierarchical information fusion approach for detecting agitation, irritability and aggression. We have conducted evaluations using sensory data collected from homes of people with dementia. The proposed techniques are able to recognise agitation and unusual patterns with an accuracy of up to 80%. PMID:29723236

  13. Mountaineer Commercial Scale Carbon Capture and Storage Project Topical Report: Preliminary Public Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guy Cerimele

    2011-09-30

    This Preliminary Public Design Report consolidates for public use nonproprietary design information on the Mountaineer Commercial Scale Carbon Capture & Storage project. The report is based on the preliminary design information developed during the Phase I - Project Definition Phase, spanning the time period of February 1, 2010 through September 30, 2011. The report includes descriptions and/or discussions for: (1) DOE's Clean Coal Power Initiative, overall project & Phase I objectives, and the historical evolution of DOE and American Electric Power (AEP) sponsored projects leading to the current project; (2) Alstom's Chilled Ammonia Process (CAP) carbon capture retrofit technology andmore » the carbon storage and monitoring system; (3) AEP's retrofit approach in terms of plant operational and integration philosophy; (4) The process island equipment and balance of plant systems for the CAP technology; (5) The carbon storage system, addressing injection wells, monitoring wells, system monitoring and controls logic philosophy; (6) Overall project estimate that includes the overnight cost estimate, cost escalation for future year expenditures, and major project risks that factored into the development of the risk based contingency; and (7) AEP's decision to suspend further work on the project at the end of Phase I, notwithstanding its assessment that the Alstom CAP technology is ready for commercial demonstration at the intended scale.« less

  14. Online PH measurement technique in seawater desalination

    NASA Astrophysics Data System (ADS)

    Wang, Haibo; Wu, Kaihua; Hu, Shaopeng

    2009-11-01

    The measurement technology of pH is essential in seawater desalination. Glass electrode is the main pH sensor in seawater desalination. Because the internal impedance of glass electrode is high and the signal of pH sensor is easy to be disturbed, a signal processing circuit with high input impedance was designed. Because of high salinity of seawater and the characteristic of glass electrode, ultrasonic cleaning technology was used to online clean pH sensor. Temperature compensation was also designed to reduce the measurement error caused by variety of environment temperature. Additionally, the potential drift of pH sensor was analyzed and an automatic calibration method was proposed. In order to online monitor the variety of pH in seawater desalination, three operating modes were designed. The three modes are online monitoring mode, ultrasonic cleaning mode and auto-calibration mode. The current pH in seawater desalination was measured and displayed in online monitoring mode. The cleaning process of pH sensor was done in ultrasonic cleaning mode. The calibration of pH sensor was finished in auto-calibration mode. The result of experiments showed that the measurement technology of pH could meet the technical requirements for desalination. The glass electrode could be promptly and online cleaned and its service life was lengthened greatly.

  15. Enhancement of observability and protection of smart power system

    NASA Astrophysics Data System (ADS)

    Siddique, Abdul Hasib

    It is important for a modern power grid to be smarter in order to provide reliable and sustainable supply of electricity. Traditional way of receiving data from the wired system is a very old and outdated technology. For a quicker and better response from the electric system, it is important to look at wireless systems as a feasible option. In order to enhance the observability and protection it is important to integrate wireless technology with the modern power system. In this thesis, wireless network based architecture for wide area monitoring and an alternate method for performing current measurement for protection of generators and motors, has been adopted. There are basically two part of this project. First part deals with the wide area monitoring of the power system and the second part focuses more on application of wireless technology from the protection point of view. A number of wireless method have been adopted in both the part, these includes Zigbee, analog transmission (Both AM and FM) and digital transmission. The main aim of our project was to propose a cost effective wide area monitoring and protection method which will enhance the observability and stability of power grid. A new concept of wireless integration in the power protection system has been implemented in this thesis work.

  16. Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques.

    PubMed

    Enshaeifar, Shirin; Zoha, Ahmed; Markides, Andreas; Skillman, Severin; Acton, Sahr Thomas; Elsaleh, Tarek; Hassanpour, Masoud; Ahrabian, Alireza; Kenny, Mark; Klein, Stuart; Rostill, Helen; Nilforooshan, Ramin; Barnaghi, Payam

    2018-01-01

    The number of people diagnosed with dementia is expected to rise in the coming years. Given that there is currently no definite cure for dementia and the cost of care for this condition soars dramatically, slowing the decline and maintaining independent living are important goals for supporting people with dementia. This paper discusses a study that is called Technology Integrated Health Management (TIHM). TIHM is a technology assisted monitoring system that uses Internet of Things (IoT) enabled solutions for continuous monitoring of people with dementia in their own homes. We have developed machine learning algorithms to analyse the correlation between environmental data collected by IoT technologies in TIHM in order to monitor and facilitate the physical well-being of people with dementia. The algorithms are developed with different temporal granularity to process the data for long-term and short-term analysis. We extract higher-level activity patterns which are then used to detect any change in patients' routines. We have also developed a hierarchical information fusion approach for detecting agitation, irritability and aggression. We have conducted evaluations using sensory data collected from homes of people with dementia. The proposed techniques are able to recognise agitation and unusual patterns with an accuracy of up to 80%.

  17. Remote Patient Monitoring via Non-Invasive Digital Technologies: A Systematic Review

    PubMed Central

    Tran, Melody; Angelaccio, Michele; Arcona, Steve

    2017-01-01

    Abstract Background: We conducted a systematic literature review to identify key trends associated with remote patient monitoring (RPM) via noninvasive digital technologies over the last decade. Materials and Methods: A search was conducted in EMBASE and Ovid MEDLINE. Citations were screened for relevance against predefined selection criteria based on the PICOTS (Population, Intervention, Comparator, Outcomes, Timeframe, and Study Design) format. We included studies published between January 1, 2005 and September 15, 2015 that used RPM via noninvasive digital technology (smartphones/personal digital assistants [PDAs], wearables, biosensors, computerized systems, or multiple components of the formerly mentioned) in evaluating health outcomes compared to standard of care or another technology. Studies were quality appraised according to Critical Appraisal Skills Programme. Results: Of 347 articles identified, 62 met the selection criteria. Most studies were randomized control trials with older adult populations, small sample sizes, and limited follow-up. There was a trend toward multicomponent interventions (n = 26), followed by smartphones/PDAs (n = 12), wearables (n = 11), biosensor devices (n = 7), and computerized systems (n = 6). Another key trend was the monitoring of chronic conditions, including respiratory (23%), weight management (17%), metabolic (18%), and cardiovascular diseases (16%). Although substantial diversity in health-related outcomes was noted, studies predominantly reported positive findings. Conclusions: This review will help decision makers develop a better understanding of the current landscape of peer-reviewed literature, demonstrating the utility of noninvasive RPM in various patient populations. Future research is needed to determine the effectiveness of RPM via noninvasive digital technologies in delivering patient healthcare benefits and the feasibility of large-scale implementation. PMID:27116181

  18. Smart homes and home health monitoring technologies for older adults: A systematic review.

    PubMed

    Liu, Lili; Stroulia, Eleni; Nikolaidis, Ioanis; Miguel-Cruz, Antonio; Rios Rincon, Adriana

    2016-07-01

    Around the world, populations are aging and there is a growing concern about ways that older adults can maintain their health and well-being while living in their homes. The aim of this paper was to conduct a systematic literature review to determine: (1) the levels of technology readiness among older adults and, (2) evidence for smart homes and home-based health-monitoring technologies that support aging in place for older adults who have complex needs. We identified and analyzed 48 of 1863 relevant papers. Our analyses found that: (1) technology-readiness level for smart homes and home health monitoring technologies is low; (2) the highest level of evidence is 1b (i.e., one randomized controlled trial with a PEDro score ≥6); smart homes and home health monitoring technologies are used to monitor activities of daily living, cognitive decline and mental health, and heart conditions in older adults with complex needs; (3) there is no evidence that smart homes and home health monitoring technologies help address disability prediction and health-related quality of life, or fall prevention; and (4) there is conflicting evidence that smart homes and home health monitoring technologies help address chronic obstructive pulmonary disease. The level of technology readiness for smart homes and home health monitoring technologies is still low. The highest level of evidence found was in a study that supported home health technologies for use in monitoring activities of daily living, cognitive decline, mental health, and heart conditions in older adults with complex needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Measuring currents in submarine canyons: technological and scientific progress in the past 30 years

    USGS Publications Warehouse

    Xu, J. P.

    2011-01-01

    The development and application of acoustic and optical technologies and of accurate positioning systems in the past 30 years have opened new frontiers in the submarine canyon research communities. This paper reviews several key advancements in both technology and science in the field of currents in submarine canyons since the1979 publication of Currents in Submarine Canyons and Other Sea Valleys by Francis Shepard and colleagues. Precise placements of high-resolution, high-frequency instruments have not only allowed researchers to collect new data that are essential for advancing and generalizing theories governing the canyon currents, but have also revealed new natural phenomena that challenge the understandings of the theorists and experimenters in their predictions of submarine canyon flow fields. Baroclinic motions at tidal frequencies, found to be intensified both up canyon and toward the canyon floor, dominate the flow field and control the sediment transport processes in submarine canyons. Turbidity currents are found to frequently occur in active submarine canyons such as Monterey Canyon. These turbidity currents have maximum speeds of nearly 200 cm/s, much smaller than the speeds of turbidity currents in geological time, but still very destructive. In addition to traditional Eulerian measurements, Lagrangian flow data are essential in quantifying water and sediment transport in submarine canyons. A concerted experiment with multiple monitoring stations along the canyon axis and on nearby shelves is required to characterize the storm-trigger mechanism for turbidity currents.

  20. General Purpose Data-Driven Monitoring for Space Operations

    NASA Technical Reports Server (NTRS)

    Iverson, David L.; Martin, Rodney A.; Schwabacher, Mark A.; Spirkovska, Liljana; Taylor, William McCaa; Castle, Joseph P.; Mackey, Ryan M.

    2009-01-01

    As modern space propulsion and exploration systems improve in capability and efficiency, their designs are becoming increasingly sophisticated and complex. Determining the health state of these systems, using traditional parameter limit checking, model-based, or rule-based methods, is becoming more difficult as the number of sensors and component interactions grow. Data-driven monitoring techniques have been developed to address these issues by analyzing system operations data to automatically characterize normal system behavior. System health can be monitored by comparing real-time operating data with these nominal characterizations, providing detection of anomalous data signatures indicative of system faults or failures. The Inductive Monitoring System (IMS) is a data-driven system health monitoring software tool that has been successfully applied to several aerospace applications. IMS uses a data mining technique called clustering to analyze archived system data and characterize normal interactions between parameters. The scope of IMS based data-driven monitoring applications continues to expand with current development activities. Successful IMS deployment in the International Space Station (ISS) flight control room to monitor ISS attitude control systems has led to applications in other ISS flight control disciplines, such as thermal control. It has also generated interest in data-driven monitoring capability for Constellation, NASA's program to replace the Space Shuttle with new launch vehicles and spacecraft capable of returning astronauts to the moon, and then on to Mars. Several projects are currently underway to evaluate and mature the IMS technology and complementary tools for use in the Constellation program. These include an experiment on board the Air Force TacSat-3 satellite, and ground systems monitoring for NASA's Ares I-X and Ares I launch vehicles. The TacSat-3 Vehicle System Management (TVSM) project is a software experiment to integrate fault and anomaly detection algorithms and diagnosis tools with executive and adaptive planning functions contained in the flight software on-board the Air Force Research Laboratory TacSat-3 satellite. The TVSM software package will be uploaded after launch to monitor spacecraft subsystems such as power and guidance, navigation, and control (GN&C). It will analyze data in real-time to demonstrate detection of faults and unusual conditions, diagnose problems, and react to threats to spacecraft health and mission goals. The experiment will demonstrate the feasibility and effectiveness of integrated system health management (ISHM) technologies with both ground and on-board experiments.

  1. Development of a near-infrared spectroscopy instrument for applications in urology.

    PubMed

    Macnab, Andrew J; Stothers, Lynn

    2008-10-01

    Near infrared spectroscopy (NIRS) is an established technology using photons of light in the near infrared spectrum to monitor changes in tissue of naturally occurring chromophores, including oxygenated and deoxygenated hemoglobin. Technology and methodology have been validated for measurement of a range of physiologic parameters. NIRS has been applied successfully in urology research; however current instruments are designed principally for brain and muscle study. To describe development of a NIRS instrument specifically designed for monitoring changes in chromophore concentration in the bladder detrusor in real time, to facilitate research to establish the role of this non-invasive technology in the evaluation of patients with voiding dysfunction The portable continuous wave NIRS instrument has a 3 laser diode light source (785, 808 and 830 nanometers), fiber optic cables for light transmission, a self adhesive patient interface patch with an emitter and sensor, and software to detect the difference between the light transmitted and received by the instrument. Software incorporated auto-attenuates the optical signals and converts raw optical data into chromophore concentrations displayed graphically. The prototype was designed, tested, and iteratively developed to achieve optimal suprapubic transcutaneous monitoring of the detrusor in human subjects during bladder filling and emptying. Evaluation with simultaneous invasive urodynamic measurement in men and women indicates good specificity and sensitivity of NIRS chromophore concentration changes by receiver operator curve analysis, and correlation between NIRS data and urodynamic pressures. Urological monitoring with this NIRS instrument is feasible and generates data of potential diagnostic value.

  2. Electromagnetic pulses bone healing booster

    NASA Astrophysics Data System (ADS)

    Sintea, S. R.; Pomazan, V. M.; Bica, D.; Grebenisan, D.; Bordea, N.

    2015-11-01

    Posttraumatic bone restoration triggered by the need to assist and stimulate compensatory bone growth in periodontal condition. Recent studies state that specific electromagnetic stimulation can boost the bone restoration, reaching up to 30% decrease in recovery time. Based on the existing data on the electromagnetic parameters, a digital electronic device is proposed for intra oral mounting and bone restoration stimulation in periodontal condition. The electrical signal is applied to an inductive mark that will create and impregnate magnetic field in diseased tissue. The device also monitors the status of the electromagnetic field. Controlled wave forms and pulse frequency signal at programmable intervals are obtained with optimized number of components and miniaturized using surface mounting devices (SMD) circuits and surface mounting technology (SMT), with enhanced protection against abnormal current growth, given the intra-oral environment. The system is powered by an autonomous power supply (battery), to limit the problems caused by powering medical equipment from the main power supply. Currently the device is used in clinical testing, in cycles of six up to twelve months. Basic principles for the electrical scheme and algorithms for pulse generation, pulse control, electromagnetic field control and automation of current monitoring are presented, together with the friendly user interface, suitable for medical data and patient monitoring.

  3. Optimization of Emissions Sensor Networks Incorporating Tradeoffs Between Different Sensor Technologies

    NASA Astrophysics Data System (ADS)

    Nicholson, B.; Klise, K. A.; Laird, C. D.; Ravikumar, A. P.; Brandt, A. R.

    2017-12-01

    In order to comply with current and future methane emissions regulations, natural gas producers must develop emissions monitoring strategies for their facilities. In addition, regulators must develop air monitoring strategies over wide areas incorporating multiple facilities. However, in both of these cases, only a limited number of sensors can be deployed. With a wide variety of sensors to choose from in terms of cost, precision, accuracy, spatial coverage, location, orientation, and sampling frequency, it is difficult to design robust monitoring strategies for different scenarios while systematically considering the tradeoffs between different sensor technologies. In addition, the geography, weather, and other site specific conditions can have a large impact on the performance of a sensor network. In this work, we demonstrate methods for calculating optimal sensor networks. Our approach can incorporate tradeoffs between vastly different sensor technologies, optimize over typical wind conditions for a particular area, and consider different objectives such as time to detection or geographic coverage. We do this by pre-computing site specific scenarios and using them as input to a mixed-integer, stochastic programming problem that solves for a sensor network that maximizes the effectiveness of the detection program. Our methods and approach have been incorporated within an open source Python package called Chama with the goal of providing facility operators and regulators with tools for designing more effective and efficient monitoring systems. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energys National Nuclear Security Administration under contract DE-NA0003525.

  4. In situ monitoring using Lab on Chip devices, with particular reference to dissolved silica.

    NASA Astrophysics Data System (ADS)

    Turner, G. S. C.; Loucaides, S.; Slavik, G. J.; Owsianka, D. R.; Beaton, A.; Nightingale, A.; Mowlem, M. C.

    2016-02-01

    In situ sensors are attractive alternatives to discrete sampling of natural waters, offering the potential for sustained long term monitoring and eliminating the need for sample handling. This can reduce sample contamination and degradation. In addition, sensors can be clustered into multi-parameter observatories and networked to provide both spatial and time series coverage. High resolution, low cost, and long term monitoring are the biggest advantages of these technologies to oceanographers. Microfluidic technology miniaturises bench-top assay systems into portable devices, known as a `lab on a chip' (LOC). The principle advantages of this technology are low power consumption, simplicity, speed, and stability without compromising on quality (accuracy, precision, selectivity, sensitivity). We have successfully demonstrated in situ sensors based on this technology for the measurement of pH, nitrate and nitrite. Dissolved silica (dSi) is an important macro-nutrient supporting a major fraction of oceanic primary production carried out by diatoms. The biogeochemical Si cycle is undergoing significant modifications due to human activities, which affects availability of dSi, and consequently primary production. Monitoring dSi concentrations is therefore critical in increasing our understanding of the biogeochemical Si cycle to predict and manage anthropogenic perturbations. The standard bench top air segmented flow technique utilising the reduction of silicomolybdic acid with spectrophotometric detection has been miniaturised into a LOC system; the target limit of detection is 1 nM, with ± 5% accuracy and 3% precision. Results from the assay optimisation are presented along with reagent shelf life to demonstrate the robustness of the chemistry. Laboratory trials of the sensor using ideal solutions and environmental samples in environmentally relevant conditions (temperature, pressure) are discussed, along with an overview of our current LOC analytical capabilities.

  5. Non-invasive diagnostic platforms in management of non-small cell lung cancer: opportunities and challenges

    PubMed Central

    Pennell, Nathan A.

    2017-01-01

    Several non-invasive diagnostic platforms are already being incorporated in routine clinical practice in the work up and monitoring of patients with lung cancer. These approaches have great potential to improve patient selection and monitor patients while on therapy, however several challenges exist in clinical validation and standardization of such platforms. In this review, we summarize the current technologies available for non-invasive diagnostic evaluation from the blood of patients with non-small cell lung cancer (NSCLC), and discuss the technical and logistical challenges associated incorporating such testing in clinical practice. PMID:29057238

  6. Beyond DNA Sequencing in Space: Current and Future Omics Capabilities of the Biomolecule Sequencer Payload

    NASA Technical Reports Server (NTRS)

    Wallace, Sarah

    2017-01-01

    Why do we need a DNA sequencer to support the human exploration of space? (A) Operational environmental monitoring; (1) Identification of contaminating microbes, (2) Infectious disease diagnosis, (3) Reduce down mass (sample return for environmental monitoring, crew health, etc.). (B) Research; (1) Human, (2) Animal, (3) Microbes/Cell lines, (4) Plant. (C) Med Ops; (1) Response to countermeasures, (2) Radiation, (3) Real-time analysis can influence medical intervention. (C) Support astrobiology science investigations; (1) Technology superiorly suited to in situ nucleic acid-based life detection, (2) Functional testing for integration into robotics for extraplanetary exploration mission.

  7. Using graphics and expert system technologies to support satellite monitoring at the NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Hughes, Peter M.; Shirah, Gregory W.; Luczak, Edward C.

    1994-01-01

    At NASA's Goddard Space Flight Center, fault-isolation expert systems have been developed to support data monitoring and fault detection tasks in satellite control centers. Based on the lessons learned during these efforts in expert system automation, a new domain-specific expert system development tool named the Generic Spacecraft Analysts Assistant (GenSAA), was developed to facilitate the rapid development and reuse of real-time expert systems to serve as fault-isolation assistants for spacecraft analysts. This paper describes GenSAA's capabilities and how it is supporting monitoring functions of current and future NASA missions for a variety of satellite monitoring applications ranging from subsystem health and safety to spacecraft attitude. Finally, this paper addresses efforts to generalize GenSAA's data interface for more widespread usage throughout the space and commercial industry.

  8. In vivo sodium concentration continuously monitored with fluorescent sensors.

    PubMed

    Dubach, J Matthew; Lim, Edward; Zhang, Ning; Francis, Kevin P; Clark, Heather

    2011-02-01

    Sodium balance is vital to maintaining normal physiological function. Imbalances can occur in a variety of diseases, during certain surgical operations or during rigorous exercise. There is currently no method to continuously monitor sodium concentration in patients who may be susceptible to hyponatremia. Our approach was to design sodium specific fluorescent sensors capable of measuring physiological fluctuations in sodium concentration. The sensors are submicron plasticized polymer particles containing sodium recognition components that are coated with biocompatible poly(ethylene) glycol. Here, the sensors were brought up in saline and placed in the subcutaneous area of the skin of mice by simple injection. The fluorescence was monitored in real time using a whole animal imager to track changes in sodium concentrations. This technology could be used to monitor certain disease states or warn against dangerously low levels of sodium during exercise.

  9. Single Stage Rocket Technology's real time data system

    NASA Technical Reports Server (NTRS)

    Voglewede, Steven D.

    1994-01-01

    The Single Stage Rocket Technology (SSRT) Delta Clipper Experimental (DC-X) Program is a United States Air Force Ballistic Missile Defense Organization (BMDO) rapid prototyping initiative that is currently demonstrating technology readiness for reusable suborbital rockets. The McDonnell Douglas DC-X rocket performed technology demonstrations at the U.S. Army White Sands Missile Range in New Mexico from April-October in 1993. The DC-X Flight Operations Control Center (FOCC) contains the ground control system that is used to monitor and control the DC-X vehicle and its Ground Support Systems (GSS). The FOCC is operated by a flight crew of three operators. Two operators manage the DC-X Flight Systems and one operator is the Ground Systems Manager. A group from McDonnell Douglas Aerospace at KSC developed the DC-X ground control system for the FOCC. This system is known as the Real Time Data System (RTDS). The RTDS is a distributed real time control and monitoring system that utilizes the latest available commercial off-the-shelf computer technology. The RTDS contains front end interfaces for the DC-X RF uplink/downlink and fiber optic interfaces to the GSS equipment. This paper describes the RTDS architecture and FOCC layout. The DC-X applications and ground operations are covered.

  10. The utility of polarized heliospheric imaging for space weather monitoring.

    PubMed

    DeForest, C E; Howard, T A; Webb, D F; Davies, J A

    2016-01-01

    A polarizing heliospheric imager is a critical next generation tool for space weather monitoring and prediction. Heliospheric imagers can track coronal mass ejections (CMEs) as they cross the solar system, using sunlight scattered by electrons in the CME. This tracking has been demonstrated to improve the forecasting of impact probability and arrival time for Earth-directed CMEs. Polarized imaging allows locating CMEs in three dimensions from a single vantage point. Recent advances in heliospheric imaging have demonstrated that a polarized imager is feasible with current component technology.Developing this technology to a high technology readiness level is critical for space weather relevant imaging from either a near-Earth or deep-space mission. In this primarily technical review, we developpreliminary hardware requirements for a space weather polarizing heliospheric imager system and outline possible ways to flight qualify and ultimately deploy the technology operationally on upcoming specific missions. We consider deployment as an instrument on NOAA's Deep Space Climate Observatory follow-on near the Sun-Earth L1 Lagrange point, as a stand-alone constellation of smallsats in low Earth orbit, or as an instrument located at the Sun-Earth L5 Lagrange point. The critical first step is the demonstration of the technology, in either a science or prototype operational mission context.

  11. Diabetes Educators’ Intended and Reported Use of Common Diabetes-Related Technologies

    PubMed Central

    James, Steven; Perry, Lin; Gallagher, Robyn; Lowe, Julia

    2016-01-01

    Background: Technology provides adjuvant and/or alternative approaches to care and may promote self-care, communication, and engagement with health care services. Common recent technologies for diabetes include continuous subcutaneous insulin infusions (insulin pumps), continuous glucose monitoring systems, smartphone and tablet applications, and telehealth (video conferencing). This study reports Australian diabetes educators’ intentions and reported professional use of these technologies for people with type 1 diabetes, and factors predictive of this. Methods: An anonymous, web-based questionnaire based on the technology acceptance model was distributed to members of the Australian Diabetes Educators Association through their electronic newsletter. Exploratory factor analysis revealed a 5-factor solution comprising confidence and competence, improving clinical practice, preparation (intentions and training), ease of use, and subjective norms. Logistic regression analyses identified factors predicting intention and use of technology. Results: Respondents (n = 228) had high intentions to use technology. The majority reported using continuous subcutaneous insulin infusions, continuous glucose monitoring systems, and applications with patients, but usage was occasional. Confidence and competence independently predicted both intentions and use of all 4 technologies. Preparation (intentions and training) independently predicted use of each technology also. Conclusions: Discrepancies and dissonance appear between diabetes educators’ intentions and behavior (intentions to use and reported technology use). Intentions were higher than current use, which was relatively low and not likely to provide significant support to people with type 1 diabetes for disease management, communication, and engagement with health care services. Continuing education and experiential learning may be key in supporting diabetes educators to align their intentions with their practice. PMID:27179011

  12. SPINOFF 2000

    NASA Technical Reports Server (NTRS)

    2000-01-01

    For the past 42 years, NASA has made special efforts to ensure the widest possible dissemination of its research and technology developments. We share the wealth of technology developed for our missions with the nation's industries to contribute to US economic strength and quality of life. For the past 27 years, this publication has provided you with over 1,200 examples of products and services developed as a direct result of commercial partnerships between NASA and the business community. Examples have covered products from fire retardant materials and air pollution monitors to non-invasive cardiac monitors and sensors for environmental control. In the Technology Transfer and Outreach section of Spinoff 2000, we highlight the activities of our Ames Research Center's Commercial Technology Office (CTO). Their efforts to facilitate and support technology commercialization are representative of the CTO at each field center. Increased activities to accelerate the dissemination of technologies, speed up the process of patent licensing, quicken the release of software for beta testing, support and manage incubators, and hasten the collaboration with commercial and academic organizations will continue to maximize the earliest potential commercial utilization of NASA's new inventions and technologies. Spinoff 2000 is organized into three sections: (1) Aerospace and Development highlights major research and development efforts currently carried out at the 10 NASA field centers; (2) Commercial Benefits-Spinoffs describes commercially available products and services resulting from the transfer of NASA technology; and (3) Technology Transfer and Outreach features this year's center spotlight, NASA's Ames Research Center, and its commercialization efforts, as well as the mechanisms in place nationwide to assist US industry in obtaining, transferring, and applying NASA technology, expertise, and assistance.

  13. Breakthrough Towards the Internet of Things

    NASA Astrophysics Data System (ADS)

    Chaves, Leonardo W. F.; Nochta, Zoltán

    In this chapter we introduce the Internet of Things (IoT) from the perspective of companies. The Internet of Things mainly refers to the continuous tracking and observation of real-world objects over the Internet. The resulting information can be used to optimize many processes along the entire value chain. Important prerequisites for the IoT are that the objects of interest can be uniquely identified and that their environment can be monitored with sensors. Currently, technologies, such as different types of barcodes, active and passive Radio Frequency Identification (RFID) and wireless sensor networks play the most important role. However, these technologies either do not provide monitoring of their environment or they are too expensive for widespread adoption. Organic Electronics is a new technology that allows printing electronic circuits using organic inks. It will produce ultra-low cost smart labels equipped with sensors, and thus it will become an enabler of the IoT. We discuss how organic smart labels can be used to implement the Internet of Things. We show how this technology is expected to develop. Finally, we indicate technical problems that arise when processing large volumes of data that will result from the usage of organic smart labels in business applications.

  14. A new vision of the post-NIST civil infrastructure program: the challenges of next-generation construction materials and processes

    NASA Astrophysics Data System (ADS)

    Wu, H. Felix; Wan, Yan

    2014-03-01

    Our nation's infrastructural systems are crumbling. The deteriorating process grows over time. The physical aging of these vital facilities and the remediation of their current critical state pose a key societal challenge to the United States. Current sensing technologies, while well developed in controlled laboratory environments, have not yet yielded tools for producing real-time, in-situ data that are adequately comprehensible for infrastructure decision-makers. The need for advanced sensing technologies is national because every municipality and state in the nation faces infrastructure management challenges. The need is critical because portions of infrastructure are reaching the end of their life-spans and there are few cost-effective means to monitor infrastructure integrity and to prioritize the renovation and replacement of infrastructure elements. New advanced sensing technologies that produce cost-effective inspection and real-time monitoring data, and that can also help or aid in meaningful interpretation of the acquired data, therefore will enhance the safety in regard to the public on structural integrity by issuing timely and accurate alert data for effective maintenance to avoid disasters happening. New advanced sensing technologies also allow more informed management of infrastructural investments by avoiding premature replacement of infrastructure and identifying those structures in need of immediate action to prevent from catastrophic failure. Infrastructure management requires that once a structural defect is detected, an economical and efficient repair be made. Advancing the technologies of repairing infrastructure elements in contact with water, road salt, and subjected to thermal changes requires innovative research to significantly extend the service life of repairs, lower the costs of repairs, and provide repair technologies that are suitable for a wide range of conditions. All these new technologies will provide increased lifetimes, security, and safety of elements of critical infrastructure for the Nation's already deteriorating civil infrastructure. It is envisioned that the Nation should look far beyond: not only should we efficiently and effectively address current problems of the aging infrastructure, but we must also further develop next-generation construction materials and processes for new construction. To accomplish this ambitious goal, we must include process efficiency that will help select the most reliable and cost-effective materials in construction processes; performance and cost will be the prime consideration for selections construction materials based on life-cycle cost and materials performance; energy efficiency will drive reduced energy consumption from current levels by 50 % per unit of output; and environmental responsiveness will achieve net-zero waste from construction materials and its constituents. Should it be successfully implemented, we will transform the current 21st century infrastructure systems to enable the vital functioning of society and improve competitiveness of the economy to ensure that our quality of life remains high.

  15. Research and technology

    NASA Technical Reports Server (NTRS)

    1990-01-01

    As the NASA center responsible for assembly, checkout, servicing, launch, recovery, and operational support of Space Transportation System elements and payloads, Kennedy Space Center (KSC) is placing increasing emphasis on KSC's research and technology program. In addition to strengthening those areas of engineering and operations technology that contribute to safer, more efficient, and more economical execution of the current mission, the technological tools needed to execute KSC's mission relative to future programs are being developed. The Engineering Development Directorate encompasses most of the laboratories and other KSC resources that are key elements of research and technology program implementation and is responsible for implementation of the majority of the projects in this KSC 1990 annual report. Projects under the following topics are covered: (1) materials science; (2) hazardous emissions and contamination monitoring; (3) biosciences; (4) autonomous systems; (5) communications and control; (6) meteorology; (7) technology utilization; and (8) mechanics, structures, and cryogenics.

  16. Automated monitor and control for deep space network subsystems

    NASA Technical Reports Server (NTRS)

    Smyth, P.

    1989-01-01

    The problem of automating monitor and control loops for Deep Space Network (DSN) subsystems is considered and an overview of currently available automation techniques is given. The use of standard numerical models, knowledge-based systems, and neural networks is considered. It is argued that none of these techniques alone possess sufficient generality to deal with the demands imposed by the DSN environment. However, it is shown that schemes that integrate the better aspects of each approach and are referenced to a formal system model show considerable promise, although such an integrated technology is not yet available for implementation. Frequent reference is made to the receiver subsystem since this work was largely motivated by experience in developing an automated monitor and control loop for the advanced receiver.

  17. Potential of Surface Enhanced Raman Spectroscopy (SERS) in Therapeutic Drug Monitoring (TDM). A Critical Review

    PubMed Central

    Jaworska, Aleksandra; Fornasaro, Stefano; Sergo, Valter; Bonifacio, Alois

    2016-01-01

    Surface-Enhanced Raman Spectroscopy (SERS) is a label-free technique that enables quick monitoring of substances at low concentrations in biological matrices. These advantages make it an attractive tool for the development of point-of-care tests suitable for Therapeutic Drug Monitoring (TDM) of drugs with a narrow therapeutic window, such as chemotherapeutic drugs, immunosuppressants, and various anticonvulsants. In this article, the current applications of SERS in the field of TDM for cancer therapy are discussed in detail and illustrated according to the different strategies and substrates. In particular, future perspectives are provided and special concerns regarding the standardization of self-assembly methods and nanofabrication procedures, quality assurance, and technology readiness are critically evaluated. PMID:27657146

  18. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care

    NASA Astrophysics Data System (ADS)

    Chen, Lisa Y.; Tee, Benjamin C.-K.; Chortos, Alex L.; Schwartz, Gregor; Tse, Victor; J. Lipomi, Darren; Wong, H.-S. Philip; McConnell, Michael V.; Bao, Zhenan

    2014-10-01

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  19. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care.

    PubMed

    Chen, Lisa Y; Tee, Benjamin C-K; Chortos, Alex L; Schwartz, Gregor; Tse, Victor; Lipomi, Darren J; Wong, H-S Philip; McConnell, Michael V; Bao, Zhenan

    2014-10-06

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  20. A civil structural monitoring system based on fiber grating sensors

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Cai, Haiwen; Pastore, Robert; Ju, Jing; Zeng, Debing; Yin, Zhifan; Cui, Hong-Liang

    2003-08-01

    Optical fiber sensors based on Fiber Bragg Grating (FBG) technology have found many applications in the area of civil structural monitoring systems, such as in bridge monitoring and maintenance. FBG sensors can measure the deformation, overload and cracks on bridge with a high sensitivity. In this paper we report on our recent work a structural monitoring system using FBG sensors. Basic theoretical background and design of the system is described here, including the light source, FBG sensors, demodulator sensors, signal detection and processing schemes. The system will be installed on a major arch bridge currently under construction in Shanghai, China for long-term in situ health monitoring. The system schematic arrangement on the bridge is introduced in brief. Simulation experiments in the laboratory were carried out to test the performance of FBG strain sensors. The sensor response shows excellent linearity against the strain imposed on it. Traffic and overload monitoring on bridge using FBG sensors is also discussed and planned for the near future.

  1. A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time.

    PubMed

    Buxi, Dilpreet; Redouté, Jean-Michel; Yuce, Mehmet Rasit

    2015-03-01

    Blood pressure monitoring based on pulse transit or arrival time has been the focus of much research in order to design ambulatory blood pressure monitors. The accuracy of these monitors is limited by several challenges, such as acquisition and processing of physiological signals as well as changes in vascular tone and the pre-ejection period. In this work, a literature survey covering recent developments is presented in order to identify gaps in the literature. The findings of the literature are classified according to three aspects. These are the calibration of pulse transit/arrival times to blood pressure, acquisition and processing of physiological signals and finally, the design of fully integrated blood pressure measurement systems. Alternative technologies as well as locations for the measurement of the pulse wave signal should be investigated in order to improve the accuracy during calibration. Furthermore, the integration and validation of monitoring systems needs to be improved in current ambulatory blood pressure monitors.

  2. Continuous noninvasive monitoring in the neonatal ICU.

    PubMed

    Sahni, Rakesh

    2017-04-01

    Standard hemodynamic monitoring such as heart rate and systemic blood pressure may only provide a crude estimation of organ perfusion during neonatal intensive care. Pulse oximetry monitoring allows for continuous noninvasive monitoring of hemoglobin oxygenation and thus provides estimation of end-organ oxygenation. This review aims to provide an overview of pulse oximetry and discuss its current and potential clinical use during neonatal intensive care. Technological advances in continuous assessment of dynamic changes in systemic oxygenation with pulse oximetry during transition to extrauterine life and beyond provide additional details about physiological interactions among the key hemodynamic factors regulating systemic blood flow distribution along with the subtle changes that are frequently transient and undetectable with standard monitoring. Noninvasive real-time continuous systemic oxygen monitoring has the potential to serve as biomarkers for early-organ dysfunction, to predict adverse short-term and long-term outcomes in critically ill neonates, and to optimize outcomes. Further studies are needed to establish values predicting adverse outcomes and to validate targeted interventions to normalize abnormal values to improve outcomes.

  3. Metabonomics and toxicology.

    PubMed

    Zhao, Liang; Hartung, Thomas

    2015-01-01

    Being an emerging field of "omics" research, metabonomics has been increasingly used in toxicological studies mostly because this technology has the ability to provide more detailed information to elucidate mechanism of toxicity. As an interdisciplinary field of science, metabonomics combines analytical chemistry, bioinformatics, statistics, and biochemistry. When applied to toxicology, metabonomics also includes aspects of patho-biochemistry, systems biology, and molecular diagnostics. During a toxicological study, the metabolic changes over time and dose after chemical treatment can be monitored. Therefore, the most important use of this emerging technology is the identification of signatures of toxicity-patterns of metabolic changes predictive of a hazard manifestation. This chapter summarizes the current state of metabonomics technology and its applications in various areas of toxicological studies.

  4. Optical Sensors Based on Plastic Fibers

    PubMed Central

    Bilro, Lúcia; Alberto, Nélia; Pinto, João L.; Nogueira, Rogério

    2012-01-01

    The recent advances of polymer technology allowed the introduction of plastic optical fiber in sensor design. The advantages of optical metrology with plastic optical fiber have attracted the attention of the scientific community, as they allow the development of low-cost or cost competitive systems compared with conventional technologies. In this paper, the current state of the art of plastic optical fiber technology will be reviewed, namely its main characteristics and sensing advantages. Several measurement techniques will be described, with a strong focus on interrogation approaches based on intensity variation in transmission and reflection. The potential applications involving structural health monitoring, medicine, environment and the biological and chemical area are also presented. PMID:23112707

  5. On the sensitivity of 4 different CPV module technologies to relevant ambient and operation conditions

    NASA Astrophysics Data System (ADS)

    Domínguez, César; Besson, Pierre

    2014-09-01

    The sensitivity of four different CPV module technologies to most operating conditions relevant to CPV systems has been studied, namely DNI, spectrum, cell and lens temperature and clearness of the sky. In order to isolate the influence of a single operation parameter, the analysis of long-term outdoor monitoring data is required. The effect of lens temperature on cell current has been found to vary greatly between modules due to the different optical architectures studied. Maximum sensitivity is found for silicone-on-glass primary lenses. The VOC thermal coefficient was found to vary between module technologies, probably due to differences in maximum local effective concentration.

  6. A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends

    PubMed Central

    Ruiz-Garcia, Luis; Lunadei, Loredana; Barreiro, Pilar; Robla, Jose Ignacio

    2009-01-01

    The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed. PMID:22408551

  7. Sensors Applications, Volume 4, Sensors for Automotive Applications

    NASA Astrophysics Data System (ADS)

    Marek, Jiri; Trah, Hans-Peter; Suzuki, Yasutoshi; Yokomori, Iwao

    2003-07-01

    An international team of experts from the leading companies in this field gives a detailed picture of existing as well as future applications. They discuss in detail current technologies, design and construction concepts, market considerations and commercial developments. Topics covered include vehicle safety, fuel consumption, air conditioning, emergency control, traffic control systems, and electronic guidance using radar and video. Meeting the growing need for comprehensive information on the capabilities, potentials and limitations of modern sensor systems, Sensors Applications is a book series covering the use of sophisticated technologies and materials for the creation of advanced sensors and their implementation in the key areas process monitoring, building control, health care, automobiles, aerospace, environmental technology and household appliances.

  8. A Procedural Electroencephalogram Simulator for Evaluation of Anesthesia Monitors.

    PubMed

    Petersen, Christian Leth; Görges, Matthias; Massey, Roslyn; Dumont, Guy Albert; Ansermino, J Mark

    2016-11-01

    Recent research and advances in the automation of anesthesia are driving the need to better understand electroencephalogram (EEG)-based anesthesia end points and to test the performance of anesthesia monitors. This effort is currently limited by the need to collect raw EEG data directly from patients. A procedural method to synthesize EEG signals was implemented in a mobile software application. The application is capable of sending the simulated signal to an anesthesia depth of hypnosis monitor. Systematic sweeps of the simulator generate functional monitor response profiles reminiscent of how network analyzers are used to test electronic components. Three commercial anesthesia monitors (Entropy, NeuroSENSE, and BIS) were compared with this new technology, and significant response and feature variations between the monitor models were observed; this includes reproducible, nonmonotonic apparent multistate behavior and significant hysteresis at light levels of anesthesia. Anesthesia monitor response to a procedural simulator can reveal significant differences in internal signal processing algorithms. The ability to synthesize EEG signals at different anesthetic depths potentially provides a new method for systematically testing EEG-based monitors and automated anesthesia systems with all sensor hardware fully operational before human trials.

  9. PIAAC Problem Solving in Technology-Rich Environments: A Conceptual Framework. OECD Education Working Papers, No. 36

    ERIC Educational Resources Information Center

    Rouet, Jean-Francois; Betrancourt, Mirelle; Britt, M. Anne; Bromme, Rainer; Graesser, Arthur C.; Kulikowich, Jonna M.; Leu, Donald J.; Ueno, Naoki; van Oostendorp, Herre

    2009-01-01

    Governments and other stakeholders have become increasingly interested in assessing the skills of their adult populations for the purposes of monitoring how well prepared they are for the challenges of the new information world. The current paper provides an overview of the conceptual framework developed for the assessment of problem solving in…

  10. Pollutant Assessments Group procedures manual: Volume 2, Technical procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    This is volume 2 of the manuals that describes the technical procedures currently in use by the Pollution Assessments Group. This manual incorporates new developments in hazardous waste assessment technology and administrative policy. Descriptions of the equipment, procedures and operations of such things as radiation detection, soil sampling, radionuclide monitoring, and equipment decontamination are included in this manual. (MB)

  11. A Multiple-Regression Model for Monitoring Tool Wear with a Dynamometer in Milling Operations

    ERIC Educational Resources Information Center

    Chen, Jacob C.; Chen, Joseph C.

    2004-01-01

    A major goal of the manufacturing industry is increasing product quality. The quality of a product is strongly associated with the condition of the cutting tool that produced it. Catching poor tool conditions early in the production will help reduce defects. However, with current CNC technology, manufacturers still rely mainly on the operator's…

  12. Reliability and Validity of the Zephyr[TM] BioHarness[TM] to Measure Respiratory Responses to Exercise

    ERIC Educational Resources Information Center

    Hailstone, Jono; Kilding, Andrew E.

    2011-01-01

    The Zephyr[TM] BioHarness[TM] (Zephyr Technology, Auckland, New Zealand) is a wireless physiological monitoring system that has the ability to measure respiratory rate unobtrusively. However, the ability of the BioHarness[TM] to accurately and reproducibly determine respiratory rate across a range of intensities is currently unknown. The aim of…

  13. Atmosphere Resource Recovery and Environmental Monitoring Trace Contaminant Control Through FY 2012

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Pruitt, M. W.; Wheeler, R. M.; Monje, O.

    2013-01-01

    Trace contaminant control has been a concern of spacecraft designers and operators from early in the progression of manned spaceflight. Significant technological advancement has occurred since the first designs were implemented in the 1960s, culminating in the trace contaminant control system currently in use aboard the International Space Station as part of the atmosphere revitalization system.

  14. Integrated technologies for solid waste bin monitoring system.

    PubMed

    Arebey, Maher; Hannan, M A; Basri, Hassan; Begum, R A; Abdullah, Huda

    2011-06-01

    The integration of communication technologies such as radio frequency identification (RFID), global positioning system (GPS), general packet radio system (GPRS), and geographic information system (GIS) with a camera are constructed for solid waste monitoring system. The aim is to improve the way of responding to customer's inquiry and emergency cases and estimate the solid waste amount without any involvement of the truck driver. The proposed system consists of RFID tag mounted on the bin, RFID reader as in truck, GPRS/GSM as web server, and GIS as map server, database server, and control server. The tracking devices mounted in the trucks collect location information in real time via the GPS. This information is transferred continuously through GPRS to a central database. The users are able to view the current location of each truck in the collection stage via a web-based application and thereby manage the fleet. The trucks positions and trash bin information are displayed on a digital map, which is made available by a map server. Thus, the solid waste of the bin and the truck are being monitored using the developed system.

  15. Wearable sensor-based objective assessment of motor symptoms in Parkinson's disease.

    PubMed

    Ossig, Christiana; Antonini, Angelo; Buhmann, Carsten; Classen, Joseph; Csoti, Ilona; Falkenburger, Björn; Schwarz, Michael; Winkler, Jürgen; Storch, Alexander

    2016-01-01

    Effective management and development of new treatment strategies of motor symptoms in Parkinson's disease (PD) largely depend on clinical rating instruments like the Unified PD rating scale (UPDRS) and the modified abnormal involuntary movement scale (mAIMS). Regarding inter-rater variability and continuous monitoring, clinical rating scales have various limitations. Patient-administered questionnaires such as the PD home diary to assess motor stages and fluctuations in late-stage PD are frequently used in clinical routine and as clinical trial endpoints, but diary/questionnaire are tiring, and recall bias impacts on data quality, particularly in patients with cognitive dysfunction or depression. Consequently, there is a strong need for continuous and objective monitoring of motor symptoms in PD for improving therapeutic regimen and for usage in clinical trials. Recent advances in battery technology, movement sensors such as gyroscopes, accelerometers and information technology boosted the field of objective measurement of movement in everyday life and medicine using wearable sensors allowing continuous (long-term) monitoring. This systematic review summarizes the current wearable sensor-based devices to objectively assess the various motor symptoms of PD.

  16. Upcoming Methods and Specifications of Continuous Intraocular Pressure Monitoring Systems for Glaucoma

    PubMed Central

    Molaei, Amir; Karamzadeh, Vahid; Safi, Sare; Esfandiari, Hamed; Dargahi, Javad; Khosravi, Mohammad Azam

    2018-01-01

    Glaucoma is the leading cause of irreversible blindness and vision loss in the world. Although intraocular pressure (IOP) is no longer considered the only risk factor for glaucoma, it is still the most important one. In most cases, high IOP is secondary to trabecular meshwork dysfunction. High IOP leads to compaction of the lamina cribrosa and subsequent damage to retinal ganglion cell axons. Damage to the optic nerve head is evident on funduscopy as posterior bowing of the lamina cribrosa and increased cupping. Currently, the only documented method to slow or halt the progression of this disease is to decrease the IOP; hence, accurate IOP measurement is crucial not only for diagnosis, but also for the management. Due to the dynamic nature and fluctuation of the IOP, a single clinical measurement is not a reliable indicator of diurnal IOP; it requires 24-hour monitoring methods. Technological advances in microelectromechanical systems and microfluidics provide a promising solution for the effective measurement of IOP. This paper provides a broad overview of the upcoming technologies to be used for continuous IOP monitoring. PMID:29403593

  17. Methodology and technology for peripheral and central blood pressure and blood pressure variability measurement: current status and future directions - Position statement of the European Society of Hypertension Working Group on blood pressure monitoring and cardiovascular variability.

    PubMed

    Stergiou, George S; Parati, Gianfranco; Vlachopoulos, Charalambos; Achimastos, Apostolos; Andreadis, Emanouel; Asmar, Roland; Avolio, Alberto; Benetos, Athanase; Bilo, Grzegorz; Boubouchairopoulou, Nadia; Boutouyrie, Pierre; Castiglioni, Paolo; de la Sierra, Alejandro; Dolan, Eamon; Head, Geoffrey; Imai, Yutaka; Kario, Kazuomi; Kollias, Anastasios; Kotsis, Vasilis; Manios, Efstathios; McManus, Richard; Mengden, Thomas; Mihailidou, Anastasia; Myers, Martin; Niiranen, Teemu; Ochoa, Juan Eugenio; Ohkubo, Takayoshi; Omboni, Stefano; Padfield, Paul; Palatini, Paolo; Papaioannou, Theodore; Protogerou, Athanasios; Redon, Josep; Verdecchia, Paolo; Wang, Jiguang; Zanchetti, Alberto; Mancia, Giuseppe; O'Brien, Eoin

    2016-09-01

    Office blood pressure measurement has been the basis for hypertension evaluation for almost a century. However, the evaluation of blood pressure out of the office using ambulatory or self-home monitoring is now strongly recommended for the accurate diagnosis in many, if not all, cases with suspected hypertension. Moreover, there is evidence that the variability of blood pressure might offer prognostic information that is independent of the average blood pressure level. Recently, advancement in technology has provided noninvasive evaluation of central (aortic) blood pressure, which might have attributes that are additive to the conventional brachial blood pressure measurement. This position statement, developed by international experts, deals with key research and practical issues in regard to peripheral blood pressure measurement (office, home, and ambulatory), blood pressure variability, and central blood pressure measurement. The objective is to present current achievements, identify gaps in knowledge and issues concerning clinical application, and present relevant research questions and directions to investigators and manufacturers for future research and development (primary goal).

  18. Using the Internet in the management of asthma.

    PubMed

    Patel, A M

    2001-01-01

    The ultimate goals of managing asthma are to eliminate death, prevent or promptly treat exacerbations, and maximize the quality of life and health status of patients. Current strategies include appropriate education, trigger control, and timely access to effective pharmacotherapy and follow-up. Internet-based technologies have emerged as potentially powerful tools to enable meaningful communication and proactive partnership in care for various medical conditions. The main types of Internet-based applications for asthma management include remote monitoring and feedback between health professionals and their patients; online education and marketing for either patients or professionals; networking and collaborative research; and administrative oversight through policy making, planning, and decision support. With increased understanding of integrated disease management and the technostructural as well as psychodynamic issues related to Internet use, further refinement and evolution of the Internet and related technologies may drastically improve the way we monitor, educate, treat, and establish policies for this global problem while attending to individual or local community needs. This review presents a conceptual overview of the current challenges and use of the Internet for improving asthma management through timely and tailored education and appropriate access to health care expertise.

  19. In-line Fourier-transform infrared spectroscopy as a versatile process analytical technology for preparative protein chromatography.

    PubMed

    Großhans, Steffen; Rüdt, Matthias; Sanden, Adrian; Brestrich, Nina; Morgenstern, Josefine; Heissler, Stefan; Hubbuch, Jürgen

    2018-04-27

    Fourier-transform infrared spectroscopy (FTIR) is a well-established spectroscopic method in the analysis of small molecules and protein secondary structure. However, FTIR is not commonly applied for in-line monitoring of protein chromatography. Here, the potential of in-line FTIR as a process analytical technology (PAT) in downstream processing was investigated in three case studies addressing the limits of currently applied spectroscopic PAT methods. A first case study exploited the secondary structural differences of monoclonal antibodies (mAbs) and lysozyme to selectively quantify the two proteins with partial least squares regression (PLS) giving root mean square errors of cross validation (RMSECV) of 2.42 g/l and 1.67 g/l, respectively. The corresponding Q 2 values are 0.92 and, respectively, 0.99, indicating robust models in the calibration range. Second, a process separating lysozyme and PEGylated lysozyme species was monitored giving an estimate of the PEGylation degree of currently eluting species with RMSECV of 2.35 g/l for lysozyme and 1.24 g/l for PEG with Q 2 of 0.96 and 0.94, respectively. Finally, Triton X-100 was added to a feed of lysozyme as a typical process-related impurity. It was shown that the species could be selectively quantified from the FTIR 3D field without PLS calibration. In summary, the proposed PAT tool has the potential to be used as a versatile option for monitoring protein chromatography. It may help to achieve a more complete implementation of the PAT initiative by mitigating limitations of currently used techniques. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  20. Volcano and Earthquake Monitoring Plan for the Yellowstone Volcano Observatory, 2006-2015

    USGS Publications Warehouse

    ,

    2006-01-01

    To provide Yellowstone National Park (YNP) and its surrounding communities with a modern, comprehensive system for volcano and earthquake monitoring, the Yellowstone Volcano Observatory (YVO) has developed a monitoring plan for the period 2006-2015. Such a plan is needed so that YVO can provide timely information during seismic, volcanic, and hydrothermal crises and can anticipate hazardous events before they occur. The monitoring network will also provide high-quality data for scientific study and interpretation of one of the largest active volcanic systems in the world. Among the needs of the observatory are to upgrade its seismograph network to modern standards and to add five new seismograph stations in areas of the park that currently lack adequate station density. In cooperation with the National Science Foundation (NSF) and its Plate Boundary Observatory Program (PBO), YVO seeks to install five borehole strainmeters and two tiltmeters to measure crustal movements. The boreholes would be located in developed areas close to existing infrastructure and away from sensitive geothermal features. In conjunction with the park's geothermal monitoring program, installation of new stream gages, and gas-measuring instruments will allow YVO to compare geophysical phenomena, such as earthquakes and ground motions, to hydrothermal events, such as anomalous water and gas discharge. In addition, YVO seeks to characterize the behavior of geyser basins, both to detect any precursors to hydrothermal explosions and to monitor earthquakes related to fluid movements that are difficult to detect with the current monitoring system. Finally, a monitoring network consists not solely of instruments, but requires also a secure system for real-time transmission of data. The current telemetry system is vulnerable to failures that could jeopardize data transmission out of Yellowstone. Future advances in monitoring technologies must be accompanied by improvements in the infrastructure for data transmission. Overall, our strategy is to (1) maximize our ability to provide rapid assessments of changing conditions to ensure public safety, (2) minimize environmental and visual impact, and (3) install instrumentation in developed areas.

  1. NEXRAD-In-Space: A Geostationary Orbiting Doppler Radar for Hurricane Monitoring and Studies

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Durden, Stephen L.; Tanelli, Simone; Fang, Houfei; Rahmat-Samii, Yahya

    2011-01-01

    Under NASA's Earth Science Technology Program, a novel mission concept has been developed for detailed monitoring of hurricanes, cyclones, and severe storms from a geostationary orbit: "NEXRAD in Space" (NIS). By operating in the Geostationary Earth Orbit (GEO), NIS would enable rapid-update sampling (less than or equal to 1 hour cadence) of three dimenional fields of 35 GHz (Ka-band) radar reflectivity factor (Z) and line-of-sight Doppler velocity (VD) profiles, at mesoscale horizontal resolutions (approx. 10 km) over a circular Earth region of approximately 5300 km in diameter (equivalent to much of an oceanic basin, such as the Atlantic). NIS GEO-radar concept was chosen as one of only four potential post-2020 missions for the Weather Focus area in the 2007-2016 NASA Science Mission Directorate (SMD) Science Plan. The results of the first project aiming at developing the NIS concept highlighted the enormous potential of such mission, and the technological challenges presented by it. In essence, it is because of its rapid-cadence capability that NIS science planning is focusing on hurricane monitoring and prediction. Hurricanes, or generically tropical cyclones (TCs), have always been among the most devastating natural phenomena. This has been painfully reiterated in recent years with a number of powerful TCs landfalling in North America and elsewhere. In April 2007, the first NIS Science Workshop was convened at the University of Miami to galvanize the scientific community's interest in NIS's measurement capabilities for improved TC monitoring and prediction. The general consensus of the workshop was that a GEO Doppler radar would provide a major breakthrough in regards to the observation of TCs, and, when combined with cloud-resolving numerical weather prediction (NWP) models. This paper presents brief summaries of the instrument concept, the current technology status, the anticipated impacts on hurricane monitoring and model prediction, and the future science and technology roadmap.

  2. Applications of aerospace technology in biomedicine. A technology transfer profile: Patient monitoring

    NASA Technical Reports Server (NTRS)

    Murray, D. M.

    1971-01-01

    NASA contributions to cardiovascular monitoring are described along with innovations in intracardiac blood pressure monitoring. A brief overview of the process of NASA technology transfer in patient monitoring is presented and a list of bioinstrumentation tech briefs and the number of requests for technical support is included.

  3. A High-Performance Application Specific Integrated Circuit for Electrical and Neurochemical Traumatic Brain Injury Monitoring.

    PubMed

    Pagkalos, Ilias; Rogers, Michelle L; Boutelle, Martyn G; Drakakis, Emmanuel M

    2018-05-22

    This paper presents the first application specific integrated chip (ASIC) for the monitoring of patients who have suffered a Traumatic Brain Injury (TBI). By monitoring the neurophysiological (ECoG) and neurochemical (glucose, lactate and potassium) signals of the injured human brain tissue, it is possible to detect spreading depolarisations, which have been shown to be associated with poor TBI patient outcome. This paper describes the testing of a new 7.5 mm 2 ASIC fabricated in the commercially available AMS 0.35 μm CMOS technology. The ASIC has been designed to meet the demands of processing the injured brain tissue's ECoG signals, recorded by means of depth or brain surface electrodes, and neurochemical signals, recorded using microdialysis coupled to microfluidics-based electrochemical biosensors. The potentiostats use switchedcapacitor charge integration to record currents with 100 fA resolution, and allow automatic gain changing to track the falling sensitivity of a biosensor. This work supports the idea of a "behind the ear" wireless microplatform modality, which could enable the monitoring of currently non-monitored mobile TBI patients for the onset of secondary brain injury. ©2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Evaluation of capillary electrophoresis for in-flight ionic contaminant monitoring of SSF potable water

    NASA Technical Reports Server (NTRS)

    Mudgett, Paul D.; Schultz, John R.; Sauer, Richard L.

    1992-01-01

    Until 1989, ion chromatography (IC) was the baseline technology selected for the Specific Ion Analyzer, an in-flight inorganic water quality monitor being designed for Space Station Freedom. Recent developments in capillary electrophoresis (CE) may offer significant savings of consumables, power consumption, and weight/volume allocation, relative to IC technology. A thorough evaluation of CE's analytical capability, however, is necessary before one of the two techniques is chosen. Unfortunately, analytical methods currently available for inorganic CE are unproven for NASA's target list of anions and cations. Thus, CE electrolyte chemistry and methods to measure the target contaminants must be first identified and optimized. This paper reports the status of a study to evaluate CE's capability with regard to inorganic and carboxylate anions, alkali and alkaline earth cations, and transition metal cations. Preliminary results indicate that CE has an impressive selectivity and trace sensitivity, although considerable methods development remains to be performed.

  5. Virology: The Next Generation from Digital PCR to Single Virion Genomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Richard A.; Brazelton De Cardenas, Jessica N.; Hayden, Randall T.

    In the past 25 years, virology has had major technology breakthroughs stemming first from the introduction of nucleic acid amplification testing, but more recently from the use of next-generation sequencing, digital PCR, and the possibility of single virion genomics. These technologies have and will improve diagnosis and disease state monitoring in clinical settings, aid in environmental monitoring, and reveal the vast genetic potential of viruses. Using the principle of limiting dilution, digital PCR amplifies single molecules of DNA in highly partitioned endpoint reactions and reads each of those reactions as either positive or negative based on the presence or absencemore » of target fluorophore. In this review, digital PCR will be highlighted along with current studies, advantages/disadvantages, and future perspectives with regard to digital PCR, viral load testing, and the possibility of single virion genomics.« less

  6. High temperature, harsh environment sensors for advanced power generation systems

    NASA Astrophysics Data System (ADS)

    Ohodnicki, P. R.; Credle, S.; Buric, M.; Lewis, R.; Seachman, S.

    2015-05-01

    One mission of the Crosscutting Technology Research program at the National Energy Technology Laboratory is to develop a suite of sensors and controls technologies that will ultimately increase efficiencies of existing fossil-fuel fired power plants and enable a new generation of more efficient and lower emission power generation technologies. The program seeks to accomplish this mission through soliciting, managing, and monitoring a broad range of projects both internal and external to the laboratory which span sensor material and device development, energy harvesting and wireless telemetry methodologies, and advanced controls algorithms and approaches. A particular emphasis is placed upon harsh environment sensing for compatibility with high temperature, erosive, corrosive, and highly reducing or oxidizing environments associated with large-scale centralized power generation. An overview of the full sensors and controls portfolio is presented and a selected set of current and recent research successes and on-going projects are highlighted. A more detailed emphasis will be placed on an overview of the current research thrusts and successes of the in-house sensor material and device research efforts that have been established to support the program.

  7. Application studies of RFID technology in the process of coal logistics transport

    NASA Astrophysics Data System (ADS)

    Qiao, Bingqin; Chang, Xiaoming; Hao, Meiyan; Kong, Dejin

    2012-04-01

    For quality control problems in coal transport, RFID technology has been proposed to be applied to coal transportation process. The whole process RFID traceability system from coal production to consumption has been designed and coal supply chain logistics tracking system integration platform has been built, to form the coal supply chain traceability and transport tracking system and providing more and more transparent tracking and monitoring of coal quality information for consumers of coal. Currently direct transport and combined transport are the main forms of coal transportation in China. The means of transport are cars, trains and ships. In the booming networking environment of RFID technology, the RFID technology will be applied to coal logistics and provide opportunity for the coal transportation tracking in the process transportation.

  8. Space Propulsion Synergy Group ETO technology assessments

    NASA Astrophysics Data System (ADS)

    Bray, James

    The Space Propulsion Synergy Group (SPSG), which was chartered to support long-range strategic planning, has, using a broad industry/government team, evaluated and achieved consensus on the vehicles, propulsion systems, and propulsion technologies that have the best long-term potential for achieving desired system attributes. The breakthrough that enabled broad consensus was developing criteria that are measurable a priori. The SPSG invented a dual prioritization approach that balances long-term strategic thrusts with current programmatic constraints. This enables individual program managers to make decisions based on both individual project needs and long-term strategic needs. Results indicate that an SSTO using an integrated modular engine has the best long-term potential for a 20 Klb class vehicle, and that health monitoring and control technologies are among the highest dual priority liquid rocket technologies.

  9. Behavioral Responses Of Fish To A Current-Based Hydrokinetic Turbine Under Mutlipe Operational Conditions: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grippo, Mark A.; Shen, Haixue; Zydlewski, Gayle

    There is significant interest in the interaction of aquatic organisms with current-based marine and hydrokinetic (MHK) technologies. Determining the potential impacts of MHK devices on fish behavior is critical to addressing the environmental concerns that could act as barriers to the permitting and deployment of MHK devices. To address these concerns, we use field monitoring and fish behavior models to characterize the behavioral responses of fish to MHK turbines and infer potential stimuli that may have elicited the observed behavioral changes.

  10. Space-Based Sensorweb Monitoring of Wildfires in Thailand

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Doubleday, Joshua; Mclaren, David; Davies, Ashley; Tran, Daniel; Tanpipat, Veerachai; Akaakara, Siri; Ratanasuwan, Anuchit; Mandl, Daniel

    2011-01-01

    We describe efforts to apply sensorweb technologies to the monitoring of forest fires in Thailand. In this approach, satellite data and ground reports are assimilated to assess the current state of the forest system in terms of forest fire risk, active fires, and likely progression of fires and smoke plumes. This current and projected assessment can then be used to actively direct sensors and assets to best acquire further information. This process operates continually with new data updating models of fire activity leading to further sensing and updating of models. As the fire activity is tracked, products such as active fire maps, burn scar severity maps, and alerts are automatically delivered to relevant parties.We describe the current state of the Thailand Fire Sensorweb which utilizes the MODIS-based FIRMS system to track active fires and trigger Earth Observing One / Advanced Land Imager to acquire imagery and produce active fire maps, burn scar severity maps, and alerts. We describe ongoing work to integrate additional sensor sources and generate additional products.

  11. Biomolecule Sequencer: Next-Generation DNA Sequencing Technology for In-Flight Environmental Monitoring, Research, and Beyond

    NASA Technical Reports Server (NTRS)

    Smith, David J.; Burton, Aaron; Castro-Wallace, Sarah; John, Kristen; Stahl, Sarah E.; Dworkin, Jason Peter; Lupisella, Mark L.

    2016-01-01

    On the International Space Station (ISS), technologies capable of rapid microbial identification and disease diagnostics are not currently available. NASA still relies upon sample return for comprehensive, molecular-based sample characterization. Next-generation DNA sequencing is a powerful approach for identifying microorganisms in air, water, and surfaces onboard spacecraft. The Biomolecule Sequencer payload, manifested to SpaceX-9 and scheduled on the Increment 4748 research plan (June 2016), will assess the functionality of a commercially-available next-generation DNA sequencer in the microgravity environment of ISS. The MinION device from Oxford Nanopore Technologies (Oxford, UK) measures picoamp changes in electrical current dependent on nucleotide sequences of the DNA strand migrating through nanopores in the system. The hardware is exceptionally small (9.5 x 3.2 x 1.6 cm), lightweight (120 grams), and powered only by a USB connection. For the ISS technology demonstration, the Biomolecule Sequencer will be powered by a Microsoft Surface Pro3. Ground-prepared samples containing lambda bacteriophage, Escherichia coli, and mouse genomic DNA, will be launched and stored frozen on the ISS until experiment initiation. Immediately prior to sequencing, a crew member will collect and thaw frozen DNA samples, connect the sequencer to the Surface Pro3, inject thawed samples into a MinION flow cell, and initiate sequencing. At the completion of the sequencing run, data will be downlinked for ground analysis. Identical, synchronous ground controls will be used for data comparisons to determine sequencer functionality, run-time sequence, current dynamics, and overall accuracy. We will present our latest results from the ISS flight experiment the first time DNA has ever been sequenced in space and discuss the many potential applications of the Biomolecule Sequencer for environmental monitoring, medical diagnostics, higher fidelity and more adaptable Space Biology Human Research Program investigations, and even life detection experiments for astrobiology missions.

  12. Advanced Systems Map, Monitor, and Manage Earth's Resources

    NASA Technical Reports Server (NTRS)

    2007-01-01

    SpecTIR LLC, headquartered in Reno, Nevada, is recognized for innovative sensor design, on-demand hyperspectral data collection, and image-generating products for business, academia, and national and international governments. SpecTIR's current vice president of business development has brought a wealth of NASA-related research experience to the company, as the former principal investigator on a NASA-sponsored hyperspectral crop-imaging project. This project, made possible through a Small Business Technology Transfer (STTR) contract with Goddard Space Flight Center, aimed to enhance airborne hyperspectral sensing and ground-truthing means for crop inspection in the Mid-Atlantic region of the United States. Areas of application for such technology include precision farming and irrigation; oil, gas, and mineral exploration; pollution and contamination monitoring; wetland and forestry characterization; water quality assessment; and submerged aquatic vegetation mapping. Today, SpecTIR maintains its relationship with Goddard through programs at the University of Maryland in College Park, Maryland, and at the U.S. Department of Agriculture campus in Beltsville, Maryland. Additionally, work continues on the integration of hyperspectral data with LIDAR systems and other commercial-off-the-shelf technologies.

  13. The 21st century Museum Climatic Monitoring System

    NASA Astrophysics Data System (ADS)

    Liu, W.-S.

    2015-08-01

    Technology has provided us work convenience and shaped our quality of life; it has enabled an unprecedented level of access to knowledge by flipping screen of a hand-held electronic device without going elsewhere but stay connected wireless communication. This kind of technology has been broadly acquired at museums in Hong Kong for preserving their valuable collections. Similar gadget was applied on the monitoring system to record climatic conditions of museum's stores and galleries. Sensors have been equipped with chips for the wireless transmission of RH/Temp, without installation of any conduit or LAN lines. Useful and important data will then be grouped into a packet format for efficient delivery. As long as the static IP address of the target workstation has been set, data can be accurately retrieved from one place to another via commercially available browsers, such as: Firefox or Internet Explorer, even on hand-held electronic devices. This paper will discuss the detail of this system, its pros and cons in comparison with the old model. After all, the new technology is highly significant in supporting the current needs and the future developments of the museum service.

  14. Identifying professionals' needs in integrating electronic pain monitoring in community palliative care services: An interview study.

    PubMed

    Taylor, Sally; Allsop, Matthew J; Bekker, Hilary L; Bennett, Michael I; Bewick, Bridgette M

    2017-07-01

    Poor pain assessment is a barrier to effective pain control. There is growing interest internationally in the development and implementation of remote monitoring technologies to enhance assessment in cancer and chronic disease contexts. Findings describe the development and testing of pain monitoring systems, but research identifying the needs of health professionals to implement routine monitoring systems within clinical practice is limited. To inform the development and implementation strategy of an electronic pain monitoring system, PainCheck, by understanding palliative care professionals' needs when integrating PainCheck into routine clinical practice. Qualitative study using face-to-face interviews. Data were analysed using framework analysis Setting/participants: Purposive sample of health professionals managing the palliative care of patients living in the community Results: A total of 15 interviews with health professionals took place. Three meta-themes emerged from the data: (1) uncertainties about integration of PainCheck and changes to current practice, (2) appraisal of current practice and (3) pain management is everybody's responsibility Conclusion: Even the most sceptical of health professionals could see the potential benefits of implementing an electronic patient-reported pain monitoring system. Health professionals have reservations about how PainCheck would work in practice. For optimal use, PainCheck needs embedding within existing electronic health records. Electronic pain monitoring systems have the potential to enable professionals to support patients' pain management more effectively but only when barriers to implementation are appropriately identified and addressed.

  15. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    NASA Astrophysics Data System (ADS)

    Meshram, N. D.; Dahikar, P. B.

    2014-10-01

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of blood sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current "finger-stick" methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively..

  16. Converging Redundant Sensor Network Information for Improved Building Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale Tiller; D. Phil; Gregor Henze

    2007-09-30

    This project investigated the development and application of sensor networks to enhance building energy management and security. Commercial, industrial and residential buildings often incorporate systems used to determine occupancy, but current sensor technology and control algorithms limit the effectiveness of these systems. For example, most of these systems rely on single monitoring points to detect occupancy, when more than one monitoring point could improve system performance. Phase I of the project focused on instrumentation and data collection. During the initial project phase, a new occupancy detection system was developed, commissioned and installed in a sample of private offices and open-planmore » office workstations. Data acquisition systems were developed and deployed to collect data on space occupancy profiles. Phase II of the project demonstrated that a network of several sensors provides a more accurate measure of occupancy than is possible using systems based on single monitoring points. This phase also established that analysis algorithms could be applied to the sensor network data stream to improve the accuracy of system performance in energy management and security applications. In Phase III of the project, the sensor network from Phase I was complemented by a control strategy developed based on the results from the first two project phases: this controller was implemented in a small sample of work areas, and applied to lighting control. Two additional technologies were developed in the course of completing the project. A prototype web-based display that portrays the current status of each detector in a sensor network monitoring building occupancy was designed and implemented. A new capability that enables occupancy sensors in a sensor network to dynamically set the 'time delay' interval based on ongoing occupant behavior in the space was also designed and implemented.« less

  17. Application of optical lens of a CD writer for detecting the blood glucose semi-invasively

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meshram, N. D., E-mail: meshramnileshsd@gmail.com; Dahikar, P. B., E-mail: pbdahikar@rediffmail.com

    Recent technological advancements in the photonics industry have led to a resurgence of interest in optical glucose sensing and to realistic progress toward the development of an optical glucose sensor. Such a sensor has the potential to significantly improve the quality of life for the estimated 16 million diabetics in this country by making routine glucose measurements more convenient. Currently over 100 small companies and universities are working to develop noninvasive or minimally invasive glucose sensing technologies, and optical methods play a large role in these efforts. It has become overwhelmingly clear that frequent monitoring and tight control of bloodmore » sugar levels are requisite for effective management of Diabetes mellitus and reduction of the complications associated with this disease. The pain and trouble associated with current “finger-stick” methods for blood glucose monitoring result in decreased patient compliance and a failure to control blood sugar levels. Thus, the development of a convenient noninvasive blood glucose monitor holds the potential to significantly reduce the morbidity and mortality associated with Diabetes. A method and apparatus for noninvasive measurement of blood glucose concentration based on transilluminated laser beam via the Index Finger has been reported in this paper. This method depends on photodiode based laser operating at 632.8 nm wavelength. During measurement, the index finger is inserted into the glucose sensing unit, the transilluminated optical signal is converted into an electrical signal, compared with the reference electrical signal, and the obtained difference signal is processed by signal processing unit which presents the results in the form of blood glucose concentration. This method would enable the monitoring blood glucose level of the diabetic patient continuously, safely and noninvasively.« less

  18. Artificial pancreas (AP) clinical trial participants' acceptance of future AP technology.

    PubMed

    Bevier, Wendy C; Fuller, Serena M; Fuller, Ryan P; Rubin, Richard R; Dassau, Eyal; Doyle, Francis J; Jovanovič, Lois; Zisser, Howard C

    2014-09-01

    Artificial pancreas (AP) systems are currently an active field of diabetes research. This pilot study examined the attitudes of AP clinical trial participants toward future acceptance of the technology, having gained firsthand experience. After possible influencers of AP technology adoption were considered, a 34-question questionnaire was developed. The survey assessed current treatment satisfaction, dimensions of clinical trial participant motivation, and variables of the technology acceptance model (TAM). Forty-seven subjects were contacted to complete the survey. The reliability of the survey scales was tested using Cronbach's α. The relationship of the factors to the likelihood of AP technology adoption was explored using regression analysis. Thirty-six subjects (76.6%) completed the survey. Of the respondents, 86.1% were either highly likely or likely to adopt the technology once available. Reliability analysis of the survey dimensions revealed good internal consistency, with scores of >0.7 for current treatment satisfaction, convenience (motivation), personal health benefit (motivation), perceived ease of use (TAM), and perceived usefulness (TAM). Linear modeling showed that future acceptance of the AP was significantly associated with TAM and the motivation variables of convenience plus the individual item benefit to others (R(2)=0.26, P=0.05). When insulin pump and continuous glucose monitor use were added, the model significance improved (R(2)=0.37, P=0.02). This pilot study demonstrated that individuals with direct AP technology experience expressed high likelihood of future acceptance. Results support the factors of personal benefit, convenience, perceived usefulness, and perceived ease of use as reliable scales that suggest system adoption in this highly motivated patient population.

  19. MEMS device for mass market gas and chemical sensors

    NASA Astrophysics Data System (ADS)

    Kinkade, Brian R.; Daly, James T.; Johnson, Edward A.

    2000-08-01

    Gas and chemical sensors are used in many applications. Industrial health and safety monitors allow companies to meet OSHA requirements by detecting harmful levels of toxic or combustible gases. Vehicle emissions are tested during annual inspections. Blood alcohol breathalizers are used by law enforcement. Refrigerant leak detection ensures that the Earth's ozone layer is not being compromised. Industrial combustion emissions are also monitored to minimize pollution. Heating and ventilation systems watch for high levels of carbon dioxide (CO2) to trigger an increase in fresh air exchange. Carbon monoxide detectors are used in homes to prevent poisoning from poor combustion ventilation. Anesthesia gases are monitored during a patients operation. The current economic reality is that two groups of gas sensor technologies are competing in two distinct existing market segments - affordable (less reliable) chemical reaction sensors for consumer markets and reliable (expensive) infrared (IR) spectroscopic sensors for industrial, laboratory, and medical instrumentation markets. Presently high volume mass-market applications are limited to CO detectros and on-board automotive emissions sensors. Due to reliability problems with electrochemical sensor-based CO detectors there is a hesitancy to apply these sensors in other high volume applications. Applications such as: natural gas leak detection, non-invasive blood glucose monitoring, home indoor air quality, personal/portable air quality monitors, home fire/burnt cooking detector, and home food spoilage detectors need a sensor that is a small, efficient, accurate, sensitive, reliable, and inexpensive. Connecting an array of these next generation gas sensors to wireless networks that are starting to proliferate today creates many other applications. Asthmatics could preview the air quality of their destinations as they venture out into the day. HVAC systems could determine if fresh air intake was actually better than the air in the house. Internet grocery delivery services could check for spoiled foods in their clients' refrigerators. City emissions regulators could monitor the various emissions sources throughout the area from their desk to predict how many pollution vouchers they will need to trade in the next week. We describe a new component architecture for mass-market sensors based on silicon microelectromechanical systems (MEMS) technology. MEMS are micrometer-scale devices that can be fabricated as discrete devices or large arrays, using the technology of integrated circuit manufacturing. These new photonic bandgap and MEMS fabricataion technologies will simplify the component technology to provide high-quality gas and chemical sensors at consumer prices.

  20. Health Monitoring System Technology Assessments: Cost Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Kent, Renee M.; Murphy, Dennis A.

    2000-01-01

    The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.

  1. Monitoring and control technologies for bioregenerative life support systems/CELSS

    NASA Technical Reports Server (NTRS)

    Knott, William M.; Sager, John C.

    1991-01-01

    The development of a controlled Ecological Life Support System (CELSS) will require NASA to develop innovative monitoring and control technologies to operate the different components of the system. Primary effort over the past three to four years has been directed toward the development of technologies to operate a biomass production module. Computer hardware and software required to operate, collect, and summarize environmental data for a large plant growth chamber facility were developed and refined. Sensors and controls required to collect information on such physical parameters as relative humidity, temperature, irradiance, pressure, and gases in the atmosphere; and PH, dissolved oxygen, fluid flow rates, and electrical conductivity in the nutrient solutions are being developed and tested. Technologies required to produce high artificial irradiance for plant growth and those required to collect and transport natural light into a plant growth chamber are also being evaluated. Significant effort was directed towards the development and testing of a membrane nutrient delivery system required to manipulate, seed, and harvest crops, and to determine plant health prior to stress impacting plant productivity are also being researched. Tissue culture technologies are being developed for use in management and propagation of crop plants. Though previous efforts have focussed on development of technologies required to operate a biomass production module for a CELSS, current efforts are expanding to include technologies required to operate modules such as food preparation, biomass processing, and resource (waste) recovery which are integral parts of the CELSS.

  2. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals

    PubMed Central

    Ferguson, B. Scott; Hoggarth, David A.; Maliniak, Dan; Ploense, Kyle; White, Ryan J.; Woodward, Nick; Hsieh, Kuangwen; Bonham, Andrew J.; Eisenstein, Michael; Kippin, Tod; Plaxco, Kevin W.; Soh, H. Tom

    2014-01-01

    A sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients’ health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lactose, and oxygen, and the few existing platforms for continuous measurement are not generalizable for the monitoring of other analytes, such as small-molecule therapeutics. In response, we have developed a real-time biosensor capable of continuously tracking a wide range of circulating drugs in living subjects. Our microfluidic electrochemical detector for in vivo continuous monitoring (MEDIC) requires no exogenous reagents, operates at room temperature, and can be reconfigured to measure different target molecules by exchanging probes in a modular manner. To demonstrate the system's versatility, we measured therapeutic in vivo concentrations of doxorubicin (a chemotherapeutic) and kanamycin (an antibiotic) in live rats and in human whole blood for several hours with high sensitivity and specificity at sub-minute temporal resolution. Importantly, we show that MEDIC can also obtain pharmacokineticparameters for individual animals in real-time. Accordingly, just as continuous glucose monitoring technology is currently revolutionizing diabetes care, we believe MEDIC could be a powerful enabler for personalized medicine by ensuring delivery of optimal drug doses for individual patients based on direct detection of physiological parameters. PMID:24285484

  3. Toward equality of biodiversity knowledge through technology transfer.

    PubMed

    Böhm, Monika; Collen, Ben

    2015-10-01

    To help stem the continuing decline of biodiversity, effective transfer of technology from resource-rich to biodiversity-rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource-rich to biodiversity-rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one-to-many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure-state-response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in-depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation. © 2015 Society for Conservation Biology.

  4. Measuring and monitoring KIPT Neutron Source Facility Reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yan; Gohar, Yousry; Zhong, Zhaopeng

    2015-08-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on developing and constructing a neutron source facility at Kharkov, Ukraine. The facility consists of an accelerator-driven subcritical system. The accelerator has a 100 kW electron beam using 100 MeV electrons. The subcritical assembly has k eff less than 0.98. To ensure the safe operation of this neutron source facility, the reactivity of the subcritical core has to be accurately determined and continuously monitored. A technique which combines the area-ratio method and the flux-to-current ratio method is purposed to determine themore » reactivity of the KIPT subcritical assembly at various conditions. In particular, the area-ratio method can determine the absolute reactivity of the subcritical assembly in units of dollars by performing pulsed-neutron experiments. It provides reference reactivities for the flux-to-current ratio method to track and monitor the reactivity deviations from the reference state while the facility is at other operation modes. Monte Carlo simulations are performed to simulate both methods using the numerical model of the KIPT subcritical assembly. It is found that the reactivities obtained from both the area-ratio method and the flux-to-current ratio method are spatially dependent on the neutron detector locations and types. Numerical simulations also suggest optimal neutron detector locations to minimize the spatial effects in the flux-to-current ratio method. The spatial correction factors are calculated using Monte Carlo methods for both measuring methods at the selected neutron detector locations. Monte Carlo simulations are also performed to verify the accuracy of the flux-to-current ratio method in monitoring the reactivity swing during a fuel burnup cycle.« less

  5. Remote Health Monitoring for Older Adults and Those with Heart Failure: Adherence and System Usability.

    PubMed

    Evans, Jarrett; Papadopoulos, Amy; Silvers, Christine Tsien; Charness, Neil; Boot, Walter R; Schlachta-Fairchild, Loretta; Crump, Cindy; Martinez, Michele; Ent, Carrie Beth

    2016-06-01

    Remote health monitoring technology has been suggested as part of an early intervention and prevention care model. Older adults with a chronic health condition have been shown to benefit from remote monitoring but often have challenges with complex technology. The current study reports on the usability of and adherence with an integrated, real-time monitoring system over an extended period of time by older adults with and without a chronic health condition. Older adults 55 years of age and over with and without heart failure participated in a study in which a telehealth system was used for 6 months each. The system consisted of a wireless wristwatch-based monitoring device that continuously collected temperature and motion data. Other health information was collected daily using a weight scale, blood pressure cuff, and tablet that participants used for health surveys. Data were automatically analyzed and summarized by the system and presented to study nurses. Forty-one older adults participated. Seventy-one percent of surveys, 75% of blood pressure readings, and 81% of daily weight measurements were taken. Participants wore the watch monitor 77% of the overall 24/7 time requested. The weight scale had the highest usability rating in both groups. The groups did not otherwise differ on device usage. The findings indicate that a health monitoring system designed for older adults can and will be used for an extended period of time and may help older adults with chronic conditions reside longer in their own homes in partnership with the healthcare system.

  6. An overview of current and potential use of information and communication technologies for immunization promotion among adolescents.

    PubMed

    Amicizia, Daniela; Domnich, Alexander; Gasparini, Roberto; Bragazzi, Nicola Luigi; Lai, Piero Luigi; Panatto, Donatella

    2013-12-01

    Information and communication technologies (ICT), such as the Internet or mobile telephony, have become an important part of the life of today's adolescents and their main means of procuring information. The new generation of the Internet based on social-networking technologies, Web 2.0, is increasingly used for health purposes by both laypeople and health professionals. A broad spectrum of Web 2.0 applications provides several opportunities for healthcare workers, in that they can reach large numbers of teenagers in an individualized way and promote vaccine-related knowledge in an interactive and entertaining manner. These applications, namely social-networking and video-sharing websites, wikis and microblogs, should be monitored in order to identify current attitudes toward vaccination, to reply to vaccination critics and to establish a real-time dialog with users. Moreover, the ubiquity of mobile telephony makes it a valuable means of involving teenagers in immunization promotion, especially in developing countries.

  7. Sequencing to Station in 12 Months (Targeting Orbital 5 Launch, March 30th)

    NASA Technical Reports Server (NTRS)

    Smith, David J.; Burton, Aaron Steven

    2015-01-01

    The Biomolecule Sequencer is a Commercial Off-The-Shelf device developed by Oxford Nanopore Technologies and implements a method of DNA sequencing unlike any other current sequencers. The device measures changes in electrical current through a nanopore depending on the sequence of the DNA strand that is passing through it. Since the technology is built on nanometer-scale ion pores, the hardware itself is exceptionally small (3 x 1 x 58 inches), lightweight (less than 120 grams with USB cable), and powered only by a USB connection. The sequencing device is permanent, while the flow cells, to which the samples are added, are periodically replaced. The goal of our upcoming technology demonstration on ISS is to provide evidence that DNA sequencing in space is possible, which holds the exciting potential to enable the identification of microorganisms, monitor changes in microbes and humans in response to spaceflight, and possibly aid in the detection of DNA-based life elsewhere in the universe.

  8. An overview of current and potential use of information and communication technologies for immunization promotion among adolescents

    PubMed Central

    Amicizia, Daniela; Domnich, Alexander; Gasparini, Roberto; Bragazzi, Nicola Luigi; Lai, Piero Luigi; Panatto, Donatella

    2013-01-01

    Information and communication technologies (ICT), such as the Internet or mobile telephony, have become an important part of the life of today’s adolescents and their main means of procuring information. The new generation of the Internet based on social-networking technologies, Web 2.0, is increasingly used for health purposes by both laypeople and health professionals. A broad spectrum of Web 2.0 applications provides several opportunities for healthcare workers, in that they can reach large numbers of teenagers in an individualized way and promote vaccine-related knowledge in an interactive and entertaining manner. These applications, namely social-networking and video-sharing websites, wikis and microblogs, should be monitored in order to identify current attitudes toward vaccination, to reply to vaccination critics and to establish a real-time dialog with users. Moreover, the ubiquity of mobile telephony makes it a valuable means of involving teenagers in immunization promotion, especially in developing countries. PMID:23954845

  9. Technologies for Clinical Diagnosis Using Expired Human Breath Analysis

    PubMed Central

    Mathew, Thalakkotur Lazar; Pownraj, Prabhahari; Abdulla, Sukhananazerin; Pullithadathil, Biji

    2015-01-01

    This review elucidates the technologies in the field of exhaled breath analysis. Exhaled breath gas analysis offers an inexpensive, noninvasive and rapid method for detecting a large number of compounds under various conditions for health and disease states. There are various techniques to analyze some exhaled breath gases, including spectrometry, gas chromatography and spectroscopy. This review places emphasis on some of the critical biomarkers present in exhaled human breath, and its related effects. Additionally, various medical monitoring techniques used for breath analysis have been discussed. It also includes the current scenario of breath analysis with nanotechnology-oriented techniques. PMID:26854142

  10. Smart homes for people with neurological disability: state of the art.

    PubMed

    Gentry, Tony

    2009-01-01

    Smart home technology can include environmental adaptations that allow remote control of home appliances, electronic communication, safety monitoring and automated task cueing, any of which may prove useful for people with neurological disability. This article outlines currently available smart home technologies, examines the burgeoning research in this area, discusses clinical and consumer resources and reviews ethical, funding and professional training considerations for smart home applications. I conclude that more outcomes-based research and collaboration among stakeholders is essential in order to establish guidance for designing, selecting and implementing individualized smart home solutions for those with neurological disability.

  11. Technology Innovation of Power Transmission Gearing in Aviation

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    2009-01-01

    An overview of rotary wing evolution and innovations over the last 20 years was presented. This overview is provided from a drive system perspective. Examples of technology innovations that have changed and advanced drive systems of rotary wing vehicles will be provided. These innovations include full 6-axis CNC gear manufacture, face gear development to aerospace standards, health and usage monitoring, and gear geometry and bearing improvements. Also, an overview of current state-of-the-art activities being conducted at NASA Glenn is presented with a short look to fixed and rotary wing aircraft and systems needed for the future.

  12. Research and design on system of asset management based on RFID

    NASA Astrophysics Data System (ADS)

    Guan, Peng; Du, HuaiChang; Jing, Hua; Zhang, MengYue; Zhang, Meng; Xu, GuiXian

    2011-10-01

    By analyzing the problems in the current assets management, this thesis proposing RFID technology will be applied to asset management in order to improve the management level of automation and information. This paper designed the equipment identification based on 433MHz RFID tag and reader which was deeply studied on the basis of RFID tag and card reader circuits, and this paper also illustrates the system of asset management. The RS232 converts Ethernet is a innovative technology to transfer data to PC monitor software, and implement system of asset management based on WEB techniques (PHP and MySQL).

  13. Technologies Assessing Limb Bradykinesia in Parkinson's Disease.

    PubMed

    Hasan, Hasan; Athauda, Dilan S; Foltynie, Thomas; Noyce, Alastair J

    2017-01-01

    The MDS-UPDRS (Movement Disorders Society - Unified Parkinson's Disease Rating Scale) is the most widely used scale for rating impairment in PD. Subscores measuring bradykinesia have low reliability that can be subject to rater variability. Novel technological tools can be used to overcome such issues. To systematically explore and describe the available technologies for measuring limb bradykinesia in PD that were published between 2006 and 2016. A systematic literature search using PubMed (MEDLINE), IEEE Xplore, Web of Science, Scopus and Engineering Village (Compendex and Inspec) databases was performed to identify relevant technologies published until 18 October 2016. 47 technologies assessing bradykinesia in PD were identified, 17 of which offered home and clinic-based assessment whilst 30 provided clinic-based assessment only. Of the eligible studies, 7 were validated in a PD patient population only, whilst 40 were tested in both PD and healthy control groups. 19 of the 47 technologies assessed bradykinesia only, whereas 28 assessed other parkinsonian features as well. 33 technologies have been described in additional PD-related studies, whereas 14 are not known to have been tested beyond the pilot phase. Technology based tools offer advantages including objective motor assessment and home monitoring of symptoms, and can be used to assess response to intervention in clinical trials or routine care. This review provides an up-to-date repository and synthesis of the current literature regarding technology used for assessing limb bradykinesia in PD. The review also discusses the current trends with regards to technology and discusses future directions in development.

  14. Centralized remote structural monitoring and management of real-time data

    NASA Astrophysics Data System (ADS)

    Han, Liting; Newhook, John P.; Mufti, Aftab A.

    2004-07-01

    Structural health monitoring (SHM) activities in civil engineering are increasing at a rapid pace in both research and field applications. This paper addresses the specific issue of incorporating internet technology into a structural health monitoring program. The issue of data volume versus communication speed is discussed along with a practical solution employed by ISIS Canada. The approach is illustrated through reference to several current case studies which include two bridges and a statue. It is seen that although the specifics of the projects and monitoring needs are different, the manner in which on-line monitoring can be conducted is very similar and easily allows for centralized monitoring. A general framework for website construction integrating sensing data and web camera options are presented. Issues related to simple real-time performance indices versus more comprehensive complex data analysis are discussed. Examples of on-line websites which allow visualization of new and historic data are presented. The paper also discusses future activities and research needs related to centralized remote structural monitoring and management of real-time data.

  15. Brain Tissue Oxygen Monitoring and the Intersection of Brain and Lung: A Comprehensive Review.

    PubMed

    Ngwenya, Laura B; Burke, John F; Manley, Geoffrey T

    2016-09-01

    Traumatic brain injury is a problem that affects millions of Americans yearly and for which there is no definitive treatment that improves outcome. Continuous brain tissue oxygen (PbtO2 ) monitoring is a complement to traditional brain monitoring techniques, such as intracranial pressure and cerebral perfusion pressure. PbtO2 monitoring has not yet become a clinical standard of care, due to several unresolved questions. In this review, we discuss the rationale and technology of PbtO2 monitoring. We review the literature, both historic and current, and show that continuous PbtO2 monitoring is feasible and useful in patient management. PbtO2 numbers reflect cerebral blood flow and oxygen diffusion. Thus, continuous monitoring of PbtO2 yields important information about both the brain and the lung. The preclinical and clinical studies demonstrating these findings are discussed. In this review, we demonstrate that patient management in a PbtO2 -directed fashion is not the sole answer to the problem of treating traumatic brain injury but is an important adjunct to the armamentarium of multimodal neuromonitoring. Copyright © 2016 by Daedalus Enterprises.

  16. [Nephro-urological monitoring technology based on radionuclide functional tests (tasks of an automated workplace)].

    PubMed

    Averinova, S G; Kashkadaeva, A V; Shiriaev, S V; Nechipaĭ, A M; Dmitrieva, G D

    1999-01-01

    The paper deals with a diagnostic informational and analytical system (DIAS). The system is based on the current concept of a dynamic model of nephro-urological clearance macroregulation under retention factors at the pre-, intra-, and postrenal levels during drug load tests. DIAS includes a package of dynamic renoscintigraphic techniques, as well as original software support. A system for parameters of renal clearance regulation has been developed, which is effective at nephro-urological screening and monitoring at all treatment stages for cancer patients. A two-detector chamber which permits the mounting of a detector at an angle to the patient's body is the optimum diagnostic apparatus for a cancer clinic. The use of functional tests makes it possible to examine the regulatory reserves for each kidney, followed up by the choice of adequate corrective measures to prevent renal failure during treatment. In some cases, DIAS monitoring frequently shows a higher sensitivity to the signs of latent renal failure than does routine clinical and laboratory monitoring. The effective radiation dose taken by a patient during a study by the DIAS technology aimed at reducing radioopaque doses is 100-150 times higher than that at an X-ray study and is an order less than during routine urinary tests.

  17. Interoperability and security in wireless body area network infrastructures.

    PubMed

    Warren, Steve; Lebak, Jeffrey; Yao, Jianchu; Creekmore, Jonathan; Milenkovic, Aleksandar; Jovanov, Emil

    2005-01-01

    Wireless body area networks (WBANs) and their supporting information infrastructures offer unprecedented opportunities to monitor state of health without constraining the activities of a wearer. These mobile point-of-care systems are now realizable due to the convergence of technologies such as low-power wireless communication standards, plug-and-play device buses, off-the-shelf development kits for low-power microcontrollers, handheld computers, electronic medical records, and the Internet. To increase acceptance of personal monitoring technology while lowering equipment cost, advances must be made in interoperability (at both the system and device levels) and security. This paper presents an overview of WBAN infrastructure work in these areas currently underway in the Medical Component Design Laboratory at Kansas State University (KSU) and at the University of Alabama in Huntsville (UAH). KSU efforts include the development of wearable health status monitoring systems that utilize ISO/IEEE 11073, Bluetooth, Health Level 7, and OpenEMed. WBAN efforts at UAH include the development of wearable activity and health monitors that incorporate ZigBee-compliant wireless sensor platforms with hardware-level encryption and the TinyOS development environment. WBAN infrastructures are complex, requiring many functional support elements. To realize these infrastructures through collaborative efforts, organizations such as KSU and UAH must define and utilize standard interfaces, nomenclature, and security approaches.

  18. EMMNet: sensor networking for electricity meter monitoring.

    PubMed

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters.

  19. EMMNet: Sensor Networking for Electricity Meter Monitoring

    PubMed Central

    Lin, Zhi-Ting; Zheng, Jie; Ji, Yu-Sheng; Zhao, Bao-Hua; Qu, Yu-Gui; Huang, Xu-Dong; Jiang, Xiu-Fang

    2010-01-01

    Smart sensors are emerging as a promising technology for a large number of application domains. This paper presents a collection of requirements and guidelines that serve as a basis for a general smart sensor architecture to monitor electricity meters. It also presents an electricity meter monitoring network, named EMMNet, comprised of data collectors, data concentrators, hand-held devices, a centralized server, and clients. EMMNet provides long-distance communication capabilities, which make it suitable suitable for complex urban environments. In addition, the operational cost of EMMNet is low, compared with other existing remote meter monitoring systems based on GPRS. A new dynamic tree protocol based on the application requirements which can significantly improve the reliability of the network is also proposed. We are currently conducting tests on five networks and investigating network problems for further improvements. Evaluation results indicate that EMMNet enhances the efficiency and accuracy in the reading, recording, and calibration of electricity meters. PMID:22163551

  20. CHRONOBIOLOGY OF HIGH BLOOD PRESSURE

    PubMed Central

    Cornélissen, G.; Halberg, F.; Bakken, E. E.; Wang, Z.; Tarquini, R.; Perfetto, F.; Laffi, G.; Maggioni, C.; Kumagai, Y.; Homolka, P.; Havelková, A.; Dušek, J.; Svačinová, H.; Siegelová, J.; Fišer, B.

    2008-01-01

    BIOCOS, the project aimed at studying BIOlogical systems in their COSmos, has obtained a great deal of expertise in the fields of blood pressure (BP) and heart rate (HR) monitoring and of marker rhythmometry for the purposes of screening, diagnosis, treatment, and prognosis. Prolonging the monitoring reduces the uncertainty in the estimation of circadian parameters; the current recommendation of BIOCOS requires monitoring for at least 7 days. The BIOCOS approach consists of a parametric and a non-parametric analysis of the data, in which the results from the individual subject are being compared with gender- and age-specified reference values in health. Chronobiological designs can offer important new information regarding the optimization of treatment by timing its administration as a function of circadian and other rhythms. New technological developments are needed to close the loop between the monitoring of blood pressure and the administration of antihypertensive drugs. PMID:19122770

Top