Sample records for monitoring dc anode

  1. Staggered transverse tripoles with quadripolar lateral anodes using percutaneous and surgical leads in spinal cord stimulation.

    PubMed

    Sankarasubramanian, Vishwanath; Buitenweg, Jan R; Holsheimer, Jan; Veltink, Peter H

    2013-03-01

    In spinal cord stimulation for low-back pain, the use of electrode arrays with both low-power requirements and selective activation of target dorsal column (DC) fibers is desired. The aligned transverse tripolar lead configuration offers the best DC selectivity. Electrode alignment of the same configuration using 3 parallel percutaneous leads is possible, but compromised by longitudinal migration, resulting in loss of DC selectivity. This loss might be repaired by using the adjacent anodal contacts on the lateral leads. To investigate if stimulation using adjacent anodal contacts on the lateral percutaneous leads of a staggered transverse tripole can restore DC selectivity. Staggered transverse tripoles with quadripolar lateral anodes were modeled on the low-thoracic vertebral region (T10-T12) of the spinal cord using (a) percutaneous lead with staggered quadripolar lateral anodal configuration (PERC QD) and (b) laminotomy lead with staggered quadripolar lateral anodal configuration (LAM QD), of the same contact dimensions. The commercially available LAM 565 surgical lead with 16 widely spaced contacts was also modeled. For comparison with PERC QD, staggered transverse tripoles with dual lateral anodes were modeled by using percutaneous lead with staggered dual lateral anodal configuration (PERC ST). The PERC QD improved the depth of DC penetration and enabled selective recruitment of DCs in comparison with PERC ST. Mediolateral selectivity of DCs could not be achieved with the LAM 565. Stimulation using PERC QD improves anodal shielding of dorsal roots and restores DC selectivity. Based on our modeling study, we hypothesize that, in clinical practice, LAM QD can provide an improved performance compared with the PERC QD. Our model also predicts that the same configuration realized on the commercial LAM 565 surgical lead with widely spaced contacts cannot selectively stimulate DCs essential in treating low-back pain.

  2. Inspection of anode and field wires for the COMPASS drift chamber, DC5, with Environmental Scanning Electron Microscope

    NASA Astrophysics Data System (ADS)

    Cyuzuzo, Sonia

    2014-09-01

    The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13 graphite coated Mylar cathode planes. To ensure a well-functioning of DC5, the wires were carefully tested. An optical inspection and a spectral analysis was performed with an Environmental Scanning Electron Microscope (ESEM) to verify the composition and dimensions and the integrity of the gold plating on the surface of these wires. The spectra of the wires were studied at 10 and 30 keV. The COMPASS experiment at CERN uses a secondary pion beam from the Super Proton Synchrotron (SPS) at CERN to explore the spin structure of nucleons. A new drift chamber, DC5, will be integrated into the COMPASS spectrometer to replace an aging straw tube detector. DC5 will detect muon pairs from Drell-Yan scattering of a pion-beam off a transversely polarized proton target. This data will be used to determine the correlation between transverse proton spin and the intrinsic transverse momentum of up-quarks inside the proton, the Sivers effect. DC5 is a large area planar drift chamber with 8 layers of anode-frames made of G10 fiberglass-epoxy. The G10 frames support printed circuit boards for soldering 20 μm diameter anode and 100 μm diameter field wires. The anode planes are sandwiched by 13 graphite coated Mylar cathode planes. To ensure a well-functioning of DC5, the wires were carefully tested. An optical inspection and a spectral analysis was performed with an Environmental Scanning Electron Microscope (ESEM) to verify the composition and dimensions and the integrity of the gold plating on the surface of these wires. The spectra of the wires were studied at 10 and 30 keV. Acknowledging NSF and UIUC.

  3. Does trans‐spinal and local DC polarization affect presynaptic inhibition and post‐activation depression?

    PubMed Central

    Kaczmarek, D.; Ristikankare, J.

    2017-01-01

    Key points Trans‐spinal polarization was recently introduced as a means to improve deficient spinal functions. However, only a few attempts have been made to examine the mechanisms underlying DC actions. We have now examined the effects of DC on two spinal modulatory systems, presynaptic inhibition and post‐activation depression, considering whether they might weaken exaggerated spinal reflexes and enhance excessively weakened ones.Direct current effects were evoked by using local intraspinal DC application (0.3–0.4 μA) in deeply anaesthetized rats and were compared with the effects of trans‐spinal polarization (0.8–1.0 mA).Effects of local intraspinal DC were found to be polarity dependent, as locally applied cathodal polarization enhanced presynaptic inhibition and post‐activation depression, whereas anodal polarization weakened them. In contrast, both cathodal and anodal trans‐spinal polarization facilitated them.The results suggest some common DC‐sensitive mechanisms of presynaptic inhibition and post‐activation depression, because both were facilitated or depressed by DC in parallel. Abstract Direct current (DC) polarization has been demonstrated to alleviate the effects of various deficits in the operation of the central nervous system. However, the effects of trans‐spinal DC stimulation (tsDCS) have been investigated less extensively than the effects of transcranial DC stimulation, and their cellular mechanisms have not been elucidated. The main objectives of this study were, therefore, to extend our previous analysis of DC effects on the excitability of primary afferents and synaptic transmission by examining the effects of DC on two spinal modulatory feedback systems, presynaptic inhibition and post‐activation depression, in an anaesthetized rat preparation. Other objectives were to compare the effects of locally and trans‐spinally applied DC (locDC and tsDCS). Local polarization at the sites of terminal branching of afferent fibres was found to induce polarity‐dependent actions on presynaptic inhibition and post‐activation depression, as cathodal locDC enhanced them and anodal locDC depressed them. In contrast, tsDCS modulated presynaptic inhibition and post‐activation depression in a polarity‐independent fashion because both cathodal and anodal tsDCS facilitated them. The results show that the local presynaptic actions of DC might counteract both excessively strong and excessively weak monosynaptic actions of group Ia and cutaneous afferents. However, they indicate that trans‐spinally applied DC might counteract the exaggerated spinal reflexes but have an adverse effect on pathologically weakened spinal activity by additional presynaptic weakening. The results are also relevant for the analysis of the basic properties of presynaptic inhibition and post‐activation depression because they indicate that some common DC‐sensitive mechanisms contribute to them. PMID:27891626

  4. Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants.

    PubMed

    Aboughalma, Hanssan; Bi, Ran; Schlaak, Michael

    2008-07-01

    The use of a combination of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. Potato tubers were planted in plastic vessels filled with Zn, Pb, Cu and Cd contaminated soil and grown in a greenhouse. Three of these vessels were treated with direct current electric field (DC), three with alternative current (AC) and three remained untreated as control vessels. The soil pH varied from anode to cathode with a minimum of pH 3 near the anode and a maximum of pH 8 near the cathode in the DC treated soil profile. There was an accumulation of Zn, Cu and Cd at about 12 cm distance from anode when soil pH was 5 in the DC treated soil profile. There was no significant metal redistribution and pH variation between anode and cathode in the AC soil profile. The biomass production of the plants was 72% higher under AC treatment and 27% lower under DC treatment compared to the control. Metal accumulation was generally higher in the plant roots treated with electrical fields than the control. The overall metal uptake in plant shoots was lower under DC treatment compared to AC treatment and control, although there was a higher accumulation of Zn and Cu in the plant roots treated with electrical fields. The Zn uptake in plant shoots under AC treatment was higher compared to the control and DC treatment. Zn and Cu accumulation in the plant roots under AC and DC treatment was similar, and both were higher comparing to control. Cd content in plant roots under all three treatments was found to be higher than that in the soil. The Pb accumulation in the roots and the uptake into the shoots was lower compared to its content in the soil.

  5. MHD generator with improved network coupling electrodes to a load

    DOEpatents

    Rosa, Richard J.

    1977-01-01

    An MHD generator has a plurality of segmented electrodes extending longitudinally of a duct, whereby progressively increasing high DC voltages are derived from a set of cathode electrodes and progressively increasing low DC voltages are derived from a set of anode electrodes. First and second load terminals are respectively connected to the cathode and anode electrodes by separate coupling networks, each of which includes a number of SCR's and a number of diode rectifiers.

  6. Bimodal electric tissue ablation (BETA): a study on ablation size when the anode is placed on the peritoneum and the liver.

    PubMed

    Tiong, Leong U; Finnie, John W; Field, John B; Maddern, Guy J

    2012-07-01

    In bimodal electric tissue ablation (BETA), the cathode of the DC circuit is attached to the radiofrequency (RF) electrode to increase the surrounding tissue hydration. This will delay tissue desiccation and allowing the ablation process to continue for a longer period of time before "roll-off" occurs, resulting in larger ablations compared with standard radiofrequency ablation (RFA). Previous research showed that attaching the anode to the skin using electrosurgical grounding pads would reduce the efficacy of BETA because of the high electrical resistivity of the skin. This study investigated the ablation size produced when the anode was attached to the peritoneum (BETA-peritoneum) and the liver (BETA-liver) respectively. The anode of the DC circuit in BETA was attached to the peritoneum and the liver in a pig model using ECG dots. In BETA, 9 V of DC was provided for 10 min, after which the radiofrequency generator were switched on and both electrical circuits allowed to run concurrently until "roll-off." The size of ablations produced was compared to when the anode attached to the skin (BETA-skin) and standard RFA, respectively. The sites of anode placement were examined for local tissue injury. The transverse diameters in BETA-peritoneum and BETA-liver were significantly larger compared with BETA-skin and standard RFA, respectively (P < 0.001). The axial diameter in the BETA-peritoneum and BETA-liver groups were also larger compared with the BETA-skin and RFA groups, although the differences did not reach statistical significance (P = 0.09). Hematoxylin and eosin (H and E) examination of the peritoneum and the liver where the anode was attached showed coagulation necrosis involving the superficial epithelium and the liver capsule, respectively. BETA can be used to treat larger liver tumors more effectively and may reduce the tumor recurrence rates compared with standard RFA. The efficacy of BETA depends on ensuring good electrical conductivity between the cathode and the anode of the DC circuit. Research so far has shown that BETA works best when the anode is placed deep to the skin as the stratum corneum consisted of a layer of a-nucleated cells, which have high electrical resistivity. The liver could be the ideal location to place the anode as it has excellent electrical conductivity, therefore ensuring maximum tissue hydration around the cathode to produce the largest ablations possible. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Effect of vacuum arc cathode spot distribution on breaking capacity of the arc-extinguishing chamber

    NASA Astrophysics Data System (ADS)

    Ding, Can; Yuan, Zhao; He, Junjia

    2017-10-01

    A DC circuit breaker performs a key function in breaking an intermediate-frequency (IF) current since breaking a pure IF current is equivalent to breaking a very small DC with a reverse IF current. In this study, it is found that cathode spots show a ring-shaped distribution at 2000 Hz. An arc with an uneven distribution of cathode spots has been simulated. The simulation results show that the distribution of cathode spots significantly affect the microparameter distribution of arc plasma. The current distribution on the anode side differs from that on the cathode side under the total radial electric field. Specifically, the anode current distribution is both uneven and concentrated. The applied axial magnetic field, which cannot reduce the concentrated anode current distribution effectively, might increase the concentration of the anode current. Finally, the uneven distribution of cathode spots reduces the breaking capacity of the arc-extinguishing chamber.

  8. Study of short atmospheric pressure dc glow microdischarge in air

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Chirtsov, Alexander; Emelin, Sergey

    2011-10-01

    The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. The results of experiments and simulations of short (without positive column) atmospheric pressure dc glow discharge in air are presented. We used metal steel electrodes with a gap of 5-100 microns. The experimental voltage-current characteristic's (VAC) have a constant or slightly increasing form at low gap. The most stable microdischarges were burning with a flat cathode and rounded anode, when the length of the discharge is automatically established near the minimum of the Paschen curve by changing their binding on the anode. In this case microdischarge was stable and it had growing VAC. For simulations we used 2D fluid model with kinetic description of electrons. We solved the balance equations for the vibrationally- and the electronically-excited states of a nitrogen and oxygen molecules; nitrogen and oxygen atoms; ozone molecule; and different nitrogen and oxygen ions with different plasmochemical reactions between them. Simulations predicted the main regions of the dc glow discharges including cathode and anode sheath and plasma of negative glow, Faraday dark space and transition region. Gas heating plays an important role in shaping the discharge profiles. This work was supported by the FZP and SPbGU

  9. Combined Effect of Alternating Current Interference and Cathodic Protection on Pitting Corrosion and Stress Corrosion Cracking Behavior of X70 Pipeline Steel in Near-Neutral pH Environment.

    PubMed

    Wang, Liwei; Cheng, Lianjun; Li, Junru; Zhu, Zhifu; Bai, Shuowei; Cui, Zhongyu

    2018-03-22

    Influence of alternating current (AC) on pitting corrosion and stress corrosion cracking (SCC) behavior of X70 pipeline steel in the near-neutral pH environment under cathodic protection (CP) was investigated. Both corrosion and SCC are inhibited by -0.775 V SCE CP without AC interference. With the superimposition of AC current (1-10 mA/cm²), the direct current (DC) potential shifts negatively under the CP of -0.775 V SCE and the cathodic DC current decreases and shifts to the anodic direction. Under the CP potential of -0.95 V SCE and -1.2 V SCE , the applied AC current promotes the cathodic reaction and leads to the positive shift of DC potential and increase of cathodic current. Local anodic dissolution occurs attributing to the generated anodic current transients in the positive half-cycle of the AC current, resulting in the initiation of corrosion pits (0.6-2 μm in diameter). AC enhances the SCC susceptibility of X70 steel under -0.775 V SCE CP, attributing to the promotion of anodic dissolution and hydrogen evolution. Even an AC current as low as 1 mA/cm² can enhance the SCC susceptibility.

  10. Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation.

    PubMed

    Jamil, Asif; Batsikadze, Giorgi; Kuo, Hsiao-I; Labruna, Ludovica; Hasan, Alkomiet; Paulus, Walter; Nitsche, Michael A

    2017-02-15

    Applications of transcranial direct current stimulation to modulate human neuroplasticity have increased in research and clinical settings. However, the need for longer-lasting effects, combined with marked inter-individual variability, necessitates a deeper understanding of the relationship between stimulation parameters and physiological effects. We systematically investigated the full DC intensity range (0.5-2.0 mA) for both anodal and cathodal tDCS in a sham-controlled repeated measures design, monitoring changes in motor-cortical excitability via transcranial magnetic stimulation up to 2 h after stimulation. For both tDCS polarities, the excitability after-effects did not linearly correlate with increasing DC intensity; effects of lower intensities (0.5, 1.0 mA) showed equal, if not greater effects in motor-cortical excitability. Further, while intra-individual responses showed good reliability, inter-individual sensitivity to TMS accounted for a modest percentage of the variance in the early after-effects of 1.0 mA anodal tDCS, which may be of practical relevance for future optimizations. Contemporary non-invasive neuromodulatory techniques, such as transcranial direct current stimulation (tDCS), have shown promising potential in both restituting impairments in cortical physiology in clinical settings, as well as modulating cognitive abilities in the healthy population. However, neuroplastic after-effects of tDCS are highly dependent on stimulation parameters, relatively short lasting, and not expectedly uniform between individuals. The present study systematically investigates the full range of current intensity between 0.5 and 2.0 mA on left primary motor cortex (M1) plasticity, as well as the impact of individual-level covariates on explaining inter-individual variability. Thirty-eight healthy subjects were divided into groups of anodal and cathodal tDCS. Five DC intensities (sham, 0.5, 1.0, 1.5 and 2.0 mA) were investigated in separate sessions. Using transcranial magnetic stimulation (TMS), 25 motor-evoked potentials (MEPs) were recorded before, and 10 time points up to 2 h following 15 min of tDCS. Repeated-measures ANOVAs indicated a main effect of intensity for both anodal and cathodal tDCS. With anodal tDCS, all active intensities resulted in equivalent facilitatory effects relative to sham while for cathodal tDCS, only 1.0 mA resulted in sustained excitability diminution. An additional experiment conducted to assess intra-individual variability revealed generally good reliability of 1.0 mA anodal tDCS (ICC(2,1) = 0.74 over the first 30 min). A post hoc analysis to discern sources of inter-individual variability confirmed a previous finding in which individual TMS SI 1mV (stimulus intensity for 1 mV MEP amplitude) sensitivity correlated negatively with 1.0 mA anodal tDCS effects on excitability. Our study thus provides further insights on the extent of non-linear intensity-dependent neuroplastic after-effects of anodal and cathodal tDCS. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  11. Effect of anode-cathode geometry on performance of the HIP-1 hot ion plasma. [magnetic mirrors

    NASA Technical Reports Server (NTRS)

    Lauver, M. R.

    1978-01-01

    Hot-ion hydrogen plasma experiments were conducted in the NASA Lewis HIP-1 magnetic mirror facility to determine how the ion temperature was influenced by the axial position of the cathode tips relative to the anodes. A steady-state EXB plasma was formed by applying a strong radially inward dc electric field near the throats of the magnetic mirrors. The dc electric field was created between hollow cathode rods inside hollow anode cylinders, both concentric with the magnetic axis. The highest ion temperatures, 900 eV, were attained when the tip of each cathode was in the same plane as the end of its anode. These temperatures were reached with 22 kV applied to the electrodes in a field of 1.1 tesla. Scaling relations were empirically determined for ion temperature and the product of ion density and neutral particle density as a function of cathode voltage, discharge current, and electrode positions. Plasma discharge current vs voltage (I-V) characteristics were determined.

  12. Electrode alignment of transverse tripoles using a percutaneous triple-lead approach in spinal cord stimulation

    NASA Astrophysics Data System (ADS)

    Sankarasubramanian, V.; Buitenweg, J. R.; Holsheimer, J.; Veltink, P.

    2011-02-01

    The aim of this modeling study is to determine the influence of electrode alignment of transverse tripoles on the paresthesia coverage of the pain area in spinal cord stimulation, using a percutaneous triple-lead approach. Transverse tripoles, comprising a central cathode and two lateral anodes, were modeled on the low-thoracic vertebral region (T10-T12) using percutaneous triple-lead configurations, with the center lead on the spinal cord midline. The triple leads were oriented both aligned and staggered. In the staggered configuration, the anodes were offset either caudally (caudally staggered) or rostrally (rostrally staggered) with respect to the midline cathode. The transverse tripolar field steering with the aligned and staggered configurations enabled the estimation of dorsal column fiber thresholds (IDC) and dorsal root fiber thresholds (IDR) at various anodal current ratios. IDC and IDR were considerably higher for the aligned transverse tripoles as compared to the staggered transverse tripoles. The aligned transverse tripoles facilitated deeper penetration into the medial dorsal columns (DCs). The staggered transverse tripoles always enabled broad and bilateral DC activation, at the expense of mediolateral steerability. The largest DC recruited area was obtained with the rostrally staggered transverse tripole. Transverse tripolar geometries, using percutaneous leads, allow for selective targeting of either medial or lateral DC fibers, if and only if the transverse tripole is aligned. Steering of anodal currents between the lateral leads of the staggered transverse tripoles cannot target medially confined populations of DC fibers in the spinal cord. An aligned transverse tripolar configuration is strongly recommended, because of its ability to provide more post-operative flexibility than other configurations.

  13. Synthesis and electrochemical properties of silicon nanosheets by DC arc discharge for lithium-ion batteries.

    PubMed

    Yu, Xiuhong; Xue, Fanghong; Huang, Hao; Liu, Chunjing; Yu, Jieyi; Sun, Yuejun; Dong, Xinglong; Cao, Guozhong; Jung, Youngguan

    2014-06-21

    Two-dimensional (2D) ultrathin silicon nanosheets (Si NSs) were synthesized by DC arc discharge method and investigated as anode material for Li-ion batteries. The 2D ultrathin characteristics of Si NSs is confirmed by means of transmission electron microscopy (TEM) and atomic force microscopy (AFM). The average size of Si NSs is about 20 nm, with thickness less than 2.5 nm. The characteristic Raman peak of Si NSs is found to have an appreciable (20 nm) shift to low frequency, presumably due to the size effect. The synergistic effects of Ar(+) and H(+) lead to 2D growth of Si NSs under high temperature and energy. Electrochemical analyses reveal that Si NSs anode possesses stable cycling performance and fast diffusion of Li-ions with insertion/extraction processes. Such Si NSs might be a promising candidate for anode of Li-ion batteries.

  14. Cyclic performance tests of Sn/MWCNT composite lithium ion battery anodes at different temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocoglu, U., E-mail: utocoglu@sakarya.edu.tr; Cevher, O.; Akbulut, H.

    In this study tin-multi walled carbon nanotube (Sn-MWCNT) lithium ion battery anodes were produced and their electrochemical galvanostatic charge/discharge tests were conducted at various (25 °C, 35 °C, 50 °C) temperatures to determine the cyclic behaviors of anode at different temperatures. Anodes were produced via vacuum filtration and DC magnetron sputtering technique. Tin was sputtered onto buckypapers to form composite structure of anodes. SEM analysis was conducted to determine morphology of buckypapers and Sn-MWCNT composite anodes. Structural and phase analyses were conducted via X-ray diffraction and Raman Spectroscopy technique. CR2016 coin cells were assembled for electrochemical tests. Cyclic voltammetry testmore » were carried out to determine the reversibility of reactions between anodes and reference electrode between 0.01-2.0 V potential window. Galvanostatic charge/discharge tests were performed to determine cycle performance of anodes at different temperatures.« less

  15. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    NASA Astrophysics Data System (ADS)

    Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng

    2018-04-01

    In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.

  16. Orienting Arc Lamps for Longest Life

    NASA Technical Reports Server (NTRS)

    Kiss, J.

    1985-01-01

    Temperature distribution strongly affects performance. Tests on floodlights for Space Shuttle payload bay show useful life of metal halide dc arc lamp prolonged by mounting "anode down" and wiring for maximum heat conduction away from electrodes. Anode-down configuration, anode and cathode temperatures stabilize at 333 degrees and 313 degrees C, respectively, after 1 hour of operation. Temperatures both below limit for quartz-to-metal seals, and lamps able to withstand a 2,000-hour life test with satisfactory light output at end.

  17. Optimization of Processing Variables Which Affect Adhesion of Organic Coatings to Anodized Aluminum Alloys

    DTIC Science & Technology

    1975-10-01

    DC anodizing all adhesion values were lower but almost equal. 36 mnamnminmh TABU X SWOT OF EFFECT OF CURRaTT DEÄITT, TIME ABD SEAUK OF CHJOOC...Continuum Interpretation for Fracture and Adhesion", J. Appl . Polymer Science, 1^, 29 (I969) 3. Williams, M. L., "Stress Singularities, Adhesion, and

  18. Electrochemical mineral scale prevention and removal on electrically conducting carbon nanotube--polyamide reverse osmosis membranes.

    PubMed

    Duan, Wenyan; Dudchenko, Alexander; Mende, Elizabeth; Flyer, Celeste; Zhu, Xiaobo; Jassby, David

    2014-05-01

    The electrochemical prevention and removal of CaSO4 and CaCO3 mineral scales on electrically conducting carbon nanotube - polyamide reverse osmosis membrane was investigated. Different electrical potentials were applied to the membrane surface while filtering model scaling solutions with high saturation indices. Scaling progression was monitored through flux measurements. CaCO3 scale was efficiently removed from the membrane surface through the intermittent application of a 2.5 V potential to the membrane surface, when the membrane acted as an anode. Water oxidation at the anode, which led to proton formation, resulted in the dissolution of deposited CaCO3 crystals. CaSO4 scale formation was significantly retarded through the continuous application of 1.5 V DC to the membrane surface, when the membrane was operated as an anode. The continuous application of a sufficient electrical potential to the membrane surface leads to the formation of a thick layer of counter-ions along the membrane surface that pushed CaSO4 crystal formation away from the membrane surface, allowing the formed crystals to be carried away by the cross-flow. We developed a simple model, based on a modified Poisson-Boltzmann equation, which qualitatively explained our observed experimental results.

  19. A comparison of chromic acid and sulfuric acid anodizing

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1992-01-01

    Because of federal and state mandates restricting the use of hexavalent chromium, it was deemed worthwhile to compare the corrosion protection afforded 2219-T87 aluminum alloy by both Type I chromic acid and Type II sulfuric acid anodizing per MIL-A-8625. Corrosion measurements were made on large, flat 2219-T87 aluminum alloy sheet material with an area of 1 cm(exp 2) exposed to a corrosive medium of 3.5-percent sodium chloride at pH 5.5. Both ac electrochemical impedance spectroscopy and the dc polarization resistance techniques were employed. The results clearly indicate that the corrosion protection obtained by Type II sulfuric acid anodizing is superior, and no problems should result by substituting Type II sulfuric acid anodizing for Type I chromic acid anodizing.

  20. Generation mechanism of hydrogen peroxide in dc plasma with a liquid electrode

    NASA Astrophysics Data System (ADS)

    Takeuchi, Nozomi; Ishibashi, Naoto

    2018-04-01

    The production mechanism of liquid-phase H2O2 in dc driven plasma in O2 and Ar with a water electrode was investigated. When a water anode was used, the concentration of H2O2 increased linearly with the treatment time. The production rate was proportional to the discharge current, and there was no dependence on the gap distance. On the other hand, the production rate was much smaller with a water anode. We concluded that the production of gas-phase H2O2 in the cathode sheath just above a water cathode and diffusion of this H2O2 into the water constitute the key mechanism in the production of liquid-phase H2O2.

  1. REGULATOR FOR CALUTRON ION SOURCE

    DOEpatents

    Miller, B.F.

    1958-09-01

    Improvements are described in electric discharge devices and circuits for a calutron and, more specifically, presents an arc discharge regulator circuit for the ion source of the calatron. In general, the source comprises a filament which bombards a cathode with electrons, a griid control electrode between the filament and the cathode, and an anode electrode. The control electrode has a DC potential which is varied in response to changes in the anode current flow by means of a saturable reactor installed in its power supply energizing line having the anode current flowing through its control winding. In this manner the bombardment current to the cathode may be decreased when the anode current increases beyond a predetermined level.

  2. Automatic control and monitoring equipment for cathodic protection of offshore structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, J.H.

    1979-10-01

    The preferred cathodic-protection systems for offshore structures are (1) the sacrificial-anode form for areas where the anode's weight or wave resistance is not a serious handicap and (2) a combined anode/impressed-current system that reduces the anode mass. Problems associated with controlling and monitoring the equipment are related to the anode locations, suitability of the reference electrodes, instrumentation requirements, interpretation of the measured potentials, and influence of water depth.

  3. Self-consistent modeling of self-organized patterns of spots on anodes of DC glow discharges

    NASA Astrophysics Data System (ADS)

    Bieniek, M. S.; Almeida, P. G. C.; Benilov, M. S.

    2018-05-01

    Self-organized patterns of spots on a flat metallic anode in a cylindrical glow discharge tube are simulated. A standard model of glow discharges is used, comprising conservation and transport equations for a single species of ion and electrons, written with the use of the drift-diffusion and local-field approximations, and the Poisson equation. Only processes in the near-anode region are considered and the computation domain is the region between the anode and the discharge column. Multiple solutions, existing in the same range of discharge current and describing modes with and without anode spots, are computed for the first time. A reversal of the local anode current density in the spots was found, i.e. mini-cathodes are formed inside the spots or, as one could say, anode spots operate as a unipolar glow discharge. The solutions do not fit into the conventional pattern of self-organization in bistable nonlinear dissipative systems; In particular, the modes are not joined by bifurcations.

  4. Study of Shell Zone Formation in Lithographic and Anodizing Quality Aluminum Alloys: Experimental and Numerical Approach

    NASA Astrophysics Data System (ADS)

    Brochu, Christine; Larouche, André; Hark, Robert

    Shell thickness is an important quality factor for lithographic and anodizing quality aluminum alloys. Increasing pressure is placed on casting plants to produce a thinner shell zone for these alloys. This study, based on plant trials and mathematical modelling highlights the most significant parameters influencing shell zone formation. Results obtained show the importance of metal temperature and distribution and mould metal level on shell zone formation. As an answer to specific plant problems, this study led to the development of improved metal distribution systems for DC casting of litho and anodizing quality alloys.

  5. Immediate and long-term galvanotactic responses of Amoeba proteus to dc electric fields.

    PubMed

    Korohoda, W; Mycielska, M; Janda, E; Madeja, Z

    2000-01-01

    The long-term and immediate galvanotactic responses of Amoeba proteus to the direct current electric fields (dcEFs) were studied with the methods of computer-aided image analysis. It was found that in contrast to earlier reports, amoebae continued locomotion towards cathode (the negative pole) for hours and the increase in the field strength in the range 300-600 mV/mm caused the straightening of cell trajectories accompanied by the decreased frequency of the lateral pseudopods formation and lesser change in the speed of cell movement. In the cell regions pointing to the anode, the formation of new pseudopodia was prevented and the higher cEFs strength the more extended were the regions in which formation of new pseudopods was inhibited. Replacement of calcium with magnesium in the extracellular medium reduced the galvanotactic cell responses. Research on the localisation and kinetics of the primary cell responses to the dcEF or to change in its direction revealed that the primary cell responses occurred at the anode oriented cell regions. The cell response to the field reversal appeared to be localised and to take place in less than 1 sec. First the retraction and withdrawal of the anode-directed pseudopodium was observed whereas the uroid (cell tail) moved for 10-40 sec in the original direction before it begun to react to the field reversal. The exposure of amoebae to the dcEFs sensitised them to the reversion in the field direction and induced an acceleration of cell responses. The results presented are difficult to reconcile with the attempt to explain the cell galvanotaxis as a consequence of the membrane protein lateral electrophoresis or electroosmosis. It is suggested that the lateral electrophoresis of ions and the modification of ionic conditions at the vicinity of ion channels may be involved in the induction of fast responses of cells to external dcEFs. Copyright 2000 Wiley-Liss, Inc.

  6. Megawatt low-temperature DC plasma generator with divergent channels of gas-discharge tract

    NASA Astrophysics Data System (ADS)

    Gadzhiev, M. Kh.; Isakaev, E. Kh.; Tyuftyaev, A. S.; Yusupov, D. I.; Sargsyan, M. A.

    2017-04-01

    We have developed and studied a new effective megawatt double-unit generator of low-temperature argon plasma, which belongs to the class of dc plasmatrons and comprises the cathode and anode units with divergent gas-discharge channels. The generator has an efficiency of about 80-85% and ensures a long working life at operating currents up to 4000 A.

  7. A long-term stable power supply µDMFC stack for wireless sensor node applications

    NASA Astrophysics Data System (ADS)

    Wu, Zonglin; Wang, Xiaohong; Li, Xiaozhao; Xu, Manqi; Liu, Litian

    2014-10-01

    In this paper, a passive, air-breathing four-cell micro direct methanol fuel cell (µDMFC) stack featuring a fuel delivery structure for long-term and stable power supply is designed, fabricated and tested. The fuel is reserved in a T-shaped tank and diffuses through the porous diffusion layer to the catalyst at the anode. A peak power density of 25.7 mW cm-2 and a maximum power output of 113 mW are achieved with 3 M methanol at room temperature, and the stack can produce 60 mW of power, even though only 5% fuel remains in the reservoir. Combined with a low-input dc-dc convertor, the stack can realize a stable and optional constant voltage output from 1 V-6 V. The stack successfully powered a heavy metal sensor node for water environment monitoring 12 d continuously, with consumption of 10 mL 5 M methanol solution. As such, it is believed to be applicable for powering wireless sensor nodes.

  8. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    NASA Astrophysics Data System (ADS)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  9. Fuel cell system shutdown with anode pressure control

    DOEpatents

    Clingerman, Bruce J.; Doan, Tien M.; Keskula, Donald H.

    2002-01-01

    A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.

  10. 40 CFR 63.848 - Emission monitoring requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and POM emissions from anode bake furnaces. Using the procedures in § 63.847 and in the approved test plan, the owner or operator shall monitor TF and POM emissions from each anode bake furnace on an... owner or operator of a new or existing potline or anode bake furnace shall install, operate, and...

  11. 40 CFR 63.848 - Emission monitoring requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and POM emissions from anode bake furnaces. Using the procedures in § 63.847 and in the approved test plan, the owner or operator shall monitor TF and POM emissions from each anode bake furnace on an... owner or operator of a new or existing potline or anode bake furnace shall install, operate, and...

  12. 40 CFR 63.848 - Emission monitoring requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and POM emissions from anode bake furnaces. Using the procedures in § 63.847 and in the approved test plan, the owner or operator shall monitor TF and POM emissions from each anode bake furnace on an... owner or operator of a new or existing potline or anode bake furnace shall install, operate, and...

  13. 40 CFR 63.848 - Emission monitoring requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and POM emissions from anode bake furnaces. Using the procedures in § 63.847 and in the approved test plan, the owner or operator shall monitor TF and POM emissions from each anode bake furnace on an... owner or operator of a new or existing potline or anode bake furnace shall install, operate, and...

  14. Supported plasma sputtering apparatus for high deposition rate over large area

    DOEpatents

    Moss, Ronald W.; McClanahan, Jr., Edwin D.; Laegreid, Nils

    1977-01-01

    A supported plasma sputtering apparatus is described having shaped electrical fields in the electron discharge region between the cathode and anode and the sputter region between the target and substrate while such regions are free of any externally applied magnetic field to provide a high deposition rate which is substantially uniform over a wide area. Plasma shaping electrodes separate from the anode and target shape the electrical fields in the electron discharge region and the sputter region to provide a high density plasma. The anode surrounds the target to cause substantially uniform sputtering over a large target area. In one embodiment the anode is in the form of an annular ring surrounding a flat target surface, such anode being provided with a ribbed upper surface which shields portions of the anode from exposure to sputtered material to maintain the electron discharge for a long stable operation. Several other embodiments accomplish the same result by using different anodes which either shield the anode from sputtered material, remove the sputtered coating on the anode by heating, or simultaneously mix sputtered metal from the auxiliary target with sputtered insulator from the main target so the resultant coating is conductive. A radio frequency potential alone or together with a D.C. potential, may be applied to the target for a greater sputtering rate.

  15. Molecular Level Understanding of Electrocatalysis in High pH Environment

    DTIC Science & Technology

    2015-07-08

    consisting of alkali metal hydroxide doped PBI membrane with 2.0 mgPtRu cm-2 anode and 1.0 mgPt cm-2 loadings at the anode and cathode, respectively...Direct!ethanol!fuel!cells!using!an!anion! exchange!membrane.!J!Power!Sources.!2008;185:621*6.! [4]!Hou!H,!Sun!G,!He!R,!Wu!Z,!Sun!B.!Alkali! doped ...electrocatalysts! for!oxygen!reduction! derived!from!polyaniline,!iron,!and! cobalt .!Science!(Washington,!DC,!U!S).!2011;332:443*7.! [17]! Zagal! JH

  16. Influence of an electric probe on the anode layer of a glow discharge in nitrogen

    NASA Astrophysics Data System (ADS)

    Taran, M. D.; Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.; Akishev, Yu S.

    2018-05-01

    A two-dimensional (2D) numerical model of a DC glow discharge in nitrogen is developed for the case when the electric probe is mounted in the discharge gap. Within this model, calculations are performed for the gas pressure of 50 Torr and discharge current densities of 22 and 90 mA cm‑2. A cylindrical probe 1 mm in diameter is located parallel to the anode at a distance of 5 or 10 mm. The probe potential is varied in a wide range relative to the floating potential. Numerical simulations predict the 2D plasma perturbation pattern induced by the electric probe and the influence of the probe on anode layer characteristics. In particular, conditions are determined under which a region with no glow forms in the anode layer.

  17. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  18. Effect of crystallographic orientation on the anodic formation of nanoscale pores/tubes in TiO 2 films

    NASA Astrophysics Data System (ADS)

    Kalantar-zadeh, K.; Sadek, A. Z.; Zheng, H.; Partridge, J. G.; McCulloch, D. G.; Li, Y. X.; Yu, X. F.; Wlodarski, W.

    2009-10-01

    Self-organized nanopores and nanotubes have been produced in thin films of titanium (Ti) prepared using filtered cathodic vacuum arc (FCVA), DC- and RF-sputter deposition systems. The anodization process was performed using a neutral electrolyte containing fluoride ions with an applied potential between 2 and 20 V (for clarity the results are only presented for 5 V). Scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques were used to characterise the films. It was found that the crystallographic orientation of the Ti films played a significant role in determining whether pores or tubes were formed during the anodic etching process.

  19. Investigation of electronic band structure and charge transfer mechanism of oxidized three-dimensional graphene as metal-free anodes material for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Loeblein, Manuela; Bruno, Annalisa; Loh, G. C.; Bolker, Asaf; Saguy, Cecile; Antila, Liisa; Tsang, Siu Hon; Teo, Edwin Hang Tong

    2017-10-01

    Dye-sensitized solar cells (DSSCs) offer an optimal trade-off between conversion-efficiency and low-cost fabrication. However, since all its electrodes need to fulfill stringent work-function requirements, its materials have remained unchanged since DSSC's first report early-90s. Here we describe a new material, oxidized-three-dimensional-graphene (o-3D-C), with a band gap of 0.2 eV and suitable electronic band-structure as alternative metal-free material for DSSCs-anodes. o-3D-C/dye-complex has a strong chemical bonding via carboxylic-group chemisorption with full saturation after 12 sec at capacity of ∼450 mg/g (600x faster and 7x higher than optimized metal surfaces). Furthermore, fluorescence quenching of life-time by 28-35% was measured demonstrating charge-transfer from dye to o-3D-C.

  20. Ag nanoparticle-filled TiO2 nanotube arrays prepared by anodization and electrophoretic deposition for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Sugri Nbelayim, Pascal; Kawamura, Go; Muto, Hiroyuki; Matsuda, Atsunori

    2017-03-01

    A layer of TiO2 nanotube (TNT) arrays with a thickness of 13 μm is synthesized by a two-step anodic oxidation from Ti metal foil. Surface charged Ag nanoparticles (NPs) are prepared by chemical reduction. After a pretreatment of the TNT arrays by acetone vapor, Ag NP filled TNT arrays can be achieved by electrophoretic deposition (EPD). Effects of the applied voltage during EPD such as DC-AC difference, frequency and waveform are investigated by quantitative analysis using atomic absorption spectroscopy. The results show that the best EPD condition is using DC 2 V + AC 4 V and a square wave of 1 Hz as the applied voltage. Back illuminated dye-sensitized solar cells are fabricated from TNT arrays with and without Ag NPs. The efficiency increased from 3.70% to 5.01% by the deposition of Ag NPs.

  1. Electrical conductivity and molten salt corrosion behavior of spinel nickel ferrite

    NASA Astrophysics Data System (ADS)

    Liu, Baogang; Zhang, Lei; Zhou, Kechao; Li, Zhiyou; Wang, Hao

    2011-08-01

    Nickel ferrite was prepared by solid-state reaction at 1300 °C as inert anode for aluminum electrolysis. DC conductivities and molten salt corrosion behavior of the samples were investigated in detail regarding the effects of different sintering atmospheres. X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis were used to analyse the phase compositions and microstructures. The DC conductivities of the samples sintered in nitrogen showed a drastic increase compared to those sintered in air, and at 960 °C they increased from 1.94 S/cm to 22.65 S/cm. The samples sintered in nitrogen showed much better corrosion resistance than those sintered in air, attributing to the formation of the dense protective layers in the anode surfaces during the electrolysis at 960 °C. The conductive mechanism and molten salt corrosion behavior were also discussed.

  2. A Lemon Cell Battery for High-Power Applications

    NASA Astrophysics Data System (ADS)

    Muske, Kenneth R.; Nigh, Christopher W.; Weinstein, Randy D.

    2007-04-01

    This article discusses the development of a lemon cell battery for high-power applications. The target application is the power source of a dc electric motor for a model car constructed by first-year engineering students as part of their introductory course design project and competition. The battery is composed of a series of lemon juice cells made from UV vis cuvets that use a magnesium anode and copper cathode. Dilution of the lemon juice to reduce the rate of corrosion of the magnesium anode and the addition of table salt to reduce the internal resistance of the cell are examined. Although our specific interest is the use of this lemon cell battery to run an electric dc motor, high-power applications such as radios, portable cassette or CD players, and other battery-powered toys are equally appropriate for demonstration and laboratory purposes using this battery.

  3. Size dependence effect of carbon-based anode material on intercalation characteristics of Li-ion battery

    NASA Astrophysics Data System (ADS)

    Anwar, Miftahul; Jupri, Dwi Rahmat; Saraswati, Teguh Endah

    2017-01-01

    This work aims to study the effect of the different size of Li-ion battery anode during charging state. Carbon-Based nanomaterial using arc-discharge in a liquid which is much simpler and cheaper compared to other techniques, i.e., CVD, laser vaporization, etc. The experiment was performed using intermediate DC power supply (1300 W) to produce an arc, and commercial graphite pencils (with 5 mm diameter) as negative and positive electrodes. Deionized water mixed with ethanol was used as a heat absorber. The result shows that arc discharge in deionized water could effectively produce carbon nanomaterial (i.e., nano-onions). In addition, finite element method-based simulation of the different intercalating process of Li-ion to the different shape of the anode, i.e., bulk semi-porous and porous anode materials for battery application is also presented. The results show that intercalation of Li ions depends on the anode structure due to the different potential density at anode region. This finding will provide support for design of Li-ion battery based on carbon nanomaterial

  4. Ultrananocrystalline Diamond Cantilever Wide Dynamic Range Acceleration/Vibration /Pressure Sensor

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.; Pellin, Michael J.; Auciello, Orlando

    2003-09-02

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/V2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  5. Ultrananocrystalline diamond cantilever wide dynamic range acceleration/vibration/pressure sensor

    DOEpatents

    Krauss, Alan R [Naperville, IL; Gruen, Dieter M [Downers Grove, IL; Pellin, Michael J [Naperville, IL; Auciello, Orlando [Bolingbrook, IL

    2002-07-23

    An ultrananocrystalline diamond (UNCD) element formed in a cantilever configuration is used in a highly sensitive, ultra-small sensor for measuring acceleration, shock, vibration and static pressure over a wide dynamic range. The cantilever UNCD element may be used in combination with a single anode, with measurements made either optically or by capacitance. In another embodiment, the cantilever UNCD element is disposed between two anodes, with DC voltages applied to the two anodes. With a small AC modulated voltage applied to the UNCD cantilever element and because of the symmetry of the applied voltage and the anode-cathode gap distance in the Fowler-Nordheim equation, any change in the anode voltage ratio V1/N2 required to maintain a specified current ratio precisely matches any displacement of the UNCD cantilever element from equilibrium. By measuring changes in the anode voltage ratio required to maintain a specified current ratio, the deflection of the UNCD cantilever can be precisely determined. By appropriately modulating the voltages applied between the UNCD cantilever and the two anodes, or limit electrodes, precise independent measurements of pressure, uniaxial acceleration, vibration and shock can be made. This invention also contemplates a method for fabricating the cantilever UNCD structure for the sensor.

  6. Deposition of hard and adherent diamond-like carbon films inside steel tubes using a pulsed-DC discharge.

    PubMed

    Trava-Airoldi, Vladimir Jesus; Capote, Gil; Bonetti, Luís Francisco; Fernandes, Jesum; Blando, Eduardo; Hübler, Roberto; Radi, Polyana Alves; Santos, Lúcia Vieira; Corat, Evaldo José

    2009-06-01

    A new, low cost, pulsed-DC plasma-enhanced chemical vapor deposition system that uses a bipolar, pulsed power supply was designed and tested to evaluate its capacity to produce quality diamond-like carbon films on the inner surface of steel tubes. The main focus of the study was to attain films with low friction coefficients, low total stress, a high degree of hardness, and very good adherence to the inner surface of long metallic tubes at a reasonable growth rate. In order to enhance the diamond-like carbon coating adhesion to metallic surfaces, four steps were used: (1) argon ion sputtering; (2) plasma nitriding; (3) a thin amorphous silicon interlayer deposition, using silane as the precursor gas; and (4) diamond-like carbon film deposition using methane atmosphere. This paper presents various test results as functions of the methane gas pressure and of the coaxial metal anode diameter, where the pulsed-DC voltage constant is kept constant. The influence of the coaxial metal anode diameter and of the methane gas pressure is also demonstrated. The results obtained showed the possibilities of using these DLC coatings for reduced friction and to harden inner surface of the steel tubes.

  7. Branchy alumina nanotubes

    NASA Astrophysics Data System (ADS)

    Zou, Jianping; Pu, Lin; Bao, Ximao; Feng, Duan

    2002-02-01

    Branchy alumina nanotubes (bANTs) have been shown to exist in aluminum oxide. Electron-beam evaporated 400 nm Al film on Si substrate is stepwise anodized in dilute sulfuric acid under the constant dc voltage 40 V at 10.0 °C. This electrochemical-anodizing route resulted in the formation of individual bANTs. Transmission electron microscopy showed that the length of the bANTs was around 450 nm, and the inner diameter was around 10-20 nm. We deduced that the bANTs, the completely detached multibranchy cells of anodic porous alumina (APA) film, should be evolved from the stagnant cells of the APA mother film. The bANTs may be used as templates in fabrication of individual branchy nanoscale cables, jacks, and heterojunctions. The proposed formation mechanisms of the bANTs and the stagnant cells should give some insights into the long-standing problem of APA film, i.e., the self-ordering mechanism of the cells arrangement in porous anodization of aluminum.

  8. Foundations of DC plasma sources

    NASA Astrophysics Data System (ADS)

    Tomas Gudmundsson, Jon; Hecimovic, Ante

    2017-12-01

    A typical dc discharge is configured with the negative cathode at one end and a positive anode at the other end, separated by a gas filled gap, placed inside a long glass cylinder. A few hundred volts between the cathode and anode is required to maintain the discharge. The type of discharge that is formed between the two electrodes depends upon the pressure of the working gas, the nature of the working gas, the applied voltage and the geometry of the discharge. We discuss the current-voltage characteristics of the discharge as well as the distinct structure that develops in the glow discharge region. The dc glow discharge appears in the discharge current range from μA to mA at 0.5-300 Pa pressure. We discuss the various phenomena observed in the dc glow discharge, including the cathode region, the positive column, and striations. The dc glow discharge is maintained by the emission of secondary electrons from the cathode target due to the bombardment of ions. For decades, the dc glow discharge has been used as a sputter source. Then it is often operated as an obstructed abnormal glow discharge and the required applied voltage is in the range 2-5 kV. Typically, the cathode target (the material to be deposited) is connected to a negative voltage supply (dc or rf) and the substrate holder faces the target. The relatively high operating pressure, in the range from 2 to 4 Pa, high applied voltages, and the necessity to have a conductive target limit the application of dc glow discharge as a sputter source. In order to lower the discharge voltage and expand the operation pressure range, the lifetime of the electrons in target vicinity is increased through applying magnetic field, by adding permanent magnets behind the cathode target. This arrangement is coined the magnetron sputtering discharge. The various configurations of the magnetron sputtering discharge and its applications are described. Furthermore, the use of dc discharges for chemical analysis, the Penning discharge and the hollow cathode discharges and some of its applications are briefly discussed.

  9. High-velocity DC-VPS for diffusion and protecting barrier layers in solid oxide fuel cells (SOFCs)

    NASA Astrophysics Data System (ADS)

    Henne, R. H.; Franco, T.; Ruckdäschel, R.

    2006-12-01

    High-temperature fuel cells of the solid oxide fuel cell (SOFC) type as direct converter of chemical into electrical energy show a high potential for reducing considerably the specific energy consumption in different application fields. Of particular interest are advanced lightweight planar cells for electricity supply units in cars and other mobile systems. Such cells, in one new design, consist mainly of metallic parts, for example, of ferrite steels. These cells shall operate in the temperature range of 700 to 800 °C where oxidation and diffusion processes can be of detrimental effect on cell performance for long-term operation. Problems arise in particular by diffusion of chromium species from the interconnect or the cell containment into the electrolyte/cathode interface forming insulating phases and by the mutual diffusion of substrate and anode material, for example, iron and chromium from the ferrite into the anode and nickel from the anode into the ferrite, which in both cases reduces performance and system lifetime. Additional intermediate layers of perovskite-type material, (e.g., doped LaCrO3) applied with high-velocity direct-current vacuum plasma spraying (DC-VPS) can reduce such effects considerably if they are stable and of high electronic conductivity.

  10. Piezometer completion report for borehole cluster sites DC-19, DC-20, and DC-22

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, R.L.; Diediker, L.D.; Ledgerwood, R.K.

    1984-07-01

    This report describes the design and installation of multi-level piezometers at borehole cluster sites DC-19, DC-20 and DC-22. The network of borehole cluster sites will provide facilities for multi-level water-level monitoring across the RRL for piezometer baseline monitoring and for large-scale hydraulic stress testing. These groundwater-monitoring facilities were installed between August 1983 and March 1984. Three series of piezometer nests (A-, C- and D-series) were installed in nine hydrogeologic units (monitoring horizons) within the Columbia River Basalt Group at each borehole cluster site. In addition to the piezometer facilities, a B-series pumping well was installed at borehole cluster sites DC-20more » and DC-22. The A-series piezometer nest monitors the basal Ringold sediments and the Rattlesnake Ridge interbed. The C-series piezometer nests monitors the six deepest horizons, which are in increasing depth, the Priest Rapids interflow, Sentinel Gap flow top, Ginkgo flow top, Rocky Coulee flow top, Cohassett flow top and Umtanum flow top. The D-series piezometer monitors the Mabton interbed. The B-series pumping well was completed in the Priest Rapids interflow. 21 refs., 6 figs., 6 tabs.« less

  11. Experimental Study of Heating of a Liquid Cathode and Transfer of Its Components into the Gas Phase under the Action of a DC Discharge

    NASA Astrophysics Data System (ADS)

    Sirotkin, N. A.; Titov, V. A.

    2018-04-01

    An atmospheric-pressure dc discharge in air ( i = 10-50 mA) with metal and liquid electrolyte electrodes was studied experimentally. An aqueous solution of sodium chloride (0.5 mol/L) was used as the cathode or anode. The electric field strength in the plasma and the cathode (anode) voltage drops were obtained from the measured dependences of the discharge voltage on the electrode gap length. The gas temperature was deduced from the spectral distribution of nitrogen emission in the band N2( C 3Π u → B 3Π g , 0-2). The time dependences of the temperatures of the liquid electrolyte electrodes during the discharge and in its afterglow, as well as the evaporation rate of the solution, were determined experimentally. The contributions of ion bombardment and heat flux from the plasma to the heating of the liquid electrode and transfer of solvent (water) into the gas phase are discussed using the experimental data obtained.

  12. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media

    DOEpatents

    McLellan, Edward J.

    1983-01-01

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  13. A novel open-type biosensor for the in-situ monitoring of biochemical oxygen demand in an aerobic environment

    PubMed Central

    Yamashita, Takahiro; Ookawa, Natsuki; Ishida, Mitsuyoshi; Kanamori, Hiroyuki; Sasaki, Harumi; Katayose, Yuichi; Yokoyama, Hiroshi

    2016-01-01

    Biochemical oxygen demand (BOD) is a widely used index of water-quality assessment. Since bioelectrochemical BOD biosensors require anaerobic conditions for anodic reactions, they are not directly used in aerobic environments such as aeration tanks. Normally, the BOD biosensors are closed-type, where the anode is packed inside a closed chamber to avoid exposure to oxygen. In this study, a novel bioelectrochemical open-type biosensor was designed for in-situ monitoring of BOD during intermittent aeration. The open-type anode, without any protection against exposure to oxygen, was directly inserted into an intermittently aerated tank filled with livestock wastewater. Anodic potential was controlled using a potentiostat. Interestingly, this novel biosensor generated similar levels of current under both aerating and non-aerating conditions, and showed a logarithmic correlation (R2 > 0.9) of current with BOD concentrations up to 250 mg/L. Suspended solids in the wastewater attached to and covered the whole anode, presumably leading to the production of anaerobic conditions inside the covered anode via biological oxygen removal. Exoelectrogenic anaerobes (Geobacter spp.) were detected inside the covered anode using the 16S-rRNA gene. This biosensor will have various practical applications, such as the automatic control of aeration intensity and the in-situ monitoring of natural water environments. PMID:27917947

  14. Electrochemical processing of lead-containing waste ballistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, C.O.; Olsen, G.P.

    1995-12-31

    Literature review indicates that propellant ingredients in NOSIH-AA2 have been investigated electrochemical separation. Papers on related electroanalytical chemistry offer help in indicating which electrolytic separation systems to investigate. These included copper and nickel electrodes in alkaline solution. Voltammetry studies in 0.1 M NaOH showed that lead metal can be readily collected at a copper cathode and that lead dioxide can be deposited at a nickel anode. Cathodic and anodic deposition reactions begin at less than minus or plus 0.5 V. resp. Other species present in the propellant are also reactive at the anode. Deposits with good mechanical properties resulted, evenmore » with 40 mA/cm{sup 2} current density. Lead concentrations in alkaline solutions can readily be monitored using anodic amperometry with the nickel electrode. Separations from actual propellant solutions in 3 M NaOH were demonstrated using nickel as anode and cathode. Gravimetric monitoring of both anode and cathode showed accumulations suggesting the exhaustive lead collection. Associated voltammetry data showed decreasing amounts of other electroactive species at the anode as well as lead.« less

  15. Arcjet nozzle design impacts

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Sovie, Amy J.; Haag, Thomas W.

    1989-01-01

    The effect of nozzle configuration on the operating characteristics of a low power dc arcjet thruster was determined. A conical nozzle with a 30 deg converging angle, a 20 deg diverging angle, and an area ratio of 225 served as the baseline case. Variations on the geometry included bell-shaped contours both up and downstream, and a downstream trumpet-shaped contour. The nozzles were operated over a range of specific power near that anticipated for on-orbit operation. Mass flow rate, thrust, current, and voltage were monitored to provide accurate comparisons between nozzles. The upstream contour was found to have minimal effect on arcjet operation. It was determined that the contour of the divergent section of the nozzle, that serves as the anode, was very important in determining the location of arc attachment, and thus had a significant impact on arcjet performance. The conical nozzle was judged to have the optimal current/voltage characteristics and produced the best performance of the nozzles tested.

  16. Arcjet Nozzle Design Impacts

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Sovie, Amy J.; Haag, Thomas W.

    1989-01-01

    The effect of nozzle configuration on the operating characteristics of a low power dc arcjet thruster was determined. A conical nozzle with a 30 deg converging angle, a 20 deg diverging angle, and an area ratio of 225 served as the baseline case. Variations on the geometry included bell-shaped contours both up and downstream, and a downstream trumpet-shaped contour. The nozzles were operated over a range of specific power near that anticipated for on-orbit operation. Mass flow rate, thrust, current, and voltage were monitored to provide accurate comparisons between nozzles. The upstream contour was found to have minimal effect on arcjet operation. It was determined that the contour of the divergent section of the nozzle, that serves as the anode, was very important in determining the location of arc attachment, and thus had a significant impact on arcjet performance. The conical nozzle was judged to have the optimal current/voltage characteristics and produced the best performance of the nozzles tested.

  17. Role of irregular otolith afferents in the steady-state nystagmus during off-vertical axis rotation

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Perachio, A. A.; Mustari, M. J.; Strunk, C. L.

    1992-01-01

    1. During constant velocity off-vertical axis rotations (OVAR) in the dark a compensatory ocular nystagmus is present throughout rotation despite the lack of a maintained signal from the semicircular canals. Lesion experiments and canal plugging have attributed the steady-state ocular nystagmus during OVAR to inputs from the otolith organs and have demonstrated that it depends on an intact velocity storage mechanism. 2. To test whether irregularly discharging otolith afferents play a crucial role in the generation of the steady-state eye nystagmus during OVAR, we have used anodal (inhibitory) currents bilaterally to selectively and reversibly block irregular vestibular afferent discharge. During delivery of DC anodal currents (100 microA) bilaterally to both ears, the slow phase eye velocity of the steady-state nystagmus during OVAR was reduced or completely abolished. The disruption of the steady-state nystagmus was transient and lasted only during the period of galvanic stimulation. 3. To distinguish a possible effect of ablation of the background discharge rates of irregular vestibular afferents on the velocity storage mechanism from specific contributions of the dynamic responses from irregular otolith afferents to the circuit responsible for the generation of the steady-state nystagmus, bilateral DC anodal galvanic stimulation was applied during optokinetic nystagmus (OKN) and optokinetic afternystagmus (OKAN). No change in OKN and OKAN was observed.(ABSTRACT TRUNCATED AT 250 WORDS).

  18. Influence of process parameters on plasma electrolytic surface treatment of tantalum for biomedical applications

    NASA Astrophysics Data System (ADS)

    Sowa, Maciej; Woszczak, Maja; Kazek-Kęsik, Alicja; Dercz, Grzegorz; Korotin, Danila M.; Zhidkov, Ivan S.; Kurmaev, Ernst Z.; Cholakh, Seif O.; Basiaga, Marcin; Simka, Wojciech

    2017-06-01

    This work aims to quantify the effect of anodization voltage and electrolyte composition used during DC plasma electrolytic oxidation (PEO), operated as a 2-step process, on the surface properties of the resulting oxide coatings on tantalum. The first step consisted of galvanostatic anodization (150 mA cm-2) of the tantalum workpiece up to several limiting voltages (200, 300, 400 and 500 V). After attaining the limiting voltage, the process was switched to voltage control, which resulted in a gradual decrease of the anodic current density. The anodic treatment was realized in a 0.5 M Ca(H2PO2)2 solution, which was then modified by the addition of 1.15 M Ca(HCOO)2 as well as 1.15 M and 1.5 M Mg(CH3COO)2. The increasing voltage of anodization led to the formation of thicker coatings, with larger pores and enriched with electrolytes species to a higher extent. The solutions containing HCOO- and CH3COO- ions caused the formation of coatings which were slightly hydrophobic (high contact angle). In the case of the samples anodized up to 500 V, scattered crystalline deposits were observed. Bioactive phases, such as hydroxyapatite, were detected in the treated oxide coatings by XRD and XPS.

  19. Synthesis and tribological properties of diamond-like carbon films by electrochemical anode deposition

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhang, GuiFeng; Hou, XiaoDuo; Deng, DeWei

    2012-06-01

    Diamond-like carbon films (DLC) are deposited on Ti substrate by electrochemical anodic deposition at room temperature in pure methanol solution using a pulsed DC voltage at a range from 200 V to 2000 V. Raman spectroscopy analysis of the films reveals two broaden characteristic absorption peaks centred at ˜1350 cm-1 and 1580 cm-1, relating to D- and G-band of typical DLC films, respectively. A broad peak centred at 1325-1330 cm-1 is observed when an applied potential is 1200 V, which can confirm that the deposited films contained diamond structure phase. Tribological properties of the coated Ti substrates have been measured by means of a ball-on-plate wear test machine. A related growth mechanism of DLC films by the anodic deposition mode has also been discussed.

  20. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media. [CO/sub 2/ laser oscillator and pulse smoother

    DOEpatents

    McLellan, E.J.

    1980-10-17

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  1. The decolouration of methyl orange using aluminum foam, ultrasound and direct electric current

    NASA Astrophysics Data System (ADS)

    Liu, C. M.; Huang, X. Y.; Zhang, H. Y.; Dai, J. D.; Ning, C. C.

    2018-01-01

    The decolouration of methyl orange (MO) using aluminum (Al) foam, ultrasound and direct electric current (DC) is investigated. The decolouration rate (DR) of MO using only Al foam is low because there is a passivation oxide layer on the Al foam surface. Due to the low utilization of ultrasound in MO water solution medium, the DR of MO using only ultrasonic irradiation is also poor. The DR of MO is greatly increased when Al foam, ultrasonic irradiation and DC are used together. There is good synergistic effect between Al foam, ultrasound and DC in decolouration of MO. This enhancement of DR may be related to the cavitation, cleaning of Al foam surface and water electrolysis. Due to the surface charge on wire carrying stationary current, Al foam with DC acts like a serious anodes and cathodes and makes water electrolysis giving hydrogen gas to cleavage azo bond. The DC applied on Al foam is beneficial for reductive decolouration of MO. Our results show that DC is a new way for the reductive decolouration MO in water.

  2. Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1991-01-01

    An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.

  3. Surface electrons in inverted layers of p-HgCdTe

    NASA Technical Reports Server (NTRS)

    Schacham, Samuel E.; Finkman, Eliezer

    1990-01-01

    Anodic oxide passivation of p-type HgCdTe generates an inversion layer. Extremely high Hall mobility data for electrons in this layer indicated the presence of a two-dimensional electron gas. This is verified by use of the Shubnikov-de Haas effect from 1.45 to 4.15 K. Data are extracted utilizing a numerical second derivative of dc measurement. Three sub-bands are detected. Their relative occupancies are in excellent agreement with theory and with experimental results obtained on anodic oxide as accumulation layers of n-type HgCdTe. The effective mass derived is comparable to what was expected.

  4. A Database Approach for Predicting and Monitoring Baked Anode Properties

    NASA Astrophysics Data System (ADS)

    Lauzon-Gauthier, Julien; Duchesne, Carl; Tessier, Jayson

    2012-11-01

    The baked anode quality control strategy currently used by most carbon plants based on testing anode core samples in the laboratory is inadequate for facing increased raw material variability. The low core sampling rate limited by lab capacity and the common practice of reporting averaged properties based on some anode population mask a significant amount of individual anode variability. In addition, lab results are typically available a few weeks after production and the anodes are often already set in the reduction cells preventing early remedial actions when necessary. A database approach is proposed in this work to develop a soft-sensor for predicting individual baked anode properties at the end of baking cycle. A large historical database including raw material properties, process operating parameters and anode core data was collected from a modern Alcoa plant. A multivariate latent variable PLS regression method was used for analyzing the large database and building the soft-sensor model. It is shown that the general low frequency trends in most anode physical and mechanical properties driven by raw material changes are very well captured by the model. Improvements in the data infrastructure (instrumentation, sampling frequency and location) will be necessary for predicting higher frequency variations in individual baked anode properties. This paper also demonstrates how multivariate latent variable models can be interpreted against process knowledge and used for real-time process monitoring of carbon plants, and detection of faults and abnormal operation.

  5. 2D simulation of active species and ozone production in a multi-tip DC air corona discharge

    NASA Astrophysics Data System (ADS)

    Meziane, M.; Eichwald, O.; Sarrette, J. P.; Ducasse, O.; Yousfi, M.

    2011-11-01

    The present paper shows for the first time in the literature a complete 2D simulation of the ozone production in a DC positive multi-tip to plane corona discharge reactor crossed by a dry air flow at atmospheric pressure. The simulation is undertaken until 1 ms and involves tens of successive discharge and post-discharge phases. The air flow is stressed by several monofilament corona discharges generated by a maximum of four anodic tips distributed along the reactor. The nonstationary hydrodynamics model for reactive gas mixture is solved using the commercial FLUENT software. During each discharge phase, thermal and vibrational energies as well as densities of radical and metastable excited species are locally injected as source terms in the gas medium surrounding each tip. The chosen chemical model involves 10 neutral species reacting following 24 reactions. The obtained results allow us to follow the cartography of the temperature and the ozone production inside the corona reactor as a function of the number of high voltage anodic tips.

  6. Self-organized pattern on the surface of a metal anode in low-pressure DC discharge

    NASA Astrophysics Data System (ADS)

    Yaqi, YANG; Weiguo, LI

    2018-03-01

    Self-organization phenomena on the surface of a metal electrode in low-pressure DC discharge is studied. In this paper, we carry out laboratory investigations of self-organization in a low-pressure test platform for 100-200 mm rod-plane gaps with a needle tip, conical tip and hemispherical tip within 1-10 kPa. The factors influencing the pattern profile are the pressure value, gap length and shape of the electrode, and a variety of pattern structures are observed by changing these factors. With increasing pressure, first the pattern diameter increases and then decreases. With the needle tip, layer structure, single-ring structure and double-ring structure are displayed successively with increasing pressure. With the conical tip, the ring-like structure gradually forms separate spots with increasing pressure. With the hemispherical tip, there are anode spots inside the ring structure. With the increase of gap length, the diameter of the self-organized pattern increases and the profile of the pattern changes. The development process of the pattern contains three key stages: pattern enlargement, pattern stabilization and pattern shrink.

  7. Using bioimpedance spectroscopy parameters as real-time feedback during tDCS.

    PubMed

    Nejadgholi, Isar; Caytak, Herschel; Bolic, Miodrag

    2016-08-01

    An exploratory analysis is carried out to investigate the feasibility of using BioImpedance Spectroscopy (BIS) parameters, measured on scalp, as real-time feedback during Transcranial Direct Current Stimulation (tDCS). TDCS is shown to be a potential treatment for neurological disorders. However, this technique is not considered as a reliable clinical treatment, due to the lack of a measurable indicator of treatment efficacy. Although the voltage that is applied on the head is very simple to measure during a tDCS session, changes of voltage are difficult to interpret in terms of variables that affect clinical outcome. BIS parameters are considered as potential feedback parameters, because: 1) they are shown to be associated with the DC voltage applied on the head, 2) they are interpretable in terms of conductive and capacitive properties of head tissues, 3) physical interpretation of BIS measurements makes them prone to be adjusted by clinically controllable variables, 4) BIS parameters are measurable in a cost-effective and safe way and do not interfere with DC stimulation. This research indicates that a quadratic regression model can predict the DC voltage between anode and cathode based on parameters extracted from BIS measurements. These parameters are extracted by fitting the measured BIS spectra to an equivalent electrical circuit model. The effect of clinical tDCS variables on BIS parameters needs to be investigated in future works. This work suggests that BIS is a potential method to be used for monitoring a tDCS session in order to adjust, tailor, or personalize tDCS treatment protocols.

  8. A new structural approach for uniform sub-micrometer anode metallization of planar THz Schottky components

    NASA Astrophysics Data System (ADS)

    Cojocari, O.; Mottet, B.; Rodriguez-Girones, M.; Biber, S.; Marchand, L.; Schmidt, L.-P.; Hartnagel, H. L.

    2004-03-01

    This paper presents the evaluation of a Schottky contact technology based on electrochemical metal deposition. The results of a long-term systematic investigation and optimization of the anode formation process to improve the yield and performance of Schottky-based GaAs mixer diodes are detailed. Surface preparation prior to the Schottky-metal deposition and anode metallization as previously optimized for whisker-contacted diodes are successfully transferred to the fabrication of planar structures. This uses an auxiliary honeycomb array of anode-like structures called 'dummy anodes', which are processed simultaneously with the real anodes and then removed in the later technological processes. Consequently, the scattering of planar diodes electrical parameters is significantly reduced and the yield of the fabrication process increases from about 5% up to about 50%. Very good dc characteristics such as series resistance (Rs) below 8 OHgr, ideality factor (eegr) below 1.2 and saturation current (Isat) of the order of 10-17A are achieved for the anode diameter as small as 1 µm. An excellent IF-noise figure of 250 K at 4.8 GHz up to 280 K at 2.1 GHz with current bias up to 3 mA is obtained for non-cooled THz mixer planar diodes. The use of this technological approach has enabled the extraction of statistically significant data which have been used to characterize the criticality of each step of the fabrication process on the device performance.

  9. Particle-In-Cell Simulations of a Thermionic Converter

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2017-12-01

    Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.

  10. Particle-In-Cell Simulations of a Thermionic Converter

    NASA Astrophysics Data System (ADS)

    Clark, Stephen

    2017-10-01

    Simulations of thermionic converters are presented where cesium is used as a work function reducing agent in a nano-fabricated triode configuration. The cathode and anode are spaced on the order of 100 μm, and the grid structure has features on the micron scale near the anode. The hot side is operated near 1600 K, the cold side near 600 K, and the converter has the potential to convert heat to DC electrical current upwards of 20% efficiency. Affordable and robust thermionic converters have the potential to displace century old mechanical engines and turbines as a primary means of electrical power generation in the near future. High efficiency converters that operate at a small scale could be used to generate power locally and alleviate the need for large scale power transmission systems. Electron and negative cesium ion back emission from the anode are considered, as well as device longevity and fabrication feasibility.

  11. DC-driven plasma gun: self-oscillatory operation mode of atmospheric-pressure helium plasma jet comprised of repetitive streamer breakdowns

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Shashurin, Alexey

    2017-02-01

    This paper presents and studies helium atmospheric pressure plasma jet comprised of a series of repetitive streamer breakdowns, which is driven by pure DC high voltage (self-oscillatory behavior). The repetition frequency of the breakdowns is governed by the geometry of discharge electrodes/surroundings and gas flow rate. Each next streamer is initiated when the electric field on the anode tip recovers after the previous breakdown and reaches the breakdown threshold value of about 2.5 kV cm-1. One type of the helium plasma gun designed using this operational principle is demonstrated. The gun operates on about 3 kV DC high voltage and is comprised of the series of the repetitive streamer breakdowns at a frequency of about 13 kHz.

  12. An analog RF gap voltage regulation system for the Advanced Photon Source storage ring.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horan, D.

    1999-04-13

    An analog rf gap voltage regulation system has been designed and built at Argonne National Laboratory to maintain constant total storage ring rf gap voltage, independent of beam loading and cavity tuning effects. The design uses feedback control of the klystron mod-anode voltage to vary the amount of rf power fed to the storage ring cavities. The system consists of two independent feedback loops, each regulating the combined rf gap voltages of eight storage ring cavities by varying the output power of either one or two rf stations, depending on the mode of operation. It provides full operator control andmore » permissive logic to permit feedback control of the rf system output power only if proper conditions are met. The feedback system uses envelope-detected cavity field probe outputs as the feedback signal. Two different methods of combining the individual field probe signals were used to generate a relative DC level representing one-half of the total storage ring rf voltage, an envelope-detected vector sum of the field probe rf signals, and the DC sum of individual field probe envelope detector outputs. The merits of both methods are discussed. The klystron high-voltage power supply (HVPS) units are fitted with an analog interface for external control of the mod-anode voltage level, using a four-quadrant analog multiplier to modulate the HVPS mod-anode voltage regulator set-point in response to feedback system commands.« less

  13. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge.

    PubMed

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E; Yao, Nan

    2017-06-08

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. To sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of ~100 A/cm 2 , is above the boron melting point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. Stable and reliable arc operation and arc synthesis were achieved with the boron-rich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. The results also show evidence of root-growth of BNNTs produced in the arc discharge.

  14. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge

    DOE PAGES

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E.; ...

    2017-06-08

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. In order to sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of similar to 100 A/cm 2, is above the boron meltingmore » point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. We achieved a stable and reliable arc operation and arc synthesis with the boronrich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. Our results also show evidence of root-growth of BNNTs produced in the arc discharge.« less

  15. Stable synthesis of few-layered boron nitride nanotubes by anodic arc discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, Yao-Wen; Raitses, Yevgeny; Koel, Bruce E.

    Boron nitride nanotubes (BNNTs) were successfully synthesized by a dc arc discharge using a boron-rich anode as synthesis feedstock in a nitrogen gas environment at near atmospheric pressure. The synthesis was achieved independent of the cathode material suggesting that under such conditions the arc operates in so-called anodic mode with the anode material being consumed by evaporation due to the arc heating. In order to sustain the arc current by thermionic electron emission, the cathode has to be at sufficiently high temperature, which for a typical arc current density of similar to 100 A/cm 2, is above the boron meltingmore » point (2350 K). With both electrodes made from the same boron-rich alloy, we found that the arc operation unstable due to frequent sticking between two molten electrodes and formation of molten droplets. We achieved a stable and reliable arc operation and arc synthesis with the boronrich anode and the cathode made from a refractory metal which has a melting temperature above the melting point of boron. Ex-situ characterization of synthesized BNNTs with electron microscopy and Raman spectroscopy revealed that independent of the cathode material, the tubes are primarily single and double walled. Our results also show evidence of root-growth of BNNTs produced in the arc discharge.« less

  16. Generator of the low-temperature heterogeneous plasma flow

    NASA Astrophysics Data System (ADS)

    Yusupov, D. I.; Gadzhiev, M. Kh; Tyuftyaev, A. S.; Chinnov, V. F.; Sargsyan, M. A.

    2018-01-01

    A generator of low-temperature dc plasma with an expanding channel of an output electrode for gas-thermal spraying was designed and constructed. The delivery of the sprayed powder into the cathode and anode arc-binding zones or into the plasma jet below the anode binding was realized. The electrophysical characteristics of both the plasma torch and the heterogeneous plasma flow with Al2O3 powder are studied. It is shown that the current-voltage characteristic (CVC) of a plasma torch depends on the gas flow rate. If the flow rate varies from 1 to 3 g/s, the falling CVC becomes gradually increasing. The speed and temperature of the sprayed powder are determined.

  17. Intracranial pressure monitoring after primary decompressive craniectomy in traumatic brain injury: a clinical study.

    PubMed

    Picetti, Edoardo; Caspani, Maria Luisa; Iaccarino, Corrado; Pastorello, Giulia; Salsi, Pierpaolo; Viaroli, Edoardo; Servadei, Franco

    2017-04-01

    Intracranial pressure (ICP) monitoring represents an important tool in the management of traumatic brain injury (TBI). Although current information exists regarding ICP monitoring in secondary decompressive craniectomy (DC), little is known after primary DC following emergency hematoma evacuation. Retrospective analysis of prospectively collected data. Inclusion criteria were age ≥18 years and admission to the intensive care unit (ICU) for TBI and ICP monitoring after primary DC. Exclusion criteria were ICU length of stay (LOS) <1 day and pregnancy. Major objectives were: (1) to analyze changes in ICP/cerebral perfusion pressure (CPP) after primary DC, (2) to evaluate the relationship between ICP/CPP and neurological outcome and (3) to characterize and evaluate ICP-driven therapies after DC. A total of 34 patients were enrolled. Over 308 days of ICP/CPP monitoring, 130 days with at least one episode of intracranial hypertension (26 patients, 76.5%) and 57 days with at least one episode of CPP <60 mmHg (22 patients, 64.7%) were recorded. A statistically significant relationship was discovered between the Glasgow Outcome Scale (GOS) scores and mean post-decompression ICP (p < 0.04) and between GOS and CPP minimum (CPPmin) (p < 0.04). After DC, persisting intracranial hypertension was treated with: barbiturate coma (n = 7, 20.6%), external ventricular drain (EVD) (n = 4, 11.8%), DC diameter widening (n = 1, 2.9%) and removal of newly formed hematomas (n = 3, 8.8%). Intracranial hypertension and/or low CPP occurs frequently after primary DC; their occurence is associated with an unfavorable neurological outcome. ICP monitoring appears useful in guiding therapy after primary DC.

  18. Laboratory performance of zinc anodes for impressed current cathodic protection of reinforced concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brousseau, R.; Arnott, M.; Baldock, B.

    1995-08-01

    Cathodic protection is used increasingly to mitigate steel reinforcement corrosion in concrete. the performance of zinc materials as impressed current anodes was evaluated. The anode materials investigated included rolled zinc sheets, metallized zinc, and 85% Zn-15% Al. The circuit resistance and the adhesion of the anodes was monitored with polarization time. Overall performance of arc-sprayed zinc was good. However, its adhesion to the concrete surface slowly decreased as the current density, or the polarization period, increased. Penny blank sheets and metallized 85% Zn-15% Al were found unsuitable as impressed current anodes.

  19. Effects of direct current on dog liver: Possible mechanisms for tumor electrochemical treatment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, K.H.; Gu, Y.N.; Xu, B.I.

    1997-03-01

    Mechanisms of tumor electrochemical treatment (ECT) were studied using normal dog liver. Five physical and chemical methods were used. Two platinum electrodes were inserted into an anesthetized dog`s liver at 3 cm separation. A voltage of 8.5 V direct current (DC) at an average current of 30 mA was applied for 69 min; total charge was 124 coulombs. Concentrations of selected ions near the anode and cathode were measured. The concentrations of Na{sup +} and K{sup +} ions were higher around the cathode, whereas the concentration of Cl{sup {minus}} ions was higher around the anode. Water contents and pH weremore » determined near the anode and the cathode at the midpoint between the two electrodes and in an untreated area away from the electrodes. Hydration occurred around the cathode, and dehydration occurred around the anode. The pH values were 2.1 near the anode and 12.9 near the cathode. Spectrophotometric scans of the liver sample extract were obtained, and the released gases were identified by gas chromatography as chlorine at the anode and hydrogen at the cathode. These results indicate that a series of electrochemical reactions take place during ECT. The cell metabolism and its environment are severely disturbed. Both normal and tumor cells are rapidly and completely destroyed in this altered environment. The authors believe that the above reactions are the ECT mechanisms for treating tumors.« less

  20. Synthesis of SiO(x) powder using DC arc plasma.

    PubMed

    Jung, Chan-Ok; Park, Dong-Wha

    2013-02-01

    SiO(x) was prepared by DC arc plasma and applied to the anode material of lithium ion batteries. A pellet of a mixture of Si and SiO2 was used as the raw material. The ratios of the silicon and silicon dioxide (SiO2) mixtures were varied by controlling the Si-SiO2 molar ratio (Si-SiO2 = 1-4). Hydrogen gas was used as the reduction atmosphere in the chamber. The prepared SiO(x) was collected on the chamber wall. The obtained SiO(x) was characterized by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and TEM showed that the phase composition of the prepared particles was composed of amorphous SiO(x) and crystalline Si. The prepared SiO(x) showed wire and spherical morphology. XPS indicated the bonding state and 'x' value of the prepared SiO(x), which was close to one. The result of prepared SiO(x) is discussed from thermodynamic equilibrium calculations. The electrochemical behavior of the silicon monoxide anode was investigated.

  1. PtCu substrates subjected to AC and DC electric fields in a solution of benzene sulfonic acid-phenol as novel batteries and their use in glucose biofuel cells

    NASA Astrophysics Data System (ADS)

    Ammam, Malika; Fransaer, Jan

    2013-11-01

    We describe how bi-metal PtCu connected wires, immersed in a solution of benzene sulfonic acid (BSA)-phenol (P) or 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)-phenol (P), then subjected to simultaneous alternating current (AC) and direct current (DC) electric fields generate power. We discovered that PtCu substrate covered by the deposit containing (BSA-PP-Pt-Cu), abbreviated as PtCu(BSA-PP-Pt-Cu) electrode, plays the role of a substantial anode and cathode. The latter was related to the formation of micro-batteries in the deposited film (BSA-PP-Pt-Cu) that are able to take or deliver electrons from the deposited Pt and Cu, respectively. PP-BSA plays probably the role of bridge for proton conduction in the formed micro-batteries. The power density of the fuel cell (FC)-based PtCu(BSA-PP-Pt-Cu) anode and PtCu(BSA-PP-Pt-Cu) cathode in phosphate buffer solution pH 7.4 at room temperature reaches ˜10.8 μW mm-2. Addition of enzymes, glucose oxidase at the anode and laccase at the cathode and, replacement of BSA by ABTS at the cathode in the deposited films increases the power density to 13.3 μW mm-2. This new procedure might be of great relevance for construction of a new generation of FCs operating at mild conditions or boost the power outputs of BFCs and make them suitable for diverse applications.

  2. DC coupled Doppler radar physiological monitor.

    PubMed

    Zhao, Xi; Song, Chenyan; Lubecke, Victor; Boric-Lubecke, Olga

    2011-01-01

    One of the challenges in Doppler radar systems for physiological monitoring is a large DC offset in baseband outputs. Typically, AC coupling is used to eliminate this DC offset. Since the physiological signals of interest include frequency content near DC, it is not desirable to simply use AC coupling on the radar outputs. While AC coupling effectively removes DC offset, it also introduces a large time delay and distortion. This paper presents the first DC coupled IQ demodulator printed circuit board (PCB) design and measurements. The DC coupling is achieved by using a mixer with high LO to RF port isolation, resulting in a very low radar DC offset on the order of mV. The DC coupled signals from the PCB radar system were successfully detected with significant LNA gain without saturation. Compared to the AC coupled results, the DC coupled results show great advantages of less signal distortion and more accurate rate estimation.

  3. Diode-rectified multiphase AC arc for the improvement of electrode erosion characteristics

    NASA Astrophysics Data System (ADS)

    Tanaka, Manabu; Hashizume, Taro; Saga, Koki; Matsuura, Tsugio; Watanabe, Takayuki

    2017-11-01

    An innovative multiphase AC arc (MPA) system was developed on the basis of a diode-rectification technique to improve electrode erosion characteristics. Conventionally, electrode erosion in AC arc is severer than that in DC arc. This originated from the fact that the required properties for the cathode and anode are different, although an AC electrode works as the cathode and the anode periodically. To solve this problem, a separation of AC electrodes into pairs of thoriated tungsten cathode and copper anode by diode-rectification was attempted. A diode-rectified multiphase AC arc (DRMPA) system was then successfully established, resulting in a drastic improvement of the erosion characteristics. The electrode erosion rate in the DRMPA was less than one-third of that in the conventional MPA without the diode rectification. In order to clarify its erosion mechanism, electrode phenomena during discharge were visualized by a high-speed camera system with appropriate band-pass filters. Fluctuation characteristics of the electrode temperature in the DRMPA were revealed.

  4. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sydorenko, D.; Kaganovich, I. D.; Chen, L.

    Generation of anomalously energetic suprathermal electrons was observed in simulation of a high-voltage dc discharge with electron emission from the cathode. An electron beam produced by the emission interacts with the nonuniform plasma in the discharge via a two-stream instability. The energy transfer from the beam to the plasma electrons is ensured by the plasma nonuniformity. The electron beam excites plasma waves whose wavelength and phase speed gradually decrease towards anode. The waves with short wavelength near the anode accelerate plasma bulk electrons to suprathermal energies. The sheath near the anode reflects some of the accelerated electrons back into themore » plasma. These electrons travel through the plasma, reflect near the cathode, and enter the accelerating area again but with a higher energy than before. Such particles are accelerated to energies much higher than after the first acceleration. This mechanism plays a role in explaining earlier experimental observations of energetic suprathermal electrons in similar discharges.« less

  5. Generation of alkali-free and high-proton concentration layer in a soda lime glass using non-contact corona discharge

    NASA Astrophysics Data System (ADS)

    Ikeda, Hiroshi; Sakai, Daisuke; Funatsu, Shiro; Yamamoto, Kiyoshi; Suzuki, Toshio; Harada, Kenji; Nishii, Junji

    2013-08-01

    Formation mechanisms of alkali-free and high-proton concentration surfaces were investigated for a soda lime glass using a corona discharge treatment under an atmospheric pressure. Protons produced by high DC voltage around an anode needle electrode were incorporated into a sodium ion site in the anode side glass. The sodium ion was swept away to the cathode side as a charge carrier. Then it was discharged. The precipitated sodium was transformed to a Na2CO3 powder when the surface contacted with air. The sodium ion in the glass surface layer of the anode side was replaced completely by protons. The concentration of OH groups in the layer was balanced with the amount of excluded sodium ions. The substitution reaction of sodium ions with protons tends to be saturated according to a square root function of time. The alkali depletion layer formation rate was affected by the large difference in mobility between sodium ions and protons in the glass.

  6. Optical Plasma Control During ARC Carbon Nanotube Growth

    NASA Technical Reports Server (NTRS)

    Hinkov, I.; Farhat, S.; DeLaChapelle, M. Lamy; Fan, S. S.; Han, H. X.; Li, G. H.; Scott, C. D.

    2001-01-01

    To improve nanotube production, we developed a novel optical control technique, based on the shape of the visible plasma zone created between the anode and the cathode in the direct current (DC) arc process. For a given inert gas, we adjust the anode to cathode distance (ACD) in order to obtain strong visible vortices around the cathode. This enhance anode vaporization, which improve nanotubes formation. In light of our experimental results, we focus our discussion on the relationship between plasma parameters and nanotube growth. Plasma temperature control during arc process is achieved using argon, helium, and their mixtures as a buffer gases. The variation of the gas mixture from pure argon to pure helium changes plasma temperature. As a consequence, the microscopic characteristics of nanotubes as diameter distribution is changed moving from smaller values for argon to higher diameters for helium. We also observe a dependence of the macroscopic characteristics of the final products as Brunauer-Emmett-Teller (BET) surface area.

  7. 40 CFR 60.195 - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... (2) The emission rate (Eb) of total fluorides from anode bake plants shall be computed for each run... groups and at least 4 hours and 3.40 dscm (120 dscf) for anode bake plants. (4) The monitoring devices of...

  8. 40 CFR 60.195 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (2) The emission rate (Eb) of total fluorides from anode bake plants shall be computed for each run... groups and at least 4 hours and 3.40 dscm (120 dscf) for anode bake plants. (4) The monitoring devices of...

  9. 40 CFR 60.195 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... (2) The emission rate (Eb) of total fluorides from anode bake plants shall be computed for each run... groups and at least 4 hours and 3.40 dscm (120 dscf) for anode bake plants. (4) The monitoring devices of...

  10. 40 CFR 60.195 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... (2) The emission rate (Eb) of total fluorides from anode bake plants shall be computed for each run... groups and at least 4 hours and 3.40 dscm (120 dscf) for anode bake plants. (4) The monitoring devices of...

  11. A 2.5-kW industrial CO2 laser

    NASA Astrophysics Data System (ADS)

    Golov, V. K.; Ivanchenko, A. I.; Krasheninnikov, V. V.; Ponomarenko, A. G.; Shepelenko, A. A.

    1986-06-01

    A fast-flow laser is reported in which the active medium is excited by a self-sustained dc discharge produced by an electric-discharge device with nonsectioned electrodes. In the laser, two discharge gaps are formed by a flat anode and two cathodes, one on each side of the anode. A gas mixture is driven through the gasdynamic channel by a centrifugal fan rotating at 6000 rpm/min. With a mixture of CO2:N2:He = 2.5:7.5:5 mm Hg, the rated power is 2.5 kW; the maximum power is 4 kW with the mixture 2.5:7.5:10 mm Hg. The general design of the laser is described, and its principal performance characteristics are given.

  12. Measurements of the power spectrum and dispersion relation of self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.; Morfill, G. E.

    2009-12-01

    The spectrum of spontaneously excited dust acoustic waves was measured. The waves were observed with high temporal resolution using a fast video camera operating at 1000 frames per second. The experimental system was a suspension of micron-size kaolin particles in the anode region of a dc discharge in argon. Wave activity was found at frequencies as high as 450 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency instead. The cutoff value declined with distance from the anode. We ascribe the observed cutoff to the particle confinement in this region.

  13. Preparation and characterization of anodic films on AZ31B Mg alloy formed in the silicate electrolytes with ethylene glycol oligomers as additives

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Wang, Jinwei; Li, Shanghua; Zhang, Jin

    2012-09-01

    Oxide coatings are prepared on AZ31B Mg alloy in an environment-friendly electrolyte with additives by plasma electrolytic anodization, and the effect of ethylene glycol oligmers on the performances of the anodized film is investigated. Under a constant current density of 10 mA cm-2, the reaction overpotential of the silicate electrolytes with additives are found higher than that of the original electrolyte as measured by potential-time test. The EIS and DC polarization results reveal that the addition of PEG increases the impedance of the film and reduces its corrosion current density (Icorr) at least by one order of magnitude. The surface morphologies are more and more compact and homogeneous with the increase in EG numbers, while a rougher surface appeared again if the PEG4000 is used as observed by SEM. As detected by XRD, the anodic films are found mainly consist of MgO, MgSiO3 and Mg2SiO4, and their relative amounts are related to the lengths of EGs, resulting in the differences in morphology and anticorrosion variations. Furthermore, the improvement in abrasive resistance of the anodic film formed in the electrolyte with PEG1000 may be attributed to its much more compact surface and the incorporation of ductile PEG chains among those oxides.

  14. A Drift Chamber to Measure Charged Particles at COMPASS-II

    NASA Astrophysics Data System (ADS)

    Heitz, Robert; Compass Collaboration

    2013-10-01

    A new drift chamber (DC05) will be constructed to replace two tracking detector stations based on straw tubes, ST02 and ST03 in the COMPASS spectrometer. DC05 uses the designs from DC04, a previous drift chamber designed at CEA-Saclay, France, but adds the addition of more wires for improved acceptance. In addition to more wires DC05 will also change its front end electronics using a new pre-amplifier-discriminator chip (CMAD). DC05 consists of 8 layers of anode planes and 21 layers of G-10 material frames carrying cathode planes and gas windows. The wires are orientated with two layers in the vertical x-direction, two layers in the horizontal y-direction, two layers offset +10 deg of the vertical x-direction, and two layers offset -10 deg of the vertical x-direction. The wires in parallel directions are offset half a pitch to resolve left-right ambiguities. The purpose for different wire orientations is to reconstruct the 3D space particle trajectory to fit a particle track. Each layer of wires is covered on the top and bottom by a cathode plane of carbon coated mylar. All these layers are sandwiched between two steel stiffening frames for support and noise reduction. A future drift chamber, DC06, is also being designed based off of DC05. Research funded by NSF-PHY-12-05-671 Medium Energy Nuclear Physics.

  15. Degradation and recovery of iron doped barium titanate single crystals via modulus spectroscopy and thermally stimulated depolarization current

    NASA Astrophysics Data System (ADS)

    Carter, J. J.; Bayer, T. J. M.; Randall, C. A.

    2017-04-01

    Understanding resistance degradation during the application of DC bias and recovery after removing the DC bias provides insight into failure mechanisms and defects in dielectric materials. In this experiment, modulus spectroscopy and thermally stimulated depolarization current (TSDC) techniques were used to characterize the degradation and recovery of iron-doped barium titanate single crystals. Modulus spectroscopy is a very powerful analytical tool applied during degradation and recovery to observe changes in the local conductivity distribution. During degradation, oxygen vacancies migrate to the cathode region, and a counter flow of oxygen anions migrates towards the anode. With increasing time during degradation, the distribution of conductivity broadens only slightly exhibiting crucial differences to iron doped strontium titanate. After removing the DC bias, the recovery shows that a second previously unobserved and distinct conductivity maximum arises in the modulus data. This characteristic with two maxima related to different conductivities in the anode and cathode region is what can be expected from the published defect chemistry. It will be concluded that only the absence of an external electric field during recovery measurements permits the observation of local conductivity measurements without the presence of non-equilibrium conditions such as charge injection. Equilibrium conductivity as a function of oxygen vacancy concentration is described schematically. Oxygen vacancy migration during degradation and recovery is verified by TSDC analysis. We establish a self-consistent rationale of the transient changes in the modulus and TSDC for the iron doped barium titanate single crystal system including electron, hole and oxygen vacancy conductivity. During degradation, the sample fractured.

  16. Generation of anomalously energetic suprathermal electrons by an electron beam interacting with a nonuniform plasma

    NASA Astrophysics Data System (ADS)

    Sydorenko, Dmytro

    2015-11-01

    Electrons emitted by electrodes surrounding or immersed in the plasma are accelerated by the sheath electric field and become electron beams penetrating the plasma. In plasma applications where controlling the electron velocity distribution function (EVDF) is crucial, these beams are an important factor capable of modifying the EVDF and affecting the discharge properties. Recently, it was reported that an EVDF measured in a dc-rf discharge with 800 V dc voltage has not only a peak of 800 eV electrons emitted from the dc-biased electrode, but also a peak of suprathermal electrons with energy up to several hundred eV. Initial explanation of the suprathermal peak suggested that the fast long plasma waves excited by the beam decay parametrically into ion acoustic waves and short plasma waves with much lower phase velocity which accelerate bulk electrons to suprathermal energies. Particle-in-cell simulation of a dc beam-plasma system, however, reveals that the short waves appear not due to the parametric instability, but due to the plasma nonuniformity. Moreover, the acceleration may occur in two stages. Plasma waves excited by the beam in the middle of the system propagate towards the anode and enter the density gradient area where their wavelength and phase speed rapidly decrease. Acceleration of thermal electrons by these waves is the first stage. Some of the accelerated electrons reflect from the anode sheath, travel through the plasma, reflect near the cathode, and enter the accelerating area again but with the energy higher than before. The acceleration that occurs now is the second stage. The energy of a particle after the second acceleration exceeds the initial thermal energy by an order of magnitude. This two-stage mechanism plays a role in explaining previous observations of energetic suprathermal electrons in similar discharges. The study is performed in collaboration with I. D. Kaganovich (PPPL), P. L. G. Ventzek and L. Chen (Tokyo Electron America).

  17. Phenol Contaminated Water Treatment on Several Modified Dimensionally Stable Anodes.

    PubMed

    Jayathilaka, Pavithra Bhakthi; Hapuhinna, Kushani Umanga Kumari; Bandara, Athula; Nanayakkara, Nadeeshani; Subasinghe, Nalaka Deepal

    2017-08-01

      Phenolic compounds are some of the most common hazardous organics in wastewater. Removal of these pollutants is important. Physiochemical method such as electrochemical oxidation on dimensionally stable anodes is more convenient in removing such organic pollutants. Therefore, this study focuses on development of three different anodes for phenol contaminated water treatment. The performances of steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes were tested and compared. Nearly 50, 76, and 84% of chemical oxygen demand removal efficiencies were observed for steel/IrO2, steel/IrO2-Sb2O3, and Ti/IrO2-Sb2O3 anodes, respectively. The formation of intermediates was monitored for three anodes and the Ti/IrO2-Sb2O3 anode showed the most promising results. Findings suggest that the developed anode materials can enhance phenol oxidation efficiency and that mixed metal oxide layer has major influence on the anode. Among the selected metal oxide mixtures IrO2-Sb2O3 was the most suitable under given experimental conditions.

  18. Hybrid pulse anodization for the fabrication of porous anodic alumina films from commercial purity (99%) aluminum at room temperature.

    PubMed

    Chung, C K; Zhou, R X; Liu, T Y; Chang, W T

    2009-02-04

    Most porous anodic alumina (PAA) or anodic aluminum oxide (AAO) films are fabricated using the potentiostatic method from high-purity (99.999%) aluminum films at a low temperature of approximately 0-10 degrees C to avoid dissolution effects at room temperature (RT). In this study, we have demonstrated the fabrication of PAA film from commercial purity (99%) aluminum at RT using a hybrid pulse technique which combines pulse reverse and pulse voltages for the two-step anodization. The reaction mechanism is investigated by the real-time monitoring of current. A possible mechanism of hybrid pulse anodization is proposed for the formation of pronounced nanoporous film at RT. The structure and morphology of the anodic films were greatly influenced by the duration of anodization and the type of voltage. The best result was obtained by first applying pulse reverse voltage and then pulse voltage. The first pulse reverse anodization step was used to form new small cells and pre-texture concave aluminum as a self-assembled mask while the second pulse anodization step was for the resulting PAA film. The diameter of the nanopores in the arrays could reach 30-60 nm.

  19. Rigorous calculations and fabrication by self-assembly techniques of 2D subwavelength structures of gold for photonic applications.

    PubMed

    Pullini, Daniele; Repetto, Piermario; Bernard, Stefano; Doskolovich, Leonid; Perlo, Pietro

    2005-08-20

    The use of metal 2D subwavelength structures (SWSs) is a promising solution for all those applications where a selective emission from a thermal source is desirable, e.g., photovoltaic and blackbody emission. The investigation of the SWS's photonic bandgap properties is challenging, especially for the infrared and visible spectra, where the fabrication difficulties have always represented an obstacle. In this paper, the anodization of aluminum films as a self-assembly method for the SWS fabrication is proposed. A rigorous calculation of 2D SWSs of gold having high absorptivity in the visible and low absorptivity in the NIR, their fabrication by DC-sputtering deposition through anodic porous alumina templates, and their optical and topographic characterization are presented.

  20. Construction and Gluing of G10 Frames and Printed Circuit Boards to be used in COMPASS Drift Chamber 5

    NASA Astrophysics Data System (ADS)

    Britto, Vivek

    2014-09-01

    COMPASS is a fixed-target nuclear physics experiment at CERN which explores the internal structure of the proton. One specific area of research is the measurement of single transverse spin asymmetries in pion beam induced Drell-Yan production of muon pairs from polarized proton targets. The spin dependence of the Drell-Yan cross section may be indicative of contributions from quark orbital angular momentum to the spin of the proton. The University of Illinois at Urbana-Champaign (UIUC), in collaboration with institutes in Taiwan, France, Italy and Germany, is designing and building a new drift chamber, DC5, to replace an aging detector in the COMPASS spectrometer. The frames supporting the anode wires and cathode planes in DC5 are constructed from G10, a fiberglass-epoxy composite. Once the individual sides of each frame have been milled, they are glued together at the corner lap joints. Additionally, printed circuit boards are glued to the anode frames, where sense and field wires will later be soldered. To maintain optimal operation of the drift chamber, the frame thickness after gluing must be within 50 μm of the design value. This presentation will explain the methods employed to achieve the required tolerances for this precision gluing process.

  1. Determination of electrical properties of degraded mixed ionic conductors: Impedance studies with applied dc voltage

    NASA Astrophysics Data System (ADS)

    Bayer, T. J. M.; Carter, J. J.; Wang, Jian-Jun; Klein, Andreas; Chen, Long-Qing; Randall, C. A.

    2017-12-01

    Under electrical bias, mixed ionic conductors such as SrTiO3 are characterized by oxygen vacancy migration which leads to resistance degradation. The defect chemistry to describe the relationship between conductivity and oxygen vacancies is usually obtained by high temperature conductivity data or quenching experiments. These techniques can investigate the equilibrated state only. Here, we introduce a new approach using in-situ impedance studies with applied dc voltage to analyze the temperature dependent electrical properties of degraded SrTiO3 single crystals. This procedure is most beneficial since it includes electric field driven effects. The benefits of the approach are highlighted by comparing acceptor doped and undoped SrTiO3. This approach allows the determination of the temperature activation of both anodic and cathodic conductivity of Fe-doped SrTiO3 in the degraded state. The anodic activation energy matches well with the published results, while the activation energy of the degraded cathode region reported here is not in agreement with earlier assumptions. The specific discrepancies of the experimental data and the published defect chemistry are discussed, and a defect chemistry model that includes the strong temperature dependence of the electron conductivity in the cathode region is proposed.

  2. Outward electron transfer by Saccharomyces cerevisiae monitored with a bi-cathodic microbial fuel cell-type activity sensor.

    PubMed

    Ducommun, Raphaël; Favre, Marie-France; Carrard, Delphine; Fischer, Fabian

    2010-03-01

    A Janus head-like bi-cathodic microbial fuel cell was constructed to monitor the electron transfer from Saccharomyces cerevisiae to a woven carbon anode. The experiments were conducted during an ethanol cultivation of 170 g/l glucose in the presence and absence of yeast-peptone medium. First, using a basic fuel-cell type activity sensor, it was shown that yeast-peptone medium contains electroactive compounds. For this purpose, 1% solutions of soy peptone and yeast extract were subjected to oxidative conditions, using a microbial fuel cell set-up corresponding to a typical galvanic cell, consisting of culture medium in the anodic half-cell and 0.5 M K(3)Fe(CN)(6) in the cathodic half-cell. Second, using a bi-cathodic microbial fuel cell, it was shown that electrons were transferred from yeast cells to the carbon anode. The participation of electroactive compounds in the electron transport was separated as background current. This result was verified by applying medium-free conditions, where only glucose was fed, confirming that electrons are transferred from yeast cells to the woven carbon anode. Knowledge about the electron transfer through the cell membrane is of importance in amperometric online monitoring of yeast fermentations and for electricity production with microbial fuel cells. Copyright (c) 2009 John Wiley & Sons, Ltd.

  3. RadNet Air Data From Washington, DC

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Washington, DC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  4. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    PubMed

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  5. 40 CFR 60.194 - Monitoring of operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... bake plant. If the owner or operator show that emissions from the primary control system or the anode bake plant have low variability during day-to-day operations, the Administrator may establish such an... Aluminum Company's Sebree plant in Henderson, Kentucky: The anode bake plant and primary control system are...

  6. 40 CFR 60.194 - Monitoring of operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... bake plant. If the owner or operator show that emissions from the primary control system or the anode bake plant have low variability during day-to-day operations, the Administrator may establish such an... Aluminum Company's Sebree plant in Henderson, Kentucky: The anode bake plant and primary control system are...

  7. 40 CFR 60.194 - Monitoring of operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... bake plant. If the owner or operator show that emissions from the primary control system or the anode bake plant have low variability during day-to-day operations, the Administrator may establish such an... Aluminum Company's Sebree plant in Henderson, Kentucky: The anode bake plant and primary control system are...

  8. 40 CFR 60.194 - Monitoring of operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bake plant. If the owner or operator show that emissions from the primary control system or the anode bake plant have low variability during day-to-day operations, the Administrator may establish such an... Aluminum Company's Sebree plant in Henderson, Kentucky: The anode bake plant and primary control system are...

  9. 40 CFR 60.194 - Monitoring of operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bake plant. If the owner or operator show that emissions from the primary control system or the anode bake plant have low variability during day-to-day operations, the Administrator may establish such an... Aluminum Company's Sebree plant in Henderson, Kentucky: The anode bake plant and primary control system are...

  10. A three-mask process for fabricating vacuum-sealed capacitive micromachined ultrasonic transducers using anodic bonding.

    PubMed

    Yamaner, F Yalçın; Zhang, Xiao; Oralkan, Ömer

    2015-05-01

    This paper introduces a simplified fabrication method for vacuum-sealed capacitive micromachined ultrasonic transducer (CMUT) arrays using anodic bonding. Anodic bonding provides the established advantages of wafer-bondingbased CMUT fabrication processes, including process simplicity, control over plate thickness and properties, high fill factor, and ability to implement large vibrating cells. In addition to these, compared with fusion bonding, anodic bonding can be performed at lower processing temperatures, i.e., 350°C as opposed to 1100°C; surface roughness requirement for anodic bonding is more than 10 times more relaxed, i.e., 5-nm rootmean- square (RMS) roughness as opposed to 0.5 nm for fusion bonding; anodic bonding can be performed on smaller contact area and hence improves the fill factor for CMUTs. Although anodic bonding has been previously used for CMUT fabrication, a CMUT with a vacuum cavity could not have been achieved, mainly because gas is trapped inside the cavities during anodic bonding. In the approach we present in this paper, the vacuum cavity is achieved by opening a channel in the plate structure to evacuate the trapped gas and subsequently sealing this channel by conformal silicon nitride deposition in the vacuum environment. The plate structure of the fabricated CMUT consists of the single-crystal silicon device layer of a silicon-on-insulator wafer and a thin silicon nitride insulation layer. The presented fabrication approach employs only three photolithographic steps and combines the advantages of anodic bonding with the advantages of a patterned metal bottom electrode on an insulating substrate, specifically low parasitic series resistance and low parasitic shunt capacitance. In this paper, the developed fabrication scheme is described in detail, including process recipes. The fabricated transducers are characterized using electrical input impedance measurements in air and hydrophone measurements in immersion. A representative design is used to demonstrate immersion operation in conventional, collapse-snapback, and collapse modes. In collapsemode operation, an output pressure of 1.67 MPa pp is shown at 7 MHz on the surface of the transducer for 60-Vpp, 3-cycle sinusoidal excitation at 30-V dc bias.

  11. Generation of alkali-free and high-proton concentration layer in a soda lime glass using non-contact corona discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikeda, Hiroshi; Sakai, Daisuke; Nishii, Junji

    2013-08-14

    Formation mechanisms of alkali-free and high-proton concentration surfaces were investigated for a soda lime glass using a corona discharge treatment under an atmospheric pressure. Protons produced by high DC voltage around an anode needle electrode were incorporated into a sodium ion site in the anode side glass. The sodium ion was swept away to the cathode side as a charge carrier. Then it was discharged. The precipitated sodium was transformed to a Na{sub 2}CO{sub 3} powder when the surface contacted with air. The sodium ion in the glass surface layer of the anode side was replaced completely by protons. Themore » concentration of OH groups in the layer was balanced with the amount of excluded sodium ions. The substitution reaction of sodium ions with protons tends to be saturated according to a square root function of time. The alkali depletion layer formation rate was affected by the large difference in mobility between sodium ions and protons in the glass.« less

  12. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-07-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  13. RF plasma probe diagnostics: a method for eliminating measurement errors for Langmuir probes with bare protective shields

    NASA Astrophysics Data System (ADS)

    Riaby, V. A.; Masherov, P. E.; Savinov, V. P.; Yakunin, V. G.

    2018-02-01

    The new DC arc T-plasmatron of long service life [1] is studied. The well known method of the electric field strength measurements in a stabilized arc channel [2] was applied in a modified form as a consequence of the specific form of the presumably diffuse anode spot attached to a gas vortex on the external surface of the anode unit. The electrical field strength was determined assuming that the potential drop across the diffuse anode spot in the new plasmatron was small. This gave the mean argon plasma conductivity: σ≤118 Ohm-1cm-1 for arc currents I ≤ 180 A which agreed with the independent experiment [2] affirming the correctness of the above assumption. Analysis of the known experimental and theoretic data on atmospheric argon plasma conductivity resulted in the selection of R.S.Devoto’s theoretic dependence σ(T) [3] as the most reliable one for T=8000…20000 K at P = 1 atm that allowed the evaluation of the mean argon plasma temperature at the exit of the plasmatron: T ≤ 19500 K.

  14. Experimental study of the electrolysis of silicate melts

    NASA Technical Reports Server (NTRS)

    Keller, Rudolf

    1992-01-01

    Melting and electrolyzing lunar silicates yields oxygen gas and potentially can be practiced in situ to produce oxygen. With the present experiments conducted with simulant oxides at 1425-1480 C, it was ascertained that oxygen can be obtained anodically at feasible rates and current efficiencies. An electrolysis cell was operated with platinum anodes in a sealed vessel, and the production of gas was monitored. In these electrolysis experiments, stability of anodes remained a problem, and iron and silicon did not reduce readily into the liquid silver cathode.

  15. Influence of Insulation Monitoring Devices on the Operation of DC Control Circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olszowiec, Piotr, E-mail: olpio@o2.pl

    The insulation level of DC control circuits is an important safety-critical factor and, thus, should be subject to continuous and periodic monitoring. The methods used for monitoring the insulation in live circuits may, however, disturb the reliable operation of control relays. The risks of misoperation and failure to reset of relays posed by the operation of various insulation monitoring and fault location systems are evaluated.

  16. Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode

    NASA Astrophysics Data System (ADS)

    Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang

    2018-03-01

    In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.

  17. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, N.; Horowitz, L. F.; Folch, A.

    2016-10-01

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  18. Continuous-flow multi-pulse electroporation at low DC voltages by microfluidic flipping of the voltage space topology.

    PubMed

    Bhattacharjee, N; Horowitz, L F; Folch, A

    2016-10-17

    Concerns over biosafety, cost, and carrying capacity of viral vectors have accelerated research into physical techniques for gene delivery such as electroporation and mechanoporation. Advances in microfabrication have made it possible to create high electric fields over microscales, resulting in more efficient DNA delivery and higher cell viability. Continuous-flow microfluidic methods are typically more suitable for cellular therapies where a large number of cells need to be transfected under sterile conditions. However, the existing continuous-flow designs used to generate multiple pulses either require expensive peripherals such as high-voltage (>400 V) sources or function generators, or result in reduced cell viability due to the proximity of the cells to the electrodes. In this paper, we report a continuous-flow microfluidic device whose channel geometry reduces instrumentation demands and minimizes cellular toxicity. Our design can generate multiple pulses of high DC electric field strength using significantly lower voltages (15-60 V) than previous designs. The cells flow along a serpentine channel that repeatedly flips the cells between a cathode and an anode at high throughput. The cells must flow through a constriction each time they pass from an anode to a cathode, exposing them to high electric field strength for short durations of time (the "pulse-width"). A conductive biocompatible poly-aniline hydrogel network formed in situ is used to apply the DC voltage without bringing the metal electrodes close to the cells, further sheltering cells from the already low voltage electrodes. The device was used to electroporate multiple cell lines using electric field strengths between 700 and 800 V/cm with transfection efficiencies superior than previous flow-through designs.

  19. Basic Research on Plasma Cathode for HPM Sources (NE - Luginsland)

    DTIC Science & Technology

    2011-11-30

    to NEPP Vacuum Pump for Mock Magnetron 12 (b) Borosilicate glass (Insulator)  Anode Cathode Vacuum chamber Ion gauge controller Charge...channeling may be one physical mechanism that can explain the stability of the pinch in the discharge. (a) Scroll Pump High Voltage Power Supply DC... vacuum and/or low vacuum slow wave devices and cross field devices) in burst mode? Here, burst mode effectively implies an impulse-like (short pulse

  20. Fuel cell CO sensor

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    1999-12-14

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. A CO sensor includes the PEM-probe, an electrical discharge circuit for discharging the PEM-probe to monitor the CO concentration, and an electrical purging circuit to intermittently raise the anode potential of the PEM-probe's anode to at least about 0.8 V (RHE) to electrochemically oxidize any CO adsorbed on the probe's anode catalyst.

  1. 40 CFR 98.64 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... effect termination routine.Facilities which operate at less than 0.2 anode effect minutes per cell day or... cell day (or anode effect overvoltage and current efficiency). (2) Monthly for aluminum production. (3... of parameters needed to complete the equations in § 98.63 (e.g., sulfur, ash, and hydrogen contents...

  2. 40 CFR 98.64 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... effect termination routine.Facilities which operate at less than 0.2 anode effect minutes per cell day or... cell day (or anode effect overvoltage and current efficiency). (2) Monthly for aluminum production. (3... of parameters needed to complete the equations in § 98.63 (e.g., sulfur, ash, and hydrogen contents...

  3. 40 CFR 98.64 - Monitoring and QA/QC requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... effect termination routine.Facilities which operate at less than 0.2 anode effect minutes per cell day or... cell day (or anode effect overvoltage and current efficiency). (2) Monthly for aluminum production. (3... of parameters needed to complete the equations in § 98.63 (e.g., sulfur, ash, and hydrogen contents...

  4. Applying a laser-induced incandescence (LII) diagnostic to monitor nanoparticle synthesis in an atmospheric plasma, in situ

    NASA Astrophysics Data System (ADS)

    Yatom, Shurik; Mitrani, James; Yeh, Yao-Wen; Shneider, Mikhail; Stratton, Brentley; Raitses, Yevgeny

    2016-09-01

    A DC arc discharge with a consumed graphite anode is commonly used for synthesis of carbon nanoparticles, including carbon nanotubes (CNTs) and graphene flakes. The graphite electrode is physically vaporized by high currents (20-60 A) in a buffer gas at 100-600 torr, leading to nanoparticle synthesis in a low temperature (>1 eV), plasma. Utilizing arc plasma synthesis technique has resulted in the synthesis of higher quality nanomaterials. However, the formation of nanoparticles in arc discharge plasmas is poorly understood. A particularly interesting question is where in the arc the nanoparticles nucleate and grow. In our current work we show the results of studying the formation of carbon nanotubes in an arc discharge, in situ, using laser-induced incandescence (LII). The results of LII are discussed in combination with ex situ measurements of the synthesized nanoparticles and modeling, to provide an insight into the physics behind nanoparticle synthesis in plasma. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  5. Effect of power shape on energy extraction from microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Alaraj, Muhannad; Feng, Shuo; Roane, Timberley M.; Park, Jae-Do

    2017-10-01

    Microbial fuel cells (MFCs) generate renewable energy in the form of direct current (DC) power. Harvesting energy from MFCs started with passive components such as resistors and capacitors, then charge pumps were introduced with some more advantages. Power electronics converters were later preferred due to their higher efficiency and controllability; however, they introduce high frequency current ripple due to their high frequency switching. In this paper, the effect of shape of power extraction on MFC performance was investigated using three types of current shapes: continuous, square-wave, and triangular-wave. Simultaneously, chemical parameters, such as pH, dissolved oxygen, electrical conductivity, and redox potential, in the anode chamber were monitored to see how these parameters change with the shape of the electrical power extraction. Results showed that the shape of the extracted current did not have a substantial effect on the MFC life span, output power, and energy extraction, nor on the chemical parameters. The outcome of this study provided insight for the electrical impact by power electronics converters on some microbial and chemical aspects of an MFC system.

  6. Contribution of the backstreaming ions to the Self-Magnetic pinch (SMP) diode current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazarakis, Michael G.; Cuneo, Michael E.; Fournier, Sean D.

    2016-08-08

    Summary form only given. The results presented here were obtained with an SMP diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulses of six 1.3 MV inductively insulated cavities. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target to the diode beam current, and second to try to evaluate the energy of those ions and hence the actual Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage addermore » (IVA) utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the anode-cathode (A-K) gap is problematic. The accelerating voltage quoted in the literature is from estimates based on measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high Z metals in order to produce copious and energetic flash x-rays. The backstreaming currents are a strong fraction of the anode materials and their stage of cleanness and gas adsorption. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatments, such as heating to very high temperatures with DC and pulsed current, with RF plasma cleaning and with both plasma cleaning and heating. Finally, we have also evaluated the A-K gap voltage by ion filtering techniques.« less

  7. Assessment of Surface Area Characteristics of Dental Implants with Gradual Bioactive Surface Treatment

    NASA Astrophysics Data System (ADS)

    Czan, Andrej; Babík, Ondrej; Miklos, Matej; Záušková, Lucia; Mezencevová, Viktória

    2017-10-01

    Since most of the implant surface is in direct contact with bone tissue, shape and integrity of said surface has great influence on successful osseointegration. Among other characteristics that predetermine titanium of different grades of pureness as ideal biomaterial, titanium shows high mechanical strength making precise miniature machining increasingly difficult. Current titanium-based implants are often anodized due to colour coding. This anodized layer has important functional properties for right usage and also bio-compatibility of dental implants. Physical method of anodizing and usage of anodizing mediums has a significant influence on the surface quality and itself functionality. However, basic requirement of the dental implant with satisfactory properties is quality of machined surface before anodizing. Roughness, for example, is factor affecting of time length of anodizing operation and so whole productivity. The paper is focused on monitoring of surface and area characteristics, such as roughness or surface integrity after different cutting conditions of miniature machining of dental implants and their impact on suitability for creation of satisfactory anodized layer with the correct biocompatible functional properties.

  8. Prefrontal transcranial direct current stimulation (tDCS) as treatment for major depression: study design and methodology of a multicenter triple blind randomized placebo controlled trial (DepressionDC).

    PubMed

    Padberg, Frank; Kumpf, Ulrike; Mansmann, Ulrich; Palm, Ulrich; Plewnia, Christian; Langguth, Berthold; Zwanzger, Peter; Fallgatter, Andreas; Nolden, Jana; Burger, Max; Keeser, Daniel; Rupprecht, Rainer; Falkai, Peter; Hasan, Alkomiet; Egert, Silvia; Bajbouj, Malek

    2017-12-01

    Transcranial direct current stimulation (tDCS) has been proposed as novel treatment for major depressive disorder (MDD) based on clinical pilot studies as well as randomized controlled monocentric trials. The DepressionDC trial is a triple-blind (blinding of rater, operator and patient), randomized, placebo controlled multicenter trial investigating the efficacy and safety of prefrontal tDCS used as additive treatment in MDD patients who have not responded to selective serotonin reuptake inhibitors (SSRI). At 5 study sites, 152 patients with MDD receive a 6-weeks treatment with active tDCS (anode F3 and cathode F4, 2 mA intensity, 30 min/day) or sham tDCS add-on to a stable antidepressant medication with an SSRI. Follow-up visits are at 3 and 6 months after the last tDCS session. The primary outcome measure is the change of the Montgomery-Asberg Depression Rating Scale (MADRS) scores at week 6 post-randomisation compared to baseline. Secondary endpoints also cover other psychopathological domains, and a comprehensive safety assessment includes measures of cognition. Patients undergo optional investigations comprising genetic testing and functional magnetic resonance imaging (fMRI) of structural and functional connectivity. The study uses also an advanced tDCS technology including standard electrode positioning and recording of technical parameters (current, impedance, voltage) in every tDCS session. Aside reporting the study protocol here, we present a novel approach for monitoring technical parameters of tDCS which will allow quality control of stimulation and further analysis of the interaction between technical parameters and clinical outcome. The DepressionDC trial will hopefully answer the important clinical question whether prefrontal tDCS is a safe and effective antidepressant intervention in patients who have not sufficiently responded to SSRIs. ClinicalTrials.gov Identifier NCT0253016.

  9. Study on the fabrication of back surface reflectors in nano-crystalline silicon thin-film solar cells by using random texturing aluminum anodization

    NASA Astrophysics Data System (ADS)

    Shin, Kang Sik; Jang, Eunseok; Cho, Jun-Sik; Yoo, Jinsu; Park, Joo Hyung; Byungsung, O.

    2015-09-01

    In recent decades, researchers have improved the efficiency of amorphous silicon solar cells in many ways. One of the easiest and most practical methods to improve solar-cell efficiency is adopting a back surface reflector (BSR) as the bottom layer or as the substrate. The BSR reflects the incident light back to the absorber layer in a solar cell, thus elongating the light path and causing the so-called "light trapping effect". The elongation of the light path in certain wavelength ranges can be enhanced with the proper scale of BSR surface structure or morphology. An aluminum substrate with a surface modified by aluminum anodizing is used to improve the optical properties for applications in amorphous silicon solar cells as a BSR in this research due to the high reflectivity and the low material cost. The solar cells with a BSR were formed and analyzed by using the following procedures: First, the surface of the aluminum substrate was degreased by using acetone, ethanol and distilled water, and it was chemically polished in a dilute alkali solution. After the cleaning process, the aluminum surface's morphology was modified by using a controlled anodization in a dilute acid solution to form oxide on the surface. The oxidized film was etched off by using an alkali solution to leave an aluminum surface with randomly-ordered dimple-patterns of approximately one micrometer in size. The anodizing conditions and the anodized aluminum surfaces after the oxide layer had been removed were systematically investigated according to the applied voltage. Finally, amorphous silicon solar cells were deposited on a modified aluminum plate by using dc magnetron sputtering. The surfaces of the anodized aluminum were observed by using field-emission scanning electron microscopy. The total and the diffuse reflectances of the surface-modified aluminum sheets were measured by using UV spectroscopy. We observed that the diffuse reflectances increased with increasing anodizing voltage. The properties of the solar cells on anodized aluminum substrates were analyzed by using a solar simulator.

  10. Polarization and Fowler-Nordheim tunneling in anodized Al-Al2O3-Au diodes

    NASA Astrophysics Data System (ADS)

    Hickmott, T. W.

    2000-06-01

    Polarization in anodic Al2O3 films is measured by using quasi-dc current-voltage (I-V) curves of Al-Al2O3-Au diodes. A reproducible polarization state is established by applying a negative voltage to the Au electrode of a rectifying Al-Al2O3-Au diode. The difference between subsequent I-V curves with Au positive is a measure of polarization in the sample. The magnitude of polarization charge in Al2O3 depends on the anodizing electrolyte. Al2O3 films formed in H2O-based electrolytes have approximately ten times the polarization charge of Al2O3 films formed in ethylene glycol-based electrolyte. Anodizing conditions that produce greater polarizing charge in anodic Al2O3 result in voltage-time curves during anodization under galvanostatic conditions that are nonlinear. Anodic films with greater polarizing charge also have a greater apparent interface capacitance which is independent of Al2O3 thickness. I-V curves of Al-Al2O3-Au diodes for increasing voltage are dominated by polarization. I-V curves for decreasing voltage are reproducible and parallel but depend on the maximum current and voltage reached during the measurement. There is no single current corresponding to a given voltage. I-V curves for decreasing voltage are analyzed assuming that the conduction mechanism is Fowler-Nordheim (FN) tunneling. There is a qualitative difference between the FN tunneling parameters for Al2O3 films formed in H2O-based electrolytes and those formed in ethylene glycol-based electrolyte. For the former the value of the exponential term in the FN analysis increases as the value of maximum voltage and current in an I-V characteristic increases, while the value of the pre-exponential term is nearly constant. For the latter, the exponential term is nearly constant as maximum voltage and current increase, but the pre-exponential term decreases by about 5 decades. Thus polarization charge incorporated during formation of anodized Al2O3 strongly affects the formation of the insulating film, the stability of the films under bias, and their conduction characteristics.

  11. The Corrosion Protection of 2219-T87 Aluminum by Organic and Inorganic Zinc-Rich Primers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Mendrek, M. J.; Walsh, D. W.

    1995-01-01

    The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 pA/CM2 and 23.7 pA/CM2 for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.

  12. The corrosion protection of 2219-T87 aluminum by organic and inorganic zinc-rich primers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Mendrek, M. J.; Walsh, D. W.

    1995-01-01

    The behavior of zinc-rich primer-coated 2219-T87 aluminum in a 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electro-chemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR) were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electrochemical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 2219-T87 aluminum cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. the galvanic test results demonstrated a very high galvanic current between the aluminum cathode and both zinc-rich primer anodes (37.9 micro A/cm(exp 2) and 23.7 micro A/cm(exp 2) for the organic and inorganic primers, respectively). The PR results demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application in the solid rocket booster aft skirt.

  13. The corrosion protection of AISI(TM) 1010 steel by organic and inorganic zinc-rich primers

    NASA Technical Reports Server (NTRS)

    Danford, M. D.; Mendrek, M. J.

    1995-01-01

    The behavior of zinc-rich primer-coated AISI 1010 steel in 3.5-percent Na-Cl was investigated using electrochemical techniques. The alternating current (ac) method of electrochemical impedance spectroscopy (EIS), in the frequency range of 0.001 to 40,000 Hz, and the direct current (dc) method of polarization resistance (PR), were used to evaluate the characteristics of an organic, epoxy zinc-rich primer and an inorganic, ethyl silicate zinc-rich primer. A dc electromechanical galvanic corrosion test was also used to determine the corrosion current of each zinc-rich primer anode coupled to a 1010 steel cathode. Duration of the EIS/PR and galvanic testing was 21 days and 24 h, respectively. The galvanic test results demonstrated a very high current between the steel cathode and both zinc-rich primer anodes (38.8 and 135.2 microns A/sq cm for the organic and inorganic primers, respectively). The results of corrosion rate determinations demonstrated a much higher corrosion rate of the zinc in the inorganic primer than in the organic primer, due primarily to the higher porosity in the former. EIS equivalent circuit parameters confirmed this conclusion. Based on this investigation, the inorganic zinc-rich primer appears to provide superior galvanic protection and is recommended for additional study for application on solid rocket booster steel hardware.

  14. Possibility of High Phosphorus Pig Iron as Sacrificial Anode

    NASA Astrophysics Data System (ADS)

    Prasad, Nisheeth Kr.; Pathak, A. S.; Kundu, S.; Mondal, K.

    2018-05-01

    Cathodic protection is an effective method to control the corrosion of underground pipelines and submerged structures. In the present work, high phosphorus containing pig iron was utilized as sacrificial anode for cathodic protection of underground mild steel plates and the results were compared with that of a commercially pure magnesium sacrificial anode. Driving potential and current between the galvanically coupled sacrificial anodes and mild steel plates were continuously monitored in real time for one month. Microstructure and morphology of the corrosion products formed on the surface of pig iron, magnesium sacrificial anodes and mild steel plates were observed with the help of optical microscope and scanning electron microscopy, and phase identification were performed using x-ray diffraction, Raman spectroscopy and Fourier transform infrared spectroscopy. The distribution of phosphorus in the pig iron matrix and soluble rust formation on the surface of pig iron under buried condition were critical from the point of sacrificial effect, indicating the possible scientific reasons for high phosphorous pig iron to be used as sacrificial anode.

  15. Analogue step-by-step DC component eliminator for 24-hour PPG signal monitoring.

    PubMed

    Pilt, Kristjan; Meigas, Kalju; Lass, Jaanus; Rosmann, Mart; Kaik, Jüri

    2007-01-01

    For applications where PPG signal AC component needs to be measured without disturbances in its shape and recorded digitally with high digitalization accuracy, the step-by-step DC component eliminator is developed. This paper describes step-by-step DC component eliminator, which is utilized with analogue comparator and operational amplifier. It allows to record PPG signal without disturbances in its shape in 24-hours PPG signal monitoring system. The experiments with PPG signal have been carried out.

  16. The Gas Monitoring of the Besiii Drift Chamber

    NASA Astrophysics Data System (ADS)

    Wang, Xianggao; Chen, Chang; Chen, Yuanbo; Wu, Zhi; Gu, Yunting; Ma, Xiaoyan; Jin, Yan; Liu, Rongguang; Tang, Xiao; Wang, Lan; Zhu, Qiming

    Two monitoring proportional counters (MPCs), installed at the inlet and outlet of the gas system of BESIII drift chamber (DC), were used to monitor the operation of the BESIII DC successfully and effectively as reported in this paper. The ratio of Gout/Gin (full energy photoelectron peak position of 55Fe 5.9 keV X-ray in inlet MPC as Gin and outlet MPC as Gout) is used as the main monitoring parameter. The MPC method is very useful for the gas detector system.

  17. Acoustic Emission Monitoring of the DC-XA Composite Liquid Hydrogen Tank During Structural Testing

    NASA Technical Reports Server (NTRS)

    Wilkerson, C.

    1996-01-01

    The results of acoustic emission (AE) monitoring of the DC-XA composite liquid hydrogen tank are presented in this report. The tank was subjected to pressurization, tensile, and compressive loads at ambient temperatures and also while full of liquid nitrogen. The tank was also pressurized with liquid hydrogen. AE was used to monitor the tank for signs of structural defects developing during the test.

  18. Passive films on magnesium anodes in primary batteries

    NASA Technical Reports Server (NTRS)

    Ratnakumar, B. V.

    1988-01-01

    The characteristics of the passive films over Mg anodes, which essentially govern the voltage delay of the latter, have been determined nondestructively from an analysis of the transient and steady-state response of the electrode potential to low amplitude galvanostatic polarization under various experimental conditions viz., with different corrosion inhibitor coatings on Mg, after various periods of ageing of anode in solutions containing corrosion inhibitors, at various low temperatures etc. Using these parameters, the kinetics of film build-up or dissolution under these conditions have been monitored. The morphology of the anode film has been verified with scanning electron microscopy. Similar transients at low temperatures point out a steep rise in the film resistivity which is essentially responsible for the severe voltage delay. Finally, possible application of this technique in secondary Li batteries to improve cycling characteristics of the Li anode has been pointed out.

  19. Design, conditioning, and performance of a high voltage, high brightness dc photoelectron gun with variable gap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxson, Jared; Bazarov, Ivan; Dunham, Bruce

    2014-09-15

    A new high voltage photoemission gun has been constructed at Cornell University which features a segmented insulator and a movable anode, allowing the cathode-anode gap to be adjusted. In this work, we describe the gun's overall mechanical and high voltage design, the surface preparation of components, as well as the clean construction methods. We present high voltage conditioning data using a 50 mm cathode-anode gap, in which the conditioning voltage exceeds 500 kV, as well as at smaller gaps. Finally, we present simulated emittance results obtained from a genetic optimization scheme using voltage values based on the conditioning data. Thesemore » results indicate that for charges up to 100 pC, a 30 mm gap at 400 kV has equal or smaller 100% emittance than a 50 mm gap at 450 kV, and also a smaller core emittance, when placed as the source for the Cornell energy recovery linac photoinjector with bunch length constrained to be <3 ps rms. For 100 pC up to 0.5 nC charges, the 50 mm gap has larger core emittance than the 30 mm gap, but conversely smaller 100% emittance.« less

  20. Cerebellum and processing of negative facial emotions: cerebellar transcranial DC stimulation specifically enhances the emotional recognition of facial anger and sadness.

    PubMed

    Ferrucci, Roberta; Giannicola, Gaia; Rosa, Manuela; Fumagalli, Manuela; Boggio, Paulo Sergio; Hallett, Mark; Zago, Stefano; Priori, Alberto

    2012-01-01

    Some evidence suggests that the cerebellum participates in the complex network processing emotional facial expression. To evaluate the role of the cerebellum in recognising facial expressions we delivered transcranial direct current stimulation (tDCS) over the cerebellum and prefrontal cortex. A facial emotion recognition task was administered to 21 healthy subjects before and after cerebellar tDCS; we also tested subjects with a visual attention task and a visual analogue scale (VAS) for mood. Anodal and cathodal cerebellar tDCS both significantly enhanced sensory processing in response to negative facial expressions (anodal tDCS, p=.0021; cathodal tDCS, p=.018), but left positive emotion and neutral facial expressions unchanged (p>.05). tDCS over the right prefrontal cortex left facial expressions of both negative and positive emotion unchanged. These findings suggest that the cerebellum is specifically involved in processing facial expressions of negative emotion.

  1. Fabrication and characterization of 8.87 THz schottky barrier mixer diodes for mixer

    NASA Astrophysics Data System (ADS)

    Wang, Wenjie; Li, Qian; An, Ning; Tong, Xiaodong; Zeng, Jianping

    2018-04-01

    In this paper we report on the fabrication and characterization of GaAs-based THz schottky barrier mixer diodes. Considering the analyzed results as well as fabrication cost and complexity, a group of trade-off parameters was determined. Electron-beam lithography and air-bridge technique have been used to obtain schottky diodes with a cut off frequency of 8.87 THz. Equivalent values of series resistance, ideal factor and junction capacitance of 10.2 (1) Ω, 1.14 (0.03) and 1.76(0.03) respectively have been measured for 0.7um diameter anode devices by DC and RF measurements. The schottky barrier diodes fabrication process is fully planar and very suitable for integration in THz frequency multiplier and mixer circuits. THz Schottky barrier diodes based on such technology with 2 μm diameter anodes have been tested at 1.6 THz in a sub-harmonic mixer.

  2. Can Dynamic Bubble Templating Play a Role in Corrosion Product Morphology?

    DTIC Science & Technology

    2012-02-01

    FeOOH (goethite) with moderate amounts of metallic luster Fe304 (magnetite), and trace amounts of CaC03 (calcite). In addition, the core was marbled ...cathodically produced gas bubbles (i.e., H2). By physically separating the anode and cathode. Stone and Goldstein26 generated tubular structures electro...D.A. Stone , RE. Goldstein. Proc. MatL Acad. Set U.S-A. 101 (2004): p. 11537. G. Butler, H.C.K. Ison, Nature 182 (1958): p. 1229. B. McEnaney. D.C

  3. Experimental radiation cooled magnetrons for space

    NASA Astrophysics Data System (ADS)

    Brown, W. C.; Pollock, M.

    The heat disposal problem that occurs in the microwave generator of the Solar Power Satellite when it converts dc power from solar photovoltaic arrays into microwave power for transmission to earth is examined. A theoretical study is made of the radiation cooling of a magnetron directional amplifier, and some experimental data obtained from the QKH 2244 magnetron are presented. This instrument is an unpackaged microwave oven magnetron to which an anodized aluminum radiator has been attached and whose magnetic field is supplied by special samarium cobalt magnets.

  4. Alkaloid decomposition by DC pin-hole discharge in water solution

    NASA Astrophysics Data System (ADS)

    Klimova, Edita J.; Krcma, Frantisek; Jonisova, Lenka

    2016-08-01

    DC diaphragm discharge generated in a batch reactor was used to decompose two selected model alkaloids, caffeine and quinine in concentrations ranging from 10 to 50 ppm or 5 to 15 ppm, respectively. UV-vis spectrometry was utilized in evaluation of H2O2 production during the process as well as degradation of caffeine. Fluorescence spectrometry was used for quantification of quinine. High rates of decomposition were reached in both cases in the anode part of the reactor. On the other hand, up to four times lower decomposition was observed in the cathode part. Total removal efficiency gained up to 300 mg/kWh for caffeine and 210 mg/kWh for quinine. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  5. High voltage threshold for stable operation in a dc electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Masahiro, E-mail: masahiro@post.kek.jp; Nishimori, Nobuyuki, E-mail: n-nishim@tagen.tohoku.ac.jp

    We report clear observation of a high voltage (HV) threshold for stable operation in a dc electron gun. The HV hold-off time without any discharge is longer than many hours for operation below the threshold, while it is roughly 10 min above the threshold. The HV threshold corresponds to the minimum voltage where discharge ceases. The threshold increases with the number of discharges during HV conditioning of the gun. Above the threshold, the amount of gas desorption per discharge increases linearly with the voltage difference from the threshold. The present experimental observations can be explained by an avalanche discharge modelmore » based on the interplay between electron stimulated desorption (ESD) from the anode surface and subsequent secondary electron emission from the cathode by the impact of ionic components of the ESD molecules or atoms.« less

  6. Novel non-equilibrium modelling of a DC electric arc in argon

    NASA Astrophysics Data System (ADS)

    Baeva, M.; Benilov, M. S.; Almeida, N. A.; Uhrlandt, D.

    2016-06-01

    A novel non-equilibrium model has been developed to describe the interplay of heat and mass transfer and electric and magnetic fields in a DC electric arc. A complete diffusion treatment of particle fluxes, a generalized form of Ohm’s law, and numerical matching of the arc plasma with the space-charge sheaths adjacent to the electrodes are applied to analyze in detail the plasma parameters and the phenomena occurring in the plasma column and the near-electrode regions of a DC arc generated in atmospheric pressure argon for current levels from 20 A up to 200 A. Results comprising electric field and potential, current density, heating of the electrodes, and effects of thermal and chemical non-equilibrium are presented and discussed. The current-voltage characteristic obtained is in fair agreement with known experimental data. It indicates a minimum for arc current of about 80 A. For all current levels, a field reversal in front of the anode accompanied by a voltage drop of (0.7-2.6) V is observed. Another field reversal is observed near the cathode for arc currents below 80 A.

  7. Anodized porous titanium coated with Ni-CeO2 deposits for enhancing surface toughness and wear resistance

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaowei; Ouyang, Chun

    2017-05-01

    In order to make large improvements of surface toughness and wear resistance for pure titanium (Ti) substrate, anodic titanium oxide (ATO) surface with nanoporous structure was coated with the Ni-CeO2 nanocomposite coatings. Regarding TiO2 barrier layer on Ti surface to inhibit its electrochemical activity, pre-treatments were successively processed with anodizing, sensitizing, activating, and then followed by electroless Ni-P film to be acted as an activated layer for electroplating Ni-CeO2 deposits. The existing Pd atoms around ATO nanopores were expected as the heterogeneous nucleation sites for supporting the growing locations of electroless Ni-P film. The innovative of interface design using porous structure was introduced for bonding pinholes to achieve a metallurgical adhesion interface between Ti substrate and surface coatings. Besides the objectives of this work were to elucidate how effects by the adding CeO2 nanoparticles on modifying microstructures and wear mechanisms of Ni-CeO2 nanocomposite coatings. Many efforts of XRD, FE-SEM, TEM and Nanoindentation tests were devoted to comparing different wear behaviors of Ni-CeO2 coatings relative to pure nickel. Results indicated that uniform-distributed Ti nanopores with an average diameter size of ∼200 nm was achieved using the Phosphate-type anodizing solution at DC 150 V. A worn surface without fatigue cracks was observed for TAO surface coated with Ni-CeO2 deposits, showing the existing Ce-rich worn products to be acted as a solid lubricant phase for making a self-healing effect on de-lamination failures. More important, this finding will be the guidelines for Ce-rich precipitations to be expected as the strengthening phase in anodized porous of Ti, Al and Mg alloys for intensifying their surface properties.

  8. Retention of Sputtered Molybdenum on Ion Engine Discharge Chamber Surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Dever, Joyce A.; Power, John L.

    2001-01-01

    Grit-blasted anode surfaces are commonly used in ion engines to ensure adherence of sputtered coatings. Next generation ion engines will require higher power levels, longer operating times, and thus there will likely be thicker sputtered coatings on their anode surfaces than observed to date on 2.3 kW-class xenon ion engines. The thickness of coatings on the anode of a 10 kW, 40-centimeter diameter thruster, for example, may be 22 micrometers or more after extended operation. Grit-blasted wire mesh, titanium, and aluminum coupons were coated with molybdenum at accelerated rates to establish coating stability after the deposition process and after thermal cycling tests. These accelerated deposition rates are roughly three orders of magnitude more rapid than the rates at which the screen grid is sputtered in a 2.3 kW-class, 30-centimeter diameter ion engine. Using both RF and DC sputtering processes, the molybdenum coating thicknesses ranged from 8 to 130 micrometers, and deposition rates from 1.8 micrometers per hour to 5.1 micrometers per hour. In all cases, the molybdenum coatings were stable after the deposition process, and there was no evidence of spalling of the coatings after 20 cycles from about -60 to +320 C. The stable, 130 micrometer molybdenum coating on wire mesh is 26 times thicker than the thickest coating found on the anode of a 2.3 kW, xenon ion engine that was tested for 8200 hr. Additionally, this coating on wire mesh coupon is estimated to be a factor of greater than 4 thicker than one would expect to obtain on the anode of the next generation ion engine which may have xenon throughputs as high as 550 kg.

  9. Direct electric current modifies important cellular aspects and ultrastructure features of Candida albicans yeasts: Influence of doses and polarities.

    PubMed

    Barbosa, Gleyce Moreno; Dos Santos, Eldio Gonçalves; Capella, Francielle Neves Carvalho; Homsani, Fortune; de Pointis Marçal, Carina; Dos Santos Valle, Roberta; de Araújo Abi-Chacra, Érika; Braga-Silva, Lys Adriana; de Oliveira Sales, Marcelo Henrique; da Silva Neto, Inácio Domingos; da Veiga, Venicio Feo; Dos Santos, André Luis Souza; Holandino, Carla

    2017-02-01

    Available treatments against human fungal pathogens present high levels of resistance, motivating the development of new antifungal therapies. In this context, the present work aimed to analyze direct electric current (DC) antifungal action, using an in vitro apparatus equipped with platinum electrodes. Candida albicans yeast cells were submitted to three distinct conditions of DC treatment (anodic flow-AF; electroionic flow-EIF; and cathodic flow-CF), as well as different charges, ranging from 0.03 to 2.40 C. Our results indicated C. albicans presented distinct sensibility depending on the DC intensity and polarity applied. Both the colony-forming unit assay and the cytometry flow with propidium iodide indicated a drastic reduction on cellular viability after AF treatment with 0.15 C, while CF- and EIF-treated cells stayed alive when DC doses were increased up to 2.40 C. Additionally, transmission electron microscopy revealed important ultrastructural alterations in AF-treated yeasts, including cell structure disorganization, ruptures in plasmatic membrane, and cytoplasmic rarefaction. This work emphasizes the importance of physical parameters (polarity and doses) in cellular damage, and brings new evidence for using electrotherapy to treat C. albicans pathology process. Bioelectromagnetics. 38:95-108, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. The Clinical Value of Deflation Cough in Chronic Coughers With Reflux Symptoms.

    PubMed

    Lavorini, Federico; Chellini, Elisa; Bigazzi, Francesca; Surrenti, Elisabetta; Fontana, Giovanni A

    2016-06-01

    Patients with deflation cough (DC), the cough-like expulsive effort(s) evoked by maximal lung emptying during a slow vital capacity maneuver, also present symptoms of gastroesophageal reflux. DC can be inhibited by prior intake of antacids. We wished to assess DC prevalence and association between DC and chemical characteristics of refluxate in patients with gastroesophageal reflux symptoms. A total of 157 consecutive outpatients underwent DC assessment and 24-h multichannel intraluminal impedance pH (MII-pH) monitoring; 93/157 also had chronic cough. Patients performed two to four slow vital capacity maneuvers and DC was detected aurally. Subsequently, they underwent 24-h MII-pH monitoring, the outcomes of which were defined as abnormal when acid or non-acid reflux events were > 73. DC occurred in 46/157 patients, 18 of whom had abnormal MII-pH outcomes; 28 of the remaining 111 patients without DC also had abnormal MII-pH findings. Thus, in the patients as a group, there was no association between DC and MII-pH outcomes. DC occurred in 40/93 of the chronic coughers; 15 of whom had acid reflux. All but 2 of the 53 patients without DC had normal MII-pH outcomes (P < .001), and the negative predictive value of DC for excluding acid reflux was 96.2%. At follow-up, 65% of coughers showed significant improvement after treatment. The overall prevalence of DC was 29%, increasing to 43% in chronic coughers in whom the absence of DC virtually excludes acid reflux. Therefore, DC assessment may represent a useful screening test for excluding acid reflux in chronic coughers with reflux symptoms. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  11. Changes in behavioral responses of Lygus lineolaris (Hemiptera: Miridae) from various applied signal voltages during EPG recordings

    USDA-ARS?s Scientific Manuscript database

    A 3rd-generation AC-DC electrical penetration graph (EPG) monitor was used to study feeding behaviors of pre-reproductive adult Lygus lineolaris (Hemiptera: Miridae) on pinhead (<3mm) cotton squares, applying different signal voltages at several input impedances. The AC-DC monitor allows a user to s...

  12. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surfacemore » and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.« less

  13. Manufacturing High-Quality Carbon Nanotubes at Lower Cost

    NASA Technical Reports Server (NTRS)

    Benavides, Jeanette M.; Lidecker, Henning

    2004-01-01

    A modified electric-arc welding process has been developed for manufacturing high-quality batches of carbon nanotubes at relatively low cost. Unlike in some other processes for making carbon nanotubes, metal catalysts are not used and, consequently, it is not necessary to perform extensive cleaning and purification. Also, unlike some other processes, this process is carried out at atmospheric pressure under a hood instead of in a closed, pressurized chamber; as a result, the present process can be implemented more easily. Although the present welding-based process includes an electric arc, it differs from a prior electric-arc nanotube-production process. The welding equipment used in this process includes an AC/DC welding power source with an integral helium-gas delivery system and circulating water for cooling an assembly that holds one of the welding electrodes (in this case, the anode). The cathode is a hollow carbon (optionally, graphite) rod having an outside diameter of 2 in. (approximately equal to 5.1 cm) and an inside diameter of 5/8 in. (approximately equal to 1.6 cm). The cathode is partly immersed in a water bath, such that it protrudes about 2 in. (about 5.1 cm) above the surface of the water. The bottom end of the cathode is held underwater by a clamp, to which is connected the grounding cable of the welding power source. The anode is a carbon rod 1/8 in. (approximately equal to 0.3 cm) in diameter. The assembly that holds the anode includes a thumbknob- driven mechanism for controlling the height of the anode. A small hood is placed over the anode to direct a flow of helium downward from the anode to the cathode during the welding process. A bell-shaped exhaust hood collects the helium and other gases from the process. During the process, as the anode is consumed, the height of the anode is adjusted to maintain an anode-to-cathode gap of 1 mm. The arc-welding process is continued until the upper end of the anode has been lowered to a specified height above the surface of the water bath. The process causes carbon nanotubes to form in the lowest 2.5 cm of the anode. It also causes a deposit reminiscent of a sandcastle to form on the cathode. The nanotube-containing material is harvested. The cathode and anode can then be cleaned (or the anode is replaced, if necessary) and the process repeated to produce more nanotubes. Tests have shown that the process results in approximately equal to 50-percent yield of carbon nanotubes (mostly of the single-wall type) of various sizes. Whereas the unit cost of purified single-wall carbon nanotubes produced by other process is about $1,000/g in the year 2000, it has been estimated that for the present process, the corresponding cost would be about $10/g.

  14. New Designs of Biofuel Cells and Their Work Testing

    NASA Astrophysics Data System (ADS)

    Stom, D. I.; Zhdanova, G. O.; Kashevskii, A. V.

    2017-11-01

    The developed designs and modifications of biofuel elements (BFC) are presented. The approbation of their work using strains and consortia of microorganisms is given. The proposed designs made it possible to solve a number of problems that arise when working with BFC: 1) gain access to the contents of the anode BFC space without disturbing its sterility and anaerobic environment; 2) take samples from the anode space for chemical and microbiological analysis without interrupting the BFC operation; 3) conduct continuous monitoring of electrochemical processes directly in the anode space (Ox-Red media, electrode charge, concentration of hydrogen and other ions by means of potentiometry).

  15. An analysis of variable dissolution rates of sacrificial zinc anodes: a case study of the Hamble estuary, UK.

    PubMed

    Rees, Aldous B; Gallagher, Anthony; Comber, Sean; Wright, Laurence A

    2017-09-01

    Sacrificial anodes are intrinsic to the protection of boats and marine structures by preventing the corrosion of metals higher up the galvanic scale through their preferential breakdown. The dissolution of anodes directly inputs component metals into local receiving waters, with variable rates of dissolution evident in coastal and estuarine environments. With recent changes to the Environmental Quality Standard (EQS), the load for zinc in estuaries such as the Hamble, UK, which has a large amount of recreational craft, now exceeds the zinc standard of 7.9 μg/l. A survey of boat owners determined corrosion rates and estimated zinc loading at between 6.95 and 7.11 t/year. The research confirms the variable anode corrosion within the Hamble and highlighted a lack of awareness of anode technology among boat owners. Monitoring and investigation discounted metal structures and subterranean power cables as being responsible for these variations but instead linked accelerated dissolution to marina power supplies and estuarine salinity variations.

  16. Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis.

    PubMed

    Imburgio, Michael J; Orr, Joseph M

    2018-05-01

    A meta-analysis of studies using single-session transcranial direct current stimulation (tDCS) to target the dorsolateral prefrontal cortex (DLPFC) was undertaken to examine the effect of stimulation on executive function (EF) in healthy samples. 27 studies were included in analyses, yielding 71 effect sizes. The most relevant measure for each task was determined a priori and used to calculate Hedge's g. Methodological characteristics of each study were examined individually as potential moderators of effect size. Stimulation effects on three domains of EF (inhibition of prepotent responses, mental set shifting, and information updating and monitoring) were analyzed separately. In line with previous work, the current study found no significant effect of anodal unilateral tDCS, cathodal unilateral tDCS, or bilateral tDCS on EF. Further moderator and subgroup analyses were only carried out for anodal unilateral montages due to the small number of studies using other montages. Subgroup analyses revealed a significant effect of anodal unilateral tDCS on updating tasks, but not on inhibition or set-shifting tasks. Cathode location significantly moderated the effect of anodal unilateral tDCS. Extracranial cathodes yielded a significant effect on EF while cranial cathodes yielded no effect. Anode size also significantly moderated effect of anodal unilateral tDCS, with smaller anodes being more effective than larger anodes. In summary, anodal DLPFC stimulation is more effective at improving updating ability than inhibition and set-shifting ability, but anodal stimulation can significantly improve general executive function when extracranial cathodes or small anodes are used. Future meta-analyses may examine how stimulation's effects on specific behavioral tasks, rather than broader domains, might be affected by methodological moderators. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Single Stage Rocket Technology's real time data system

    NASA Technical Reports Server (NTRS)

    Voglewede, Steven D.

    1994-01-01

    The Single Stage Rocket Technology (SSRT) Delta Clipper Experimental (DC-X) Program is a United States Air Force Ballistic Missile Defense Organization (BMDO) rapid prototyping initiative that is currently demonstrating technology readiness for reusable suborbital rockets. The McDonnell Douglas DC-X rocket performed technology demonstrations at the U.S. Army White Sands Missile Range in New Mexico from April-October in 1993. The DC-X Flight Operations Control Center (FOCC) contains the ground control system that is used to monitor and control the DC-X vehicle and its Ground Support Systems (GSS). The FOCC is operated by a flight crew of three operators. Two operators manage the DC-X Flight Systems and one operator is the Ground Systems Manager. A group from McDonnell Douglas Aerospace at KSC developed the DC-X ground control system for the FOCC. This system is known as the Real Time Data System (RTDS). The RTDS is a distributed real time control and monitoring system that utilizes the latest available commercial off-the-shelf computer technology. The RTDS contains front end interfaces for the DC-X RF uplink/downlink and fiber optic interfaces to the GSS equipment. This paper describes the RTDS architecture and FOCC layout. The DC-X applications and ground operations are covered.

  18. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Li, Tianming; Sooseok, Choi; Takayuki, Watanabe

    2012-12-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.

  19. Fuel cell system

    DOEpatents

    Early, Jack; Kaufman, Arthur; Stawsky, Alfred

    1982-01-01

    A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.

  20. Discharge ignition in the diaphragm configuration supplied by DC non-pulsing voltage

    NASA Astrophysics Data System (ADS)

    Hlochová, L.; Hlavatá, L.; Kozáková, Z.; Krčma, F.

    2016-05-01

    This work deals with the ignition of the discharge in the diaphragm configuration generated in water solutions containing supporting NaCl electrolyte. The reactor has volume of 110 ml and it is made of polycarbonate. HV electrodes made of stainless steel are placed in this reactor. Ceramic (Shapal-MTM) diaphragm is placed in the barrier separating the cathode and the anode space. An electric power source supplies the reactor by constant DC voltage up to 4 kV and electric current up to 300 mA. The discharge ignition is compared in the reactor with different sizes of diaphragms. Measurements are carried out in electrolyte solutions with the same conductivity. Images of plasma streamers and bubble formation are taken by an ICCD camera iStar 734. Electrical characteristics are measured by an oscilloscope LeCroy LT 374 L in order to determine breakdown moments at different experimental conditions.

  1. Investigation of platinum and palladium as potential anodic catalysts for direct borohydride and ammonia borane fuel cells

    NASA Astrophysics Data System (ADS)

    Olu, Pierre-Yves; Deschamps, Fabien; Caldarella, Giuseppe; Chatenet, Marian; Job, Nathalie

    2015-11-01

    Platinum and palladium are investigated as anodic catalysts for direct borohydride and direct ammonia borane fuel cells (DBFC and DABFC). Half-cell characterizations performed at 25 °C using NH3BH3 or NaBH4 alkaline electrolytes demonstrate the lowest open-circuit potential and highest electrocatalytic activity for the NH3BH3 alkaline electrolyte for Pd and Pt rotating disk electrodes, respectively. Voltammograms performed in fuel cell configuration at 25 °C confirm this trend: the highest open circuit voltage (1.05 V) and peak power density (181 mW·cm-2) are monitored for DABFC using Pd/C and Pt/C anodes, respectively. Increasing the temperature heightens the peak power density (that reaches 420 mW·cm-2 at 60 °C for DBFC using Pt/C anodes), but strongly generates gas from the fuel hydrolysis, hindering the overall fuel cells performances. The anode texture strongly influences the fuel cell performances, highlighting: (i) that an open anode texture is required to efficiently circulate the anolyte and (ii) the difficulty to compare potential anodic catalysts characterized using different fuel cell setups within the literature. Furthermore, TEM imaging of Pt/C and Pd/C catalysts prior/post DBFC and DABFC operation shows fast degradation of the carbon-supported nanoparticles.

  2. Design, fabrication, and evaluation of charge-coupled devices with aluminum-anodized-aluminum gates

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.; Causey, W. H., Jr.

    1977-01-01

    A 4-phase, 49 1/2 bit CCD shift register was designed and fabricated using two levels of aluminum metallization with anodic Al2O3 insulation separating the layers. Test circuitry was also designed and constructed. A numerical analysis of an MOS-RC transmission line was made and results are given to characterize performance for various conductivities. The electrical design of the CCD included a low-noise dual-gate input and a balanced floating diffusion output circuit. Metallization was accomplished both by low voltage DC sputtering and thermal evaporation. The audization was according to published procedures using a buffered tartaric acid bath. Approximately 20 wafers were processed with 50 complete chips per wafer. All devices failed by shorting between the metal levels at some point. Experimental procedures eliminated temperature effects from sintering and drying, anodic oxide thickness, edge effects, photoresist stripping procedures, and metallization techniques as the primary causes of failure. It was believed from a study of SEM images that protuberances (hillocks) grow up from the first level metal through the oxide either causing a direct short or producing a weak, highly stressed insulation point which fails at low voltage. The cause of these hillocks is unknown; however, they have been observed to grow during temperature excursions to 470 C.

  3. Transport behavior of hairless mouse skin during constant current DC iontophoresis, part 2: iontophoresis of nonionic molecules with cotransport of polystyrene sulfonate oligomers.

    PubMed

    Liddell, Mark R; Li, S Kevin; Higuchi, William I

    2011-07-01

    The purpose of this study was to characterize changes that occur in the iontophoretic transport of nonionic probe permeants in hairless mouse skin epidermal membrane from the anode to cathode when polystyrene sulfonate (PSS) oligomers are cotransported from the cathode to anode. The experiments were conducted with trace levels of the nonionic probe permeants: urea, mannitol, and raffinose. In order to systematically assess changes that occur as a result of having PSS in the cathodal chamber, the steady-state transport parameters of the membrane and the experimental permeability coefficients of the probe permeants were determined and compared with results obtained from earlier baseline experiments where both the cathodal and anodal chamber media were phosphate buffered saline. In addition, the physicochemical properties of the PSS solutions were determined including the solution viscosity and conductance as well as the mobilities of individual PSS oligomers. The effective pore radii of the transport pathways were calculated using a theoretical expression based on simultaneous diffusion and electroosmosis. Compared with the baseline results, the calculated radii were found to have increased up to around twofold and the iontophoretic fluxes of the probe permeants increased by as much sixfold. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association

  4. Fabrication of a Ni nano-imprint stamp for an anti-reflective layer using an anodic aluminum oxide template.

    PubMed

    Park, Eun-Mi; Lim, Seung-Kyu; Ra, Senug-Hyun; Suh, Su-Jung

    2013-11-01

    Aluminum anodizing can alter pore diameter, density distribution, periodicity and layer thickness in a controlled way. Because of this property, porous type anodic aluminum oxide (AAO) was used as a template for nano-structure fabrication. The alumina layer generated at a constant voltage increased the pore size from 120 nm to 205 nm according to an increasing process time from 60 min to 150 min. The resulting fabricated AAO templates had pore diameters at or less than 200 nm. Ni was sputtered as a conductive layer onto this AAO template and electroplated using DC and pulse power. Comparing these Ni stamps, those generated from electroplating using on/reverse/off pulsing had an ordered pillar array and maintained the AAO template morphology. This stamp was used for nano-imprinting on UV curable resin coated glass wafer. Surface observations via electron microscopy showed that the nano-imprinted patterned had the same shape as the AAO template. A soft mold was subsequently fabricated and nano-imprinted to form a moth-eye structure on the glass wafer. An analysis of the substrate transmittance using UV-VIS/NIR spectroscopy showed that the transmittance of the substrate with the moth-eye structure was 5% greater that the non-patterned substrate.

  5. A High-Performance Lithium-Ion Battery Anode Based on the Core-Shell Heterostructure of Silicon-Coated Vertically Aligned Carbon Nanofibers

    DTIC Science & Technology

    2013-01-01

    nanotubes ( MWCNTs ) using chemical vapour deposition (CVD) to form a hybrid Si– MWCNT structure consisting of 54 to 57 wt% of Si.16 The initial specic...retained less than 70% aer 100 cycles.16 The wavy and partially entangled structure may still have prevented uniform Si deposition deep into the MWCNT ...silicon shells, as illustrated in Fig. 1. The VACNFs are a special type of MWCNTs which are grown with DC-biased plasma chemical vapour deposition (PECVD

  6. Near infrared transillumination compared with radiography to detect and monitor proximal caries: A clinical retrospective study.

    PubMed

    Abdelaziz, Marwa; Krejci, Ivo; Perneger, Thomas; Feilzer, Albert; Vazquez, Lydia

    2018-03-01

    To compare near infrared transillumination device, DIAGNOcam (DC) and bitewing radiography (BW) for the detection of proximal caries. This retrospective analysis of DC and BW images of 18 students in dental medicine who had consented to the anonymous use of their dental record. The data included BW and DC images performed for a check-up in 2013, and corresponding follow-up images performed in 2015. Two observers rated 376 proximal surfaces on a 4-level dentin lesion scale and reached a unanimous rating for each surface. Calculated measures of agreement for each assessment method over time provided the reproducibility of the information obtained by each method. Agreement between 2013 and 2015 within each method was excellent (intraclass correlation coefficient, BW: 0.86, DC: 0.90). Agreement between DC and BW was similar for dentin lesion detection, but was low for enamel caries detection; DC detected more enamel caries than BW. Agreement between DC and BW was modest (0.33 in 2013 and 0.36 in 2015), chiefly because DC identified more enamel caries. This study shows that DC is as reliable as BW to detect proximal dentin lesions. DC detects proximal enamel lesions at an earlier stage than BW. DC enables clinicians to differentiate lesions limited to the enamel from lesions that have reached the enamel dentin junction. Regular monitoring with DC should help provide individualized preventive measures and early non-invasive caries management. The early detection of enamel lesions with near infrared transillumination can help clinicians undertake early non invasive treatments to prevent or slow down the progression of initial proximal lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell.

    PubMed

    Chen, Zhengjun; Niu, Yongyan; Zhao, Shuai; Khan, Aman; Ling, Zhenmin; Chen, Yong; Liu, Pu; Li, Xiangkai

    2016-11-15

    P-nitrophenol is one of the most common contaminants in chemical industrial wastewater, and in situ real-time monitoring of PNP cannot be achieved by conventional analytical techniques. Here, a two-chamber microbial fuel cell with an aerobic anode chamber was tested as a biosensor for in situ real-time monitoring of PNP. Pseudomonas monteilii LZU-3, which was used as the biological recognition element, can form a biofilm on the anode electrode using PNP as a sole substrate. The optimal operation parameters of the biosensor were as follows: external resistance 1000Ω, pH 7.8, temperature 30°C, and maximum PNP concentration 50mgL(-1). Under these conditions, the maximum voltages showed a linear relationship with PNP concentrations ranging from 15±5 to 44±4.5mgL(-1). Furthermore, we developed a novel portable device for in situ real-time monitoring of PNP. When the device was applied to measure PNP in wastewater containing various additional aromatic compounds and metal ions, the performance of the biosensor was not affected and the correlation between the maximum voltages and the PNP concentrations ranging from 9±4mgL(-1) to 36 ± 5mgL(-1) was conserved. The results demonstrated that the MFC biosensor provides a rapid and cost-efficient analytical method for real-time monitoring of toxic and recalcitrant pollutants in environmental samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode - Part I: Impact of water diffusion and nitrogen crossover

    NASA Astrophysics Data System (ADS)

    Abbou, S.; Dillet, J.; Maranzana, G.; Didierjean, S.; Lottin, O.

    2017-02-01

    Operating a PEMFC with a dead-ended anode may lead to local fuel-starvation because of water and possibly nitrogen accumulation in the anode compartment. In previous works, we used a segmented linear cell with reference electrodes to monitor simultaneously the local potentials and current densities during dead-ended anode operation. The results indicated that water transport as well as nitrogen crossover through the membrane were most probably the two key factors governing fuel starvation. In this first from a set of two papers, we evaluated with more details the contributions of nitrogen crossover and water transport to hydrogen starvation. To assess nitrogen contribution, the fuel cell cathode compartment was first supplied with pure oxygen instead of air. The results showed that in the absence of nitrogen (in the cathode side) the fuel starvation was much slower than with air, suggesting that nitrogen contribution cannot be neglected. On the other hand, the contribution of water flooding to hydrogen starvation was investigated by using different cooling temperature on the cathode and anode sides in order to drive water toward the colder plate. The results showed that with a colder anode side, fuel starvation was faster. In the opposite case of a hotter anode plate, water accumulation in the anode compartment was limited, nitrogen crossover through the membrane was the main reason for hydrogen starvation in this case. To fully assess the impact of the thermal configurations on membrane-electrode assembly (MEA) degradation, aging protocols with a dead-ended anode and a fixed closing time were also performed. The results showed that operation with a hotter anode could help to limit significantly cathode ElectroChemical Surface Area (ECSA) losses along the cell area and performance degradation induced by hydrogen starvation.

  9. Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode - Part II: Aging mitigation strategies based on water management and nitrogen crossover

    NASA Astrophysics Data System (ADS)

    Abbou, S.; Dillet, J.; Maranzana, G.; Didierjean, S.; Lottin, O.

    2017-02-01

    Proton exchange membrane (PEM) fuel cells operate with dead-ended anode in order to reduce system cost and complexity when compared with hydrogen re-circulation systems. In the first part of this work, we showed that localized fuel starvation events may occur, because of water and nitrogen accumulation in the anode side, which could be particularly damaging to the cell performance. To prevent these degradations, the anode compartment must be purged which may lead to an overall system efficiency decrease because of significant hydrogen waste. In the second part, we present several purge strategies in order to minimize both hydrogen waste and membrane-electrode assembly degradations during dead-ended anode operation. A linear segmented cell with reference electrodes was used to monitor simultaneously the current density distribution along the gas channel and the time evolution of local anode and cathode potentials. To asses MEA damages, Platinum ElectroChemical Surface Area (ECSA) and cell performance were periodically measured. The results showed that dead-end mode operation with an anode plate maintained at a temperature 5 °C hotter than the cathode plate limits water accumulation in the anode side, reducing significantly purge frequency (and thus hydrogen losses) as well as MEA damages. As nitrogen contribution to hydrogen starvation is predominant in this thermal configuration, we also tested a microleakage solution to discharge continuously most the nitrogen accumulating in the anode side while ensuring low hydrogen losses and minimum ECSA losses provided the right microleakage flow rate is chosen.

  10. Control of plasma-liquid interaction of atmospheric DC glow discharge using liquid electrode

    NASA Astrophysics Data System (ADS)

    Shirai, Naoki; Aoki, Ryuta; Nito, Aihito; Aoki, Takuya; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2014-10-01

    Atmospheric plasma in contact with liquid have a variety of interesting phenomena and applications. Previously, we investigated the fundamental characteristics of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow. We tried to control the plasma-liquid interaction by changing the plasma parameter such as gas species, liquid, and applied voltage. Sheath flow system enables another gas (N2, O2, Ar) flow to around the helium core flow. It can control the gas species around the discharge. When liquid (NaCl aq.) cathode DC discharge is generated, Na emission (588 nm) can be observed from liquid surface with increasing discharge current. Na emission strongly depends on the discharge current and liquid temperature. However, when Ar sheath flow is used, the intensity of Na becomes weak. When liquid anode DC discharge is generated, self-organized luminous pattern formation can be observed at the liquid surface. The pattern depends on existence of oxygen gas in gap. By changing the oxygen gas ratio in the gap, variety of pattern formation can be observed. The discharge in contact with liquid also can be used for synthesis of metal nanoparticles at plasma-liquid interface. Size and shape of nanoparticles depend on discharge gases. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No 21110007) from MEXT, Japan.

  11. Charging Effects on Fluid Stream Droplets for Momentum Exchange Between Spacecraft

    DTIC Science & Technology

    2009-01-01

    DC705 have similar density; 1070 kg/m 3 for DC704 and 1097 kg/m 3 for DC705. The fluids differ chemically by a single methyl group, which is replaced...measured as a function of photon energy. The relative light intensity was monitored by the fluorescence of Sodium Salicylate . Division of the current by

  12. 14 CFR 93.341 - Aircraft operations in the DC FRZ.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-assigned discrete transponder code. The pilot must monitor VHF frequency 121.5 or UHF frequency 243.0. (d... authorization must file and activate an IFR or a DC FRZ or a DC SFRA flight plan and transmit a discrete transponder code assigned by an Air Traffic Control facility. Aircraft must transmit the discrete transponder...

  13. Formation of Sn-M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Gao, Song; Huang, Hao; Wu, Aimin; Yu, Jieyi; Gao, Jian; Dong, Xinglong; Liu, Chunjing; Cao, Guozhong

    2016-10-01

    A direct current arc-discharge method was applied to prepare the Sn-M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn-M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn-Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g-1/366.6 mA h g-1) and optimal cycle stability (a specific reversible capacity of 240 mA h g-1 maintained after 20 cycles) compared with others. Large differences in the electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process.

  14. DC electrodeposition of NiGa alloy nanowires in AAO template

    NASA Astrophysics Data System (ADS)

    Maleki, K.; Sanjabi, S.; Alemipour, Z.

    2015-12-01

    NiGa alloy nanowires were electrodeposited from an acidic sulfate bath into nanoporous anodized alumina oxide (AAO). This template was fabricated by two-step anodizing. The effects of bath composition and current density were explored on the Ga content of electrodeposited nanowires. The Ga content in the deposits was increased by increasing both Ga in the bath composition and electrodepositing current density. The NiGa alloy nanowires were synthesized for Ga content up to 2-4% without significant improving the magnetic properties. Above this threshold Ga clusters were formed and decreased the magnetic properties of the nanowires. For Ga content of the alloy above 30%, the wires were too short and incomplete. X-ray diffraction patterns reveal that the significant increase of Ga content in the nanowires, changes the FCC crystal structure of Ni to an amorphous phase. It also causes a sizeable increase in the Ga cluster size; these both lead to a significant reduction in the coercivity and the magnetization respectively.

  15. Parametric dependence of ion temperature and relative density in the NASA Lewis SUMMA facility. [superconducting magnetic mirror

    NASA Technical Reports Server (NTRS)

    Snyder, A.; Lauver, M. R.; Patch, R. W.

    1976-01-01

    Further hot-ion plasma experiments were conducted in the SUMMA superconducting magnetic mirror facility. A steady-state ExB plasma was formed by applying a strong radially inward dc electric field between cylindrical anodes and hollow cathodes located near the magnetic mirror maxima. Extending the use of water cooling to the hollow cathodes, in addition to the anodes, resulted in higher maximum power input to the plasma. Steady-state hydrogen plasmas with ion kinetic temperatures as high as 830 eV were produced. Functional relations were obtained empirically among the plasma current, voltage, magnetic flux density, ion temperature, and relative ion density. The functional relations were deduced by use of a multiple correlation analysis. Data were obtained for midplane magnetic fields from 0.5 to 3.37 tesla and input power up to 45 kW. Also, initial absolute electron density measurements are reported from a 90 deg Thomson scattering laser system.

  16. Nanoscale rectenna for broadband rectification of light from infrared to visible

    NASA Astrophysics Data System (ADS)

    Zimmerman, Darin; Chen, James; Phillips, Michael; Rager, Dennis; Sinisi, Zachary; Wambold, Raymond; Weisel, Gary; Weiss, Brock; Willis, Brian; Miskovsky, Nicholas

    2014-03-01

    We describe a novel approach to the efficient collection and rectification of solar radiation in a device designed to operate from the infrared through the visible. Here, a nanoscale, rectenna array acts both as an absorber of incident radiation and as a rectifier. Rectification derives not from temperature or material asymmetry, as with metal-insulator-metal or silicon-based, Schottky diodes. Instead, it derives from the geometric asymmetry of the rectenna, which is composed of a pointed tip and a flat collector anode. In this arrangement, the difference between the potential barriers for forward and reverse bias results in a rectified dc current. To achieve anode-cathode gap distances within the tunneling regime, we employ selective atomic-layer deposition of copper applied to palladium rectenna arrays produced by electron-beam lithography. We present details of device fabrication and preliminary results of computer simulation, optical characterization, and electro-optical response. This work supported in part by the National Science Foundation: ECCS-1231248 and ECCS-1231313.

  17. An Insoluble Titanium-Lead Anode for Sulfate Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferdman, Alla

    2005-05-11

    The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead compositemore » material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.« less

  18. Electricity production and benzene removal from groundwater using low-cost mini tubular microbial fuel cells in a monitoring well.

    PubMed

    Chang, Shih-Hsien; Wu, Chih-Hung; Wang, Ruei-Cyun; Lin, Chi-Wen

    2017-05-15

    A low-cost mini tubular microbial fuel cell (MFC) was developed for treating groundwater that contained benzene in monitoring wells. Experimental results indicate that increasing the length and density, and reducing the size of the char particles in the anode effectively reduced the internal resistance. Additionally, a thinner polyvinyl alcohol (PVA) hydrogel separator and PVA with a higher molecular weight improved electricity generation. The optimal parameters for the MFC were an anode density of 1.22 g cm -3 , a coke of 150 μm, an anode length of 6 cm, a PVA of 105,600 g mol -1 , and a separator thickness of 1 cm. Results of continuous-flow experiments reveal that the increasing the sets of MFCs and connecting them in parallel markedly improved the degradation of benzene. More than 95% of benzene was removed and electricity of 38 mW m -2 was generated. The MFC ran continuously up to 120 days without maintenance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Comparative analysis of microbial fuel cell based biosensors developed with a mixed culture and Shewanella loihica PV-4 and underlying biological mechanism.

    PubMed

    Yi, Yue; Xie, Beizhen; Zhao, Ting; Liu, Hong

    2018-06-13

    Microbial fuel cell based biosensors (MFC-biosensors) utilize anode biofilms as biological recognition elements to monitor biochemical oxygen demand (BOD) and biotoxicity. However, the relatively poor sensitivity constrains the application of MFC-biosensors. To address this limitation, this study provided a systematic comparison of sensitivity between the MFC-biosensors constructed with two inocula. Higher biomass density and viability were both observed in the anode biofilm of the mixed culture MFC, which resulted in better sensitivity for BOD assessment. Compared with using mixed culture as inoculum, the anode biofilm developed with Shewanella loihica PV-4 presented lower content of extracellular polymeric substances and poorer ability to secrete protein under toxic shocks. Moreover, the looser structure in the S. loihica PV-4 biofilm further facilitated its susceptibilities to toxic agents. Therefore, the MFC-biosensor with a pure culture of S. loihica PV-4 delivered higher sensitivity for biotoxicity monitoring. This study proposed a new perspective to enhance sensor performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Degradation of thiamethoxam by the synergetic effect between anodic oxidation and Fenton reactions.

    PubMed

    Meijide, J; Gómez, J; Pazos, M; Sanromán, M A

    2016-12-05

    In this work, a comparative study using anodic oxidation, Fenton and electro-Fenton treatments was performed in order to determine the synergic effect for the removal of thiamethoxan. The results determined that electro-Fenton process showed high efficiency in comparison with Fenton or anodic oxidation. After that, this hybrid process was optimized and the influence of iron catalyst concentration and applied current intensity on the degradation and mineralization were evaluated. Degradation profiles were monitored by high performance liquid chromatography (HPLC) being satisfactorily described by pseudo-first order kinetic model. At the optimal experimental conditions (300mA and 0.2mM Fe(+2)), the complete degradation of thiamethoxam was achieved after 10min. On the other hand, mineralization of thiamethoxam was monitored by total organic carbon (TOC) decay reaching more than 92% of TOC removal after 8h. Furthermore, a plausible mineralization pathway for the thiamethoxam degradation was proposed based on the identification of by-products such as aromatic intermediates, carboxylic acids and inorganic ions released throughout electro-Fenton process. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Combined micro-droplet and thin-film-assisted pre-concentration of lead traces for on-line monitoring using anodic stripping voltammetry.

    PubMed

    Belostotsky, Inessa; Gridin, Vladimir V; Schechter, Israel; Yarnitzky, Chaim N

    2003-02-01

    An improved analytical method for airborne lead traces is reported. It is based on using a Venturi scrubber sampling device for simultaneous thin-film stripping and droplet entrapment of aerosol influxes. At least threefold enhancement of the lead-trace pre-concentration is achieved. The sampled traces are analyzed by square-wave anodic stripping voltammetry. The method was tested by a series of pilot experiments. These were performed using contaminant-controlled air intakes. Reproducible calibration plots were obtained. The data were validated by traditional analysis using filter sampling. LODs are comparable with the conventional techniques. The method was successfully applied to on-line and in situ environmental monitoring of lead.

  2. Effects of direct current electric fields on lung cancer cell electrotaxis in a PMMA-based microfluidic device.

    PubMed

    Li, Yaping; Xu, Tao; Chen, Xiaomei; Lin, Shin; Cho, Michael; Sun, Dong; Yang, Mengsu

    2017-03-01

    Tumor metastasis is the primary cause of cancer death. Numerous studies have demonstrated the electrotactic responses of various cancer cell types, and suggested its potential implications in metastasis. In this study, we used a microfluidic device to emulate endogenous direct current electric field (dcEF) environment, and studied the electrotactic migration of non-small cell lung cancer cell lines (H460, HCC827, H1299, and H1975) and the underlying mechanisms. These cell lines exhibited greatly different response in applied dcEFs (2-6 V/cm). While H460 cells (large cell carcinoma) showed slight migration toward cathode, H1299 cells (large cell carcinoma) showed increased motility and dcEF-dependent anodal migration with cell reorientation. H1975 cells (adenocarcinoma) showed dcEF-dependent cathodal migration with increased motility, and HCC827 cells (adenocarcinoma) responded positively in migration speed and reorientation but minimally in migrating directions to dcEF. Activation of MAPK and PI3K signaling pathways was found to be associated with the realignment and directed migration of lung cancer cells. In addition, both Ca 2+ influx through activated stretch-activated calcium channels (SACCs) (but not voltage-gated calcium channels, VGCCs) and Ca 2+ release from intracellular storage were involved in lung cancer cell electrotactic responses. The results demonstrated that the microfluidic device provided a stable and controllable microenvironment for cell electrotaxis study, and revealed that the electrotactic responses of lung cancer cells were heterogeneous and cell-type dependent, and multiple signals contributed to lung cancer cells electrotaxis.

  3. Degradation of anti-inflammatory drug ketoprofen by electro-oxidation: comparison of electro-Fenton and anodic oxidation processes.

    PubMed

    Feng, Ling; Oturan, Nihal; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8 ± 0.1) × 10(9) M(-1) s(-1) by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.

  4. Anodic oxidation of benzoquinone using diamond anode.

    PubMed

    Panizza, Marco

    2014-01-01

    The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5-2 A), BQ concentration (1-2 g dm(-3)), temperature (20-45 °C) and flow rate (100-300 dm(3) h(-1)) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.

  5. Rydberg gas theory of a glow discharge plasma: I. Application to the electrical behaviour of a fast flowing glow discharge plasma.

    PubMed

    Mason, Rod S; Mitchell, David J; Dickinson, Paul M

    2010-04-21

    Current-voltage (I-V) curves have been measured, independent of the main discharge, for electricity passing through the steady state fast flowing 'afterglow' plasma of a low power dc glow discharge in Ar. Voltage profiles along the axial line of conduction have been mapped using fixed probes and potentiometry, and the mass spectra of cations emerging from the downstream sampling Cone, also acting as a probe anode, were recorded simultaneously. Floating double probe experiments were also carried out. The electrical behavior is consistent with the well established I-V characteristics of such discharges, but does not comply with classical plasma theory predictions. The plasma decays along the line of conduction, with a lifetime of approximately 1 ms, despite carrying a steady state current, and its potential is below that of the large surface area anode voltage; a situation which cannot exist in the presence of a conventional free ion-electron plasma, unless the electron temperature is super cold. Currents, large by comparison with the main discharge current, and independent of it, are induced to flow through the downstream plasma, from the Anode (acting as a cathode) to the anodic ion exit Cone, induced by electron impact ionisation at the anode, but without necessarily increasing the plasma density. It appears to be conducted by direct charge transfer between a part of the anode surface (acting as cathode to the auxiliary circuit) and the plasma, without secondary electron emission or heating, which suggests the direct involvement of Rydberg atom intermediates. The reaction energy defect (= the work function of the electrode surface) fits with the plasma potential threshold observed for the cathodic reaction to occur. A true free ion-electron plasma is readily detected by the observation of cations at the anode surface, when induced at the downstream anode, at high bias voltages, by the electron impact ionisation in the boundary region. In contrast to the classical model, the complex electrical (and mass spectrometric) behaviour fits qualitatively, but can be understood well, with the Rydberg gas model described in papers II and III (R. S. Mason, and R. S. Mason and P. Douglas, PCCP, 2010, DOI: 10.1039/b918081h and b918083d) over a wide range of probe bias voltages. The full cycle of behavior is then described for the development of a true secondary discharge within the downstream plasma.

  6. Preparation of thin hexagonal highly-ordered anodic aluminum oxide (AAO) template onto silicon substrate and growth ZnO nanorod arrays by electrodeposition

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Qaeed, M. A.; Bououdina, M.

    2014-12-01

    In this study, anodic aluminum oxide (AAO) templates of Aluminum thin films onto Ti-coated silicon substrates were prepared for growth of nanostructure materials. Hexagonally highly ordered thin AAO templates were fabricated under controllable conditions by using a two-step anodization. The obtained thin AAO templates were approximately 70 nm in pore diameter and 250 nm in length with 110 nm interpore distances within an area of 3 cm2. The difference between first and second anodization was investigated in details by in situ monitoring of current-time curve. A bottom barrier layer of the AAO templates was removed during dropping the voltage in the last period of the anodization process followed by a wet etching using phosphoric acid (5 wt%) for several minutes at ambient temperature. As an application, Zn nanorod arrays embedded in anodic alumina (AAO) template were fabricated by electrodeposition. Oxygen was used to oxidize the electrodeposited Zn nanorods in the AAO template at 700 °C. The morphology, structure and photoluminescence properties of ZnO/AAO assembly were analyzed using Field-emission scanning electron microscope (FESEM), Energy dispersive X-ray spectroscopy (EDX), Atomic force microscope (AFM), X-ray diffraction (XRD) and photoluminescence (PL).

  7. Geoelectrical Methods and Monitoring for Dam Safety Assessment, Republic of Korea

    NASA Astrophysics Data System (ADS)

    Lim, S. K.; Oldenburg, D.; Kang, S.; Song, S. H.

    2016-12-01

    Geoelectrical methods and monitoring to detect the seepage and internal erosion are essential for the safety assessment of earth dams. This work aims to develop improved methodologies to analyze the observed data and to monitor changes in seepage flow using direct current (DC) and self-potential (SP) methods. The seasonal variation of water level at dams causes a change in seepage and water saturation and hence alters the resistivity of the dam material. DC data are sensitive to water saturation and hence changes in saturation can be obtained by repeatedly measuring DC data. However, a more diagnostic parameter for safety assessment is fluid flow, and resistivity is only weakly coupled to that. Fortunately SP signals are directly related to fluid flow, and thus an SP survey has the potential to characterize fluid flow through the earth matrix. In Korea, the safety assessment of earth fill dams has been dealt by Korea Rural Community Corporation (KRC). Most of the dams are relatively old ( >50 years), hence assessing deterioration and corresponding seepage of those dams are crucial. In order to evaluate the engineering geological properties of the soil at earth dams in Korea, two boreholes in each dam were drilled to a bedrock depth that exceeds the height of the dam. A large set of field tests, including standard penetration tests (SPT) and in-situ permeability tests, were carried out along the boreholes. However, seepage paths in the dam is complex hence those limited measurements at a few points is not sufficient to delineate the zone of preferential seepage flow. For this, KRC developed permanent DC monitoring systems at a number of agricultural dams in Korea. The data were automatically collected every 6 hours. During the monitoring, the measurements of the water level at two boreholes were gathered at the same time. In this presentation we select an agricultural dam and delineate an anomalous leakage zone by inverting and interpreting time-lapse DC resistivity data acquired under conditions of variable water level. We use these results to simulate SP signals and investigate their potential in monitoring seepage. Our results lay the foundation for developing an automated analysis of DC and SP data to recognize normal and abnormal conditions and to provide an alert when variations beyond a specified threshold are detected.

  8. Description of real-time Ada software implementation of a power system monitor for the Space Station Freedom PMAD DC testbed

    NASA Technical Reports Server (NTRS)

    Ludwig, Kimberly; Mackin, Michael; Wright, Theodore

    1991-01-01

    The authors describe the Ada language software developed to perform the electrical power system monitoring functions for the NASA Lewis Research Center's Power Management and Distribution (PMAD) DC testbed. The results of the effort to implement this monitor are presented. The PMAD DC testbed is a reduced-scale prototype of the electric power system to be used in Space Station Freedom. The power is controlled by smart switches known as power control components (or switchgear). The power control components are currently coordinated by five Compaq 386/20e computers connected through an 802.4 local area network. The power system monitor algorithm comprises several functions, including periodic data acquisition, data smoothing, system performance analysis, and status reporting. Data are collected from the switchgear sensors every 100 ms, then passed through a 2-Hz digital filter. System performance analysis includes power interruption and overcurrent detection. The system monitor required a hardware timer interrupt to activate the data acquisition function. The execution time of the code was optimized by using an assembly language routine. The routine allows direct vectoring of the processor to Ada language procedures that perform periodic control activities.

  9. A FED Prototype Using Patterned DLC Thin Films as the Cathode

    NASA Astrophysics Data System (ADS)

    Li, W.; Feng, T.; Mao, D. S.; Wang, X.; Liu, X. H.; Zou, S. C.; Zhu, Y. K.; Li, Q.; Xu, J. F.; Jin, S.; Zheng, J. S.

    In our study, diamond-like-carbon (DLC) thin films were prepared by filtered arc deposition (FAD), which provided a way to deposit DLC thin films on large areas at room temperature. Glass slides coated 100nm chromium or titanium thin films were used as cathode substrates. Millions of rectangular holes with sizes of 5 × 5μm were made on the DLC films using a routine patterning process. Here a special reactive ion beam etching method was applied to etch the DLC films. The anodes of the devices were made by electrophoretic deposition. ZnO:Zn phosphor (P15) was employed, which has a broad band bluish green (centered at 490nm). Before electrophoretic deposition, the anode substrates (ITO glass slides) had been patterned into 50 anode electrodes. In order to improve the adherence of phosphor layers, the as-deposited screens were treated in Na2SiO3 solution for 24h to add additional binder. A kind of matrix-addressed diode FED prototype was designed and packaged. 50-100μm-thick glass slides were used as spacers and getters were applied to maintain the vacuum after the exhaustion. The applied DC voltage was ranged in 0-3000V and much higher current density was measured in the cathode-patterned prototypes than the unpatterned ones during the test. As a result, characters could be well displayed.

  10. Situ treatment of contaminated groundwater

    DOEpatents

    McNab, Jr., Walt W.; Ruiz, Roberto; Pico, Tristan M.

    2001-01-01

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  11. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment.

    PubMed

    Cho, Kangwoo; Qu, Yan; Kwon, Daejung; Zhang, Hao; Cid, Clément A; Aryanfar, Asghar; Hoffmann, Michael R

    2014-02-18

    We have investigated electrochemical treatment of real domestic wastewater coupled with simultaneous production of molecular H2 as useful byproduct. The electrolysis cells employ multilayer semiconductor anodes with electroactive bismuth-doped TiO2 functionalities and stainless steel cathodes. DC-powered laboratory-scale electrolysis experiments were performed under static anodic potentials (+2.2 or +3.0 V NHE) using domestic wastewater samples, with added chloride ion in variable concentrations. Greater than 95% reductions in chemical oxygen demand (COD) and ammonium ion were achieved within 6 h. In addition, we experimentally determined a decreasing overall reactivity of reactive chlorine species toward COD with an increasing chloride ion concentration under chlorine radicals (Cl·, Cl2(-)·) generation at +3.0 V NHE. The current efficiency for COD removal was 12% with the lowest specific energy consumption of 96 kWh kgCOD(-1) at the cell voltage of near 4 V in 50 mM chloride. The current efficiency and energy efficiency for H2 generation were calculated to range from 34 to 84% and 14 to 26%, respectively. The hydrogen comprised 35 to 60% by volume of evolved gases. The efficacy of our electrolysis cell was further demonstrated by a 20 L prototype reactor totally powered by a photovoltaic (PV) panel, which was shown to eliminate COD and total coliform bacteria in less than 4 h of treatment.

  12. Synthesis and surface characterization of alumina-silica-zirconia nanocomposite ceramic fibres on aluminium at room temperature

    NASA Astrophysics Data System (ADS)

    Mubarak Ali, M.; Raj, V.

    2010-04-01

    Alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres were synthesized by conventional anodization route. Scanning Electron Microscopy (SEM), Atomic Force microscopy (AFM), X-Ray Diffraction (XRD) and Energy Dispersive X-Ray spectroscopy (EDAX) were used to characterize the morphology and crystalloid structure of ASZNC fibres. Current density (DC) is one of the important parameters to get the alumina-silica-zirconia nanocomposite (ASZNC) ceramic fibres by this route. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity. The root mean square roughness of the sample observed from atomic force microscopic analysis is about 71.5 nm which is comparable to the average grain size of the coatings which is about 72 nm obtained from X-Ray diffraction. The results indicate that, the ASZNC fibres are arranged well in the nanostructure. The thickness of the coating increased with the anodizing time, but the coatings turned rougher and more porous. At the initial stage the growth of ceramic coating increases inwards to the metal substrate and outwards to the coating surface simultaneously. Subsequently, it mainly grows towards the metal substrate and the density of the ceramic coating increases gradually, which results in the decrease of the total thickness as anodizing time increases. This new approach of preparing ASZNC ceramic fibres may be important in applications ranging from gas sensors to various engineering materials.

  13. Positively charged particles in dusty plasmas.

    PubMed

    Samarian, A A; Vaulina, O S; Nefedov, A P; Fortov, V E; James, B W; Petrov, O F

    2001-11-01

    The trapping of dust particles has been observed in a dc abnormal glow discharge dominated by electron attachment. A dust cloud of several tens of positively charged particles was found to form in the anode sheath region. An analysis of the experimental conditions revealed that these particles were positively charged due to emission process, in contrast to most other experiments on the levitation of dust particles in gas-discharge plasmas where negatively charged particles are found. An estimate of the particle charge, taking into account the processes of photoelectron and secondary electron emission from the particle surface, is in agreement with the experimental measured values.

  14. Beams 92. Proceedings of the International Conference on High-Power Particle Beams (9th) held in Washington, DC on May 25-29 1992. Volume 2

    DTIC Science & Technology

    1992-05-29

    the characteristic impedance and transit time of the line. The electrical voltage at the diode was obtained by subtracting an inductive correction from...of the magnetic field Pm = B2/2po. The plasma expansion may be re- duced and hence the diode impedance may be stabilized for PmoPp. The same effect... magnetic field will stabilize the diode impedance . For Vd = 1.7 MV, VcritNd m 3 .... 4, a geometrical AK-gap of 8.5 mm and an anode surface under 530 this

  15. Effect of Lanthanum-Strontium Cathode Current-Collecting Layer on the Performance of Anode Supported Type Planar Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Park, Sun-Young; Ji, Ho-Il; Kim, Hae-Ryoung; Yoon, Kyung Joong; Son, Ji-Won; Lee, Hae-Weon; Lee, Jong-Ho

    2013-07-01

    We applied screen-printed (La,Sr)CoO3 as a current-collecting layer of planar type unit-cell for lower temperature operation of SOFCs. In this study the effects of the cathode current-collecting layer on the performance of unit cell and symmetric half cell were investigated via AC and DC polarization experiments. According to our investigation, appropriately controlled current collecting layer was very effective to enhance the unit cell performance by reducing not only the ohmic resistance but also the polarization losses of SOFC cathode.

  16. Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covino, Bernard S. Jr.; Cramer, Stephen D.; Bullard, Sophie J.

    2002-03-01

    Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of Transportation. The purposes of the research presented in this report were: evaluate the need for preheating concrete to improve the adhesion of the anode; estimate the service life of thermal spray Zn CP anodes; determine the optimum thickness for Zn CP anodes; characterize the anode-concrete interfacial chemistry; and correlate field and laboratory results. Laboratory studies involved accelerated electrochemical aging of thermal sprayed Zn anodesmore » on concrete slabs, some of which were periodically wetted while others were unwetted. Concrete used in the slabs contained either 1.2 or 3 kg NaCl /m3 (2 or 5 lbs NaCl /yd3) as part of the concrete mix design. The Zn anodes were applied to the slabs using the twin wire arc-spray technique. Half of the slabs were preheated to 120-160 C (250-320 F) to improve the initial Zn anode bond strength and the other half were not. Accelerated aging was done at a current density of 0.032 A/m2 (3 mA/ft2), 15 times that used on Oregon DOT Coastal bridges, i.e, . 0.0022 A/m2 (0.2 mA/ft2) Cores from the Cape Creek Bridge (OR), the Richmond San Rafael Bridge (CA), and the East Camino Underpass (CA) were used to study the anode-concrete interfacial chemistry, to relate the chemistry to electrochemical age at the time of sampling, and to compare the chemistry of the field anodes to the chemistry of anodes from the laboratory studies. Cores from a CALTRANS study of a silane sealant used prior to the application of the Zn anodes and cores with galvanized rebar from the Longbird Bridge (Bermuda) were also studied. Aged laboratory and field anodes were characterized by measuring some or all of the following parameters: thickness, bond strength, anode-concrete interfacial chemistry, bulk chemistry, anode resistance, circuit resistance, electrochemical age, and air and water permeability. Models are presented for the operation of periodically-wetted and unwetted thermal spray Zn anodes from the initial energizing of the anode to the end of its service life. The models were developed in terms of bond strength, circuit resistance, anode-concrete interfacial chemistry, electrochemical age, and anode condition. The most significant results of the research are: (1) preheating concrete surfaces prior to coating with Zn is unnecessary; (2) anodes generally fail due to loss of bond strength rather than Zn consumption; (3) Unwetted anodes fail more quickly than periodically-wetted anodes; (4) 0.47-0.60 mm (12-15 mil) anode thickness is adequate for most Oregon DOT coastal impressed current CP (ICCP) installations; (5) based on bond strength, thermal spray Zn ICCP anode service life is approximately 27 years at 0.0022 A/m2 (0.2 mA/ft2); (6) anode reaction products alter the anode-concrete interface by rejecting Ca from the cement paste, by replacing it with Zn, and by the accumulation of a Zn mineral layer that includes chloride and sulfur compounds; (7) CP system circuit resistance provides an effective means for monitoring the condition of Zn ICCP anodes as they age.« less

  17. DYLOS DC110

    EPA Science Inventory

    The Dylos DC1100 air quality monitor measures particulate matter (PM) to provide a continuous assessment of indoor air quality. The unit counts particles in two size ranges: large and small. According to the manufacturer, large particles have diameters between 2.5 and 10 micromet...

  18. Currents between tethered electrodes in a magnetized laboratory plasma

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Urrutia, J. M.

    1989-01-01

    Laboratory experiments on important plasma physics issues of electrodynamic tethers were performed. These included current propagation, formation of wave wings, limits of current collection, nonlinear effects and instabilities, charging phenomena, and characteristics of transmission lines in plasmas. The experiments were conducted in a large afterglow plasma. The current system was established with a small electron-emitting hot cathode tethered to an electron-collecting anode, both movable across the magnetic field and energized by potential difference up to V approx.=100 T(sub e). The total current density in space and time was obtained from complete measurements of the perturbed magnetic field. The fast spacecraft motion was reproduced in the laboratory by moving the tethered electrodes in small increments, applying delayed current pulses, and reconstructing the net field by a linear superposition of locally emitted wavelets. With this technique, the small-amplitude dc current pattern is shown to form whistler wings at each electrode instead of the generally accepted Alfven wings. For the beam electrode, the whistler wing separates from the field-aligned beam which carries no net current. Large amplitude return currents to a stationary anode generate current-driven microinstabilities, parallel electric fields, ion depletions, current disruptions and time-varying electrode charging. At appropriately high potentials and neutral densities, excess neutrals are ionized near the anode. The anode sheath emits high-frequency electron transit-time oscillations at the sheath-plasma resonance. The beam generates Langmuir turbulence, ion sound turbulence, electron heating, space charge fields, and Hall currents. An insulated, perfectly conducting transmission line embedded in the plasma becomes lossy due to excitation of whistler waves and magnetic field diffusion effects. The implications of the laboratory observations on electrodynamic tethers in space are discussed.

  19. Microbial fuel cell-based biosensor for toxic carbon monoxide monitoring.

    PubMed

    Zhou, Shaofeng; Huang, Shaobin; Li, Yi; Zhao, Nannan; Li, Han; Angelidaki, Irini; Zhang, Yifeng

    2018-08-15

    This study presents an innovative microbial fuel cell-based biosensor for carbon monoxide (CO) monitoring. The hypothesis for the function of the biosensor is that CO inhibits bacterial activity in the anode and thereby reduces electricity production. A mature electrochemically active biofilm on the anode was exposed to CO gas at varied concentrations. A proportional linear relationship (R 2 = 0.987) between CO concentration and voltage drop (0.8 to 24 mV) in the range of 10% and 70% of CO concentration was observed. Notably, no further decrease of voltage output was observed by with further increasing CO concentration over 70%. Besides, the response time of the biosensor was 1 h. The compact design and simple operation of the biosensor makes it easy to be integrated in existing CO-based industrial facilities either as a forewarning sensor for CO toxicity or even as an individual on-line monitoring device. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Monitoring transcranial direct current stimulation induced changes in cortical excitability during the serial reaction time task.

    PubMed

    Ambrus, Géza Gergely; Chaieb, Leila; Stilling, Roman; Rothkegel, Holger; Antal, Andrea; Paulus, Walter

    2016-03-11

    The measurement of the motor evoked potential (MEP) amplitudes using single pulse transcranial magnetic stimulation (TMS) is a common method to observe changes in motor cortical excitability. The level of cortical excitability has been shown to change during motor learning. Conversely, motor learning can be improved by using anodal transcranial direct current stimulation (tDCS). In the present study, we aimed to monitor cortical excitability changes during an implicit motor learning paradigm, a version of the serial reaction time task (SRTT). Responses from the first dorsal interosseous (FDI) and forearm flexor (FLEX) muscles were recorded before, during and after the performance of the SRTT. Online measurements were combined with anodal, cathodal or sham tDCS for the duration of the SRTT. Negative correlations between the amplitude of online FDI MEPs and SRTT reaction times (RTs) were observed across the learning blocks in the cathodal condition (higher average MEP amplitudes associated with lower RTs) but no significant differences in the anodal and sham conditions. tDCS did not have an impact on SRTT performance, as would be predicted based on previous studies. The offline before-after SRTT MEP amplitudes showed an increase after anodal and a tendency to decrease after cathodal stimulation, but these changes were not significant. The combination of different interventions during tDCS might result in reduced efficacy of the stimulation that in future studies need further attention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Development of 50kV air-core transformer for electron gun static power source of 3MeV DC accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewangan, S.; Bakhtsingh, R.I.; Rajan, R.N.

    A 3 MeV, 10 mA DC Electron Beam Accelerator based on the capacitively coupled parallel-fed voltage multiplier in 6 kg/cm{sup 2} SF{sub 6} gas environment is under commissioning at Electron Beam Centre, Kharghar, Navi Mumbai. Electron Gun is situated at -3 MV terminal which requires a constant power for its anode and filament. Gun power source has been derived by suitably coupling the ac components present in the HV Multiplier column. An aircore step down transformer rated for 50kV/600V/120kHz floating at 3 MV to extract the required power for electron gun from high voltage column has been developed. The transformermore » has been operated for 7 kW, 1 MeV of electron beam in 6 kg/cm{sup 2} nitrogen gas environment. The paper describes briefly about the design aspects and test results. (author)« less

  2. Influence of water conductivity on particular electrospray modes with dc corona discharge — optical visualization approach

    NASA Astrophysics Data System (ADS)

    Pongrác, Branislav; Kim, Hyun-Ha; Negishi, Nobuaki; Machala, Zdenko

    2014-08-01

    The effect of water conductivity on electrospraying of water was studied in combination with positive DC corona discharge generated in air. We used a point-to-plane geometry of electrodes with a hollow syringe needle anode opposite to the metal mesh cathode. We employed total average current measurements and high-speed camera fast time-resolved imaging. We visualized the formation of a water jet (filament) and investigated corona discharge behavior for various water conductivities. Depending on the conductivity, various jet properties were observed: pointy, prolonged, and fast spreading water filaments for lower conductivity; in contrast to rounder, broader, and shorter quickly disintegrating filaments for higher conductivity. The large acceleration values (4060 m/s2 and 520 m/s2 for 2 μS/cm and 400 μS/cm, respectively) indicate that the process is mainly governed by the electrostatic force. In addition, with increasing conductivity, the breakdown voltage for corona-to-spark transition was decreasing.

  3. Performance characteristics of nanocrystalline diamond vacuum field emission transistor array

    NASA Astrophysics Data System (ADS)

    Hsu, S. H.; Kang, W. P.; Davidson, J. L.; Huang, J. H.; Kerns, D. V.

    2012-06-01

    Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. The experimental results obtained for the ac voltage gain are found to agree with the theoretical model. A higher ac voltage gain is attainable by using a better test setup to eliminate the associated parasitic capacitances. The paper reveals the amplifier characteristics of the ND-VFET for potential applications in vacuum microelectronics.

  4. Performance characteristics of nanocrystalline diamond vacuum field emission transistor array

    NASA Astrophysics Data System (ADS)

    Hsu, S. H.; Kang, W. P.; Davidson, J. L.; Huang, J. H.; Kerns, D. V.

    2012-05-01

    Nitrogen-incorporated nanocrystalline diamond (ND) vacuum field emission transistor (VFET) with self-aligned gate is fabricated by mold transfer microfabrication technique in conjunction with chemical vapor deposition (CVD) of nanocrystalline diamond on emitter cavity patterned on silicon-on-insulator (SOI) substrate. The fabricated ND-VFET demonstrates gate-controlled emission current with good signal amplification characteristics. The dc characteristics of the ND-VFET show well-defined cutoff, linear, and saturation regions with low gate turn-on voltage, high anode current, negligible gate intercepted current, and large dc voltage gain. The ac performance of the ND-VFET is measured, and the experimental data are analyzed using a modified small signal circuit model. The experimental results obtained for the ac voltage gain are found to agree with the theoretical model. A higher ac voltage gain is attainable by using a better test setup to eliminate the associated parasitic capacitances. The paper reveals the amplifier characteristics of the ND-VFET for potential applications in vacuum microelectronics.

  5. Early Oscillation Detection for DC/DC Converter Fault Diagnosis

    NASA Technical Reports Server (NTRS)

    Wang, Bright L.

    2011-01-01

    The electrical power system of a spacecraft plays a very critical role for space mission success. Such a modern power system may contain numerous hybrid DC/DC converters both inside the power system electronics (PSE) units and onboard most of the flight electronics modules. One of the faulty conditions for DC/DC converter that poses serious threats to mission safety is the random occurrence of oscillation related to inherent instability characteristics of the DC/DC converters and design deficiency of the power systems. To ensure the highest reliability of the power system, oscillations in any form shall be promptly detected during part level testing, system integration tests, flight health monitoring, and on-board fault diagnosis. The popular gain/phase margin analysis method is capable of predicting stability levels of DC/DC converters, but it is limited only to verification of designs and to part-level testing on some of the models. This method has to inject noise signals into the control loop circuitry as required, thus, interrupts the DC/DC converter's normal operation and increases risks of degrading and damaging the flight unit. A novel technique to detect oscillations at early stage for flight hybrid DC/DC converters was developed.

  6. Hybrid power source

    DOEpatents

    Singh, Harmohan N.

    2012-06-05

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  7. Surface vibrational relaxation of N2 studied by infrared titration with time resolved Quantum Cascade Laser diagnostics

    NASA Astrophysics Data System (ADS)

    Marinov, D.; Guaitella, O.; Rousseau, A.; Lopatik, D.; Hübner, M.; Röpcke, J.; Ionikh, Yu

    2012-10-01

    Relaxation of vibrationally excited nitrogen molecules on reactor walls is the most efficient N2(v) loss mechanism in laboratory plasmas at pressures up to few tens of mbars. In the present study a new method for determination of the de-excitation probability γN2 of vibrationally excited N2 on different surfaces has been developed. A short dc discharge pulse was applied to a mixture containing 0.05-1% of CO2, N2O or CO in N2 at 1.3 mbar. Due to a very efficient vibrational coupling between N2(v) and CO2 (N2O, CO), the vibrational excitation of these titrating molecules is an image of the vibrational excitation of N2. In the afterglow, the vibrational relaxation was monitored in-situ using quantum cascade laser absorption spectroscopy. The measurements were performed in a single discharge pulse without signal accumulation. Experimental results were interpreted in terms of a numerical model of non-equilibrium vibrational kinetics. The value of γN2 was determined from the best agreement between the measured and calculated relaxation times. Using new technique the relaxation probability of N2(v) was measured for SiO2, TiO2, Al2O3, Pyrex and anodized aluminum.

  8. Eigensensitivity Analysis of Composite Laminates: Effect of Microstructure

    DTIC Science & Technology

    1992-02-01

    Mechanical Engineering 92-12946 Howard University School of Engineering Washington, D.C. 92 5 14 058 REPORT7F Approved REOTDOCUMENTATION PAGE A.48 No...Department of Mechanical Engineering Howard University Howard University Final Report Washington, D.C. 20059 F 49620-89-C-0003 9. SPONSORING I MONITORING... Howard University , Washington, D.C. 20059, USA ABSTRACT A new closed-form approximate solution for the fundamental frequency of symmetric rectangular

  9. Neutron monitoring and electrode calorimetry experiments in the HIP-1 Hot Ion Plasma

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Layman, R. W.

    1977-01-01

    Results are presented for two diagnostic procedures on HIP-1: neutron diagnostics to determine where neutrons originated within the plasma discharge chamber and electrode calorimetry to measure the steady-state power absorbed by the two anodes and cathodes. Results are also reported for a hot-ion plasma formed with a continuous-cathode rod, one that spans the full length of the test section, in place of the two hollow cathodes. The outboard neutron source strength increased relative to that at the midplane when (1) the cathode tips were moved farther outboard, (2) the anode diameters were increased, and (3) one of the anodes was removed. The distribution of neutron sources within the plasma discharge chamber was insensitive to the division of current between the two cathodes. For the continuous cathode, increasing the discharge current increased the midplane neutron source strength relative to the outboard source strength. Each cathode absorbed from 12 to 15 percent of the input power regardless of the division of current between the cathodes. The anodes absorbed from 20 to 40 percent of the input power. The division of power absorption between the anodes varied with plasma operating conditions and electrode placement.

  10. Effect of Ti Substrate Ion Implantation on the Physical Properties of Anodic TiO2 Nanotubes

    NASA Astrophysics Data System (ADS)

    Jedi-Soltanabadi, Zahra; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein

    2018-03-01

    The influence of nitrogen-ion implantation on the titanium (Ti) surface is studied. The nontreated Ti and the Ti treated with ion implantation were anodized in an ethylene-glycol-based electrolyte solution containing 0.3 wt% ammonium fluoride (NH4F) and 3 vol% deionized (DI) water at a potential of 60 V for 1 h at room temperature. The current density during the growth of the TiO2 nanotubes was monitored in-situ. The surface roughnesses of the Ti substrates before and after the ion implantation were investigated with atomic force microscopy (AFM). The surface roughness was lower for the treated Ti substrate. The morphology of the anodic TiO2 nanotubes was studied by using field-emission scanning electron microscopy (FESEM). Clearly, the titanium nanotubes grown on the treated substrate were longer. In addition, some ribs were observed on their walls. The optical band gap of the anodic TiO2 nanotubes was characterized by using a diffuse reflection spectral (DRS) analysis. The anodic TiO2 nanotubes grown on the treated Ti substrate revealed a band gap energy of approximately 3.02 eV.

  11. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum).

    PubMed

    Bi, Ran; Schlaak, Michael; Siefert, Eike; Lord, Richard; Connolly, Helen

    2011-04-01

    The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15mgkg(-1) Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1Vcm(-1)) and direct current electrical field (DC, 1Vcm(-1)) with switching polarity every 3h. The electrical fields were applied for 30d for rapeseed and 90d for tobacco, each experiment had three replicates. After a total of 90d growth for rapeseed and of 180d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. EXHIBIT OF EMPACT ESTUARY MONITORING HANDBOOKS

    EPA Science Inventory

    Related EMPACT documents were displayed at the National Estuary Day Celebration held in Washington, DC, September 30-Octuber 4, 2002. The estuary monitoring technology transfer handbooks displayed were prepared based on information and monitoring technologies developed from selec...

  13. Using multiple continuous fine particle monitors to characterize tobacco, incense, candle, cooking, wood burning, and vehicular sources in indoor, outdoor, and in-transit settings

    NASA Astrophysics Data System (ADS)

    Ott, Wayne R.; Siegmann, Hans C.

    This study employed two continuous particle monitors operating on different measurement principles to measure concentrations simultaneously from common combustion sources in indoor, outdoor, and in-transit settings. The pair of instruments use (a) photo-charging (PC) operating on the principle ionization of fine particles that responds to surface particulate polycyclic aromatic hydrocarbons (PPAHs), and (b) diffusion charging (DC) calibrated to measure the active surface area of fine particles. The sources studied included: (1) secondhand smoke (cigarettes, cigars, and pipes), (2) incense (stick and cone), (3) candles used as food warmers, (4) cooking (toasting bread and frying meat), (5) fireplaces and ambient wood smoke, and (6) in-vehicle exposures traveling on California arterials and interstate highways. The ratio of the PC to the DC readings, or the PC/DC ratio, was found to be different for major categories of sources. Cooking, burning toast, and using a "canned heat" food warmer gave PC/DC ratios close to zero. Controlled experiments with 10 cigarettes averaged 0.15 ng mm -2 (ranging from 0.11 to 0.19 ng mm -2), which was similar to the PC/DC ratio for a cigar, although a pipe was slightly lower (0.09 ng mm -2). Large incense sticks had PC/DC ratios similar to those of cigarettes and cigars. The PC/DC ratios for ambient wood smoke averaged 0.29 ng mm -2 on 6 dates, or about twice those of cigarettes and cigars, reflecting a higher ratio of PAH to active surface area. The smoke from two artificial logs in a residential fireplace had a PC/DC ratio of 0.33-0.35 ng mm -2. The emissions from candles were found to vary, depending on how the candles were burned. If the candle flickered and generated soot, a higher PC/DC ratio resulted than if the candle burned uniformly in still air. Inserting piece of metal into the candle's flame caused high PPAH emissions with a record PC/DC reading of 1.8 ng mm -2. In-vehicle exposures measured on 43- and 50-min drives on a California arterial highway gave PC/DC ratios of 0.42 and 0.58 ng mm -2, with one-min average PC/DC ratios varying along the roadway due to the different types of vehicles. Interstate highways had PC/DC ratios of approximately 0.5 ng mm -2 with ratios above 1 ng mm -2 when driving behind diesel trucks. These PC/DC ratios were higher than the "signature" value of the cigarette (0.11-0.19 ng mm -2) measured in a large Indian gaming casino with smoking. Simultaneous continuous monitors operating together can provide useful information to help differentiate source categories. The PC/DC ratio reflects the mass of PAHs per unit of active surface area of the particles, and therefore we expect it to be relevant to the toxicity of fine particles.

  14. Community Engagement to Optimize the Use of Web-Based and Wearable Technology in a Cardiovascular Health and Needs Assessment Study: A Mixed Methods Approach.

    PubMed

    Yingling, Leah R; Brooks, Alyssa T; Wallen, Gwenyth R; Peters-Lawrence, Marlene; McClurkin, Michael; Cooper-McCann, Rebecca; Wiley, Kenneth L; Mitchell, Valerie; Saygbe, Johnetta N; Johnson, Twanda D; Curry, Rev Kendrick E; Johnson, Allan A; Graham, Avis P; Graham, Lennox A; Powell-Wiley, Tiffany M

    2016-04-25

    Resource-limited communities in Washington, D.C. have high rates of obesity-related cardiovascular disease in addition to inadequate physical activity (PA) facilities and limited Internet access. Engaging community members in the design and implementation of studies to address these health disparities is essential to the success of community-based PA interventions. The objective of the study was to use qualitative and quantitative methods to evaluate the feasibility and acceptability of PA-monitoring wristbands and Web-based technology by predominantly African American, church-based populations in resource-limited Washington, D.C. neighborhoods. To address cardiovascular health in at-risk populations in Washington, D.C., we joined community leaders to establish a community advisory board, the D.C. Cardiovascular Health and Obesity Collaborative (D.C. CHOC). As their first initiative, the Washington, D.C. Cardiovascular Health and Needs Assessment intends to evaluate cardiovascular health, social determinants of health, and PA-monitoring technologies. At the recommendation of D.C. CHOC members, we conducted a focus group and piloted the proposed PA-monitoring system with community members representing churches that would be targeted by the Cardiovascular Health and Needs Assessment. Participants (n=8) agreed to wear a PA-monitoring wristband for two weeks and to log cardiovascular health factors on a secure Internet account. Wristbands collected accelerometer-based data that participants uploaded to a wireless hub at their church. Participants agreed to return after two weeks to participate in a moderated focus group to share experiences using this technology. Feasibility was measured by Internet account usage, wristband utilization, and objective PA data. Acceptability was evaluated through thematic analysis of verbatim focus group transcripts. Study participants (5 males, 3 females) were African American and age 28-70 years. Participant wristbands recorded data on 10.1±1.6 days. Two participants logged cardiovascular health factors on the website. Focus group transcripts revealed that participants felt positively about incorporating the device into their church-based populations, given improvements were made to device training, hub accessibility, and device feedback. PA-monitoring wristbands for objectively measuring PA appear to be a feasible and acceptable technology in Washington, D.C., resource-limited communities. User preferences include immediate device feedback, hands-on device training, explicit instructions, improved central hub accessibility, and designation of a church member as a trained point-of-contact. When implementing technology-based interventions in resource-limited communities, engaging the targeted community may aid in early identification of issues, suggestions, and preferences. ClinicalTrials.gov NCT01927783; https://clinicaltrials.gov/ct2/show/NCT01927783 (Archived by WebCite at http://www.webcitation.org/6f8wL117u).

  15. Next Generation Robust Low Noise Seismometer for Nuclear Monitoring

    DTIC Science & Technology

    2008-09-01

    of four fine platinum mesh electrodes, two anodes, and two cathodes, separated by thin polymer mesh or laser-perforated mica spacers. The stack is...cell (Abramocvich and Daragan, 1992-94): ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −− )exp(1 00 kT qU l eSDc =I (6) 2008 Monitoring Research Review: Ground-Based

  16. Anodic iridium oxide films: An UPS study of emersed electrodes

    NASA Astrophysics Data System (ADS)

    Kötz, E. R.; Neff, H.

    1985-09-01

    Formation of anodic iridium oxide films has been monitored using Ultraviolet Photoemission Spectroscopy (UPS) of the emersed electrodes. The potential dependent valence band spectra clearly show the onset of oxide formation at about 0.6 V versus SCE. The density of states at the Fermi level and the positron of the Fermi level with respect to the maximum of the t 2g band of the oxide indicates a transition from metallic to semiconducting behaviour of the oxide. Protonation of the oxide is associated with increased emission from OH species. A linear correlation between electrode potential and workfunction change is observed for the metal as well as for the oxide. Our results confirm known band theory models and provide a fundamental understanding of the electrochromism of anodic iridium oxide films.

  17. Investigations Of A Pulsed Cathodic Vacuum Arc

    NASA Astrophysics Data System (ADS)

    Oates, T. W. H.; Pigott, J.; Denniss, P.; Mckenzie, D. R.; Bilek, M. M. M.

    2003-06-01

    Cathodic vacuum arcs are well established as a method for producing thin films for coatings and as a source of metal ions. Research into DC vacuum arcs has been going on for over ten years in the School of Physics at the University of Sydney. Recently a project was undertaken in the school to design and build a pulsed CVA for use in the investigation of plasma sheaths and plasma immersion ion implantation. Pulsed cathodic vacuum arcs generally have a higher current and plasma density and also provide a more stable and reproducible plasma density than their DC counterparts. Additionally it has been shown that if a high repetition frequency can be established the deposition rate of pulsed arcs is equal to or greater than that of DC arcs with a concomitant reduction in the rate of macro-particle formation. We present here results of our investigations into the building of a center-triggered pulsed cathodic vacuum arc. The design of the power supply and trigger mechanism and the geometry of the anode and cathode are examined. Observations of type I and II arc spots using a CCD camera, and cathode spot velocity dependence on arc current will be presented. The role of retrograde motion in a high current pulsed arc is discussed.

  18. Growing Neural PC-12 Cell on Crosslinked Silica Aerogels Increases Neurite Extension in the Presence of an Electric Field.

    PubMed

    Lynch, Kyle J; Skalli, Omar; Sabri, Firouzeh

    2018-04-20

    Externally applied electrical stimulation (ES) has been shown to enhance the nerve regeneration process and to influence the directionality of neurite outgrowth. In addition, the physical and chemical properties of the substrate used for nerve-cell regeneration is critical in fostering regeneration. Previously, we have shown that polyurea-crosslinked silica aerogels (PCSA) exert a positive influence on the extension of neurites by PC-12 cells, a cell-line model widely used to study neurite extension and electrical excitability. In this work, we have examined how an externally applied electric field (EF) influences the extension of neurites in PC-12 cells grown on two substrates: collagen-coated dishes versus collagen-coated crosslinked silica aerogels. The externally applied direct current (DC) bias was applied in vitro using a custom-designed chamber containing polydimethysiloxane (PDMS) embedded copper electrodes to create an electric field across the substrate for the cultured PC-12 cells. Results suggest orientation preference towards the anode, and, on average, longer neurites in the presence of the applied DC bias than with 0 V DC bias. In addition, neurite length was increased in cells grown on silica-crosslinked aerogel when compared to cells grown on regular petri-dishes. These results further support the notion that PCSA is a promising material for nerve regeneration.

  19. Management of small-for-gestational-age twins with absent/reversed end diastolic flow in the umbilical artery: outcome of a policy of daily biophysical profile (BPP).

    PubMed

    Kennelly, Máiréad M; Sturgiss, Stephen N

    2007-01-01

    To evaluate a strategy of daily biophysical profile (BPP) for pregnancies with small-for-gestational-age twins and with absent or reversed end diastolic flow (AREDF) in the umbilical artery of one twin and to assess the latency interval between detection and delivery in monochorionic (MC) and dichorionic (DC) twin pregnancy. A search of the Fetal Medicine Database was carried out between 2000 and 2005 at a single tertiary centre to identify all cases with AREDF in the umbilical artery with one small-for-gestational-age twin. Active monitoring with daily BPP was undertaken, once the estimated fetal weights (EFW) was >or= 500 g and at a gestational age of >or= 24 weeks in both twins. Delivery was timed on the basis of an abnormal BPP, two equivocal BPP within 12 h or gestational age of >or= 32(+0) weeks. Twenty-two MC and 17 DC twin pregnancies were identified. There were no fetal losses in the viable actively monitored MC (19) and DC (13) twins. There was a longer latency interval in the MC group at 21.7 days versus 14.4 days in the DC group (p = 0.13). Delivery was indicated for an abnormal BPP (57.8% MC vs 30.8% DC). A strategy of daily BPP can be used to monitor preterm twin fetuses with AREDF, prolonging pregnancy with an acceptable perinatal outcome. Copyright 2007 John Wiley & Sons, Ltd.

  20. In-situ study of the gas-phase composition and temperature of an intermediate-temperature solid oxide fuel cell anode surface fed by reformate natural gas

    NASA Astrophysics Data System (ADS)

    Santoni, F.; Silva Mosqueda, D. M.; Pumiglia, D.; Viceconti, E.; Conti, B.; Boigues Muñoz, C.; Bosio, B.; Ulgiati, S.; McPhail, S. J.

    2017-12-01

    An innovative experimental setup is used for in-depth and in-operando characterization of solid oxide fuel cell anodic processes. This work focuses on the heterogeneous reactions taking place on a 121 cm2 anode-supported cell (ASC) running with a H2, CH4, CO2, CO and steam gas mixture as a fuel, using an operating temperature of 923 K. The results have been obtained by analyzing the gas composition and temperature profiles along the anode surface in different conditions: open circuit voltage (OCV) and under two different current densities, 165 mA cm-2 and 330 mA cm-2, corresponding to 27% and 54% of fuel utilization, respectively. The gas composition and temperature analysis results are consistent, allowing to monitor the evolution of the principal chemical and electrochemical reactions along the anode surface. A possible competition between CO2 and H2O in methane internal reforming is shown under OCV condition and low current density values, leading to two different types of methane reforming: Steam Reforming and Dry Reforming. Under a current load of 40 A, the dominance of exothermic reactions leads to a more marked increase of temperature in the portion of the cell close to the inlet revealing that current density is not uniform along the anode surface.

  1. Galvanic cathodic protection for reinforced concrete bridge decks: Field evaluation

    NASA Astrophysics Data System (ADS)

    Whiting, D.; Stark, D.

    1981-06-01

    The application of four sacrificial zinc anode cathodic protection systems to a reinforced concrete highway bridge deck is described. Two system designs were found to be the most promising in terms of polarized potentials and protective current densities achieved during the 3 year monitoring program. One design uses commercially available zinc ribbon anodes spaced at 5 in (127 mm) centers; the other, custom-fabricated perforated zinc sheets. Both systems are overlaid with an open-graded asphalt friction course. The systems yield maximum current density and polarized potentials under warm and moist environment conditions.

  2. Layered double hydroxide films on nanoporous anodic aluminum oxide/aluminum wire: a new fiber for rapid analysis of Origanum vulgare essential oils.

    PubMed

    Piryaei, Marzieh

    2018-01-01

    Zn/Al layered double hydroxide (LDH) films were fabricated in situ with anodic aluminium oxide aluminium as both the substrate and the sole aluminium source by means of urea hydrolysis. Headspace solid phase microextraction using LDH fibre in combination with capillary GC-MS was utilised as a monitoring technique for the collection and detection of the volatile compounds of Origanum vulgare. Experimental parameters, including the sample weight, microwave power, extraction time and humidity effect, were examined and optimised.

  3. Polarization controlled kinetics and composition of trivalent chromium coatings on aluminum.

    PubMed

    Dardona, Sameh; Chen, Lei; Kryzman, Michael; Goberman, Daniel; Jaworowski, Mark

    2011-08-15

    Combined in situ spectroscopic ellipsometry and electrochemistry have been employed to monitor, in real-time, the formation of trivalent Cr conversion coatings on polished Al substrates at applied sample potentials. It is found that the formation kinetics and chemical composition of the film can be controlled by adjusting the anodic and cathodic reactions. The growth kinetics are accelerated at more positive anodic potentials or more negative cathodic potentials. At more negative potentials, the percentage of chromium in the coating is found to increase, while the zirconium percentage decreases.

  4. Anti-Estrogen Regulation of Macrophage Products That Influence Breast Cancer Cell Proliferation and Susceptibility to Apoptosis

    DTIC Science & Technology

    2005-08-01

    Susceptibility to Apoptosis PRINCIPAL INVESTIGATOR: Theodore A. Bremner, Ph.D. CONTRACTING ORGANIZATION: Howard University Washington, DC 20060 REPORT DATE...NUMBER Howard University Washington, DC 20060 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORIMONITOR’S ACRONYM(S) U.S. Army Medical...and Howard University Cancer Center, Howard University , Washington, DC 20059 and 20060. It is now generally accepted that stromal cells play important

  5. Size dependent polaronic conduction in hematite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Monika; Banday, Azeem; Murugavel, Sevi

    2016-05-23

    Lithium Ion Batteries have been attracted as the major renewable energy source for all portable electronic devices because of its advantages like superior energy density, high theoretical capacity, high specific energy, stable cycling and less memory effects. Recently, α-Fe{sub 2}O{sub 3} has been considered as a potential anode material due to high specific capacity, low cost, high abundance and environmental benignity. We have synthesized α-Fe{sub 2}O{sub 3} with various sizes by using the ball milling and sol-gel procedure. Here, we report the dc conductivity measurement for the crystallite size ranging from 15 nm to 50 nm. It has been observedmore » that the enhancement in the polaronic conductivity nearly two orders in magnitude while reducing the crystallite size from bulk into nano scale level. The enhancement in the conductivity is due to the augmented to compressive strain developed in the material which leads to pronounced decrease in the hopping length of polarons. Thus, nanocrystaline α-Fe{sub 2}O{sub 3} may be a better alternative anode material for lithium ion batteries than earlier reported systems.« less

  6. Method of monitoring CO concentrations in hydrogen feed to a PEM fuel cell

    DOEpatents

    Grot, Stephen Andreas; Meltser, Mark Alexander; Gutowski, Stanley; Neutzler, Jay Kevin; Borup, Rodney Lynn; Weisbrod, Kirk

    2000-01-01

    The CO concentration in the H.sub.2 feed stream to a PEM fuel cell stack is monitored by measuring current and/or voltage behavior patterns from a PEM-probe communicating with the reformate feed stream. Pattern recognition software may be used to compare the current and voltage patterns from the PEM-probe to current and voltage telltale outputs determined from a reference cell similar to the PEM-probe and operated under controlled conditions over a wide range of CO concentrations in the H.sub.2 fuel stream. The PEM-probe is intermittently purged of any CO build-up on the anode catalyst (e.g., by (1) flushing the anode with air, (2) short circuiting the PEM-probe, or (3) reverse biasing the PEM-probe) to keep the PEM-probe at peak performance levels.

  7. Data Validation Package, July 2016 Groundwater Sampling at the Shirley Basin South, Wyoming, Disposal Site November 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frazier, William; Price, Jeffrey

    Sampling Period: July 14-15, 2016 The 2004 Long-Term Surveillance Plan for the Shirley Basin South (UMTRCA Title II) Disposal Site, Carbon County, Wyoming, requires annual monitoring to verify continued compliance with the pertinent alternate concentration limits (ACLs) and Wyoming Class III (livestock use) groundwater protection standards. Planned monitoring locations are shown in Attachment 1, Sampling and Analysis Work Order. Point-of-compliance (POC) wells 19-DC, 5-DC, and 5-SC, and monitoring wells 10-DC, 110-DC, 112-DC, 113-DC, 40-SC, 54-SC, 100-SC, 102-SC, and K.G.S.#3 were sampled. POC well 51-SC and downgradient well 101-SC were dry at the time of sampling. The water level was measuredmore » at each sampled well. See Attachment 2, Trip Report for additional details. Sampling and analyses were conducted in accordance with the Sampling and Analysis Plan for the U S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated, http://energy.gov/lm/downloads/sampling-and­ analysis-plan-us-department-energy-office-legacy-management-sites). ACLs are approved for cadmium, chromium, lead, nickel, radium-226, radium-228, selenium, thorium-230, and uranium in site groundwater. Time-concentration graphs of the contaminants of concern in POC wells are included in Attachment 3, Data Presentation. The only ACL exceedance in a POC well was radium-228 in well 5-DC where the concentration was 30.7 picocuries per liter (pCi/L), exceeding the ACL of 25.7 pCi/L. Concentrations of sulfate and total dissolved solids continue to exceed their respective Wyoming Class III groundwater protection standards for livestock use in wells 5-DC, 5-SC, and 54-SC as they have done throughout the sampling history; however, there is no livestock use of the water from these aquifers at the site, and no constituent concentrations exceed groundwater protection standards at the wells near the site boundary.« less

  8. Real-time monitoring of subsurface microbial metabolism with graphite electrodes

    DOE PAGES

    Wardman, Colin; Nevin, Kelly P.; Lovley, Derek R.

    2014-11-21

    Monitoring in situ microbial activity in anoxic submerged soils and aquatic sediments can be labor intensive and technically difficult, especially in dynamic environments in which a record of changes in microbial activity over time is desired. Microbial fuel cell concepts have previously been adapted to detect changes in the availability of relatively high concentrations of organic compounds in waste water but, in most soils and sediments, rates of microbial activity are not linked to the concentrations of labile substrates, but rather to the turnover rates of the substrate pools with steady state concentrations in the nM-μ M range. In ordermore » to determine whether levels of current produced at a graphite anode would correspond to the rates of microbial metabolism in anoxic sediments, small graphite anodes were inserted in sediment cores and connected to graphite brush cathodes in the overlying water. Currents produced were compared with the rates of [2- 14C]-acetate metabolism. There was a direct correlation between current production and the rate that [2- 14C]-acetate was metabolized to 14CO 2 and 14CH 4 in sediments in which Fe(III) reduction, sulfate reduction, or methane production was the predominant terminal electron-accepting process. At comparable acetate turnover rates, currents were higher in the sediments in which sulfate-reduction or Fe(III) reduction predominated than in methanogenic sediments. This was attributed to reduced products (Fe(II), sulfide) produced at distance from the anode contributing to current production in addition to the current that was produced from microbial oxidation of organic substrates with electron transfer to the anode surface in all three sediment types. In conclusion, the results demonstrate that inexpensive graphite electrodes may provide a simple strategy for real-time monitoring of microbial activity in a diversity of anoxic soils and sediments.« less

  9. Gelatin coated electrodes allow prolonged bioelectronic measurements

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Silver electrodes treated with an anodizing electrolyte containing gelatin are used for long term monitoring of bioelectronic potentials in humans. The electrodes do not interact with perspiration, cause skin irritation, or promote the growth of bacteria.

  10. Effects of dc bias on the kinetics and electrical properties of silicon dioxide grown in an electron cyclotron resonance plasma

    NASA Astrophysics Data System (ADS)

    Carl, D. A.; Hess, D. W.; Lieberman, M. A.; Nguyen, T. D.; Gronsky, R.

    1991-09-01

    Thin (3-300-nm) oxides were grown on single-crystal silicon substrates at temperatures from 523 to 673 K in a low-pressure electron cyclotron resonance (ECR) oxygen plasma. Oxides were grown under floating, anodic or cathodic bias conditions, although only the oxides grown under floating or anodic bias conditions are acceptable for use as gate dielectrics in metal-oxide-semiconductor technology. Oxide thickness uniformity as measured by ellipsometry decreased with increasing oxidation time for all bias conditions. Oxidation kinetics under anodic conditions can be explained by negatively charged atomic oxygen, O-, transport limited growth. Constant current anodizations yielded three regions of growth: (1) a concentration gradient dominated regime for oxides thinner than 10 nm, (2) a field dominated regime with ohmic charged oxidant transport for oxide thickness in the range of 10 nm to approximately 100 nm, and (3) a space-charge limited regime for films thicker than approximately 100 nm. The relationship between oxide thickness (xox), overall potential drop (Vox) and ion current (ji) in the space-charge limited transport region was of the form: ji ∝ V2ox/x3ox. Transmission electron microscopy analysis of 5-60-nm-thick anodized films indicated that the silicon-silicon dioxide interface was indistinguishable from that of thermal oxides grown at 1123 K. High-frequency capacitance-voltage (C-V) and ramped bias current-voltage (I-V) studies performed on 5.4-30-nm gate thickness capacitors indicated that the as-grown ECR films had high levels of fixed oxide charge (≳1011 cm-2) and interface traps (≳1012 cm-2 eV-1). The fixed charge level could be reduced to ≊4×1010 cm-2 by a 20 min polysilicon gate activation anneal at 1123 K in nitrogen; the interface trap density at mid-band gap decreased to ≊(1-2)×1011 cm-2 eV-1 after this process. The mean breakdown strength for anodic oxides grown under optimum conditions was 10.87±0.83 MV cm-1. Electrical properties of the 5.4-8-nm gates compared well with thicker films and control dry thermal oxides of similar thicknesses.

  11. Cross-Correlation of Motor Activity Signals from dc-Magnetoencephalography, Near-Infrared Spectroscopy, and Electromyography

    PubMed Central

    Sander, Tilmann H.; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz

    2010-01-01

    Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds. PMID:20145717

  12. Cross-correlation of motor activity signals from dc-magnetoencephalography, near-infrared spectroscopy, and electromyography.

    PubMed

    Sander, Tilmann H; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz

    2010-01-01

    Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.

  13. Elemental composition study of heavy metal (Ni, Cu, Zn) in riverbank soil by electrokinetic-assisted phytoremediation using XRF and SEM/EDX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamari, Suhailly; Embong, Zaidi; Bakar, Ismail

    Electrokinetic (EK)-assisted phytoremediation is one of the methods that have a big potential in enhancing the ability of plant uptake in soils remediation process. This research was conducted to investigate the difference in elemental composition concentration of riverbank soil and the change of pH between pre- and post-phytoremediation under the following condition: 1) control or as-receive sample; 2) Dieffenbachia spp plant with EK system (a pair of EK electrodes connected to a direct current (DC) power supply). After the electrodes were connected to a magnitude of 6V/cm{sup −1} electric field for 4 hours/day, the soil and plant samples were analyzedmore » using and X-ray Fluorescence Spectrometer (XRF) and Scanning Electron Microscope / Energy Dispersive X-ray Spectroscopy (SEM/EDX). The SEM/EDX analysis showed that concentration of elemental composition (Ni, Cu and Zn) in post-phytoremediation plant powder samples had increase while elemental concentrations in the post-phytoremediation soil samples were decreased. XRF analysis presented a variation in soil elemental composition concentration from anode to cathode where the concentration near anode region increased while decreased near the cathode region. A significant changes in soil pH were obtained where the soil pH increase in cathode region while decrease in anode region. The results reveal that the assistance of EK in phytoremediation process has increase the efficiency of plant uptake.« less

  14. Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada

    NASA Astrophysics Data System (ADS)

    Power, Christopher; Tsourlos, Panagiotis; Ramasamy, Murugan; Nivorlis, Aristeidis; Mkandawire, Martin

    2018-03-01

    Mine waste rock piles (WRPs) can contain sulfidic minerals whose interaction with oxygen and water can generate acid mine drainage (AMD). Thus, WRPs can be a long-term source of environmental pollution. Since the generation of AMD and its release into the environment is dependent on the net volume and bulk composition of waste rock, effective characterization of WRPs is necessary for successful remedial design and monitoring. In this study, a combined DC resistivity and induced polarization (DC-IP) approach was employed to characterize an AMD-generating WRP in the Sydney Coalfield, Nova Scotia, Canada. Two-dimensional (2D) DC-IP imaging with 6 survey lines was performed to capture the full WRP landform. 2D DC results indicated a highly heterogeneous and moderately conductive waste rock underlain by a resistive bedrock containing numerous fractures. 2D IP (chargeability) results identified several highly-chargeable regions within the waste, with normalized chargeability delineating regions specific to waste mineralogy only. Three-dimensional (3D) DC-IP imaging, using 17 parallel lines on the plateau of the pile, was then used to focus on the composition of the waste rock. The full 3D inverted DC-IP distributions were used to identify coincident and continuous zones (isosurfaces) of low resistivity (<30 Ω-m) and high normalized chargeability (>0.4 mS/m) that were inferred as generated AMD (leachate) and stored AMD (sulfides), respectively. Integrated geological, hydrogeological and geochemical data increased confidence in the geoelectrical interpretations. Knowledge on the location of potentially more reactive waste material is extremely valuable for improved long-term AMD monitoring at the WRP.

  15. Application of low-temperature plasma for the synthesis of hydrogenated graphene (graphane)

    NASA Astrophysics Data System (ADS)

    Shavelkina, M. B.; Amirov, R. H.; Katarzhis, V. A.; Kiselev, V. I.

    2017-12-01

    The possibility of a direct synthesis of hydrogenated graphene in decomposition of methane by means of low-temperature plasma was investigated. A DC plasma torch with an expanding channel-anode, a vortex gas supply and a self-setting arc length was used as a generator of low-temperature plasma. Argon was used as the plasma-forming gas. The temperatures of argon plasma and with methane addition to it were determined on the basis of spectral measurements. The synthesis products were characterized by electron microscopy and thermogravimetry. The effect of hydrogenated graphene as a nanomodifier on the properties of the cubic boron nitride based functional ceramics was investigated.

  16. CIRCUITS FOR CURRENT MEASUREMENTS

    DOEpatents

    Cox, R.J.

    1958-11-01

    Circuits are presented for measurement of a logarithmic scale of current flowing in a high impedance. In one form of the invention the disclosed circuit is in combination with an ionization chamber to measure lonization current. The particular circuit arrangement lncludes a vacuum tube having at least one grid, an ionization chamber connected in series with a high voltage source and the grid of the vacuum tube, and a d-c amplifier feedback circuit. As the ionization chamber current passes between the grid and cathode of the tube, the feedback circuit acts to stabilize the anode current, and the feedback voltage is a measure of the logaritbm of the ionization current.

  17. Gas chemical studies using corona discharge reactors

    NASA Astrophysics Data System (ADS)

    Schulze, P.; Stankiewicz, A.; Aicher, M.; Mattner, M.; Ulrich, A.

    2010-12-01

    Corona discharges with voltages up to 60 kV (DC) were studied with the aim to induce chemical reactions in flue gases at atmospheric pressure. Various plasma reactors with different geometries of multi-needle arrays were tested. The power input was optimised by studying the electrical parameters of the set-up systematically. Both, solid and liquid electrodes were used in combination with the needle arrays. A precise positioning of the corona needles allowed operation without a ballast resistor. Formation rates for CO and the sum of NO2 and O3 are reported and discussed. Three catalytic anode-coatings were tested for their potential to decompose carbon dioxide.

  18. Effect of polarity of electric current on friction behavior of two gallium-lubricated tantalum slipring assemblies

    NASA Technical Reports Server (NTRS)

    Przybyszewski, J.

    1972-01-01

    Computer-processed data from low-speed (10 rpm) slipring experiments with two similar (but of opposite polarity) gallium-lubricated tantalum slipring assemblies (hemisphere against disk) carrying 50 amperes dc in vacuum (10 to the minus 9th power torr) showed that the slipring assembly with the anodic hemisphere had significantly lower peak-to-peak values and standard deviations of coefficient-of-friction samples (a measure of smoothness of operation) than the slipring assembly with the cathodic hemisphere. Similar data from an experiment with the same slipring assemblies running currentless showed more random differences in the frictional behavior between the two assemblies.

  19. The advantages of wearable green reflected photoplethysmography.

    PubMed

    Maeda, Yuka; Sekine, Masaki; Tamura, Toshiyo

    2011-10-01

    This report evaluates the efficacy of reflected-type green light photoplethysmography (green light PPG). Transmitted infrared light was used for PPG and the arterial pulse was monitored transcutaneously. The reflected PPG signal contains AC components based on the heartbeat-related signal from the arterial blood flow and DC components, which include reflectance and scattering from tissue. Generally, changes in AC components are monitored, but the DC components play an important role during heat stress. In this study, we compared the signal of green light PPG to infrared PPG and ECG during heat stress. The wavelengths of the green and infrared light were 525 nm and 880 nm, respectively. Experiments were performed on young healthy subjects in cold (10°C), hot (45°C), and normal environments. The pulse rates were compared among three measurement devices and the AC and DC components of the PPG signal were evaluated during heat stress. The pulse rates obtained from green light PPG were strongly correlated with the R-R interval of an electrocardiogram in all environments, but those obtained from infrared light PPG displayed a weaker correlation with cold exposure. The AC components were of similar signal output for both wavelengths during heat stress. Also, the DC components for green light PPG were similar during heat stress, but showed less signal output for infrared light PPG during hot exposure. The main reason for the reduced DC components was speculated to be the increased blood flow at the vascular bed. Therefore, reflected green light PPG can be useful for pulse rate monitoring because it is less influenced by the tissue and vein region.

  20. Polarization Induced Deterioration of Reinforced Concrete with CFRP Anode.

    PubMed

    Zhu, Ji-Hua; Wei, Liangliang; Zhu, Miaochang; Sun, Hongfang; Tang, Luping; Xing, Feng

    2015-07-15

    This paper investigates the deterioration of reinforced concrete with carbon fiber reinforced polymer (CFRP) anode after polarization. The steel in the concrete was first subjected to accelerated corrosion to various extents. Then, a polarization test was performed with the external attached CFRP as the anode and the steel reinforcement as the cathode. Carbon fiber reinforced mortar and conductive carbon paste as contact materials were used to adhere the CFRP anode to the concrete. Two current densities of 1244 and 2488 mA/m², corresponding to the steel reinforcements were applied for 25 days. Electrochemical parameters were monitored during the test period. The deterioration mechanism that occurred at the CFRP/contact material interface was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The increase of feeding voltage and the failure of bonding was observed during polarization process, which might have resulted from the deterioration of the interface between the contact material and CFRP. The formation and accumulation of NaCl crystals at the contact material/CFRP interface were inferred to be the main causes of the failure at the interface.

  1. Real-time monitoring of human blood-brain barrier disruption

    PubMed Central

    Kiviniemi, Vesa; Korhonen, Vesa; Kortelainen, Jukka; Rytky, Seppo; Keinänen, Tuija; Tuovinen, Timo; Isokangas, Matti; Sonkajärvi, Eila; Siniluoto, Topi; Nikkinen, Juha; Alahuhta, Seppo; Tervonen, Osmo; Turpeenniemi-Hujanen, Taina; Myllylä, Teemu; Kuittinen, Outi; Voipio, Juha

    2017-01-01

    Chemotherapy aided by opening of the blood-brain barrier with intra-arterial infusion of hyperosmolar mannitol improves the outcome in primary central nervous system lymphoma. Proper opening of the blood-brain barrier is crucial for the treatment, yet there are no means available for its real-time monitoring. The intact blood-brain barrier maintains a mV-level electrical potential difference between blood and brain tissue, giving rise to a measurable electrical signal at the scalp. Therefore, we used direct-current electroencephalography (DC-EEG) to characterize the spatiotemporal behavior of scalp-recorded slow electrical signals during blood-brain barrier opening. Nine anesthetized patients receiving chemotherapy were monitored continuously during 47 blood-brain barrier openings induced by carotid or vertebral artery mannitol infusion. Left or right carotid artery mannitol infusion generated a strongly lateralized DC-EEG response that began with a 2 min negative shift of up to 2000 μV followed by a positive shift lasting up to 20 min above the infused carotid artery territory, whereas contralateral responses were of opposite polarity. Vertebral artery mannitol infusion gave rise to a minimally lateralized and more uniformly distributed slow negative response with a posterior-frontal gradient. Simultaneously performed near-infrared spectroscopy detected a multiphasic response beginning with mannitol-bolus induced dilution of blood and ending in a prolonged increase in the oxy/deoxyhemoglobin ratio. The pronounced DC-EEG shifts are readily accounted for by opening and sealing of the blood-brain barrier. These data show that DC-EEG is a promising real-time monitoring tool for blood-brain barrier disruption augmented drug delivery. PMID:28319185

  2. Formaldehyde monitor for automobile exhausts

    NASA Technical Reports Server (NTRS)

    Easley, W. C.

    1973-01-01

    Device makes use of microwave spectral absorption in low-Q resonant Stark cell, and indications are that ultimate sensitivity of instrument is within 100 parts per billion of formaldehyde. Microwave source is very small and requires only six-volt dc bias for operation. Coarse tuning is accomplished mechanically and fine tuning by adjusting dc-bias voltage.

  3. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-07-01

    We propose detecting a fragment ion (Ph2As+) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH+) of DA, DC, DPAH, and BDPAO could produce Ph2As+ through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As+ signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH+ signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As+.

  4. Damage control of civilian penetrating brain injuries in environments of low neuro-monitoring resources.

    PubMed

    Charry, José D; Rubiano, Andrés M; Puyana, Juan C; Carney, Nancy; David Adelson, P

    2016-01-01

    Gunshot wounds to the head are more common in military settings. Recently, a damage control (DC) approach for the management of these lesions has been used in combat areas. The aim of this study was to evaluate the results of civilian patients with penetrating gunshot wounds to the head, managed with a strategy of early cranial decompression (ECD) as a DC procedure in a university hospital with few resources for intensive care unit (ICU) neuro-monitoring in Colombia. Fifty-four patients were operated according to the DC strategy (<12 h after injury), over a 4-year period. Variables were analysed and results were evaluated according to the Glasgow Outcome Scale (GOS) at 12 months post injury; a dichotomous variable was established as 'favourable' (GOS 4-5) or 'unfavourable' (GOS 1-3). A univariate analysis was performed using a χ(2) test. Forty (74.1%) of the patients survived and 36 (90%) of them had favourable GOS. Factors associated with adverse outcomes were: Injury Severity Score (ISS) greater than 25, bi-hemispheric involvement, intra-cerebral haematoma on the first CT, closed basal cisterns and non-reactive pupils in the emergency room. DC for neurotrauma with ECD is an option to improve survival and favourable neurological outcomes 12 months after injury in patients with penetrating traumatic brain injury treated in a university hospital with few resources for ICU neuro-monitoring.

  5. Brain sparing effect in growth-restricted fetuses is associated with decreased cardiac acceleration and deceleration capacities: a case-control study.

    PubMed

    Stampalija, T; Casati, D; Monasta, L; Sassi, R; Rivolta, M W; Muggiasca, M L; Bauer, A; Ferrazzi, E

    2016-11-01

    Phase rectified signal averaging (PRSA) is a new method of fetal heart rate variability (fHRV) analysis that quantifies the average acceleration (AC) and deceleration capacity (DC) of the heart. The aim of this study was to evaluate AC and DC of fHR [recorded by trans-abdominal fetal electrocardiogram (ta-fECG)] in relation to Doppler velocimetry characteristics of intrauterine growth restriction (IUGR). Prospective case-control study. Single third referral centre. IUGR (n = 66) between 25 and 40 gestational weeks and uncomplicated pregnancies (n = 79). In IUGR the nearest ta-fECG monitoring to delivery was used for PRSA analysis and Doppler velocimetry parameters obtained within 48 hours. AC and DC were computed at s = T = 9. The relation was evaluated between either AC or DC and Doppler velocimetry parameters adjusting for gestational age at monitoring, as well as the association between either AC or DC and IUGR with or without brain sparing. In IUGRs there was a significant association between either AC and DC and middle cerebral artery pulsatility index (PI; P = 0.01; P = 0.005), but the same was not true for uterine or umbilical artery PI (P > 0.05). Both IUGR fetuses with and without brain sparing had lower AC and DC than controls, but this association was stronger for IUGRs with brain sparing. Our study observed for the first time that AC and DC at PRSA analysis are associated with middle cerebral artery PI, but not with uterine or umbilical artery PI, and that there is a significant decrease of AC and DC in association with brain sparing in IUGR fetuses from 25 weeks of gestation to term. Brain sparing in IUGR fetuses is associated with decreased acceleration and deceleration capacities of the heart. © 2015 Royal College of Obstetricians and Gynaecologists.

  6. Comparative study of serum/plasma glycation and lipid peroxidation of young patients with type 1 diabetes mellitus in relation to glycemic compensation and the occurrence of diabetic complications.

    PubMed

    Kostolanska, J; Jakus, V; Barak, L; Stanikova, A; Waczulikova, I

    2010-01-01

    We tried to investigate whether the AGEs in serum and lipoperoxides (LPO) monitoring were suitable for an early prediction of diabetic complications (DC) development in diabetological practice. We wanted to find whether it is better to divide the file according to the presence of DC or in terms of glycemic compensation in this study. 79 diabetic patients with duration of disease for at least 5 years were divided in respect to DC presence/absence and also to long-time glycemic compensation. HbA1c was measured by LPLC in fair capillary blood, s-AGEs were estimated spectrofluorimetrically and LPO iodimetrically and spectrophotometrically in serum. HbA1c, s-AGEs and LPO were significantly higher in the group with DC (+DC) vs. controls and also in -DC vs. controls. HbA1c and s-AGEs were significantly higher in +DC vs. patients without DC (-DC). HbA1c, s-AGEs and LPO were significantly higher in patients with poor glycemic compensation (PGC) compared to controls and HbA1c and LPO in patients with good glycemic compensation (GGC) compared to controls. HbA1c and s-AGEs were significantly higher in PGC vs. GGC. In the group of GGC we have found interesting significant correlations of HbA1c with HDL (r=0.451, p<0.05) and with LDL (r=-0.450, p<0.05). Our findings suggest that the monitoring of s-AGEs in poorly compensated diabetic patients and LPO in all may be very useful to recognize the risk of complications. The dividing of patient file in terms of long time glycemic compensation is more reliable for research of this issue (Tab. 3, Fig. 6, Ref. 41). Full Text in free PDF www.bmj.sk.

  7. Nanoscale perspective: Materials designs and understandings in lithium metal anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Dingchang; Liu, Yayuan; Pei, Allen

    Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts. However, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable. In recent years, nanotechnologies have become increasingly important in materials design and fabrication for Li metal anodes, contributing to major progress in the field. In this review, we first introduce the main achievements in Li metal battery systems fulfilled by nanotechnologies, particularly regarding Li metal anode design and protection, ultrastrong separator engineering, safety monitoring, and smart functions. Next, we introduce recent studies onmore » nanoscale Li nucleation/deposition. Lastly, we discuss possible future research directions. We hope this review delivers an overall picture of the role of nanoscale approaches in the recent progress of Li metal battery technology and inspires more research in the future.« less

  8. Nanoscale perspective: Materials designs and understandings in lithium metal anodes

    DOE PAGES

    Lin, Dingchang; Liu, Yayuan; Pei, Allen; ...

    2017-05-19

    Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts. However, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable. In recent years, nanotechnologies have become increasingly important in materials design and fabrication for Li metal anodes, contributing to major progress in the field. In this review, we first introduce the main achievements in Li metal battery systems fulfilled by nanotechnologies, particularly regarding Li metal anode design and protection, ultrastrong separator engineering, safety monitoring, and smart functions. Next, we introduce recent studies onmore » nanoscale Li nucleation/deposition. Lastly, we discuss possible future research directions. We hope this review delivers an overall picture of the role of nanoscale approaches in the recent progress of Li metal battery technology and inspires more research in the future.« less

  9. Analysis and Countermeasure Study on DC Bias of Main Transformer in a City

    NASA Astrophysics Data System (ADS)

    Wang, PengChao; Wang, Hongtao; Song, Xinpu; Gu, Jun; Liu, yong; Wu, weili

    2017-07-01

    According to the December 2015 Guohua Beijing thermal power transformer DC magnetic bias phenomenon, the monitoring data of 24 hours of direct current is analyzed. We find that the maximum DC current is up to 25 and is about 30s for the trend cycle, on this basis, then, of the geomagnetic storm HVDC and subway operation causes comparison of the mechanism, and make a comprehensive analysis of the thermal power plant’s geographical location, surrounding environment and electrical contact etc.. The results show that the main reason for the DC bias of Guohua thermal power transformer is the operation of the subway, and the change of the DC bias current is periodic. Finally, of Guohua thermal power transformer DC magnetic bias control method is studied, the simulation results show that the method of using neutral point with small resistance or capacitance can effectively inhibit the main transformer neutral point current.

  10. Evaluation of niobium as candidate electrode material for DC high voltage photoelectron guns

    DOE PAGES

    BastaniNejad, M.; Mohamed, Md. Abdullah; Elmustafa, A. A.; ...

    2012-08-17

    In this study, the field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and gradient. In all cases,more » field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a gradient of 18.7 MV/m.« less

  11. Evaluation of Niobium as Candidate Electrode Material for DC High Voltage Photoelectron Guns

    NASA Technical Reports Server (NTRS)

    BastaniNejad, M.; Mohamed, Abdullah; Elmustafa, A. A.; Adderley, P.; Clark, J.; Covert, S.; Hansknecht, J.; Hernandez-Garcia, C.; Poelker, M.; Mammei, R.; hide

    2012-01-01

    The field emission characteristics of niobium electrodes were compared to those of stainless steel electrodes using a DC high voltage field emission test apparatus. A total of eight electrodes were evaluated: two 304 stainless steel electrodes polished to mirror-like finish with diamond grit and six niobium electrodes (two single-crystal, two large-grain, and two fine-grain) that were chemically polished using a buffered-chemical acid solution. Upon the first application of high voltage, the best large-grain and single-crystal niobium electrodes performed better than the best stainless steel electrodes, exhibiting less field emission at comparable voltage and field strength. In all cases, field emission from electrodes (stainless steel and/or niobium) could be significantly reduced and sometimes completely eliminated, by introducing krypton gas into the vacuum chamber while the electrode was biased at high voltage. Of all the electrodes tested, a large-grain niobium electrode performed the best, exhibiting no measurable field emission (< 10 pA) at 225 kV with 20 mm cathode/anode gap, corresponding to a field strength of 18:7 MV/m.

  12. DC response of dust to low frequency AC signals

    NASA Astrophysics Data System (ADS)

    McKinlay, Michael; Konopka, Uwe; Thomas, Edward

    2017-10-01

    Macroscopic changes in the shape and equilibrium position of clouds of charged microparticles suspended in a plasma have been observed in response to low frequency AC signals. In these experiments, dusty plasmas consisting of 2-micron diameter silica microspheres suspended between an anode and cathode in an argon, DC glow discharge plasma are produced in a grounded, 6-way cross vacuum chamber. An AC signal, produced by a function generator and amplified by a bipolar op-amp, is superimposed onto the potential from the cathode. The frequencies of the applied AC signals, ranging from tens to hundreds of kHz, are comparable to the ion-neutral collision frequency; well below the ion/electron plasma frequencies, but also considerably higher than the dust plasma frequency. This presentation will detail the experimental setup, present documentation and categorization of observations of the dust response, and present an initial model of the response. This work is supported by funding from the US Dept. of Energy, Grant Number DE-SC0016330, and by the National Science Foundation, Grant Number PHY-1613087.

  13. DC Magnetron Sputtered IZTO Thin Films for Organic Photovoltaic Application.

    PubMed

    Lee, Hye Ji; Noviyana, Imas; Putri, Maryane; Koo, Chang Young; Lee, Jung-A; Kim, Jeong-Joo; Jeong, Youngjun; Lee, Youngu; Lee, Hee Young

    2018-02-01

    IZTO20 (In0.6Zn0.2Sn0.2O1.5) ceramic target was prepared from oxide mixture of In2O3, ZnO, and SnO2 powders. IZTO20 thin films were then deposited onto glass substrate at 400 °C by DC magnetron sputtering. The average optical transmittance determined by ultraviolet-visible spectroscopy was higher than 85% for all films. The minimum resistivity of the annealed IZTO20 thin film was approximately 6.1×10-4 Ω·cm, which tended to increase with decreasing indium content. Substrate heating and annealing were found to be important parameters affecting the electrical and optical properties. An organic photovoltaic (OPV) cell was fabricated using the IZTO20 film deposited under the optimized condition as an anode electrode and the efficiency of up to 80% compared to that of a similar OPV cell using ITO film was observed. Reduction of surface roughness and electrical resistivity through annealing treatment was found to contribute to the improved efficiency of the OPV cell.

  14. Changes of hydrogen peroxide and radical-scavenging activity of raspberry during osmotic, convective, and freeze-drying.

    PubMed

    Novaković, Miroslav M; Stevanović, Snežana M; Gorjanović, Stanislava Ž; Jovanovic, Predrag M; Tešević, Vele V; Janković, Miodrag A; Sužnjević, Desanka Ž

    2011-05-01

    This study was conducted to investigate the influence of different drying treatments on antioxidant (AO) activity and phenolic content of raspberry (Rubus idaeus), cultivar Willamette. Whole raspberry fruits were dried convectively (air-drying), osmotically, and freeze-dried. Acetone-water extracts of fresh and dried raspberries were assessed for total phenolic content by standard Folin-Ciocalteau method. Two AO assays were applied, a recently developed direct current (DC) polarographic assay based on decrease of anodic oxidation current of hydrogen peroxide and widely used radical scavenge against the 1,1-diphenyl-2-picrylhydrazyl (DPPH). Strong correlation has been obtained between both AO assays and total phenolic content. In addition, some individual phenolic compounds present in raspberry have been assessed using DPPH and DC polarographic assay. Comparison and evaluation of drying methods has been based on preservation of AO activity and total phenolic content. Obtained results confirmed superiority of freeze-drying; convective drying caused slight changes while osmotic dehydration showed a significant decrease of phenolic compounds and AO activity. © 2011 Institute of Food Technologists®

  15. Fluorescence correlation spectroscopy directly monitors coalescence during nanoparticle preparation.

    PubMed

    Schaeffel, David; Staff, Roland Hinrich; Butt, Hans-Juergen; Landfester, Katharina; Crespy, Daniel; Koynov, Kaloian

    2012-11-14

    Dual color fluorescence cross-correlation spectroscopy (DC FCCS) experiments were conducted to study the coalescence and aggregation during the formation of nanoparticles. To assess the generality of the method, three completely different processes were selected to prepare the nanoparticles. Polymeric nanoparticles were formed either by solvent evaporation from emulsion nanodroplets of polymer solutions or by miniemulsion polymerization. Inorganic nanocapsules were formed by polycondensation of alkoxysilanes at the interface of nanodroplets. In all cases, DC FCCS provided fast and unambiguous information about the occurrence of coalescence and thus a deeper insight into the mechanism of nanoparticle formation. In particular, it was found that coalescence played a minor role for the emulsion-solvent evaporation process and the miniemulsion polymerization, whereas substantial coalescence was detected during the formation of the inorganic nanocapsules. These findings demonstrate that DC FCCS is a powerful tool for monitoring nanoparticles genesis.

  16. Liquid Droplet Thrusters to Provide Constant Momentum Exchange Between Formation Flying Spacecraft

    DTIC Science & Technology

    2010-03-01

    density; 1070 kg/m3 for DC704 and 1097 kg/m3 for DC705. The fluids differ chemically by a single methyl group, which is replaced by a fifth Benzene...of photon energy. The relative light intensity was monitored by the fluorescence of Sodium Salicylate . Division of the current by the intensity of

  17. The effect of fluoride treatment on titanium treated with anodic spark oxidation

    NASA Astrophysics Data System (ADS)

    Park, Il Song; Kim, Jong Jun; Ahn, Seung Geun; Lee, Min Ho; Seol, Kyeong Won; Bae, Tae Sung

    2007-04-01

    This study examined the effect of fluoride on the surface characteristics of an anodized titanium implant. Commercial pure titanium plate 20mm×10mm×2mm in size, and discs 1.5 mm thick and 1.5 mm in diameter, were used. The prepared samples were polished with #200 to #1, 000 SiC papers and were then washed sequentially with distilled water, alcohol and acetone. Anodic oxidation was performed using a regulated DC power supply in an electrolyte containing a mixture of 0.015 M DL-α-glycerophosphate disodium salt hydrate (DL-α-GP) and 0.2 M calcium acetate hydrate (CA) with an electric current density of 30mA/cm2 and voltage ranging from 0 to 290 V. The specimens were divided into four groups and a fluoride treatment was carried out. Group 1 was thermally treated in a 0.05 M TiF3 solution at 90°C, Group 2 was electrochemically treated at 150 V in a 0.05 M TiF3 solution, Group 3 was electrochemically treated at 150 V in a 0.05 M NaF solution, and Group 4 was electrochemically treated at 150 V in a 0.05 M HF solution. A porous oxide layer containing pores 1-4 μm in size was observed on the surface treated with anodic oxidation. The diameter of the pores was higher in the protrusion areas than in the sunken areas. A significant amount of fluoride ions was released in the initial period, with small amounts being released continuously thereafter. The viability of MC3T3 cells was high when the fluoride ion concentration was 10 ppm, but decreased with further increases in the fluoride concentration. A six-week immersion test in simulated body fluid (SBF) showed dense HA crystals in the group immersed in 0.05 M TiF3 at 90°C, which indicated good biocompatibility.

  18. Reliability of hybrid photovoltaic DC micro-grid systems for emergency shelters and other applications

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Schleith, Susan

    2014-10-01

    Improvement of energy efficiency in the SunSmart Schools Emergency Shelters requires new methods for optimizing the energy consumption within the shelters. One major limitation in current systems is the requirement of converting direct current (DC) power generated from the PV array into alternating current (AC) power which is distributed throughout the shelters. Oftentimes, this AC power is then converted back to DC to run certain appliances throughout the shelters resulting in a significant waste of energy due to DC to AC and then again AC to DC conversion. This paper seeks to extract the maximum value out of PV systems by directly powering essential load components within the shelters that already run on DC power without the use of an inverter and above all to make the system reliable and durable. Furthermore, additional DC applications such as LED lighting, televisions, computers and fans operated with DC brushless motors will be installed as replacements to traditional devices in order to improve efficiency and reduce energy consumption. Cost of energy storage technologies continue to decline as new technologies scale up and new incentives are put in place. This will provide a cost effective way to stabilize the energy generation of a PV system as well as to provide continuous energy during night hours. It is planned to develop a pilot program of an integrated system that can provide uninterrupted DC power to essential base load appliances (heating, cooling, lighting, etc.) at the Florida Solar Energy Center (FSEC) command center for disaster management. PV arrays are proposed to be installed on energy efficient test houses at FSEC as well as at private homes having PV arrays where the owners volunteer to participate in the program. It is also planned to monitor the performance of the PV arrays and functioning of the appliances with the aim to improve their reliability and durability. After a successful demonstration of the hybrid DC microgrid based emergency shelter together with the monitoring system, it is planned to replicate it at other schools in Florida and elsewhere to provide continuous power for essential applications, maximizing the value of PV generation systems.

  19. An Information Management Study for Headquarters Department of the Army, Phase 1 Detailed Report.

    DTIC Science & Technology

    1979-06-12

    AD-AGBQ 8󈧭 YOUNG (ARTHUR) AND CO WASHINGTON DC F/6 511 AN INFORMATION MANAGEMENT STUDY FOR HEADQUARTERS DEPARTMENT OF -ETC(U) JUN 79 A YOUNG...4 WORK UNIT NUMBERS ikrthur Young & Company IR: 1025 Connecticut Avenue, NW OMA-9 12 . Washington , DC 20036-- 00 It. CONTROLLING OFFICE NAME AND... Washington , DC 20310 .298 IS. MONITORING AGE4CV NAME AD olfOic)I.SEURITY CLASS. (ot Ulft report) 0 &A 1 ~[3~iyfICS) UNCLASSIFIED IS ECL ASSI F1 CATION/ODOWN

  20. Investigation of atmospheric pressure glow microdischarge between flat cathode and needle anode in helium and argon

    NASA Astrophysics Data System (ADS)

    Astafiev, Alexander; Belyaev, Vladimir; Zamchii, Roman; Kudryavtsev, Anatoly; Stepanova, Olga; Chen, Zhaoquan

    2016-09-01

    DC atmospheric-pressure glow microdischarge was generated between a flat cathode and needle anode with a diameter of 100 μm in a special chamber with helium or argon. Dependences of discharge parameters on an interelectrode gap was investigated with an original experimental setup based on a movable arm on the hinge joint which allowed changing the gap with a step of 5 μm. The gap was varied from 5 to 700 μm. Discharge current was 1-21 mA. Such discharge cell has a very low interelectrode capacitance and provides increasing the stability of the discharge against arc formation (transition to RC oscillations mode) at low currents of 1 mA. A weak dependence of discharge voltage across the gap was revealed in helium at 100-250 μm between the electrodes (normal discharge). In contrast to this, glow microdischarge in argon has a descending current-voltage characteristic and unstable nature. The discharge voltage depending on the gap changes significantly slower than in helium. According to our estimations, the strength of electrical field of positive glow in argon is 5 times lower than in helium. Saint Petersburg State University (Grant No. 0.37.218.2016).

  1. Synthesis of carbon nanotubes by arc discharge in open air.

    PubMed

    Paladugu, Mohan Chand; Maneesh, K; Nair, P Kesavan; Haridoss, Prathap

    2005-05-01

    In this work Carbon nanotubes have been synthesized by arc discharge in open air. A TIG welding ac/dc inverter was used as the power source for arc discharge. During each run of the arc discharge based synthesis, the anode was a low purity (approximately 85% C by weight) graphite rod. The effect of varying the atmosphere on the yield of soot of the carbon nanotube containing carbon soot has been studied. Various soots were produced, purified by oxidation and characterized to confirm formation of carbon nanotubes and their relative quality, using transmission electron microscopy, Raman spectroscopy, and XRD. It was found that the yield of soot formed on the cathode is higher when synthesis is carried out in open air than when carried out in a flowing argon atmosphere. When synthesized in open air, using a 7.2-mm-diameter graphite rod as anode, the yield of soot was around 50% by weight of the graphite consumed. Current and voltage for arcing were at identical starting values in all the experiments. This modified method does not require a controlled atmosphere as in the case of a conventional arc discharge method of synthesis and hence the cost of production may be reduced.

  2. Experimental study of a linear/non-linear flux rope

    NASA Astrophysics Data System (ADS)

    DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart

    2015-08-01

    Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, rplasma = 30 cm, no = 1012 cm-3, Te = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowing it to freely move about the anode. At large currents (I > πr2B0c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.

  3. Fabrication of thin film TiO2 nanotube arrays on Co-28Cr-6Mo alloy by anodization.

    PubMed

    Ni, Jiahua; Frandsen, Christine J; Noh, Kunbae; Johnston, Gary W; He, Guo; Tang, Tingting; Jin, Sungho

    2013-04-01

    Titanium oxide (TiO2) nanotube arrays were prepared by anodization of Ti/Au/Ti trilayer thin film DC sputtered onto forged and cast Co-28Cr-6Mo alloy substrate at 400 °C. Two different types of deposited film structures (Ti/Au/Ti trilayer and Ti monolayer), and two deposition temperatures (room temperature and 400 °C) were compared in this work. The concentrations of ammonium fluoride (NH4F) and H2O in glycerol electrolyte were varied to study their effect on the formation of TiO2 nanotube arrays on a forged and cast Co-28Cr-6Mo alloy. The results show that Ti/Au/Ti trilayer thin film and elevated temperature sputtered films are favorable for the formation of well-ordered nanotube arrays. The optimized electrolyte concentration for the growth of TiO2 nanotube arrays on forged and cast Co-28Cr-6Mo alloy was obtained. This work contains meaningful results for the application of a TiO2 nanotube coating to a CoCr alloy implant for potential next-generation orthopedic implant surface coatings with improved osseointegrative capabilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Transmission electron microscopy of coatings formed by plasma electrolytic oxidation of titanium.

    PubMed

    Matykina, E; Arrabal, R; Skeldon, P; Thompson, G E

    2009-05-01

    Transmission electron microscopy and supporting film analyses are used to investigate the changes in composition, morphology and structure of coatings formed on titanium during DC plasma electrolytic oxidation in a calcium- and phosphorus-containing electrolyte. The coatings are of potential interest as bioactive surfaces. The initial barrier film, of mixed amorphous and nanocrystalline structure, formed below the sparking voltage of 180 V, incorporates small amounts of phosphorus and calcium species, with phosphorus confined to the outer approximately 63% of the coating thickness. On commencement of sparking, calcium- and phosphorus-rich amorphous material forms at the coating surface, with local heating promoting crystallization in underlying and adjacent anodic titania. The amorphous material thickens with increased treatment time, comprising almost the whole of the approximately 5.7-microm-thick coating formed at 340 V. At this stage, the coating is approximately 4.4 times thicker than the oxidized titanium, with a near-surface composition of about 12 at.% Ti, 58 at.% O, 19 at.% P and 11 at.% Ca. Further, the amount of titanium consumed in forming the coating is similar to that calculated from the anodizing charge, although there may be non-Faradaic contributions to the coating growth.

  5. Double-injection, deep-impurity switch development

    NASA Technical Reports Server (NTRS)

    Selim, F. A.; Whitson, D. W.

    1983-01-01

    The overall objective of this program is the development of device design and process techniques for the fabrication of a double-injection, deep-impurity (DI)(2) silicon switch that operates in the 1-10 kV range with conduction current of 10 and 1A, respectively. Other major specifications include a holding voltage of 0 to 5 volts at 1 A anode current, 10 microsecond switching time, and power dissipation of 50 W at 75 C. This report describes work that shows how the results obtained at the University of Cincinnati under NASA Grant NSG-3022 have been applied to larger area and higher voltage devices. The investigations include theoretical, analytical, and experimental studies of device design and processing. Methods to introduce deep levels, such as Au diffusion and electron irradiation, have been carried out to "pin down' the Fermi level and control device-switching characteristics. Different anode, cathode, and gate configurations are presented. Techniques to control the surface electric field of planar structures used for (DI)(2) switches are examined. Various sections of this report describe the device design, wafer-processing techniques, and various measurements which include ac and dc characteristics, 4-point probe, and spreading resistance.

  6. Radiation Power as Function of Current in Wall-stabilized AC Arc of Water-cooled Vortex Type with Small Caliber

    NASA Astrophysics Data System (ADS)

    Iwao, Toru; Naito, Yuto; Shimizu, Yuta; Yamamoto, Shinji

    2016-10-01

    The problem of an emergency large-scale lighting with the high-intensity discharge (HID) lamp is the lack of radiation intensity because of inappropriate energy balance. Some researchers have researched that the radiation power depended on the arc temperature increases with increasing the current. However, the heat loss and the erosion of the electrode as well as the radiation power increases with increasing the current excessively. AC current replaces alternately the cathode and the anode. Thus, it is possible to avoid the concentration of the heat transfer to the anode. Moreover, the lamp efficiency decreases with increasing the current excessively because of ultra violet rays increment. It is necessary to control the temperature distribution with controlling the current and radius. In this paper, the radiation power as a function of the current in the wall-stabilized AC arc of water-cooled vortex type with small caliber was measured. As a result, the radiation power increased with increasing the current and appropriate wall radius. The radiation of AC arc is smaller than it of DC arc. And, the erosion of electrode decreases.

  7. [The Emission Spectroscopy of Nitrogen Discharge under Low Voltage at Room Temperature].

    PubMed

    Shen, Li-hua; Yu, Chun-xia; Yan, Bei; Zhang, Cheng-xiao

    2015-03-01

    A set of direct current (DC) discharge device of N2 plasma was developed, carbon nanotubes (CNT) modified ITO electrode was used as anode, aluminum plate as cathode, with -80 μm separation between them. Nitrogen emission spectra was observed at room temperature and low DC voltage (less than 150 V), and the emission spectrometry was used to diagnose the active species of the process of nitrogen discharge. Under DC discharge, the strongest energy band N2 (C3π(u)), the weak Gaydon's Green system N2 (H3 -Φ(u)-G3 Δ(g)) and the emission line of nitrogen atoms (4 p-4 p0) at 820 nm were observed. Found that metastable state of nitrogen molecules were the main factors leading to a series of excited state nitrogen atoms and nitrogen ionization. Compared the emission spectra under DC with that under alternating current (AC) (1.1 kV), and it can be seen that under DC the spectra band of nitrogen atoms can be obviously observed, and there was a molecular band in the range of 500 - 800 nm. The effect of oxygen and hydrogen on the emission spectra of nitrogen was investigated. The results showed that the oxygen inhibited the luminescence intensity of nitrogen, but the shape of spectra unchanged. All of the second positive system, Gaydon's Green system and atomic lines of nitrogen can be observed. The second positive system and Gaydon's Green system of nitrogen will be greatly affected when the volume ratio of nitrogen and hydrogen greatly affected is 1 : 1, which was due to the hydrogen. The hydrogen can depresse nitrogen plasma activation, and make the Gaydon's Green System disappeared. CNT modified ITO electrode can reduce the breakdown voltage, and the optical signal generated by the weakly ionized gas can be observed by the photo-multiplier tube at low voltage of 10 V.

  8. Capabilities of the new “Universal” AC-DC monitor for electropenetrography (EPG)

    USDA-ARS?s Scientific Manuscript database

    Electropenetrography (EPG), invented over 50 years ago, is the most rigorous and important means of studying the feeding of piercing-sucking crop pests. The 1st-generation monitor (or AC monitor) used AC applied signal voltage and had fixed amplifier sensitivity (input resistor or Ri) of 106 Ohms. T...

  9. Understanding the growth of micro and nano-crystalline AlN by thermal plasma process

    NASA Astrophysics Data System (ADS)

    Kanhe, Nilesh S.; Nawale, Ashok B.; Gawade, Rupesh L.; Puranik, Vedavati G.; Bhoraskar, Sudha V.; Das, Asoka K.; Mathe, Vikas L.

    2012-01-01

    We report the studies related to the growth of crystalline AlN in a DC thermal plasma reactor, operated by a transferred arc plasma torch. The reactor is capable of producing the nanoparticles of Al and AlN depending on the composition of the reacting gas. Al and AlN micro crystals are formed at the anode placed on the graphite and nano crystalline Al and AlN gets deposited on the inner surface of the plasma reactor. X-ray diffraction, Raman spectroscopy analysis, single crystal X-ray diffraction and TGA-DTA techniques are used to infer the purity of post process crystals as a hexagonal AlN. The average particle size using SEM was found to be around 30 μm. The morphology of nanoparticles of Al and AlN, nucleated by gas phase condensation in a homogeneous medium were studied by transmission electron microscopy analysis. The particle ranged in size between 15 and 80 nm in diameter. The possible growth mechanism of crystalline AlN at the anode has been explained on the basis of non-equilibrium processes in the core of the plasma and steep temperature gradient near its periphery. The gas phase species of AlN and various constituent were computed using Murphy code based on minimization of free energy. The process provides 50% yield of microcrystalline AlN and remaining of Al at anode and that of nanocrystalline h-AlN and c-Al collected from the walls of the chamber is about 33% and 67%, respectively.

  10. Ni-Al Protective Coating of Steel Electrodes in Dc Electrolysis for Hydrogen Production / Ni-Al Pārklājuma Ietekme Uz Tērauda Elektrodiem Līdzstrāvas Elektrolīzē Ūdeņraža Ražošanai

    NASA Astrophysics Data System (ADS)

    Aizpurietis, P.; Vanags, M.; Kleperis, J.; Bajars, G.

    2013-04-01

    Hydrogen can be a good alternative to fossil fuels under the conditions of world's crisis as an effective energy carrier derived from renewable resources. Among all the known methods of hydrogen production, water electrolysis gives the ecologically purest hydrogen, so it is of importance to maximize the efficiency of this process. The authors consider the influence of plasma sprayed Ni-Al protective coating of 316L steel anode-cathode electrodes in DC electrolysis. In a long-term (24 h) process the anode corrodes strongly, losing Cr and Ni ions which are transferred to the electrolyte, while only minor corrosion of the cathode occurs. At the same time, the composition of anode and cathode electrodes protected by Ni-Al coating changes only slightly during a prolonged electrolysis. As the voltammetry and Tafel plots evidence, the Ni-Al coating protects both the anode and cathode from the corrosion and reduces the potential of hydrogen evolution. The results obtained show that such a coating works best in the case of steel electrodes. Darbā pētīts, kā līdzstrāvas elektrolīzē tērauda 316L elektrodus (anods un katods) ietekmē ar plazmas izputināšanas metodi iegūts Ni-Al pārklājums. Tikko uznestam pārklājumam ir mikrostrukturēta virsma, kas kodināšanas laikā mainās, gan pēc reljefa, gan elementu sastāva. Veicot ilgstošu (24 stundas elektrolīzi), atrasts, ka tikai tērauda elektrods anoda lomā intensīvi korodē un zaudē hroma un niķeļa jonus, kas pāriet elektrolītā, turpretī katods mainās relatīvi maz. Pārklājums Ni-Al pēc uznešanas tiek kodināts karstā sārmā, kad tiek izšķīdināta daļa sastāvā esošo elementu (Al, Si, Cd), bet ilgstošas elektrolīzes laikā pārklājuma sastāvs mainās maz gan anodam, gan katodam. Elektrodu elektroķīmiskie raksturlielumi noteikti ar voltamperometrijas un Tāfeļa līkņu analīzes metodēm. Atrasts, ka Ni-Al pārklājums aizsargā gan anodu, gan katodu no korozijas un samazina ūdeņraža izdalīšanās potenciālu, lai gan ilgstošas elektrolīzes laikā katoda pārklājumā parādās plaisas. No iegūtajiem rezultātiem ieteikts reālai elektrolīzes šūnai par anodu un katodu izmantot tēraudu, kas pārklāts ar plazmas izputināšanas metodē iegūtu Ni-Al aizsargpārklājumu.

  11. Contribution of the backstreaming ions to the self-magnetic pinch (SMP) diode current

    NASA Astrophysics Data System (ADS)

    Mazarakis, Michael G.; Bennett, Nichelle; Cuneo, Michael E.; Fournier, Sean D.; Johnston, Mark D.; Kiefer, Mark L.; Leckbee, Joshua J.; Nielsen, Dan S.; Oliver, Bryan V.; Sceiford, Matthew E.; Simpson, Sean C.; Renk, Timothy J.; Ruiz, Carlos L.; Webb, Timothy J.; Ziska, Derek; Droemer, Darryl W.; Gignac, Raymond E.; Obregon, Robert J.; Wilkins, Frank L.; Welch, Dale R.

    2018-04-01

    The results presented here were obtained with a self-magnetic pinch (SMP) diode mounted at the front high voltage end of the RITS accelerator. RITS is a Self-Magnetically Insulated Transmission Line (MITL) voltage adder that adds the voltage pulse of six 1.3 MV inductively insulated cavities. The RITS driver together with the SMP diode has produced x-ray spots of the order of 1 mm in diameter and doses adequate for the radiographic imaging of high area density objects. Although, through the years, a number of different types of radiographic electron diodes have been utilized with SABER, HERMES III and RITS accelerators, the SMP diode appears to be the most successful and simplest diode for the radiographic investigation of various objects. Our experiments had two objectives: first to measure the contribution of the back-streaming ion currents emitted from the anode target and second to try to evaluate the energy of those ions and hence the Anode-Cathode (A-K) gap actual voltage. In any very high voltage inductive voltage adder utilizing MITLs to transmit the power to the diode load, the precise knowledge of the accelerating voltage applied on the A-K gap is problematic. This is even more difficult in an SMP diode where the A-K gap is very small (˜1 cm) and the diode region very hostile. The accelerating voltage quoted in the literature is from estimates based on the measurements of the anode and cathode currents of the MITL far upstream from the diode and utilizing the para-potential flow theories and inductive corrections. Thus, it would be interesting to have another independent measurement to evaluate the A-K voltage. The diode's anode is made of a number of high-Z metals in order to produce copious and energetic flash x-rays. It was established experimentally that the back-streaming ion currents are a strong function of the anode materials and their stage of cleanness. We have measured the back-streaming ion currents emitted from the anode and propagating through a hollow cathode tip for various diode configurations and different techniques of target cleaning treatment: namely, heating at very high temperatures with DC and pulsed current, with RF plasma cleaning, and with both plasma cleaning and heating. We have also evaluated the A-K gap voltage by energy filtering technique. Experimental results in comparison with LSP simulations are presented.

  12. 47 CFR 73.3549 - Requests for extension of time to operate without required monitors, indicating instruments, and...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... decoders for monitoring and generating the EAS codes and Attention Signal should be made to the FCC in Washington, DC, Attention: Audio Division (radio) or Video Division (television), Media Bureau. Such requests...

  13. 76 FR 68299 - Airworthiness Directives; Eurocopter Deutschland GmbH (ECD) Model MBB-BK 117 C-2 Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-04

    ...: Starter-Generator, 2437: DC Indicating System, and 2430: DC Generator System. (d) Revise the Emergency... Performance Data sections of the RFM to alert the operators to monitor the power display when a generator is... when one generator is deactivated. The actions specified in this AD are intended to prevent failure of...

  14. 40 CFR 141.402 - Ground water source microbial monitoring and analytical methods.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .../1604sp02.pdf or from EPA's Water Resource Center (RC-4100T), 1200 Pennsylvania Avenue, NW., Washington, DC... available at http://www.epa.gov/nerlcwww/1600sp02.pdf or from EPA's Water Resource Center (RC-4100T), 1200.../1601ap01.pdf or from EPA's Water Resource Center (RC-4100T), 1200 Pennsylvania Avenue, NW., Washington, DC...

  15. Effect of immediate or delayed light activation on curing kinetics and shrinkage stress of dual-cure resin cements.

    PubMed

    Faria-e-Silva, Andre; Boaro, Leticia; Braga, Roberto; Piva, Evandro; Arias, Vanessa; Martins, Luis

    2011-01-01

    This study evaluated the effect of light activation (absence, immediate, or delayed) on conversion kinetics and polymerization stress of three commercial dual-cured resin cements (Enforce, RelyX ARC, and Panavia F). Degree of conversion (DC) was monitored for 30 minutes using real-time near–Fourier transform infrared spectroscopy. The cement was mixed, placed on the spectrometer sample holder, and light activated either immediately or after five minutes (delayed light activation). When no light activation was performed, the materials were protected from light exposure (control). DC was evaluated at five and 30 minutes postmixture. Maximum rates of polymerization (Rp(max)) were obtained from the first derivative of the DC vs time curve. Polymerization stress was monitored for 30 minutes in 1-mm-thick specimens inserted between two cylinders attached to a universal testing machine. Data were submitted to analysis of variance/Tukey tests (α=0.05). Immediate light activation promoted the highest DC at five minutes. At 30 minutes, only RelyX ARC did not present a significant difference in DC between activation modes. Enforce and Panavia F presented higher Rp(max) for immediate and delayed light-activation, respectively. RelyX ARC showed similar Rp(max) for all activation modes. The absence of light activation resulted in the lowest stress followed by delayed light activation, while immediate light activation led to the highest values. RelyX ARC showed higher stress than Enforce, while the stress of Panavia F was similar to that of the others. Delayed light activation reduced the polymerization stress of the resin cements tested without jeopardizing DC.

  16. Very low noise AC/DC power supply systems for large detector arrays.

    PubMed

    Arnaboldi, C; Baù, A; Carniti, P; Cassina, L; Giachero, A; Gotti, C; Maino, M; Passerini, A; Pessina, G

    2015-12-01

    In this work, we present the first part of the power supply system for the CUORE and LUCIFER arrays of bolometric detectors. For CUORE, it consists of AC/DC commercial power supplies (0-60 V output) followed by custom DC/DC modules (48 V input, ±5 V to ±13.5 V outputs). Each module has 3 floating and independently configurable output voltages. In LUCIFER, the AC/DC + DC/DC stages are combined into a commercial medium-power AC/DC source. At the outputs of both setups, we introduced filters with the aim of lowering the noise and to protect the following stages from high voltage spikes that can be generated by the energy stored in the cables after the release of accidental short circuits. Output noise is very low, as required: in the 100 MHz bandwidth the RMS level is about 37 μV(RMS) (CUORE setup) and 90 μV(RMS) (LUCIFER setup) at a load of 7 A, with a negligible dependence on the load current. Even more importantly, high frequency switching disturbances are almost completely suppressed. The efficiency of both systems is above 85%. Both systems are completely programmable and monitored via CAN bus (optically coupled).

  17. Digital Signal Processing and Generation for a DC Current Transformer for Particle Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zorzetti, Silvia

    2013-01-01

    The thesis topic, digital signal processing and generation for a DC current transformer, focuses on the most fundamental beam diagnostics in the field of particle accelerators, the measurement of the beam intensity, or beam current. The technology of a DC current transformer (DCCT) is well known, and used in many areas, including particle accelerator beam instrumentation, as non-invasive (shunt-free) method to monitor the DC current in a conducting wire, or in our case, the current of charged particles travelling inside an evacuated metal pipe. So far, custom and commercial DCCTs are entirely based on analog technologies and signal processing, whichmore » makes them inflexible, sensitive to component aging, and difficult to maintain and calibrate.« less

  18. Aerial Remote Radio Frequency Identification System for Small Vessel Monitoring

    DTIC Science & Technology

    2009-12-01

    Assessment Methods , Ocean Studies Board, Commission on Geosciences, Environment, and Resources, National Research Council. (1998). Improving fish stock... Research Council (NRC). (2006). Review of recreational fisheries survey methods . Washington, DC: The National Academies Press. NOAA Fisheries. (1996...MONITORING AGENCY NAME(S) AND ADDRESS(ES) Acquisition Research Program 10. SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The

  19. The alkaline aluminium/hydrogen peroxide power source in the Hugin II unmanned underwater vehicle

    NASA Astrophysics Data System (ADS)

    Hasvold, Øistein; Johansen, Kjell Håvard; Mollestad, Ole; Forseth, Sissel; Størkersen, Nils

    In 1993, The Norwegian Defence Research Establishment (FFI) demonstrated AUV-Demo, an unmanned (untethered) underwater vehicle (UUV), powered by a magnesium/dissolved oxygen seawater battery (SWB). This technology showed that an underwater range of at least 1000 nautical miles at a speed of 4 knots was possible, but also that the maximum hotel load this battery system could support was very limited. Most applications for UUV technology need more power over a shorter period of time. Seabed mapping using a multibeam echo sounder mounted on an UUV was identified as a viable application and the Hugin project was started in 1995 in cooperation with Norwegian industry. For this application, an endurance of 36 h at 4 knots was required. Development of the UUV hull and electronics system resulted in the UUV Hugin I. It carries a Ni/Cd battery of 3 kW h, allowing up to 6 h under-water endurance. In parallel, we developed a battery based on a combination of alkaline Al/air and SWB technology, using a circulating alkaline electrolyte, aluminium anodes and maintaining the oxidant concentration in the electrolyte by continuously adding hydrogen peroxide (HP) to the electrolyte. This concept resulted in a safe battery, working at ambient pressure (balanced) and with sufficient power and energy density to allow the UUV Hugin II to make a number of successive dives, each of up to 36 h duration and with only 1 h deck time between dives for HP refill and electrolyte exchange. After 100 h, an exchange of anodes takes place. The power source consists of a four-cell Al/HP battery, a DC/DC converter delivering 600 W at 30 V, circulation and dosing pumps and a battery control unit. Hugin II is now in routine use by the Norwegian Underwater Intervention AS (NUI) which operates the UUV for high-precision seabed mapping down to a water depth of 600 m.

  20. A Survey of Ionospheric Models A Preliminary Report on the Development of an Ionospheric Model Thesaurus and Users Guide.

    DTIC Science & Technology

    1982-07-13

    AD-AL17 659 NAVAL RESI ARCH LAB WASHIINTON DC F/ 4/1SURVEY OF IONOSPHIC MODELS A PRELIMINARY REPORT ON THE OEVE--ETCCWI IUL. 62 .J N GOODMAN. E 0...TASK Naval Research LaboratoryARA&WKUNTN916 Washington, DC 20375 41-0149-0-2 It- CONYROLLING OFFICE NAME AND ADDRESS 12. REPORT OATS Department of...the Navy July 13, 1982 Office of Naval Research 13. NUMBER Of PAGES Washington, DC 20360 44 14. MONITORING AGENCY N4AME A ADDRESS(iI different freest

  1. Description of real-time Ada software implementation of a power system monitor for the Space Station Freedom PMAD DC testbed

    NASA Technical Reports Server (NTRS)

    Ludwig, Kimberly; Mackin, Michael; Wright, Theodore

    1991-01-01

    The Ada language software development to perform the electrical system monitoring functions for the NASA Lewis Research Center's Power Management and Distribution (PMAD) DC testbed is described. The results of the effort to implement this monitor are presented. The PMAD DC testbed is a reduced-scale prototype of the electrical power system to be used in the Space Station Freedom. The power is controlled by smart switches known as power control components (or switchgear). The power control components are currently coordinated by five Compaq 382/20e computers connected through an 802.4 local area network. One of these computers is designated as the control node with the other four acting as subsidiary controllers. The subsidiary controllers are connected to the power control components with a Mil-Std-1553 network. An operator interface is supplied by adding a sixth computer. The power system monitor algorithm is comprised of several functions including: periodic data acquisition, data smoothing, system performance analysis, and status reporting. Data is collected from the switchgear sensors every 100 milliseconds, then passed through a 2 Hz digital filter. System performance analysis includes power interruption and overcurrent detection. The reporting mechanism notifies an operator of any abnormalities in the system. Once per second, the system monitor provides data to the control node for further processing, such as state estimation. The system monitor required a hardware time interrupt to activate the data acquisition function. The execution time of the code was optimized using an assembly language routine. The routine allows direct vectoring of the processor to Ada language procedures that perform periodic control activities. A summary of the advantages and side effects of this technique are discussed.

  2. Mechanism of reentry induction by a 9-V battery in rabbit ventricles

    PubMed Central

    Burton, Rebecca A. B.; Kalla, Manish; Nanthakumar, Kumaraswamy; Plank, Gernot; Bub, Gil; Vigmond, Edward J.

    2014-01-01

    Although the application of a 9-V battery to the epicardial surface is a simple method of ventricular fibrillation induction, the fundamental mechanisms underlying this process remain unstudied. We used a combined experimental and modelling approach to understand how the interaction of direct current (DC) from a battery may induce reentrant activity within rabbit ventricles and its dependence on battery application timing and duration. A rabbit ventricular computational model was used to simulate 9-V battery stimulation for different durations at varying onset times during sinus rhythm. Corresponding high-resolution optical mapping measurements were conducted on rabbit hearts with DC stimuli applied via a relay system. DC application to diastolic tissue induced anodal and cathodal make excitations in both simulations and experiments. Subsequently, similar static epicardial virtual electrode patterns were formed that interacted with sinus beats but did not induce reentry. Upon battery release during diastole, break excitations caused single ectopics, similar to application, before sinus rhythm resumed. Reentry induction was possible for short battery applications when break excitations were slowed and forced to take convoluted pathways upon interaction with refractory tissue from prior make excitations or sinus beats. Short-lived reentrant activity could be induced for battery release shortly after a sinus beat for longer battery applications. In conclusion, the application of a 9-V battery to the epicardial surface induces reentry through a complex interaction of break excitations after battery release with prior induced make excitations or sinus beats. PMID:24464758

  3. Mechanism of reentry induction by a 9-V battery in rabbit ventricles.

    PubMed

    Bishop, Martin J; Burton, Rebecca A B; Kalla, Manish; Nanthakumar, Kumaraswamy; Plank, Gernot; Bub, Gil; Vigmond, Edward J

    2014-04-01

    Although the application of a 9-V battery to the epicardial surface is a simple method of ventricular fibrillation induction, the fundamental mechanisms underlying this process remain unstudied. We used a combined experimental and modelling approach to understand how the interaction of direct current (DC) from a battery may induce reentrant activity within rabbit ventricles and its dependence on battery application timing and duration. A rabbit ventricular computational model was used to simulate 9-V battery stimulation for different durations at varying onset times during sinus rhythm. Corresponding high-resolution optical mapping measurements were conducted on rabbit hearts with DC stimuli applied via a relay system. DC application to diastolic tissue induced anodal and cathodal make excitations in both simulations and experiments. Subsequently, similar static epicardial virtual electrode patterns were formed that interacted with sinus beats but did not induce reentry. Upon battery release during diastole, break excitations caused single ectopics, similar to application, before sinus rhythm resumed. Reentry induction was possible for short battery applications when break excitations were slowed and forced to take convoluted pathways upon interaction with refractory tissue from prior make excitations or sinus beats. Short-lived reentrant activity could be induced for battery release shortly after a sinus beat for longer battery applications. In conclusion, the application of a 9-V battery to the epicardial surface induces reentry through a complex interaction of break excitations after battery release with prior induced make excitations or sinus beats.

  4. Effects of desiccation on the recalcitrant seeds of Carapa guianensis Aubl. and Carapa procera DC

    Treesearch

    Kristina F. Connor; I. D. Kossmann Ferraz; F.T. Bonner; John A. Vozzo

    1998-01-01

    This study was undertaken to determine if the seeds of Carapa guianensis Aubl. and Carapa procera DC. undergo physiological, biochemical, and ultrastructural changes when they are desiccated; and to find if these changes can be used to monitor viability in Carapa. Seeds were air-dried at room temperature for 7 to 11 days. Samples were taken at frequent intervals and...

  5. RNAi Mediated Silencing of LRRK2G2019S in Parkinson’s Disease

    DTIC Science & Technology

    2013-08-01

    CONTRACTING ORGANIZATION : Georgetown University Medical Center Washington DC 20057-2197 REPORT DATE: August 2013 TYPE OF REPORT: Final Option...georgetown.edu, xs37@georgetown.edu 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Georgetown University Medical...Center 8. PERFORMING ORGANIZATION REPORT NUMBER Washington DC 20057- 2197 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS

  6. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system

    PubMed Central

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N. Robert; Pelc, Norbert; Fahrig, Rebecca

    2013-01-01

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors’ assembly were also evaluated to determine its stability during acceleration, and a pulse width modulation algorithm was implemented to control the rotation speed of the motor. Results: At a magnetic flux density of 41 mT orthogonal to the axis of rotation (on the lower end of the expected flux density in the MR suite) the maximum speed of the motor was found to be 5150 revolutions per minute (rpm). The acceleration time necessary to reach 3000 rpm was found to be approximately 10 s at 59 mT. The resonance frequency of the assembly with the anode attached was 1310 rpm (21.8 Hz) which is far below the desired operating speeds. Pulse width modulation provides an effective method to control the speed of the motor with a resolution of 100 rpm. Conclusions: The proposed design can serve as a direct replacement to the conventional induction motor used in rotating anode x-ray tubes. It does not suffer from a reduced rotation speed when operating in a MR environment. The presence of chromic steel bearings in the prototype prevented testing at the higher field strengths, and future iterations of the design could eliminate this shortcoming. The prototype assembly demonstrates proof of concept of the authors’ design and overcomes one of the major obstacles for a MR compatible rotating anode x-ray tube. PMID:23387764

  7. Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system.

    PubMed

    Lillaney, Prasheel; Shin, Mihye; Hinshaw, Waldo; Bennett, N Robert; Pelc, Norbert; Fahrig, Rebecca

    2013-02-01

    Using hybrid x-ray∕MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also evaluated to determine its stability during acceleration, and a pulse width modulation algorithm was implemented to control the rotation speed of the motor. At a magnetic flux density of 41 mT orthogonal to the axis of rotation (on the lower end of the expected flux density in the MR suite) the maximum speed of the motor was found to be 5150 revolutions per minute (rpm). The acceleration time necessary to reach 3000 rpm was found to be approximately 10 s at 59 mT. The resonance frequency of the assembly with the anode attached was 1310 rpm (21.8 Hz) which is far below the desired operating speeds. Pulse width modulation provides an effective method to control the speed of the motor with a resolution of 100 rpm. The proposed design can serve as a direct replacement to the conventional induction motor used in rotating anode x-ray tubes. It does not suffer from a reduced rotation speed when operating in a MR environment. The presence of chromic steel bearings in the prototype prevented testing at the higher field strengths, and future iterations of the design could eliminate this shortcoming. The prototype assembly demonstrates proof of concept of the authors' design and overcomes one of the major obstacles for a MR compatible rotating anode x-ray tube.

  8. A new protocol for the propagation of dendritic cells from rat bone marrow using recombinant GM-CSF, and their quantification using the mAb OX-62

    PubMed Central

    Chen-Woan, M.; Delaney, C.P.; Fournier, V.; Wakizaka, Y.; Murase, N.; Fung, J.; Starzl, T.E.; Demetris, A.J.

    2010-01-01

    Bone marrow (BM)-derived dendritic cells (DC) are the most potent known antigen (Ag) presenting cell in vivo and in vitro. Detailed analysis of their properties and mechanisms of action requires an ability to produce large numbers of DC. Although DC have been isolated from several rat tissues, including BM, the yield is uniformly low. We describe a simple method for the propagation of large numbers of DC from rat BM and document cell yield with the rat DC marker, OX-62. After depletion of plastic-adherent and Fc+ cells by panning on dishes coated with normal serum, residual BM cells were cultured in gelatin coated flasks using murine rGM-CSF supplemented medium. Prior to analysis, non-adherent cells were re-depleted of contaminating Fc+ cells. Propagation of DC was monitored by double staining for FACS analysis (major histocompatibility complex (MHC) class II+/OX-62+, OX-19−). Functional assay, morphological analysis and evaluation of homing patterns of cultured cells revealed typical DC characteristics. MHC class II and OX-62 antigen expression increased with time in culture and correlated with allostimulatory ability. DC yield increased until day 7, when 3.3 × 106 DC were obtained from an initial 3 × 108 unfractionated BM cells. Significant numbers of DC can be generated from rat BM using these simple methods. This should permit analysis and manipulation of rat DC functions in vivo and in vitro. PMID:7836778

  9. Association of Electrochemical Therapy With Optical, Mechanical, and Acoustic Impedance Properties of Porcine Skin.

    PubMed

    Moy, Wesley J; Su, Erica; Chen, Jason J; Oh, Connie; Jing, Joe C; Qu, Yueqiao; He, Youmin; Chen, Zhongping; Wong, Brian J F

    2017-12-01

    The classic management of burn scars and other injuries to the skin has largely relied on soft-tissue transfer to resurface damaged tissue with local tissue transfer or skin graft placement. In situ generation of electrochemical reactions using needle electrodes and an application of current may be a new approach to treat scars and skin. To examine the changes in optical, mechanical, and acoustic impedance properties in porcine skin after electrochemical therapy. This preclinical pilot study, performed from August 1, 2015, to November 1, 2016, investigated the effects of localized pH-driven electrochemical therapy of ex vivo porcine skin using 24 skin samples. Platinum-plated needle electrodes were inserted into fresh porcine skin samples. A DC power supply provided a voltage of 4 to 5 V with a 3-minute application time. Specimens were analyzed using optical coherence tomography, optical coherence elastography, and ultrasonography. Ultrasonography was performed under 3 conditions (n = 2 per condition), optical coherence tomography was performed under 2 conditions (n = 2 per condition), and optical coherence elastography was performed under 2 conditions (n = 2 per condition). The remaining samples were used for the positive and negative control groups (n = 10). Platinum-plated needle electrodes were inserted into fresh porcine skin samples. A DC power supply provided a voltage of 4 to 5 V with a 3-minute application. Tissue softening was observed at the anode and cathode sites as a result of electrochemical modification. Volumetric changes were noted using each optical and acoustic technique. A total of 24 ex vivo porcine skin samples were used for this pilot study. Optical coherence tomography measured spatial distribution of superficial tissue changes around each electrode site. At 4 V for 3 minutes, a total volumetric effect of 0.47 mm3 was found at the anode site and 0.51 mm3 at the cathode site. For 5 V for 3 minutes, a total volumetric effect of 0.85 mm3 was found at the anode site and 1.05 mm3 at the cathode site. Electrochemical therapy is a low-cost technique that is on par with the costs of suture and scalpel. The use of electrochemical therapy to create mechanical and physiologic changes in tissue has the potential to locally remodel the soft-tissue matrix, which ultimately may lead to an inexpensive scar treatment or skin rejuvenation therapy. NA.

  10. Belousov-Zhabotinsky oscillations during the chemical or electrochemical generation of Ag + ions

    NASA Astrophysics Data System (ADS)

    Treindl, Ludovit; Hemmingsen, Tor; Ruoff, Peter

    1997-05-01

    The oscillatory Belousov-Zhabotinsky reaction has been studied in the presence of Ag + ions using potentiometric and amperometric methods. Amperometrically the oscillations were followed by monitoring the anodic current at a potential of 1.0 V, which corresponds to the electrooxidation of Br - ions. In the Ag +-perturbed BZ reaction we still observe anodic current oscillations due to the electrooxidation of Br - ions more or less loosely bound in AgBr mono- or oligomers. Solid AgBr, however, has been found to be chemically and electrochemically inert in the BZ reaction. The timescale of producing electrochemically inactive AgBr precipitate is a second-order process with a rate constant of 256 M -1 s -1.

  11. Detection of High-impedance Arcing Faults in Radial Distribution DC Systems

    NASA Technical Reports Server (NTRS)

    Gonzalez, Marcelo C.; Button, Robert M.

    2003-01-01

    High voltage, low current arcing faults in DC power systems have been researched at the NASA Glenn Research Center in order to develop a method for detecting these 'hidden faults', in-situ, before damage to cables and components from localized heating can occur. A simple arc generator was built and high-speed and low-speed monitoring of the voltage and current waveforms, respectively, has shown that these high impedance faults produce a significant increase in high frequency content in the DC bus voltage and low frequency content in the DC system current. Based on these observations, an algorithm was developed using a high-speed data acquisition system that was able to accurately detect high impedance arcing events induced in a single-line system based on the frequency content of the DC bus voltage or the system current. Next, a multi-line, radial distribution system was researched to see if the arc location could be determined through the voltage information when multiple 'detectors' are present in the system. It was shown that a small, passive LC filter was sufficient to reliably isolate the fault to a single line in a multi-line distribution system. Of course, no modification is necessary if only the current information is used to locate the arc. However, data shows that it might be necessary to monitor both the system current and bus voltage to improve the chances of detecting and locating high impedance arcing faults

  12. Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring

    DTIC Science & Technology

    2016-03-31

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9675 Absorption-Edge-Modulated Transmission Spectra for Water Contaminant ...ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Absorption-Edge-Modulated Transmission Spectra for Water Contaminant Monitoring...Unlimited Unclassified Unlimited 35 Samuel G. Lambrakos (202) 767-2601 Monitoring of contaminants associated with specific water resources using

  13. Reduction of Carbon Footprint and Energy Efficiency Improvement in Aluminum Production by Use of Novel Wireless Instrumentation Integrated with Mathematical Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James W. Evans

    2012-04-11

    The work addressed the greenhouse gas emission and electrical energy consumption of the aluminum industry. The objective was to provide a means for reducing both through the application of wireless instrumentation, coupled to mathematical modeling. Worldwide the aluminum industry consumes more electrical energy than all activities in many major countries (e.g. the UK) and emits more greenhouse gasses (e.g. than France). Most of these excesses are in the 'primary production' of aluminum; that is the conversion of aluminum oxide to metal in large electrolytic cells operating at hundreds of thousands of amps. An industry-specific GHG emission has been the focusmore » of the work. The electrolytic cells periodically, but at irregular intervals, experience an upset condition known as an 'anode effect'. During such anode effects the cells emit fluorinated hydrocarbons (PFCs, which have a high global warming potential) at a rate far greater than in normal operation. Therefore curbing anode effects will reduce GHG emissions. Prior work had indicated that the distribution of electrical current within the cell experiences significant shifts in the minutes before an anode effect. The thrust of the present work was to develop technology that could detect and report this early warning of an anode effect so that the control computer could minimize GHG emissions. A system was developed to achieve this goal and, in collaboration with Alcoa, was tested on two cells at an Alcoa plant in Malaga, Washington. The project has also pointed to the possibility of additional improvements that could result from the work. Notable among these is an improvement in efficiency that could result in an increase in cell output at little extra operating cost. Prospects for commercialization have emerged in the form of purchase orders for further installations. The work has demonstrated that a system for monitoring the current of individual anodes in an aluminum cell is practical. Furthermore the system has been installed twice on a smelter in the US without exposing workers to hazards usually associated with running signal wires in aluminum plants. The results display the early warning of an anode effect that potentially can be used to minimize such anode effects with their excessive GHG emissions. They also point to a possible, but substantial, economic benefit that could result in improved current efficiency by anode adjustment based on individual anode current measurements.« less

  14. New insights into pre-lithiation kinetics of graphite anodes via nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Holtstiege, Florian; Schmuch, Richard; Winter, Martin; Brunklaus, Gunther; Placke, Tobias

    2018-02-01

    Pre-lithiation of anode materials can be an effective method to compensate active lithium loss which mainly occurs in the first few cycles of a lithium ion battery (LIB), due to electrolyte decomposition and solid electrolyte interphase (SEI) formation at the surface of the anode. There are many different pre-lithiation methods, whereas pre-lithiation using metallic lithium constitutes the most convenient and widely utilized lab procedure in literature. In this work, for the first time, solid state nuclear magnetic resonance spectroscopy (NMR) is applied to monitor the reaction kinetics of the pre-lithiation process of graphite with lithium. Based on static 7Li NMR, we can directly observe both the dissolution of lithium metal and parallel formation of LiCx species in the obtained NMR spectra with time. It is also shown that the degree of pre-lithiation as well as distribution of lithium metal on the electrode surface have a strong impact on the reaction kinetics of the pre-lithiation process and on the remaining amount of lithium metal. Overall, our findings are highly important for further optimization of pre-lithiation methods for LIB anode materials, both in terms of optimized pre-lithiation time and appropriate amounts of lithium metal.

  15. Kinetics of (reversible) internal reforming of methane in solid oxide fuel cells under stationary and APU conditions

    NASA Astrophysics Data System (ADS)

    Timmermann, H.; Sawady, W.; Reimert, R.; Ivers-Tiffée, E.

    The internal reforming of methane in a solid oxide fuel cell (SOFC) is investigated and modeled for flow conditions relevant to operation. To this end, measurements are performed on anode-supported cells (ASC), thereby varying gas composition (y CO = 4-15%, yH2 = 5 - 17 % , yCO2 = 6 - 18 % , yH2O = 2 - 30 % , yCH4 = 0.1 - 20 %) and temperature (600-850 °C). In this way, operating conditions for both stationary applications (methane-rich pre-reformate) as well as for auxiliary power unit (APU) applications (diesel-POX reformate) are represented. The reforming reaction is monitored in five different positions alongside the anodic gas channel by means of gas chromatography. It is shown that methane is converted in the flow field for methane-rich gas compositions, whereas under operation with diesel reformate the direction of the reaction is reversed for temperatures below 675 °C, i.e. (exothermic) methanation occurs along the anode. Using a reaction model, a rate equation for reforming could be derived which is also valid in the case of methanation. By introducing this equation into the reaction model the methane conversion along a catalytically active Ni-YSZ cermet SOFC anode can be simulated for the operating conditions specified above.

  16. Description of the SSF PMAD DC testbed control system data acquisition function

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.; Mackin, Michael; Wright, Theodore

    1992-01-01

    The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data requirements are dictated by the control system algorithms being implemented at each level. A functional description of the various levels of the testbed control system architecture, the data acquisition function, and the status of its implementationis presented.

  17. GULF OF MEXICO HYPOXIA MONITORING AND MODELING

    EPA Science Inventory

    Greene, Richard M. and Russell G. Kreis. In press. Gulf of Mexico Hypoxia Monitoring and Modeling (Abstract). To be presented at the EPA Science Forum: Healthy Communities and Ecosystems, 1-3 June 2004, Washington, DC. 1 p. (ERL,GB R990).

    Oxygen-depleted or hypoxic bottom...

  18. 76 FR 59425 - Notice of Lodging of Consent Decree Under The Clean Air Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... and collection systems, to correctly establish and monitor operating parameters, and to comply with... using model test protocols, adopt new monitoring practices, correct deficiencies in recordkeeping and... Environmental Protection Agency, Ariel Rios Building, 1200 Pennsylvania Avenue, NW., Washington, DC 20460...

  19. Mercury-Free Analysis of Lead in Drinking Water by Anodic Stripping Square Wave Voltammetry

    ERIC Educational Resources Information Center

    Wilburn, Jeremy P.; Brown, Kyle L.; Cliffel, David E.

    2007-01-01

    The analysis of drinking water for lead, which has well-known health effects, is presented as an instructive example for undergraduate chemistry students. It allows the students to perform an experiment and evaluate to monitor risk factors and common hazard of everyday life.

  20. Stability study of cermet-supported solid oxide fuel cells with bi-layered electrolyte

    NASA Astrophysics Data System (ADS)

    Zhang, Xinge; Gazzarri, Javier; Robertson, Mark; Decès-Petit, Cyrille; Kesler, Olivera

    Performance and stability of five cermet-supported button-type solid oxide fuel cells featuring a bi-layered electrolyte (SSZ/SDC), an SSC cathode, and a Ni-SSZ anode, were analyzed using polarization curves, impedance spectroscopy, and post-mortem SEM observation. The cell performance degradation at 650 °C in H 2/air both with and without DC bias conditions was manifested primarily as an increase in polarization resistance, approximately at a rate of 2.3 mΩ cm 2 h -1 at OCV, suggesting a decrease in electrochemical kinetics as the main phenomenon responsible for the performance decay. In addition, the initial series resistance was about ten times higher than the calculated resistance corresponding to the electrolyte, reflecting a possible inter-reaction between the electrolyte layers that occurred during the sintering stage. In situ and ex situ sintered cathodes showed no obvious difference in cell performance or decay rate. The stability of the cells with and without electrical load was also investigated and no significant influence of DC bias was recorded. Based on the experimental results presented, we preliminarily attribute the performance degradation to electrochemical and microstructural degradation of the cathode.

  1. Content of Total Phenolics, Flavan-3-Ols and Proanthocyanidins, Oxidative Stability and Antioxidant Capacity of Chocolate During Storage

    PubMed Central

    Komes, Draženka; Gorjanović, Stanislava; Belščak-Cvitanović, Ana; Pezo, Lato; Pastor, Ferenc; Ostojić, Sanja; Popov-Raljić, Jovanka; Sužnjević, Desanka

    2016-01-01

    Summary Antioxidant (AO) capacity of chocolates with 27, 44 and 75% cocoa was assessed after production and during twelve months of storage by direct current (DC) polarographic assay, based on the decrease of anodic current caused by the formation of hydroxo-perhydroxyl mercury(II) complex (HPMC) in alkaline solutions of hydrogen peroxide at potentials of mercury oxidation, and two spectrophotometric assays. Relative antioxidant capacity index (RACI) was calculated by taking the average value of the AO assay (the sample mass in all assays was identical). Oxidative stability of chocolate fat was determined by differential scanning calorimetry. Measured parameters and RACI were correlated mutually and with the content of total phenols (Folin-Ciocalteu assay), flavan-3-ols (vanillin and p-dimethylaminocinnamaldehyde assay) and proanthocyanidins (modified Bate-Smith assay). During storage, the studied functional and health-related characteristics remained unchanged. Amongst applied AO assays, the DC polarographic one, whose validity was confirmed by two-way ANOVA and F-test, correlated most significantly with oxidative stability (oxidation onset temperature and induction time). In addition, principal component analysis was applied to characterise chocolate types. PMID:27904388

  2. Vacuum arc plasma thrusters with inductive energy storage driver

    NASA Technical Reports Server (NTRS)

    Schein, Jochen (Inventor); Gerhan, Andrew N. (Inventor); Woo, Robyn L. (Inventor); Au, Michael Y. (Inventor); Krishnan, Mahadevan (Inventor)

    2004-01-01

    An apparatus for producing a vacuum arc plasma source device using a low mass, compact inductive energy storage circuit powered by a low voltage DC supply acts as a vacuum arc plasma thruster. An inductor is charged through a switch, subsequently the switch is opened and a voltage spike of Ldi/dt is produced initiating plasma across a resistive path separating anode and cathode. The plasma is subsequently maintained by energy stored in the inductor. Plasma is produced from cathode material, which allows for any electrically conductive material to be used. A planar structure, a tubular structure, and a coaxial structure allow for consumption of cathode material feed and thereby long lifetime of the thruster for long durations of time.

  3. A Field Test of Electromigration as a Method for Remediating Sulfate from Shallow Ground Water

    USGS Publications Warehouse

    Patterson, C.G.; Runnells, D.D.

    1996-01-01

    Electromigration offers a potential tool for remediating ground water contaminated with highly soluble components, such as Na+, Cl-, NO3-, and SO4-. A field experiment was designed to test the efficacy of electromigration for preconcentrating dissolved SO42- in ground water associated with a fossil-fuel power plant. Two shallow wells, 25 feet apart (one 25 feet deep, the other 47 feet deep), were constructed in the upper portion of an unconfined alluvial aquifer. The wells were constructed with a double-wall design, with an outer casing of 4-inch PVC and an inner tube of 2-inch PVC; both were fully slotted (0.01 inch). Electrodes were constructed by wrapping the inner tubing with a 100-foot length of rare-earth metal oxide/copper wire. An electrical potential of 10.65 volts DC was applied, and tests were run for periods of 12, 44, and 216 hours. Results showed large changes in the pH from the initial pH of ground water of about 7.5 to values of approximately 2 and 12 at the anode and cathode, respectively. Despite the fact that the test conditions were far from ideal, dissolved SO42- was significantly concentrated at the anode. Over a period of approximately nine days, the concentration of SO42- at the anode reached what appeared to be a steady-state value of 2200 mg/L, compared to the initial value in ground water of approximately 1150 mg/L. The results of this field test should encourage further investigation of electromigration as a tool in the remediation of contaminated ground water.

  4. The effect of hierarchical micro/nanosurface titanium implant on osseointegration in ovariectomized sheep.

    PubMed

    Xiao, J; Zhou, H; Zhao, L; Sun, Y; Guan, S; Liu, B; Kong, L

    2011-06-01

    Hydrofluoric etching and anodized hierarchical micro/nanotextured surface titanium implant was placed in mandibles of ovariectomized sheep for 12 weeks, and it showed improved osseointegration by resonance frequency analysis (RFA), microcomputed tomography (micro-CT) evaluation, histomorphometry, and biomechanical test. This study aimed to investigate the effects of micro/nanotextured titanium implant on osseointegration in ovariectomized (OVX) sheep. The hierarchical micro/nanotextured surface of titanium implant was fabricated by acid in 0.5% (w/v) hydrofluoric (HF) and anodized in HF acid electrolytes with a DC power of 20 V, and the machined surface implants with no treatment served as control group. The implants were placed in mandibles of OVX sheep, respectively. Twelve weeks after implantation, RFA, microcomputed tomography, histomorphometry, and biomechanical tests were applied to detect the osseointegration of the two groups. The implant stability quotient (ISQ) values, the maximum pull-out forces, and the bone-implant contact (BIC) were 65.5 ± 6.3, 490.6 ± 72.7 N, and 58.31 ± 5.79% in the micro/nanogroup and 58.3 ± 8.9, 394.5 ± 54.5 N, and 46.85 ± 5.04% in the control group, respectively. There was no significant difference between the two groups in ISQ values (p > 0.05), but in the micro/nanogroup, the maximal pull-out force and the BIC were increased significantly (p < 0.05 or p < 0.01). Micro-CT analysis showed that the bone volume ratio and the trabecular number increased significantly (p < 0.01), and the trabecular separation decreased significantly (p < 0.05) in the micro/nanogroup. Implant modification by HF acid etching and anodization to form a hierarchical micro/nanotextured surface could improve titanium implant osseointegration in OVX sheep 12 weeks after implantation.

  5. Ionospheric Irregularity Physics Modelling.

    DTIC Science & Technology

    1982-02-09

    NUMBERS Washington, DC 20375 62715H; 47-0889-0-2 II CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE Defense Nuclear Agency February 9, 1982 Washington... CONTROL TECHNICAL CENTER COMMANDER PE TAGON RM SF 685 FIELD COMMAND WASHINGTON, D.C. 20301 DEFENSE NUCLEAR AGENCY OICY ATTN C-650 KIRTLAND, AFR, NM...BUILDINICG KIRTLAND AFB, NM 87115 1400 WILSON BLVD. OICY ATTN DOCUMENT CONTROL ARLINGTON, 11A. 22209 OICY ATTN NUCLEAR MONITORING RESEARCH JOINT CHIEFS OF

  6. BRCA 1 and BRCA2 Mutations in African Americans

    DTIC Science & Technology

    1999-10-01

    W. Broome, Ph.D. CONTRACTING ORGANIZATION: Howard University Washington, DC 20059 REPORT DATE: October 1999 TYPE OF REPORT: Annual PREPARED FOR: U.S...THEM. LIMITED RIGHTS LEGEND Award Number: DAMD17-98-1-8106 Organization: Howard University Those portions of the technical data contained in this...PERFORMING Howard University ORGANIZATION REPORT NUMBER Washington, DC 20059 E-MAIL: cbroome@fac.howard.edu 9. SPONSORING / MONITORING AGENCY NAME(S

  7. Pulsed DC Electric Field–Induced Differentiation of Cortical Neural Precursor Cells

    PubMed Central

    Chang, Hui-Fang; Lee, Ying-Shan; Tang, Tang K.; Cheng, Ji-Yen

    2016-01-01

    We report the differentiation of neural stem and progenitor cells solely induced by direct current (DC) pulses stimulation. Neural stem and progenitor cells in the adult mammalian brain are promising candidates for the development of therapeutic neuroregeneration strategies. The differentiation of neural stem and progenitor cells depends on various in vivo environmental factors, such as nerve growth factor and endogenous EF. In this study, we demonstrated that the morphologic and phenotypic changes of mouse neural stem and progenitor cells (mNPCs) could be induced solely by exposure to square-wave DC pulses (magnitude 300 mV/mm at frequency of 100-Hz). The DC pulse stimulation was conducted for 48 h, and the morphologic changes of mNPCs were monitored continuously. The length of primary processes and the amount of branching significantly increased after stimulation by DC pulses for 48 h. After DC pulse treatment, the mNPCs differentiated into neurons, astrocytes, and oligodendrocytes simultaneously in stem cell maintenance medium. Our results suggest that simple DC pulse treatment could control the fate of NPCs. With further studies, DC pulses may be applied to manipulate NPC differentiation and may be used for the development of therapeutic strategies that employ NPCs to treat nervous system disorders. PMID:27352251

  8. Monitoring subterraneous water regime at the new Ain Shams university campus in Al-Obour city (northeast of Cairo-Egypt) using both azimuthal very low frequency-electromagnetic and DC-resistivity sounding techniques

    NASA Astrophysics Data System (ADS)

    Farag, Karam S. I.; Abd El-Aal, Mohamed H.; Garamoon, Hassan K. F.

    2018-07-01

    A joint azimuthal very low frequency-electromagnetic (VLF-EM) and DC-resistivity sounding survey was conducted at the new Ain Shams university campus in Al-Obour city, northwest of Cairo, Egypt. The main objective of the survey was to highlight the applicability and reliability of such non-invasive surface techniques in mapping and monitoring both the vertical and lateral electrical conductivity structures of waterlogged areas, by subterraneous water accumulations, at the campus site. Consequently, a total of 743 azimuthal VLF-EM and 4 DC-resistivity soundings were carried out in June, 2011, 2012 and 2013. The data were interpreted extensively and consistently in terms of two-dimensional (2D) transformed EM equivalent current-density and stitched inverted electrical resistivity models, without using any geological a-priori information. They could be used effectively to image the local anomalous lower electrical resistivity (higher EM equivalent current-density) structures and their near-surface spreading with time, due to the excessive accumulations of subterraneous water at the campus site. The study demonstrated that a regional azimuthal VLF-EM and DC-resistivity sounding survey could help design an optimal dewatering program for the whole city, at greatly reduced execution time.

  9. DC-based smart PV-powered home energy management system based on voltage matching and RF module

    PubMed Central

    Hasan, W. Z. W.

    2017-01-01

    The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances’ consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances’ energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11–123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results. PMID:28934271

  10. DC-based smart PV-powered home energy management system based on voltage matching and RF module.

    PubMed

    Sabry, Ahmad H; Hasan, W Z W; Ab Kadir, Mza; Radzi, M A M; Shafie, S

    2017-01-01

    The main tool for measuring system efficiency in homes and offices is the energy monitoring of the household appliances' consumption. With the help of GUI through a PC or smart phone, there are various applications that can be developed for energy saving. This work describes the design and prototype implementation of a wireless PV-powered home energy management system under a DC-distribution environment, which allows remote monitoring of appliances' energy consumptions and power rate quality. The system can be managed by a central computer, which obtains the energy data based on XBee RF modules that access the sensor measurements of system components. The proposed integrated prototype framework is characterized by low power consumption due to the lack of components and consists of three layers: XBee-based circuit for processing and communication architecture, solar charge controller, and solar-battery-load matching layers. Six precise analogue channels for data monitoring are considered to cover the energy measurements. Voltage, current and temperature analogue signals were accessed directly from the remote XBee node to be sent in real time with a sampling frequency of 11-123 Hz to capture the possible surge power. The performance shows that the developed prototype proves the DC voltage matching concept and is able to provide accurate and precise results.

  11. Optical state-of-charge monitor for batteries

    DOEpatents

    Weiss, Jonathan D.

    1999-01-01

    A method and apparatus for determining the instantaneous state-of-charge of a battery in which change in composition with discharge manifests itself as a change in optical absorption. In a lead-acid battery, the sensor comprises a fiber optic system with an absorption cell or, alternatively, an optical fiber woven into an absorbed-glass-mat battery. In a lithium-ion battery, the sensor comprises fiber optics for introducing light into the anode to monitor absorption when lithium ions are introduced.

  12. Dendritic cell based vaccines: progress in immunotherapy studies for prostate cancer.

    PubMed

    Ragde, Haakon; Cavanagh, William A; Tjoa, Benjamin A

    2004-12-01

    No effective treatment is currently available for metastatic prostate cancer. Dendritic cell (DC) based cancer vaccine research has emerged from the laboratories to human clinical trials. We describe progress in the development of DC based prostate cancer vaccine. The literature was reviewed for major contributions to a growing number of studies that demonstrate the potential of DC based immunotherapeutics for prostate cancer. Background topics relating to DC based immunotherapy theory and practice are also addressed. DCs have been recognized as the most efficient antigen presenting cells that have the capacity to initiate naive T cell response in vitro and in vivo. During their differentiation and maturation pathways, dendritic cells can efficiently capture, process and present antigens for T cell activation. These characteristics make DC an attractive choice as the cellular adjuvant for cancer vaccines. Advances in DC generation, loading, and maturation methodologies have made it possible to generate clinical grade vaccines for various human trials. More than 100 DC vaccine trials, including 7 studies of patients with advanced prostate cancer have been reported to date. These vaccines were generally well tolerated with no significant adverse toxicity reported. Clinical responders have been identified in these studies. The new prospects opened by DC based vaccines for prostate cancer are fascinating. When compared to conventional treatments, DC vaccinations have few side effects. Improvements in patient selection, vaccine delivery strategies, immune monitoring and vaccine manufacturing will be crucial in moving DC based prostate cancer vaccines closer to the clinics.

  13. Biphasic DC measurement approach for enhanced measurement stability and multi-channel sampling of self-sensing multi-functional structural materials doped with carbon-based additives

    NASA Astrophysics Data System (ADS)

    Downey, Austin; D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Geiger, Randall

    2017-06-01

    Investigation of multi-functional carbon-based self-sensing structural materials for structural health monitoring applications is a topic of growing interest. These materials are self-sensing in the sense that they can provide measurable electrical outputs corresponding to physical changes such as strain or induced damage. Nevertheless, the development of an appropriate measurement technique for such materials is yet to be achieved, as many results in the literature suggest that these materials exhibit a drift in their output when measured with direct current (DC) methods. In most of the cases, the electrical output is a resistance and the reported drift is an increase in resistance from the time the measurement starts due to material polarization. Alternating current methods seem more appropriate at eliminating the time drift. However, published results show they are not immune to drift. Moreover, the use of multiple impedance measurement devices (LCR meters) does not allow for the simultaneous multi-channel sampling of multi-sectioned self-sensing materials due to signal crosstalk. The capability to simultaneously monitor multiple sections of self-sensing structural materials is needed to deploy these multi-functional materials for structural health monitoring. Here, a biphasic DC measurement approach with a periodic measure/discharge cycle in the form of a square wave sensing current is used to provide consistent, stable resistance measurements for self-sensing structural materials. DC measurements are made during the measurement region of the square wave while material depolarization is obtained during the discharge region of the periodic signal. The proposed technique is experimentally shown to remove the signal drift in a carbon-based self-sensing cementitious material while providing simultaneous multi-channel measurements of a multi-sectioned self-sensing material. The application of the proposed electrical measurement technique appears promising for real-time utilization of self-sensing materials in structural health monitoring.

  14. 46 CFR 535.701 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., Washington, DC 20573-0001. A copy of the Monitoring Report form in Microsoft Word and Excel format may be... Monitoring Reports in the Commission's prescribed electronic format, either on diskette or CD-ROM. (e)(1) The... filed by this subpart may be filed by direct electronic transmission in lieu of hard copy. Detailed...

  15. Inexpensive read-out for coincident electron spectroscopy with a transmission electron microscope at nanometer scale using micro channel plates and multistrip anodes

    NASA Astrophysics Data System (ADS)

    Hollander, R. W.; Bom, V. R.; van Eijk, C. W. E.; Faber, J. S.; Hoevers, H.; Kruit, P.

    1994-09-01

    The elemental composition of a sample at nanometer scale is determined by measurement of the characteristic energy of Auger electrons, emitted in coincidence with incoming primary electrons from a microbeam in a scanning transmission electron microscope (STEM). Single electrons are detected with position sensitive detectors, consisting of MicroChannel Plates (MCP) and MultiStrip Anodes (MSA), one for the energy of the Auger electrons (Auger-detector) and one for the energy loss of primary electrons (EELS-detector). The MSAs are sensed with LeCroy 2735DC preamplifiers. The fast readout is based on LeCroy's PCOS III system. On the detection of a coincidence (Event) energy data of Auger and EELS are combined with timing data to an Event word. Event words are stored in list mode in a VME memory module. Blocks of Event words are scanned by transputers in VME and two-dimensional energy histograms are filled using the timing information to obtain a maximal true/accidental ratio. The resulting histograms are stored on disk of a PC-386, which also controls data taking. The system is designed to handle 10 5 Events per second, 90% of which are accidental. In the histograms the "true" to "accidental" ratio will be 5. The dead time is 15%.

  16. Research and Development for an Alternative RF Source Using Magnetrons in CEBAF

    NASA Astrophysics Data System (ADS)

    Jacobs, Andrew

    2016-09-01

    At Jefferson Lab, klystrons are currently used as a radiofrequency (RF) power source for the 1497 MHz Continuous Electron Beam Accelerator Facility (CEBAF) Continuous Wave (CW) system. A drop-in replacement for the klystrons in the form of a system of magnetrons is being developed. The klystron DC-RF efficiency at CEBAF is 35-51% while the estimated magnetron efficiency is 80-90%. Thus, the introduction of magnetrons to CEBAF will have enormous benefits in terms of electrical power saving. The primary focus of this project was to characterize a magnetron's frequency pushing and pulling curves at 2.45 GHz with stub tuner and anode current adjustments so that a Low Level RF controller for a new 1.497 GHz magnetron can be built. A Virtual Instrument was created in LabVIEW, and data was taken. The resulting data allowed for the creation of many constant lines of frequency and output power. Additionally, the results provided a characterization of magnetron oven temperature drift over the operation time and the relationship between anode current and frequency. Using these results, the control model of different variables and their feedback or feedforward that affect the frequency pushing and pulling of the magnetron is better developed. Department of Energy, Science Undergraduate Laboratory Internships, and Jefferson Lab.

  17. Template-assisted fabrication of tin and antimony based nanowire arrays

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Kurowska, Elżbieta; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-10-01

    Antimony nanowires with diameters ranging from 35 nm to 320 nm were successfully prepared by simple, galvanostatic electrodeposition inside the pores of anodic alumina membranes from a citrate based electrolyte. The use of the potassium antimonyl tartrate electrolyte for electrodeposition results in the formation of Sb/Sb2O3 nanowires. The structural features of the nanowire arrays were investigated by FE-SEM, and the nanowire composition was confirmed by EDS and XRD measurements. A distinct peak at about 27.5° in the XRD pattern recorded for nanowires formed in the tartrate electrolyte was attributed to the presence of co-deposited Sb2O3. Three types of dense arrays of Sn-SnSb nanowires with diameters ranging from 82 nm to 325 nm were also synthesized by DC galvanostatic electrodeposition into the anodic aluminum oxide (AAO) membranes for the first time. Only Sn and SnSb peaks appeared in the XRD pattern and both phases seem to have a relatively high degree of crystallinity. The influence of current density applied during electrodeposition on the composition of nanowires was investigated. It was found that the Sb content in fabricated nanowires decreases with increasing current density. The diameters of all synthesized nanowires roughly correspond to the dimensions of the nanochannels of AAO templates used for electrodeposition.

  18. Formation of Sn–M (M=Fe, Al, Ni) alloy nanoparticles by DC arc-discharge and their electrochemical properties as anodes for Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Song; Huang, Hao, E-mail: huanghao@dlut.edu.cn; Wu, Aimin

    2016-10-15

    A direct current arc-discharge method was applied to prepare the Sn–M (M=Fe, Al, Ni) bi-alloy nanoparticles. Thermodynamic is introduced to analyze the energy circumstances for the formation of the nanoparticles during the physical condensation process. The electrochemical properties of as-prepared Sn–M alloy nanoparticles are systematically investigated as anodes of Li-ion batteries. Among them, Sn–Fe nanoparticles electrode exhibits high Coulomb efficiency (about 71.2%) in the initial charge/discharge (257.9 mA h g{sup −1}/366.6 mA h g{sup −1}) and optimal cycle stability (a specific reversible capacity of 240 mA h g{sup −1} maintained after 20 cycles) compared with others. Large differences in themore » electrochemical behaviors indicate that the chemical composition and microstructure of the nanoparticles determine the lithium-ion storage properties and the long-term cyclic stability during the charge/discharge process. - Graphical abstract: The growth mechanism and electrochemical performance of Sn-based alloy nanoparticles. - Highlights: • Thermodynamic analyses of oxides on Sn-M nanoparticles surface. • The relationship between chemical components and electrochemical responses. • Sn-Fe nanoparticles show excellent electrode performance.« less

  19. Effects of direct current electric-field using ITO plate on breast cancer cell migration.

    PubMed

    Kim, Min Sung; Lee, Mi Hee; Kwon, Byeong-Ju; Seo, Hyok Jin; Koo, Min-Ah; You, Kyung Eun; Kim, Dohyun; Park, Jong-Chul

    2014-01-01

    Cell migration is an essential activity of the cells in various biological phenomena. The evidence that electrotaxis plays important roles in many physiological phenomena is accumulating. In electrotaxis, cells move with a directional tendency toward the anode or cathode under direct-current electric fields. Indium tin oxide, commonly referred to as ITO has high luminous transmittance, high infrared reflectance, good electrical conductivity, excellent substrate adherence, hardness and chemical inertness and hence, have been widely and intensively studied for many years. Because of these properties of ITO films, the electrotaxis using ITO plate was evaluated. Under the 0 V/cm condition, MDA-MB-231 migrated randomly in all directions. When 1 V/cm of dc EF was applied, cells moved toward anode. The y forward migration index was -0.046 ± 0.357 under the 0 V/cm and was 0.273 ± 0.231 under direct-current electric field of 1 V/cm. However, the migration speed of breast cancer cell was not affected by direct-current electric field using ITO plate. In this study, we designed a new electrotaxis system using an ITO coated glass and observed the migration of MDA-MB-231 on direct current electric-field of the ITO glass.

  20. A Kinetics and Equilibrium Study of Vanadium Dissolution from Vanadium Oxides and Phosphates in Battery Electrolytes: Possible Impacts on ICD Battery Performance.

    PubMed

    Bock, David C; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2013-06-01

    Silver vanadium oxide (Ag 2 V 4 O 11 , SVO) has enjoyed widespread commercial success over the past 30 years as a cathode material for implantable cardiac defibrillator (ICD) batteries. Recently, silver vanadium phosphorous oxide (Ag 2 VO 2 PO 4 , SVPO) has been studied as possibly combining the desirable thermal stability aspects of LiFePO 4 with the electrical conductivity of SVO. Further, due to the noted insoluble nature of most phosphate salts, a lower material solubility of SVPO relative to SVO is anticipated. Thus, the first vanadium dissolution studies of SVPO in battery electrolyte solutions are described herein. The equilibrium solubility of SVPO was ~5 times less than SVO, with a rate constant of dissolution ~3.5 times less than that of SVO. The vanadium dissolution in SVO and SVPO can be adequately described with a diffusion layer model, as supported by the Noyes-Whitney equation. Cells prepared with vanadium-treated anodes displayed higher AC impedance and DC resistance relative to control anodes. These data support the premise that SVPO cells are likely to exhibit reduced cathode solubility and thus less affected by increased cell resistance due to cathode solubility compared to SVO based cells.

  1. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... scale. For example, according to Figure E-1 of this appendix, if a PM sampler is primarily influenced by... criterion is designed to avoid undue influences from minor sources. 7 For microscale CO monitoring sites in... Research Board, Washington, DC. January 1978.) 4. Pace, T.G., W.P. Freas, and E.M. Afify. Quantification of...

  2. Dark Chocolate: Opportunity for an Alliance between Medical Science and the Food Industry?

    PubMed Central

    Petyaev, Ivan M.; Bashmakov, Yuriy K.

    2017-01-01

    Dark chocolate (DC) was originally introduced in human nutrition as a medicinal product consumable in a liquid form. Century-long efforts of food industry transformed this hardly appealing product into a valuable modern culinary delight with clear predominance of confectionery brands of DC on the market. However, current epidemiological data as well as multiple experimental and clinical observations reveal that DC consumption may have a profound effect on cardiovascular, central nervous systems, hemostasis, and lipid metabolism. However, despite of growing body of modern scientific evidence revealing medicinal properties of cocoa-based products, DC remains more gourmet culinary item than medicinal food product. Even today there are no clear dietary recommendations on consumption of cocoa flavonoids (flavanols) for health purpose. Clinical trials with DC rarely include monitoring of plasma flavanol concentration in volunteers. Moreover, there is no standardized assay or any quantitative requirements for flavanol content in the commercial brands of DC. High flavanol content is often sacrificed during manufacturing for a better taste of DC due to bitterness of cocoa flavonoids. All these problems including subsequently arising ethical issues need to be addressed by joint efforts of food industry and medical science. Moreover, application of microencapsulation technology in DC manufacturing, as well as molecular selection of best flavanol producers may drastically change bioavailability of DC bioactive ingredients and DC production technology. Nevertheless, only strict causative approach, linking possible health effect of DC to its bioactive ingredients considered as nutraceuticals, may change the current landscape in nutritional research related to cocoa-based products and create a trustworthy path for their medicinal use. PMID:29034240

  3. Dark Chocolate: Opportunity for an Alliance between Medical Science and the Food Industry?

    PubMed

    Petyaev, Ivan M; Bashmakov, Yuriy K

    2017-01-01

    Dark chocolate (DC) was originally introduced in human nutrition as a medicinal product consumable in a liquid form. Century-long efforts of food industry transformed this hardly appealing product into a valuable modern culinary delight with clear predominance of confectionery brands of DC on the market. However, current epidemiological data as well as multiple experimental and clinical observations reveal that DC consumption may have a profound effect on cardiovascular, central nervous systems, hemostasis, and lipid metabolism. However, despite of growing body of modern scientific evidence revealing medicinal properties of cocoa-based products, DC remains more gourmet culinary item than medicinal food product. Even today there are no clear dietary recommendations on consumption of cocoa flavonoids (flavanols) for health purpose. Clinical trials with DC rarely include monitoring of plasma flavanol concentration in volunteers. Moreover, there is no standardized assay or any quantitative requirements for flavanol content in the commercial brands of DC. High flavanol content is often sacrificed during manufacturing for a better taste of DC due to bitterness of cocoa flavonoids. All these problems including subsequently arising ethical issues need to be addressed by joint efforts of food industry and medical science. Moreover, application of microencapsulation technology in DC manufacturing, as well as molecular selection of best flavanol producers may drastically change bioavailability of DC bioactive ingredients and DC production technology. Nevertheless, only strict causative approach, linking possible health effect of DC to its bioactive ingredients considered as nutraceuticals, may change the current landscape in nutritional research related to cocoa-based products and create a trustworthy path for their medicinal use.

  4. DcR3, a new biomarker for sepsis, correlates with infection severity and procalcitonin.

    PubMed

    Gao, Liqin; Yang, Bin; Zhang, Hairong; Ou, Qishui; Lin, Yulan; Zhang, Mei; Zhang, Zhenhuan; Kim, Sunghee; Wu, Bing; Wang, Zeng; Fu, Lengxi; Lin, Jingan; Chen, Ruiqing; Lan, Ruilong; Chen, Junying; Chen, Wei; Chen, Long; Zhang, Hengshan; Han, Deping; Chen, Jingrong; Okunieff, Paul; Lin, Jianhua; Zhang, Lurong

    2018-02-16

    Early diagnosis of sepsis is critical for successful treatment. The clinical value of DcR3 in early diagnosis of sepsis was determined in a dynamic follow-up study. Alterations in plasma levels of DcR3, PCT, CRP, and IL-6 were measured by ELISA and compared among patients with sepsis ( n = 134), SIRS ( n = 60) and normal adults ( n = 50). Correlations and dynamic patterns among the biomarkers, APACHE II scores, clinical outcomes, and pathogens were also examined. Plasma DcR3 was significantly increased in sepsis compared to SIRS and normal adults (median 3.87 vs. 1.28 and 0.17 ng/ml). The elevated DcR3 could be detected in 97.60% sepsis patients 1-2 days prior to the result of blood culture reported. For diagnosis of sepsis, the sensitivity was 97.69% and specificity 98.04%; and for differential diagnosis of sepsis from SIRS, the sensitivity was 90.77% and specificity 98.40%. DcR3 level was positively correlated with severity of sepsis ( r s = 0.82). In 41 patients who died of sepsis, DcR3 elevated as early as 1-2 days before blood culture and peaked on day 3 after blood culture performed. In 90% of sepsis patients, the dynamic alteration pattern of DcR3 was identical to that of PCT, while pattern of 10% patients differed in which clinical data was consistent with DcR3. In 13% sepsis patients, while PCT remained normal, DcR3 levels were at a high level. DcR3 levels had no difference among various pathogens infected. DcR3, a new biomarker, will aid in early diagnosis of sepsis and monitoring its outcome, especially when sepsis patients were PCT negative.

  5. A new method of converter transformer protection without commutation failure

    NASA Astrophysics Data System (ADS)

    Zhang, Jiayu; Kong, Bo; Liu, Mingchang; Zhang, Jun; Guo, Jianhong; Jing, Xu

    2018-01-01

    With the development of AC / DC hybrid transmission technology, converter transformer as nodes of AC and DC conversion of HVDC transmission technology, its reliable safe and stable operation plays an important role in the DC transmission. As a common problem of DC transmission, commutation failure poses a serious threat to the safe and stable operation of power grid. According to the commutation relation between the AC bus voltage of converter station and the output DC voltage of converter, the generalized transformation ratio is defined, and a new method of converter transformer protection based on generalized transformation ratio is put forward. The method uses generalized ratio to realize the on-line monitoring of the fault or abnormal commutation components, and the use of valve side of converter transformer bushing CT current characteristics of converter transformer fault accurately, and is not influenced by the presence of commutation failure. Through the fault analysis and EMTDC/PSCAD simulation, the protection can be operated correctly under the condition of various faults of the converter.

  6. A fully integrated, wide-load-range, high-power-conversion-efficiency switched capacitor DC-DC converter with adaptive bias comparator for ultra-low-power power management integrated circuit

    NASA Astrophysics Data System (ADS)

    Asano, Hiroki; Hirose, Tetsuya; Kojima, Yuta; Kuroki, Nobutaka; Numa, Masahiro

    2018-04-01

    In this paper, we present a wide-load-range switched-capacitor DC-DC buck converter with an adaptive bias comparator for ultra-low-power power management integrated circuit. The proposed converter is based on a conventional one and modified to operate in a wide load range by developing a load current monitor used in an adaptive bias comparator. Measurement results demonstrated that our proposed converter generates a 1.0 V output voltage from a 3.0 V input voltage at a load of up to 100 µA, which is 20 times higher than that of the conventional one. The power conversion efficiency was higher than 60% in the load range from 0.8 to 100 µA.

  7. An Interpolation and Compaction Technique for Gridded Data.

    DTIC Science & Technology

    1983-06-27

    Scientific Research 13. NUMBER OF PAGES Bolling AFB DC 20332 /*. 59 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS...ByBy___{ Distribution/ FINAL REPORT Availabiiity Codes Avail and/or .-. Dist Special Prepared for V; Air Force Office of Scientific Research Boiling Air...Force Base, DC 20332 Under Grand AFOSR-82-0166 • , .4 This report was written for the Air Force Office of Scientific Research under Grant AFOSR-82-0166

  8. District of Columbia Public Education: Agencies Have Enhanced Internal Controls over Federal Payments for School Improvement, but More Consistent Monitoring Needed. Report to Congressional Requesters. GAO-11-16

    ERIC Educational Resources Information Center

    Ashby, Cornelia M.

    2010-01-01

    Between fiscal years 2004 and 2009, Congress appropriated nearly $190 million in federal payments for school improvement to the District of Columbia (D.C.). This includes $85 million to the state education office--currently the Office of the State Superintendent of Education (OSSE)--to expand public charter schools and $105 million to D.C. Public…

  9. Fluctuations of Thermodynamic Properties of Supercooled Liquid Water.

    DTIC Science & Technology

    1987-07-28

    ORGANIZATION REPORT NUMBER(S) ONR-TR- 2b V 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION Howard University (f...Division Howard University Washington, DC 20059 July 28, 1987 Reproduction in whole, or in part, is permitted for any purpose of the United States...Chemistry Department, Howard University , Washington, DC 20059 It has been known for many years that fluctuations of several thermo- dynamic properties of

  10. New Therapeutic Approaches and Prognostic Assays for Breast Cancer: Radiolabeled Ligands and Antibodies and Quantitative PCR..

    DTIC Science & Technology

    1997-11-01

    and Quantitative PCR PRINCIPAL INVESTIGATOR: Indra Poola, Ph.D. CONTRACTING ORGANIZATION: Howard university Washington, DC 20059 REPORT DATE... Howard University Washington, DC 20059 8. PERFORMING ORGANIZATION REPORT NUMBER 8. SPONSORING f MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S...Stollar J.A. Hanover B.L. Vallee C.B. Hirschberg November 21, 1997 Indra Poola Dept. of Pharmacology Howard University School of Medicine 520 W

  11. Psychological and Neuropsychological Predictors of Non-Compliance to Mammography Screening Among High-Risk African American Women

    DTIC Science & Technology

    2005-04-01

    Risk African American Women PRINCIPAL INVESTIGATOR: Sharon L. SteeleOmetha Lewis-Jack, Ph.D. CONTRACTING ORGANIZATION: Howard University Washington, DC...ADDRESS(ES) 8. PERFORMING ORGANIZA TION Howard University REPORT NUMBER Washington, DC 20059 E-Mail: Shapsych98@hotmail.com 9. SPONSORING / MONITORING 10...To begin, informed consent was obtained from the Howard University Institutional Review Board (IRB) after the development and submission of the

  12. Computer-Aided Detection of Mammographic Masses in Dense Breast Images

    DTIC Science & Technology

    2005-06-01

    Kinnard, Ph.D. CONTRACTING ORGANIZATION: Howard University Washington, DC 20059 REPORT DATE: June 2005 TYPE OF REPORT: Annual Summary PREPARED FOR: U.S...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Howard University Washington, DC 20059 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES...34, Preparing for the Postdoctoral Institute, August, 2004, Howard University and The University of Texas at El Paso. 2. "Computer-Aided Diagnosis and Image

  13. Investigations of DC power supplies with optoelectronic transducers and RF energy converters

    NASA Astrophysics Data System (ADS)

    Guzowski, B.; Gozdur, R.; Bernacki, L.; Lakomski, M.

    2016-04-01

    Fiber Distribution Cabinets (FDC) monitoring systems are increasingly popular. However it is difficult to realize such system in passive FDC, due to lack of source of power supply. In this paper investigation of four different DC power supplies with optoelectronic transducers is described. Two converters: photovoltaic power converter and PIN photodiode can convert the light transmitted through the optical fiber to electric energy. Solar cell and antenna RF-PCB are also tested. Results presented in this paper clearly demonstrate that it is possible to build monitoring system in passive FDC. During the tests maximum obtained output power was 11 mW. However all converters provided enough power to excite 32-bit microcontroller with ARM-cores and digital thermometer.

  14. Water-quality data at amphibian research sites in Maryland, Washington, D.C., and Virginia, 2005-2007

    USGS Publications Warehouse

    Rice, Karen C.

    2008-01-01

    Data on the chemical composition of water were collected at least once from 47 amphibian research sites in Maryland, Washington, D.C., and Virginia, from 2005 through 2007. One hundred twenty-five water samples were collected from vernal pools and streams and analyzed as part of long-term monitoring projects of the U.S. Geological Survey Amphibian Research and Monitoring Initiative in the Northeast Region. Field measurements of water temperature, specific conductance, and pH were made. Laboratory analyses of the water samples included acid-neutralizing capacity, total Kjeldahl nitrogen (ammonium plus organic nitrogen), nitrite plus nitrate, total nitrogen, and total phosphorus concentrations. Field and laboratory analytical results of water samples and quality-assurance data are presented.

  15. Characterization of wafer-level bonded hermetic packages using optical leak detection

    NASA Astrophysics Data System (ADS)

    Duan, Ani; Wang, Kaiying; Aasmundtveit, Knut; Hoivik, Nils

    2009-07-01

    For MEMS devices required to be operated in a hermetic environment, one of the main reliability issues is related to the packaging methods applied. In this paper, an optical method for testing low volume hermetic cavities formed by anodic bonding between glass and SOI (silicon on insulator) wafer is presented. Several different cavity-geometry structures have been designed, fabricated and applied to monitor the hermeticity of wafer level anodic bonding. SOI wafer was used as the cap wafer on which the different-geometry structures were fabricated using standard MEMS technology. The test cavities were bonded using SOI wafers to glass wafers at 400C and 1000mbar pressure inside a vacuum bonding chamber. The bonding voltage varies from 200V to 600V. The bonding strength between glass and SOI wafer was mechanically tested using shear tester. The deformation amplitudes of the cavity cap surface were monitored by using an optical interferometer. The hermeticity of the glass-to-SOI wafer level bonding was characterized through observing the surface deformation in a 6 months period in atmospheric environment. We have observed a relatively stable micro vacuum-cavity.

  16. Material Properties of Matrix Lipids Determine Conformation and Intermolecular Reactivity of a Diacetylenic Phosphatidylcholine in the Lipid Bilayer

    PubMed Central

    Puri, Anu; Jang, Hyunbum; Yavlovich, Amichai; Masood, M. Athar; Veenstra, Timothy D.; Luna, Carlos; Aranda-Espinoza, Helim; Nussinov, Ruth; Blumenthal, Robert

    2011-01-01

    Photopolymerizable phospholipid DC8,9PC (1,2-bis-(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine) exhibits unique assembly characteristics in the lipid bilayer. Due to the presence of the diacetylene groups, DC8,9PC undergoes polymerization upon UV (254 nm) exposure and assumes chromogenic properties. DC8,9PC photopolymerization in a gel phase matrix lipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monitored by UV-VIS absorption spectroscopy occurred within 2 minutes after UV treatment, whereas no spectral shifts were observed when DC8,9PC was incorporated in a liquid phase matrix 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Liquid chromatography-tandem mass spectrometry analysis showed a decrease in DC8,9PC monomer in both DPPC and POPC environments without any change in matrix lipids in UV-treated samples. Molecular Dynamics (MD) simulations of DPPC/DC8,9PC and POPC/DC8,9PC bilayers indicate that the DC8,9PC molecules adjust to the thickness of the matrix lipid bilayer. Furthermore, motions of DC8,9PC in the gel phase bilayer are more restricted than in the fluid bilayer. The restricted motional flexibility of DC8,9PC (in the gel phase) enables the reactive diacetylenes in individual molecules to align and undergo polymerization, whereas the unrestricted motions in the fluid bilayer restrict polymerization due to the lack of appropriate alignment of the DC8,9PC fatty acyl chains. Fluorescence microscopy data indicates homogenous distribution of the lipid probe 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-lissamine rhodamine B sulfonyl ammonium salt (N-Rh-PE) in POPC/DC8,9PC monolayers, but domain formation in DPPC/DC8,9PC monolayers. These results show that the DC8,9PC molecules cluster and assume the preferred conformation in the gel phase matrix for UV-triggered polymerization reaction. PMID:22053903

  17. Shock Reduction With Antitachycardia Pacing Before and During Charging for Fast Ventricular Tachycardias in Patients With Implantable Defibrillators.

    PubMed

    Dallaglio, Paolo Domenico; Anguera, Ignasi; Martínez Ferrer, José B; Pérez, Luisa; Viñolas, Xavier; Porres, Jose Manuel; Fontenla, Adolfo; Alzueta, Javier; Martínez, Juan Gabriel; Rodríguez, Aníbal; Basterra, Nuria; Sabaté, Xavier

    2017-12-11

    Fast ventricular tachycardias in the ventricular fibrillation zone in patients with an implantable cardioverter-defibrillator are susceptible to antitachycardia pacing (ATP) termination. Some manufacturers allow programming 2 ATP bursts: before charging (BC) and during (DC) charging. The aim of this study was to describe the safety and effectiveness of ATP BC and DC for fast ventricular tachycardias in the ventricular fibrillation zone in patients with an implantable cardioverter-defibrillator in daily clinical practice. Data proceeded from the multicenter UMBRELLA trial, including implantable cardioverter-defibrillator patients followed up by the CareLink monitoring system. Fast ventricular tachycardias in the ventricular fibrillation zone until a cycle length of 200ms with ATP BC and/or ATP DC were included. We reviewed 542 episodes in 240 patients. Two ATP bursts (BC/DC) were programmed in 291 episodes (53.7%, 87 patients), while 251 episodes (46.3%, 153 patients) had 1 ATP burst only DC. The number of episodes terminated by 1 ATP DC was 139, representing 55.4% effectiveness (generalized estimating equation-adjusted 60.4%). There were 256 episodes terminated by 1 or 2 ATP (BC/DC), representing 88% effectiveness (generalized estimating equation-adjusted 79.3%); the OR for ATP effectiveness BC/DC vs DC was 2.5, 95%CI, 1.5-4.1; P <.001. Shocked episodes were 112 (45%) for ATP DC vs 35 (12%) for ATP BC/DC, representing an absolute reduction of 73%. The mean shocked episode duration was 16seconds for ATP DC vs 19seconds for ATP BC/DC (P=.07). The ATP DC in the ventricular fibrillation zone for fast ventricular tachycardia is moderately effective. Adding an ATP burst BC increases the overall effectiveness, reduces the need for shocks, and does not prolong episode duration. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  18. "Provide it... but will they come?" a look at African American and Hispanic visits to Federal recreation areas

    Treesearch

    Cassandra Y. Johnson; J. Michael Bowker; Gary Green; H. Kenneth Cordell

    2007-01-01

    Recent data from the US Forest Service’s onsite National Visitor Use Monitoring Survey (National Visitor Use Monitoring Survey, 2004. Unpublished demographic results for 2002–2003. Data on file with Donald English, Program Manager, Visitor Use Monitoring Project, Washington, DC) shows that visits made by African Americans account for very low percentages of visits to...

  19. Power system monitoring and source control of the Space Station Freedom DC power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  20. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  1. Phase I dendritic cell p53 peptide vaccine for head and neck cancer.

    PubMed

    Schuler, Patrick J; Harasymczuk, Malgorzata; Visus, Carmen; Deleo, Albert; Trivedi, Sumita; Lei, Yu; Argiris, Athanassios; Gooding, William; Butterfield, Lisa H; Whiteside, Theresa L; Ferris, Robert L

    2014-05-01

    p53 accumulation in head and neck squamous cell carcinoma (HNSCC) cells creates a targetable tumor antigen. Adjuvant dendritic cell (DC)-based vaccination against p53 was tested in a phase I clinical trial. Monocyte-derived DC from 16 patients were loaded with two modified HLA-class I p53 peptides (Arm 1), additional Th tetanus toxoid peptide (Arm 2), or additional Th wild-type (wt) p53-specific peptide (Arm 3). Vaccine DCs (vDC) were delivered to inguinal lymph nodes at three time points. vDC phenotype, circulating p53-specific T cells, and regulatory T cells (Treg) were serially monitored by flow cytometry and cytokine production by Luminex. vDC properties were compared with those of DC1 generated with an alternative maturation regimen. No grade II-IV adverse events were observed. Two-year disease-free survival of 88% was favorable. p53-specific T-cell frequencies were increased postvaccination in 11 of 16 patients (69%), with IFN-γ secretion detected in four of 16 patients. Treg frequencies were consistently decreased (P = 0.006) relative to prevaccination values. The phenotype and function of DC1 were improved relative to vDC. Adjuvant p53-specific vaccination of patients with HNSCC was safe and associated with promising clinical outcome, decreased Treg levels, and modest vaccine-specific immunity. HNSCC patients' DC required stronger maturation stimuli to reverse immune suppression and improve vaccine efficacy. ©2014 AACR.

  2. Si Oxidation and H 2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hays, Kevin A.; Key, Baris; Li, Jianlin

    Si has the possibility to greatly increase the energy density of Li-ion battery anodes, though it is not without its problems. One issue often overlooked is the decomposition of Si during large scale slurry formulation and battery fabrication. Here, we investigate the mechanism of H 2 production to understand the role of different slurry components and their impact on the Si oxidation and surface chemistry. Mass spectrometry and in situ pressure monitoring identifies that carbon black plays a major role in promoting the oxidation of Si and generation of H 2. Si oxidation also occurs through atmospheric O 2 consumption.more » Both pathways, along with solvent choice, impact the surface silanol chemistry, as analyzed by 1H– 29Si cross-polarization magic angle spinning nuclear magnetic resonance (MAS NMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). An understanding of the oxidation of Si, during slurry processing, provides a pathway toward improving the manufacturing of Si based anodes by maximizing its capacity and minimizing safety hazards.« less

  3. Si Oxidation and H 2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes

    DOE PAGES

    Hays, Kevin A.; Key, Baris; Li, Jianlin; ...

    2018-04-24

    Si has the possibility to greatly increase the energy density of Li-ion battery anodes, though it is not without its problems. One issue often overlooked is the decomposition of Si during large scale slurry formulation and battery fabrication. Here, we investigate the mechanism of H 2 production to understand the role of different slurry components and their impact on the Si oxidation and surface chemistry. Mass spectrometry and in situ pressure monitoring identifies that carbon black plays a major role in promoting the oxidation of Si and generation of H 2. Si oxidation also occurs through atmospheric O 2 consumption.more » Both pathways, along with solvent choice, impact the surface silanol chemistry, as analyzed by 1H– 29Si cross-polarization magic angle spinning nuclear magnetic resonance (MAS NMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). An understanding of the oxidation of Si, during slurry processing, provides a pathway toward improving the manufacturing of Si based anodes by maximizing its capacity and minimizing safety hazards.« less

  4. Impact of rapamycin on phenotype and tolerogenic function of dendritic cells via intravital optical imaging

    NASA Astrophysics Data System (ADS)

    Luo, Meijie; Zhang, Zhihong

    2014-03-01

    Rapamycin (RAPA) as a unique tolerance-promoting therapeutic drug is crucial to successful clinical organ transplantation. DC (Dendritic cells) play a critical role in antigen presentation to T cells to initiate immune responses involved in tissue rejection. Although the influence of RAPA on DC differentiation and maturation had been reported by some research groups, it is still controversial and unclear right now. In addition, it is also lack of study on investigating the role of DC in DTH reaction via intravital optical imaging. Herein, we investigated the effect of rapamycin on phenotype and function of bone marrow monocyte-derived DC both in vitro and in vivo. In vitro experiments by flow cytometry (FACS) showed that DC displayed decreased cell size and lower expression levels of surface molecule CD80 induced by RAPA; Furthermore, the phagocytic ability to OVA of DC was inhibited by RAPA started from 1 h to 2 h post co-incubation, but recovered after 4 h; In addition, the capacity of DC to activate naïve OT-II T cell proliferation was also inhibited at 3 day post co-incubation, but had no effect at 5 day, the data indicated this effect was reversible when removing the drug. More importantly, the DC-T interaction was monitored both in vitro and in intravital lymph node explant, and showed that RAPA-DC had a significant lower proportion of long-lived (>15min) contacts. Thus, RAPA displayed immunosuppressive to phenotypic and functional maturation of DC, and this phenomenon induced by RAPA may favorable in the clinical organ transplantation in future.

  5. Monitoring the effects of chelating agents and electrical fields on active forms of Pb and Zn in contaminated soil.

    PubMed

    Tahmasbian, Iman; Safari Sinegani, Ali Akbar

    2013-11-01

    The application of electrical fields and chelating agents is an innovative hybrid technology used for the decontamination of soil polluted by heavy metals. The effects of four center-oriented electrical fields and chelating agents on active fractions of lead and zinc were investigated in this pot experiment. Ethylenediaminetetraacetic acid (EDTA) as a synthetic chelator and cow manure extract (CME) and poultry manure extract (PME) as natural chelators were applied to the pots (2 g kg(-1)) 30 days after the first irrigation. Two weeks later, four center-oriented electrical fields were applied in each pot (in three levels of 0, 10, and 30 V) for 1 h each day for 14 days. The soil near the cathode and anodes was collected and analyzed as cathodic and anodic soil, respectively. Results indicated that the soluble-exchangeable fraction of lead and zinc were decreased in the cathodic soil, while the carbonate-bound fractions were increased. In the anodic soil, however, the opposite result was observed. EDTA enhanced the soluble-exchangeable form of the metals in both anodic and cathodic soils. Furthermore, the amounts of carbonate-bound heavy metals were increased by the application of CME in both soils. The organic-bound fraction of the metals was increased by the application of natural chelators, while electrical fields had no significant impacts on this fraction.

  6. Modulation of Total Sleep Time by Transcranial Direct Current Stimulation (tDCS).

    PubMed

    Frase, Lukas; Piosczyk, Hannah; Zittel, Sulamith; Jahn, Friederike; Selhausen, Peter; Krone, Lukas; Feige, Bernd; Mainberger, Florian; Maier, Jonathan G; Kuhn, Marion; Klöppel, Stefan; Normann, Claus; Sterr, Annette; Spiegelhalder, Kai; Riemann, Dieter; Nitsche, Michael A; Nissen, Christoph

    2016-09-01

    Arousal and sleep are fundamental physiological processes, and their modulation is of high clinical significance. This study tested the hypothesis that total sleep time (TST) in humans can be modulated by the non-invasive brain stimulation technique transcranial direct current stimulation (tDCS) targeting a 'top-down' cortico-thalamic pathway of sleep-wake regulation. Nineteen healthy participants underwent a within-subject, repeated-measures protocol across five nights in the sleep laboratory with polysomnographic monitoring (adaptation, baseline, three experimental nights). tDCS was delivered via bi-frontal target electrodes and bi-parietal return electrodes before sleep (anodal 'activation', cathodal 'deactivation', and sham stimulation). Bi-frontal anodal stimulation significantly decreased TST, compared with cathodal and sham stimulation. This effect was location specific. Bi-frontal cathodal stimulation did not significantly increase TST, potentially due to ceiling effects in good sleepers. Exploratory resting-state EEG analyses before and after the tDCS protocols were consistent with the notion of increased cortical arousal after anodal stimulation and decreased cortical arousal after cathodal stimulation. The study provides proof-of-concept that TST can be decreased by non-invasive bi-frontal anodal tDCS in healthy humans. Further elucidating the 'top-down' pathway of sleep-wake regulation is expected to increase knowledge on the fundamentals of sleep-wake regulation and to contribute to the development of novel treatments for clinical conditions of disturbed arousal and sleep.

  7. Modulation of Total Sleep Time by Transcranial Direct Current Stimulation (tDCS)

    PubMed Central

    Frase, Lukas; Piosczyk, Hannah; Zittel, Sulamith; Jahn, Friederike; Selhausen, Peter; Krone, Lukas; Feige, Bernd; Mainberger, Florian; Maier, Jonathan G; Kuhn, Marion; Klöppel, Stefan; Normann, Claus; Sterr, Annette; Spiegelhalder, Kai; Riemann, Dieter; Nitsche, Michael A; Nissen, Christoph

    2016-01-01

    Arousal and sleep are fundamental physiological processes, and their modulation is of high clinical significance. This study tested the hypothesis that total sleep time (TST) in humans can be modulated by the non-invasive brain stimulation technique transcranial direct current stimulation (tDCS) targeting a ‘top-down' cortico-thalamic pathway of sleep-wake regulation. Nineteen healthy participants underwent a within-subject, repeated-measures protocol across five nights in the sleep laboratory with polysomnographic monitoring (adaptation, baseline, three experimental nights). tDCS was delivered via bi-frontal target electrodes and bi-parietal return electrodes before sleep (anodal ‘activation', cathodal ‘deactivation', and sham stimulation). Bi-frontal anodal stimulation significantly decreased TST, compared with cathodal and sham stimulation. This effect was location specific. Bi-frontal cathodal stimulation did not significantly increase TST, potentially due to ceiling effects in good sleepers. Exploratory resting-state EEG analyses before and after the tDCS protocols were consistent with the notion of increased cortical arousal after anodal stimulation and decreased cortical arousal after cathodal stimulation. The study provides proof-of-concept that TST can be decreased by non-invasive bi-frontal anodal tDCS in healthy humans. Further elucidating the ‘top-down' pathway of sleep-wake regulation is expected to increase knowledge on the fundamentals of sleep-wake regulation and to contribute to the development of novel treatments for clinical conditions of disturbed arousal and sleep. PMID:27143601

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillaney, Prasheel; Pelc, Norbert; Shin Mihye

    Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the inductionmore » motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also evaluated to determine its stability during acceleration, and a pulse width modulation algorithm was implemented to control the rotation speed of the motor. Results: At a magnetic flux density of 41 mT orthogonal to the axis of rotation (on the lower end of the expected flux density in the MR suite) the maximum speed of the motor was found to be 5150 revolutions per minute (rpm). The acceleration time necessary to reach 3000 rpm was found to be approximately 10 s at 59 mT. The resonance frequency of the assembly with the anode attached was 1310 rpm (21.8 Hz) which is far below the desired operating speeds. Pulse width modulation provides an effective method to control the speed of the motor with a resolution of 100 rpm. Conclusions: The proposed design can serve as a direct replacement to the conventional induction motor used in rotating anode x-ray tubes. It does not suffer from a reduced rotation speed when operating in a MR environment. The presence of chromic steel bearings in the prototype prevented testing at the higher field strengths, and future iterations of the design could eliminate this shortcoming. The prototype assembly demonstrates proof of concept of the authors' design and overcomes one of the major obstacles for a MR compatible rotating anode x-ray tube.« less

  9. Medical and Non-Medical Predictors of Disability Discharge Disposition for Navy Personnel with a Back Problem: A Focus on Entitlement

    DTIC Science & Technology

    1988-03-28

    Washington D.C. 20350-1000. Stryker, S., & Gottlieb, A. (1981). Attribution theory and symbolic interactionism : A comparison. In J.H. Howes, W...ERFORMIING ORGANIZATION 6b OFFiCE SYMBOL 7a NAME OF MONITORING ORGANIZATION (If applicable) Naval Health Research Center 40 Commander, Naval Medical Command...Washington, DC 20372 ea NAME OF FUNDING/SPONSORING Bb OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION Naval Medical (If applicable

  10. Non-invasive monitoring of spreading depression.

    PubMed

    Bastany, Zoya J R; Askari, Shahbaz; Dumont, Guy A; Speckmann, Erwin-Josef; Gorji, Ali

    2016-10-01

    Spreading depression (SD), a slow propagating depolarization wave, plays an important role in pathophysiology of different neurological disorders. Yet, research into SD-related disorders has been hampered by the lack of non-invasive recording techniques of SD. Here we compared the manifestations of SD in continuous non-invasive electroencephalogram (EEG) recordings to invasive electrocorticographic (ECoG) recordings in order to obtain further insights into generator structures and electrogenic mechanisms of surface recording of SD. SD was induced by KCl application and simultaneous SD recordings were performed by scalp EEG as well as ECoG electrodes of somatosensory neocortex of rats using a novel homemade EEG amplifier, AgCl recording electrodes, and high chloride conductive gel. Different methods were used to analyze the data; including the spectrogram, bi-spectrogram, pattern distribution, relative spectrum power, and multivariable Gaussian fit analysis. The negative direct current (DC) shifts recorded by scalp electrodes exhibited a high homogeneity to those recorded by ECoG electrodes. Furthermore, this novel method of recording and analysis was able to separate SD recorded by scalp electrodes from non-neuronal DC shifts induced by other potential generators, such as the skin, muscles, arteries, dura, etc. These data suggest a novel application for continuous non-invasive monitoring of DC potential changes, such as SD. Non-invasive monitoring of SD would allow early intervention and improve outcome in SD-related neurological disorders. Copyright © 2016 IBRO. All rights reserved.

  11. The reaction mechanism of SnSb and Sb thin film anodes for Na-ion batteries studied by X-ray diffraction, 119Sn and 121Sb Mössbauer spectroscopies

    DOE PAGES

    Baggetto, Loïc; Hah, Hien-Yoong; Jumas, Jean-Claude; ...

    2014-06-01

    The electrochemical reaction of Sb and SnSb anode materials with Na results in the formation of amorphous materials. To understand the resulting phases and electrochemical capacities we studied the reaction products local order using 119Sn and 121Sb Mössbauer spectroscopies in conjunction with measurements performed on model powder compounds of Na-Sn and Na-Sb to further clarify the reactions steps. For pure Sb the discharge (sodiation) starts with the formation of an amorphous phase composed of atomic environments similar to those found in NaSb, and proceeds further by the formation of environments similar to that present in Na 3Sb. The reversible reactionmore » takes place during a large portion of the charge process. At full charge the anode material still contains a substantial fraction of Na, which explains the lack of recrystallization into crystalline Sb. The reaction of SnSb yields Na 3Sb crystalline phase at full discharge at higher temperatures (65 and 95°C) while the room temperature reaction yields amorphous compounds. The electrochemically-driven, solid-state amorphization reaction occurring at room temperature is governed by the simultaneous formation of Na-coordinated Sn and Sb environments, as monitored by the decrease (increase) of the 119Sn ( 121Sb) Mössbauer isomer shifts. Overall, the monitoring of the hyperfine parameters enables to correlate the changes in Na content to the individual Sn and Sb local chemical environments.« less

  12. Implementation method of multi-terminal DC control system

    NASA Astrophysics Data System (ADS)

    Yi, Liu; Hao-Ran, Huang; Jun-Wen, Zhou; Hong-Guang, Guo; Yu-Yong, Zhou

    2018-04-01

    Currently the multi-terminal DC system (MTDC) has more stations. Each station needs operators to monitor and control the device. It needs much more operation and maintenance, low efficiency and small reliability; for the most important reason, multi-terminal DC system has complex control mode. If one of the stations has some problem, the control of the whole system should have problems. According to research of the characteristics of multi-terminal DC (VSC-MTDC) systems, this paper presents a strong implementation of the multi-terminal DC Supervisory Control and Data Acquisition (SCADA) system. This system is intelligent, can be networking, integration and intelligent. A master control system is added in each station to communication with the other stations to send current and DC voltage value to pole control system for each station. Based on the practical application and information feedback in the China South Power Grid research center VSC-MTDC project, this system is higher efficiency and save the cost on the maintenance of convertor station to improve the intelligent level and comprehensive effect. And because of the master control system, a multi-terminal system hierarchy coordination control strategy is formed, this make the control and protection system more efficiency and reliability.

  13. Decompressive craniectomy or medical management for refractory intracranial hypertension: an AAST-MIT propensity score analysis.

    PubMed

    Nirula, Ram; Millar, D; Greene, Tom; McFadden, Molly; Shah, Lubdha; Scalea, Thomas M; Stein, Deborah M; Magnotti, Louis J; Jurkovich, Gregory J; Vercruysse, Gary; Demetriades, Demetrios; Scherer, Lynette A; Peitzman, Andrew; Sperry, Jason; Beauchamp, Kathryn; Bell, Scott; Feiz-Erfan, Iman; O'Neill, Patrick; Coimbra, Raul

    2014-04-01

    Moderate/severe traumatic brain injury (TBI) management involves minimizing cerebral edema to maintain brain oxygen delivery. While medical therapy (MT) consisting of diuresis, hyperosmolar therapy, ventriculostomy, and barbiturate coma is the standard of care, decompressive craniectomy (DC) for refractory intracranial hypertension (ICH) has gained renewed interest. Since TBI treatment guidelines consider DC a second-tier intervention after MT failure, we sought to determine if early DC (<48 hours) was associated with improved survival in patients with refractory ICH. Eleven Level 1 trauma centers provided clinical data and head computed tomographic scans for patients with a Glasgow Coma Scale (GCS) score of 13 or less and radiographic evidence of TBI excluding deaths within 48 hours. Computed tomographic scans were graded according to the Marshall classification. A propensity score to receive DC (regardless of whether DC was performed) was calculated for each patient based on patient characteristics, physiology, injury severity, GCS, severity of intracranial injury, and treatment center. Patients who actually received a DC were matched to patients with similar propensity scores who received MT for analysis. Outcomes were compared between early (<48 hours of injury) primary or secondary DC and matched controls and then between early primary DC only and matched controls. There were 2,602 patients who met the inclusion criteria ,of whom 264 (10.1%) received DC (either primary or secondary to another cranial procedure) and 109 (5%) had a DC that was primary. Variables associated with performing a DC included sex, race, intracranial pressure monitor placement, in-house trauma attending, traumatic subarachnoid hemorrhage, midline shift, and basal cistern compression. There was no survival benefit with early primary DC compared with the controls (relative risk, 1.07; 95% confidence interval, 0.67-1.73; p = 0.77), and resource use was higher. Early DC does not seem to significantly improve mortality in patients with refractory ICH compared with MT. Neurosurgeons should pause before entertaining this resource-demanding form of therapy. Therapeutic care/management, level III.

  14. Epicubenol and Ferruginol induce DC from human monocytes and differentiate IL-10-producing regulatory T cells in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takei, Masao; Umeyama, Akemi; Arihara, Shigenobu

    2005-11-18

    Epicubenol and 19-hydroxyferruginol (Ferruginol) are sesquiterpenes isolated from the black heartwood of Cryptomeria japonica. Dendritic cells (DC) are specialized antigen-presenting cells that monitor the antigenic environment and activate naive T cells. The role of DC is not only to sense danger but also to tolerize the immune system to antigens encountered in the absence of maturation/inflammatory stimuli. In this study, we attempted to investigate the effects of Epicubenol and Ferruginol on the phenotypic and functional maturation of human monocytes-derived DC in vitro. Human monocytes were cultured with GM-CSF and IL-4 for 6 days under standard conditions, followed by another 2more » days with Epicubenol or Ferruginol. The expression levels of CD1a, CD83, and HLA-DR as expressed by mean fluorescence intensity (MFI) on Epicubenol-primed DC or Ferruginol-primed DC were enhanced. Allogeneic Epicubenol-primed DC or Ferruginol-primed DC co-cultured with naive T cells at 1:5 ratio, secreted IL-10 and TGF-{beta}, but little IL-4. Moreover, T cells that develop in co-culture of Epicubenol-primed DC or Ferruginol-primed DC and naive T cells at 1:5 ratio suppressed the proliferation of autologous T cells at Treg cells: Ttarget cells and this suppression of proliferation was inhibited by anti-IL-10 mAb. The expression of FoxP3 mRNA on T cells that develop in co-culture of Epicubenol-primed DC or Ferruginol-primed DC and naive T cells was lower. From these results, Epicubenol and Ferruginol may induce IL-10-producing Treg 1 cells from naive T cells by modulating DC function. It seems that Epicubenol and Ferruginol appear to be a target for tolerance after transplantation and in autoimmune diseases.« less

  15. Elevation scanning laser/multi-sensor hazard detection system controller and mirror/mast speed control components. [roving vehicle electromechanical devices

    NASA Technical Reports Server (NTRS)

    Craig, J.; Yerazunis, S. W.

    1978-01-01

    The electro-mechanical and electronic systems involved with pointing a laser beam from a roving vehicle along a desired vector are described. A rotating 8 sided mirror, driven by a phase-locked dc motor servo system, and monitored by a precision optical shaft encoder is used. This upper assembly is then rotated about an orthogonal axis to allow scanning into all 360 deg around the vehicle. This axis is also driven by a phase locked dc motor servo-system, and monitored with an optical shaft encoder. The electronics are realized in standard TTL integrated circuits with UV-erasable proms used to store desired coordinates of laser fire. Related topics such as the interface to the existing test vehicle are discussed.

  16. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, G.F.

    1992-04-21

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time. 6 figs.

  17. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, George F.

    1992-01-01

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time.

  18. Linear circuit analysis program for IBM 1620 Monitor 2, 1311/1443 data processing system /CIRCS/

    NASA Technical Reports Server (NTRS)

    Hatfield, J.

    1967-01-01

    CIRCS is modification of IBSNAP Circuit Analysis Program, for use on smaller systems. This data processing system retains the basic dc, transient analysis, and FORTRAN 2 formats. It can be used on the IBM 1620/1311 Monitor I Mod 5 system, and solves a linear network containing 15 nodes and 45 branches.

  19. Prognostic value of changes in brain tissue oxygen pressure before and after decompressive craniectomy following severe traumatic brain injury.

    PubMed

    Lubillo, Santiago T; Parrilla, Dácil M; Blanco, José; Morera, Jesús; Dominguez, Jaime; Belmonte, Felipe; López, Patricia; Molina, Ismael; Ruiz, Candelaria; Clemente, Francisco J; Godoy, Daniel A

    2018-05-01

    OBJECTIVE In severe traumatic brain injury (TBI), the effects of decompressive craniectomy (DC) on brain tissue oxygen pressure (PbtO 2 ) and outcome are unclear. The authors aimed to investigate whether changes in PbtO 2 after DC could be used as an independent prognostic factor. METHODS The authors conducted a retrospective, observational study at 2 university hospital ICUs. The study included 42 patients who were admitted with isolated moderate or severe TBI and underwent intracranial pressure (ICP) and PbtO 2 monitoring before and after DC. The indication for DC was an ICP higher than 25 mm Hg refractory to first-tier medical treatment. Patients who underwent primary DC for mass lesion evacuation were excluded. However, patients were included who had undergone previous surgery as long as it was not a craniectomy. ICP/PbtO 2 monitoring probes were located in an apparently normal area of the most damaged hemisphere based on cranial CT scanning findings. PbtO 2 values were routinely recorded hourly before and after DC, but for comparisons the authors used the first PbtO 2 value on ICU admission and the number of hours with PbtO 2 < 15 mm Hg before DC, as well as the mean PbtO 2 every 6 hours during 24 hours pre- and post-DC. The end point of the study was the 6-month Glasgow Outcome Scale; a score of 4 or 5 was considered a favorable outcome, whereas a score of 1-3 was considered an unfavorable outcome. RESULTS Of the 42 patients included, 26 underwent unilateral DC and 16 bilateral DC. The median Glasgow Coma Scale score at the scene of the accident or at the initial hospital before the patient was transferred to one of the 2 ICUs was 7 (interquartile range [IQR] 4-14). The median time from admission to DC was 49 hours (IQR 7-301 hours). Before DC, the median ICP and PbtO 2 at 6 hours were 35 mm Hg (IQR 28-51 mm Hg) and 11.4 mm Hg (IQR 3-26 mm Hg), respectively. In patients with favorable outcome, PbtO 2 at ICU admission was higher and the percentage of time that pre-DC PbtO 2 was < 15 mm Hg was lower (19 ± 4.5 mm Hg and 18.25% ± 21.9%, respectively; n = 28) than in those with unfavorable outcome (12.8 ± 5.2 mm Hg [p < 0.001] and 59.58% ± 38.8% [p < 0.001], respectively; n = 14). There were no significant differences in outcomes according to the mean PbtO 2 values only during the last 12 hours before DC, the hours of refractory intracranial hypertension, the timing of DC from admission, or the presence/absence of previous surgery. In contrast, there were significant differences in PbtO 2 values during the 12- to 24-hour period before DC. In most patients, PbtO 2 increased during the 24 hours after DC but these changes were more pronounced in patients with favorable outcome than in those with unfavorable outcome (28.6 ± 8.5 mm Hg vs 17.2 ± 5.9 mm Hg, p < 0.0001; respectively). The areas under the curve for the mean PbtO 2 values at 12 and 24 hours after DC were 0.878 (95% CI 0.75-1, p < 0.0001) and 0.865 (95% CI 0.73-1, p < 0.0001), respectively. CONCLUSIONS The authors' findings suggest that changes in PbtO 2 before and after DC, measured with probes in healthy-appearing areas of the most damaged hemisphere, have independent prognostic value for the 6-month outcome in TBI patients.

  20. Direct current electrical potential measurement of the growth of small cracks

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Slavik, Donald C.; Piascik, Robert S.; Van Stone, Robert H.

    1992-01-01

    The analytical and experimental aspects of the direct-current electrical potential difference (dcEPD) method for continuous monitoring of the growth kinetics of short (50 to 500 microns) fatigue cracks are reviewed, and successful applications of the deEPD method to study fatigue crack propagation in a variety of metallic alloys exposed to various environments are described. Particular attention is given to the principle of the dcEPD method, the analytical electrical potential calibration relationships, and the experimental procedures and equipment.

  1. Changes in Somatosensory Responsiveness in Behaving Monkeys and Human Sub

    DTIC Science & Technology

    1991-08-30

    OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION University of Tennessee, Memphis f Air Force Office of Scientific Research/NL Sc. ADDRESS (City, State...wrist and at the elbow with velcro straps. Each animal palm manipulated a smooth aluminum plate attached at one end to the axle of a brushless DC...display are described above. The subject’s hand rested on a flat aluminum handle coupled at one end to the axle of a brushless DC torque motor while the

  2. Bio-isolated dc operational amplifier. [for bioelectric measurements

    NASA Technical Reports Server (NTRS)

    Lee, R. D. (Inventor)

    1974-01-01

    A bio-isolated dc operational amplifier is described for use in making bioelectrical measurements of a patient while providing isolation of the patient from electrical shocks. The circuit contains a first operational amplifier coupled to the patient with its output coupled in a forward loop through a first optic coupler to a second operational amplifier. The output of the second operational amplifier is coupled to suitable monitoring circuitry via a feedback circuit including a second optic coupler to the input of the first operational amplifier.

  3. Linear-Force Actuators for Use on Shipboard Weapons and Cargo Elevators.

    DTIC Science & Technology

    1984-01-09

    lock units an electro-mechanical brake is furnished so that when the unit stops at any position, its brake locks automatically , preventing any drift...NAME AND ADDRESS 12. REPORT DATE Naval Sea Systems Command (Code 56W4) f~nur 9, 1984 Washigton DC 03623. NUM4BER Of PAGES .9 ~, DC24 1.MONITORING...Hydraulic systems Weapons elevators a&. )TRACT (Couinsiu an ,evelee aide It nogceoy and fdentflr by block nunbov) "-Reports of hydraulic problems in

  4. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes.

    PubMed

    Lobo, Rui F M; Santos, Diogo M F; Sequeira, Cesar A C; Ribeiro, Jorge H F

    2012-02-06

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi 3.6 Co 0.85 Al 0.3 Mn 0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam-thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption.

  5. Characterization of a spray torch and analysis of process parameters

    NASA Astrophysics Data System (ADS)

    Ramasamy, R.; Selvarajan, V.

    1999-07-01

    Anode for a non-transferred DC plasma spray torch was designed to improve electrothermal efficiency. A theoretical calculation was made for the electrothermal efficiency in a DC plasma torch operating with argon at atmospheric pressure with power level in the range of 5.2 20 kW using energy balance equations. ANOVA for the two level factorial design was done. Plasma gas flow rate, current intensity, nozzle diameter and length were found to influence the efficiency. The efficiency was found to decrease with increase in current intensity and nozzle length and to increase with increase in nozzle diameter and gas flow rate. The overall energy balance calculations showed that the heat transfer to the plasma-forming gas decreases with increase in arc current and the same was more significant at higher flow rates. Plasma jet velocity for different flow rates, input to the torch and nozzle dimensions was calculated from the gas enthalpy. It was found that the velocity increased with increase in the power input to the torch and gas flow rate and decreased with increase in nozzle length and diameter. The current voltage characteristics of the torch operating with argon gas were studied for different gas flow rates. The Nottingham coefficients were calculated using least square method.

  6. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: circuitry and mechanical design.

    PubMed

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  7. Remote Powering and Steering of Self-Propelling Microdevices by Modulated Electric Field

    NASA Astrophysics Data System (ADS)

    Sharma, Rachita; Velev, Orlin

    2011-03-01

    We have demonstrated a new class of self-propelling particles based on semiconductor diodes powered by an external uniform alternating electric field. The millimeter-sized diodes floating in water rectify the applied voltage. The resulting particle-localized electroosmotic flux propels them in the direction of the cathode or the anode depending on their surface charge. These particles suggest solutions to problems facing self-propelling microdevices, and have potential for a range of additional functions. The next step in this direction is the steering of these devices. We will present a novel technique that allows on-demand steering of these self-propelling diodes. We control remotely their direction of motion by modifying the duty cycle of the applied AC field. The diodes change their direction of motion when a DC component (wave asymmetry) is introduced into the AC signal. The DC component leads to redistribution of the counterions near the diode surface. The electric field resulting from this counterion redistribution exerts a torque on the dipole across the diode, causing its rotation. Thus, the reversal of the direction of the electroosmotic flux caused by field asymmetry leads to reversal of the direction of diode motion. This new principle of steering of self-propelling diodes can find applications in MEMs and micro-robotics.

  8. Fabrication and optimization of a whiskerless Schottky barrier diode for submillimeter wave applications

    NASA Technical Reports Server (NTRS)

    Bishop, W.; Mattauch, R. J.

    1990-01-01

    The following accomplishments were made towards the goal of an optimized whiskerless diode chip for submillimeter wavelength applications. (1) Surface channel whiskerless diode structure was developed which offers excellent DC and RF characteristics, reduced shunt capacitance and simplified fabrication compared to mesa and proton isolated structures. (2) Reliable fabrication technology was developed for the surface channel structure. The new anode plating technology is a major improvement. (3) DC and RF characterization of the surface channel diode was compared with whisker contacted diodes. This data indicates electrical performance as good as the best reported for similar whisker contacted devices. (4) Additional batches of surface channel diodes were fabricated with excellent I-V and reduced shunt capacitance. (5) Large scale capacitance modelinng was done for the planar diode structure. This work revealed the importance of removing the substrate gallium arsenide for absolute minimum pad capacitance. (6) A surface channel diode was developed on quartz substrate and this substrate was completely removed after diode mounting for minimum parasitic capacitance. This work continues with the goal of producing excellent quality submillimeter wavelength planar diodes which satisfy the requirements of easy handling and robustness. These devices will allow the routine implementation of Schottky receivers into space-based applications at frequencies as high as 1 THz, and, in the future, beyond.

  9. Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress

    NASA Astrophysics Data System (ADS)

    Boukhari, Hamed; Rogti, Fatiha

    2016-10-01

    The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.

  10. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 {mu}s. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through themore » graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.« less

  11. Dusty Plasma Experimental (DPEx) device for complex plasma experiments with flow

    NASA Astrophysics Data System (ADS)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2015-11-01

    A versatile table-top dusty plasma experimental device to study flow induced excitations of linear and nonlinear waves/structures in a complex plasma is presented. In this Π-shaped apparatus, a DC glow discharge plasma is produced between a disc shaped anode and a grounded long cathode tray by applying a high voltage DC in the background of a neutral gas (argon) and subsequently a dusty plasma is created by introducing micron sized dust particles that get charged and levitated in the sheath region. A flow of the dust particles is induced in a controlled manner by adjusting the pumping speed and the gas flow rate into the device. A full characterisation of the plasma, using Langmuir and emissive probe data, and that of the dusty plasma using particle tracking data with the help of an idl based (super) Particle Identification and Tracking (sPIT) code is reported. Experimental results on the variation of the dust flow velocity as a function of the neutral pressure and the gas flow rate are given. The neutral drag force acting on the particles and the Epstein coefficient are estimated from the initial acceleration of the particles. The potential experimental capabilities of the device for conducting fundamental studies of flow induced instabilities are discussed.

  12. Electric field induced needle-pulsed arc discharge carbon nanotube production apparatus: Circuitry and mechanical design

    NASA Astrophysics Data System (ADS)

    Kia, Kaveh Kazemi; Bonabi, Fahimeh

    2012-12-01

    A simple and low cost apparatus is reported to produce multiwall carbon nanotubes and carbon nano-onions by a low power short pulsed arc discharge reactor. The electric circuitry and the mechanical design details and a micro-filtering assembly are described. The pulsed-plasma is generated and applied between two graphite electrodes. The pulse width is 0.3 μs. A strong dc electric field is established along side the electrodes. The repetitive discharges occur in less than 1 mm distance between a sharp tip graphite rod as anode, and a tubular graphite as cathode. A hydrocarbon vapor, as carbon source, is introduced through the graphite nozzle in the cathode assembly. The pressure of the chamber is controlled by a vacuum pump. A magnetic field, perpendicular to the plasma path, is provided. The results show that the synergetic use of a pulsed-current and a dc power supply enables us to synthesize carbon nanoparticles with short pulsed plasma. The simplicity and inexpensiveness of this plan is noticeable. Pulsed nature of plasma provides some extra degrees of freedom that make the production more controllable. Effects of some design parameters such as electric field, pulse frequency, and cathode shape are discussed. The products are examined using scanning probe microscopy techniques.

  13. Oil well flow assurance through static electric potential: An experimental investigation

    NASA Astrophysics Data System (ADS)

    Hashmi, Muhammad Ihtsham Asmat

    Flow assurance technology deals with the deposition of organic and inorganic solids in the oil flow path, which results in constriction of the production tubing and surface flow lines and drastically reduces the kinetic energy of the fluid. The major contributors to this flow restriction are inorganic scales, asphaltene, wax and gas hydrates, in addition to minor contribution from formation fines and corrosion products. Some of these materials (particularly asphaltene and inorganic scales) carry surface charges on their nuclei and seen to be attracted by electrode having opposite charge. The focus of the present research is to find the possibilities of inhibiting the deposition of asphaltene and inorganic scales in the production tubing by applying static electrical potential. With this objective, two flow set ups were made; one for asphaltene and the other for scale deposition studies, attached with precision pumps, pressure recording system and DC power supply. In each set up there were two flow loops, one was converted as Anode and the other as Cathode. A series of flow studies were conducted using the flow set ups, in which oil-dilution ratio, temperature and most importantly DC potential difference was varied and the deposition behavior of the asphaltene aggregates and calcium carbonate scale to the walls of the test loops were observed through rise of differential pressure across the loop due to possible deposition and constriction of the flow path. Two different sets of flow studies; one without oil dilution and other with the diluted oil (with n-heptane), were performed. Both experiments were investigated under the influence of static potential applied across the two test loops. Experimental results indicated that asphaltene deposition in the cathode can be retarded or stopped by applying a suitable negative potential; an increase in the static potential resulted in enhanced control over the asphaltene aggregation and hence the deposition. In the second study, scale deposition and retardation through static potential is studied through a series of flow experiments. Under the influence of static potential, scale deposition at the room temperature showed an increase in the deposition rates, whereas, at the elevated temperatures, scale deposition rates were observed to be retarded and delayed. Beyond a certain value of the static potential, this decreasing trend in deposition rates become directly proportional to the applied static potential. Results showed that the scale deposition may be controlled if not completely stopped, in the anode, if a suitable positive potential can be applied to it. The overall conclusion of this study is as follows: • Asphaltene deposition can be arrested almost completely by converting the production well into a cathode. • Scale deposition can be retarded or deposition rate can be much delayed by converting the production well into an anode.

  14. Blood dendritic cell frequency declines in idiopathic Parkinson's disease and is associated with motor symptom severity.

    PubMed

    Ciaramella, Antonio; Salani, Francesca; Bizzoni, Federica; Pontieri, Francesco E; Stefani, Alessandro; Pierantozzi, Mariangela; Assogna, Francesca; Caltagirone, Carlo; Spalletta, Gianfranco; Bossù, Paola

    2013-01-01

    The role of inflammation in Parkinson's Disease (PD) is well appreciated, but its underlying mechanisms are still unclear. Our objective was to determine whether dendritic cells (DC), a unique type of migratory immune cells that regulate immunological response and inflammation have an impact on PD. In a case-control study including 80 PD patients and 80 age- and gender-matched healthy control subjects, the two main blood subsets of plasmacytoid and myeloid DC were defined by flow cytometry analysis. Clinical evaluation of subjects consisting of cognition and depression assessment was performed using the Mini Mental State Examination and the Beck Depression Inventory. The severity of motor symptoms was measured using the Unified Parkinson's Disease Rating Scale-Part III. Comparison between patient and control DC measures and their relationships with clinical assessments were evaluated.The following main results were obtained: 1) the level of circulating DC (mainly the myeloid subset) was significantly reduced in PD patients in comparison with healthy controls; 2) after controlling for depressive and cognitive characteristics, the frequency of myeloid DC was confirmed as one of the independent determinants of PD; 3) the number of both myeloid and plasmacytoid DC was negatively associated with motor symptom severity. Overall, the decline of blood DC, perhaps due to the recruitment of immune cells to the site of disease-specific lesions, can be considered a clue of the immune alteration that characterizes PD, suggesting innovative exploitations of DC monitoring as a clinically significant tool for PD treatment. Indeed, this study suggests that reduced peripheral blood DC are a pathologically-relevant factor of PD and also displays the urgency to better understand DC role in PD for unraveling the immune system contribution to disease progression and thus favoring the development of innovative therapies ideally based on immunomodulation.

  15. A citywide breeding bird survey for Washington, DC

    USGS Publications Warehouse

    Hadidian, J.; Sauer, J.R.; Swarth, C.; Handly, P.; Droege, S.; Williams, C.; Huff, J.; Didden, G.

    1997-01-01

    `DC Birdscape' was initiated in 1993 to systematically count the birds occurring throughout Washington D.C. during the breeding season. It involved a coordinated planning effort and partnership between the Audubon Naturalist Society, the National Park Service, and the National Biological Survey, and engaged the participation of more than 100 volunteers. A method for rapidly assessing the status of bird populations over a large area was developed and incorporated into a Geographic Information System to allow a multidimensional analysis of species presence and abundance across a variety of urban land use areas. A total of 91 species were observed, with an estimated total number of 115, making Washington D.C. almost as `bird rich' as nearby suburban counties. Data from the study clearly indicate that avian species are not randomly distributed throughout the Washington D.C. metropolitan area, and show affinity, at least in part, to some of the most broadly recognized land use patterns that are commonly used to zone and classify urban areas under development schemes. This study represents a prototype that will allow efficient and economical monitoring of urban bird populations.

  16. Alternative oxidase (AOX) and phenolic metabolism in methyl jasmonate-treated hairy root cultures of Daucus carota L.

    PubMed

    Sircar, Debabrata; Cardoso, Hélia G; Mukherjee, Chiranjit; Mitra, Adinpunya; Arnholdt-Schmitt, Birgit

    2012-05-01

    Methyl-jasmonate (MJ)-treated hairy roots of Daucus carota L. were used to study the influence of alternative oxidase (AOX) in phenylpropanoid metabolism. Phenolic acid accumulation, as well as total flavonoids and lignin content of the MJ-treated hairy roots were decreased by treatment with salicylhydroxamic acid (SHAM), a known inhibitor of AOX. The inhibitory effect of SHAM was concentration dependent. Treatment with propyl gallate (PG), another inhibitor of AOX, also had a similar inhibitory effect on accumulation of phenolic acid, total flavonoids and lignin. The transcript levels of two DcAOX genes (DcAOX2a and DcAOX1a) were monitored at selected post-elicitation time points. A notable rise in the transcript levels of both DcAOX genes was observed preceding the MJ-induced enhanced accumulation of phenolics, flavonoids and lignin. An appreciable increase in phenylalanine ammonia-lyase (PAL) transcript level was also observed prior to enhanced phenolics accumulation. Both DcAOX genes showed differential transcript accumulation patterns after the onset of elicitation. The transcript levels of DcAOX1a and DcAOX2a attained peak at 6hours post elicitation (hpe) and 12hpe, respectively. An increase in the transcript levels of both DcAOX genes preceding the accumulation of phenylpropanoid-derivatives and lignin showed a positive correlation between AOX activity and phenylpropanoid biosynthesis. The results provide important new insight about the influence of AOX in phenylpropanoid biosynthesis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  17. High-dose HOOK effect in urinary DcR2 assay in patients with chronic kidney disease.

    PubMed

    Chen, Jia; Chen, Ke-Hong; Wang, Li-Ming; Zhang, Wei-Wei; Feng, Lei; Dai, Huan-Zi; He, Ya-Ni

    2018-06-05

    Urinary DcR2 (uDcR2) is a biomarker for the early detection the tubulointerstitial injury (TII) in patients with chronic kidney disease (CKD), but the high-dose hook effect may lead to falsely low or even negative results when using an enzyme-linked immunosorbent assay (ELISA). This study aimed to investigate if the high-dose hook effect exists with ELISA testing, and to uncover a potential approach for reducing this effect. 72 CKD patients were recruited and categorized into four groups based on TII scores. uDcR2 was measured in undiluted and serially diluted (two-, four-, eight- and 16-fold dilutions) urine using an ELISA kit. The results from the assay were normalized to urinary creatinine. We evaluated the correlation between uDcR2/cre levels at different dilutions and renal histological parameters. Receiver operating characteristic (ROC) curves were generated to examine the value of uDcR2/cre for predicting TII. uDcR2/cre levels in the undiluted urine were significantly higher in patients with CKD than those in the control. However, higher TII scores did not yield higher levels of uDcR2/cre in the undiluted urine. After serial dilution, uDcR2/cre levels were highest with the four-fold dilution. A positive correlation was found between uDcR2/cre levels at different dilutions and TII scores, with the highest correlation coefficient and the largest AUC being observed at the four-fold dilution. The high-dose hook effect was apparent during ELISA testing of uDcR2 in CKD patients, yet dilution of the urine samples neutralized this effect. However, the use of a four-fold dilution of urine for uDcR2/cre testing may eliminate the high-dose hook effect and make it possible to effectively monitor the severity of TII in CKD patients. Copyright © 2018. Published by Elsevier Inc.

  18. The cataphoretic emitter effect exhibited in high intensity discharge lamp electrodes

    NASA Astrophysics Data System (ADS)

    Mentel, Juergen

    2018-01-01

    A mono-layer of atoms, electropositive with respect to the substrate atoms, forms a dipole layer, reducing its work function. Such a layer is generated by diffusion of emitter material from the interior of the substrate, by vapour deposition or by deposition of emitter material onto arc electrodes by cataphoresis. This cataphoretic emitter effect is investigated within metal halide lamps with transparent YAG ceramic burners, and within model lamps. Within the YAG lamps, arcs are operated with switched-dc current between rod shaped tungsten electrodes in high pressure Hg vapour seeded with metal iodides. Within the model lamps, dc arcs are operated between rod-shaped tungsten electrodes—one doped—in atmospheric pressure Ar. Electrode temperatures are determined by 1λ -pyrometry, combined with simulation of the electrode heat balance. Plasma temperatures, atom and ion densities of emitter material are determined by emission and absorption spectroscopy. Phase resolved measurements in YAG lamps seeded with CeI3, CsI, DyI3, TmI3 and LaI3 show, within the cathodic half period, a reduction of the electrode temperature and an enhanced metal ion density in front of the electrode, and an opposite behavior after phase reversal. With increasing operating frequency, the state of the cathode overlaps onto the anodic phase—except for Cs, being low in adsorption energy. Generally, the phase averaged electrode tip temperature is reduced by seeding a lamp with emitter material; its height depends on admixtures. Measurements at tungsten electrodes doped with ThO2, La2O3 and Ce2O3 within the model lamp show that evaporated emitter material is redeposited by an emitter ion current onto the electrode surface. It reduces the work function of tungsten cathodes above the evaporation temperature of the emitter material, too; and also of cold anodes, indicating a field reversal in front of them. The formation of an emitter spot at low cathode temperature and high emitter material density is traced back to a locally reduced work function generated by a locally enhanced emitter ion current density.

  19. Electrical and electrochemical properties of molten salt-synthesized Li4Ti5-xSnxO12 (x=0.0, 0.05 and 0.1) as anodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sharmila, S.; Senthilkumar, B.; Nithya, V. D.; Vediappan, Kumaran; Lee, Chang Woo; Selvan, R. Kalai

    2013-11-01

    Submicron-sized polyhedral Li4Ti5-xSnxO12 (x=0.0, 0.05, and 0.1) materials were successfully prepared by a single-step molten salt method. The structural, morphological, transport and electrochemical properties of the Li4Ti5-xSnxO12 were studied. X-ray diffraction patterns showed the formation of a cubic structure with a lattice constant of 8.31 Å, and the addition of dopants follows Vegard's law. Furthermore, FT-IR spectra revealed symmetric stretching vibrations of octahedral groups of MO6 lattice in Li4Ti5O12. The formation of polyhedral submicron Li4Ti5-xSnxO12 particles was inferred from FE-SEM images, and a particle size reduction was observed for Sn-doped Li4Ti5O12. The chemical composition of Ti, O and Sn was verified by EDAX. The DC electrical conductivity was found to increase with increasing temperature, and a maximum conductivity of 8.96×10-6 S cm-1 was observed at 200 °C for Li4Ti5O12. The galvanostatic charge-discharge behavior indicates that the Sn-doped Li4Ti5O12 could be used as an anode for Li-ion batteries due to its enhanced electrochemical properties.

  20. Experimental study of a linear/non-linear flux rope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeHaas, Timothy; Gekelman, Walter; Van Compernolle, Bart

    2015-08-15

    Flux ropes are magnetic structures of helical field lines, accompanied by spiraling currents. Commonly observed on the solar surface extending into the solar atmosphere, flux ropes are naturally occurring and have been observed by satellites in the near earth and in laboratory environments. In this experiment, a single flux rope (r = 2.5 cm, L = 1100 cm) was formed in the cylindrical, magnetized plasma of the Large Plasma Device (LaPD, L = 2200 cm, r{sub plasma} = 30 cm, n{sub o} = 10{sup 12 }cm{sup −3}, T{sub e} = 4 eV, He). The flux rope was generated by a DC discharge between an electron emitting cathode and anode. This fixes the rope at its source while allowingmore » it to freely move about the anode. At large currents (I > πr{sup 2}B{sub 0}c/2 L), the flux rope becomes helical in structure and oscillates about a central axis. Under varying Alfven speeds and injection current, the transition of the flux rope from stable to kink-unstable was examined. As it becomes non-linear, oscillations in the magnetic signals shift from sinusoidal to Sawtooth-like, associated with elliptical motion of the flux rope; or the signal becomes intermittent as its current density increases.« less

  1. Characterization of Pulse Reverses Electroforming on Hard Gold Coating.

    PubMed

    Byoun, Young-Min; Noh, Young-Tai; Kim, Young-Geun; Ma, Seung-Hwan; Kim, Gwan-Hoon

    2018-03-01

    Effect of pulse reverse current (PRC) method on brass coatings electroplated from gold solution was investigated by various plating parameters such as plating duration, the anodic duty cycle, the anodic current density and the cathodic current density. The reversed current results in a significant change in the morphology of electrodeposits, improvement of the overall current efficiency and reduction of deposit porosity. With longer pulses, hemispherical surface features are generated, while larger grains result from shorter pulse widths. The porosity of the plated samples is found to decrease compared with results at the same time-average plating rate obtained from DC or Pulse plating. A major impediment to reducing gold later thickness is the corrosion of the underlying substrate, which is affected by the porosity of the gold layer. Both the morphology and the hydrogen evolution reaction have significant impact on porosity. PRC plating affect hydrogen gold and may oxidize hydrogen produced during the cathodic portion of the waveform. Whether the dissolution of gold and oxidation of hydrogen occur depends on the type of plating bath and the plating conditions adapted. In reversed pulse plating, the amount of excess near-surface cyanide is changed after the cathodic current is applied, and the oxidation of gold under these conditions has not been fully addressed. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance.

  2. 2015 South Carolina PV Soft Cost and Workforce Development Part 2: Six Month Confirmation of Anticipated Job Growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Elise B.; Edwards, Thomas B.

    In 2015, a program was initiated to carefully track and monitor the growth of the solar industry in SC. Prior to then, little information was available on the costs associated with distributed photovoltaic (PV) installations in the Southeastern US. For this report, data were collected from businesses on the number of hires they had at the end of 2014 and compared with data for 2015 and June 2016. It was found that the percentage of installers within the state who serve the residential sector increased to 82% from 67%. During the same time period, the average size of initiated installationsmore » for residential, commercial, and utility scale installations all trended upwards. Where residential installations were typically 5 kW-DC in 2014, they were typically 10 kW-DC by late 2015 and in mid-2016. For commercial installations, the average size grew from 84 kW-DC in 2014 to between 136-236 kW-DC in 2015 and then 188-248 kWDC in mid-2016. An exception was seen in utility scale installations where a 2.3 MW-DC system was common in 2014, the size grew to be 5-15 MW-DC in late 2015. The average size dropped 3.1-4.4 MWDC in mid-June 2016, though individual averages up to 20 MW-DC were reported.« less

  3. Droplet monitoring probe

    NASA Technical Reports Server (NTRS)

    Baughman, J. R.; Thys, P. C.

    1973-01-01

    A droplet monitoring system is disclosed for analysis of mixed-phase fluid flow in development of gas turbines. The system uses a probe comprising two electrical wires spaced a known distance apart and connected at one end to means for establishing a dc potential between the wires. A drop in the fluid stream momentarily contacting both wires simultaneously causes and electrical signal which is amplified, detected and counted.

  4. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... scale. For example, according to Figure E-1 of this appendix, if a PM sampler is primarily influenced by..., or lead content). This criterion is designed to avoid undue influences from minor sources. 7 For... Meeting of Transportation Research Board, Washington, DC. January 1978.) 4. Pace, T.G., W.P. Freas, and E...

  5. Impact of a pharmaceutical care program on liver transplant patients' compliance with immunosuppressive medication: a prospective, randomized, controlled trial using electronic monitoring.

    PubMed

    Klein, Anja; Otto, Gerd; Krämer, Irene

    2009-03-27

    Compliance with immunosuppressive therapy plays a major role in the long-term success of organ transplantation. Thus, strategies to promote compliance in posttransplant care are of particular interest. At the pharmacy department of the University Hospital Mainz, a program for pharmaceutical care of organ transplant patients has been developed for the first time ever. The main objective of the presented study was to examine the influence of this program on liver transplant patients' compliance with immunosuppressive therapy. To measure compliance, medication event monitoring systems were used. Dosing compliance (DC) was calculated for each patient and the mean DC was compared between the two groups. Further direct and indirect methods of measuring compliance served to confirm the electronic compliance data. Pharmaceutical care of liver transplant patients led to a significant increase in compliance with the immunosuppressive therapy. The mean DC of the intervention group was 90%+/-6% compared with 81%+/-12% in the control group (P=0.015). Only two patients (10%) in the intervention group and nine patients (43%) in the control group showed a DC less than 80% (P=0.032). Furthermore, patients in the intervention group were more likely to achieve target blood levels. Patients who received pharmaceutical care with traditional patient care showed significantly better compliance with their immunosuppressive medication than patients who received only traditional patient care. Pharmaceutical care proved to be an effective intervention that should be implemented in posttransplant care.

  6. Feasibility of Using an Electrolysis Cell for Quantification of the Electrolytic Products of Water from Gravimetric Measurement

    PubMed Central

    2018-01-01

    A gravimetric method for the quantitative assessment of the products of electrolysis of water is presented. In this approach, the electrolysis cell was directly powered by 9 V batteries. Prior to electrolysis, a known amount of potassium hydrogen phthalate (KHP) was added to the cathode compartment, and an excess amount of KHCO3 was added to the anode compartment electrolyte. During electrolysis, cathode and anode compartments produced OH−(aq) and H+(aq) ions, respectively. Electrolytically produced OH−(aq) neutralized the KHP, and the completion of this neutralization was detected by a visual indicator color change. Electrolytically produced H+(aq) reacted with HCO3 −(aq) liberating CO2(g) from the anode compartment. Concurrent liberation of H2(g) and O2(g) at the cathode and anode, respectively, resulted in a decrease in the mass of the cell. Mass of the electrolysis cell was monitored. Liberation of CO2(g) resulted in a pronounced effect of a decrease in mass. Experimentally determined decrease in mass (53.7 g/Faraday) agreed with that predicted from Faraday's laws of electrolysis (53.0 g/Faraday). The efficacy of the cell was tested to quantify the acid content in household vinegar samples. Accurate results were obtained for vinegar analysis with a precision better than 5% in most cases. The cell offers the advantages of coulometric method and additionally simplifies the circuitry by eliminating the use of a constant current power source or a coulometer. PMID:29629210

  7. Anodes Stimulate Anaerobic Toluene Degradation via Sulfur Cycling in Marine Sediments

    PubMed Central

    Daghio, Matteo; Vaiopoulou, Eleni; Patil, Sunil A.; Suárez-Suárez, Ana; Head, Ian M.

    2015-01-01

    Hydrocarbons released during oil spills are persistent in marine sediments due to the absence of suitable electron acceptors below the oxic zone. Here, we investigated an alternative bioremediation strategy to remove toluene, a model monoaromatic hydrocarbon, using a bioanode. Bioelectrochemical reactors were inoculated with sediment collected from a hydrocarbon-contaminated marine site, and anodes were polarized at 0 mV and +300 mV (versus an Ag/AgCl [3 M KCl] reference electrode). The degradation of toluene was directly linked to current generation of up to 301 mA m−2 and 431 mA m−2 for the bioanodes polarized at 0 mV and +300 mV, respectively. Peak currents decreased over time even after periodic spiking with toluene. The monitoring of sulfate concentrations during bioelectrochemical experiments suggested that sulfur metabolism was involved in toluene degradation at bioanodes. 16S rRNA gene-based Illumina sequencing of the bulk anolyte and anode samples revealed enrichment with electrocatalytically active microorganisms, toluene degraders, and sulfate-reducing microorganisms. Quantitative PCR targeting the α-subunit of the dissimilatory sulfite reductase (encoded by dsrA) and the α-subunit of the benzylsuccinate synthase (encoded by bssA) confirmed these findings. In particular, members of the family Desulfobulbaceae were enriched concomitantly with current production and toluene degradation. Based on these observations, we propose two mechanisms for bioelectrochemical toluene degradation: (i) direct electron transfer to the anode and/or (ii) sulfide-mediated electron transfer. PMID:26497463

  8. Feasibility of Using an Electrolysis Cell for Quantification of the Electrolytic Products of Water from Gravimetric Measurement.

    PubMed

    Melaku, Samuel; Gebeyehu, Zewdu; Dabke, Rajeev B

    2018-01-01

    A gravimetric method for the quantitative assessment of the products of electrolysis of water is presented. In this approach, the electrolysis cell was directly powered by 9 V batteries. Prior to electrolysis, a known amount of potassium hydrogen phthalate (KHP) was added to the cathode compartment, and an excess amount of KHCO 3 was added to the anode compartment electrolyte. During electrolysis, cathode and anode compartments produced OH - (aq) and H + (aq) ions, respectively. Electrolytically produced OH - (aq) neutralized the KHP, and the completion of this neutralization was detected by a visual indicator color change. Electrolytically produced H + (aq) reacted with HCO 3 - (aq) liberating CO 2 (g) from the anode compartment. Concurrent liberation of H 2 (g) and O 2 (g) at the cathode and anode, respectively, resulted in a decrease in the mass of the cell. Mass of the electrolysis cell was monitored. Liberation of CO 2 (g) resulted in a pronounced effect of a decrease in mass. Experimentally determined decrease in mass (53.7 g/Faraday) agreed with that predicted from Faraday's laws of electrolysis (53.0 g/Faraday). The efficacy of the cell was tested to quantify the acid content in household vinegar samples. Accurate results were obtained for vinegar analysis with a precision better than 5% in most cases. The cell offers the advantages of coulometric method and additionally simplifies the circuitry by eliminating the use of a constant current power source or a coulometer.

  9. Strip Ionization Chamber as Beam Monitor in the Proton Therapy Eye Treatment

    NASA Astrophysics Data System (ADS)

    Marchetto, F.; Cirio, R.; Garella, M. A.; Giordanengo, S.; Boriano, A.; Givehchi, N.; La Rosa, A.; Peroni, C.; Donetti, M.; Bourhaleb, F.; Pitta', G.; Cirrone, G. A. P.; Cuttone, G.; Raffaele, L.; Sabini, M. G.; Valastro, L.

    2006-04-01

    Since spring 2002, ocular pathologies have been treated in Catania at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) within a collaboration between INFN Laboratori Nazionali del Sud (LNS), Physics Department, Ophthalmology Institute, Radiology Institute of the Catania University and CSFNSM Catania. A beam line from a 62 MeV Superconducting Cyclotron is used to treat shallow tumors. The beam is conformed to the tumor shape with a passive delivery system. A detector system has been developed in collaboration with INFN-Torino to be used as real time beam monitor. The detector, placed upstream of the patient collimator, consists of two parallel plate ionization chambers with the anode segmented in strips. Each anode is made of 0.5 mm-wide 256 strips corresponding to (12.8 × 12.8) cm2 sensitive area. With the two strip ionization chambers one can measure the relevant beam parameters during treatment to probe both asymmetry and flatness. In the test carried out at CATANA the detector has been used under different and extreme beam conditions. Preliminary results are given for profiles and skewness, together with a comparison with reference detectors.

  10. Batteryless, wireless sensor powered by a sediment microbial fuel cell.

    PubMed

    Donovan, Conrad; Dewan, Alim; Heo, Deukhyoun; Beyenal, Haluk

    2008-11-15

    Sediment microbial fuel cells (SMFCs) are considered to be an alternative renewable power source for remote monitoring. There are two main challenges to using SMFCs as power sources: 1) a SMFC produces a low potential at which most sensor electronics do not operate, and 2) a SMFC cannot provide continuous power, so energy from the SMFC must be stored and then used to repower sensor electronics intermittently. In this study, we developed a SMFC and a power management system (PMS) to power a batteryless, wireless sensor. A SMFC operating with a microbial anode and cathode, located in the Palouse River, Pullman, Washington, U.S.A., was used to demonstrate the utility of the developed system. The designed PMS stored microbial energy and then started powering the wireless sensor when the SMFC potential reached 320 mV. It continued powering until the SMFC potential dropped below 52 mV. The system was repowered when the SMFC potential increased to 320 mV, and this repowering continued as long as microbial reactions continued. We demonstrated that a microbial fuel cell with a microbial anode and cathode can be used as an effective renewable power source for remote monitoring using custom-designed electronics.

  11. Enhancement of Cd phytoextraction by hyperaccumulator Sedum alfredii using electrical field and organic amendments.

    PubMed

    Xiao, Wendan; Li, Dan; Ye, Xuezhu; Xu, Haizhou; Yao, Guihua; Wang, Jingwen; Zhang, Qi; Hu, Jing; Gao, Na

    2017-02-01

    The combined use of organic amendment-assisted phytoextraction and electrokinetic remediation to decontaminate Cd-polluted soil was demonstrated in a laboratory-scale experiment. The plant species selected was the hyperaccumulator Sedum alfredii. Prior to the pot experiment, the loamy soil was treated with 15 g kg -1 of pig manure compost, 10 g kg -1 of humic acid, or 5 mmol kg -1 of EDTA, and untreated soil without application of any amendment was the control. Two conditions were applied to each treatment: no voltage (without an electrical field) and a direct current (DC) electrical field (1 V cm -1 with switching polarity every day). Results indicated that Cd concentrations in S. alfredii were significantly (p < 0.05) increased by application of the electrical field and soil amendments (pig manure compost, humic acid, and EDTA). By switching the polarity of the DC electrical field, significant pH variation from anode to cathode can be avoided, and no significant impact was observed on shoot biomass production. Electrical field application increased DTPA-extractable Cd in soils and the Cd accumulation in shoots by 6.06-15.64 and 24.53-52.31%, respectively. The addition of pig manure compost and humic acid enhanced shoot Cd accumulation by 1.54- to 1.92- and 1.38- to 1.64-fold because of their simultaneous enhancement of Cd concentration in shoots and biomass production. However, no enhancement of Cd accumulation was found in the EDTA treatment, which can be ascribed to the inhibition of plant growth caused by EDTA. In conclusion, pig manure compost or humic acid addition in combination with the application of a switched-polarity DC electrical field could significantly enhance Cd phytoextraction by hyperaccumulator S. alfredii.

  12. Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trumbo, Michael C.; Matzen, Laura E.; Coffman, Brian A.

    Although working memory (WM) training programs consistently result in improvement on the trained task, benefit is typically short-lived and extends only to tasks very similar to the trained task (i.e., near transfer). It is possible that pairing repeated performance of a WM task with brain stimulation encourages plasticity in brain networks involved in WM task performance, thereby improving the training benefit. In the current study, transcranial direct current stimulation (tDCS) was paired with performance of a WM task (n-back). In Experiment 1, participants performed a spatial location-monitoring n-back during stimulation, while Experiment 2 used a verbal identity-monitoring n-back. In eachmore » experiment, participants received either active (2.0 mA) or sham (0.1 mA) stimulation with the anode placed over either the right or the left dorsolateral prefrontal cortex (DLPFC) and the cathode placed extracephalically. In Experiment 1, only participants receiving active stimulation with the anode placed over the right DLPFC showed marginal improvement on the trained spatial n-back, which did not extend to a near transfer (verbal n-back) or far transfer task (a matrix-reasoning task designed to measure fluid intelligence). Here, in Experiment 2, both left and right anode placements led to improvement, and right DLPFC stimulation resulted in numerical (though not sham-adjusted) improvement on the near transfer (spatial n-back) and far transfer (fluid intelligence) task. Results suggest that WM training paired with brain stimulation may result in cognitive enhancement that transfers to performance on other tasks, depending on the combination of training task and tDCS parameters used.« less

  13. Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer

    DOE PAGES

    Trumbo, Michael C.; Matzen, Laura E.; Coffman, Brian A.; ...

    2016-10-15

    Although working memory (WM) training programs consistently result in improvement on the trained task, benefit is typically short-lived and extends only to tasks very similar to the trained task (i.e., near transfer). It is possible that pairing repeated performance of a WM task with brain stimulation encourages plasticity in brain networks involved in WM task performance, thereby improving the training benefit. In the current study, transcranial direct current stimulation (tDCS) was paired with performance of a WM task (n-back). In Experiment 1, participants performed a spatial location-monitoring n-back during stimulation, while Experiment 2 used a verbal identity-monitoring n-back. In eachmore » experiment, participants received either active (2.0 mA) or sham (0.1 mA) stimulation with the anode placed over either the right or the left dorsolateral prefrontal cortex (DLPFC) and the cathode placed extracephalically. In Experiment 1, only participants receiving active stimulation with the anode placed over the right DLPFC showed marginal improvement on the trained spatial n-back, which did not extend to a near transfer (verbal n-back) or far transfer task (a matrix-reasoning task designed to measure fluid intelligence). Here, in Experiment 2, both left and right anode placements led to improvement, and right DLPFC stimulation resulted in numerical (though not sham-adjusted) improvement on the near transfer (spatial n-back) and far transfer (fluid intelligence) task. Results suggest that WM training paired with brain stimulation may result in cognitive enhancement that transfers to performance on other tasks, depending on the combination of training task and tDCS parameters used.« less

  14. Enhanced working memory performance via transcranial direct current stimulation: The possibility of near and far transfer.

    PubMed

    Trumbo, Michael C; Matzen, Laura E; Coffman, Brian A; Hunter, Michael A; Jones, Aaron P; Robinson, Charles S H; Clark, Vincent P

    2016-12-01

    Although working memory (WM) training programs consistently result in improvement on the trained task, benefit is typically short-lived and extends only to tasks very similar to the trained task (i.e., near transfer). It is possible that pairing repeated performance of a WM task with brain stimulation encourages plasticity in brain networks involved in WM task performance, thereby improving the training benefit. In the current study, transcranial direct current stimulation (tDCS) was paired with performance of a WM task (n-back). In Experiment 1, participants performed a spatial location-monitoring n-back during stimulation, while Experiment 2 used a verbal identity-monitoring n-back. In each experiment, participants received either active (2.0mA) or sham (0.1mA) stimulation with the anode placed over either the right or the left dorsolateral prefrontal cortex (DLPFC) and the cathode placed extracephalically. In Experiment 1, only participants receiving active stimulation with the anode placed over the right DLPFC showed marginal improvement on the trained spatial n-back, which did not extend to a near transfer (verbal n-back) or far transfer task (a matrix-reasoning task designed to measure fluid intelligence). In Experiment 2, both left and right anode placements led to improvement, and right DLPFC stimulation resulted in numerical (though not sham-adjusted) improvement on the near transfer (spatial n-back) and far transfer (fluid intelligence) task. Results suggest that WM training paired with brain stimulation may result in cognitive enhancement that transfers to performance on other tasks, depending on the combination of training task and tDCS parameters used. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments

    NASA Astrophysics Data System (ADS)

    Madi, Hossein; Lanzini, Andrea; Papurello, Davide; Diethelm, Stefan; Ludwig, Christian; Santarelli, Massimo; Van herle, Jan

    2016-09-01

    The poisoning effect by hydrogen chloride (HCl) on state-of-the-art Ni anode-supported solid oxide fuel cells (SOFCs) at 750 °C is evaluated in either hydrogen or syngas fuel. Experiments are performed on single cells and short stacks and HCl concentration in the fuel gas is increased from 1 ppm(v) up to 1000 ppm(v) at different current densities. Characterization methods such as cell voltage monitoring vs. time and electrochemical impedance response analysis (distribution of relaxation times (DRT), equivalent electrical circuit) are used to identify the prevailing degradation mechanism. Single cell experiments revealed that the poisoning is more severe when feeding with hydrogen than with syngas. Performance loss is attributed to the effects of HCl adsorption onto nickel surfaces, which lowered the catalyst activity. Interestingly, in syngas HCl does not affect stack performance even at concentrations up to 500 ppm(v), even when causing severe corrosion of the anode exhaust pipe. Furthermore, post-test analysis suggests that chlorine is present on the nickel particles in the form of adsorbed chlorine, rather than forming a secondary phase of nickel chlorine.

  16. Collection of holes in thick TlBr detectors at low temperature

    NASA Astrophysics Data System (ADS)

    Dönmez, Burçin; He, Zhong; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.

    2012-10-01

    A 3.5×3.5×4.6 mm3 thick TlBr detector with pixellated Au/Cr anodes made by Radiation Monitoring Devices Inc. was studied. The detector has a planar cathode and nine anode pixels surrounded by a guard ring. The pixel pitch is 1.0 mm. Digital pulse waveforms of preamplifier outputs were recorded using a multi-channel GaGe PCI digitizer board. Several experiments were carried out at -20 °C, with the detector under bias for over a month. An energy resolution of 1.7% FWHM at 662 keV was measured without any correction at -2400 V bias. Holes generated at all depths can be collected by the cathode at -2400 V bias which made depth correction using the cathode-to-anode ratio technique difficult since both charge carriers contribute to the signal. An energy resolution of 5.1% FWHM at 662 keV was obtained from the best pixel electrode without depth correction at +1000 V bias. In this positive bias case, the pixel electrode was actually collecting holes. A hole mobility-lifetime of 0.95×10-4 cm2/V has been estimated from measurement data.

  17. The stability of TlBr detectors at low temperature

    NASA Astrophysics Data System (ADS)

    Dönmez, Burçin; He, Zhong; Kim, Hadong; Cirignano, Leonard J.; Shah, Kanai S.

    2010-11-01

    Thallium bromide (TlBr) is a promising semiconductor detector material due to its high atomic number (Tl: 81, Br: 35), high density (7.56 g/cm 3) and wide band gap (2.68 eV). Current TlBr detectors suffer from polarization, which causes performance degradation over time when high voltage is applied. A 4.6-mm thick TlBr detector with pixellated anodes made by Radiation Monitoring Devices Inc. was used in the experiments. The detector has a planar cathode and nine anode pixels surrounded by a guard ring. The pixel pitch is 1.0-mm. Digital pulse waveforms of preamplifier outputs were recorded using a multi-channel GaGe PCI digitizer board for pulse shaping. Several experiments were carried out at -20 °C while the detector was under bias for over a month. No polarization effect was observed and the detector's spectroscopic performance improved over time. Energy resolution of 1.5% FWHM at 662 keV has been measured without depth correction at -2000 V cathode bias. Average electron mobility-lifetime of (5.7±0.8) ×10 -3 cm 2/V has been measured from four anode pixels.

  18. The different Li/Na ion storage mechanisms of nano Sb2O3 anchored on graphene

    NASA Astrophysics Data System (ADS)

    Li, Hai; Qian, Kun; Qin, Xianying; Liu, Dongqing; Shi, Ruiying; Ran, Aihua; Han, Cuiping; He, Yan-Bing; Kang, Feiyu; Li, Baohua

    2018-05-01

    The antimony oxide/reduced graphene oxide (Sb2O3/rGO) nanocomposites are used as anode of Li-ion and Na-ion batteries (LIBs and NIBs). However, it is unclear about Li-ion and Na-ion storage mechanism in Sb2O3/rGO nanocomposites. Herein, the conversion-alloying mechanisms of Sb2O3/rGO anodes for Na-ion and Li-ion storage are comparatively studied with a combined in-situ XRD and quasi in-situ XPS method. The distinct behaviours are monitored during (de)lithiation and (de)sodiation with respect to crystal structure and chemical composition evolution. It is evidenced that the Na-ion can be easily transported to the inner part of the Sb2O3, where the Li-ion almost cannot reach, leading to a fully transformation during sodiation. In addition, the conversion reaction product of amorphous Na2O display their better chemical stability than amorphous Li2O during electrochemical cycles, which contribute to a stable and long cycling life of NIBs. This work gain insight into the high-capacity anodes with conversation-alloying mechanism for NIBs.

  19. Contrasting effects of TGF-beta 1 and TNF-alpha on the development of dendritic cells from progenitors in mouse bone marrow.

    PubMed

    Yamaguchi, Y; Tsumura, H; Miwa, M; Inaba, K

    1997-01-01

    Dendritic cells (DC) are a distinct population of leukocytes and specialized antigen-presenting cells for T cell responses. Prior work has shown that GM-CSF can induce the development of large numbers of DC from proliferating progenitors in mouse bone marrow. We have monitored the effects of potentially enhancing and suppressive cytokines in these cultures. In this system, many immature DC develop from proliferating precursors during the first six days of culture, and between days 6-8 maturation of typical nonadherent and nonreplicating DC takes place. The maturation is accompanied by a large increase in the expression of major histocompatibilities complex class II (MHC II) and B7-2/CD86, and in mixed leukocyte reaction stimulating activity. Tumor necrosis factor-alpha (TNF-alpha), previously shown to be required for development of human DC, was found to enhance the maturation of mouse DC in the last two days of culture. Transforming growth factor-beta 1 (TGF-beta 1), on the other hand, almost totally blocked DC maturation, but it had to be given in the first six days of culture when the DC were actively proliferating. TGF-beta 1 did not block the production of immature, MHC II-positive but B7-2/CD86-negative DC. Maturation would take place between days 6-8 as long as the cultures were depleted of Fc-receptor-bearing cells, or if TNF-alpha were added. In both instances, maturation was not blocked even when TGF-beta 1 remained in the culture. We conclude that the development of DC, in response to GM-CSF, can be modified by other cytokines. TGF-beta 1 is suppressive but only indirectly via Fc-receptor-bearing suppressive cells, presumably suppressive macrophages, while TNF-alpha enhances the final maturation of DC.

  20. Fabrication and dispersion evaluation of single-wall carbon nanotubes produced by FH-arc discharge method.

    PubMed

    Chen, B; Zhao, X; Inoue, S; Ando, Y

    2010-06-01

    In this work, we produced SWNTs by a hydrogen DC arc discharge with evaporation of carbon anode containing 1 at% Fe catalyst in H2-Ar mixture gas. This was named as FH-arc discharge method. The as-grown SWNTs synthesized by FH-arc discharge method have high crystallinity. An oxidation purification process of as-grown SWNTs with H2O2 has been developed to remove the coexisting Fe catalyst nanoparticles. As a result, SWNTs with purity higher than 90 at% have been achieved. To exhibit remarkable characteristics, CNTs should be separated from the bundles and kept in homogeneous and stable suspensions. For this purpose, the SWNTs prepared by FH-arc discharge method also have been treated by Nanomizer process with some surfactants. SPM images showed that the SWNTs bundles had become thinner and shorter.

  1. Adaptive lenticular microlens array based on voltage-induced waves at the surface of polyvinyl chloride/dibutyl phthalate gels.

    PubMed

    Xu, Miao; Jin, Boya; He, Rui; Ren, Hongwen

    2016-04-18

    We report a new approach to preparing a lenticular microlens array (LMA) using polyvinyl chloride (PVC)/dibutyl phthalate (DBP) gels. The PVD/DBP gels coated on a glass substrate form a membrane. With the aid of electrostatic repulsive force, the surface of the membrane can be reconfigured with sinusoidal waves by a DC voltage. The membrane with wavy surface functions as a LMA. By switching over the anode and cathode, the convex shape of each lenticular microlens in the array can be converted to the concave shape. Therefore, the LMA can present a large dynamic range. The response time is relatively fast and the driving voltage is low. With the advantages of compact structure, optical isotropy, and good mechanical stability, our LMA has potential applications in imaging, information processing, biometrics, and displays.

  2. Microfluidic Channels on Nanopatterned Substrates: Monitoring Protein Binding to Lipid Bilayers with Surface-Enhanced Raman Spectroscopy

    PubMed Central

    Banerjee, Amrita; Perez-Castillejos, R.; Hahn, D.; Smirnov, Alex I.; Grebel, H.

    2013-01-01

    We used Surface Enhanced Raman Spectroscopy (SERS) to detect binding events between streptavidin and biotinylated lipid bilayers. The binding events took place at the surface between microfluidic channels and anodized aluminum oxide (AAO) with the latter serving as substrates. The bilayers were incorporated in the substrate pores. It was revealed that non-bound molecules were easily washed away and that large suspended cells (Salmonella enterica) are less likely to interfere with the monitoring process: when focusing to the lower surface of the channel, one may resolve mostly the bound molecules. PMID:24932024

  3. Micro-fluidic channels on nanopatterned substrates: Monitoring protein binding to lipid bilayers with surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Banerjee, Amrita; Perez-Castillejos, R.; Hahn, D.; Smirnov, Alex I.; Grebel, H.

    2010-04-01

    We used surface-enhanced Raman spectroscopy (SERS) to detect binding events between streptavidin and biotinylated lipid bilayers. The binding events took place at the surface between micro-fluidic channels and anodized aluminum oxide (AAO) with the latter serving as substrates. The bilayers were incorporated in the substrate pores. It was revealed that non-bound molecules were easily washed away and that large suspended cells ( Salmonella enterica) are less likely to interfere with the monitoring process: when focusing to the lower surface of the channel, one may resolve mostly the bound molecules.

  4. In Situ Monitoring of Chemical Reactions at a Solid-Water Interface by Femtosecond Acoustics.

    PubMed

    Shen, Chih-Chiang; Weng, Meng-Yu; Sheu, Jinn-Kong; Yao, Yi-Ting; Sun, Chi-Kuang

    2017-11-02

    Chemical reactions at a solid-liquid interface are of fundamental importance. Interfacial chemical reactions occur not only at the very interface but also in the subsurface area, while existing monitoring techniques either provide limited spatial resolution or are applicable only for the outmost atomic layer. Here, with the aid of the time-domain analysis with femtosecond acoustics, we demonstrate a subatomic-level-resolution technique to longitudinally monitor chemical reactions at solid-water interfaces, capable of in situ monitoring even the subsurface area under atmospheric conditions. Our work was proven by monitoring the already-known anode oxidation process occurring during photoelectrochemical water splitting. Furthermore, whenever the oxide layer thickness equals an integer  number of the effective atomic layer thickness, the measured acoustic echo will show higher signal-to-noise ratios with reduced speckle noise, indicating the quantum-like behavior of this coherent-phonon-based technique.

  5. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS) Monitoring of Hydrogen Desorbed from Storage Fuel Cell Anodes

    PubMed Central

    Lobo, Rui F. M.; Santos, Diogo M. F.; Sequeira, Cesar A. C.; Ribeiro, Jorge H. F.

    2012-01-01

    Different types of experimental studies are performed using the hydrogen storage alloy (HSA) MlNi3.6Co0.85Al0.3Mn0.3 (Ml: La-rich mischmetal), chemically surface treated, as the anode active material for application in a proton exchange membrane fuel cell (PEMFC). The recently developed molecular beam—thermal desorption spectrometry (MB-TDS) technique is here reported for detecting the electrochemical hydrogen uptake and release by the treated HSA. The MB-TDS allows an accurate determination of the hydrogen mass absorbed into the hydrogen storage alloy (HSA), and has significant advantages in comparison with the conventional TDS method. Experimental data has revealed that the membrane electrode assembly (MEA) using such chemically treated alloy presents an enhanced surface capability for hydrogen adsorption. PMID:28817043

  6. Sinking skin flap syndrome and paradoxical herniation secondary to lumbar drainage.

    PubMed

    Zhao, Jinchuan; Li, Guichen; Zhang, Yang; Zhu, Xiaobo; Hou, Kun

    2015-06-01

    Decompressive craniectomy (DC) has been regaining popularity in the field of neurosurgery because it can alleviate intracranial hypertension and brain swelling. Lumbar drainage (LD) is affective in managing numerous neurosurgical circumstances such as aneurysmal subarachnoid hemorrhage, refractory intracranial hypertension, cerebrospinal fluid (CSF) leakage and intraoperative brain relaxation. Sinking skin flap syndrome (SSFS) or paradoxical herniation (PH) is a rare complication and sporadically occurs in patients after DC. Hereby, we report for the first time that DC patients with LD can progress to SSFS or PH. We also evaluated the risk factors for the incidence of SSFS in DC patients with LD. We retrospectively assessed 37 patients who underwent DC and LD for cerebrovascular diseases from the First Hospital of Jilin University between January, 2007 and December, 2012. Nine (4 male and 5 female) of 37 patients experienced SSFS or PH following LD. At the last follow-up (mean 9 months, range 6-12 months), eight patients recovered completely due to timely conservative management and one patient died from PH. The mortality rate was 11% (1/9) from the complications of PH or SSFS. Further statistical analysis revealed that mean daily CSF volume was a risk factor for the incidence of SSFS in DC patients with LD. SSFS or PH can be identified in DC patients following LD. Patients that undergo DC and LD should be monitored more intensively. Most patients can completely recover with timely conservative management, bed rest, Trendelenburg position, sufficient intravenous fluid, and temporary clipping of the catheter. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Transcranial direct current stimulation improves seizure control in patients with Rasmussen encephalitis.

    PubMed

    Tekturk, Pinar; Erdogan, Ezgi Tuna; Kurt, Adnan; Kocagoncu, Ece; Kucuk, Zeynep; Kinay, Demet; Yapici, Zuhal; Aksu, Serkan; Baykan, Betul; Karamursel, Sacit

    2016-03-01

    Rasmussen encephalitis is associated with severe seizures that are unresponsive to antiepileptic drugs, as well as immunosuppressants. Transcranial direct current stimulation (t-DCS) is a non-invasive and safe method tried mostly for focal epilepsies with different aetiologies. To date, there is only one published study with two case reports describing the effect of t-DCS in Rasmussen encephalitis. Our aim was to investigate the effect of t-DCS on seizures in Rasmussen encephalitis and to clarify its safety. Five patients (mean age: 19; three females), diagnosed with Rasmussen encephalitis were included in this study. Patients received first cathodal, then anodal (2 mA for 30 minutes on three consecutive days for non-sham stimulations), and finally sham stimulation with two-month intervals, respectively. Three patients received classic (DC) cathodal t-DCS whereas two patients received cathodal stimulation with amplitude modulation at 12 Hz. Afterwards, all patients received anodal stimulation with amplitude modulation at 12 Hz. In the last part of the trial, sham stimulation (a 60-second stimulation with gradually decreasing amplitude to zero in the last 15 seconds) was applied to three patients. Maximum current density was 571 mA/m2 using 70 mm x 50 mm wet sponge electrodes with 2-mA maximum, current controlled stimulator, and maximum charge density was 1028 C/m2 for a 30-minute stimulation period. After cathodal stimulation, all but one patient had a greater than 50% decrease in seizure frequency. Two patients who received modulated cathodal t-DCS had better results. The longest positive effect lasted for one month. A second trial with modulated anodal stimulation and a third with sham stimulation were not effective. No adverse effect was reported with all types of stimulations. Both classic and modulated cathodal t-DCS may be suitable alternative methods for improving seizure outcome in Rasmussen encephalitis patients.

  8. Sensitive Determination of Cd in Small-Volume Samples by Miniaturized Liquid Drop Anode Atmospheric Pressure Glow Discharge Optical Emission Spectrometry.

    PubMed

    Jamroz, Piotr; Greda, Krzysztof; Dzimitrowicz, Anna; Swiderski, Krzysztof; Pohl, Pawel

    2017-06-06

    A novel liquid drop anode (LDA) direct current atmospheric pressure glow discharge (dc-APGD) system was applied for direct determination of Cd in liquid microsamples (50 μL) by optical emission spectrometry (OES). The microdischarge was generated in open-to-air atmosphere between a solid pin type tungsten cathode and a liquid drop placed on a graphite disk anode. The arrangement of the graphite disk placed on a PTFE chip platform as well as the solid pin type cathode was simple and robust. The limit of detection (LOD) of Cd for the developed LDA-APGD-OES method was 0.20-0.40 μg L -1 , while precision (as the relative standard deviation for the repeated measurements) was within 2-5%. By using the liquid drop of 50 μL, the linearity range of 1-1000 μg L -1 was achieved. The effect of addition of the low-molecular weight (LMW) organic compounds, easily ionized elements (EIEs), i.e., Ca, K, Mg, and Na, as well as the foreign ions (Al, Cu, Fe, Mn, Zn) to the solution on the in situ atomization and excitation processes occurred during operation of the LDA-APGD system, and the response of Cd was studied. Validation of the proposed method was demonstrated by analysis of Lobster hepatopancreas (TORT-2), pig kidney (ERM-BB186), and groundwater (ERM-CA615) certified reference materials (CRMs) and recoveries of Cd from water samples spiked with 25 μg L -1 of Cd. Very good agreement between the found and certified values of Cd in the CRMs (the recoveries were within the range of 96.3-99.6%) indicated trueness of the method and its reliability for determination of traces of Cd. In the case of the spiked water samples, the recoveries obtained were in the range from 95.2 to 99.5%.

  9. The effect of a miniature argon flow rate on the spectral characteristics of a direct current atmospheric pressure glow micro-discharge between an argon microjet and a small sized flowing liquid cathode

    NASA Astrophysics Data System (ADS)

    Jamróz, Piotr; Żyrnicki, Wiesław; Pohl, Paweł

    2012-07-01

    A stable direct current atmospheric pressure glow microdischarge (dc-μAPGD) was generated between a miniature Ar flow microjet and a small sized flowing liquid cathode. The microdischarge was operated in the open to air atmosphere. High energy species, including OH, NH, NO, N2, H, O and Ar were identified in the emission spectra of this microdischarge. Additionally, atomic lines of metals dissolved in water solutions were easily excited. The near cathode and the near anode zones of the microdischarge were investigated as a function of an Ar flow rate up to 300 sccm. The spectroscopic parameters, i.e., the excitation, the vibrational and the rotational temperatures as well as the electron number density, were determined in the near cathode and the near anode regions of the microdischarge. In the near cathode region, the rotational temperatures obtained for OH (2000-2600 K) and N2 bands (1600-1950 K) were significantly lower than the excitation temperatures of Ar (7400 K-7800 K) and H (11 000-15 500 K) atoms. Vibrational temperatures of N2, OH and NO varied from 3400 to 4000 K, from 2900 to 3400 K and from 2700 to 3000 K, respectively. In the near anode region, rotational temperatures of OH (350-1750 K) and N2 (400-1350 K) and excitation temperatures of Ar (5200-5500 K) and H (3600-12 600 K) atoms were lower than those measured in the near cathode region. The effect of the introduction of a liquid sample on the microdischarge radiation and spectroscopic parameters was also investigated in the near cathode zone. The electron number density was calculated from the Stark broadening of the Hβ line and equals to (0.25-1.1) × 1015 cm- 3 and (0.68-1.2) × 1015 cm- 3 in the near cathode and the near anode zones, respectively. The intensity of the Na I emission line and the signal to background ratio (SBR) of this line were investigated in both zones to evaluate the excitation properties of the developed excitation microsource. The limit of detection for Na was determined at the level of 3 ng mL- 1.

  10. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... generally be neighborhood, urban or regional scale. For example, according to Figure E-1 of this appendix... waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to... Research Board, Washington, DC. January 1978.) 4. Pace, T.G., W.P. Freas, and E.M. Afify. Quantification of...

  11. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... scale. For example, according to Figure E-1 of this appendix, if a PM sampler is primarily influenced by... waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to... Research Board, Washington, DC. January 1978.) 4. Pace, T.G., W.P. Freas, and E.M. Afify. Quantification of...

  12. 40 CFR Appendix E to Part 58 - Probe and Monitoring Path Siting Criteria for Ambient Air Quality Monitoring

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... generally be neighborhood, urban or regional scale. For example, according to Figure E-1 of this appendix... waste burned, and the quality of the fuel (sulfur, ash, or lead content). This criterion is designed to... Research Board, Washington, DC. January 1978.) 4. Pace, T.G., W.P. Freas, and E.M. Afify. Quantification of...

  13. RiverSmart Washington Curbing Stormwater Pollution

    EPA Pesticide Factsheets

    With support from EPA, the District of Columbia Department of Energy and Environment (DOEE) is leading an effort to protect Rock Creek and other waters from stormwater pollution by installing and monitoring green infrastructure in two DC neighborhoods.

  14. Method and system for operating an electric motor

    DOEpatents

    Gallegos-Lopez, Gabriel; Hiti, Silva; Perisic, Milun

    2013-01-22

    Methods and systems for operating an electric motor having a plurality of windings with an inverter having a plurality of switches coupled to a voltage source are provided. A first plurality of switching vectors is applied to the plurality of switches. The first plurality of switching vectors includes a first ratio of first magnitude switching vectors to second magnitude switching vectors. A direct current (DC) current associated with the voltage source is monitored during the applying of the first plurality of switching vectors to the plurality of switches. A second ratio of the first magnitude switching vectors to the second magnitude switching vectors is selected based on the monitoring of the DC current associated with the voltage source. A second plurality of switching vectors is applied to the plurality of switches. The second plurality of switching vectors includes the second ratio of the first magnitude switching vectors to the second magnitude switching vectors.

  15. A plasmacytoid dendritic cell (CD123+/CD11c-) based assay system to predict contact allergenicity of chemicals

    PubMed Central

    Ayehunie, Seyoum; Snell, Maureen; Child, Matthew; Klausner, Mitchell

    2009-01-01

    A predictive allergenicity test system for assessing the contact allergenicity of chemicals is needed by the cosmetic and pharmaceutical industry to monitor product safety in the marketplace. Development of such non-animal alternative assay systems for skin sensitization and hazard identification has been pursued by policy makers and regulatory agencies. We investigated whether phenotypic and functional changes to a subset of dendritic cells (DC), plasmacytoid DC (pDC), could be used to identify contact allergens. To achieve this goal, normal human DC were generated from CD34+ progenitor cells and cryopreserved. Frozen DC were thawed and the pDC fraction (CD123+/CD11c-) was harvested using FACS sorting. The pDC were cultured, expanded, and exposed to chemical allergens (N=26) or non-allergens (N=22). Concentrations of each chemical that resulted in >50% viability was determined using FACS analysis of propidium iodide stained cells using pDC from 2-5 donors. Expression of the surface marker, CD86, which has been implicated in dendritic cell maturation, was used as a marker of allergenicity. CD86 expression increased (≥ 1.5 fold) for 25 of 26 allergens (sensitivity = 96%) but did not increase for 19 of 22 non-allergens (specificity = 86%). In a direct comparison to historical data for the regulatory approved, mouse local lymph node assay (LLNA) for 23 allergens and 22 non-allergens, the pDC method had sensitivity and specificity of 96% and 86%, respectively, while the sensitivity and specificity of the LLNA assay was 83% and 82%, respectively. In conclusion, CD86 expression in pDC appears to be a sensitive and specific indicator to identify contact allergenicity. Such an assay method utilizing normal human cells will be useful for high throughput screening of chemicals for allergenicity. PMID:19665512

  16. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG.

    PubMed

    Schadendorf, D; Ugurel, S; Schuler-Thurner, B; Nestle, F O; Enk, A; Bröcker, E-B; Grabbe, S; Rittgen, W; Edler, L; Sucker, A; Zimpfer-Rechner, C; Berger, T; Kamarashev, J; Burg, G; Jonuleit, H; Tüttenberg, A; Becker, J C; Keikavoussi, P; Kämpgen, E; Schuler, G

    2006-04-01

    This randomized phase III trial was designed to demonstrate the superiority of autologous peptide-loaded dendritic cell (DC) vaccination over standard dacarbazine (DTIC) chemotherapy in stage IV melanoma patients. DTIC 850 mg/m2 intravenously was applied in 4-week intervals. DC vaccines loaded with MHC class I and II-restricted peptides were applied subcutaneously at 2-week intervals for the first five vaccinations and every 4 weeks thereafter. The primary study end point was objective response (OR); secondary end points were toxicity, overall (OS) and progression-free survival (PFS). At the time of the first interim analysis 55 patients had been enrolled into the DTIC and 53 into the DC-arm (ITT). OR was low (DTIC: 5.5%, DC: 3.8%), but not significantly different in the two arms. The Data Safety & Monitoring Board recommended closure of the study. Unscheduled subset analyses revealed that patients with normal serum LDH and/or stage M1a/b survived longer in both arms than those with elevated serum LDH and/or stage M1c. Only in the DC-arm did those patients with (i) an initial unimpaired general health status (Karnofsky = 100) or (ii) an HLA-A2+/HLA-B44- haplotype survive significantly longer than patients with a Karnofsky index <100 (P = 0.007 versus P = 0.057 in the DTIC-arm) or other HLA haplotypes (P = 0.04 versus P = 0.57 in DTIC-treated patients). DC vaccination could not be demonstrated to be more effective than DTIC chemotherapy in stage IV melanoma patients. The observed association of overall performance status and HLA haplotype with overall survival for patients treated by DC vaccination should be tested in future trials employing DC vaccines.

  17. Matrix metalloproteinase triggered size-shrinkable gelatin-gold fabricated nanoparticles for tumor microenvironment sensitive penetration and diagnosis of glioma

    NASA Astrophysics Data System (ADS)

    Ruan, Shaobo; He, Qin; Gao, Huile

    2015-05-01

    To improve glioma targeting delivery efficiency and to monitor drug delivery and treatment outcome, a novel tumor microenvironment sensitive size-shrinkable theranostic system was constructed and evaluated. The G-AuNPs-DC-RRGD system was constructed by fabricating small sized gold nanoparticles (AuNPs) onto matrix metalloproteinase-2 (MMP-2) degradable gelatin nanoparticles (GNPs), doxorubicin (DOX) and Cy5.5 were decorated onto AuNPs through a hydrazone bond to enable the system with pH triggered cargoes release, and RRGD, a tandem peptide of RGD and octarginine was surface-modified onto the system to enable it with glioma active targeting ability. In vitro, the size of G-AuNPs-DC-RRGD could effectively shrink from 188.2 nm to 55.9 nm after incubation with MMP-2, while DOX and Cy5.5 were released in a pH dependent manner. Cellular uptake demonstrated that G-AuNPs-DC-RRGD could be effectively taken up by cells with higher intensity than G-AuNPs-DC-PEG. A study of tumor spheroids further demonstrated that the particles with smaller size showed better penetration ability, while RRGD modification could further improve permeability. In vivo, G-AuNPs-DC-RRGD displayed the best glioma targeting and accumulation efficiency, with good colocalization with neovessels. Cy5.5 also was colocalized well with DOX, indicating that Cy5.5 could be used for imaging of DOX delivery.To improve glioma targeting delivery efficiency and to monitor drug delivery and treatment outcome, a novel tumor microenvironment sensitive size-shrinkable theranostic system was constructed and evaluated. The G-AuNPs-DC-RRGD system was constructed by fabricating small sized gold nanoparticles (AuNPs) onto matrix metalloproteinase-2 (MMP-2) degradable gelatin nanoparticles (GNPs), doxorubicin (DOX) and Cy5.5 were decorated onto AuNPs through a hydrazone bond to enable the system with pH triggered cargoes release, and RRGD, a tandem peptide of RGD and octarginine was surface-modified onto the system to enable it with glioma active targeting ability. In vitro, the size of G-AuNPs-DC-RRGD could effectively shrink from 188.2 nm to 55.9 nm after incubation with MMP-2, while DOX and Cy5.5 were released in a pH dependent manner. Cellular uptake demonstrated that G-AuNPs-DC-RRGD could be effectively taken up by cells with higher intensity than G-AuNPs-DC-PEG. A study of tumor spheroids further demonstrated that the particles with smaller size showed better penetration ability, while RRGD modification could further improve permeability. In vivo, G-AuNPs-DC-RRGD displayed the best glioma targeting and accumulation efficiency, with good colocalization with neovessels. Cy5.5 also was colocalized well with DOX, indicating that Cy5.5 could be used for imaging of DOX delivery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01408e

  18. Trans-pulmonary echocardiography as a guide for device closure of patent ductus arteriosus.

    PubMed

    Kudo, Yoshiyuki; Suda, Kenji; Yoshimoto, Hironaga; Teramachi, Yozo; Kishimoto, Shintaro; Iemura, Motofumi; Matsuishi, Toyojiro

    2015-08-01

    The aim of this study was to develop trans-pulmonary echocardiography (TPE) to guide device closure of patent ductus arteriosus (DC-PDA). Aortography requires a large amount of contrast yet may give us an inadequate image to evaluate anatomy or residual shunt in patients with large PDA or dilated vessels and is precluded in patients with renal dysfunction. Practically, there is no imaging modality to monitor the entire procedure except for trans-esophageal echocardiography that requires general anesthesia. Subjects were seven patients with ages ranged from 6- to 77-years old and body weight > 15 kg. The size of the PDA ranged from 1.8 to 6.3 mm with pulmonary to systemic flow ratios from 1.2 to 2.2. During DC-PDA using Ampaltzer Duct Occluder or coil, an intra-cardiac echocardiographic (ICE) catheter was advanced into pulmonary arteries and standard views were developed to guide DC-PDA. We have developed two standard views; the main pulmonary artery view (MPA view) and the left pulmonary artery view (LPA view). The MPA view provided aortic short axis view equivalent to that seen by trans-thoracic echocardiography in children. The LPA view, obtained by the echo probe in the LPA and turned it up upside down, provided long axis view of the PDA allowing more precise anatomical evaluation. TPE allowed us to monitor the entire procedure and determine residual shunts. TPE in the MPA and LPA view can be an effective guide for DC-PDA. This report leads to new application of this imaging device. © 2015 Wiley Periodicals, Inc.

  19. Targeting binge eating through components of dialectical behavior therapy: preliminary outcomes for individually supported diary card self-monitoring versus group-based DBT.

    PubMed

    Klein, Angela S; Skinner, Jeremy B; Hawley, Kristin M

    2013-12-01

    The current study examined two condensed adaptations of dialectical behavior therapy (DBT) for binge eating. Women with full- or sub-threshold variants of either binge eating disorder or bulimia nervosa were randomly assigned to individually supported self-monitoring using adapted DBT diary cards (DC) or group-based DBT, each 15 sessions over 16 weeks. DC sessions focused on problem-solving diary card completion issues, praising diary card completion, and supporting nonjudgmental awareness of eating-related habits and urges, but not formally teaching DBT skills. Group-based DBT included eating mindfulness, progressing through graded exposure; mindfulness, emotion regulation, and distress tolerance skills; and coaching calls between sessions. Both treatments evidenced large and significant improvements in binge eating, bulimic symptoms, and interoceptive awareness. For group-based DBT, ineffectiveness, drive for thinness, body dissatisfaction, and perfectionism also decreased significantly, with medium to large effect sizes. For DC, results were not significant but large in effect size for body dissatisfaction and medium in effect size for ineffectiveness and drive for thinness. Retention for both treatments was higher than recent trends for eating disorder treatment in fee-for-service practice and for similar clinic settings, but favored DC, with the greater attrition of group-based DBT primarily attributed to its more intensive and time-consuming nature, and dropout overall associated with less pretreatment impairment and greater interoceptive awareness. This preliminary investigation suggests that with both abbreviated DBT-based treatments, substantial improvement in core binge eating symptoms is possible, enhancing potential avenues for implementation beyond more time-intensive DBT.

  20. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  1. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    PubMed Central

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-01-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices. PMID:25491282

  2. Demonstration of application-driven network slicing and orchestration in optical/packet domains: on-demand vDC expansion for Hadoop MapReduce optimization.

    PubMed

    Kong, Bingxin; Liu, Siqi; Yin, Jie; Li, Shengru; Zhu, Zuqing

    2018-05-28

    Nowadays, it is common for service providers (SPs) to leverage hybrid clouds to improve the quality-of-service (QoS) of their Big Data applications. However, for achieving guaranteed latency and/or bandwidth in its hybrid cloud, an SP might desire to have a virtual datacenter (vDC) network, in which it can manage and manipulate the network connections freely. To address this requirement, we design and implement a network slicing and orchestration (NSO) system that can create and expand vDCs across optical/packet domains on-demand. Considering Hadoop MapReduce (M/R) as the use-case, we describe the proposed architectures of the system's data, control and management planes, and present the operation procedures for creating, expanding, monitoring and managing a vDC for M/R optimization. The proposed NSO system is then realized in a small-scale network testbed that includes four optical/packet domains, and we conduct experiments in it to demonstrate the whole operations of the data, control and management planes. Our experimental results verify that application-driven on-demand vDC expansion across optical/packet domains can be achieved for M/R optimization, and after being provisioned with a vDC, the SP using the NSO system can fully control the vDC network and further optimize the M/R jobs in it with network orchestration.

  3. Application of electrochemical technology for removing petroleum hydrocarbons from produced water using lead dioxide and boron-doped diamond electrodes.

    PubMed

    Gargouri, Boutheina; Gargouri, Olfa Dridi; Gargouri, Bochra; Trabelsi, Souhel Kallel; Abdelhedi, Ridha; Bouaziz, Mohamed

    2014-12-01

    Although diverse methods exist for treating polluted water, the most promising and innovating technology is the electrochemical remediation process. This paper presents the anodic oxidation of real produced water (PW), generated by the petroleum exploration of the Petrobras plant-Tunisia. Experiments were conducted at different current densities (30, 50 and 100 mA cm(-2)) using the lead dioxide supported on tantalum (Ta/PbO2) and boron-doped diamond (BDD) anodes in an electrolytic batch cell. The electrolytic process was monitored by the chemical oxygen demand (COD) and the residual total petroleum hydrocarbon [TPH] in order to know the feasibility of electrochemical treatment. The characterization and quantification of petroleum wastewater components were performed by gas chromatography mass spectrometry. The COD removal was approximately 85% and 96% using PbO2 and BDD reached after 11 and 7h, respectively. Compared with PbO2, the BDD anode showed a better performance to remove petroleum hydrocarbons compounds from produced water. It provided a higher oxidation rate and it consumed lower energy. However, the energy consumption and process time make useless anodic oxidation for the complete elimination of pollutants from PW. Cytotoxicity has shown that electrochemical oxidation using BDD could be efficiently used to reduce more than 90% of hydrocarbons compounds. All results suggest that electrochemical oxidation could be an effective approach to treat highly concentrated organic pollutants present in the industrial petrochemical wastewater and significantly reduce the cost and time of treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Corrosion fatigue studies on a bulk glassy Zr-based alloy under three-point bending

    NASA Astrophysics Data System (ADS)

    Grell, Daniel; Wilkin, Yannic; Gostin, Petre F.; Gebert, Annett; Kerscher, Eberhard

    2016-12-01

    Corrosion fatigue (CF) tests were carried out on bulk glassy Zr52.5Cu17.9Al10Ni14.6Ti5 (Vitreloy 105) samples under load-controlled three-point bending conditions with a load ratio of R = 0.1 in 0.01 M Na2SO4 + 0.01 M NaCl electrolyte. During cyclic testing, the bar-shaped specimens were polarized in situ at constant potentials and the current was monitored. Three different anodic potentials within the interval between the pitting potential EP and the repassivation potential ER, and three different load amplitudes were applied. In some cases, in situ microscopic observations revealed the formation of black corrosion products in the vicinity of the crack tip during anodic polarization. Fractographic analysis revealed a clear distinction between two modes of crack growth characterized by smooth dissolution induced regions on the one hand and slim fast fracture areas on the other hand. Both alternating features contributed to a broad striated corrosion fatigue fracture surface. Moreover, further fatigue tests were carried out under free corrosion conditions yielding additional information on crack initiation and crack propagation period by means of the open circuit potential (OCP) changes. Thereby, a slight increase in OCP was detected after rupture of the passive layer due to bare metal exposed to the electrolyte. The electrochemical response increased continuously according to stable crack propagation until fracture occurred. Finally, the fracture surfaces of the corrosion fatigue samples were investigated by energy dispersive X-ray with the objective of analyzing the elemental distribution after anodic dissolution. Interestingly, anodic polarization at a near repassivation potential of -50 mV vs. SCE (Saturated Calomel Electrode, E = 0.241 V vs. SHE, Standard Hydrogen Electrode) led to favorable effects on the fatigue lifetime. In conclusion, all results are conflated to a corrosion fatigue model for bulk glassy Vitreloy 105 under anodic polarization in chloride-containing electrolyte and compared to the previously proposed stress corrosion mechanisms under similar conditions.

  5. The Development of a Mathematical Foundation for Cellular Image Processing.

    DTIC Science & Technology

    1984-02-01

    PERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBER(S) AFOSR-TR. 407 6&. NAME OF PERFORMING ORGANIZATION 5b. OFFICE...SYMBOL 7s. NAME OF MONITORING ORGANIZATION University of Florida (it appicable) Air Force Office of Scientific Research 6c. ADDRESS (City. State and ZIP...Bolling AFB DC 20332 84. NAME OF FUNDING/SPONSORING IBb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION J(If applicablej FS

  6. A pacemaker powered by an implantable biofuel cell operating under conditions mimicking the human blood circulatory system--battery not included.

    PubMed

    Southcott, Mark; MacVittie, Kevin; Halámek, Jan; Halámková, Lenka; Jemison, William D; Lobel, Robert; Katz, Evgeny

    2013-05-07

    Biocatalytic electrodes made of buckypaper were modified with PQQ-dependent glucose dehydrogenase on the anode and with laccase on the cathode and were assembled in a flow biofuel cell filled with serum solution mimicking the human blood circulatory system. The biofuel cell generated an open circuitry voltage, Voc, of ca. 470 mV and a short circuitry current, Isc, of ca. 5 mA (a current density of 0.83 mA cm(-2)). The power generated by the implantable biofuel cell was used to activate a pacemaker connected to the cell via a charge pump and a DC-DC converter interface circuit to adjust the voltage produced by the biofuel cell to the value required by the pacemaker. The voltage-current dependencies were analyzed for the biofuel cell connected to an Ohmic load and to the electronic loads composed of the interface circuit, or the power converter, and the pacemaker to study their operation. The correct pacemaker operation was confirmed using a medical device - an implantable loop recorder. Sustainable operation of the pacemaker was achieved with the system closely mimicking human physiological conditions using a single biofuel cell. This first demonstration of the pacemaker activated by the physiologically produced electrical energy shows promise for future electronic implantable medical devices powered by electricity harvested from the human body.

  7. Inertization of heavy metals present in galvanic sludge by DC thermal plasma.

    PubMed

    Leal Vieira Cubas, Anelise; de Medeiros Machado, Marília; de Medeiros Machado, Marina; Gross, Frederico; Magnago, Rachel Faverzani; Moecke, Elisa Helena Siegel; Gonçalvez de Souza, Ivan

    2014-01-01

    Galvanic sludge results from the treatment of effluents generated by the industrial metal surface treatment of industrial material, which consists in the deposition of a metal on a surface or a metal surface attack, for example, electrodeposition of conductors (metals) and non conductive, phosphate, anodizing, oxidation and/or printed circuit. The treatment proposed here is exposure of the galvanic sludge to the high temperatures provided by thermal plasma, a process which aims to vitrify the galvanic sludge and render metals (iron, zinc, and chromium) inert. Two different plasma reactors were assembled: with a DC transferred arc plasma torch and with a DC nontransferred arc plasma torch. In this way it was possible to verify which reactor was more efficient in the inertization of the metals and also to investigate whether the addition of quartzite sand to the sludge influences the vitrification of the material. Quantification of water content and density of the galvanic raw sludge were performed, as well as analyzes of total organic carbon (TOC) and identify the elements that make up the raw sludge through spectroscopy X-ray fluorescence (XRF). The chemical composition and the form of the pyrolyzed and vitrified sludge were analyzed by scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDS) analysis, which it is a analysis that shows the chemical of the sample surface. The inertization of the sludge was verified in leaching tests, where the leachate was analyzed by flame atomic absorption spectroscopy (FAAS). The results of water content and density were 64.35% and 2.994 g.cm(-3), respectively. The TOC analysis determined 1.73% of C in the sample of galvanic raw sludge, and XRF analysis determined the most stable elements in the sample, and showed the highest peaks (higher stability) were Fe, Zn, and Cr. The efficiency of the sludge inertization was 100% for chromium, 99% for zinc, and 100% for iron. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the galvanic sludge.

  8. Simultaneous measurement of skin potential and conductance in electrodermal response monitoring

    NASA Astrophysics Data System (ADS)

    Jabbari, A.; Johnsen, B.; Grimnes, S.; Martinsen, Ø. G.

    2010-04-01

    Measurement of electrodermal activity (EDA) has been an important tool in psychophysiological research. The emotional sweat activity is very sensitive to psychological stimuli or conditions. The changes are easily detected by means of electrical measurements and since the sweat ducts are predominantly resistive, a low-frequency conductance measurement is appropriate for measurement of skin conductance in electrodermal response. The main purpose of this study was to develop a measuring system where DC current was replaced by a small AC current in a system so the DC potential and AC conductance could be measured simultaneously at the same skin site. A small, battery operated, PDA based instrument has been developed. The preliminary results of this ongoing study show that there is additional information in the DC potential channel and that different stimuli seem to produce slightly different response patterns.

  9. Methods for Specific Electrode Resistance Measurement during Transcranial Direct Current Stimulation

    PubMed Central

    Khadka, Niranjan; Rahman, Asif; Sarantos, Chris; Truong, Dennis Q.; Bikson, Marom

    2014-01-01

    Background Transcranial Direct Current Stimulation (tDCS) is investigated to treat a wide range of neuropsychiatric disorders, for rehabilitation, and for enhancing cognitive performance. The monitoring of electrode resistance before and during tDCS is considered important for tolerability and safety, where an unusually high resistance is indicative of undesired electrode or poor skin contact conditions. Conventional resistance measurement methods do not isolate individual electrode resistance but rather measures overall voltage. Moreover, for HD-tDCS devices, cross talk across electrodes makes concurrent resistance monitoring unreliable. Objective We propose a novel method for monitoring of the individual electrode resistance during tDCS, using a super-position of direct current with a test-signal (low-intensity and low-frequency sinusoids with electrode– specific frequencies) and a single sentinel electrode (not used for DC). Methods To validate this methodology, we developed lumped-parameter models of two and multi-electrode tDCS. Approaches with and without a sentinel electrode were solved and underlying assumptions identified. Assumptions were tested and parameterized in healthy participants using forearm stimulation combining tDCS (2 mA) and sinusoidal test-signals (38 μA and 76 μA peak to peak at 1 Hz, 10 Hz, and 100 Hz) and an in vitro test (where varied electrode failure modes were created). DC and AC component voltages across the electrodes were compared and participants were asked to rate subjective pain. Results A sentinel electrode is required to isolate electrode resistance in a two-electrode tDCS system. For multi-electrode resistance tracking, cross talk was aggravated with electrode proximity and current/resistance mismatches, but could be corrected using proposed approaches. Average voltage and average pain scores were not significantly different across test current intensities and frequencies (two-way repeated measures ANOVA) indicating the test signal does not itself confound electrode stability or sensation. DC-resistance to AC-impedance ratio was ~1:08, averaged across frequencies. Conclusion Using the methods developed here, a test signal can predict DC electrode resistance. Since unique test frequencies can be used at each tDCS electrode, specific electrode resistance can be resolved for any number of stimulating channels – a process made still more robust by the use of a sentinel electrode. These findings provide the first method for monitoring individual electrode resistance during tDCS that integrated into devices may minimize irritation at electrodes. PMID:25456981

  10. Effect of Substrate Conversion on Performance of Microbial Fuel Cells and Anodic Microbial Communities.

    PubMed

    Zhao, Yang-Guo; Zhang, Yi; She, Zonglian; Shi, Yue; Wang, Min; Gao, Mengchun; Guo, Liang

    2017-09-01

    Performance of microbial fuel cells (MFCs) was monitored during the influent nutrient change from lactate to glucose/acetate/propionate and then to lactate. Meanwhile, anodic microbial communities were characterized by culture-independent molecular biotechnologies. Results showed MFC performance recovered rapidly when the lactate was replaced by one of its metabolic intermediates acetate, while it needed a longer time to recover if lactate substrate was converted to glucose/propionate or acetate to lactate. Secondary lactate feed enhanced the enrichment of bacterial populations dominating in first lactate feed. Electricity-producing bacteria, Geobacter spp., and beneficial helpers, Anaeromusa spp. and Pseudomonas spp., revived from a low abundance as lactate secondary supply, but microbial communities were hard to achieve former profiles in structure and composition. Hence, microbial community profiles tended to recover when outside environmental condition were restored. Different substrates selected unique functional microbial populations.

  11. Monitored separation device

    NASA Technical Reports Server (NTRS)

    Fox, George Edward (Inventor); Jackson, George William (Inventor); Willson, Richard Coale (Inventor)

    2011-01-01

    A device for separating and purifying useful quantities of particles comprises: a. an anolyte reservoir connected to an anode, the anolyte reservoir containing an electrophoresis buffer; b. a catholyte reservoir connected to a cathode, the catholyte reservoir also containing the electrophoresis buffer; c. a power supply connected to the anode and to the cathode; d. a column having a first end inserted into the anolyte reservoir, a second end inserted into the catholyte reservoir, and containing a separation medium; e. a light source; f. a first optical fiber having a first fiber end inserted into the separation medium, and having a second fiber end connected to the light source; g. a photo detector; h. a second optical fiber having a third fiber end inserted into the separation medium, and having a fourth fiber end connected to the photo detector; and i. an ion-exchange membrane in the anolyte reservoir.

  12. New developments in flash radiography

    NASA Astrophysics Data System (ADS)

    Mattsson, Arne

    2007-01-01

    The paper will review some of the latest developments in flash radiography. A series of multi anode tubes has been developed. These are tubes with several x-ray sources within the same vacuum enclosure. The x-ray sources are closely spaced, to come as close as possible to a single source. The x-ray sources are sequentially pulsed, at times that can be independently chosen. Tubes for voltages in the range 150 - 500 kV, with up to eight x-ray sources, will be described. Combining a multi anode tube with an intensified CCD camera, will make it possible to generate short "x-ray movies". A new flash x-ray control system has been developed. The system is operated from a PC or Laptop. All parameters of a multi channel flash x-ray system can be remotely set and monitored. The system will automatically store important operation parameters.

  13. Method for Monitored Separation and Collection of Biological Materials

    NASA Technical Reports Server (NTRS)

    Fox, George Edward (Inventor); Jackson, George William (Inventor); Willson, Richard Coale (Inventor)

    2014-01-01

    A device for separating and purifying useful quantities of particles comprises: (a) an anolyte reservoir connected to an anode, the anolyte reservoir containing an electrophoresis buffer; (b) a catholyte reservoir connected to a cathode, the catholyte reservoir also containing the electrophoresis buffer; (c) a power supply connected to the anode and to the cathode; (d) a column having a first end inserted into the anolyte reservoir, a second end inserted into the catholyte reservoir, and containing a separation medium; (e) a light source; (f) a first optical fiber having a first fiber end inserted into the separation medium, and having a second fiber end connected to the light source; (g) a photo detector; (h) a second optical fiber having a third fiber end inserted into the separation medium, and having a fourth fiber end connected to the photo detector; and (i) an ion-exchange membrane in the anolyte reservoir.

  14. Biosensoric potential of microbial fuel cells.

    PubMed

    Schneider, György; Kovács, Tamás; Rákhely, Gábor; Czeller, Miklós

    2016-08-01

    Recent progress in microbial fuel cell (MFC) technology has highlighted the potential of these devices to be used as biosensors. The advantages of MFC-based biosensors are that they are phenotypic and can function in either assay- or flow-through formats. These features make them appropriate for contiguous on-line monitoring in laboratories and for in-field applications. The selectivity of an MFC biosensor depends on the applied microorganisms in the anodic compartment where electron transfer (ET) between the artificial surface (anode) and bacterium occurs. This process strongly determines the internal resistance of the sensoric system and thus influences signal outcome and response time. Despite their beneficial characteristics, the number of MFC-based biosensoric applications has been limited until now. The aim of this mini-review is to turn attention to the biosensoric potential of MFCs by summarizing ET mechanisms on which recently established and future sensoric devices are based.

  15. Anode power deposition in applied-field MPD thrusters

    NASA Technical Reports Server (NTRS)

    Myers, Roger M.; Soulas, George C.

    1992-01-01

    Anode power deposition is the principle performance limiter of magnetoplasmadynamic (MPD) thrusters. Current thrusters lose between 50 and 70 percent of the input power to the anode. In this work, anode power deposition was studied for three cylindrical applied magnetic field thrusters for a range of argon propellant flow rates, discharge currents, and applied-field strengths. Between 60 and 95 percent of the anode power deposition resulted from electron current conduction into the anode, with cathode radiation depositing between 5 and 35 percent of the anode power, and convective heat transfer from the hot plasma accounting for less than 5 percent. While the fractional anode power loss decreased with increasing applied-field strength and anode size, the magnitude of the anode power increased. The rise in anode power resulted from a linear rise in the anode fall voltage with applied-field strength and anode radius. The anode fall voltage also rose with decreasing propellant flow rate. The trends indicate that the anode fall region is magnetized, and suggest techniques for reducing the anode power loss in MPD thrusters.

  16. Fabrication Characterization of Solar-Cell Silicon Wafers Using a Circular-Rhombus Tool

    NASA Astrophysics Data System (ADS)

    Pa, Pai-Shan

    2010-01-01

    A new recycling fabrication method using a custom-built designed circular-rhombus tool for a process combining of micro-electroetching and electrochemical machining for removal of the surface layers from silicon wafers of solar cells is demonstrated. The low yields of epoxy film and Si3N4 thin-film depositions are important factors in semiconductor production. The aim of the proposed recycling fabrication method is to replace the current approach, which uses strong acid and grinding and may damage the physical structure of silicon wafers and pollute to the environment. A precisely engineered clean production approach for removal of surface microstructure layers from silicon wafers is to develop a mass production system for recycling defective or discarded silicon wafers of solar cells that can reduce pollution and cost. A large diameter cathode of the circular-rhombus tool (with a small gap between the anode and the cathode) corresponds to a high rate of epoxy film removal. A high feed rate of the silicon wafers combined with a high continuous DC electric voltage results in a high removal rate. The high rotational speed of the circular-rhombus tool increases the discharge mobility and improves the removal effect associated with the high feed rate of the workpiece. A small port radius or large end angle of the rhombus anode provides a large discharge space and good removal effect only a short period of time is required to remove the Si3N4 layer and epoxy film easily and cleanly.

  17. Moderate pressure plasma source of nonthermal electrons

    NASA Astrophysics Data System (ADS)

    Gershman, S.; Raitses, Y.

    2018-06-01

    Plasma sources of electrons offer control of gas and surface chemistry without the need for complex vacuum systems. The plasma electron source presented here is based on a cold cathode glow discharge (GD) operating in a dc steady state mode in a moderate pressure range of 2–10 torr. Ion-induced secondary electron emission is the source of electrons accelerated to high energies in the cathode sheath potential. The source geometry is a key to the availability and the extraction of the nonthermal portion of the electron population. The source consists of a flat and a cylindrical electrode, 1 mm apart. Our estimates show that the length of the cathode sheath in the plasma source is commensurate (~0.5–1 mm) with the inter-electrode distance so the GD operates in an obstructed regime without a positive column. Estimations of the electron energy relaxation confirm the non-local nature of this GD, hence the nonthermal portion of the electron population is available for extraction outside of the source. The use of a cylindrical anode presents a simple and promising method of extracting the high energy portion of the electron population. Langmuir probe measurements and optical emission spectroscopy confirm the presence of electrons with energies ~15 eV outside of the source. These electrons become available for surface modification and radical production outside of the source. The extraction of the electrons of specific energies by varying the anode geometry opens exciting opportunities for future exploration.

  18. Air Medical Evacuations of Soldiers for Oral-facial Disease and Injuries, Operations Enduring Freedom/Iraqi Freedom, January-December 2006

    DTIC Science & Technology

    2006-12-01

    COL Timothy A Mitchener, DC USA 5e. TASK NUMBER 6. AUTHOR( S ) 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8...SPONSORING/MONITORING AGENCY NAME( S ) AND 10. SPONSOR/MONITOR’S ACRONYM( S ) ADDRESS(ES) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION/AVAILABILITY...NATO) Standardization Agreement (STANAG), 5th edition, coding scheme. (See P.J. Amoroso, G.S. Smith, and N.S. Bell : Qualitative assessment of cause

  19. Design of optimum solid oxide membrane electrolysis cells for metals production

    DOE PAGES

    Guan, Xiaofei; Pal, Uday B.

    2015-12-24

    Oxide to metal conversion is one of the most energy-intensive steps in the value chain for metals production. Solid oxide membrane (SOM) electrolysis process provides a general route for directly reducing various metal oxides to their respective metals, alloys, or intermetallics. Because of its lower energy use and ability to use inert anode resulting in zero carbon emission, SOM electrolysis process emerges as a promising technology that can replace the state-of-the-art metals production processes. In this paper, a careful study of the SOM electrolysis process using equivalent DC circuit modeling is performed and correlated to the experimental results. Finally, amore » discussion on relative importance of each resistive element in the circuit and on possible ways of lowering the rate-limiting resistive elements provides a generic guideline for designing optimum SOM electrolysis cells.« less

  20. Synthesis and high catalytic properties of mesoporous Pt nanowire array by novel conjunct template method

    NASA Astrophysics Data System (ADS)

    Zhong, Yi; Xu, Cai-Ling; Kong, Ling-Bin; Li, Hu-Lin

    2008-12-01

    A novel conjunct template method for fabricating mesoporous Pt nanowire array through direct current (DC) electrodeposition of Pt into the pores of anodic aluminum oxide (AAO) template on Ti/Si substrate from hexagonal structured lyotropic liquid crystalline phase is demonstrated in this paper. The morphology and structure of as-prepared Pt nanowire array are characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The electrocatalytic properties of Pt nanowire array for methanol are also investigated in detail. The results indicate that Pt nanowire array has the unique mesoporous structure of approximate 40-50 nm in diameter, which resulted in the high surface area and greatly improved electrocatalytic activity for methanol. The mesoporous Pt nanowire array synthesized by the new conjunct template method has a very promising application in portable fuel cell power sources.

  1. Observation of frequency cutoff for self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.

    2009-11-01

    Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.

  2. DEVICE AND METHOD FOR PRODUCING A HIGH INTENSITY ARC DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-01-01

    A device is described for producing an energetic d-c carbon arc discharge between widely spaced electrodes with arc currents in excess of 100 amperes in a magnetic field of about 3000 gauss and witnin an evacuated enclo sure at a pressure of about 10/sup -5/ mm Hg. No defining electrodes are used in the device, thus essentially eliminating the problems of shorting which heretofore limited the amount of current that could be produced in an arc discharge. The energetic carbon arc discharge is sustained by the potential across the electrodes and by carbon ions and electrons released from the electrodes during arc operation. A large part of the potential drop of the arc occurs along the arc and many energetic electrons reach the anode because the arc pressure is relatively low, and few collisions occur. The carbon discharge is also an efficient ion pump.

  3. MURI: Surface-Templated Bio-Inspired Synthesis and Fabrication of Functional Materials

    DTIC Science & Technology

    2006-06-21

    metallic nanowires were prepared by electro-deposition of gold into porous anodic aluminum oxide ( AAO ) as described by Martin and co- workers. A thin, 200...controlled by monitoring the charge passed through the membrane . The Ag support and aluminum membranes were subsequently dissolved with concentrated...featuring copper and iron- oxides . Appropriately designed cyclic D, L-α-peptides can assume flat ring-shaped geometry and stack via directed backbone

  4. Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell.

    PubMed

    Pant, Deepak; Arslan, Doga; Van Bogaert, Gilbert; Gallego, Yolanda Alvarez; De Wever, Heleen; Diels, Ludo; Vanbroekhoven, Karolien

    2013-01-01

    In this study, domestic wastewater was given a second life as dilution medium for concentrated organic waste streams, in particular artificial food waste. A two-step continuous process with first volatile fatty acid (VFA)/hydrogen production and second electricity production in microbial fuel cells (MFCs) was employed. For primary treatment, bioreactors were optimized to produce hydrogen and VFAs. Hydrolysis of the solids and formation of fermentation products and hydrogen was monitored. In the second step, MFCs were operated batch-wise using the effluent rich in VFAs specifically acetic acid from the continuous reactor of the first step. The combined system was able to reduce the chemical oxygen demand load by 90%. The concentration of VFAs was also monitored regularly in the MFCs and showed a decreasing trend over time. Further, the anode potential changed from -500 to OmV vs. Ag/AgCl when the VFAs (especially acetate) were depleted in the system. On feeding the system again with the effluent, the anode potential recovered back to -500 mV vs. Ag/AgCl. Thus, the overall aim of converting chemical energy into electrical energy was achieved with a columbic efficiency of 46% generating 65.33 mA/m2 at a specific cell potential of 148 mV.

  5. Dendritic Cell Response to HIV-1 Is Controlled by Differentiation Programs in the Cells and Strain-Specific Properties of the Virus.

    PubMed

    Nasi, Aikaterini; Amu, Sylvie; Göthlin, Mårten; Jansson, Marianne; Nagy, Noemi; Chiodi, Francesca; Réthi, Bence

    2017-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that might play contradictory roles during HIV-1 infection, contributing not only to antiviral immunity but also to viral dissemination and immune evasion. Although DCs are characterized by enormous functional diversity, it has not been analyzed how differentially programmed DCs interact with HIV-1. We have previously described the reprogramming of DC development by endogenously produced lactic acid that accumulated in a cell culture density-dependent manner and provided a long-lasting anti-inflammatory signal to the cells. By exploiting this mechanism, we generated immunostimulatory DCs characterized by the production of TH1 polarizing and inflammatory mediators or, alternatively, suppressed DCs that produce IL-10 upon activation, and we tested the interaction of these DC types with different HIV-1 strains. Cytokine patterns were monitored in HIV-1-exposed DC cultures. Our results showed that DCs receiving suppressive developmental program strongly upregulated their capacity to produce the TH1 polarizing cytokine IL-12 and the inflammatory chemokines CCL2 and CCL7 upon interaction with HIV-1 strains IIIB and SF162. On the contrary, HIV-1 abolished cytokine production in the more inflammatory DC types. Preincubation of the cells with the HIV-1 proteins gp120 and Nef could inhibit IL-12 production irrespectively of the tested DC types, whereas MyD88- and TRIF-dependent signals stimulated IL-12 production in the suppressed DC type only. Rewiring of DC cytokines did not require DC infections or ligation of the HIV-1 receptor CD209. A third HIV-1 strain, BaL, could not modulate DC cytokines in a similar manner indicating that individual HIV-1 strains can differ in their capacity to influence DCs. Our results demonstrated that HIV-1 could not induce definite and invariable modulatory programs in DCs. Instead, interaction with the virus triggered different responses in different DC types. Thus, the outcome of DC-HIV-1 interactions might be highly variable, shaped by endogenous features of the cells and diversity of the virus.

  6. Dendritic Cell Response to HIV-1 Is Controlled by Differentiation Programs in the Cells and Strain-Specific Properties of the Virus

    PubMed Central

    Nasi, Aikaterini; Amu, Sylvie; Göthlin, Mårten; Jansson, Marianne; Nagy, Noemi; Chiodi, Francesca; Réthi, Bence

    2017-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells that might play contradictory roles during HIV-1 infection, contributing not only to antiviral immunity but also to viral dissemination and immune evasion. Although DCs are characterized by enormous functional diversity, it has not been analyzed how differentially programmed DCs interact with HIV-1. We have previously described the reprogramming of DC development by endogenously produced lactic acid that accumulated in a cell culture density-dependent manner and provided a long-lasting anti-inflammatory signal to the cells. By exploiting this mechanism, we generated immunostimulatory DCs characterized by the production of TH1 polarizing and inflammatory mediators or, alternatively, suppressed DCs that produce IL-10 upon activation, and we tested the interaction of these DC types with different HIV-1 strains. Cytokine patterns were monitored in HIV-1-exposed DC cultures. Our results showed that DCs receiving suppressive developmental program strongly upregulated their capacity to produce the TH1 polarizing cytokine IL-12 and the inflammatory chemokines CCL2 and CCL7 upon interaction with HIV-1 strains IIIB and SF162. On the contrary, HIV-1 abolished cytokine production in the more inflammatory DC types. Preincubation of the cells with the HIV-1 proteins gp120 and Nef could inhibit IL-12 production irrespectively of the tested DC types, whereas MyD88- and TRIF-dependent signals stimulated IL-12 production in the suppressed DC type only. Rewiring of DC cytokines did not require DC infections or ligation of the HIV-1 receptor CD209. A third HIV-1 strain, BaL, could not modulate DC cytokines in a similar manner indicating that individual HIV-1 strains can differ in their capacity to influence DCs. Our results demonstrated that HIV-1 could not induce definite and invariable modulatory programs in DCs. Instead, interaction with the virus triggered different responses in different DC types. Thus, the outcome of DC-HIV-1 interactions might be highly variable, shaped by endogenous features of the cells and diversity of the virus. PMID:28348557

  7. Removal of artificial sweetener aspartame from aqueous media by electrochemical advanced oxidation processes.

    PubMed

    Lin, Heng; Oturan, Nihal; Wu, Jie; Sharma, Virender K; Zhang, Hui; Oturan, Mehmet A

    2017-01-01

    The degradation and mineralization of aspartame (ASP) in aqueous solution were investigated, for the first time, by electrochemical advanced oxidation processes (EAOPs) in which hydroxyl radicals were formed concomitantly in the bulk from Fenton reaction via in situ electrogenerated Fenton's reagent and at the anode surface from the water oxidation. Experiments were performed in an undivided cylindrical glass cell with a carbon-felt cathode and a Pt or boron-doped diamond (BDD) anode. The effect of Fe 2+ concentration and applied current on the degradation and mineralization kinetics of ASP was evaluated. The absolute rate constant for the reaction between ASP and OH was determined as (5.23 ± 0.02) × 10 9  M -1  s -1 by using the competition kinetic method. Almost complete mineralization of ASP was achieved with BDD anode at 200 mA constant current electrolysis. The formation and generation of the formed carboxylic acids (as ultimate end products before complete mineralization) and released inorganic ion were monitored by ion-exclusion high performance liquid chromatography (HPLC) and ion chromatography techniques, respectively. The global toxicity of the treated ASP solution during treatment was assessed by the Microtox ® method using V. fischeri bacteria luminescence inhibition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, H.E.; Lucy, E.

    1998-02-03

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor. 6 figs.

  9. Method and apparatus for monitoring the rotating frequency of de-energized induction motors

    DOEpatents

    Mikesell, Harvey E.; Lucy, Eric

    1998-01-01

    The rotational speed of a coasting induction motor is measured by sensing e residual electrical voltages at the power terminals of the motor, thus eliminating the need for conventional tachometer equipment, additional mechanical components or modifications to the induction motor itself. The power terminal voltage signal is detected and transformed into a DC voltage proportional to the frequency of the signal. This DC voltage can be input to the control system of a variable frequency motor controller to regulate the output characteristics thereof relative to the speed of the coasting motor.

  10. Ohmic resistance affects microbial community and ...

    EPA Pesticide Factsheets

    Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial community and electrochemical kinetic parameters for biofilms on individual anodes in a multi-anode MXC to better comprehend anode fundamentals. Microbial community analysis using 16S rRNA illumine sequencing showed that Geobactor genus, one of the most kinetically efficient anode-respiring bacteria (ARB), was abundant (87%) only on the biofilm anode closest to a reference electrode in which current density was the highest among four anodes. In comparison, Geobacter populations were less than 11% for other three anodes more distant from the reference electrode, generating small current density. Half-saturation anode potential (EKA) was the lowest at -0.251 to -0.242 V (vs. standard hydrogen electrode) for the closest anode, while EKA was as high as -0.134 V for the farthest anode. Our study clearly proves that ohmic resistance changes anode potential which mainly causes different biofilm communities on individual anodes and consequently influences anode kinetics. This study explored the use of multiple anodes in microelectrochemical cells and the microbial community on these anodes, as a function of the efficiency in producing hydrogen peroxide.

  11. Anode sheath transition in an anodic arc for synthesis of nanomaterials

    NASA Astrophysics Data System (ADS)

    Nemchinsky, V. A.; Raitses, Y.

    2016-06-01

    The arc discharge with ablating anode or so-called anodic arc is widely used for synthesis of nanomaterials, including carbon nanotubes and fullerens, metal nanoparticles etc. We present the model of this arc, which confirms the existence of the two different modes of the arc operation with two different anode sheath regimes, namely, with negative anode sheath and with positive anode sheath. It was previously suggested that these regimes are associated with two different anode ablating modes—low ablation mode with constant ablation rate and the enhanced ablation mode (Fetterman et al 2008 Carbon 46 1322). The transition of the arc operation from low ablation mode to high ablation mode is determined by the current density at the anode. The model can be used to self-consistently determine the distribution of the electric field, electron density and electron temperature in the near-anode region of the arc discharge. Simulations of the carbon arc predict that for low arc ablating modes, the current is driven mainly by the electron diffusion to the anode. For positive anode sheath, the anode voltage is close to the ionization potential of anode material, while for negative anode sheath, the anode voltage is an order of magnitude smaller. It is also shown that the near-anode plasma, is far from the ionization equilibrium.

  12. Optimization of Dendritic Cell-Mediated Cytotoxic T-Cell Activation by Tracking of Dendritic Cell Migration Using Reporter Gene Imaging.

    PubMed

    Lee, Hongje; Lee, Ho Won; La Lee, You; Jeon, Yong Hyun; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol

    2018-06-01

    The aim of this study is to optimize the dendritic cell (DC)-mediated T-cell activation using reporter gene imaging and flow cytometric analysis in living mice. A murine dendritic cell line (DC2.4) co-expressing effluc and Thy1.1 genes were established by transfection with retroviral vectors. Thy1.1 positive cells were sorted by magnetic bead separation system (DC2.4/effluc). Cell proliferation assay and phenotype analysis to determine the effects of gene transduction on the function of dendritic cells between parental DC2.4 and DC2.4/effluc were performed. To optimize the DC-mediated immune response by cell number or frequency, different cell numbers (5 × 10 5 , 1 × 10 6 , and 2 × 10 6  DC2.4/effluc) or different frequencies of DC2.4/effluc (first, second, and third injections) were injected in the right footpad of mice. The migration of the DC2.4/effluc into the draining popliteal lymph node of mice was monitored by bioluminescence imaging (BLI). Flow cytometric analysis was performed with splenocytes to determine the cytotoxic T-cell population after injection of DC2.4/effluc. Parental DC2.4 and DC2.4/effluc exhibit no significant differences in their proliferation and phenotype. BLI signals were observed in the draining popliteal lymph node at day 1 after injection of DC2.4/effluc in 1 × 10 6 and 2 × 10 6 cells-injected groups. The highest BLI signal intensity was detected in 2 × 10 6 cells-injected mice. On day 11, the BLI signal was detected in only 2 × 10 6 cell-injected group but not in other groups. Optimized cell numbers (2 × 10 6 ) were injected in three animal groups with a different frequency (first, second, and third injection groups). The BLI signal was detected at day 1 and maintained until day 7 in the first injection group, but there is low signal intensity in the second and the third injection groups. Although the expression levels of Thy1.1 gene in the first injection group were very high, there reveals no expression of Thy1.1 gene in the second and the third injection groups. The number of tumor-specific CD8 + T-cells in the spleen significantly increased, as the number of DC injections increases. Successful optimization of DC-mediated cytotoxic T-cell activation in living mice using reporter gene imaging and flow cytometric analysis was achieved. The optimization of DC-mediated cytotoxic T-cell activation could be applied for the future DC-based immunotherapy.

  13. Electronic ripple indicator

    NASA Technical Reports Server (NTRS)

    Davidson, J. K.; Houck, W. H.

    1971-01-01

    Electronic circuit for monitoring excessive ripple voltage on dc power lines senses voltage variations from few millivolts to maximum of 10 volts rms. Instrument is used wherever power supply fluctuations might endanger system operations or damage equipment. Device is inexpensive and easily packaged in small chassis.

  14. Short-term metal particulate exposures decrease cardiac acceleration and deceleration capacities in welders: a repeated-measures panel study.

    PubMed

    Umukoro, Peter E; Cavallari, Jennifer M; Fang, Shona C; Lu, Chensheng; Lin, Xihong; Mittleman, Murray A; Christiani, David C

    2016-02-01

    Acceleration (AC) and deceleration (DC) capacities measure heart rate variability during speeding up and slowing down of the heart, respectively. We investigated associations between AC and DC with occupational short-term metal PM2.5 exposures. A panel of 48 male welders had particulate matter less than 2.5 microns in diameter (PM2.5) exposure measurements over 4-6 h repeated over 5 sampling periods between January 2010 and June 2012. We simultaneously obtained continuous recordings of digital ECG using a Holter monitor. We analysed ECG data in the time domain to obtain hourly AC and DC. Linear mixed models were used to assess the associations between hourly PM2.5 exposure and each of hourly AC and DC, controlling for age, smoking status, active smoking, exposure to secondhand smoke, season/time of day when ECG reading was obtained and baseline AC or DC. We also ran lagged exposure response models for each successive hour up to 3 h after onset of exposure. Mean (SD) shift PM2.5 exposure during welding was 0.47 (0.43) mg/m(3). Significant exposure-response associations were found for AC and DC with increased PM2.5 exposure. In our adjusted models without any lag between exposure and response, a 1 mg/m(3) increase of PM2.5 was associated with a decrease of 1.46 (95% CI 1.00 to 1.92) ms in AC and a decrease of 1.00 (95% CI 0.53 to 1.46) ms in DC. The effect of PM2.5 on AC and DC was maximal immediately postexposure and lasted 1 h following exposure. There are short-term effects of metal particulates on AC and DC. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  15. Cabin Atmosphere Monitoring System (CAMS), pre-prototype model development continuation

    NASA Technical Reports Server (NTRS)

    Bursack, W. W.; Harris, W. A.

    1975-01-01

    The development of the Cabin Atmosphere Monitoring System (CAMS) is described. Attention was directed toward improving stability and reliability of the design using flight application guidelines. Considerable effort was devoted to the development of a temperature-stable RF/DC generator used for excitation of the quadrupole mass filter. Minor design changes were made in the preprototype model. Specific gas measurement examples are included along with a discussion of the measurement rationale employed.

  16. Fabrication and Optimization of Bilayered Nanoporous Anodic Alumina Structures as Multi-Point Interferometric Sensing Platform

    PubMed Central

    Nemati, Mahdieh; Santos, Abel

    2018-01-01

    Herein, we present an innovative strategy for optimizing hierarchical structures of nanoporous anodic alumina (NAA) to advance their optical sensing performance toward multi-analyte biosensing. This approach is based on the fabrication of multilayered NAA and the formation of differential effective medium of their structure by controlling three fabrication parameters (i.e., anodization steps, anodization time, and pore widening time). The rationale of the proposed concept is that interferometric bilayered NAA (BL-NAA), which features two layers of different pore diameters, can provide distinct reflectometric interference spectroscopy (RIfS) signatures for each layer within the NAA structure and can therefore potentially be used for multi-point biosensing. This paper presents the structural fabrication of layered NAA structures, and the optimization and evaluation of their RIfS optical sensing performance through changes in the effective optical thickness (EOT) using quercetin as a model molecule. The bilayered or funnel-like NAA structures were designed with the aim of characterizing the sensitivity of both layers of quercetin molecules using RIfS and exploring the potential of these photonic structures, featuring different pore diameters, for simultaneous size-exclusion and multi-analyte optical biosensing. The sensing performance of the prepared NAA platforms was examined by real-time screening of binding reactions between human serum albumin (HSA)-modified NAA (i.e., sensing element) and quercetin (i.e., analyte). BL-NAAs display a complex optical interference spectrum, which can be resolved by fast Fourier transform (FFT) to monitor the EOT changes, where three distinctive peaks were revealed corresponding to the top, bottom, and total layer within the BL-NAA structures. The spectral shifts of these three characteristic peaks were used as sensing signals to monitor the binding events in each NAA pore in real-time upon exposure to different concentrations of quercetin. The multi-point sensing performance of BL-NAAs was determined for each pore layer, with an average sensitivity and low limit of detection of 600 nm (mg mL−1)−1 and 0.14 mg mL−1, respectively. BL-NAAs photonic structures have the capability to be used as platforms for multi-point RIfS sensing of biomolecules that can be further extended for simultaneous size-exclusion separation and multi-analyte sensing using these bilayered nanostructures. PMID:29415436

  17. Distinguishing between deep trapping transients of electrons and holes in TiO2 nanotube arrays using planar microwave resonator sensor.

    PubMed

    Zarifi, Mohammad H; Wiltshire, Benjamin Daniel; Mahdi, Najia; Shankar, Karthik; Daneshmand, Mojgan

    2018-05-16

    A large signal DC bias and a small signal microwave bias were simultaneously applied to TiO2 nanotube membranes mounted on a planar microwave resonator. The DC bias modulated the electron concentration in the TiO2 nanotubes, and was varied between 0 and 120 V in this study. Transients immediately following the application and removal of DC bias were measured by monitoring the S-parameters of the resonator as a function of time. The DC bias stimulated Poole-Frenkel type trap-mediated electrical injection of excess carriers into TiO2 nanotubes which resulted in a near constant resonant frequency but a pronounced decrease in the microwave amplitude due to free electron absorption. When ultraviolet illumination and DC bias were both present and then step-wise removed, the resonant frequency shifted due to trapping -mediated change in the dielectric constant of the nanotube membranes. Characteristic lifetimes of 60-80 s, 300-800 s and ~3000 s were present regardless of whether light or bias was applied and are also observed in the presence of a hole scavenger, which we attribute to oxygen adsorption and deep electron traps while another characteristic lifetime > 9000 s was only present when illumination was applied, and is attributed to the presence of hole traps.

  18. Involvement of suppressors of cytokine signaling in toll-like receptor-mediated block of dendritic cell differentiation.

    PubMed

    Bartz, Holger; Avalos, Nicole M; Baetz, Andrea; Heeg, Klaus; Dalpke, Alexander H

    2006-12-15

    Dendritic cells (DCs) are important sentinels within innate immunity, monitoring the presence of infectious microorganisms. They operate in 2 different maturation stages, with transition from immature to mature DCs being induced by activation of toll-like receptors (TLRs). However, TLRs are also expressed on precursor cells of DCs. Here we analyzed the effects of TLR stimulation during the process of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-mediated in vitro generation of immature DCs from precursor cells. We show that TLR triggering deviated phenotypic and functional differentiation from CD14+ monocytes to CD1a+ DCs. Similar results were obtained when differentiation of murine myeloid DCs from bone marrow cells was analyzed. The inhibitory effects were independent of soluble factors. TLR stimulation in DC precursor cells induced proteins of the suppressor of cytokine signaling family (SOCS), which correlated with loss of sensitivity to GM-CSF. Overexpression of SOCS-1 abolished GM-CSF signal transduction. Moreover, forced SOCS-1 expression in DC precursors mimicked the inhibitory effects on DC generation observed for TLR stimulation. The results indicate that TLR stimulation during the period of DC generation interferes with and deviates DC differentiation and that these effects are mediated particularly by SOCS-1.

  19. Binders and Hosts for High-Capacity Lithium-ion Battery Anodes

    NASA Astrophysics Data System (ADS)

    Dufficy, Martin Kyle

    Lithium-ion batteries (LIBs) are universal electrochemical energy storage devices that have revolutionized our mobile society. Nonetheless, societal and technological advances drive consumer demand for LIBs with enhanced electrochemical performance, such as higher charge capacity and longer life, compared to conventional LIBs. One method to enhance LIB performance is to replace graphite, the industry standard anode since commercialization of LIBs in 1991, with high-charge capacity materials. Implementing high-capacity anode materials such as tin, silicon, and manganese vanadates, to LIBs presents challenges; Li-insertion is destructive to anode framework, and increasing capacity increases structural strains that pulverize anode materials and results in a short-cycle life. This thesis reports on various methods to extended the cycle life of high-capacity materials. Most of the work is conducted on nano-sized anode materials to reduce Li and electron transport pathway length (facilitating charge-transfer) and reduce strains from volume expansions (preserving anode structure). The first method involves encapsulating tin particles into a graphene-containing carbon nanofiber (CNF) matrix. The composite-CNF matrix houses tin particles to assume strains from tin-volume expansions and produces favorable surface-electrolyte chemistries for stable charge-discharge cycling. Before tin addition, graphene-containing CNFs are produced and assessed as anode materials for LIBs. Graphene addition to CNFs improves electronic and mechanical properties of CNFs. Furthermore, the 2-D nature of graphene provides Li-binding sites to enhance composite-CNF both first-cycle and high-rate capacities > 150% when compared to CNFs in the absence of graphene. With addition of Sn, we vary loadings and thermal production temperature to elucidate structure-composition relationships of tin and graphene-containing CNF electrodes that lead to increased capacity retention. Of note, electrodes containing ≤ 20 wt% tin result in small tin (metallic and tin oxide) particles (≤ 15 nm) within the composite-CNF matrix, which yield long cycle-lives; large reversible capacities of ˜ 600 mAh g-1 are observed at 0.2-C rates, while capacities of ˜ 400 mAh g-1 (double the capacity of CNFs) are observed after hundreds of cycles at 2-C rates. The second method comprises an approach to enhance the cycle life of silicon anodes. Many researchers believe that Si is the future anode material of LIBs, and Si is capable of providing a much needed boost in overall cell performance. Silicon has the highest known charge capacity at ˜ 3579 mAh g-1, nearly an order of magnitude larger than graphite (372 mAh g-1). In attempt to realize the entire capacity of Si anodes, we use binding agents to prolong cycle life. Binding agents enhance capacity retention via favorable interactions with cell components such as active materials and electrolytes. In this study, we introduce galactomannans (specifically, guar) as viable, inexpensive, biopolymer binders for Si electrodes. In attempt to elucidate the role of the binder in Si electrodes, we study guar-electrode and -electrolyte interactions that lead to electrochemical performance enhancements. We recognize that there are deficiencies in guar-silicon systems, which we address in our following approach. Notably, we develop a guar-derived binder to increase the strength and conductivity of Si-based electrodes by crosslinking guar and carbon black dispersions. The crosslinked binders, in effect, enhance electrode adhesion and hinder electrode cracking by self-healing. This study monitors gelation via rheological methods and assesses effects of crosslinking density on physical and electrochemical properties. Lastly, we consider a vacancy-induced manganese vanadate as high-capacity, high-power anodes for LIBs. Rather than assessing nanoparticles, we tailored molecular structure to enhance electrochemical performances. X-ray diffraction studies enable us to suggest a Li-insertion mechanism, where Li travels through large channels created by defects in the crystal structure. The ensuing manganese vanadate structure produces a stable framework that results in stable cycling of hundreds of cycles.

  20. Mechanisms of anode power deposition in a low pressure free burning arc

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Myers, Roger M.

    1994-01-01

    Anode power deposition is a dominant power loss mechanism for arc jets and MPD thrusters. In this study, a free burning arc experiment was operated at pressures and current densities similar to those in arc jets and MPD thrusters in an attempt to identify the physics controlling this loss mechanism. Use of a free burning arc allowed for the isolation of independent variables controlling anode power deposition and provided a convenient and flexible way to cover a broad range of currents, anode surface pressures, and applied magnetic field strengths and orientations using an argon gas. Test results showed that anode power deposition decreased with increasing anode surface pressure up to 6.7 Pa (0.05 torr) and then became insensitive to pressure. Anode power increased with increasing arc current while the electron number density near the anode surface increased linearity. Anode power also increased with increasing applied magnetic field strength due to an increasing anode fall voltage. Applied magnetic field orientation had an effect only at high currents and low anode surface pressures, where anode power decreased when applied field lines intercepted the anode surface. The results demonstrated that anode power deposition was dominated by the current carrying electrons and that the anode fall voltage was the largest contributor. Furthermore, the results showed that anode power deposition can be reduced by operating at increased anode pressures, reduced arc currents, and applied magnetic field strengths and with magnetic field lines intercepting the anode.

  1. Superhydrophilicity of novel anodic alumina nanofibers films and their formation mechanism

    NASA Astrophysics Data System (ADS)

    Peng, Rong; Yang, Wulin; Fu, Licai; Zhu, Jiajun; Li, Deyi; Zhou, Lingping

    2017-06-01

    A novel anodic alumina nanofibers structure, which is different from the traditional porous anodic structure, has been quickly fabricated via anodizing in a new electrolyte, pyrophosphoric acid. The effects of the solution concentration and the anodizing time on the formation of the anodic alumina nanofibers were analyzed. The results show that the nanostructure of anodic alumina can change to the nanofiber oxide from the porous oxide by increasing the solution concentration. Prolonging the anodizing time is beneficial to obtain alumina nanofibers at high solution concentration. Growth behavior of the alumina nanofibers was also discussed by scanning electron microscopy observations. Owing to the unique hexagonal structure of anodic alumina as well as the preferential chemical dissolution between the porous anodic alumina and the anodic alumina nanotips, the slightly soluble anodic alumina nanotips could form novel alumina nanofibers during anodizing. The results show that the nanofibers-covered aluminum surface exhibits superhydrophilic property, with a near-zero water contact angle. Such alumina nanofibers with superhydrophilic property could be used for various potential applications.

  2. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  3. Anode power deposition in quasi-steady MPD arcs. [accelerator anode heat flux measurement

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1973-01-01

    The power deposited in the anode of a quasi-steady MPD accelerator has been measured directly by thermocouples attached to the inside surface of a shell anode which provide a local measurement of anode heat flux. The results over a range of arc currents from 5.5 to 44 kiloamperes and argon mass flows from 1 g/sec to 48 g/sec show that the fraction of the total input power deposited in the anode decreases drastically from 50% at an arc power of 200 kW to 10% at 20 MW, and that anode power is not uniformly deposited in the anode. A theoretical model of the anode heat transfer, including effects of anode work function, electron thermal energy, and anode sheath, can be brought into reasonable agreement with the measurements, provided the effective range of the conduction electrons from within the discharge plasma to the anode surface is properly acknowledged.

  4. Factors associated with NO2 and NOX concentration gradients near a highway.

    PubMed

    Richmond-Bryant, J; Snyder, M G; Owen, R C; Kimbrough, S

    2017-11-21

    The objective of this research is to learn how the near-road gradient, in which NO 2 and NO X (NO + NO 2 ) concentrations are elevated, varies with changes in meteorological and traffic variables. Measurements of NO 2 and NO X were obtained east of I-15 in Las Vegas and fit to functions whose slopes (dC NO 2 /dx and dC NO X /dx, respectively) characterize the size of the near-road zone where NO 2 and NO X concentrations from mobile sources on the highway are elevated. These metrics were used to learn about the near-road gradient by modeling dC NO 2 /dx and dC NO X /dx as functions of meteorological variables (e.g., wind direction, wind speed), traffic (vehicle count), NO X concentration upwind of the road, and O 3 concentration at two fixed-site ambient monitors. Generalized additive models (GAM) were used to model dC NO 2 /dx and dC NO X /dx versus the independent variables because they allowed for nonlinearity of the variables being compared. When data from all wind directions were included in the analysis, variability in O 3 concentration comprised the largest proportion of variability in dC NO 2 /dx, followed by variability in wind direction. In a second analysis constrained to winds from the west, variability in O 3 concentration remained the largest contributor to variability in dC NO 2 /dx, but the relative contribution of variability in wind speed to variability in dC NO 2 /dx increased relative to its contribution for the all-wind analysis. When data from all wind directions were analyzed, variability in wind direction was by far the largest contributor to variability in dC NO X /dx, with smaller contributions from hour of day and upwind NO X concentration. When only winds from the west were analyzed, variability in upwind NO X concentration, wind speed, hour of day, and traffic count all were associated with variability in dC NO X /dx. Increases in O 3 concentration were associated with increased magnitude near-road dC NO 2 /dx, possibly shrinking the zone of elevated concentrations occurring near roads. Wind direction parallel to the highway was also related to an increased magnitude of both dC NO 2 /dx and dC NO X /dx, again likely shrinking the zone of elevated concentrations occurring near roads. Wind direction perpendicular to the road decreased the magnitude of dC NO 2 /dx and dC NO X /dx and likely contributed to growth of the zone of elevated concentrations occurring near roads. Thus, variability in near-road concentrations is influenced by local meteorology and ambient O 3 concentration.

  5. Winter Streams: The Web of Life Goes On.

    ERIC Educational Resources Information Center

    Pokora, Daniel L.

    1981-01-01

    Describes scope and significance of a high school water monitoring project and discusses problems and solutions related to water testing in general and winter water testing in particular. Discussions of stream velocity, stream flow, biotic index, and coliform bacteria tests are included. (DC)

  6. System and method for monitoring and controlling stator winding temperature in a de-energized AC motor

    DOEpatents

    Lu, Bin [Kenosha, WI; Luebke, Charles John [Sussex, WI; Habetler, Thomas G [Snellville, GA; Zhang, Pinjia [Atlanta, GA; Becker, Scott K [Oak Creek, WI

    2011-12-27

    A system and method for measuring and controlling stator winding temperature in an AC motor while idling is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of a multi-phase AC motor. The circuit further includes a plurality of switching devices to control current flow and terminal voltages in the multi-phase AC motor and a controller connected to the circuit. The controller is configured to activate the plurality of switching devices to create a DC signal in an output of the motor control device corresponding to an input to the multi-phase AC motor, determine or estimate a stator winding resistance of the multi-phase AC motor based on the DC signal, and estimate a stator temperature from the stator winding resistance. Temperature can then be controlled and regulated by DC injection into the stator windings.

  7. Special Advanced Studies for Pollution Prevention. Delivery Order 0065: The Monitor - Spring 2001

    DTIC Science & Technology

    2001-06-01

    coating) baths by remov- ing trace contaminant metals as well as restoring and maintaining the hexavalent chromium or ferric species. The oxidizing...power for the process acid is restored by oxidation (trivalent chromium to hexavalent chromium or ferrous to ferric) at the anode. Other sources of...selection to the application. UF membranes are suitable for particles in the molecular range of 0.1-0.01microns. Microfiltration membranes are similar

  8. Chronic Enhancement of Serotonin Facilitates Excitatory Transcranial Direct Current Stimulation-Induced Neuroplasticity.

    PubMed

    Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang; Nitsche, Michael A

    2016-04-01

    Serotonin affects memory formation via modulating long-term potentiation (LTP) and depression (LTD). Accordingly, acute selective serotonin reuptake inhibitor (SSRI) administration enhanced LTP-like plasticity induced by transcranial direct current stimulation (tDCS) in humans. However, it usually takes some time for SSRI to reduce clinical symptoms such as anxiety, negative mood, and related symptoms of depression and anxiety disorders. This might be related to an at least partially different effect of chronic serotonergic enhancement on plasticity, as compared with single-dose medication. Here we explored the impact of chronic application of the SSRI citalopram (CIT) on plasticity induced by tDCS in healthy humans in a partially double-blinded, placebo (PLC)-controlled, randomized crossover study. Furthermore, we explored the dependency of plasticity induction from the glutamatergic system via N-methyl-D-aspartate receptor antagonism. Twelve healthy subjects received PLC medication, combined with anodal or cathodal tDCS of the primary motor cortex. Afterwards, the same subjects took CIT (20 mg/day) consecutively for 35 days. During this period, four additional interventions were performed (CIT and PLC medication with anodal/cathodal tDCS, CIT and dextromethorphan (150 mg) with anodal/cathodal tDCS). Plasticity was monitored by motor-evoked potential amplitudes elicited by transcranial magnetic stimulation. Chronic application of CIT increased and prolonged the LTP-like plasticity induced by anodal tDCS for over 24 h, and converted cathodal tDCS-induced LTD-like plasticity into facilitation. These effects were abolished by dextromethorphan. Chronic serotonergic enhancement results in a strengthening of LTP-like glutamatergic plasticity, which might partially explain the therapeutic impact of SSRIs in depression and other neuropsychiatric diseases.

  9. Electrolyte selection and microbial toxicity for electrochemical oxidative water treatment using a boron-doped diamond anode to support site specific contamination incident response.

    PubMed

    Phillips, Rebecca B; James, Ryan R; Magnuson, Matthew L

    2018-04-01

    Intentional and unintentional contamination incidents, such as terrorist attacks, natural disasters, and accidental spills, can result in large volumes of contaminated water. These waters may require pre-treatment before disposal and assurances that treated waters will not adversely impact biological processes at wastewater treatment facilities, or receiving waters. Based on recommendations of an industrial workgroup, this study addresses such concerns by studying electrochemical advanced oxidation process (EAOP) pre-treatment for contaminated waters, using a boron-doped diamond (BDD) anode, prior to discharge to wastewater treatment facilities. Reaction conditions were investigated, and microbial toxicity was assessed using the Microtox ® toxicity assay and the Nitrification Inhibition test. A range of contaminants were studied including herbicides, pesticides, pharmaceuticals and flame retardants. Resulting toxicities varied with supporting electrolyte from 5% to 92%, often increasing, indicating that microbial toxicity, in addition to parent compound degradation, should be monitored during treatment. These toxicity results are particularly novel because they systematically compare the microbial toxicity effects of a variety of supporting electrolytes, indicating some electrolytes may not be appropriate in certain applications. Further, these results are the first known report of the use of the Nitrification Inhibition test for this application. Overall, these results systematically demonstrate that anodic oxidation using the BDD anode is useful for addressing water contaminated with refractory organic contaminants, while minimizing impacts to wastewater plants or receiving waters accepting EAOP-treated effluent. The results of this study indicate nitrate can be a suitable electrolyte for incident response and, more importantly, serve as a baseline for site specific EAOP usage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Fabrication of porous anodic alumina using normal anodization and pulse anodization

    NASA Astrophysics Data System (ADS)

    Chin, I. K.; Yam, F. K.; Hassan, Z.

    2015-05-01

    This article reports on the fabrication of porous anodic alumina (PAA) by two-step anodizing the low purity commercial aluminum sheets at room temperature. Different variations of the second-step anodization were conducted: normal anodization (NA) with direct current potential difference; pulse anodization (PA) alternate between potential differences of 10 V and 0 V; hybrid pulse anodization (HPA) alternate between potential differences of 10 V and -2 V. The method influenced the film homogeneity of the PAA and the most homogeneous structure was obtained via PA. The morphological properties are further elucidated using measured current-transient profiles. The absent of current rise profile in PA indicates the anodization temperature and dissolution of the PAA structure were greatly reduced by alternating potential differences.

  11. An Experimental Study of Water Injection into a Rolls-Royce Model 250-C20B Turboshaft Gas Turbine

    DTIC Science & Technology

    2008-05-06

    0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 6 May 2008 3. REPORT TYPE AND DATE COVERED 4...9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY REPORT NUMBER US Naval Academy... used an instrumented Model 250-C20B gas turbine and an original water spray system. Temperatures and pressures were measured for each of the gas

  12. Saturation of the right-leg drive amplifier in low-voltage ECG monitors.

    PubMed

    Freeman, Daniel K; Gatzke, Ronald D; Mallas, Georgios; Chen, Yu; Brouse, Chris J

    2015-01-01

    Electrocardiogram (ECG) monitoring is a critical tool in patient care, but its utility is often balanced with frustration from clinicians who are constantly distracted by false alarms. This has motivated the need to readdress the major factors that contribute to ECG noise with the goal of reducing false alarms. In this study, we describe a previously unreported phenomenon in which ECG noise can result from an unintended interaction between two systems: 1) the dc lead-off circuitry that is used to detect whether electrodes fall off the patient; and 2) the right-leg drive (RLD) system that is responsible for reducing ac common-mode noise that couples into the body. Using a circuit model to study this interaction, we found that in the presence of a dc lead-off system, even moderate increases in the right-leg skin-electrode resistance can cause the RLD amplifier to saturate. Such saturation can produce ECG noise because the RLD amplifier will no longer be capable of attenuating ac common-mode noise on the body. RLD saturation is particularly a problem for modern ECG monitors that use low-voltage supply levels. For example, for a 12-lead ECG and a 2 V power supply, saturation will occur when the right-leg electrode resistance reaches only 2 MΩ. We discuss several design solutions that can be used in low-voltage monitors to avoid RLD saturation.

  13. Polymerization kinetics of experimental bioactive composites containing bioactive glass.

    PubMed

    Par, Matej; Tarle, Zrinka; Hickel, Reinhard; Ilie, Nicoleta

    2018-06-21

    To investigate the polymerization kinetics and the degree of conversion (DC) of experimental resin composites with varying amount of bioactive glass 45S5 (BG). Experimental resin composites based on a photo-curable Bis-GMA/TEGDMA resin system were prepared. The composite series contained 0, 5, 10, 20, and 40 wt% of BG and reinforcing fillers up to the total filler amount of 70 wt%. Composite specimens were light cured with 1,219 mW/cm 2 for 20 or 40 s and their DC was monitored during 5 min at the data collection rate of 2 s -1 using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The 5-min DC values for experimental composites were in the range of 42.4-55.9% and 47.3-57.9% for curing times of 20 and 40 s, respectively. The differences in the 5-min DC between curing times of 20 s or 40 s became more pronounced in materials with higher BG amount. Within both curing times, a decreasing trend of the 5-min DC values was observed with the increasing percentage of BG fillers. The maximum polymerization rate also decreased consistently with the increasing BG amount. Unsilanized BG fillers showed a dose-dependent inhibitory effect on polymerization rate and the DC. Extending the curing time from 20 to 40 s showed a limited potential to improve the DC of composites with higher BG amount. The observed inhibitory effect of BG fillers on the polymerization of resin composites may have a negative influence on mechanical properties and biocompatibility. Copyright © 2018. Published by Elsevier Ltd.

  14. Inpatient hospital burden of hepatitis C-diagnosed patients with decompensated cirrhosis.

    PubMed

    McDonald, Scott A; Innes, Hamish A; Aspinall, Esther J; Hayes, Peter C; Alavi, Maryam; Valerio, Heather; Goldberg, David J; Hutchinson, Sharon J

    2017-12-30

    To describe the burden on inpatient hospital resources over time from patients diagnosed with hepatitis C virus (HCV) infection and who have reached the decompensated stage of cirrhosis (DC), as existing estimates of hospital stay in these patients are limited. A retrospective longitudinal dataset was formed via record-linkage between the national HCV diagnosis database and inpatient/daycase hospitalisation and death registers in Scotland. The study population consisted of HCV-diagnosed patients with a first DC admission in 1996-2013, with follow-up available until 31 May 2014. We investigated and quantified the mean cumulative length of hospital stay, distributions over discharge diagnosis categories, and trends in admission rates. Among our study population (n = 1543), we identified 10 179 admissions with any diagnosis post-first DC admission. Between 1996 and 2013 there was a 16-fold rise in annual total admissions (from 112 to 1791) and an 11-fold rise in hospital stay (719-8045). When restricting minimum possible follow-up to 2 years, DC patients (n = 1312) had an overall admission rate of 7.3 per person-year, and spent on average 43 days (26 days during first 6 months) in hospital; for all liver-related, liver-related other than HCC/DC, and non-liver related only admissions, this was 39, 14, and 5 days respectively. HCV-infected DC patients impose a considerable inpatient hospital burden, mostly from DC- and other liver-related admissions, but also from admissions associated with non-liver comorbidities. Estimates will be useful for monitoring the impact of prevention and treatment, and for computing the cost-effectiveness of new therapies. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. 45 CFR 98.93 - Complaints.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 1 2012-10-01 2012-10-01 false Complaints. 98.93 Section 98.93 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION CHILD CARE AND DEVELOPMENT FUND Monitoring... for Children and Families, 370 L'Enfant Promenade, SW., Washington, DC 20447. The complaint shall...

  16. Operational Reserve: Costs and Considerations

    DTIC Science & Technology

    material way. Findings include relevant RC costs at approximately 132% of those of a hypothetical equivalent AC unit. The primary contributor to...the Deputy Commandant for Manpower and Reserve Affairs (DC, M and RA), should monitor the totality of relevant monetary and non -monetary costs for any

  17. Water-quality and amphibian population data for Maryland, Washington, D.C., and Virginia, 2001-2004

    USGS Publications Warehouse

    Rice, K.C.; Jung, R.E.

    2004-01-01

    Data on the chemical composition of water and on amphibian populations were collected at least annually from vernal pool and stream sites in Maryland, Washington, D.C., and Virginia, from 2001 through 2004. The data were collected as part of long-term monitoring projects of the Northeast Region of the Amphibian Research and Monitoring Initiative (ARMI) of the U.S. Geological Survey. Water samples were analyzed for temperature, specific conductance, pH, dissolved-oxygen concentration, acid-neutralizing capacity, and concentrations of total Kjeldahl nitrogen and total phosphorus; in 2004, samples also were analyzed for nitrite plus nitrate concentrations and total nitrogen concentrations. Field and laboratory analytical results of water samples and quality-assurance information are presented. Amphibian population data include the presence of amphibian species and the maximum number of egg masses of wood frogs and spotted salamanders at vernal pools, and counts of amphibians made during stream transect and stream quadrat surveys.

  18. NASA Ames Research Center 60 MW Power Supply Modernization

    NASA Technical Reports Server (NTRS)

    Choy, Yuen Ching; Ilinets, Boris V.; Miller, Ted; Nagel, Kirsten (Technical Monitor)

    2001-01-01

    The NASA Ames Research Center 60 MW DC Power Supply was built in 1974 to provide controlled DC power for the Thermophysics Facility Arc Jet Laboratory. The Power Supply has gradually losing reliability due to outdated technology and component life limitation. NASA has decided to upgrade the existing rectifier modules with contemporary high-power electronics and control equipment. NASA plans to complete this project in 2001. This project includes a complete replacement of obsolete thyristor stacks in all six rectifier modules and rectifier bridge control system. High power water-cooled thyristors and freewheeling diodes will be used. The rating of each of the six modules will be 4000 A at 5500 V. The control firing angle signal will be sent from the Facility Control System to six modules via fiberoptic cable. The Power Supply control and monitoring system will include a Master PLC in the Facility building and a Slave PLC in each rectifier module. This system will also monitor each thyristor level in each stack and the auxiliary equipment.

  19. Enhanced ablation of small anodes in a carbon nanotube arc discharge

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny; Fetterman, Abraham; Keidar, Michael

    2008-11-01

    An atmospheric pressure helium arc discharge is used for carbon nanotube synthesis. The arc discharge operates in an anodic mode with the ablating anode made from a graphite material. For such conditions, models predict the electron-repelling (negative) anode sheath. In the present experiments, the anode ablation rate is investigated as a function of the anode diameter. It is found that anomalously high ablation occurs for small anode diameters (< 0.4 cm). This result is explained by the formation of an electron-attracting (positive) anode sheath leading to increased power losses on small anodes as compared to larger anodes [1]. The suggested mechanism for the positive anode sheath formation is plasma convergence. The increased ablation rate due to this positive sheath could imply a greater yield of carbon nanotube production. [1] A. J. Fetterman, Y. Raitses and M. Keidar, Carbon (2008).

  20. Electrochemical and thermal studies of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Wenquan

    The structural, electrochemical, and thermal characteristics of carbonaceous anodes and LiNi0.8Co0.2O2 cathode in Li-ion cells were investigated using various electrochemical and calorimetric techniques. The electrode-electrolyte interface was investigated for various carbonaceous materials such as graphite with different shapes, surface modified graphite with copper, and novel carbon material derived from sepiolite template. The structural and morphological properties were determined using XRD, TGA, SEM, BET techniques. The electrochemical characteristics were studied using conventional electrochemical techniques such as galvanostatic charge/discharge cycling, cyclic voltammetry, and impedance (AC and DC) methods. It was observed that the electrochemical active surface area instead of the BET area plays a critical role in the irreversible capacity loss associated with the carbonaceous anodes. It was also found that the exfoliation of carbon anodes especially in PC based electrolyte could be significantly reduced by protective copper coating of the natural graphite. LiNi0.8Co0.2O2 cathode material was found to possess high energy density and excellent cycling characteristics. The structural and electrochemical properties of LiNi0.8Co 0.2O2 synthesized by sol-gel and solid-state methods were studied. Results of the AC impedance spectroscopy carried out on LiNi 0.8Co0.2O2 cathodes revealed that the charge transfer resistance is a function of the state of charge. The solid state Li + diffusion was calculated to be around 10-13 cm2/s in the oxide particle by Warburg impedance method. In addition, the cell fabricated with LiNi0.8Co0.2O 2 cathode showed excellent energy and power performance under static and dynamic load conditions that prevail in Electric and Hybrid Vehicles. Thermal properties of the LiNi0.8Co0.2O2 cathode, carbonaceous anodes, and Li-ion cells fabricated with these electrodes were also investigated using isothermal microcalorimetry (IMC), differential scanning calorimetry (DSC) and accelerated rate calorimetry (ARC). Isothermal micro-calorimeter was used to investigate the thermal behavior of the Li-ion cell and its electrodes. The overall heat changes during charge-discharge processes were explained in terms of the irreversible (resistive) and reversible (entropic) heats. It was observed that the reversible heat strongly depends on the structural or phase change occurring in the electrodes during Li-ion insertion and extraction reactions. It was also found that the contribution of the reversible heat to the overall cell heat generation rate was significant only at low cycling rates.

  1. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    PubMed

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Synthetic and biogenic magnetite nanoparticles for tracking of stem cells and dendritic cells

    NASA Astrophysics Data System (ADS)

    Schwarz, Sebastian; Fernandes, Fabiana; Sanroman, Laura; Hodenius, Michael; Lang, Claus; Himmelreich, Uwe; Schmitz-Rode, Thomas; Schueler, Dirk; Hoehn, Mathias; Zenke, Martin; Hieronymus, Thomas

    2009-05-01

    Accurate delivery of cells to target organs is critical for success of cell-based therapies with stem cells or immune cells such as antigen-presenting dendritic cells (DC). Labeling with contrast agents before implantation provides a powerful means for monitoring cellular migration using magnetic resonance imaging (MRI). In this study, we investigated the uptake of fully synthesized or bacterial magnetic nanoparticles (MNPs) into hematopoietic Flt3 + stem cells and DC from mouse bone marrow. We show that (i) uptake of both synthetic and biogenic nanoparticles into cells endow magnetic activity and (ii) low numbers of MNP-loaded cells are readily detected by MRI.

  3. Application of an onboard processor to the OAO C spacecraft

    NASA Technical Reports Server (NTRS)

    Stewart, W. N.; Hartenstein, R. G.; Trevathan, C.

    1972-01-01

    The design of a stored program computer for spacecraft use and its application on the fourth Orbiting Astronomical Observatory (OAO) is reported. The computer is a medium scale, parallel machine with a memory capacity of 16384 words of 18 bits each. It possesses a comprehensive instruction repertoire and operates on 45 W of power (including the dc-to-dc converter). The machine operates at a 500-kHz rate and executes an add instruction in 10 microseconds. Its primary functions on OAO C will be auxiliary command storage, spacecraft monitoring and malfunction reporting, data compression and status summary, and possible performance of emergency corrective action for certain anomalous situations.

  4. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies July 2001 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2013-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the on-orbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  5. Operational Status of the International Space Station Plasma Contactor Hollow Cathode Assemblies from July 2011 to May 2013

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Yim, John T.; Patterson, Michael J.; Dalton, Penni J.

    2014-01-01

    The International Space Station has onboard two Aerojet Rocketdyne developed plasma contactor units that perform the function of charge control. The plasma contactor units contain NASA Glenn Research Center developed hollow cathode assemblies. NASA Glenn Research Center monitors the onorbit operation of the flight hollow cathode assemblies. As of May 31, 2013, HCA.001-F has been ignited and operated 123 times and has accumulated 8072 hours of operation, whereas, HCA.003-F has been ignited and operated 112 times and has accumulated 9664 hours of operation. Monitored hollow cathode ignition times and anode voltage magnitudes indicate that they continue to operate nominally.

  6. Updates on Software development for a RICH detector

    NASA Astrophysics Data System (ADS)

    Voloshin, Andrew; Benmokhtar, Fatiha; Lendacky, Andrew; Goodwill, Justin

    2017-01-01

    The CLAS12 detector at Thomas Jefferson National Accelerator Facility (TJNAF) is undergoing an upgrade. One of the improvements is the addition of a Ring Imaging Cherenkov (RICH) detector to improve particle identification in the 3-8 GeV/c momentum range. Approximately 400 multi anode photomultiplier tubes (MAPMTs) are going to be used to detect Cherenkov Radiation in the single photoelectron spectra (SPS). Software development for slow control as well as online monitoring is under development. I will be presenting my work on the development of a java based programs for a monitor and explain its interaction with a Mysql database where the MAPMTs information is stored as well as the techniques used to visualize Cherenkov rings.

  7. Electron launching voltage monitor

    DOEpatents

    Mendel, Clifford W.; Savage, Mark E.

    1992-01-01

    An electron launching voltage monitor measures MITL voltage using a relationship between anode electric field and electron current launched from a cathode-mounted perturbation. An electron launching probe extends through and is spaced from the edge of an opening in a first MITL conductor, one end of the launching probe being in the gap between the MITL conductor, the other end being adjacent a first side of the first conductor away from the second conductor. A housing surrounds the launching probe and electrically connects the first side of the first conductor to the other end of the launching probe. A detector detects the current passing through the housing to the launching probe, the detected current being representative of the voltage between the conductors.

  8. Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions

    NASA Astrophysics Data System (ADS)

    Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; Khodak, A.

    2018-01-01

    The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on the current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. The results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.

  9. Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions

    DOE PAGES

    Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.; ...

    2018-01-22

    The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on themore » current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. Here, the results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.« less

  10. Investigation of the short argon arc with hot anode. I. Numerical simulations of non-equilibrium effects in the near-electrode regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khrabry, A.; Kaganovich, I. D.; Nemchinsky, V.

    The atmospheric pressure arcs have recently found application in the production of nanoparticles. The distinguishing features of such arcs are small length and hot ablating anode characterized by intensive electron emission and radiation from its surface. We performed a one-dimensional modeling of argon arc, which shows that near-electrode effects of thermal and ionization non-equilibrium play an important role in the operation of a short arc, because the non-equilibrium regions are up to several millimeters long and are comparable to the arc length. The near-anode region is typically longer than the near-cathode region and its length depends more strongly on themore » current density. The model was extensively verified and validated against previous simulation results and experimental data. The Volt-Ampere characteristic (VAC) of the near-anode region depends on the anode cooling mechanism. The anode voltage is negative. In the case of strong anode cooling (water-cooled anode) when the anode is cold, temperature and plasma density gradients increase with current density, resulting in a decrease of the anode voltage (the absolute value increases). Falling VAC of the near-anode region suggests the arc constriction near the anode. Without anode cooling, the anode temperature increases significantly with the current density, leading to a drastic increase in the thermionic emission current from the anode. Correspondingly, the anode voltage increases to suppress the emission, and the opposite trend in the VAC is observed. Here, the results of simulations were found to be independent of sheath model used: collisional (fluid) or collisionless model gave the same plasma profiles for both near-anode and near-cathode regions.« less

  11. Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method

    DOEpatents

    Bates, John B.

    1994-01-01

    A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

  12. Anode power in quasisteady magnetoplasmadynamic accelerators

    NASA Technical Reports Server (NTRS)

    Saber, A. J.; Jahn, R. G.

    1978-01-01

    Anode heat flux in a quasi-steady MPD accelerator has been measured directly and locally by thermocouples attached to the inside surface of a shell anode. These measurements show that over a range of arc current from 5.5 to 44 kA, and argon mass flow from 1 to 48 g/s, the fraction of the total arc power deposited in the anode decreases from 50% at 200 kW to 10% at 20 MW. A theoretical model of the anode heat transfer asserts that energy exchange between electrons and heavy particles in the plasma near the anode occurs over distances greater than the anode sheath thickness, and hence the usual anode fall voltage, electron temperature, and work function contributions to the anode heat flux are supplemented by a contribution from the interelectrode potential. Calculations of anode heat flux using the measured current density, plasma potential, and electron temperature in the plasma adjacent to the anode agree with the direct measurements and indicate that the decrease in anode power fraction at higher arc powers can be attributed to the smaller mean free paths in the interelectrode plasma.

  13. 77 FR 60677 - Proposed Information Collection; Comment Request; Antarctic Marine Living Resources Conservation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-04

    ... DC 20230 (or via Internet at [email protected] ). FOR FURTHER INFORMATION CONTACT: Requests for..., electronic reports, satellite-linked vessel monitoring devices, radio and telephone calls, gear and vessel markings are required from participants and methods of transmittal include Internet, satellite, facsimile...

  14. Methods for solid electrolyte interphase formation and anode pre-lithiation of lithium ion capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raman, Santhanam; Xi, Xiaomei; Ye, Xiang-Rong

    A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant current between the anode and the dopant source. A method of pre-doping an anode of an energy storage device can include immersing the anode and a dopant source in an electrolyte, and coupling a substantially constant voltage across the anode and the dopant source. An energy storage device can include an anode having a lithium ion pre-doping level of about 60% to about 90%.

  15. Erlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI.

    PubMed

    Ali, Ahmed Atef Ahmed; Hsu, Fei-Ting; Hsieh, Chia-Ling; Shiau, Chia-Yang; Chiang, Chiao-Hsi; Wei, Zung-Hang; Chen, Cheng-Yu; Huang, Hsu-Shan

    2016-11-11

    We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells. MRI, transmission electron microscopy and Prussian blue staining results indicated that cellular uptake and intracellular accumulation of FeDC-E NPs in the EGFR overexpressing cells was significantly higher than those of the non-erlotinib-conjugated nanoparticles. FeDC-E NPs inhibited the EGFR-ERK-NF-κB signaling pathways, and subsequently suppressed the migration and invasion capabilities of the highly invasive and migrative CL1-5-F4 cancer cells. In vivo tumor xenograft experiments using BALB/c nude mice showed that FeDC-E NPs could effectively inhibit the growth of tumors. T 2 -weighted MRI images of the mice showed significant decrease in the normalized signal within the tumor post-treatment with FeDC-E NPs compared to the non-targeted control iron oxide nanoparticles. This is the first study to use erlotinib as a small-molecule targeting agent for nanoparticles.

  16. Erlotinib-Conjugated Iron Oxide Nanoparticles as a Smart Cancer-Targeted Theranostic Probe for MRI

    NASA Astrophysics Data System (ADS)

    Ali, Ahmed Atef Ahmed; Hsu, Fei-Ting; Hsieh, Chia-Ling; Shiau, Chia-Yang; Chiang, Chiao-Hsi; Wei, Zung-Hang; Chen, Cheng-Yu; Huang, Hsu-Shan

    2016-11-01

    We designed and synthesized novel theranostic nanoparticles that showed the considerable potential for clinical use in targeted therapy, and non-invasive real-time monitoring of tumors by MRI. Our nanoparticles were ultra-small with superparamagnetic iron oxide cores, conjugated to erlotinib (FeDC-E NPs). Such smart targeted nanoparticles have the preference to release the drug intracellularly rather than into the bloodstream, and specifically recognize and kill cancer cells that overexpress EGFR while being non-toxic to EGFR-negative cells. MRI, transmission electron microscopy and Prussian blue staining results indicated that cellular uptake and intracellular accumulation of FeDC-E NPs in the EGFR overexpressing cells was significantly higher than those of the non-erlotinib-conjugated nanoparticles. FeDC-E NPs inhibited the EGFR-ERK-NF-κB signaling pathways, and subsequently suppressed the migration and invasion capabilities of the highly invasive and migrative CL1-5-F4 cancer cells. In vivo tumor xenograft experiments using BALB/c nude mice showed that FeDC-E NPs could effectively inhibit the growth of tumors. T2-weighted MRI images of the mice showed significant decrease in the normalized signal within the tumor post-treatment with FeDC-E NPs compared to the non-targeted control iron oxide nanoparticles. This is the first study to use erlotinib as a small-molecule targeting agent for nanoparticles.

  17. Synthesis of TiO{sub 2} by electrochemical method from TiCl{sub 4} solution as anode material for lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nur, Adrian, E-mail: adriannur@staff.uns.ac.id; Purwanto, Agus; Jumari, Arif

    Metal oxide combined with graphite becomes interesting composition. TiO{sub 2} is a good candidate for Li ion battery anode because of cost, availability of sufficient materials, and environmentally friendly. TiO{sub 2} gravimetric capacity varied within a fairly wide range. TiO{sub 2} crystals form highly depends on the synthesis method used. The electrochemical method is beginning to emerge as a valuable option for preparing TiO{sub 2} powders. Using the electrochemical method, the particle can easily be controlled by simply adjusting the imposed current or potential to the system. In this work, the effects of some key parameters of the electrosynthesis onmore » the formation of TiO{sub 2} have been investigated. The combination of graphite and TiO{sub 2} particle has also been studied for lithium-ion batteries. The homogeneous solution for the electrosynthesis of TiO{sub 2} powders was TiCl{sub 4} in ethanol solution. The electrolysis was carried out in an electrochemical cell consisting of two carbon electrodes with dimensions of (5 × 2) cm. The electrodes were set parallel with a distance of 2.6 cm between the electrodes and immersed in the electrolytic solution at a depth of 2 cm. The electrodes were connected to the positive and negative terminals of a DC power supply. The electrosynthesis was performed galvanostatically at 0.5 to 2.5 hours and voltages were varied from 8 to 12 V under constant stirring at room temperature. The resulted suspension was aged at 48 hrs, filtered, dried directly in an oven at 150°C for 2 hrs, washed 2 times, and dried again 60 °C for 6 hrs. The particle product has been used to lithium-ion battery as anode. Synthesis of TiO{sub 2} particle by electrochemical method at 10 V for 1 to 2.5 hrs resulted anatase and rutile phase.« less

  18. Electrochemically-Induced Redox Reactions in Basalt at High Pressure and Temperature: An Iron and Vanadium K-edge XANES Study

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Walker, D.; Newville, M.; Sutton, S. R.

    2005-12-01

    An applied electric field across a silicate sample at high pressures and temperatures in a piston cylinder apparatus can generate a wide range of oxidation states of polyvalent cations within a single experiment. If two or more polyvalent cations are included, this technique can be used to cross-calibrate oxybarometers within a single experiment. The redox state of Fe and V within a partially melted basaltic silicate was manipulated in situ in a piston-cylinder experiment with a DC power supply providing a source and sink of electrons to the sample. A 1V electrical potential differential was applied across vanadium-doped and Fe-bearing synthetic basalt samples for 24 hrs. at 20 kbar and 1400°C in a specially-designed piston cylinder sample assembly. Three experiments were performed: a control sample with no applied voltage, one with bottom cathode and top anode, and a third with top cathode and bottom anode. Synchrotron-based x-ray absorption near edge structure (XANES) spectroscopy was used to provide spot analysis of iron and vanadium oxidation states with 5μm x 5μm spatial resolution throughout the recovered samples. Systematic spatial changes of increasing oxidation states of V and Fe were observed approaching the anode. The differences in oxidation states were mapped to a corresponding local effective oxygen fugacity by comparison and extension of a calibration of vanadium oxidation states as a function of controlled oxygen fugacity from a previous study (Sutton et al., 2005, GCA, vol. 69, pp. 2333-2348). The vanadium mapping indicates that a 1V potential drop across the sample induces effective oxygen fugacity perturbations in excess of ten orders of magnitude. The presence of both Fe and V within the same sample provides a wide range of oxygen fugacity cross-calibration in these recovered samples. A relationship between oxygen fugacity and electrochemical driving force is derived. The experimental results are in good agreement with the derived relationship between applied electrochemical potential difference (the 1V in this experiment), and corresponding calculated oxygen fugacity.

  19. Aluminum low temperature smelting cell metal collection

    DOEpatents

    Beck, Theodore R.; Brown, Craig W.

    2002-07-16

    A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte. The method comprises the steps of providing a molten salt electrolyte in an electrolytic cell having an anodic liner for containing the electrolyte, the liner having an anodic bottom and walls including at least one end wall extending upwardly from the anodic bottom, the anodic liner being substantially inert with respect to the molten electrolyte. A plurality of non-consumable anodes is provided and disposed vertically in the electrolyte. A plurality of cathodes is disposed vertically in the electrolyte in alternating relationship with the anodes. The anodes are electrically connected to the anodic liner. An electric current is passed through the anodic liner to the anodes, through the electrolyte to the cathodes, and aluminum is deposited on said cathodes. Oxygen bubbles are generated at the anodes and the anodic liner, the bubbles stirring the electrolyte. Molten aluminum is collected from the cathodes into a tubular member positioned underneath the cathodes. The tubular member is in liquid communication with each cathode to collect the molten aluminum therefrom while excluding electrolyte. Molten aluminum is delivered through the tubular member to a molten aluminum reservoir located substantially opposite the anodes and cathodes. The molten aluminum is collected from the cathodes and delivered to the reservoir while avoiding contact of the molten aluminum with the anodic bottom.

  20. Electromagnetic characteristic of twin-wire indirect arc welding

    NASA Astrophysics Data System (ADS)

    Shi, Chuanwei; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires: one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5 μN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.

Top